WorldWideScience

Sample records for lipid membrane molecular

  1. Membrane Lipid Oscillation: An Emerging System of Molecular Dynamics in the Plant Membrane.

    Science.gov (United States)

    Nakamura, Yuki

    2018-03-01

    Biological rhythm represents a major biological process of living organisms. However, rhythmic oscillation of membrane lipid content is poorly described in plants. The development of lipidomic technology has led to the illustration of precise molecular profiles of membrane lipids under various growth conditions. Compared with conventional lipid signaling, which produces unpredictable lipid changes in response to ever-changing environmental conditions, lipid oscillation generates a fairly predictable lipid profile, adding a new layer of biological function to the membrane system and possible cross-talk with the other chronobiological processes. This mini review covers recent studies elucidating membrane lipid oscillation in plants.

  2. Molecular Transport Studies Through Unsupported Lipid Membranes

    Science.gov (United States)

    Rock, William; Parekh, Sapun; Bonn, Mischa

    2014-03-01

    Dendrimers, spherical polymeric nanoparticles made from branched monomers around a central core, show great promise as drug delivery vehicles. Dendrimer size, core contents, and surface functionality can be synthetically tuned, providing unprecedented versatility. Polyamidoamine (PAMAM) dendrimers have been shown to enter cells; however, questions remain about their biophysical interactions with the cell membrane, specifically about the presence and size of transient pores. We monitor dendrimer-lipid bilayer interactions using unsupported black lipid membranes (BLMs) as model cell membranes. Custom bilayer slides contain two vertically stacked aqueous chambers separated by a 25 μm Teflon sheet with a 120 μm aperture where the bilayer is formed. We vary the composition of model membranes (cholesterol content and lipid phase) to create biomimetic systems and study the interaction of PAMAM G6 and G3 dendrimers with these bilayers. Dendrimers, dextran cargo, and bilayers are monitored and quantified using time-lapse fluorescence imaging. Electrical capacitance measurements are simultaneously recorded to determine if the membrane is porous, and the pore size is deduced by monitoring transport of fluorescent dextrans of increasing molecular weight. These experiments shed light on the importance of cholesterol content and lipid phase on the interaction of dendrimer nanoparticles with membranes.

  3. Lipid clustering correlates with membrane curvature as revealed by molecular simulations of complex lipid bilayers.

    Directory of Open Access Journals (Sweden)

    Heidi Koldsø

    2014-10-01

    Full Text Available Cell membranes are complex multicomponent systems, which are highly heterogeneous in the lipid distribution and composition. To date, most molecular simulations have focussed on relatively simple lipid compositions, helping to inform our understanding of in vitro experimental studies. Here we describe on simulations of complex asymmetric plasma membrane model, which contains seven different lipids species including the glycolipid GM3 in the outer leaflet and the anionic lipid, phosphatidylinositol 4,5-bisphophate (PIP2, in the inner leaflet. Plasma membrane models consisting of 1500 lipids and resembling the in vivo composition were constructed and simulations were run for 5 µs. In these simulations the most striking feature was the formation of nano-clusters of GM3 within the outer leaflet. In simulations of protein interactions within a plasma membrane model, GM3, PIP2, and cholesterol all formed favorable interactions with the model α-helical protein. A larger scale simulation of a model plasma membrane containing 6000 lipid molecules revealed correlations between curvature of the bilayer surface and clustering of lipid molecules. In particular, the concave (when viewed from the extracellular side regions of the bilayer surface were locally enriched in GM3. In summary, these simulations explore the nanoscale dynamics of model bilayers which mimic the in vivo lipid composition of mammalian plasma membranes, revealing emergent nanoscale membrane organization which may be coupled both to fluctuations in local membrane geometry and to interactions with proteins.

  4. Effects of deformability and thermal motion of lipid membrane on electroporation: By molecular dynamics simulations

    KAUST Repository

    Sun, Sheng; Yin, Guangyao; Lee, Yi-Kuen; Wong, Joseph T.Y.; Zhang, Tong-Yi

    2011-01-01

    Effects of mechanical properties and thermal motion of POPE lipid membrane on electroporation were studied by molecular dynamics simulations. Among simulations in which specific atoms of lipids were artificially constrained at their equilibrium

  5. Membrane-spanning lipids for an uncompromised monitoring of membrane fusion and intermembrane lipid transfer.

    Science.gov (United States)

    Schwarzmann, Günter; Breiden, Bernadette; Sandhoff, Konrad

    2015-10-01

    A Förster resonance energy transfer-based fusion and transfer assay was developed to study, in model membranes, protein-mediated membrane fusion and intermembrane lipid transfer of fluorescent sphingolipid analogs. For this assay, it became necessary to apply labeled reporter molecules that are resistant to spontaneous as well as protein-mediated intermembrane transfer. The novelty of this assay is the use of nonextractable fluorescent membrane-spanning bipolar lipids. Starting from the tetraether lipid caldarchaeol, we synthesized fluorescent analogs with fluorophores at both polar ends. In addition, we synthesized radioactive glycosylated caldarchaeols. These labeled lipids were shown to stretch through bilayer membranes rather than to loop within a single lipid layer of liposomes. More important, the membrane-spanning lipids (MSLs) in contrast to phosphoglycerides proved to be nonextractable by proteins. We could show that the GM2 activator protein (GM2AP) is promiscuous with respect to glycero- and sphingolipid transfer. Saposin (Sap) B also transferred sphingolipids albeit with kinetics different from GM2AP. In addition, we could unambiguously show that the recombinant activator protein Sap C x His6 induced membrane fusion rather than intermembrane lipid transfer. These findings showed that these novel MSLs, in contrast with fluorescent phosphoglycerolipids, are well suited for an uncompromised monitoring of membrane fusion and intermembrane lipid transfer. Copyright © 2015 by the American Society for Biochemistry and Molecular Biology, Inc.

  6. Effects of deformability and thermal motion of lipid membrane on electroporation: By molecular dynamics simulations

    KAUST Repository

    Sun, Sheng

    2011-01-01

    Effects of mechanical properties and thermal motion of POPE lipid membrane on electroporation were studied by molecular dynamics simulations. Among simulations in which specific atoms of lipids were artificially constrained at their equilibrium positions using a spring with force constant of 2.0kcal/(molÅ2) in the external electric field of 1.4kcal/(molÅe), only constraint on lateral motions of lipid tails prohibited electroporation while non-tail parts had little effects. When force constant decreased to 0.2kcal/(molÅ2) in the position constraints on lipid tails in the external electric field of 2.0kcal/(molÅe), water molecules began to enter the membrane. Position constraints of lipid tails allow water to penetrate from both sides of membrane. Thermal motion of lipids can induce initial defects in the hydrophobic core of membrane, which are favorable nucleation sites for electroporation. Simulations at different temperatures revealed that as the temperature increases, the time taken to the initial pore formation will decrease. © 2010 Elsevier Inc.

  7. Effects of deformability and thermal motion of lipid membrane on electroporation: By molecular dynamics simulations

    International Nuclear Information System (INIS)

    Sun, Sheng; Yin, Guangyao; Lee, Yi-Kuen; Wong, Joseph T.Y.; Zhang, Tong-Yi

    2011-01-01

    Research highlights: → MD simulations show that deformability and thermal motion of membrane affect electroporation. → Stiffer membrane inhibits electroporation and makes water penetrate from both sides. → Higher temperature accelerates electroporation. -- Abstract: Effects of mechanical properties and thermal motion of POPE lipid membrane on electroporation were studied by molecular dynamics simulations. Among simulations in which specific atoms of lipids were artificially constrained at their equilibrium positions using a spring with force constant of 2.0 kcal/(mol A 2 ) in the external electric field of 1.4 kcal/(mol A e), only constraint on lateral motions of lipid tails prohibited electroporation while non-tail parts had little effects. When force constant decreased to 0.2 kcal/(mol A 2 ) in the position constraints on lipid tails in the external electric field of 2.0 kcal/(mol A e), water molecules began to enter the membrane. Position constraints of lipid tails allow water to penetrate from both sides of membrane. Thermal motion of lipids can induce initial defects in the hydrophobic core of membrane, which are favorable nucleation sites for electroporation. Simulations at different temperatures revealed that as the temperature increases, the time taken to the initial pore formation will decrease.

  8. Fluorescent molecular probes based on excited state prototropism in lipid bilayer membrane

    Science.gov (United States)

    Mohapatra, Monalisa; Mishra, Ashok K.

    2012-03-01

    Excited state prototropism (ESPT) is observed in molecules having one or more ionizable protons, whose proton transfer efficiency is different in ground and excited states. The interaction of various ESPT molecules like naphthols and intramolecular ESPT (ESIPT) molecules like hydroxyflavones etc. with different microheterogeneous media have been studied in detail and excited state prototropism as a probe concept has been gaining ground. The fluorescence of different prototropic forms of such molecules, on partitioning to an organized medium like lipid bilayer membrane, often show sensitive response to the local environment with respect to the local structure, physical properties and dynamics. Our recent work using 1-naphthol as an ESPT fluorescent molecular probe has shown that the incorporation of monomeric bile salt molecules into lipid bilayer membranes composed from dipalmitoylphosphatidylcholine (DPPC, a lung surfactant) and dimyristoylphosphatidylcholine (DMPC), in solid gel and liquid crystalline phases, induce appreciable wetting of the bilayer up to the hydrocarbon core region, even at very low (fisetin, an ESIPT molecule having antioxidant properties, in lipid bilayer membrane has been sensitively monitored from its intrinsic fluorescence behaviour.

  9. DHA-fluorescent probe is sensitive to membrane order and reveals molecular adaptation of DHA in ordered lipid microdomains☆

    Science.gov (United States)

    Teague, Heather; Ross, Ron; Harris, Mitchel; Mitchell, Drake C.; Shaikh, Saame Raza

    2012-01-01

    Docosahexaenoic acid (DHA) disrupts the size and order of plasma membrane lipid microdomains in vitro and in vivo. However, it is unknown how the highly disordered structure of DHA mechanistically adapts to increase the order of tightly packed lipid microdomains. Therefore, we studied a novel DHA-Bodipy fluorescent probe to address this issue. We first determined if the DHA-Bodipy probe localized to the plasma membrane of primary B and immortal EL4 cells. Image analysis revealed that DHA-Bodipy localized into the plasma membrane of primary B cells more efficiently than EL4 cells. We then determined if the probe detected changes in plasma membrane order. Quantitative analysis of time-lapse movies established that DHA-Bodipy was sensitive to membrane molecular order. This allowed us to investigate how DHA-Bodipy physically adapted to ordered lipid microdomains. To accomplish this, we employed steady-state and time-resolved fluorescence anisotropy measurements in lipid vesicles of varying composition. Similar to cell culture studies, the probe was highly sensitive to membrane order in lipid vesicles. Moreover, these experiments revealed, relative to controls, that upon incorporation into highly ordered microdomains, DHA-Bodipy underwent an increase in its fluorescence lifetime and molecular order. In addition, the probe displayed a significant reduction in its rotational diffusion compared to controls. Altogether, DHA-Bodipy was highly sensitive to membrane order and revealed for the first time that DHA, despite its flexibility, could become ordered with less rotational motion inside ordered lipid microdomains. Mechanistically, this explains how DHA acyl chains can increase order upon formation of lipid microdomains in vivo. PMID:22841541

  10. Molecular dynamics study of lipid bilayers modeling the plasma membranes of mouse hepatocytes and hepatomas.

    Science.gov (United States)

    Andoh, Yoshimichi; Aoki, Noriyuki; Okazaki, Susumu

    2016-02-28

    Molecular dynamics (MD) calculations of lipid bilayers modeling the plasma membranes of normal mouse hepatocytes and hepatomas in water have been performed under physiological isothermal-isobaric conditions (310.15 K and 1 atm). The changes in the membrane properties induced by hepatic canceration were investigated and were compared with previous MD calculations included in our previous study of the changes in membrane properties induced by murine thymic canceration. The calculated model membranes for normal hepatocytes and hepatomas comprised 23 and 24 kinds of lipids, respectively. These included phosphatidylcholine, phosphatidylethanolamine, phosphatidylserine, phosphatidylinositol, sphingomyelin, lysophospholipids, and cholesterol. We referred to previously published experimental values for the mole fraction of the lipids adopted in the present calculations. The calculated structural and dynamic properties of the membranes such as lateral structure, order parameters, lateral self-diffusion constants, and rotational correlation times all showed that hepatic canceration causes plasma membranes to become more ordered laterally and less fluid. Interestingly, this finding contrasts with the less ordered structure and increased fluidity of plasma membranes induced by thymic canceration observed in our previous MD study.

  11. Atomistic Monte Carlo simulation of lipid membranes

    DEFF Research Database (Denmark)

    Wüstner, Daniel; Sklenar, Heinz

    2014-01-01

    Biological membranes are complex assemblies of many different molecules of which analysis demands a variety of experimental and computational approaches. In this article, we explain challenges and advantages of atomistic Monte Carlo (MC) simulation of lipid membranes. We provide an introduction...... of local-move MC methods in combination with molecular dynamics simulations, for example, for studying multi-component lipid membranes containing cholesterol....

  12. Molecular dynamics study of lipid bilayers modeling the plasma membranes of normal murine thymocytes and leukemic GRSL cells.

    Science.gov (United States)

    Andoh, Yoshimichi; Okazaki, Susumu; Ueoka, Ryuichi

    2013-04-01

    Molecular dynamics (MD) calculations for the plasma membranes of normal murine thymocytes and thymus-derived leukemic GRSL cells in water have been performed under physiological isothermal-isobaric conditions (310.15K and 1 atm) to investigate changes in membrane properties induced by canceration. The model membranes used in our calculations for normal and leukemic thymocytes comprised 23 and 25 kinds of lipids, respectively, including phosphatidylcholine, phosphatidylethanolamine, phosphatidylserine, phosphatidylinositol, sphingomyelin, lysophospholipids, and cholesterol. The mole fractions of the lipids adopted here were based on previously published experimental values. Our calculations clearly showed that the membrane area was increased in leukemic cells, and that the isothermal area compressibility of the leukemic plasma membranes was double that of normal cells. The calculated membranes of leukemic cells were thus considerably bulkier and softer in the lateral direction compared with those of normal cells. The tilt angle of the cholesterol and the conformation of the phospholipid fatty acid tails both showed a lower level of order in leukemic cell membranes compared with normal cell membranes. The lateral radial distribution function of the lipids also showed a more disordered structure in leukemic cell membranes than in normal cell membranes. These observations all show that, for the present thymocytes, the lateral structure of the membrane is considerably disordered by canceration. Furthermore, the calculated lateral self-diffusion coefficient of the lipid molecules in leukemic cell membranes was almost double that in normal cell membranes. The calculated rotational and wobbling autocorrelation functions also indicated that the molecular motion of the lipids was enhanced in leukemic cell membranes. Thus, here we have demonstrated that the membranes of thymocyte leukemic cells are more disordered and more fluid than normal cell membranes. Copyright © 2013

  13. Lipid organization of the plasma membrane

    NARCIS (Netherlands)

    Ingólfsson, Helgi I; Melo, Manuel N; van Eerden, Floris J; Arnarez, Clément; Lopez, Cesar A; Wassenaar, Tsjerk A; Periole, Xavier; de Vries, Alex H; Tieleman, D Peter; Marrink, Siewert J

    2014-01-01

    The detailed organization of cellular membranes remains rather elusive. Based on large-scale molecular dynamics simulations, we provide a high-resolution view of the lipid organization of a plasma membrane at an unprecedented level of complexity. Our plasma membrane model consists of 63 different

  14. Effect of acetone accumulation on structure and dynamics of lipid membranes studied by molecular dynamics simulations.

    Science.gov (United States)

    Posokhov, Yevgen O; Kyrychenko, Alexander

    2013-10-01

    The modulation of the properties and function of cell membranes by small volatile substances is important for many biomedical applications. Despite available experimental results, molecular mechanisms of action of inhalants and organic solvents, such as acetone, on lipid membranes remain not well understood. To gain a better understanding of how acetone interacts with membranes, we have performed a series of molecular dynamics (MD) simulations of a POPC bilayer in aqueous solution in the presence of acetone, whose concentration was varied from 2.8 to 11.2 mol%. The MD simulations of passive distribution of acetone between a bulk water phase and a lipid bilayer show that acetone favors partitioning into the water-free region of the bilayer, located near the carbonyl groups of the phospholipids and at the beginning of the hydrocarbon core of the lipid membrane. Using MD umbrella sampling, we found that the permeability barrier of ~0.5 kcal/mol exists for acetone partitioning into the membrane. In addition, a Gibbs free energy profile of the acetone penetration across a bilayer demonstrates a favorable potential energy well of -3.6 kcal/mol, located at 15-16Å from the bilayer center. The analysis of the structural and dynamics properties of the model membrane revealed that the POPC bilayer can tolerate the presence of acetone in the concentration range of 2.8-5.6 mol%. The accumulation of the higher acetone concentration of 11.2 mol% results, however, in drastic disordering of phospholipid packing and the increase in the membrane fluidity. The acetone molecules push the lipid heads apart and, hence, act as spacers in the headgroup region. This effect leads to the increase in the average headgroup area per molecule. In addition, the acyl tail region of the membrane also becomes less dense. We suggest, therefore, that the molecular mechanism of acetone action on the phospholipid bilayer has many common features with the effects of short chain alcohols, DMSO, and

  15. Insertion of Neurotransmitters into a Lipid Bilayer Membrane and Its Implication on Membrane Stability: A Molecular Dynamics Study.

    Science.gov (United States)

    Shen, Chun; Xue, Minmin; Qiu, Hu; Guo, Wanlin

    2017-03-17

    The signaling molecules in neurons, called neurotransmitters, play an essential role in the transportation of neural signals, during which the neurotransmitters interact with not only specific receptors, but also cytomembranes, such as synaptic vesicle membranes and postsynaptic membranes. Through extensive molecular dynamics simulations, the atomic-scale insertion dynamics of typical neurotransmitters, including methionine enkephalin (ME), leucine enkephalin (LE), dopamine (DA), acetylcholine (ACh), and aspartic acid (ASP), into lipid bilayers is investigated. The results show that the first three neurotransmitters (ME, LE, and DA) are able to diffuse freely into both 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) and 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoethanolamine (POPE) membranes, and are guided by the aromatic residues Tyr and Phe. Only a limited number of these neurotransmitters are allowed to penetrate into the membrane, which suggests an intrinsic mechanism by which the membrane is protected from being destroyed by excessive inserted neurotransmitters. After spontaneous insertion, the neurotransmitters disturb the surrounding phospholipids in the membrane, as indicated by the altered distribution of components in lipid leaflets and the disordered lipid tails. In contrast, the last two neurotransmitters (ACh and ASP) cannot enter the membrane, but instead always diffuse freely in solution. These findings provide an understanding at the atomic level of how neurotransmitters interact with the surrounding cytomembrane, as well as their impact on membrane behavior. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Membrane Compartmentalization Reducing the Mobility of Lipids and Proteins within a Model Plasma Membrane.

    Science.gov (United States)

    Koldsø, Heidi; Reddy, Tyler; Fowler, Philip W; Duncan, Anna L; Sansom, Mark S P

    2016-09-01

    The cytoskeleton underlying cell membranes may influence the dynamic organization of proteins and lipids within the bilayer by immobilizing certain transmembrane (TM) proteins and forming corrals within the membrane. Here, we present coarse-grained resolution simulations of a biologically realistic membrane model of asymmetrically organized lipids and TM proteins. We determine the effects of a model of cytoskeletal immobilization of selected membrane proteins using long time scale coarse-grained molecular dynamics simulations. By introducing compartments with varying degrees of restraints within the membrane models, we are able to reveal how compartmentalization caused by cytoskeletal immobilization leads to reduced and anomalous diffusional mobility of both proteins and lipids. This in turn results in a reduced rate of protein dimerization within the membrane and of hopping of membrane proteins between compartments. These simulations provide a molecular realization of hierarchical models often invoked to explain single-molecule imaging studies of membrane proteins.

  17. Membrane re-modelling by BAR domain superfamily proteins via molecular and non-molecular factors.

    Science.gov (United States)

    Nishimura, Tamako; Morone, Nobuhiro; Suetsugu, Shiro

    2018-04-17

    Lipid membranes are structural components of cell surfaces and intracellular organelles. Alterations in lipid membrane shape are accompanied by numerous cellular functions, including endocytosis, intracellular transport, and cell migration. Proteins containing Bin-Amphiphysin-Rvs (BAR) domains (BAR proteins) are unique, because their structures correspond to the membrane curvature, that is, the shape of the lipid membrane. BAR proteins present at high concentration determine the shape of the membrane, because BAR domain oligomers function as scaffolds that mould the membrane. BAR proteins co-operate with various molecular and non-molecular factors. The molecular factors include cytoskeletal proteins such as the regulators of actin filaments and the membrane scission protein dynamin. Lipid composition, including saturated or unsaturated fatty acid tails of phospholipids, also affects the ability of BAR proteins to mould the membrane. Non-molecular factors include the external physical forces applied to the membrane, such as tension and friction. In this mini-review, we will discuss how the BAR proteins orchestrate membrane dynamics together with various molecular and non-molecular factors. © 2018 The Author(s). Published by Portland Press Limited on behalf of the Biochemical Society.

  18. Membrane curvature enables N-Ras lipid anchor sorting to liquid-ordered membrane phases

    DEFF Research Database (Denmark)

    Larsen, Jannik Bruun; Jensen, Martin Borch; Bhatia, Vikram Kjøller

    2015-01-01

    Trafficking and sorting of membrane-anchored Ras GTPases are regulated by partitioning between distinct membrane domains. Here, in vitro experiments and microscopic molecular theory reveal membrane curvature as a new modulator of N-Ras lipid anchor and palmitoyl chain partitioning. Membrane...

  19. Lipidomics in research on yeast membrane lipid homeostasis.

    Science.gov (United States)

    de Kroon, Anton I P M

    2017-08-01

    Mass spectrometry is increasingly used in research on membrane lipid homeostasis, both in analyses of the steady state lipidome at the level of molecular lipid species, and in pulse-chase approaches employing stable isotope-labeled lipid precursors addressing the dynamics of lipid metabolism. Here my experience with, and view on mass spectrometry-based lipid analysis is presented, with emphasis on aspects of quantification of membrane lipid composition of the yeast Saccharomyces cerevisiae. This article is part of a Special Issue entitled: BBALIP_Lipidomics Opinion Articles edited by Sepp Kohlwein. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Artificial Lipid Membranes: Past, Present, and Future.

    Science.gov (United States)

    Siontorou, Christina G; Nikoleli, Georgia-Paraskevi; Nikolelis, Dimitrios P; Karapetis, Stefanos K

    2017-07-26

    The multifaceted role of biological membranes prompted early the development of artificial lipid-based models with a primary view of reconstituting the natural functions in vitro so as to study and exploit chemoreception for sensor engineering. Over the years, a fair amount of knowledge on the artificial lipid membranes, as both, suspended or supported lipid films and liposomes, has been disseminated and has helped to diversify and expand initial scopes. Artificial lipid membranes can be constructed by several methods, stabilized by various means, functionalized in a variety of ways, experimented upon intensively, and broadly utilized in sensor development, drug testing, drug discovery or as molecular tools and research probes for elucidating the mechanics and the mechanisms of biological membranes. This paper reviews the state-of-the-art, discusses the diversity of applications, and presents future perspectives. The newly-introduced field of artificial cells further broadens the applicability of artificial membranes in studying the evolution of life.

  1. Lipid recognition propensities of amino acids in membrane proteins from atomic resolution data

    Directory of Open Access Journals (Sweden)

    Morita Mizuki

    2011-12-01

    Full Text Available Abstract Background Protein-lipid interactions play essential roles in the conformational stability and biological functions of membrane proteins. However, few of the previous computational studies have taken into account the atomic details of protein-lipid interactions explicitly. Results To gain an insight into the molecular mechanisms of the recognition of lipid molecules by membrane proteins, we investigated amino acid propensities in membrane proteins for interacting with the head and tail groups of lipid molecules. We observed a common pattern of lipid tail-amino acid interactions in two different data sources, crystal structures and molecular dynamics simulations. These interactions are largely explained by general lipophilicity, whereas the preferences for lipid head groups vary among individual proteins. We also found that membrane and water-soluble proteins utilize essentially an identical set of amino acids for interacting with lipid head and tail groups. Conclusions We showed that the lipophilicity of amino acid residues determines the amino acid preferences for lipid tail groups in both membrane and water-soluble proteins, suggesting that tightly-bound lipid molecules and lipids in the annular shell interact with membrane proteins in a similar manner. In contrast, interactions between lipid head groups and amino acids showed a more variable pattern, apparently constrained by each protein's specific molecular function.

  2. Lipid recognition propensities of amino acids in membrane proteins from atomic resolution data

    International Nuclear Information System (INIS)

    Morita, Mizuki; Katta, AVSK Mohan; Ahmad, Shandar; Mori, Takaharu; Sugita, Yuji; Mizuguchi, Kenji

    2011-01-01

    Protein-lipid interactions play essential roles in the conformational stability and biological functions of membrane proteins. However, few of the previous computational studies have taken into account the atomic details of protein-lipid interactions explicitly. To gain an insight into the molecular mechanisms of the recognition of lipid molecules by membrane proteins, we investigated amino acid propensities in membrane proteins for interacting with the head and tail groups of lipid molecules. We observed a common pattern of lipid tail-amino acid interactions in two different data sources, crystal structures and molecular dynamics simulations. These interactions are largely explained by general lipophilicity, whereas the preferences for lipid head groups vary among individual proteins. We also found that membrane and water-soluble proteins utilize essentially an identical set of amino acids for interacting with lipid head and tail groups. We showed that the lipophilicity of amino acid residues determines the amino acid preferences for lipid tail groups in both membrane and water-soluble proteins, suggesting that tightly-bound lipid molecules and lipids in the annular shell interact with membrane proteins in a similar manner. In contrast, interactions between lipid head groups and amino acids showed a more variable pattern, apparently constrained by each protein's specific molecular function

  3. Interaction pathways between soft lipid nanodiscs and plasma membranes: A molecular modeling study.

    Science.gov (United States)

    Li, Shixin; Luo, Zhen; Xu, Yan; Ren, Hao; Deng, Li; Zhang, Xianren; Huang, Fang; Yue, Tongtao

    2017-10-01

    Lipid nanodisc, a model membrane platform originally synthesized for study of membrane proteins, has recently been used as the carrier to deliver amphiphilic drugs into target tumor cells. However, the central question of how cells interact with such emerging nanomaterials remains unclear and deserves our research for both improving the delivery efficiency and reducing the side effect. In this work, a binary lipid nanodisc is designed as the minimum model to investigate its interactions with plasma membranes by using the dissipative particle dynamics method. Three typical interaction pathways, including the membrane attachment with lipid domain exchange of nanodiscs, the partial membrane wrapping with nanodisc vesiculation, and the receptor-mediated endocytosis, are discovered. For the first pathway, the boundary normal lipids acting as ligands diffuse along the nanodisc rim to gather at the membrane interface, repelling the central bola lipids to reach a stable membrane attachment. If bola lipids are positioned at the periphery and act as ligands, they diffuse to form a large aggregate being wrapped by the membrane, leaving the normal lipids exposed on the membrane exterior by assembling into a vesicle. Finally, by setting both central normal lipids and boundary bola lipids as ligands, the receptor-mediated endocytosis occurs via both deformation and self-rotation of the nanodiscs. All above pathways for soft lipid nanodiscs are quite different from those for rigid nanoparticles, which may provide useful guidelines for design of soft lipid nanodiscs in widespread biomedical applications. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Watching individual molecules flex within lipid membranes using SERS

    Science.gov (United States)

    Taylor, Richard W.; Benz, Felix; Sigle, Daniel O.; Bowman, Richard W.; Bao, Peng; Roth, Johannes S.; Heath, George R.; Evans, Stephen D.; Baumberg, Jeremy J.

    2014-08-01

    Interrogating individual molecules within bio-membranes is key to deepening our understanding of biological processes essential for life. Using Raman spectroscopy to map molecular vibrations is ideal to non-destructively `fingerprint' biomolecules for dynamic information on their molecular structure, composition and conformation. Such tag-free tracking of molecules within lipid bio-membranes can directly connect structure and function. In this paper, stable co-assembly with gold nano-components in a `nanoparticle-on-mirror' geometry strongly enhances the local optical field and reduces the volume probed to a few nm3, enabling repeated measurements for many tens of minutes on the same molecules. The intense gap plasmons are assembled around model bio-membranes providing molecular identification of the diffusing lipids. Our experiments clearly evidence measurement of individual lipids flexing through telltale rapid correlated vibrational shifts and intensity fluctuations in the Raman spectrum. These track molecules that undergo bending and conformational changes within the probe volume, through their interactions with the environment. This technique allows for in situ high-speed single-molecule investigations of the molecules embedded within lipid bio-membranes. It thus offers a new way to investigate the hidden dynamics of cell membranes important to a myriad of life processes.

  5. Role of charged lipids in membrane structures — Insight given by simulations

    DEFF Research Database (Denmark)

    Pöyry, Sanja; Vattulainen, Ilpo

    2016-01-01

    Lipids and proteins are the main components of cell membranes. It is becoming increasingly clear that lipids, in addition to providing an environment for proteins to work in, are in many cases also able to modulate the structure and function of those proteins. Particularly charged lipids...... to fruitful directions. In this paper, we review studies that have utilized molecular dynamics simulations to unravel the roles of charged lipids in membrane structures. We focus on lipids as active constituents of the membranes, affecting both general membrane properties as well as non-lipid membrane...

  6. Life as a matter of fat : lipids in a membrane biophysics perspective

    CERN Document Server

    Mouritsen, Ole G

    2016-01-01

    The present book gives a multi-disciplinary perspective on the physics of life and the particular role played by lipids (fats) and the lipid-bilayer component of cell membranes. The emphasis is on the physical properties of lipid membranes seen as soft and molecularly structured interfaces. By combining and synthesizing insights obtained from a variety of recent studies, an attempt is made to clarify what membrane structure is and how it can be quantitatively described. Furthermore, it is shown how biological function mediated by membranes is controlled by lipid membrane structure and organization on length scales ranging from the size of the individual molecule, across molecular assemblies of proteins and lipid domains in the range of nanometers, to the size of whole cells. Applications of lipids in nanotechnology and biomedicine are also described.   The first edition of the present book was published in 2005 when lipidomics was still very much an emerging science and lipids about to be recognized as being...

  7. Atomistic study of lipid membranes containing chloroform: looking for a lipid-mediated mechanism of anesthesia.

    Directory of Open Access Journals (Sweden)

    Ramon Reigada

    Full Text Available The molecular mechanism of general anesthesia is still a controversial issue. Direct effect by linking of anesthetics to proteins and indirect action on the lipid membrane properties are the two hypotheses in conflict. Atomistic simulations of different lipid membranes subjected to the effect of small volatile organohalogen compounds are used to explore plausible lipid-mediated mechanisms. Simulations of homogeneous membranes reveal that electrostatic potential and lateral pressure transversal profiles are affected differently by chloroform (anesthetic and carbon tetrachloride (non-anesthetic. Simulations of structured membranes that combine ordered and disordered regions show that chloroform molecules accumulate preferentially in highly disordered lipid domains, suggesting that the combination of both lateral and transversal partitioning of chloroform in the cell membrane could be responsible of its anesthetic action.

  8. Atomistic Monte Carlo Simulation of Lipid Membranes

    Directory of Open Access Journals (Sweden)

    Daniel Wüstner

    2014-01-01

    Full Text Available Biological membranes are complex assemblies of many different molecules of which analysis demands a variety of experimental and computational approaches. In this article, we explain challenges and advantages of atomistic Monte Carlo (MC simulation of lipid membranes. We provide an introduction into the various move sets that are implemented in current MC methods for efficient conformational sampling of lipids and other molecules. In the second part, we demonstrate for a concrete example, how an atomistic local-move set can be implemented for MC simulations of phospholipid monomers and bilayer patches. We use our recently devised chain breakage/closure (CBC local move set in the bond-/torsion angle space with the constant-bond-length approximation (CBLA for the phospholipid dipalmitoylphosphatidylcholine (DPPC. We demonstrate rapid conformational equilibration for a single DPPC molecule, as assessed by calculation of molecular energies and entropies. We also show transition from a crystalline-like to a fluid DPPC bilayer by the CBC local-move MC method, as indicated by the electron density profile, head group orientation, area per lipid, and whole-lipid displacements. We discuss the potential of local-move MC methods in combination with molecular dynamics simulations, for example, for studying multi-component lipid membranes containing cholesterol.

  9. Active Gating, Molecular Pumping, and Turnover Determination in Biomimetic Lipidic Cubic Mesophases with Reconstituted Membrane Proteins.

    Science.gov (United States)

    Speziale, Chiara; Zabara, Alexandru Florian; Drummond, Calum John; Mezzenga, Raffaele

    2017-11-28

    Understanding the mechanisms controlling molecular transport in bioinspired materials is a central topic in many branches of nanotechnology. In this work, we show that biomolecules of fundamental importance in biological processes, such as glucose, can be transported in an active, controlled, and selective manner across macroscopic lipidic cubic mesophases, by correctly reconstituting within them their corresponding membrane protein transporters, such as Staphylococcus epidermidis (GlcP Se ). Importantly, by duly exploiting the symporter properties of GlcP Se of coupled glucose/H + transport, the diffusion of glucose can further be tuned by independent physiological stimuli, such as parallel or antiparallel pH gradients, offering an important model to study molecular exchange processes in cellular machinery. We finally show that by measuring the transport properties of the lipidic mesophases with and without the GlcP Se membrane protein reconstituted within, it becomes possible to determine its intrinsic conductance. We generalize these findings to other membrane proteins from the antiporters family, such as the bacterial ClC exchanger from Escherichia coli (EcClC), providing a robust method for evaluating the turnover rate of the membrane proteins in general.

  10. Understanding carbon nanotube channel formation in the lipid membrane

    Science.gov (United States)

    Choi, Moon-ki; Kim, Hyunki; Lee, Byung Ho; Kim, Teayeop; Rho, Junsuk; Kim, Moon Ki; Kim, Kyunghoon

    2018-03-01

    Carbon nanotubes (CNTs) have been considered a prominent nano-channel in cell membranes because of their prominent ion-conductance and ion-selectivity, offering agents for a biomimetic channel platform. Using a coarse-grained molecular dynamics simulation, we clarify a construction mechanism of vertical CNT nano-channels in a lipid membrane for a long period, which has been difficult to observe in previous CNT-lipid interaction simulations. The result shows that both the lipid coating density and length of CNT affect the suitable fabrication condition for a vertical and stable CNT channel. Also, simulation elucidated that a lipid coating on the surface of the CNT prevents the CNT from burrowing into the lipid membrane and the vertical channel is stabilized by the repulsion force between the lipids in the coating and membrane. Our study provides an essential understanding of how CNTs can form stable and vertical channels in the membrane, which is important for designing new types of artificial channels as biosensors for bio-fluidic studies.

  11. Lipid Configurations from Molecular Dynamics Simulations

    DEFF Research Database (Denmark)

    Pezeshkian, Weria; Khandelia, Himanshu; Marsh, Derek

    2018-01-01

    of dihedral angles in palmitoyl-oleoyl phosphatidylcholine from molecular dynamics simulations of hydrated fluid bilayer membranes. We compare results from the widely used lipid force field of Berger et al. with those from the most recent C36 release of the CHARMM force field for lipids. Only the CHARMM force......The extent to which current force fields faithfully reproduce conformational properties of lipids in bilayer membranes, and whether these reflect the structural principles established for phospholipids in bilayer crystals, are central to biomembrane simulations. We determine the distribution...

  12. Mobility of drugs in lipid membranes by NMR

    International Nuclear Information System (INIS)

    Yoshii, Noriyuki; Okamura, Emiko

    2011-01-01

    Mobility of drugs and biomembrane constituents is a key to elucidate the membrane transport mechanism in the cell. Lipid bilayer membrane is a dynamic structure where molecules are always fluctuating under physiological conditions. The mechanism of drug transport is related to the molecular dynamics in such soft, fluid membrane interface. To gain insight into molecular movements in membranes, we develop a noninvasive method to monitor dynamics properties of drugs and lipid components in membranes by applying multinuclear high-resolution solution NMR in combination with the pulsed-field-gradient (PFG) technique. We have quantified the diffusivity, the kinetics of membrane binding, and the bound fraction of the drug in situ by using large unilamellar vesicles of egg phosphatidylcholine as model cell membranes. The combination of 1D and PFG NMR serves to quantify the kinetics of membrane binding where the bound and the free components are unable to distinguish because of the rapid exchange on the NMR timescale. A small-sized 5-fluorouracil and fluorinated bisphenol A are used as model drug. (author)

  13. Molecular Structure of Membrane Tethers

    NARCIS (Netherlands)

    Baoukina, Svetlana; Marrink, Siewert J.; Tieleman, D. Peter

    2012-01-01

    Membrane tethers are nanotubes formed by a lipid bilayer. They play important functional roles in cell biology and provide an experimental window on lipid properties. Tethers have been studied extensively in experiments and described by theoretical models, but their molecular structure remains

  14. Molecular Interactions at Membranes

    DEFF Research Database (Denmark)

    Jagalski, Vivien

    . Today, we know more than ever before about the properties of biological membranes. Advanced biophysical techniques and sophisticated membrane models allow us to answer specific questions about the structure of the components within membranes and their interactions. However, many detailed structural...... the surface-immobilization of LeuT by exchanging the detergent with natural phosphatidylcholine (PC) lipids. Various surface sensitive techniques, including neutron reflectometry (NR), are employed and finally enabled us to confirm the gross structure of LeuT in a lipid environment as predicted by molecular...... dynamic simulations. In a second study, the co-localization of three toxic plant-derived diterpene resin acids (RAs) within DPPC membranes was investigated. These compounds are reported to disrupt the membrane and increase its fluidity. The RAs used in this study vary in their toxicity while...

  15. Salt-induced effects on natural and inverse DPPC lipid membranes: Molecular dynamics simulation.

    Science.gov (United States)

    Rezaei Sani, Seyed Mojtaba; Akhavan, Mojdeh; Jalili, Seifollah

    2018-08-01

    Molecular dynamics (MD) simulations of a dipalmitoylphosphatidylcholine (DPPC) bilayer and its neutral inverse-phosphocholine equivalent (DPCPe) were performed to find salt-induced effects on their surface structure and the nature of ion-lipid interactions. We found that the area per lipid is not considerably affected by the inversion, but the deuterium order parameter of carbon atoms in the region of carbonyl carbons changes dramatically. MD simulations indicate that Ca 2+ ions can bind to the surface of both DPPC and DPCPe membranes, but K + ions do not bind to them. In the case of Na + , however, the ions can bind to natural lipids but not to the inverse ones. Also, our results demonstrate that the hydration level of CPe bilayers is substantially lower than PC bilayers and the averaged orientation of water dipoles in the region of CPe headgroups is effectively inverted compared to PC lipids. This might be important in the interaction of the bilayer with its biological environment. Furthermore, it was found for the CPe bilayers that the enhanced peaks of the electrostatic potential profiles shift further away from the bilayer center relative to those of PC bilayers. This behavior makes the penetration of cations into the bilayer more difficult and possibly explains the experimentally observed enhanced release rates of anionic compounds in the CPe membrane. Copyright © 2018 Elsevier B.V. All rights reserved.

  16. Simulations of simple linoleic acid-containing lipid membranes and models for the soybean plasma membranes.

    Science.gov (United States)

    Zhuang, Xiaohong; Ou, Anna; Klauda, Jeffery B

    2017-06-07

    The all-atom CHARMM36 lipid force field (C36FF) has been tested with saturated, monounsaturated, and polyunsaturated lipids; however, it has not been validated against the 18:2 linoleoyl lipids with an unsaturated sn-1 chain. The linoleoyl lipids are common in plants and the main component of the soybean membrane. The lipid composition of soybean plasma membranes has been thoroughly characterized with experimental studies. However, there is comparatively less work done with computational modeling. Our molecular dynamics (MD) simulation results show that the pure linoleoyl lipids, 1-stearoyl-2-linoleoyl-sn-glycero-3-phosphocholine (18:0/18:2) and 1,2-dilinoleoyl-sn-glycero-3-phosphocholine (di-18:2), agree very well with the experiments, which demonstrates the accuracy of the C36FF for the computational study of soybean membranes. Based on the experimental composition, the soybean hypocotyl and root plasma membrane models are developed with each containing seven or eight types of linoleoyl phospholipids and two types of sterols (sitosterol and stigmasterol). MD simulations are performed to characterize soybean membranes, and the hydrogen bonds and clustering results demonstrate that the lipids prefer to interact with the lipids of the same/similar tail unsaturation. All the results suggest that these two soybean membrane models can be used as a basis for further research in soybean and higher plant membranes involving membrane-associated proteins.

  17. A new look at lipid-membrane structure in relation to drug research

    DEFF Research Database (Denmark)

    Mouritsen, Ole G.; Jørgensen, Kent

    1998-01-01

    Lipid-bilayer membranes are key objects in drug research in relation to (i) interaction of drugs with membrane-bound receptors, (ii) drug targeting, penetration, and permeation of cell membranes, and (iii) use of liposomes in micro-encapsulation technologies for drug delivery. Rational design...... of new drugs and drug-delivery systems therefore requries insight into the physical properties of lipid-bilayer membranes. This mini-review provides a perspective on the current view of lipid-bilayer structure and dynamics based on information obtained from a variety of recent experimental...... and theoretical studies. Special attention is paid to trans-bilayer structure, lateral molecular organization of the lipid bilayer, lipid-mediated protein assembly, and lipid-bilayer permeability. It is argued that lipids play a major role in lipid membrane-organization and functionality....

  18. Detection and quantification through a lipid membrane using the molecularly controlled semiconductor resistor.

    Science.gov (United States)

    Bavli, Danny; Tkachev, Maria; Piwonski, Hubert; Capua, Eyal; de Albuquerque, Ian; Bensimon, David; Haran, Gilad; Naaman, Ron

    2012-01-10

    The detection of covalent and noncovalent binding events between molecules and biomembranes is a fundamental goal of contemporary biochemistry and analytical chemistry. Currently, such studies are performed routinely using fluorescence methods, surface-plasmon resonance spectroscopy, and electrochemical methods. However, there is still a need for novel sensitive miniaturizable detection methods where the sample does not have to be transferred to the sensor, but the sensor can be brought into contact with the sample studied. We present a novel approach for detection and quantification of processes occurring on the surface of a lipid bilayer membrane, by monitoring the current change through the n-type GaAs-based molecularly controlled semiconductor resistor (MOCSER), on which the membrane is adsorbed. Since GaAs is susceptible to etching in an aqueous environment, a protective thin film of methoxysilane was deposited on the device. The system was found to be sensitive enough to allow monitoring changes in pH and in the concentration of amino acids in aqueous solution on top of the membrane. When biotinylated lipids were incorporated into the membrane, it was possible to monitor the binding of streptavidin or avidin. The device modified with biotin-streptavidin complex was capable of detecting the binding of streptavidin antibodies to immobilized streptavidin with high sensitivity and selectivity. The response depends on the charge on the analyte. These results open the way to facile electrical detection of protein-membrane interactions.

  19. Molecular Dynamics Simulations Reveal the Conformational Flexibility of Lipid II and Its Loose Association with the Defensin Plectasin in the Staphylococcus aureus Membrane

    DEFF Research Database (Denmark)

    Witzke, Sarah; Petersen, Michael; Carpenter, Timothy S.

    2016-01-01

    dynamics simulation study of the conformational dynamics of Lipid II within a detailed model of the Staphylococcus aureus cell membrane. We show that Lipid II is able to adopt a range of conformations, even within the packed lipidic environment of the membrane. Our simulations also reveal dimerization...... the biosynthesis of the cell wall. Given the urgent need for development of novel antibiotics to counter the growing threat of bacterial infection resistance, it is imperative that a thorough molecular-level characterization of the molecules targeted by antibiotics be achieved. To this end, we present a molecular...... of Lipid II mediated by cations. In the presence of the defensin peptide plectasin, the conformational lability of Lipid II allows it to form loose complexes with the protein, via a number of different binding modes....

  20. Accumulation of raft lipids in T-cell plasma membrane domains engaged in TCR signalling

    DEFF Research Database (Denmark)

    Zech, Tobias; Ejsing, Christer S.; Gaus, Katharina

    2009-01-01

    Activating stimuli for T lymphocytes are transmitted through plasma membrane domains that form at T-cell antigen receptor (TCR) signalling foci. Here, we determined the molecular lipid composition of immunoisolated TCR activation domains. We observed that they accumulate cholesterol, sphingomyelin...... and saturated phosphatidylcholine species as compared with control plasma membrane fragments. This provides, for the first time, direct evidence that TCR activation domains comprise a distinct molecular lipid composition reminiscent of liquid-ordered raft phases in model membranes. Interestingly, TCR activation...... domains were also enriched in plasmenyl phosphatidylethanolamine and phosphatidylserine. Modulating the T-cell lipidome with polyunsaturated fatty acids impaired the plasma membrane condensation at TCR signalling foci and resulted in a perturbed molecular lipid composition. These results correlate...

  1. Thermal conductivity and rectification in asymmetric archaeal lipid membranes

    Science.gov (United States)

    Youssefian, Sina; Rahbar, Nima; Van Dessel, Steven

    2018-05-01

    Nature employs lipids to construct nanostructured membranes that self-assemble in an aqueous environment to separate the cell interior from the exterior environment. Membrane composition changes among species and according to environmental conditions, which allows organisms to occupy a wide variety of different habitats. Lipid bilayers are phase-change materials that exhibit strong thermotropic and lyotropic phase behavior in an aqueous environment, which may also cause thermal rectification. Among different types of lipids, archaeal lipids are of great interest due to their ability to withstand extreme conditions. In this paper, nonequilibrium molecular dynamics simulations were employed to study the nanostructures and thermal properties of different archaeols and to investigate thermal rectification effects in asymmetric archaeal membranes. In particular, we are interested in understanding the role of bridged phytanyl chains and cyclopentane groups in controlling the phase transition temperature and heat flow across the membrane. Our results indicate that the bridged phytanyl chains decrease the molecular packing of lipids, whereas the existence of cyclopentane rings on the tail groups increases the molecular packing by enhancing the interactions between isoprenoid chains. We found that macrocyclic archaeols have the highest thermal conductivity, whereas macrocyclic archaeols with two cyclopentane rings have the lowest. The effect of the temperature on the variation of thermal conductivity was found to be progressive. Our results further indicate that small thermal rectification effects occur in asymmetric archaeol bilayer membranes at around 25 K temperature gradient. The calculated thermal rectification factor was around 0.09 which is in the range of rectification factor obtained experimentally for nanostructures such as carbon nanotubes (0.07). Such phenomena may be of biological significance and could also be optimized for use in various engineering

  2. Chemotherapy drugs form ion pores in membranes due to physical interactions with lipids.

    Science.gov (United States)

    Ashrafuzzaman, Mohammad; Tseng, Chih-Yuan; Duszyk, Marek; Tuszynski, Jack A

    2012-12-01

    We demonstrate the effects on membrane of the tubulin-binding chemotherapy drugs: thiocolchicoside and taxol. Electrophysiology recordings across lipid membranes in aqueous phases containing drugs were used to investigate the drug effects on membrane conductance. Molecular dynamics simulation of the chemotherapy drug-lipid complexes was used to elucidate the mechanism at an atomistic level. Both drugs are observed to induce stable ion-flowing pores across membranes. Discrete pore current-time plots exhibit triangular conductance events in contrast to rectangular ones found for ion channels. Molecular dynamics simulations indicate that drugs and lipids experience electrostatic and van der Waals interactions for short periods of time when found within each other's proximity. The energies from these two interactions are found to be similar to the energies derived theoretically using the screened Coulomb and the van der Waals interactions between peptides and lipids due to mainly their charge properties while forming peptide-induced ion channels in lipid bilayers. Experimental and in silico studies together suggest that the chemotherapy drugs induce ion pores inside lipid membranes due to drug-lipid physical interactions. The findings reveal cytotoxic effects of drugs on the cell membrane, which may aid in novel drug development for treatment of cancer and other diseases. © 2012 John Wiley & Sons A/S.

  3. Simulation of water transport through a lipid membrane

    Energy Technology Data Exchange (ETDEWEB)

    Marrink, S.J.; Berendsen, H.J.C. (Univ. of Groningen (Netherlands))

    1994-04-14

    To obtain insight in the process of water permeation through a lipid membrane we performed molecular dynamics simulations on a phospholipid (DPPC)/water system with atomic detail. Since the actual process of permeation is too slow to be studied directly, we deduced the permeation rate indirectly via computation of the free energy and diffusion rate profiles of a water molecule across the bilayer. We concluded that the permeation of water through a lipid membrane cannot be described adequately by a simple homogeneous solubility-diffusion model. Both the excess free energy and the diffusion rate strongly depend on the position in the membrane, as a result from the inhomogeneous nature of the membrane. The calculated excess free energy profile has a shallow slope and a maximum height of 26 kJ/mol. The diffusion rate is highest in the middle of the membrane where the lipid density is low. In the interfacial region almost all water molecules are bound by the lipid headgroups, and the diffusion turns out to be 1 order of magnitude smaller. The total transport process is essentially determined by the free energy barrier. 78 refs., 12 figs.

  4. Triglyceride blisters in lipid bilayers: implications for lipid droplet biogenesis and the mobile lipid signal in cancer cell membranes.

    Directory of Open Access Journals (Sweden)

    Himanshu Khandelia

    Full Text Available Triglycerides have a limited solubility, around 3%, in phosphatidylcholine lipid bilayers. Using millisecond-scale course grained molecular dynamics simulations, we show that the model lipid bilayer can accommodate a higher concentration of triolein (TO than earlier anticipated, by sequestering triolein molecules to the bilayer center in the form of a disordered, isotropic, mobile neutral lipid aggregate, at least 17 nm in diameter, which forms spontaneously, and remains stable on at least the microsecond time scale. The results give credence to the hotly debated existence of mobile neutral lipid aggregates of unknown function present in malignant cells, and to the early biogenesis of lipid droplets accommodated between the two leaflets of the endoplasmic reticulum membrane. The TO aggregates give the bilayer a blister-like appearance, and will hinder the formation of multi-lamellar phases in model, and possibly living membranes. The blisters will result in anomalous membrane probe partitioning, which should be accounted for in the interpretation of probe-related measurements.

  5. Effect of Membrane Tension on the Electric Field and Dipole Potential of Lipid Bilayer Membrane

    Science.gov (United States)

    Warshaviak, Dora Toledo; Muellner, Michael J.; Chachisvilis, Mirianas

    2011-01-01

    The dipole potential of lipid bilayer membrane controls the difference in permeability of the membrane to oppositely charged ions. We have combined molecular dynamics (MD) simulations and experimental studies to determine changes in electric field and electrostatic potential of 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) lipid bilayer in response to applied membrane tension. MD simulations based on CHARMM36 force field showed that electrostatic potential of DOPC bilayer decreases by ~45 mV in the physiologically relevant range of membrane tension values (0 to 15 dyn/cm). The electrostatic field exhibits a peak (~0.8×109 V/m) near the water/lipid interface which shifts by 0.9 Å towards the bilayer center at 15 dyn/cm. Maximum membrane tension of 15 dyn/cm caused 6.4% increase in area per lipid, 4.7% decrease in bilayer thickness and 1.4% increase in the volume of the bilayer. Dipole-potential sensitive fluorescent probes were used to detect membrane tension induced changes in DOPC vesicles exposed to osmotic stress. Experiments confirmed that dipole potential of DOPC bilayer decreases at higher membrane tensions. These results are suggestive of a potentially new mechanosensing mechanism by which mechanically induced structural changes in the lipid bilayer membrane could modulate the function of membrane proteins by altering electrostatic interactions and energetics of protein conformational states. PMID:21722624

  6. In vitro study of interaction of synaptic vesicles with lipid membranes

    International Nuclear Information System (INIS)

    Ghosh, S K; Castorph, S; Salditt, T; Konovalov, O; Jahn, R; Holt, M

    2010-01-01

    The fusion of synaptic vesicles (SVs) with the plasma membrane in neurons is a crucial step in the release of neurotransmitters, which are responsible for carrying signals between nerve cells. While many of the molecular players involved in this fusion process have been identified, a precise molecular description of their roles in the process is still lacking. A case in point is the plasma membrane lipid phosphatidylinositol 4,5-bisphosphate (PIP 2 ). Although PIP 2 is known to be essential for vesicle fusion, its precise role in the process remains unclear. We have re-investigated the role of this lipid in membrane structure and function using the complementary experimental techniques of x-ray reflectivity, both on lipid monolayers at an air-water interface and bilayers on a solid support, and grazing incidence x-ray diffraction on lipid monolayers. These techniques provide unprecedented access to structural information at the molecular level, and detail the profound structural changes that occur in a membrane following PIP 2 incorporation. Further, we also confirm and extend previous findings that the association of SVs with membranes is enhanced by PIP 2 incorporation, and reveal the structural changes that underpin this phenomenon. Further, the association is further intensified by a physiologically relevant amount of Ca 2+ ions in the subphase of the monolayer, as revealed by the increase in interfacial pressure seen with the lipid monolayer system. Finally, a theoretical calculation concerning the products arising from the fusion of these SVs with proteoliposomes is presented, with which we aim to illustrate the potential future uses of this system.

  7. Steric Pressure among Membrane-Bound Polymers Opposes Lipid Phase Separation.

    Science.gov (United States)

    Imam, Zachary I; Kenyon, Laura E; Carrillo, Adelita; Espinoza, Isai; Nagib, Fatema; Stachowiak, Jeanne C

    2016-04-19

    Lipid rafts are thought to be key organizers of membrane-protein complexes in cells. Many proteins that interact with rafts have bulky polymeric components such as intrinsically disordered protein domains and polysaccharide chains. Therefore, understanding the interaction between membrane domains and membrane-bound polymers provides insights into the roles rafts play in cells. Multiple studies have demonstrated that high concentrations of membrane-bound polymeric domains create significant lateral steric pressure at membrane surfaces. Furthermore, our recent work has shown that lateral steric pressure at membrane surfaces opposes the assembly of membrane domains. Building on these findings, here we report that membrane-bound polymers are potent suppressors of membrane phase separation, which can destabilize lipid domains with substantially greater efficiency than globular domains such as membrane-bound proteins. Specifically, we created giant vesicles with a ternary lipid composition, which separated into coexisting liquid ordered and disordered phases. Lipids with saturated tails and poly(ethylene glycol) (PEG) chains conjugated to their head groups were included at increasing molar concentrations. When these lipids were sparse on the membrane surface they partitioned to the liquid ordered phase. However, as they became more concentrated, the fraction of GUVs that were phase-separated decreased dramatically, ultimately yielding a population of homogeneous membrane vesicles. Experiments and physical modeling using compositions of increasing PEG molecular weight and lipid miscibility phase transition temperature demonstrate that longer polymers are the most efficient suppressors of membrane phase separation when the energetic barrier to lipid mixing is low. In contrast, as the miscibility transition temperature increases, longer polymers are more readily driven out of domains by the increased steric pressure. Therefore, the concentration of shorter polymers required

  8. Membrane-spanning lipids for an uncompromised monitoring of membrane fusion and intermembrane lipid transfer

    Science.gov (United States)

    Schwarzmann, Günter; Breiden, Bernadette; Sandhoff, Konrad

    2015-01-01

    A Förster resonance energy transfer-based fusion and transfer assay was developed to study, in model membranes, protein-mediated membrane fusion and intermembrane lipid transfer of fluorescent sphingolipid analogs. For this assay, it became necessary to apply labeled reporter molecules that are resistant to spontaneous as well as protein-mediated intermembrane transfer. The novelty of this assay is the use of nonextractable fluorescent membrane-spanning bipolar lipids. Starting from the tetraether lipid caldarchaeol, we synthesized fluorescent analogs with fluorophores at both polar ends. In addition, we synthesized radioactive glycosylated caldarchaeols. These labeled lipids were shown to stretch through bilayer membranes rather than to loop within a single lipid layer of liposomes. More important, the membrane-spanning lipids (MSLs) in contrast to phosphoglycerides proved to be nonextractable by proteins. We could show that the GM2 activator protein (GM2AP) is promiscuous with respect to glycero- and sphingolipid transfer. Saposin (Sap) B also transferred sphingolipids albeit with kinetics different from GM2AP. In addition, we could unambiguously show that the recombinant activator protein Sap C x His6 induced membrane fusion rather than intermembrane lipid transfer. These findings showed that these novel MSLs, in contrast with fluorescent phosphoglycerolipids, are well suited for an uncompromised monitoring of membrane fusion and intermembrane lipid transfer. PMID:26269359

  9. Ballistic impact response of lipid membranes.

    Science.gov (United States)

    Zhang, Yao; Meng, Zhaoxu; Qin, Xin; Keten, Sinan

    2018-03-08

    Therapeutic agent loaded micro and nanoscale particles as high-velocity projectiles can penetrate cells and tissues, thereby serving as gene and drug delivery vehicles for direct and rapid internalization. Despite recent progress in developing micro/nanoscale ballistic tools, the underlying biophysics of how fast projectiles deform and penetrate cell membranes is still poorly understood. To understand the rate and size-dependent penetration processes, we present coarse-grained molecular dynamics simulations of the ballistic impact of spherical projectiles on lipid membranes. Our simulations reveal that upon impact, the projectile can pursue one of three distinct pathways. At low velocities below the critical penetration velocity, projectiles rebound off the surface. At intermediate velocities, penetration occurs after the projectile deforms the membrane into a tubular thread. At very high velocities, rapid penetration occurs through localized membrane deformation without tubulation. Membrane tension, projectile velocity and size govern which phenomenon occurs, owing to their positive correlation with the reaction force generated between the projectile and the membrane during impact. Two critical membrane tension values dictate the boundaries among the three pathways for a given system, due to the rate dependence of the stress generated in the membrane. Our findings provide broad physical insights into the ballistic impact response of soft viscous membranes and guide design strategies for drug delivery through lipid membranes using micro/nanoscale ballistic tools.

  10. Measuring the composition-curvature coupling in binary lipid membranes by computer simulations

    International Nuclear Information System (INIS)

    Barragán Vidal, I. A.; Müller, M.; Rosetti, C. M.; Pastorino, C.

    2014-01-01

    The coupling between local composition fluctuations in binary lipid membranes and curvature affects the lateral membrane structure. We propose an efficient method to compute the composition-curvature coupling in molecular simulations and apply it to two coarse-grained membrane models—a minimal, implicit-solvent model and the MARTINI model. Both the weak-curvature behavior that is typical for thermal fluctuations of planar bilayer membranes as well as the strong-curvature regime corresponding to narrow cylindrical membrane tubes are studied by molecular dynamics simulation. The simulation results are analyzed by using a phenomenological model of the thermodynamics of curved, mixed bilayer membranes that accounts for the change of the monolayer area upon bending. Additionally the role of thermodynamic characteristics such as the incompatibility between the two lipid species and asymmetry of composition are investigated

  11. Measuring the composition-curvature coupling in binary lipid membranes by computer simulations

    Energy Technology Data Exchange (ETDEWEB)

    Barragán Vidal, I. A., E-mail: vidal@theorie.physik.uni-goettingen.de; Müller, M., E-mail: mmueller@theorie.physik.uni-goettingen.de [Institut für Theoretische Physik, Georg-August-Universität, Friedrich-Hund-Platz 1, 37077 Göttingen (Germany); Rosetti, C. M., E-mail: carla@dqb.fcq.unc.edu.ar [Centro de Investigaciones en Química Biológica de Córdoba, Departamento de Química Biológica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, Córdoba (Argentina); Pastorino, C., E-mail: pastor@cnea.gov.ar [Departamento de Física de la Materia Condensada, Centro Atómico Constituyentes, CNEA/CONICET, Av. Gral. Paz 1499, 1650 Pcia. de Buenos Aires (Argentina)

    2014-11-21

    The coupling between local composition fluctuations in binary lipid membranes and curvature affects the lateral membrane structure. We propose an efficient method to compute the composition-curvature coupling in molecular simulations and apply it to two coarse-grained membrane models—a minimal, implicit-solvent model and the MARTINI model. Both the weak-curvature behavior that is typical for thermal fluctuations of planar bilayer membranes as well as the strong-curvature regime corresponding to narrow cylindrical membrane tubes are studied by molecular dynamics simulation. The simulation results are analyzed by using a phenomenological model of the thermodynamics of curved, mixed bilayer membranes that accounts for the change of the monolayer area upon bending. Additionally the role of thermodynamic characteristics such as the incompatibility between the two lipid species and asymmetry of composition are investigated.

  12. In vitro study of interaction of synaptic vesicles with lipid membranes

    Energy Technology Data Exchange (ETDEWEB)

    Ghosh, S K; Castorph, S; Salditt, T [Institute for X-ray Physics, University of Goettingen, 37077 Goettingen (Germany); Konovalov, O [European Synchrotron Radiation Facility, 38043 Grenoble Cedex (France); Jahn, R; Holt, M, E-mail: sghosh1@gwdg.d, E-mail: mholt@gwdg.d, E-mail: tsaldit@gwdg.d [Department of Neurobiology, Max Planck Institute for Biophysical Chemistry, 37077 Goettingen (Germany)

    2010-10-15

    The fusion of synaptic vesicles (SVs) with the plasma membrane in neurons is a crucial step in the release of neurotransmitters, which are responsible for carrying signals between nerve cells. While many of the molecular players involved in this fusion process have been identified, a precise molecular description of their roles in the process is still lacking. A case in point is the plasma membrane lipid phosphatidylinositol 4,5-bisphosphate (PIP{sub 2}). Although PIP{sub 2} is known to be essential for vesicle fusion, its precise role in the process remains unclear. We have re-investigated the role of this lipid in membrane structure and function using the complementary experimental techniques of x-ray reflectivity, both on lipid monolayers at an air-water interface and bilayers on a solid support, and grazing incidence x-ray diffraction on lipid monolayers. These techniques provide unprecedented access to structural information at the molecular level, and detail the profound structural changes that occur in a membrane following PIP{sub 2} incorporation. Further, we also confirm and extend previous findings that the association of SVs with membranes is enhanced by PIP{sub 2} incorporation, and reveal the structural changes that underpin this phenomenon. Further, the association is further intensified by a physiologically relevant amount of Ca{sup 2+} ions in the subphase of the monolayer, as revealed by the increase in interfacial pressure seen with the lipid monolayer system. Finally, a theoretical calculation concerning the products arising from the fusion of these SVs with proteoliposomes is presented, with which we aim to illustrate the potential future uses of this system.

  13. Binding of Serotonin to Lipid Membranes

    DEFF Research Database (Denmark)

    Peters, Günther H.J.; Wang, Chunhua; Cruys-Bagger, Nicolaj

    2013-01-01

    Serotonin (5-hydroxytryptamine, 5-HT) is a prevalent neurotransmitter throughout the animal kingdom. It exerts its effect through the specific binding to the serotonin receptor, but recent research has suggested that neural transmission may also be affected by its nonspecific interactions...... with the lipid matrix of the synaptic membrane. However, membrane–5-HT interactions remain controversial and superficially investigated. Fundamental knowledge of this interaction appears vital in discussions of putative roles of 5-HT, and we have addressed this by thermodynamic measurements and molecular...... dynamics (MD) simulations. 5-HT was found to interact strongly with lipid bilayers (partitioning coefficient ∼1200 in mole fraction units), and this is highly unusual for a hydrophilic solute like 5-HT which has a bulk, oil–water partitioning coefficient well below unity. It follows that membrane affinity...

  14. Hydrostatic pressure decreases membrane fluidity and lipid desaturase expression in chondrocyte progenitor cells.

    Science.gov (United States)

    Montagne, Kevin; Uchiyama, Hiroki; Furukawa, Katsuko S; Ushida, Takashi

    2014-01-22

    Membrane biomechanical properties are critical in modulating nutrient and metabolite exchange as well as signal transduction. Biological membranes are predominantly composed of lipids, cholesterol and proteins, and their fluidity is tightly regulated by cholesterol and lipid desaturases. To determine whether such membrane fluidity regulation occurred in mammalian cells under pressure, we investigated the effects of pressure on membrane lipid order of mouse chondrogenic ATDC5 cells and desaturase gene expression. Hydrostatic pressure linearly increased membrane lipid packing and simultaneously repressed lipid desaturase gene expression. We also showed that cholesterol mimicked and cholesterol depletion reversed those effects, suggesting that desaturase gene expression was controlled by the membrane physical state itself. This study demonstrates a new effect of hydrostatic pressure on mammalian cells and may help to identify the molecular mechanisms involved in hydrostatic pressure sensing in chondrocytes. © 2013 Elsevier Ltd. All rights reserved.

  15. Structure formation of lipid membranes: Membrane self-assembly and vesicle opening-up to octopus-like micelles

    Science.gov (United States)

    Noguchi, Hiroshi

    2013-02-01

    We briefly review our recent studies on self-assembly and vesicle rupture of lipid membranes using coarse-grained molecular simulations. For single component membranes, lipid molecules self-assemble from random gas states to vesicles via disk-shaped clusters. Clusters aggregate into larger clusters, and subsequently the large disks close into vesicles. The size of vesicles are determined by kinetics than by thermodynamics. When a vesicle composed of lipid and detergent types of molecules is ruptured, a disk-shaped micelle called bicelle can be formed. When both surfactants have negligibly low critical micelle concentration, it is found that bicelles connected with worm-like micelles are also formed depending on the surfactant ratio and spontaneous curvature of the membrane monolayer.

  16. How synthetic membrane systems contribute to the understanding of lipid-driven endocytosis.

    Science.gov (United States)

    Schubert, Thomas; Römer, Winfried

    2015-11-01

    Synthetic membrane systems, such as giant unilamellar vesicles and solid supported lipid bilayers, have widened our understanding of biological processes occurring at or through membranes. Artificial systems are particularly suited to study the inherent properties of membranes with regard to their components and characteristics. This review critically reflects the emerging molecular mechanism of lipid-driven endocytosis and the impact of model membrane systems in elucidating the complex interplay of biomolecules within this process. Lipid receptor clustering induced by binding of several toxins, viruses and bacteria to the plasma membrane leads to local membrane bending and formation of tubular membrane invaginations. Here, lipid shape, and protein structure and valency are the essential parameters in membrane deformation. Combining observations of complex cellular processes and their reconstitution on minimal systems seems to be a promising future approach to resolve basic underlying mechanisms. This article is part of a Special Issue entitled: Mechanobiology. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Determining Membrane Protein-Lipid Binding Thermodynamics Using Native Mass Spectrometry.

    Science.gov (United States)

    Cong, Xiao; Liu, Yang; Liu, Wen; Liang, Xiaowen; Russell, David H; Laganowsky, Arthur

    2016-04-06

    Membrane proteins are embedded in the biological membrane where the chemically diverse lipid environment can modulate their structure and function. However, the thermodynamics governing the molecular recognition and interaction of lipids with membrane proteins is poorly understood. Here, we report a method using native mass spectrometry (MS), to determine thermodynamics of individual ligand binding events to proteins. Unlike conventional methods, native MS can resolve individual ligand binding events and, coupled with an apparatus to control the temperature, determine binding thermodynamic parameters, such as for protein-lipid interactions. We validated our approach using three soluble protein-ligand systems (maltose binding protein, lysozyme, and nitrogen regulatory protein) and obtained similar results to those using isothermal titration calorimetry and surface plasmon resonance. We also determined for the first time the thermodynamics of individual lipid binding to the ammonia channel (AmtB), an integral membrane protein from Escherichia coli. Remarkably, we observed distinct thermodynamic signatures for the binding of different lipids and entropy-enthalpy compensation for binding lipids of variable chain length. Additionally, using a mutant form of AmtB that abolishes a specific phosphatidylglycerol (PG) binding site, we observed distinct changes in the thermodynamic signatures for binding PG, implying these signatures can identify key residues involved in specific lipid binding and potentially differentiate between specific lipid binding sites.

  18. Impact of monoolein on aquaporin1-based supported lipid bilayer membranes

    International Nuclear Information System (INIS)

    Wang, Zhining; Wang, Xida; Ding, Wande; Wang, Miaoqi; Gao, Congjie; Qi, Xin

    2015-01-01

    Aquaporin (AQP) based biomimetic membranes have attracted considerable attention for their potential water purification applications. In this paper, AQP1 incorporated biomimetic membranes were prepared and characterized. The morphology and structure of the biomimetic membranes were characterized by in situ atomic force microscopy (AFM), infrared absorption spectroscopy, fluorescence microscopy, and contact angle measurements. The nanofiltration performance of the AQP1 incorporated membranes was investigated at 4 bar by using 2 g l −1 NaCl as feed solution. Lipid mobility plays an important role in the performance of the AQP1 incorporated supported lipid bilayer (SLB) membranes. We demonstrated that the lipid mobility is successfully tuned by the addition of monoolein (MO). Through in situ AFM and fluorescence recovery after photo-bleaching (FRAP) measurements, the membrane morphology and the molecular mobility were studied. The lipid mobility increased in the sequence DPPC < DPPC/MO (R MO = 5/5) < DOPC/MO (R MO = 5/5) < DOPC, which is consistent with the flux increment and salt rejection. This study may provide some useful insights for improving the water purification performance of biomimetic membranes. (paper)

  19. Electrodiffusion of lipids on membrane surfaces.

    Science.gov (United States)

    Zhou, Y C

    2012-05-28

    Lateral translocation of lipids and proteins is a universal process on membrane surfaces. Local aggregation or organization of lipids and proteins can be induced when the random lateral motion is mediated by the electrostatic interactions and membrane curvature. Although the lateral diffusion rates of lipids on membranes of various compositions are measured and the electrostatic free energies of predetermined protein-membrane-lipid systems can be computed, the process of the aggregation and the evolution to the electrostatically favorable states remain largely undetermined. Here we propose an electrodiffusion model, based on the variational principle of the free energy functional, for the self-consistent lateral drift-diffusion of multiple species of charged lipids on membrane surfaces. Finite sizes of lipids are modeled to enforce the geometrical constraint of the lipid concentration on membrane surfaces. A surface finite element method is developed to appropriate the Laplace-Beltrami operators in the partial differential equations of the model. Our model properly describes the saturation of lipids on membrane surfaces, and correctly predicts that the MARCKS peptide can consistently sequester three multivalent phosphatidylinositol 4,5-bisphosphate lipids through its basic amino acid residues, regardless of a wide range of the percentage of monovalent phosphatidylserine in the membrane.

  20. Lysosomal degradation of membrane lipids.

    Science.gov (United States)

    Kolter, Thomas; Sandhoff, Konrad

    2010-05-03

    The constitutive degradation of membrane components takes place in the acidic compartments of a cell, the endosomes and lysosomes. Sites of lipid degradation are intralysosomal membranes that are formed in endosomes, where the lipid composition is adjusted for degradation. Cholesterol is sorted out of the inner membranes, their content in bis(monoacylglycero)phosphate increases, and, most likely, sphingomyelin is degraded to ceramide. Together with endosomal and lysosomal lipid-binding proteins, the Niemann-Pick disease, type C2-protein, the GM2-activator, and the saposins sap-A, -B, -C, and -D, a suitable membrane lipid composition is required for degradation of complex lipids by hydrolytic enzymes. Copyright 2009 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  1. Coupling of lipid membrane elasticity and in-plane dynamics

    Science.gov (United States)

    Tsang, Kuan-Yu; Lai, Yei-Chen; Chiang, Yun-Wei; Chen, Yi-Fan

    2017-07-01

    Biomembranes exhibit liquid and solid features concomitantly with their in-plane fluidity and elasticity tightly regulated by cells. Here, we present experimental evidence supporting the existence of the dynamics-elasticity correlations for lipid membranes and propose a mechanism involving molecular packing densities to explain them. This paper thereby unifies, at the molecular level, the aspects of the continuum mechanics long used to model the two membrane features. This ultimately may elucidate the universal physical principles governing the cellular phenomena involving biomembranes.

  2. Lipids and membrane lateral organization

    Directory of Open Access Journals (Sweden)

    Sandro eSonnino

    2010-11-01

    Full Text Available Shortly after the elucidation of the very basic structure and properties of cellular membranes, it became evident that cellular membranes are highly organized structures with multiple and multi-dimensional levels of order. Very early observations suggested that the lipid components of biological membranes might be active players in the creations of these levels of order. In the late 80’s, several different and diverse experimental pieces of evidence coalesced together giving rise to the lipid raft hypothesis. Lipid rafts became enormously (and, in the opinion of these authors, sometimes acritically popular, surprisingly not just within the lipidologist community (who is supposed to be naturally sensitive to the fascination of lipid rafts. Today, a PubMed search using the key word lipid rafts returned a list of 3767 papers, including 690 reviews (as a term of comparison, searching over the same time span for a very hot lipid-related key word, ceramide returned 6187 hits with 799 reviews, and a tremendous number of different cellular functions have been described as lipid raft-dependent. However, a clear consensus definition of lipid raft has been proposed only in recent times, and the basic properties, the ruling forces, and even the existence of lipid rafts in living cells have been recently matter of intense debate. The scenario that is gradually emerging from the controversies elicited by the lipid raft hypothesis emphasize multiple roles for membrane lipids in determining membrane order, that encompasses their tendency to phase separation but are clearly not limited to this. In this review, we would like to re-focus the attention of the readers on the importance of lipids in organizing the fine structure of cellular membranes.

  3. Electrodiffusion of Lipids on Membrane Surfaces

    OpenAIRE

    Zhou, Y. C.

    2011-01-01

    Random lateral translocation of lipids and proteins is a universal process on membrane surfaces. Local aggregation or organization of lipids and proteins can be induced when this lateral random diffusion is mediated by the electrostatic interactions and membrane curvature. Though the lateral diffusion rates of lipids on membrane of various compositions are measured and the electrostatic free energies of predetermined protein-membrane-lipid systems can be computed, the process of the aggregati...

  4. Self-assembled tethered bimolecular lipid membranes.

    Science.gov (United States)

    Sinner, Eva-Kathrin; Ritz, Sandra; Naumann, Renate; Schiller, Stefan; Knoll, Wolfgang

    2009-01-01

    This chapter describes some of the strategies developed in our group for designing, constructing and structurally and functionally characterizing tethered bimolecular lipid membranes (tBLM). We introduce this platform as a novel model membrane system that complements the existing ones, for example, Langmuir monolayers, vesicular liposomal dispersions and bimolecular ("black") lipid membranes. Moreover, it offers the additional advantage of allowing for studies of the influence of membrane structure and order on the function of integral proteins, for example, on how the composition and organization of lipids in a mixed membrane influence the ion translocation activity of integral channel proteins. The first strategy that we introduce concerns the preparation of tethered monolayers by the self-assembly of telechelics. Their molecular architecture with a headgroup, a spacer unit (the "tether") and the amphiphile that mimics the lipid molecule allows them to bind specifically to the solid support thus forming the proximal layer of the final architecture. After fusion of vesicles that could contain reconstituted proteins from a liposomal dispersion in contact to this monolayer the tethered bimolecular lipid membrane is obtained. This can then be characterized by a broad range of surface analytical techniques, including surface plasmon spectroscopies, the quartz crystal microbalance, fluorescence and IR spectroscopies, and electrochemical techniques, to mention a few. It is shown that this concept allows for the construction of tethered lipid bilayers with outstanding electrical properties including resistivities in excess of 10 MOmega cm2. A modified strategy uses the assembly of peptides as spacers that couple covalently via their engineered sulfhydryl or lipoic acid groups at the N-terminus to the employed gold substrate, while their C-terminus is being activated afterward for the coupling of, for example, dimyristoylphosphatidylethanol amine (DMPE) lipid molecules

  5. Molecular, dynamic, and structural origin of inhomogeneous magnetization transfer in lipid membranes.

    Science.gov (United States)

    Swanson, Scott D; Malyarenko, Dariya I; Fabiilli, Mario L; Welsh, Robert C; Nielsen, Jon-Fredrik; Srinivasan, Ashok

    2017-03-01

    To elucidate the dynamic, structural, and molecular properties that create inhomogeneous magnetization transfer (ihMT) contrast. Amphiphilic lipids, lamellar phospholipids with cholesterol, and bovine spinal cord (BSC) specimens were examined along with nonlipid systems. Magnetization transfer (MT), enhanced MT (eMT, obtained with double-sided radiofrequency saturation), ihMT (MT - eMT), and dipolar relaxation, T 1D , were measured at 2.0 and 11.7 T. The amplitude of ihMT ratio (ihMTR) is positively correlated with T 1D values. Both ihMTR and T 1D increase with increasing temperature in BSC white matter and in phospholipids and decrease with temperature in other lipids. Changes in ihMTR with temperature arise primarily from alterations in MT rather than eMT. Spectral width of MT, eMT, and ihMT increases with increasing carbon chain length. Concerted motions of phospholipids in white matter decrease proton spin diffusion leading to increased proton T 1D times and increased ihMT amplitudes, consistent with decoupling of Zeeman and dipolar spin reservoirs. Molecular specificity and dynamic sensitivity of ihMT contrast make it a suitable candidate for probing myelin membrane disorders. Magn Reson Med 77:1318-1328, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.

  6. Membrane Contact Sites: Complex Zones for Membrane Association and Lipid Exchange

    Science.gov (United States)

    Quon, Evan; Beh, Christopher T.

    2015-01-01

    Lipid transport between membranes within cells involves vesicle and protein carriers, but as agents of nonvesicular lipid transfer, the role of membrane contact sites has received increasing attention. As zones for lipid metabolism and exchange, various membrane contact sites mediate direct associations between different organelles. In particular, membrane contact sites linking the plasma membrane (PM) and the endoplasmic reticulum (ER) represent important regulators of lipid and ion transfer. In yeast, cortical ER is stapled to the PM through membrane-tethering proteins, which establish a direct connection between the membranes. In this review, we consider passive and facilitated models for lipid transfer at PM–ER contact sites. Besides the tethering proteins, we examine the roles of an additional repertoire of lipid and protein regulators that prime and propagate PM–ER membrane association. We conclude that instead of being simple mediators of membrane association, regulatory components of membrane contact sites have complex and multilayered functions. PMID:26949334

  7. Absorption and folding of melittin onto lipid bilayer membranes via unbiased atomic detail microsecond molecular dynamics simulation.

    Science.gov (United States)

    Chen, Charles H; Wiedman, Gregory; Khan, Ayesha; Ulmschneider, Martin B

    2014-09-01

    Unbiased molecular simulation is a powerful tool to study the atomic details driving functional structural changes or folding pathways of highly fluid systems, which present great challenges experimentally. Here we apply unbiased long-timescale molecular dynamics simulation to study the ab initio folding and partitioning of melittin, a template amphiphilic membrane active peptide. The simulations reveal that the peptide binds strongly to the lipid bilayer in an unstructured configuration. Interfacial folding results in a localized bilayer deformation. Akin to purely hydrophobic transmembrane segments the surface bound native helical conformer is highly resistant against thermal denaturation. Circular dichroism spectroscopy experiments confirm the strong binding and thermostability of the peptide. The study highlights the utility of molecular dynamics simulations for studying transient mechanisms in fluid lipid bilayer systems. This article is part of a Special Issue entitled: Interfacially Active Peptides and Proteins. Guest Editors: William C. Wimley and Kalina Hristova. Copyright © 2014. Published by Elsevier B.V.

  8. Membrane Contact Sites: Complex Zones for Membrane Association and Lipid Exchange

    OpenAIRE

    Evan Quon; Christopher T. Beh

    2016-01-01

    Lipid transport between membranes within cells involves vesicle and protein carriers, but as agents of nonvesicular lipid transfer, the role of membrane contact sites has received increasing attention. As zones for lipid metabolism and exchange, various membrane contact sites mediate direct associations between different organelles. In particular, membrane contact sites linking the plasma membrane (PM) and the endoplasmic reticulum (ER) represent important regulators of lipid and ion transfer...

  9. Lipid bilayer regulation of membrane protein function: gramicidin channels as molecular force probes

    DEFF Research Database (Denmark)

    Lundbæk, Jens August; Collingwood, S.A.; Ingolfsson, H.I.

    2010-01-01

    with collective physical properties (e.g. thickness, intrinsic monolayer curvature or elastic moduli). Studies in physico-chemical model systems have demonstrated that changes in bilayer physical properties can regulate membrane protein function by altering the energetic cost of the bilayer deformation associated...... with a protein conformational change. This type of regulation is well characterized, and its mechanistic elucidation is an interdisciplinary field bordering on physics, chemistry and biology. Changes in lipid composition that alter bilayer physical properties (including cholesterol, polyunsaturated fatty acids...... channels as molecular force probes for studying this mechanism, with a unique ability to discriminate between consequences of changes in monolayer curvature and bilayer elastic moduli....

  10. [Germ cell membrane lipids in spermatogenesis].

    Science.gov (United States)

    Wang, Ting; Shi, Xiao; Quan, Song

    2016-05-01

    Spermatogenesis is a complex developmental process in which a diploid progenitor germ cell transforms into highly specialized spermatozoa. During spermatogenesis, membrane remodeling takes place, and cell membrane permeability and liquidity undergo phase-specific changes, which are all associated with the alteration of membrane lipids. Lipids are important components of the germ cell membrane, whose volume and ratio fluctuate in different phases of spermatogenesis. Abnormal lipid metabolism can cause spermatogenic dysfunction and consequently male infertility. Germ cell membrane lipids are mainly composed of cholesterol, phospholipids and glycolipids, which play critical roles in cell adhesion and signal transduction during spermatogenesis. An insight into the correlation of membrane lipids with spermatogenesis helps us to better understand the mechanisms of spermatogenesis and provide new approaches to the diagnosis and treatment of male infertility.

  11. Interaction of Hematoporphyrin with Lipid Membranes

    DEFF Research Database (Denmark)

    Stepniewski, M.; Kepczynski, M.; Jamroz, D.

    2012-01-01

    Natural or synthetic porphyrins are being used as photosensitizers in photodiagnosis (PD) and photodynamic therapy (PDT) of malignancies and some other diseases. Understanding the interactions between porphyrins and cell membranes is therefore important to rationalize the uptake of photosensitizers...... and their passive transport through cell membranes. In this study, we consider the properties of hematoporphyrin (Hp), a well-known photosensitizer for PD and PDT, in the presence of a 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) bilayer that we use as a model system for protein-free cell membranes....... The dianions, being in the aqueous phase, formed stable dimers with a strictly determined geometry. Our results fully supported the experimental data and provide a more detailed molecular-level description of the interactions of photosensitizers with lipid membranes....

  12. Molecular machines open cell membranes.

    Science.gov (United States)

    García-López, Víctor; Chen, Fang; Nilewski, Lizanne G; Duret, Guillaume; Aliyan, Amir; Kolomeisky, Anatoly B; Robinson, Jacob T; Wang, Gufeng; Pal, Robert; Tour, James M

    2017-08-30

    Beyond the more common chemical delivery strategies, several physical techniques are used to open the lipid bilayers of cellular membranes. These include using electric and magnetic fields, temperature, ultrasound or light to introduce compounds into cells, to release molecular species from cells or to selectively induce programmed cell death (apoptosis) or uncontrolled cell death (necrosis). More recently, molecular motors and switches that can change their conformation in a controlled manner in response to external stimuli have been used to produce mechanical actions on tissue for biomedical applications. Here we show that molecular machines can drill through cellular bilayers using their molecular-scale actuation, specifically nanomechanical action. Upon physical adsorption of the molecular motors onto lipid bilayers and subsequent activation of the motors using ultraviolet light, holes are drilled in the cell membranes. We designed molecular motors and complementary experimental protocols that use nanomechanical action to induce the diffusion of chemical species out of synthetic vesicles, to enhance the diffusion of traceable molecular machines into and within live cells, to induce necrosis and to introduce chemical species into live cells. We also show that, by using molecular machines that bear short peptide addends, nanomechanical action can selectively target specific cell-surface recognition sites. Beyond the in vitro applications demonstrated here, we expect that molecular machines could also be used in vivo, especially as their design progresses to allow two-photon, near-infrared and radio-frequency activation.

  13. Molecular machines open cell membranes

    Science.gov (United States)

    García-López, Víctor; Chen, Fang; Nilewski, Lizanne G.; Duret, Guillaume; Aliyan, Amir; Kolomeisky, Anatoly B.; Robinson, Jacob T.; Wang, Gufeng; Pal, Robert; Tour, James M.

    2017-08-01

    Beyond the more common chemical delivery strategies, several physical techniques are used to open the lipid bilayers of cellular membranes. These include using electric and magnetic fields, temperature, ultrasound or light to introduce compounds into cells, to release molecular species from cells or to selectively induce programmed cell death (apoptosis) or uncontrolled cell death (necrosis). More recently, molecular motors and switches that can change their conformation in a controlled manner in response to external stimuli have been used to produce mechanical actions on tissue for biomedical applications. Here we show that molecular machines can drill through cellular bilayers using their molecular-scale actuation, specifically nanomechanical action. Upon physical adsorption of the molecular motors onto lipid bilayers and subsequent activation of the motors using ultraviolet light, holes are drilled in the cell membranes. We designed molecular motors and complementary experimental protocols that use nanomechanical action to induce the diffusion of chemical species out of synthetic vesicles, to enhance the diffusion of traceable molecular machines into and within live cells, to induce necrosis and to introduce chemical species into live cells. We also show that, by using molecular machines that bear short peptide addends, nanomechanical action can selectively target specific cell-surface recognition sites. Beyond the in vitro applications demonstrated here, we expect that molecular machines could also be used in vivo, especially as their design progresses to allow two-photon, near-infrared and radio-frequency activation.

  14. Simulation of Water Transport through a Lipid Membrane

    NARCIS (Netherlands)

    Marrink, Siewert-Jan; Berendsen, Herman J.C.

    1994-01-01

    To obtain insight in the process of water permeation through a lipid membrane, we performed molecular dynamics simulations on a phospholipid (DPPC)/water system with atomic detail. Since the actual process of permeation is too slow to be studied directly, we deduced the permeation rate indirectly

  15. Membrane Fusion Involved in Neurotransmission: Glimpse from Electron Microscope and Molecular Simulation

    Directory of Open Access Journals (Sweden)

    Zhiwei Yang

    2017-06-01

    Full Text Available Membrane fusion is one of the most fundamental physiological processes in eukaryotes for triggering the fusion of lipid and content, as well as the neurotransmission. However, the architecture features of neurotransmitter release machinery and interdependent mechanism of synaptic membrane fusion have not been extensively studied. This review article expounds the neuronal membrane fusion processes, discusses the fundamental steps in all fusion reactions (membrane aggregation, membrane association, lipid rearrangement and lipid and content mixing and the probable mechanism coupling to the delivery of neurotransmitters. Subsequently, this work summarizes the research on the fusion process in synaptic transmission, using electron microscopy (EM and molecular simulation approaches. Finally, we propose the future outlook for more exciting applications of membrane fusion involved in synaptic transmission, with the aid of stochastic optical reconstruction microscopy (STORM, cryo-EM (cryo-EM, and molecular simulations.

  16. Membrane Fusion Involved in Neurotransmission: Glimpse from Electron Microscope and Molecular Simulation

    Science.gov (United States)

    Yang, Zhiwei; Gou, Lu; Chen, Shuyu; Li, Na; Zhang, Shengli; Zhang, Lei

    2017-01-01

    Membrane fusion is one of the most fundamental physiological processes in eukaryotes for triggering the fusion of lipid and content, as well as the neurotransmission. However, the architecture features of neurotransmitter release machinery and interdependent mechanism of synaptic membrane fusion have not been extensively studied. This review article expounds the neuronal membrane fusion processes, discusses the fundamental steps in all fusion reactions (membrane aggregation, membrane association, lipid rearrangement and lipid and content mixing) and the probable mechanism coupling to the delivery of neurotransmitters. Subsequently, this work summarizes the research on the fusion process in synaptic transmission, using electron microscopy (EM) and molecular simulation approaches. Finally, we propose the future outlook for more exciting applications of membrane fusion involved in synaptic transmission, with the aid of stochastic optical reconstruction microscopy (STORM), cryo-EM (cryo-EM), and molecular simulations. PMID:28638320

  17. Salt Bridge Formation between the I-BAR Domain and Lipids Increases Lipid Density and Membrane Curvature.

    Science.gov (United States)

    Takemura, Kazuhiro; Hanawa-Suetsugu, Kyoko; Suetsugu, Shiro; Kitao, Akio

    2017-07-28

    The BAR domain superfamily proteins sense or induce curvature in membranes. The inverse-BAR domain (I-BAR) is a BAR domain that forms a straight "zeppelin-shaped" dimer. The mechanisms by which IRSp53 I-BAR binds to and deforms a lipid membrane are investigated here by all-atom molecular dynamics simulation (MD), binding energy analysis, and the effects of mutation experiments on filopodia on HeLa cells. I-BAR adopts a curved structure when crystallized, but adopts a flatter shape in MD. The binding of I-BAR to membrane was stabilized by ~30 salt bridges, consistent with experiments showing that point mutations of the interface residues have little effect on the binding affinity whereas multiple mutations have considerable effect. Salt bridge formation increases the local density of lipids and deforms the membrane into a concave shape. In addition, the point mutations that break key intra-molecular salt bridges within I-BAR reduce the binding affinity; this was confirmed by expressing these mutants in HeLa cells and observing their effects. The results indicate that the stiffness of I-BAR is important for membrane deformation, although I-BAR does not act as a completely rigid template.

  18. Differential Interaction of Synthetic Glycolipids with Biomimetic Plasma Membrane Lipids Correlates with the Plant Biological Response.

    Science.gov (United States)

    Nasir, Mehmet Nail; Lins, Laurence; Crowet, Jean-Marc; Ongena, Marc; Dorey, Stephan; Dhondt-Cordelier, Sandrine; Clément, Christophe; Bouquillon, Sandrine; Haudrechy, Arnaud; Sarazin, Catherine; Fauconnier, Marie-Laure; Nott, Katherine; Deleu, Magali

    2017-09-26

    Natural and synthetic amphiphilic molecules including lipopeptides, lipopolysaccharides, and glycolipids are able to induce defense mechanisms in plants. In the present work, the perception of two synthetic C14 rhamnolipids, namely, Alk-RL and Ac-RL, differing only at the level of the lipid tail terminal group have been investigated using biological and biophysical approaches. We showed that Alk-RL induces a stronger early signaling response in tobacco cell suspensions than does Ac-RL. The interactions of both synthetic RLs with simplified biomimetic membranes were further analyzed using experimental and in silico approaches. Our results indicate that the interactions of Alk-RL and Ac-RL with lipids were different in terms of insertion and molecular responses and were dependent on the lipid composition of model membranes. A more favorable insertion of Alk-RL than Ac-RL into lipid membranes is observed. Alk-RL forms more stable molecular assemblies than Ac-RL with phospholipids and sterols. At the molecular level, the presence of sterols tends to increase the RLs' interaction with lipid bilayers, with a fluidizing effect on the alkyl chains. Taken together, our findings suggest that the perception of these synthetic RLs at the membrane level could be related to a lipid-driven process depending on the organization of the membrane and the orientation of the RLs within the membrane and is correlated with the induction of early signaling responses in tobacco cells.

  19. Lipid polymorphism and the functional roles of lipids in biological membranes

    NARCIS (Netherlands)

    Cullis, P.R.; Kruijff, B. de

    1979-01-01

    The reasons for the great variety of lipids found in biological membranes, and the relations between lipid composition and membrane function pose major unsolved problems in membrane biology. Perhaps the only major functional role of lipids which may be regarded as firmly established involves the

  20. Mechanics of Lipid Bilayer Membranes

    Science.gov (United States)

    Powers, Thomas R.

    All cells have membranes. The plasma membrane encapsulates the cell's interior, acting as a barrier against the outside world. In cells with nuclei (eukaryotic cells), membranes also form internal compartments (organelles) which carry out specialized tasks, such as protein modification and sorting in the case of the Golgi apparatus, and ATP production in the case of mitochondria. The main components of membranes are lipids and proteins. The proteins can be channels, carriers, receptors, catalysts, signaling molecules, or structural elements, and typically contribute a substantial fraction of the total membrane dry weight. The equilibrium properties of pure lipid membranes are relatively well-understood, and will be the main focus of this article. The framework of elasticity theory and statistical mechanics that we will develop will serve as the foundation for understanding biological phenomena such as the nonequilibrium behavior of membranes laden with ion pumps, the role of membrane elasticity in ion channel gating, and the dynamics of vesicle fission and fusion. Understanding the mechanics of lipid membranes is also important for drug encapsulation and delivery.

  1. Lipids as organizers of cell membranes.

    Science.gov (United States)

    Kornmann, Benoît; Roux, Aurélien

    2012-08-01

    The 105th Boehringer Ingelheim Fonds International Titisee Conference 'Lipids as Organizers of Cell Membranes' took place in March 2012, in Germany. Kai Simons and Gisou Van der Goot gathered cell biologists and biophysicists to discuss the interplay between lipids and proteins in biological membranes, with an emphasis on how technological advances could help fill the gap in our understanding of the lipid part of the membrane.

  2. Lipid rafts generate digital-like signal transduction in cell plasma membranes.

    Science.gov (United States)

    Suzuki, Kenichi G N

    2012-06-01

    Lipid rafts are meso-scale (5-200 nm) cell membrane domains where signaling molecules assemble and function. However, due to their dynamic nature, it has been difficult to unravel the mechanism of signal transduction in lipid rafts. Recent advanced imaging techniques have revealed that signaling molecules are frequently, but transiently, recruited to rafts with the aid of protein-protein, protein-lipid, and/or lipid-lipid interactions. Individual signaling molecules within the raft are activated only for a short period of time. Immobilization of signaling molecules by cytoskeletal actin filaments and scaffold proteins may facilitate more efficient signal transmission from rafts. In this review, current opinions of how the transient nature of molecular interactions in rafts generates digital-like signal transduction in cell membranes, and the benefits this phenomenon provides, are discussed. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Free energies of stable and metastable pores in lipid membranes under tension

    NARCIS (Netherlands)

    den Otter, Wouter K.

    2009-01-01

    The free energy profile of pore formation in a lipid membrane, covering the entire range from a density fluctuation in an intact bilayer to a large tension-stabilized pore, has been calculated by molecular dynamics simulations with a coarse-grained lipid model. Several fixed elongations are used to

  4. Lipid reorganization induced by Shiga toxin clustering on planar membranes.

    Directory of Open Access Journals (Sweden)

    Barbara Windschiegl

    Full Text Available The homopentameric B-subunit of bacterial protein Shiga toxin (STxB binds to the glycolipid Gb(3 in plasma membranes, which is the initial step for entering cells by a clathrin-independent mechanism. It has been suggested that protein clustering and lipid reorganization determine toxin uptake into cells. Here, we elucidated the molecular requirements for STxB induced Gb(3 clustering and for the proposed lipid reorganization in planar membranes. The influence of binding site III of the B-subunit as well as the Gb(3 lipid structure was investigated by means of high resolution methods such as fluorescence and scanning force microscopy. STxB was found to form protein clusters on homogenous 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC/cholesterol/Gb(3 (65:30:5 bilayers. In contrast, membranes composed of DOPC/cholesterol/sphingomyelin/Gb(3 (40:35:20:5 phase separate into a liquid ordered and liquid disordered phase. Dependent on the fatty acid composition of Gb(3, STxB-Gb(3 complexes organize within the liquid ordered phase upon protein binding. Our findings suggest that STxB is capable of forming a new membrane phase that is characterized by lipid compaction. The significance of this finding is discussed in the context of Shiga toxin-induced formation of endocytic membrane invaginations.

  5. Probing lipid membrane electrostatics

    Science.gov (United States)

    Yang, Yi

    The electrostatic properties of lipid bilayer membranes play a significant role in many biological processes. Atomic force microscopy (AFM) is highly sensitive to membrane surface potential in electrolyte solutions. With fully characterized probe tips, AFM can perform quantitative electrostatic analysis of lipid membranes. Electrostatic interactions between Silicon nitride probes and supported zwitterionic dioleoylphosphatidylcholine (DOPC) bilayer with a variable fraction of anionic dioleoylphosphatidylserine (DOPS) were measured by AFM. Classical Gouy-Chapman theory was used to model the membrane electrostatics. The nonlinear Poisson-Boltzmann equation was numerically solved with finite element method to provide the potential distribution around the AFM tips. Theoretical tip-sample electrostatic interactions were calculated with the surface integral of both Maxwell and osmotic stress tensors on tip surface. The measured forces were interpreted with theoretical forces and the resulting surface charge densities of the membrane surfaces were in quantitative agreement with the Gouy-Chapman-Stern model of membrane charge regulation. It was demonstrated that the AFM can quantitatively detect membrane surface potential at a separation of several screening lengths, and that the AFM probe only perturbs the membrane surface potential by external field created by the internai membrane dipole moment. The analysis yields a dipole moment of 1.5 Debye per lipid with a dipole potential of +275 mV for supported DOPC membranes. This new ability to quantitatively measure the membrane dipole density in a noninvasive manner will be useful in identifying the biological effects of the dipole potential. Finally, heterogeneous model membranes were studied with fluid electric force microscopy (FEFM). Electrostatic mapping was demonstrated with 50 nm resolution. The capabilities of quantitative electrostatic measurement and lateral charge density mapping make AFM a unique and powerful

  6. Single Lipid Molecule Dynamics on Supported Lipid Bilayers with Membrane Curvature

    Directory of Open Access Journals (Sweden)

    Philip P. Cheney

    2017-03-01

    Full Text Available The plasma membrane is a highly compartmentalized, dynamic material and this organization is essential for a wide variety of cellular processes. Nanoscale domains allow proteins to organize for cell signaling, endo- and exocytosis, and other essential processes. Even in the absence of proteins, lipids have the ability to organize into domains as a result of a variety of chemical and physical interactions. One feature of membranes that affects lipid domain formation is membrane curvature. To directly test the role of curvature in lipid sorting, we measured the accumulation of two similar lipids, 1,2-Dihexadecanoyl-sn-glycero-3-phosphoethanolamine (DHPE and hexadecanoic acid (HDA, using a supported lipid bilayer that was assembled over a nanopatterned surface to obtain regions of membrane curvature. Both lipids studied contain 16 carbon, saturated tails and a head group tag for fluorescence microscopy measurements. The accumulation of lipids at curvatures ranging from 28 nm to 55 nm radii was measured and fluorescein labeled DHPE accumulated more than fluorescein labeled HDA at regions of membrane curvature. We then tested whether single biotinylated DHPE molecules sense curvature using single particle tracking methods. Similar to groups of fluorescein labeled DHPE accumulating at curvature, the dynamics of single molecules of biotinylated DHPE was also affected by membrane curvature and highly confined motion was observed.

  7. Homeoviscous adaptation and the regulation of membrane lipids

    DEFF Research Database (Denmark)

    Ernst, Robert; Ejsing, Christer S; Antonny, Bruno

    2016-01-01

    Biological membranes are complex and dynamic assemblies of lipids and proteins. Poikilothermic organisms including bacteria, fungi, reptiles, and fish do not control their body temperature and must adapt their membrane lipid composition in order to maintain membrane fluidity in the cold. This ada......Biological membranes are complex and dynamic assemblies of lipids and proteins. Poikilothermic organisms including bacteria, fungi, reptiles, and fish do not control their body temperature and must adapt their membrane lipid composition in order to maintain membrane fluidity in the cold....... This adaptive response was termed homeoviscous adaptation and has been frequently studied with a specific focus on the acyl chain composition of membrane lipids. Massspectrometry-based lipidomics can nowadays provide more comprehensive insights into the complexity of lipid remodeling during adaptive responses...... such as neurons maintain unique lipid compositions with specific physicochemical properties. To date little is known about the sensory mechanisms regulating the acyl chain profile in such specialized cells or during adaptive responses. Here we summarize our current understanding of lipid metabolic networks...

  8. On the interaction between fluoxetine and lipid membranes: Effect of the lipid composition

    Science.gov (United States)

    Pham, Vy T.; Nguyen, Trinh Q.; Dao, Uyen P. N.; Nguyen, Trang T.

    2018-02-01

    Molecular interaction between the antidepressant fluoxetine and lipid bilayers was investigated in order to provide insights into the drug's incorporation to lipid membranes. In particular, the effects of lipid's unsaturation degree and cholesterol content on the partitioning of fluoxetine into large unilamellar vesicles (LUVs) comprised of unsaturated 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) and saturated 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) were evaluated using second derivative spectrophotometry and Attenuated total reflection-Fourier transform infrared spectroscopy (ATR-FTIR). It was found that fluoxetine partitioned to a greater extent into the liquid-crystalline DOPC LUVs than into the solid-gel DPPC LUVs. The lipid physical state dependence of drug partitioning was verified by increasing the temperature in which the partition coefficient of fluoxetine significantly increased upon the change of the lipid phase from solid-gel to liquid-crystalline. The incorporation of 28 mol% cholesterol into the LUVs exerted a significant influence on the drug partitioning into both DOPC and DPPC LUVs. The ATR-FTIR study revealed that fluoxetine perturbed the conformation of DOPC more strongly than that of DPPC due to the cis-double bonds in the lipid acyl chains. Fluoxetine possibly bound to the carbonyl moiety of the lipids through the hydrogen bonding formation while displaced some water molecules surrounding the PO2- regions of the lipid head groups. Cholesterol, however, could lessen the interaction between fluoxetine and the carbonyl groups of both DOPC and DPPC LUVs. These findings provided a better understanding of the role of lipid structure and cholesterol on the interaction between fluoxetine and lipid membranes, shedding more light into the drug's therapeutic action.

  9. Structure and dynamics of water and lipid molecules in charged anionic DMPG lipid bilayer membranes

    DEFF Research Database (Denmark)

    Rønnest, A. K.; Peters, Günther H.J.; Hansen, Flemming Yssing

    2016-01-01

    Molecular dynamics simulations have been used to investigate the influence of the valency of counter-ions on the structure of freestanding bilayer membranes of the anionic 1,2-dimyristoyl-sn-glycero-3-phosphoglycerol (DMPG) lipid at 310 K and 1 atm. At this temperature, the membrane is in the fluid...... compared to experimental results and used to determine an average diffusion constant for all water molecules in the system. On extrapolating the diffusion constants inferred experimentally to a temperature of 310 K, reasonable agreement with the simulations is obtained. However, the experiments do not have...... the sensitivity to confirm the diffusion of a small component of water bound to the lipids as found in the simulations. In addition, the orientation of the dipole moment of the water molecules has been determined as a function of their depth in the membrane. Previous indirect estimates of the electrostatic...

  10. CURVATURE-DRIVEN MOLECULAR FLOW ON MEMBRANE SURFACE.

    Science.gov (United States)

    Mikucki, Michael; Zhou, Y C

    2017-01-01

    This work presents a mathematical model for the localization of multiple species of diffusion molecules on membrane surfaces. Morphological change of bilayer membrane in vivo is generally modulated by proteins. Most of these modulations are associated with the localization of related proteins in the crowded lipid environments. We start with the energetic description of the distributions of molecules on curved membrane surface, and define the spontaneous curvature of bilayer membrane as a function of the molecule concentrations on membrane surfaces. A drift-diffusion equation governs the gradient flow of the surface molecule concentrations. We recast the energetic formulation and the related governing equations by using an Eulerian phase field description to define membrane morphology. Computational simulations with the proposed mathematical model and related numerical techniques predict (i) the molecular localization on static membrane surfaces at locations with preferred mean curvatures, and (ii) the generation of preferred mean curvature which in turn drives the molecular localization.

  11. Biosynthesis of archaeal membrane ether lipids

    Directory of Open Access Journals (Sweden)

    Samta eJain

    2014-11-01

    Full Text Available A vital function of the cell membrane in all living organism is to maintain the membrane permeability barrier and fluidity. The composition of the phospholipid bilayer is distinct in archaea when compared to bacteria and eukarya. In archaea, isoprenoid hydrocarbon side chains are linked via an ether bond to the sn-glycerol-1-phosphate backbone. In bacteria and eukarya on the other hand, fatty acid side chains are linked via an ester bond to the sn-glycerol-3-phosphate backbone. The polar head groups are globally shared in the three domains of life. The unique membrane lipids of archaea have been implicated not only in the survival and adaptation of the organisms to extreme environments but also to form the basis of the membrane composition of the last universal common ancestor (LUCA. In nature, a diverse range of archaeal lipids is found, the most common are the diether (or archaeol and the tetraether (or caldarchaeol lipids that form a monolayer. Variations in chain length, cyclization and other modifications lead to diversification of these lipids. The biosynthesis of these lipids is not yet well understood however progress in the last decade has led to a comprehensive understanding of the biosynthesis of archaeol. This review describes the current knowledge of the biosynthetic pathway of archaeal ether lipids; insights on the stability and robustness of archaeal lipid membranes; and evolutionary aspects of the lipid divide and the last universal common ancestor LUCA. It examines recent advances made in the field of pathway reconstruction in bacteria.

  12. Strong influence of periodic boundary conditions on lateral diffusion in lipid bilayer membranes

    Energy Technology Data Exchange (ETDEWEB)

    Camley, Brian A. [Center for Theoretical Biological Physics and Department of Physics, University of California, San Diego, California 92093 (United States); Department of Physics, University of California, Santa Barbara, California 93106 (United States); Lerner, Michael G. [Department of Physics and Astronomy, Earlham College, Richmond, Indiana 47374 (United States); Laboratory of Computational Biology, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892 (United States); Pastor, Richard W. [Laboratory of Computational Biology, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892 (United States); Brown, Frank L. H. [Department of Physics, University of California, Santa Barbara, California 93106 (United States); Department of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106 (United States)

    2015-12-28

    The Saffman-Delbrück hydrodynamic model for lipid-bilayer membranes is modified to account for the periodic boundary conditions commonly imposed in molecular simulations. Predicted lateral diffusion coefficients for membrane-embedded solid bodies are sensitive to box shape and converge slowly to the limit of infinite box size, raising serious doubts for the prospects of using detailed simulations to accurately predict membrane-protein diffusivities and related transport properties. Estimates for the relative error associated with periodic boundary artifacts are 50% and higher for fully atomistic models in currently feasible simulation boxes. MARTINI simulations of LacY membrane protein diffusion and LacY dimer diffusion in DPPC membranes and lipid diffusion in pure DPPC bilayers support the underlying hydrodynamic model.

  13. Strong influence of periodic boundary conditions on lateral diffusion in lipid bilayer membranes

    International Nuclear Information System (INIS)

    Camley, Brian A.; Lerner, Michael G.; Pastor, Richard W.; Brown, Frank L. H.

    2015-01-01

    The Saffman-Delbrück hydrodynamic model for lipid-bilayer membranes is modified to account for the periodic boundary conditions commonly imposed in molecular simulations. Predicted lateral diffusion coefficients for membrane-embedded solid bodies are sensitive to box shape and converge slowly to the limit of infinite box size, raising serious doubts for the prospects of using detailed simulations to accurately predict membrane-protein diffusivities and related transport properties. Estimates for the relative error associated with periodic boundary artifacts are 50% and higher for fully atomistic models in currently feasible simulation boxes. MARTINI simulations of LacY membrane protein diffusion and LacY dimer diffusion in DPPC membranes and lipid diffusion in pure DPPC bilayers support the underlying hydrodynamic model

  14. Neuronal sphingolipidoses: Membrane lipids and sphingolipid activator proteins regulate lysosomal sphingolipid catabolism.

    Science.gov (United States)

    Sandhoff, Konrad

    2016-11-01

    Glycosphingolipids and sphingolipids of cellular plasma membranes (PMs) reach luminal intra-lysosomal vesicles (LVs) for degradation mainly by pathways of endocytosis. After a sorting and maturation process (e.g. degradation of sphingomyelin (SM) and secretion of cholesterol), sphingolipids of the LVs are digested by soluble enzymes with the help of activator (lipid binding and transfer) proteins. Inherited defects of lipid-cleaving enzymes and lipid binding and transfer proteins cause manifold and fatal, often neurodegenerative diseases. The review summarizes recent findings on the regulation of sphingolipid catabolism and cholesterol secretion from the endosomal compartment by lipid modifiers, an essential stimulation by anionic membrane lipids and an inhibition of crucial steps by cholesterol and SM. Reconstitution experiments in the presence of all proteins needed, hydrolase and activator proteins, reveal an up to 10-fold increase of ganglioside catabolism just by the incorporation of anionic lipids into the ganglioside carrying membranes, whereas an additional incorporation of cholesterol inhibits GM2 catabolism substantially. It is suggested that lipid and other low molecular modifiers affect the genotype-phenotype relationship observed in patients with lysosomal diseases. Copyright © 2016 Elsevier B.V. and Société Française de Biochimie et Biologie Moléculaire (SFBBM). All rights reserved.

  15. Lipid corralling and poloxamer squeeze-out in membranes

    DEFF Research Database (Denmark)

    Wu, G.H.; Majewski, J.; Ege, C.

    2004-01-01

    Using x-ray scattering measurements we have quantitatively determined the effect of poloxamer 188 (P188), a polymer known to seal damaged membranes, on the structure of lipid monolayers. P188 selectively inserts into low lipid-density regions of the membrane and "corrals" lipid molecules to pack...... tightly, leading to unexpected Bragg peaks at low nominal lipid density and inducing lipid/poloxamer phase separation. At tighter lipid packing, the once inserted P188 is squeezed out, allowing the poloxamer to gracefully exit when the membrane integrity is restored....

  16. A Coarse Grained Model for a Lipid Membrane with Physiological Composition and Leaflet Asymmetry.

    Directory of Open Access Journals (Sweden)

    Satyan Sharma

    Full Text Available The resemblance of lipid membrane models to physiological membranes determines how well molecular dynamics (MD simulations imitate the dynamic behavior of cell membranes and membrane proteins. Physiological lipid membranes are composed of multiple types of phospholipids, and the leaflet compositions are generally asymmetric. Here we describe an approach for self-assembly of a Coarse-Grained (CG membrane model with physiological composition and leaflet asymmetry using the MARTINI force field. An initial set-up of two boxes with different types of lipids according to the leaflet asymmetry of mammalian cell membranes stacked with 0.5 nm overlap, reliably resulted in the self-assembly of bilayer membranes with leaflet asymmetry resembling that of physiological mammalian cell membranes. Self-assembly in the presence of a fragment of the plasma membrane protein syntaxin 1A led to spontaneous specific positioning of phosphatidylionositol(4,5bisphosphate at a positively charged stretch of syntaxin consistent with experimental data. An analogous approach choosing an initial set-up with two concentric shells filled with different lipid types results in successful assembly of a spherical vesicle with asymmetric leaflet composition. Self-assembly of the vesicle in the presence of the synaptic vesicle protein synaptobrevin 2 revealed the correct position of the synaptobrevin transmembrane domain. This is the first CG MD method to form a membrane with physiological lipid composition as well as leaflet asymmetry by self-assembly and will enable unbiased studies of the incorporation and dynamics of membrane proteins in more realistic CG membrane models.

  17. Influence of membrane phospholipid composition and structural organization on spontaneous lipid transfer between membranes.

    Science.gov (United States)

    Pankov, R; Markovska, T; Antonov, P; Ivanova, L; Momchilova, A

    2006-09-01

    Investigations were carried out on the influence of phospholipid composition of model membranes on the processes of spontaneous lipid transfer between membranes. Acceptor vesicles were prepared from phospholipids extracted from plasma membranes of control and ras-transformed fibroblasts. Acceptor model membranes with manipulated levels of phosphatidylethanolamine (PE), sphingomyelin and phosphatidic acid were also used in the studies. Donor vesicles were prepared of phosphatidylcholine (PC) and contained two fluorescent lipid analogues, NBD-PC and N-Rh-PE, at a self-quenching concentration. Lipid transfer rate was assessed by measuring the increase of fluorescence in acceptor membranes due to transfer of fluorescent lipid analogues from quenched donor to unquenched acceptor vesicles. The results showed that spontaneous NBD-PC transfer increased upon fluidization of acceptor vesicles. In addition, elevation of PE concentration in model membranes was also accompanied by an increase of lipid transfer to all series of acceptor vesicles. The results are discussed with respect to the role of lipid composition and structural order of cellular plasma membranes in the processes of spontaneous lipid exchange between membrane bilayers.

  18. Membrane interaction of antimicrobial peptides using E. coli lipid extract as model bacterial cell membranes and SFG spectroscopy.

    Science.gov (United States)

    Soblosky, Lauren; Ramamoorthy, Ayyalusamy; Chen, Zhan

    2015-04-01

    Supported lipid bilayers are used as a convenient model cell membrane system to study biologically important molecule-lipid interactions in situ. However, the lipid bilayer models are often simple and the acquired results with these models may not provide all pertinent information related to a real cell membrane. In this work, we use sum frequency generation (SFG) vibrational spectroscopy to study molecular-level interactions between the antimicrobial peptides (AMPs) MSI-594, ovispirin-1 G18, magainin 2 and a simple 1,2-dipalmitoyl-d62-sn-glycero-3-phosphoglycerol (dDPPG)/1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoglycerol (POPG) bilayer. We compared such interactions to those between the AMPs and a more complex dDPPG/Escherichia coli (E. coli) polar lipid extract bilayer. We show that to fully understand more complex aspects of peptide-bilayer interaction, such as interaction kinetics, a heterogeneous lipid composition is required, such as the E. coli polar lipid extract. The discrepancy in peptide-bilayer interaction is likely due in part to the difference in bilayer charge between the two systems since highly negative charged lipids can promote more favorable electrostatic interactions between the peptide and lipid bilayer. Results presented in this paper indicate that more complex model bilayers are needed to accurately analyze peptide-cell membrane interactions and demonstrates the importance of using an appropriate lipid composition to study AMP interaction properties. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  19. The properties of the outer membrane localized Lipid A transporter LptD

    International Nuclear Information System (INIS)

    Haarmann, Raimund; Ibrahim, Mohamed; Stevanovic, Mara; Bredemeier, Rolf; Schleiff, Enrico

    2010-01-01

    Gram-negative bacteria are surrounded by a cell wall including the outer membrane. The outer membrane is composed of two distinct monolayers where the outer layer contains lipopolysaccharides (LPS) with the non-phospholipid Lipid A as the core. The synthesis of Lipid A is initiated in the cytosol and thereby the molecule has to be transported across the inner and outer membranes. The β-barrel lipopolysaccharide-assembly protein D (LptD) was discovered to be involved in the transfer of Lipid A into the outer membrane of Gram-negative bacteria. At present the molecular procedure of lipid transfer across the outer membrane remains unknown. Here we approached the functionality of the transfer system by an electrophysiological analysis of the outer membrane protein from Escherichia coli named ecLptD. In vitro the protein shows cation selectivity and has an estimated pore diameter of about 1.8 nm. Addition of Lipid A induces a transition of the open state to a sub-conductance state with two independent off-rates, which might suggest that LptD is able to bind and transport the molecule in vitro. To generalize our findings with respect to the Lipid A transport system of other Gram-negative bacteria we have explored the existence of the proteins involved in this pathway by bioinformatic means. We were able to identify the membrane-inserted components of the Lipid A transport system in all Gram-negative bacteria, whereas the periplasmic components appear to be species-specific. The LptD proteins of different bacteria are characterized by their periplasmic N-terminal domain and a C-terminal barrel region. The latter shows distinct sequence properties, particularly in LptD proteins of cyanobacteria, and this specific domain can be found in plant proteins as well. By electrophysiological experiments on LptD from Anabaena sp. PCC 7120 we are able to confirm the functional relation of anaLptD to Lipid A transport.

  20. Imaging of blood plasma coagulation at supported lipid membranes.

    Science.gov (United States)

    Faxälv, Lars; Hume, Jasmin; Kasemo, Bengt; Svedhem, Sofia

    2011-12-15

    The blood coagulation system relies on lipid membrane constituents to act as regulators of the coagulation process upon vascular trauma, and in particular the 2D configuration of the lipid membranes is known to efficiently catalyze enzymatic activity of blood coagulation factors. This work demonstrates a new application of a recently developed methodology to study blood coagulation at lipid membrane interfaces with the use of imaging technology. Lipid membranes with varied net charges were formed on silica supports by systematically using different combinations of lipids where neutral phosphocholine (PC) lipids were mixed with phospholipids having either positively charged ethylphosphocholine (EPC), or negatively charged phosphatidylserine (PS) headgroups. Coagulation imaging demonstrated that negatively charged SiO(2) and membrane surfaces exposing PS (obtained from liposomes containing 30% of PS) had coagulation times which were significantly shorter than those for plain PC membranes and EPC exposing membrane surfaces (obtained from liposomes containing 30% of EPC). Coagulation times decreased non-linearly with increasing negative surface charge for lipid membranes. A threshold value for shorter coagulation times was observed below a PS content of ∼6%. We conclude that the lipid membranes on solid support studied with the imaging setup as presented in this study offers a flexible and non-expensive solution for coagulation studies at biological membranes. It will be interesting to extend the present study towards examining coagulation on more complex lipid-based model systems. Copyright © 2011 Elsevier Inc. All rights reserved.

  1. Membrane-lipid therapy: A historical perspective of membrane-targeted therapies - From lipid bilayer structure to the pathophysiological regulation of cells.

    Science.gov (United States)

    Escribá, Pablo V

    2017-09-01

    Our current understanding of membrane lipid composition, structure and functions has led to the investigation of their role in cell signaling, both in healthy and pathological cells. As a consequence, therapies based on the regulation of membrane lipid composition and structure have been recently developed. This novel field, known as Membrane Lipid Therapy, is growing and evolving rapidly, providing treatments that are now in use or that are being studied for their application to oncological disorders, Alzheimer's disease, spinal cord injury, stroke, diabetes, obesity, and neuropathic pain. This field has arisen from relevant discoveries on the behavior of membranes in recent decades, and it paves the way to adopt new approaches in modern pharmacology and nutrition. This innovative area will promote further investigation into membranes and the development of new therapies with molecules that target the cell membrane. Due to the prominent roles of membranes in the cells' physiology and the paucity of therapeutic approaches based on the regulation of the lipids they contain, it is expected that membrane lipid therapy will provide new treatments for numerous pathologies. The first on-purpose rationally designed molecule in this field, minerval, is currently being tested in clinical trials and it is expected to enter the market around 2020. However, it seems feasible that during the next few decades other membrane regulators will also be marketed for the treatment of human pathologies. This article is part of a Special Issue entitled: Membrane Lipid Therapy: Drugs Targeting Biomembranes edited by Pablo V. Escribá. Copyright © 2017. Published by Elsevier B.V.

  2. Snake cytotoxins bind to membranes via interactions with phosphatidylserine head groups of lipids.

    Directory of Open Access Journals (Sweden)

    Anastasia G Konshina

    Full Text Available The major representatives of Elapidae snake venom, cytotoxins (CTs, share similar three-fingered fold and exert diverse range of biological activities against various cell types. CT-induced cell death starts from the membrane recognition process, whose molecular details remain unclear. It is known, however, that the presence of anionic lipids in cell membranes is one of the important factors determining CT-membrane binding. In this work, we therefore investigated specific interactions between one of the most abundant of such lipids, phosphatidylserine (PS, and CT 4 of Naja kaouthia using a combined, experimental and modeling, approach. It was shown that incorporation of PS into zwitterionic liposomes greatly increased the membrane-damaging activity of CT 4 measured by the release of the liposome-entrapped calcein fluorescent dye. The CT-induced leakage rate depends on the PS concentration with a maximum at approximately 20% PS. Interestingly, the effects observed for PS were much more pronounced than those measured for another anionic lipid, sulfatide. To delineate the potential PS binding sites on CT 4 and estimate their relative affinities, a series of computer simulations was performed for the systems containing the head group of PS and different spatial models of CT 4 in aqueous solution and in an implicit membrane. This was done using an original hybrid computational protocol implementing docking, Monte Carlo and molecular dynamics simulations. As a result, at least three putative PS-binding sites with different affinities to PS molecule were delineated. Being located in different parts of the CT molecule, these anion-binding sites can potentially facilitate and modulate the multi-step process of the toxin insertion into lipid bilayers. This feature together with the diverse binding affinities of the sites to a wide variety of anionic targets on the membrane surface appears to be functionally meaningful and may adjust CT action against

  3. DSC and EPR investigations on effects of cholesterol component on molecular interactions between paclitaxel and phospholipid within lipid bilayer membrane.

    Science.gov (United States)

    Zhao, Lingyun; Feng, Si-Shen; Kocherginsky, Nikolai; Kostetski, Iouri

    2007-06-29

    Differential scanning calorimetry (DSC) and electron paramagnetic resonance spectroscopy (EPR) were applied to investigate effects of cholesterol component on molecular interactions between paclitaxel, which is one of the best antineoplastic agents found from nature, and dipalmitoylphosphatidylcholine (DPPC) within lipid bilayer vesicles (liposomes), which could also be used as a model cell membrane. DSC analysis showed that incorporation of paclitaxel into the DPPC bilayer causes a reduction in the cooperativity of bilayer phase transition, leading to a looser and more flexible bilayer structure. Including cholesterol component in the DPPC/paclitaxel mixed bilayer can facilitate the molecular interaction between paclitaxel and lipid and make the tertiary system more stable. EPR analysis demonstrated that both of paclitaxel and cholesterol have fluidization effect on the DPPC bilayer membranes although cholesterol has more significant effect than paclitaxel does. The reduction kinetics of nitroxides by ascorbic acid showed that paclitaxel can inhibit the reaction by blocking the diffusion of either the ascorbic acid or nitroxide molecules since the reaction is tested to be a first order one. Cholesterol can remarkably increase the reduction reaction speed. This research may provide useful information for optimizing liposomal formulation of the drug as well as for understanding the pharmacology of paclitaxel.

  4. Effect of Galactosylceramide on the Dynamics of Cholesterol-Rich Lipid Membranes

    DEFF Research Database (Denmark)

    Hall, A.; Rog, T.; Vattulainen, I.

    2011-01-01

    We use atom-scale molecular dynamics simulations to clarify the role of glycosphingolipids in the dynamics of cholesterol-rich lipid rafts. To this end, we consider lipid membranes that contain varying. amounts of galactosylceramide (GalCer), sphingomyelin, cholesterol, and phosphatidylcholine....... The results indicate that increasing the portion of GalCer molecules greatly slows down the lateral diffusion, Only 5-10 mol % of GalCer causes a decrease of almost an order of magnitude compared to corresponding membranes without GalCer. The slowing down is not related to interdigitation, which becomes...... weaker with increasing GalCer concentration. Instead, the decrease in diffusion is found to correlate with the increasing number of hydrogen bonds formed between GalCer and the phospholipid molecules, which is also observed to have other effects, such as to increase the friction between the membrane...

  5. Plant lipid environment and membrane enzymes: the case of the plasma membrane H+-ATPase.

    Science.gov (United States)

    Morales-Cedillo, Francisco; González-Solís, Ariadna; Gutiérrez-Angoa, Lizbeth; Cano-Ramírez, Dora Luz; Gavilanes-Ruiz, Marina

    2015-04-01

    Several lipid classes constitute the universal matrix of the biological membranes. With their amphipathic nature, lipids not only build the continuous barrier that confers identity to every cell and organelle, but they are also active actors that modulate the activity of the proteins immersed in the lipid bilayer. The plasma membrane H(+)-ATPase, an enzyme from plant cells, is an excellent example of a transmembrane protein whose activity is influenced by the hydrophilic compartments at both sides of the membrane and by the hydrophobic domains of the lipid bilayer. As a result, an extensive documentation of the effect of numerous amphiphiles in the enzyme activity can be found. Detergents, membrane glycerolipids, and sterols can produce activation or inhibition of the enzyme activity. In some cases, these effects are associated with the lipids of the membrane bulk, but in others, a direct interaction of the lipid with the protein is involved. This review gives an account of reports related to the action of the membrane lipids on the H(+)-ATPase activity.

  6. Key molecular requirements for raft formation in lipid/cholesterol membranes.

    Directory of Open Access Journals (Sweden)

    Davit Hakobyan

    Full Text Available The lipid mixture of DPPC (saturated lipid/DUPC (unsaturated lipid/CHOL (cholesterol is studied with respect to its ability to form liquid-ordered and liquid-disordered phases. We employ coarse-grained simulations with MARTINI force field. All three components are systematically modified in order to explore the relevant molecular properties, leading to phase separation. Specifically, we show that the DPPC/DUPC/CHOL system unmixes due to enthalpic DPPC-DPPC and DPPC-CHOL interactions. The phase separation remains unchanged, except for the formation of a gel phase at long times after decreasing the conformational degrees of freedom of the unsaturated DUPC. In contrast, the phase separation can be suppressed by softening the DPPC chains. In an attempt to mimic the ordering and unmixing effect of CHOL the latter is replaced by a stiff and shortened DPPC-like lipid. One still observes phase separation, suggesting that it is mainly the rigid and planar structure of CHOL which is important for raft formation. Addition of an extra bead to the head of CHOL has no notable impact on the phase separation of the system, supporting the irrelevance of the Umbrella model for the phase separation. Reduction of the conformational entropy of CHOL by stiffening its last bead results in a significant increase of the order of the DPPC/CHOL domain. This suggests that the conformational entropy of CHOL is important to prohibit the gelation process. The interleaflet interactions as mediated by the terminal molecular groups seem to have a strong impact on the possibility of a subsequent gelation process after phase separation.

  7. Sensing voltage across lipid membranes

    Science.gov (United States)

    Swartz, Kenton J.

    2009-01-01

    The detection of electrical potentials across lipid bilayers by specialized membrane proteins is required for many fundamental cellular processes such as the generation and propagation of nerve impulses. These membrane proteins possess modular voltage-sensing domains, a notable example being the S1-S4 domains of voltage-activated ion channels. Ground-breaking structural studies on these domains explain how voltage sensors are designed and reveal important interactions with the surrounding lipid membrane. Although further structures are needed to fully understand the conformational changes that occur during voltage sensing, the available data help to frame several key concepts that are fundamental to the mechanism of voltage sensing. PMID:19092925

  8. Thermal Adaptation of the Archaeal and Bacterial Lipid Membranes

    Science.gov (United States)

    Koga, Yosuke

    2012-01-01

    The physiological characteristics that distinguish archaeal and bacterial lipids, as well as those that define thermophilic lipids, are discussed from three points of view that (1) the role of the chemical stability of lipids in the heat tolerance of thermophilic organisms: (2) the relevance of the increase in the proportion of certain lipids as the growth temperature increases: (3) the lipid bilayer membrane properties that enable membranes to function at high temperatures. It is concluded that no single, chemically stable lipid by itself was responsible for the adaptation of surviving at high temperatures. Lipid membranes that function effectively require the two properties of a high permeability barrier and a liquid crystalline state. Archaeal membranes realize these two properties throughout the whole biological temperature range by means of their isoprenoid chains. Bacterial membranes meet these requirements only at or just above the phase-transition temperature, and therefore their fatty acid composition must be elaborately regulated. A recent hypothesis sketched a scenario of the evolution of lipids in which the “lipid divide” emerged concomitantly with the differentiation of archaea and bacteria. The two modes of thermal adaptation were established concurrently with the “lipid divide.” PMID:22927779

  9. Thermal Adaptation of the Archaeal and Bacterial Lipid Membranes

    Directory of Open Access Journals (Sweden)

    Yosuke Koga

    2012-01-01

    Full Text Available The physiological characteristics that distinguish archaeal and bacterial lipids, as well as those that define thermophilic lipids, are discussed from three points of view that (1 the role of the chemical stability of lipids in the heat tolerance of thermophilic organisms: (2 the relevance of the increase in the proportion of certain lipids as the growth temperature increases: (3 the lipid bilayer membrane properties that enable membranes to function at high temperatures. It is concluded that no single, chemically stable lipid by itself was responsible for the adaptation of surviving at high temperatures. Lipid membranes that function effectively require the two properties of a high permeability barrier and a liquid crystalline state. Archaeal membranes realize these two properties throughout the whole biological temperature range by means of their isoprenoid chains. Bacterial membranes meet these requirements only at or just above the phase-transition temperature, and therefore their fatty acid composition must be elaborately regulated. A recent hypothesis sketched a scenario of the evolution of lipids in which the “lipid divide” emerged concomitantly with the differentiation of archaea and bacteria. The two modes of thermal adaptation were established concurrently with the “lipid divide.”

  10. Microchemical device based on microscopic bilayer lipid membranes; Bisho 2 bunshimaku wo mochiiita maikuro kagaku debaisu

    Energy Technology Data Exchange (ETDEWEB)

    Yokoyama, H. [Electrotechnical Lab., Ibaraki (Japan)

    1996-04-01

    If an organism is regarded as a macromolecular system, the element device to construct the same is the molecular structure of nano meter scale formed by the functional protein existing in biomembranes. A lot of essential functions of organism such as the sense reception including vision, gustation, etc., photosynthesis, energy-substance production and so on are performed therein. In this paper, the structure, preparing process and the functions of the microchemical device using micro-bilipid membranes are described. The simulation of the sense receiving functions of organisms is tried by said microchemical device wherein, same as biomembranes, the base is bilayer lipid molecular membrane and the receptive protein for receiving signals from exterior and output molecules such as ion channels connected to said receptive protein and the like are incorporated in the membranes. Recently, it becomes possible to make a partial imaging of the bilayer lipid membranes fixed on porous membrane by the observation with scanning Maxwell-stress microscope. 4 refs., 3 figs.

  11. Anionic lipids and the maintenance of membrane electrostatics in eukaryotes.

    Science.gov (United States)

    Platre, Matthieu Pierre; Jaillais, Yvon

    2017-02-01

    A wide range of signaling processes occurs at the cell surface through the reversible association of proteins from the cytosol to the plasma membrane. Some low abundant lipids are enriched at the membrane of specific compartments and thereby contribute to the identity of cell organelles by acting as biochemical landmarks. Lipids also influence membrane biophysical properties, which emerge as an important feature in specifying cellular territories. Such parameters are crucial for signal transduction and include lipid packing, membrane curvature and electrostatics. In particular, membrane electrostatics specifies the identity of the plasma membrane inner leaflet. Membrane surface charges are carried by anionic phospholipids, however the exact nature of the lipid(s) that powers the plasma membrane electrostatic field varies among eukaryotes and has been hotly debated during the last decade. Herein, we discuss the role of anionic lipids in setting up plasma membrane electrostatics and we compare similarities and differences that were found in different eukaryotic cells.

  12. Characterization of Hydrophobic Interactions of Polymers with Water and Phospholipid Membranes Using Molecular Dynamics Simulations

    Science.gov (United States)

    Drenscko, Mihaela

    Polymers and lipid membranes are both essential soft materials. The structure and hydrophobicity/hydrophilicity of polymers, as well as the solvent they are embedded in, ultimately determines their size and shape. Understating the variation of shape of the polymer as well as its interactions with model biological membranes can assist in understanding the biocompatibility of the polymer itself. Computer simulations, in particular molecular dynamics, can aid in characterization of the interaction of polymers with solvent, as well as polymers with model membranes. In this thesis, molecular dynamics serve to describe polymer interactions with a solvent (water) and with a lipid membrane. To begin with, we characterize the hydrophobic collapse of single polystyrene chains in water using molecular dynamics simulations. Specifically, we calculate the potential of mean force for the collapse of a single polystyrene chain in water using metadynamics, comparing the results between all atomistic with coarse-grained molecular simulation. We next explore the scaling behavior of the collapsed globular shape at the minimum energy configuration, characterized by the radius of gyration, as a function of chain length. The exponent is close to one third, consistent with that predicted for a polymer chain in bad solvent. We also explore the scaling behavior of the Solvent Accessible Surface Area (SASA) as a function of chain length, finding a similar exponent for both all-atomistic and coarse-grained simulations. Furthermore, calculation of the local water density as a function of chain length near the minimum energy configuration suggests that intermediate chain lengths are more likely to form dewetted states, as compared to shorter or longer chain lengths. Next, in order to investigate the molecular interactions between single hydrophobic polymer chains and lipids in biological membranes and at lipid membrane/solvent interface, we perform a series of molecular dynamics simulations of

  13. Study of pH (low) insertion peptides (pHLIPs) interaction with lipid bilayer of membrane

    Science.gov (United States)

    Weerakkody, Dhammika

    The pH-dependent interactions of pHLIPsRTM (pH (Low) Insertion Peptides) with lipid bilayer of membrane provides an opportunity to study and address fundamental questions of protein folding/insertion into membrane and unfolding/exit, as well as develop novel approach to target acidic diseased tissue such as cancer, ischemic myocardium, infection and others. The main goal of the work presented here is to answer the following questions: - What is the molecular mechanism of spontaneous insertion and folding of a peptide in a lipid bilayer of membrane; - What is the molecular mechanism of unfolding and exit of a peptide from a lipid bilayer of membrane; - How polar cargo attached to a peptide's inserting end might affect the process of insertion into a lipid bilayer of membrane; How sequence variation will affect a peptide's interactions with a lipid bilayer of membrane (partitioning into bilayer at neutral and low pH; apparent pK of insertion) with the main goal to identify the best pHLIP variants for imaging and therapy of pathological states such as cancer and others. It has been demonstrated that pHLIP insertion into a membrane is associated with the protonation of Asp/Glu residues, which leads to an increase of hydrophobicity that triggers the folding and insertion of the peptide across a lipid bilayer. The insertion of the pHLIP is unidirectional and it is accompanied by the release of energy. Therefore, the energy of membrane associated-folding can be used to favor the movement of cell-impermeable polar cargo molecules across the hydrophobic membrane bilayer when they are attached to the inserting end of pHLIP. Both pH-targeting behavior and molecular translocation have been demonstrated in cultured cells and in vivo. Thus, there is an opportunity to develop a novel concept in drug delivery, which is based on the use of a monomeric, pH-sensitive peptide molecular transporter, to deliver agents that are significantly more polar than conventional drugs

  14. Length and sequence dependence in the association of Huntingtin protein with lipid membranes

    Science.gov (United States)

    Jawahery, Sudi; Nagarajan, Anu; Matysiak, Silvina

    2013-03-01

    There is a fundamental gap in our understanding of how aggregates of mutant Huntingtin protein (htt) with overextended polyglutamine (polyQ) sequences gain the toxic properties that cause Huntington's disease (HD). Experimental studies have shown that the most important step associated with toxicity is the binding of mutant htt aggregates to lipid membranes. Studies have also shown that flanking amino acid sequences around the polyQ sequence directly affect interactions with the lipid bilayer, and that polyQ sequences of greater than 35 glutamine repeats in htt are a characteristic of HD. The key steps that determine how flanking sequences and polyQ length affect the structure of lipid bilayers remain unknown. In this study, we use atomistic molecular dynamics simulations to study the interactions between lipid membranes of varying compositions and polyQ peptides of varying lengths and flanking sequences. We find that overextended polyQ interactions do cause deformation in model membranes, and that the flanking sequences do play a role in intensifying this deformation by altering the shape of the affected regions.

  15. Importance of the hexagonal lipid phase in biological membrane organisation

    Directory of Open Access Journals (Sweden)

    Juliette eJouhet

    2013-12-01

    Full Text Available Abstract:Domains are present in every natural membrane. They are characterised by a distinctive protein and/or lipid composition. Their size is highly variable from the nano- to the micrometer scale. The domains confer specific properties to the membrane leading to original structure and function. The determinants leading to domain organisation are therefore important but remain obscure. This review presents how the ability of lipids to organize into hexagonal II or lamellar phases can promote particular local structures within membranes. Since biological membranes are composed of a mixture of lipids, each with distinctive biophysical properties, lateral and transversal sorting of lipids can promote creation of domains inside the membrane through local modulation of the lipid phase. Lipid biophysical properties have been characterized for long based on in vitro analyses using non-natural lipid molecules; their re-examinations using natural lipids might open interesting perspectives on membrane architecture occurring in vivo in various cellular and physiological contexts.

  16. Importance of the hexagonal lipid phase in biological membrane organization.

    Science.gov (United States)

    Jouhet, Juliette

    2013-01-01

    Domains are present in every natural membrane. They are characterized by a distinctive protein and/or lipid composition. Their size is highly variable from the nano- to the micrometer scale. The domains confer specific properties to the membrane leading to original structure and function. The determinants leading to domain organization are therefore important but remain obscure. This review presents how the ability of lipids to organize into hexagonal II or lamellar phases can promote particular local structures within membranes. Since biological membranes are composed of a mixture of lipids, each with distinctive biophysical properties, lateral and transversal sorting of lipids can promote creation of domains inside the membrane through local modulation of the lipid phase. Lipid biophysical properties have been characterized for long based on in vitro analyses using non-natural lipid molecules; their re-examinations using natural lipids might open interesting perspectives on membrane architecture occurring in vivo in various cellular and physiological contexts.

  17. Binding of Neurotransmitters to Lipid Membranes

    DEFF Research Database (Denmark)

    Peters, Günther H.J.; Werge, Mikkel; Elf-Lind, Maria Northved

    2014-01-01

    / acetylated g-aminobutyrate (GABAneu) with a dipalmitoylphosphatidylcholine (DPPC) bilayer. This study was motivated by recent research results that suggested that neural transmission may also be affected by nonspecific interactions of NTs with the lipid matrix of the synaptic membrane. Our results revealed...... backbone of the phospholipids. It is surprising that hydrophilic solutes can deeply penetrate into the membrane pointing to the fact that membrane affinity is governed by specific interactions. Our MD simulations identified the salt-bridge between the primary amine of NTs and the lipid phosphate group...

  18. Diffusion and spectroscopy of water and lipids in fully hydrated dimyristoylphosphatidylcholine bilayer membranes

    International Nuclear Information System (INIS)

    Yang, J.; Martí, J.; Calero, C.

    2014-01-01

    Microscopic structure and dynamics of water and lipids in a fully hydrated dimyristoylphosphatidylcholine phospholipid lipid bilayer membrane in the liquid-crystalline phase have been analyzed with all-atom molecular dynamics simulations based on the recently parameterized CHARMM36 force field. The diffusive dynamics of the membrane lipids and of its hydration water, their reorientational motions as well as their corresponding spectral densities, related to the absorption of radiation, have been considered for the first time using the present force field. In addition, structural properties such as density and pressure profiles, a deuterium-order parameter, surface tension, and the extent of water penetration in the membrane have been analyzed. Molecular self-diffusion, reorientational motions, and spectral densities of atomic species reveal a variety of time scales playing a role in membrane dynamics. The mechanisms of lipid motion strongly depend on the time scale considered, from fast ballistic translation at the scale of picoseconds (effective diffusion coefficients of the order of 10 −5 cm 2 /s) to diffusive flow of a few lipids forming nanodomains at the scale of hundreds of nanoseconds (diffusion coefficients of the order of 10 −8 cm 2 /s). In the intermediate regime of sub-diffusion, collisions with nearest neighbors prevent the lipids to achieve full diffusion. Lipid reorientations along selected directions agree well with reported nuclear magnetic resonance data and indicate two different time scales, one about 1 ns and a second one in the range of 2–8 ns. We associated the two time scales of reorientational motions with angular distributions of selected vectors. Calculated spectral densities corresponding to lipid and water reveal an overall good qualitative agreement with Fourier transform infrared spectroscopy experiments. Our simulations indicate a blue-shift of the low frequency spectral bands of hydration water as a result of its interaction

  19. Diffusion and spectroscopy of water and lipids in fully hydrated dimyristoylphosphatidylcholine bilayer membranes

    Energy Technology Data Exchange (ETDEWEB)

    Yang, J.; Martí, J., E-mail: jordi.marti@upc.edu [Department of Physics and Nuclear Engineering, Technical University of Catalonia-Barcelona Tech, B4-B5 Northern Campus, Jordi Girona 1-3, 08034 Barcelona, Catalonia (Spain); Calero, C. [Department of Physics and Nuclear Engineering, Technical University of Catalonia-Barcelona Tech, B4-B5 Northern Campus, Jordi Girona 1-3, 08034 Barcelona, Catalonia (Spain); Center for Polymer Studies, Department of Physics, Boston University, 590 Commonwealth Avenue, Boston, Massachusetts 02215 (United States)

    2014-03-14

    Microscopic structure and dynamics of water and lipids in a fully hydrated dimyristoylphosphatidylcholine phospholipid lipid bilayer membrane in the liquid-crystalline phase have been analyzed with all-atom molecular dynamics simulations based on the recently parameterized CHARMM36 force field. The diffusive dynamics of the membrane lipids and of its hydration water, their reorientational motions as well as their corresponding spectral densities, related to the absorption of radiation, have been considered for the first time using the present force field. In addition, structural properties such as density and pressure profiles, a deuterium-order parameter, surface tension, and the extent of water penetration in the membrane have been analyzed. Molecular self-diffusion, reorientational motions, and spectral densities of atomic species reveal a variety of time scales playing a role in membrane dynamics. The mechanisms of lipid motion strongly depend on the time scale considered, from fast ballistic translation at the scale of picoseconds (effective diffusion coefficients of the order of 10{sup −5} cm{sup 2}/s) to diffusive flow of a few lipids forming nanodomains at the scale of hundreds of nanoseconds (diffusion coefficients of the order of 10{sup −8} cm{sup 2}/s). In the intermediate regime of sub-diffusion, collisions with nearest neighbors prevent the lipids to achieve full diffusion. Lipid reorientations along selected directions agree well with reported nuclear magnetic resonance data and indicate two different time scales, one about 1 ns and a second one in the range of 2–8 ns. We associated the two time scales of reorientational motions with angular distributions of selected vectors. Calculated spectral densities corresponding to lipid and water reveal an overall good qualitative agreement with Fourier transform infrared spectroscopy experiments. Our simulations indicate a blue-shift of the low frequency spectral bands of hydration water as a result of

  20. Differential Effect of Plant Lipids on Membrane Organization

    Science.gov (United States)

    Grosjean, Kevin; Mongrand, Sébastien; Beney, Laurent; Simon-Plas, Françoise; Gerbeau-Pissot, Patricia

    2015-01-01

    The high diversity of the plant lipid mixture raises the question of their respective involvement in the definition of membrane organization. This is particularly the case for plant plasma membrane, which is enriched in specific lipids, such as free and conjugated forms of phytosterols and typical phytosphingolipids, such as glycosylinositolphosphoceramides. This question was here addressed extensively by characterizing the order level of membrane from vesicles prepared using various plant lipid mixtures and labeled with an environment-sensitive probe. Fluorescence spectroscopy experiments showed that among major phytosterols, campesterol exhibits a stronger ability than β-sitosterol and stigmasterol to order model membranes. Multispectral confocal microscopy, allowing spatial analysis of membrane organization, demonstrated accordingly the strong ability of campesterol to promote ordered domain formation and to organize their spatial distribution at the membrane surface. Conjugated sterol forms, alone and in synergy with free sterols, exhibit a striking ability to order membrane. Plant sphingolipids, particularly glycosylinositolphosphoceramides, enhanced the sterol-induced ordering effect, emphasizing the formation and increasing the size of sterol-dependent ordered domains. Altogether, our results support a differential involvement of free and conjugated phytosterols in the formation of ordered domains and suggest that the diversity of plant lipids, allowing various local combinations of lipid species, could be a major contributor to membrane organization in particular through the formation of sphingolipid-sterol interacting domains. PMID:25575593

  1. Non-Brownian diffusion in lipid membranes: Experiments and simulations.

    Science.gov (United States)

    Metzler, R; Jeon, J-H; Cherstvy, A G

    2016-10-01

    The dynamics of constituents and the surface response of cellular membranes-also in connection to the binding of various particles and macromolecules to the membrane-are still a matter of controversy in the membrane biophysics community, particularly with respect to crowded membranes of living biological cells. We here put into perspective recent single particle tracking experiments in the plasma membranes of living cells and supercomputing studies of lipid bilayer model membranes with and without protein crowding. Special emphasis is put on the observation of anomalous, non-Brownian diffusion of both lipid molecules and proteins embedded in the lipid bilayer. While single component, pure lipid bilayers in simulations exhibit only transient anomalous diffusion of lipid molecules on nanosecond time scales, the persistence of anomalous diffusion becomes significantly longer ranged on the addition of disorder-through the addition of cholesterol or proteins-and on passing of the membrane lipids to the gel phase. Concurrently, experiments demonstrate the anomalous diffusion of membrane embedded proteins up to macroscopic time scales in the minute time range. Particular emphasis will be put on the physical character of the anomalous diffusion, in particular, the occurrence of ageing observed in the experiments-the effective diffusivity of the measured particles is a decreasing function of time. Moreover, we present results for the time dependent local scaling exponent of the mean squared displacement of the monitored particles. Recent results finding deviations from the commonly assumed Gaussian diffusion patterns in protein crowded membranes are reported. The properties of the displacement autocorrelation function of the lipid molecules are discussed in the light of their appropriate physical anomalous diffusion models, both for non-crowded and crowded membranes. In the last part of this review we address the upcoming field of membrane distortion by elongated membrane

  2. A layer model of ethanol partitioning into lipid membranes.

    Science.gov (United States)

    Nizza, David T; Gawrisch, Klaus

    2009-06-01

    The effect of membrane composition on ethanol partitioning into lipid bilayers was assessed by headspace gas chromatography. A series of model membranes with different compositions have been investigated. Membranes were exposed to a physiological ethanol concentration of 20 mmol/l. The concentration of membranes was 20 wt% which roughly corresponds to values found in tissue. Partitioning depended on the chemical nature of polar groups at the lipid/water interface. Compared to phosphatidylcholine, lipids with headgroups containing phosphatidylglycerol, phosphatidylserine, and sphingomyelin showed enhanced partitioning while headgroups containing phosphatidylethanolamine resulted in a lower partition coefficient. The molar partition coefficient was independent of a membrane's hydrophobic volume. This observation is in agreement with our previously published NMR results which showed that ethanol resides almost exclusively within the membrane/water interface. At an ethanol concentration of 20 mmol/l in water, ethanol concentrations at the lipid/water interface are in the range from 30-15 mmol/l, corresponding to one ethanol molecule per 100-200 lipids.

  3. Intrinsic potential of cell membranes: opposite effects of lipid transmembrane asymmetry and asymmetric salt ion distribution

    DEFF Research Database (Denmark)

    Gurtovenko, Andrey A; Vattulainen, Ilpo

    2009-01-01

    Using atomic-scale molecular dynamics simulations, we consider the intrinsic cell membrane potential that is found to originate from a subtle interplay between lipid transmembrane asymmetry and the asymmetric distribution of monovalent salt ions on the two sides of the cell membrane. It turns out......Cl saline solution and the PE leaflet is exposed to KCl, the outcome is that the effects of asymmetric lipid and salt ion distributions essentially cancel one another almost completely. Overall, our study highlights the complex nature of the intrinsic potential of cell membranes under physiological...... that both the asymmetric distribution of phosphatidylcholine (PC) and phosphatidylethanolamine (PE) lipids across a membrane and the asymmetric distribution of NaCl and KCl induce nonzero drops in the transmembrane potential. However, these potential drops are opposite in sign. As the PC leaflet faces a Na...

  4. Regulation of membrane protein function by lipid bilayer elasticity-a single molecule technology to measure the bilayer properties experienced by an embedded protein

    International Nuclear Information System (INIS)

    Lundbaek, Jens August

    2006-01-01

    Membrane protein function is generally regulated by the molecular composition of the host lipid bilayer. The underlying mechanisms have long remained enigmatic. Some cases involve specific molecular interactions, but very often lipids and other amphiphiles, which are adsorbed to lipid bilayers, regulate a number of structurally unrelated proteins in an apparently non-specific manner. It is well known that changes in the physical properties of a lipid bilayer (e.g., thickness or monolayer spontaneous curvature) can affect the function of an embedded protein. However, the role of such changes, in the general regulation of membrane protein function, is unclear. This is to a large extent due to lack of a generally accepted framework in which to understand the many observations. The present review summarizes studies which have demonstrated that the hydrophobic interactions between a membrane protein and the host lipid bilayer provide an energetic coupling, whereby protein function can be regulated by the bilayer elasticity. The feasibility of this 'hydrophobic coupling mechanism' has been demonstrated using the gramicidin channel, a model membrane protein, in planar lipid bilayers. Using voltage-dependent sodium channels, N-type calcium channels and GABA A receptors, it has been shown that membrane protein function in living cells can be regulated by amphiphile induced changes in bilayer elasticity. Using the gramicidin channel as a molecular force transducer, a nanotechnology to measure the elastic properties experienced by an embedded protein has been developed. A theoretical and technological framework, to study the regulation of membrane protein function by lipid bilayer elasticity, has been established

  5. Membrane-Sculpting BAR Domains Generate Stable Lipid Microdomains

    Science.gov (United States)

    Zhao, Hongxia; Michelot, Alphée; Koskela, Essi V.; Tkach, Vadym; Stamou, Dimitrios; Drubin, David G.; Lappalainen, Pekka

    2014-01-01

    SUMMARY Bin-Amphiphysin-Rvs (BAR) domain proteins are central regulators of many cellular processes involving membrane dynamics. BAR domains sculpt phosphoinositide-rich membranes to generate membrane protrusions or invaginations. Here, we report that, in addition to regulating membrane geometry, BAR domains can generate extremely stable lipid microdomains by “freezing” phosphoinositide dynamics. This is a general feature of BAR domains, because the yeast endocytic BAR and Fes/CIP4 homology BAR (F-BAR) domains, the inverse BAR domain of Pinkbar, and the eisosomal BAR protein Lsp1 induced phosphoinositide clustering and halted lipid diffusion, despite differences in mechanisms of membrane interactions. Lsp1 displays comparable low diffusion rates in vitro and in vivo, suggesting that BAR domain proteins also generate stable phosphoinositide microdomains in cells. These results uncover a conserved role for BAR superfamily proteins in regulating lipid dynamics within membranes. Stable microdomains induced by BAR domain scaffolds and specific lipids can generate phase boundaries and diffusion barriers, which may have profound impacts on diverse cellular processes. PMID:24055060

  6. Molecular dynamics simulations of the interactions of medicinal plant extracts and drugs with lipid bilayer membranes

    DEFF Research Database (Denmark)

    Kopec, Wojciech; Telenius, Jelena; Khandelia, Himanshu

    2013-01-01

    Several small drugs and medicinal plant extracts, such as the Indian spice extract curcumin, have a wide range of useful pharmacological properties that cannot be ascribed to binding to a single protein target alone. The lipid bilayer membrane is thought to mediate the effects of many such molecu......Several small drugs and medicinal plant extracts, such as the Indian spice extract curcumin, have a wide range of useful pharmacological properties that cannot be ascribed to binding to a single protein target alone. The lipid bilayer membrane is thought to mediate the effects of many...

  7. Assessing the nature of lipid raft membranes

    DEFF Research Database (Denmark)

    Niemelä, Perttu S; Ollila, Samuli; Hyvönen, Marja T

    2007-01-01

    of highly ordered lateral domains rich in sphingomyelin and cholesterol (CHOL). These domains, called functional lipid rafts, have been suggested to take part in a variety of dynamic cellular processes such as membrane trafficking, signal transduction, and regulation of the activity of membrane proteins......-scale simulations to elucidate the properties of ternary raft mixtures with CHOL, palmitoylsphingomyelin (PSM), and palmitoyloleoylphosphatidylcholine. We simulate two bilayers of 1,024 lipids for 100 ns in the liquid-ordered phase and one system of the same size in the liquid-disordered phase. The studies provide...... heterogeneity more difficult. The findings reveal aspects of the role of favored (specific) lipid-lipid interactions within rafts and clarify the prominent role of CHOL in altering the properties of the membrane locally in its neighborhood. Also, we show that the presence of PSM and CHOL in rafts leads...

  8. Regulation of adhesion behavior of murine macrophage using supported lipid membranes displaying tunable mannose domains

    International Nuclear Information System (INIS)

    Kaindl, T; Oelke, J; Kaufmann, S; Tanaka, M; Pasc, A; Konovalov, O V; Funari, S S; Engel, U; Wixforth, A

    2010-01-01

    Highly uniform, strongly correlated domains of synthetically designed lipids can be incorporated into supported lipid membranes. The systematic characterization of membranes displaying a variety of domains revealed that the equilibrium size of domains significantly depends on the length of fluorocarbon chains, which can be quantitatively interpreted within the framework of an equivalent dipole model. A mono-dispersive, narrow size distribution of the domains enables us to treat the inter-domain correlations as two-dimensional colloidal crystallization and calculate the potentials of mean force. The obtained results demonstrated that both size and inter-domain correlation can precisely be controlled by the molecular structures. By coupling α-D-mannose to lipid head groups, we studied the adhesion behavior of the murine macrophage (J774A.1) on supported membranes. Specific adhesion and spreading of macrophages showed a clear dependence on the density of functional lipids. The obtained results suggest that such synthetic lipid domains can be used as a defined platform to study how cells sense the size and distribution of functional molecules during adhesion and spreading.

  9. Yeast lipids can phase separate into micrometer-scale membrane domains

    DEFF Research Database (Denmark)

    Klose, Christian; Ejsing, Christer S; Garcia-Saez, Ana J

    2010-01-01

    The lipid raft concept proposes that biological membranes have the potential to form functional domains based on a selective interaction between sphingolipids and sterols. These domains seem to be involved in signal transduction and vesicular sorting of proteins and lipids. Although there is bioc......The lipid raft concept proposes that biological membranes have the potential to form functional domains based on a selective interaction between sphingolipids and sterols. These domains seem to be involved in signal transduction and vesicular sorting of proteins and lipids. Although...... there is biochemical evidence for lipid raft-dependent protein and lipid sorting in the yeast Saccharomyces cerevisiae, direct evidence for an interaction between yeast sphingolipids and the yeast sterol ergosterol, resulting in membrane domain formation, is lacking. Here we show that model membranes formed from yeast...... total lipid extracts possess an inherent self-organization potential resulting in Ld-Lo phase coexistence at physiologically relevant temperature. Analyses of lipid extracts from mutants defective in sphingolipid metabolism as well as reconstitution of purified yeast lipids in model membranes of defined...

  10. Free energies of stable and metastable pores in lipid membranes under tension.

    Science.gov (United States)

    den Otter, Wouter K

    2009-11-28

    The free energy profile of pore formation in a lipid membrane, covering the entire range from a density fluctuation in an intact bilayer to a large tension-stabilized pore, has been calculated by molecular dynamics simulations with a coarse-grained lipid model. Several fixed elongations are used to obtain the Helmholtz free energy as a function of pore size for thermodynamically stable, metastable, and unstable pores, and the system-size dependence of these elongations is discussed. A link to the Gibbs free energy at constant tension, commonly known as the Litster model, is established by a Legendre transformation. The change of genus upon pore formation is exploited to estimate the saddle-splay modulus or Gaussian curvature modulus of the membrane leaflets. Details are provided of the simulation approach, which combines the potential of mean constraint force method with a reaction coordinate based on the local lipid density.

  11. Pollen viability and membrane lipid composition

    NARCIS (Netherlands)

    Bilsen, van D.G.J.L.

    1993-01-01

    In this thesis membrane lipid composition is studied in relation to pollen viability during storage. Chapter 1 reviews pollen viability, membranes in the dry state and membrane changes associated with cellular aging. This chapter is followed by a study of age-related changes in phospholipid

  12. Integrative Analysis of Subcellular Quantitative Proteomics Studies Reveals Functional Cytoskeleton Membrane-Lipid Raft Interactions in Cancer.

    Science.gov (United States)

    Shah, Anup D; Inder, Kerry L; Shah, Alok K; Cristino, Alexandre S; McKie, Arthur B; Gabra, Hani; Davis, Melissa J; Hill, Michelle M

    2016-10-07

    Lipid rafts are dynamic membrane microdomains that orchestrate molecular interactions and are implicated in cancer development. To understand the functions of lipid rafts in cancer, we performed an integrated analysis of quantitative lipid raft proteomics data sets modeling progression in breast cancer, melanoma, and renal cell carcinoma. This analysis revealed that cancer development is associated with increased membrane raft-cytoskeleton interactions, with ∼40% of elevated lipid raft proteins being cytoskeletal components. Previous studies suggest a potential functional role for the raft-cytoskeleton in the action of the putative tumor suppressors PTRF/Cavin-1 and Merlin. To extend the observation, we examined lipid raft proteome modulation by an unrelated tumor suppressor opioid binding protein cell-adhesion molecule (OPCML) in ovarian cancer SKOV3 cells. In agreement with the other model systems, quantitative proteomics revealed that 39% of OPCML-depleted lipid raft proteins are cytoskeletal components, with microfilaments and intermediate filaments specifically down-regulated. Furthermore, protein-protein interaction network and simulation analysis showed significantly higher interactions among cancer raft proteins compared with general human raft proteins. Collectively, these results suggest increased cytoskeleton-mediated stabilization of lipid raft domains with greater molecular interactions as a common, functional, and reversible feature of cancer cells.

  13. Lipid-Mediated Clusters of Guest Molecules in Model Membranes and Their Dissolving in the Presence of Lipid Rafts.

    Science.gov (United States)

    Kardash, Maria E; Dzuba, Sergei A

    2017-05-25

    The clustering of molecules is an important feature of plasma membrane organization. It is challenging to develop methods for quantifying membrane heterogeneities because of their transient nature and small size. Here, we obtained evidence that transient membrane heterogeneities can be frozen at cryogenic temperatures which allows the application of solid-state experimental techniques sensitive to the nanoscale distance range. We employed the pulsed version of electron paramagnetic resonance (EPR) spectroscopy, the electron spin echo (ESE) technique, for spin-labeled molecules in multilamellar lipid bilayers. ESE decays were refined for pure contribution of spin-spin magnetic dipole-dipolar interaction between the labels; these interactions manifest themselves at a nanometer distance range. The bilayers were prepared from different types of saturated and unsaturated lipids and cholesterol (Chol); in all cases, a small amount of guest spin-labeled substances 5-doxyl-stearic-acid (5-DSA) or 3β-doxyl-5α-cholestane (DChl) was added. The local concentration found of 5-DSA and DChl molecules was remarkably higher than the mean concentration in the bilayer, evidencing the formation of lipid-mediated clusters of these molecules. To our knowledge, formation of nanoscale clusters of guest amphiphilic molecules in biological membranes is a new phenomenon suggested only recently. Two-dimensional 5-DSA molecular clusters were found, whereas flat DChl molecules were found to be clustered into stacked one-dimensional structures. These clusters disappear when the Chol content is varied between the boundaries known for lipid raft formation at room temperatures. The room temperature EPR evidenced entrapping of DChl molecules in the rafts.

  14. Structure, Dynamics, and Phase Behavior of DOPC/DSPC Mixture Membrane Systems: Molecular Dynamics Simulation Studies

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Seonghan; Chang, Rakwoo [Kwangwoon University, Seoul (Korea, Republic of)

    2016-07-15

    Full atomistic molecular dynamics simulations have been performed for model mixture bilayer membrane systems consisting of 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) and 1,2-distearoyl-sn-glycero-3-phosphocholine (DSPC) phospholipids to understand the effects of two essential parameters such as lipid composition and temperature on the structural, dynamical, and phase behavior of mixture membrane systems. Although pure DSPC membranes are in the gel-like (L{sub β}' or P{sub β}') phase at 323 K, raising the temperature by only 10 K or replacing 20% of DSPC lipids by DOPC lipids can change the gel-like phase into the completely liquid-crystalline phase (L{sub α}). This phase change is accompanied by dramatic change in both structural properties such as area per lipid, membrane thickness, deuterium order parameter, and tail angle distribution, and dynamics properties such as mobility map. We also observe that the full width at half-maximum (FWHM) data of tail angle distribution as well as area per lipid (or membrane thickness)can be used as order parameters for the membrane phase transition.

  15. Structure, Dynamics, and Phase Behavior of DOPC/DSPC Mixture Membrane Systems: Molecular Dynamics Simulation Studies

    International Nuclear Information System (INIS)

    Kim, Seonghan; Chang, Rakwoo

    2016-01-01

    Full atomistic molecular dynamics simulations have been performed for model mixture bilayer membrane systems consisting of 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) and 1,2-distearoyl-sn-glycero-3-phosphocholine (DSPC) phospholipids to understand the effects of two essential parameters such as lipid composition and temperature on the structural, dynamical, and phase behavior of mixture membrane systems. Although pure DSPC membranes are in the gel-like (L_β' or P_β') phase at 323 K, raising the temperature by only 10 K or replacing 20% of DSPC lipids by DOPC lipids can change the gel-like phase into the completely liquid-crystalline phase (L_α). This phase change is accompanied by dramatic change in both structural properties such as area per lipid, membrane thickness, deuterium order parameter, and tail angle distribution, and dynamics properties such as mobility map. We also observe that the full width at half-maximum (FWHM) data of tail angle distribution as well as area per lipid (or membrane thickness)can be used as order parameters for the membrane phase transition.

  16. The role of blood cell membrane lipids on the mode of action of HIV-1 fusion inhibitor sifuvirtide

    International Nuclear Information System (INIS)

    Matos, Pedro M.; Freitas, Teresa; Castanho, Miguel A.R.B.; Santos, Nuno C.

    2010-01-01

    Research highlights: → Sifuvirtide interacts with erythrocyte and lymphocyte membrane in a concentration dependent manner by decreasing its dipole potential. → Dipole potential variations in lipid vesicles show sifuvirtide's lipid selectivity towards saturated phosphatidylcholines. → This peptide-membrane interaction may direct the drug towards raft-like membrane domains where the receptors used by HIV are located, facilitating its inhibitory action. -- Abstract: Sifuvirtide is a gp41 based peptide that inhibits HIV-1 fusion with the host cells and is currently under clinical trials. Previous studies showed that sifuvirtide partitions preferably to saturated phosphatidylcholine lipid membranes, instead of fluid-phase lipid vesicles. We extended the study to the interaction of the peptide with circulating blood cells, by using the dipole potential sensitive probe di-8-ANEPPS. Sifuvirtide decreased the dipole potential of erythrocyte and lymphocyte membranes in a concentration dependent manner, demonstrating its interaction. Also, the lipid selectivity of the peptide towards more rigid phosphatidylcholines was confirmed based on the dipole potential variations. Overall, the interaction of the peptide with the cell membranes is a contribution of different lipid preferences that presumably directs the peptide towards raft-like domains where the receptors are located, facilitating the reach of the peptide to its molecular target, the gp41 in its pre-fusion conformation.

  17. Cholesterol effect on water permeability through DPPC and PSM lipid bilayers: a molecular dynamics study.

    Science.gov (United States)

    Saito, Hiroaki; Shinoda, Wataru

    2011-12-29

    Water permeability of two different lipid bilayers of dipalmitoylphosphatidylcholine (DPPC) and palmitoylsphingomyelin (PSM) in the absence and presence of cholesterol (0-50 mol %) have been studied by molecular dynamics simulations to elucidate the molecular mechanism of the reduction in water leakage across the membranes by the addition of cholesterol. An enhanced free energy barrier was observed in these membranes with increased cholesterol concentration, and this was explained by the reduced cavity density around the cholesterol in the hydrophobic membrane core. There was an increase of trans conformers in the hydrophobic lipid chains adjacent to the cholesterol, which reduced the cavity density. The enhanced free energy barrier was found to be the main reason to reduce the water permeability with increased cholesterol concentration. At low cholesterol concentrations the PSM bilayer exhibited a higher free energy barrier than the DPPC bilayer for water permeation, while at greater than 30 mol % of cholesterol the difference became minor. This tendency for the PSM and DPPC bilayers to resemble each other at higher cholesterol concentrations was similar to commonly observed trends in several structural properties, such as order parameters, cross-sectional area per molecule, and cavity density profiles in the hydrophobic regions of bilayer membranes. These results demonstrate that DPPC and PSM bilayers with high cholesterol contents possess similar physical properties, which suggests that the solubility of cholesterol in these lipid bilayers has importance for an understanding of multicomponent lipid membranes with cholesterol. © 2011 American Chemical Society

  18. Nonpolar interactions between trans-membrane helical EGF peptide and phosphatidylcholines, sphingomyelins and cholesterol. Molecular dynamics simulation studies

    NARCIS (Netherlands)

    Róg, T.; Murzyn, K.; Karttunen, M.E.J.; Pasenkiewicz-Gierula, M.

    2008-01-01

    A molecular dynamics simulation study of four lipid bilayers with inserted trans-membrane helical fragment of epithelial growth factor (EGF) receptor (EGF peptide) was performed. The lipid bilayers differ in their lipid composition and consist of (i) unsaturated phosphatidylcholine

  19. Digging into Lipid Membrane Permeation for Cardiac Ion Channel Blocker d-Sotalol with All-Atom Simulations.

    Science.gov (United States)

    DeMarco, Kevin R; Bekker, Slava; Clancy, Colleen E; Noskov, Sergei Y; Vorobyov, Igor

    2018-01-01

    Interactions of drug molecules with lipid membranes play crucial role in their accessibility of cellular targets and can be an important predictor of their therapeutic and safety profiles. Very little is known about spatial localization of various drugs in the lipid bilayers, their active form (ionization state) or translocation rates and therefore potency to bind to different sites in membrane proteins. All-atom molecular simulations may help to map drug partitioning kinetics and thermodynamics, thus providing in-depth assessment of drug lipophilicity. As a proof of principle, we evaluated extensively lipid membrane partitioning of d-sotalol, well-known blocker of a cardiac potassium channel K v 11.1 encoded by the hERG gene, with reported substantial proclivity for arrhythmogenesis. We developed the positively charged (cationic) and neutral d-sotalol models, compatible with the biomolecular CHARMM force field, and subjected them to all-atom molecular dynamics (MD) simulations of drug partitioning through hydrated lipid membranes, aiming to elucidate thermodynamics and kinetics of their translocation and thus putative propensities for hydrophobic and aqueous hERG access. We found that only a neutral form of d-sotalol accumulates in the membrane interior and can move across the bilayer within millisecond time scale, and can be relevant to a lipophilic channel access. The computed water-membrane partitioning coefficient for this form is in good agreement with experiment. There is a large energetic barrier for a cationic form of the drug, dominant in water, to cross the membrane, resulting in slow membrane translocation kinetics. However, this form of the drug can be important for an aqueous access pathway through the intracellular gate of hERG. This route will likely occur after a neutral form of a drug crosses the membrane and subsequently re-protonates. Our study serves to demonstrate a first step toward a framework for multi-scale in silico safety pharmacology

  20. Digging into Lipid Membrane Permeation for Cardiac Ion Channel Blocker d-Sotalol with All-Atom Simulations

    Directory of Open Access Journals (Sweden)

    Kevin R. DeMarco

    2018-02-01

    Full Text Available Interactions of drug molecules with lipid membranes play crucial role in their accessibility of cellular targets and can be an important predictor of their therapeutic and safety profiles. Very little is known about spatial localization of various drugs in the lipid bilayers, their active form (ionization state or translocation rates and therefore potency to bind to different sites in membrane proteins. All-atom molecular simulations may help to map drug partitioning kinetics and thermodynamics, thus providing in-depth assessment of drug lipophilicity. As a proof of principle, we evaluated extensively lipid membrane partitioning of d-sotalol, well-known blocker of a cardiac potassium channel Kv11.1 encoded by the hERG gene, with reported substantial proclivity for arrhythmogenesis. We developed the positively charged (cationic and neutral d-sotalol models, compatible with the biomolecular CHARMM force field, and subjected them to all-atom molecular dynamics (MD simulations of drug partitioning through hydrated lipid membranes, aiming to elucidate thermodynamics and kinetics of their translocation and thus putative propensities for hydrophobic and aqueous hERG access. We found that only a neutral form of d-sotalol accumulates in the membrane interior and can move across the bilayer within millisecond time scale, and can be relevant to a lipophilic channel access. The computed water-membrane partitioning coefficient for this form is in good agreement with experiment. There is a large energetic barrier for a cationic form of the drug, dominant in water, to cross the membrane, resulting in slow membrane translocation kinetics. However, this form of the drug can be important for an aqueous access pathway through the intracellular gate of hERG. This route will likely occur after a neutral form of a drug crosses the membrane and subsequently re-protonates. Our study serves to demonstrate a first step toward a framework for multi-scale in silico safety

  1. Mechanism for translocation of fluoroquinolones across lipid membranes

    DEFF Research Database (Denmark)

    Cramariuc, O.; Rog, T.; Javanainen, M.

    2012-01-01

    Classical atom-scale molecular dynamics simulations, constrained free energy calculations, and quantum mechanical (QM) calculations are employed to study the diffusive translocation of ciprofloxacin (CPFX) across lipid membranes. CPFX is considered here as a representative of the fluoroquinolone...... antibiotics class. Neutral and zwitterionic CPFX coexist at physiological pH, with the latter being predominant. Simulations reveal that only the neutral form permeates the bilayer, and it does so through a novel mechanism that involves dissolution of concerted stacks of zwitterionic ciprofloxacins....... Subsequent QM analysis of the observed molecular stacking shows the important role of partial charge neutralization in the stacks, highlighting how the zwitterionic form of the drug is neutralized for translocation. The findings propose a translocation mechanism in which zwitterionic CPFX molecules approach...

  2. Structure and dynamics of water and lipid molecules in charged anionic DMPG lipid bilayer membranes

    International Nuclear Information System (INIS)

    Rønnest, A. K.; Peters, G. H.; Hansen, F. Y.; Taub, H.; Miskowiec, A.

    2016-01-01

    Molecular dynamics simulations have been used to investigate the influence of the valency of counter-ions on the structure of freestanding bilayer membranes of the anionic 1,2-dimyristoyl-sn-glycero-3-phosphoglycerol (DMPG) lipid at 310 K and 1 atm. At this temperature, the membrane is in the fluid phase with a monovalent counter-ion and in the gel phase with a divalent counter-ion. The diffusion constant of water as a function of its depth in the membrane has been determined from mean-square-displacement calculations. Also, calculated incoherent quasielastic neutron scattering functions have been compared to experimental results and used to determine an average diffusion constant for all water molecules in the system. On extrapolating the diffusion constants inferred experimentally to a temperature of 310 K, reasonable agreement with the simulations is obtained. However, the experiments do not have the sensitivity to confirm the diffusion of a small component of water bound to the lipids as found in the simulations. In addition, the orientation of the dipole moment of the water molecules has been determined as a function of their depth in the membrane. Previous indirect estimates of the electrostatic potential within phospholipid membranes imply an enormous electric field of 10 8 –10 9 V m −1 , which is likely to have great significance in controlling the conformation of translocating membrane proteins and in the transfer of ions and molecules across the membrane. We have calculated the membrane potential for DMPG bilayers and found ∼1 V (∼2 ⋅ 10 8 V m −1 ) when in the fluid phase with a monovalent counter-ion and ∼1.4 V (∼2.8 ⋅ 10 8 V m −1 ) when in the gel phase with a divalent counter-ion. The number of water molecules for a fully hydrated DMPG membrane has been estimated to be 9.7 molecules per lipid in the gel phase and 17.5 molecules in the fluid phase, considerably smaller than inferred experimentally for 1,2-dimyristoyl-sn-glycero-3

  3. Structure and dynamics of water and lipid molecules in charged anionic DMPG lipid bilayer membranes

    Energy Technology Data Exchange (ETDEWEB)

    Rønnest, A. K.; Peters, G. H.; Hansen, F. Y., E-mail: flemming@kemi.dtu.dk [Department of Chemistry, Technical University of Denmark, IK 207 DTU, DK-2800 Lyngby (Denmark); Taub, H.; Miskowiec, A. [Department of Physics and Astronomy and the University of Missouri Research Reactor,University of Missouri, Columbia, Missouri 65211 (United States)

    2016-04-14

    Molecular dynamics simulations have been used to investigate the influence of the valency of counter-ions on the structure of freestanding bilayer membranes of the anionic 1,2-dimyristoyl-sn-glycero-3-phosphoglycerol (DMPG) lipid at 310 K and 1 atm. At this temperature, the membrane is in the fluid phase with a monovalent counter-ion and in the gel phase with a divalent counter-ion. The diffusion constant of water as a function of its depth in the membrane has been determined from mean-square-displacement calculations. Also, calculated incoherent quasielastic neutron scattering functions have been compared to experimental results and used to determine an average diffusion constant for all water molecules in the system. On extrapolating the diffusion constants inferred experimentally to a temperature of 310 K, reasonable agreement with the simulations is obtained. However, the experiments do not have the sensitivity to confirm the diffusion of a small component of water bound to the lipids as found in the simulations. In addition, the orientation of the dipole moment of the water molecules has been determined as a function of their depth in the membrane. Previous indirect estimates of the electrostatic potential within phospholipid membranes imply an enormous electric field of 10{sup 8}–10{sup 9} V m{sup −1}, which is likely to have great significance in controlling the conformation of translocating membrane proteins and in the transfer of ions and molecules across the membrane. We have calculated the membrane potential for DMPG bilayers and found ∼1 V (∼2 ⋅ 10{sup 8} V m{sup −1}) when in the fluid phase with a monovalent counter-ion and ∼1.4 V (∼2.8 ⋅ 10{sup 8} V m{sup −1}) when in the gel phase with a divalent counter-ion. The number of water molecules for a fully hydrated DMPG membrane has been estimated to be 9.7 molecules per lipid in the gel phase and 17.5 molecules in the fluid phase, considerably smaller than inferred experimentally for 1

  4. Selective Interaction of a Cationic Polyfluorene with Model Lipid Membranes: Anionic versus Zwitterionic Lipids

    Directory of Open Access Journals (Sweden)

    Zehra Kahveci

    2014-03-01

    Full Text Available This paper explores the interaction mechanism between the conjugated polyelectrolyte {[9,9-bis(6'-N,N,N-trimethylammoniumhexyl]fluorene-phenylene}bromide (HTMA-PFP and model lipid membranes. The study was carried out using different biophysical techniques, mainly fluorescence spectroscopy and microscopy. Results show that despite the preferential interaction of HTMA-PFP with anionic lipids, HTMA-PFP shows affinity for zwitterionic lipids; although the interaction mechanism is different as well as HTMA-PFP’s final membrane location. Whilst the polyelectrolyte is embedded within the lipid bilayer in the anionic membrane, it remains close to the surface, forming aggregates that are sensitive to the physical state of the lipid bilayer in the zwitterionic system. The different interaction mechanism is reflected in the polyelectrolyte fluorescence spectrum, since the maximum shifts to longer wavelengths in the zwitterionic system. The intrinsic fluorescence of HTMA-PFP was used to visualize the interaction between polymer and vesicles via fluorescence microscopy, thanks to its high quantum yield and photostability. This technique allows the selectivity of the polyelectrolyte and higher affinity for anionic membranes to be observed. The results confirmed the appropriateness of using HTMA-PFP as a membrane fluorescent marker and suggest that, given its different behaviour towards anionic and zwitterionic membranes, HTMA-PFP could be used for selective recognition and imaging of bacteria over mammalian cells.

  5. Membrane proteins bind lipids selectively to modulate their structure and function.

    Science.gov (United States)

    Laganowsky, Arthur; Reading, Eamonn; Allison, Timothy M; Ulmschneider, Martin B; Degiacomi, Matteo T; Baldwin, Andrew J; Robinson, Carol V

    2014-06-05

    Previous studies have established that the folding, structure and function of membrane proteins are influenced by their lipid environments and that lipids can bind to specific sites, for example, in potassium channels. Fundamental questions remain however regarding the extent of membrane protein selectivity towards lipids. Here we report a mass spectrometry approach designed to determine the selectivity of lipid binding to membrane protein complexes. We investigate the mechanosensitive channel of large conductance (MscL) from Mycobacterium tuberculosis and aquaporin Z (AqpZ) and the ammonia channel (AmtB) from Escherichia coli, using ion mobility mass spectrometry (IM-MS), which reports gas-phase collision cross-sections. We demonstrate that folded conformations of membrane protein complexes can exist in the gas phase. By resolving lipid-bound states, we then rank bound lipids on the basis of their ability to resist gas phase unfolding and thereby stabilize membrane protein structure. Lipids bind non-selectively and with high avidity to MscL, all imparting comparable stability; however, the highest-ranking lipid is phosphatidylinositol phosphate, in line with its proposed functional role in mechanosensation. AqpZ is also stabilized by many lipids, with cardiolipin imparting the most significant resistance to unfolding. Subsequently, through functional assays we show that cardiolipin modulates AqpZ function. Similar experiments identify AmtB as being highly selective for phosphatidylglycerol, prompting us to obtain an X-ray structure in this lipid membrane-like environment. The 2.3 Å resolution structure, when compared with others obtained without lipid bound, reveals distinct conformational changes that re-position AmtB residues to interact with the lipid bilayer. Our results demonstrate that resistance to unfolding correlates with specific lipid-binding events, enabling a distinction to be made between lipids that merely bind from those that modulate membrane

  6. Ion Channels Induced by Antimicrobial Agents in Model Lipid Membranes are Modulated by Plant Polyphenols Through Surrounding Lipid Media.

    Science.gov (United States)

    Efimova, Svetlana S; Zakharova, Anastasiia A; Medvedev, Roman Ya; Ostroumova, Olga S

    2018-03-16

    The potential therapeutic applications of plant polyphenols in various neurological, cardiovascular, metabolic and malignant disorders determine the relevance of studying the molecular mechanisms of their action on the cell membranes. Here, the quantitative changes in the physical parameters of model bilayer lipid membranes upon the adsorption of plant polyphenols were evaluated. It was shown that butein and naringenin significantly decreased the intrinsic dipole potential of cholesterol-free and cholesterol-enriched membranes. Cardamonin, 4'-hydroxychalcone, licochalcone A and liquiritigenin demonstrated the average efficiency, while resveratrol did not characterized by the ability to modulate the bilayer electrostatics. At the same time, the tested polyphenols affected melting of phospholipids with saturated acyl chains. The effects were attributed to the lipid disordering and a promotion of the positive curvature stress. According to DSC data and results of measurements of the threshold voltages that cause bilayer breakdown licochalcone A is the most effective agent. Furthermore, the role of the polyphenol induced changes in the electric and elastic properties of lipid host in the regulation of reconstituted ion channels was examined. The ability of the tested polyphenols to decrease the conductance of single ion channels produced by the antifungal cyclic lipopeptide syringomycin E was in agreement with their effects on the dipole potential of the lipid bilayers. The greatest effect of licochalcone A on the steady-state membrane conductance induced by the antifungal polyene macrolide antibiotic nystatin correlated with its greatest efficacy to induce the positive curvature stress. We also found that butein and naringenin bind specifically to a single pore formed by α-hemolysin from Staphylococcus aureus.

  7. Engineering lipid structure for recognition of the liquid ordered membrane phase

    International Nuclear Information System (INIS)

    Bordovsky, Stefan S.; Wong, Christopher S.; Bachand, George D.; Stachowiak, Jeanne C.; Sasaki, Darryl Y.

    2016-01-01

    The selective partitioning of lipid components in phase-separated membranes is essential for domain formation involved in cellular processes. Identifying and tracking the movement of lipids in cellular systems would be improved if we understood how to achieve selective affinity between fluorophore-labeled lipids and membrane assemblies. Furthermore, we investigated the structure and chemistry of membrane lipids to evaluate lipid designs that partition to the liquid ordered (L_o) phase. A range of fluorophores at the headgroup position and lengths of PEG spacer between the lipid backbone and fluorophore were examined. On a lipid body with saturated palmityl or palmitoyl tails, we found that although the lipid tails can direct selective partitioning to the L_o phase through favorable packing interactions, headgroup hydrophobicity can override the partitioning behavior and direct the lipid to the disordered membrane phase (L_d). The PEG spacer can serve as a buffer to mute headgroup–membrane interactions and thus improve L_o phase partitioning, but its effect is limited with strongly hydrophobic fluorophore headgroups. We present a series of lipid designs leading to the development of novel fluorescently labeled lipids with selective affinity for the L_o phase.

  8. How membrane lipids control the 3D structure and function of receptors

    Directory of Open Access Journals (Sweden)

    Jacques Fantini

    2018-02-01

    Full Text Available The cohabitation of lipids and proteins in the plasma membrane of mammalian cells is controlled by specific biochemical and biophysical rules. Lipids may be either constitutively tightly bound to cell-surface receptors (non-annular lipids or less tightly attached to the external surface of the protein (annular lipids. The latter are exchangeable with surrounding bulk membrane lipids on a faster time scale than that of non-annular lipids. Not only do non-annular lipids bind to membrane proteins through stereoselective mechanisms, they can also help membrane receptors acquire (or maintain a functional 3D structure. Cholesterol is the prototype of membrane lipids that finely controls the 3D structure and function of receptors. However, several other lipids such as sphingolipids may also modulate the function of membrane proteins though conformational adjustments. All these concepts are discussed in this review in the light of representative examples taken from the literature.

  9. Anandamide-ceramide interactions in a membrane environment: Molecular dynamic simulations data.

    Science.gov (United States)

    Di Scala, Coralie; Mazzarino, Morgane; Yahi, Nouara; Varini, Karine; Garmy, Nicolas; Fantini, Jacques; Chahinian, Henri

    2017-10-01

    Anandamide is a lipid neurotransmitter that interacts with various plasma membrane lipids. The data here consists of molecular dynamics simulations of anandamide, C18-ceramide and cholesterol performed in vacuo and within a hydrated palmitoyl-oleoyl-phosphatidylcholine (POPC)/cholesterol membrane. Several models of anandamide/cholesterol and anandamide/ceramide complexes are presented. The energy of interaction and the nature of the intermolecular forces involved in each of these complexes are detailed. The impact of water molecules hydrating the POPC/cholesterol membrane for the stability of the anandamide/cholesterol and anandamide/ceramide complexes is also analyzed. From a total number of 1920 water molecules stochatiscally merged with the lipid matrix, 48 were eventually redistributed around the polar head groups of the anandamide/ceramide complex, whereas only 15 reached with the anandamide/cholesterol complex. The interpretation of this dataset is presented in the accompanying article "Ceramide binding to anandamide increases its half-life and potentiates its cytotoxicity in human neuroblastoma cells" [1].

  10. No Evidence for Spontaneous Lipid Transfer at ER-PM Membrane Contact Sites.

    Science.gov (United States)

    Merklinger, Elisa; Schloetel, Jan-Gero; Spitta, Luis; Thiele, Christoph; Lang, Thorsten

    2016-04-01

    Non-vesicular lipid transport steps play a crucial role in lipid trafficking and potentially include spontaneous exchange. Since membrane contact facilitates this lipid transfer, it is most likely to occur at membrane contact sites (MCS). However, to date it is unknown whether closely attached biological membranes exchange lipids spontaneously. We have set up a system for studying the exchange of lipids at MCS formed between the endoplasmic reticulum (ER) and the plasma membrane. Contact sites were stably anchored and the lipids cholesterol and phosphatidylcholine (PC) were not capable of transferring spontaneously into the opposed bilayer. We conclude that physical contact between two associated biological membranes is not sufficient for transfer of the lipids PC and cholesterol.

  11. Lipid nanotechnologies for structural studies of membrane-associated proteins.

    Science.gov (United States)

    Stoilova-McPhie, Svetla; Grushin, Kirill; Dalm, Daniela; Miller, Jaimy

    2014-11-01

    We present a methodology of lipid nanotubes (LNT) and nanodisks technologies optimized in our laboratory for structural studies of membrane-associated proteins at close to physiological conditions. The application of these lipid nanotechnologies for structure determination by cryo-electron microscopy (cryo-EM) is fundamental for understanding and modulating their function. The LNTs in our studies are single bilayer galactosylceramide based nanotubes of ∼20 nm inner diameter and a few microns in length, that self-assemble in aqueous solutions. The lipid nanodisks (NDs) are self-assembled discoid lipid bilayers of ∼10 nm diameter, which are stabilized in aqueous solutions by a belt of amphipathic helical scaffold proteins. By combining LNT and ND technologies, we can examine structurally how the membrane curvature and lipid composition modulates the function of the membrane-associated proteins. As proof of principle, we have engineered these lipid nanotechnologies to mimic the activated platelet's phosphtaidylserine rich membrane and have successfully assembled functional membrane-bound coagulation factor VIII in vitro for structure determination by cryo-EM. The macromolecular organization of the proteins bound to ND and LNT are further defined by fitting the known atomic structures within the calculated three-dimensional maps. The combination of LNT and ND technologies offers a means to control the design and assembly of a wide range of functional membrane-associated proteins and complexes for structural studies by cryo-EM. The presented results confirm the suitability of the developed methodology for studying the functional structure of membrane-associated proteins, such as the coagulation factors, at a close to physiological environment. © 2014 Wiley Periodicals, Inc.

  12. Molecular assemblies and membrane domains in multivesicular endosome dynamics

    International Nuclear Information System (INIS)

    Falguieres, Thomas; Luyet, Pierre-Philippe; Gruenberg, Jean

    2009-01-01

    Along the degradation pathway, endosomes exhibit a characteristic multivesicular organization, resulting from the budding of vesicles into the endosomal lumen. After endocytosis and transport to early endosomes, activated signaling receptors are incorporated into these intralumenal vesicles through the action of the ESCRT machinery, a process that contributes to terminate signaling. Then, the vesicles and their protein cargo are further transported towards lysosomes for degradation. Evidence also shows that intralumenal vesicles can undergo 'back-fusion' with the late endosome limiting membrane, a route exploited by some pathogens and presumably followed by proteins and lipids that need to be recycled from within the endosomal lumen. This process depends on the late endosomal lipid lysobisphosphatidic acid and its putative effector Alix/AIP1, and is presumably coupled to the invagination of the endosomal limiting membrane at the molecular level via ESCRT proteins. In this review, we discuss the intra-endosomal transport routes in mammalian cells, and in particular the different mechanisms involved in membrane invagination, vesicle formation and fusion in a space inaccessible to proteins known to control intracellular membrane traffic.

  13. Effect of Amphotericin B antibiotic on the properties of model lipid membrane

    International Nuclear Information System (INIS)

    Kiryakova, S; Dencheva-Zarkova, M; Genova, J

    2014-01-01

    Model membranes formed from natural and synthetic lipids are an interesting object for scientific investigations due to their similarity to biological cell membrane and their simple structure with controlled composition and properties. Amphotericin B is an important polyene antifungal antibiotic, used for treatment of systemic fungal infections. It is known from the literature that the studied antibiotic has a substantial effect on the transmembrane ionic channel structures. When applied to the lipid membranes it has the tendency to create pores and in this way to affect the structure and the properties of the membrane lipid bilayer. In this work the thermally induced shape fluctuations of giant quasi-spherical liposomes have been used to study the influence of polyene antibiotic amphotericin B on the elastic properties of model lipid membranes. It have been shown experimentally that the presence of 3 mol % of AmB in the lipid membrane reduces the bending elasticity of the lipid membrane for both studied cases: pure SOPC membrane and mixed SOPC-Cholesterol membrane. Interaction of the amphotericin B with bilayer lipid membranes containing channels have been studied in this work. Model membranes were self-assembled using the patch-clamp and tip-dip patch clamp technique. We have found that amphotericin B is an ionophore and reduces the resistance of the lipid bilayer

  14. Electron paramagnetic resonance study of lipid and protein membrane components of erythrocytes oxidized with hydrogen peroxide

    Energy Technology Data Exchange (ETDEWEB)

    Mendanha, S.A.; Anjos, J.L.V.; Silva, A.H.M.; Alonso, A. [Instituto de Física, Universidade Federal de Goiás, Goiânia, GO (Brazil)

    2012-04-05

    Electron paramagnetic resonance (EPR) spectroscopy of spin labels was used to monitor membrane dynamic changes in erythrocytes subjected to oxidative stress with hydrogen peroxide (H{sub 2}O{sub 2}). The lipid spin label, 5-doxyl stearic acid, responded to dramatic reductions in membrane fluidity, which was correlated with increases in the protein content of the membrane. Membrane rigidity, associated with the binding of hemoglobin (Hb) to the erythrocyte membrane, was also indicated by a spin-labeled maleimide, 5-MSL, covalently bound to the sulfhydryl groups of membrane proteins. At 2% hematocrit, these alterations in membrane occurred at very low concentrations of H{sub 2}O{sub 2} (50 µM) after only 5 min of incubation at 37°C in azide phosphate buffer, pH 7.4. Lipid peroxidation, suggested by oxidative hemolysis and malondialdehyde formation, started at 300 µM H{sub 2}O{sub 2} (for incubation of 3 h), which is a concentration about six times higher than those detected with the probes. Ascorbic acid and α-tocopherol protected the membrane against lipoperoxidation, but did not prevent the binding of proteins to the erythrocyte membrane. Moreover, the antioxidant (+)-catechin, which also failed to prevent the cross-linking of cytoskeletal proteins with Hb, was very effective in protecting erythrocyte ghosts from lipid peroxidation induced by the Fenton reaction. This study also showed that EPR spectroscopy can be useful to assess the molecular dynamics of red blood cell membranes in both the lipid and protein domains and examine oxidation processes in a system that is so vulnerable to oxidation.

  15. Structure and distribution of the Bacillus thuringiensis Cry4Ba toxin in lipid membranes

    International Nuclear Information System (INIS)

    Puntheeranurak, Theeraporn; Stroh, Cordula; Zhu Rong; Angsuthanasombat, Chanan; Hinterdorfer, Peter

    2005-01-01

    Bacillus thuringiensis Cry δ-endotoxins cause death of susceptible insect larvae by forming lytic pores in the midgut epithelial cell membranes. The 65 kDa trypsin activated Cry4Ba toxin was previously shown to be capable of permeabilizing liposomes and forming ionic channels in receptor-free planar lipid bilayers. Here, magnetic ACmode (MACmode) atomic force microscopy (AFM) was used to characterize the lateral distribution and the native molecular structure of the Cry4Ba toxin in the membrane. Liposome fusion and the Langmuir-Blodgett technique were employed for supported lipid bilayer preparations. The toxin preferentially inserted in a self-assembled structure, rather than as a single monomeric molecule. In addition, the spontaneous insertion into receptor-free lipid bilayers lead to formation of characteristic pore-like structures with four-fold symmetry, suggesting that tetramers are the preferred oligomerization state of this toxin

  16. Plasma membrane lipids and their role in fungal virulence.

    Science.gov (United States)

    Rella, Antonella; Farnoud, Amir M; Del Poeta, Maurizio

    2016-01-01

    There has been considerable evidence in recent years suggesting that plasma membrane lipids are important regulators of fungal pathogenicity. Various glycolipids have been shown to impart virulent properties in several fungal species, while others have been shown to play a role in host defense. In addition to their role as virulence factors, lipids also contribute to other virulence mechanisms such as drug resistance, biofilm formation, and release of extracellular vesicles. In addition, lipids also affect the mechanical properties of the plasma membrane through the formation of packed microdomains composed mainly of sphingolipids and sterols. Changes in the composition of lipid microdomains have been shown to disrupt the localization of virulence factors and affect fungal pathogenicity. This review gathers evidence on the various roles of plasma membrane lipids in fungal virulence and how lipids might contribute to the different processes that occur during infection and treatment. Insight into the role of lipids in fungal virulence can lead to an improved understanding of the process of fungal pathogenesis and the development of new lipid-mediated therapeutic strategies. Published by Elsevier Ltd.

  17. Steady-state oxidation of cholesterol catalyzed by cholesterol oxidase in lipid bilayer membranes on platinum electrodes

    International Nuclear Information System (INIS)

    Bokoch, Michael P.; Devadoss, Anando; Palencsar, Mariela S.; Burgess, James D.

    2004-01-01

    Cholesterol oxidase is immobilized in electrode-supported lipid bilayer membranes. Platinum electrodes are initially modified with a self-assembled monolayer of thiolipid. A vesicle fusion method is used to deposit an outer leaflet of phospholipids onto the thiolipid monolayer forming a thiolipid/lipid bilayer membrane on the electrode surface. Cholesterol oxidase spontaneously inserts into the electrode-supported lipid bilayer membrane from solution and is consequently immobilized to the electrode surface. Cholesterol partitions into the membrane from buffer solutions containing cyclodextrin. Cholesterol oxidase catalyzes the oxidation of cholesterol by molecular oxygen, forming hydrogen peroxide as a product. Amperometric detection of hydrogen peroxide for continuous solution flow experiments are presented, where flow was alternated between cholesterol solution and buffer containing no cholesterol. Steady-state anodic currents were observed during exposures of cholesterol solutions ranging in concentration from 10 to 1000 μM. These data are consistent with the Michaelis-Menten kinetic model for oxidation of cholesterol as catalyzed by cholesterol oxidase immobilized in the lipid bilayer membrane. The cholesterol detection limit is below 1 μM for cholesterol solution prepared in buffered cyclodextrin. The response of the electrodes to low density lipoprotein solutions is increased upon addition of cyclodextrin. Evidence for adsorption of low density lipoprotein to the electrode surface is presented

  18. Mesoscale organization of domains in the plasma membrane - beyond the lipid raft.

    Science.gov (United States)

    Lu, Stella M; Fairn, Gregory D

    2018-04-01

    The plasma membrane is compartmentalized into several distinct regions or domains, which show a broad diversity in both size and lifetime. The segregation of lipids and membrane proteins is thought to be driven by the lipid composition itself, lipid-protein interactions and diffusional barriers. With regards to the lipid composition, the immiscibility of certain classes of lipids underlies the "lipid raft" concept of plasmalemmal compartmentalization. Historically, lipid rafts have been described as cholesterol and (glyco)sphingolipid-rich regions of the plasma membrane that exist as a liquid-ordered phase that are resistant to extraction with non-ionic detergents. Over the years the interest in lipid rafts grew as did the challenges with studying these nanodomains. The term lipid raft has fallen out of favor with many scientists and instead the terms "membrane raft" or "membrane nanodomain" are preferred as they connote the heterogeneity and dynamic nature of the lipid-protein assemblies. In this article, we will discuss the classical lipid raft hypothesis and its limitations. This review will also discuss alternative models of lipid-protein interactions, annular lipid shells, and larger membrane clusters. We will also discuss the mesoscale organization of plasmalemmal domains including visible structures such as clathrin-coated pits and caveolae.

  19. Evolution and development of model membranes for physicochemical and functional studies of the membrane lateral heterogeneity.

    Science.gov (United States)

    Morigaki, Kenichi; Tanimoto, Yasushi

    2018-03-14

    One of the main questions in the membrane biology is the functional roles of membrane heterogeneity and molecular localization. Although segregation and local enrichment of protein/lipid components (rafts) have been extensively studied, the presence and functions of such membrane domains still remain elusive. Along with biochemical, cell observation, and simulation studies, model membranes are emerging as an important tool for understanding the biological membrane, providing quantitative information on the physicochemical properties of membrane proteins and lipids. Segregation of fluid lipid bilayer into liquid-ordered (Lo) and liquid-disordered (Ld) phases has been studied as a simplified model of raft in model membranes, including giant unilamellar vesicles (GUVs), giant plasma membrane vesicles (GPMVs), and supported lipid bilayers (SLB). Partition coefficients of membrane proteins between Lo and Ld phases were measured to gauze their affinities to lipid rafts (raftophilicity). One important development in model membrane is patterned SLB based on the microfabrication technology. Patterned Lo/Ld phases have been applied to study the partition and function of membrane-bound molecules. Quantitative information of individual molecular species attained by model membranes is critical for elucidating the molecular functions in the complex web of molecular interactions. The present review gives a short account of the model membranes developed for studying the lateral heterogeneity, especially focusing on patterned model membranes on solid substrates. Copyright © 2018 Elsevier B.V. All rights reserved.

  20. How membrane lipids control the 3D structure and function of receptors

    OpenAIRE

    Jacques Fantini; Francisco J. Barrantes

    2018-01-01

    The cohabitation of lipids and proteins in the plasma membrane of mammalian cells is controlled by specific biochemical and biophysical rules. Lipids may be either constitutively tightly bound to cell-surface receptors (non-annular lipids) or less tightly attached to the external surface of the protein (annular lipids). The latter are exchangeable with surrounding bulk membrane lipids on a faster time scale than that of non-annular lipids. Not only do non-annular lipids bind to membrane prote...

  1. Imaging lipid domains in cell membranes: the advent of super-resolution fluorescence microscopy

    Directory of Open Access Journals (Sweden)

    Dylan Myers Owen

    2013-12-01

    Full Text Available The lipid bilayer of model membranes, liposomes reconstituted from cell lipids, and plasma membrane vesicles and spheres can separate into two distinct liquid phases to yield lipid domains with liquid-ordered and liquid-disordered properties. These observations are the basis of the lipid raft hypothesis that postulates the existence of cholesterol-enriched ordered-phase lipid domains in cell membranes that could regulate protein mobility, localization and interaction. Here we review the evidence that nano-scaled lipid complexes and meso-scaled lipid domains exist in cell membranes and how new fluorescence microscopy techniques that overcome the diffraction limit provide new insights into lipid organization in cell membranes.

  2. Curvature effects on lipid packing and dynamics in liposomes revealed by coarse grained molecular dynamics simulations

    NARCIS (Netherlands)

    Risselada, H. Jelger; Marrink, Siewert J.

    2009-01-01

    The molecular packing details of lipids in planar bilayers are well characterized. For curved bilayers, however, little data is available. In this paper we study the effect of temperature and membrane composition on the structural and dynamical properties of a liposomal membrane in the limit of high

  3. Molecular mechanism for differential recognition of membrane phosphatidylserine by the immune regulatory receptor Tim4.

    Science.gov (United States)

    Tietjen, Gregory T; Gong, Zhiliang; Chen, Chiu-Hao; Vargas, Ernesto; Crooks, James E; Cao, Kathleen D; Heffern, Charles T R; Henderson, J Michael; Meron, Mati; Lin, Binhua; Roux, Benot; Schlossman, Mark L; Steck, Theodore L; Lee, Ka Yee C; Adams, Erin J

    2014-04-15

    Recognition of phosphatidylserine (PS) lipids exposed on the extracellular leaflet of plasma membranes is implicated in both apoptotic cell removal and immune regulation. The PS receptor T cell immunoglobulin and mucin-domain-containing molecule 4 (Tim4) regulates T-cell immunity via phagocytosis of both apoptotic (high PS exposure) and nonapoptotic (intermediate PS exposure) activated T cells. The latter population must be removed at lower efficiency to sensitively control immune tolerance and memory cell population size, but the molecular basis for how Tim4 achieves this sensitivity is unknown. Using a combination of interfacial X-ray scattering, molecular dynamics simulations, and membrane binding assays, we demonstrate how Tim4 recognizes PS in the context of a lipid bilayer. Our data reveal that in addition to the known Ca(2+)-coordinated, single-PS binding pocket, Tim4 has four weaker sites of potential ionic interactions with PS lipids. This organization makes Tim4 sensitive to PS surface concentration in a manner capable of supporting differential recognition on the basis of PS exposure level. The structurally homologous, but functionally distinct, Tim1 and Tim3 are significantly less sensitive to PS surface density, likely reflecting the differences in immunological function between the Tim proteins. These results establish the potential for lipid membrane parameters, such as PS surface density, to play a critical role in facilitating selective recognition of PS-exposing cells. Furthermore, our multidisciplinary approach overcomes the difficulties associated with characterizing dynamic protein/membrane systems to reveal the molecular mechanisms underlying Tim4's recognition properties, and thereby provides an approach capable of providing atomic-level detail to uncover the nuances of protein/membrane interactions.

  4. G protein-membrane interactions II: Effect of G protein-linked lipids on membrane structure and G protein-membrane interactions.

    Science.gov (United States)

    Casas, Jesús; Ibarguren, Maitane; Álvarez, Rafael; Terés, Silvia; Lladó, Victoria; Piotto, Stefano P; Concilio, Simona; Busquets, Xavier; López, David J; Escribá, Pablo V

    2017-09-01

    G proteins often bear myristoyl, palmitoyl and isoprenyl moieties, which favor their association with the membrane and their accumulation in G Protein Coupled Receptor-rich microdomains. These lipids influence the biophysical properties of membranes and thereby modulate G protein binding to bilayers. In this context, we showed here that geranylgeraniol, but neither myristate nor palmitate, increased the inverted hexagonal (H II ) phase propensity of phosphatidylethanolamine-containing membranes. While myristate and palmitate preferentially associated with phosphatidylcholine membranes, geranylgeraniol favored nonlamellar-prone membranes. In addition, Gαi 1 monomers had a higher affinity for lamellar phases, while Gβγ and Gαβγ showed a marked preference for nonlamellar prone membranes. Moreover, geranylgeraniol enhanced the binding of G protein dimers and trimers to phosphatidylethanolamine-containing membranes, yet it decreased that of monomers. By contrast, both myristate and palmitate increased the Gαi 1 preference for lamellar membranes. Palmitoylation reinforced the binding of the monomer to PC membranes and myristoylation decreased its binding to PE-enriched bilayer. Finally, binding of dimers and trimers to lamellar-prone membranes was decreased by palmitate and myristate, but it was increased in nonlamellar-prone bilayers. These results demonstrate that co/post-translational G protein lipid modifications regulate the membrane lipid structure and that they influence the physico-chemical properties of membranes, which in part explains why G protein subunits sort to different plasma membrane domains. This article is part of a Special Issue entitled: Membrane Lipid Therapy: Drugs Targeting Biomembranes edited by Pablo V. Escribá. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Crossover of two power laws in the anomalous diffusion of a two lipid membrane.

    Science.gov (United States)

    Bakalis, Evangelos; Höfinger, Siegfried; Venturini, Alessandro; Zerbetto, Francesco

    2015-06-07

    Molecular dynamics simulations of a bi-layer membrane made by the same number of 1-palmitoyl-2-oleoyl-glycero-3-phospho-ethanolamine and palmitoyl-oleoyl phosphatidylserine lipids reveal sub-diffusional motion, which presents a crossover between two different power laws. Fractional Brownian motion is the stochastic mechanism that governs the motion in both regimes. The location of the crossover point is justified with simple geometrical arguments and is due to the activation of the mechanism of circumrotation of lipids about each other.

  6. Crossover of two power laws in the anomalous diffusion of a two lipid membrane

    Energy Technology Data Exchange (ETDEWEB)

    Bakalis, Evangelos, E-mail: ebakalis@gmail.com, E-mail: francesco.zerbetto@unibo.it; Höfinger, Siegfried; Zerbetto, Francesco, E-mail: ebakalis@gmail.com, E-mail: francesco.zerbetto@unibo.it [Dipartimento di Chimica “G. Ciamician”, Universita’ di Bologna, Via F. Selmi 2, 40126 Bologna (Italy); Venturini, Alessandro [Institute for the Organic Synthesis and Photoreactivity, National Research Council of Italy, Via Gobetti 101, 40129 Bologna (Italy)

    2015-06-07

    Molecular dynamics simulations of a bi-layer membrane made by the same number of 1-palmitoyl-2-oleoyl-glycero-3-phospho-ethanolamine and palmitoyl-oleoyl phosphatidylserine lipids reveal sub-diffusional motion, which presents a crossover between two different power laws. Fractional Brownian motion is the stochastic mechanism that governs the motion in both regimes. The location of the crossover point is justified with simple geometrical arguments and is due to the activation of the mechanism of circumrotation of lipids about each other.

  7. Monoolein lipid phases as incorporation and enrichment materials for membrane protein crystallization.

    Directory of Open Access Journals (Sweden)

    Ellen Wallace

    Full Text Available The crystallization of membrane proteins in amphiphile-rich materials such as lipidic cubic phases is an established methodology in many structural biology laboratories. The standard procedure employed with this methodology requires the generation of a highly viscous lipidic material by mixing lipid, for instance monoolein, with a solution of the detergent solubilized membrane protein. This preparation is often carried out with specialized mixing tools that allow handling of the highly viscous materials while minimizing dead volume to save precious membrane protein sample. The processes that occur during the initial mixing of the lipid with the membrane protein are not well understood. Here we show that the formation of the lipidic phases and the incorporation of the membrane protein into such materials can be separated experimentally. Specifically, we have investigated the effect of different initial monoolein-based lipid phase states on the crystallization behavior of the colored photosynthetic reaction center from Rhodobacter sphaeroides. We find that the detergent solubilized photosynthetic reaction center spontaneously inserts into and concentrates in the lipid matrix without any mixing, and that the initial lipid material phase state is irrelevant for productive crystallization. A substantial in-situ enrichment of the membrane protein to concentration levels that are otherwise unobtainable occurs in a thin layer on the surface of the lipidic material. These results have important practical applications and hence we suggest a simplified protocol for membrane protein crystallization within amphiphile rich materials, eliminating any specialized mixing tools to prepare crystallization experiments within lipidic cubic phases. Furthermore, by virtue of sampling a membrane protein concentration gradient within a single crystallization experiment, this crystallization technique is more robust and increases the efficiency of identifying productive

  8. Lipid-protein interactions in plasma membranes of fiber cells isolated from the human eye lens.

    Science.gov (United States)

    Raguz, Marija; Mainali, Laxman; O'Brien, William J; Subczynski, Witold K

    2014-03-01

    The protein content in human lens membranes is extremely high, increases with age, and is higher in the nucleus as compared with the cortex, which should strongly affect the organization and properties of the lipid bilayer portion of intact membranes. To assess these effects, the intact cortical and nuclear fiber cell plasma membranes isolated from human lenses from 41- to 60-year-old donors were studied using electron paramagnetic resonance spin-labeling methods. Results were compared with those obtained for lens lipid membranes prepared from total lipid extracts from human eyes of the same age group [Mainali, L., Raguz, M., O'Brien, W. J., and Subczynski, W. K. (2013) Biochim. Biophys. Acta]. Differences were considered to be mainly due to the effect of membrane proteins. The lipid-bilayer portions of intact membranes were significantly less fluid than lipid bilayers of lens lipid membranes, prepared without proteins. The intact membranes were found to contain three distinct lipid environments termed the bulk lipid domain, boundary lipid domain, and trapped lipid domain. However, the cholesterol bilayer domain, which was detected in cortical and nuclear lens lipid membranes, was not detected in intact membranes. The relative amounts of bulk and trapped lipids were evaluated. The amount of lipids in domains uniquely formed due to the presence of membrane proteins was greater in nuclear membranes than in cortical membranes. Thus, it is evident that the rigidity of nuclear membranes is greater than that of cortical membranes. Also the permeability coefficients for oxygen measured in domains of nuclear membranes were significantly lower than appropriate coefficients measured in cortical membranes. Relationships between the organization of lipids into lipid domains in fiber cells plasma membranes and the organization of membrane proteins are discussed. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Affinity of four polar neurotransmitters for lipid bilayer membranes

    DEFF Research Database (Denmark)

    Wang, Chunhua; Ye, Fengbin; Valardez, Gustavo F.

    2011-01-01

    . The simulations suggest that this attraction mainly relies on electrostatic interactions of the amino group of the neurotransmitter and the lipid phosphate. We conclude that moderate attraction to lipid membranes occurs for some polar neurotransmitters and hence that one premise for a theory of bilayer-mediated......Weak interactions of neurotransmitters and the lipid matrix in the synaptic membrane have been hypothesized to play a role in synaptic transmission of nerve signals, particularly with respect to receptor desensitization (Cantor, R. S. Biochemistry 2003, 42, 11891). The strength of such interactions......, however, was not measured, and this is an obvious impediment for further evaluation and understanding of a possible role for desensitization. We have used dialysis equilibrium to directly measure the net affinity of selected neurotransmitters for lipid membranes and analyzed this affinity data...

  10. Effective Brownian ratchet separation by a combination of molecular filtering and a self-spreading lipid bilayer system.

    Science.gov (United States)

    Motegi, Toshinori; Nabika, Hideki; Fu, Yingqiang; Chen, Lili; Sun, Yinlu; Zhao, Jianwei; Murakoshi, Kei

    2014-07-01

    A new molecular manipulation method in the self-spreading lipid bilayer membrane by combining Brownian ratchet and molecular filtering effects is reported. The newly designed ratchet obstacle was developed to effectively separate dye-lipid molecules. The self-spreading lipid bilayer acted as both a molecular transport system and a manipulation medium. By controlling the size and shape of ratchet obstacles, we achieved a significant increase in the separation angle for dye-lipid molecules compared to that with the previous ratchet obstacle. A clear difference was observed between the experimental results and the simple random walk simulation that takes into consideration only the geometrical effect of the ratchet obstacles. This difference was explained by considering an obstacle-dependent local decrease in molecular diffusivity near the obstacles, known as the molecular filtering effect at nanospace. Our experimental findings open up a novel controlling factor in the Brownian ratchet manipulation that allow the efficient separation of molecules in the lipid bilayer based on the combination of Brownian ratchet and molecular filtering effects.

  11. Dynamics of the Glycophorin A Dimer in Membranes of Native-Like Composition Uncovered by Coarse-Grained Molecular Dynamics Simulations.

    Science.gov (United States)

    Flinner, Nadine; Schleiff, Enrico

    2015-01-01

    Membranes are central for cells as borders to the environment or intracellular organelle definition. They are composed of and harbor different molecules like various lipid species and sterols, and they are generally crowded with proteins. The membrane system is very dynamic and components show lateral, rotational and translational diffusion. The consequence of the latter is that phase separation can occur in membranes in vivo and in vitro. It was documented that molecular dynamics simulations of an idealized plasma membrane model result in formation of membrane areas where either saturated lipids and cholesterol (liquid-ordered character, Lo) or unsaturated lipids (liquid-disordered character, Ld) were enriched. Furthermore, current discussions favor the idea that proteins are sorted into the liquid-disordered phase of model membranes, but experimental support for the behavior of isolated proteins in native membranes is sparse. To gain insight into the protein behavior we built a model of the red blood cell membrane with integrated glycophorin A dimer. The sorting and the dynamics of the dimer were subsequently explored by coarse-grained molecular dynamics simulations. In addition, we inspected the impact of lipid head groups and the presence of cholesterol within the membrane on the dynamics of the dimer within the membrane. We observed that cholesterol is important for the formation of membrane areas with Lo and Ld character. Moreover, it is an important factor for the reproduction of the dynamic behavior of the protein found in its native environment. The protein dimer was exclusively sorted into the domain of Ld character in the model red blood cell plasma membrane. Therefore, we present structural information on the glycophorin A dimer distribution in the plasma membrane in the absence of other factors like e.g. lipid anchors in a coarse grain resolution.

  12. Dynamics of the Glycophorin A Dimer in Membranes of Native-Like Composition Uncovered by Coarse-Grained Molecular Dynamics Simulations.

    Directory of Open Access Journals (Sweden)

    Nadine Flinner

    Full Text Available Membranes are central for cells as borders to the environment or intracellular organelle definition. They are composed of and harbor different molecules like various lipid species and sterols, and they are generally crowded with proteins. The membrane system is very dynamic and components show lateral, rotational and translational diffusion. The consequence of the latter is that phase separation can occur in membranes in vivo and in vitro. It was documented that molecular dynamics simulations of an idealized plasma membrane model result in formation of membrane areas where either saturated lipids and cholesterol (liquid-ordered character, Lo or unsaturated lipids (liquid-disordered character, Ld were enriched. Furthermore, current discussions favor the idea that proteins are sorted into the liquid-disordered phase of model membranes, but experimental support for the behavior of isolated proteins in native membranes is sparse. To gain insight into the protein behavior we built a model of the red blood cell membrane with integrated glycophorin A dimer. The sorting and the dynamics of the dimer were subsequently explored by coarse-grained molecular dynamics simulations. In addition, we inspected the impact of lipid head groups and the presence of cholesterol within the membrane on the dynamics of the dimer within the membrane. We observed that cholesterol is important for the formation of membrane areas with Lo and Ld character. Moreover, it is an important factor for the reproduction of the dynamic behavior of the protein found in its native environment. The protein dimer was exclusively sorted into the domain of Ld character in the model red blood cell plasma membrane. Therefore, we present structural information on the glycophorin A dimer distribution in the plasma membrane in the absence of other factors like e.g. lipid anchors in a coarse grain resolution.

  13. An ER Protein Functionally Couples Neutral Lipid Metabolism on Lipid Droplets to Membrane Lipid Synthesis in the ER

    DEFF Research Database (Denmark)

    Markgraf, Daniel F; Klemm, Robin W; Junker, Mirco

    2014-01-01

    Eukaryotic cells store neutral lipids such as triacylglycerol (TAG) in lipid droplets (LDs). Here, we have addressed how LDs are functionally linked to the endoplasmic reticulum (ER). We show that, in S. cerevisiae, LD growth is sustained by LD-localized enzymes. When LDs grow in early stationary...... phase, the diacylglycerol acyl-transferase Dga1p moves from the ER to LDs and is responsible for all TAG synthesis from diacylglycerol (DAG). During LD breakdown in early exponential phase, an ER membrane protein (Ice2p) facilitates TAG utilization for membrane-lipid synthesis. Ice2p has a cytosolic...... and explain how cells switch neutral lipid metabolism from storage to consumption....

  14. Reconstitution of proapoptotic BAK function in liposomes reveals a dual role for mitochondrial lipids in the BAK-driven membrane permeabilization process.

    Science.gov (United States)

    Landeta, Olatz; Landajuela, Ane; Gil, David; Taneva, Stefka; Di Primo, Carmelo; Sot, Begoña; Valle, Mikel; Frolov, Vadim A; Basañez, Gorka

    2011-03-11

    BAK is a key effector of mitochondrial outer membrane permeabilization (MOMP) whose molecular mechanism of action remains to be fully dissected in intact cells, mainly due to the inherent complexity of the intracellular apoptotic machinery. Here we show that the core features of the BAK-driven MOMP pathway can be reproduced in a highly simplified in vitro system consisting of recombinant human BAK lacking the carboxyl-terminal 21 residues (BAKΔC) and tBID in combination with liposomes bearing an appropriate lipid environment. Using this minimalist reconstituted system we established that tBID suffices to trigger BAKΔC membrane insertion, oligomerization, and pore formation. Furthermore, we demonstrate that tBID-activated BAKΔC permeabilizes the membrane by forming structurally dynamic pores rather than a large proteinaceous channel of fixed size. We also identified two distinct roles played by mitochondrial lipids along the molecular pathway of BAKΔC-induced membrane permeabilization. First, using several independent approaches, we showed that cardiolipin directly interacts with BAKΔC, leading to a localized structural rearrangement in the protein that "primes" BAKΔC for interaction with tBID. Second, we provide evidence that selected curvature-inducing lipids present in mitochondrial membranes specifically modulate the energetic expenditure required to create the BAKΔC pore. Collectively, our results support the notion that BAK functions as a direct effector of MOMP akin to BAX and also adds significantly to the growing evidence indicating that mitochondrial membrane lipids are actively implicated in BCL-2 protein family function.

  15. Membrane-sculpting BAR domains generate stable lipid microdomains

    DEFF Research Database (Denmark)

    Zhao, Hongxia; Michelot, Alphée; Koskela, Essi V.

    2013-01-01

    Bin-Amphiphysin-Rvs (BAR) domain proteins are central regulators of many cellular processes involving membrane dynamics. BAR domains sculpt phosphoinositide-rich membranes to generate membrane protrusions or invaginations. Here, we report that, in addition to regulating membrane geometry, BAR...... domains can generate extremely stable lipid microdomains by "freezing" phosphoinositide dynamics. This is a general feature of BAR domains, because the yeast endocytic BAR and Fes/CIP4 homology BAR (F-BAR) domains, the inverse BAR domain of Pinkbar, and the eisosomal BAR protein Lsp1 induced...... phosphoinositide clustering and halted lipid diffusion, despite differences in mechanisms of membrane interactions. Lsp1 displays comparable low diffusion rates in vitro and in vivo, suggesting that BAR domain proteins also generate stable phosphoinositide microdomains in cells. These results uncover a conserved...

  16. Atomistic Monte Carlo simulation of lipid membranes

    DEFF Research Database (Denmark)

    Wüstner, Daniel; Sklenar, Heinz

    2014-01-01

    Biological membranes are complex assemblies of many different molecules of which analysis demands a variety of experimental and computational approaches. In this article, we explain challenges and advantages of atomistic Monte Carlo (MC) simulation of lipid membranes. We provide an introduction...... into the various move sets that are implemented in current MC methods for efficient conformational sampling of lipids and other molecules. In the second part, we demonstrate for a concrete example, how an atomistic local-move set can be implemented for MC simulations of phospholipid monomers and bilayer patches...

  17. On ripples and rafts: Curvature induced nanoscale structures in lipid membranes

    International Nuclear Information System (INIS)

    Schmid, Friederike; Dolezel, Stefan; Meinhardt, Sebastian; Lenz, Olaf

    2014-01-01

    We develop an elastic theory that predicts the spontaneous formation of nanoscale structures in lipid bilayers which locally phase separate between two phases with different spontaneous monolayer curvature. The theory rationalizes in a unified manner the observation of a variety of nanoscale structures in lipid membranes: Rippled states in one-component membranes, lipid rafts in multicomponent membranes. Furthermore, we report on recent observations of rippled states and rafts in simulations of a simple coarse-grained model for lipid bilayers, which are compatible with experimental observations and with our elastic model

  18. Aspirin Increases the Solubility of Cholesterol in Lipid Membranes

    Science.gov (United States)

    Alsop, Richard; Barrett, Matthew; Zheng, Sonbo; Dies, Hannah; Rheinstadter, Maikel

    2014-03-01

    Aspirin (ASA) is often prescribed for patients with high levels of cholesterol for the secondary prevention of myocardial events, a regimen known as the Low-Dose Aspirin Therapy. We have recently shown that Aspirin partitions in lipid bilayers. However, a direct interplay between ASA and cholesterol has not been investigated. Cholesterol is known to insert itself into the membrane in a dispersed state at moderate concentrations (under ~37.5%) and decrease fluidity of membranes. We prepared model lipid membranes containing varying amounts of both ASA and cholesterol molecules. The structure of the bilayers as a function of ASA and cholesterol concentration was determined using high-resolution X-ray diffraction. At cholesterol levels of more than 40mol%, immiscible cholesterol plaques formed. Adding ASA to the membranes was found to dissolve the cholesterol plaques, leading to a fluid lipid bilayer structure. We present first direct evidence for an interaction between ASA and cholesterol on the level of the cell membrane.

  19. Shiga toxin induces membrane reorganization and formation of long range lipid order

    DEFF Research Database (Denmark)

    Solovyeva, Vita; Johannes, Ludger; Simonsen, Adam Cohen

    2015-01-01

    membrane reordering. When Shiga toxin was added above the lipid chain melting temperature, the toxin interaction with the membrane induced rearrangement and clustering of Gb3 lipids that resulted in the long range order and alignment of lipids in gel domains. The toxin induced redistribution of Gb3 lipids...... inside gel domains is governed by the temperature at which Shiga toxin was added to the membrane: above or below the phase transition. The temperature is thus one of the critical factors controlling lipid organization and texture in the presence of Shiga toxin. Lipid chain ordering imposed by Shiga toxin...... binding can be another factor driving the reconstruction of lipid organization and crystallization of lipids inside gel domains....

  20. Osmolality, temperature, and membrane lipid composition modulate the activity of betaine transporter BetP in Corynebacterium glutamicum

    DEFF Research Database (Denmark)

    Ozcan, Nuran; Ejsing, Christer S.; Shevchenko, Andrej

    2007-01-01

    The gram-positive soil bacterium Corynebacterium glutamicum, a major amino acid-producing microorganism in biotechnology, is equipped with several osmoregulated uptake systems for compatible solutes, which is relevant for the physiological response to osmotic stress. The most significant carrier......P activity. We further correlated the change in BetP regulation properties in cells grown at different temperatures to changes in the lipid composition of the plasma membrane. For this purpose, the glycerophospholipidome of C. glutamicum grown at different temperatures was analyzed by mass spectrometry using...... quantitative multiple precursor ion scanning. The molecular composition of glycerophospholipids was strongly affected by the growth temperature. The modulating influence of membrane lipid composition on BetP function was further corroborated by studying the influence of artificial modulation of membrane...

  1. Linearly concatenated cyclobutane (ladderane) lipids form a dense bacterial membrane

    NARCIS (Netherlands)

    Sinninghe Damsté, J.S.; Strous, M.; Rijpstra, W.I.C.; Hopmans, E.C.; Geenevasen, J.A.J.; Duin, A.C.T. van; Niftrik, L.A.; Jetten, M.S.M.

    2002-01-01

    Lipid membranes are essential to the functioning of cells, enabling the existence of concentration gradients of ions and metabolites. Microbial membrane lipids can contain three-, five-, six- and even seven-membered aliphatic rings, but four-membered aliphatic cyclobutane rings have never been

  2. Polymalic Acid Tritryptophan Copolymer Interacts with Lipid Membrane Resulting in Membrane Solubilization

    Directory of Open Access Journals (Sweden)

    Hui Ding

    2017-01-01

    Full Text Available Anionic polymers with membrane permeation functionalities are highly desirable for secure cytoplasmic drug delivery. We have developed tritryptophan containing copolymer (P/WWW of polymalic acid (PMLA that permeates membranes by a mechanism different from previously described PMLA copolymers of trileucine (P/LLL and leucine ethyl ester (P/LOEt that use the “barrel stave” and “carpet” mechanism, respectively. The novel mechanism leads to solubilization of membranes by forming copolymer “belts” around planar membrane “packages.” The formation of such packages is supported by results obtained from studies including size-exclusion chromatography, confocal microscopy, and fluorescence energy transfer. According to this “belt” mechanism, it is hypothesized that P/WWW first attaches to the membrane surface. Subsequently the hydrophobic tryptophan side chains translocate into the periphery and insert into the lipid bilayer thereby cutting the membrane into packages. The reaction is driven by the high affinity between the tryptophan residues and lipid side chains resulting in a stable configuration. The formation of the membrane packages requires physical agitation suggesting that the success of the translocation depends on the fluidity of the membrane. It is emphasized that the “belt” mechanism could specifically function in the recognition of abnormal cells with high membrane fluidity and in response to hyperthermia.

  3. Exploiting lipopolysaccharide-induced deformation of lipid bilayers to modify membrane composition and generate two-dimensional geometric membrane array patterns

    Energy Technology Data Exchange (ETDEWEB)

    Adams, Peter G. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Swingle, Kirstie L. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Univ. of New Mexico, Albuquerque, NM (United States); Paxton, Walter F. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Nogan, John J. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Stromberg, Loreen R. [Univ. of New Mexico, Albuquerque, NM (United States); Firestone, Millicent A. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Mukundan, Harshini [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); New Mexico Consortium, Los Alamos, NM (United States); Montaño, Gabriel A. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-05-27

    Supported lipid bilayers have proven effective as model membranes for investigating biophysical processes and in development of sensor and array technologies. The ability to modify lipid bilayers after their formation and in situ could greatly advance membrane technologies, but is difficult via current state-of-the-art technologies. Here we demonstrate a novel method that allows the controlled post-formation processing and modification of complex supported lipid bilayer arrangements, under aqueous conditions. We exploit the destabilization effect of lipopolysaccharide, an amphiphilic biomolecule, interacting with lipid bilayers to generate voids that can be backfilled to introduce desired membrane components. We further demonstrate that when used in combination with a single, traditional soft lithography process, it is possible to generate hierarchically-organized membrane domains and microscale 2-D array patterns of domains. Significantly, this technique can be used to repeatedly modify membranes allowing iterative control over membrane composition. This approach expands our toolkit for functional membrane design, with potential applications for enhanced materials templating, biosensing and investigating lipid-membrane processes.

  4. Inducing morphological changes in lipid bilayer membranes with microfabricated substrates

    Science.gov (United States)

    Liu, Fangjie; Collins, Liam F.; Ashkar, Rana; Heberle, Frederick A.; Srijanto, Bernadeta R.; Collier, C. Patrick

    2016-11-01

    Lateral organization of lipids and proteins into distinct domains and anchoring to a cytoskeleton are two important strategies employed by biological membranes to carry out many cellular functions. However, these interactions are difficult to emulate with model systems. Here we use the physical architecture of substrates consisting of arrays of micropillars to systematically control the behavior of supported lipid bilayers - an important step in engineering model lipid membrane systems with well-defined functionalities. Competition between attractive interactions of supported lipid bilayers with the underlying substrate versus the energy cost associated with membrane bending at pillar edges can be systematically investigated as functions of pillar height and pitch, chemical functionalization of the microstructured substrate, and the type of unilamellar vesicles used for assembling the supported bilayer. Confocal fluorescent imaging and AFM measurements highlight correlations that exist between topological and mechanical properties of lipid bilayers and lateral lipid mobility in these confined environments. This study provides a baseline for future investigations into lipid domain reorganization on structured solid surfaces and scaffolds for cell growth.

  5. Acid sphingomyelinase activity is regulated by membrane lipids and facilitates cholesterol transfer by NPC2.

    Science.gov (United States)

    Oninla, Vincent O; Breiden, Bernadette; Babalola, Jonathan O; Sandhoff, Konrad

    2014-12-01

    During endocytosis, membrane components move to intraluminal vesicles of the endolysosomal compartment for digestion. At the late endosomes, cholesterol is sorted out mainly by two sterol-binding proteins, Niemann-Pick protein type C (NPC)1 and NPC2. To study the NPC2-mediated intervesicular cholesterol transfer, we developed a liposomal assay system. (Abdul-Hammed, M., B. Breiden, M. A. Adebayo, J. O. Babalola, G. Schwarzmann, and K. Sandhoff. 2010. Role of endosomal membrane lipids and NPC2 in cholesterol transfer and membrane fusion. J. Lipid Res. 51: 1747-1760.) Anionic lipids stimulate cholesterol transfer between liposomes while SM inhibits it, even in the presence of anionic bis(monoacylglycero)phosphate (BMP). Preincubation of vesicles containing SM with acid sphingomyelinase (ASM) (SM phosphodiesterase, EC 3.1.4.12) results in hydrolysis of SM to ceramide (Cer), which enhances cholesterol transfer. Besides SM, ASM also cleaves liposomal phosphatidylcholine. Anionic phospholipids derived from the plasma membrane (phosphatidylglycerol and phosphatidic acid) stimulate SM and phosphatidylcholine hydrolysis by ASM more effectively than BMP, which is generated during endocytosis. ASM-mediated hydrolysis of liposomal SM was also stimulated by incorporation of diacylglycerol (DAG), Cer, and free fatty acids into the liposomal membranes. Conversely, phosphatidylcholine hydrolysis was inhibited by incorporation of cholesterol, Cer, DAG, monoacylglycerol, and fatty acids. Our data suggest that SM degradation by ASM is required for physiological secretion of cholesterol from the late endosomal compartment, and is a key regulator of endolysosomal lipid digestion. Copyright © 2014 by the American Society for Biochemistry and Molecular Biology, Inc.

  6. Molecular sieving action of the cell membrane during gradual osmotic hemolysis

    Energy Technology Data Exchange (ETDEWEB)

    MacGregor, R.D. II

    1977-05-01

    Rat erythrocytes were hemolyzed by controlled gradual osmotic hemolysis to study cell morphology and hemoglobin loss from individual cells. Results suggest that each increase in the rate of loss of a protein from the cells during the initial phases of controlled gradual osmotic hemolysis is caused by the passage of a previously impermeable species across the stressed membrane. Similarly, during the final stages of controlled gradual osmotic hemolysis, each sharp decrease in the rate of loss of a protein corresponds to the termination of a molecular flow. A theoretical model is described that predicts the molecular sieving of soluble globular proteins across the stressed red cell membrane. Hydrophobic interactions occur between the soluble proteins and the lipid bilayer portion of the cell membrane. A spectrin network subdivides the bilayer into domains that restrict the insertion of large molecules into the membrane. Other membrane proteins affect soluble protein access to the membrane. Changes in the loss curves caused by incubation of red cells are discussed in terms of the model.

  7. Specific membrane lipid composition is important for plasmodesmata function in Arabidopsis.

    Science.gov (United States)

    Grison, Magali S; Brocard, Lysiane; Fouillen, Laetitia; Nicolas, William; Wewer, Vera; Dörmann, Peter; Nacir, Houda; Benitez-Alfonso, Yoselin; Claverol, Stéphane; Germain, Véronique; Boutté, Yohann; Mongrand, Sébastien; Bayer, Emmanuelle M

    2015-04-01

    Plasmodesmata (PD) are nano-sized membrane-lined channels controlling intercellular communication in plants. Although progress has been made in identifying PD proteins, the role played by major membrane constituents, such as the lipids, in defining specialized membrane domains in PD remains unknown. Through a rigorous isolation of "native" PD membrane fractions and comparative mass spectrometry-based analysis, we demonstrate that lipids are laterally segregated along the plasma membrane (PM) at the PD cell-to-cell junction in Arabidopsis thaliana. Remarkably, our results show that PD membranes display enrichment in sterols and sphingolipids with very long chain saturated fatty acids when compared with the bulk of the PM. Intriguingly, this lipid profile is reminiscent of detergent-insoluble membrane microdomains, although our approach is valuably detergent-free. Modulation of the overall sterol composition of young dividing cells reversibly impaired the PD localization of the glycosylphosphatidylinositol-anchored proteins Plasmodesmata Callose Binding 1 and the β-1,3-glucanase PdBG2 and altered callose-mediated PD permeability. Altogether, this study not only provides a comprehensive analysis of the lipid constituents of PD but also identifies a role for sterols in modulating cell-to-cell connectivity, possibly by establishing and maintaining the positional specificity of callose-modifying glycosylphosphatidylinositol proteins at PD. Our work emphasizes the importance of lipids in defining PD membranes. © 2015 American Society of Plant Biologists. All rights reserved.

  8. Lipid self-assembly and lectin-induced reorganization of the plasma membrane.

    Science.gov (United States)

    Sych, Taras; Mély, Yves; Römer, Winfried

    2018-05-26

    The plasma membrane represents an outstanding example of self-organization in biology. It plays a vital role in protecting the integrity of the cell interior and regulates meticulously the import and export of diverse substances. Its major building blocks are proteins and lipids, which self-assemble to a fluid lipid bilayer driven mainly by hydrophobic forces. Even if the plasma membrane appears-globally speaking-homogeneous at physiological temperatures, the existence of specialized nano- to micrometre-sized domains of raft-type character within cellular and synthetic membrane systems has been reported. It is hypothesized that these domains are the origin of a plethora of cellular processes, such as signalling or vesicular trafficking. This review intends to highlight the driving forces of lipid self-assembly into a bilayer membrane and the formation of small, transient domains within the plasma membrane. The mechanisms of self-assembly depend on several factors, such as the lipid composition of the membrane and the geometry of lipids. Moreover, the dynamics and organization of glycosphingolipids into nanometre-sized clusters will be discussed, also in the context of multivalent lectins, which cluster several glycosphingolipid receptor molecules and thus create an asymmetric stress between the two membrane leaflets, leading to tubular plasma membrane invaginations.This article is part of the theme issue 'Self-organization in cell biology'. © 2018 The Author(s).

  9. Digital holographic microscopy of phase separation in multicomponent lipid membranes

    Science.gov (United States)

    Farzam Rad, Vahideh; Moradi, Ali-Reza; Darudi, Ahmad; Tayebi, Lobat

    2016-12-01

    Lateral in-homogeneities in lipid compositions cause microdomains formation and change in the physical properties of biological membranes. With the presence of cholesterol and mixed species of lipids, phospholipid membranes segregate into lateral domains of liquid-ordered and liquid-disordered phases. Coupling of two-dimensional intralayer phase separations and interlayer liquid-crystalline ordering in multicomponent membranes has been previously demonstrated. By the use of digital holographic microscopy (DHMicroscopy), we quantitatively analyzed the volumetric dynamical behavior of such membranes. The specimens are lipid mixtures composed of sphingomyelin, cholesterol, and unsaturated phospholipid, 1,2-dioleoyl-sn-glycero-3-phosphocholine. DHMicroscopy in a transmission mode is an effective tool for quantitative visualization of phase objects. By deriving the associated phase changes, three-dimensional information on the morphology variation of lipid stacks at arbitrary time scales is obtained. Moreover, the thickness distribution of the object at demanded axial planes can be obtained by numerical focusing. Our results show that the volume evolution of lipid domains follows approximately the same universal growth law of previously reported area evolution. However, the thickness of the domains does not alter significantly by time; therefore, the volume evolution is mostly attributed to the changes in area dynamics. These results might be useful in the field of membrane-based functional materials.

  10. Effect of piroxicam on lipid membranes: Drug encapsulation and gastric toxicity aspects.

    Science.gov (United States)

    Wilkosz, Natalia; Rissanen, Sami; Cyza, Małgorzata; Szybka, Renata; Nowakowska, Maria; Bunker, Alex; Róg, Tomasz; Kepczynski, Mariusz

    2017-03-30

    Uptake of piroxicam, a non-steroidal anti-inflammatory drug, from the intestines after oral intake is limited due to its low solubility and its wide use is associated with several side effects related to the gastrointestinal tract. In this study, all-atom molecular dynamics (MD) simulations and fluorescent spectroscopy were employed to investigate the interaction of piroxicam in neutral, zwitterionic, and cationic forms with lipid bilayers composed of phosphatidylcholine, cholesterol, and PEGylated lipids. Our study was aimed to assess the potential for encapsulation of piroxicam in liposomal carriers and to shed more light on the process of gastrointestinal tract injury by the drug. Through both the MD simulations and laser scanning confocal microscopy, we have demonstrated that all forms of piroxicam can associate with the lipid bilayers and locate close to the water-membrane interface. Conventional liposomes used in drug delivery are usually stabilized by the addition of cholesterol and have their bloodstream lifetime extended through the inclusion of PEGylated lipids in the formulation to create a protective polymer corona. For this reason, we tested the effect of these two modifications on the behavior of piroxicam in the membrane. When the bilayer was PEGylated, piroxicam localize to the PEG layer and within the lipid headgroup region. This suggests that PEGylated liposomes are capable of carrying a larger quantity of piroxicam than the conventional ones. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Protein-lipid interactions: from membrane domains to cellular networks

    National Research Council Canada - National Science Library

    Tamm, Lukas K

    2005-01-01

    ... membranes is the lipid bilayer. Embedded in the fluid lipid bilayer are proteins of various shapes and traits. This volume illuminates from physical, chemical and biological angles the numerous - mostly quite weak - interactions between lipids, proteins, and proteins and lipids that define the delicate, highly dynamic and yet so stable fabri...

  12. The ELBA force field for coarse-grain modeling of lipid membranes.

    Directory of Open Access Journals (Sweden)

    Mario Orsi

    Full Text Available A new coarse-grain model for molecular dynamics simulation of lipid membranes is presented. Following a simple and conventional approach, lipid molecules are modeled by spherical sites, each representing a group of several atoms. In contrast to common coarse-grain methods, two original (interdependent features are here adopted. First, the main electrostatics are modeled explicitly by charges and dipoles, which interact realistically through a relative dielectric constant of unity (ε(r = 1. Second, water molecules are represented individually through a new parametrization of the simple Stockmayer potential for polar fluids; each water molecule is therefore described by a single spherical site embedded with a point dipole. The force field is shown to accurately reproduce the main physical properties of single-species phospholipid bilayers comprising dioleoylphosphatidylcholine (DOPC and dioleoylphosphatidylethanolamine (DOPE in the liquid crystal phase, as well as distearoylphosphatidylcholine (DSPC in the liquid crystal and gel phases. Insights are presented into fundamental properties and phenomena that can be difficult or impossible to study with alternative computational or experimental methods. For example, we investigate the internal pressure distribution, dipole potential, lipid diffusion, and spontaneous self-assembly. Simulations lasting up to 1.5 microseconds were conducted for systems of different sizes (128, 512 and 1058 lipids; this also allowed us to identify size-dependent artifacts that are expected to affect membrane simulations in general. Future extensions and applications are discussed, particularly in relation to the methodology's inherent multiscale capabilities.

  13. Phospatidylserine or ganglioside--which of anionic lipids determines the effect of cationic dextran on lipid membrane?

    Science.gov (United States)

    Hąc-Wydro, Katarzyna; Wydro, Paweł; Cetnar, Andrzej; Włodarczyk, Grzegorz

    2015-02-01

    In this work the influence of cationic polymer, namely diethylaminoethyl DEAE-dextran on model lipid membranes was investigated. This polymer is of a wide application as a biomaterial and a drug carrier and its cytotoxicity toward various cancer cells was also confirmed. It was suggested that anticancer effect of cationic dextran is connected with the binding of the polymer to the negatively charged sialic acid residues overexpressed in cancer membrane. This fact encouraged us to perform the studies aimed at verifying whether the effect of cationic DEAE-dextran on membrane is determined only by the presence of the negatively charged lipid in the system or the kind of anionic lipid is also important. To reach this goal systematic investigations on the effect of dextran on various one-component lipid monolayers and multicomponent hepatoma cell model membranes differing in the level and the kind of anionic lipids (phosphatidylserine, sialic acid-containing ganglioside GM3 or their mixture) were done. As evidenced the results the effect of DEAE-dextran on the model system is determined by anionic lipid-polymer electrostatic interactions. However, the magnitude of the effect of cationic polymer is strongly dependent on the kind of anionic lipid in the model system. Namely, the packing and ordering of the mixtures containing ganglioside GM3 were more affected by DEAE-dextran than phosphatidylserine-containing monolayers. Although the experiments were done on model systems and therefore further studies are highly needed, the collected data may indicate that ganglioside may be important in the differentiation of the effect of cationic dextran on membranes. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. MOLECULAR DYNAMICS STUDY OF CYTOCHROME C – LIPID COMPLEXES

    Directory of Open Access Journals (Sweden)

    V. Trusova

    2017-10-01

    Full Text Available The interactions between a mitochondrial hemoprotein cytochrome c (cyt c and the model lipid membranes composed of zwitterionic lipid phosphatidylcholine (PC and anionic lipids phosphatidylglycerol (PG, phosphatidylserine (PS or cardiolipin (CL were studied using the method of molecular dynamics. It was found that cyt c structure remains virtually unchanged in the protein complexes with PC/PG or PC/PS bilayers. In turn, protein binding to PC/CL bilayer is followed by the rise in cyt c radius of gyration and root-mean-square fluctuations. The magnitude of these changes was demonstrated to increase with the anionic lipid content. The revealed effect was interpreted in terms of the partial unfolding of polypeptide chain in the region Ala15-Leu32, widening of the heme crevice and enhancement of the conformational fluctuations in the region Pro76-Asp93 upon increasing the CL molar fraction from 5 to 25%. The results obtained seem to be of utmost importance in the context of amyloidogenic propensity of cyt c.

  15. Maximally asymmetric transbilayer distribution of anionic lipids alters the structure and interaction with lipids of an amyloidogenic protein dimer bound to the membrane surface.

    Science.gov (United States)

    Cheng, Sara Y; Chou, George; Buie, Creighton; Vaughn, Mark W; Compton, Campbell; Cheng, Kwan H

    2016-03-01

    We used molecular dynamics simulations to explore the effects of asymmetric transbilayer distribution of anionic phosphatidylserine (PS) lipids on the structure of a protein on the membrane surface and subsequent protein-lipid interactions. Our simulation systems consisted of an amyloidogenic, beta-sheet rich dimeric protein (D42) absorbed to the phosphatidylcholine (PC) leaflet, or protein-contact PC leaflet, of two membrane systems: a single-component PC bilayer and double PC/PS bilayers. The latter comprised of a stable but asymmetric transbilayer distribution of PS in the presence of counterions, with a 1-component PC leaflet coupled to a 1-component PS leaflet in each bilayer. The maximally asymmetric PC/PS bilayer had a non-zero transmembrane potential (TMP) difference and higher lipid order packing, whereas the symmetric PC bilayer had a zero TMP difference and lower lipid order packing under physiologically relevant conditions. Analysis of the adsorbed protein structures revealed weaker protein binding, more folding in the N-terminal domain, more aggregation of the N- and C-terminal domains and larger tilt angle of D42 on the PC leaflet surface of the PC/PS bilayer versus the PC bilayer. Also, analysis of protein-induced membrane structural disruption revealed more localized bilayer thinning in the PC/PS versus PC bilayer. Although the electric field profile in the non-protein-contact PS leaflet of the PC/PS bilayer differed significantly from that in the non-protein-contact PC leaflet of the PC bilayer, no significant difference in the electric field profile in the protein-contact PC leaflet of either bilayer was evident. We speculate that lipid packing has a larger effect on the surface adsorbed protein structure than the electric field for a maximally asymmetric PC/PS bilayer. Our results support the mechanism that the higher lipid packing in a lipid leaflet promotes stronger protein-protein but weaker protein-lipid interactions for a dimeric protein on

  16. Efficient replacement of plasma membrane outer leaflet phospholipids and sphingolipids in cells with exogenous lipids.

    Science.gov (United States)

    Li, Guangtao; Kim, JiHyun; Huang, Zhen; St Clair, Johnna R; Brown, Deborah A; London, Erwin

    2016-12-06

    Our understanding of membranes and membrane lipid function has lagged far behind that of nucleic acids and proteins, largely because it is difficult to manipulate cellular membrane lipid composition. To help solve this problem, we show that methyl-α-cyclodextrin (MαCD)-catalyzed lipid exchange can be used to maximally replace the sphingolipids and phospholipids in the outer leaflet of the plasma membrane of living mammalian cells with exogenous lipids, including unnatural lipids. In addition, lipid exchange experiments revealed that 70-80% of cell sphingomyelin resided in the plasma membrane outer leaflet; the asymmetry of metabolically active cells was similar to that previously defined for erythrocytes, as judged by outer leaflet lipid composition; and plasma membrane outer leaflet phosphatidylcholine had a significantly lower level of unsaturation than phosphatidylcholine in the remainder of the cell. The data also provided a rough estimate for the total cellular lipids residing in the plasma membrane (about half). In addition to such lipidomics applications, the exchange method should have wide potential for investigations of lipid function and modification of cellular behavior by modification of lipids.

  17. Membrane lipids protected from oxidation by red wine tannins: a proton NMR study.

    Science.gov (United States)

    Furlan, Aurélien L; Jobin, Marie-Lise; Buchoux, Sébastien; Grélard, Axelle; Dufourc, Erick J; Géan, Julie

    2014-12-01

    Dietary polyphenols widespread in vegetables and beverages like red wine and tea have been reported to possess antioxidant properties that could have positive effects on human health. In this study, we propose a new in situ and non-invasive method based on proton liquid-state nuclear magnetic resonance (NMR) to determine the antioxidant efficiency of red wine tannins on a twice-unsaturated phospholipid, 1,2-dilinoleoyl-sn-glycero-3-phosphocholine (DLiPC), embedded in a membrane model. Four tannins were studied: (+)-catechin (C), (-)-epicatechin (EC), (-)-epicatechin gallate (ECG), and (-)-epigallocatechin gallate (EGCG). The lipid degradation kinetics was determined by measuring the loss of the bis-allylic protons during oxidation induced by a radical initiator, 2,2'-Azobis(2-methylpropionamidine) dihydrochloride (AAPH). The antioxidant efficiency, i.e. the ability of tannins to slow down the lipid oxidation rate, was shown to be higher for galloylated tannins, ECG and EGCG. Furthermore, the mixture of four tannins was more efficient than the most effective tannin, EGCG, demonstrating a synergistic effect. To better understand the antioxidant action mechanism of polyphenols on lipid membranes, the tannin location was investigated by NMR and molecular dynamics. A correlation between antioxidant action of tannins and their location at the membrane interface (inserted at the glycerol backbone level) could thus be established. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  18. Reconstitution of a Kv channel into lipid membranes for structural and functional studies.

    Science.gov (United States)

    Lee, Sungsoo; Zheng, Hui; Shi, Liang; Jiang, Qiu-Xing

    2013-07-13

    To study the lipid-protein interaction in a reductionistic fashion, it is necessary to incorporate the membrane proteins into membranes of well-defined lipid composition. We are studying the lipid-dependent gating effects in a prototype voltage-gated potassium (Kv) channel, and have worked out detailed procedures to reconstitute the channels into different membrane systems. Our reconstitution procedures take consideration of both detergent-induced fusion of vesicles and the fusion of protein/detergent micelles with the lipid/detergent mixed micelles as well as the importance of reaching an equilibrium distribution of lipids among the protein/detergent/lipid and the detergent/lipid mixed micelles. Our data suggested that the insertion of the channels in the lipid vesicles is relatively random in orientations, and the reconstitution efficiency is so high that no detectable protein aggregates were seen in fractionation experiments. We have utilized the reconstituted channels to determine the conformational states of the channels in different lipids, record electrical activities of a small number of channels incorporated in planar lipid bilayers, screen for conformation-specific ligands from a phage-displayed peptide library, and support the growth of 2D crystals of the channels in membranes. The reconstitution procedures described here may be adapted for studying other membrane proteins in lipid bilayers, especially for the investigation of the lipid effects on the eukaryotic voltage-gated ion channels.

  19. Cholesterol trafficking and raft-like membrane domain composition mediate scavenger receptor class B type 1-dependent lipid sensing in intestinal epithelial cells.

    Science.gov (United States)

    Morel, Etienne; Ghezzal, Sara; Lucchi, Géraldine; Truntzer, Caroline; Pais de Barros, Jean-Paul; Simon-Plas, Françoise; Demignot, Sylvie; Mineo, Chieko; Shaul, Philip W; Leturque, Armelle; Rousset, Monique; Carrière, Véronique

    2018-02-01

    Scavenger receptor Class B type 1 (SR-B1) is a lipid transporter and sensor. In intestinal epithelial cells, SR-B1-dependent lipid sensing is associated with SR-B1 recruitment in raft-like/ detergent-resistant membrane domains and interaction of its C-terminal transmembrane domain with plasma membrane cholesterol. To clarify the initiating events occurring during lipid sensing by SR-B1, we analyzed cholesterol trafficking and raft-like domain composition in intestinal epithelial cells expressing wild-type SR-B1 or the mutated form SR-B1-Q445A, defective in membrane cholesterol binding and signal initiation. These features of SR-B1 were found to influence both apical cholesterol efflux and intracellular cholesterol trafficking from plasma membrane to lipid droplets, and the lipid composition of raft-like domains. Lipidomic analysis revealed likely participation of d18:0/16:0 sphingomyelin and 16:0/0:0 lysophosphatidylethanolamine in lipid sensing by SR-B1. Proteomic analysis identified proteins, whose abundance changed in raft-like domains during lipid sensing, and these included molecules linked to lipid raft dynamics and signal transduction. These findings provide new insights into the role of SR-B1 in cellular cholesterol homeostasis and suggest molecular links between SR-B1-dependent lipid sensing and cell cholesterol and lipid droplet dynamics. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Synthesis and characterization of tethered lipid assemblies for membrane protein reconstitution (Review).

    Science.gov (United States)

    Veneziano, Rémi; Rossi, Claire; Chenal, Alexandre; Brenner, Catherine; Ladant, Daniel; Chopineau, Joël

    2017-09-28

    Biological membranes and their related molecular mechanisms are essential for all living organisms. Membranes host numerous proteins and are responsible for the exchange of molecules and ions, cell signaling, and cell compartmentation. Indeed, the plasma membrane delimits the intracellular compartment from the extracellular environment and intracellular membranes. Biological membranes also play a major role in metabolism regulation and cellular physiology (e.g., mitochondrial membranes). The elaboration of membrane based biomimetic systems allows us to reconstitute and investigate, in controlled conditions, biological events occurring at the membrane interface. A whole variety of model membrane systems have been developed in the last few decades. Among these models, supported membranes were developed on various hydrophilic supports. The use of solid supports enables the direct use of surface sensitive techniques (e.g., surface plasmon resonance, quartz crystal microbalance, and atomic force microscopy) to monitor and quantify events occurring at the membrane surface. Tethered bilayer membranes (tBLMs) could be considered as an achievement of the first solid supported membranes described by the McConnell group. Tethered bilayers on solid supports were designed to delimit an inside compartment from an outside one. They were used for measuring interactions with ligands or incorporating large membrane proteins or complexes without interference with the support. In this context, the authors developed an easy concept of versatile tBLMs assembled on amino coated substrates that are formed upon the vesicle fusion rupture process applicable to protein-free vesicles as well as proteoliposomes. The phospholipid bilayer (natural or synthetic lipids) incorporated 5% of 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-poly ethylene glycol-N-hydroxy succinimide to ensure the anchorage of the bilayer to the amino coated surface. The conditions for the formation of tBLMs on amino

  1. Differential Effects of Cholesterol, Ergosterol and Lanosterol on a Dipalmitoyl Phosphatidylcholine (DPPC) membrane: A Molecular Dynamics Simulations Study

    Energy Technology Data Exchange (ETDEWEB)

    Cournia, Zoe [Yale University; Ullmann, G. Matthias [University of Bayreuth; Smith, Jeremy C [ORNL

    2007-02-01

    Lipid raft/domain formation may arise as a result of the effects of specific sterols on the physical properties of membranes. Here, using molecular dynamics simulation, we examine the effects of three closely-related sterols, ergosterol, cholesterol, and lanosterol, at a biologically relevant concentration (40 mol %) on the structural properties of a model dipalmitoyl phosphatidylcholine (DPPC) membrane at 309 and 323 K. All three sterols are found to order the DPPC acyl tails and condense the membrane relative to the DPPC liquid-phase membrane, but each one does this to a significantly different degree. The smooth {alpha}-face of ergosterol, together with the presence of tail unsaturation in this sterol, leads to closer interaction of ergosterol with the lipids and closer packing of the lipids with each other, so ergosterol has a higher condensing effect on the membrane, as reflected by the area per lipid. Moreover, ergosterol induces a higher proportion of trans lipid conformers, a thicker membrane, and higher lipid order parameters and is aligned more closely with the membrane normal. Ergosterol also positions itself closer to the bilayer/water interface. In contrast, the rough {alpha}-face of lanosterol leads to a less close interaction of the steroid ring system with the phospholipid acyl chains, and so lanosterol orders, straightens, and packs the lipid acyl chains less well and is less closely aligned with the membrane normal. Furthermore, lanosterol lies closer to the relatively disordered membrane center than do the other sterols. The behavior of cholesterol in all the above respects is intermediate between that of lanosterol and ergosterol. The findings here may explain why ergosterol is the most efficient of the three sterols at promoting the liquid-ordered phase and lipid domain formation and may also furnish part of the explanation as to why cholesterol is evolutionarily preferred over lanosterol in higher-vertebrate plasma membranes.

  2. A model of lipid rearrangements during pore formation in the DPPC lipid bilayer.

    Science.gov (United States)

    Wrona, Artur; Kubica, Krystian

    2017-07-10

    The molecular bases of pore formation in the lipid bilayer remain unclear, as do the exact characteristics of their sizes and distributions. To understand this process, numerous studies have been performed on model lipid membranes including cell-sized giant unilamellar vesicles (GUV). The effect of an electric field on DPPC GUV depends on the lipid membrane state: in the liquid crystalline phase the created pores have a cylinder-like shape, whereas in the gel phase a crack has been observed. The aim of the study was to investigate the geometry of pores created in a lipid bilayer in gel and liquid crystalline phases in reference to literature experimental data. A mathematical model of the pore in a DPPC lipid bilayer developed based on the law of conservation of mass and the assumption of constant volume of lipid molecules, independent of their conformation, allows for analysis of pore shape and accompanying molecular rearrangements. The membrane area occupied by the pore of a cylinder-like shape is greater than the membrane area occupied by lipid molecules creating the pore structure (before pore appearance). Creation of such pores requires more space, which can be achieved by conformational changes of lipid chains toward a more compact state. This process is impossible for a membrane in the most compact, gel phase. We show that the geometry of the pores formed in the lipid bilayer in the gel phase must be different from the cylinder shape formed in the lipid bilayer in a liquid crystalline state, confirming experimental studies. Furthermore, we characterize the occurrence of the 'buffer' zone surrounding pores in the liquid crystalline phase as a mechanism of separation of neighbouring pores.

  3. Bioactive Structure of Membrane Lipids and Natural Products Elucidated by a Chemistry-Based Approach.

    Science.gov (United States)

    Murata, Michio; Sugiyama, Shigeru; Matsuoka, Shigeru; Matsumori, Nobuaki

    2015-08-01

    Determining the bioactive structure of membrane lipids is a new concept, which aims to examine the functions of lipids with respect to their three-dimensional structures. As lipids are dynamic by nature, their "structure" does not refer solely to a static picture but also to the local and global motions of the lipid molecules. We consider that interactions with lipids, which are completely defined by their structures, are controlled by the chemical, functional, and conformational matching between lipids and between lipid and protein. In this review, we describe recent advances in understanding the bioactive structures of membrane lipids bound to proteins and related molecules, including some of our recent results. By examining recent works on lipid-raft-related molecules, lipid-protein interactions, and membrane-active natural products, we discuss current perspectives on membrane structural biology. © 2015 The Chemical Society of Japan & Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Analysis by Mass Spectrometry of the Polar Lipids from the Cellular Membrane of Thermophilic Lactic Acid Bacteria

    Directory of Open Access Journals (Sweden)

    A. M. Seldes

    2000-03-01

    Full Text Available Fast atom bombardment (FAB technique was employed to determine the structure of polar lipids from the cellular membrane of Lactobacillus delbruekii ssp. bulgaricus and Streptococcus salivarius ssp. thermophilus. Analysis of spectra provided useful information about the molecular species and aminoacids constituents of the samples.

  5. Branched tetraether membrane lipids: A versatile group of molecular fossils as testimony of past climate change (Outstanding Young Scientist Lecture)

    Science.gov (United States)

    Weijers, J. W. H.

    2009-04-01

    Studying fossils of any kind provides a small window into past times and could learn us why the world around us is as it is today (and might become in the near future). Like paleontologists studying bone remains and palaeobotanists studying fossil plant remains, many organic geochemists study fossil molecules to learn about geochemical cycles, evolution, ecology and climate. Branched Glycerol Dialkyl Glycerol Tetraether (GDGT) membrane lipids are an example of such molecular fossils and have been the core subject of my research. These molecules were initially detected a decade ago in near coastal marine sediments and structurally resemble isoprenoid GDGTs, a group of membrane lipids synthesised by Archaea, a Domain of life separate from Bacteria and Eukarya. With nuclear magnetic resonance techniques we showed, however, that branched GDGTs are of bacterial rather than archaeal origin and analysis of soils, peat bogs and marine surface sediments pointed to a terrestrial origin. As isoprenoid GDGTs are mainly produced by marine archaea the ratio between the two groups, the Branched vs. Isoprenoid Tetraether (BIT) index, could be used to trace the input of soil organic matter into marine sediments. In this lecture I will provide examples of applications of this BIT index in the Channel River during the last Glacial Maximum and the Congo deep sea fan over the last deglaciation. Meanwhile, it appeared that in soils the distribution of individual branched GDGTs, which differ in their content of methyl branches and cyclopentane rings, was different from place to place. Analysis of over 100 soils at different locations revealed that the distribution of the branched GDGTs is most strongly related to both soil pH and annual mean air temperature. This is explained by the fact that bacteria have to adapt the composition of their cell membrane to ambient conditions in order to keep it properly functioning. This empirical relation opened opportunities to reconstruct past annual

  6. Neutron scattering to study membrane systems: from lipid vesicles to living cells.

    Energy Technology Data Exchange (ETDEWEB)

    Nickels, Jonathan D. [ORNL; Chatterjee, Sneha [ORNL; Stanley, Christopher B. [ORNL; Qian, Shuo [ORNL; Cheng, Xiaolin [ORNL; Myles, Dean A A [ORNL; Standaert, Robert F. [ORNL; Elkins, James G. [ORNL; Katsaras, John [ORNL

    2017-03-01

    The existence and role of lateral lipid organization in biological membranes has been studied and contested for more than 30 years. Lipid domains, or rafts, are hypothesized as scalable compartments in biological membranes, providing appropriate physical environments to their resident membrane proteins. This implies that lateral lipid organization is associated with a range of biological functions, such as protein co-localization, membrane trafficking, and cell signaling, to name just a few. Neutron scattering techniques have proven to be an excellent tool to investigate these structural features in model lipids, and more recently, in living cells. I will discuss our recent work using neutrons to probe the structure and mechanical properties in model lipid systems and our current efforts in using neutrons to probe the structure and organization of the bilayer in a living cell. These efforts in living cells have used genetic and biochemical strategies to generate a large neutron scattering contrast, making the membrane visible. I will present our results showing in vivo bilayer structure and discuss the outlook for this approach.

  7. Hydration dynamics of a lipid membrane: Hydrogen bond networks and lipid-lipid associations

    Science.gov (United States)

    Srivastava, Abhinav; Debnath, Ananya

    2018-03-01

    Dynamics of hydration layers of a dimyristoylphosphatidylcholine (DMPC) bilayer are investigated using an all atom molecular dynamics simulation. Based upon the geometric criteria, continuously residing interface water molecules which form hydrogen bonds solely among themselves and then concertedly hydrogen bonded to carbonyl, phosphate, and glycerol head groups of DMPC are identified. The interface water hydrogen bonded to lipids shows slower relaxation rates for translational and rotational dynamics compared to that of the bulk water and is found to follow sub-diffusive and non-diffusive behaviors, respectively. The mean square displacements and the reorientational auto-correlation functions are slowest for the interfacial waters hydrogen bonded to the carbonyl oxygen since these are buried deep in the hydrophobic core among all interfacial water studied. The intermittent hydrogen bond auto-correlation functions are calculated, which allows breaking and reformations of the hydrogen bonds. The auto-correlation functions for interfacial hydrogen bonded networks develop humps during a transition from cage-like motion to eventual power law behavior of t-3/2. The asymptotic t-3/2 behavior indicates translational diffusion dictated dynamics during hydrogen bond breaking and formation irrespective of the nature of the chemical confinement. Employing reactive flux correlation analysis, the forward rate constant of hydrogen bond breaking and formation is calculated which is used to obtain Gibbs energy of activation of the hydrogen bond breaking. The relaxation rates of the networks buried in the hydrophobic core are slower than the networks near the lipid-water interface which is again slower than bulk due to the higher Gibbs energy of activation. Since hydrogen bond breakage follows a translational diffusion dictated mechanism, chemically confined hydrogen bond networks need an activation energy to diffuse through water depleted hydrophobic environments. Our calculations

  8. Permeability Barrier and Microstructure of Skin Lipid Membrane Models of Impaired Glucosylceramide Processing

    OpenAIRE

    Sochorov?, Michaela; Sta?kov?, Kl?ra; Pullmannov?, Petra; Kov??ik, Andrej; Zbytovsk?, Jarmila; V?vrov?, Kate?ina

    2017-01-01

    Ceramide (Cer) release from glucosylceramides (GlcCer) is critical for the formation of the skin permeability barrier. Changes in ?-glucocerebrosidase (GlcCer?ase) activity lead to diminished Cer, GlcCer accumulation and structural defects in SC lipid lamellae; however, the molecular basis for this impairment is not clear. We investigated impaired GlcCer-to-Cer processing in human Cer membranes to determine the physicochemical properties responsible for the barrier defects. Minor impairment (...

  9. Extended synaptotagmins are Ca2+-dependent lipid transfer proteins at membrane contact sites.

    Science.gov (United States)

    Yu, Haijia; Liu, Yinghui; Gulbranson, Daniel R; Paine, Alex; Rathore, Shailendra S; Shen, Jingshi

    2016-04-19

    Organelles are in constant communication with each other through exchange of proteins (mediated by trafficking vesicles) and lipids [mediated by both trafficking vesicles and lipid transfer proteins (LTPs)]. It has long been known that vesicle trafficking can be tightly regulated by the second messenger Ca(2+), allowing membrane protein transport to be adjusted according to physiological demands. However, it remains unclear whether LTP-mediated lipid transport can also be regulated by Ca(2+) In this work, we show that extended synaptotagmins (E-Syts), poorly understood membrane proteins at endoplasmic reticulum-plasma membrane contact sites, are Ca(2+)-dependent LTPs. Using both recombinant and endogenous mammalian proteins, we discovered that E-Syts transfer glycerophospholipids between membrane bilayers in the presence of Ca(2+) E-Syts use their lipid-accommodating synaptotagmin-like mitochondrial lipid binding protein (SMP) domains to transfer lipids. However, the SMP domains themselves cannot transport lipids unless the two membranes are tightly tethered by Ca(2+)-bound C2 domains. Strikingly, the Ca(2+)-regulated lipid transfer activity of E-Syts was fully recapitulated when the SMP domain was fused to the cytosolic domain of synaptotagmin-1, the Ca(2+)sensor in synaptic vesicle fusion, indicating that a common mechanism of membrane tethering governs the Ca(2+)regulation of lipid transfer and vesicle fusion. Finally, we showed that microsomal vesicles isolated from mammalian cells contained robust Ca(2+)-dependent lipid transfer activities, which were mediated by E-Syts. These findings established E-Syts as a novel class of LTPs and showed that LTP-mediated lipid trafficking, like vesicular transport, can be subject to tight Ca(2+)regulation.

  10. Concerted diffusion of lipids in raft-like membranes

    NARCIS (Netherlands)

    Apajalahti, Touko; Niemela, Perttu; Govindan, Praveen Nedumpully; Miettinen, Markus S.; Salonen, Emppu; Marrink, Siewert-Jan; Vattulainen, Ilpo

    2010-01-01

    Currently, there is no comprehensive model for the dynamics of cellular membranes. The understanding of even the basic dynamic processes, such as lateral diffusion of lipids, is still quite limited. Recent studies of one-component membrane systems have shown that instead of single-particle motions,

  11. Lipid raft localization of TLR2 and its co-receptors is independent of membrane lipid composition

    Directory of Open Access Journals (Sweden)

    Christine Hellwing

    2018-01-01

    Full Text Available Background Toll like receptors (TLRs are an important and evolutionary conserved class of pattern recognition receptors associated with innate immunity. The recognition of Gram-positive cell wall constituents strongly depends on TLR2. In order to be functional, TLR2 predominantly forms a heterodimer with TLR1 or TLR6 within specialized membrane microdomains, the lipid rafts. The membrane lipid composition and the physicochemical properties of lipid rafts are subject to modification by exogenous fatty acids. Previous investigations of our group provide evidence that macrophage enrichment with polyunsaturated fatty acids (PUFA induces a reordering of lipid rafts and non-rafts based on the incorporation of supplemented PUFA as well as their elongation and desaturation products. Methods In the present study we investigated potential constraining effects of membrane microdomain reorganization on the clustering of TLR2 with its co-receptors TLR1 and TLR6 within lipid rafts. To this end, RAW264.7 macrophages were supplemented with either docosahexaenoic acid (DHA or arachidonic acid (AA and analyzed for receptor expression and microdomain localization in context of TLR stimulation. Results and Conclusions Our analyses showed that receptor levels and microdomain localization were unchanged by PUFA supplementation. The TLR2 pathway, in contrast to the TLR4 signaling cascade, is not affected by exogenous PUFA at the membrane level.

  12. Influences of the Structure of Lipids on Thermal Stability of Lipid Membranes

    International Nuclear Information System (INIS)

    Hai Nan-Nan; Zhou Xin; Li Ming

    2015-01-01

    The binding free energy (BFE) of lipid to lipid bilayer is a critical factor to determine the thermal or mechanical stability of the bilayer. Although the molecular structure of lipids has significant impacts on BFE of the lipid, there lacks a systematic study on this issue. In this paper we use coarse-grained molecular dynamics simulation to investigate this problem for several typical phospholipids. We find that both the tail length and tail unsaturation can significantly affect the BFE of lipids but in opposite way, namely, BFE decreases linearly with increasing length, but increases linearly with addition of unsaturated bonds. Inspired by the specific structure of cholesterol which is a crucial component of biomembrane, we also find that introduction of carbo-ring-like structures to the lipid tail or to the bilayer may greatly enhance the stability of the bilayer. Our simulation also shows that temperature can influence the bilayer stability and this effect can be significant when the bilayer undergoes phase transition. These results may be helpful to the design of liposome or other self-assembled lipid systems. (paper)

  13. Tethered and Polymer Supported Bilayer Lipid Membranes: Structure and Function

    Directory of Open Access Journals (Sweden)

    Jakob Andersson

    2016-05-01

    Full Text Available Solid supported bilayer lipid membranes are model systems to mimic natural cell membranes in order to understand structural and functional properties of such systems. The use of a model system allows for the use of a wide variety of analytical tools including atomic force microscopy, impedance spectroscopy, neutron reflectometry, and surface plasmon resonance spectroscopy. Among the large number of different types of model membranes polymer-supported and tethered lipid bilayers have been shown to be versatile and useful systems. Both systems consist of a lipid bilayer, which is de-coupled from an underlying support by a spacer cushion. Both systems will be reviewed, with an emphasis on the effect that the spacer moiety has on the bilayer properties.

  14. On calculation of the electrostatic potential of a phosphatidylinositol phosphate-containing phosphatidylcholine lipid membrane accounting for membrane dynamics.

    Directory of Open Access Journals (Sweden)

    Jonathan C Fuller

    Full Text Available Many signaling events require the binding of cytoplasmic proteins to cell membranes by recognition of specific charged lipids, such as phosphoinositol-phosphates. As a model for a protein-membrane binding site, we consider one charged phosphoinositol phosphate (PtdIns(3P embedded in a phosphatidylcholine bilayer. As the protein-membrane binding is driven by electrostatic interactions, continuum solvent models require an accurate representation of the electrostatic potential of the phosphoinositol phosphate-containing membrane. We computed and analyzed the electrostatic potentials of snapshots taken at regular intervals from molecular dynamics simulations of the bilayer. We observe considerable variation in the electrostatic potential of the bilayer both along a single simulation and between simulations performed with the GAFF or CHARMM c36 force fields. However, we find that the choice of GAFF or CHARMM c36 parameters has little effect on the electrostatic potential of a given configuration of the bilayer with a PtdIns(3P embedded in it. From our results, we propose a remedian averaging method for calculating the electrostatic potential of a membrane system that is suitable for simulations of protein-membrane binding with a continuum solvent model.

  15. Molecular dynamics simulations of the effects of sodium dodecyl sulfate on lipid bilayer

    International Nuclear Information System (INIS)

    Xu Bin; Lin Wen-Qiang; Wang Xiao-Gang; Zhou Guo-Quan; Chen Jun-Lang; Zeng Song-wei

    2017-01-01

    Molecular dynamics simulations have been performed on the fully hydrated lipid bilayer with different concentrations of sodium dodecyl sulfate (SDS). SDS can readily penetrate into the membrane. The insertion of SDS causes a decrease in the bilayer area and increases in the bilayer thickness and lipid tail order, when the fraction of SDS is less than 28%. Through calculating the binding energy, we confirm that the presence of SDS strengthens the interactions among the DPPC lipids, while SDS molecules act as intermedia. Both the strong hydrophilic interactions between sulfate and phosphocholine groups and the hydrophobic interactions between SDS and DPPC hydrocarbon chains contribute to the tight packing and ordered alignment of the lipids. These results are in good agreement with the experimental observations and provide atomic level information that complements the experiments. (paper)

  16. Quantitative studies of antimicrobial peptide-lipid membrane interactions

    DEFF Research Database (Denmark)

    Kristensen, Kasper

    antimicrobial peptides interact with phospholipid membranes. Motivated by that fact, the scope of this thesis is to study these antimicrobial peptide-lipid membrane interactions. In particular, we attempt to study these interactions with a quantitative approach. For that purpose, we consider the three...... a significant problem for quantitative studies of antimicrobial peptide-lipid membrane interactions; namely that antimicrobial peptides adsorb to surfaces of glass and plastic. Specifically, we demonstrate that under standard experimental conditions, this effect is significant for mastoparan X, melittin...... lead to inaccurate conclusions, or even completely wrong conclusions, when interpreting the FCS data. We show that, if all of the pitfalls are avoided, then FCS is a technique with a large potential for quantitative studies of antimicrobial peptide-induced leakage of fluorescent markers from large...

  17. Asymmetric Hybrid Polymer-Lipid Giant Vesicles as Cell Membrane Mimics.

    Science.gov (United States)

    Peyret, Ariane; Ibarboure, Emmanuel; Le Meins, Jean-François; Lecommandoux, Sebastien

    2018-01-01

    Lipid membrane asymmetry plays an important role in cell function and activity, being for instance a relevant signal of its integrity. The development of artificial asymmetric membranes thus represents a key challenge. In this context, an emulsion-centrifugation method is developed to prepare giant vesicles with an asymmetric membrane composed of an inner monolayer of poly(butadiene)- b -poly(ethylene oxide) (PBut- b -PEO) and outer monolayer of 1-palmitoyl-2-oleoyl- sn -glycero-3-phosphocholine (POPC). The formation of a complete membrane asymmetry is demonstrated and its stability with time is followed by measuring lipid transverse diffusion. From fluorescence spectroscopy measurements, the lipid half-life is estimated to be 7.5 h. Using fluorescence recovery after photobleaching technique, the diffusion coefficient of 1,2-dioleoyl- sn -glycero-3-phosphoethanolamine- N -(lissamine rhodamine B sulfonyl) (DOPE-rhod, inserted into the POPC leaflet) is determined to be about D = 1.8 ± 0.50 μm 2 s -1 at 25 °C and D = 2.3 ± 0.7 μm 2 s -1 at 37 °C, between the characteristic values of pure POPC and pure polymer giant vesicles and in good agreement with the diffusion of lipids in a variety of biological membranes. These results demonstrate the ability to prepare a cell-like model system that displays an asymmetric membrane with transverse and translational diffusion properties similar to that of biological cells.

  18. Structural properties of lipid reconstructs and lipid composition of normotensive and hypertensive rat vascular smooth muscle cell membranes

    Directory of Open Access Journals (Sweden)

    T.R. Oliveira

    2009-09-01

    Full Text Available Multiple cell membrane alterations have been reported to be the cause of various forms of hypertension. The present study focuses on the lipid portion of the membranes, characterizing the microviscosity of membranes reconstituted with lipids extracted from the aorta and mesenteric arteries of spontaneously hypertensive (SHR and normotensive control rat strains (WKY and NWR. Membrane-incorporated phospholipid spin labels were used to monitor the bilayer structure at different depths. The packing of lipids extracted from both aorta and mesenteric arteries of normotensive and hypertensive rats was similar. Lipid extract analysis showed similar phospholipid composition for all membranes. However, cholesterol content was lower in SHR arteries than in normotensive animal arteries. These findings contrast with the fact that the SHR aorta is hyporeactive while the SHR mesenteric artery is hyperreactive to vasopressor agents when compared to the vessels of normotensive animal strains. Hence, factors other than microviscosity of bulk lipids contribute to the vascular smooth muscle reactivity and hypertension of SHR. The excess cholesterol in the arteries of normotensive animal strains apparently is not dissolved in bulk lipids and is not directly related to vascular reactivity since it is present in both the aorta and mesenteric arteries. The lower cholesterol concentrations in SHR arteries may in fact result from metabolic differences due to the hypertensive state or to genes that co-segregate with those that determine hypertension during the process of strain selection.

  19. Interaction of Dendritic Polymers with Synthetic Lipid and Cell Membranes

    Science.gov (United States)

    Mecke, Almut; Hong, Seungpyo; Bielinska, Anna U.; Banaszak Holl, Mark M.; Orr, Bradford G.; Baker, James R., Jr.

    2004-03-01

    Polyamidoamine (PAMAM) dendrimers are promising candidates for the development of nanoscale therapeutic transport agents. Here we present studies on dendrimer-membrane interactions leading to a better understanding of possible uptake mechanisms into cells. Using synthetic lipid and natural cell membranes as model systems it is shown that the effect of PAMAM dendrimers on a membrane strongly depends on the dendrimer generation, architecture and chemical properties of the branch end groups. Atomic force microscopy data indicates that generation 7 dendrimers have the ability to form small ( 10-100 nm) holes in a lipid bilayer. When dendrimers with otherwise identical chemical properties are arranged in a covalently linked cluster, no hole formation occurs. Dendrimer-lipid micelle formation is proposed and investigated as a possible mechanism for this behavior. Smaller dendrimers (generation 5) have a greatly reduced ability to remove lipid molecules from a bilayer. In addition to the size of the dendrimer, the charge of the branch end groups plays a significant role for dendrimer-membrane interactions. These results agree well with biological studies using cultured cells and point to a new mechanism of specific targeting and uptake into cells.

  20. Radiation-induced lipid peroxidation: influence of oxygen concentration and membrane lipid composition

    International Nuclear Information System (INIS)

    Wolters, H.; Tilburg, C.A.M. van; Konings, A.W.T.

    1987-01-01

    Radiation -induced lipid peroxidation phospholipid liposomes was investigated in terms of its dependence on lipid composition and oxygen concentration. Non-peroxidizable lipid incorporated in the liposomes reduced the rate of peroxidation of the peroxidizable phospholipid acyl chains, possibly by restricting the length of chain reactions. The latter effect is believed to be caused by interference of the non-peroxidizable lipids in the bilayer. At low oxygen concentration lipid peroxidation was reduced. The cause of this limited peroxidation may be a reduced number of radical initiation reactions possibly involving oxygen-derived superoxide radicals. Killing of proliferating mammalian cells, irradiated at oxygen concentrations ranging from 0 to 100%, appeared to be independent of the concentration of peroxidizable phospholipids in the cell membranes. This indicates that lipid peroxidation is not the determining process in radiation-induced reproductive cell death. (author)

  1. Interaction of the 106-126 prion peptide with lipid membranes and potential implication for neurotoxicity

    International Nuclear Information System (INIS)

    Dupiereux, Ingrid; Zorzi, Willy; Lins, Laurence; Brasseur, Robert; Colson, Pierre; Heinen, Ernst; Elmoualij, Benaissa

    2005-01-01

    Prion diseases are fatal neurodegenerative disorders characterized by the accumulation in the brain of an abnormally misfolded, protease-resistant, and β-sheet rich pathogenic isoform (PrP sc ) of the cellular prion protein (PrP c ). In the present work, we were interested to study the mode of prion protein interaction with the membrane using the 106-126 peptide and small unilamellar lipid vesicles as model. As previously demonstrated, we showed by MTS assay that PrP 106-126 induces alterations in the human neuroblastoma SH-SY5Y cell line. We demonstrated for the first time by lipid-mixing assay and by the liposome vesicle leakage test that PrP 106-126, a non-tilted peptide, induces liposome fusion thus a potential cell membrane destabilization, as supported by membrane integrity assay (LDH). By circular dichroism (CD) analysis we showed that the fusogenic property of PrP 106-126 in the presence of liposome is associated with a predominantly β-sheet structure. These data suggest that the fusogenic property associated with a predominant β-sheet structure exhibited by the prion peptides contributes to the neurotoxicity of these peptides by destabilizing cellular membranes. The latter might be attached at the membrane surface in a parallel orientation as shown by molecular modeling

  2. Physics of biological membranes

    Science.gov (United States)

    Mouritsen, Ole G.

    The biological membrane is a complex system consisting of an aqueous biomolecular planar aggregate of predominantly lipid and protein molecules. At physiological temperatures, the membrane may be considered a thin (˜50Å) slab of anisotropic fluid characterized by a high lateral mobility of the various molecular components. A substantial fraction of biological activity takes place in association with membranes. As a very lively piece of condensed matter, the biological membrane is a challenging research topic for both the experimental and theoretical physicists who are facing a number of fundamental physical problems including molecular self-organization, macromolecular structure and dynamics, inter-macromolecular interactions, structure-function relationships, transport of energy and matter, and interfacial forces. This paper will present a brief review of recent theoretical and experimental progress on such problems, with special emphasis on lipid bilayer structure and dynamics, lipid phase transitions, lipid-protein and lipid-cholesterol interactions, intermembrane forces, and the physical constraints imposed on biomembrane function and evolution. The paper advocates the dual point of view that there are a number of interesting physics problems in membranology and, at the same time, that the physical properties of biomembranes are important regulators of membrane function.

  3. Probing protein-lipid interactions by FRET between membrane fluorophores

    Science.gov (United States)

    Trusova, Valeriya M.; Gorbenko, Galyna P.; Deligeorgiev, Todor; Gadjev, Nikolai

    2016-09-01

    Förster resonance energy transfer (FRET) is a powerful fluorescence technique that has found numerous applications in medicine and biology. One area where FRET proved to be especially informative involves the intermolecular interactions in biological membranes. The present study was focused on developing and verifying a Monte-Carlo approach to analyzing the results of FRET between the membrane-bound fluorophores. This approach was employed to quantify FRET from benzanthrone dye ABM to squaraine dye SQ-1 in the model protein-lipid system containing a polycationic globular protein lysozyme and negatively charged lipid vesicles composed of phosphatidylcholine and phosphatidylglycerol. It was found that acceptor redistribution between the lipid bilayer and protein binding sites resulted in the decrease of FRET efficiency. Quantification of this effect in terms of the proposed methodology yielded both structural and binding parameters of lysozyme-lipid complexes.

  4. Dynamical and structural properties of lipid membranes in relation to liposomal drug delivery systems

    DEFF Research Database (Denmark)

    Jørgensen, Kent; Høyrup, Lise Pernille Kristine; Pedersen, Tina B.

    2001-01-01

    The structural and dynamical properties of DPPC liposomes containing lipopolymers (PEG-lipids) and charged DPPS lipids have been,studied in relation to the lipid membrane interaction of enzymes and peptides. The results suggest that both the lipid membrane structure and dynamics and in particular...

  5. Novel tilt-curvature coupling in lipid membranes

    Science.gov (United States)

    Terzi, M. Mert; Deserno, Markus

    2017-08-01

    On mesoscopic scales, lipid membranes are well described by continuum theories whose main ingredients are the curvature of a membrane's reference surface and the tilt of its lipid constituents. In particular, Hamm and Kozlov [Eur. Phys. J. E 3, 323 (2000)] have shown how to systematically derive such a tilt-curvature Hamiltonian based on the elementary assumption of a thin fluid elastic sheet experiencing internal lateral pre-stress. Performing a dimensional reduction, they not only derive the basic form of the effective surface Hamiltonian but also express its emergent elastic couplings as trans-membrane moments of lower-level material parameters. In the present paper, we argue, though, that their derivation unfortunately missed a coupling term between curvature and tilt. This term arises because, as one moves along the membrane, the curvature-induced change of transverse distances contributes to the area strain—an effect that was believed to be small but nevertheless ends up contributing at the same (quadratic) order as all other terms in their Hamiltonian. We illustrate the consequences of this amendment by deriving the monolayer and bilayer Euler-Lagrange equations for the tilt, as well as the power spectra of shape, tilt, and director fluctuations. A particularly curious aspect of our new term is that its associated coupling constant is the second moment of the lipid monolayer's lateral stress profile—which within this framework is equal to the monolayer Gaussian curvature modulus, κ¯ m. On the one hand, this implies that many theoretical predictions now contain a parameter that is poorly known (because the Gauss-Bonnet theorem limits access to the integrated Gaussian curvature); on the other hand, the appearance of κ¯ m outside of its Gaussian curvature provenance opens opportunities for measuring it by more conventional means, for instance by monitoring a membrane's undulation spectrum at short scales.

  6. Recent progress on lipid lateral heterogeneity in plasma membranes: from rafts to submicrometric domains

    Science.gov (United States)

    Carquin, Mélanie; D'Auria, Ludovic; Pollet, Hélène; Bongarzone, Ernesto R.; Tyteca, Donatienne

    2016-01-01

    The concept of transient nanometric domains known as lipid rafts has brought interest to reassess the validity of the Singer-Nicholson model of a fluid bilayer for cell membranes. However, this new view is still insufficient to explain the cellular control of surface lipid diversity or membrane deformability. During the past decade, the hypothesis that some lipids form large (submicrometric/mesoscale vs nanometric rafts) and stable (> min vs sec) membrane domains has emerged, largely based on indirect methods. Morphological evidence for stable submicrometric lipid domains, well-accepted for artificial and highly specialized biological membranes, was further reported for a variety of living cells from prokaryotes to yeast and mammalian cells. However, results remained questioned based on limitations of available fluorescent tools, use of poor lipid fixatives, and imaging artifacts due to non-resolved membrane projections. In this review, we will discuss recent evidence generated using powerful and innovative approaches such as lipid-specific toxin fragments that support the existence of submicrometric domains. We will integrate documented mechanisms involved in the formation and maintenance of these domains, and provide a perspective on their relevance on membrane deformability and regulation of membrane protein distribution. PMID:26738447

  7. Fluorescent Lipids: Functional Parts of Fusogenic Liposomes and Tools for Cell Membrane Labeling and Visualization

    Directory of Open Access Journals (Sweden)

    Christian Kleusch

    2012-01-01

    Full Text Available In this paper a rapid and highly efficient method for controlled incorporation of fluorescent lipids into living mammalian cells is introduced. Here, the fluorescent molecules have two consecutive functions: First, they trigger rapid membrane fusion between cellular plasma membranes and the lipid bilayers of their carrier particles, so called fusogenic liposomes, and second, after insertion into cellular membranes these molecules enable fluorescence imaging of cell membranes and membrane traffic processes. We tested the fluorescent derivatives of the following essential membrane lipids for membrane fusion: Ceramide, sphingomyelin, phosphocholine, phosphatidylinositol-bisphosphate, ganglioside, cholesterol, and cholesteryl ester. Our results show that all probed lipids could more efficiently be incorporated into the plasma membrane of living cells than by using other methods. Moreover, labeling occurred in a gentle manner under classical cell culture conditions reducing cellular stress responses. Staining procedures were monitored by fluorescence microscopy and it was observed that sphingolipids and cholesterol containing free hydroxyl groups exhibit a decreased distribution velocity as well as a longer persistence in the plasma membrane compared to lipids without hydroxyl groups like phospholipids or other artificial lipid analogs. After membrane staining, the fluorescent molecules were sorted into membranes of cell organelles according to their chemical properties and biological functions without any influence of the delivery system.

  8. The nonsteroidal anti-inflammatory drug indomethacin induces heterogeneity in lipid membranes: potential implication for its diverse biological action.

    Directory of Open Access Journals (Sweden)

    Yong Zhou

    2010-01-01

    Full Text Available The nonsteroidal anti-inflammatory drug (NSAID, indomethacin (Indo, has a large number of divergent biological effects, the molecular mechanism(s for which have yet to be fully elucidated. Interestingly, Indo is highly amphiphilic and associates strongly with lipid membranes, which influence localization, structure and function of membrane-associating proteins and actively regulate cell signaling events. Thus, it is possible that Indo regulates diverse cell functions by altering micro-environments within the membrane. Here we explored the effect of Indo on the nature of the segregated domains in a mixed model membrane composed of dipalmitoyl phosphatidyl-choline (di16:0 PC, or DPPC and dioleoyl phosphatidyl-choline (di18:1 PC or DOPC and cholesterol that mimics biomembranes.Using a series of fluorescent probes in a fluorescence resonance energy transfer (FRET study, we found that Indo induced separation between gel domains and fluid domains in the mixed model membrane, possibly by enhancing the formation of gel-phase domains. This effect originated from the ability of Indo to specifically target the ordered domains in the mixed membrane. These findings were further confirmed by measuring the ability of Indo to affect the fluidity-dependent fluorescence quenching and the level of detergent resistance of membranes.Because the tested lipids are the main lipid constituents in cell membranes, the observed formation of gel phase domains induced by Indo potentially occurs in biomembranes. This marked Indo-induced change in phase behavior potentially alters membrane protein functions, which contribute to the wide variety of biological activities of Indo and other NSAIDs.

  9. Polymer-Induced Swelling of Solid-Supported Lipid Membranes

    Directory of Open Access Journals (Sweden)

    Martin Kreuzer

    2015-12-01

    Full Text Available In this paper, we study the interaction of charged polymers with solid-supported 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC membranes by in-situ neutron reflectivity. We observe an enormous swelling of the oligolamellar lipid bilayer stacks after incubation in solutions of poly(allylamine hydrochloride (PAH in D2O. The positively charged polyelectrolyte molecules interact with the lipid bilayers and induce a drastic increase in their d-spacing by a factor of ~4. Temperature, time, and pH influence the swollen interfacial lipid linings. From our study, we conclude that electrostatic interactions introduced by the adsorbed PAH are the main cause for the drastic swelling of the lipid coatings. The DMPC membrane stacks do not detach from their solid support at T > Tm. Steric interactions, also introduced by the PAH molecules, are held responsible for the stabilizing effect. We believe that this novel system offers great potential for fundamental studies of biomembrane properties, keeping the membrane’s natural fluidity and freedom, decoupled from a solid support at physiological conditions.

  10. Proteomic Analysis of Lipid Raft-Like Detergent-Resistant Membranes of Lens Fiber Cells.

    Science.gov (United States)

    Wang, Zhen; Schey, Kevin L

    2015-12-01

    Plasma membranes of lens fiber cells have high levels of long-chain saturated fatty acids, cholesterol, and sphingolipids-key components of lipid rafts. Thus, lipid rafts are expected to constitute a significant portion of fiber cell membranes and play important roles in lens biology. The purpose of this study was to characterize the lens lipid raft proteome. Quantitative proteomics, both label-free and iTRAQ methods, were used to characterize lens fiber cell lipid raft proteins. Detergent-resistant, lipid raft membrane (DRM) fractions were isolated by sucrose gradient centrifugation. To confirm protein localization to lipid rafts, protein sensitivity to cholesterol removal by methyl-β-cyclodextrin was quantified by iTRAQ analysis. A total of 506 proteins were identified in raft-like detergent-resistant membranes. Proteins identified support important functions of raft domains in fiber cells, including trafficking, signal transduction, and cytoskeletal organization. In cholesterol-sensitivity studies, 200 proteins were quantified and 71 proteins were strongly affected by cholesterol removal. Lipid raft markers flotillin-1 and flotillin-2 and a significant fraction of AQP0, MP20, and AQP5 were found in the DRM fraction and were highly sensitive to cholesterol removal. Connexins 46 and 50 were more abundant in nonraft fractions, but a small fraction of each was found in the DRM fraction and was strongly affected by cholesterol removal. Quantification of modified AQP0 confirmed that fatty acylation targeted this protein to membrane raft domains. These data represent the first comprehensive profile of the lipid raft proteome of lens fiber cells and provide information on membrane protein organization in these cells.

  11. Interplay of electrostatics and lipid packing determines the binding of charged polymer coated nanoparticles to model membranes.

    Science.gov (United States)

    Biswas, Nupur; Bhattacharya, Rupak; Saha, Arindam; Jana, Nikhil R; Basu, Jaydeep K

    2015-10-07

    Understanding of nanoparticle-membrane interactions is useful for various applications of nanoparticles like drug delivery and imaging. Here we report on the studies of interaction between hydrophilic charged polymer coated semiconductor quantum dot nanoparticles with model lipid membranes. Atomic force microscopy and X-ray reflectivity measurements suggest that cationic nanoparticles bind and penetrate bilayers of zwitterionic lipids. Penetration and binding depend on the extent of lipid packing and result in the disruption of the lipid bilayer accompanied by enhanced lipid diffusion. On the other hand, anionic nanoparticles show minimal membrane binding although, curiously, their interaction leads to reduction in lipid diffusivity. It is suggested that the enhanced binding of cationic QDs at higher lipid packing can be understood in terms of the effective surface potential of the bilayers which is tunable through membrane lipid packing. Our results bring forth the subtle interplay of membrane lipid packing and electrostatics which determine nanoparticle binding and penetration of model membranes with further implications for real cell membranes.

  12. The role of biomembrane lipids in the molecular mechanism of ion transport radiation damage

    International Nuclear Information System (INIS)

    Medvedev, B.I.; Evtodienko, Yu.V.; Yaguzhinsky, L.S.; Kuzin, A.M.

    1977-01-01

    Increase in the rate of ATP synthesis (I.4-I.6 times), Ca 2+ -capacity (I.4-I.8 times), membrane potential (by 20-50 mv) and decrease in K - -conductivity (2.5-3 times) in rat liver mitochondria was observed three hours after γ-irradiation at a dose of 1000r. The process of oxidative phosphorylation was normalized 24 hours later, whereas damages of Ca 2+ -accumulation and K + -conductivity remain. The molecular mechanism of reduction in K + -permeability of mitochondrial membranes has been studied. The endogenous regulators of ionic transport in the lipid phase of mitochondrial biomembranes were investigated before and after γ-irradiation. It was revealed that K + -conductivity of the artificial phospholipid membranes (APM) formed of the phospholipids from irradiated mitochondria was substantially lower than that in the control. Using thin-layer chromatography the minor phospholipid fraction which increases K + -conductivity of APM was isolated from the lipids of unirradiated mitochondria. In the lipid preparations of irradiated mitochondria the minor phospholipid fraction content is sharply lowered (or absent at all). Besides the content of lysoforms of phosphatidylcholine and phosphatidylethanolamine as well as that of fatty acids and cholesterol esters were reduced 24 hours after irradiation. Three compounds with different capability to increase the APM conductivity for monovalent ions were revealed in the composition of the minor fraction. One of these components was shown to be lysopolyglycerophosphatide (lysodiphosphatidylglycerol). The role of the enzyme systems involved in radiational changes of the membrane lipid components and the importance of these phenomena for cell radiosensitivity will be discussed

  13. Acyl transfer from membrane lipids to peptides is a generic process.

    Science.gov (United States)

    Dods, Robert H; Bechinger, Burkhard; Mosely, Jackie A; Sanderson, John M

    2013-11-15

    The generality of acyl transfer from phospholipids to membrane-active peptides has been probed using liquid chromatography-mass spectrometry analysis of peptide-lipid mixtures. The peptides examined include melittin, magainin II, PGLa, LAK1, LAK3 and penetratin. Peptides were added to liposomes with membrane lipid compositions ranging from pure phosphatidylcholine (PC) to mixtures of PC with phosphatidylethanolamine, phosphatidylserine or phosphatidylglycerol. Experiments were typically conducted at pH7.4 at modest salt concentrations (90 mM NaCl). In favorable cases, lipidated peptides were further characterized by tandem mass spectrometry methods to determine the sites of acylation. Melittin and magainin II were the most reactive peptides, with significant acyl transfer detected under all conditions and membrane compositions. Both peptides were lipidated at the N-terminus by transfer from PC, phosphatidylethanolamine, phosphatidylserine or phosphatidylglycerol, as well as at internal sites: lysine for melittin; serine and lysine for magainin II. Acyl transfer could be detected within 3h of melittin addition to negatively charged membranes. The other peptides were less reactive, but for each peptide, acylation was found to occur in at least one of the conditions examined. The data demonstrate that acyl transfer is a generic process for peptides bound to membranes composed of diacylglycerophospholipids. Phospholipid membranes cannot therefore be considered as chemically inert toward peptides and by extension proteins. © 2013. Published by Elsevier Ltd. All rights reserved.

  14. Phosphoinositides, Major Actors in Membrane Trafficking and Lipid Signaling Pathways

    Directory of Open Access Journals (Sweden)

    Johan-Owen De Craene

    2017-03-01

    Full Text Available Phosphoinositides are lipids involved in the vesicular transport of proteins and lipids between the different compartments of eukaryotic cells. They act by recruiting and/or activating effector proteins and thus are involved in regulating various cellular functions, such as vesicular budding, membrane fusion and cytoskeleton dynamics. Although detected in small concentrations in membranes, their role is essential to cell function, since imbalance in their concentrations is a hallmark of many cancers. Their synthesis involves phosphorylating/dephosphorylating positions D3, D4 and/or D5 of their inositol ring by specific lipid kinases and phosphatases. This process is tightly regulated and specific to the different intracellular membranes. Most enzymes involved in phosphoinositide synthesis are conserved between yeast and human, and their loss of function leads to severe diseases (cancer, myopathy, neuropathy and ciliopathy.

  15. Membrane Curvature and Lipid Composition Synergize To Regulate N-Ras Anchor Recruitment

    DEFF Research Database (Denmark)

    Larsen, Jannik B.; Kennard, Celeste; Pedersen, Søren L.

    2017-01-01

    Proteins anchored to membranes through covalently linked fatty acids and/or isoprenoid groups play crucial roles in all forms of life. Sorting and trafficking of lipidated proteins has traditionally been discussed in the context of partitioning to membrane domains of different lipid composition. We...

  16. An ER protein functionally couples neutral lipid metabolism on lipid droplets to membrane lipid synthesis in the ER.

    Science.gov (United States)

    Markgraf, Daniel F; Klemm, Robin W; Junker, Mirco; Hannibal-Bach, Hans K; Ejsing, Christer S; Rapoport, Tom A

    2014-01-16

    Eukaryotic cells store neutral lipids such as triacylglycerol (TAG) in lipid droplets (LDs). Here, we have addressed how LDs are functionally linked to the endoplasmic reticulum (ER). We show that, in S. cerevisiae, LD growth is sustained by LD-localized enzymes. When LDs grow in early stationary phase, the diacylglycerol acyl-transferase Dga1p moves from the ER to LDs and is responsible for all TAG synthesis from diacylglycerol (DAG). During LD breakdown in early exponential phase, an ER membrane protein (Ice2p) facilitates TAG utilization for membrane-lipid synthesis. Ice2p has a cytosolic domain with affinity for LDs and is required for the efficient utilization of LD-derived DAG in the ER. Ice2p breaks a futile cycle on LDs between TAG degradation and synthesis, promoting the rapid relocalization of Dga1p to the ER. Our results show that Ice2p functionally links LDs with the ER and explain how cells switch neutral lipid metabolism from storage to consumption. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  17. An ER Protein Functionally Couples Neutral Lipid Metabolism on Lipid Droplets to Membrane Lipid Synthesis in the ER

    Directory of Open Access Journals (Sweden)

    Daniel F. Markgraf

    2014-01-01

    Full Text Available Eukaryotic cells store neutral lipids such as triacylglycerol (TAG in lipid droplets (LDs. Here, we have addressed how LDs are functionally linked to the endoplasmic reticulum (ER. We show that, in S. cerevisiae, LD growth is sustained by LD-localized enzymes. When LDs grow in early stationary phase, the diacylglycerol acyl-transferase Dga1p moves from the ER to LDs and is responsible for all TAG synthesis from diacylglycerol (DAG. During LD breakdown in early exponential phase, an ER membrane protein (Ice2p facilitates TAG utilization for membrane-lipid synthesis. Ice2p has a cytosolic domain with affinity for LDs and is required for the efficient utilization of LD-derived DAG in the ER. Ice2p breaks a futile cycle on LDs between TAG degradation and synthesis, promoting the rapid relocalization of Dga1p to the ER. Our results show that Ice2p functionally links LDs with the ER and explain how cells switch neutral lipid metabolism from storage to consumption.

  18. Lateral mobility of plasma membrane lipids in dividing Xenopus eggs

    OpenAIRE

    Laat, S.W. de; Tetteroo, P.A.T.; Bluemink, J.G.; Dictus, W.J.A.G.; Zoelen, E.J.J. van

    1984-01-01

    The lateral mobility of plasma membrane lipids was analyzed during first cleavage of Xaopus Levis eggs by fluorescence photobleaching recovery (FPR) measurements, using the lipid analogs 5-(N-hexadecanoyl)aminofluorescein (“HEDAF”) and 5-(N-tetradecanoyl)aminofluorescein (“TEDAF”) as probes. The preexisting plasma membrane of the animal side showed an inhomogeneous, dotted fluorescence pattern after labeling and the lateral mobility of both probes used was below the detection limits of the FP...

  19. Importance of the hexagonal lipid phase in biological membrane organization

    OpenAIRE

    Jouhet, Juliette

    2013-01-01

    Domains are present in every natural membrane. They are characterized by a distinctive protein and/or lipid composition. Their size is highly variable from the nano- to the micrometer scale. The domains confer specific properties to the membrane leading to original structure and function. The determinants leading to domain organization are therefore important but remain obscure. This review presents how the ability of lipids to organize into hexagonal II or lamellar phases can promote particu...

  20. Membrane binding of an acyl-lactoferricin B antimicrobial peptide from solid-state NMR experiments and molecular dynamics simulations.

    Science.gov (United States)

    Romo, Tod D; Bradney, Laura A; Greathouse, Denise V; Grossfield, Alan

    2011-08-01

    One approach to the growing health problem of antibiotic resistant bacteria is the development of antimicrobial peptides (AMPs) as alternative treatments. The mechanism by which these AMPs selectively attack the bacterial membrane is not well understood, but is believed to depend on differences in membrane lipid composition. N-acylation of the small amidated hexapeptide, RRWQWR-NH(2) (LfB6), derived from the 25 amino acid bovine lactoferricin (LfB25) can be an effective means to improve its antimicrobial properties. Here, we investigate the interactions of C6-LfB6, N-acylated with a 6 carbon fatty acid, with model lipid bilayers with two distinct compositions: 3:1 POPE:POPG (negatively charged) and POPC (zwitterionic). Results from solid-state (2)H and (31)P NMR experiments are compared with those from an ensemble of all-atom molecular dynamic simulations running in aggregate more than 8.6ms. (2)H NMR spectra reveal no change in the lipid acyl chain order when C6-LfB6 is bound to the negatively charged membrane and only a slight decrease in order when it is bound to the zwitterionic membrane. (31)P NMR spectra show no significant perturbation of the phosphate head groups of either lipid system in the presence of C6-LfB6. Molecular dynamic simulations show that for the negatively charged membrane, the peptide's arginines drive the initial association with the membrane, followed by attachment of the tryptophans at the membrane-water interface, and finally by the insertion of the C6 tails deep into the bilayer. In contrast, the C6 tail leads the association with the zwitterionic membrane, with the tryptophans and arginines associating with the membrane-water interface in roughly the same amount of time. We find similar patterns in the order parameters from our simulations. Moreover, we find in the simulations that the C6 tail can insert 1-2Å more deeply into the zwitterionic membrane and can exist in a wider range of angles than in the negatively charged membrane. We

  1. The structure of ions and zwitterionic lipids regulates the charge of dipolar membranes.

    Science.gov (United States)

    Szekely, Or; Steiner, Ariel; Szekely, Pablo; Amit, Einav; Asor, Roi; Tamburu, Carmen; Raviv, Uri

    2011-06-21

    In pure water, zwitterionic lipids form lamellar phases with an equilibrium water gap on the order of 2 to 3 nm as a result of the dominating van der Waals attraction between dipolar bilayers. Monovalent ions can swell those neutral lamellae by a small amount. Divalent ions can adsorb onto dipolar membranes and charge them. Using solution X-ray scattering, we studied how the structure of ions and zwitterionic lipids regulates the charge of dipolar membranes. We found that unlike monovalent ions that weakly interact with all of the examined dipolar membranes, divalent and trivalent ions adsorb onto membranes containing lipids with saturated tails, with an association constant on the order of ∼10 M(-1). One double bond in the lipid tail is sufficient to prevent divalent ion adsorption. We suggest that this behavior is due to the relatively loose packing of lipids with unsaturated tails that increases the area per lipid headgroup, enabling their free rotation. Divalent ion adsorption links two lipids and limits their free rotation. The ion-dipole interaction gained by the adsorption of the ions onto unsaturated membranes is insufficient to compensate for the loss of headgroup free-rotational entropy. The ion-dipole interaction is stronger for cations with a higher valence. Nevertheless, polyamines behave as monovalent ions near dipolar interfaces in the sense that they interact weakly with the membrane surface, whereas in the bulk their behavior is similar to that of multivalent cations. Advanced data analysis and comparison with theory provide insight into the structure and interactions between ion-induced regulated charged interfaces. This study models biologically relevant interactions between cell membranes and various ions and the manner in which the lipid structure governs those interactions. The ability to monitor these interactions creates a tool for probing systems that are more complex and forms the basis for controlling the interactions between dipolar

  2. DNA release from lipoplexes by anionic lipids: correlation with lipid mesomorphism, interfacial curvature, and membrane fusion

    Energy Technology Data Exchange (ETDEWEB)

    Tarahovsky, Yury S.; Koynova, Rumiana; MacDonald, Robert C. (Northwestern)

    2010-01-18

    DNA release from lipoplexes is an essential step during lipofection and is probably a result of charge neutralization by cellular anionic lipids. As a model system to test this possibility, fluorescence resonance energy transfer between DNA and lipid covalently labeled with Cy3 and BODIPY, respectively, was used to monitor the release of DNA from lipid surfaces induced by anionic liposomes. The separation of DNA from lipid measured this way was considerably slower and less complete than that estimated with noncovalently labeled DNA, and depends on the lipid composition of both lipoplexes and anionic liposomes. This result was confirmed by centrifugal separation of released DNA and lipid. X-ray diffraction revealed a clear correlation of the DNA release capacity of the anionic lipids with the interfacial curvature of the mesomorphic structures developed when the anionic and cationic liposomes were mixed. DNA release also correlated with the rate of fusion of anionic liposomes with lipoplexes. It is concluded that the tendency to fuse and the phase preference of the mixed lipid membranes are key factors for the rate and extent of DNA release. The approach presented emphasizes the importance of the lipid composition of both lipoplexes and target membranes and suggests optimal transfection may be obtained by tailoring lipoplex composition to the lipid composition of target cells.

  3. Vesicle fusion with bilayer lipid membrane controlled by electrostatic interaction

    Directory of Open Access Journals (Sweden)

    Azusa Oshima

    2017-09-01

    Full Text Available The fusion of proteoliposomes is a promising approach for incorporating membrane proteins in artificial lipid membranes. In this study, we employed an electrostatic interaction between vesicles and supported bilayer lipid membranes (s-BLMs to control the fusion process. We combined large unilamellar vesicles (LUVs containing anionic lipids, which we used instead of proteoliposomes, and s-BLMs containing cationic lipids to control electrostatic interaction. Anionic LUVs were never adsorbed or ruptured on the SiO2 substrate with a slight negative charge, and selectively fused with cationic s-BLMs. The LUVs can be fused effectively to the target position. Furthermore, as the vesicle fusion proceeds and some of the positive charges are neutralized, the attractive interaction weakens and finally the vesicle fusion saturates. In other words, we can control the number of LUVs fused with s-BLMs by controlling the concentration of the cationic lipids in the s-BLMs. The fluidity of the s-BLMs after vesicle fusion was confirmed to be sufficiently high. This indicates that the LUVs attached to the s-BLMs were almost completely fused, and there were few intermediate state vesicles in the fusion process. We could control the position and amount of vesicle fusion with the s-BLMs by employing an electrostatic interaction.

  4. Penetration of the signal sequence of Escherichia coli PhoE protein into phospholipid model membranes leads to lipid-specific changes in signal peptide structure and alterations of lipid organization

    International Nuclear Information System (INIS)

    Batenburg, A.M.; Demel, R.A.; Verkleij, A.J.; de Kruijff, B.

    1988-01-01

    In order to obtain more insight in the initial steps of the process of protein translocation across membranes, biophysical investigations were undertaken on the lipid specificity and structural consequences of penetration of the PhoE signal peptide into lipid model membranes and on the conformation of the signal peptide adopted upon interaction with the lipids. When the monolayer technique and differential scanning calorimetry are used, a stronger penetration is observed for negatively charged lipids, significantly influenced by the physical state of the lipid but not by temperature or acyl chain unsaturation as such. Although the interaction is principally electrostatic, as indicated also by the strong penetration of N-terminal fragments into negatively charged lipid monolayers, the effect of ionic strength suggests an additional hydrophobic component. Most interestingly with regard to the mechanism of protein translocation, the molecular area of the peptide in the monolayer also shows lipid specificity: the area in the presence of PC is consistent with a looped helical orientation, whereas in the presence of cardiolipin a time-dependent conformational change is observed, most likely leading from a looped to a stretched orientation with the N-terminus directed toward the water. This is in line also with the determined peptide-lipid stoichiometry. Preliminary 31 P NMR and electron microscopy data on the interaction with lipid bilayer systems indicate loss of bilayer structure

  5. Surface functionalization of a polymeric lipid bilayer for coupling a model biological membrane with molecules, cells, and microstructures.

    Science.gov (United States)

    Morigaki, Kenichi; Mizutani, Kazuyuki; Saito, Makoto; Okazaki, Takashi; Nakajima, Yoshihiro; Tatsu, Yoshiro; Imaishi, Hiromasa

    2013-02-26

    We describe a stable and functional model biological membrane based on a polymerized lipid bilayer with a chemically modified surface. A polymerized lipid bilayer was formed from a mixture of two diacetylene-containing phospholipids, 1,2-bis(10,12-tricosadiynoyl)-sn-glycero-3-phosphocholine (DiynePC) and 1,2-bis(10,12-tricosadiynoyl)-sn-glycero-3-phosphoethanolamine (DiynePE). DiynePC formed a stable bilayer structure, whereas the ethanolamine headgroup of DiynePE enabled functional molecules to be grafted onto the membrane surface. Copolymerization of DiynePC and DiynePE resulted in a robust bilayer. Functionalization of the polymeric bilayer provided a route to a robust and biomimetic surface that can be linked with biomolecules, cells, and three-dimensional (3D) microstructures. Biotin and peptides were grafted onto the polymeric bilayer for attaching streptavidin and cultured mammalian cells by molecular recognition, respectively. Nonspecific adsorption of proteins and cells on polymeric bilayers was minimum. DiynePE was also used to attach a microstructure made of an elastomer (polydimethylsiloxan: PDMS) onto the membrane, forming a confined aqueous solution between the two surfaces. The microcompartment enabled us to assay the activity of a membrane-bound enzyme (cyochrome P450). Natural (fluid) lipid bilayers were incorporated together with membrane-bound proteins by lithographically polymerizing DiynePC/DiynePE bilayers. The hybrid membrane of functionalized polymeric bilayers and fluid bilayers offers a novel platform for a wide range of biomedical applications including biosensor, bioassay, cell culture, and cell-based assay.

  6. Isolation and characterization of lipid rafts in Emiliania huxleyi: a role for membrane microdomains in host-virus interactions.

    Science.gov (United States)

    Rose, Suzanne L; Fulton, James M; Brown, Christopher M; Natale, Frank; Van Mooy, Benjamin A S; Bidle, Kay D

    2014-04-01

    Coccolithoviruses employ a suite of glycosphingolipids (GSLs) to successfully infect the globally important coccolithophore Emiliania huxleyi. Lipid rafts, chemically distinct membrane lipid microdomains that are enriched in GSLs and are involved in sensing extracellular stimuli and activating signalling cascades through protein-protein interactions, likely play a fundamental role in host-virus interactions. Using combined lipidomics, proteomics and bioinformatics, we isolated and characterized the lipid and protein content of lipid rafts from control E. huxleyi cells and those infected with EhV86, the type strain for Coccolithovirus. Lipid raft-enriched fractions were isolated and purified as buoyant, detergent-resistant membranes (DRMs) in OptiPrep density gradients. Transmission electron microscopy of vesicle morphology, polymerase chain reaction amplification of the EhV major capsid protein gene and immunoreactivity to flotillin antisera served as respective physical, molecular and biochemical markers. Subsequent lipid characterization of DRMs via high performance liquid chromatography-triple quadrapole mass spectrometry revealed four distinct GSL classes. Parallel proteomic analysis confirmed flotillin as a major lipid raft protein, along with a variety of proteins affiliated with host defence, programmed cell death and innate immunity pathways. The detection of an EhV86-encoded C-type lectin-containing protein confirmed that infection occurs at the interface between lipid rafts and cellular stress/death pathways via specific GSLs and raft-associated proteins. © 2013 Society for Applied Microbiology and John Wiley & Sons Ltd.

  7. The Position of Aβ22-40 and Aβ1-42 in Anionic Lipid Membranes Containing Cholesterol.

    Science.gov (United States)

    Barrett, Matthew A; Alsop, Richard J; Hauß, Thomas; Rheinstädter, Maikel C

    2015-11-30

    Amyloid-β peptides interact with cell membranes in the human brain and are associated with neurodegenerative diseases, such as Alzheimer's disease. An emerging explanation of the molecular mechanism, which results in neurodegeneration, places the cause of neurotoxicity of the amyloid- peptides on their potentially negative interaction with neuronal membranes. It is known that amyloid-β peptides interact with the membrane, modifying the membrane's structural and dynamic properties. We present a series of X-ray diffraction experiments on anionic model lipid membranes containing various amounts of cholesterol. These experiments provide experimental evidence for an interaction of both the full length amyloid-β1-42 peptide, and the peptide fragment amyloid-β22-40 with anionic bilayer containing cholesterol. The location of the amyloid-β peptides was determined from these experiments, with the full length peptide embedding into the membrane, and the peptide fragment occupying 2 positions-on the membrane surface and embedded into the membrane core.

  8. Ultraviolet radiation-induced lipid peroxidation in liposomal membrane: modification by capsaicin

    International Nuclear Information System (INIS)

    De, A.K.; Ghosh, J.J.; Mandal, T.K.

    1993-01-01

    Ultraviolet-radiation has been reported to cause lipid peroxidation in the liposomal membrane. In the present study, treatment with capsaicin, (8-methyl-n-vanillyl-6-nonenamide), the pungent principle of red hot pepper, was shown to modify UV-induced lipid peroxidation in the liposomal membrane. Treatment with low doses of capsaicin (less than 0.1 μg/mL of phosphatidyl choline liposome) produced a significant increase in UV-induced lipid peroxidation, while high doses (0.1-0.5 μg/mL of PC liposome) caused a significant decrease of UV-induced peroxidation

  9. Ultraviolet radiation-induced lipid peroxidation in liposomal membrane: modification by capsaicin

    Energy Technology Data Exchange (ETDEWEB)

    De, A. K.; Ghosh, J. J.; Mandal, T. K. [University College of Science, Department of Biochemistry, 35 Ballygunge Circular Road, Calcutta 700-019 (India)

    1993-07-01

    Ultraviolet-radiation has been reported to cause lipid peroxidation in the liposomal membrane. In the present study, treatment with capsaicin, (8-methyl-n-vanillyl-6-nonenamide), the pungent principle of red hot pepper, was shown to modify UV-induced lipid peroxidation in the liposomal membrane. Treatment with low doses of capsaicin (less than 0.1 μg/mL of phosphatidyl choline liposome) produced a significant increase in UV-induced lipid peroxidation, while high doses (0.1-0.5 μg/mL of PC liposome) caused a significant decrease of UV-induced peroxidation.

  10. Ionic protein-lipid interaction at the plasma membrane: what can the charge do?

    Science.gov (United States)

    Li, Lunyi; Shi, Xiaoshan; Guo, Xingdong; Li, Hua; Xu, Chenqi

    2014-03-01

    Phospholipids are the major components of cell membranes, but they have functional roles beyond forming lipid bilayers. In particular, acidic phospholipids form microdomains in the plasma membrane and can ionically interact with proteins via polybasic sequences, which can have functional consequences for the protein. The list of proteins regulated by ionic protein-lipid interaction has been quickly expanding, and now includes membrane proteins, cytoplasmic soluble proteins, and viral proteins. Here we review how acidic phospholipids in the plasma membrane regulate protein structure and function via ionic interactions, and how Ca(2+) regulates ionic protein-lipid interactions via direct and indirect mechanisms. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. El Tor hemolysin of Vibrio cholerae O1 forms channels in planar lipid bilayer membranes.

    Science.gov (United States)

    Ikigai, H; Ono, T; Iwata, M; Nakae, T; Shimamura, T

    1997-05-15

    We investigated the channel formation by El Tor hemolysin (molecular mass, 65 kDa) of Vibrio cholerae O1 biotype El Tor in planar lipid bilayers. The El Tor hemolysin channel exhibited asymmetric and hyperbolic membrane current with increasing membrane potential, meaning that the channel is voltage dependent. The zero-current membrane potential measured in KCI solution showed that permeability ratio PK+/PCl- was 0.16, indicating that the channel is 6-fold more anion selective over cation. The hemolysin channel frequently flickered in the presence of divalent cations, suggesting that the channel spontaneously opens and closes. These data imply that the El Tor hemolysin damages target cells by the formation of transmembrane channels and, consequently, is the cause of osmotic cytolysis.

  12. Membrane Lipid Replacement for chronic illnesses, aging and cancer using oral glycerolphospholipid formulations with fructooligosaccharides to restore phospholipid function in cellular membranes, organelles, cells and tissues.

    Science.gov (United States)

    Nicolson, Garth L; Ash, Michael E

    2017-09-01

    Membrane Lipid Replacement is the use of functional, oral supplements containing mixtures of cell membrane glycerolphospholipids, plus fructooligosaccharides (for protection against oxidative, bile acid and enzymatic damage) and antioxidants, in order to safely replace damaged, oxidized, membrane phospholipids and restore membrane, organelle, cellular and organ function. Defects in cellular and intracellular membranes are characteristic of all chronic medical conditions, including cancer, and normal processes, such as aging. Once the replacement glycerolphospholipids have been ingested, dispersed, complexed and transported, while being protected by fructooligosaccharides and several natural mechanisms, they can be inserted into cell membranes, lipoproteins, lipid globules, lipid droplets, liposomes and other carriers. They are conveyed by the lymphatics and blood circulation to cellular sites where they are endocytosed or incorporated into or transported by cell membranes. Inside cells the glycerolphospholipids can be transferred to various intracellular membranes by lipid globules, liposomes, membrane-membrane contact or by lipid carrier transfer. Eventually they arrive at their membrane destinations due to 'bulk flow' principles, and there they can stimulate the natural removal and replacement of damaged membrane lipids while undergoing further enzymatic alterations. Clinical trials have shown the benefits of Membrane Lipid Replacement in restoring mitochondrial function and reducing fatigue in aged subjects and chronically ill patients. Recently Membrane Lipid Replacement has been used to reduce pain and other symptoms as well as removing hydrophobic chemical contaminants, suggesting that there are additional new uses for this safe, natural medicine supplement. This article is part of a Special Issue entitled: Membrane Lipid Therapy: Drugs Targeting Biomembranes edited by Pablo V. Escribá. Copyright © 2017 The Author(s). Published by Elsevier B.V. All rights

  13. Assay of flippase activity in proteoliposomes using fluorescent lipid derivatives

    DEFF Research Database (Denmark)

    Marek, Magdalena; Günther-Pomorski, Thomas

    2016-01-01

    Specific membrane proteins, termed lipid flippases, play a central role in facilitating the movement of lipids across cellular membranes. In this protocol, we describe the reconstitution of ATP-driven lipid flippases in liposomes and the analysis of their in vitro flippase activity based on the use...... of fluorescent lipid derivatives. Working with purified and reconstituted systems provides a well-defined experimental setup and allows to directly characterize these membrane proteins at the molecular level....

  14. Lateral mobility of plasma membrane lipids in dividing Xenopus eggs.

    Science.gov (United States)

    Tetteroo, P A; Bluemink, J G; Dictus, W J; van Zoelen, E J; de Laat, S W

    1984-07-01

    The lateral mobility of plasma membrane lipids was analyzed during first cleavage of Xenopus laevis eggs by fluorescence photobleaching recovery (FPR) measurements, using the lipid analogs 5-(N-hexadecanoyl)aminofluorescein ("HEDAF") and 5-(N-tetradecanoyl)aminofluorescein ("TEDAF") as probes. The preexisting plasma membrane of the animal side showed an inhomogeneous, dotted fluorescence pattern after labeling and the lateral mobility of both probes used was below the detection limits of the FPR method (D much less than 10(-10) cm2/sec). In contrast, the preexisting plasma membrane of the vegetal side exhibited homogeneous fluorescence and the lateral diffusion coefficient of both probes used was relatively high (HEDAF, D = 2.8 X 10(-8) cm2/sec; TEDAF, D = 2.4 X 10(-8) cm2/sec). In the cleaving egg visible transfer of HEDAF or TEDAF from prelabeled plasma membrane to the new membrane in the furrow did not occur, even on the vegetal side. Upon labeling during cleavage, however, the new membrane was uniformly labeled and both probes were mobile, as in the vegetal preexisting plasma membrane. These data show that the membrane of the dividing Xenopus egg comprises three macrodomains: (i) the animal preexisting plasma membrane; (ii) the vegetal preexisting plasma membrane; (iii) the new furrow membrane.

  15. Structure and physical properties of bio membranes and model membranes

    International Nuclear Information System (INIS)

    Tibor Hianik

    2006-01-01

    Bio membranes belong to the most important structures of the cell and the cell organelles. They play not only structural role of the barrier separating the external and internal part of the membrane but contain also various functional molecules, like receptors, ionic channels, carriers and enzymes. The cell membrane also preserves non-equilibrium state in a cell which is crucial for maintaining its excitability and other signaling functions. The growing interest to the bio membranes is also due to their unique physical properties. From physical point of view the bio membranes, that are composed of lipid bilayer into which are incorporated integral proteins and on their surface are anchored peripheral proteins and polysaccharides, represent liquid s crystal of smectic type. The bio membranes are characterized by anisotropy of structural and physical properties. The complex structure of bio membranes makes the study of their physical properties rather difficult. Therefore several model systems that mimic the structure of bio membranes were developed. Among them the lipid monolayers at an air-water interphase, bilayer lipid membranes, supported bilayer lipid membranes and liposomes are most known. This work is focused on the introduction into the physical word of the bio membranes and their models. After introduction to the membrane structure and the history of its establishment, the physical properties of the bio membranes and their models are stepwise presented. The most focus is on the properties of lipid monolayers, bilayer lipid membranes, supported bilayer lipid membranes and liposomes that were most detailed studied. This lecture has tutorial character that may be useful for undergraduate and graduate students in the area of biophysics, biochemistry, molecular biology and bioengineering, however it contains also original work of the author and his co-worker and PhD students, that may be useful also for specialists working in the field of bio membranes and model

  16. Automated builder and database of protein/membrane complexes for molecular dynamics simulations.

    Directory of Open Access Journals (Sweden)

    Sunhwan Jo

    2007-09-01

    Full Text Available Molecular dynamics simulations of membrane proteins have provided deeper insights into their functions and interactions with surrounding environments at the atomic level. However, compared to solvation of globular proteins, building a realistic protein/membrane complex is still challenging and requires considerable experience with simulation software. Membrane Builder in the CHARMM-GUI website (http://www.charmm-gui.org helps users to build such a complex system using a web browser with a graphical user interface. Through a generalized and automated building process including system size determination as well as generation of lipid bilayer, pore water, bulk water, and ions, a realistic membrane system with virtually any kinds and shapes of membrane proteins can be generated in 5 minutes to 2 hours depending on the system size. Default values that were elaborated and tested extensively are given in each step to provide reasonable options and starting points for both non-expert and expert users. The efficacy of Membrane Builder is illustrated by its applications to 12 transmembrane and 3 interfacial membrane proteins, whose fully equilibrated systems with three different types of lipid molecules (DMPC, DPPC, and POPC and two types of system shapes (rectangular and hexagonal are freely available on the CHARMM-GUI website. One of the most significant advantages of using the web environment is that, if a problem is found, users can go back and re-generate the whole system again before quitting the browser. Therefore, Membrane Builder provides the intuitive and easy way to build and simulate the biologically important membrane system.

  17. Age-dependent variation in membrane lipid synthesis in leaves of garden pea (Pisum sativum L.)

    DEFF Research Database (Denmark)

    Hellgren, Lars; Sandelius, A.S.

    2001-01-01

    To study membrane lipid synthesis during the lifespan of a dicotyledon leaf, the second oldest leaf of 10-40-d-old plants of garden pea (Pisum sativum L.) was labelled with [1-C- 14]acetate and the distribution of radioactivity between the major membrane lipids was followed for 3 d. In the expand......To study membrane lipid synthesis during the lifespan of a dicotyledon leaf, the second oldest leaf of 10-40-d-old plants of garden pea (Pisum sativum L.) was labelled with [1-C- 14]acetate and the distribution of radioactivity between the major membrane lipids was followed for 3 d...

  18. Pressure effects on lipids and bio-membrane assemblies

    Directory of Open Access Journals (Sweden)

    Nicholas J. Brooks

    2014-11-01

    Full Text Available Membranes are amongst the most important biological structures; they maintain the fundamental integrity of cells, compartmentalize regions within them and play an active role in a wide range of cellular processes. Pressure can play a key role in probing the structure and dynamics of membrane assemblies, and is also critical to the biology and adaptation of deep-sea organisms. This article presents an overview of the effect of pressure on the mesostructure of lipid membranes, bilayer organization and lipid–protein assemblies. It also summarizes recent developments in high-pressure structural instrumentation suitable for experiments on membranes.

  19. [The effects of electromagnetic pulse on fluidity and lipid peroxidation of mitochondrial membrane].

    Science.gov (United States)

    Wang, Changzhen; Cong, Jianbo; Xian, Hong; Cao, Xiaozhe; Sun, Cunpu; Wu, Ke

    2002-08-01

    To study the effects of intense electromagnetic pulse(EMP) on the biological effects of mitochondrial membrane. Rat liver mitochondrial suspension was exposed to EMP at 60 kV/m level. The changes of membrane lipid fluidity and membrane protein mobility were detected by ESR and spin label technique. Malondialdehyde(MDA) was detected by spectrophotometer. The mobility of membrane protein decreased significantly(P < 0.05). Correlation time (tau c) of control group was (0.501 +/- 0.077) x 10(-9)s, and tau c of EMP group was (0.594 +/- 0.049) x 10(-9)s, indicating that the mobility of protein was restricted. The fluidity of mitochondrial membrane increased significantly(P < 0.05) at the same time. Order parameter(S) of mitochondrial membrane lipid in control group was 0.63 +/- 0.01, while S of EMP group was 0.61 +/- 0.01(P < 0.05). MDA decreased significantly. The mobility and lipid peroxidation of mitochondrial membrane may be disturbed after EMP exposure.

  20. Critical composition fluctuations in artificial and cell-derived lipid membranes

    Science.gov (United States)

    Honerkamp-Smith, Aurelia

    2014-03-01

    Cell plasma membranes contain a mixture of lipid types which can segregate into coexisting liquids, a thermodynamic phenomenon which may contribute to biological functions. Simplified, artificial three-component lipid vesicles can be prepared which display a critical miscibility transition near room temperature. We found that such vesicles exhibit concentration fluctuations whose size, composition, and timescales vary consistently with critical exponents for two-dimensional conserved order parameter systems. However, the critical miscibility transition is also observed in vesicles formed directly from the membranes of living cells, despite their more complex composition and the presence of membrane proteins. I will describe our critical fluctuation measurements and also review a variety of more recent work by other researchers. Proximity to a critical point alters the spatial distribution and aggregation tendencies of proteins, and makes lipid mixtures more susceptible to domain formation by protein-mediated interactions, such as adhesion zones. Recent work suggests that critical temperature depression may also be relevant to the mechanism of anaesthetic action.

  1. Localization and Orientation of Xanthophylls in a Lipid Bilayer.

    Science.gov (United States)

    Grudzinski, Wojciech; Nierzwicki, Lukasz; Welc, Renata; Reszczynska, Emilia; Luchowski, Rafal; Czub, Jacek; Gruszecki, Wieslaw I

    2017-08-29

    Xanthophylls (polar carotenoids) play diverse biological roles, among which are modulation of the physical properties of lipid membranes and protection of biomembranes against oxidative damage. Molecular mechanisms underlying these functions are intimately related to the localization and orientation of xanthophyll molecules in lipid membranes. In the present work, we address the problem of localization and orientation of two xanthophylls present in the photosynthetic apparatus of plants and in the retina of the human eye, zeaxanthin and lutein, in a single lipid bilayer membrane formed with dimyristoylphosphatidylcholine. By using fluorescence microscopic analysis and Raman imaging of giant unilamellar vesicles, as well as molecular dynamics simulations, we show that lutein and zeaxanthin adopt a very similar transmembrane orientation within a lipid membrane. In experimental and computational approach, the average tilt angle of xanthophylls relative to the membrane normal is independently found to be ~40 deg, and results from hydrophobic mismatch between the membrane thickness and the distance between the terminal hydroxyl groups of the xanthophylls. Consequences of such a localization and orientation for biological activity of xanthophylls are discussed.

  2. Cooperative tumour cell membrane targeted phototherapy

    Science.gov (United States)

    Kim, Heegon; Lee, Junsung; Oh, Chanhee; Park, Ji-Ho

    2017-06-01

    The targeted delivery of therapeutics using antibodies or nanomaterials has improved the precision and safety of cancer therapy. However, the paucity and heterogeneity of identified molecular targets within tumours have resulted in poor and uneven distribution of targeted agents, thus compromising treatment outcomes. Here, we construct a cooperative targeting system in which synthetic and biological nanocomponents participate together in the tumour cell membrane-selective localization of synthetic receptor-lipid conjugates (SR-lipids) to amplify the subsequent targeting of therapeutics. The SR-lipids are first delivered selectively to tumour cell membranes in the perivascular region using fusogenic liposomes. By hitchhiking with extracellular vesicles secreted by the cells, the SR-lipids are transferred to neighbouring cells and further spread throughout the tumour tissues where the molecular targets are limited. We show that this tumour cell membrane-targeted delivery of SR-lipids leads to uniform distribution and enhanced phototherapeutic efficacy of the targeted photosensitizer.

  3. Association of lipids with integral membrane surface proteins of Mycoplasma hyorhinis

    International Nuclear Information System (INIS)

    Bricker, T.M.; Boyer, M.J.; Keith, J.; Watson-McKown, R.; Wise, K.S.

    1988-01-01

    Triton X-114 (TX-114)-phase fractionation was used to identify and characterize integral membrane surface proteins of the wall-less procaryote Mycoplasma hyorhinis GDL. Phase fractionation of mycoplasmas followed by analysis by sodium dodecyl sulfate-polyacrylamide gel electrophoresis revealed selective partitioning of approximately 30 [ 35 S]methionine-labeled intrinsic membrane proteins into the TX-114 phase. Similar analysis of [ 3 H]palmitate-labeled cells showed that approximately 20 proteins of this organism were associated with lipid, all of which also efficiently partitioned as integral membrane components into the detergent phase. Immunoblotting and immunoprecipitation of TX-114-phase proteins from 125 I-surface-labeled cells with four monoclonal antibodies to distinct surface epitopes of M. hyorhinis identified surface proteins p120, p70, p42, and p23 as intrinsic membrane components. Immunoprecipitation of [ 3 H]palmitate-labeled TX-114-phase proteins further established that surface proteins p120, p70, and p23 (a molecule that mediates complement-dependent mycoplasmacidal monoclonal antibody activity) were among the lipid-associated proteins of this organism. Two of these proteins, p120 and p123, were acidic (pI less than or equal to 4.5), as shown by two-dimensional isoelectric focusing. This study established that M. hyorhinis contains an abundance of integral membrane proteins tightly associated with lipids and that many of these proteins are exposed at the external surface of the single limiting plasma membrane. Monoclonal antibodies are reported that will allow detailed analysis of the structure and processing of lipid-associated mycoplasma proteins

  4. Manipulating lipid membrane architecture by liquid crystal-analog curvature elasticity (Presentation Recording)

    Science.gov (United States)

    Lee, Sin-Doo

    2015-10-01

    Soft matters such as liquid crystals and biological molecules exhibit a variety of interesting physical phenomena as well as new applications. Recently, in mimicking biological systems that have the ability to sense, regulate, grow, react, and regenerate in a highly responsive and self-adaptive manner, the significance of the liquid crystal order in living organisms, for example, a biological membrane possessing the lamellar order, is widely recognized from the viewpoints of physics and chemistry of interfaces and membrane biophysics. Lipid bilayers, resembling cell membranes, provide primary functions for the transport of biological components of ions and molecules in various cellular activities, including vesicle budding and membrane fusion, through lateral organization of the membrane components such as proteins. In this lecture, I will describe how the liquid crystal-analog curvature elasticity of a lipid bilayer plays a critical role in developing a new platform for understanding diverse biological functions at a cellular level. The key concept is to manipulate the local curvature at an interface between a solid substrate and a model membrane. Two representative examples will be demonstrated: one of them is the topographic control of lipid rafts in a combinatorial array where the ligand-receptor binding event occurs and the other concerns the reconstitution of a ring-type lipid raft in bud-mimicking architecture within the framework of the curvature elasticity.

  5. Lateral mobility of plasma membrane lipids in dividing Xenopus eggs

    NARCIS (Netherlands)

    Laat, S.W. de; Tetteroo, P.A.T.; Bluemink, J.G.; Dictus, W.J.A.G.; Zoelen, E.J.J. van

    1984-01-01

    The lateral mobility of plasma membrane lipids was analyzed during first cleavage of Xaopus Levis eggs by fluorescence photobleaching recovery (FPR) measurements, using the lipid analogs 5-(N-hexadecanoyl)aminofluorescein (“HEDAF”) and 5-(N-tetradecanoyl)aminofluorescein (“TEDAF”) as probes. The

  6. Lipid diffusion in the distal and proximal leaflets of supported lipid bilayer membranes studied by single particle tracking

    Science.gov (United States)

    Schoch, Rafael L.; Barel, Itay; Brown, Frank L. H.; Haran, Gilad

    2018-03-01

    Supported lipid bilayers (SLBs) have been studied extensively as simple but powerful models for cellular membranes. Yet, potential differences in the dynamics of the two leaflets of a SLB remain poorly understood. Here, using single particle tracking, we obtain a detailed picture of bilayer dynamics. We observe two clearly separate diffusing populations, fast and slow, that we associate with motion in the distal and proximal leaflets of the SLB, respectively, based on fluorescence quenching experiments. We estimate diffusion coefficients using standard techniques as well as a new method based on the blur of images due to motion. Fitting the observed diffusion coefficients to a two-leaflet membrane hydrodynamic model allows for the simultaneous determination of the intermonolayer friction coefficient and the substrate-membrane friction coefficient, without any prior assumptions on the strengths of the relevant interactions. Remarkably, our calculations suggest that the viscosity of the interfacial water confined between the membrane and the substrate is elevated by ˜104 as compared to bulk water. Using hidden Markov model analysis, we then obtain insight into the transbilayer movement of lipids. We find that lipid flip-flop dynamics are very fast, with half times in the range of seconds. Importantly, we find little evidence for membrane defect mediated lipid flip-flop for SLBs at temperatures well above the solid-to-liquid transition, though defects seem to be involved when the SLBs are cooled down. Our work thus shows that the combination of single particle tracking and advanced hydrodynamic modeling provides a powerful means to obtain insight into membrane dynamics.

  7. Single Molecule Kinetics of ENTH Binding to Lipid Membranes

    Energy Technology Data Exchange (ETDEWEB)

    Rozovsky, Sharon [Univ. of Delaware, Newark, DE (United States); Forstner, Martin B. [Syracuse Univ., NY (United States); Sondermann, Holger [Cornell Univ., Ithaca, NY (United States); Groves, Jay T. [Univ. of California, Berkeley, CA (United States); Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2012-04-03

    Transient recruitment of proteins to membranes is a fundamental mechanism by which the cell exerts spatial and temporal control over proteins’ localization and interactions. Thus, the specificity and the kinetics of peripheral proteins’ membrane residence are an attribute of their function. In this article, we describe the membrane interactions of the interfacial epsin N-terminal homology (ENTH) domain with its target lipid phosphatidylinositol (4,5)-bisphosphate (PtdIns(4,5)P2). The direct visualization and quantification of interactions of single ENTH molecules with supported lipid bilayers is achieved using total internal reflection fluorescence microscopy (TIRFM) with a time resolution of 13 ms. This enables the recording of the kinetic behavior of ENTH interacting with membranes with physiologically relevant concentrations of PtdIns(4,5)P2 despite the low effective binding affinity. Subsequent single fluorophore tracking permits us to build up distributions of residence times and to measure ENTH dissociation rates as a function of membrane composition. In addition, due to the high time resolution, we are able to resolve details of the motion of ENTH associated with a simple, homogeneous membrane. In this case ENTH’s diffusive transport appears to be the result of at least three different diffusion processes.

  8. Optimization of bicelle lipid composition and temperature for EPR spectroscopy of aligned membranes.

    Science.gov (United States)

    McCaffrey, Jesse E; James, Zachary M; Thomas, David D

    2015-01-01

    We have optimized the magnetic alignment of phospholipid bilayered micelles (bicelles) for EPR spectroscopy, by varying lipid composition and temperature. Bicelles have been extensively used in NMR spectroscopy for several decades, in order to obtain aligned samples in a near-native membrane environment and take advantage of the intrinsic sensitivity of magnetic resonance to molecular orientation. Recently, bicelles have also seen increasing use in EPR, which offers superior sensitivity and orientational resolution. However, the low magnetic field strength (less than 1 T) of most conventional EPR spectrometers results in homogeneously oriented bicelles only at a temperature well above physiological. To optimize bicelle composition for magnetic alignment at reduced temperature, we prepared bicelles containing varying ratios of saturated (DMPC) and unsaturated (POPC) phospholipids, using EPR spectra of a spin-labeled fatty acid to assess alignment as a function of lipid composition and temperature. Spectral analysis showed that bicelles containing an equimolar mixture of DMPC and POPC homogeneously align at 298 K, 20 K lower than conventional DMPC-only bicelles. It is now possible to perform EPR studies of membrane protein structure and dynamics in well-aligned bicelles at physiological temperatures and below. Copyright © 2014 Elsevier Inc. All rights reserved.

  9. The influence of non polar and polar molecules in mouse motile cells membranes and pure lipid bilayers.

    Directory of Open Access Journals (Sweden)

    Francisco J Sierra-Valdez

    Full Text Available We report an experimental study of mouse sperm motility that shows chief aspects characteristic of neurons: the anesthetic (produced by tetracaine and excitatory (produced by either caffeine or calcium effects and their antagonic action. While tetracaine inhibits sperm motility and caffeine has an excitatory action, the combination of these two substances balance the effects, producing a motility quite similar to that of control cells. We also study the effects of these agents (anesthetic and excitatory on the melting points of pure lipid liposomes constituted by 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC and dipalmitoyl phosphatidic acid (DPPA. Tetracaine induces a large fluidization of the membrane, shifting the liposomes melting transition temperature to much lower values. The effect of caffeine is null, but its addition to tetracaine-doped liposomes greatly screen the fluidization effect. A high calcium concentration stiffens pure lipid membranes and strongly reduces the effect of tetracaine. Molecular Dynamics Simulations are performed to further understand our experimental findings at the molecular level. We find a strong correlation between the effect of antagonic molecules that could explain how the mechanical properties suitable for normal cell functioning are affected and recovered.

  10. Multiscale molecular dynamics simulations of membrane remodeling by Bin/Amphiphysin/Rvs family proteins

    Science.gov (United States)

    Chun, Chan; Haohua, Wen; Lanyuan, Lu; Jun, Fan

    2016-01-01

    Membrane curvature is no longer thought of as a passive property of the membrane; rather, it is considered as an active, regulated state that serves various purposes in the cell such as between cells and organelle definition. While transport is usually mediated by tiny membrane bubbles known as vesicles or membrane tubules, such communication requires complex interplay between the lipid bilayers and cytosolic proteins such as members of the Bin/Amphiphysin/Rvs (BAR) superfamily of proteins. With rapid developments in novel experimental techniques, membrane remodeling has become a rapidly emerging new field in recent years. Molecular dynamics (MD) simulations are important tools for obtaining atomistic information regarding the structural and dynamic aspects of biological systems and for understanding the physics-related aspects. The availability of more sophisticated experimental data poses challenges to the theoretical community for developing novel theoretical and computational techniques that can be used to better interpret the experimental results to obtain further functional insights. In this review, we summarize the general mechanisms underlying membrane remodeling controlled or mediated by proteins. While studies combining experiments and molecular dynamics simulations recall existing mechanistic models, concurrently, they extend the role of different BAR domain proteins during membrane remodeling processes. We review these recent findings, focusing on how multiscale molecular dynamics simulations aid in understanding the physical basis of BAR domain proteins, as a representative of membrane-remodeling proteins. Project supported by the National Natural Science Foundation of China (Grant No. 21403182) and the Research Grants Council of Hong Kong, China (Grant No. CityU 21300014).

  11. Chitosan derivatives targeting lipid bilayers: Synthesis, biological activity and interaction with model membranes.

    Science.gov (United States)

    Martins, Danubia Batista; Nasário, Fábio Domingues; Silva-Gonçalves, Laiz Costa; de Oliveira Tiera, Vera Aparecida; Arcisio-Miranda, Manoel; Tiera, Marcio José; Dos Santos Cabrera, Marcia Perez

    2018-02-01

    The antimicrobial activity of chitosan and derivatives to human and plant pathogens represents a high-valued prospective market. Presently, two low molecular weight derivatives, endowed with hydrophobic and cationic character at different ratios were synthesized and characterized. They exhibit antimicrobial activity and increased performance in relation to the intermediate and starting compounds. However, just the derivative with higher cationic character showed cytotoxicity towards human cervical carcinoma cells. Considering cell membranes as targets, the mode of action was investigated through the interaction with model lipid vesicles mimicking bacterial, tumoral and erythrocyte membranes. Intense lytic activity and binding are demonstrated for both derivatives in anionic bilayers. The less charged compound exhibits slightly improved selectivity towards bacterial model membranes, suggesting that balancing its hydrophobic/hydrophilic character may improve efficiency. Observing the aggregation of vesicles, we hypothesize that the "charge cluster mechanism", ascribed to some antimicrobial peptides, could be applied to these chitosan derivatives. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Silicon-on-insulator based nanopore cavity arrays for lipid membrane investigation.

    Science.gov (United States)

    Buchholz, K; Tinazli, A; Kleefen, A; Dorfner, D; Pedone, D; Rant, U; Tampé, R; Abstreiter, G; Tornow, M

    2008-11-05

    We present the fabrication and characterization of nanopore microcavities for the investigation of transport processes in suspended lipid membranes. The cavities are situated below the surface of silicon-on-insulator (SOI) substrates. Single cavities and large area arrays were prepared using high resolution electron-beam lithography in combination with reactive ion etching (RIE) and wet chemical sacrificial underetching. The locally separated compartments have a circular shape and allow the enclosure of picoliter volume aqueous solutions. They are sealed at their top by a 250 nm thin Si membrane featuring pores with diameters from 2 µm down to 220 nm. The Si surface exhibits excellent smoothness and homogeneity as verified by AFM analysis. As biophysical test system we deposited lipid membranes by vesicle fusion, and demonstrated their fluid-like properties by fluorescence recovery after photobleaching. As clearly indicated by AFM measurements in aqueous buffer solution, intact lipid membranes successfully spanned the pores. The nanopore cavity arrays have potential applications in diagnostics and pharmaceutical research on transmembrane proteins.

  13. Effects of phenylpropanolamine (PPA) on in vitro human erythrocyte membranes and molecular models

    Energy Technology Data Exchange (ETDEWEB)

    Suwalsky, Mario, E-mail: msuwalsk@udec.cl [Faculty of Chemical Sciences, University of Concepcion, Concepcion (Chile); Zambrano, Pablo; Mennickent, Sigrid [Faculty of Pharmacy, University of Concepcion, Concepcion (Chile); Villena, Fernando [Faculty of Biological Sciences, University of Concepcion, Concepcion (Chile); Sotomayor, Carlos P.; Aguilar, Luis F. [Instituto de Quimica, Pontificia Universidad Catolica de Valparaiso, Valparaiso (Chile); Bolognin, Silvia [CNR-Institute for Biomedical Technologies, University of Padova, Padova (Italy)

    2011-03-18

    Research highlights: {yields} PPA is a common ingredient in cough-cold medication and appetite suppressants. {yields} Reports on its effects on human erythrocytes are very scarce. {yields} We found that PPA induced in vitro morphological changes to human erythrocytes. {yields} PPA interacted with isolated unsealed human erythrocyte membranes. {yields} PPA interacted with class of lipid present in the erythrocyte membrane outer monolayer. -- Abstract: Norephedrine, also called phenylpropanolamine (PPA), is a synthetic form of the ephedrine alkaloid. After reports of the occurrence of intracranial hemorrhage and other adverse effects, including several deaths, PPA is no longer sold in USA and Canada. Despite the extensive information about PPA toxicity, reports on its effects on cell membranes are scarce. With the aim to better understand the molecular mechanisms of the interaction of PPA with cell membranes, ranges of concentrations were incubated with intact human erythrocytes, isolated unsealed human erythrocyte membranes (IUM), and molecular models of cell membranes. The latter consisted in bilayers built-up of dimyristoylphosphatidylcholine (DMPC) and dimyristoylphosphatidylethanolamine (DMPE), phospholipid classes present in the outer and inner monolayers of most plasmatic cell membranes, respectively. The capacity of PPA to perturb the bilayer structures of DMPC and DMPE was assessed by X-ray diffraction, DMPC large unilamellar vesicles (LUV) and IUM were studied by fluorescence spectroscopy, and intact human erythrocytes were observed by scanning electron microscopy (SEM). This study presents evidence that PPA affects human red cell membranes as follows: (a) in SEM studies on human erythrocytes it was observed that 0.5 mM PPA induced shape changes; (b) in IUM PPA induced a sharp decrease in the fluorescence anisotropy in the lipid bilayer acyl chains in a concentration range lower than 100 {mu}M; (c) X-ray diffraction studies showed that PPA in the 0.1-0.5 m

  14. Structural studies of the lipid membranes at the Siberia-2 synchrotron radiation source

    International Nuclear Information System (INIS)

    Kiselev, M. A.; Ermakova, E. V.; Ryabova, N. Yu.; Nayda, O. V.; Zabelin, A. V.; Pogorely, D. K.; Korneev, V. N.; Balagurov, A. M.

    2010-01-01

    Lipid membranes are a subject of contemporary interdisciplinary studies at the junction of biology, biophysics, pharmacology, and bionanotechnology. The results of the structural studies of several types of lipid membranes by the lamellar and lateral diffraction of X-ray synchrotron radiation are presented. The experiments were performed at the Mediana and DICSI stations of the Siberia-2 synchrotron radiation source at the Russian Research Center Kurchatov Institute. The data obtained are compared with the results of studying lipid membranes at the small-angle scattering beamlines D22 and D24 at LURE (France) and at the A2 beamline at DESY (Germany). The parameters of the DICSI station are shown to meet the basic requirements for the structural study of lipid systems, which are of fundamental and applied interest.

  15. Changes in lipid membrane mechanics induced by di- and tri-phenyltins

    DEFF Research Database (Denmark)

    Przybyło, Magda; Drabik, Dominik; Szostak, Kamila

    2017-01-01

    properties of biological membranes. It was found that the membrane/water partition coefficient equals 4, a value significantly higher than octanol/water partition coefficient. In addition, the effect of di- and tri-phenyltin chlorides on the mechanics of model lipid membranes was measured for the first time...

  16. A trough for improved SFG spectroscopy of lipid monolayers

    Science.gov (United States)

    Franz, Johannes; van Zadel, Marc-Jan; Weidner, Tobias

    2017-05-01

    Lipid monolayers are indispensable model systems for biological membranes. The main advantage over bilayer model systems is that the surface pressure within the layer can be directly and reliably controlled. The sensitive interplay between surface pressure and temperature determines the molecular order within a model membrane and consequently determines the membrane phase behavior. The lipid phase is of crucial importance for a range of membrane functions such as protein interactions and membrane permeability. A very reliable method to probe the structure of lipid monolayers is sum frequency generation (SFG) vibrational spectroscopy. Not only is SFG extremely surface sensitive but it can also directly access critical parameters such as lipid order and orientation, and it can provide valuable information about protein interactions along with interfacial hydration. However, recent studies have shown that temperature gradients caused by high power laser beams perturb the lipid layers and potentially obscure the spectroscopic results. Here we demonstrate how the local heating problem can be effectively reduced by spatially distributing the laser pulses on the sample surface using a translating Langmuir trough for SFG experiments at lipid monolayers. The efficiency of the trough is illustrated by the detection of enhanced molecular order due to reduced heat load.

  17. Biosynthesis of membrane lipids of thermophilic archaebacteria and its implication to early evolution of life

    International Nuclear Information System (INIS)

    Oshima, Tairo

    1995-01-01

    The unit lipid of cell membranes of archaebacteria is unique ether lipids, O-dialkylated glycerol with a polar head group at sn-1 position. The chirality of glycerol moiety of the lipids is opposite to that of other kingdoms. The hydrophobic potion consists of saturated C 20 isoprenoid hydrocarbon backbone and is connected to glycerol by an ether linkage. In addition, cell membrane of some of thermophilic archaebacteria are monolayer (in stead of bilayer) of tetraether lipids in which both tails of hydrocarbon chains of two diether lipids are covalently connected in a tail-to-tail fashion. Although the host cell from which contemporary eukaryotes have been derived by endosymbiosis, is speculated to be an archaebacterium, the unique ether lipids raised a serious question to the idea of archabacterial origin of eukaryote cells; why the unique ether lipids are not used to construct cytoplasmic membranes of eukaryotes? The author and his colleagues have studied biosynthesis of membrane liquids of two thermo-acidophilic archaebacteria, Thermoplasma and Sulfolobus. It was found that origins of stereospecificity of glycerol moiety of archaebacterial ether lipids differs form species to species. In Sulfolobus sn-glycerol-1-phosphate (the abnormal isomer of glycerol phosphate) seems to be directly synthesized from glycerol, whereas in Halobacterium stereospecificity of glycerol phosphate is inverted during the lipid synthesis. Recently we found that specific inhibitors for eukaryotes squalene epoxidase inhibit the condensation of diether lipids to tetraether lipids in cell-free extracts of these thermophilic archaebacteria. The results suggest evolutionary implication of archaebacterial tetraether condensing enzyme to eukaryote sterol biosynthesis. Relationships between chemical structures of membrane lipids and early evolution of life will be discussed. (author). Abstract only

  18. Elasto-plasticity in wrinkled polymerized lipid membranes

    KAUST Repository

    Chaieb, Sahraoui

    2014-01-15

    Biomembranes shown to behave like elastic sheets, can also suffer plastic deformations. Neutron scattering experiments on partially polymerised wrinkled membranes revealed that when a critical degree of polymerisation is crossed, the wrinkled membranes do not resume their spherical shapes. Instead they remain wrinkled and rigid while their non-polymerised counterparts resume their spherical floppy shapes. The yield stress of these membranes, measured for the first time via the fractal dimension, is intimately related to the degree of polymerisation probably through a 2D disorder that quenches the lateral diffusion of the lipid molecules. This work might shed light on the physical reason behind the irreversible deformation of echinocytes, acanthocytes and malaria infected red blood cells.

  19. Elasto-plasticity in wrinkled polymerized lipid membranes

    KAUST Repository

    Chaieb, Saharoui

    2014-01-01

    Biomembranes shown to behave like elastic sheets, can also suffer plastic deformations. Neutron scattering experiments on partially polymerised wrinkled membranes revealed that when a critical degree of polymerisation is crossed, the wrinkled membranes do not resume their spherical shapes. Instead they remain wrinkled and rigid while their non-polymerised counterparts resume their spherical floppy shapes. The yield stress of these membranes, measured for the first time via the fractal dimension, is intimately related to the degree of polymerisation probably through a 2D disorder that quenches the lateral diffusion of the lipid molecules. This work might shed light on the physical reason behind the irreversible deformation of echinocytes, acanthocytes and malaria infected red blood cells.

  20. Can pyrene probes be used to measure lateral pressure profiles of lipid membranes? Perspective through atomistic simulations

    DEFF Research Database (Denmark)

    Franova, M. D.; Vattulainen, I.; Ollila, O. H. S.

    2014-01-01

    The lateral pressure profile of lipid bilayers has gained a lot of attention, since changes in the pressure profile have been suggested to shift the membrane protein conformational equilibrium. This relation has been mostly studied with theoretical methods, especially with molecular dynamics....../monomer fluorescence ratio has been assumed to represent the lateral pressure in the location of the pyrene moieties. Here, we consider the validity of this assumption through atomistic molecular dynamics simulations in a DOPC (dioleoylphosphatidylcholine) membrane, which hosts di-pyr-PC probes with different acyl...... simulations, since established methods to measure the lateral pressure profile experimentally have not been available. The only experiments that have attempted to gauge the lateral pressure profile have been done by using di-pyrenyl-phosphatidylcholine (di-pyr-PC) probes. In these experiments, the excimer...

  1. Lipid Bilayer Composition Affects Transmembrane Protein Orientation and Function

    Directory of Open Access Journals (Sweden)

    Katie D. Hickey

    2011-01-01

    Full Text Available Sperm membranes change in structure and composition upon ejaculation to undergo capacitation, a molecular transformation which enables spermatozoa to undergo the acrosome reaction and be capable of fertilization. Changes to the membrane environment including lipid composition, specifically lipid microdomains, may be responsible for enabling capacitation. To study the effect of lipid environment on proteins, liposomes were created using lipids extracted from bull sperm membranes, with or without a protein (Na+ K+-ATPase or -amylase. Protein incorporation, function, and orientation were determined. Fluorescence resonance energy transfer (FRET confirmed protein inclusion in the lipid bilayer, and protein function was confirmed using a colourometric assay of phosphate production from ATP cleavage. In the native lipid liposomes, ATPase was oriented with the subunit facing the outer leaflet, while changing the lipid composition to 50% native lipids and 50% exogenous lipids significantly altered this orientation of Na+ K+-ATPase within the membranes.

  2. Diffusion of lipids and GPI-anchored proteins in actin-free plasma membrane vesicles measured by STED-FCS

    DEFF Research Database (Denmark)

    Schneider, Falk; Waithe, Dominic; Clausen, Mathias P

    2017-01-01

    (STED-FCS) to access and compare the diffusion characteristics of fluorescent lipid analogues and GPI-anchored proteins (GPI-APs) in the live cell plasma membrane and in actin cytoskeleton-free cell-derived giant plasma membrane vesicles (GPMVs). Hindered diffusion of phospholipids and sphingolipids......Diffusion and interaction dynamics of molecules at the plasma membrane play an important role in cellular signalling, and they are suggested to be strongly associated with the actin cytoskeleton. Here, we utilise super-resolution STED microscopy combined with fluorescence correlation spectroscopy...... forming immobile clusters, both of which disappear in GPMVs. Our data underline the crucial role of the actin cortex in maintaining hindered diffusion modes of many but not all of the membrane molecules, and highlight a powerful experimental approach to decipher specific influences on molecular plasma...

  3. Lipid transfer proteins do their thing anchored at membrane contact sites… but what is their thing?

    Science.gov (United States)

    Wong, Louise H; Levine, Tim P

    2016-04-15

    Membrane contact sites are structures where two organelles come close together to regulate flow of material and information between them. One type of inter-organelle communication is lipid exchange, which must occur for membrane maintenance and in response to environmental and cellular stimuli. Soluble lipid transfer proteins have been extensively studied, but additional families of transfer proteins have been identified that are anchored into membranes by transmembrane helices so that they cannot diffuse through the cytosol to deliver lipids. If such proteins target membrane contact sites they may be major players in lipid metabolism. The eukaryotic family of so-called Lipid transfer proteins Anchored at Membrane contact sites (LAMs) all contain both a sterol-specific lipid transfer domain in the StARkin superfamily (related to StART/Bet_v1), and one or more transmembrane helices anchoring them in the endoplasmic reticulum (ER), making them interesting subjects for study in relation to sterol metabolism. They target a variety of membrane contact sites, including newly described contacts between organelles that were already known to make contact by other means. Lam1-4p target punctate ER-plasma membrane contacts. Lam5p and Lam6p target multiple contacts including a new category: vacuolar non-NVJ cytoplasmic ER (VancE) contacts. These developments confirm previous observations on tubular lipid-binding proteins (TULIPs) that established the importance of membrane anchored proteins for lipid traffic. However, the question remaining to be solved is the most difficult of all: are LAMs transporters, or alternately are they regulators that affect traffic more indirectly? © 2016 Authors; published by Portland Press Limited.

  4. Peptide insertion, positioning, and stabilization in a membrane: insight from an all-atom molecular dynamics simulation.

    Science.gov (United States)

    Babakhani, Arneh; Gorfe, Alemayehu A; Gullingsrud, Justin; Kim, Judy E; Andrew McCammon, J

    Peptide insertion, positioning, and stabilization in a model membrane are probed via an all-atom molecular dynamics (MD) simulation. One peptide (WL5) is simulated in each leaflet of a solvated dimyristoylglycero-3-phosphate (DMPC) membrane. Within the first 5 ns, the peptides spontaneously insert into the membrane and then stabilize during the remaining 70 ns of simulation time. In both leaflets, the peptides localize to the membrane interface, and this localization is attributed to the formation of peptide-lipid hydrogen bonds. We show that the single tryptophan residue in each peptide contributes significantly to these hydrogen bonds; specifically, the nitrogen heteroatom of the indole ring plays a critical role. The tilt angles of the indole rings relative to the membrane normal in the upper and lower leaflets are approximately 26 degrees and 54 degrees , respectively. The tilt angles of the entire peptide chain are 62 degrees and 74 degrees . The membrane induces conformations of the peptide that are characteristic of beta-sheets, and the peptide enhances the lipid ordering in the membrane. Finally, the diffusion rate of the peptides in the membrane plane is calculated (based on experimental peptide concentrations) to be approximately 6 A(2)/ns, thus suggesting a 500 ns time scale for intermolecular interactions.

  5. Vibrational, calorimetric, and molecular conformational study on calcein interaction with model lipid membrane

    International Nuclear Information System (INIS)

    Maherani, Behnoush; Arab-Tehrany, Elmira; Rogalska, Ewa; Korchowiec, Beata; Kheirolomoom, Azadeh; Linder, Michel

    2013-01-01

    Nanoliposomes are commonly used as a carrier in controlled release drug delivery systems. Controlled release formulations can be used to reduce the amount of drug necessary to cause the same therapeutic effect in patients. One of the most noticeable factors in release profiles is the strength of the drug-carrier interaction. To adjust the pharmacokinetic and pharmacodynamic properties of therapeutic agents, it is necessary to optimize the drug-carrier interaction. To get a better understanding of this interaction, large unilamellar liposomes containing calcein were prepared using 1,2-dioleoyl-sn-glycero-3-phosphocholine, 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine, and 1,2-palmitoyl-sn-glycero-3-phosphocholine, and a mixture of them; calcein was chosen as a model polar molecule of biological interest. The thermodynamic changes induced by calcein and its location in lipid bilayers were determined by differential scanning calorimetry and Raman spectroscopy, respectively. The results reveal that calcein has no significant influence on thermotropic properties of the lipid membrane, but causing the abolition of pre-transition. The decreasing of the pre-transition can be ascribed to the presence of calcein near the hydrophilic cooperative zone of the bilayer. The change in intensity of the Raman peaks represents the interaction of calcein with choline head groups. Moreover, the impact of calcein on phosphoglyceride Langmuir layers spread at the air–water interface was studied using surface pressure-area and surface potential-area isotherms, as well as polarization-modulation infrared reflection–absorption spectroscopy and Brewster angle microscopy. The results obtained indicate that calcein introduce no major modification on the systems prepared with pure lipids

  6. Phosphatidylserine Lateral Organization Influences the Interaction of Influenza Virus Matrix Protein 1 with Lipid Membranes.

    Science.gov (United States)

    Bobone, Sara; Hilsch, Malte; Storm, Julian; Dunsing, Valentin; Herrmann, Andreas; Chiantia, Salvatore

    2017-06-15

    Influenza A virus matrix protein 1 (M1) is an essential component involved in the structural stability of the virus and in the budding of new virions from infected cells. A deeper understanding of the molecular basis of virion formation and the budding process is required in order to devise new therapeutic approaches. We performed a detailed investigation of the interaction between M1 and phosphatidylserine (PS) (i.e., its main binding target at the plasma membrane [PM]), as well as the distribution of PS itself, both in model membranes and in living cells. To this end, we used a combination of techniques, including Förster resonance energy transfer (FRET), confocal microscopy imaging, raster image correlation spectroscopy, and number and brightness (N&B) analysis. Our results show that PS can cluster in segregated regions in the plane of the lipid bilayer, both in model bilayers constituted of PS and phosphatidylcholine and in living cells. The viral protein M1 interacts specifically with PS-enriched domains, and such interaction in turn affects its oligomerization process. Furthermore, M1 can stabilize PS domains, as observed in model membranes. For living cells, the presence of PS clusters is suggested by N&B experiments monitoring the clustering of the PS sensor lactadherin. Also, colocalization between M1 and a fluorescent PS probe suggest that, in infected cells, the matrix protein can specifically bind to the regions of PM in which PS is clustered. Taken together, our observations provide novel evidence regarding the role of PS-rich domains in tuning M1-lipid and M1-M1 interactions at the PM of infected cells. IMPORTANCE Influenza virus particles assemble at the plasma membranes (PM) of infected cells. This process is orchestrated by the matrix protein M1, which interacts with membrane lipids while binding to the other proteins and genetic material of the virus. Despite its importance, the initial step in virus assembly (i.e., M1-lipid interaction) is still

  7. The structural role of cholesterol in cell membranes: from condensed bilayers to lipid rafts.

    Science.gov (United States)

    Krause, Martin R; Regen, Steven L

    2014-12-16

    CONSPECTUS: Defining the two-dimensional structure of cell membranes represents one of the most daunting challenges currently facing chemists, biochemists, and biophysicists. In particular, the time-averaged lateral organization of the lipids and proteins that make up these natural enclosures has yet to be established. As the classic Singer-Nicolson model of cell membranes has evolved over the past 40 years, special attention has focused on the structural role played by cholesterol, a key component that represents ca. 30% of the total lipids that are present. Despite extensive studies with model membranes, two fundamental issues have remained a mystery: (i) the mechanism by which cholesterol condenses low-melting lipids by uncoiling their acyl chains and (ii) the thermodynamics of the interaction between cholesterol and high- and low-melting lipids. The latter bears directly on one of the most popular notions in modern cell biology, that is, the lipid raft hypothesis, whereby cholesterol is thought to combine with high-melting lipids to form "lipid rafts" that float in a "sea" of low-melting lipids. In this Account, we first describe a chemical approach that we have developed in our laboratories that has allowed us to quantify the interactions between exchangeable mimics of cholesterol and low- and high-melting lipids in model membranes. In essence, this "nearest-neighbor recognition" (NNR) method involves the synthesis of dimeric forms of these lipids that contain a disulfide moiety as a linker. By means of thiolate-disulfide interchange reactions, equilibrium mixtures of dimers are then formed. These exchange reactions are initiated either by adding dithiothreitol to a liposomal dispersion to generate a small amount of thiol monomer or by including a small amount of thiol monomer in the liposomes at pH 5.0 and then raising the pH to 7.4. We then show how such NNR measurements have allowed us to distinguish between two very different mechanisms that have been

  8. Randomly organized lipids and marginally stable proteins: a coupling of weak interactions to optimize membrane signaling.

    Science.gov (United States)

    Rice, Anne M; Mahling, Ryan; Fealey, Michael E; Rannikko, Anika; Dunleavy, Katie; Hendrickson, Troy; Lohese, K Jean; Kruggel, Spencer; Heiling, Hillary; Harren, Daniel; Sutton, R Bryan; Pastor, John; Hinderliter, Anne

    2014-09-01

    Eukaryotic lipids in a bilayer are dominated by weak cooperative interactions. These interactions impart highly dynamic and pliable properties to the membrane. C2 domain-containing proteins in the membrane also interact weakly and cooperatively giving rise to a high degree of conformational plasticity. We propose that this feature of weak energetics and plasticity shared by lipids and C2 domain-containing proteins enhance a cell's ability to transduce information across the membrane. We explored this hypothesis using information theory to assess the information storage capacity of model and mast cell membranes, as well as differential scanning calorimetry, carboxyfluorescein release assays, and tryptophan fluorescence to assess protein and membrane stability. The distribution of lipids in mast cell membranes encoded 5.6-5.8bits of information. More information resided in the acyl chains than the head groups and in the inner leaflet of the plasma membrane than the outer leaflet. When the lipid composition and information content of model membranes were varied, the associated C2 domains underwent large changes in stability and denaturation profile. The C2 domain-containing proteins are therefore acutely sensitive to the composition and information content of their associated lipids. Together, these findings suggest that the maximum flow of signaling information through the membrane and into the cell is optimized by the cooperation of near-random distributions of membrane lipids and proteins. This article is part of a Special Issue entitled: Interfacially Active Peptides and Proteins. Guest Editors: William C. Wimley and Kalina Hristova. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. High fat diet-induced modifications in membrane lipid and mitochondrial-membrane protein signatures precede the development of hepatic insulin resistance in mice.

    Science.gov (United States)

    Kahle, M; Schäfer, A; Seelig, A; Schultheiß, J; Wu, M; Aichler, M; Leonhardt, J; Rathkolb, B; Rozman, J; Sarioglu, H; Hauck, S M; Ueffing, M; Wolf, E; Kastenmueller, G; Adamski, J; Walch, A; Hrabé de Angelis, M; Neschen, S

    2015-01-01

    Excess lipid intake has been implicated in the pathophysiology of hepatosteatosis and hepatic insulin resistance. Lipids constitute approximately 50% of the cell membrane mass, define membrane properties, and create microenvironments for membrane-proteins. In this study we aimed to resolve temporal alterations in membrane metabolite and protein signatures during high-fat diet (HF)-mediated development of hepatic insulin resistance. We induced hepatosteatosis by feeding C3HeB/FeJ male mice an HF enriched with long-chain polyunsaturated C18:2n6 fatty acids for 7, 14, or 21 days. Longitudinal changes in hepatic insulin sensitivity were assessed via the euglycemic-hyperinsulinemic clamp, in membrane lipids via t-metabolomics- and membrane proteins via quantitative proteomics-analyses, and in hepatocyte morphology via electron microscopy. Data were compared to those of age- and litter-matched controls maintained on a low-fat diet. Excess long-chain polyunsaturated C18:2n6 intake for 7 days did not compromise hepatic insulin sensitivity, however, induced hepatosteatosis and modified major membrane lipid constituent signatures in liver, e.g. increased total unsaturated, long-chain fatty acid-containing acyl-carnitine or membrane-associated diacylglycerol moieties and decreased total short-chain acyl-carnitines, glycerophosphocholines, lysophosphatidylcholines, or sphingolipids. Hepatic insulin sensitivity tended to decrease within 14 days HF-exposure. Overt hepatic insulin resistance developed until day 21 of HF-intervention and was accompanied by morphological mitochondrial abnormalities and indications for oxidative stress in liver. HF-feeding progressively decreased the abundance of protein-components of all mitochondrial respiratory chain complexes, inner and outer mitochondrial membrane substrate transporters independent from the hepatocellular mitochondrial volume in liver. We assume HF-induced modifications in membrane lipid- and protein-signatures prior to and

  10. A novel biotinylated lipid raft reporter for electron microscopic imaging of plasma membrane microdomains[S

    Science.gov (United States)

    Krager, Kimberly J.; Sarkar, Mitul; Twait, Erik C.; Lill, Nancy L.; Koland, John G.

    2012-01-01

    The submicroscopic spatial organization of cell surface receptors and plasma membrane signaling molecules is readily characterized by electron microscopy (EM) via immunogold labeling of plasma membrane sheets. Although various signaling molecules have been seen to segregate within plasma membrane microdomains, the biochemical identity of these microdomains and the factors affecting their formation are largely unknown. Lipid rafts are envisioned as submicron membrane subdomains of liquid ordered structure with differing lipid and protein constituents that define their specific varieties. To facilitate EM investigation of inner leaflet lipid rafts and the localization of membrane proteins therein, a unique genetically encoded reporter with the dually acylated raft-targeting motif of the Lck kinase was developed. This reporter, designated Lck-BAP-GFP, incorporates green fluorescent protein (GFP) and biotin acceptor peptide (BAP) modules, with the latter allowing its single-step labeling with streptavidin-gold. Lck-BAP-GFP was metabolically biotinylated in mammalian cells, distributed into low-density detergent-resistant membrane fractions, and was readily detected with avidin-based reagents. In EM images of plasma membrane sheets, the streptavidin-gold-labeled reporter was clustered in 20–50 nm microdomains, presumably representative of inner leaflet lipid rafts. The utility of the reporter was demonstrated in an investigation of the potential lipid raft localization of the epidermal growth factor receptor. PMID:22822037

  11. Heat-induced changes to lipid molecular structure in Vimy flaxseed: Spectral intensity and molecular clustering

    Science.gov (United States)

    Yu, Peiqiang; Damiran, Daalkhaijav

    2011-06-01

    Autoclaving was used to manipulate nutrient utilization and availability. The objectives of this study were to characterize any changes of the functional groups mainly associated with lipid structure in flaxseed ( Linum usitatissimum, cv. Vimy), that occurred on a molecular level during the treatment process using infrared Fourier transform molecular spectroscopy. The parameters included lipid CH 3 asymmetric (ca. 2959 cm -1), CH 2 asymmetric (ca. 2928 cm -1), CH 3 symmetric (ca. 2871 cm -1) and CH 2 symmetric (ca. 2954 cm -1) functional groups, lipid carbonyl C dbnd O ester group (ca. 1745 cm -1), lipid unsaturation group (CH attached to C dbnd C) (ca. 3010 cm -1) as well as their ratios. Hierarchical cluster analysis (CLA) and principal components analysis (PCA) were conducted to identify molecular spectral differences. Flaxseed samples were kept raw for the control or autoclaved in batches at 120 °C for 20, 40 or 60 min for treatments 1, 2 and 3, respectively. Molecular spectral analysis of lipid functional group ratios showed a significant decrease ( P 0.05) on lipid carbonyl C dbnd O ester group and lipid unsaturation group (CH attached to C dbnd C) (with average spectral peak area intensities of 138.3 and 68.8 IR intensity units, respectively). Multivariate molecular spectral analyses, CLA and PCA, were unable to make distinctions between the different treatment original spectra at the CH 3 and CH 2 asymmetric and symmetric region (ca. 2988-2790 cm -1). The results indicated that autoclaving had an impact to the mid-infrared molecular spectrum of flaxseed to identify heat-induced changes in lipid conformation. A future study is needed to quantify the relationship between lipid molecular structure changes and functionality/availability.

  12. Triglyceride Blisters in Lipid Bilayers: Implications for Lipid Droplet Biogenesis and the Mobile Lipid Signal in Cancer Cell Membranes

    DEFF Research Database (Denmark)

    Khandelia, Himanshu; Duelund, Lars; Pakkanen, Kirsi Inkeri

    2010-01-01

    triolein molecules to the bilayer center in the form of a disordered, isotropic, mobile neutral lipid aggregate, at least 17 nm in diameter, which forms spontaneously, and remains stable on at least the microsecond time scale. The results give credence to the hotly debated existence of mobile neutral lipid...... aggregates of unknown function present in malignant cells, and to the early biogenesis of lipid droplets accommodated between the two leaflets of the endoplasmic reticulum membrane. The TO aggregates give the bilayer a blister-like appearance, and will hinder the formation of multi-lamellar phases in model...

  13. Effects of Dimethyl Sulfoxide in Cholesterol-Containing Lipid Membranes: A Comparative Study of Experiments In Silico and with Cells

    Science.gov (United States)

    de Ménorval, Marie-Amélie; Mir, Lluis M.; Fernández, M. Laura; Reigada, Ramon

    2012-01-01

    Dimethyl sulfoxide (DMSO) has been known to enhance cell membrane permeability of drugs or DNA. Molecular dynamics (MD) simulations with single-component lipid bilayers predicted the existence of three regimes of action of DMSO: membrane loosening, pore formation and bilayer collapse. We show here that these modes of action are also reproduced in the presence of cholesterol in the bilayer, and we provide a description at the atomic detail of the DMSO-mediated process of pore formation in cholesterol-containing lipid membranes. We also successfully explore the applicability of DMSO to promote plasma membrane permeability to water, calcium ions (Ca2+) and Yo-Pro-1 iodide (Yo-Pro-1) in living cell membranes. The experimental results on cells in culture can be easily explained according to the three expected regimes: in the presence of low doses of DMSO, the membrane of the cells exhibits undulations but no permeability increase can be detected, while at intermediate DMSO concentrations cells are permeabilized to water and calcium but not to larger molecules as Yo-Pro-1. These two behaviors can be associated to the MD-predicted consequences of the effects of the DMSO at low and intermediate DMSO concentrations. At larger DMSO concentrations, permeabilization is larger, as even Yo-Pro-1 can enter the cells as predicted by the DMSO-induced membrane-destructuring effects described in the MD simulations. PMID:22848583

  14. Mitochondrial cardiolipin/phospholipid trafficking: the role of membrane contact site complexes and lipid transfer proteins.

    Science.gov (United States)

    Schlattner, Uwe; Tokarska-Schlattner, Malgorzata; Rousseau, Denis; Boissan, Mathieu; Mannella, Carmen; Epand, Richard; Lacombe, Marie-Lise

    2014-04-01

    Historically, cellular trafficking of lipids has received much less attention than protein trafficking, mostly because its biological importance was underestimated, involved sorting and translocation mechanisms were not known, and analytical tools were limiting. This has changed during the last decade, and we discuss here some progress made in respect to mitochondria and the trafficking of phospholipids, in particular cardiolipin. Different membrane contact site or junction complexes and putative lipid transfer proteins for intra- and intermembrane lipid translocation have been described, involving mitochondrial inner and outer membrane, and the adjacent membranes of the endoplasmic reticulum. An image emerges how cardiolipin precursors, remodeling intermediates, mature cardiolipin and its oxidation products could migrate between membranes, and how this trafficking is involved in cardiolipin biosynthesis and cell signaling events. Particular emphasis in this review is given to mitochondrial nucleoside diphosphate kinase D and mitochondrial creatine kinases, which emerge to have roles in both, membrane junction formation and lipid transfer. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  15. Characterization of membrane lipid fluidity in human embryo cells malignantly transfer med post 238Pu α irradiation

    International Nuclear Information System (INIS)

    Qi Zirong; Sun Ling; Liu Guolian; Shen Zhiyuan

    1992-01-01

    The membrane lipid fluidity of malignantly transformed human embryo cells following 238 Pu α particlce irradiation in vitro has been studied. The results indicate that the ontogenesis depends on irradiation dose (Gy) and the membrane lipid fluidity in malignantly transformed cells is higher than that in normal embryo cells. With the microviscosity (η) of cells plotted against the cell counts, the correlation coefficient (γ) is calculated to be between 0.9936 and 0.9999. Since the malignant transformation of irradiated embryo cells is manifested early on cell membrane lipid, the fluidity of membrane lipid can be used as an oncologic marker

  16. Study of the ion-channel behavior on glassy carbon electrode supported bilayer lipid membranes stimulated by perchlorate anion

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Zhiquan; Shi, Jun; Huang, Weimin, E-mail: huangwm@jlu.edu.cn

    2015-10-01

    In this paper, a kind of didodecyldimethylammonium bromide (DDAB) layer membranes was supported on a glassy carbon electrode (GCE). We studied the ion channel behavior of the supported bilayer lipid membrane by scanning electrochemical microscopy (SCEM) in tris(2,2′-bipyridine) ruthenium(II) solution. Perchlorate anion was used as a presence of stimulus and ruthenium(II) complex cations as the probing ions for the measurement of SECM, the lipid membrane channel was opened and exhibited the behavior of distinct SECM positive feedback curve. The channel was in a closed state in the absence of perchlorate anions while reflected the behavior of SECM negative feedback curve. The rates of electron transfer reaction in the lipid membranes surface were detected and it was dependant on the potential of SECM. - Highlights: • The rates of electron transfer reaction in the lipid membranes surface were detected. • Dynamic investigations of ion-channel behavior of supported bilayer lipid membranes by scanning electrochemical microscopy • A novel way to explore the interaction between molecules and supported bilayer lipid membranes.

  17. 3D pressure field in lipid membranes and membrane-protein complexes

    DEFF Research Database (Denmark)

    Ollila, O H Samuli; Risselada, H Jelger; Louhivuori, Martti

    2009-01-01

    We calculate full 3D pressure fields for inhomogeneous nanoscale systems using molecular dynamics simulation data. The fields represent systems with increasing level of complexity, ranging from semivesicles and vesicles to membranes characterized by coexistence of two phases, including also...... a protein-membrane complex. We show that the 3D pressure field is distinctly different for curved and planar bilayers, the pressure field depends strongly on the phase of the membrane, and that an integral protein modulates the tension and elastic properties of the membrane....

  18. Influence of the membrane environment on cholesterol transfer.

    Science.gov (United States)

    Breidigan, Jeffrey Michael; Krzyzanowski, Natalie; Liu, Yangmingyue; Porcar, Lionel; Perez-Salas, Ursula

    2017-12-01

    Cholesterol, an essential component in biological membranes, is highly unevenly distributed within the cell, with most localized in the plasma membrane while only a small fraction is found in the endoplasmic reticulum, where it is synthesized. Cellular membranes differ in lipid composition and protein content, and these differences can exist across their leaflets too. This thermodynamic landscape that cellular membranes impose on cholesterol is expected to modulate its transport. To uncover the role the membrane environment has on cholesterol inter- and intra-membrane movement, we used time-resolved small angle neutron scattering to study the passive movement of cholesterol between and within membranes with varying degrees of saturation content. We found that cholesterol moves systematically slower as the degree of saturation in the membranes increases, from a palmitoyl oleyl phosphotidylcholine membrane, which is unsaturated, to a dipalmitoylphosphatidylcholine (DPPC) membrane, which is fully saturated. Additionally, we found that the energetic barrier to move cholesterol in these phosphatidylcholine membranes is independent of their relative lipid composition and remains constant for both flip-flop and exchange at ∼100 kJ/mol. Further, by replacing DPPC with the saturated lipid palmitoylsphingomyelin, an abundant saturated lipid of the outer leaflet of the plasma membrane, we found the rates decreased by a factor of two. This finding is in stark contrast with recent molecular dynamic simulations that predict a dramatic slow-down of seven orders of magnitude for cholesterol flipping in membranes with a similar phosphocholine and SM lipid composition. Copyright © 2017 by the American Society for Biochemistry and Molecular Biology, Inc.

  19. Coarse Grained Molecular Dynamics Simulations of Transmembrane Protein-Lipid Systems

    Directory of Open Access Journals (Sweden)

    Peter Spijker

    2010-06-01

    Full Text Available Many biological cellular processes occur at the micro- or millisecond time scale. With traditional all-atom molecular modeling techniques it is difficult to investigate the dynamics of long time scales or large systems, such as protein aggregation or activation. Coarse graining (CG can be used to reduce the number of degrees of freedom in such a system, and reduce the computational complexity. In this paper the first version of a coarse grained model for transmembrane proteins is presented. This model differs from other coarse grained protein models due to the introduction of a novel angle potential as well as a hydrogen bonding potential. These new potentials are used to stabilize the backbone. The model has been validated by investigating the adaptation of the hydrophobic mismatch induced by the insertion of WALP-peptides into a lipid membrane, showing that the first step in the adaptation is an increase in the membrane thickness, followed by a tilting of the peptide.

  20. Atomistic simulations of anionic Au-144(SR)(60) nanoparticles interacting with asymmetric model lipid membranes

    DEFF Research Database (Denmark)

    Heikkila, E.; Martinez-Seara, H.; Gurtovenko, A. A.

    2014-01-01

    whose lipid composition and transmembrane distribution are to a large extent consistent with real plasma membranes of eukaryotic cells. To this end, we use a model system which comprises two cellular compartments, extracellular and cytosolic, divided by two asymmetric lipid bilayers. The simulations...... clearly show that AuNP- attaches to the extracellular membrane surface within a few tens of nanoseconds, while it avoids contact with the membrane on the cytosolic side. This behavior stems from several factors. In essence, when the nanoparticle interacts with lipids in the extracellular compartment...

  1. Adsorption and Orientation of Human Islet Amyloid Polypeptide (hIAPP Monomer at Anionic Lipid Bilayers: Implications for Membrane-Mediated Aggregation

    Directory of Open Access Journals (Sweden)

    Guanghong Wei

    2013-03-01

    Full Text Available Protein misfolding and aggregation cause serious degenerative diseases, such as Alzheimer’s and type II diabetes. Human islet amyloid polypeptide (hIAPP is the major component of amyloid deposits found in the pancreas of type II diabetic patients. Increasing evidence suggests that β-cell death is related to the interaction of hIAPP with the cellular membrane, which accelerates peptide aggregation. In this study, as a first step towards understanding the membrane-mediated hIAPP aggregation, we investigate the atomic details of the initial step of hIAPP-membrane interaction, including the adsorption orientation and conformation of hIAPP monomer at an anionic POPG lipid bilayer by performing all-atom molecular dynamics simulations. We found that hIAPP monomer is quickly adsorbed to bilayer surface, and the adsorption is initiated from the N-terminal residues driven by strong electrostatic interactions of the positively-charged residues K1 and R11 with negatively-charged lipid headgroups. hIAPP binds parallel to the lipid bilayer surface as a stable helix through residues 7–22, consistent with previous experimental study. Remarkably, different simulations lead to the same binding orientation stabilized by electrostatic and H-bonding interactions, with residues R11, F15 and S19 oriented towards membrane and hydrophobic residues L12, A13, L16 and V17 exposed to solvent. Implications for membrane-mediated hIAPP aggregation are discussed.

  2. Lipid engineering reveals regulatory roles for membrane fluidity in yeast flocculation and oxygen-limited growth

    DEFF Research Database (Denmark)

    Degreif, Daniel; de Rond, Tristan; Bertl, Adam

    2017-01-01

    Cells modulate lipid metabolism in order to maintain membrane homeostasis. Here we use a metabolic engineering approach to manipulate the stoichiometry of fatty acid unsaturation, a regulator of cell membrane fluidity, in Saccharomyces cerevisiae. Unexpectedly, reduced lipid unsaturation triggere...

  3. Segregated phases in pulmonary surfactant membranes do not show coexistence of lipid populations with differentiated dynamic properties

    DEFF Research Database (Denmark)

    Bernardino de la Serna, Jorge; Orädd, Greger; Bagatolli, Luis

    2009-01-01

    surfactant membranes and membranes reconstituted from two surfactant hydrophobic fractions (i.e., all the lipids plus the hydrophobic proteins SP-B and SP-C, or only the total lipid fraction). These preparations show micrometer-sized fluid ordered/disordered phase coexistence, associated with a broad...... endothermic transition ending close to 37°C. However, both types of membrane exhibit uniform lipid mobility when analyzed by electron paramagnetic resonance with different spin-labeled phospholipids. A similar feature is observed with pulse-field gradient NMR experiments on oriented membranes reconstituted...... from the two types of surfactant hydrophobic extract. These latter results suggest that lipid dynamics are similar in the coexisting fluid phases observed by fluorescence microscopy. Additionally, it is found that surfactant proteins significantly reduce the average intramolecular lipid mobility...

  4. Radiation effects on membranes. I. Vitamin E deficiency and lipid peroxidation

    International Nuclear Information System (INIS)

    Konings, A.W.T.; Drijver, E.B.

    1979-01-01

    Mice which had received a vitamin E-deficient diet from weaning on, were more sensitive to x irradiation than were normal mice, LD/sub 50/30/ being decreased by 0.25 Gy. The vitamin E-deficient mice also showed an increased spleen shrinkage. The cellular membranes of the vitamin E-deficient mice were more vulnerable to lipid peroxidation. X irradiation in vivo shortened the lag period prior to rapid lipid peroxidation as measured in vitro. Injection of the mice with glutathione prior to x irradiation protected the membranes in the in vitro test of peroxidation capacity as was demonstrated by an extended lag period. The possible meaning of these results with respect to the concept that membranes may be important sites for radiation damage is discussed

  5. Probing molecular interactions of poly(styrene-co-maleic acid) with lipid matrix models to interpret the therapeutic potential of the co-polymer.

    Science.gov (United States)

    Banerjee, Shubhadeep; Pal, Tapan K; Guha, Sujoy K

    2012-03-01

    To understand and maximize the therapeutic potential of poly(styrene-co-maleic acid) (SMA), a synthetic, pharmacologically-active co-polymer, its effect on conformation, phase behavior and stability of lipid matrix models of cell membranes were investigated. The modes of interaction between SMA and lipid molecules were also studied. While, attenuated total reflection-Fourier-transform infrared (ATR-FTIR) and static (31)P nuclear magnetic resonance (NMR) experiments detected SMA-induced conformational changes in the headgroup region, differential scanning calorimetry (DSC) studies revealed thermotropic phase behavior changes of the membranes. (1)H NMR results indicated weak immobilization of SMA within the bilayers. Molecular interpretation of the results indicated the role of hydrogen-bond formation and hydrophobic forces between SMA and zwitterionic phospholipid bilayers. The extent of membrane fluidization and generation of isotropic phases were affected by the surface charge of the liposomes, and hence suggested the role of electrostatic interactions between SMA and charged lipid headgroups. SMA was thus found to directly affect the structural integrity of model membranes. Copyright © 2011 Elsevier B.V. All rights reserved.

  6. A lipid E-MAP identifies Ubx2 as a critical regulator of lipid saturation and lipid bilayer stress

    DEFF Research Database (Denmark)

    Surma, Michal A; Klose, Christian; Peng, Debby

    2013-01-01

    Biological membranes are complex, and the mechanisms underlying their homeostasis are incompletely understood. Here, we present a quantitative genetic interaction map (E-MAP) focused on various aspects of lipid biology, including lipid metabolism, sorting, and trafficking. This E-MAP contains ∼250......,000 negative and positive genetic interaction scores and identifies a molecular crosstalk of protein quality control pathways with lipid bilayer homeostasis. Ubx2p, a component of the endoplasmic-reticulum-associated degradation pathway, surfaces as a key upstream regulator of the essential fatty acid (FA...

  7. General and specific lipid-protein interactions in Na,K-ATPase.

    Science.gov (United States)

    Cornelius, F; Habeck, M; Kanai, R; Toyoshima, C; Karlish, S J D

    2015-09-01

    The molecular activity of Na,K-ATPase and other P2 ATPases like Ca(2+)-ATPase is influenced by the lipid environment via both general (physical) and specific (chemical) interactions. Whereas the general effects of bilayer structure on membrane protein function are fairly well described and understood, the importance of the specific interactions has only been realized within the last decade due particularly to the growing field of membrane protein crystallization, which has shed new light on the molecular details of specific lipid-protein interactions. It is a remarkable observation that specific lipid-protein interactions seem to be evolutionarily conserved, and conformations of specifically bound lipids at the lipid-protein surface within the membrane are similar in crystal structures determined with different techniques and sources of the protein, despite the rather weak lipid-protein interaction energy. Studies of purified detergent-soluble recombinant αβ or αβFXYD Na,K-ATPase complexes reveal three separate functional effects of phospholipids and cholesterol with characteristic structural selectivity. The observations suggest that these three effects are exerted at separate binding sites for phophatidylserine/cholesterol (stabilizing), polyunsaturated phosphatidylethanolamine (stimulatory), and saturated PC or sphingomyelin/cholesterol (inhibitory), which may be located within three lipid-binding pockets identified in recent crystal structures of Na,K-ATPase. The findings point to a central role of direct and specific interactions of different phospholipids and cholesterol in determining both stability and molecular activity of Na,K-ATPase and possible implications for physiological regulation by membrane lipid composition. This article is part of a special issue titled "Lipid-Protein Interactions." Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Two-Phase Contiguous Supported Lipid Bilayer Model for Membrane Rafts via Polymer Blotting and Stenciling.

    Science.gov (United States)

    Richards, Mark J; Daniel, Susan

    2017-02-07

    The supported lipid bilayer has been portrayed as a useful model of the cell membrane compatible with many biophysical tools and techniques that demonstrate its appeal in learning about the basic features of the plasma membrane. However, some of its potential has yet to be realized, particularly in the area of bilayer patterning and phase/composition heterogeneity. In this work, we generate contiguous bilayer patterns as a model system that captures the general features of membrane domains and lipid rafts. Micropatterned polymer templates of two types are investigated for generating patterned bilayer formation: polymer blotting and polymer lift-off stenciling. While these approaches have been used previously to create bilayer arrays by corralling bilayers patches with various types of boundaries impenetrable to bilayer diffusion, unique to the methods presented here, there are no physical barriers to diffusion. In this work, interfaces between contiguous lipid phases define the pattern shapes, with continuity between them allowing transfer of membrane-bound biomolecules between the phases. We examine effectors of membrane domain stability including temperature and cholesterol content to investigate domain dynamics. Contiguous patterning of supported bilayers as a model of lipid rafts expands the application of the SLB to an area with current appeal and brings with it a useful toolset for characterization and analysis. These combined tools should be helpful to researchers investigating lipid raft dynamics and function and biomolecule partitioning studies. Additionally, this patterning technique may be useful for applications such as bioseparations that exploit differences in lipid phase partitioning or creation of membranes that bind species like viruses preferentially at lipid phase boundaries, to name a few.

  9. Regional differences in the lateral mobility of plasma membrane lipids in a molluscan embryo

    OpenAIRE

    Speksnijder, J.E.; Dohmen, M.R.; Tertoolen, L.G.J.; Laat, S.W. de

    1985-01-01

    Regional and temporal differences in plasma membrane lipid mobility have been analyzed during the first three cleavage cycles of the embryo of the polar-lobe-forming mollusc Nassarius reticulatus by the fluorescence photobleaching recovery (FPR) method, using 1,1′-ditetradecyl 3,3,3′,3′-tetramethylindocarbocyanine iodide (C14diI) as a fluorescent lipid probe. During this period of development the lateral diffusion coefficient of membrane lipids is consistently greater in the vegetal polar lob...

  10. Lipid Acrobatics in the Membrane Fusion Arena

    NARCIS (Netherlands)

    Markvoort, Albert J.; Marrink, Siewert J.; Chernomordik, Leonid V.; Kozlov, Michael M.

    2011-01-01

    In this review, we describe the recent contribution of computer simulation approaches to unravel the molecular details of membrane fusion. Over the past decade, fusion between apposed membranes and vesicles has been studied using a large variety of simulation methods and systems. Despite the variety

  11. Impact of two different saponins on the organization of model lipid membranes.

    Science.gov (United States)

    Korchowiec, Beata; Gorczyca, Marcelina; Wojszko, Kamila; Janikowska, Maria; Henry, Max; Rogalska, Ewa

    2015-10-01

    Saponins, naturally occurring plant compounds are known for their biological and pharmacological activity. This activity is strongly related to the amphiphilic character of saponins that allows them to aggregate in aqueous solution and interact with membrane components. In this work, Langmuir monolayer techniques combined with polarization modulation infrared reflection-absorption spectroscopy (PM-IRRAS) and Brewster angle microscopy were used to study the interaction of selected saponins with lipid model membranes. Two structurally different saponins were used: digitonin and a commercial Merck Saponin. Membranes of different composition, namely, cholesterol, 1,2-dipalmitoyl-sn-glycero-3-phosphocholine or 1,2-dipalmitoyl-sn-glycero-3-phospho-rac-(1-glycerol) were formed at the air/water and air/saponin solution interfaces. The saponin-lipid interaction was characterized by changes in surface pressure, surface potential, surface morphology and PM-IRRAS signal. Both saponins interact with model membranes and change the physical state of membranes by perturbing the lipid acyl chain orientation. The changes in membrane fluidity were more significant upon the interaction with Merck Saponin. A higher affinity of saponins for cholesterol than phosphatidylglycerols was observed. Moreover, our results indicate that digitonin interacts strongly with cholesterol and solubilize the cholesterol monolayer at higher surface pressures. It was shown, that digitonin easily penetrate to the cholesterol monolayer and forms a hydrogen bond with the hydroxyl groups. These findings might be useful in further understanding of the saponin action at the membrane interface and of the mechanism of membrane lysis. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. The membrane stress response buffers lethal effects of lipid disequilibrium by reprogramming the protein homeostasis network.

    Science.gov (United States)

    Thibault, Guillaume; Shui, Guanghou; Kim, Woong; McAlister, Graeme C; Ismail, Nurzian; Gygi, Steven P; Wenk, Markus R; Ng, Davis T W

    2012-10-12

    Lipid composition can differ widely among organelles and even between leaflets of a membrane. Lipid homeostasis is critical because disequilibrium can have disease outcomes. Despite their importance, mechanisms maintaining lipid homeostasis remain poorly understood. Here, we establish a model system to study the global effects of lipid imbalance. Quantitative lipid profiling was integral to monitor changes to lipid composition and for system validation. Applying global transcriptional and proteomic analyses, a dramatically altered biochemical landscape was revealed from adaptive cells. The resulting composite regulation we term the "membrane stress response" (MSR) confers compensation, not through restoration of lipid composition, but by remodeling the protein homeostasis network. To validate its physiological significance, we analyzed the unfolded protein response (UPR), one facet of the MSR and a key regulator of protein homeostasis. We demonstrate that the UPR maintains protein biogenesis, quality control, and membrane integrity-functions otherwise lethally compromised in lipid dysregulated cells. Copyright © 2012 Elsevier Inc. All rights reserved.

  13. HAMLET interacts with lipid membranes and perturbs their structure and integrity.

    Science.gov (United States)

    Mossberg, Ann-Kristin; Puchades, Maja; Halskau, Øyvind; Baumann, Anne; Lanekoff, Ingela; Chao, Yinxia; Martinez, Aurora; Svanborg, Catharina; Karlsson, Roger

    2010-02-23

    Cell membrane interactions rely on lipid bilayer constituents and molecules inserted within the membrane, including specific receptors. HAMLET (human alpha-lactalbumin made lethal to tumor cells) is a tumoricidal complex of partially unfolded alpha-lactalbumin (HLA) and oleic acid that is internalized by tumor cells, suggesting that interactions with the phospholipid bilayer and/or specific receptors may be essential for the tumoricidal effect. This study examined whether HAMLET interacts with artificial membranes and alters membrane structure. We show by surface plasmon resonance that HAMLET binds with high affinity to surface adherent, unilamellar vesicles of lipids with varying acyl chain composition and net charge. Fluorescence imaging revealed that HAMLET accumulates in membranes of vesicles and perturbs their structure, resulting in increased membrane fluidity. Furthermore, HAMLET disrupted membrane integrity at neutral pH and physiological conditions, as shown by fluorophore leakage experiments. These effects did not occur with either native HLA or a constitutively unfolded Cys-Ala HLA mutant (rHLA(all-Ala)). HAMLET also bound to plasma membrane vesicles formed from intact tumor cells, with accumulation in certain membrane areas, but the complex was not internalized by these vesicles or by the synthetic membrane vesicles. The results illustrate the difference in membrane affinity between the fatty acid bound and fatty acid free forms of partially unfolded HLA and suggest that HAMLET engages membranes by a mechanism requiring both the protein and the fatty acid. Furthermore, HAMLET binding alters the morphology of the membrane and compromises its integrity, suggesting that membrane perturbation could be an initial step in inducing cell death.

  14. Analysis of a Lipid/Polymer Membrane for Bitterness Sensing with a Preconditioning Process

    Directory of Open Access Journals (Sweden)

    Rui Yatabe

    2015-09-01

    Full Text Available It is possible to evaluate the taste of foods or medicines using a taste sensor. The taste sensor converts information on taste into an electrical signal using several lipid/polymer membranes. A lipid/polymer membrane for bitterness sensing can evaluate aftertaste after immersion in monosodium glutamate (MSG, which is called “preconditioning”. However, we have not yet analyzed the change in the surface structure of the membrane as a result of preconditioning. Thus, we analyzed the change in the surface by performing contact angle and surface zeta potential measurements, Fourier transform infrared spectroscopy (FTIR, X-ray photon spectroscopy (XPS and gas cluster ion beam time-of-flight secondary ion mass spectrometry (GCIB-TOF-SIMS. After preconditioning, the concentrations of MSG and tetradodecylammonium bromide (TDAB, contained in the lipid membrane were found to be higher in the surface region than in the bulk region. The effect of preconditioning was revealed by the above analysis methods.

  15. Avanti lipid tools: connecting lipids, technology, and cell biology.

    Science.gov (United States)

    Sims, Kacee H; Tytler, Ewan M; Tipton, John; Hill, Kasey L; Burgess, Stephen W; Shaw, Walter A

    2014-08-01

    Lipid research is challenging owing to the complexity and diversity of the lipidome. Here we review a set of experimental tools developed for the seasoned lipid researcher, as well as, those who are new to the field of lipid research. Novel tools for probing protein-lipid interactions, applications for lipid binding antibodies, enhanced systems for the cellular delivery of lipids, improved visualization of lipid membranes using gold-labeled lipids, and advances in mass spectrometric analysis techniques will be discussed. Because lipid mediators are known to participate in a host of signal transduction and trafficking pathways within the cell, a comprehensive lipid toolbox that aids the science of lipidomics research is essential to better understand the molecular mechanisms of interactions between cellular components. This article is part of a Special Issue entitled Tools to study lipid functions. Copyright © 2014. Published by Elsevier B.V.

  16. Effect of temperature and pH on the lipid photoperoxidation and the structural state of erythrocyte membranes

    International Nuclear Information System (INIS)

    Roshchupkin, D.I.; Pelenitsyn, A.B.; Vladimirov, Yu.A.

    1978-01-01

    The degree of lipid photoperoxidation in erythrocytes (the amount of TBA-active products accumulated under the given dose of ultraviolet irradiation at 254 nm) increased abruptly with temperature in the interval 12 - 20 0 C, then it increased more slowly and later on passed over the maximum at about 30 - 32 0 C. Apparently, the degree of lipid photoperoxidation can serve as a sensitive index of lipid structural state. Using a method of modelling of erythrocyte membranes by liposomes of different chemical content, it was shown that under temperature changes in physiological limits the lipids of erythrocyte membranes undergo at least two structural transformations. The first might be a change in the relative position of cholesterol and phospholipids. The second is followed by the enhancement of membrane antioxidant activity. The degree of lipid photoperoxidation in erythrocytes grows with increasing pH from 6 to 8 according to S-shaped curve with middle point at pH 7.0. This effect can be attributed to structural transformation of membrane lipid zone associated with ionization of membrane protein hystidine. The swelling of erythrocytes in hypotonic medium also leads to structural transformation of lipid zone. (author)

  17. Saturation recovery EPR spin-labeling method for quantification of lipids in biological membrane domains.

    Science.gov (United States)

    Mainali, Laxman; Camenisch, Theodore G; Hyde, James S; Subczynski, Witold K

    2017-12-01

    The presence of integral membrane proteins induces the formation of distinct domains in the lipid bilayer portion of biological membranes. Qualitative application of both continuous wave (CW) and saturation recovery (SR) electron paramagnetic resonance (EPR) spin-labeling methods allowed discrimination of the bulk, boundary, and trapped lipid domains. A recently developed method, which is based on the CW EPR spectra of phospholipid (PL) and cholesterol (Chol) analog spin labels, allows evaluation of the relative amount of PLs (% of total PLs) in the boundary plus trapped lipid domain and the relative amount of Chol (% of total Chol) in the trapped lipid domain [ M. Raguz, L. Mainali, W. J. O'Brien, and W. K. Subczynski (2015), Exp. Eye Res., 140:179-186 ]. Here, a new method is presented that, based on SR EPR spin-labeling, allows quantitative evaluation of the relative amounts of PLs and Chol in the trapped lipid domain of intact membranes. This new method complements the existing one, allowing acquisition of more detailed information about the distribution of lipids between domains in intact membranes. The methodological transition of the SR EPR spin-labeling approach from qualitative to quantitative is demonstrated. The abilities of this method are illustrated for intact cortical and nuclear fiber cell plasma membranes from porcine eye lenses. Statistical analysis (Student's t -test) of the data allowed determination of the separations of mean values above which differences can be treated as statistically significant ( P ≤ 0.05) and can be attributed to sources other than preparation/technique.

  18. PLASMA-MEMBRANE LIPID ALTERATIONS INDUCED BY NACL IN WINTER-WHEAT ROOTS

    NARCIS (Netherlands)

    MANSOUR, MMF; VANHASSELT, PR; KUIPER, PJC

    A highly enriched plasma membrane fraction was isolated by two phase partitioning from wheat roots (Triticum aestivum L. cv. Vivant) grown with and without 100 mM NaCl. The lipids of the plasma membrane fraction were extracted and characterized. Phosphatidylcholine and phosphatidylethanolamine were

  19. Spontaneous Lipid Flip-Flop in Membranes: A Still Unsettled Picture from Experiments and Simulations

    DEFF Research Database (Denmark)

    Sperotto, Maria Maddalena; Ferrarini, Alberta

    2017-01-01

    or assisted by protein transporters. It can be accelerated or inhibited by various factors, e.g., it can be induced by mechanical stresses. It was also found that flip-flop rate and mechanism strongly depend on the molecular structure of the flipping lipid and on the composition and physical state...... studies is presented, together with a summary of the state of the art of computer simulation studies, which enable a direct insight at the molecular level. The achievements and limitations of experimental and computational approaches are pointed out, as well as the challenges that remain to be addressed....... of the membrane. Yet, large discrepancies exist among the data available in the literature, and a quantitative and comprehensive understanding of this process is still missing. This chapter reviews our current knowledge of the molecular aspects of spontaneous (or passive) flip-flop. An overview of experimental...

  20. Plasma lipid pattern and red cell membrane structure in β-thalassemia patients in Jakarta

    Directory of Open Access Journals (Sweden)

    Seruni K.U. Freisleben

    2011-08-01

    Full Text Available Background: Over the last 10 years, we have investigated thalassemia patients in Jakarta to obtain a comprehensive picture of iron overload, oxidative stress, and cell damage.Methods: In blood samples from 15 transfusion-dependent patients (group T, 5 non-transfused patients (group N and 10 controls (group C, plasma lipids and lipoproteins, lipid-soluble vitamin E, malondialdehyde (MDA and thiol status were measured. Isolated eryhtrocyte membranes were investigated with electron paramagnetic resonance (EPR spectroscopy using doxyl-stearic acid and maleimido-proxyl spin lables. Data were analyzed statistically with ANOVA.Results: Plasma triglycerides were higher and cholesterol levels were lower in thalassemic patients compared to controls. Vitamin E, group C: 21.8 vs T: 6.2 μmol/L and reactive thiols (C: 144 vs. T: 61 μmol/L were considerably lower in transfused patients, who exert clear signs of oxidative stress (MDA, C: 1.96 vs T: 9.2 μmol/L and of tissue cell damage, i.e., high transaminases plasma levels. Non-transfused thalassemia patients have slight signs of oxidative stress, but no significant indication of cell damage. Erythrocyte membrane parameters from EPR spectroscopy differ considerably between all groups. In transfusion-dependent patients the structure of the erythrocyte membrane and the gradients of polarity and fluidity are destroyed in lipid domains; binding capacity of protein thiols in the membrane is lower and immobilized.Conclusion: In tranfusion-dependent thalassemic patients, plasma lipid pattern and oxidative stress are associated with structural damage of isolated erythrocyte membranes as measured by EPR spectroscopy with lipid and proteinthiol spin labels. (Med J Indones 2011; 20:178-84Keywords: electron paramagnetic resonance spectroscopy, erythrocyte membrane, lipoproteins, oxidative stress, thalassemia, plasma lipids.

  1. Reorganization of plasma membrane lipid domains during conidial germination.

    Science.gov (United States)

    Santos, Filipa C; Fernandes, Andreia S; Antunes, Catarina A C; Moreira, Filipe P; Videira, Arnaldo; Marinho, H Susana; de Almeida, Rodrigo F M

    2017-02-01

    Neurospora crassa, a filamentous fungus, in the unicellular conidial stage has ideal features to study sphingolipid (SL)-enriched domains, which are implicated in fundamental cellular processes ranging from antifungal resistance to apoptosis. Several changes in lipid metabolism and in the membrane composition of N. crassa occur during spore germination. However, the biophysical impact of those changes is unknown. Thus, a biophysical study of N. crassa plasma membrane, particularly SL-enriched domains, and their dynamics along conidial germination is prompted. Two N. crassa strains, wild-type (WT) and slime, which is devoid of cell wall, were studied. Conidial growth of N. crassa WT from a dormancy state to an exponential phase was accompanied by membrane reorganization, namely an increase of membrane fluidity, occurring faster in a supplemented medium than in Vogel's minimal medium. Gel-like domains, likely enriched in SLs, were found in both N. crassa strains, but were particularly compact, rigid and abundant in the case of slime cells, even more than in budding yeast Saccharomyces cerevisiae. In N. crassa, our results suggest that the melting of SL-enriched domains occurs near growth temperature (30°C) for WT, but at higher temperatures for slime. Regarding biophysical properties strongly affected by ergosterol, the plasma membrane of slime conidia lays in between those of N. crassa WT and S. cerevisiae cells. The differences in biophysical properties found in this work, and the relationships established between membrane lipid composition and dynamics, give new insights about the plasma membrane organization and structure of N. crassa strains during conidial growth. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Molecular packing in 1-hexanol-DMPC bilayers studied by molecular dynamics simulation

    DEFF Research Database (Denmark)

    Pedersen, U.R.; Peters, Günther H.j.; Westh, P.

    2007-01-01

    The structure and molecular packing density of a “mismatched” solute, 1-hexanol, in lipid membranes of dimyristoyl phosphatidylcholine (DMPC) was studied by molecular dynamics simulations. We found that the average location and orientation of the hexanol molecules matched earlier experimental data...... on comparable systems. The local density or molecular packing in DMPC–hexanol was elucidated through the average Voronoi volumes of all heavy (non-hydrogen) atoms. Analogous analysis was conducted on trajectories from simulations of pure 1-hexanol and pure (hydrated) DMPC bilayers. The results suggested...... of the alcohol upon partitioning and an even stronger loosening in the packing of the lipid. Furthermore, analysis of Voronoi volumes along the membrane normal identifies a distinctive depth dependence of the changes in molecular packing. The outer (interfacial) part of the lipid acyl chains (up to C8...

  3. The interaction of antibodies with lipid membranes unraveled by fluorescence methodologies

    Science.gov (United States)

    Figueira, Tiago N.; Veiga, Ana Salomé; Castanho, Miguel A. R. B.

    2014-12-01

    The interest and investment in antibody therapies has reached an overwhelming scale in the last decade. Yet, little concern has been noticed among the scientific community to unravel important interactions of antibodies with biological structures other than their respective epitopes. Lipid membranes are particularly relevant in this regard as they set the stage for protein-protein recognition, a concept potentially inclusive of antibody-antigen recognition. Fluorescence techniques allow experimental monitoring of protein partition between aqueous and lipid phases, deciphering events of adsorption, insertion and diffusion. This review focuses on the available fluorescence spectroscopy methodologies directed to the study of antibody-membrane interactions.

  4. Spectral Properties and Orientation of Voltage-Sensitive Dyes in Lipid Membranes

    KAUST Repository

    Matson, Maria

    2012-07-24

    Voltage-sensitive dyes are frequently used for probing variations in the electric potential across cell membranes. The dyes respond by changing their spectral properties: measured as shifts of wavelength of absorption or emission maxima or as changes of absorption or fluorescence intensity. Although such probes have been studied and used for decades, the mechanism behind their voltage sensitivity is still obscure. We ask whether the voltage response is due to electrochromism as a result of direct field interaction on the chromophore or to solvatochromism, which is the focus of this study, as result of changed environment or molecular alignment in the membrane. The spectral properties of three styryl dyes, di-4-ANEPPS, di-8-ANEPPS, and RH421, were investigated in solvents of varying polarity and in model membranes using spectroscopy. Using quantum mechanical calculations, the spectral dependence of monomer and dimer ANEPPS on solvent properties was modeled. Also, the kinetics of binding to lipid membranes and the binding geometry of the probe molecules were found relevant to address. The spectral properties of all three probes were found to be highly sensitive to the local environment, and the probes are oriented nearly parallel with the membrane normal. Slow binding kinetics and scattering in absorption spectra indicate, especially for di-8-ANEPPS, involvement of aggregation. On the basis of the experimental spectra and time-dependent density functional theory calculations, we find that aggregate formation may contribute to the blue-shifts seen for the dyes in decanol and when bound to membrane models. In conclusion, solvatochromic and other intermolecular interactions effects also need to be included when considering electrochromic response voltage-sensitive dyes. © 2012 American Chemical Society.

  5. Interactions of Borneol with DPPC Phospholipid Membranes: A Molecular Dynamics Simulation Study

    Directory of Open Access Journals (Sweden)

    Qianqian Yin

    2014-11-01

    Full Text Available Borneol, known as a “guide” drug in traditional Chinese medicine, is widely used as a natural penetration enhancer in modern clinical applications. Despite a large number of experimental studies on borneol’s penetration enhancing effect, the molecular basis of its action on bio-membranes is still unclear. We carried out a series of coarse-grained molecular dynamics simulations with the borneol concentration ranging from 3.31% to 54.59% (v/v, lipid-free basis to study the interactions of borneol with aDPPC(1,2-dipalmitoylsn-glycero-3-phosphatidylcholine bilayer membrane, and the temperature effects were also considered. At concentrations below 21.89%, borneol’s presence only caused DPPC bilayer thinning and an increase in fluidity; A rise in temperature could promote the diffusing progress of borneol. When the concentration was 21.89% or above, inverted micelle-like structures were formed within the bilayer interior, which led to increased bilayer thickness, and an optimum temperature was found for the interaction of borneol with the DPPC bilayer membrane. These findings revealed that the choice of optimal concentration and temperature is critical for a given application in which borneol is used as a penetration enhancer. Our results not only clarify some molecular basis for borneol’s penetration enhancing effects, but also provide some guidance for the development and applications of new preparations containing borneol.

  6. Lipid- and temperature-dependent structural changes in Acholeplasma laidlawii cell membrances

    Energy Technology Data Exchange (ETDEWEB)

    James, R.; Branton, D.

    1973-01-01

    The lipids in cell membranes of Acholeplasma laidlawii were enriched with different fatty acids selected to produce membranes showing molecular motion discontinuities at temperatures between 10 and 35/sup 0/C. Molecular motion in these membranes was probed by ESR after labelling with 12-nitroxide stearate, and structure in these membranes was examined by electron microscopy after freeze-etching. Freeze-etching and electron microscopy showed that under certain conditions the particles in the A. laidlawii membranes aggregated, resulting in particle-rich and particle-depleted regions in the cell membrane. Depending upon the lipid content of the membrane, this aggregation could begin at temperatures well above the ESR-determined discontinuity. Aggregation increased with decreasing temperature but was completed at or near the discontinuity. However, cell membranes grown and maintained well below their ESR-determined discontinuity did not show maximum particle aggregation until after they had been exposed to temperatures at or above the discontinuity. The results show that temperatures at or near a phase transition temperature can induce aggregation of the membrane particles. This suggests that temperature-induced changes in the lipid phase of a biological membrane can induce phase separations which affect the topography of associated proteins.

  7. Lipid Binding of the Amphipathic Helix Serving as Membrane Anchor of Pestivirus Glycoprotein Erns.

    Science.gov (United States)

    Aberle, Daniel; Oetter, Kay-Marcus; Meyers, Gregor

    2015-01-01

    Pestiviruses express a peculiar protein named Erns representing envelope glycoprotein and RNase, which is important for control of the innate immune response and persistent infection. The latter functions are connected with secretion of a certain amount of Erns from the infected cell. Retention/secretion of Erns is most likely controlled by its unusual membrane anchor, a long amphipathic helix attached in plane to the membrane. Here we present results of experiments conducted with a lipid vesicle sedimentation assay able to separate lipid-bound from unbound protein dissolved in the water phase. Using this technique we show that a protein composed of tag sequences and the carboxyterminal 65 residues of Erns binds specifically to membrane vesicles with a clear preference for compositions containing negatively charged lipids. Mutations disturbing the helical folding and/or amphipathic character of the anchor as well as diverse truncations and exchange of amino acids important for intracellular retention of Erns had no or only small effects on the proteins membrane binding. This result contrasts the dramatically increased secretion rates observed for Erns proteins with equivalent mutations within cells. Accordingly, the ratio of secreted versus cell retained Erns is not determined by the lipid affinity of the membrane anchor.

  8. Lipid Binding of the Amphipathic Helix Serving as Membrane Anchor of Pestivirus Glycoprotein Erns.

    Directory of Open Access Journals (Sweden)

    Daniel Aberle

    Full Text Available Pestiviruses express a peculiar protein named Erns representing envelope glycoprotein and RNase, which is important for control of the innate immune response and persistent infection. The latter functions are connected with secretion of a certain amount of Erns from the infected cell. Retention/secretion of Erns is most likely controlled by its unusual membrane anchor, a long amphipathic helix attached in plane to the membrane. Here we present results of experiments conducted with a lipid vesicle sedimentation assay able to separate lipid-bound from unbound protein dissolved in the water phase. Using this technique we show that a protein composed of tag sequences and the carboxyterminal 65 residues of Erns binds specifically to membrane vesicles with a clear preference for compositions containing negatively charged lipids. Mutations disturbing the helical folding and/or amphipathic character of the anchor as well as diverse truncations and exchange of amino acids important for intracellular retention of Erns had no or only small effects on the proteins membrane binding. This result contrasts the dramatically increased secretion rates observed for Erns proteins with equivalent mutations within cells. Accordingly, the ratio of secreted versus cell retained Erns is not determined by the lipid affinity of the membrane anchor.

  9. Understanding Detergent Effects on Lipid Membranes: A Model Study of Lysolipids

    DEFF Research Database (Denmark)

    Henriksen, Jonas Rosager; Andresen, Thomas Lars; Feldborg, Lise Nørkjær

    2010-01-01

    Lysolipids and fatty acids are the natural products formed by the hydrolysis of phospholipids. Lysolipids and fatty acids form micelles in solution and acts as detergents in the presence of lipid membranes. In this study, we investigate the detergent strength of a homologous series of lyso......-chain mismatch between LPC and POPC determines the magnitude of the membrane mechanical perturbation per LPC molecule in the membrane. Finally, the three-stage model describing detergent membrane interaction has been extended by a parameter D-MCI, which governs the membrane curvature stability in the detergent...

  10. A Molecular Dynamics Study of the Structural and Dynamical Properties of Putative Arsenic Substituted Lipid Bilayers

    Directory of Open Access Journals (Sweden)

    Ratna Juwita

    2013-04-01

    Full Text Available Cell membranes are composed mainly of phospholipids which are in turn, composed of five major chemical elements: carbon, hydrogen, nitrogen, oxygen, and phosphorus. Recent studies have suggested the possibility of sustaining life if the phosphorus is substituted by arsenic. Although this issue is still controversial, it is of interest to investigate the properties of arsenated-lipid bilayers to evaluate this possibility. In this study, we simulated arsenated-lipid, 1-palmitoyl-2-oleoyl-sn-glycero-3-arsenocholine (POAC, lipid bilayers using all-atom molecular dynamics to understand basic structural and dynamical properties, in particular, the differences from analogous 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine, (POPC lipid bilayers. Our simulations showed that POAC lipid bilayers have distinct structural and dynamical properties from those of native POPC lipid bilayers. Relative to POPC lipid bilayers, POAC lipid bilayers have a more compact structure with smaller lateral areas and greater order. The compact structure of POAC lipid bilayers is due to the fact that more inter-lipid salt bridges are formed with arsenate-choline compared to the phosphate-choline of POPC lipid bilayers. These inter-lipid salt bridges bind POAC lipids together and also slow down the head group rotation and lateral diffusion of POAC lipids. Thus, it would be anticipated that POAC and POPC lipid bilayers would have different biological implications.

  11. Selective effect of cell membrane on synaptic neurotransmission

    DEFF Research Database (Denmark)

    Postila, Pekka A.; Vattulainen, Ilpo; Róg, Tomasz

    2016-01-01

    Atomistic molecular dynamics simulations were performed with 13 non-peptidic neurotransmitters (NTs) in three different membrane environments. The results provide compelling evidence that NTs are divided into membrane-binding and membrane-nonbinding molecules. NTs adhere to the postsynaptic membr...... the importance of cell membrane and specific lipids for neurotransmission, should to be of interest to neuroscientists, drug industry and the general public alike.......Atomistic molecular dynamics simulations were performed with 13 non-peptidic neurotransmitters (NTs) in three different membrane environments. The results provide compelling evidence that NTs are divided into membrane-binding and membrane-nonbinding molecules. NTs adhere to the postsynaptic...... membrane surface whenever the ligand-binding sites of their synaptic receptors are buried in the lipid bilayer. In contrast, NTs that have extracellular ligand-binding sites do not have a similar tendency to adhere to the membrane surface. This finding is a seemingly simple yet important addition...

  12. Lipid Metabolism, Apoptosis and Cancer Therapy

    Directory of Open Access Journals (Sweden)

    Chunfa Huang

    2015-01-01

    Full Text Available Lipid metabolism is regulated by multiple signaling pathways, and generates a variety of bioactive lipid molecules. These bioactive lipid molecules known as signaling molecules, such as fatty acid, eicosanoids, diacylglycerol, phosphatidic acid, lysophophatidic acid, ceramide, sphingosine, sphingosine-1-phosphate, phosphatidylinositol-3 phosphate, and cholesterol, are involved in the activation or regulation of different signaling pathways. Lipid metabolism participates in the regulation of many cellular processes such as cell growth, proliferation, differentiation, survival, apoptosis, inflammation, motility, membrane homeostasis, chemotherapy response, and drug resistance. Bioactive lipid molecules promote apoptosis via the intrinsic pathway by modulating mitochondrial membrane permeability and activating different enzymes including caspases. In this review, we discuss recent data in the fields of lipid metabolism, lipid-mediated apoptosis, and cancer therapy. In conclusion, understanding the underlying molecular mechanism of lipid metabolism and the function of different lipid molecules could provide the basis for cancer cell death rationale, discover novel and potential targets, and develop new anticancer drugs for cancer therapy.

  13. Bright and photostable push-pull pyrene dye visualizes lipid order variation between plasma and intracellular membranes.

    Science.gov (United States)

    Niko, Yosuke; Didier, Pascal; Mely, Yves; Konishi, Gen-ichi; Klymchenko, Andrey S

    2016-01-11

    Imaging lipid organization in cell membranes requires advanced fluorescent probes. Here, we show that a recently synthesized push-pull pyrene (PA), similarly to popular probe Laurdan, changes the emission maximum as a function of lipid order, but outperforms it by spectroscopic properties. In addition to red-shifted absorption compatible with common 405 nm diode laser, PA shows higher brightness and much higher photostability than Laurdan in apolar membrane environments. Moreover, PA is compatible with two-photon excitation at wavelengths >800 nm, which was successfully used for ratiometric imaging of coexisting liquid ordered and disordered phases in giant unilamellar vesicles. Fluorescence confocal microscopy in Hela cells revealed that PA efficiently stains the plasma membrane and the intracellular membranes at >20-fold lower concentrations, as compared to Laurdan. Finally, ratiometric imaging using PA reveals variation of lipid order within different cellular compartments: plasma membranes are close to liquid ordered phase of model membranes composed of sphingomyelin and cholesterol, while intracellular membranes are much less ordered, matching well membranes composed of unsaturated phospholipids without cholesterol. These differences in the lipid order were confirmed by fluorescence lifetime imaging (FLIM) at the blue edge of PA emission band. PA probe constitutes thus a new powerful tool for biomembrane research.

  14. Lipid bilayer-bound conformation of an integral membrane beta barrel protein by multidimensional MAS NMR

    International Nuclear Information System (INIS)

    Eddy, Matthew T.; Su, Yongchao; Silvers, Robert; Andreas, Loren; Clark, Lindsay; Wagner, Gerhard; Pintacuda, Guido; Emsley, Lyndon; Griffin, Robert G.

    2015-01-01

    The human voltage dependent anion channel 1 (VDAC) is a 32 kDa β-barrel integral membrane protein that controls the transport of ions across the outer mitochondrial membrane. Despite the determination of VDAC solution and diffraction structures, a structural basis for the mechanism of its function is not yet fully understood. Biophysical studies suggest VDAC requires a lipid bilayer to achieve full function, motivating the need for atomic resolution structural information of VDAC in a membrane environment. Here we report an essential step toward that goal: extensive assignments of backbone and side chain resonances for VDAC in DMPC lipid bilayers via magic angle spinning nuclear magnetic resonance (MAS NMR). VDAC reconstituted into DMPC lipid bilayers spontaneously forms two-dimensional lipid crystals, showing remarkable spectral resolution (0.5–0.3 ppm for 13 C line widths and <0.5 ppm 15 N line widths at 750 MHz). In addition to the benefits of working in a lipid bilayer, several distinct advantages are observed with the lipid crystalline preparation. First, the strong signals and sharp line widths facilitated extensive NMR resonance assignments for an integral membrane β-barrel protein in lipid bilayers by MAS NMR. Second, a large number of residues in loop regions were readily observed and assigned, which can be challenging in detergent-solubilized membrane proteins where loop regions are often not detected due to line broadening from conformational exchange. Third, complete backbone and side chain chemical shift assignments could be obtained for the first 25 residues, which comprise the functionally important N-terminus. The reported assignments allow us to compare predicted torsion angles for VDAC prepared in DMPC 2D lipid crystals, DMPC liposomes, and LDAO-solubilized samples to address the possible effects of the membrane mimetic environment on the conformation of the protein. Concluding, we discuss the strengths and weaknesses of the reported

  15. Clostridium Perfringens Epsilon Toxin Binds to Membrane Lipids and Its Cytotoxic Action Depends on Sulfatide.

    Directory of Open Access Journals (Sweden)

    Carles Gil

    Full Text Available Epsilon toxin (Etx is one of the major lethal toxins produced by Clostridium perfringens types B and D, being the causal agent of fatal enterotoxemia in animals, mainly sheep and goats. Etx is synthesized as a non-active prototoxin form (proEtx that becomes active upon proteolytic activation. Etx exhibits a cytotoxic effect through the formation of a pore in the plasma membrane of selected cell targets where Etx specifically binds due to the presence of specific receptors. However, the identity and nature of host receptors of Etx remain a matter of controversy. In the present study, the interactions between Etx and membrane lipids from the synaptosome-enriched fraction from rat brain (P2 fraction and MDCK cell plasma membrane preparations were analyzed. Our findings show that both Etx and proEtx bind to lipids extracted from lipid rafts from the two different models as assessed by protein-lipid overlay assay. Lipid rafts are membrane microdomains enriched in cholesterol and sphingolipids. Binding of proEtx to sulfatide, phosphatidylserine, phosphatidylinositol (3-phosphate and phosphatidylinositol (5-phosphate was detected. Removal of the sulphate groups via sulfatase treatment led to a dramatic decrease in Etx-induced cytotoxicity, but not in proEtx-GFP binding to MDCK cells or a significant shift in oligomer formation, pointing to a role of sulfatide in pore formation in rafts but not in toxin binding to the target cell membrane. These results show for the first time the interaction between Etx and membrane lipids from host tissue and point to a major role for sulfatides in C. perfringens epsilon toxin pathophysiology.

  16. A Molecular Probe for the Detection of Polar Lipids in Live Cells.

    Science.gov (United States)

    Bader, Christie A; Shandala, Tetyana; Carter, Elizabeth A; Ivask, Angela; Guinan, Taryn; Hickey, Shane M; Werrett, Melissa V; Wright, Phillip J; Simpson, Peter V; Stagni, Stefano; Voelcker, Nicolas H; Lay, Peter A; Massi, Massimiliano; Plush, Sally E; Brooks, Douglas A

    2016-01-01

    Lipids have an important role in many aspects of cell biology, including membrane architecture/compartment formation, intracellular traffic, signalling, hormone regulation, inflammation, energy storage and metabolism. Lipid biology is therefore integrally involved in major human diseases, including metabolic disorders, neurodegenerative diseases, obesity, heart disease, immune disorders and cancers, which commonly display altered lipid transport and metabolism. However, the investigation of these important cellular processes has been limited by the availability of specific tools to visualise lipids in live cells. Here we describe the potential for ReZolve-L1™ to localise to intracellular compartments containing polar lipids, such as for example sphingomyelin and phosphatidylethanolamine. In live Drosophila fat body tissue from third instar larvae, ReZolve-L1™ interacted mainly with lipid droplets, including the core region of these organelles. The presence of polar lipids in the core of these lipid droplets was confirmed by Raman mapping and while this was consistent with the distribution of ReZolve-L1™ it did not exclude that the molecular probe might be detecting other lipid species. In response to complete starvation conditions, ReZolve-L1™ was detected mainly in Atg8-GFP autophagic compartments, and showed reduced staining in the lipid droplets of fat body cells. The induction of autophagy by Tor inhibition also increased ReZolve-L1™ detection in autophagic compartments, whereas Atg9 knock down impaired autophagosome formation and altered the distribution of ReZolve-L1™. Finally, during Drosophila metamorphosis fat body tissues showed increased ReZolve-L1™ staining in autophagic compartments at two hours post puparium formation, when compared to earlier developmental time points. We concluded that ReZolve-L1™ is a new live cell imaging tool, which can be used as an imaging reagent for the detection of polar lipids in different intracellular

  17. Protein/lipid coaggregates are formed during α-synuclein-induced disruption of lipid bilayers

    DEFF Research Database (Denmark)

    van Maarschalkerweerd, Andreas; Vetri, Valeria; Langkilde, Annette Eva

    2014-01-01

    Amyloid formation is associated with neurodegenerative diseases such as Parkinson's disease (PD). Significant α-synuclein (αSN) deposition in lipid-rich Lewy bodies is a hallmark of PD. Nonetheless, an unraveling of the connection between neurodegeneration and amyloid fibrils, including the molec......Amyloid formation is associated with neurodegenerative diseases such as Parkinson's disease (PD). Significant α-synuclein (αSN) deposition in lipid-rich Lewy bodies is a hallmark of PD. Nonetheless, an unraveling of the connection between neurodegeneration and amyloid fibrils, including...... the molecular mechanisms behind potential amyloid-mediated toxic effects, is still missing. Interaction between amyloid aggregates and the lipid cell membrane is expected to play a key role in the disease progress. Here, we present experimental data based on hybrid analysis of two-photon-microscopy, solution...... small-angle X-ray scattering and circular dichroism data. Data show in real time changes in liposome morphology and stability upon protein addition and reveal that membrane disruption mediated by amyloidogenic αSN is associated with dehydration of anionic lipid membranes and stimulation of protein...

  18. The lipid organisation of the cell membrane

    Directory of Open Access Journals (Sweden)

    Ladha, S.

    2000-04-01

    Full Text Available Lipids and proteins in biological membranes are arranged in a mosaic of domains in the membrane. These domains represent small-scale heterogeneities in composition, shape and fluidity within the plane of the membrane, over the range of hundreds of nanometers to a few micrometers. They arise from the complex interactions of the heterogeneous mixtures of phospholipids, sterols, and proteins that make up all biological membranes.Los lípidos y las proteínas en las membranas biológicas están dispuestos en un mosaico de campos en la membrana. Estos campos representan heterogeneidades a pequeña escala en la composición, forma y fluidez dentro del plano de la membrana, en un rango que va de los cientos de nanómetros a los pocos micrómetros. Estos campos se originan de las complejas interacciones de las mezclas heterogéneas de fosfolípidos, esteroles y proteínas de las que están hechas todas y cada una de las membranas biológicas.

  19. Effect of the aminoacid composition of model α-helical peptides on the physical properties of lipid bilayers and peptide conformation: a molecular dynamics simulation

    Czech Academy of Sciences Publication Activity Database

    Melicherčík, Milan; Holúbeková, A.; Hianik, T.; Urban, J.

    2013-01-01

    Roč. 19, č. 11 (2013), s. 4723-4730 ISSN 1610-2940 Institutional support: RVO:67179843 Keywords : Bilayer lipid membranes * Helical peptides * Molecular dynamics simulations * Phase transitions Subject RIV: BO - Biophysics Impact factor: 1.867, year: 2013

  20. Research on the Changes to the Lipid/Polymer Membrane Used in the Acidic Bitterness Sensor Caused by Preconditioning

    Directory of Open Access Journals (Sweden)

    Yuhei Harada

    2016-02-01

    Full Text Available A taste sensor that uses lipid/polymer membranes can evaluate aftertastes felt by humans using Change in membrane Potential caused by Adsorption (CPA measurements. The sensor membrane for evaluating bitterness, which is caused by acidic bitter substances such as iso-alpha acid contained in beer, needs an immersion process in monosodium glutamate (MSG solution, called “MSG preconditioning”. However, what happens to the lipid/polymer membrane during MSG preconditioning is not clear. Therefore, we carried out three experiments to investigate the changes in the lipid/polymer membrane caused by the MSG preconditioning, i.e., measurements of the taste sensor, measurements of the amount of the bitterness substance adsorbed onto the membrane and measurements of the contact angle of the membrane surface. The CPA values increased as the preconditioning process progressed, and became stable after 3 d of preconditioning. The response potentials to the reference solution showed the same tendency of the CPA value change during the preconditioning period. The contact angle of the lipid/polymer membrane surface decreased after 7 d of MSG preconditioning; in short, the surface of the lipid/polymer membrane became hydrophilic during MSG preconditioning. The amount of adsorbed iso-alpha acid was increased until 5 d preconditioning, and then it decreased. In this study, we revealed that the CPA values increased with the progress of MSG preconditioning in spite of the decrease of the amount of iso-alpha acid adsorbed onto the lipid/polymer membrane, and it was indicated that the CPA values increase because the sensor sensitivity was improved by the MSG preconditioning.

  1. Controlling Styrene Maleic Acid Lipid Particles through RAFT.

    Science.gov (United States)

    Smith, Anton A A; Autzen, Henriette E; Laursen, Tomas; Wu, Vincent; Yen, Max; Hall, Aaron; Hansen, Scott D; Cheng, Yifan; Xu, Ting

    2017-11-13

    The ability of styrene maleic acid copolymers to dissolve lipid membranes into nanosized lipid particles is a facile method of obtaining membrane proteins in solubilized lipid discs while conserving part of their native lipid environment. While the currently used copolymers can readily extract membrane proteins in native nanodiscs, their highly disperse composition is likely to influence the dispersity of the discs as well as the extraction efficiency. In this study, reversible addition-fragmentation chain transfer was used to control the polymer architecture and dispersity of molecular weights with a high-precision. Based on Monte Carlo simulations of the polymerizations, the monomer composition was predicted and allowed a structure-function analysis of the polymer architecture, in relation to their ability to assemble into lipid nanoparticles. We show that a higher degree of control of the polymer architecture generates more homogeneous samples. We hypothesize that low dispersity copolymers, with control of polymer architecture are an ideal framework for the rational design of polymers for customized isolation and characterization of integral membrane proteins in native lipid bilayer systems.

  2. Quantification of Protein-Induced Membrane Remodeling Kinetics In Vitro with Lipid Multilayer Gratings

    Science.gov (United States)

    Lowry, Troy W.; Hariri, Hanaa; Prommapan, Plengchart; Kusi-Appiah, Aubrey; Vafai, Nicholas; Bienkiewicz, Ewa A.; Van Winkle, David H.; Stagg, Scott M.

    2016-01-01

    The dynamic self-organization of lipids in biological systems is a highly regulated process that enables the compartmentalization of living systems at micro- and nanoscopic scales. Consequently, quantitative methods for assaying the kinetics of supramolecular remodeling such as vesicle formation from planar lipid bilayers or multilayers are needed to understand cellular self-organization. Here, a new nanotechnology-based method for quantitative measurements of lipid–protein interactions is presented and its suitability for quantifying the membrane binding, inflation, and budding activity of the membrane-remodeling protein Sar1 is demonstrated. Lipid multilayer gratings are printed onto surfaces using nanointaglio and exposed to Sar1, resulting in the inflation of lipid multilayers into unilamellar structures, which can be observed in a label-free manner by monitoring the diffracted light. Local variations in lipid multilayer volume on the surface is used to vary substrate availability in a microarray format. A quantitative model is developed that allows quantification of binding affinity (KD) and kinetics (kon and koff). Importantly, this assay is uniquely capable of quantifying membrane remodeling. Upon Sar1-induced inflation of single bilayers from surface supported multilayers, the semicylindrical grating lines are observed to remodel into semispherical buds when a critical radius of curvature is reached. PMID:26649649

  3. Regulation of membrane protein function by lipid bilayer elasticity—a single molecule technology to measure the bilayer properties experienced by an embedded protein

    DEFF Research Database (Denmark)

    Lundbæk, Jens August

    2008-01-01

    , regulate a number of structurally unrelated proteins in an apparently non-specific manner. It is well known that changes in the physical properties of a lipid bilayer (e.g., thickness or monolayer spontaneous curvature) can affect the function of an embedded protein. However, the role of such changes......-dependent sodium channels, N-type calcium channels and GABAA receptors, it has been shown that membrane protein function in living cells can be regulated by amphiphile induced changes in bilayer elasticity. Using the gramicidin channel as a molecular force transducer, a nanotechnology to measure the elastic...... properties experienced by an embedded protein has been developed. A theoretical and technological framework, to study the regulation of membrane protein function by lipid bilayer elasticity, has been established....

  4. Lipid-regulated sterol transfer between closely apposed membranes by oxysterol-binding protein homologues.

    Science.gov (United States)

    Schulz, Timothy A; Choi, Mal-Gi; Raychaudhuri, Sumana; Mears, Jason A; Ghirlando, Rodolfo; Hinshaw, Jenny E; Prinz, William A

    2009-12-14

    Sterols are transferred between cellular membranes by vesicular and poorly understood nonvesicular pathways. Oxysterol-binding protein-related proteins (ORPs) have been implicated in sterol sensing and nonvesicular transport. In this study, we show that yeast ORPs use a novel mechanism that allows regulated sterol transfer between closely apposed membranes, such as organelle contact sites. We find that the core lipid-binding domain found in all ORPs can simultaneously bind two membranes. Using Osh4p/Kes1p as a representative ORP, we show that ORPs have at least two membrane-binding surfaces; one near the mouth of the sterol-binding pocket and a distal site that can bind a second membrane. The distal site is required for the protein to function in cells and, remarkably, regulates the rate at which Osh4p extracts and delivers sterols in a phosphoinositide-dependent manner. Together, these findings suggest a new model of how ORPs could sense and regulate the lipid composition of adjacent membranes.

  5. Lipid Structure in Triolein Lipid Droplets

    DEFF Research Database (Denmark)

    Chaban, Vitaly V; Khandelia, Himanshu

    2014-01-01

    of a mass of hydrophobic lipid esters coved by phospholipid monolayer. The small size and unique architecture of LDs makes it complicated to study LD structure by modern experimental methods. We discuss coarse-grained molecular dynamics (MD) simulations of LD formation in systems containing 1-palmitoyl-2...... to coarse-grained simulations, the presence of PE lipids at the interface has a little impact on distribution of components and on the overall LD structure. (4) The thickness of the lipid monolayer at the surface of the droplet is similar to the thickness of one leaflet of a bilayer. Computer simulations......Lipid droplets (LDs) are primary repositories of esterified fatty acids and sterols in animal cells. These organelles originate on the lumenal or cytoplasmic side of endoplasmic reticulum (ER) membrane and are released to the cytosol. In contrast to other intracellular organelles, LDs are composed...

  6. ToF-SIMS observation for evaluating the interaction between amyloid β and lipid membranes.

    Science.gov (United States)

    Aoyagi, Satoka; Shimanouchi, Toshinori; Kawashima, Tomoko; Iwai, Hideo

    2015-04-01

    The adsorption behaviour of amyloid beta (Aβ), thought to be a key peptide for understanding Alzheimer's disease, was investigated by means of time-of-flight secondary ion mass spectrometry (ToF-SIMS). Aβ aggregates depending on the lipid membrane condition though it has not been fully understood yet. In this study, Aβ samples on different lipid membranes, 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC), 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) and 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC), were observed with ToF-SIMS and the complex ToF-SIMS data of the Aβ samples was interpreted using data analysis techniques such as principal component analysis (PCA), gentle-SIMS (G-SIMS) and g-ogram. DOPC and DMPC are liquid crystal at room temperature, while DPPC is gel at room temperature. As primary ion beams, Bi3(+) and Ar cluster ion beams were used and the effect of an Ar cluster ion for evaluating biomolecules was also studied. The secondary ion images of the peptide fragment ions indicated by G-SIMS and g-ogram were consistent with the PCA results. It is suggested that Aβ is adsorbed homogeneously on the liquid-crystalline-phase lipid membranes, while it aggregates along the lipid on the gel-phase lipid membrane. Moreover, in the results using the Ar cluster, the influence of contamination was reduced.

  7. Polymeric molecular sieve membranes via in situ cross-linking of non-porous polymer membrane templates.

    Science.gov (United States)

    Qiao, Zhen-An; Chai, Song-Hai; Nelson, Kimberly; Bi, Zhonghe; Chen, Jihua; Mahurin, Shannon M; Zhu, Xiang; Dai, Sheng

    2014-04-16

    High-performance polymeric membranes for gas separation are attractive for molecular-level separations in industrial-scale chemical, energy and environmental processes. Molecular sieving materials are widely regarded as the next-generation membranes to simultaneously achieve high permeability and selectivity. However, most polymeric molecular sieve membranes are based on a few solution-processable polymers such as polymers of intrinsic microporosity. Here we report an in situ cross-linking strategy for the preparation of polymeric molecular sieve membranes with hierarchical and tailorable porosity. These membranes demonstrate exceptional performance as molecular sieves with high gas permeabilities and selectivities for smaller gas molecules, such as carbon dioxide and oxygen, over larger molecules such as nitrogen. Hence, these membranes have potential for large-scale gas separations of commercial and environmental relevance. Moreover, this strategy could provide a possible alternative to 'classical' methods for the preparation of porous membranes and, in some cases, the only viable synthetic route towards certain membranes.

  8. Dietary lipids differentially affect membranes from different areas of rooster sperm.

    Science.gov (United States)

    Bongalhardo, D C; Leeson, S; Buhr, M M

    2009-05-01

    The present work aimed to compare the effect of dietary flax with other oil sources on rooster sperm membranes and on semen characteristics. White Leghorn roosters (16 per diet) were fed 1 of 4 treatments: control diet (CON), or a diet containing corn oil (CORN), fish oil (FISH), or flax seed (FLAX) as the lipid source. Semen from 4 birds (30 wk old) of each treatment was pooled, the sperm head (HM) and body membranes (BM) were isolated, and lipids were extracted and analyzed. Aspects of lipid composition tested were as follows: percentage of individual fatty acids (C14:0 to C24:1) in total fatty acids, percentage of fatty acid categories [saturated, monounsaturated, polyunsaturated (PUFA), n-3 and n-6 PUFA, and n-6:n-3 ratio] within total fatty acids, and percentage of phospholipids [phosphatidylcholine (PC), phosphatidylethanolamine (PE), phosphatidylinositol, phosphatidylserine, and sphingomyelin] in total phospholipids. Sperm characteristics evaluated were as follows: volume, concentration, viability, percentage of motile cells, average path velocity, track speed, progressive velocity, lateral head displacement, straightness, and linearity. Diet did not affect membrane phospholipid ratios in either membrane but modified major fatty acids within certain phospholipids. Birds fed FISH and CORN showed, respectively, the highest and the lowest n-3 in sperm, causing reciprocal significant changes in n-6:n-3 ratio. Feeding FLAX caused intermediate effects in n-3, with values significantly lower than FISH but higher than CORN in HM (PC, PE, and phosphatidylinositol) and PC in BM (P < 0.05). In the PE phospholipids, FISH, followed by FLAX, increased n-3 in BM and decreased n-6 PUFA in HM. Sperm concentration was specifically correlated with the amount of 20:4n-6 in FLAX and 22:4n-6 in CON. In FLAX diets, straightness correlated with C18:0, n-3, and n-6:n-3 ratio. Diets containing distinct lipid sources differentially modify the lipid contents of HM and BM, with minor

  9. Structural Interpretation of the Large Slowdown of Water Dynamics at Stacked Phospholipid Membranes for Decreasing Hydration Level: All-Atom Molecular Dynamics

    Directory of Open Access Journals (Sweden)

    Carles Calero

    2016-04-01

    Full Text Available Hydration water determines the stability and function of phospholipid membranes as well as the interaction of membranes with other molecules. Experiments and simulations have shown that water dynamics slows down dramatically as the hydration decreases, suggesting that the interfacial water that dominates the average dynamics at low hydration is slower than water away from the membrane. Here, based on all-atom molecular dynamics simulations, we provide an interpretation of the slowdown of interfacial water in terms of the structure and dynamics of water–water and water–lipid hydrogen bonds (HBs. We calculate the rotational and translational slowdown of the dynamics of water confined in stacked phospholipid membranes at different levels of hydration, from completely hydrated to poorly hydrated membranes. For all hydrations, we analyze the distribution of HBs and find that water–lipids HBs last longer than water–water HBs and that at low hydration most of the water is in the interior of the membrane. We also show that water–water HBs become more persistent as the hydration is lowered. We attribute this effect (i to HBs between water molecules that form, in turn, persistent HBs with lipids; (ii to the hindering of the H-bonding switching between water molecules due to the lower water density at the interface; and (iii to the higher probability of water–lipid HBs as the hydration decreases. Our interpretation of the large dynamic slowdown in water under dehydration is potentially relevant in understanding membrane biophysics at different hydration levels.

  10. Interactions between the intermediate filaments of vimentin and natural or artificial lipid membranes

    International Nuclear Information System (INIS)

    Perides, G.

    1986-01-01

    The study has provided evidence to prove that intermediate filaments (IF) are not only encountered in the vicinity of several cellular membrane systems but even become attached to those membranes by stable mechanical bonds. Studies using photoaffinity markers permitted to show in vivo that vimentin occurs in the immediate neighbourhood of membrane lipids. Titration of cellular membranes with radioactively labelled vimentin and desmin pointed to the fact that there is a large excess of acceptor molecules for IF proteins, from which it was concluded that vimentin directly binds to the lipids. This is also consistent with the finding that vesicles made up of cellular lipids readily bind to vimentin filaments and may even interfere with the formation of the latter. The highest vimentin affinity was observed for negatively charged phospholipids, which led to the theory that the association of IF and cellular membranes is firstly attributable to an interaction between the positive N-terminals of IF proteins and upper polar groups of negative phospholipids. The binding of vimentin to cellular mebranes changes under the influence of cellular growth processes and extracellular factors. This was also suggested by the reduced amounts of membrane-bound vimentin found after the incubation of cells in a serum-free medium and the prompt increases in the vimentin content of those membranes, after serum was added. This is one example, among several others, to show that the reactions between IF and cellular membranes are of a reversible nature and controlled and shaped by the cell itself. (orig./MG) [de

  11. Dose-rate and oxygen effects in models of lipid membranes: linoleic acid

    Energy Technology Data Exchange (ETDEWEB)

    Raleigh, J A; Kremers, W; Gaboury, B [Atomic Energy of Canada Ltd., Pinawa, Manitoba. Whiteshell Nuclear Research Establishment

    1977-03-01

    Cellular membranes have been suggested as possible loci for the development of the oxygen effect in radiobiology. Unsaturated lipids from membranes are subject to very efficient radiation-induced peroxidation, and the deleterious effects generally associated with lipid autoxidation could be initiated by ionizing radiation. Oxidative damage in lipids was characterized not only by high yields but also by a profound dose-rate effect. At dose-rates of x irradiation below 100 rad/min, a very sharp rise occurred in oxidative damage. This damage has been quantified spectrophotometrically in terms of diene conjugation (O.D. 234 mm) and chromatographically in terms of specific 9- and 13-hydroperoxide formation in linoleic acid micelles. Radical scavenging experiments indicated that hydroxyl radical attack initiated the oxidative damage. Dimethyl sulphoxide is exceptional in that it did not protect, but sensitized, linoleic acid to radiation-induced peroxidation. The yields of hydroperoxides were substantial (G = 10 to 40) and could be related to biological changes known to be effected by autoxidizing lipids.

  12. Fractional hereditariness of lipid membranes: Instabilities and linearized evolution.

    Science.gov (United States)

    Deseri, L; Pollaci, P; Zingales, M; Dayal, K

    2016-05-01

    In this work lipid ordering phase changes arising in planar membrane bilayers is investigated both accounting for elasticity alone and for effective viscoelastic response of such assemblies. The mechanical response of such membranes is studied by minimizing the Gibbs free energy which penalizes perturbations of the changes of areal stretch and their gradients only (Deseri and Zurlo, 2013). As material instabilities arise whenever areal stretches characterizing homogeneous configurations lie inside the spinoidal zone of the free energy density, bifurcations from such configurations are shown to occur as oscillatory perturbations of the in-plane displacement. Experimental observations (Espinosa et al., 2011) show a power-law in-plane viscous behavior of lipid structures allowing for an effective viscoelastic behavior of lipid membranes, which falls in the framework of Fractional Hereditariness. A suitable generalization of the variational principle invoked for the elasticity is applied in this case, and the corresponding Euler-Lagrange equation is found together with a set of boundary and initial conditions. Separation of variables allows for showing how Fractional Hereditariness owes bifurcated modes with a larger number of spatial oscillations than the corresponding elastic analog. Indeed, the available range of areal stresses for material instabilities is found to increase with respect to the purely elastic case. Nevertheless, the time evolution of the perturbations solving the Euler-Lagrange equation above exhibits time-decay and the large number of spatial oscillation slowly relaxes, thereby keeping the features of a long-tail type time-response. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Drug binding and mobility relating to the thermal fluctuation in fluid lipid membranes

    Science.gov (United States)

    Okamura, Emiko; Yoshii, Noriyuki

    2008-12-01

    Drug binding and mobility in fluid lipid bilayer membranes are quantified in situ by using the multinuclear solution NMR combined with the pulsed-field-gradient technique. One-dimensional and pulsed-field-gradient F19 and H1 NMR signals of an anticancer drug, 5-fluorouracil (5FU) are analyzed at 283-313 K in the presence of large unilamellar vesicles (LUVs) of egg phosphatidylcholine (EPC) as model cell membranes. The simultaneous observation of the membrane-bound and free 5FU signals enables to quantify in what amount of 5FU is bound to the membrane and how fast 5FU is moving within the membrane in relation to the thermal fluctuation of the soft, fluid environment. It is shown that the mobility of membrane-bound 5FU is slowed down by almost two orders of magnitude and similar to the lipid movement in the membrane, the movement closely related to the intramembrane fluidity. The mobility of 5FU and EPC is, however, not similar at 313 K; the 5FU movement is enhanced in the membrane as a result of the loose binding of 5FU in the lipid matrices. The membrane-bound fraction of 5FU is ˜0.1 and almost unaltered over the temperature range examined. It is also independent of the 5FU concentration from 2 to 30 mM with respect to the 40-50 mM LUV. The free energy of the 5FU binding is estimated at -4 to -2 kJ/mol, the magnitude always close to the thermal fluctuation, 2.4-2.6 kJ/mol.

  14. Defense related decadienal elicits membrane lipid remodeling in the diatom Phaeodactylum tricornutum.

    Directory of Open Access Journals (Sweden)

    Tanya Sabharwal

    Full Text Available Diatoms rapidly release extracellular oxylipins (oxygenated lipids including polyunsaturated aldehydes in response to herbivory and other stresses. Oxylipins have several defense-related activities including inhibition of reproduction in herbivores and signaling to distant diatoms. Physiological changes in diatoms exposed to varying levels of oxylipins are only beginning to be understood. In this study, Phaeodactylum tricornutum cultures were treated with sublethal concentrations of the polyunsaturated aldehyde trans,trans-2,4-decadienal (DD to assess effects on lipid composition and membrane permeability. In cells treated with DD for 3 hr, all measured saturated and unsaturated fatty acids significantly decreased (0.46-0.69 fold of levels in solvent control cells except for 18:2 (decreased but not significantly. The decrease was greater in the polyunsaturated fatty acid pool than the saturated and monounsaturated fatty acid pool. Analysis of lipid classes revealed increased abundances of phosphatidylethanolamine and phosphatidylcholine at 3 and 6 hr. Concomitantly, these and other membrane lipids exhibited increased saturated and monounsaturated acyl chains content relative to polyunsaturated acyl chains compared to control cells. Evidence of decreased plasma membrane permeability in DD treated cells was obtained, based on reduced uptake of two of three dyes relative to control cells. Additionally, cells pre-conditioned with a sublethal DD dose for 3 hr then treated with a lethal DD dose for 2 hr exhibited greater membrane integrity than solvent pre-conditioned control cells that were similarly treated. Taken together, the data are supportive of the hypothesis that membrane remodeling induced by sublethal DD is a key element in the development of cellular resistance in diatoms to varying and potentially toxic levels of polyunsaturated aldehydes in environments impacted by herbivory or other stresses.

  15. Lipid packing drives the segregation of transmembrane helices into disordered lipid domains in model membranes

    NARCIS (Netherlands)

    Schaefer, Lars V.; de Jong, Djurre H.; Holt, Andrea; Rzepiela, Andrzej J.; de Vries, Alex H.; Poolman, Bert; Killian, J. Antoinette; Marrink, Siewert J.

    2011-01-01

    Cell membranes are comprised of multicomponent lipid and protein mixtures that exhibit a complex partitioning behavior. Regions of structural and compositional heterogeneity play a major role in the sorting and self-assembly of proteins, and their clustering into higher-order oligomers. Here, we use

  16. Molecularly Imprinted Membranes

    Science.gov (United States)

    Trotta, Francesco; Biasizzo, Miriam; Caldera, Fabrizio

    2012-01-01

    Although the roots of molecularly imprinted polymers lie in the beginning of 1930s in the past century, they have had an exponential growth only 40–50 years later by the works of Wulff and especially by Mosbach. More recently, it was also proved that molecular imprinted membranes (i.e., polymer thin films) that show recognition properties at molecular level of the template molecule are used in their formation. Different procedures and potential application in separation processes and catalysis are reported. The influences of different parameters on the discrimination abilities are also discussed. PMID:24958291

  17. Transcriptional Regulation of T-Cell Lipid Metabolism: Implications for Plasma Membrane Lipid Rafts and T-Cell Function

    Directory of Open Access Journals (Sweden)

    George A. Robinson

    2017-11-01

    Full Text Available It is well established that cholesterol and glycosphingolipids are enriched in the plasma membrane (PM and form signaling platforms called lipid rafts, essential for T-cell activation and function. Moreover, changes in PM lipid composition affect the biophysical properties of lipid rafts and have a role in defining functional T-cell phenotypes. Here, we review the role of transcriptional regulators of lipid metabolism including liver X receptors α/β, peroxisome proliferator-activated receptor γ, estrogen receptors α/β (ERα/β, and sterol regulatory element-binding proteins in T-cells. These receptors lie at the interface between lipid metabolism and immune cell function and are endogenously activated by lipids and/or hormones. Importantly, they regulate cellular cholesterol, fatty acid, glycosphingolipid, and phospholipid levels but are also known to modulate a broad spectrum of immune responses. The current evidence supporting a role for lipid metabolism pathways in controlling immune cell activation by influencing PM lipid raft composition in health and disease, and the potential for targeting lipid biosynthesis pathways to control unwanted T-cell activation in autoimmunity is reviewed.

  18. Effect of cholesterol on structural and mechanical properties of membranes depends on lipid chain saturation

    International Nuclear Information System (INIS)

    Pan Jianjun; Tristram-Nagle, Stephanie; Nagle, John F.

    2009-01-01

    The effects of cholesterol on membrane bending modulus K C , membrane thickness D HH , the partial and apparent areas of cholesterol and lipid, and the order parameter S xray are shown to depend upon the number of saturated hydrocarbon chains in the lipid molecules. Particularly striking is the result that up to 40% cholesterol does not increase the bending modulus K C of membranes composed of phosphatidylcholine lipids with two cis monounsaturated chains, although it does have the expected stiffening effect on membranes composed of lipids with two saturated chains. The B fluctuational modulus in the smectic liquid crystal theory is obtained and used to discuss the interactions between bilayers. Our K C results motivate a theory of elastic moduli in the high cholesterol limit and they challenge the relevance of universality concepts. Although most of our results were obtained at 30 deg. C, additional data at other temperatures to allow consideration of a reduced temperature variable do not support universality for the effect of cholesterol on all lipid bilayers. If the concept of universality is to be valid, different numbers of saturated chains must be considered to create different universality classes. The above experimental results were obtained from analysis of x-ray scattering in the low angle and wide angle regions.

  19. Lipid engineering reveals regulatory roles for membrane fluidity in yeast flocculation and oxygen-limited growth

    Energy Technology Data Exchange (ETDEWEB)

    Degreif, Daniel [Joint BioEnergy Inst. (JBEI), Emeryville, CA (United States); Technical Univ. of Darmstadt (Germany); de Rond, Tristan [Joint BioEnergy Inst. (JBEI), Emeryville, CA (United States); Univ. of California, Berkeley, CA (United States); Bertl, Adam [Technical Univ. of Darmstadt (Germany); Keasling, Jay D. [Joint BioEnergy Inst. (JBEI), Emeryville, CA (United States); Univ. of California, Berkeley, CA (United States); Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Technical Univ. of Denmark, Lyngby (Denmark); Budin, Itay [Joint BioEnergy Inst. (JBEI), Emeryville, CA (United States); Univ. of California, Berkeley, CA (United States)

    2017-03-18

    Cells modulate lipid metabolism in order to maintain membrane homeostasis. In this paper, we use a metabolic engineering approach to manipulate the stoichiometry of fatty acid unsaturation, a regulator of cell membrane fluidity, in Saccharomyces cerevisiae. Unexpectedly, reduced lipid unsaturation triggered cell-cell adhesion (flocculation), a phenomenon characteristic of industrial yeast but uncommon in laboratory strains. We find that ER lipid saturation sensors induce expression of FLO1 – encoding a cell wall polysaccharide binding protein – independently of its canonical regulator. In wild-type cells, Flo1p-dependent flocculation occurs under oxygen-limited growth, which reduces unsaturated lipid synthesis and thus serves as the environmental trigger for flocculation. Transcriptional analysis shows that FLO1 is one of the most highly induced genes in response to changes in lipid unsaturation, and that the set of membrane fluidity-sensitive genes is globally activated as part of the cell's long-term response to hypoxia during fermentation. Finally, our results show how the lipid homeostasis machinery of budding yeast is adapted to carry out a broad response to an environmental stimulus important in biotechnology.

  20. Estrogen Interactions With Lipid Rafts Related to Neuroprotection. Impact of Brain Ageing and Menopause

    Directory of Open Access Journals (Sweden)

    Raquel Marin

    2018-03-01

    Full Text Available Estrogens (E2 exert a plethora of neuroprotective actions against aged-associated brain diseases, including Alzheimer's disease (AD. Part of these actions takes place through binding to estrogen receptors (ER embedded in signalosomes, where numerous signaling proteins are clustered. Signalosomes are preferentially located in lipid rafts which are dynamic membrane microstructures characterized by a peculiar lipid composition enriched in gangliosides, saturated fatty acids, cholesterol, and sphingolipids. Rapid E2 interactions with ER-related signalosomes appear to trigger intracellular signaling ultimately leading to the activation of molecular mechanisms against AD. We have previously observed that the reduction of E2 blood levels occurring during menopause induced disruption of ER-signalosomes at frontal cortical brain areas. These molecular changes may reduce neuronal protection activities, as similar ER signalosome derangements were observed in AD brains. The molecular impairments may be associated with changes in the lipid composition of lipid rafts observed in neurons during menopause and AD. These evidences indicate that the changes in lipid raft structure during aging may be at the basis of alterations in the activity of ER and other neuroprotective proteins integrated in these membrane microstructures. Moreover, E2 is a homeostatic modulator of lipid rafts. Recent work has pointed to this relevant aspect of E2 activity to preserve brain integrity, through mechanisms affecting lipid uptake and local biosynthesis in the brain. Some evidences have demonstrated that estrogens and the docosahexaenoic acid (DHA exert synergistic effects to stabilize brain lipid matrix. DHA is essential to enhance molecular fluidity at the plasma membrane, promoting functional macromolecular interactions in signaling platforms. In support of this, DHA detriment in neuronal lipid rafts has been associated with the most common age-associated neuropathologies

  1. Semiconductor particle mediated photoelectron transfers in bilayer lipid membranes

    International Nuclear Information System (INIS)

    Fendler, J.H.; Baral, S.

    1989-01-01

    This paper discusses semiconductor particles in situ generated on the cis surface of glyceryl monooleate (GMO) bilayer lipid membranes (BLMs), that have been used to mediate photoelectric effects. The presence of semiconductors on the BLM surface is addressed. The observed photoelectric effects are rationalized and presented

  2. Spatial orientation and electric-field-driven transport of hypericin inside of bilayer lipid membranes.

    Science.gov (United States)

    Strejčková, Alena; Staničová, Jana; Jancura, Daniel; Miškovský, Pavol; Bánó, Gregor

    2013-02-07

    Fluorescence experiments were carried out to investigate the interaction of hypericin (Hyp), a natural hydrophobic photosensitizer, with artificial bilayer lipid membranes. The spatial orientation of Hyp monomers incorporated in diphytanoyl phosphatidylcholine (DPhPC) membranes was determined by measuring the dependence of the Hyp fluorescence intensity on the angle of incidence of p- and s-polarized excitation laser beams. Inside of the membrane, Hyp monomers are preferentially located in the layers near the membrane/water interface and are oriented with the S(1) ← S(0) transition dipole moments perpendicular to the membrane surface. Transport of Hyp anions between the two opposite sides of the lipid bilayer was induced by applying rectangular electric field pulses to the membrane. The characteristic time for Hyp transport through the membrane center was evaluated by the analysis of the Hyp fluorescence signal during the voltage pulses. In the zero-voltage limit, the transport time approached 70 ms and gradually decreased with higher voltage applied to the membrane. In addition, our measurements indicated an apparent pK(a) constant of 8 for Hyp deprotonation in the membrane.

  3. Localization and Orientation of Xanthophylls in a Lipid Bilayer

    OpenAIRE

    Grudzinski, Wojciech; Nierzwicki, Lukasz; Welc, Renata; Reszczynska, Emilia; Luchowski, Rafal; Czub, Jacek; Gruszecki, Wieslaw I.

    2017-01-01

    Xanthophylls (polar carotenoids) play diverse biological roles, among which are modulation of the physical properties of lipid membranes and protection of biomembranes against oxidative damage. Molecular mechanisms underlying these functions are intimately related to the localization and orientation of xanthophyll molecules in lipid membranes. In the present work, we address the problem of localization and orientation of two xanthophylls present in the photosynthetic apparatus of plants and i...

  4. Lipid peroxidation in liver homogenates. Effects of membrane lipid composition and irradiation

    International Nuclear Information System (INIS)

    Vaca, C.; Ringdahl, M.H.

    1984-01-01

    The rate of lipid peroxidation has been followed in whole liver homogenates from mice using the TBA-method. Liver homogenates with different membrane fatty acid composition were obtained from mice fed diets containing different sources of fat i.e. sunflower seed oil (S), coconut oil (C) and hydrogenated lard (L). The yields of the TBA-chromophore (TBA-c) were 4 times higher in the liver homogenates S compared to C and L after 4 hour incubation at 37 0 C. Irradiation of the liver homogenates before incubation inhibited the formation of lipid peroxidation products in a dose dependent way. The catalytic capacity of the homogenates was investigated, followed as the autooxidation of cysteamine or modified by addition of the metal chelator EDTA. The rate of autooxidation of cysteamine, which is dependent on the presence of metal ions (Fe/sup 2+/ or Cu/sup 2+/), was decreased with increasing dose, thus indicating an alteration in the availability of metal catalysts in the system. The addition of Fe/sup 2+/ to the system restored the lipid peroxidation yields in the irradiated systems and the presence of EDTA inhibited the formation of lipid peroxidation products in all three dietary groups. It is suggested that irradiation alters the catalytic activity needed in the autooxidation processes of polyunsaturated fatty acids

  5. Investigation of molecular mechanisms of action of chelating drugs on protein-lipid model membranes by X-ray fluorescence

    International Nuclear Information System (INIS)

    Novikova, N. N.; Zheludeva, S. I.; Koval'chuk, M. V.; Stepina, N. D.; Erko, A. I.; Yur'eva, E. A.

    2009-01-01

    Protein-lipid films based on the enzyme alkaline phosphatase were subjected to the action of chelating drugs, which are used for accelerating the removal of heavy metals from the human body, and the elemental composition of the resulting films was investigated. Total-reflection X-ray fluorescence measurements were performed at the Berlin Electron Storage Ring Company for Synchrotron Radiation (BESSY) in Germany. A comparative estimation of the protective effect of four drugs (EDTA, succimer, xydiphone, and mediphon) on membrane-bound enzymes damaged by lead ions was made. The changes in the elemental composition of the protein-lipid films caused by high doses of chelating drugs were investigated. It was shown that state-of-the-art X-ray techniques can, in principle, be used to develop new methods for the in vitro evaluation of the efficiency of drugs, providing differential data on their actions.

  6. A Neutron View of Proteins in Lipid Bilayers

    Science.gov (United States)

    White, Stephen

    2012-02-01

    Despite the growing number of atomic-resolution membrane protein structures, direct structural information about proteins in their native membrane environment is scarce. This problem is particularly relevant in the case of the highly-charged S1-S4 voltage- sensing domains responsible for nerve impulses, where interactions with the lipid bilayer are critical for the function of voltage-activated potassium channels. We have used neutron diffraction, solid-state nuclear magnetic resonance spectroscopy, and molecular dynamics simulations to investigate the structure and hydration of bilayer membranes containing S1-S4 voltage-sensing domains. Our results show that voltage sensors adopt transmembrane orientations, cause a modest reshaping of the surrounding lipid bilayer, and that water molecules intimately interact with the protein within the membrane. These structural findings reveal that voltage sensors have evolved to interact with the lipid membrane while keeping the energetic and structural perturbations to a minimum, and that water penetrates into the membrane to hydrate charged residues and shape the transmembrane electric field.

  7. Molecular packing and area compressibility of lipid bilayers

    International Nuclear Information System (INIS)

    White, S.H.; King, G.I.

    1985-01-01

    Knowledge of the molecular packing of lipids and water in lipid bilayers is important for understanding bilayer mechanics and thermodynamics. Information on packing is most often obtained from x-ray or neutron diffraction measurements. Given the d spacing, composition, and partial specific volumes of the lipid and water, it is a simple matter to calculate the area per lipid molecule, bilayer thickness, and bilayer mass density. The partial specific volumes are commonly assumed to be those of bulk water and of lipid in excess water regardless of the degree of bilayer hydration. The authors present evidence here that these assumptions should be seriously questioned. At low hydrations, they find the head groups of egg and dioleoyl lecithin to be much less tightly packed than previously thought and the partial specific volume of water to be considerably smaller than 1 ml/g. Because the molecular packing affects the mechanical properties of bilayers, they use the results to reevaluate published experiments concerning the elastic area compressibility modulus of egg lecithin bilayers and the repulsive hydration force between bilayers

  8. The simulation approach to lipid-protein interactions.

    Science.gov (United States)

    Paramo, Teresa; Garzón, Diana; Holdbrook, Daniel A; Khalid, Syma; Bond, Peter J

    2013-01-01

    The interactions between lipids and proteins are crucial for a range of biological processes, from the folding and stability of membrane proteins to signaling and metabolism facilitated by lipid-binding proteins. However, high-resolution structural details concerning functional lipid/protein interactions are scarce due to barriers in both experimental isolation of native lipid-bound complexes and subsequent biophysical characterization. The molecular dynamics (MD) simulation approach provides a means to complement available structural data, yielding dynamic, structural, and thermodynamic data for a protein embedded within a physiologically realistic, modelled lipid environment. In this chapter, we provide a guide to current methods for setting up and running simulations of membrane proteins and soluble, lipid-binding proteins, using standard atomistically detailed representations, as well as simplified, coarse-grained models. In addition, we outline recent studies that illustrate the power of the simulation approach in the context of biologically relevant lipid/protein interactions.

  9. Structure-function insights into direct lipid transfer between membranes by Mmm1-Mdm12 of ERMES.

    Science.gov (United States)

    Kawano, Shin; Tamura, Yasushi; Kojima, Rieko; Bala, Siqin; Asai, Eri; Michel, Agnès H; Kornmann, Benoît; Riezman, Isabelle; Riezman, Howard; Sakae, Yoshitake; Okamoto, Yuko; Endo, Toshiya

    2018-03-05

    The endoplasmic reticulum (ER)-mitochondrial encounter structure (ERMES) physically links the membranes of the ER and mitochondria in yeast. Although the ER and mitochondria cooperate to synthesize glycerophospholipids, whether ERMES directly facilitates the lipid exchange between the two organelles remains controversial. Here, we compared the x-ray structures of an ERMES subunit Mdm12 from Kluyveromyces lactis with that of Mdm12 from Saccharomyces cerevisiae and found that both Mdm12 proteins possess a hydrophobic pocket for phospholipid binding. However in vitro lipid transfer assays showed that Mdm12 alone or an Mmm1 (another ERMES subunit) fusion protein exhibited only a weak lipid transfer activity between liposomes. In contrast, Mdm12 in a complex with Mmm1 mediated efficient lipid transfer between liposomes. Mutations in Mmm1 or Mdm12 impaired the lipid transfer activities of the Mdm12-Mmm1 complex and furthermore caused defective phosphatidylserine transport from the ER to mitochondrial membranes via ERMES in vitro. Therefore, the Mmm1-Mdm12 complex functions as a minimal unit that mediates lipid transfer between membranes. © 2018 Kawano et al.

  10. Alterations in Lipid Levels of Mitochondrial Membranes Induced by Amyloid-ß: A Protective Role of Melatonin

    Directory of Open Access Journals (Sweden)

    Sergio A. Rosales-Corral

    2012-01-01

    Full Text Available Alzheimer pathogenesis involves mitochondrial dysfunction, which is closely related to amyloid-ß (Aß generation, abnormal tau phosphorylation, oxidative stress, and apoptosis. Alterations in membranal components, including cholesterol and fatty acids, their characteristics, disposition, and distribution along the membranes, have been studied as evidence of cell membrane alterations in AD brain. The majority of these studies have been focused on the cytoplasmic membrane; meanwhile the mitochondrial membranes have been less explored. In this work, we studied lipids and mitochondrial membranes in vivo, following intracerebral injection of fibrillar amyloid-ß (Aß. The purpose was to determine how Aß may be responsible for beginning of a vicious cycle where oxidative stress and alterations in cholesterol, lipids and fatty acids, feed back on each other to cause mitochondrial dysfunction. We observed changes in mitochondrial membrane lipids, and fatty acids, following intracerebral injection of fibrillar Aß in aged Wistar rats. Melatonin, a well-known antioxidant and neuroimmunomodulator indoleamine, reversed some of these alterations and protected mitochondrial membranes from obvious damage. Additionally, melatonin increased the levels of linolenic and n-3 eicosapentaenoic acid, in the same site where amyloid ß was injected, favoring an endogenous anti-inflammatory pathway.

  11. Supported lipid bilayers with controlled curvature via colloidal lithography

    DEFF Research Database (Denmark)

    Sundh, Maria; Manandhar, Michal; Svedhem, Sofia

    2011-01-01

    Supported lipid bilayers (SLBs) at surfaces provide a route to quantitatively study molecular interactions with and at lipid membranes via different surface-based analytical techniques. Here, a method to fabricate SLBs with controlled curvatures, in the nanometer regime over large areas, is prese...

  12. Interaction of monomeric Ebola VP40 protein with a plasma membrane: A coarse-grained molecular dynamics (CGMD) simulation study.

    Science.gov (United States)

    Mohamad Yusoff, Mohamad Ariff; Abdul Hamid, Azzmer Azzar; Mohammad Bunori, Noraslinda; Abd Halim, Khairul Bariyyah

    2018-06-01

    Ebola virus is a lipid-enveloped filamentous virus that affects human and non-human primates and consists of several types of protein: nucleoprotein, VP30, VP35, L protein, VP40, VP24, and transmembrane glycoprotein. Among the Ebola virus proteins, its matrix protein VP40 is abundantly expressed during infection and plays a number of critical roles in oligomerization, budding and egress from the host cell. VP40 exists predominantly as a monomer at the inner leaflet of the plasma membrane, and has been suggested to interact with negatively charged lipids such as phosphatidylinositol 4,5-bisphosphate (PIP 2 ) and phosphatidylserine (PS) via its cationic patch. The hydrophobic loop at the C-terminal domain has also been shown to be important in the interaction between the VP40 and the membrane. However, details of the molecular mechanisms underpinning their interactions are not fully understood. This study aimed at investigating the effects of mutation in the cationic patch and hydrophobic loop on the interaction between the VP40 monomer and the plasma membrane using coarse-grained molecular dynamics simulation (CGMD). Our simulations revealed that the interaction between VP40 and the plasma membrane is mediated by the cationic patch residues. This led to the clustering of PIP 2 around the protein in the inner leaflet as a result of interactions between some cationic residues including R52, K127, K221, K224, K225, K256, K270, K274, K275 and K279 and PIP 2 lipids via electrostatic interactions. Mutation of the cationic patch or hydrophobic loop amino acids caused the protein to bind at the inner leaflet of the plasma membrane in a different orientation, where no significant clustering of PIP 2 was observed around the mutated protein. This study provides basic understanding of the interaction of the VP40 monomer and its mutants with the plasma membrane. Copyright © 2018 Elsevier Inc. All rights reserved.

  13. MICOS and phospholipid transfer by Ups2-Mdm35 organize membrane lipid synthesis in mitochondria.

    Science.gov (United States)

    Aaltonen, Mari J; Friedman, Jonathan R; Osman, Christof; Salin, Bénédicte; di Rago, Jean-Paul; Nunnari, Jodi; Langer, Thomas; Tatsuta, Takashi

    2016-06-06

    Mitochondria exert critical functions in cellular lipid metabolism and promote the synthesis of major constituents of cellular membranes, such as phosphatidylethanolamine (PE) and phosphatidylcholine. Here, we demonstrate that the phosphatidylserine decarboxylase Psd1, located in the inner mitochondrial membrane, promotes mitochondrial PE synthesis via two pathways. First, Ups2-Mdm35 complexes (SLMO2-TRIAP1 in humans) serve as phosphatidylserine (PS)-specific lipid transfer proteins in the mitochondrial intermembrane space, allowing formation of PE by Psd1 in the inner membrane. Second, Psd1 decarboxylates PS in the outer membrane in trans, independently of PS transfer by Ups2-Mdm35. This latter pathway requires close apposition between both mitochondrial membranes and the mitochondrial contact site and cristae organizing system (MICOS). In MICOS-deficient cells, limiting PS transfer by Ups2-Mdm35 and reducing mitochondrial PE accumulation preserves mitochondrial respiration and cristae formation. These results link mitochondrial PE metabolism to MICOS, combining functions in protein and lipid homeostasis to preserve mitochondrial structure and function. © 2016 Aaltonen et al.

  14. Membrane lipid alterations in the metabolic syndrome and the role of dietary oils.

    Science.gov (United States)

    Perona, Javier S

    2017-09-01

    The metabolic syndrome is a cluster of pathological conditions, including hypertension, hyperglycemia, hypertriglyceridemia, obesity and low HDL levels that is of great concern worldwide, as individuals with metabolic syndrome have an increased risk of type-2 diabetes and cardiovascular disease. Insulin resistance, the key feature of the metabolic syndrome, might be at the same time cause and consequence of impaired lipid composition in plasma membranes of insulin-sensitive tissues like liver, muscle and adipose tissue. Diet intervention has been proposed as a powerful tool to prevent the development of the metabolic syndrome, since healthy diets have been shown to have a protective role against the components of the metabolic syndrome. Particularly, dietary fatty acids are capable of modulating the deleterious effects of these conditions, among other mechanisms, by modifications of the lipid composition of the membranes in insulin-sensitive tissues. However, there is still scarce data based of high-level evidence on the effects of dietary oils on the effects of the metabolic syndrome and its components. This review summarizes the current knowledge on the effects of dietary oils on improving alterations of the components of the metabolic syndrome. It also examines their influence in the modulation of plasma membrane lipid composition and in the functionality of membrane proteins involved in insulin activity, like the insulin receptor, GLUT-4, CD36/FAT and ABCA-1, and their effect in the metabolism of glucose, fatty acids and cholesterol, and, in turn, the key features of the metabolic syndrome. This article is part of a Special Issue entitled: Membrane Lipid Therapy: Drugs Targeting Biomembranes edited by Pablo V. Escribá. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Efficient preparation and analysis of membrane and membrane protein systems

    Czech Academy of Sciences Publication Activity Database

    Javanainen, M.; Martinez-Seara, Hector

    2016-01-01

    Roč. 1858, č. 10 (2016), s. 2468-2482 ISSN 0005-2736 Institutional support: RVO:61388963 Keywords : tools and software * membrane building * protein insertion * molecular dynamics * lipid bilayer Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 3.498, year: 2016

  16. Membrane lipid peroxidation by UV-A: Mechanism and implications

    International Nuclear Information System (INIS)

    Bose, B.; Agarwal, S.; Chatterjee, S.N.

    1990-01-01

    UV-A produced a dose-dependent linear increase of lipid peroxidation in liposomal membrane, as detected by the assay of (i) conjugated dienes, (ii) lipid hydroperoxides, (iii) malondialdehydes (MDA), and (iv) the fluorescent adducts formed by the reaction of MDA with glycine and also a linear dose-dependent increase of [ 14 C]glucose efflux from the liposomes. UV-A-induced MDA production could not be inhibited by any significant degree by sodium formate, dimethyl sulfoxide, EDTA, or superoxide dismutase but was very significantly inhibited by butylated hydroxytoluene, alpha-tocopherol, sodium azide, L-histidine, dimethylfuran, and beta-carotene. MDA formation increased with an increase in the D 2 O content in water, leading to a maximal amount of nearly 50% enhancement of lipid peroxidation in 100% D 2 O vis-a-vis water used as dispersion medium. The experimental findings indicate the involvement of singlet oxygen as the initiator of the UV-A-induced lipid peroxidation

  17. Lysosomal exocytosis and lipid storage disorders.

    Science.gov (United States)

    Samie, Mohammad Ali; Xu, Haoxing

    2014-06-01

    Lysosomes are acidic compartments in mammalian cells that are primarily responsible for the breakdown of endocytic and autophagic substrates such as membranes, proteins, and lipids into their basic building blocks. Lysosomal storage diseases (LSDs) are a group of metabolic disorders caused by genetic mutations in lysosomal hydrolases required for catabolic degradation, mutations in lysosomal membrane proteins important for catabolite export or membrane trafficking, or mutations in nonlysosomal proteins indirectly affecting these lysosomal functions. A hallmark feature of LSDs is the primary and secondary excessive accumulation of undigested lipids in the lysosome, which causes lysosomal dysfunction and cell death, and subsequently pathological symptoms in various tissues and organs. There are more than 60 types of LSDs, but an effective therapeutic strategy is still lacking for most of them. Several recent in vitro and in vivo studies suggest that induction of lysosomal exocytosis could effectively reduce the accumulation of the storage materials. Meanwhile, the molecular machinery and regulatory mechanisms for lysosomal exocytosis are beginning to be revealed. In this paper, we first discuss these recent developments with the focus on the functional interactions between lipid storage and lysosomal exocytosis. We then discuss whether lysosomal exocytosis can be manipulated to correct lysosomal and cellular dysfunction caused by excessive lipid storage, providing a potentially general therapeutic approach for LSDs. Copyright © 2014 by the American Society for Biochemistry and Molecular Biology, Inc.

  18. Prolonged Intake of Dietary Lipids Alters Membrane Structure and T Cell Responses in LDLr-/- Mice.

    Science.gov (United States)

    Pollock, Abigail H; Tedla, Nicodemus; Hancock, Sarah E; Cornely, Rhea; Mitchell, Todd W; Yang, Zhengmin; Kockx, Maaike; Parton, Robert G; Rossy, Jérémie; Gaus, Katharina

    2016-05-15

    Although it is recognized that lipids and membrane organization in T cells affect signaling and T cell activation, to what extent dietary lipids alter T cell responsiveness in the absence of obesity and inflammation is not known. In this study, we fed low-density lipoprotein receptor knockout mice a Western high-fat diet for 1 or 9 wk and examined T cell responses in vivo along with T cell lipid composition, membrane order, and activation ex vivo. Our data showed that high levels of circulating lipids for a prolonged period elevated CD4(+) and CD8(+) T cell proliferation and resulted in an increased proportion of CD4(+) central-memory T cells within the draining lymph nodes following induction of contact hypersensitivity. In addition, the 9-wk Western high-fat diet elevated the total phospholipid content and monounsaturated fatty acid level, but decreased saturated phosphatidylcholine and sphingomyelin within the T cells. The altered lipid composition in the circulation, and of T cells, was also reflected by enhanced membrane order at the activation site of ex vivo activated T cells that corresponded to increased IL-2 mRNA levels. In conclusion, dietary lipids can modulate T cell lipid composition and responses in lipoprotein receptor knockout mice even in the absence of excess weight gain and a proinflammatory environment. Copyright © 2016 by The American Association of Immunologists, Inc.

  19. Involvement of membrane lipids in radiation damage to potassium-ion permeability of Escherichia coli

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, S [Tokyo Univ. (Japan). Inst. for Medical Science; Akamatsu, Y

    1978-02-01

    Radiation damage to K/sup +/ permeability of an unsaturated fatty acid auxotroph of E.coli grown with oleate or linolenate was investigated at different temperatures. A remarkable effect of radiation was observed at 0/sup 0/C with cells that had been grown in linolenate at 42/sup 0/C. This indicates that, besides protein, membrane lipids at least are involved in the radiation damage. The damage also seems to be affected by the fluidity of membrane lipids.

  20. Lipid domains in intact fiber-cell plasma membranes isolated from cortical and nuclear regions of human eye lenses of donors from different age groups.

    Science.gov (United States)

    Raguz, Marija; Mainali, Laxman; O'Brien, William J; Subczynski, Witold K

    2015-03-01

    The results reported here clearly document changes in the properties and the organization of fiber-cell membrane lipids that occur with age, based on electron paramagnetic resonance (EPR) analysis of lens membranes of clear lenses from donors of age groups from 0 to 20, 21 to 40, and 61 to 80 years. The physical properties, including profiles of the alkyl chain order, fluidity, hydrophobicity, and oxygen transport parameter, were investigated using EPR spin-labeling methods, which also provide an opportunity to discriminate coexisting lipid domains and to evaluate the relative amounts of lipids in these domains. Fiber-cell membranes were found to contain three distinct lipid environments: bulk lipid domain, which appears minimally affected by membrane proteins, and two domains that appear due to the presence of membrane proteins, namely boundary and trapped lipid domains. In nuclear membranes the amount of boundary and trapped phospholipids as well as the amount of cholesterol in trapped lipid domains increased with the donors' age and was greater than that in cortical membranes. The difference between the amounts of lipids in domains uniquely formed due to the presence of membrane proteins in nuclear and cortical membranes increased with the donors' age. It was also shown that cholesterol was to a large degree excluded from trapped lipid domains in cortical membranes. It is evident that the rigidity of nuclear membranes was greater than that of cortical membranes for all age groups. The amount of lipids in domains of low oxygen permeability, mainly in trapped lipid domains, were greater in nuclear than cortical membranes and increased with the age of donors. These results indicate that the nuclear fiber cell plasma membranes were less permeable to oxygen than cortical membranes and become less permeable to oxygen with age. In clear lenses, age-related changes in the lens lipid and protein composition and organization appear to occur in ways that increase fiber

  1. Molecular simulations of lipid-mediated protein-protein interactions

    NARCIS (Netherlands)

    de Meyer, F.J.M.; Venturoli, M.; Smit, B.

    2008-01-01

    Recent experimental results revealed that lipid-mediated interactions due to hydrophobic forces may be important in determining the protein topology after insertion in the membrane, in regulating the protein activity, in protein aggregation and in signal transduction. To gain insight into the

  2. Early and late HIV-1 membrane fusion events are impaired by sphinganine lipidated peptides that target the fusion site.

    Science.gov (United States)

    Klug, Yoel A; Ashkenazi, Avraham; Viard, Mathias; Porat, Ziv; Blumenthal, Robert; Shai, Yechiel

    2014-07-15

    Lipid-conjugated peptides have advanced the understanding of membrane protein functions and the roles of lipids in the membrane milieu. These lipopeptides modulate various biological systems such as viral fusion. A single function has been suggested for the lipid, binding to the membrane and thus elevating the local concentration of the peptide at the target site. In the present paper, we challenged this argument by exploring in-depth the antiviral mechanism of lipopeptides, which comprise sphinganine, the lipid backbone of DHSM (dihydrosphingomyelin), and an HIV-1 envelope-derived peptide. Surprisingly, we discovered a partnership between the lipid and the peptide that impaired early membrane fusion events by reducing CD4 receptor lateral diffusion and HIV-1 fusion peptide-mediated lipid mixing. Moreover, only the joint function of sphinganine and its conjugate peptide disrupted HIV-1 fusion protein assembly and folding at the later fusion steps. Via imaging techniques we revealed for the first time the direct localization of these lipopeptides to the virus-cell and cell-cell contact sites. Overall, the findings of the present study may suggest lipid-protein interactions in various biological systems and may help uncover a role for elevated DHSM in HIV-1 and its target cell membranes.

  3. Lipids in the Assembly of Membrane Proteins and Organization of Protein Supercomplexes: Implications for Lipid-Linked Disorders

    OpenAIRE

    Bogdanov, Mikhail; Mileykovskaya, Eugenia; Dowhan, William

    2008-01-01

    Lipids play important roles in cellular dysfunction leading to disease. Although a major role for phospholipids is in defining the membrane permeability barrier, phospholipids play a central role in a diverse range of cellular processes and therefore are important factors in cellular dysfunction and disease. This review is focused on the role of phospholipids in normal assembly and organization of the membrane proteins, multimeric protein complexes, and higher order supercomplexes. Since lipi...

  4. The effect of MLS laser radiation on cell lipid membrane.

    Science.gov (United States)

    Pasternak, Kamila; Wróbel, Dominika; Nowacka, Olga; Pieszyński, Ireneusz; Bryszewska, Maria; Kujawa, Jolanta

    2018-03-14

    Authors of numerous publications have proved the therapeutic effect of laser irradiation on biological material, but the mechanisms at cellular and subcellular level are not yet well understood. The aim of this study was to assess the effect of laser radiation emitted by the MLS M1 system (Multiwave Locked System) at two wavelengths (808 nm continuous and 905 nm pulsed) on the stability and fluidity of liposomes with a lipid composition similar to that of human erythrocyte membrane or made of phosphatidylocholine. Liposomes were exposed to low-energy laser radiation at surface densities 195 mW/cm2 (frequency 1,000 Hz) and 230 mW/cm2 (frequency 2,000 Hz). Different doses of radiation energy in the range 0-15 J were applied. The surface energy density was within the range 0.46 - 4.9 J/cm 2. The fluidity and stability of liposomes subjected to such irradiation changed depending on the parameters of radiation used. Since MLS M1 laser radiation, depending on the parameters used, affects fluidity and stability of liposomes with the lipid content similar to erythrocyte membrane, it may also cause structural and functional changes in cell membranes.

  5. Pex11mediates peroxisomal proliferation by promoting deformation of the lipid membrane

    Directory of Open Access Journals (Sweden)

    Yumi Yoshida

    2015-07-01

    Full Text Available Pex11p family proteins are key players in peroxisomal fission, but their molecular mechanisms remains mostly unknown. In the present study, overexpression of Pex11pβ caused substantial vesiculation of peroxisomes in mammalian cells. This vesicle formation was dependent on dynamin-like protein 1 (DLP1 and mitochondrial fission factor (Mff, as knockdown of these proteins diminished peroxisomal fission after Pex11pβ overexpression. The fission-deficient peroxisomes exhibited an elongated morphology, and peroxisomal marker proteins, such as Pex14p or matrix proteins harboring peroxisomal targeting signal 1, were discernible in a segmented staining pattern, like beads on a string. Endogenous Pex11pβ was also distributed a striped pattern, but which was not coincide with Pex14p and PTS1 matrix proteins. Altered morphology of the lipid membrane was observed when recombinant Pex11p proteins were introduced into proteo-liposomes. Constriction of proteo-liposomes was observed under confocal microscopy and electron microscopy, and the reconstituted Pex11pβ protein localized to the membrane constriction site. Introducing point mutations into the N-terminal amphiphathic helix of Pex11pβ strongly reduced peroxisomal fission, and decreased the oligomer formation. These results suggest that Pex11p contributes to the morphogenesis of the peroxisomal membrane, which is required for subsequent fission by DLP1.

  6. Pex11mediates peroxisomal proliferation by promoting deformation of the lipid membrane

    Science.gov (United States)

    Yoshida, Yumi; Niwa, Hajime; Honsho, Masanori; Itoyama, Akinori; Fujiki, Yukio

    2015-01-01

    Pex11p family proteins are key players in peroxisomal fission, but their molecular mechanisms remains mostly unknown. In the present study, overexpression of Pex11pβ caused substantial vesiculation of peroxisomes in mammalian cells. This vesicle formation was dependent on dynamin-like protein 1 (DLP1) and mitochondrial fission factor (Mff), as knockdown of these proteins diminished peroxisomal fission after Pex11pβ overexpression. The fission-deficient peroxisomes exhibited an elongated morphology, and peroxisomal marker proteins, such as Pex14p or matrix proteins harboring peroxisomal targeting signal 1, were discernible in a segmented staining pattern, like beads on a string. Endogenous Pex11pβ was also distributed a striped pattern, but which was not coincide with Pex14p and PTS1 matrix proteins. Altered morphology of the lipid membrane was observed when recombinant Pex11p proteins were introduced into proteo-liposomes. Constriction of proteo-liposomes was observed under confocal microscopy and electron microscopy, and the reconstituted Pex11pβ protein localized to the membrane constriction site. Introducing point mutations into the N-terminal amphiphathic helix of Pex11pβ strongly reduced peroxisomal fission, and decreased the oligomer formation. These results suggest that Pex11p contributes to the morphogenesis of the peroxisomal membrane, which is required for subsequent fission by DLP1. PMID:25910939

  7. Permeabilization assay for antimicrobial peptides based on pore-spanning lipid membranes on nanoporous alumina.

    Science.gov (United States)

    Neubacher, Henrik; Mey, Ingo; Carnarius, Christian; Lazzara, Thomas D; Steinem, Claudia

    2014-04-29

    Screening tools to study antimicrobial peptides (AMPs) with the aim to optimize therapeutic delivery vectors require automated and parallelized sampling based on chip technology. Here, we present the development of a chip-based assay that allows for the investigation of the action of AMPs on planar lipid membranes in a time-resolved manner by fluorescence readout. Anodic aluminum oxide (AAO) composed of cylindrical pores with a diameter of 70 nm and a thickness of up to 10 μm was used as a support to generate pore-spanning lipid bilayers from giant unilamellar vesicle spreading, which resulted in large continuous membrane patches sealing the pores. Because AAO is optically transparent, fluid single lipid bilayers and the underlying pore cavities can be readily observed by three-dimensional confocal laser scanning microscopy (CLSM). To assay the membrane permeabilizing activity of the AMPs, the translocation of the water-soluble dyes into the AAO cavities and the fluorescence of the sulforhodamine 101 1,2-dihexadecanoyl-sn-glycero-3-phosphoethanol-l-amine triethylammonium salt (Texas Red DHPE)-labeled lipid membrane were observed by CLSM in a time-resolved manner as a function of the AMP concentration. The effect of two different AMPs, magainin-2 and melittin, was investigated, showing that the concentrations required for membrane permeabilization and the kinetics of the dye entrance differ significantly. Our results are discussed in light of the proposed permeabilization models of the two AMPs. The presented data demonstrate the potential of this setup for the development of an on-chip screening platform for AMPs.

  8. Accurate potentiometric determination of lipid membrane-water partition coefficients and apparent dissociation constants of ionizable drugs: electrostatic corrections.

    Science.gov (United States)

    Elsayed, Mustafa M A; Vierl, Ulrich; Cevc, Gregor

    2009-06-01

    Potentiometric lipid membrane-water partition coefficient studies neglect electrostatic interactions to date; this leads to incorrect results. We herein show how to account properly for such interactions in potentiometric data analysis. We conducted potentiometric titration experiments to determine lipid membrane-water partition coefficients of four illustrative drugs, bupivacaine, diclofenac, ketoprofen and terbinafine. We then analyzed the results conventionally and with an improved analytical approach that considers Coulombic electrostatic interactions. The new analytical approach delivers robust partition coefficient values. In contrast, the conventional data analysis yields apparent partition coefficients of the ionized drug forms that depend on experimental conditions (mainly the lipid-drug ratio and the bulk ionic strength). This is due to changing electrostatic effects originating either from bound drug and/or lipid charges. A membrane comprising 10 mol-% mono-charged molecules in a 150 mM (monovalent) electrolyte solution yields results that differ by a factor of 4 from uncharged membranes results. Allowance for the Coulombic electrostatic interactions is a prerequisite for accurate and reliable determination of lipid membrane-water partition coefficients of ionizable drugs from potentiometric titration data. The same conclusion applies to all analytical methods involving drug binding to a surface.

  9. Computational Design of Multi-component Bio-Inspired Bilayer Membranes

    Directory of Open Access Journals (Sweden)

    Evan Koufos

    2014-04-01

    Full Text Available Our investigation is motivated by the need to design bilayer membranes with tunable interfacial and mechanical properties for use in a range of applications, such as targeted drug delivery, sensing and imaging. We draw inspiration from biological cell membranes and focus on their principal constituents. In this paper, we present our results on the role of molecular architecture on the interfacial, structural and dynamical properties of bio-inspired membranes. We focus on four lipid architectures with variations in the head group shape and the hydrocarbon tail length. Each lipid species is composed of a hydrophilic head group and two hydrophobic tails. In addition, we study a model of the Cholesterol molecule to understand the interfacial properties of a bilayer membrane composed of rigid, single-tail molecular species. We demonstrate the properties of the bilayer membranes to be determined by the molecular architecture and rigidity of the constituent species. Finally, we demonstrate the formation of a stable mixed bilayer membrane composed of Cholesterol and one of the phospholipid species. Our approach can be adopted to design multi-component bilayer membranes with tunable interfacial and mechanical properties. We use a Molecular Dynamics-based mesoscopic simulation technique called Dissipative Particle Dynamics that resolves the molecular details of the components through soft-sphere coarse-grained models and reproduces the hydrodynamic behavior of the system over extended time scales.

  10. Calculation of the electrostatic potential of lipid bilayers from molecular dynamics simulations: methodological issues

    DEFF Research Database (Denmark)

    Gurtovenko, Andrey A; Vattulainen, Ilpo

    2009-01-01

    of the electrostatic potential from atomic-scale molecular dynamics simulations of lipid bilayers. We discuss two slightly different forms of Poisson equation that are normally used to calculate the membrane potential: (i) a classical form when the potential and the electric field are chosen to be zero on one...... systems). For symmetric bilayers we demonstrate that both approaches give essentially the same potential profiles, provided that simulations are long enough (a production run of at least 100 ns is required) and that fluctuations of the center of mass of a bilayer are properly accounted for. In contrast...

  11. Bacterial S-layer protein coupling to lipids

    DEFF Research Database (Denmark)

    Weygand, M.; Wetzer, B.; Pum, D.

    1999-01-01

    structure before and after protein recrystallization shows minimal reorganization of the lipid chains. By contrast, the lipid headgroups show major rearrangements. For the B. sphaericus CCM2177 protein underneath DPPE monolayers, x-ray reflectivity data suggest that amino acid side chains intercalate......The coupling of bacterial surface (S)-layer proteins to lipid membranes is studied in molecular detail for proteins from Bacillus sphaericus CCM2177 and B. coagulans E38-66 recrystallized at dipalmitoylphosphatidylethanolamine (DPPE) monolayers on aqueous buffer. A comparison of the monolayer...... the lipid headgroups at least to the phosphate moieties, and probably further beyond. The number of electrons in the headgroup region increases by more than four per lipid. Analysis of the changes of the deduced electron density profiles in terms of a molecular interpretation shows...

  12. Molecular Simulations of Sequence-Specific Association of Transmembrane Proteins in Lipid Bilayers

    Science.gov (United States)

    Doxastakis, Manolis; Prakash, Anupam; Janosi, Lorant

    2011-03-01

    Association of membrane proteins is central in material and information flow across the cellular membranes. Amino-acid sequence and the membrane environment are two critical factors controlling association, however, quantitative knowledge on such contributions is limited. In this work, we study the dimerization of helices in lipid bilayers using extensive parallel Monte Carlo simulations with recently developed algorithms. The dimerization of Glycophorin A is examined employing a coarse-grain model that retains a level of amino-acid specificity, in three different phospholipid bilayers. Association is driven by a balance of protein-protein and lipid-induced interactions with the latter playing a major role at short separations. Following a different approach, the effect of amino-acid sequence is studied using the four transmembrane domains of the epidermal growth factor receptor family in identical lipid environments. Detailed characterization of dimer formation and estimates of the free energy of association reveal that these helices present significant affinity to self-associate with certain dimers forming non-specific interfaces.

  13. Formation of Bimolecular Membranes from Lipid Monolayers and a Study of Their Electrical Properties

    Science.gov (United States)

    Montal, M.; Mueller, P.

    1972-01-01

    Bimolecular membranes are formed from two lipid monolayers at an air-water interface by the apposition of their hydrocarbon chains when an aperture in a Teflon partition separating two aqueous phases is lowered through the interface. Formation of the membrane is monitored by an increase of the electrical capacity, as measured with a voltage clamp. Electrical resistance of the unmodified membrane is analogous to that of conventional planar bilayers (black lipid membranes) prepared in the presence of a hydrocarbon solvent, i.e., 106-108 ohm cm2; the resistance can be lowered to values of 103 ohm cm2 by gramicidin, an antibiotic that modifies the conductance only when the membranes are of biomolecular thickness. In contrast to the resistance, there is a significant difference between the capacity of bilayers made from mono-layers and that of hydrocarbon-containing bilayers made by phase transition; the average values are 0.9 and 0.45 μF cm-2, respectively. The value of 0.9 μF cm-2 approximates that of biological membranes. Assuming a dielectric constant of 2.1 for the hydrocarbon region, the dielectric thickness, as calculated from a capacity of 0.9 μF cm-2, is 22 Å. This value is 6-10 Å smaller than the actual thickness of the hydrocarbon region of bilayers and cell membranes, as determined by x-ray diffraction. The difference may be due to a limited penetration of water into the hydrocarbon region near the ester groups that would lower the electrical resistance of this region and reduce the dielectric thickness. Asymmetric membranes have been formed by adjoining two lipid monolayers of different chemical composition. Images PMID:4509315

  14. Simulation of polyethylene glycol and calcium-mediated membrane fusion

    International Nuclear Information System (INIS)

    Pannuzzo, Martina; De Jong, Djurre H.; Marrink, Siewert J.; Raudino, Antonio

    2014-01-01

    We report on the mechanism of membrane fusion mediated by polyethylene glycol (PEG) and Ca 2+ by means of a coarse-grained molecular dynamics simulation approach. Our data provide a detailed view on the role of cations and polymer in modulating the interaction between negatively charged apposed membranes. The PEG chains cause a reduction of the inter-lamellar distance and cause an increase in concentration of divalent cations. When thermally driven fluctuations bring the membranes at close contact, a switch from cis to trans Ca 2+ -lipid complexes stabilizes a focal contact acting as a nucleation site for further expansion of the adhesion region. Flipping of lipid tails induces subsequent stalk formation. Together, our results provide a molecular explanation for the synergistic effect of Ca 2+ and PEG on membrane fusion

  15. Lipopolysaccharide Membranes and Membrane Proteins of Pseudomonas aeruginosa Studied by Computer Simulation

    Energy Technology Data Exchange (ETDEWEB)

    Straatsma, TP

    2006-12-01

    Pseudomonas aeruginosa is a ubiquitous environmental Gram-negative bacterium with high metabolic versatility and an exceptional ability to adapt to a wide range of ecological environments, including soil, marches, coastal habitats, plant and animal tissues. Gram-negative microbes are characterized by the asymmetric lipopolysaccharide outer membrane, the study of which is important for a number of applications. The adhesion to mineral surfaces plays a central role in characterizing their contribution to the fate of contaminants in complex environmental systems by effecting microbial transport through soils, respiration redox chemistry, and ion mobility. Another important application stems from the fact that it is also a major opportunistic human pathogen that can result in life-threatening infections in many immunocompromised patients, such as lung infections in children with cystic fibrosis, bacteraemia in burn victims, urinary-tract infections in catheterized patients, hospital-acquired pneumonia in patients on respirators, infections in cancer patients receiving chemotherapy, and keratitis and corneal ulcers in users of extended-wear soft contact lenses. The inherent resistance against antibiotics which has been linked with the specific interactions in the outer membrane of P. aeruginosa makes these infections difficult to treat. Developments in simulation methodologies as well as computer hardware have enabled the molecular simulation of biological systems of increasing size and with increasing accuracy, providing detail that is difficult or impossible to obtain experimentally. Computer simulation studies contribute to our understanding of the behavior of proteins, protein-protein and protein-DNA complexes. In recent years, a number of research groups have made significant progress in applying these methods to the study of biological membranes. However, these applications have been focused exclusively on lipid bilayer membranes and on membrane proteins in lipid

  16. Ultraviolet- and sunlight-induced lipid peroxidation in liposomal membrane

    International Nuclear Information System (INIS)

    Mandal, T.K.; Chatterjee, S.N.

    1980-01-01

    Ultraviolet radiation and sunlight caused lipid peroxidation in the liposomal membrane (as detected by measurement of the oxidation index, A 233 /A 215 , and the amount of malondialdehyde formed) and made the membrane leaky (as revealed by the release of the trapped chromate anions). The oxidation index and the formation of malondialdehyde increased linearly with increasing dose of radiation and depended significantly on the dose rate. The effects were smaller in liposomes derived from Vibrio cholerae phospholipid than in those derived from egg lecithin. The effects of the radiation dose and dose rate on hemolysis and peroxidation (MDA formation) of the erythrocyte membrane followed a similar pattern. A direct correlation between the percentage leakage of chromate (Y) and the oxidation index (X) of the liposomal system was obtained as Y = 236.5 x X

  17. Generation of stable lipid raft microdomains in the enterocyte brush border by selective endocytic removal of non-raft membrane

    DEFF Research Database (Denmark)

    Danielsen, E Michael; Hansen, Gert H

    2013-01-01

    The small intestinal brush border has an unusually high proportion of glycolipids which promote the formation of lipid raft microdomains, stabilized by various cross-linking lectins. This unique membrane organization acts to provide physical and chemical stability to the membrane that faces...... functions to enrich the contents of lipid raft components in the brush border. The lipophilic fluorescent marker FM, taken up into early endosomes in the terminal web region (TWEEs), was absent from detergent resistant membranes (DRMs), implying an association with non-raft membrane. Furthermore, neither...... major lipid raft-associated brush border enzymes nor glycolipids were detected by immunofluorescence microscopy in subapical punctae resembling TWEEs. Finally, two model raft lipids, BODIPY-lactosylceramide and BODIPY-GM1, were not endocytosed except when cholera toxin subunit B (CTB) was present...

  18. MXene molecular sieving membranes for highly efficient gas separation.

    Science.gov (United States)

    Ding, Li; Wei, Yanying; Li, Libo; Zhang, Tao; Wang, Haihui; Xue, Jian; Ding, Liang-Xin; Wang, Suqing; Caro, Jürgen; Gogotsi, Yury

    2018-01-11

    Molecular sieving membranes with sufficient and uniform nanochannels that break the permeability-selectivity trade-off are desirable for energy-efficient gas separation, and the arising two-dimensional (2D) materials provide new routes for membrane development. However, for 2D lamellar membranes, disordered interlayer nanochannels for mass transport are usually formed between randomly stacked neighboring nanosheets, which is obstructive for highly efficient separation. Therefore, manufacturing lamellar membranes with highly ordered nanochannel structures for fast and precise molecular sieving is still challenging. Here, we report on lamellar stacked MXene membranes with aligned and regular subnanometer channels, taking advantage of the abundant surface-terminating groups on the MXene nanosheets, which exhibit excellent gas separation performance with H 2 permeability >2200 Barrer and H 2 /CO 2 selectivity >160, superior to the state-of-the-art membranes. The results of molecular dynamics simulations quantitatively support the experiments, confirming the subnanometer interlayer spacing between the neighboring MXene nanosheets as molecular sieving channels for gas separation.

  19. Calcineurin signaling and membrane lipid homeostasis regulates iron mediated multidrug resistance mechanisms in Candida albicans.

    Directory of Open Access Journals (Sweden)

    Saif Hameed

    2011-04-01

    Full Text Available We previously demonstrated that iron deprivation enhances drug susceptibility of Candida albicans by increasing membrane fluidity which correlated with the lower expression of ERG11 transcript and ergosterol levels. The iron restriction dependent membrane perturbations led to an increase in passive diffusion and drug susceptibility. The mechanisms underlying iron homeostasis and multidrug resistance (MDR, however, are not yet resolved. To evaluate the potential mechanisms, we used whole genome transcriptome and electrospray ionization tandem mass spectrometry (ESI-MS/MS based lipidome analyses of iron deprived Candida cells to examine the new cellular circuitry of the MDR of this pathogen. Our transcriptome data revealed a link between calcineurin signaling and iron homeostasis. Among the several categories of iron deprivation responsive genes, the down regulation of calcineurin signaling genes including HSP90, CMP1 and CRZ1 was noteworthy. Interestingly, iron deprived Candida cells as well as iron acquisition defective mutants phenocopied molecular chaperone HSP90 and calcineurin mutants and thus were sensitive to alkaline pH, salinity and membrane perturbations. In contrast, sensitivity to above stresses did not change in iron deprived DSY2146 strain with a hyperactive allele of calcineurin. Although, iron deprivation phenocopied compromised HSP90 and calcineurin, it was independent of protein kinase C signaling cascade. Notably, the phenotypes associated with iron deprivation in genetically impaired calcineurin and HSP90 could be reversed with iron supplementation. The observed down regulation of ergosterol (ERG1, ERG2, ERG11 and ERG25 and sphingolipid biosynthesis (AUR1 and SCS7 genes followed by lipidome analysis confirmed that iron deprivation not only disrupted ergosterol biosynthesis, but it also affected sphingolipid homeostasis in Candida cells. These lipid compositional changes suggested extensive remodeling of the membranes in iron

  20. Relationship between the Amount of Bitter Substances Adsorbed onto Lipid/Polymer Membrane and the Electric Response of Taste Sensors

    Directory of Open Access Journals (Sweden)

    Kiyoshi Toko

    2014-09-01

    Full Text Available The bitterness of bitter substances can be measured by the change in the membrane electric potential caused by adsorption (CPA using a taste sensor (electronic tongue. In this study, we examined the relationship between the CPA value due to an acidic bitter substance and the amount of the bitter substance adsorbed onto lipid/polymer membranes, which contain different lipid contents, used in the taste sensor. We used iso-α-acid which is an acidic bitter substance found in several foods and beverages. The amount of adsorbed iso-α-acid, which was determined by spectroscopy, showed a maximum at the lipid concentration 0.1 wt % of the membrane, and the same phenomenon was observed for the CPA value. At the higher lipid concentration, however, the amount adsorbed decreased and then remained constant, while the CPA value decreased monotonically to zero. This constant adsorption amount was observed when the membrane potential in the reference solution did not change with increasing lipid concentration. The decrease in CPA value in spite of the constant adsorption amount is caused by a decrease in the sensitivity of the membrane as the surface charge density increases. The reason why the peaks appeared in both the CPA value and adsorption amount is based on the contradictory adsorption properties of iso-α-acid. The increasing charged lipid concentration of the membrane causes an increasing electrostatic attractive interaction between iso-α-acid and the membrane, but simultaneously causes a decreasing hydrophobic interaction that results in decreasing adsorption of iso-α-acid, which also has hydrophobic properties, onto the membrane. Estimates of the amount of adsorption suggest that iso-α-acid molecules are adsorbed onto both the surface and interior of the membrane.

  1. Membrane-membrane interactions in a lipid-containing bacteriophage system. Progress report, October 1, 1978-September 30, 1979

    International Nuclear Information System (INIS)

    Snipes, W.

    1979-06-01

    Progress is reported on research on two aspects of the life cycle of PM2, a lipid-containing bacteriophage. The first concerns the initial interaction of PM2 with the outer membrane of its host cell, Pseudomonas BAL-31. The second concerns the assembly of PM2 in infected cells and the structural features of hydrophobic membrane perturbers that inhibit PM2 assembly. Several other projects have been completed: distribution of PM2 receptors; effects of adamantance derivatives on PM2 production; hydrophobic membrane perturbers as antiviral and virucidal agents; hydrophobic photosensitizers; and other technique development

  2. A low membrane lipid phase transition temperature is associated with a high cryotolerance of Lactobacillus delbrueckii subspecies bulgaricus CFL1.

    Science.gov (United States)

    Gautier, J; Passot, S; Pénicaud, C; Guillemin, H; Cenard, S; Lieben, P; Fonseca, F

    2013-09-01

    The mechanisms of cellular damage that lactic acid bacteria incur during freeze-thaw processes have not been elucidated to date. Fourier transform infrared spectroscopy was used to investigate in situ the lipid phase transition behavior of the membrane of Lactobacillus delbrueckii ssp. bulgaricus CFL1 cells during the freeze-thaw process. Our objective was to relate the lipid membrane behavior to membrane integrity losses during freezing and to cell-freezing resistance. Cells were produced by using 2 different culture media: de Man, Rogosa, and Sharpe (MRS) broth (complex medium) or mild whey-based medium (minimal medium commonly used in the dairy industry), to obtain different membrane lipid compositions corresponding to different recovery rates of cell viability and functionality after freezing. The lipid membrane behavior studied by Fourier transform infrared spectroscopy was found to be different according to the cell lipid composition and cryotolerance. Freeze-resistant cells, exhibiting a higher content of unsaturated and cyclic fatty acids, presented a lower lipid phase transition temperature (Ts) during freezing (Ts=-8°C), occurring within the same temperature range as the ice nucleation, than freeze-sensitive cells (Ts=+22°C). A subzero value of lipid phase transition allowed the maintenance of the cell membrane in a relatively fluid state during freezing, thus facilitating water flux from the cell and the concomitant volume reduction following ice formation in the extracellular medium. In addition, the lipid phase transition of freeze-resistant cells occurred within a short temperature range, which could be ascribed to a reduced number of fatty acids, representing more than 80% of the total. This short lipid phase transition could be associated with a limited phenomenon of lateral phase separation and membrane permeabilization. This work highlights that membrane phase transitions occurring during freeze-thawing play a fundamental role in the

  3. Folding DNA into a Lipid-Conjugated Nanobarrel for Controlled Reconstitution of Membrane Proteins.

    Science.gov (United States)

    Dong, Yuanchen; Chen, Shuobing; Zhang, Shijian; Sodroski, Joseph; Yang, Zhongqiang; Liu, Dongsheng; Mao, Youdong

    2018-02-19

    Building upon DNA origami technology, we introduce a method to reconstitute a single membrane protein into a self-assembled DNA nanobarrel that scaffolds a nanodisc-like lipid environment. Compared with the membrane-scaffolding-protein nanodisc technique, our approach gives rise to defined stoichiometry, controlled sizes, as well as enhanced stability and homogeneity in membrane protein reconstitution. We further demonstrate potential applications of the DNA nanobarrels in the structural analysis of membrane proteins. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Cholesterol Promotes Protein Binding by Affecting Membrane Electrostatics and Solvation Properties.

    Science.gov (United States)

    Doktorova, Milka; Heberle, Frederick A; Kingston, Richard L; Khelashvili, George; Cuendet, Michel A; Wen, Yi; Katsaras, John; Feigenson, Gerald W; Vogt, Volker M; Dick, Robert A

    2017-11-07

    Binding of the retroviral structural protein Gag to the cellular plasma membrane is mediated by the protein's matrix (MA) domain. Prominent among MA-PM interactions is electrostatic attraction between the positively charged MA domain and the negatively charged plasma membrane inner leaflet. Previously, we reported that membrane association of HIV-1 Gag, as well as purified Rous sarcoma virus (RSV) MA and Gag, depends strongly on the presence of acidic lipids and is enhanced by cholesterol (Chol). The mechanism underlying this enhancement was unclear. Here, using a broad set of in vitro and in silico techniques we addressed molecular mechanisms of association between RSV MA and model membranes, and investigated how Chol enhances this association. In neutron scattering experiments with liposomes in the presence or absence of Chol, MA preferentially interacted with preexisting POPS-rich clusters formed by nonideal lipid mixing, binding peripherally to the lipid headgroups with minimal perturbation to the bilayer structure. Molecular dynamics simulations showed a stronger MA-bilayer interaction in the presence of Chol, and a large Chol-driven increase in lipid packing and membrane surface charge density. Although in vitro MA-liposome association is influenced by disparate variables, including ionic strength and concentrations of Chol and charged lipids, continuum electrostatic theory revealed an underlying dependence on membrane surface potential. Together, these results conclusively show that Chol affects RSV MA-membrane association by making the electrostatic potential at the membrane surface more negative, while decreasing the penalty for lipid headgroup desolvation. The presented approach can be applied to other viral and nonviral proteins. Copyright © 2017 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  5. Lipid somersaults

    DEFF Research Database (Denmark)

    Günther-Pomorski, Thomas; Menon, Anant K.

    2016-01-01

    Membrane lipids diffuse rapidly in the plane of the membrane but their ability to flip spontaneously across a membrane bilayer is hampered by a significant energy barrier. Thus spontaneous flip-flop of polar lipids across membranes is very slow, even though it must occur rapidly to support diverse...... aspects of cellular life. Here we discuss the mechanisms by which rapid flip-flop occurs, and what role lipid flipping plays in membrane homeostasis and cell growth. We focus on conceptual aspects, highlighting mechanistic insights from biochemical and in silico experiments, and the recent, ground......-breaking identification of a number of lipid scramblases....

  6. Membrane microdomains, rafts, and detergent-resistant membranes in plants and fungi

    Czech Academy of Sciences Publication Activity Database

    Malínský, Jan; Opekarová, Miroslava; Grossmann, G.; Tanner, W.

    2013-01-01

    Roč. 64, April (2013), s. 501-529 ISSN 1543-5008 R&D Projects: GA ČR(CZ) GAP302/11/0146; GA ČR GAP205/12/0720 Institutional research plan: CEZ:AV0Z50390703 Institutional support: RVO:61388971 ; RVO:68378041 Keywords : membrane microdomain * lipid raft * detergent resistant membranes Subject RIV: EB - Genetics ; Molecular Biology; EA - Cell Biology (MBU-M) Impact factor: 18.900, year: 2013

  7. Cholera toxin B subunit induces local curvature on lipid bilayers

    DEFF Research Database (Denmark)

    Pezeshkian, Weria; Nåbo, Lina J.; Ipsen, John H.

    2017-01-01

    B induces a local membrane curvature that is essential for its clathrin-independent uptake. Using all-atom molecular dynamics, we show that CTxB induces local curvature, with the radius of curvature around 36 nm. The main feature of the CTxB molecular structure that causes membrane bending is the protruding...... alpha helices in the middle of the protein. Our study points to a generic protein design principle for generating local membrane curvature through specific binding to their lipid anchors....

  8. Phototransformation of membrane lipids and its role in biomembrane function change under the effect of UV-radiation

    International Nuclear Information System (INIS)

    Roshchupkin, D.I.; Anosov, A.K.; Murina, M.A.; Lordkipanidze, A.T.

    1988-01-01

    The papers devoted to the investigation of photochemical transformations of lipid under the effect of UV radiation of biological membranes are reviewed. The mechanism of peroxide photooxidation of mebrane lipid is considered. Data on the effect of antioxidants and the structure state of membranes on the process of peroxide photooxidation of lipid are presented. The problem on the role of this process under the effect of UV-radiation on blood and skin of mammals is discussed. 48 refs.; 4 refs

  9. Electrostatic control by lipids upon the membrane-bound (Na+ + K+)-ATPase.

    Science.gov (United States)

    Ahrens, M L

    1981-04-06

    In this paper, the membrane-bound (Na+ + K+)-ATPase from bovine brain is shown to be controlled by electrostatic alterations of the charged lipids surrounding the enzyme. The properties under investigation are the enzymatic activity, activation energy and the response of the enzymatic system to temperature. Arrhenius plots of the ATPase activity are biphasic with a break at temperature Ti. The temperature Ti, the activation energies at temperatures above and below Ti, and the enzymatic activity at any constant temperature have been shown to depend upon the concentrations of alkali and alkaline-earth metal ions in the solution. These electrolyte dependencies are ascribed to changes of electrostatic conditions at the lipids surrounding the ATPase. If the higher electrostatic screening ability of divalent ions is taken into account, the results in the presence of mono- and divalent ions become virtually the same. As a result of this work, it is concluded that electrostatic alterations are transmitted to the ATPase from the lipids of the membrane in which the enzyme is embedded. Inhibition and activation of the enzyme by mono-and divalent metal ions may thus be explained without any auxiliary hypothesis, particularly without postulating specific binding sites for the different ionic species at the protein. In addition, the specific lipid requirement of the ATPase may be understood better in the light of this interpretation.

  10. Combined effects of headgroup charge and tail unsaturation of lipids on lateral organization and diffusion of lipids in model biomembranes

    International Nuclear Information System (INIS)

    Chen Xiao-Jie; Liang Qing

    2017-01-01

    Lateral organization and dynamics of lipids in plasma membranes are crucial for several cellular processes such as signal transduction across the membrane and still remain elusive. In this paper, using coarse-grained molecular dynamics simulation, we theoretically study the combined effects of headgroup charge and tail unsaturation of lipids on the lateral organization and diffusion of lipids in ternary lipid bilayers. In neutral ternary lipid bilayers composed of saturated lipids, unsaturated lipids, and cholesterols, under the conditions of given temperature and components, the main factor for the phase separation is the unsaturation of unsaturated lipids and the bilayers can be separated into liquid-ordered domains enriched in saturated lipids and cholesterols and liquid-disordered domains enriched in unsaturated lipids. Once the headgroup charge is introduced, the electrostatic repulsion between the negatively charged lipid headgroups will increase the distance between the charged lipids. We find that the lateral organization and diffusion of the lipids in the (partially) charged ternary lipid bilayers are determined by the competition between the headgroup charge and the unsaturation of the unsaturated lipids. In the bilayers containing unsaturated lipids with lower unsaturation, the headgroup charge plays a crucial role in the lateral organization and diffusion of lipids. The headgroup charge may make the lipid domains unstable and even can suppress phase separation of the lipids in some systems. However, in the bilayers containing highly unsaturated lipids, the lateral organization and diffusion of lipids are mainly dominated by the unsaturation of the unsaturated lipids. This work may provide some theoretical insights into understanding the formation of nanosized domains and lateral diffusion of lipids in plasma membranes. (paper)

  11. Urea application promotes amino acid metabolism and membrane lipid peroxidation in Azolla.

    Science.gov (United States)

    Chen, Jiana; Huang, Min; Cao, Fangbo; Pardha-Saradhi, P; Zou, Yingbin

    2017-01-01

    A pot experiment was conducted to evaluate the effect of urea on nitrogen metabolism and membrane lipid peroxidation in Azolla pinnata. Compared to controls, the application of urea to A. pinnata resulted in a 44% decrease in nitrogenase activity, no significant change in glutamine synthetase activity, 660% higher glutamic-pyruvic transaminase, 39% increase in free amino acid levels, 22% increase in malondialdehyde levels, 21% increase in Na+/K+- levels, 16% increase in Ca2+/Mg2+-ATPase levels, and 11% decrease in superoxide dismutase activity. In terms of H2O2 detoxifying enzymes, peroxidase activity did not change and catalase activity increased by 64% in urea-treated A. pinnata. These findings suggest that urea application promotes amino acid metabolism and membrane lipid peroxidation in A. pinnata.

  12. Acyl-Lipid Metabolism

    Science.gov (United States)

    Li-Beisson, Yonghua; Shorrosh, Basil; Beisson, Fred; Andersson, Mats X.; Arondel, Vincent; Bates, Philip D.; Baud, Sébastien; Bird, David; DeBono, Allan; Durrett, Timothy P.; Franke, Rochus B.; Graham, Ian A.; Katayama, Kenta; Kelly, Amélie A.; Larson, Tony; Markham, Jonathan E.; Miquel, Martine; Molina, Isabel; Nishida, Ikuo; Rowland, Owen; Samuels, Lacey; Schmid, Katherine M.; Wada, Hajime; Welti, Ruth; Xu, Changcheng; Zallot, Rémi; Ohlrogge, John

    2013-01-01

    Acyl lipids in Arabidopsis and all other plants have a myriad of diverse functions. These include providing the core diffusion barrier of the membranes that separates cells and subcellular organelles. This function alone involves more than 10 membrane lipid classes, including the phospholipids, galactolipids, and sphingolipids, and within each class the variations in acyl chain composition expand the number of structures to several hundred possible molecular species. Acyl lipids in the form of triacylglycerol account for 35% of the weight of Arabidopsis seeds and represent their major form of carbon and energy storage. A layer of cutin and cuticular waxes that restricts the loss of water and provides protection from invasions by pathogens and other stresses covers the entire aerial surface of Arabidopsis. Similar functions are provided by suberin and its associated waxes that are localized in roots, seed coats, and abscission zones and are produced in response to wounding. This chapter focuses on the metabolic pathways that are associated with the biosynthesis and degradation of the acyl lipids mentioned above. These pathways, enzymes, and genes are also presented in detail in an associated website (ARALIP: http://aralip.plantbiology.msu.edu/). Protocols and methods used for analysis of Arabidopsis lipids are provided. Finally, a detailed summary of the composition of Arabidopsis lipids is provided in three figures and 15 tables. PMID:23505340

  13. On the freezing behavior and diffusion of water in proximity to single-supported zwitterionic and anionic bilayer lipid membranes

    DEFF Research Database (Denmark)

    Miskowiec, A.; Buck, Z. N.; Brown, M. C.

    2014-01-01

    We compare the freezing/melting behavior of water hydrating single-supported bilayers of a zwitterionic lipid DMPC with that of an anionic lipid DMPG. For both membranes, the temperature dependence of the elastically scattered neutron intensity indicates distinct water types undergoing...... translational diffusion: bulk-like water probably located above the membrane and two types of confined water closer to the lipid head groups. The membranes differ in the greater width of the water freezing transition near the anionic DMPG bilayer compared to zwitterionic DMPC as well as in the abruptness...

  14. Molecular modeling of proteinlike inclusions in lipid bilayers: lipid-mediated interactions.

    Science.gov (United States)

    Kik, Richard A; Leermakers, Frans A M; Kleijn, J Mieke

    2010-02-01

    We investigated the insertion of transmembrane structures in a lipid bilayer and their interactions using self-consistent field theory. The lipids are coarse-grained on a united-atom level and consist of a phosphatidylcholinelike headgroup and two hydrophobic tails. The inclusions, acting as simple models for proteins that span biological membranes, are rigid rods (radius R ) with a hydrophobic surface and hydrophilic end caps. The insertion free energy Omega of an individual rod is strongly regulated by the affinity between its hydrophobic surface and the lipid tails. This affinity also controls the best match of the hydrophobic length of the rod with that of the bilayer. The line tension tau(=Omega/2piR) is practically independent of R . The perturbations in the bilayer as a function of distance from the inclusion, have the shape of a damped oscillation. The wavelength and decay length are related to the elastic properties of the bilayer and do not depend on R . These results are used to analyze how the lipid matrix affects the interaction between transmembrane objects, for computational reasons considering the limit of R-->infinity . Contributions on different length scales can be distinguished: (i) a long-range elastic interaction, which is an exponentially decaying oscillation; (ii) an exponentially decaying repulsion on an intermediate length scale, resulting from the loss of conformational entropy of the lipid tails; and (iii) a short-range interaction due to the finite compressibility of the lipid tails, which manifests either as a depletion attraction if there is no affinity between the tails and the inclusions' surface or, otherwise, as an oscillatory structural force.

  15. Molecular dynamics study of homo-oligomeric ion channels: Structures of the surrounding lipids and dynamics of water movement

    Directory of Open Access Journals (Sweden)

    Thuy Hien Nguyen

    2018-03-01

    Full Text Available Molecular dynamics simulations were used to study the structural perturbations of lipids surrounding transmembrane ion channel forming helices/helical bundles and the movement of water within the pores of the ion-channels/bundles. Specifically, helical monomers to hexameric helical bundles embedded in palmitoyl-oleoyl-phosphatidyl-choline (POPC lipid bilayer were studied. Two amphipathic α-helices with the sequence Ac-(LSLLLSL3-NH2 (LS2, and Ac-(LSSLLSL3-NH2 (LS3, which are known to form ion channels, were used. To investigate the surrounding lipid environment, we examined the hydrophobic mismatch, acyl chain order parameter profiles, lipid head-to-tail vector projection on the membrane surface, and the lipid headgroup vector projection. We find that the lipid structure is perturbed within approximately two lipid solvation shells from the protein bundle for each system (~15.0 Å. Beyond two lipid “solvation” shells bulk lipid bilayer properties were observed in all systems. To understand water flow, we enumerated each time a water molecule enters or exited the channel, which allowed us to calculate the number of water crossing events and their rates, and the residence time of water in the channel. We correlate the rate of water crossing with the structural properties of these ion channels and find that the movements of water are predominantly governed by the packing and pore diameter, rather than the topology of each peptide or the pore (hydrophobic or hydrophilic. We show that the crossing events of water fit quantitatively to a stochastic process and that water molecules are traveling diffusively through the pores. These lipid and water findings can be used for understanding the environment within and around ion channels. Furthermore, these findings can benefit various research areas such as rational design of novel therapeutics, in which the drug interacts with membranes and transmembrane proteins to enhance the efficacy or reduce off

  16. Linoleic Acid-Induced Ultra-Weak Photon Emission from Chlamydomonas reinhardtii as a Tool for Monitoring of Lipid Peroxidation in the Cell Membranes

    Science.gov (United States)

    Prasad, Ankush; Pospíšil, Pavel

    2011-01-01

    Reactive oxygen species formed as a response to various abiotic and biotic stresses cause an oxidative damage of cellular component such are lipids, proteins and nucleic acids. Lipid peroxidation is considered as one of the major processes responsible for the oxidative damage of the polyunsaturated fatty acid in the cell membranes. Various methods such as a loss of polyunsaturated fatty acids, amount of the primary and the secondary products are used to monitor the level of lipid peroxidation. To investigate the use of ultra-weak photon emission as a non-invasive tool for monitoring of lipid peroxidation, the involvement of lipid peroxidation in ultra-weak photon emission was studied in the unicellular green alga Chlamydomonas reinhardtii. Lipid peroxidation initiated by addition of exogenous linoleic acid to the cells was monitored by ultra-weak photon emission measured with the employment of highly sensitive charged couple device camera and photomultiplier tube. It was found that the addition of linoleic acid to the cells significantly increased the ultra-weak photon emission that correlates with the accumulation of lipid peroxidation product as measured using thiobarbituric acid assay. Scavenging of hydroxyl radical by mannitol, inhibition of intrinsic lipoxygenase by catechol and removal of molecular oxygen considerably suppressed ultra-weak photon emission measured after the addition of linoleic acid. The photon emission dominated at the red region of the spectrum with emission maximum at 680 nm. These observations reveal that the oxidation of linoleic acid by hydroxyl radical and intrinsic lipoxygenase results in the ultra-weak photon emission. Electronically excited species such as excited triplet carbonyls are the likely candidates for the primary excited species formed during the lipid peroxidation, whereas chlorophylls are the final emitters of photons. We propose here that the ultra-weak photon emission can be used as a non-invasive tool for the

  17. Interaction of cholesterol-conjugated ionizable amino lipids with biomembranes: lipid polymorphism, structure-activity relationship, and implications for siRNA delivery.

    Science.gov (United States)

    Zhang, Jingtao; Fan, Haihong; Levorse, Dorothy A; Crocker, Louis S

    2011-08-02

    Delivery of siRNA is a major obstacle to the advancement of RNAi as a novel therapeutic modality. Lipid nanoparticles (LNP) consisting of ionizable amino lipids are being developed as an important delivery platform for siRNAs, and significant efforts are being made to understand the structure-activity relationship (SAR) of the lipids. This article uses a combination of small-angle X-ray scattering (SAXS) and differential scanning calorimetry (DSC) to evaluate the interaction between cholesterol-conjugated ionizable amino lipids and biomembranes, focusing on an important area of lipid SAR--the ability of lipids to destabilize membrane bilayer structures and facilitate endosomal escape. In this study, cholesterol-conjugated amino lipids were found to be effective in increasing the order of biomembranes and also highly effective in inducing phase changes in biological membranes in vitro (i.e., the lamellar to inverted hexagonal phase transition). The phase transition temperatures, determined using SAXS and DSC, serve as an indicator for ranking the potency of lipids to destabilize endosomal membranes. It was found that the bilayer disruption ability of amino lipids depends strongly on the amino lipid concentration in membranes. Amino lipids with systematic variations in headgroups, the extent of ionization, tail length, the degree of unsaturation, and tail asymmetry were evaluated for their bilayer disruption ability to establish SAR. Overall, it was found that the impact of these lipid structure changes on their bilayer disruption ability agrees well with the results from a conceptual molecular "shape" analysis. Implications of the findings from this study for siRNA delivery are discussed. The methods reported here can be used to support the SAR screening of cationic lipids for siRNA delivery, and the information revealed through the study of the interaction between cationic lipids and biomembranes will contribute significantly to the design of more efficient si

  18. Effect of tea catechins on the structure of lipid membrane and beta-ray induced lipid peroxidation

    International Nuclear Information System (INIS)

    Kubota, M.; Haga, H.; Takeuchi, Y.; Okuno, K.; Yoshioka, H.; Yoshioka, H.

    2007-01-01

    Inhibiting effect of four tea catechins, (-)-epicatechin (EC), (-)-epicatechin gallate (ECG), (-)-epigallocatechin (EGC), (-)-epigallocatechin gallate (EGCG), on the lipid peroxidation induced by β-ray in tritiated water was examined using a spin probe method. 16-Doxylstearic acid (16NS) was incorporated into the liposome prepared from egg yolk phosphatidylcholine and the rate of the decrease of ESR intensity of 16NS was used as a measure of the inhibiting effect. In the low concentration region below 10 -5 M, catechins showed their inhibitions on the lipid peroxidation according to the order of ECG>EGCG>EC>EGC. This result was explained by a model that the initiator of the peroxidation is the hydroxyl radical (·OH) and the catechins adsorbed on the lipid membrane surface acting as scavengers of ·OH. In the high concentration range, however, the effect was diverse and it decreased with the increase of it in the case of EGCG. EGCG in this range was considered to enter into the interior of the membrane and break the structure, which causes the decrease of 16NS. Observation with transmission electron microscope (TEM) revealed that the size of the liposome became larger with the increasing concentration of EGCG and finally it was broken into fragments, showing that EGCG broadened the area of the liposome as expected from the result of ESR. (author)

  19. Lateral mobility of plasma membrane lipids in Xenopus eggs: Regional differences related to animal/vegetal polarity

    OpenAIRE

    Laat, S.W. de; Bluemink, J.G.; Dictus, W.J.A.G.; Zoelen, E.J.J. van; Tetteroo, P.A.T.; Tertoolen, L.G.J.

    1984-01-01

    Regional differences in the lateral mobility properties of plasma membrane lipids were studied in unfertilized and fertilized Xenopus eggs by fluorescence photobleaching recovery (FPR) measurements. Out of a variety of commonly used lipid probes only the aminofluorescein- -1abelled fatty acids HEDAF (5-(N-hexadecanoyl)- aminofluorescein) and TEDAF (5-(N-tetradecanoyl)-aminofluorescein) appear to distribute itself in the plasma membrane. Under all experimental conditions used these molecules s...

  20. Mechanism of voltage-gated channel formation in lipid membranes.

    Science.gov (United States)

    Guidelli, Rolando; Becucci, Lucia

    2016-04-01

    Although several molecular models for voltage-gated ion channels in lipid membranes have been proposed, a detailed mechanism accounting for the salient features of experimental data is lacking. A general treatment accounting for peptide dipole orientation in the electric field and their nucleation and growth kinetics with ion channel formation is provided. This is the first treatment that explains all the main features of the experimental current-voltage curves of peptides forming voltage-gated channels available in the literature. It predicts a regime of weakly voltage-dependent conductance, followed by one of strong voltage-dependent conductance at higher voltages. It also predicts values of the parameters expressing the exponential dependence of conductance upon voltage and peptide bulk concentration for both regimes, in good agreement with those reported in the literature. Most importantly, the only two adjustable parameters involved in the kinetics of nucleation and growth of ion channels can be varied over broad ranges without affecting the above predictions to a significant extent. Thus, the fitting of experimental current-voltage curves stems naturally from the treatment and depends only slightly upon the choice of the kinetic parameters. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Structure and stability of the spinach aquaporin SoPIP2;1 in detergent micelles and lipid membranes.

    Directory of Open Access Journals (Sweden)

    Inés Plasencia

    Full Text Available BACKGROUND: SoPIP2;1 constitutes one of the major integral proteins in spinach leaf plasma membranes and belongs to the aquaporin family. SoPIP2;1 is a highly permeable and selective water channel that has been successfully overexpressed and purified with high yields. In order to optimize reconstitution of the purified protein into biomimetic systems, we have here for the first time characterized the structural stability of SoPIP2;1. METHODOLOGY/PRINCIPAL FINDING: We have characterized the protein structural stability after purification and after reconstitution into detergent micelles and proteoliposomes using circular dichroism and fluorescence spectroscopy techniques. The structure of SoPIP2;1 was analyzed either with the protein solubilized with octyl-β-D-glucopyranoside (OG or reconstituted into lipid membranes formed by E. coli lipids, diphytanoylphosphatidylcholine (DPhPC, or reconstituted into lipid membranes formed from mixtures of 1-palmitoyl-2-oleoyl-phosphatidylcholine (POPE, 1-palmitoyl-2oleoyl-phosphatidylethanolamine (POPE, 1-palmitoyl-2-oleoyl-phosphatidylserine (POPS, and ergosterol. Generally, SoPIP2;1 secondary structure was found to be predominantly α-helical in accordance with crystallographic data. The protein has a high thermal structural stability in detergent solutions, with an irreversible thermal unfolding occurring at a melting temperature of 58°C. Incorporation of the protein into lipid membranes increases the structural stability as evidenced by an increased melting temperature of up to 70°C. CONCLUSION/SIGNIFICANCE: The results of this study provide insights into SoPIP2;1 stability in various host membranes and suggest suitable choices of detergent and lipid composition for reconstitution of SoPIP2;1 into biomimetic membranes for biotechnological applications.

  2. Recent Advances on Carbon Molecular Sieve Membranes (CMSMs and Reactors

    Directory of Open Access Journals (Sweden)

    Margot A. Llosa Tanco

    2016-08-01

    Full Text Available Carbon molecular sieve membranes (CMSMs are an important alternative for gas separation because of their ease of manufacture, high selectivity due to molecular sieve separation, and high permeance. The integration of separation by membranes and reaction in only one unit lead to a high degree of process integration/intensification, with associated benefits of increased energy, production efficiencies and reduced reactor or catalyst volume. This review focuses on recent advances in carbon molecular sieve membranes and their applications in membrane reactors.

  3. FCS diffusion laws in two-phase lipid membranes: determination of domain mean size by experiments and Monte Carlo simulations.

    Science.gov (United States)

    Favard, Cyril; Wenger, Jérôme; Lenne, Pierre-François; Rigneault, Hervé

    2011-03-02

    Many efforts have been undertaken over the last few decades to characterize the diffusion process in model and cellular lipid membranes. One of the techniques developed for this purpose, fluorescence correlation spectroscopy (FCS), has proved to be a very efficient approach, especially if the analysis is extended to measurements on different spatial scales (referred to as FCS diffusion laws). In this work, we examine the relevance of FCS diffusion laws for probing the behavior of a pure lipid and a lipid mixture at temperatures below, within and above the phase transitions, both experimentally and numerically. The accuracy of the microscopic description of the lipid mixtures found here extends previous work to a more complex model in which the geometry is unknown and the molecular motion is driven only by the thermodynamic parameters of the system itself. For multilamellar vesicles of both pure lipid and lipid mixtures, the FCS diffusion laws recorded at different temperatures exhibit large deviations from pure Brownian motion and reveal the existence of nanodomains. The variation of the mean size of these domains with temperature is in perfect correlation with the enthalpy fluctuation. This study highlights the advantages of using FCS diffusion laws in complex lipid systems to describe their temporal and spatial structure. Copyright © 2011 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  4. Controlling the shape of membrane protein polyhedra

    Science.gov (United States)

    Li, Di; Kahraman, Osman; Haselwandter, Christoph A.

    2017-03-01

    Membrane proteins and lipids can self-assemble into membrane protein polyhedral nanoparticles (MPPNs). MPPNs have a closed spherical surface and a polyhedral protein arrangement, and may offer a new route for structure determination of membrane proteins and targeted drug delivery. We develop here a general analytic model of how MPPN self-assembly depends on bilayer-protein interactions and lipid bilayer mechanical properties. We find that the bilayer-protein hydrophobic thickness mismatch is a key molecular control parameter for MPPN shape that can be used to bias MPPN self-assembly towards highly symmetric and uniform MPPN shapes. Our results suggest strategies for optimizing MPPN shape for structural studies of membrane proteins and targeted drug delivery.

  5. Molecular dynamics simulations of cholesterol-rich membranes using a coarse-grained force field for cyclic alkanes

    Energy Technology Data Exchange (ETDEWEB)

    MacDermaid, Christopher M., E-mail: chris.macdermaid@temple.edu; Klein, Michael L.; Fiorin, Giacomo, E-mail: giacomo.fiorin@temple.edu [Institute for Computational Molecular Science, Temple University, 1925 North 12th Street, Philadelphia, Pennsylvania 19122-1801 (United States); Kashyap, Hemant K. [Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016 (India); DeVane, Russell H. [Modeling and Simulation, Corporate Research and Development, The Procter and Gamble Company, West Chester, Ohio 45069 (United States); Shinoda, Wataru [Department of Applied Chemistry, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603 (Japan); Klauda, Jeffery B. [Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, Maryland 20742 (United States)

    2015-12-28

    The architecture of a biological membrane hinges upon the fundamental fact that its properties are determined by more than the sum of its individual components. Studies on model membranes have shown the need to characterize in molecular detail how properties such as thickness, fluidity, and macroscopic bending rigidity are regulated by the interactions between individual molecules in a non-trivial fashion. Simulation-based approaches are invaluable to this purpose but are typically limited to short sampling times and model systems that are often smaller than the required properties. To alleviate both limitations, the use of coarse-grained (CG) models is nowadays an established computational strategy. We here present a new CG force field for cholesterol, which was developed by using measured properties of small molecules, and can be used in combination with our previously developed force field for phospholipids. The new model performs with precision comparable to atomistic force fields in predicting the properties of cholesterol-rich phospholipid bilayers, including area per lipid, bilayer thickness, tail order parameter, increase in bending rigidity, and propensity to form liquid-ordered domains in ternary mixtures. We suggest the use of this model to quantify the impact of cholesterol on macroscopic properties and on microscopic phenomena involving localization and trafficking of lipids and proteins on cellular membranes.

  6. Combining reflectometry and fluorescence microscopy: an assay for the investigation of leakage processes across lipid membranes.

    Science.gov (United States)

    Stephan, Milena; Mey, Ingo; Steinem, Claudia; Janshoff, Andreas

    2014-02-04

    The passage of solutes across a lipid membrane plays a central role in many cellular processes. However, the investigation of transport processes remains a serious challenge in pharmaceutical research, particularly the transport of uncharged cargo. While translocation reactions of ions across cell membranes is commonly measured with the patch-clamp, an equally powerful screening method for the transport of uncharged compounds is still lacking. A combined setup for reflectometric interference spectroscopy (RIfS) and fluorescence microscopy measurements is presented that allows one to investigate the passive exchange of uncharged compounds across a free-standing membrane. Pore-spanning lipid membranes were prepared by spreading giant 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) vesicles on porous anodic aluminum oxide (AAO) membranes, creating sealed attoliter-sized compartments. The time-resolved leakage of different dye molecules (pyranine and crystal violet) as well as avidin through melittin induced membrane pores and defects was investigated.

  7. Development of a Portable Taste Sensor with a Lipid/Polymer Membrane

    Directory of Open Access Journals (Sweden)

    Kiyoshi Toko

    2013-01-01

    Full Text Available We have developed a new portable taste sensor with a lipid/polymer membrane and conducted experiments to evaluate the sensor’s performance. The fabricated sensor consists of a taste sensor chip (40 mm × 26 mm × 2.2 mm with working and reference electrodes and a portable sensor device (80 mm × 25 mm × 20 mm. The working electrode consists of a taste-sensing site comprising a poly(hydroxyethylmethacrylate (pHEMA hydrogel layer with KCl as the electrolyte layer and a lipid/polymer membrane as the taste sensing element. The reference electrode comprises a polyvinyl chloride (PVC membrane layer with a small hole and a pHEMA layer with KCl. The whole device is the size of a USB memory stick, making it suitable for portable use. The sensor’s response to tannic acid as the standard astringency substance showed good accuracy and reproducibility, and was comparable with the performance of a commercially available taste sensing system. Thus, it is possible for this sensor to be used for in-field evaluations and it can make a significant contribution to the food industry, as well as in various fields of research.

  8. Transmembrane helices can induce domain formation in crowded model membranes

    NARCIS (Netherlands)

    Domanski, Jan; Marrink, Siewert J.; Schäfer, Lars V.

    We studied compositionally heterogeneous multi-component model membranes comprised of saturated lipids, unsaturated lipids, cholesterol, and a-helical TM protein models using coarse-grained molecular dynamics simulations. Reducing the mismatch between the length of the saturated and unsaturated

  9. Lipids and proteins in membranes: From in silico to in vivo

    Czech Academy of Sciences Publication Activity Database

    Cebecauer, Marek

    2012-01-01

    Roč. 29, č. 5 (2012), s. 115-117 ISSN 0968-7688 R&D Projects: GA ČR GAP305/11/0459 Institutional support: RVO:61388955 Keywords : lipids * proteins * membranes Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 3.130, year: 2012

  10. Molecular insights into the m-AAA protease-mediated dislocation of transmembrane helices in the mitochondrial inner membrane.

    Science.gov (United States)

    Lee, Seoeun; Lee, Hunsang; Yoo, Suji; Kim, Hyun

    2017-12-08

    Protein complexes involved in respiration, ATP synthesis, and protein import reside in the mitochondrial inner membrane; thus, proper regulation of these proteins is essential for cell viability. The m -AAA protease, a conserved hetero-hexameric AAA (ATPase associated with diverse cellular activities) protease, composed of the Yta10 and Yta12 proteins, regulates mitochondrial proteostasis by mediating protein maturation and degradation. It also recognizes and mediates the dislocation of membrane-embedded substrates, including foreign transmembrane (TM) segments, but the molecular mechanism involved in these processes remains elusive. This study investigated the role of the TM domains in the m -AAA protease by systematic replacement of one TM domain at a time in yeast. Our data indicated that replacement of the Yta10 TM2 domain abolishes membrane dislocation for only a subset of substrates, whereas replacement of the Yta12 TM2 domain impairs membrane dislocation for all tested substrates, suggesting different roles of the TM domains in each m -AAA protease subunit. Furthermore, m -AAA protease-mediated membrane dislocation was impaired in the presence of a large downstream hydrophilic moiety in a membrane substrate. This finding suggested that the m -AAA protease cannot dislocate large hydrophilic domains across the membrane, indicating that the membrane dislocation probably occurs in a lipid environment. In summary, this study highlights previously underappreciated biological roles of TM domains of the m -AAA proteases in mediating the recognition and dislocation of membrane-embedded substrates. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  11. Compartmentalized cAMP Signaling Associated With Lipid Raft and Non-raft Membrane Domains in Adult Ventricular Myocytes.

    Science.gov (United States)

    Agarwal, Shailesh R; Gratwohl, Jackson; Cozad, Mia; Yang, Pei-Chi; Clancy, Colleen E; Harvey, Robert D

    2018-01-01

    Aim: Confining cAMP production to discrete subcellular locations makes it possible for this ubiquitous second messenger to elicit unique functional responses. Yet, factors that determine how and where the production of this diffusible signaling molecule occurs are incompletely understood. The fluid mosaic model originally proposed that signal transduction occurs through random interactions between proteins diffusing freely throughout the plasma membrane. However, it is now known that the movement of membrane proteins is restricted, suggesting that the plasma membrane is segregated into distinct microdomains where different signaling proteins can be concentrated. In this study, we examined what role lipid raft and non-raft membrane domains play in compartmentation of cAMP signaling in adult ventricular myocytes. Methods and Results: The freely diffusible fluorescence resonance energy transfer-based biosensor Epac2-camps was used to measure global cytosolic cAMP responses, while versions of the probe targeted to lipid raft (Epac2-MyrPalm) and non-raft (Epac2-CAAX) domains were used to monitor local cAMP production near the plasma membrane. We found that β-adrenergic receptors, which are expressed in lipid raft and non-raft domains, produce cAMP responses near the plasma membrane that are distinctly different from those produced by E-type prostaglandin receptors, which are expressed exclusively in non-raft domains. We also found that there are differences in basal cAMP levels associated with lipid raft and non-raft domains, and that this can be explained by differences in basal adenylyl cyclase activity associated with each of these membrane environments. In addition, we found evidence that phosphodiesterases 2, 3, and 4 work together in regulating cAMP activity associated with both lipid raft and non-raft domains, while phosphodiesterase 3 plays a more prominent role in the bulk cytoplasmic compartment. Conclusion: These results suggest that different membrane

  12. Viral membrane fusion

    International Nuclear Information System (INIS)

    Harrison, Stephen C.

    2015-01-01

    Membrane fusion is an essential step when enveloped viruses enter cells. Lipid bilayer fusion requires catalysis to overcome a high kinetic barrier; viral fusion proteins are the agents that fulfill this catalytic function. Despite a variety of molecular architectures, these proteins facilitate fusion by essentially the same generic mechanism. Stimulated by a signal associated with arrival at the cell to be infected (e.g., receptor or co-receptor binding, proton binding in an endosome), they undergo a series of conformational changes. A hydrophobic segment (a “fusion loop” or “fusion peptide”) engages the target-cell membrane and collapse of the bridging intermediate thus formed draws the two membranes (virus and cell) together. We know of three structural classes for viral fusion proteins. Structures for both pre- and postfusion conformations of illustrate the beginning and end points of a process that can be probed by single-virion measurements of fusion kinetics. - Highlights: • Viral fusion proteins overcome the high energy barrier to lipid bilayer merger. • Different molecular structures but the same catalytic mechanism. • Review describes properties of three known fusion-protein structural classes. • Single-virion fusion experiments elucidate mechanism

  13. Viral membrane fusion

    Energy Technology Data Exchange (ETDEWEB)

    Harrison, Stephen C., E-mail: harrison@crystal.harvard.edu

    2015-05-15

    Membrane fusion is an essential step when enveloped viruses enter cells. Lipid bilayer fusion requires catalysis to overcome a high kinetic barrier; viral fusion proteins are the agents that fulfill this catalytic function. Despite a variety of molecular architectures, these proteins facilitate fusion by essentially the same generic mechanism. Stimulated by a signal associated with arrival at the cell to be infected (e.g., receptor or co-receptor binding, proton binding in an endosome), they undergo a series of conformational changes. A hydrophobic segment (a “fusion loop” or “fusion peptide”) engages the target-cell membrane and collapse of the bridging intermediate thus formed draws the two membranes (virus and cell) together. We know of three structural classes for viral fusion proteins. Structures for both pre- and postfusion conformations of illustrate the beginning and end points of a process that can be probed by single-virion measurements of fusion kinetics. - Highlights: • Viral fusion proteins overcome the high energy barrier to lipid bilayer merger. • Different molecular structures but the same catalytic mechanism. • Review describes properties of three known fusion-protein structural classes. • Single-virion fusion experiments elucidate mechanism.

  14. Lateral mobility of plasma membrane lipids in Xenopus eggs: regional differences related to animal/vegetal polarity become extreme upon fertilization.

    Science.gov (United States)

    Dictus, W J; van Zoelen, E J; Tetteroo, P A; Tertoolen, L G; de Laat, S W; Bluemink, J G

    1984-01-01

    Regional differences in the lateral mobility properties of plasma membrane lipids have been studied in unfertilized and fertilized Xenopus eggs by fluorescence photobleaching recovery (FPR) measurements. Out of a variety of commonly used lipid probes only the aminofluorescein-labeled fatty acids HEDAF (5-(N-hexadecanoyl)-aminofluorescein) and TEDAF (5-(N-tetradecanoyl)-aminofluorescein) appear to partition into the plasma membrane. Under all experimental conditions used these molecules show partial recovery upon photobleaching indicating the existence of lipidic microdomains. In the unfertilized egg the mobile fraction of plasma membrane lipids (approximately 50%) has a fivefold smaller lateral diffusion coefficient (D = 1.5 X 10(-8) cm2/sec) in the animal than in the vegetal plasma membrane (D = 7.6 X 10(-8) cm2/sec). This demonstrates the presence of an animal/vegetal polarity within the Xenopus egg plasma membrane. Upon fertilization this polarity is strongly (greater than 100X) enhanced leading to the formation of two distinct macrodomains within the plasma membrane. At the animal side of the egg lipids are completely immobilized on the time scale of FPR measurements (D less than 10(-10) cm2/sec), whereas at the vegetal side D is only slightly reduced (D = 4.4 X 10(-8) cm2/sec). The immobilization of animal plasma membrane lipids, which could play a role in the polyspermy block, probably arises by the fusion of cortical granules which are more numerous here. The transition between the animal and the vegetal domain is sharp and coincides with the boundary between the presumptive ecto- and endoderm. The role of regional differences in the plasma membrane is discussed in relation to cell diversification in early development.

  15. Supramolecular organization of the sperm plasma membrane during maturation and capacitation.

    Science.gov (United States)

    Jones, Roy; James, Peter S; Howes, Liz; Bruckbauer, Andreas; Klenerman, David

    2007-07-01

    In the present study, a variety of high resolution microscopy techniques were used to visualize the organization and motion of lipids and proteins in the sperm's plasma membrane. We have addressed questions such as the presence of diffusion barriers, confinement of molecules to specific surface domains, polarized diffusion and the role of cholesterol in regulating lipid rafts and signal transduction during capacitation. Atomic force microscopy identified a novel region (EqSS) within the equatorial segment of bovine, porcine and ovine spermatozoa that was enriched in constitutively phosphorylated proteins. The EqSS was assembled during epididymal maturation. Fluorescence imaging techniques were then used to follow molecular diffusion on the sperm head. Single lipid molecules were freely exchangeable throughout the plasma membrane and showed no evidence for confinement within domains. Large lipid aggregates, however, did not cross over the boundary between the post-acrosome and equatorial segment suggesting the presence of a molecular filter between these two domains. A small reduction in membrane cholesterol enlarges or increases lipid rafts concomitant with phosphorylation of intracellular proteins. Excessive removal of cholesterol, however, disorganizes rafts with a cessation of phosphorylation. These techniques are forcing a revision of long-held views on how lipids and proteins in sperm membranes are assembled into larger complexes that mediate recognition and fusion with the egg.

  16. Urea application promotes amino acid metabolism and membrane lipid peroxidation in Azolla.

    Directory of Open Access Journals (Sweden)

    Jiana Chen

    Full Text Available A pot experiment was conducted to evaluate the effect of urea on nitrogen metabolism and membrane lipid peroxidation in Azolla pinnata. Compared to controls, the application of urea to A. pinnata resulted in a 44% decrease in nitrogenase activity, no significant change in glutamine synthetase activity, 660% higher glutamic-pyruvic transaminase, 39% increase in free amino acid levels, 22% increase in malondialdehyde levels, 21% increase in Na+/K+- levels, 16% increase in Ca2+/Mg2+-ATPase levels, and 11% decrease in superoxide dismutase activity. In terms of H2O2 detoxifying enzymes, peroxidase activity did not change and catalase activity increased by 64% in urea-treated A. pinnata. These findings suggest that urea application promotes amino acid metabolism and membrane lipid peroxidation in A. pinnata.

  17. Differential dynamic and structural behavior of lipid-cholesterol domains in model membranes.

    Directory of Open Access Journals (Sweden)

    Luis F Aguilar

    Full Text Available Changes in the cholesterol (Chol content of biological membranes are known to alter the physicochemical properties of the lipid lamella and consequently the function of membrane-associated enzymes. To characterize these changes, we used steady-state and time resolved fluorescence spectroscopy and two photon-excitation microscopy techniques. The membrane systems were chosen according to the techniques that were used: large unilamellar vesicles (LUVs for cuvette and giant unilamellar vesicles (GUVs for microscopy measurements; they were prepared from dipalmitoyl phosphatidylcholine (DPPC and dioctadecyl phosphatidylcholine (DOPC in mixtures that are well known to form lipid domains. Two fluorescent probes, which insert into different regions of the bilayer, were selected: 1,6-diphenyl-1,3,5-hexatriene (DPH was located at the deep hydrophobic core of the acyl chain regions and 2-dimethylamino-6-lauroylnaphthalene (Laurdan at the hydrophilic-hydrophobic membrane interface. Our spectroscopy results show that (i the changes induced by cholesterol in the deep hydrophobic phospholipid acyl chain domain are different from the ones observed in the superficial region of the hydrophilic-hydrophobic interface, and these changes depend on the state of the lamella and (ii the incorporation of cholesterol into the lamella induces an increase in the orientation dynamics in the deep region of the phospholipid acyl chains with a corresponding decrease in the orientation at the region close to the polar lipid headgroups. The microscopy data from DOPC/DPPC/Chol GUVs using Laurdan generalized polarization (Laurdan GP suggest that a high cholesterol content in the bilayer weakens the stability of the water hydrogen bond network and hence the stability of the liquid-ordered phase (Lo.

  18. Challenges in the Development of Functional Assays of Membrane Proteins

    Directory of Open Access Journals (Sweden)

    Sophie Demarche

    2012-11-01

    Full Text Available Lipid bilayers are natural barriers of biological cells and cellular compartments. Membrane proteins integrated in biological membranes enable vital cell functions such as signal transduction and the transport of ions or small molecules. In order to determine the activity of a protein of interest at defined conditions, the membrane protein has to be integrated into artificial lipid bilayers immobilized on a surface. For the fabrication of such biosensors expertise is required in material science, surface and analytical chemistry, molecular biology and biotechnology. Specifically, techniques are needed for structuring surfaces in the micro- and nanometer scale, chemical modification and analysis, lipid bilayer formation, protein expression, purification and solubilization, and most importantly, protein integration into engineered lipid bilayers. Electrochemical and optical methods are suitable to detect membrane activity-related signals. The importance of structural knowledge to understand membrane protein function is obvious. Presently only a few structures of membrane proteins are solved at atomic resolution. Functional assays together with known structures of individual membrane proteins will contribute to a better understanding of vital biological processes occurring at biological membranes. Such assays will be utilized in the discovery of drugs, since membrane proteins are major drug targets.

  19. Increased lipid droplet accumulation associated with a peripheral sensory neuropathy.

    Science.gov (United States)

    Marshall, Lee L; Stimpson, Scott E; Hyland, Ryan; Coorssen, Jens R; Myers, Simon J

    2014-04-01

    Hereditary sensory neuropathy type 1 (HSN-1) is an autosomal dominant neurodegenerative disease caused by missense mutations in the SPTLC1 gene. The SPTLC1 protein is part of the SPT enzyme which is a ubiquitously expressed, critical and thus highly regulated endoplasmic reticulum bound membrane enzyme that maintains sphingolipid concentrations and thus contributes to lipid metabolism, signalling, and membrane structural functions. Lipid droplets are dynamic organelles containing sphingolipids and membrane bound proteins surrounding a core of neutral lipids, and thus mediate the intracellular transport of these specific molecules. Current literature suggests that there are increased numbers of lipid droplets and alterations of lipid metabolism in a variety of other autosomal dominant neurodegenerative diseases, including Alzheimer's and Parkinson's disease. This study establishes for the first time, a significant increase in the presence of lipid droplets in HSN-1 patient-derived lymphoblasts, indicating a potential connection between lipid droplets and the pathomechanism of HSN-1. However, the expression of adipophilin (ADFP), which has been implicated in the regulation of lipid metabolism, was not altered in lipid droplets from the HSN-1 patient-derived lymphoblasts. This appears to be the first report of increased lipid body accumulation in a peripheral neuropathy, suggesting a fundamental molecular linkage between a number of neurodegenerative diseases.

  20. Methods of staining and visualization of sphingolipid enriched and non-enriched plasma membrane regions of Arabidopsis thaliana with fluorescent dyes and lipid analogues

    Directory of Open Access Journals (Sweden)

    Blachutzik Jörg O

    2012-08-01

    Full Text Available Abstract Background Sterols and Sphingolipids form lipid clusters in the plasma membranes of cell types throughout the animal and plant kingdoms. These lipid domains provide a medium for protein signaling complexes at the plasma membrane and are also observed to be principal regions of membrane contact at the inception of infection. We visualized different specific fluorescent lipophilic stains of the both sphingolipid enriched and non-sphingolipid enriched regions in the plasma membranes of live protoplasts of Arabidopsis thaliana. Results Lipid staining protocols for several fluorescent lipid analogues in plants are presented. The most emphasis was placed on successful protocols for the single and dual staining of sphingolipid enriched regions and exclusion of sphingolipid enriched regions on the plasma membrane of Arabidopsis thaliana protoplasts. A secondary focus was placed to ensure that these staining protocols presented still maintain cell viability. Furthermore, the protocols were successfully tested with the spectrally sensitive dye Laurdan. Conclusion Almost all existing staining procedures of the plasma membrane with fluorescent lipid analogues are specified for animal cells and tissues. In order to develop lipid staining protocols for plants, procedures were established with critical steps for the plasma membrane staining of Arabidopsis leaf tissue and protoplasts. The success of the plasma membrane staining protocols was additionally verified by measurements of lipid dynamics by the fluorescence recovery after photobleaching technique and by the observation of new phenomena such as time dependent lipid polarization events in living protoplasts, for which a putative physiological relevance is suggested.

  1. Reconciling Differences between Lipid Transfer in Free-Standing and Solid Supported Membranes: A Time-Resolved Small-Angle Neutron Scattering Study.

    Science.gov (United States)

    Wah, Benny; Breidigan, Jeffrey M; Adams, Joseph; Horbal, Piotr; Garg, Sumit; Porcar, Lionel; Perez-Salas, Ursula

    2017-04-11

    Maintaining compositional lipid gradients across membranes in animal cells is essential to biological function, but what is the energetic cost to maintain these differences? It has long been recognized that studying the passive movement of lipids in membranes can provide insight into this toll. Confusingly the reported values of inter- and, particularly, intra-lipid transport rates of lipids in membranes show significant differences. To overcome this difficulty, biases introduced by experimental approaches have to be identified. The present study addresses the difference in the reported intramembrane transport rates of dimyristoylphosphatidylcholine (DMPC) on flat solid supports (fast flipping) and in curved free-standing membranes (slow flipping). Two possible scenarios are potentially at play: one is the difference in curvature of the membranes studied and the other the presence (or not) of the support. Using DMPC vesicles and DMPC supported membranes on silica nanoparticles of different radii, we found that an increase in curvature (from a diameter of 30 nm to a diameter of 100 nm) does not change the rates significantly, differing only by factors of order ∼1. Additionally, we found that the exchange rates of DMPC in supported membranes are similar to the ones in vesicles. And as previously reported, we found that the activation energies for exchange on free-standing and supported membranes are similar (84 and 78 kJ/mol, respectively). However, DMPC's flip-flop rates increase significantly when in a supported membrane, surpassing the exchange rates and no longer limiting the exchange process. Although the presence of holes or cracks in supported membranes explains the occurrence of fast lipid flip-flop in many studies, in defect-free supported membranes we find that fast flip-flop is driven by the surface's induced disorder of the bilayer's acyl chain packing as evidenced from their broad melting temperature behavior.

  2. Membrane Restructuring by Phospholipase A2 Is Regulated by the Presence of Lipid Domains

    DEFF Research Database (Denmark)

    Leidy, Chad; Ocampo, Jackson; Duelund, Lars

    2011-01-01

    Secretory phospholipase A2 (sPLA2) catalyzes the hydrolysis of glycerophospholipids. This enzyme is sensitive to membrane structure, and its activity has been shown to increase in the presence of liquid-crystalline/gel (Lα/Lβ) lipid domains. In this work, we explore whether lipid domains can also...... without necessarily destroying the membrane. We confirm by high-performance liquid chromatography the preferential hydrolysis of DMPC within the phase coexistence region of the DMPC/DSPC phase diagram, showing that this preferential hydrolysis is accentuated close to the solidus phase boundary...

  3. Molecular Dynamics Simulations of Hydrophilic Pores in Lipid Bilayers

    NARCIS (Netherlands)

    Leontiadou, Hari; Mark, Alan E.; Marrink, Siewert J.

    Hydrophilic pores are formed in peptide free lipid bilayers under mechanical stress. It has been proposed that the transport of ionic species across such membranes is largely determined by the existence of such meta-stable hydrophilic pores. To study the properties of these structures and understand

  4. Interaction of antimicrobial peptides with lipid membranes

    Energy Technology Data Exchange (ETDEWEB)

    Hanulova, Maria

    2008-12-15

    This study aims to investigate the difference in the interaction of antimicrobial peptides with two classes of zwitterionic peptides, phosphatidylethanolamines (PE) and phosphatidylcholines (PC). Further experiments were performed on model membranes prepared from specific bacterial lipids, lipopolysaccharides (LPS) isolated from Salmonella minnesota. The structure of the lipid-peptide aqueous dispersions was studied by small-and wide-angle X-ray diffraction during heating and cooling from 5 to 85 C. The lipids and peptides were mixed at lipid-to-peptide ratios 10-10000 (POPE and POPC) or 2-50 (LPS). All experiments were performed at synchrotron soft condensed matter beamline A2 in Hasylab at Desy in Hamburg, Germany. The phases were identified and the lattice parameters were calculated. Alamethicin and melittin interact in similar ways with the lipids. Pure POPC forms only lamellar phases. POPE forms lamellar phases at low temperatures that upon heating transform into a highly curved inverse hexagonal phase. Insertion of the peptide induced inverse bicontinuous cubic phases which are an ideal compromise between the curvature stress and the packing frustration. Melittin usually induced a mixture of two cubic phases, Im3m and Pn3m, with a ratio of lattice parameters close to 1.279, related to the underlying minimal surfaces. They formed during the lamellar to hexagonal phase transition and persisted during cooling till the onset of the gel phase. The phases formed at different lipid-to-peptide ratios had very similar lattice parameters. Epitaxial relationships existed between coexisting cubic phases and hexagonal or lamellar phases due to confinement of all phases to an onion vesicle, a vesicle with several layers consisting of different lipid phases. Alamethicin induced the same cubic phases, although their formation and lattice parameters were dependent on the peptide concentration. The cubic phases formed during heating from the lamellar phase and their onset

  5. Interaction of antimicrobial peptides with lipid membranes

    International Nuclear Information System (INIS)

    Hanulova, Maria

    2008-12-01

    This study aims to investigate the difference in the interaction of antimicrobial peptides with two classes of zwitterionic peptides, phosphatidylethanolamines (PE) and phosphatidylcholines (PC). Further experiments were performed on model membranes prepared from specific bacterial lipids, lipopolysaccharides (LPS) isolated from Salmonella minnesota. The structure of the lipid-peptide aqueous dispersions was studied by small-and wide-angle X-ray diffraction during heating and cooling from 5 to 85 C. The lipids and peptides were mixed at lipid-to-peptide ratios 10-10000 (POPE and POPC) or 2-50 (LPS). All experiments were performed at synchrotron soft condensed matter beamline A2 in Hasylab at Desy in Hamburg, Germany. The phases were identified and the lattice parameters were calculated. Alamethicin and melittin interact in similar ways with the lipids. Pure POPC forms only lamellar phases. POPE forms lamellar phases at low temperatures that upon heating transform into a highly curved inverse hexagonal phase. Insertion of the peptide induced inverse bicontinuous cubic phases which are an ideal compromise between the curvature stress and the packing frustration. Melittin usually induced a mixture of two cubic phases, Im3m and Pn3m, with a ratio of lattice parameters close to 1.279, related to the underlying minimal surfaces. They formed during the lamellar to hexagonal phase transition and persisted during cooling till the onset of the gel phase. The phases formed at different lipid-to-peptide ratios had very similar lattice parameters. Epitaxial relationships existed between coexisting cubic phases and hexagonal or lamellar phases due to confinement of all phases to an onion vesicle, a vesicle with several layers consisting of different lipid phases. Alamethicin induced the same cubic phases, although their formation and lattice parameters were dependent on the peptide concentration. The cubic phases formed during heating from the lamellar phase and their onset

  6. Generation of stable lipid raft microdomains in the enterocyte brush border by selective endocytic removal of non-raft membrane.

    Directory of Open Access Journals (Sweden)

    E Michael Danielsen

    Full Text Available The small intestinal brush border has an unusually high proportion of glycolipids which promote the formation of lipid raft microdomains, stabilized by various cross-linking lectins. This unique membrane organization acts to provide physical and chemical stability to the membrane that faces multiple deleterious agents present in the gut lumen, such as bile salts, digestive enzymes of the pancreas, and a plethora of pathogens. In the present work, we studied the constitutive endocytosis from the brush border of cultured jejunal explants of the pig, and the results indicate that this process functions to enrich the contents of lipid raft components in the brush border. The lipophilic fluorescent marker FM, taken up into early endosomes in the terminal web region (TWEEs, was absent from detergent resistant membranes (DRMs, implying an association with non-raft membrane. Furthermore, neither major lipid raft-associated brush border enzymes nor glycolipids were detected by immunofluorescence microscopy in subapical punctae resembling TWEEs. Finally, two model raft lipids, BODIPY-lactosylceramide and BODIPY-GM1, were not endocytosed except when cholera toxin subunit B (CTB was present. In conclusion, we propose that constitutive, selective endocytic removal of non-raft membrane acts as a sorting mechanism to enrich the brush border contents of lipid raft components, such as glycolipids and the major digestive enzymes. This sorting may be energetically driven by changes in membrane curvature when molecules move from a microvillar surface to an endocytic invagination.

  7. Generation of stable lipid raft microdomains in the enterocyte brush border by selective endocytic removal of non-raft membrane.

    Science.gov (United States)

    Danielsen, E Michael; Hansen, Gert H

    2013-01-01

    The small intestinal brush border has an unusually high proportion of glycolipids which promote the formation of lipid raft microdomains, stabilized by various cross-linking lectins. This unique membrane organization acts to provide physical and chemical stability to the membrane that faces multiple deleterious agents present in the gut lumen, such as bile salts, digestive enzymes of the pancreas, and a plethora of pathogens. In the present work, we studied the constitutive endocytosis from the brush border of cultured jejunal explants of the pig, and the results indicate that this process functions to enrich the contents of lipid raft components in the brush border. The lipophilic fluorescent marker FM, taken up into early endosomes in the terminal web region (TWEEs), was absent from detergent resistant membranes (DRMs), implying an association with non-raft membrane. Furthermore, neither major lipid raft-associated brush border enzymes nor glycolipids were detected by immunofluorescence microscopy in subapical punctae resembling TWEEs. Finally, two model raft lipids, BODIPY-lactosylceramide and BODIPY-GM1, were not endocytosed except when cholera toxin subunit B (CTB) was present. In conclusion, we propose that constitutive, selective endocytic removal of non-raft membrane acts as a sorting mechanism to enrich the brush border contents of lipid raft components, such as glycolipids and the major digestive enzymes. This sorting may be energetically driven by changes in membrane curvature when molecules move from a microvillar surface to an endocytic invagination.

  8. Cholesterol, sphingolipids, and glycolipids: What do we know about their role in raft-like membranes?

    DEFF Research Database (Denmark)

    Rog, T.; Vattulainen, I.

    2014-01-01

    Lipids rafts are considered to be functional nanoscale membrane domains enriched in cholesterol and sphingolipids, characteristic in particular of the external leaflet of cell membranes. Lipids, together with membrane-associated proteins, are therefore considered to form nanoscale units with pote......Lipids rafts are considered to be functional nanoscale membrane domains enriched in cholesterol and sphingolipids, characteristic in particular of the external leaflet of cell membranes. Lipids, together with membrane-associated proteins, are therefore considered to form nanoscale units...... with potential specific functions. Although the understanding of the structure of rafts in living cells is quite limited, the possible functions of rafts are widely discussed in the literature, highlighting their importance in cellular functions. In this review, we discuss the understanding of rafts that has...... emerged based on recent atomistic and coarse-grained molecular dynamics simulation studies on the key lipid raft components, which include cholesterol, sphingolipids, glycolipids, and the proteins interacting with these classes of lipids. The simulation results are compared to experiments when possible...

  9. Association of acylated cationic decapeptides with dipalmitoylphosphatidylserine-dipalmitoyl- phosphatidylcholine lipid membranes

    DEFF Research Database (Denmark)

    Pedersen, T. B.; Sabra, Mads Christian; Frokjaer, Sven

    2001-01-01

    decapeptides that are N-terminally linked with C-2, C-8, and C-14 acyl chains contain four basic histidine residues in their identical amino acid sequence. A binding model, based on changes in the intrinsic fluorescent properties of the peptides upon association with the DPPC-DPPS membranes, is used...... DPPC-DPPS lipid mixture. The extent of peptide association deduced from the heat capacity measurements suggests a strong binding and membrane insertion of the C-14 acylated peptide in accordance with the fluorescence measurements....

  10. Bio-Mimetic Sensors Based on Molecularly Imprinted Membranes

    Directory of Open Access Journals (Sweden)

    Catia Algieri

    2014-07-01

    Full Text Available An important challenge for scientific research is the production of artificial systems able to mimic the recognition mechanisms occurring at the molecular level in living systems. A valid contribution in this direction resulted from the development of molecular imprinting. By means of this technology, selective molecular recognition sites are introduced in a polymer, thus conferring it bio-mimetic properties. The potential applications of these systems include affinity separations, medical diagnostics, drug delivery, catalysis, etc. Recently, bio-sensing systems using molecularly imprinted membranes, a special form of imprinted polymers, have received the attention of scientists in various fields. In these systems imprinted membranes are used as bio-mimetic recognition elements which are integrated with a transducer component. The direct and rapid determination of an interaction between the recognition element and the target analyte (template was an encouraging factor for the development of such systems as alternatives to traditional bio-assay methods. Due to their high stability, sensitivity and specificity, bio-mimetic sensors-based membranes are used for environmental, food, and clinical uses. This review deals with the development of molecularly imprinted polymers and their different preparation methods. Referring to the last decades, the application of these membranes as bio-mimetic sensor devices will be also reported.

  11. Bio-Mimetic Sensors Based on Molecularly Imprinted Membranes

    Science.gov (United States)

    Algieri, Catia; Drioli, Enrico; Guzzo, Laura; Donato, Laura

    2014-01-01

    An important challenge for scientific research is the production of artificial systems able to mimic the recognition mechanisms occurring at the molecular level in living systems. A valid contribution in this direction resulted from the development of molecular imprinting. By means of this technology, selective molecular recognition sites are introduced in a polymer, thus conferring it bio-mimetic properties. The potential applications of these systems include affinity separations, medical diagnostics, drug delivery, catalysis, etc. Recently, bio-sensing systems using molecularly imprinted membranes, a special form of imprinted polymers, have received the attention of scientists in various fields. In these systems imprinted membranes are used as bio-mimetic recognition elements which are integrated with a transducer component. The direct and rapid determination of an interaction between the recognition element and the target analyte (template) was an encouraging factor for the development of such systems as alternatives to traditional bio-assay methods. Due to their high stability, sensitivity and specificity, bio-mimetic sensors-based membranes are used for environmental, food, and clinical uses. This review deals with the development of molecularly imprinted polymers and their different preparation methods. Referring to the last decades, the application of these membranes as bio-mimetic sensor devices will be also reported. PMID:25196110

  12. Modulation of endotoxicity of Shigella generalized modules for membrane antigens (GMMA) by genetic lipid A modifications: relative activation of TLR4 and TLR2 pathways in different mutants.

    Science.gov (United States)

    Rossi, Omar; Pesce, Isabella; Giannelli, Carlo; Aprea, Susanna; Caboni, Mariaelena; Citiulo, Francesco; Valentini, Sara; Ferlenghi, Ilaria; MacLennan, Calman Alexander; D'Oro, Ugo; Saul, Allan; Gerke, Christiane

    2014-09-05

    Outer membrane particles from Gram-negative bacteria are attractive vaccine candidates as they present surface antigens in their natural context. We previously developed a high yield production process for genetically derived particles, called generalized modules for membrane antigens (GMMA), from Shigella. As GMMA are derived from the outer membrane, they contain immunostimulatory components, especially lipopolysaccharide (LPS). We examined ways of reducing their reactogenicity by modifying lipid A, the endotoxic part of LPS, through deletion of late acyltransferase genes, msbB or htrB, in GMMA-producing Shigella sonnei and Shigella flexneri strains. GMMA with resulting penta-acylated lipid A from the msbB mutants showed a 600-fold reduced ability, and GMMA from the S. sonnei ΔhtrB mutant showed a 60,000-fold reduced ability compared with GMMA with wild-type lipid A to stimulate human Toll-like receptor 4 (TLR4) in a reporter cell line. In human peripheral blood mononuclear cells, GMMA with penta-acylated lipid A showed a marked reduction in induction of inflammatory cytokines (S. sonnei ΔhtrB, 800-fold; ΔmsbB mutants, 300-fold). We found that the residual activity of these GMMA is largely due to non-lipid A-related TLR2 activation. In contrast, in the S. flexneri ΔhtrB mutant, a compensatory lipid A palmitoleoylation resulted in GMMA with hexa-acylated lipid A with ∼10-fold higher activity to stimulate peripheral blood mononuclear cells than GMMA with penta-acylated lipid A, mostly due to retained TLR4 activity. Thus, for use as vaccines, GMMA will likely require lipid A penta-acylation. The results identify the relative contributions of TLR4 and TLR2 activation by GMMA, which need to be taken into consideration for GMMA vaccine development. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  13. Single histidine residue in head-group region is sufficient to impart remarkable gene transfection properties to cationic lipids: evidence for histidine-mediated membrane fusion at acidic pH.

    Science.gov (United States)

    Kumar, V V; Pichon, C; Refregiers, M; Guerin, B; Midoux, P; Chaudhuri, A

    2003-08-01

    Presence of endosome-disrupting multiple histidine functionalities in the molecular architecture of cationic polymers, such as polylysine, has previously been demonstrated to significantly enhance their in vitro gene delivery efficiencies. Towards harnessing improved transfection property through covalent grafting of endosome-disrupting single histidine functionality in the molecular structure of cationic lipids, herein, we report on the design, the synthesis and the transfection efficiency of two novel nonglycerol-based histidylated cationic amphiphiles. We found that L-histidine-(N,N-di-n-hexadecylamine)ethylamide (lipid 1) and L-histidine-(N,N-di-n-hexadecylamine,-N-methyl)ethylamide (lipid 2) in combination with cholesterol gave efficient transfections into various cell lines. The transfection efficiency of Chol/lipid 1 lipoplexes into HepG2 cells was two order of magnitude higher than that of FuGENE(TM)6 and DC-Chol lipoplexes, whereas it was similar into A549, 293T7 and HeLa cells. A better efficiency was obtained with Chol/lipid 2 lipoplexes when using the cytosolic luciferase expression vector (pT7Luc) under the control of the bacterial T7 promoter. Membrane fusion activity measurements using fluorescence resonance energy transfer (FRET) technique showed that the histidine head-groups of Chol/lipid 1 liposomes mediated membrane fusion in the pH range 5-7. In addition, the transgene expression results using the T7Luc expression vector convincingly support the endosome-disrupting role of the presently described mono-histidylated cationic transfection lipids and the release of DNA into the cytosol. We conclude that covalent grafting of a single histidine amino acid residue to suitable twin-chain hydrophobic compounds is able to impart remarkable transfection properties on the resulting mono-histidylated cationic amphiphile, presumably via the endosome-disrupting characteristics of the histidine functionalities.

  14. Fabrication and characterization of an integrated ionic device from suspended polypyrrole and alamethicin-reconstituted lipid bilayer membranes

    International Nuclear Information System (INIS)

    Northcutt, Robert; Sundaresan, Vishnu-Baba

    2012-01-01

    Conducting polymers are electroactive materials that undergo conformal relaxation of the polymer backbone in the presence of an electrical field through ion exchange with solid or aqueous electrolytes. This conformal relaxation and the associated morphological changes make conducting polymers highly suitable for actuation and sensing applications. Among smart materials, bioderived active materials also use ion transport for sensing and actuation functions via selective ion transport. The transporter proteins extracted from biological cell membranes and reconstituted into a bilayer lipid membrane in bioderived active materials regulate ion transport for engineering functions. The protein transporter reconstituted in the bilayer lipid membrane is referred to as the bioderived membrane and serves as the active component in bioderived active materials. Inspired by the similarities in the physics of transduction in conducting polymers and bioderived active materials, an integrated ionic device is formed from the bioderived membrane and the conducting polymer membrane. This ionic device is fabricated into a laminated thin-film membrane and a common ion that can be processed by the bioderived and the conducting polymer membranes couple the ionic function of these two membranes. An integrated ionic device, fabricated from polypyrrole (PPy) doped with sodium dodecylbenzenesulfonate (NaDBS) and an alamethicin-reconstituted DPhPC bilayer lipid membrane, is presented in this paper. A voltage-gated sodium current regulates the electrochemical response in the PPy(DBS) layer. The integrated device is fabricated on silicon-based substrates through microfabrication, electropolymerization, and vesicle fusion, and ionic activity is characterized through electrochemical measurements. (paper)

  15. Quantitative optical microscopy and micromanipulation studies on the lipid bilayer membranes of giant unilamellar vesicles

    DEFF Research Database (Denmark)

    Bagatolli, Luis; Needham, David

    2014-01-01

    to study composition-structure-property materials relationships of free-standing lipid bilayer membranes. Because their size (~5 to 100 m diameter) that is well above the resolution limit of regular light microscopes, GUVs are suitable membrane models for optical microscopy and micromanipulation...

  16. Effect of Pulsed Electric Field on Membrane Lipids and Oxidative Injury of Salmonella typhimurium.

    Science.gov (United States)

    Yun, Ou; Zeng, Xin-An; Brennan, Charles S; Han, Zhong

    2016-08-22

    Salmonella typhimurium cells were subjected to pulsed electric field (PEF) treatment at 25 kV/cm for 0-4 ms to investigate the effect of PEF on the cytoplasmic membrane lipids and oxidative injury of cells. Results indicated that PEF treatment induced a decrease of membrane fluidity of Salmonella typhimurium (S. typhimuriumi), possibly due to the alterations of fatty acid biosynthesis-associated gene expressions (down-regulation of cfa and fabA gene expressions and the up-regulation of fabD gene expression), which, in turn, modified the composition of membrane lipid (decrease in the content ratio of unsaturated fatty acids to saturated fatty acids). In addition, oxidative injury induced by PEF treatment was associated with an increase in the content of malondialdehyde. The up-regulation of cytochrome bo oxidase gene expressions (cyoA, cyoB, and cyoC) indicated that membrane damage was induced by PEF treatment, which was related to the repairing mechanism of alleviating the oxidative injury caused by PEF treatment. Based on these results, we achieved better understanding of microbial injury induced by PEF, suggesting that micro-organisms tend to decrease membrane fluidity in response to PEF treatment and, thus, a greater membrane fluidity might improve the efficiency of PEF treatment to inactivate micro-organisms.

  17. Organization of lipids in the tear film: a molecular-level view.

    Directory of Open Access Journals (Sweden)

    Alicja Wizert

    Full Text Available Biophysical properties of the tear film lipid layer are studied at the molecular level employing coarse grain molecular dynamics (MD simulations with a realistic model of the human tear film. In this model, polar lipids are chosen to reflect the current knowledge on the lipidome of the tear film whereas typical Meibomian-origin lipids are included in the thick non-polar lipids subphase. Simulation conditions mimic those experienced by the real human tear film during blinks. Namely, thermodynamic equilibrium simulations at different lateral compressions are performed to model varying surface pressure, and the dynamics of the system during a blink is studied by non-equilibrium MD simulations. Polar lipids separate their non-polar counterparts from water by forming a monomolecular layer whereas the non-polar molecules establish a thick outermost lipid layer. Under lateral compression, the polar layer undulates and a sorting of polar lipids occurs. Moreover, formation of three-dimensional aggregates of polar lipids in both non-polar and water subphases is observed. We suggest that these three-dimensional structures are abundant under dynamic conditions caused by the action of eye lids and that they act as reservoirs of polar lipids, thus increasing stability of the tear film.

  18. Atomic-scale structure and electrostatics of anionic palmitoyloleoylphosphatidylglycerol lipid bilayers with Na+ counterions

    NARCIS (Netherlands)

    Zhao, W.; Róg, T.; Gurtovenko, A.A.; Vattulainen, I.; Karttunen, M.E.J.

    2007-01-01

    Anionic palmitoyloleoylphosphatidylglycerol (POPG) is one of the most abundant lipids in nature, yet its atomic-scale properties have not received significant attention. Here we report extensive 150-ns molecular dynamics simulations of a pure POPG lipid membrane with sodium counterions. It turns out

  19. Biomechanics and Thermodynamics of Nanoparticle Interactions with Plasma and Endosomal Membrane Lipids in Cellular Uptake and Endosomal Escape

    Science.gov (United States)

    2015-01-01

    To be effective for cytoplasmic delivery of therapeutics, nanoparticles (NPs) taken up via endocytic pathways must efficiently transport across the cell membrane and subsequently escape from the secondary endosomes. We hypothesized that the biomechanical and thermodynamic interactions of NPs with plasma and endosomal membrane lipids are involved in these processes. Using model plasma and endosomal lipid membranes, we compared the interactions of cationic NPs composed of poly(d,l-lactide-co-glycolide) modified with the dichain surfactant didodecyldimethylammonium bromide (DMAB) or the single-chain surfactant cetyltrimethylammonium bromide (CTAB) vs anionic unmodified NPs of similar size. We validated our hypothesis in doxorubicin-sensitive (MCF-7, with relatively fluid membranes) and resistant breast cancer cells (MCF-7/ADR, with rigid membranes). Despite their cationic surface charges, DMAB- and CTAB-modified NPs showed different patterns of biophysical interaction: DMAB-modified NPs induced bending of the model plasma membrane, whereas CTAB-modified NPs condensed the membrane, thereby resisted bending. Unmodified NPs showed no effects on bending. DMAB-modified NPs also induced thermodynamic instability of the model endosomal membrane, whereas CTAB-modified and unmodified NPs had no effect. Since bending of the plasma membrane and destabilization of the endosomal membrane are critical biophysical processes in NP cellular uptake and endosomal escape, respectively, we tested these NPs for cellular uptake and drug efficacy. Confocal imaging showed that in both sensitive and resistant cells DMAB-modified NPs exhibited greater cellular uptake and escape from endosomes than CTAB-modified or unmodified NPs. Further, paclitaxel-loaded DMAB-modified NPs induced greater cytotoxicity even in resistant cells than CTAB-modified or unmodified NPs or drug in solution, demonstrating the potential of DMAB-modified NPs to overcome the transport barrier in resistant cells. In

  20. Gag induces the coalescence of clustered lipid rafts and tetraspanin-enriched microdomains at HIV-1 assembly sites on the plasma membrane.

    Science.gov (United States)

    Hogue, Ian B; Grover, Jonathan R; Soheilian, Ferri; Nagashima, Kunio; Ono, Akira

    2011-10-01

    The HIV-1 structural protein Gag associates with two types of plasma membrane microdomains, lipid rafts and tetraspanin-enriched microdomains (TEMs), both of which have been proposed to be platforms for HIV-1 assembly. However, a variety of studies have demonstrated that lipid rafts and TEMs are distinct microdomains in the absence of HIV-1 infection. To measure the impact of Gag on microdomain behaviors, we took advantage of two assays: an antibody-mediated copatching assay and a Förster resonance energy transfer (FRET) assay that measures the clustering of microdomain markers in live cells without antibody-mediated patching. We found that lipid rafts and TEMs copatched and clustered to a greater extent in the presence of membrane-bound Gag in both assays, suggesting that Gag induces the coalescence of lipid rafts and TEMs. Substitutions in membrane binding motifs of Gag revealed that, while Gag membrane binding is necessary to induce coalescence of lipid rafts and TEMs, either acylation of Gag or binding of phosphatidylinositol-(4,5)-bisphosphate is sufficient. Finally, a Gag derivative that is defective in inducing membrane curvature appeared less able to induce lipid raft and TEM coalescence. A higher-resolution analysis of assembly sites by correlative fluorescence and scanning electron microscopy showed that coalescence of clustered lipid rafts and TEMs occurs predominantly at completed cell surface virus-like particles, whereas a transmembrane raft marker protein appeared to associate with punctate Gag fluorescence even in the absence of cell surface particles. Together, these results suggest that different membrane microdomain components are recruited in a stepwise manner during assembly.

  1. SAXS investigations on lipid membranes under osmotic stress

    Energy Technology Data Exchange (ETDEWEB)

    Rubim, R.L.; Vieira, V.; Gerbelli, B.B.; Teixeira da Silva, E.R.; Oliveira, C.L.P.; Oliveira, E.A. [Universidade de Sao Paulo (USP), Sao Paulo, SP (Brazil)

    2012-07-01

    Full text: In this work we, experimentally, investigate the interactions between lipid bilayers. A structural characterization is performed by small angle x-ray scattering (SAXS) on multilamellar systems under known osmotic pressure. Changes in the composition of membranes can modify their mechanical properties and structural parameters, like the flexibility of these membranes, which plays a key role on the determination of the tridimensional organization of bilayers. The membranes are composed of soya lecithin, where the major component is DPPC (Dipalmitoylphosphatidylcholine), and fatty acids are incorporated to the membrane in different concentrations, in order to turn the membrane more fluid. The membranes are inserted in a solution of PVP [poly(vinyl-pyrrolidone) - 40000] and the polymer will apply an osmotic pressure on them. The osmotic pressure is controlled by preparing PVP solutions of desired composition and, as we know the concentration of polymer in solution, we can obtain the intensity of the osmotic pressure. SAXS experiments were done in order to determine the distance between the bilayer. From the position of the Bragg peaks, the lamellar periodicity (the thickness of the membranes plus their distance of separation) was determined. Using theoretical model for the form and structure factors we fitted those experimental data and determined the thickness of the membranes. The distance between the membranes was controlled by the osmotic pressure (P) applied to the membranes and, for a given pressure, we determine the distance between the bilayers (a) on equilibrium. The experimental curve P(a) is theoretically described by the different contributions from van der Waals, hydration and fluctuation forces. From the fitting of experimental curves, relevant parameters characterizing the strength of the different interactions are obtained, such as Hamaker and rigidity constant [2, 3]. We observe that the separation between the bilayers on equilibrium is

  2. Study of water diffusion on single-supported bilayer lipid membranes by quasielastic neutron scattering

    DEFF Research Database (Denmark)

    Bai, M.; Miskowiec, A.; Hansen, F. Y.

    2012-01-01

    High-energy-resolution quasielastic neutron scattering has been used to elucidate the diffusion of water molecules in proximity to single bilayer lipid membranes supported on a silicon substrate. By varying sample temperature, level of hydration, and deuteration, we identify three different types...... of diffusive water motion: bulk-like, confined, and bound. The motion of bulk-like and confined water molecules is fast compared to those bound to the lipid head groups (7-10 H2O molecules per lipid), which move on the same nanosecond time scale as H atoms within the lipid molecules. Copyright (C) EPLA, 2012...

  3. Electroporation of Skin Stratum Corneum Lipid Bilayer and Molecular Mechanism of Drug Transport: A Molecular Dynamics Study.

    Science.gov (United States)

    Gupta, Rakesh; Rai, Beena

    2018-04-30

    Skin electroporation has been used significantly to increase the drug permeation. However, molecular mechanism, which resulted in enhancement of flux through skin, is still not known. In this study, extensive atomistic molecular dynamics simulation of skin lipids (made up of ceramide (CER), cholesterol (CHOL) and free fatty acid (FFA)) have been performed at various external electric field. We show for the first time the pore formation in the skin lipid bilayer during the electroporation. We show the effect of applied external electrical field on the pore formation dynamics in lipid bilayer of different size and composition. The pore formation and resealing kinetics were different and was found to be highly dependent on the composition of skin lipid bilayer. The pore formation time decreased with increase in the bilayer size. The pore sustaining electric field was found to be in the range of 0.20-0.25 V/nm for equimolar CER, CHOL and FFA lipid bilayer. The skin lipid bilayer (1:1:1), sealed itself within 20 ns after the removal of external electric field. We also present the molecular mechanism of enhancement of drug permeation in the presence of external field as compared to the passive diffusion. The molecular level understanding obtained here could help in optimizing/designing the electroporation experiments for effective drug delivery. For a given skin composition and size of drug molecule, the combination of pore formation time and pore growth model can be used to know aproiri the desired electric field and time for application of electric field.

  4. Accelerating Convergence in Molecular Dynamics Simulations of Solutes in Lipid Membranes by Conducting a Random Walk along the Bilayer Normal.

    Science.gov (United States)

    Neale, Chris; Madill, Chris; Rauscher, Sarah; Pomès, Régis

    2013-08-13

    All molecular dynamics simulations are susceptible to sampling errors, which degrade the accuracy and precision of observed values. The statistical convergence of simulations containing atomistic lipid bilayers is limited by the slow relaxation of the lipid phase, which can exceed hundreds of nanoseconds. These long conformational autocorrelation times are exacerbated in the presence of charged solutes, which can induce significant distortions of the bilayer structure. Such long relaxation times represent hidden barriers that induce systematic sampling errors in simulations of solute insertion. To identify optimal methods for enhancing sampling efficiency, we quantitatively evaluate convergence rates using generalized ensemble sampling algorithms in calculations of the potential of mean force for the insertion of the ionic side chain analog of arginine in a lipid bilayer. Umbrella sampling (US) is used to restrain solute insertion depth along the bilayer normal, the order parameter commonly used in simulations of molecular solutes in lipid bilayers. When US simulations are modified to conduct random walks along the bilayer normal using a Hamiltonian exchange algorithm, systematic sampling errors are eliminated more rapidly and the rate of statistical convergence of the standard free energy of binding of the solute to the lipid bilayer is increased 3-fold. We compute the ratio of the replica flux transmitted across a defined region of the order parameter to the replica flux that entered that region in Hamiltonian exchange simulations. We show that this quantity, the transmission factor, identifies sampling barriers in degrees of freedom orthogonal to the order parameter. The transmission factor is used to estimate the depth-dependent conformational autocorrelation times of the simulation system, some of which exceed the simulation time, and thereby identify solute insertion depths that are prone to systematic sampling errors and estimate the lower bound of the

  5. Involvement of glycosphingolipid-enriched lipid rafts in inflammatory responses.

    Science.gov (United States)

    Iwabuchi, Kazuhisa

    2015-01-01

    Glycosphingolipids (GSLs) are membrane components consisting of hydrophobic ceramide and hydrophilic sugar moieties. GSLs cluster with cholesterol in cell membranes to form GSL-enriched lipid rafts. Biochemical analyses have demonstrated that GSL-enriched lipid rafts contain several kinds of transducer molecules, including Src family kinases. Among the GSLs, lactosylceramide (LacCer, CDw17) can bind to various microorganisms, is highly expressed on the plasma membranes of human phagocytes, and forms lipid rafts containing the Src family tyrosine kinase Lyn. LacCer-enriched lipid rafts mediate immunological and inflammatory reactions, including superoxide generation, chemotaxis, and non-opsonic phagocytosis. Therefore, LacCer-enriched membrane microdomains are thought to function as pattern recognition receptors (PRRs), which recognize pathogen-associated molecular patterns (PAMPs) expressed on microorganisms. LacCer also serves as a signal transduction molecule for functions mediated by CD11b/CD18-integrin (αM/β2-integrin, CR3, Mac-1), as well as being associated with several key cellular processes. LacCer recruits PCKα/ε and phospholipase A2 to stimulate PECAM-1 expression in human monocytes and their adhesion to endothelial cells, as well as regulating β1-integrin clustering and endocytosis on cell surfaces. This review describes the organizational and inflammation-related functions of LacCer-enriched lipid rafts.

  6. High-Flux Carbon Molecular Sieve Membranes for Gas Separation.

    Science.gov (United States)

    Richter, Hannes; Voss, Hartwig; Kaltenborn, Nadine; Kämnitz, Susanne; Wollbrink, Alexander; Feldhoff, Armin; Caro, Jürgen; Roitsch, Stefan; Voigt, Ingolf

    2017-06-26

    Carbon membranes have great potential for highly selective and cost-efficient gas separation. Carbon is chemically stable and it is relative cheap. The controlled carbonization of a polymer coating on a porous ceramic support provides a 3D carbon material with molecular sieving permeation performance. The carbonization of the polymer blend gives turbostratic carbon domains of randomly stacked together sp 2 hybridized carbon sheets as well as sp 3 hybridized amorphous carbon. In the evaluation of the carbon molecular sieve membrane, hydrogen could be separated from propane with a selectivity of 10 000 with a hydrogen permeance of 5 m 3 (STP)/(m 2 hbar). Furthermore, by a post-synthesis oxidative treatment, the permeation fluxes are increased by widening the pores, and the molecular sieve carbon membrane is transformed from a molecular sieve carbon into a selective surface flow carbon membrane with adsorption controlled performance and becomes selective for carbon dioxide. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Efficient molecular mechanics simulations of the folding, orientation, and assembly of peptides in lipid bilayers using an implicit atomic solvation model

    Science.gov (United States)

    Bordner, Andrew J.; Zorman, Barry; Abagyan, Ruben

    2011-10-01

    Membrane proteins comprise a significant fraction of the proteomes of sequenced organisms and are the targets of approximately half of marketed drugs. However, in spite of their prevalence and biomedical importance, relatively few experimental structures are available due to technical challenges. Computational simulations can potentially address this deficit by providing structural models of membrane proteins. Solvation within the spatially heterogeneous membrane/solvent environment provides a major component of the energetics driving protein folding and association within the membrane. We have developed an implicit solvation model for membranes that is both computationally efficient and accurate enough to enable molecular mechanics predictions for the folding and association of peptides within the membrane. We derived the new atomic solvation model parameters using an unbiased fitting procedure to experimental data and have applied it to diverse problems in order to test its accuracy and to gain insight into membrane protein folding. First, we predicted the positions and orientations of peptides and complexes within the lipid bilayer and compared the simulation results with solid-state NMR structures. Additionally, we performed folding simulations for a series of host-guest peptides with varying propensities to form alpha helices in a hydrophobic environment and compared the structures with experimental measurements. We were also able to successfully predict the structures of amphipathic peptides as well as the structures for dimeric complexes of short hexapeptides that have experimentally characterized propensities to form beta sheets within the membrane. Finally, we compared calculated relative transfer energies with data from experiments measuring the effects of mutations on the free energies of translocon-mediated insertion of proteins into lipid bilayers and of combined folding and membrane insertion of a beta barrel protein.

  8. Lateral mobility of plasma membrane lipids in Xenopus eggs: Regional differences related to animal/vegetal polarity

    NARCIS (Netherlands)

    Laat, S.W. de; Bluemink, J.G.; Dictus, W.J.A.G.; Zoelen, E.J.J. van; Tetteroo, P.A.T.; Tertoolen, L.G.J.

    1984-01-01

    Regional differences in the lateral mobility properties of plasma membrane lipids were studied in unfertilized and fertilized Xenopus eggs by fluorescence photobleaching recovery (FPR) measurements. Out of a variety of commonly used lipid probes only the aminofluorescein- -1abelled fatty

  9. Marine crenarchaeotal membrane lipids in decapods: Implications for the TEX86 paleothermometer

    NARCIS (Netherlands)

    Huguet, C.; Cartes, J.E.; Sinninghe Damsté, J.S.; Schouten, S.

    2006-01-01

    Pelagic Crenarchaeota produce glycerol dibiphytanyl glycerol tetraethers (GDGTs) as membrane lipids, and the GDGT composition changes according to growth temperature. This forms the basis of the TEX86 paleotemperature proxy. This ratio correlates with sea surface temperature (SST) despite the fact

  10. Diffusion in membranes: Toward a two-dimensional diffusion map

    Directory of Open Access Journals (Sweden)

    Toppozini Laura

    2015-01-01

    Full Text Available For decades, quasi-elastic neutron scattering has been the prime tool for studying molecular diffusion in membranes over relevant nanometer distances. These experiments are essential to our current understanding of molecular dynamics of lipids, proteins and membrane-active molecules. Recently, we presented experimental evidence from X-ray diffraction and quasi-elastic neutron scattering demonstrating that ethanol enhances the permeability of membranes. At the QENS 2014/WINS 2014 conference we presented a novel technique to measure diffusion across membranes employing 2-dimensional quasi-elastic neutron scattering. We present results from our preliminary analysis of an experiment on the cold neutron multi-chopper spectrometer LET at ISIS, where we studied the self-diffusion of water molecules along lipid membranes and have the possibility of studying the diffusion in membranes. By preparing highly oriented membrane stacks and aligning them horizontally in the spectrometer, our aim is to distinguish between lateral and transmembrane diffusion. Diffusion may also be measured at different locations in the membranes, such as the water layer and the hydrocarbon membrane core. With a complete analysis of the data, 2-dimensional mapping will enable us to determine diffusion channels of water and ethanol molecules to quantitatively determine nanoscale membrane permeability.

  11. Differentiation of human keratinocytes: changes in lipid synthesis, plasma membrane lipid composition, and 125I-EGF binding upon administration of 25-hydroxycholesterol and mevinolin

    International Nuclear Information System (INIS)

    Ponec, M.; Kempenaar, J.; Weerheim, A.; Boonstra, J.

    1987-01-01

    We have studied the relationship between differentiation capacity, plasma membrane composition, and epidermal growth factor (EGF) receptor expression of normal keratinocytes in vitro. The plasma membrane composition of the cells was modulated experimentally by cholesterol depletion, using specific inhibitors of cholesterol synthesis, such as 25-hydroxycholesterol and mevinolin. Exposure of the cells towards these inhibitors resulted in a drastic decrease of cholesterol biosynthesis, as determined from 14 C-acetate incorporation into the various lipid fractions. This effect on cholesterol biosynthesis was reflected by changes in plasma membrane composition, as determined by lipid analysis of isolated plasma membrane fractions, these resulting in a decreased cholesterol-phospholipid ratio. The experimental modulation of plasma membrane composition by 25-hydroxycholesterol or mevinolin were accompanied by a decreased cornified envelope formation and by high expression of EGF binding sites. These phenomena were more pronounced in cells induced to differentiate by exposure of cells grown under low Ca2+ to normal Ca2+ concentrations, as compared to cells grown persistently under low Ca2+ concentrations. These results suggest a close correlation between plasma membrane composition, differentiation capacity, and EGF receptor expression

  12. Regional differences in the lateral mobility of plasma membrane lipids in a molluscan embryo.

    Science.gov (United States)

    Speksnijder, J E; Dohmen, M R; Tertoolen, L G; de Laat, S W

    1985-07-01

    Regional and temporal differences in plasma membrane lipid mobility have been analyzed during the first three cleavage cycles of the embryo of the polar-lobe-forming mollusc Nassarius reticulatus by the fluorescence photobleaching recovery (FPR) method, using 1,1'-ditetradecyl 3,3,3',3'-tetramethylindocarbocyanine iodide (C14diI) as a fluorescent lipid probe. During this period of development the lateral diffusion coefficient of membrane lipids is consistently greater in the vegetal polar lobe area as compared to the animal plasma membrane area (on average 30%), demonstrating the existence of an animal-vegetal polarity in plasma membrane properties. At third cleavage, the differences between animal and vegetal plasma membrane region become even more pronounced; in the four animal micromeres the diffusion coefficient (D) and mobile fraction (MF) are 2.9 +/- 0.2 X 10(-9) cm2/sec and 51 +/- 2%, respectively, while in the four vegetal macromeres D = 5.0 +/- 0.3 X 10(-9) cm2/sec and MF = 78 +/- 2%. Superimposed upon the observed animal-vegetal polarity, the lateral diffusion in the polar lobe membrane area shows a cell-cycle-dependent modulation. The highest mean values for D are reached during the S phase (ranging from 7.0 to 7.8 X 10(-9) cm2/sec in the three cycles measured), while at the end of G2 phase and during early mitosis mean values for D have decreased significantly (ranging from 5.0 to 5.9 X 10(-9) cm2/sec). Diffusion rates in the animal membranes of the embryo are constant during the three successive cell cycles (D = 4.3-5.0 X 10(-9) cm2/sec), except for a peak at the S phase of the first cell cycle (D = 6.0 X 10(-9) cm2/sec). These results are discussed in relation with previously observed ultrastructural heterogeneities in the Nassarius egg plasma membrane. It is speculated that the observed animal-vegetal polarity in the organization of the egg membrane might play an important role in the process of cell diversification during early development.

  13. Pharmacological aspects of release from microcapsules - from polymeric multilayers to lipid membranes.

    Science.gov (United States)

    Wuytens, Pieter; Parakhonskiy, Bogdan; Yashchenok, Alexey; Winterhalter, Mathias; Skirtach, Andre

    2014-10-01

    This review is devoted to pharmacological applications of principles of release from capsules to overcome the membrane barrier. Many of these principles were developed in the context of polymeric multilayer capsule membrane modulation, but they are also pertinent to liposomes, polymersomes, capsosomes, particles, emulsion-based carriers and other carriers. We look at these methods from the physical, chemical or biological driving mechanisms point of view. In addition to applicability for carriers in drug delivery, these release methods are significant for another area directly related to pharmacology - modulation of the permeability of the membranes and thus promoting the action of drugs. Emerging technologies, including ionic current monitoring through a lipid membrane on a nanopore, are also highlighted. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Modeling of interactions between nanoparticles and cell membranes

    Science.gov (United States)

    Ban, Young-Min

    Rapid development of nanotechnology and ability to manufacture materials and devices with nanometer feature size leads to exciting innovations in many areas including the medical and electronic fields. However, the possible health and environmental impacts of manufactured nanomaterials are not fully known. Recent experimental reports suggest that some of the manufactured nanomaterials, such as fullerenes and carbon nanotubes, are highly toxic even in small concentrations. The goal of the current work is to understand the mechanisms responsible for the toxicity of nanomaterials. In the current study coarse-grained molecular dynamics simulations are employed to investigate the interactions between NPs and cellular membranes at a molecular level. One of the possible toxicity mechanisms of the nanomaterials is membrane disruption. Possibility of membrane disruption exposed to the manufactured nanomaterials are examined by considering chemical reactions and non-reactive physical interactions as chemical as well as physical mechanisms. Mechanisms of transport of carbon-based nanoparticles (fullerene and its derivative) across a phospholipid bilayer are investigated. The free energy profile is obtained using constrained simulations. It is shown that the considered nanoparticles are hydrophobic and therefore they tend to reside in the interior of the lipid bilayer. In addition, the dynamics of the membrane fluctuations is significantly affected by the nanoparticles at the bilayer-water interface. The hydrophobic interaction between the particles and membrane core induces the strong coupling between the nanoparticle motion and membrane deformation. It is observed that the considered nanoparticles affect several physical properties of the membrane. The nanoparticles embedded into the membrane interior lead to the membrane softening, which becomes more significant with increase in CNT length and concentration. The lateral pressure profile and membrane energy in the membrane

  15. Cationic lipids: molecular structure/ transfection activity relationships and interactions with biomembranes.

    Science.gov (United States)

    Koynova, Rumiana; Tenchov, Boris

    2010-01-01

    Abstract Synthetic cationic lipids, which form complexes (lipoplexes) with polyanionic DNA, are presently the most widely used constituents of nonviral gene carriers. A large number of cationic amphiphiles have been synthesized and tested in transfection studies. However, due to the complexity of the transfection pathway, no general schemes have emerged for correlating the cationic lipid chemistry with their transfection efficacy and the approaches for optimizing their molecular structures are still largely empirical. Here we summarize data on the relationships between transfection activity and cationic lipid molecular structure and demonstrate that the transfection activity depends in a systematic way on the lipid hydrocarbon chain structure. A number of examples, including a large series of cationic phosphatidylcholine derivatives, show that optimum transfection is displayed by lipids with chain length of approximately 14 carbon atoms and that the transfection efficiency strongly increases with increase of chain unsaturation, specifically upon replacement of saturated with monounsaturated chains.

  16. Monitoring the Orientational Changes of Alamethicin during Incorporation into Bilayer Lipid Membranes.

    Science.gov (United States)

    Forbrig, Enrico; Staffa, Jana K; Salewski, Johannes; Mroginski, Maria Andrea; Hildebrandt, Peter; Kozuch, Jacek

    2018-02-13

    Antimicrobial peptides (AMPs) are the first line of defense after contact of an infectious invader, for example, bacterium or virus, with a host and an integral part of the innate immune system of humans. Their broad spectrum of biological functions ranges from cell membrane disruption over facilitation of chemotaxis to interaction with membrane-bound or intracellular receptors, thus providing novel strategies to overcome bacterial resistances. Especially, the clarification of the mechanisms and dynamics of AMP incorporation into bacterial membranes is of high interest, and different mechanistic models are still under discussion. In this work, we studied the incorporation of the peptaibol alamethicin (ALM) into tethered bilayer lipid membranes on electrodes in combination with surface-enhanced infrared absorption (SEIRA) spectroscopy. This approach allows monitoring the spontaneous and potential-induced ion channel formation of ALM in situ. The complex incorporation kinetics revealed a multistep mechanism that points to peptide-peptide interactions prior to penetrating the membrane and adopting the transmembrane configuration. On the basis of the anisotropy of the backbone amide I and II infrared absorptions determined by density functional theory calculations, we employed a mathematical model to evaluate ALM reorientations monitored by SEIRA spectroscopy. Accordingly, ALM was found to adopt inclination angles of ca. 69°-78° and 21° in its interfacially adsorbed and transmembrane incorporated states, respectively. These orientations can be stabilized efficiently by the dipolar interaction with lipid head groups or by the application of a potential gradient. The presented potential-controlled mechanistic study suggests an N-terminal integration of ALM into membranes as monomers or parallel oligomers to form ion channels composed of parallel-oriented helices, whereas antiparallel oligomers are barred from intrusion.

  17. CCR5 internalisation and signalling have different dependence on membrane lipid raft integrity.

    Science.gov (United States)

    Cardaba, Clara Moyano; Kerr, Jason S; Mueller, Anja

    2008-09-01

    The chemokine receptor, CCR5, acts as a co-receptor for human immunodeficiency virus entry into cells. CCR5 has been shown to be targeted to cholesterol- and sphingolipid-rich membrane microdomains termed lipid rafts or caveolae. Cholesterol is essential for CCL4 binding to CCR5 and for keeping the conformational integrity of the receptor. Filipin treatment leads to loss of caveolin-1 from the membrane and therefore to a collapse of the caveolae. We have found here that sequestration of membrane cholesterol with filipin did not affect receptor signalling, however a loss of ligand-induced internalisation of CCR5 was observed. Cholesterol extraction with methyl-beta-cyclodextrin (MCD) reduced signalling through CCR5 as measured by release of intracellular Ca(2+) and completely abolished the inhibition of forskolin-stimulated cAMP accumulation with no effect on internalisation. Pertussis toxin (PTX) treatment inhibited the intracellular release of calcium that is transduced via Galphai G-proteins. Depletion of cholesterol destroyed microdomains in the membrane and switched CCR5/G-protein coupling to a PTX-independent G-protein. We conclude that cholesterol in the membrane is essential for CCR5 signalling via the Galphai G-protein subunit, and that integrity of lipid rafts is not essential for effective CCR5 internalisation however it is crucial for proper CCR5 signal transduction via Galphai G-proteins.

  18. Membrane morphology is actively transformed by covalent binding of the protein Atg8 to PE-lipids.

    Directory of Open Access Journals (Sweden)

    Roland L Knorr

    Full Text Available Autophagy is a cellular degradation pathway involving the shape transformation of lipid bilayers. During the onset of autophagy, the water-soluble protein Atg8 binds covalently to phosphatdylethanolamines (PEs in the membrane in an ubiquitin-like reaction coupled to ATP hydrolysis. We reconstituted the Atg8 conjugation system in giant and nm-sized vesicles with a minimal set of enzymes and observed that formation of Atg8-PE on giant vesicles can cause substantial tubulation of membranes even in the absence of Atg12-Atg5-Atg16. Our findings show that ubiquitin-like processes can actively change properties of lipid membranes and that membrane crowding by proteins can be dynamically regulated in cells. Furthermore we provide evidence for curvature sorting of Atg8-PE. Curvature generation and sorting are directly linked to organelle shapes and, thus, to biological function. Our results suggest that a positive feedback exists between the ubiquitin-like reaction and the membrane curvature, which is important for dynamic shape changes of cell membranes, such as those involved in the formation of autophagosomes.

  19. Linoleic acid-induced ultra-weak photon emission from Chlamydomonas reinhardtii as a tool for monitoring of lipid peroxidation in the cell membranes.

    Directory of Open Access Journals (Sweden)

    Ankush Prasad

    Full Text Available Reactive oxygen species formed as a response to various abiotic and biotic stresses cause an oxidative damage of cellular component such are lipids, proteins and nucleic acids. Lipid peroxidation is considered as one of the major processes responsible for the oxidative damage of the polyunsaturated fatty acid in the cell membranes. Various methods such as a loss of polyunsaturated fatty acids, amount of the primary and the secondary products are used to monitor the level of lipid peroxidation. To investigate the use of ultra-weak photon emission as a non-invasive tool for monitoring of lipid peroxidation, the involvement of lipid peroxidation in ultra-weak photon emission was studied in the unicellular green alga Chlamydomonas reinhardtii. Lipid peroxidation initiated by addition of exogenous linoleic acid to the cells was monitored by ultra-weak photon emission measured with the employment of highly sensitive charged couple device camera and photomultiplier tube. It was found that the addition of linoleic acid to the cells significantly increased the ultra-weak photon emission that correlates with the accumulation of lipid peroxidation product as measured using thiobarbituric acid assay. Scavenging of hydroxyl radical by mannitol, inhibition of intrinsic lipoxygenase by catechol and removal of molecular oxygen considerably suppressed ultra-weak photon emission measured after the addition of linoleic acid. The photon emission dominated at the red region of the spectrum with emission maximum at 680 nm. These observations reveal that the oxidation of linoleic acid by hydroxyl radical and intrinsic lipoxygenase results in the ultra-weak photon emission. Electronically excited species such as excited triplet carbonyls are the likely candidates for the primary excited species formed during the lipid peroxidation, whereas chlorophylls are the final emitters of photons. We propose here that the ultra-weak photon emission can be used as a non

  20. Structure and hydration of membranes embedded with voltage-sensing domains.

    Science.gov (United States)

    Krepkiy, Dmitriy; Mihailescu, Mihaela; Freites, J Alfredo; Schow, Eric V; Worcester, David L; Gawrisch, Klaus; Tobias, Douglas J; White, Stephen H; Swartz, Kenton J

    2009-11-26

    Despite the growing number of atomic-resolution membrane protein structures, direct structural information about proteins in their native membrane environment is scarce. This problem is particularly relevant in the case of the highly charged S1-S4 voltage-sensing domains responsible for nerve impulses, where interactions with the lipid bilayer are critical for the function of voltage-activated ion channels. Here we use neutron diffraction, solid-state nuclear magnetic resonance (NMR) spectroscopy and molecular dynamics simulations to investigate the structure and hydration of bilayer membranes containing S1-S4 voltage-sensing domains. Our results show that voltage sensors adopt transmembrane orientations and cause a modest reshaping of the surrounding lipid bilayer, and that water molecules intimately interact with the protein within the membrane. These structural findings indicate that voltage sensors have evolved to interact with the lipid membrane while keeping energetic and structural perturbations to a minimum, and that water penetrates the membrane, to hydrate charged residues and shape the transmembrane electric field.

  1. Plant P4-ATPases: lipid translocators with a role in membrane traficking

    DEFF Research Database (Denmark)

    Lopez Marques, Rosa Laura

    a large family of membrane proteins involved in pumping different physiologically-relevant substrates across biological membranes [4]. The members of the P4 subfamily (also known as flippases) catalyze the energy-driven translocation of lipids necessary for establishing transbilayer lipid asymmetry [5......], a feature necessary for correct functioning of the cells [6,7]. Deletion of one or more P4-ATPase genes causes defects in vesicle budding in various organisms [8-10] and some members of the yeast family have been shown to interact with the vesiculation machinery [11,12]. Thus, unraveling the key features...... of P4-ATPase functioning is crucial to understand the mechanisms underlying the whole secretory and endocytic pathways. In the model plant Arabidopsis, 12 members of the P4-ATPase family have been described (ALA1-ALA12, for Aminophospholipid ATPase) [4]. In the past years, we have characterized several...

  2. Membrane invagination induced by Shiga toxin B-subunit

    DEFF Research Database (Denmark)

    Pezeshkian, W.; Hansen, Allan Grønhøj; Johannes, Ludger

    2016-01-01

    -atom molecular dynamics and Monte Carlo simulations we show that the molecular architecture of STxB enables the following sequence of events: the Gb3 binding sites on STxB are arranged such that tight avidity-based binding results in a small increment of local curvature. Membrane-mediated clustering of several...... toxin molecules then creates a tubular membrane invagination that drives toxin entry into the cell. This mechanism requires: (1) a precise molecular architecture of the STxB binding sites; (2) a fluid bilayer in order for the tubular invagination to form. Although, STxB binding to the membrane requires...... specific interactions with Gb3 lipids, our study points to a generic molecular design principle for clathrin-independent endocytosis of nanoparticles....

  3. Interaction of multiple biomimetic antimicrobial polymers with model bacterial membranes

    Energy Technology Data Exchange (ETDEWEB)

    Baul, Upayan, E-mail: upayanb@imsc.res.in; Vemparala, Satyavani, E-mail: vani@imsc.res.in [The Institute of Mathematical Sciences, C.I.T. Campus, Taramani, Chennai 600113 (India); Kuroda, Kenichi, E-mail: kkuroda@umich.edu [Department of Biologic and Materials Sciences, University of Michigan School of Dentistry, Ann Arbor, Michigan 48109 (United States)

    2014-08-28

    Using atomistic molecular dynamics simulations, interaction of multiple synthetic random copolymers based on methacrylates on prototypical bacterial membranes is investigated. The simulations show that the cationic polymers form a micellar aggregate in water phase and the aggregate, when interacting with the bacterial membrane, induces clustering of oppositely charged anionic lipid molecules to form clusters and enhances ordering of lipid chains. The model bacterial membrane, consequently, develops lateral inhomogeneity in membrane thickness profile compared to polymer-free system. The individual polymers in the aggregate are released into the bacterial membrane in a phased manner and the simulations suggest that the most probable location of the partitioned polymers is near the 1-palmitoyl-2-oleoyl-phosphatidylglycerol (POPG) clusters. The partitioned polymers preferentially adopt facially amphiphilic conformations at lipid-water interface, despite lacking intrinsic secondary structures such as α-helix or β-sheet found in naturally occurring antimicrobial peptides.

  4. Drug-model membrane interactions

    International Nuclear Information System (INIS)

    Deniz, Usha K.

    1994-01-01

    In the present day world, drugs play a very important role in medicine and it is necessary to understand their mode of action at the molecular level, in order to optimise their use. Studies of drug-biomembrane interactions are essential for gaining such as understanding. However, it would be prohibitively difficult to carry out such studies, since biomembranes are highly complex systems. Hence, model membranes (made up of these lipids which are important components of biomembranes) of varying degrees of complexity are used to investigate drug-membrane interactions. Bio- as well as model-membranes undergo a chain melting transition when heated, the chains being in a disordered state above the transition point, T CM . This transition is of physiological importance since biomembranes select their components such that T CM is less than the ambient temperature but not very much so, so that membrane flexibility is ensured and porosity, avoided. The influence of drugs on the transition gives valuable clues about various parameters such as the location of the drug in the membrane. Deep insights into drug-membrane interactions are obtained by observing the effect of drugs on membrane structure and the mobilities of the various groups in lipids, near T CM . Investigation of such changes have been carried out with several drugs, using techniques such as DSC, XRD and NMR. The results indicate that the drug-membrane interaction not only depends on the nature of drug and lipids but also on the form of the model membrane - stacked bilayer or vesicles. The light that these results shed on the nature of drug-membrane interactions is discussed. (author). 13 refs., 13 figs., 1 tab

  5. Soluble products of Escherichia coli induce mitochondrial dysfunction-related sperm membrane lipid peroxidation which is prevented by lactobacilli.

    Directory of Open Access Journals (Sweden)

    Arcangelo Barbonetti

    Full Text Available Unidentified soluble factors secreted by E. coli, a frequently isolated microorganism in genitourinary infections, have been reported to inhibit mitochondrial membrane potential (ΔΨm, motility and vitality of human spermatozoa. Here we explore the mechanisms involved in the adverse impact of E. coli on sperm motility, focusing mainly on sperm mitochondrial function and possible membrane damage induced by mitochondrial-generated reactive oxygen species (ROS. Furthermore, as lactobacilli, which dominate the vaginal ecosystem of healthy women, have been shown to exert anti-oxidant protective effects on spermatozoa, we also evaluated whether soluble products from these microorganisms could protect spermatozoa against the effects of E. coli. We assessed motility (by computer-aided semen analysis, ΔΨm (with JC-1 dye by flow cytometry, mitochondrial ROS generation (with MitoSOX red dye by flow cytometry and membrane lipid-peroxidation (with the fluorophore BODIPY C11 by flow cytometry of sperm suspensions exposed to E. coli in the presence and in the absence of a combination of 3 selected strains of lactobacilli (L. brevis, L. salivarius, L. plantarum. A Transwell system was used to avoid direct contact between spermatozoa and microorganisms. Soluble products of E. coli induced ΔΨm loss, mitochondrial generation of ROS and membrane lipid-peroxidation, resulting in motility loss. Soluble factors of lactobacilli prevented membrane lipid-peroxidation of E. coli-exposed spermatozoa, thus preserving their motility. In conclusion, sperm motility loss by soluble products of E. coli reflects a mitochondrial dysfunction-related membrane lipid-peroxidation. Lactobacilli could protect spermatozoa in the presence of vaginal disorders, by preventing ROS-induced membrane damage.

  6. Investigation of the chemical mechanisms involved in the electropulsation of membranes at the molecular level.

    Science.gov (United States)

    Breton, Marie; Mir, Lluis M

    2018-02-01

    The chemical consequences of electropulsation on giant unilamellar vesicles (GUVs), in particular the possible oxidation of unsaturated phospholipids, have been investigated by mass spectrometry, flow cytometry and absorbance methods. Pulse application induced oxidation of the GUV phospholipids and the oxidation level depended on the duration of the pulse. Light and O 2 increased the level of pulse-induced lipid peroxidation whereas the presence of antioxidants either in the membrane or in the solution completely suppressed peroxidation. Importantly, pulse application did not create additional reactive oxygen species (ROS) in GUV-free solution. Lipid peroxidation seems to result from a facilitation of the lipid peroxidation by the ROS already present in the solution before pulsing, not from a direct pulse-induced peroxidation. The pulse would facilitate the entrance of ROS in the core of the membrane, allowing the contact between ROS and lipid chains and provoking the oxidation. Our findings demonstrate that the application of electric pulses on cells could induce the oxidation of the membrane phospholipids since cell membranes contain unsaturated lipids. The chemical consequences of electropulsation will therefore have to be taken into account in future biomedical applications of electropulsation since oxidized phospholipids play a key role in many signaling pathways and diseases. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Acceleration of Lateral Equilibration in Mixed Lipid Bilayers Using Replica Exchange with Solute Tempering.

    Science.gov (United States)

    Huang, Kun; García, Angel E

    2014-10-14

    The lateral heterogeneity of cellular membranes plays an important role in many biological functions such as signaling and regulating membrane proteins. This heterogeneity can result from preferential interactions between membrane components or interactions with membrane proteins. One major difficulty in molecular dynamics simulations aimed at studying the membrane heterogeneity is that lipids diffuse slowly and collectively in bilayers, and therefore, it is difficult to reach equilibrium in lateral organization in bilayer mixtures. Here, we propose the use of the replica exchange with solute tempering (REST) approach to accelerate lateral relaxation in heterogeneous bilayers. REST is based on the replica exchange method but tempers only the solute, leaving the temperature of the solvent fixed. Since the number of replicas in REST scales approximately only with the degrees of freedom in the solute, REST enables us to enhance the configuration sampling of lipid bilayers with fewer replicas, in comparison with the temperature replica exchange molecular dynamics simulation (T-REMD) where the number of replicas scales with the degrees of freedom of the entire system. We apply the REST method to a cholesterol and 1,2-dipalmitoyl- sn -glycero-3-phosphocholine (DPPC) bilayer mixture and find that the lateral distribution functions of all molecular pair types converge much faster than in the standard MD simulation. The relative diffusion rate between molecules in REST is, on average, an order of magnitude faster than in the standard MD simulation. Although REST was initially proposed to study protein folding and its efficiency in protein folding is still under debate, we find a unique application of REST to accelerate lateral equilibration in mixed lipid membranes and suggest a promising way to probe membrane lateral heterogeneity through molecular dynamics simulation.

  8. Membrane docking geometry of GRP1 PH domain bound to a target lipid bilayer: an EPR site-directed spin-labeling and relaxation study.

    Directory of Open Access Journals (Sweden)

    Huai-Chun Chen

    Full Text Available The second messenger lipid PIP(3 (phosphatidylinositol-3,4,5-trisphosphate is generated by the lipid kinase PI3K (phosphoinositide-3-kinase in the inner leaflet of the plasma membrane, where it regulates a broad array of cell processes by recruiting multiple signaling proteins containing PIP(3-specific pleckstrin homology (PH domains to the membrane surface. Despite the broad importance of PIP(3-specific PH domains, the membrane docking geometry of a PH domain bound to its target PIP(3 lipid on a bilayer surface has not yet been experimentally determined. The present study employs EPR site-directed spin labeling and relaxation methods to elucidate the membrane docking geometry of GRP1 PH domain bound to bilayer-embedded PIP(3. The model target bilayer contains the neutral background lipid PC and both essential targeting lipids: (i PIP(3 target lipid that provides specificity and affinity, and (ii PS facilitator lipid that enhances the PIP(3 on-rate via an electrostatic search mechanism. The EPR approach measures membrane depth parameters for 18 function-retaining spin labels coupled to the PH domain, and for calibration spin labels coupled to phospholipids. The resulting depth parameters, together with the known high resolution structure of the co-complex between GRP1 PH domain and the PIP(3 headgroup, provide sufficient constraints to define an optimized, self-consistent membrane docking geometry. In this optimized geometry the PH domain engulfs the PIP(3 headgroup with minimal bilayer penetration, yielding the shallowest membrane position yet described for a lipid binding domain. This binding interaction displaces the PIP(3 headgroup from its lowest energy position and orientation in the bilayer, but the headgroup remains within its energetically accessible depth and angular ranges. Finally, the optimized docking geometry explains previous biophysical findings including mutations observed to disrupt membrane binding, and the rapid lateral

  9. Synergistic permeability enhancing effect of lysophospholipids and fatty acids on lipid membranes

    DEFF Research Database (Denmark)

    Davidsen, Jesper; Mouritsen, O.G.; Jørgensen, K.

    2002-01-01

    The permeability-enhancing effects of the two surfactants, 1-paltnitoyl-2-lyso-sn-gycero-3-pllosplloclloline (lysoPPC) and palmitic acid (PA), on lipid membranes that at physiological temperatures are in the gel, fluid, and liquid-ordered phases were determined using the concentration-dependent s...

  10. Gag Induces the Coalescence of Clustered Lipid Rafts and Tetraspanin-Enriched Microdomains at HIV-1 Assembly Sites on the Plasma Membrane

    Science.gov (United States)

    Hogue, Ian B.; Grover, Jonathan R.; Soheilian, Ferri; Nagashima, Kunio; Ono, Akira

    2011-01-01

    The HIV-1 structural protein Gag associates with two types of plasma membrane microdomains, lipid rafts and tetraspanin-enriched microdomains (TEMs), both of which have been proposed to be platforms for HIV-1 assembly. However, a variety of studies have demonstrated that lipid rafts and TEMs are distinct microdomains in the absence of HIV-1 infection. To measure the impact of Gag on microdomain behaviors, we took advantage of two assays: an antibody-mediated copatching assay and a Förster resonance energy transfer (FRET) assay that measures the clustering of microdomain markers in live cells without antibody-mediated patching. We found that lipid rafts and TEMs copatched and clustered to a greater extent in the presence of membrane-bound Gag in both assays, suggesting that Gag induces the coalescence of lipid rafts and TEMs. Substitutions in membrane binding motifs of Gag revealed that, while Gag membrane binding is necessary to induce coalescence of lipid rafts and TEMs, either acylation of Gag or binding of phosphatidylinositol-(4,5)-bisphosphate is sufficient. Finally, a Gag derivative that is defective in inducing membrane curvature appeared less able to induce lipid raft and TEM coalescence. A higher-resolution analysis of assembly sites by correlative fluorescence and scanning electron microscopy showed that coalescence of clustered lipid rafts and TEMs occurs predominately at completed cell surface virus-like particles, whereas a transmembrane raft marker protein appeared to associate with punctate Gag fluorescence even in the absence of cell surface particles. Together, these results suggest that different membrane microdomain components are recruited in a stepwise manner during assembly. PMID:21813604

  11. Cardiolipin effects on membrane structure and dynamics.

    Science.gov (United States)

    Unsay, Joseph D; Cosentino, Katia; Subburaj, Yamunadevi; García-Sáez, Ana J

    2013-12-23

    Cardiolipin (CL) is a lipid with unique properties solely found in membranes generating electrochemical potential. It contains four acyl chains and tends to form nonlamellar structures, which are believed to play a key role in membrane structure and function. Indeed, CL alterations have been linked to disorders such as Barth syndrome and Parkinson's disease. However, the molecular effects of CL on membrane organization remain poorly understood. Here, we investigated the structure and physical properties of CL-containing membranes using confocal microscopy, fluorescence correlation spectroscopy, and atomic force microscopy. We found that the fluidity of the lipid bilayer increased and its mechanical stability decreased with CL concentration, indicating that CL decreases the packing of the membrane. Although the presence of up to 20% CL gave rise to flat, stable bilayers, the inclusion of 5% CL promoted the formation of flowerlike domains that grew with time. Surprisingly, we often observed two membrane-piercing events in atomic force spectroscopy experiments with CL-containing membranes. Similar behavior was observed with a lipid mixture mimicking the mitochondrial outer membrane composition. This suggests that CL promotes the formation of membrane areas with apposed double bilayers or nonlamellar structures, similar to those proposed for mitochondrial contact sites. All together, we show that CL induces membrane alterations that support the role of CL in facilitating bilayer structure remodeling, deformation, and permeabilization.

  12. Molecular dynamics simulation of a phospholipid membrane

    NARCIS (Netherlands)

    Egberts, Egbert; Marrink, Siewert-Jan; Berendsen, Herman J.C.

    We present the results of molecular dynamics (MD) simulations of a phospholipid membrane in water, including full atomic detail. The goal of the simulations was twofold: first we wanted to set up a simulation system which is able to reproduce experimental results and can serve as a model membrane in

  13. The Physical Properties of Ceramides in Membranes.

    Science.gov (United States)

    Alonso, Alicia; Goñi, Félix M

    2018-05-20

    Ceramides are sphingolipids containing a sphingosine or a related base, to which a fatty acid is linked through an amide bond. When incorporated into a lipid bilayer, ceramides exhibit a number of properties not shared by almost any other membrane lipid: Ceramides ( a) are extremely hydrophobic and thus cannot exist in suspension in aqueous media; ( b) increase the molecular order (rigidity) of phospholipids in membranes; ( c) give rise to lateral phase separation and domain formation in phospholipid bilayers; ( d) possess a marked intrinsic negative curvature that facilitates formation of inverted hexagonal phases; ( e) make bilayers and cell membranes permeable to small and large (i.e., protein-size) solutes; and ( f) promote transmembrane (flip-flop) lipid motion. Unfortunately, there is hardly any link between the physical studies reviewed here and the mass of biological and clinical studies on the effects of ceramides in health and disease.

  14. Atom-scale molecular interactions in lipid raft mixtures

    DEFF Research Database (Denmark)

    Niemelä, Perttu S; Hyvönen, Marja T; Vattulainen, Ilpo

    2009-01-01

    We review the relationship between molecular interactions and the properties of lipid environments. A specific focus is given on bilayers which contain sphingomyelin (SM) and sterols due to their essential role for the formation of lipid rafts. The discussion is based on recent atom-scale molecular...... dynamics simulations, complemented by extensive comparison to experimental data. The discussion is divided into four sections. The first part investigates the properties of one-component SM bilayers and compares them to bilayers with phosphatidylcholine (PC), the focus being on a detailed analysis...... examples of this issue. The third part concentrates on the specificity of intermolecular interactions in three-component mixtures of SM, PC and cholesterol (CHOL) under conditions where the concentrations of SM and CHOL are dilute with respect to that of PC. The results show how SM and CHOL favor one...

  15. Characterization of Saccharomyces cerevisiae suppressor mutants devoid of the membrane lipid phosphatidylcholine

    NARCIS (Netherlands)

    Bao, X.

    2018-01-01

    Phosphatidylcholine (PC) is the most abundant membrane lipid in most eukaryotes and considered essential. The yeast double deletion mutant cho2opi3 lacks the methyltransferases converting phosphatidylethanolamine (PE) to PC. As a consequence, the cho2opi3 mutant is a choline auxotroph that relies on

  16. Complementary studies of lipid membrane dynamics using iSCAT and super-resolved fluorescence correlation spectroscopy

    Science.gov (United States)

    Reina, Francesco; Galiani, Silvia; Shrestha, Dilip; Sezgin, Erdinc; de Wit, Gabrielle; Cole, Daniel; Lagerholm, B. Christoffer; Kukura, Philipp; Eggeling, Christian

    2018-06-01

    Observation techniques with high spatial and temporal resolution, such as single-particle tracking based on interferometric scattering (iSCAT) microscopy, and fluorescence correlation spectroscopy applied on a super-resolution STED microscope (STED-FCS), have revealed new insights of the molecular organization of membranes. While delivering complementary information, there are still distinct differences between these techniques, most prominently the use of fluorescent dye tagged probes for STED-FCS and a need for larger scattering gold nanoparticle tags for iSCAT. In this work, we have used lipid analogues tagged with a hybrid fluorescent tag–gold nanoparticle construct, to directly compare the results from STED-FCS and iSCAT measurements of phospholipid diffusion on a homogeneous supported lipid bilayer (SLB). These comparative measurements showed that while the mode of diffusion remained free, at least at the spatial (>40 nm) and temporal (50  ⩽  t  ⩽  100 ms) scales probed, the diffussion coefficient was reduced by 20- to 60-fold when tagging with 20 and 40 nm large gold particles as compared to when using dye tagged lipid analogues. These FCS measurements of hybrid fluorescent tag–gold nanoparticle labeled lipids also revealed that commercially supplied streptavidin-coated gold nanoparticles contain large quantities of free streptavidin. Finally, the values of apparent diffusion coefficients obtained by STED-FCS and iSCAT differed by a factor of 2–3 across the techniques, while relative differences in mobility between different species of lipid analogues considered were identical in both approaches. In conclusion, our experiments reveal that large and potentially cross-linking scattering tags introduce a significant slow-down in diffusion on SLBs but no additional bias, and our labeling approach creates a new way of exploiting complementary information from STED-FCS and iSCAT measurements.

  17. Clearing the outer mitochondrial membrane from harmful proteins via lipid droplets

    Czech Academy of Sciences Publication Activity Database

    Bischof, J.; Salzmann, M.; Streubel, M.K.; Hašek, Jiří; Geltinger, F.; Duschl, J.; Bresgen, N.; Briza, P.; Hašková, Danuša; Lejsková, Renata; Sopjani, M.; Richter, K.; Rinnerthaler, M.

    2017-01-01

    Roč. 3, March 20 (2017), č. článku 17016. E-ISSN 2058-7716 R&D Projects: GA ČR(CZ) GA16-05497S; GA MŠk(CZ) 7AMB16AT006 Institutional support: RVO:61388971 Keywords : mitochondrial membrane * harmful protein s * lipid droplets Subject RIV: EE - Microbiology, Virology OBOR OECD: Microbiology

  18. Newly synthesized benzanthrone derivatives as prospective fluorescent membrane probes

    International Nuclear Information System (INIS)

    Zhytniakivska, Olga; Trusova, Valeriya; Gorbenko, Galyna; Kirilova, Elena; Kalnina, Inta; Kirilov, Georgiy; Kinnunen, Paavo

    2014-01-01

    Fluorescence spectral properties of a series of novel benzanthrone derivatives have been explored in lipid bilayers composed of zwitterionic lipid phosphatidylcholine (PC) and its mixtures with cholesterol (Chol) and anionic phospholipid cardiolipin (CL). Analysis of partition coefficients showed that all the examined compounds possess rather high lipid-associating ability, with the amidino derivatives exhibiting stronger membrane partitioning compared with the aminobenzanthrones. To understand how benzanthrone partition properties correlate with their structure, quantitative structure property relationship (QSPR) analysis was performed involving a range of quantum chemical molecular descriptors. -- Highlights: • Benzanthrone partitioning into lipid bilayer correlates with lipophilicity of the dyes. • Partition properties of benzanthrones depend on the dye dipole moment. • Amidino derivatives exhibit higher membrane affinity than aminobenzanthrones

  19. Electroformation of Giant Unilamellar Vesicles from Native Membranes and Organic Lipid Mixtures for the Study of Lipid Domains under Physiological Ionic-Strength Conditions

    DEFF Research Database (Denmark)

    Montes, Ruth; Ahyayauch, Hasna; Ibarguren, Maitane

    2010-01-01

    Giant unilamellar vesicles (GUVs) constitute a cell-sized model membrane system that allows direct visualization of particular membrane-related phenomena, such as domain formation, at the level of single vesicles using fluorescence microscopy-related techniques. Currently available protocols...... for the preparation of GUVs work only at very low salt concentrations, thus precluding experimentation under physiological conditions. In addition, the GUVs thus obtained lack membrane compositional asymmetry. Here we show how to prepare GUVs using a new protocol based on the electroformation method either from...... native membranes or organic lipid mixtures at physiological ionic strength. Additionally, we describe methods to test whether membrane proteins and glycosphingolipids preserve their natural orientation after electroformation of GUVs composed of native membranes...

  20. The mechanism of Acetobacter xylinum cellulose biosynthesis: direction of chain elongation and the role of lipid pyrophosphate intermediates in the cell membrane

    International Nuclear Information System (INIS)

    Han, N.S.; Robyt, J.F.

    1998-01-01

    The biosynthesis of Acetobacter xylinum ATCC 10821 cellulose has been studied with resting cells and a membrane preparation using 14 C-pulse and chase reactions, with d-glucose and UDPGlc, respectively. Cellulose was biosynthesized from UDPGlc, and it was found to be tightly associated with both the cells and the membrane. The cellulose chains could be released from the cells and the membrane preparation by treating at pH 2, 100 C for 20 min. The cellulose chains that were released from the pulse and pulse-chase reactions were purified and separated from any low molecular weight substances by gel chromatography on Bio-Gel P4. They were then reduced with sodium borohydride and hydrolyzed with 4 M trifluoroacetic acid at 121 C for 2 h. Labeled products from the acid hydrolyzates were separated by paper chromatography and found to be d-glucose and d-glucitol. The amount of radioactivity in the products was determined by liquid scintillation counting. It was found that the pulsed products from the resting cells gave a ratio of d-[ 14 C]glucitol to d-[ 14 C]glucose of 1:11, and after chasing, the ratio decreased to 1:36. The pulsed products from the membrane gave a ratio of d-[ 14 C]glucitol to d-[ 14 C]glucose of 1:12, and after chasing for 5 min the ratio decreased to 1:43, and after 10 min, the ratio decreased to 1:66. These results show that the labeled d-glucitol obtained from the reducing end of the cellulose chain is chased into the interior of the cellulose chain during synthesis, showing that the cellulose chain is elongated from the reducing end. An insertion mechanism for the synthesis of cellulose from UDPGlc is proposed that involves lipid pyrophosphate glycosyl intermediates and three membrane enzymes: lipid phosphate:UDPGlc phosphotransferase, cellulose synthase, and lipid pyrophosphate phosphohydrolase. (Copyright (c) 1998 Elsevier Science B.V., Amsterdam. All rights reserved.)