WorldWideScience

Sample records for links er stress

  1. ER Stress and Lipid Metabolism in Adipocytes

    Directory of Open Access Journals (Sweden)

    Beth S. Zha

    2012-01-01

    Full Text Available The role of endoplasmic reticulum (ER stress is a rapidly emerging field of interest in the pathogenesis of metabolic diseases. Recent studies have shown that chronic activation of ER stress is closely linked to dysregulation of lipid metabolism in several metabolically important cells including hepatocytes, macrophages, β-cells, and adipocytes. Adipocytes are one of the major cell types involved in the pathogenesis of the metabolic syndrome. Recent advances in dissecting the cellular and molecular mechanisms involved in the regulation of adipogenesis and lipid metabolism indicate that activation of ER stress plays a central role in regulating adipocyte function. In this paper, we discuss the current understanding of the potential role of ER stress in lipid metabolism in adipocytes. In addition, we touch upon the interaction of ER stress and autophagy as well as inflammation. Inhibition of ER stress has the potential of decreasing the pathology in adipose tissue that is seen with energy overbalance.

  2. SCS3 and YFT2 link transcription of phospholipid biosynthetic genes to ER stress and the UPR.

    Directory of Open Access Journals (Sweden)

    Robyn D Moir

    2012-08-01

    Full Text Available The ability to store nutrients in lipid droplets (LDs is an ancient function that provides the primary source of metabolic energy during periods of nutrient insufficiency and between meals. The Fat storage-Inducing Transmembrane (FIT proteins are conserved ER-resident proteins that facilitate fat storage by partitioning energy-rich triglycerides into LDs. FIT2, the ancient ortholog of the FIT gene family first identified in mammals has two homologs in Saccharomyces cerevisiae (SCS3 and YFT2 and other fungi of the Saccharomycotina lineage. Despite the coevolution of these genes for more than 170 million years and their divergence from higher eukaryotes, SCS3, YFT2, and the human FIT2 gene retain some common functions: expression of the yeast genes in a human embryonic kidney cell line promotes LD formation, and expression of human FIT2 in yeast rescues the inositol auxotrophy and chemical and genetic phenotypes of strains lacking SCS3. To better understand the function of SCS3 and YFT2, we investigated the chemical sensitivities of strains deleted for either or both genes and identified synthetic genetic interactions against the viable yeast gene-deletion collection. We show that SCS3 and YFT2 have shared and unique functions that connect major biosynthetic processes critical for cell growth. These include lipid metabolism, vesicular trafficking, transcription of phospholipid biosynthetic genes, and protein synthesis. The genetic data indicate that optimal strain fitness requires a balance between phospholipid synthesis and protein synthesis and that deletion of SCS3 and YFT2 impacts a regulatory mechanism that coordinates these processes. Part of this mechanism involves a role for SCS3 in communicating changes in the ER (e.g. due to low inositol to Opi1-regulated transcription of phospholipid biosynthetic genes. We conclude that SCS3 and YFT2 are required for normal ER membrane biosynthesis in response to perturbations in lipid metabolism and ER

  3. Rab7a modulates ER stress and ER morphology.

    Science.gov (United States)

    Mateus, Duarte; Marini, Elettra Sara; Progida, Cinzia; Bakke, Oddmund

    2018-05-01

    The Endoplasmic Reticulum (ER) is a membranous organelle with diverse structural and functional domains. Peripheral ER includes interconnected tubules, and dense tubular arrays called "ER matrices" together with bona fide flat cisternae. Transitions between these states are regulated by membrane-associated proteins and cytosolic factors. Recently, the small GTPases Rab10 and Rab18 were reported to control ER shape by regulating ER dynamics and fusion. Here, we present evidence that another Rab protein, Rab7a, modulates the ER morphology by controlling the ER homeostasis and ER stress. Indeed, inhibition of Rab7a expression by siRNA or expression of the dominant negative mutant Rab7aT22 N, leads to enlargement of sheet-like ER structures and spreading towards the cell periphery. Notably, such alterations are ascribable neither to a direct modulation of the ER shaping proteins Reticulon-4b and CLIMP63, nor to interactions with Protrudin, a Rab7a-binding protein known to affect the ER organization. Conversely, depletion of Rab7a leads to basal ER stress, in turn causing ER membrane expansion. Both ER enlargement and basal ER stress are reverted in rescue experiments by Rab7a re-expression, as well as by the ER chemical chaperone tauroursodeoxycholic acid (TUDCA). Collectively, these findings reveal a new role of Rab7a in ER homeostasis, and indicate that genetic and pharmacological ER stress manipulation may restore ER morphology in Rab7a silenced cells. Copyright © 2018 Elsevier B.V. All rights reserved.

  4. Endoplasmic Reticulum (ER Stress and Endocrine Disorders

    Directory of Open Access Journals (Sweden)

    Daisuke Ariyasu

    2017-02-01

    Full Text Available The endoplasmic reticulum (ER is the organelle where secretory and membrane proteins are synthesized and folded. Unfolded proteins that are retained within the ER can cause ER stress. Eukaryotic cells have a defense system called the “unfolded protein response” (UPR, which protects cells from ER stress. Cells undergo apoptosis when ER stress exceeds the capacity of the UPR, which has been revealed to cause human diseases. Although neurodegenerative diseases are well-known ER stress-related diseases, it has been discovered that endocrine diseases are also related to ER stress. In this review, we focus on ER stress-related human endocrine disorders. In addition to diabetes mellitus, which is well characterized, several relatively rare genetic disorders such as familial neurohypophyseal diabetes insipidus (FNDI, Wolfram syndrome, and isolated growth hormone deficiency type II (IGHD2 are discussed in this article.

  5. Endoplasmic Reticulum (ER) Stress and Endocrine Disorders

    Science.gov (United States)

    Ariyasu, Daisuke; Yoshida, Hiderou; Hasegawa, Yukihiro

    2017-01-01

    The endoplasmic reticulum (ER) is the organelle where secretory and membrane proteins are synthesized and folded. Unfolded proteins that are retained within the ER can cause ER stress. Eukaryotic cells have a defense system called the “unfolded protein response” (UPR), which protects cells from ER stress. Cells undergo apoptosis when ER stress exceeds the capacity of the UPR, which has been revealed to cause human diseases. Although neurodegenerative diseases are well-known ER stress-related diseases, it has been discovered that endocrine diseases are also related to ER stress. In this review, we focus on ER stress-related human endocrine disorders. In addition to diabetes mellitus, which is well characterized, several relatively rare genetic disorders such as familial neurohypophyseal diabetes insipidus (FNDI), Wolfram syndrome, and isolated growth hormone deficiency type II (IGHD2) are discussed in this article. PMID:28208663

  6. ER stress, autophagy, and RNA viruses

    Directory of Open Access Journals (Sweden)

    Jia-Rong eJheng

    2014-08-01

    Full Text Available Endoplasmic reticulum (ER stress is a general term for representing the pathway by which various stimuli affect ER functions. ER stress induces the evolutionarily conserved signaling pathways, called the unfolded protein response (UPR, which compromises the stimulus and then determines whether the cell survives or dies. In recent years, ongoing research has suggested that these pathways may be linked to the autophagic response, which plays a key role in the cell’s response to various stressors. Autophagy performs a self-digestion function, and its activation protects cells against certain pathogens. However, the link between the UPR and autophagy may be more complicated. These two systems may act dependently, or the induction of one system may interfere with the other. Experimental studies have found that different viruses modulate these mechanisms to allow them to escape the host immune response or, worse, to exploit the host’s defense to their advantage; thus, this topic is a critical area in antiviral research. In this review, we summarize the current knowledge about how RNA viruses, including influenza virus, poliovirus, coxsackievirus, enterovirus 71, Japanese encephalitis virus, hepatitis C virus, and dengue virus, regulate these processes. We also discuss recent discoveries and how these will produce novel strategies for antiviral treatment.

  7. Endoplasmic reticulum: ER stress regulates mitochondrial bioenergetics

    Science.gov (United States)

    Bravo, Roberto; Gutierrez, Tomás; Paredes, Felipe; Gatica, Damián; Rodriguez, Andrea E.; Pedrozo, Zully; Chiong, Mario; Parra, Valentina; Quest, Andrew F.G.; Rothermel, Beverly A.; Lavandero, Sergio

    2014-01-01

    Endoplasmic reticulum (ER) stress activates an adaptive unfolded protein response (UPR) that facilitates cellular repair, however, under prolonged ER stress, the UPR can ultimately trigger apoptosis thereby terminating damaged cells. The molecular mechanisms responsible for execution of the cell death program are relatively well characterized, but the metabolic events taking place during the adaptive phase of ER stress remain largely undefined. Here we discuss emerging evidence regarding the metabolic changes that occur during the onset of ER stress and how ER influences mitochondrial function through mechanisms involving calcium transfer, thereby facilitating cellular adaptation. Finally, we highlight how dysregulation of ER–mitochondrial calcium homeostasis during prolonged ER stress is emerging as a novel mechanism implicated in the onset of metabolic disorders. PMID:22064245

  8. The Chemical Chaperone, PBA, Reduces ER Stress and Autophagy and Increases Collagen IV α5 Expression in Cultured Fibroblasts From Men With X-Linked Alport Syndrome and Missense Mutations

    Directory of Open Access Journals (Sweden)

    Dongmao Wang

    2017-07-01

    Discussion: Sodium 4-phenylbutyrate increases collagen IV α5 mRNA levels, reduces ER stress and autophagy, and possibly facilitates collagen IV α5 extracellular transport. Whether these actions delay end-stage renal failure in men with X-linked Alport syndrome and missense mutations will only be determined with clinical trials.

  9. Coronavirus infection, ER stress and Apoptosis

    Directory of Open Access Journals (Sweden)

    TO SING eFUNG

    2014-06-01

    Full Text Available The replication of coronavirus, a family of important animal and human pathogens, is closely associated with the cellular membrane compartments, especially the endoplasmic reticulum (ER. Coronavirus infection of cultured cells was previously shown to cause ER stress and induce the unfolded protein response (UPR, a process that aims to restore the ER homeostasis by global translation shutdown and increasing the ER folding capacity. However under prolonged ER stress, UPR can also induce apoptotic cell death. Accumulating evidence from recent studies has shown that induction of ER stress and UPR may constitute a major aspect of coronavirus-host interaction. Activation of the three branches of UPR modulates a wide variety of signaling pathways, such as mitogen-activated protein (MAP kinases activation, autophagy, apoptosis and innate immune response. ER stress and UPR activation may therefore contribute significantly to the viral replication and pathogenesis during coronavirus infection. In this review, we summarize current knowledge on coronavirus-induced ER stress and UPR activation, with emphasis on their cross-talking to apoptotic signaling.

  10. Arctigenin alleviates ER stress via activating AMPK

    Science.gov (United States)

    Gu, Yuan; Sun, Xiao-xiao; Ye, Ji-ming; He, Li; Yan, Shou-sheng; Zhang, Hao-hao; Hu, Li-hong; Yuan, Jun-ying; Yu, Qiang

    2012-01-01

    Aim: To investigate the protective effects of arctigenin (ATG), a phenylpropanoid dibenzylbutyrolactone lignan from Arctium lappa L (Compositae), against ER stress in vitro and the underlying mechanisms. Methods: A cell-based screening assay for ER stress regulators was established. Cell viability was measured using MTT assay. PCR and Western blotting were used to analyze gene and protein expression. Silencing of the CaMKKβ, LKB1, and AMPKα1 genes was achieved by RNA interference (RNAi). An ATP bioluminescent assay kit was employed to measure the intracellular ATP levels. Results: ATG (2.5, 5 and 10 μmol/L) inhibited cell death and unfolded protein response (UPR) in a concentration-dependent manner in cells treated with the ER stress inducer brefeldin A (100 nmol/L). ATG (1, 5 and 10 μmol/L) significantly attenuated protein synthesis in cells through inhibiting mTOR-p70S6K signaling and eEF2 activity, which were partially reversed by silencing AMPKα1 with RNAi. ATG (1-50 μmol/L) reduced intracellular ATP level and activated AMPK through inhibiting complex I-mediated respiration. Pretreatment of cells with the AMPK inhibitor compound C (25 μmol/L) rescued the inhibitory effects of ATG on ER stress. Furthermore, ATG (2.5 and 5 μmol/L) efficiently activated AMPK and reduced the ER stress and cell death induced by palmitate (2 mmol/L) in INS-1 β cells. Conclusion: ATG is an effective ER stress alleviator, which protects cells against ER stress through activating AMPK, thus attenuating protein translation and reducing ER load. PMID:22705729

  11. Aging induced ER stress alters sleep and sleep homeostasis

    Science.gov (United States)

    Brown, Marishka K.; Chan, May T.; Zimmerman, John E.; Pack, Allan I.; Jackson, Nicholas E.; Naidoo, Nirinjini

    2014-01-01

    Alterations in the quality, quantity and architecture of baseline and recovery sleep have been shown to occur during aging. Sleep deprivation induces endoplasmic reticular (ER) stress and upregulates a protective signaling pathway termed the unfolded protein response (UPR). The effectiveness of the adaptive UPR is diminished by age. Previously, we showed that endogenous chaperone levels altered recovery sleep in Drosophila melanogaster. We now report that acute administration of the chemical chaperone sodium 4-phenylbutyrate (PBA) reduces ER stress and ameliorates age-associated sleep changes in Drosophila. PBA consolidates both baseline and recovery sleep in aging flies. The behavioral modifications of PBA are linked to its suppression of ER stress. PBA decreased splicing of x-box binding protein 1 (XBP1) and upregulation of phosphorylated elongation initiation factor 2 α (p-eIF2α), in flies that were subjected to sleep deprivation. We also demonstrate that directly activating ER stress in young flies fragments baseline sleep and alters recovery sleep. Alleviating prolonged/sustained ER stress during aging contributes to sleep consolidation and improves recovery sleep/ sleep debt discharge. PMID:24444805

  12. ER Stress: A Therapeutic Target in Rheumatoid Arthritis?

    Science.gov (United States)

    Rahmati, Marveh; Moosavi, Mohammad Amin; McDermott, Michael F

    2018-04-22

    Diverse physiological and pathological conditions that impact on protein folding of the endoplasmic reticulum (ER) cause ER stress. The unfolded protein response (UPR) and the ER-associated degradation (ERAD) pathway are activated to cope with ER stress. In rheumatoid arthritis (RA), inflammation and ER stress work in parallel by driving inflammatory cells to release cytokines that induce chronic ER stress pathways. This chronic ER stress may contribute to the pathogenesis of RA through synoviocyte proliferation and proinflammatory cytokine production. Therefore, ER stress pathways and their constituent elements are attractive targets for RA drug development. In this review, we integrate current knowledge of the contribution of ER stress to the overall pathogenesis of RA, and suggest some therapeutic implications of these discoveries. Copyright © 2018 Elsevier Ltd. All rights reserved.

  13. Expression profiling on soybean leaves reveals integration of ER- and osmotic-stress pathways

    Directory of Open Access Journals (Sweden)

    Dewey Ralph E

    2007-11-01

    Full Text Available Abstract Background Despite the potential of the endoplasmic reticulum (ER stress response to accommodate adaptive pathways, its integration with other environmental-induced responses is poorly understood in plants. We have previously demonstrated that the ER-stress sensor binding protein (BiP from soybean exhibits an unusual response to drought. The members of the soybean BiP gene family are differentially regulated by osmotic stress and soybean BiP confers tolerance to drought. While these results may reflect crosstalk between the osmotic and ER-stress signaling pathways, the lack of mutants, transcriptional response profiles to stresses and genome sequence information of this relevant crop has limited our attempts to identify integrated networks between osmotic and ER stress-induced adaptive responses. As a fundamental step towards this goal, we performed global expression profiling on soybean leaves exposed to polyethylene glycol treatment (osmotic stress or to ER stress inducers. Results The up-regulated stress-specific changes unmasked the major branches of the ER-stress response, which include enhancing protein folding and degradation in the ER, as well as specific osmotically regulated changes linked to cellular responses induced by dehydration. However, a small proportion (5.5% of total up-regulated genes represented a shared response that seemed to integrate the two signaling pathways. These co-regulated genes were considered downstream targets based on similar induction kinetics and a synergistic response to the combination of osmotic- and ER-stress-inducing treatments. Genes in this integrated pathway with the strongest synergistic induction encoded proteins with diverse roles, such as plant-specific development and cell death (DCD domain-containing proteins, an ubiquitin-associated (UBA protein homolog and NAC domain-containing proteins. This integrated pathway diverged further from characterized specific branches of ER-stress as

  14. Reduced α-MSH Underlies Hypothalamic ER-Stress-Induced Hepatic Gluconeogenesis.

    Science.gov (United States)

    Schneeberger, Marc; Gómez-Valadés, Alicia G; Altirriba, Jordi; Sebastián, David; Ramírez, Sara; Garcia, Ainhoa; Esteban, Yaiza; Drougard, Anne; Ferrés-Coy, Albert; Bortolozzi, Analía; Garcia-Roves, Pablo M; Jones, John G; Manadas, Bruno; Zorzano, Antonio; Gomis, Ramon; Claret, Marc

    2015-07-21

    Alterations in ER homeostasis have been implicated in the pathophysiology of obesity and type-2 diabetes (T2D). Acute ER stress induction in the hypothalamus produces glucose metabolism perturbations. However, the neurobiological basis linking hypothalamic ER stress with abnormal glucose metabolism remains unknown. Here, we report that genetic and induced models of hypothalamic ER stress are associated with alterations in systemic glucose homeostasis due to increased gluconeogenesis (GNG) independent of body weight changes. Defective alpha melanocyte-stimulating hormone (α-MSH) production underlies this metabolic phenotype, as pharmacological strategies aimed at rescuing hypothalamic α-MSH content reversed this phenotype at metabolic and molecular level. Collectively, our results posit defective α-MSH processing as a fundamental mediator of enhanced GNG in the context of hypothalamic ER stress and establish α-MSH deficiency in proopiomelanocortin (POMC) neurons as a potential contributor to the pathophysiology of T2D. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  15. Dietary toxins, endoplasmic reticulum (ER) stress and diabetes.

    Science.gov (United States)

    Hettiarachchi, Kalindi D; Zimmet, Paul Z; Myers, Mark A

    2008-05-01

    The incidence of Type 1 diabetes has been increasing at a rate too rapid to be due to changes in genetic risk. Instead changes in environmental factors are the likely culprit. The endoplasmic reticulum (ER) plays an important role in the production of newly synthesized proteins and interference with these processes leads to ER stress. The insulin-producing beta cells are particularly prone to ER stress as a result of their heavy engagement in insulin production. Increasing evidence suggests ER stress is central to initiation and progression of Type 1 diabetes. An early environmental exposure, such as toxins and viral infections, can impart a significant physiological load on beta cells to initiate abnormal processing of proinsulin, ER stress and insulin secretory defects. Release of altered proinsulin from the beta cells early in life may trigger autoimmunity in those with genetic susceptibility leading to cytokine-induced nitric oxide production and so exacerbating ER stress in beta cells, ultimately leading to apoptosis of beta cells and diabetes. Here we suggest that ER stress is an inherent cause of beta cell dysfunction and environmental factors, in particular dietary toxins derived from Streptomyces in infected root vegetables, can impart additional stress that aggravates beta cell death and progression to diabetes. Furthermore, we propose that the increasing incidence of Type 1 diabetes may be accounted for by increased dietary exposure to ER-stress-inducing Streptomyces toxins.

  16. Effects of Fat and Sugar, Either Consumed or Infused toward the Brain, on Hypothalamic ER Stress Markers

    NARCIS (Netherlands)

    Belegri, Evita; Rijnsburger, Merel; Eggels, Leslie; Unmehopa, Unga; Scheper, Wiep; Boelen, Anita; la Fleur, Susanne E.

    2017-01-01

    Protein-folding stress at the Endoplasmic Reticulum (ER) occurs in the hypothalamus during diet-induced obesity (DIO) and is linked to metabolic disease development. ER stress is buffered by the activation of the unfolded protein response (UPR), a controlled network of pathways inducing a set of

  17. Mechanisms of ER Stress-Mediated Mitochondrial Membrane Permeabilization.

    LENUS (Irish Health Repository)

    Gupta, Sanjeev

    2010-01-01

    During apoptosis, the process of mitochondrial outer membrane permeabilization (MOMP) represents a point-of-no-return as it commits the cell to death. Here we have assessed the role of caspases, Bcl-2 family members and the mitochondrial permeability transition pore on ER stress-induced MOMP and subsequent cell death. Induction of ER stress leads to upregulation of several genes such as Grp78, Edem1, Erp72, Atf4, Wars, Herp, p58ipk, and ERdj4 and leads to caspase activation, release of mitochondrial intermembrane proteins and dissipation of mitochondrial transmembrane potential (DeltaPsim). Mouse embryonic fibroblasts (MEFs) from caspase-9, -2 and, -3 knock-out mice were resistant to ER stress-induced apoptosis which correlated with decreased processing of pro-caspase-3 and -9. Furthermore, pretreatment of cells with caspase inhibitors (Boc-D.fmk and DEVD.fmk) attenuated ER stress-induced loss of DeltaPsim. However, only deficiency of caspase-9 and -2 could prevent ER stress-mediated loss of DeltaPsim. Bcl-2 overexpression or pretreatment of cells with the cell permeable BH4 domain (BH4-Tat) or the mitochondrial permeability transition pore inhibitors, bongkrekic acid or cyclosporine A, attenuated the ER stress-induced loss of DeltaPsim. These data suggest a role for caspase-9 and -2, Bcl-2 family members and the mitochondrial permeability transition pore in loss of mitochondrial membrane potential during ER stress-induced apoptosis.

  18. ER stress proteins in autoimmune and inflammatory diseases

    Directory of Open Access Journals (Sweden)

    Daisuke eMorito

    2012-03-01

    Full Text Available Over the past two decades, heat shock proteins (HSPs have been implicated in inflammatory responses and autoimmunity. HSPs were originally believed to maintain protein quality control in the cytosol. However, they also exist extracellularly and appear to act as inflammatory factors. Recently, a growing body of evidence suggested that the other class of stress proteins such as, endoplasmic reticulum (ER stress proteins, which originally act as protein quality control factors in the secretory pathway and are induced by ER stress in inflammatory lesions, also participate in inflammation and autoimmunity. The immunoglobulin heavy-chain binding protein (Bip/glucose-regulated protein 78 (Grp78, homocysteine-induced ER protein (Herp, calnexin, calreticulin, glucose-regulated protein 94 (Grp94/gp96, oxygen-regulated protein 150 (ORP150 and heat shock protein 47 (Hsp47/Serpin H1, which are expressed not only in the ER but also occasionally at the cell surface play pathophysiological roles in autoimmune and inflammatory diseases as pro- or anti-inflammatory factors. Here we describe the accumulating evidence of the participation of ER stress proteins in autoimmunity and inflammation and discuss the critical differences between the two classes of stress proteins.

  19. Effect of the unfolded protein response on ER protein export: a potential new mechanism to relieve ER stress.

    Science.gov (United States)

    Shaheen, Alaa

    2018-05-05

    The unfolded protein response (UPR) is an adaptive cellular response that aims to relieve endoplasmic reticulum (ER) stress via several mechanisms, including inhibition of protein synthesis and enhancement of protein folding and degradation. There is a controversy over the effect of the UPR on ER protein export. While some investigators suggested that ER export is inhibited during ER stress, others suggested the opposite. In this article, their conflicting studies are analyzed and compared in attempt to solve this controversy. The UPR appears indeed to enhance ER export, possibly via multiple mechanisms. However, another factor, which is the integrity of the folding machinery/environment inside ER, determines whether ER export will appear increased or decreased during experimentation. Also, different methods of stress induction appear to have different effects on ER export. Thus, improvement of ER export may represent a new mechanism by which the UPR alleviates ER stress. This may help researchers to understand how the UPR works inside cells and how to manipulate it to alter cell fate during stress, either to promote cell survival or death. This may open up new approaches for the treatment of ER stress-related diseases.

  20. Induction of ER stress in macrophages of tuberculosis granulomas.

    Directory of Open Access Journals (Sweden)

    Tracie A Seimon

    2010-09-01

    Full Text Available The endoplasmic reticulum (ER stress pathway known as the Unfolded Protein Response (UPR is an adaptive survival pathway that protects cells from the buildup of misfolded proteins, but under certain circumstances it can lead to apoptosis. ER stress has been causally associated with macrophage apoptosis in advanced atherosclerosis of mice and humans. Because atherosclerosis shares certain features with tuberculosis (TB with regard to lesional macrophage accumulation, foam cell formation, and apoptosis, we investigated if the ER stress pathway is activated during TB infection.Here we show that ER stress markers such as C/EBP homologous protein (CHOP; also known as GADD153, phosphorylated inositol-requiring enzyme 1 alpha (Ire1α and eukaryotic initiation factor 2 alpha (eIF2α, and activating transcription factor 3 (ATF3 are expressed in macrophage-rich areas of granulomas in lungs of mice infected with virulent Mycobacterium tuberculosis (Mtb. These areas were also positive for numerous apoptotic cells as assayed by TUNEL. Microarray analysis of human caseous TB granulomas isolated by laser capture microdissection reveal that 73% of genes involved in the UPR are upregulated at the mRNA transcript level. The expression of two ER stress markers, ATF3 and CHOP, were also increased in macrophages of human TB granulomas when assayed by immunohistochemistry. CHOP has been causally associated with ER stress-induced macrophage apoptosis. We found that apoptosis was more abundant in granulomas as compared to non-granulomatous tissue isolated from patients with pulmonary TB, and apoptosis correlated with CHOP expression in areas surrounding the centralized areas of caseation.In summary, ER stress is induced in macrophages of TB granulomas in areas where apoptotic cells accumulate in mice and humans. Although macrophage apoptosis is generally thought to be beneficial in initially protecting the host from Mtb infection, death of infected macrophages in

  1. Cocaine induces astrocytosis through ER stress-mediated activation of autophagy

    Science.gov (United States)

    Periyasamy, Palsamy; Guo, Ming-Lei; Buch, Shilpa

    2016-01-01

    ABSTRACT Cocaine is known to induce inflammation, thereby contributing in part, to the pathogenesis of neurodegeneration. A recent study from our lab has revealed a link between macroautophagy/autophagy and microglial activation. The current study was aimed at investigating whether cocaine could also mediate activation of astrocytes and, whether this process involved induction of autophagy. Our findings demonstrated that cocaine mediated the activation of astrocytes by altering the levels of autophagy markers, such as BECN1, ATG5, MAP1LC3B-II, and SQSTM1 in both human A172 astrocytoma cells and primary human astrocytes. Furthermore, cocaine treatment resulted in increased formation of endogenous MAP1LC3B puncta in human astrocytes. Additionally, astrocytes transfected with the GFP-MAP1LC3B plasmid also demonstrated cocaine-mediated upregulation of the green fluorescent MAP1LC3B puncta. Cocaine-mediated induction of autophagy involved upstream activation of ER stress proteins such as EIF2AK3, ERN1, ATF6 since blockage of autophagy using either pharmacological or gene-silencing approaches, had no effect on cocaine-mediated induction of ER stress. Using both pharmacological and gene-silencing approaches to block either ER stress or autophagy, our findings demonstrated that cocaine-induced activation of astrocytes (measured by increased levels of GFAP) involved sequential activation of ER stress and autophagy. Cocaine-mediated-increased upregulation of GFAP correlated with increased expression of proinflammatory mediators such as TNF, IL1B, and IL6. In conclusion, these findings reveal an association between ER stress-mediated autophagy and astrogliosis in cocaine-treated astrocytes. Intervention of ER stress and/or autophagy signaling would thus be promising therapeutic targets for abrogating cocaine-mediated neuroinflammation. PMID:27337297

  2. DISC1 Modulates Neuronal Stress Responses by Gate-Keeping ER-Mitochondria Ca2+ Transfer through the MAM

    Directory of Open Access Journals (Sweden)

    Sung Jin Park

    2017-12-01

    Full Text Available Summary: A wide range of Ca2+-mediated functions are enabled by the dynamic properties of Ca2+, all of which are dependent on the endoplasmic reticulum (ER and mitochondria. Disrupted-in-schizophrenia 1 (DISC1 is a scaffold protein that is involved in the function of intracellular organelles and is linked to cognitive and emotional deficits. Here, we demonstrate that DISC1 localizes to the mitochondria-associated ER membrane (MAM. At the MAM, DISC1 interacts with IP3R1 and downregulates its ligand binding, modulating ER-mitochondria Ca2+ transfer through the MAM. The disrupted regulation of Ca2+ transfer caused by DISC1 dysfunction leads to abnormal Ca2+ accumulation in mitochondria following oxidative stress, which impairs mitochondrial functions. DISC1 dysfunction alters corticosterone-induced mitochondrial Ca2+ accumulation in an oxidative stress-dependent manner. Together, these findings link stress-associated neural stimuli with intracellular ER-mitochondria Ca2+ crosstalk via DISC1, providing mechanistic insight into how environmental risk factors can be interpreted by intracellular pathways under the control of genetic components in neurons. : Park et al. show that DISC1 regulates ER-mitochondria Ca2+ transfer through mitochondria-associated ER membrane (MAM. DISC1 dysfunction at MAM increases ER-mitochondria Ca2+ transfer during oxidative stress and excessive amounts of corticosterone, which impairs mitochondrial function. Keywords: DISC1, MAM, mitochondria, Ca2+, IP3R1, oxidative stress

  3. Increased intracellular proteolysis reduces disease severity in an ER stress-associated dwarfism.

    Science.gov (United States)

    Mullan, Lorna A; Mularczyk, Ewa J; Kung, Louise H; Forouhan, Mitra; Wragg, Jordan Ma; Goodacre, Royston; Bateman, John F; Swanton, Eileithyia; Briggs, Michael D; Boot-Handford, Raymond P

    2017-10-02

    The short-limbed dwarfism metaphyseal chondrodysplasia type Schmid (MCDS) is linked to mutations in type X collagen, which increase ER stress by inducing misfolding of the mutant protein and subsequently disrupting hypertrophic chondrocyte differentiation. Here, we show that carbamazepine (CBZ), an autophagy-stimulating drug that is clinically approved for the treatment of seizures and bipolar disease, reduced the ER stress induced by 4 different MCDS-causing mutant forms of collagen X in human cell culture. Depending on the nature of the mutation, CBZ application stimulated proteolysis of misfolded collagen X by either autophagy or proteasomal degradation, thereby reducing intracellular accumulation of mutant collagen. In MCDS mice expressing the Col10a1.pN617K mutation, CBZ reduced the MCDS-associated expansion of the growth plate hypertrophic zone, attenuated enhanced expression of ER stress markers such as Bip and Atf4, increased bone growth, and reduced skeletal dysplasia. CBZ produced these beneficial effects by reducing the MCDS-associated abnormalities in hypertrophic chondrocyte differentiation. Stimulation of intracellular proteolysis using CBZ treatment may therefore be a clinically viable way of treating the ER stress-associated dwarfism MCDS.

  4. Stress sensing in plants by the ER stress sensor/transducer, bZIP28

    Directory of Open Access Journals (Sweden)

    Renu eSrivastava

    2014-02-01

    Full Text Available Two classes of ER stress sensors are known in plants, membrane associated bZIP transcription factors and RNA splicing factors. ER stress occurs under adverse environmental conditions and results from the accumulation of misfolded or unfolded proteins in the ER lumen. One of the membrane-associated transcription factors activated by heat and ER stress agents is bZIP28. In its inactive form, bZIP28 is a type II protein with a single pass transmembrane domain, residing in the ER. bZIP28’s N-terminus, containing a transcriptional activation domain, is oriented towards the cytoplasm and its C-terminal tail is inserted into the ER lumen. In response to stress, bZIP28 exits the ER and moves to the Golgi where it is proteolytically processed, liberating its cytosolic component which relocates to the nucleus to upregulate stress-response genes. bZIP28 is thought to sense stress through its interaction with the major ER chaperone, BIP. BiP binds to bZIP28’s lumenal domain under unstressed conditions and retains it in the ER. BIP binds to the intrinsically disordered regions on bZIP28’s lumen-facing tail. A truncated form of bZIP28, without its C-terminal tail is not retained in the ER but migrates constitutively to the nucleus. Upon stress, BiP releases bZIP28 allowing it to exit the ER. One model to account for the release of bZIP28 by BiP is that BiP is competed away from bZIP28 by the accumulation of misfolded proteins in the ER. However, other forces such as changes in energy charge levels, redox conditions or interaction with DNAJ proteins may also promote release of bZIP28 from BiP. Movement of bZIP28 from the ER to the Golgi is assisted by the interaction of elements of the COPII machinery with the cytoplasmic domain of bZIP28. Thus, the mobilization of bZIP28 in response to stress involves the dissociation of factors that retain it in the ER and the association of factors that mediate its further organelle-to-organelle movement.

  5. ER Stress and β-Cell Pathogenesis of Type 1 and Type 2 Diabetes and Islet Transplantation

    OpenAIRE

    Kataoka, Hitomi Usui; Noguchi, Hirofumi

    2013-01-01

    Endoplasmic reticulum (ER) stress affects the pathogenesis of diabetes. ER stress plays important roles, both in type 1 and type 2 diabetes, because pancreatic β-cells possess highly developed ER for insulin secretion. This review summarizes the relationship between ER stress and the pathogenesis of type 1 and type 2 diabetes. In addition, the association between islet transplantation and ER stress is discussed.

  6. Aging induced ER stress alters sleep and sleep homeostasis

    OpenAIRE

    Brown, Marishka K.; Chan, May T.; Zimmerman, John E.; Pack, Allan I.; Jackson, Nicholas E.; Naidoo, Nirinjini

    2013-01-01

    Alterations in the quality, quantity and architecture of baseline and recovery sleep have been shown to occur during aging. Sleep deprivation induces endoplasmic reticular (ER) stress and upregulates a protective signaling pathway termed the unfolded protein response (UPR). The effectiveness of the adaptive UPR is diminished by age. Previously, we showed that endogenous chaperone levels altered recovery sleep in Drosophila melanogaster. We now report that acute administration of the chemical ...

  7. ER stress-induced protein, VIGG, disturbs plant cation homeostasis, which is correlated with growth retardation and robustness to ER stress

    International Nuclear Information System (INIS)

    Katoh, Hironori; Fujita, Keiko; Takuhara, Yuki; Ogawa, Atsushi; Suzuki, Shunji

    2011-01-01

    Highlights: → VIGG is an ER stress-induced protein in plant. → We examine the characteristics of VIGG-overexpressing Arabidopsis plants. → VIGG-overexpressing plants reveal growth retardation and robustness to ER stress. → VIGG disturbs cation homeostasis in plant. -- Abstract: VIGG is a putative endoplasmic reticulum (ER) resident protein induced by virus infection and ER stress, and is correlated with fruit quality in grapevine. The present study was undertaken to determine the biological function of VIGG in grapevine. Experiments using fluorescent protein-VIGG fusion protein demonstrated that VIGG is localized in ER and the ER targeting sequence is in the N-terminus. The overexpression of VIGG in Arabidopsis plant led to growth retardation. The rosette leaves of VIGG-overexpressing plants were smaller than those of the control plants and rolled at 42 days after seeding. VIGG-overexpressing plants revealed robustness to ER stress as well as the low expression of ER stress marker proteins, such as the luminal binding proteins. These characteristics of VIGG-overexpressing plants were supported by a microarray experiment that demonstrated the disruption of genes related to ER stress response and flowering, as well as cation mobility, in the plants. Finally, cation homeostasis in the plants was disturbed by the overexpression of VIGG. Taken together, these results suggest that VIGG may disturb cation homeostasis in plant, which is correlated with the robustness to ER stress and growth retardation.

  8. ER stress-induced protein, VIGG, disturbs plant cation homeostasis, which is correlated with growth retardation and robustness to ER stress

    Energy Technology Data Exchange (ETDEWEB)

    Katoh, Hironori; Fujita, Keiko; Takuhara, Yuki [Laboratory of Fruit Genetic Engineering, The Institute of Enology and Viticulture, University of Yamanashi, Kofu, Yamanashi 400-0005 (Japan); Ogawa, Atsushi [Department of Biological Production, Akita Prefectural University, Shimosinjyou-nakano 241-438, Akita 010-0195 (Japan); Suzuki, Shunji, E-mail: suzukis@yamanashi.ac.jp [Laboratory of Fruit Genetic Engineering, The Institute of Enology and Viticulture, University of Yamanashi, Kofu, Yamanashi 400-0005 (Japan)

    2011-02-18

    Highlights: {yields} VIGG is an ER stress-induced protein in plant. {yields} We examine the characteristics of VIGG-overexpressing Arabidopsis plants. {yields} VIGG-overexpressing plants reveal growth retardation and robustness to ER stress. {yields} VIGG disturbs cation homeostasis in plant. -- Abstract: VIGG is a putative endoplasmic reticulum (ER) resident protein induced by virus infection and ER stress, and is correlated with fruit quality in grapevine. The present study was undertaken to determine the biological function of VIGG in grapevine. Experiments using fluorescent protein-VIGG fusion protein demonstrated that VIGG is localized in ER and the ER targeting sequence is in the N-terminus. The overexpression of VIGG in Arabidopsis plant led to growth retardation. The rosette leaves of VIGG-overexpressing plants were smaller than those of the control plants and rolled at 42 days after seeding. VIGG-overexpressing plants revealed robustness to ER stress as well as the low expression of ER stress marker proteins, such as the luminal binding proteins. These characteristics of VIGG-overexpressing plants were supported by a microarray experiment that demonstrated the disruption of genes related to ER stress response and flowering, as well as cation mobility, in the plants. Finally, cation homeostasis in the plants was disturbed by the overexpression of VIGG. Taken together, these results suggest that VIGG may disturb cation homeostasis in plant, which is correlated with the robustness to ER stress and growth retardation.

  9. Oroxin B selectively induces tumor-suppressive ER stress and concurrently inhibits tumor-adaptive ER stress in B-lymphoma cells for effective anti-lymphoma therapy

    International Nuclear Information System (INIS)

    Yang, Ping; Fu, Shilong; Cao, Zhifei; Liao, Huaidong; Huo, Zihe; Pan, Yanyan; Zhang, Gaochuan; Gao, Aidi; Zhou, Quansheng

    2015-01-01

    Cancer cells have both tumor-adaptive and -suppressive endoplasmic reticulum (ER) stress machineries that determine cell fate. In malignant tumors including lymphoma, constant activation of tumor-adaptive ER stress and concurrent reduction of tumor-suppressive ER stress favors cancer cell proliferation and tumor growth. Current ER stress-based anti-tumor drugs typically activate both tumor-adaptive and -suppressive ER stresses, resulting in low anti-cancer efficacy; hence, selective induction of tumor-suppressive ER stress and inhibition of tumor-adaptive ER stress are new strategies for novel anti-cancer drug discovery. Thus far, specific tumor-suppressive ER stress therapeutics have remained absent in clinical settings. In this study, we explored unique tumor-suppressive ER stress agents from the traditional Chinese medicinal herb Oroxylum indicum, and found that a small molecule oroxin B selectively induced tumor-suppressive ER stress in malignant lymphoma cells, but not in normal cells, effectively inhibited lymphoma growth in vivo, and significantly prolonged overall survival of lymphoma-xenografted mice without obvious toxicity. Mechanistic studies have revealed that the expression of key tumor-adaptive ER-stress gene GRP78 was notably suppressed by oroxin B via down-regulation of up-stream key signaling protein ATF6, while tumor-suppressive ER stress master gene DDIT3 was strikingly activated through activating the MKK3-p38 signaling pathway, correcting the imbalance between tumor-suppressive DDIT3 and tumor-adaptive GRP78 in lymphoma. Together, selective induction of unique tumor-suppressive ER stress and concurrent inhibition of tumor-adaptive ER stress in malignant lymphoma are new and feasible approaches for novel anti-lymphoma drug discovery and anti-lymphoma therapy. - Highlights: • Oroxin B selectively induces tumor-suppressive ER stress in B-lymphoma cells. • Oroxin B significantly prolonged overall survival of lymphoma-xenografted mice.

  10. Oroxin B selectively induces tumor-suppressive ER stress and concurrently inhibits tumor-adaptive ER stress in B-lymphoma cells for effective anti-lymphoma therapy

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Ping; Fu, Shilong; Cao, Zhifei; Liao, Huaidong; Huo, Zihe; Pan, Yanyan; Zhang, Gaochuan; Gao, Aidi; Zhou, Quansheng, E-mail: zhouqs@suda.edu.cn

    2015-10-15

    Cancer cells have both tumor-adaptive and -suppressive endoplasmic reticulum (ER) stress machineries that determine cell fate. In malignant tumors including lymphoma, constant activation of tumor-adaptive ER stress and concurrent reduction of tumor-suppressive ER stress favors cancer cell proliferation and tumor growth. Current ER stress-based anti-tumor drugs typically activate both tumor-adaptive and -suppressive ER stresses, resulting in low anti-cancer efficacy; hence, selective induction of tumor-suppressive ER stress and inhibition of tumor-adaptive ER stress are new strategies for novel anti-cancer drug discovery. Thus far, specific tumor-suppressive ER stress therapeutics have remained absent in clinical settings. In this study, we explored unique tumor-suppressive ER stress agents from the traditional Chinese medicinal herb Oroxylum indicum, and found that a small molecule oroxin B selectively induced tumor-suppressive ER stress in malignant lymphoma cells, but not in normal cells, effectively inhibited lymphoma growth in vivo, and significantly prolonged overall survival of lymphoma-xenografted mice without obvious toxicity. Mechanistic studies have revealed that the expression of key tumor-adaptive ER-stress gene GRP78 was notably suppressed by oroxin B via down-regulation of up-stream key signaling protein ATF6, while tumor-suppressive ER stress master gene DDIT3 was strikingly activated through activating the MKK3-p38 signaling pathway, correcting the imbalance between tumor-suppressive DDIT3 and tumor-adaptive GRP78 in lymphoma. Together, selective induction of unique tumor-suppressive ER stress and concurrent inhibition of tumor-adaptive ER stress in malignant lymphoma are new and feasible approaches for novel anti-lymphoma drug discovery and anti-lymphoma therapy. - Highlights: • Oroxin B selectively induces tumor-suppressive ER stress in B-lymphoma cells. • Oroxin B significantly prolonged overall survival of lymphoma-xenografted mice.

  11. Viking Link er en risikofyldt investering af broget kulør

    DEFF Research Database (Denmark)

    Mathiesen, Brian Vad; Lund, Henrik; Djørup, Søren Roth

    2018-01-01

    Danmark har planer om at bygge en kabelforbindelse til England ved navn Viking Link. Dette er et investeringsprojekt til 11 mia. kroner. Vi har tidligere forholdt os kritisk til ikke blot selve investeringen, men også processen bag investeringsbeslutningen, der er foregået uden, at offentligheden...... har kunnet få indblik i beslutningsgrundlaget. Tilbage står, at Viking Link er en risikofri investering for de danske elproducenter, som får alle fordelene, men er særdeles risikofyldt for de danske elforbrugere, som står tilbage med regningen, hvis forudsætningerne ikke holder. Desuden findes...... alternativer, hvor vi som samfund får mere for pengene, men økonomien i disse alternativer forringes, hvis vi bygger Viking Link. Vi anbefaler, at man som minimum udskyder Viking Link, til vi har realiseret de bedre alternativer....

  12. Functional characterization of the ER stress induced X-box-binding protein-1 (Xbp-1 in the porcine system

    Directory of Open Access Journals (Sweden)

    Jin Dong-Il

    2011-05-01

    Full Text Available Abstract Background The unfolded protein response (UPR is an evolutionary conserved adaptive reaction for increasing cell survival under endoplasmic reticulum (ER stress conditions. X-box-binding protein-1 (Xbp1 is a key transcription factor of UPR that activates genes involved in protein folding, secretion, and degradation to restore ER function. The UPR induced by ER stress was extensively studied in diseases linked to protein misfolding and aggregations. However, in the porcine system, genes in the UPR pathway were not investigated. In this study, we isolated and characterized the porcine Xbp1 (pXbp1 gene in ER stress using porcine embryonic fibroblast (PEF cells and porcine organs. ER stress was induced by the treatment of tunicamycin and cell viability was investigated by the MTT assay. For cloning and analyzing the expression pattern of pXbp1, RT-PCR analysis and Western blot were used. Knock-down of pXbp1 was performed by the siRNA-mediated gene silencing. Results We found that the pXbp1 mRNA was the subject of the IRE1α-mediated unconventional splicing by ER stress. Knock-down of pXbp1 enhanced ER stress-mediated cell death in PEF cells. In adult organs, pXbp1 mRNA and protein were expressed and the spliced forms were detected. Conclusions It was first found that the UPR mechanisms and the function of pXbp1 in the porcine system. These results indicate that pXbp1 plays an important role during the ER stress response like other animal systems and open a new opportunity for examining the UPR pathway in the porcine model system.

  13. Overexpressed cyclophilin B suppresses apoptosis associated with ROS and Ca2+ homeostasis after ER stress.

    Science.gov (United States)

    Kim, Jinhwan; Choi, Tae Gyu; Ding, Yan; Kim, Yeonghwan; Ha, Kwon Soo; Lee, Kyung Ho; Kang, Insug; Ha, Joohun; Kaufman, Randal J; Lee, Jinhwa; Choe, Wonchae; Kim, Sung Soo

    2008-11-01

    Prolonged accumulation of misfolded proteins in the endoplasmic reticulum (ER) results in ER stress-mediated apoptosis. Cyclophilins are protein chaperones that accelerate the rate of protein folding through their peptidyl-prolyl cis-trans isomerase (PPIase) activity. In this study, we demonstrated that ER stress activates the expression of the ER-localized cyclophilin B (CypB) gene through a novel ER stress response element. Overexpression of wild-type CypB attenuated ER stress-induced cell death, whereas overexpression of an isomerase activity-defective mutant, CypB/R62A, not only increased Ca(2+) leakage from the ER and ROS generation, but also decreased mitochondrial membrane potential, resulting in cell death following exposure to ER stress-inducing agents. siRNA-mediated inhibition of CypB expression rendered cells more vulnerable to ER stress. Finally, CypB interacted with the ER stress-related chaperones, Bip and Grp94. Taken together, we concluded that CypB performs a crucial function in protecting cells against ER stress via its PPIase activity.

  14. ER stress inhibitor attenuates hearing loss and hair cell death in Cdh23erl/erl mutant mice.

    Science.gov (United States)

    Hu, Juan; Li, Bo; Apisa, Luke; Yu, Heping; Entenman, Shami; Xu, Min; Stepanyan, Ruben; Guan, Bo-Jhih; Müller, Ulrich; Hatzoglou, Maria; Zheng, Qing Yin

    2016-11-24

    Hearing loss is one of the most common sensory impairments in humans. Mouse mutant models helped us to better understand the mechanisms of hearing loss. Recently, we have discovered that the erlong (erl) mutation of the cadherin23 (Cdh23) gene leads to hearing loss due to hair cell apoptosis. In this study, we aimed to reveal the molecular pathways upstream to apoptosis in hair cells to exploit more effective therapeutics than an anti-apoptosis strategy. Our results suggest that endoplasmic reticulum (ER) stress is the earliest molecular event leading to the apoptosis of hair cells and hearing loss in erl mice. We also report that the ER stress inhibitor, Salubrinal (Sal), could delay the progression of hearing loss and preserve hair cells. Our results provide evidence that therapies targeting signaling pathways in ER stress development prevent hair cell apoptosis at an early stage and lead to better outcomes than those targeting downstream factors, such as tip-link degeneration and apoptosis.

  15. Inhibitory Effects of Verrucarin A on Tunicamycin-Induced ER Stress in FaO Rat Liver Cells

    Directory of Open Access Journals (Sweden)

    Eun Young Bae

    2015-05-01

    Full Text Available Endoplasmic reticulum (ER stress is linked with development and maintenance of cancer, and serves as a therapeutic target for treatment of cancer. Verrucarin A, isolated from the broth of Fusarium sp. F060190, showed potential inhibitory activity on tunicamycin-induced ER stress in FaO rat liver cells. In addition, the compound decreased tunicamycin-induced GRP78 promoter activity in a dose dependent manner without inducing significant inhibition of luciferase activity and cell growth for 6 and 12 h. Moreover, the compound decreased the expression of GRP78, CHOP, XBP-1, and suppressed XBP-1, and reduced phosphorylation of IRE1α in FaO rat liver cells. This evidence suggests for the first time that verrucarin A inhibited tunicamycin-induced ER stress in FaO rat liver cells.

  16. ER stress signaling and neurodegeneration: At the intersection between Alzheimer's disease and Prion-related disorders.

    Science.gov (United States)

    Torres, Mauricio; Matamala, José Manuel; Duran-Aniotz, Claudia; Cornejo, Victor Hugo; Foley, Andrew; Hetz, Claudio

    2015-09-02

    Alzheimer's and Prion diseases are two neurodegenerative conditions sharing different pathophysiological characteristics. Disease symptoms are associated with the abnormal accumulation of protein aggregates, which are generated by the misfolding and oligomerization of specific proteins. Recent functional studies uncovered a key role of endoplasmic reticulum (ER) stress and the unfolded protein response (UPR) in the occurrence of synaptic dysfunction and neurodegeneration in Prion-related disorders and Alzheimer's disease. Here we review common pathological features of both diseases, emphasizing the link between amyloid formation, its pathogenesis and alterations in ER proteostasis. The potential benefits of targeting the UPR as a therapeutic strategy is also discussed. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. ER signaling is activated to protect human HaCaT keratinocytes from ER stress induced by environmental doses of UVB

    International Nuclear Information System (INIS)

    Mera, Kentaro; Kawahara, Ko-ichi; Tada, Ko-ichi; Kawai, Kazuhiro; Hashiguchi, Teruto; Maruyama, Ikuro; Kanekura, Takuro

    2010-01-01

    Proteins are folded properly in the endoplasmic reticulum (ER). Various stress such as hypoxia, ischemia and starvation interfere with the ER function, causing ER stress, which is defined by the accumulation of unfolded protein (UP) in the ER. ER stress is prevented by the UP response (UPR) and ER-associated degradation (ERAD). These signaling pathways are activated by three major ER molecules, ATF6, IRE-1 and PERK. Using HaCaT cells, we investigated ER signaling in human keratinocytes irradiated by environmental doses of ultraviolet B (UVB). The expression of Ero1-Lα, an upstream signaling molecule of ER stress, decreased at 1-4 h after 10 mJ/cm 2 irradiation, indicating that the environmental dose of UVB-induced ER stress in HaCaT cells, without growth retardation. Furthermore, expression of intact ATF6 was decreased and it was translocated to the nuclei. The expression of XBP-1, a downstream molecule of IRE-1, which is an ER chaperone whose expression is regulated by XBP-1, and UP ubiquitination were induced by 10 mJ/cm 2 UVB at 4 h. PERK, which regulates apoptosis, was not phosphorylated. Our results demonstrate that UVB irradiation generates UP in HaCaT cells and that the UPR and ERAD systems are activated to protect cells from UVB-induced ER stress. This is the first report to show ER signaling in UVB-irradiated keratinocytes.

  18. Wolfram syndrome 1 gene negatively regulates ER stress signaling in rodent and human cells.

    Science.gov (United States)

    Fonseca, Sonya G; Ishigaki, Shinsuke; Oslowski, Christine M; Lu, Simin; Lipson, Kathryn L; Ghosh, Rajarshi; Hayashi, Emiko; Ishihara, Hisamitsu; Oka, Yoshitomo; Permutt, M Alan; Urano, Fumihiko

    2010-03-01

    Wolfram syndrome is an autosomal-recessive disorder characterized by insulin-dependent diabetes mellitus, caused by nonautoimmune loss of beta cells, and neurological dysfunctions. We have previously shown that mutations in the Wolfram syndrome 1 (WFS1) gene cause Wolfram syndrome and that WFS1 has a protective function against ER stress. However, it remained to be determined how WFS1 mitigates ER stress. Here we have shown in rodent and human cell lines that WFS1 negatively regulates a key transcription factor involved in ER stress signaling, activating transcription factor 6alpha (ATF6alpha), through the ubiquitin-proteasome pathway. WFS1 suppressed expression of ATF6alpha target genes and repressed ATF6alpha-mediated activation of the ER stress response element (ERSE) promoter. Moreover, WFS1 stabilized the E3 ubiquitin ligase HRD1, brought ATF6alpha to the proteasome, and enhanced its ubiquitination and proteasome-mediated degradation, leading to suppression of ER stress signaling. Consistent with these data, beta cells from WFS1-deficient mice and lymphocytes from patients with Wolfram syndrome exhibited dysregulated ER stress signaling through upregulation of ATF6alpha and downregulation of HRD1. These results reveal a role for WFS1 in the negative regulation of ER stress signaling and in the pathogenesis of diseases involving chronic, unresolvable ER stress, such as pancreatic beta cell death in diabetes.

  19. Programming of Fetal Insulin Resistance in Pregnancies with Maternal Obesity by ER Stress and Inflammation

    Directory of Open Access Journals (Sweden)

    Francisco Westermeier

    2014-01-01

    Full Text Available The global epidemics of obesity during pregnancy and excessive gestational weight gain (GWG are major public health problems worldwide. Obesity and excessive GWG are related to several maternal and fetal complications, including diabetes (pregestational and gestational diabetes and intrauterine programming of insulin resistance (IR. Maternal obesity (MO and neonatal IR are associated with long-term development of obesity, diabetes mellitus, and increased global cardiovascular risk in the offspring. Multiple mechanisms of insulin signaling pathway impairment have been described in obese individuals, involving complex interactions of chronically elevated inflammatory mediators, adipokines, and the critical role of the endoplasmic reticulum (ER stress-dependent unfolded protein response (UPR. However, the underlying cellular processes linking MO and IR in the offspring have not been fully elucidated. Here, we summarize the state-of-the-art evidence supporting the possibility that adverse metabolic postnatal outcomes such as IR in the offspring of pregnancies with MO and/or excessive GWG may be related to intrauterine activation of ER stress response.

  20. Programming of Fetal Insulin Resistance in Pregnancies with Maternal Obesity by ER Stress and Inflammation

    Science.gov (United States)

    Sáez, Pablo J.; Villalobos-Labra, Roberto; Farías-Jofré, Marcelo

    2014-01-01

    The global epidemics of obesity during pregnancy and excessive gestational weight gain (GWG) are major public health problems worldwide. Obesity and excessive GWG are related to several maternal and fetal complications, including diabetes (pregestational and gestational diabetes) and intrauterine programming of insulin resistance (IR). Maternal obesity (MO) and neonatal IR are associated with long-term development of obesity, diabetes mellitus, and increased global cardiovascular risk in the offspring. Multiple mechanisms of insulin signaling pathway impairment have been described in obese individuals, involving complex interactions of chronically elevated inflammatory mediators, adipokines, and the critical role of the endoplasmic reticulum (ER) stress-dependent unfolded protein response (UPR). However, the underlying cellular processes linking MO and IR in the offspring have not been fully elucidated. Here, we summarize the state-of-the-art evidence supporting the possibility that adverse metabolic postnatal outcomes such as IR in the offspring of pregnancies with MO and/or excessive GWG may be related to intrauterine activation of ER stress response. PMID:25093191

  1. Xbp1s in Pomc neurons connects ER stress with energy balance and glucose homeostasis.

    Science.gov (United States)

    Williams, Kevin W; Liu, Tiemin; Kong, Xingxing; Fukuda, Makoto; Deng, Yingfeng; Berglund, Eric D; Deng, Zhuo; Gao, Yong; Liu, Tianya; Sohn, Jong-Woo; Jia, Lin; Fujikawa, Teppei; Kohno, Daisuke; Scott, Michael M; Lee, Syann; Lee, Charlotte E; Sun, Kai; Chang, Yongsheng; Scherer, Philipp E; Elmquist, Joel K

    2014-09-02

    The molecular mechanisms underlying neuronal leptin and insulin resistance in obesity and diabetes remain unclear. Here we show that induction of the unfolded protein response transcription factor spliced X-box binding protein 1 (Xbp1s) in pro-opiomelanocortin (Pomc) neurons alone is sufficient to protect against diet-induced obesity as well as improve leptin and insulin sensitivity, even in the presence of strong activators of ER stress. We also demonstrate that constitutive expression of Xbp1s in Pomc neurons contributes to improved hepatic insulin sensitivity and suppression of endogenous glucose production. Notably, elevated Xbp1s levels in Pomc neurons also resulted in activation of the Xbp1s axis in the liver via a cell-nonautonomous mechanism. Together our results identify critical molecular mechanisms linking ER stress in arcuate Pomc neurons to acute leptin and insulin resistance as well as liver metabolism in diet-induced obesity and diabetes. Copyright © 2014 Elsevier Inc. All rights reserved.

  2. ZmbZIP60 mRNA is spliced in maize in response to ER stress

    Directory of Open Access Journals (Sweden)

    Li Yanjie

    2012-03-01

    Full Text Available Abstract Background Adverse environmental conditions produce ER stress and elicit the unfolded protein response (UPR in plants. Plants are reported to have two "arms" of the ER stress signaling pathway-one arm involving membrane-bound transcription factors and the other involving a membrane-associated RNA splicing factor, IRE1. IRE1 in yeast to mammals recognizes a conserved twin loop structure in the target RNA. Results A segment of the mRNA encoding ZmbZIP60 in maize can be folded into a twin loop structure, and in response to ER stress this mRNA is spliced, excising a 20b intron. Splicing converts the predicted protein from a membrane-associated transcription factor to one that is targeted to the nucleus. Splicing of ZmbZIP60 can be elicited in maize seedlings by ER stress agents such as dithiothreitol (DTT or tunicamycin (TM or by heat treatment. Younger, rather than older seedlings display a more robust splicing response as do younger parts of leaf, along a developmental gradient in a leaf. The molecular signature of an ER stress response in plants includes the upregulation of Binding Protein (BIP genes. Maize has numerous BIP-like genes, and ER stress was found to upregulate one of these, ZmBIPb. Conclusions The splicing of ZmbZIP60 mRNA is an indicator of ER stress in maize seedlings resulting from adverse environmental conditions such as heat stress. ZmbZIP60 mRNA splicing in maize leads predictively to the formation of active bZIP transcription factor targeted to the nucleus to upregulate stress response genes. Among the genes upregulated by ER stress in maize is one of 22 BIP-like genes, ZmBIPb.

  3. Mitofusin 2 in POMC neurons connects ER stress with leptin resistance and energy imbalance

    DEFF Research Database (Denmark)

    Schneeberger, Marc; Dietrich, Marcelo O; Sebastián, David

    2013-01-01

    Mitofusin 2 (MFN2) plays critical roles in both mitochondrial fusion and the establishment of mitochondria-endoplasmic reticulum (ER) interactions. Hypothalamic ER stress has emerged as a causative factor for the development of leptin resistance, but the underlying mechanisms are largely unknown....

  4. Endoplasmic reticulum (ER) stress and cAMP/PKA pathway mediated Zn-induced hepatic lipolysis.

    Science.gov (United States)

    Song, Yu-Feng; Hogstrand, Christer; Wei, Chuan-Chuan; Wu, Kun; Pan, Ya-Xiong; Luo, Zhi

    2017-09-01

    The present study was performed to determine the effect of Zn exposure influencing endoplasmic reticulum (ER) stress, explore the underlying molecular mechanism of Zn-induced hepatic lipolysis in a fish species of significance for aquaculture, yellow catfish Pelteobagrus fulvidraco. We found that waterborne Zn exposure evoked ER stress and unfolded protein response (UPR), and activated cAMP/PKA pathway, and up-regulated hepatic lipolysis. The increase in ER stress and lipolysis were associated with activation of cAMP/PKA signaling pathway. Zn also induced an increase in intracellular Ca 2+ level, which could be partially prevented by dantrolene (RyR receptor inhibitor) and 2-APB (IP3 receptor inhibitor), demonstrating that the disturbed Ca 2+ homeostasis in ER contributed to ER stress and dysregulation of lipolysis. Inhibition of ER stress by PBA attenuated UPR, inhibited the activation of cAMP/PKA pathway and resulted in down-regulation of lipolysis. Inhibition of protein kinase RNA-activated-like ER kinase (PERK) by GSK2656157 and inositol-requiring enzyme (IRE) by STF-083010 differentially influenced Zn-induced changes of lipid metabolism, indicating that PERK and IRE pathways played different regulatory roles in Zn-induced lipolysis. Inhibition of PKA by H89 blocked the Zn-induced activation of cAMP/PKA pathway with a concomitant inhibition of ER stress-mediated lipolysis. Taken together, our findings highlight the importance of the ER stress-cAMP/PKA axis in Zn-induced lipolysis, which provides new insights into Zn toxicology in fish and probably in other vertebrates. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. ER stress affects processing of MHC class I-associated peptides

    Directory of Open Access Journals (Sweden)

    Meloche Sylvain

    2009-02-01

    Full Text Available Abstract Background Viral infection and neoplastic transformation trigger endoplasmic reticulum (ER stress. Thus, a large proportion of the cells that must be recognized by the immune system are stressed cells. Cells respond to ER stress by launching the unfolded protein response (UPR. The UPR regulates the two key processes that control major histocompatibility complex class I (MHC I-peptide presentation: protein synthesis and degradation. We therefore asked whether and how the UPR impinges on MHC I-peptide presentation. Results We evaluated the impact of the UPR on global MHC I expression and on presentation of the H2Kb-associated SIINFEKL peptide. EL4 cells stably transfected with vectors coding hen egg lysozyme (HEL-SIINFEKL protein variants were stressed with palmitate or exposed to glucose deprivation. UPR decreased surface expression of MHC I but did not affect MHC I mRNA level nor the total amount of intracellular MHC I proteins. Impaired MHC I-peptide presentation was due mainly to reduced supply of peptides owing to an inhibition of overall protein synthesis. Consequently, generation of H2Kb-SIINFEKL complexes was curtailed during ER stress, illustrating how generation of MHC I peptide ligands is tightly coupled to ongoing protein synthesis. Notably, the UPR-induced decline of MHC I-peptide presentation was more severe when the protein source of peptides was localized in the cytosol than in the ER. This difference was not due to changes in the translation rates of the precursor proteins but to increased stability of the cytosolic protein during ER stress. Conclusion Our results demonstrate that ER stress impairs MHC I-peptide presentation, and that it differentially regulates expression of ER- vs. cytosol-derived peptides. Furthermore, this work illustrates how ER stress, a typical feature of infected and malignant cells, can impinge on cues for adaptive immune recognition.

  6. Palmitate-induced ER stress and inhibition of protein synthesis in cultured myotubes does not require Toll-like receptor 4.

    Science.gov (United States)

    Perry, Ben D; Rahnert, Jill A; Xie, Yang; Zheng, Bin; Woodworth-Hobbs, Myra E; Price, S Russ

    2018-01-01

    Saturated fatty acids, such as palmitate, are elevated in metabolically dysfunctional conditions like type 2 diabetes mellitus. Palmitate has been shown to impair insulin sensitivity and suppress protein synthesis while upregulating proteolytic systems in skeletal muscle. Increased sarco/endoplasmic reticulum (ER) stress and subsequent activation of the unfolded protein response may contribute to the palmitate-induced impairment of muscle protein synthesis. In some cell types, ER stress occurs through activation of the Toll-like receptor 4 (TLR4). Given the link between ER stress and suppression of protein synthesis, we investigated whether palmitate induces markers of ER stress and protein synthesis by activating TLR4 in cultured mouse C2C12 myotubes. Myotubes were treated with vehicle, a TLR4-specific ligand (lipopolysaccharides), palmitate, or a combination of palmitate plus a TLR4-specific inhibitor (TAK-242). Inflammatory indicators of TLR4 activation (IL-6 and TNFα) and markers of ER stress were measured, and protein synthesis was assessed using puromycin incorporation. Palmitate substantially increased the levels of IL-6, TNF-α, CHOP, XBP1s, and ATF 4 mRNAs and augmented the levels of CHOP, XBP1s, phospho-PERK and phospho-eIF2α proteins. The TLR4 antagonist attenuated both acute palmitate and LPS-induced increases in IL-6 and TNFα, but did not reduce ER stress signaling with either 6 h or 24 h palmitate treatment. Similarly, treating myotubes with palmitate for 6 h caused a 43% decline in protein synthesis consistent with an increase in phospho-eIF2α, and the TLR4 antagonist did not alter these responses. These results suggest that palmitate does not induce ER stress through TLR4 in muscle, and that palmitate impairs protein synthesis in skeletal muscle in part by induction of ER stress.

  7. Palmitate-induced ER stress and inhibition of protein synthesis in cultured myotubes does not require Toll-like receptor 4.

    Directory of Open Access Journals (Sweden)

    Ben D Perry

    Full Text Available Saturated fatty acids, such as palmitate, are elevated in metabolically dysfunctional conditions like type 2 diabetes mellitus. Palmitate has been shown to impair insulin sensitivity and suppress protein synthesis while upregulating proteolytic systems in skeletal muscle. Increased sarco/endoplasmic reticulum (ER stress and subsequent activation of the unfolded protein response may contribute to the palmitate-induced impairment of muscle protein synthesis. In some cell types, ER stress occurs through activation of the Toll-like receptor 4 (TLR4. Given the link between ER stress and suppression of protein synthesis, we investigated whether palmitate induces markers of ER stress and protein synthesis by activating TLR4 in cultured mouse C2C12 myotubes. Myotubes were treated with vehicle, a TLR4-specific ligand (lipopolysaccharides, palmitate, or a combination of palmitate plus a TLR4-specific inhibitor (TAK-242. Inflammatory indicators of TLR4 activation (IL-6 and TNFα and markers of ER stress were measured, and protein synthesis was assessed using puromycin incorporation. Palmitate substantially increased the levels of IL-6, TNF-α, CHOP, XBP1s, and ATF 4 mRNAs and augmented the levels of CHOP, XBP1s, phospho-PERK and phospho-eIF2α proteins. The TLR4 antagonist attenuated both acute palmitate and LPS-induced increases in IL-6 and TNFα, but did not reduce ER stress signaling with either 6 h or 24 h palmitate treatment. Similarly, treating myotubes with palmitate for 6 h caused a 43% decline in protein synthesis consistent with an increase in phospho-eIF2α, and the TLR4 antagonist did not alter these responses. These results suggest that palmitate does not induce ER stress through TLR4 in muscle, and that palmitate impairs protein synthesis in skeletal muscle in part by induction of ER stress.

  8. ER-mediated stress induces mitochondrial-dependent caspases activation in NT2 neuron-like cells.

    Science.gov (United States)

    Arduino, Daniela M; Esteves, A Raquel; Domingues, A Filipa; Pereira, Claudia M F; Cardoso, Sandra M; Oliveira, Catarina R

    2009-11-30

    Recent studies have revealed that endoplasmic reticulum (ER) disturbance is involved in the pathophysiology of neurodegenerative disorders, contributing to the activation of the ER stress-mediated apoptotic pathway. Therefore, we investigated here the molecular mechanisms underlying the ER-mitochondria axis, focusing on calcium as a potential mediator of cell death signals. Using NT2 cells treated with brefeldin A or tunicamycin, we observed that ER stress induces changes in the mitochondrial function, impairing mitochondrial membrane potential and distressing mitochondrial respiratory chain complex Moreover, stress stimuli at ER level evoked calcium fluxes between ER and mitochondria. Under these conditions, ER stress activated the unfolded protein response by an overexpression of GRP78, and also caspase-4 and-2, both involved upstream of caspase-9. Our findings show that ER and mitochondria interconnection plays a prominent role in the induction of neuronal cell death under particular stress circumstances.

  9. SIRT7 Represses Myc Activity to Suppress ER Stress and Prevent Fatty Liver Disease

    Directory of Open Access Journals (Sweden)

    Jiyung Shin

    2013-11-01

    Full Text Available Nonalcoholic fatty liver disease is the most common chronic liver disorder in developed countries. Its pathogenesis is poorly understood, and therapeutic options are limited. Here, we show that SIRT7, an NAD+-dependent H3K18Ac deacetylase, functions at chromatin to suppress ER stress and prevent the development of fatty liver disease. SIRT7 is induced upon ER stress and is stabilized at the promoters of ribosomal proteins through its interaction with the transcription factor Myc to silence gene expression and to relieve ER stress. SIRT7-deficient mice develop chronic hepatosteatosis resembling human fatty liver disease. Myc inactivation or pharmacological suppression of ER stress alleviates fatty liver caused by SIRT7 deficiency. Importantly, SIRT7 suppresses ER stress and reverts the fatty liver disease in diet-induced obese mice. Our study identifies SIRT7 as a cofactor of Myc for transcriptional repression and delineates a druggable regulatory branch of the ER stress response that prevents and reverts fatty liver disease.

  10. Zearalenone altered the cytoskeletal structure via ER stress- autophagy- oxidative stress pathway in mouse TM4 Sertoli cells.

    Science.gov (United States)

    Zheng, Wanglong; Wang, Bingjie; Si, Mengxue; Zou, Hui; Song, Ruilong; Gu, Jianhong; Yuan, Yan; Liu, Xuezhong; Zhu, Guoqiang; Bai, Jianfa; Bian, Jianchun; Liu, ZongPing

    2018-02-20

    The aim of this study was to investigate the molecular mechanisms of the destruction of cytoskeletal structure by Zearalenone (ZEA) in mouse-derived TM4 cells. In order to investigate the role of autophagy, oxidative stress and endoplasmic reticulum(ER) stress in the process of destruction of cytoskeletal structure, the effects of ZEA on the cell viability, cytoskeletal structure, autophagy, oxidative stress, ER stress, MAPK and PI3K- AKT- mTOR signaling pathways were studied. The data demonstrated that ZEA damaged the cytoskeletal structure through the induction of autophagy that leads to the alteration of cytoskeletal structure via elevated oxidative stress. Our results further showed that the autophagy was stimulated by ZEA through PI3K-AKT-mTOR and MAPK signaling pathways in TM4 cells. In addition, ZEA also induced the ER stress which was involved in the induction of the autophagy through inhibiting the ERK signal pathway to suppress the phosphorylation of mTOR. ER stress was involved in the damage of cytoskeletal structure through induction of autophagy by producing ROS. Taken together, this study revealed that ZEA altered the cytoskeletal structure via oxidative stress - autophagy- ER stress pathway in mouse TM4 Sertoli cells.

  11. IRE1: ER stress sensor and cell fate executor.

    Science.gov (United States)

    Chen, Yani; Brandizzi, Federica

    2013-11-01

    Cells operate a signaling network termed the unfolded protein response (UPR) to monitor protein-folding capacity in the endoplasmic reticulum (ER). Inositol-requiring enzyme 1 (IRE1) is an ER transmembrane sensor that activates the UPR to maintain the ER and cellular function. Although mammalian IRE1 promotes cell survival, it can initiate apoptosis via decay of antiapoptotic miRNAs. Convergent and divergent IRE1 characteristics between plants and animals underscore its significance in cellular homeostasis. This review provides an updated scenario of the IRE1 signaling model, discusses emerging IRE1 sensing mechanisms, compares IRE1 features among species, and outlines exciting future directions in UPR research. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. New insights on the functional role of URG7 in the cellular response to ER stress.

    Science.gov (United States)

    Armentano, Maria Francesca; Caterino, Marianna; Miglionico, Rocchina; Ostuni, Angela; Pace, Maria Carmela; Cozzolino, Flora; Monti, Maria; Milella, Luigi; Carmosino, Monica; Pucci, Piero; Bisaccia, Faustino

    2018-04-28

    Up-regulated Gene clone 7 (URG7) is an ER resident protein, whose expression is up-regulated in the presence of hepatitis B virus X antigen (HBxAg) during HBV infection. In virus-infected hepatocytes, URG7 shows an anti-apoptotic activity due to the PI3K/AKT signalling activation, does not seem to have tumorigenic properties, but it appears to promote the development and progression of fibrosis. However, the molecular mechanisms underlying URG7 activity remain largely unknown. To shed light on URG7 activity, we first analysed its interactome in HepG2 transfected cells: this analysis suggests that URG7 could have a role in affecting protein synthesis, folding and promoting proteins degradation. Moreover, keeping into account its subcellular localisation in the ER and that several viral infections give rise to ER stress, a panel of experiments was performed to evaluate a putative role of URG7 in ER stress. Our main results demonstrate that in ER-stressed cells URG7 is able to modulate the expression of Unfolded Protein Response (UPR) markers towards survival outcomes, up-regulating GRP78 protein and down-regulating the pro-apoptotic protein CHOP. Furthermore, URG7 reduces the ER stress by decreasing the amount of unfolded proteins, by increasing both the total protein ubiquitination and the AKT activation and reducing Caspase 3 activation. All together these data suggest that URG7 plays a pivotal role as a reliever of ER stress-induced apoptosis. This is the first characterisation of URG7 activity under ER stress conditions. The results presented here will help to hypothesise new strategies to counteract the antiapoptotic activity of URG7 in the context of the viral infection. © 2018 Société Française des Microscopies and Société de Biologie Cellulaire de France. Published by John Wiley & Sons Ltd.

  13. Marinesco-Sjögren syndrome protein SIL1 regulates motor neuron subtype-selective ER stress in ALS

    NARCIS (Netherlands)

    Filézac de L'Etang, Audrey; Maharjan, Niran; Cordeiro Braña, Marisa; Ruegsegger, Céline; Rehmann, Ruth; Goswami, Anand; Roos, Andreas; Troost, Dirk; Schneider, Bernard L.; Weis, Joachim; Saxena, Smita

    2015-01-01

    Mechanisms underlying motor neuron subtype-selective endoplasmic reticulum (ER) stress and associated axonal pathology in amyotrophic lateral sclerosis (ALS) remain unclear. Here we show that the molecular environment of the ER between motor neuron subtypes is distinct, with characteristic

  14. Effects of Fat and Sugar, Either Consumed or Infused toward the Brain, on Hypothalamic ER Stress Markers

    Directory of Open Access Journals (Sweden)

    Evita Belegri

    2017-05-01

    Full Text Available Protein-folding stress at the Endoplasmic Reticulum (ER occurs in the hypothalamus during diet-induced obesity (DIO and is linked to metabolic disease development. ER stress is buffered by the activation of the unfolded protein response (UPR, a controlled network of pathways inducing a set of genes that recovers ER function. However, it is unclear whether hypothalamic ER stress during DIO results from obesity related changes or from direct nutrient effects in the brain. We here investigated mRNA expression of UPR markers in the hypothalamus of rats that were exposed to a free choice high-fat high-sugar (fcHFHS diet for 1 week and then overnight fed ad libitum, or fasted, or fat/sugar deprived (i.e., switched from obesogenic diet to chow. In addition, we determined the direct effects of fat/sugar on mRNA expression of hypothalamus UPR markers by intracarotic infusions of intralipids and/or glucose in chow-fed rats that were fasted overnight. Short term (1 week exposure to fcHFHS diet increased adiposity compared to chow-feeding. Short term exposure to a fcHFHS diet, followed by mild food restriction overnight, induced hypothalamic ER stress in rats as characterized by an increase in spliced to unspliced X-box binding protein 1 mRNA ratio in hypothalamus of fcHFHS fed rats compared to chow fed rats. Moreover, infused lipids toward the brain of overnight fasted rats, were able to induce a similar response. Non-restricted ad libitum fcHFHS-diet fed or totally fasted rats did not show altered ratios. We also observed a clear increase in hypothalamic activating transcription factor 4 mRNA in rats on the fcHFHS diet while being ad libitum fed or when infused with intralipid via the carotic artery compared to vehicle infusions. However, we did not observe induction of downstream targets implying that this effect is a more general stress response and not related to ER stress. Overall, we conclude that the hypothalamic stress response might be a sensitive

  15. Lycopene Protects against Hypoxia/Reoxygenation Injury by Alleviating ER Stress Induced Apoptosis in Neonatal Mouse Cardiomyocytes

    Science.gov (United States)

    Xu, Jiqian; Hu, Houxiang; Chen, Bin; Yue, Rongchuan; Zhou, Zhou; Liu, Yin; Zhang, Shuang; Xu, Lei; Wang, Huan; Yu, Zhengping

    2015-01-01

    Endoplasmic reticulum (ER) stress induced apoptosis plays a pivotal role in myocardial ischemia/reperfusion (I/R)-injury. Inhibiting ER stress is a major therapeutic target/strategy in treating cardiovascular diseases. Our previous studies revealed that lycopene exhibits great pharmacological potential in protecting against the I/R-injury in vitro and vivo, but whether attenuation of ER stress (and) or ER stress-induced apoptosis contributes to the effects remains unclear. In the present study, using neonatal mouse cardiomyocytes to establish an in vitro model of hypoxia/reoxygenation (H/R) to mimic myocardium I/R in vivo, we aimed to explore the hypothesis that lycopene could alleviate the ER stress and ER stress-induced apoptosis in H/R-injury. We observed that lycopene alleviated the H/R injury as revealed by improving cell viability and reducing apoptosis, suppressed reactive oxygen species (ROS) generation and improved the phosphorylated AMPK expression, attenuated ER stress as evidenced by decreasing the expression of GRP78, ATF6 mRNA, sXbp-1 mRNA, eIF2α mRNA and eIF2α phosphorylation, alleviated ER stress-induced apoptosis as manifested by reducing CHOP/GADD153 expression, the ratio of Bax/Bcl-2, caspase-12 and caspase-3 activity in H/R-treated cardiomyocytes. Thapsigargin (TG) is a potent ER stress inducer and used to elicit ER stress of cardiomyocytes. Our results showed that lycopene was able to prevent TG-induced ER stress as reflected by attenuating the protein expression of GRP78 and CHOP/GADD153 compared to TG group, significantly improve TG-caused a loss of cell viability and decrease apoptosis in TG-treated cardiomyocytes. These results suggest that the protective effects of lycopene on H/R-injury are, at least in part, through alleviating ER stress and ER stress-induced apoptosis in neonatal mouse cardiomyocytes. PMID:26291709

  16. Transcription regulator TRIP-Br2 mediates ER stress-induced brown adipocytes dysfunction.

    Science.gov (United States)

    Qiang, Guifen; Whang Kong, Hyerim; Gil, Victoria; Liew, Chong Wee

    2017-01-09

    In contrast to white adipose tissue, brown adipose tissue (BAT) is known to play critical roles for both basal and inducible energy expenditure. Obesity is associated with reduction of BAT function; however, it is not well understood how obesity promotes BAT dysfunction, especially at the molecular level. Here we show that the transcription regulator TRIP-Br2 mediates ER stress-induced inhibition of lipolysis and thermogenesis in BAT. Using in vitro, ex vivo, and in vivo approaches, we demonstrate that obesity-induced inflammation upregulates brown adipocytes TRIP-Br2 expression via the ER stress pathway and amelioration of ER stress in mice completely abolishes high fat diet-induced upregulation of TRIP-Br2 in BAT. We find that increased TRIP-Br2 significantly inhibits brown adipocytes thermogenesis. Finally, we show that ablation of TRIP-Br2 ameliorates ER stress-induced inhibition on lipolysis, fatty acid oxidation, oxidative metabolism, and thermogenesis in brown adipocytes. Taken together, our current study demonstrates a role for TRIP-Br2 in ER stress-induced BAT dysfunction, and inhibiting TRIP-Br2 could be a potential approach for counteracting obesity-induced BAT dysfunction.

  17. ER stress is the initial response to polyglutamine toxicity in PC12 cells

    International Nuclear Information System (INIS)

    Nakayama, Hitoshi; Hamada, Masashi; Fujikake, Nobuhiro; Nagai, Yoshitaka; Zhao, Jing; Hatano, Osamu; Shimoke, Koji; Isosaki, Minoru; Yoshizumi, Masanori; Ikeuchi, Toshihiko

    2008-01-01

    Persistent endoplasmic reticulum (ER) stress and impairment of the ubiquitin-proteasome system (UPS) cause neuronal cell death. However, the relationship between these two phenomena remains controversial. In our current study, we have utilized an expanded polyglutamine fusion protein (polyQ81) expression system in PC12 cells to further examine the involvement of ER stress and UPS impairment in cell death. The expression of polyQ81-induced ER stress and cell death. PolyQ81 also induced the activation of c-Jun N-terminal kinase (JNK) and caspase-3 and an increase in polyubiquitin immunoreactivity, suggesting UPS impairment. ER stress was induced prior to the accumulation of polyubiquitinated proteins. Low doses of lactacystin had almost similar effects on cell viability and on the activation of JNK and caspase-3 between normal cells and polyQ81-expressing cells. These results suggest that ER stress mediates polyglutamine toxicity prior to UPS impairment during the initial stages of these toxic effects.

  18. ER Stress-Mediated Signaling: Action Potential and Ca(2+) as Key Players.

    Science.gov (United States)

    Bahar, Entaz; Kim, Hyongsuk; Yoon, Hyonok

    2016-09-15

    The proper functioning of the endoplasmic reticulum (ER) is crucial for multiple cellular activities and survival. Disturbances in the normal ER functions lead to the accumulation and aggregation of unfolded proteins, which initiates an adaptive response, the unfolded protein response (UPR), in order to regain normal ER functions. Failure to activate the adaptive response initiates the process of programmed cell death or apoptosis. Apoptosis plays an important role in cell elimination, which is essential for embryogenesis, development, and tissue homeostasis. Impaired apoptosis can lead to the development of various pathological conditions, such as neurodegenerative and autoimmune diseases, cancer, or acquired immune deficiency syndrome (AIDS). Calcium (Ca(2+)) is one of the key regulators of cell survival and it can induce ER stress-mediated apoptosis in response to various conditions. Ca(2+) regulates cell death both at the early and late stages of apoptosis. Severe Ca(2+) dysregulation can promote cell death through apoptosis. Action potential, an electrical signal transmitted along the neurons and muscle fibers, is important for conveying information to, from, and within the brain. Upon the initiation of the action potential, increased levels of cytosolic Ca(2+) (depolarization) lead to the activation of the ER stress response involved in the initiation of apoptosis. In this review, we discuss the involvement of Ca(2+) and action potential in ER stress-mediated apoptosis.

  19. Purple perilla extracts allay ER stress in lipid-laden macrophages.

    Directory of Open Access Journals (Sweden)

    Sin-Hye Park

    Full Text Available There is a growing body of evidence that excess lipids, hypoxic stress and other inflammatory signals can stimulate endoplasmic reticulum (ER stress in metabolic diseases. However, the pathophysiological importance and the underlying mechanisms of this phenomenon remain unknown. The current study investigated that 50 ng/ml oxidized LDL promoted unfolded protein response (UPR and ER stress in J774A1 murine macrophages, which was blocked by extracts (PPE of purple Perilla frutescens, a plant of the mint family Lamiaceae. The ER stressor tunicamycin was employed as a positive control. Treating 1-10 µg/ml oxidized LDL for 24 h elicited lipotoxic apoptosis in macrophages with obvious nuclear condensation and DNA fragmentation, which was inhibited by PPE. Tunicamycin and oxidized LDL activated and induced the UPR components of activating transcription factor 6 and ER resident chaperone BiP/Grp78 in temporal manners and such effects were blocked by ≥5 µg/ml PPE. In addition, PPE suppressed the enhanced mRNA transcription and splicing of X-box binding protein 1 (XBP1 by tunicamycin and oxidized LDL. The protein induction and nuclear translocation of XBP1 were deterred in PPE-treated macrophages under ER stress. The induction of ATP-binding cassette transporter A1 (ABCA1, scavenger receptor-B1 (SR-B1 and intracellular adhesion molecule-1 (ICAM-1 was abolished by the ER stressor in activated macrophages. The protein induction of ABCA1 and ICAM1 but not SR-B1 was retrieved by adding 10 µg/ml PPE to cells. These results demonstrate that PPE inhibited lipotoxic apoptosis and demoted the induction and activation of UPR components in macrophages. PPE restored normal proteostasis in activated macrophages oxidized LDL. Therefore, PPE was a potent agent antagonizing macrophage ER stress due to lipotoxic signals associated with atherosclerosis.

  20. Acute Lung Injury Results from Innate Sensing of Viruses by an ER Stress Pathway

    Directory of Open Access Journals (Sweden)

    Eike R. Hrincius

    2015-06-01

    Full Text Available Incursions of new pathogenic viruses into humans from animal reservoirs are occurring with alarming frequency. The molecular underpinnings of immune recognition, host responses, and pathogenesis in this setting are poorly understood. We studied pandemic influenza viruses to determine the mechanism by which increasing glycosylation during evolution of surface proteins facilitates diminished pathogenicity in adapted viruses. ER stress during infection with poorly glycosylated pandemic strains activated the unfolded protein response, leading to inflammation, acute lung injury, and mortality. Seasonal strains or viruses engineered to mimic adapted viruses displaying excess glycans on the hemagglutinin did not cause ER stress, allowing preservation of the lungs and survival. We propose that ER stress resulting from recognition of non-adapted viruses is utilized to discriminate “non-self” at the level of protein processing and to activate immune responses, with unintended consequences on pathogenesis. Understanding this mechanism should improve strategies for treating acute lung injury from zoonotic viral infections.

  1. Familial CJD Associated PrP Mutants within Transmembrane Region Induced Ctm-PrP Retention in ER and Triggered Apoptosis by ER Stress in SH-SY5Y Cells

    Science.gov (United States)

    Wang, Xin; Shi, Qi; Xu, Kun; Gao, Chen; Chen, Cao; Li, Xiao-Li; Wang, Gui-Rong; Tian, Chan; Han, Jun; Dong, Xiao-Ping

    2011-01-01

    Background Genetic prion diseases are linked to point and inserted mutations in the prion protein (PrP) gene that are presumed to favor conversion of the cellular isoform of PrP (PrPC) to the pathogenic one (PrPSc). The pathogenic mechanisms and the subcellular sites of the conversion are not completely understood. Here we introduce several PRNP gene mutations (such as, PrP-KDEL, PrP-3AV, PrP-A117V, PrP-G114V, PrP-P102L and PrP-E200K) into the cultured cells in order to explore the pathogenic mechanism of familial prion disease. Methodology/Principal Findings To address the roles of aberrant retention of PrP in endoplasmic reticulum (ER), the recombinant plasmids expressing full-length human PrP tailed with an ER signal peptide at the COOH-terminal (PrP-KDEL) and PrP with three amino acids exchange in transmembrane region (PrP-3AV) were constructed. In the preparations of transient transfections, 18-kD COOH-terminal proteolytic resistant fragments (Ctm-PrP) were detected in the cells expressing PrP-KDEL and PrP-3AV. Analyses of the cell viabilities in the presences of tunicamycin and brefeldin A revealed that expressions of PrP-KDEL and PrP-3AV sensitized the transfected cells to ER stress stimuli. Western blots and RT-PCR identified the clear alternations of ER stress associated events in the cells expressing PrP-KDEL and PrP-3AV that induced ER mediated apoptosis by CHOP and capase-12 apoptosis pathway. Moreover, several familial CJD related PrP mutants were transiently introduced into the cultured cells. Only the mutants within the transmembrane region (G114V and A117V) induced the formation of Ctm-PrP and caused the ER stress, while the mutants outside the transmembrane region (P102L and E200K) failed. Conclusions/Significance The data indicate that the retention of PrP in ER through formation of Ctm-PrP results in ER stress and cell apoptosis. The cytopathic activities caused by different familial CJD associated PrP mutants may vary, among them the mutants

  2. Familial CJD associated PrP mutants within transmembrane region induced Ctm-PrP retention in ER and triggered apoptosis by ER stress in SH-SY5Y cells.

    Directory of Open Access Journals (Sweden)

    Xin Wang

    Full Text Available BACKGROUND: Genetic prion diseases are linked to point and inserted mutations in the prion protein (PrP gene that are presumed to favor conversion of the cellular isoform of PrP (PrP(C to the pathogenic one (PrP(Sc. The pathogenic mechanisms and the subcellular sites of the conversion are not completely understood. Here we introduce several PRNP gene mutations (such as, PrP-KDEL, PrP-3AV, PrP-A117V, PrP-G114V, PrP-P102L and PrP-E200K into the cultured cells in order to explore the pathogenic mechanism of familial prion disease. METHODOLOGY/PRINCIPAL FINDINGS: To address the roles of aberrant retention of PrP in endoplasmic reticulum (ER, the recombinant plasmids expressing full-length human PrP tailed with an ER signal peptide at the COOH-terminal (PrP-KDEL and PrP with three amino acids exchange in transmembrane region (PrP-3AV were constructed. In the preparations of transient transfections, 18-kD COOH-terminal proteolytic resistant fragments (Ctm-PrP were detected in the cells expressing PrP-KDEL and PrP-3AV. Analyses of the cell viabilities in the presences of tunicamycin and brefeldin A revealed that expressions of PrP-KDEL and PrP-3AV sensitized the transfected cells to ER stress stimuli. Western blots and RT-PCR identified the clear alternations of ER stress associated events in the cells expressing PrP-KDEL and PrP-3AV that induced ER mediated apoptosis by CHOP and caspase-12 apoptosis pathway. Moreover, several familial CJD related PrP mutants were transiently introduced into the cultured cells. Only the mutants within the transmembrane region (G114V and A117V induced the formation of Ctm-PrP and caused the ER stress, while the mutants outside the transmembrane region (P102L and E200K failed. CONCLUSIONS/SIGNIFICANCE: The data indicate that the retention of PrP in ER through formation of Ctm-PrP results in ER stress and cell apoptosis. The cytopathic activities caused by different familial CJD associated PrP mutants may vary, among them

  3. Acid-induced autophagy protects human lung cancer cells from apoptosis by activating ER stress.

    Science.gov (United States)

    Xie, Wen-Yue; Zhou, Xiang-Dong; Li, Qi; Chen, Ling-Xiu; Ran, Dan-Hua

    2015-12-10

    An acidic tumor microenvironment exists widely in solid tumors. However, the detailed mechanism of cell survival under acidic stress remains unclear. The aim of this study is to clarify whether acid-induced autophagy exists and to determine the function and mechanism of autophagy in lung cancer cells. We have found that acute low pH stimulated autophagy by increasing LC3-positive punctate vesicles, increasing LC3 II expression levels and reducing p62 protein levels. Additionally, autophagy was inhibited by the addition of Baf or knockdown of Beclin 1, and cell apoptosis was increased markedly. In mouse tumors, the expression of cleaved caspase3 and p62 was enhanced by oral treatment with sodium bicarbonate, which can raise the intratumoral pH. Furthermore, the protein levels of ER stress markers, including p-PERK, p-eIF2α, CHOP, XBP-1s and GRP78, were also increased in response to acidic pH. The antioxidant NAC, which reduces ROS accumulation, alleviated acid-mediated ER stress and autophagy, and knocking down GRP78 reduced autophagy activation under acidic conditions, which suggests that autophagy was induced by acidic pH through ER stress. Taken together, these results indicate that the acidic microenvironment in non-small cell lung cancer cells promotes autophagy by increasing ROS-ER stress, which serves as a survival adaption in this setting. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. Inflammation and ER Stress Downregulate BDH2 Expression and Dysregulate Intracellular Iron in Macrophages

    Directory of Open Access Journals (Sweden)

    Susu M. Zughaier

    2014-01-01

    Full Text Available Macrophages play a very important role in host defense and in iron homeostasis by engulfing senescent red blood cells and recycling iron. Hepcidin is the master iron regulating hormone that limits dietary iron absorption from the gut and limits iron egress from macrophages. Upon infection macrophages retain iron to limit its bioavailability which limits bacterial growth. Recently, a short chain butyrate dehydrogenase type 2 (BDH2 protein was reported to contain an iron responsive element and to mediate cellular iron trafficking by catalyzing the synthesis of the mammalian siderophore that binds labile iron; therefore, BDH2 plays a crucial role in intracellular iron homeostasis. However, BDH2 expression and regulation in macrophages have not yet been described. Here we show that LPS-induced inflammation combined with ER stress led to massive BDH2 downregulation, increased the expression of ER stress markers, upregulated hepcidin expression, downregulated ferroportin expression, caused iron retention in macrophages, and dysregulated cytokine release from macrophages. We also show that ER stress combined with inflammation synergistically upregulated the expression of the iron carrier protein NGAL and the stress-inducible heme degrading enzyme heme oxygenase-1 (HO-1 leading to iron liberation. This is the first report to show that inflammation and ER stress downregulate the expression of BDH2 in human THP-1 macrophages.

  5. Pharmacological reduction of ER stress protects against TDP-43 neuronal toxicity in vivo.

    Science.gov (United States)

    Vaccaro, Alexandra; Patten, Shunmoogum A; Aggad, Dina; Julien, Carl; Maios, Claudia; Kabashi, Edor; Drapeau, Pierre; Parker, J Alex

    2013-07-01

    C. elegans and D. rerio expressing mutant TAR DNA Binding Protein 43 (TDP-43) are powerful in vivo animal models for the genetics and pharmacology of amyotrophic lateral sclerosis (ALS). Using these small-animal models of ALS, we previously identified methylene blue (MB) as a potent suppressor of TDP-43 toxicity. Consequently here we investigated how MB might exert its neuroprotective properties and found that it acts through reduction of the endoplasmic reticulum (ER) stress response. We tested other compounds known to be active in the ER unfolded protein response in worms and zebrafish expressing mutant human TDP-43 (mTDP-43). We identified three compounds: salubrinal, guanabenz and a new structurally related compound phenazine, which also reduced paralysis, neurodegeneration and oxidative stress in our mTDP-43 models. Using C. elegans genetics, we showed that all four compounds act as potent suppressors of mTDP-43 toxicity through reduction of the ER stress response. Interestingly, these compounds operate through different branches of the ER unfolded protein pathway to achieve a common neuroprotective action. Our results indicate that protein-folding homeostasis in the ER is an important target for therapeutic development in ALS and other TDP-43-related neurodegenerative diseases. Crown Copyright © 2013. Published by Elsevier Inc. All rights reserved.

  6. Armet, a UPR-upregulated protein, inhibits cell proliferation and ER stress-induced cell death

    International Nuclear Information System (INIS)

    Apostolou, Andria; Shen Yuxian; Liang Yan; Luo Jun; Fang Shengyun

    2008-01-01

    The accumulation of misfolded proteins in the endoplasmic reticulum (ER) causes ER stress that initiates the unfolded protein response (UPR). UPR activates both adaptive and apoptotic pathways, which contribute differently to disease pathogenesis. To further understand the functional mechanisms of UPR, we identified 12 commonly UPR-upregulated genes by expression microarray analysis. Here, we describe characterization of Armet/MANF, one of the 12 genes whose function was not clear. We demonstrated that the Armet/MANF protein was upregulated by various forms of ER stress in several cell lines as well as by cerebral ischemia of rat. Armet/MANF was localized in the ER and Golgi and was also a secreted protein. Silencing Armet/MANF by siRNA oligos in HeLa cells rendered cells more susceptible to ER stress-induced death, but surprisingly increased cell proliferation and reduced cell size. Overexpression of Armet/MANF inhibited cell proliferation and improved cell viability under glucose-free conditions and tunicamycin treatment. Based on its inhibitory properties for both proliferation and cell death we have demonstrated, Armet is, thus, a novel secreted mediator of the adaptive pathway of UPR

  7. The ER stress inducer DMC enhances TRAIL-induced apoptosis in glioblastoma

    NARCIS (Netherlands)

    van Roosmalen, Ingrid A. M.; Dos Reis, Carlos R; Setroikromo, Rita; Yuvaraj, Saravanan; Joseph, Justin V.; Tepper, Pieter G.; Kruyt, Frank A. E.; Quax, Wim J.

    2014-01-01

    Glioblastoma multiforme (GBM) is the most aggressive malignant brain tumour in humans and is highly resistant to current treatment modalities. We have explored the combined treatment of the endoplasmic reticulum (ER) stress-inducing agent 2,5-dimethyl-celecoxib (DMC) and TNF-related

  8. Calcium Homeostasis and ER Stress in Control of Autophagy in Cancer Cells

    Directory of Open Access Journals (Sweden)

    Elżbieta Kania

    2015-01-01

    Full Text Available Autophagy is a basic catabolic process, serving as an internal engine during responses to various cellular stresses. As regards cancer, autophagy may play a tumor suppressive role by preserving cellular integrity during tumor development and by possible contribution to cell death. However, autophagy may also exert oncogenic effects by promoting tumor cell survival and preventing cell death, for example, upon anticancer treatment. The major factors influencing autophagy are Ca2+ homeostasis perturbation and starvation. Several Ca2+ channels like voltage-gated T- and L-type channels, IP3 receptors, or CRAC are involved in autophagy regulation. Glucose transporters, mainly from GLUT family, which are often upregulated in cancer, are also prominent targets for autophagy induction. Signals from both Ca2+ perturbations and glucose transport blockage might be integrated at UPR and ER stress activation. Molecular pathways such as IRE 1-JNK-Bcl-2, PERK-eIF2α-ATF4, or ATF6-XBP 1-ATG are related to autophagy induced through ER stress. Moreover ER molecular chaperones such as GRP78/BiP and transcription factors like CHOP participate in regulation of ER stress-mediated autophagy. Autophagy modulation might be promising in anticancer therapies; however, it is a context-dependent matter whether inhibition or activation of autophagy leads to tumor cell death.

  9. Shikonin ameliorates isoproterenol (ISO)-induced myocardial damage through suppressing fibrosis, inflammation, apoptosis and ER stress.

    Science.gov (United States)

    Yang, Jun; Wang, Zhao; Chen, Dong-Lin

    2017-09-01

    Shikonin, isolated from the roots of herbal plant Lithospermum erythrorhizon, is a naphthoquinone. It has been reported to exert beneficial anti-inflammatory effects and anti-oxidant properties in various diseases. Isoproterenol (ISO) has been widely used to establish cardiac injury in vivo and in vitro. However, shikonin function in ISO-induced cardiac injury remains uncertain. In our study, we attempted to investigate the efficiency and possible molecular mechanism of shikonin in cardiac injury treatment induced by ISO. In vivo, C57BL6 mice were subcutaneously injected with 5mg/kg ISO to induce heart failure. And mice were given a gavage of shikonin (2 or 4mg/kg/d, for four weeks). Cardiac function, fibrosis indices, inflammation response, apoptosis and endoplasmic reticulum (ER) stress were calculated. Pathological alterations, fibrosis-, inflammation-, apoptosis- and ER stress-related molecules were examined. In ISO-induced cardiac injury, shikonin significantly ameliorated heart function, decreased myocardial fibrosis, suppressed inflammation, attenuated apoptosis and ER stress through impeding collagen accumulation, Toll like receptor 4/nuclear transcription factor κB (TLR4/NF-κB), Caspase-3 and glucose-regulated protein 78 (GRP78) signaling pathways activity, relieving heart failure in vivo. Also, in vitro, shikonin attenuated ISO-induced cardiac muscle cells by reducing fibrosis, inflammation, apoptosis and ER stress. Our findings indicated that shikonin treatment attenuated ISO-induced heart injury, providing an effective therapeutic strategy for heart failure treatment for future. Copyright © 2017. Published by Elsevier Masson SAS.

  10. Feedback regulation on PTEN/AKT pathway by the ER stress kinase PERK mediated by interaction with the Vault complex

    DEFF Research Database (Denmark)

    Zhang, Wei; Neo, Suat Peng; Gunaratne, Jayantha

    2015-01-01

    The high proliferation rate of cancer cells, together with environmental factors such as hypoxia and nutrient deprivation can cause Endoplasmic Reticulum (ER) stress. The protein kinase PERK is an essential mediator in one of the three ER stress response pathways. Genetic and pharmacological inhi...

  11. DON shares a similar mode of action as the ribotoxic stress inducer anisomycin while TBTO shares ER stress patterns with the ER stress inducer Thapsigargin based on comparative gene expression profiling in Jurkat T cells

    NARCIS (Netherlands)

    Schmeits, P.C.J.; Katika, M.R.; Peijnenburg, A.A.C.M.; Loveren, van H.; Hendriksen, P.J.M.

    2014-01-01

    Previously, we studied the effects of deoxynivalenol (DON) and tributyltin oxide (TBTO) on whole genome mRNA expression profiles of human T lymphocyte Jurkat cells. These studies indicated that DON induces ribotoxic stress and both DON and TBTO induced ER stress which resulted into T-cell activation

  12. Calorie-induced ER stress suppresses uroguanylin satiety signaling in diet-induced obesity.

    Science.gov (United States)

    Kim, G W; Lin, J E; Snook, A E; Aing, A S; Merlino, D J; Li, P; Waldman, S A

    2016-05-23

    The uroguanylin-GUCY2C gut-brain axis has emerged as one component regulating feeding, energy homeostasis, body mass and metabolism. Here, we explore a role for this axis in mechanisms underlying diet-induced obesity (DIO). Intestinal uroguanylin expression and secretion, and hypothalamic GUCY2C expression and anorexigenic signaling, were quantified in mice on high-calorie diets for 14 weeks. The role of endoplasmic reticulum (ER) stress in suppressing uroguanylin in DIO was explored using tunicamycin, an inducer of ER stress, and tauroursodeoxycholic acid (TUDCA), a chemical chaperone that inhibits ER stress. The impact of consumed calories on uroguanylin expression was explored by dietary manipulation. The role of uroguanylin in mechanisms underlying obesity was examined using Camk2a-Cre-ER(T2)-Rosa-STOP(loxP/loxP)-Guca2b mice in which tamoxifen induces transgenic hormone expression in brain. DIO suppressed intestinal uroguanylin expression and eliminated its postprandial secretion into the circulation. DIO suppressed uroguanylin through ER stress, an effect mimicked by tunicamycin and blocked by TUDCA. Hormone suppression by DIO reflected consumed calories, rather than the pathophysiological milieu of obesity, as a diet high in calories from carbohydrates suppressed uroguanylin in lean mice, whereas calorie restriction restored uroguanylin in obese mice. However, hypothalamic GUCY2C, enriched in the arcuate nucleus, produced anorexigenic signals mediating satiety upon exogenous agonist administration, and DIO did not impair these responses. Uroguanylin replacement by transgenic expression in brain repaired the hormone insufficiency and reconstituted satiety responses opposing DIO and its associated comorbidities, including visceral adiposity, glucose intolerance and hepatic steatosis. These studies reveal a novel pathophysiological mechanism contributing to obesity in which calorie-induced suppression of intestinal uroguanylin impairs hypothalamic mechanisms

  13. Deficiency in the mitochondrial apoptotic pathway reveals the toxic potential of autophagy under ER stress conditions.

    Science.gov (United States)

    Deegan, Shane; Saveljeva, Svetlana; Logue, Susan E; Pakos-Zebrucka, Karolina; Gupta, Sanjeev; Vandenabeele, Peter; Bertrand, Mathieu J M; Samali, Afshin

    2014-01-01

    Endoplasmic reticulum (ER) stress-induced cell death is normally associated with activation of the mitochondrial apoptotic pathway, which is characterized by CYCS (cytochrome c, somatic) release, apoptosome formation, and caspase activation, resulting in cell death. In this study, we demonstrate that under conditions of ER stress cells devoid of CASP9/caspase-9 or BAX and BAK1, and therefore defective in the mitochondrial apoptotic pathway, still undergo a delayed form of cell death associated with the activation of caspases, therefore revealing the existence of an alternative stress-induced caspase activation pathway. We identified CASP8/caspase-8 as the apical protease in this caspase cascade, and found that knockdown of either of the key autophagic genes, ATG5 or ATG7, impacted on CASP8 activation and cell death induction, highlighting the crucial role of autophagy in the activation of this novel ER stress-induced death pathway. In line with this, we identified a protein complex composed of ATG5, FADD, and pro-CASP8 whose assembly coincides with caspase activation and cell death induction. Together, our results reveal the toxic potential of autophagy in cells undergoing ER stress that are defective in the mitochondrial apoptotic pathway, and suggest a model in which the autophagosome functions as a platform facilitating pro-CASP8 activation. Chemoresistance, a common problem in the treatment of cancer, is frequently caused by the downregulation of key mitochondrial death effector proteins. Alternate stress-induced apoptotic pathways, such as the one described here, may become of particular relevance for tackling the problem of chemoresistance in cancer cells.

  14. The effect of glucose concentration and sodium phenylbutyrate treatment on mitochondrial bioenergetics and ER stress in 3T3-L1 adipocytes.

    Science.gov (United States)

    Tanis, Ross M; Piroli, Gerardo G; Day, Stani D; Frizzell, Norma

    2015-01-01

    While the 3T3-L1 adipocyte model is routinely used for the study of obesity and diabetes, the mitochondrial respiratory profile in normal versus high glucose has not been examined in detail. We matured adipocytes in normal (5mM) or high (30 mM) glucose and insulin and examined the mitochondrial bioenergetics. We also assessed the requirement for the Unfolded Protein Response (UPR) and ER stress under these conditions. Basal respiration was ~1.7-fold greater in adipocytes that had matured in 30 mM glucose; however, their ability to increase oxygen consumption in response to stress was impaired. Adipogenesis proceeded in both normal and high glucose with concomitant activation of the UPR, but only high glucose was associated with increased levels of ER stress and mitochondrial stress as observed by parallel increases in CHOP and protein succination. Treatment of adipocytes with sodium phenylbutyrate relieved mitochondrial stress through a reduction in mitochondrial respiration. Our data suggests that mitochondrial stress, protein succination and ER stress are uniquely linked in adipocytes matured in high glucose. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. A sphingolipid-dependent diffusion barrier confines ER stress to the yeast mother cell

    Science.gov (United States)

    Clay, Lori; Caudron, Fabrice; Denoth-Lippuner, Annina; Boettcher, Barbara; Buvelot Frei, Stéphanie; Snapp, Erik Lee; Barral, Yves

    2014-01-01

    In many cell types, lateral diffusion barriers compartmentalize the plasma membrane and, at least in budding yeast, the endoplasmic reticulum (ER). However, the molecular nature of these barriers, their mode of action and their cellular functions are unclear. Here, we show that misfolded proteins of the ER remain confined into the mother compartment of budding yeast cells. Confinement required the formation of a lateral diffusion barrier in the form of a distinct domain of the ER-membrane at the bud neck, in a septin-, Bud1 GTPase- and sphingolipid-dependent manner. The sphingolipids, but not Bud1, also contributed to barrier formation in the outer membrane of the dividing nucleus. Barrier-dependent confinement of ER stress into the mother cell promoted aging. Together, our data clarify the physical nature of lateral diffusion barriers in the ER and establish the role of such barriers in the asymmetric segregation of proteotoxic misfolded proteins during cell division and aging. DOI: http://dx.doi.org/10.7554/eLife.01883.001 PMID:24843009

  16. Chelerythrine induced cell death through ROS-dependent ER stress in human prostate cancer cells

    Directory of Open Access Journals (Sweden)

    Wu S

    2018-05-01

    Full Text Available Songjiang Wu, Yanying Yang, Feiping Li, Lifu Huang, Zihua Han, Guanfu Wang, Hongyuan Yu, Haiping Li Department of Urology, Enze Hospital of Taizhou Enze Medical Center (Group, Taizhou, China Introduction: Prostate cancer is the most common noncutaneous cancer and the second leading cause of cancer-related mortality worldwide and the third in USA in 2017. Chelerythrine (CHE, a naturalbenzo[c]phenanthridine alkaloid, formerly identified as a protein kinase C inhibitor, has also shown anticancer effect through a number of mechanisms. Herein, effect and mechanism of the CHE-induced apoptosis via reactive oxygen species (ROS-mediated endoplasmic reticulum (ER stress in prostate cancer cells were studied for the first time. Methods: In our present study, we investigated whether CHE induced cell viability decrease, colony formation inhibition, and apoptosis in a dose-dependent manner in PC-3 cells. In addition, we showed that CHE increases intracellular ROS and leads to ROS-dependent ER stress and cell apoptosis. Results: Pre-treatment with N-acetyl cysteine, an ROS scavenger, totally reversed the CHE-induced cancer cell apoptosis as well as ER stress activation, suggesting that the ROS generation was responsible for the anticancer effects of CHE. Conclusion: Taken together, our findings support one of the anticancer mechanisms by which CHE increased ROS accumulation in prostate cancer cells, thereby leading to ER stress and caused intrinsic apoptotic signaling. The study reveals that CHE could be a potential candidate for application in the treatment of prostate cancer. Keywords: chelerythrine, reactive oxygen species, endoplasmic reticulum stress, apoptosis, prostate cancer

  17. Chemical chaperones reduce ER stress and adipose tissue inflammation in high fat diet-induced mouse model of obesity.

    Science.gov (United States)

    Chen, Yaqin; Wu, Zhihong; Zhao, Shuiping; Xiang, Rong

    2016-06-08

    Obesity, which is characteristic by chronic inflammation, is defined as abnormal or excessive fat accumulation in adipose tissues. Endoplasmic reticulum (ER) stress is increased in adipose tissue of obese state and is known to be strongly associated with chronic inflammation. The aim of this study was to investigate the effect of ER stress on adipokine secretion in obese mice and explore the potential mechanisms. In this study, we found high-fat diet induced-obesity contributed to strengthened ER stress and triggered chronic inflammation in adipose tissue. Chemical chaperones, 4-PBA and TUDCA, modified metabolic disorders and decreased the levels of inflammatory cytokines in obese mice fed a high-fat diet. The alleviation of ER stress is in accordance with the decrease of free cholesterol in adipose tissue. Furthermore chemical chaperones suppress NF-κB activity in adipose tissue of obese mice in vivo. In vitro studies showed IKK/NF-κB may be involved in the signal transduction of adipokine secretion dysfunction induced by ER stress. The present study revealed the possibility that inhibition of ER stress may be a novel drug target for metabolic abnormalities associated with obesity. Further studies are now needed to characterize the initial incentive of sustained ER stress in obese.

  18. Curcumin and Curcuma longa L. extract ameliorate lipid accumulation through the regulation of the endoplasmic reticulum redox and ER stress.

    Science.gov (United States)

    Lee, Hwa-Young; Kim, Seung-Wook; Lee, Geum-Hwa; Choi, Min-Kyung; Chung, Han-Wool; Lee, Yong-Chul; Kim, Hyung-Ryong; Kwon, Ho Jeong; Chae, Han-Jung

    2017-07-26

    For this study, we examined the effects of curcumin against acute and chronic stress, paying specific attention to ROS. We also aimed to clarify the differences between acute and chronic stress conditions. We investigated the effects of curcumin against acute stress (once/1 day CCl 4 treatment) and chronic-stress (every other day/4week CCl 4 treatment). Compared with acute stress, in which the antioxidant system functioned properly and aspartate transaminase (AST) and ROS production increased, chronic stress increased AST, alanine aminotransferase (ALT), hepatic enzymes, and ROS more significantly, and the antioxidant system became impaired. We also found that ER-originated ROS accumulated in the chronic model, another difference between the two conditions. ER stress was induced consistently, and oxidative intra-ER protein folding status, representatively PDI, was impaired, especially in chronic stress. The PDI-associated client protein hepatic apoB accumulated with the PDI-binding status in chronic stress, and curcumin recovered the altered ER folding status, regulating ER stress and the resultant hepatic dyslipidemia. Throughout this study, curcumin and curcumin-rich Curcuma longa L. extract promoted recovery from CCl 4 -induced hepatic toxicity in both stress conditions. For both stress-associated hepatic dyslipidemia, curcumin and Curcuma longa L. extract might be recommendable to recover liver activity.

  19. High-intensity training reduces intermittent hypoxia-induced ER stress and myocardial infarct size.

    Science.gov (United States)

    Bourdier, Guillaume; Flore, Patrice; Sanchez, Hervé; Pepin, Jean-Louis; Belaidi, Elise; Arnaud, Claire

    2016-01-15

    Chronic intermittent hypoxia (IH) is described as the major detrimental factor leading to cardiovascular morbimortality in obstructive sleep apnea (OSA) patients. OSA patients exhibit increased infarct size after a myocardial event, and previous animal studies have shown that chronic IH could be the main mechanism. Endoplasmic reticulum (ER) stress plays a major role in the pathophysiology of cardiovascular disease. High-intensity training (HIT) exerts beneficial effects on the cardiovascular system. Thus, we hypothesized that HIT could prevent IH-induced ER stress and the increase in infarct size. Male Wistar rats were exposed to 21 days of IH (21-5% fraction of inspired O2, 60-s cycle, 8 h/day) or normoxia. After 1 wk of IH alone, rats were submitted daily to both IH and HIT (2 × 24 min, 15-30m/min). Rat hearts were either rapidly frozen to evaluate ER stress by Western blot analysis or submitted to an ischemia-reperfusion protocol ex vivo (30 min of global ischemia/120 min of reperfusion). IH induced cardiac proapoptotic ER stress, characterized by increased expression of glucose-regulated protein kinase 78, phosphorylated protein kinase-like ER kinase, activating transcription factor 4, and C/EBP homologous protein. IH-induced myocardial apoptosis was confirmed by increased expression of cleaved caspase-3. These IH-associated proapoptotic alterations were associated with a significant increase in infarct size (35.4 ± 3.2% vs. 22.7 ± 1.7% of ventricles in IH + sedenary and normoxia + sedentary groups, respectively, P < 0.05). HIT prevented both the IH-induced proapoptotic ER stress and increased myocardial infarct size (28.8 ± 3.9% and 21.0 ± 5.1% in IH + HIT and normoxia + HIT groups, respectively, P = 0.28). In conclusion, these findings suggest that HIT could represent a preventive strategy to limit IH-induced myocardial ischemia-reperfusion damages in OSA patients. Copyright © 2016 the American Physiological Society.

  20. Involvement of ER Stress in Dysmyelination of Pelizaeus-Merzbacher Disease with PLP1 Missense Mutations Shown by iPSC-Derived Oligodendrocytes

    Directory of Open Access Journals (Sweden)

    Yuko Numasawa-Kuroiwa

    2014-05-01

    Full Text Available Pelizaeus-Merzbacher disease (PMD is a form of X-linked leukodystrophy caused by mutations in the proteolipid protein 1 (PLP1 gene. Although PLP1 proteins with missense mutations have been shown to accumulate in the rough endoplasmic reticulum (ER in disease model animals and cell lines transfected with mutant PLP1 genes, the exact pathogenetic mechanism of PMD has not previously been clarified. In this study, we established induced pluripotent stem cells (iPSCs from two PMD patients carrying missense mutation and differentiated them into oligodendrocytes in vitro. In the PMD iPSC-derived oligodendrocytes, mislocalization of mutant PLP1 proteins to the ER and an association between increased susceptibility to ER stress and increased numbers of apoptotic oligodendrocytes were observed. Moreover, electron microscopic analysis demonstrated drastically reduced myelin formation accompanied by abnormal ER morphology. Thus, this study demonstrates the involvement of ER stress in pathogenic dysmyelination in the oligodendrocytes of PMD patients with the PLP1 missense mutation.

  1. ER Stress Causes Rapid Loss of Intestinal Epithelial Stemness through Activation of the Unfolded Protein Response

    Directory of Open Access Journals (Sweden)

    Jarom Heijmans

    2013-04-01

    Full Text Available Stem cells generate rapidly dividing transit-amplifying cells that have lost the capacity for self-renewal but cycle for a number of times until they exit the cell cycle and undergo terminal differentiation. We know very little of the type of signals that trigger the earliest steps of stem cell differentiation and mediate a stem cell to transit-amplifying cell transition. We show that in normal intestinal epithelium, endoplasmic reticulum (ER stress and activity of the unfolded protein response (UPR are induced at the transition from stem cell to transit-amplifying cell. Induction of ER stress causes loss of stemness in a Perk-eIF2α-dependent manner. Inhibition of Perk-eIF2α signaling results in stem cell accumulation in organoid culture of primary intestinal epithelium. Our findings show that the UPR plays an important role in the regulation of intestinal epithelial stem cell differentiation.

  2. Dietary gossypol suppressed postprandial TOR signaling and elevated ER stress pathways in turbot (Scophthalmus maximus L.).

    Science.gov (United States)

    Bian, Fuyun; Jiang, Haowen; Man, Mingsan; Mai, Kangsen; Zhou, Huihui; Xu, Wei; He, Gen

    2017-01-01

    Gossypol is known to be a polyphenolic compound toxic to animals. However, its molecular targets are far from fully characterized. To evaluate the physiological and molecular effects of gossypol, we chose turbot (Scophthalmus maximus L.), a carnivorous fish, as our model species. Juvenile turbots (7.83 ± 0.02 g) were fed diets containing gradient levels of gossypol at 0 (G0), 600 (G1), and 1,200 (G2) mg/kg diets for 11 wk. After the feeding trial, fish growth, body protein, and fat contents were significantly reduced in the G2 group compared with those of the G0 group (P TOR) signaling and induced endoplasmic reticulum (ER) stress pathway in both the feeding experiment and cell cultures. Our results demonstrated that gossypol inhibited TOR signaling and elevated ER stress pathways both in vivo and in vitro, thus providing new mechanism of action of gossypol in nutritional physiology. Copyright © 2017 the American Physiological Society.

  3. ER stress responses in the absence of apoptosome: a comparative study in CASP9 proficient vs deficient mouse embryonic fibroblasts.

    Science.gov (United States)

    Deegan, Shane; Saveljeva, Svetlana; Gupta, Sanjeev; MacDonald, David C; Samali, Afshin

    2014-08-29

    Cells respond to endoplasmic reticulum (ER) stress through the unfolded protein response (UPR), autophagy and cell death. In this study we utilized casp9(+/+) and casp9(-/-) MEFs to determine the effect of inhibition of mitochondrial apoptosis pathway on ER stress-induced-cell death, UPR and autophagy. We observed prolonged activation of UPR and autophagy in casp9(-/-) cells as compared with casp9(+/+) MEFs, which displayed transient activation of both pathways. Furthermore we showed that while casp9(-/-) MEFs were resistant to ER stress, prolonged exposure led to the activation of a non-canonical, caspase-mediated mode of cell death. Copyright © 2014 Elsevier Inc. All rights reserved.

  4. Persistent ER stress induces the spliced leader RNA silencing pathway (SLS, leading to programmed cell death in Trypanosoma brucei.

    Directory of Open Access Journals (Sweden)

    Hanoch Goldshmidt

    2010-01-01

    Full Text Available Trypanosomes are parasites that cycle between the insect host (procyclic form and mammalian host (bloodstream form. These parasites lack conventional transcription regulation, including factors that induce the unfolded protein response (UPR. However, they possess a stress response mechanism, the spliced leader RNA silencing (SLS pathway. SLS elicits shut-off of spliced leader RNA (SL RNA transcription by perturbing the binding of the transcription factor tSNAP42 to its cognate promoter, thus eliminating trans-splicing of all mRNAs. Induction of endoplasmic reticulum (ER stress in procyclic trypanosomes elicits changes in the transcriptome similar to those induced by conventional UPR found in other eukaryotes. The mechanism of up-regulation under ER stress is dependent on differential stabilization of mRNAs. The transcriptome changes are accompanied by ER dilation and elevation in the ER chaperone, BiP. Prolonged ER stress induces SLS pathway. RNAi silencing of SEC63, a factor that participates in protein translocation across the ER membrane, or SEC61, the translocation channel, also induces SLS. Silencing of these genes or prolonged ER stress led to programmed cell death (PCD, evident by exposure of phosphatidyl serine, DNA laddering, increase in reactive oxygen species (ROS production, increase in cytoplasmic Ca(2+, and decrease in mitochondrial membrane potential, as well as typical morphological changes observed by transmission electron microscopy (TEM. ER stress response is also induced in the bloodstream form and if the stress persists it leads to SLS. We propose that prolonged ER stress induces SLS, which serves as a unique death pathway, replacing the conventional caspase-mediated PCD observed in higher eukaryotes.

  5. Exploring the cross talk between ER stress and inflammation in age-related macular degeneration.

    Directory of Open Access Journals (Sweden)

    Samira Kheitan

    Full Text Available Increasing evidence demonstrates that inflammation and endoplasmic reticulum (ER stress is implicated in the development and progression of age-related macular degeneration (AMD, a multifactorial neurodegenerative disease. However the cross talk between these cellular mechanisms has not been clearly and fully understood. The present study investigates a possible intersection between ER stress and inflammation in AMD. In this study, we recruited two collections of involved protein markers to retrieve their interaction information from IMEx-curated databases, which are the most well- known protein-protein interaction collections, allowing us to design an intersection network for AMD that is unprecedented. In order to find expression activated subnetworks, we utilized AMD expression profiles in our network. In addition, we studied topological characteristics of the most expressed active subnetworks to identify the hubs. With regard to topological quantifications and expressional activity, we reported a list of the most pivotal hubs which are potentially applicable as probable therapeutic targets. Furthermore, we introduced MAPK signaling pathway as a significantly involved pathway in the association between ER stress and inflammation, leading to promising new directions in discovering AMD formation mechanisms and possible treatments.

  6. Exploring the cross talk between ER stress and inflammation in age-related macular degeneration.

    Science.gov (United States)

    Kheitan, Samira; Minuchehr, Zarrin; Soheili, Zahra-Soheila

    2017-01-01

    Increasing evidence demonstrates that inflammation and endoplasmic reticulum (ER) stress is implicated in the development and progression of age-related macular degeneration (AMD), a multifactorial neurodegenerative disease. However the cross talk between these cellular mechanisms has not been clearly and fully understood. The present study investigates a possible intersection between ER stress and inflammation in AMD. In this study, we recruited two collections of involved protein markers to retrieve their interaction information from IMEx-curated databases, which are the most well- known protein-protein interaction collections, allowing us to design an intersection network for AMD that is unprecedented. In order to find expression activated subnetworks, we utilized AMD expression profiles in our network. In addition, we studied topological characteristics of the most expressed active subnetworks to identify the hubs. With regard to topological quantifications and expressional activity, we reported a list of the most pivotal hubs which are potentially applicable as probable therapeutic targets. Furthermore, we introduced MAPK signaling pathway as a significantly involved pathway in the association between ER stress and inflammation, leading to promising new directions in discovering AMD formation mechanisms and possible treatments.

  7. Protectin DX suppresses hepatic gluconeogenesis through AMPK-HO-1-mediated inhibition of ER stress.

    Science.gov (United States)

    Jung, Tae Woo; Kim, Hyung-Chun; Abd El-Aty, A M; Jeong, Ji Hoon

    2017-06-01

    Several studies have shown that protectins, which are ω-3 fatty acid-derived proresolution mediators, may improve insulin resistance. Recently, protectin DX (PDX) was documented to attenuate insulin resistance by stimulating IL-6 expression in skeletal muscle, thereby regulating hepatic gluconeogenesis. These findings made us investigate the direct effects of PDX on hepatic glucose metabolism in the context of diabetes. In the current study, we show that PDX regulates hepatic gluconeogenesis in a manner distinct from its indirect glucoregulatory activity via IL-6. We found that PDX stimulated AMP-activated protein kinase (AMPK) phosphorylation, thereby inducing heme oxygenase 1 (HO-1) expression. This induction blocked hepatic gluconeogenesis by suppressing endoplasmic reticulum (ER) stress in hepatocytes under hyperlipidemic conditions. These effects were significantly dampened by silencing AMPK or HO-1 expression with small interfering RNA (siRNA). We also demonstrated that administration of PDX to high fat diet (HFD)-fed mice resulted in increased hepatic AMPK phosphorylation and HO-1 expression, whereas hepatic ER stress was substantially attenuated. Furthermore, PDX treatment suppressed the expression of gluconeogenic genes, thereby decreasing blood glucose levels in HFD-fed mice. In conclusion, our findings suggest that PDX inhibits hepatic gluconeogenesis via AMPK-HO-1-dependent suppression of ER stress. Thus, PDX may be an effective therapeutic target for the treatment of insulin resistance and type 2 diabetes through the regulation of hepatic gluconeogenesis. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Link mellem autisme og MFR-vaccine er dårlig videnskab

    DEFF Research Database (Denmark)

    Ramsøy, Thomas Z.

    2010-01-01

    En meget omdiskuteret frygt for en sammenhæng mellem MFR-vaccinen og autisme er for nylig manet til jorden......En meget omdiskuteret frygt for en sammenhæng mellem MFR-vaccinen og autisme er for nylig manet til jorden...

  9. Ursodeoxycholic Acid (UDCA) Exerts Anti-Atherogenic Effects by Inhibiting Endoplasmic Reticulum (ER) Stress Induced by Disturbed Flow.

    Science.gov (United States)

    Chung, Jihwa; Kim, Kyoung Hwa; Lee, Seok Cheol; An, Shung Hyun; Kwon, Kihwan

    2015-10-01

    Disturbed blood flow with low-oscillatory shear stress (OSS) is a predominant atherogenic factor leading to dysfunctional endothelial cells (ECs). Recently, it was found that disturbed flow can directly induce endoplasmic reticulum (ER) stress in ECs, thereby playing a critical role in the development and progression of atherosclerosis. Ursodeoxycholic acid (UDCA), a naturally occurring bile acid, has long been used to treat chronic cholestatic liver disease and is known to alleviate endoplasmic reticulum (ER) stress at the cellular level. However, its role in atherosclerosis remains unexplored. In this study, we demonstrated the anti-atherogenic activity of UDCA via inhibition of disturbed flow-induced ER stress in atherosclerosis. UDCA effectively reduced ER stress, resulting in a reduction in expression of X-box binding protein-1 (XBP-1) and CEBP-homologous protein (CHOP) in ECs. UDCA also inhibits the disturbed flow-induced inflammatory responses such as increases in adhesion molecules, monocyte adhesion to ECs, and apoptosis of ECs. In a mouse model of disturbed flow-induced atherosclerosis, UDCA inhibits atheromatous plaque formation through the alleviation of ER stress and a decrease in adhesion molecules. Taken together, our results revealed that UDCA exerts anti-atherogenic activity in disturbed flow-induced atherosclerosis by inhibiting ER stress and the inflammatory response. This study suggests that UDCA may be a therapeutic agent for prevention or treatment of atherosclerosis.

  10. β-cell dysfunction due to increased ER stress in a stem cell model of Wolfram syndrome.

    Science.gov (United States)

    Shang, Linshan; Hua, Haiqing; Foo, Kylie; Martinez, Hector; Watanabe, Kazuhisa; Zimmer, Matthew; Kahler, David J; Freeby, Matthew; Chung, Wendy; LeDuc, Charles; Goland, Robin; Leibel, Rudolph L; Egli, Dieter

    2014-03-01

    Wolfram syndrome is an autosomal recessive disorder caused by mutations in WFS1 and is characterized by insulin-dependent diabetes mellitus, optic atrophy, and deafness. To investigate the cause of β-cell failure, we used induced pluripotent stem cells to create insulin-producing cells from individuals with Wolfram syndrome. WFS1-deficient β-cells showed increased levels of endoplasmic reticulum (ER) stress molecules and decreased insulin content. Upon exposure to experimental ER stress, Wolfram β-cells showed impaired insulin processing and failed to increase insulin secretion in response to glucose and other secretagogues. Importantly, 4-phenyl butyric acid, a chemical protein folding and trafficking chaperone, restored normal insulin synthesis and the ability to upregulate insulin secretion. These studies show that ER stress plays a central role in β-cell failure in Wolfram syndrome and indicate that chemical chaperones might have therapeutic relevance under conditions of ER stress in Wolfram syndrome and other forms of diabetes.

  11. The ER stress-mediated mitochondrial apoptotic pathway and MAPKs modulate tachypacing-induced apoptosis in HL-1 atrial myocytes.

    Directory of Open Access Journals (Sweden)

    Jiaojiao Shi

    Full Text Available Cell apoptosis is a contributing factor in the initiation, progression and relapse of atrial fibrillation (AF, a life-threatening illness accompanied with stroke and heart failure. However, the regulatory cascade of apoptosis is intricate and remains unidentified, especially in the setting of AF. The aim of this study was to explore the roles of endoplasmic reticulum (ER stress, mitochondrial apoptotic pathway (MAP, mitogen-activated protein kinases (MAPKs, and their cross-talking in tachypacing-induced apoptosis.HL-1 cells were cultured in the presence of tachypacing for 24 h to simulate atrial tachycardia remodeling. Results showed that tachypacing reduced cell viability measured by the cell counting kit-8, dissipated mitochondrial membrane potential detected by JC-1 staining and resulted in approximately 50% apoptosis examined by Hoechst staining and annexin V/propidium iodide staining. In addition, the proteins involved in ER stress, MAP and MAPKs were universally up-regulated or activated via phosphorylation, as confirmed by western blotting; and reversely silencing of ER stress, caspase-3 (the ultimate executor of MAP and MAPKs with specific inhibitors prior to pacing partially alleviated apoptosis. An inhibitor of ER stress was applied to further investigate the responses of mitochondria and MAPKs to ER stress, and results indicated that suppression of ER stress comprehensively but incompletely attenuated the activation of MAP and MAPKs aroused by tachypacing, with the exception of ERK1/2, one branch of MAPKs.Our study suggested tachypacing-induced apoptosis is regulated by ER stress-mediated MAP and MAPKs. Thus, the above three components are all promising anti-apoptotic targets in AF patients and ER stress appears to play a dominant role due to its comprehensive effects.

  12. ER-tethered Transcription Factor CREBH Regulates Hepatic Lipogenesis, Fatty Acid Oxidation, and Lipolysis upon Metabolic Stress

    OpenAIRE

    Zhang, Chunbin; Wang, Guohui; Zheng, Ze; Maddipati, Krishna Rao; Zhang, Xuebao; Dyson, Gregory; Williams, Paul; Duncan, Stephen A.; Kaufman, Randal J.; Zhang, Kezhong

    2012-01-01

    CREBH is a liver-specific transcription factor that is localized in the endoplasmic reticulum (ER) membrane. Our previous work demonstrated that CREBH is activated by ER stress or inflammatory stimuli to induce an acute-phase hepatic inflammation. Here we demonstrate that CREBH is a key metabolic regulator of hepatic lipogenesis, fatty acid (FA) oxidation, and lipolysis under metabolic stress. Saturated FA, insulin signals, or an atherogenic high-fat diet can induce CREBH activation in the li...

  13. Pharmacologic inhibition of S1P attenuates ATF6 expression, causes ER stress and contributes to apoptotic cell death.

    Science.gov (United States)

    Lebeau, Paul; Byun, Jae Hyun; Yousof, Tamana; Austin, Richard C

    2018-04-22

    Mammalian cells express unique transcription factors embedded in the endoplasmic reticulum (ER) membrane, such as the sterol regulatory element-binding proteins (SREBPs), that promote de novo lipogenesis. Upon their release from the ER, the SREBPs require proteolytic activation in the Golgi by site-1-protease (S1P). As such, inhibition of S1P, using compounds such as PF-429242 (PF), reduces cholesterol synthesis and may represent a new strategy for the management of dyslipidemia. In addition to the SREBPs, the unfolded protein response (UPR) transducer, known as the activating transcription factor 6 (ATF6), is another ER membrane-bound transcription factor that requires S1P-mediated activation. ATF6 regulates ER protein folding capacity by promoting the expression of ER chaperones such as the 78-kDa glucose-regulated protein (GRP78). ER-resident chaperones like GRP78 prevent and/or resolve ER polypeptide accumulation and subsequent ER stress-induced UPR activation by folding nascent polypeptides. Here we report that pharmacological inhibition of S1P reduced the expression of ATF6 and GRP78 and induced the activation of UPR transducers inositol-requiring enzyme-1α (IRE1α) and protein kinase RNA-like ER kinase (PERK). As a consequence, S1P inhibition also increased the susceptibility of cells to ER stress-induced cell death. Our findings suggest that S1P plays a crucial role in the regulation of ER folding capacity and also identifies a compensatory cross-talk between UPR transducers in order to maintain adequate ER chaperone expression and activity. Copyright © 2018. Published by Elsevier Inc.

  14. An ADS-B derived ATC linked ER System for NextGen Safety, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — The Phase I verified ADS-B-ER feasibility-based on compatibility with the ADS-B operational standards and design specs, bandwidth and the iPAD EFB capability for...

  15. ER Stress Inhibits Liver Fatty Acid Oxidation while Unmitigated Stress Leads to Anorexia-Induced Lipolysis and Both Liver and Kidney Steatosis

    Directory of Open Access Journals (Sweden)

    Diane DeZwaan-McCabe

    2017-05-01

    Full Text Available The unfolded protein response (UPR, induced by endoplasmic reticulum (ER stress, regulates the expression of factors that restore protein folding homeostasis. However, in the liver and kidney, ER stress also leads to lipid accumulation, accompanied at least in the liver by transcriptional suppression of metabolic genes. The mechanisms of this accumulation, including which pathways contribute to the phenotype in each organ, are unclear. We combined gene expression profiling, biochemical assays, and untargeted lipidomics to understand the basis of stress-dependent lipid accumulation, taking advantage of enhanced hepatic and renal steatosis in mice lacking the ER stress sensor ATF6α. We found that impaired fatty acid oxidation contributed to the early development of steatosis in the liver but not the kidney, while anorexia-induced lipolysis promoted late triglyceride and free fatty acid accumulation in both organs. These findings provide evidence for both direct and indirect regulation of peripheral metabolism by ER stress.

  16. Increased reactive oxygen species levels cause ER stress and cytotoxicity in andrographolide treated colon cancer cells.

    Science.gov (United States)

    Banerjee, Aditi; Banerjee, Vivekjyoti; Czinn, Steven; Blanchard, Thomas

    2017-04-18

    Chemotherapy continues to play an essential role in the management of many cancers including colon cancer, the third leading cause of death due to cancer in the United States. Many naturally occurring plant compounds have been demonstrated to possess anti-cancer cell activity and have the potential to supplement existing chemotherapy strategies. The plant metabolite andrographolide induces cell death in cancer cells and apoptosis is dependent upon the induction of endoplasmic reticulum stress (ER stress) leading to the unfolded protein response (UPR). The goal of the present study was to determine the mechanism by which andrographolide induces ER stress and to further evaluate its role in promoting cell death pathways. The T84 and COLO 205 cancer cell lines were used to demonstrate that andrographolide induces increased ROS levels, corresponding anti-oxidant response molecules, and reduced mitochondrial membrane potential. No increases in ROS levels were detected in control colon fibroblast cells. Andrographolide-induced cell death, UPR signaling, and CHOP, Bax, and caspase 3 apoptosis elements were all inhibited in the presence of the ROS scavenger NAC. Additionally, andrographolide-induced suppression of cyclins B1 and D1 were also reversed in the presence of NAC. Finally, Akt phosphorylation and phospho-mTOR levels that are normally suppressed by andrographolide were also expressed at normal levels in the absence of ROS. These data demonstrate that andrographolide induces ER stress leading to apoptosis through the induction of ROS and that elevated ROS also play an important role in down-regulating cell cycle progression and cell survival pathways as well.

  17. AAV delivery of GRP78/BiP promotes adaptation of human RPE cell to ER stress.

    Science.gov (United States)

    Ghaderi, Shima; Ahmadian, Shahin; Soheili, Zahra-Soheila; Ahmadieh, Hamid; Samiei, Shahram; Kheitan, Samira; Pirmardan, Ehsan R

    2018-02-01

    Adeno associated virus (AAV)-mediated gene delivery of GRP78 (78 kDa glucose-regulated protein) attenuates the condition of endoplasmic reticulum (ER) stress and prevents apoptotic loss of photoreceptors in Retinitis pigmentosa (RP) rats. In the current study we overexpressed Grp78 with the help of AAV-2 in primary human retinal pigmented epithelium (hRPE) cell cultures and examined its effect on cell response to ER stress. The purpose of this work was studying potential stimulating effect of GRP78 on adaptation/pro-survival of hRPE cells under ER stress, as an in vitro model for RPE degeneration. To investigate the effect of Grp78 overexpression on unfolded protein response (UPR) markers under ER stress, hRPE primary cultures were transduced by recombinant virus rAAV/Grp78, and treated with ER stressor drug, tunicamycin. Expression changes of four UPR markers including GRP78, PERK, ATF6α, and GADD153/CHOP, were assessed by real-time PCR and western blotting. We found that GRP78 has a great contribution in modulation of UPR markers to favor adaptive response in ER-stressed hRPE cells. In fact, GRP78 overexpression affected adaptation and apoptotic phases of early UPR, through enhancement of two master regulators/ER stress sensors (PERK and ATF6α) and down-regulation of a key pro-apoptotic cascade activator (GADD153/CHOP). Together these findings demonstrate the promoting effect of GRP78 on adaptation/pro-survival of hRPE cells under ER stress. This protein with anti-apoptotic actions in the early UPR and important role in cell fate regulation, can be recruited as a useful candidate for future investigations of RPE degenerative diseases. © 2017 Wiley Periodicals, Inc.

  18. Altered methylation and expression of ER-associated degradation factors in long-term alcohol and constitutive ER stress-induced murine hepatic tumors

    Directory of Open Access Journals (Sweden)

    Hui eHan

    2013-10-01

    Full Text Available Mortality from liver cancer in humans is increasingly attributable to heavy or long-term alcohol consumption. The mechanisms by which alcohol exerts its carcinogenic effect are not well understood. In this study, the role of alcohol-induced endoplasmic reticulum (ER stress response in liver cancer development was investigated using an animal model with a liver knockout of the chaperone BiP and under constitutive hepatic ER stress. Long-term alcohol and high fat diet (HFD feeding resulted in higher levels of serum alanine aminotransferase (ALT, impaired ER stress response, and higher incidence of liver tumor in older (aged 16 months knockout females than in either middle-aged (6 months knockouts or older (aged 16 months wild type females. In the older knockout females, stronger effects of the alcohol on methylation of CpG islands at promoter regions of genes involved in the ER associated degradation (ERAD were also detected. Altered expression of ERAD factors including derlin 3, Creld2 (cysteine-rich with EGF-like domains 2, Herpud1 (ubiquitin-like domain member, Wfs1 (wolfram syndrome gene, and Yod1 (deubiquinating enzyme 1 was co-present with decreased proteasome activities, increased estrogen receptor alpha variant (ERa36, and enhanced phosphorylations of ERK1/2 (extracellular signal-regulated protein kinases 1 and 2 and STAT3 (the signal transducers and activators of transcription in the older knockout female fed alcohol. Our results suggest that long-term alcohol consumption and ageing may promote liver tumorigenesis in females through interfering with DNA methylation and expression of genes involved in the ER associated degradation.

  19. Implication of altered ubiquitin-proteasome system and ER stress in the muscle atrophy of diabetic rats.

    Science.gov (United States)

    Reddy, S Sreenivasa; Shruthi, Karnam; Prabhakar, Y Konda; Sailaja, Gummadi; Reddy, G Bhanuprakash

    2018-02-01

    Skeletal muscle is adversely affected in type-1 diabetes, and excessively stimulated ubiquitin-proteasome system (UPS) was found to be a leading cause of muscle wasting or atrophy. The role of endoplasmic reticulum (ER) stress in muscle atrophy of type-1 diabetes is not known. Hence, we investigated the role of UPS and ER stress in the muscle atrophy of chronic diabetes rat model. Diabetes was induced with streptozotocin (STZ) in male Sprague-Dawley rats and were sacrificed 2- and 4-months thereafter to collect gastrocnemius muscle. In another experiment, 2-months post-STZ-injection diabetic rats were treated with MG132, a proteasome inhibitor, for the next 2-months and gastrocnemius muscle was collected. The muscle fiber cross-sectional area was diminished in diabetic rats. The expression of UPS components: E1, MURF1, TRIM72, UCHL1, UCHL5, ubiquitinated proteins, and proteasome activity were elevated in the diabetic rats indicating activated UPS. Altered expression of ER-associated degradation (ERAD) components and increased ER stress markers were detected in 4-months diabetic rats. Proteasome inhibition by MG132 alleviated alterations in the UPS and ER stress in diabetic rat muscle. Increased UPS activity and ER stress were implicated in the muscle atrophy of diabetic rats and proteasome inhibition exhibited beneficiary outcome. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Involvement of ER stress and activation of apoptotic pathways in fisetin induced cytotoxicity in human melanoma.

    Science.gov (United States)

    Syed, Deeba N; Lall, Rahul K; Chamcheu, Jean Christopher; Haidar, Omar; Mukhtar, Hasan

    2014-12-01

    The prognosis of malignant melanoma remains poor in spite of recent advances in therapeutic strategies for the deadly disease. Fisetin, a dietary flavonoid is currently being investigated for its growth inhibitory properties in various cancer models. We previously showed that fisetin inhibited melanoma growth in vitro and in vivo. Here, we evaluated the molecular basis of fisetin induced cytotoxicity in metastatic human melanoma cells. Fisetin treatment induced endoplasmic reticulum (ER) stress in highly aggressive A375 and 451Lu human melanoma cells, as revealed by up-regulation of ER stress markers including IRE1α, XBP1s, ATF4 and GRP78. Time course analysis indicated that the ER stress was associated with activation of the extrinsic and intrinsic apoptotic pathways. Fisetin treated 2-D melanoma cultures displayed autophagic response concomitant with induction of apoptosis. Prolonged treatment (16days) with fisetin in a 3-D reconstituted melanoma model resulted in inhibition of melanoma progression with significant apoptosis, as evidenced by increased staining of cleaved Caspase-3 in the treated constructs. However, no difference in the expression of autophagic marker LC-3 was noted between treated and control groups. Fisetin treatment to 2-D melanoma cultures resulted in phosphorylation and activation of the multifunctional AMP-activated protein kinase (AMPK) involved in the regulation of diverse cellular processes, including autophagy and apoptosis. Silencing of AMPK failed to prevent cell death indicating that fisetin induced cytotoxicity is mediated through both AMPK-dependent and -independent mechanisms. Taken together, our studies confirm apoptosis as the primary mechanism through which fisetin inhibits melanoma cell growth and that activation of both extrinsic and intrinsic pathways contributes to fisetin induced cytotoxicity.

  1. Bicyclol attenuates tetracycline-induced fatty liver associated with inhibition of hepatic ER stress and apoptosis in mice.

    Science.gov (United States)

    Yao, Xiao-Min; Li, Yue; Li, Hong-Wei; Cheng, Xiao-Yan; Lin, Ai-Bin; Qu, Jun-Ge

    2016-01-01

    Endoplasmic reticulum (ER) stress is known to be involved in the development of several metabolic disorders, including non-alcoholic fatty liver disease (NAFLD). Tetracycline can cause hepatic steatosis, and ER stress may be involved in tetracycline-induced fatty liver. Our previous study showed that bicyclol has been proven to protect against tetracycline-induced fatty liver in mice, and ER stress may also be involved in bicyclol's hepatoprotective effect. Therefore, this study was performed to investigate the underlying mechanisms associated with ER stress and apoptosis, by which bicyclol attenuated tetracycline-induced fatty liver in mice. Bicyclol (300 mg/kg) was given to mice by gavage 3 times. Tetracycline (200 mg/kg, intraperitoneally) was injected at 1 h after the last dose of bicyclol. At 6 h and 24 h after single dose of tetracycline injection, serum ALT, AST, TG, CHO and hepatic histopathological examinations were performed to evaluate liver injuries. Hepatic steatosis was assessed by the accumulation of hepatic TG and CHO. Moreover, hepatic apoptosis and ER stress related markers were determined by TUNEL, real-time PCR, and western blot. As a result, bicyclol significantly protected against tetracycline-induced fatty liver as evidenced by the decrease of elevated serum transaminases and hepatic triglyceride, and the attenuation of histopathological changes in mice. In addition, bicyclol remarkably alleviated hepatic apoptosis and the gene expression of caspase-3, and increased the gene expression of XIAP. The gene expressions of ER stress-related markers, including CHOP, GRP78, IRE-1α, and ATF6, which were downregulated by bicyclol pretreatment in tetracycline-injected mice. These results suggested that bicyclol protected tetracycline-induced fatty liver partly due to its ability of anti-apoptosis associated with ER stress.

  2. 2-Chlorohexadecanoic acid induces ER stress and mitochondrial dysfunction in brain microvascular endothelial cells

    Directory of Open Access Journals (Sweden)

    Eva Bernhart

    2018-05-01

    Full Text Available Peripheral leukocytes induce blood-brain barrier (BBB dysfunction through the release of cytotoxic mediators. These include hypochlorous acid (HOCl that is formed via the myeloperoxidase-H2O2-chloride system of activated phagocytes. HOCl targets the endogenous pool of ether phospholipids (plasmalogens generating chlorinated inflammatory mediators like e.g. 2-chlorohexadecanal and its conversion product 2-chlorohexadecanoic acid (2-ClHA. In the cerebrovasculature these compounds inflict damage to brain microvascular endothelial cells (BMVEC that form the morphological basis of the BBB. To follow subcellular trafficking of 2-ClHA we synthesized a ‘clickable’ alkyne derivative (2-ClHyA that phenocopied the biological activity of the parent compound. Confocal and superresolution structured illumination microscopy revealed accumulation of 2-ClHyA in the endoplasmic reticulum (ER and mitochondria of human BMVEC (hCMEC/D3 cell line. 2-ClHA and its alkyne analogue interfered with protein palmitoylation, induced ER-stress markers, reduced the ER ATP content, and activated transcription and secretion of interleukin (IL−6 as well as IL-8. 2-ClHA disrupted the mitochondrial membrane potential and induced procaspase-3 and PARP cleavage. The protein kinase R-like ER kinase (PERK inhibitor GSK2606414 suppressed 2-ClHA-mediated activating transcription factor 4 synthesis and IL-6/8 secretion, but showed no effect on endothelial barrier dysfunction and cleavage of procaspase-3. Our data indicate that 2-ClHA induces potent lipotoxic responses in brain endothelial cells and could have implications in inflammation-induced BBB dysfunction.

  3. Aberrant accumulation of the diabetes autoantigen GAD65 in Golgi membranes in conditions of ER stress and autoimmunity

    DEFF Research Database (Denmark)

    Phelps, Edward A; Cianciaruso, Chiara; Michael, Iacovos P

    2016-01-01

    Pancreatic islet beta cells are particularly susceptible to endoplasmic reticulum (ER) stress, which is implicated in beta cell dysfunction and loss during the pathogenesis of type 1 diabetes (T1D). The peripheral membrane protein GAD65 is an autoantigen in human T1D. GAD65 synthesizes GABA......, an important autocrine and paracrine signaling molecule and a survival factor in islets. We show that ER stress in primary beta cells perturbs the palmitoylation cycle controlling GAD65 endomembrane distribution, resulting in aberrant accumulation of the palmitoylated form in trans-Golgi membranes...... release from stressed and/or damaged beta cells, triggering autoimmunity....

  4. Involvement of TR3/Nur77 translocation to the endoplasmic reticulum in ER stress-induced apoptosis

    International Nuclear Information System (INIS)

    Liang Bin; Song Xuhong; Liu Gefei; Li Rui; Xie Jianping; Xiao Lifeng; Du Mudan; Zhang Qiaoxia; Xu Xiaoyuan; Gan Xueqiong; Huang Dongyang

    2007-01-01

    Nuclear orphan receptor TR3/Nur77/NGFI-B is a novel apoptotic effector protein that initiates apoptosis largely by translocating from the nucleus to the mitochondria, causing the release of cytochrome c. However, it is possible that TR3 translocates to other organelles. The present study was designed to determine the intracellular localization of TR3 following CD437-induced nucleocytoplasmic translocation and the mechanisms involved in TR3-induced apoptosis. In human neuroblastoma SK-N-SH cells and human esophageal squamous carcinoma EC109 and EC9706 cells, 5 μM CD437 induced translocation of TR3 to the endoplasmic reticulum (ER). This distribution was confirmed by immunofluorescence analysis, subcellular fractionation analysis and coimmunoprecipitation analysis. The translocated TR3 interacted with ER-targeting Bcl-2; initiated an early release of Ca 2+ from ER; resulted in ER stress and induced apoptosis through ER-specific caspase-4 activation, together with induction of mitochondrial stress and subsequent activation of caspase-9. Our results identified a novel distribution of TR3 in the ER and defined two parallel mitochondrial- and ER-based pathways that ultimately result in apoptotic cell death

  5. Sirt3-Mediated Autophagy Contributes to Resveratrol-Induced Protection against ER Stress in HT22 Cells

    Directory of Open Access Journals (Sweden)

    Wen-Jun Yan

    2018-02-01

    Full Text Available Endoplasmic reticulum (ER stress occurring in stringent conditions is critically involved in neuronal survival and death. Resveratrol is a non-flavonoid polyphenol that has neuroprotective effects against many neurological disorders. Here, we investigated the potential protective effects of resveratrol in an in vitro ER stress model mimicked by tunicamycin (TM treatment in neuronal HT22 cells. We found that TM dose-dependently decreased cell viability and increased apoptosis, which were both significantly attenuated by resveratrol treatment. Resveratrol markedly reduced the expression or activation of ER stress-associated factors, including GRP78, CHOP, and caspase-12. The results of immunocytochemistry and western blot showed that resveratrol promoted autophagy in TM-treated cells, as evidenced by increased LC3II puncta number, bcelin1 expression and LC3II/LC3I ratio. Pretreatment with the autophagy inhibitor chloroquine could reduce the protective effects of resveratrol. In addition, the expression of Sirt3 protein and its downstream enzyme activities were significantly increased in resveratrol-treated HT22 cells. To confirm the involvement of Sirt3-mediated mechanisms, siRNA transfection was used to knockdown Sirt3 expression in vitro. The results showed that downregulation of Sirt3 could partially prevented the autophagy and protection induced by resveratrol after TM treatment. Our study demonstrates a pivotal role of Sirt3-mediated autophagy in mediating resveratrol-induced protection against ER stress in vitro, and suggests the therapeutic values of resveratrol in ER stress-associated neuronal injury conditions.

  6. Alcohol Alert: Link Between Stress and Alcohol

    Science.gov (United States)

    ... patients to better address how stress affects their motivation to drink. Early screening also is vital. For ... C.; Hong, K.A.; et al Enhanced negative emotion and alcohol craving, and altered physiological responses following ...

  7. Morbillivirus glycoprotein expression induces ER stress, alters Ca2+ homeostasis and results in the release of vasostatin.

    Directory of Open Access Journals (Sweden)

    Jean-Marc Brunner

    Full Text Available Although the pathology of Morbillivirus in the central nervous system (CNS is well described, the molecular basis of neurodegenerative events still remains poorly understood. As a model to explore Morbillivirus-mediated CNS dysfunctions, we used canine distemper virus (CDV that we inoculated into two different cell systems: a monkey cell line (Vero and rat primary hippocampal neurons. Importantly, the recombinant CDV used in these studies not only efficiently infects both cell types but recapitulates the uncommon, non-cytolytic cell-to-cell spread mediated by virulent CDVs in brain of dogs. Here, we demonstrated that both CDV surface glycoproteins (F and H markedly accumulated in the endoplasmic reticulum (ER. This accumulation triggered an ER stress, characterized by increased expression of the ER resident chaperon calnexin and the proapoptotic transcription factor CHOP/GADD 153. The expression of calreticulin (CRT, another ER resident chaperon critically involved in the response to misfolded proteins and in Ca(2+ homeostasis, was also upregulated. Transient expression of recombinant CDV F and H surface glycoproteins in Vero cells and primary hippocampal neurons further confirmed a correlation between their accumulation in the ER, CRT upregulation, ER stress and disruption of ER Ca(2+ homeostasis. Furthermore, CDV infection induced CRT fragmentation with re-localisation of a CRT amino-terminal fragment, also known as vasostatin, on the surface of infected and neighbouring non-infected cells. Altogether, these results suggest that ER stress, CRT fragmentation and re-localization on the cell surface may contribute to cytotoxic effects and ensuing cell dysfunctions triggered by Morbillivirus, a mechanism that might potentially be relevant for other neurotropic viruses.

  8. Spliced leader RNA silencing (SLS - a programmed cell death pathway in Trypanosoma brucei that is induced upon ER stress

    Directory of Open Access Journals (Sweden)

    Michaeli Shulamit

    2012-05-01

    Full Text Available Abstract Trypanosoma brucei is the causative agent of African sleeping sickness. The parasite cycles between its insect (procyclic form and mammalian hosts (bloodstream form. Trypanosomes lack conventional transcription regulation, and their genes are transcribed in polycistronic units that are processed by trans-splicing and polyadenylation. In trans-splicing, which is essential for processing of each mRNA, an exon, the spliced leader (SL is added to all mRNAs from a small RNA, the SL RNA. Trypanosomes lack the machinery for the unfolded protein response (UPR, which in other eukaryotes is induced under endoplasmic reticulum (ER stress. Trypanosomes respond to such stress by changing the stability of mRNAs, which are essential for coping with the stress. However, under severe ER stress that is induced by blocking translocation of proteins to the ER, treatment of cells with chemicals that induce misfolding in the ER, or extreme pH, trypanosomes elicit the spliced leader silencing (SLS pathway. In SLS, the transcription of the SL RNA gene is extinguished, and tSNAP42, a specific SL RNA transcription factor, fails to bind to its cognate promoter. SLS leads to complete shut-off of trans-splicing. In this review, I discuss the UPR in mammals and compare it to the ER stress response in T. brucei leading to SLS. I summarize the evidence supporting the notion that SLS is a programmed cell death (PCD pathway that is utilized by the parasites to substitute for the apoptosis observed in higher eukaryotes under prolonged ER stress. I present the hypothesis that SLS evolved to expedite the death process, and rapidly remove from the population unfit parasites that, by elimination via SLS, cause minimal damage to the parasite population.

  9. Apoptosis-linked Gene-2 (ALG-2)/Sec31 Interactions Regulate Endoplasmic Reticulum (ER)-to-Golgi Transport

    Science.gov (United States)

    Helm, Jared R.; Bentley, Marvin; Thorsen, Kevin D.; Wang, Ting; Foltz, Lauren; Oorschot, Viola; Klumperman, Judith; Hay, Jesse C.

    2014-01-01

    Luminal calcium released from secretory organelles has been suggested to play a regulatory role in vesicle transport at several steps in the secretory pathway; however, its functional roles and effector pathways have not been elucidated. Here we demonstrate for the first time that specific luminal calcium depletion leads to a significant decrease in endoplasmic reticulum (ER)-to-Golgi transport rates in intact cells. Ultrastructural analysis revealed that luminal calcium depletion is accompanied by increased accumulation of intermediate compartment proteins in COPII buds and clusters of unfused COPII vesicles at ER exit sites. Furthermore, we present several lines of evidence suggesting that luminal calcium affected transport at least in part through calcium-dependent interactions between apoptosis-linked gene-2 (ALG-2) and the Sec31A proline-rich region: 1) targeted disruption of ALG-2/Sec31A interactions caused severe defects in ER-to-Golgi transport in intact cells; 2) effects of luminal calcium and ALG-2/Sec31A interactions on transport mutually required each other; and 3) Sec31A function in transport required luminal calcium. Morphological phenotypes of disrupted ALG-2/Sec31A interactions were characterized. We found that ALG-2/Sec31A interactions were not required for the localization of Sec31A to ER exit sites per se but appeared to acutely regulate the stability and trafficking of the cargo receptor p24 and the distribution of the vesicle tether protein p115. These results represent the first outline of a mechanism that connects luminal calcium to specific protein interactions regulating vesicle trafficking machinery. PMID:25006245

  10. Spontaneous nonalcoholic fatty liver disease and ER stress in Sidt2 deficiency mice

    International Nuclear Information System (INIS)

    Gao, Jialin; Zhang, Yao; Yu, Cui; Tan, Fengbiao; Wang, Lizhuo

    2016-01-01

    Sidt2 is a newly discovered lysosomal membrane protein that is closely related to glucose metabolism. In the present study, we found that Sidt2 is also closely related to lipid metabolism. Gradual increases in serum triglyceride (TG) and free fatty acid, as well as elevated aspartate transaminase and alanine transaminase levels were observed in Sidt2"−"/"− mice fed a normal diet from the age of 3 months, suggesting the presence of lipid metabolism disorders and impaired liver function in these mice. In the liver slices of 6-month-old Sidt2"−"/"− mice, there were obvious fat degeneration and inflammatory changes. Almost all of the liver cells demonstrated different levels of lipid droplet accumulation and cell swelling, and some of the cells demonstrated balloon-like changes. Infiltration of inflammatory cells was observed in the portal area and hepatic lobule. Electron microscopy showed that macrophages tended to be attached to the endothelial cells, and a large number of lipid droplets were present in the liver cells. Oil red O staining showed that there were significantly increased number of deep straining particles in the liver cells of Sidt2"−"/"− mice, and the TG content in liver tissue was also significantly increased. Detection of key genes and proteins related to fat synthesis showed that mRNA and protein levels of the SREBP1c in the liver of Sidt2"−"/"− mice were significantly elevated, and the downstream genes acetyl-CoA carboxylase, fatty acid synthase, and mitochondrial glycerol 3-phosphate acyltransferase were significantly upregulated. In addition, there was severe endoplasmic reticulum stress (ERS) in the liver of Sidt2"−"/"− mice, which had significantly increased levels of markers specific for unfolded protein response activation, Grp78 and CHOP, as well as significant elevation of downstream p-PERK, p-eIF2a, p-IRE1a, along with ER damage. These results suggest that Sidt2"−"/"− mice had spontaneous nonalcoholic fatty liver

  11. Spontaneous nonalcoholic fatty liver disease and ER stress in Sidt2 deficiency mice

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Jialin [Department of Endocrinology and Genetic Metabolism, Yijishan Hospital of Wannan Medical College, Wuhu, 241002 (China); Anhui Province Key Laboratory of Biological Macro-molecules Research, Wannan Medical College, Wuhu, 241001 (China); Zhang, Yao [Anhui Province Key Laboratory of Biological Macro-molecules Research, Wannan Medical College, Wuhu, 241001 (China); Department of Biochemistry and Molecular Biology, Wannan Medical Collage, Wuhu, 241002 (China); Yu, Cui [Department of Endocrinology and Genetic Metabolism, Yijishan Hospital of Wannan Medical College, Wuhu, 241002 (China); Anhui Province Key Laboratory of Biological Macro-molecules Research, Wannan Medical College, Wuhu, 241001 (China); Tan, Fengbiao [Anhui Province Key Laboratory of Biological Macro-molecules Research, Wannan Medical College, Wuhu, 241001 (China); Department of Biochemistry and Molecular Biology, Wannan Medical Collage, Wuhu, 241002 (China); Wang, Lizhuo, E-mail: 19277924@qq.com [Anhui Province Key Laboratory of Biological Macro-molecules Research, Wannan Medical College, Wuhu, 241001 (China); Department of Biochemistry and Molecular Biology, Wannan Medical Collage, Wuhu, 241002 (China)

    2016-08-05

    Sidt2 is a newly discovered lysosomal membrane protein that is closely related to glucose metabolism. In the present study, we found that Sidt2 is also closely related to lipid metabolism. Gradual increases in serum triglyceride (TG) and free fatty acid, as well as elevated aspartate transaminase and alanine transaminase levels were observed in Sidt2{sup −/−} mice fed a normal diet from the age of 3 months, suggesting the presence of lipid metabolism disorders and impaired liver function in these mice. In the liver slices of 6-month-old Sidt2{sup −/−} mice, there were obvious fat degeneration and inflammatory changes. Almost all of the liver cells demonstrated different levels of lipid droplet accumulation and cell swelling, and some of the cells demonstrated balloon-like changes. Infiltration of inflammatory cells was observed in the portal area and hepatic lobule. Electron microscopy showed that macrophages tended to be attached to the endothelial cells, and a large number of lipid droplets were present in the liver cells. Oil red O staining showed that there were significantly increased number of deep straining particles in the liver cells of Sidt2{sup −/−} mice, and the TG content in liver tissue was also significantly increased. Detection of key genes and proteins related to fat synthesis showed that mRNA and protein levels of the SREBP1c in the liver of Sidt2{sup −/−} mice were significantly elevated, and the downstream genes acetyl-CoA carboxylase, fatty acid synthase, and mitochondrial glycerol 3-phosphate acyltransferase were significantly upregulated. In addition, there was severe endoplasmic reticulum stress (ERS) in the liver of Sidt2{sup −/−} mice, which had significantly increased levels of markers specific for unfolded protein response activation, Grp78 and CHOP, as well as significant elevation of downstream p-PERK, p-eIF2a, p-IRE1a, along with ER damage. These results suggest that Sidt2{sup −/−} mice had spontaneous

  12. Splitting spacetime and cloning qubits: linking no-go theorems across the ER=EPR duality

    Energy Technology Data Exchange (ETDEWEB)

    Bao, Ning [Institute for Quantum Information and Matter, California Institute of Technology, Pasadena, CA 91125 (United States); Walter Burke Institute for Theoretical Physics, California Institute of Technology, Pasadena, CA 91125 (United States); Pollack, Jason; Remmen, Grant N. [Walter Burke Institute for Theoretical Physics, California Institute of Technology, Pasadena, CA 91125 (United States)

    2015-11-15

    We analyze the no-cloning theorem in quantum mechanics through the lens of the proposed ER=EPR (Einstein-Rosen = Einstein-Podolsky-Rosen) duality between entanglement and wormholes. In particular, we find that the no-cloning theorem is dual on the gravity side to the no-go theorem for topology change, violating the axioms of which allows for wormhole stabilization and causality violation. Such a duality between important no-go theorems elucidates the proposed connection between spacetime geometry and quantum entanglement. (copyright 2015 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  13. The intersection between growth factors, autophagy and ER stress: A new target to treat neurodegenerative diseases?

    Science.gov (United States)

    Garcia-Huerta, Paula; Troncoso-Escudero, Paulina; Jerez, Carolina; Hetz, Claudio; Vidal, Rene L

    2016-10-15

    One of the salient features of most neurodegenerative diseases is the aggregation of specific proteins in the brain. This proteostasis imbalance is proposed as a key event triggering the neurodegenerative cascade. The unfolded protein response (UPR) and autophagy pathways are emerging as critical processes implicated in handling disease-related misfolded proteins. However, in some conditions, perturbations in the buffering capacity of the proteostasis network may be part of the etiology of the disease. Thus, pharmacological or gene therapy strategies to enhance autophagy or UPR responses are becoming an attractive target for disease intervention. Here, we discuss current evidence depicting the complex involvement of autophagy and ER stress in brain diseases. Novel pathways to modulate protein misfolding are discussed including the relation between aging and growth factor signaling. This article is part of a Special Issue entitled SI:Autophagy. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Role of an ER stress response element in regulating the bidirectional promoter of the mouse CRELD2 - ALG12 gene pair

    Directory of Open Access Journals (Sweden)

    Hirata Yoko

    2010-11-01

    Full Text Available Abstract Background Recently, we identified cysteine-rich with EGF-like domains 2 (CRELD2 as a novel endoplasmic reticulum (ER stress-inducible gene and characterized its transcriptional regulation by ATF6 under ER stress conditions. Interestingly, the CRELD2 and asparagine-linked glycosylation 12 homolog (ALG12 genes are arranged as a bidirectional (head-to-head gene pair and are separated by less than 400 bp. In this study, we characterized the transcriptional regulation of the mouse CRELD2 and ALG12 genes that is mediated by a common bidirectional promoter. Results This short intergenic region contains an ER stress response element (ERSE sequence and is well conserved among the human, rat and mouse genomes. Microarray analysis revealed that CRELD2 and ALG12 mRNAs were induced in Neuro2a cells by treatment with thapsigargin (Tg, an ER stress inducer, in a time-dependent manner. Other ER stress inducers, tunicamycin and brefeldin A, also increased the expression of these two mRNAs in Neuro2a cells. We then tested for the possible involvement of the ERSE motif and other regulatory sites of the intergenic region in the transcriptional regulation of the mouse CRELD2 and ALG12 genes by using variants of the bidirectional reporter construct. With regards to the promoter activities of the CRELD2-ALG12 gene pair, the entire intergenic region hardly responded to Tg, whereas the CRELD2 promoter constructs of the proximal region containing the ERSE motif showed a marked responsiveness to Tg. The same ERSE motif of ALG12 gene in the opposite direction was less responsive to Tg. The direction and the distance of this motif from each transcriptional start site, however, has no impact on the responsiveness of either gene to Tg treatment. Additionally, we found three putative sequences in the intergenic region that antagonize the ERSE-mediated transcriptional activation. Conclusions These results show that the mouse CRELD2 and ALG12 genes are arranged as a

  15. Up-regulation of Kir2.1 by ER stress facilitates cell death of brain capillary endothelial cells

    International Nuclear Information System (INIS)

    Kito, Hiroaki; Yamazaki, Daiju; Ohya, Susumu; Yamamura, Hisao; Asai, Kiyofumi; Imaizumi, Yuji

    2011-01-01

    Highlights: → We found that application of endoplasmic reticulum (ER) stress with tunicamycin to brain capillary endothelial cells (BCECs) induced cell death. → The ER stress facilitated the expression of inward rectifier K + channel (K ir 2.1) and induced sustained membrane hyperpolarization. → The membrane hyperpolarization induced sustained Ca 2+ entry through voltage-independent nonspecific cation channels and consequently facilitated cell death. → The K ir 2.1 up-regulation by ER stress is, at least in part, responsible for cell death of BCECs under pathological conditions. -- Abstract: Brain capillary endothelial cells (BCECs) form blood brain barrier (BBB) to maintain brain homeostasis. Cell turnover of BCECs by the balance of cell proliferation and cell death is critical for maintaining the integrity of BBB. Here we found that stimuli with tunicamycin, endoplasmic reticulum (ER) stress inducer, up-regulated inward rectifier K + channel (K ir 2.1) and facilitated cell death in t-BBEC117, a cell line derived from bovine BCECs. The activation of K ir channels contributed to the establishment of deeply negative resting membrane potential in t-BBEC117. The deep resting membrane potential increased the resting intracellular Ca 2+ concentration due to Ca 2+ influx through non-selective cation channels and thereby partly but significantly regulated cell death in t-BBEC117. The present results suggest that the up-regulation of K ir 2.1 is, at least in part, responsible for cell death/cell turnover of BCECs induced by a variety of cellular stresses, particularly ER stress, under pathological conditions.

  16. Signaling dynamics of palmitate-induced ER stress responses mediated by ATF4 in HepG2 cells

    Directory of Open Access Journals (Sweden)

    Cho Hyunju

    2013-01-01

    Full Text Available Abstract Background Palmitic acid, the most common saturated free fatty acid, has been implicated in ER (endoplasmic reticulum stress-mediated apoptosis. This lipoapotosis is dependent, in part, on the upregulation of the activating transcription factor-4 (ATF4. To better understand the mechanisms by which palmitate upregulates the expression level of ATF4, we integrated literature information on palmitate-induced ER stress signaling into a discrete dynamic model. The model provides an in silico framework that enables simulations and predictions. The model predictions were confirmed through further experiments in human hepatocellular carcinoma (HepG2 cells and the results were used to update the model and our current understanding of the signaling induced by palmitate. Results The three key things from the in silico simulation and experimental results are: 1 palmitate induces different signaling pathways (PKR (double-stranded RNA-activated protein kinase, PERK (PKR-like ER kinase, PKA (cyclic AMP (cAMP-dependent protein kinase A in a time dependent-manner, 2 both ATF4 and CREB1 (cAMP-responsive element-binding protein 1 interact with the Atf4 promoter to contribute to a prolonged accumulation of ATF4, and 3 CREB1 is involved in ER-stress induced apoptosis upon palmitate treatment, by regulating ATF4 expression and possibly Ca2+ dependent-CaM (calmodulin signaling pathway. Conclusion The in silico model helped to delineate the essential signaling pathways in palmitate-mediated apoptosis.

  17. ER Stress Inhibits Liver Fatty Acid Oxidation while Unmitigated Stress Leads to Anorexia-Induced Lipolysis and Both Liver and Kidney Steatosis.

    Science.gov (United States)

    DeZwaan-McCabe, Diane; Sheldon, Ryan D; Gorecki, Michelle C; Guo, Deng-Fu; Gansemer, Erica R; Kaufman, Randal J; Rahmouni, Kamal; Gillum, Matthew P; Taylor, Eric B; Teesch, Lynn M; Rutkowski, D Thomas

    2017-05-30

    The unfolded protein response (UPR), induced by endoplasmic reticulum (ER) stress, regulates the expression of factors that restore protein folding homeostasis. However, in the liver and kidney, ER stress also leads to lipid accumulation, accompanied at least in the liver by transcriptional suppression of metabolic genes. The mechanisms of this accumulation, including which pathways contribute to the phenotype in each organ, are unclear. We combined gene expression profiling, biochemical assays, and untargeted lipidomics to understand the basis of stress-dependent lipid accumulation, taking advantage of enhanced hepatic and renal steatosis in mice lacking the ER stress sensor ATF6α. We found that impaired fatty acid oxidation contributed to the early development of steatosis in the liver but not the kidney, while anorexia-induced lipolysis promoted late triglyceride and free fatty acid accumulation in both organs. These findings provide evidence for both direct and indirect regulation of peripheral metabolism by ER stress. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  18. Interaction between endoplasmic/sarcoplasmic reticulum stress (ER/SR stress), mitochondrial signaling and Ca(2+) regulation in airway smooth muscle (ASM).

    Science.gov (United States)

    Delmotte, Philippe; Sieck, Gary C

    2015-02-01

    Airway inflammation is a key aspect of diseases such as asthma. Several inflammatory cytokines (e.g., TNFα and IL-13) increase cytosolic Ca(2+) ([Ca(2+)]cyt) responses to agonist stimulation and Ca(2+) sensitivity of force generation, thereby enhancing airway smooth muscle (ASM) contractility (hyper-reactive state). Inflammation also induces ASM proliferation and remodeling (synthetic state). In normal ASM, the transient elevation of [Ca(2+)]cyt induced by agonists leads to a transient increase in mitochondrial Ca(2+) ([Ca(2+)]mito) that may be important in matching ATP production with ATP consumption. In human ASM (hASM) exposed to TNFα and IL-13, the transient increase in [Ca(2+)]mito is blunted despite enhanced [Ca(2+)]cyt responses. We also found that TNFα and IL-13 induce reactive oxidant species (ROS) formation and endoplasmic/sarcoplasmic reticulum (ER/SR) stress (unfolded protein response) in hASM. ER/SR stress in hASM is associated with disruption of mitochondrial coupling with the ER/SR membrane, which relates to reduced mitofusin 2 (Mfn2) expression. Thus, in hASM it appears that TNFα and IL-13 result in ROS formation leading to ER/SR stress, reduced Mfn2 expression, disruption of mitochondrion-ER/SR coupling, decreased mitochondrial Ca(2+) buffering, mitochondrial fragmentation, and increased cell proliferation.

  19. Structure-activity relationship of piperine and its synthetic amide analogs for therapeutic potential to prevent experimentally induced ER stress in vitro.

    Science.gov (United States)

    Hammad, Ayat S; Ravindran, Sreenithya; Khalil, Ashraf; Munusamy, Shankar

    2017-05-01

    Endoplasmic reticulum (ER) is the key organelle involved in protein folding and maturation. Emerging studies implicate the role of ER stress in the development of chronic kidney disease. Thus, there is an urgent need for compounds that could ameliorate ER stress and prevent CKD. Piperine and its analogs have been reported to exhibit multiple pharmacological activities; however, their efficacy against ER stress in kidney cells has not been studied yet. Hence, the goal of this study was to synthesize amide-substituted piperine analogs and screen them for pharmacological activity to relieve ER stress using an in vitro model of tunicamycin-induced ER stress using normal rat kidney (NRK-52E) cells. Five amide-substituted piperine analogs were synthesized and their chemical structures were elucidated by pertinent spectroscopic techniques. An in vitro model of ER stress was developed using tunicamycin, and the compounds of interest were screened for their effect on cell viability, and the expression of ER chaperone GRP78, the pro-apoptotic ER stress marker CHOP, and apoptotic caspases 3 and 12 (via western blotting). Our findings indicate that exposure to tunicamycin (0.5 μg/mL) for 2 h induces the expression of GRP78 and CHOP, and apoptotic markers (caspase-3 and caspase-12) and causes a significant reduction in renal cell viability. Pre-treatment of cells with piperine and its cyclohexylamino analog decreased the tunicamycin-induced upregulation of GRP78 and CHOP and cell death. Taken together, our findings demonstrate that piperine and its analogs differentially regulate ER stress, and thus represent potential therapeutic agents to treat ER stress-related renal disorders. Graphical Abstract Piperine (PIP) reduces the expression of ER stress markers (GRP78 and CHOP) induced by pathologic stimuli and consequently decreases the activation of apoptotic caspase-12 and caspase-3; all of which contributes to its chemical chaperone and cytoprotective properties to protect

  20. Inflammation and ER Stress Regulate Branched-Chain Amino Acid Uptake and Metabolism in Adipocytes

    Science.gov (United States)

    Burrill, Joel S.; Long, Eric K.; Reilly, Brian; Deng, Yingfeng; Armitage, Ian M.; Scherer, Philipp E.

    2015-01-01

    Inflammation plays a critical role in the pathology of obesity-linked insulin resistance and is mechanistically linked to the effects of macrophage-derived cytokines on adipocyte energy metabolism, particularly that of the mitochondrial branched-chain amino acid (BCAA) and tricarboxylic acid (TCA) pathways. To address the role of inflammation on energy metabolism in adipocytes, we used high fat-fed C57BL/6J mice and lean controls and measured the down-regulation of genes linked to BCAA and TCA cycle metabolism selectively in visceral but not in subcutaneous adipose tissue, brown fat, liver, or muscle. Using 3T3-L1 cells, TNFα, and other proinflammatory cytokine treatments reduced the expression of the genes linked to BCAA transport and oxidation. Consistent with this, [14C]-leucine uptake and conversion to triglycerides was markedly attenuated in TNFα-treated adipocytes, whereas the conversion to protein was relatively unaffected. Because inflammatory cytokines lead to the induction of endoplasmic reticulum stress, we evaluated the effects of tunicamycin or thapsigargin treatment of 3T3-L1 cells and measured a similar down-regulation in the BCAA/TCA cycle pathway. Moreover, transgenic mice overexpressing X-box binding protein 1 in adipocytes similarly down-regulated genes of BCAA and TCA metabolism in vivo. These results indicate that inflammation and endoplasmic reticulum stress attenuate lipogenesis in visceral adipose depots by down-regulating the BCAA/TCA metabolism pathway and are consistent with a model whereby the accumulation of serum BCAA in the obese insulin-resistant state is linked to adipose inflammation. PMID:25635940

  1. Stress and periodontal disease: The link and logic!!

    Directory of Open Access Journals (Sweden)

    Sachin Goyal

    2013-01-01

    Full Text Available Stress is an equated response to constant adverse stimuli. At one point or another everybody suffers from stress. Stress is compatible with good health, being necessary to cope with the challenges of everyday life. Problems start when the stress response is inappropriate to the intensity of the challenge. Psychological stress can down regulate the cellular immune response. Communication between the central nervous system and the immune system occurs via a complex network of bidirectional signals linking the nervous, endocrine, and immune systems. Stress disrupts the homeostasis of this network, which in turn, alters immune function. Direct association between periodontal disease and stress remains to be proven, which is partly due to lack of an adequate animal models and difficulty to quantifying the amount and duration of stress and also there are many factors influencing the incidence and severity of periodontal disease. Nevertheless, more recent studies indicate that psychosocial stress represents a risk indicator for periodontal disease and should be addressed before and during treatment. This paper discusses how stress may modulate host response to bacteria and influence the course and progression of periodontal disease.

  2. ER Stress Inhibits Liver Fatty Acid Oxidation while Unmitigated Stress Leads to Anorexia-Induced Lipolysis and Both Liver and Kidney Steatosis

    DEFF Research Database (Denmark)

    DeZwaan-McCabe, Diane; Sheldon, Ryan D; Gorecki, Michelle C

    2017-01-01

    advantage of enhanced hepatic and renal steatosis in mice lacking the ER stress sensor ATF6α. We found that impaired fatty acid oxidation contributed to the early development of steatosis in the liver but not the kidney, while anorexia-induced lipolysis promoted late triglyceride and free fatty acid...

  3. CCAAT/Enhancer Binding Protein β in relation to ER Stress, Inflammation, and Metabolic Disturbances

    Directory of Open Access Journals (Sweden)

    Sophie E. van der Krieken

    2015-01-01

    Full Text Available The prevalence of the metabolic syndrome and underlying metabolic disturbances increase rapidly in developed countries. Various molecular targets are currently under investigation to unravel the molecular mechanisms that cause these disturbances. This is done in attempt to counter or prevent the negative health consequences of the metabolic disturbances. Here, we reviewed the current knowledge on the role of C/EBP-β in these metabolic disturbances. C/EBP-β deletion in mice resulted in downregulation of hepatic lipogenic genes and increased expression of β-oxidation genes in brown adipose tissue. Furthermore, C/EBP-β is important in the differentiation and maturation of adipocytes and is increased during ER stress and proinflammatory conditions. So far, studies were only conducted in animals and in cell systems. The results found that C/EBP-β is an important transcription factor within the metabolic disturbances of the metabolic system. Therefore, it is interesting to examine the potential role of C/EBP-β at molecular and physiological level in humans.

  4. Stress transgenerationally programs metabolic pathways linked to altered mental health.

    Science.gov (United States)

    Kiss, Douglas; Ambeskovic, Mirela; Montina, Tony; Metz, Gerlinde A S

    2016-12-01

    Stress is among the primary causes of mental health disorders, which are the most common reason for disability worldwide. The ubiquity of these disorders, and the costs associated with them, lends a sense of urgency to the efforts to improve prediction and prevention. Down-stream metabolic changes are highly feasible and accessible indicators of pathophysiological processes underlying mental health disorders. Here, we show that remote and cumulative ancestral stress programs central metabolic pathways linked to mental health disorders. The studies used a rat model consisting of a multigenerational stress lineage (the great-great-grandmother and each subsequent generation experienced stress during pregnancy) and a transgenerational stress lineage (only the great-great-grandmother was stressed during pregnancy). Urine samples were collected from adult male F4 offspring and analyzed using 1 H NMR spectroscopy. The results of variable importance analysis based on random variable combination were used for unsupervised multivariate principal component analysis and hierarchical clustering analysis, as well as metabolite set enrichment analysis (MSEA) and pathway analysis. We identified distinct metabolic profiles associated with the multigenerational and transgenerational stress phenotype, with consistent upregulation of hippurate and downregulation of tyrosine, threonine, and histamine. MSEA and pathway analysis showed that these metabolites are involved in catecholamine biosynthesis, immune responses, and microbial host interactions. The identification of metabolic signatures linked to ancestral programming assists in the discovery of gene targets for future studies of epigenetic regulation in pathogenic processes. Ultimately, this research can lead to biomarker discovery for better prediction and prevention of mental health disorders.

  5. Stress hormones link food availability and population processes in seabirds

    Science.gov (United States)

    Kitaysky, A.S.; Piatt, John F.; Wingfield, J.C.

    2007-01-01

    Catastrophic population declines in marine top predators in the northern Pacific have been hypothesized to result from nutritional stress affecting reproduction and survival of individuals. However, empirical evidence for food-related stress in wild animals is frequently lacking or inconclusive. We used a field endocrinology approach to measure stress, identify its causes, and examine a link between stress and population processes in the common murre Uria aalge. We tested the empirical relationship between variations in the stress hormone corticosterone (CORT) and food abundance, reproduction, and persistence of individuals at declining and increasing colonies in Cook Inlet, Alaska, from 1996 to 2001. We found that CORT secretion in murres is independent of colony, reproductive stage effects, and gender of individuals, but is directly negatively correlated with abundance of their food. Baseline CORT reflected current food abundance, whereas acute stress-induced CORT reflected food abundance in the previous month. As food supply diminished, increased CORT secretion predicted a decrease in reproductive performance. At a declining colony, increased baseline levels of CORT during reproduction predicted disappearance of individuals from the population. Persistence of individuals in a growing colony was independent of CORT during reproduction. The obtained results support the hypothesis that nutritional stress during reproduction affects reproduction and survival in seabirds. This study provides the first unequivocal evidence for CORT secretion as a mechanistic link between fluctuations in food abundance and population processes in seabirds. ?? Inter-Research 2007.

  6. HSP72 protects cells from ER stress-induced apoptosis via enhancement of IRE1alpha-XBP1 signaling through a physical interaction.

    LENUS (Irish Health Repository)

    Gupta, Sanjeev

    2010-01-01

    Endoplasmic reticulum (ER) stress is a feature of secretory cells and of many diseases including cancer, neurodegeneration, and diabetes. Adaptation to ER stress depends on the activation of a signal transduction pathway known as the unfolded protein response (UPR). Enhanced expression of Hsp72 has been shown to reduce tissue injury in response to stress stimuli and improve cell survival in experimental models of stroke, sepsis, renal failure, and myocardial ischemia. Hsp72 inhibits several features of the intrinsic apoptotic pathway. However, the molecular mechanisms by which Hsp72 expression inhibits ER stress-induced apoptosis are not clearly understood. Here we show that Hsp72 enhances cell survival under ER stress conditions. The UPR signals through the sensor IRE1alpha, which controls the splicing of the mRNA encoding the transcription factor XBP1. We show that Hsp72 enhances XBP1 mRNA splicing and expression of its target genes, associated with attenuated apoptosis under ER stress conditions. Inhibition of XBP1 mRNA splicing either by dominant negative IRE1alpha or by knocking down XBP1 specifically abrogated the inhibition of ER stress-induced apoptosis by Hsp72. Regulation of the UPR was associated with the formation of a stable protein complex between Hsp72 and the cytosolic domain of IRE1alpha. Finally, Hsp72 enhanced the RNase activity of recombinant IRE1alpha in vitro, suggesting a direct regulation. Our data show that binding of Hsp72 to IRE1alpha enhances IRE1alpha\\/XBP1 signaling at the ER and inhibits ER stress-induced apoptosis. These results provide a physical connection between cytosolic chaperones and the ER stress response.

  7. HSP72 protects cells from ER stress-induced apoptosis via enhancement of IRE1alpha-XBP1 signaling through a physical interaction.

    Directory of Open Access Journals (Sweden)

    Sanjeev Gupta

    2010-07-01

    Full Text Available Endoplasmic reticulum (ER stress is a feature of secretory cells and of many diseases including cancer, neurodegeneration, and diabetes. Adaptation to ER stress depends on the activation of a signal transduction pathway known as the unfolded protein response (UPR. Enhanced expression of Hsp72 has been shown to reduce tissue injury in response to stress stimuli and improve cell survival in experimental models of stroke, sepsis, renal failure, and myocardial ischemia. Hsp72 inhibits several features of the intrinsic apoptotic pathway. However, the molecular mechanisms by which Hsp72 expression inhibits ER stress-induced apoptosis are not clearly understood. Here we show that Hsp72 enhances cell survival under ER stress conditions. The UPR signals through the sensor IRE1alpha, which controls the splicing of the mRNA encoding the transcription factor XBP1. We show that Hsp72 enhances XBP1 mRNA splicing and expression of its target genes, associated with attenuated apoptosis under ER stress conditions. Inhibition of XBP1 mRNA splicing either by dominant negative IRE1alpha or by knocking down XBP1 specifically abrogated the inhibition of ER stress-induced apoptosis by Hsp72. Regulation of the UPR was associated with the formation of a stable protein complex between Hsp72 and the cytosolic domain of IRE1alpha. Finally, Hsp72 enhanced the RNase activity of recombinant IRE1alpha in vitro, suggesting a direct regulation. Our data show that binding of Hsp72 to IRE1alpha enhances IRE1alpha/XBP1 signaling at the ER and inhibits ER stress-induced apoptosis. These results provide a physical connection between cytosolic chaperones and the ER stress response.

  8. Valsartan reduces AT1-AA-induced apoptosis through suppression oxidative stress mediated ER stress in endothelial progenitor cells.

    Science.gov (United States)

    Wang, Z-C; Qi, J; Liu, L-M; Li, J; Xu, H-Y; Liang, B; Li, B

    2017-03-01

    Valsartan has been reported to have the function of treating hypertension and improving the prognosis of patients. Many studies indicated that valsartan can also increase angiotensin II, andosterone and plasma renin activity (PRA). Autoantibodies against the angiotensin II type 1 receptor (AT1-AA) have been showed to increase reactive oxygen species (ROS) and calcium (Ca2+) and result in apoptosis in vascular smooth muscle cells. In this study, we attempted to explore the effect of valsartan on AT1-AA-induced apoptosis in endothelial progenitor cells. Endothelial progenitor cells (EPCs) were cultured. The cytotoxicity was determined by MTT assay. EPCs apoptosis was determined by DAPI staining and flow cytometry. Reactive oxygen species, intracellular calcium concentration and calpain activity were measured using Fluostar Omega Spectrofluorimeter. The expression of p-ERK, p-eIF-2a, CHOP, Bcl-2 and caspase-3 were detected by Western blot. MTT assays showed valsartan significantly inhibited AT1-AA- induced decline of the viability of EPCs. DAPI staining and flow cytometry results indicated valsartan inhibited AT1-AA-induced decline of the viability of EPCs via inhibiting AT1-AA-induced apoptosis. Furthermore, the increasing of reactive oxygen species, intracellular calcium and calpain activity induced by AT1-AA in EPCs were also recovered after pre-treated with valsartan. Meanwhile, the upregulation of p-ERK, p-eIF-2a and CHOP, downregulation of Bcl-2, and activation of Caspase-3 caused by AT1-AA were reversed after pre-incubated with valsartan. Valsartan could inhibit AT1-AA-induced apoptosis through inhibiting oxidative stress mediated ER stress in EPCs.

  9. Stretching the Stress Boundary: Linking Air Pollution Health Effects to a Neurohormonal Stress Response

    Science.gov (United States)

    Inhaled pollutants produce effects in virtually all organ systems in our body and have been linked to chronic diseases including hypertension, atherosclerosis, Alzheimer’s and diabetes. A neurohormonal stress response (referred here as a systemic response produced by activation ...

  10. Role of ER stress response in photodynamic therapy: ROS generated in different subcellular compartments trigger diverse cell death pathways

    Czech Academy of Sciences Publication Activity Database

    Moserová, Irena; Králová, Jarmila

    2012-01-01

    Roč. 7, č. 3 (2012), e32972 E-ISSN 1932-6203 R&D Projects: GA MŠk(CZ) LC06077; GA ČR GA203/09/1311; GA ČR(CZ) GAP303/11/1291 Institutional research plan: CEZ:AV0Z50520514 Keywords : photodynamic therapy * porphyrin derivatives * cell death * ER stress Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 3.730, year: 2012

  11. Globular adiponectin protects rat hepatocytes against acetaminophen-induced cell death via modulation of the inflammasome activation and ER stress: Critical role of autophagy induction.

    Science.gov (United States)

    Kim, Eun Hye; Park, Pil-Hoon

    2018-05-24

    Acetaminophen (APAP) overdose treatment causes severe liver injury. Adiponectin, a hormone predominantly produced by adipose tissue, exhibits protective effects against APAP-induced hepatotoxicity. However, the underlying mechanisms are not clearly understood. In the present study, we examined the protective effect of globular adiponectin (gAcrp) on APAP-induced hepatocyte death and its underlying mechanisms. We found that APAP (2 mM)-induced hepatocyte death was prevented by inhibition of the inflammasome. In addition, treatment with gAcrp (0.5 and 1 μg/ml) inhibited APAP-induced activation of the inflammasome, judged by suppression of interleukin-1β maturation, caspase-1 activation, and apoptosis-associated speck-like protein (ASC) speck formation, suggesting that protective effects of gAcrp against APAP-induced hepatocyte death is mediated via modulation of the inflammasome. APAP also induced ER stress and treatment with tauroursodeoxycholic acid (TUDCA), an ER chaperone and inhibitor of ER stress, abolished APAP-induced inflammasomes activation, implying that ER stress acts as signaling event leading to the inflammasome activation in hepatocytes stimulated with APAP. Moreover, gAcrp significantly suppressed APAP-induced expression of ER stress marker genes. Finally, the modulatory effects of gAcrp on ER stress and inflammasomes activation were abrogated by treatment with autophagy inhibitors, while an autophagy inducer (rapamycin) suppressed APAP-elicited ER stress, demonstrating that autophagy induction plays a crucial role in the suppression of APAP-induced inflammasome activation and ER stress by gAcrp. Taken together, these results indicate that gAcrp protects hepatocytes against APAP-induced cell death by modulating ER stress and the inflammasome activation, at least in part, via autophagy induction. Copyright © 2018. Published by Elsevier Inc.

  12. Hepatitis C Virus Infection Induces Autophagy as a Prosurvival Mechanism to Alleviate Hepatic ER-Stress Response

    Science.gov (United States)

    Dash, Srikanta; Chava, Srinivas; Aydin, Yucel; Chandra, Partha K.; Ferraris, Pauline; Chen, Weina; Balart, Luis A.; Wu, Tong; Garry, Robert F.

    2016-01-01

    Hepatitis C virus (HCV) infection frequently leads to chronic liver disease, liver cirrhosis and hepatocellular carcinoma (HCC). The molecular mechanisms by which HCV infection leads to chronic liver disease and HCC are not well understood. The infection cycle of HCV is initiated by the attachment and entry of virus particles into a hepatocyte. Replication of the HCV genome inside hepatocytes leads to accumulation of large amounts of viral proteins and RNA replication intermediates in the endoplasmic reticulum (ER), resulting in production of thousands of new virus particles. HCV-infected hepatocytes mount a substantial stress response. How the infected hepatocyte integrates the viral-induced stress response with chronic infection is unknown. The unfolded protein response (UPR), an ER-associated cellular transcriptional response, is activated in HCV infected hepatocytes. Over the past several years, research performed by a number of laboratories, including ours, has shown that HCV induced UPR robustly activates autophagy to sustain viral replication in the infected hepatocyte. Induction of the cellular autophagy response is required to improve survival of infected cells by inhibition of cellular apoptosis. The autophagy response also inhibits the cellular innate antiviral program that usually inhibits HCV replication. In this review, we discuss the physiological implications of the HCV-induced chronic ER-stress response in the liver disease progression. PMID:27223299

  13. The metabolic ER stress sensor IRE1α suppresses alternative activation of macrophages and impairs energy expenditure in obesity.

    Science.gov (United States)

    Shan, Bo; Wang, Xiaoxia; Wu, Ying; Xu, Chi; Xia, Zhixiong; Dai, Jianli; Shao, Mengle; Zhao, Feng; He, Shengqi; Yang, Liu; Zhang, Mingliang; Nan, Fajun; Li, Jia; Liu, Jianmiao; Liu, Jianfeng; Jia, Weiping; Qiu, Yifu; Song, Baoliang; Han, Jing-Dong J; Rui, Liangyou; Duan, Sheng-Zhong; Liu, Yong

    2017-05-01

    Obesity is associated with metabolic inflammation and endoplasmic reticulum (ER) stress, both of which promote metabolic disease progression. Adipose tissue macrophages (ATMs) are key players orchestrating metabolic inflammation, and ER stress enhances macrophage activation. However, whether ER stress pathways underlie ATM regulation of energy homeostasis remains unclear. Here, we identified inositol-requiring enzyme 1α (IRE1α) as a critical switch governing M1-M2 macrophage polarization and energy balance. Myeloid-specific IRE1α abrogation in Ern1 f/f ; Lyz2-Cre mice largely reversed high-fat diet (HFD)-induced M1-M2 imbalance in white adipose tissue (WAT) and blocked HFD-induced obesity, insulin resistance, hyperlipidemia and hepatic steatosis. Brown adipose tissue (BAT) activity, WAT browning and energy expenditure were significantly higher in Ern1 f/f ; Lyz2-Cre mice. Furthermore, IRE1α ablation augmented M2 polarization of macrophages in a cell-autonomous manner. Thus, IRE1α senses protein unfolding and metabolic and immunological states, and consequently guides ATM polarization. The macrophage IRE1α pathway drives obesity and metabolic syndrome through impairing BAT activity and WAT browning.

  14. The ER stress sensor PERK luminal domain functions as a molecular chaperone to interact with misfolded proteins

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Peng; Li, Jingzhi; Sha, Bingdong

    2016-11-29

    PERK is one of the major sensor proteins which can detect the protein-folding imbalance generated by endoplasmic reticulum (ER) stress. It remains unclear how the sensor protein PERK is activated by ER stress. It has been demonstrated that the PERK luminal domain can recognize and selectively interact with misfolded proteins but not native proteins. Moreover, the PERK luminal domain may function as a molecular chaperone to directly bind to and suppress the aggregation of a number of misfolded model proteins. The data strongly support the hypothesis that the PERK luminal domain can interact directly with misfolded proteins to induce ER stress signaling. To illustrate the mechanism by which the PERK luminal domain interacts with misfolded proteins, the crystal structure of the human PERK luminal domain was determined to 3.2 Å resolution. Two dimers of the PERK luminal domain constitute a tetramer in the asymmetric unit. Superimposition of the PERK luminal domain molecules indicated that the β-sandwich domain could adopt multiple conformations. It is hypothesized that the PERK luminal domain may utilize its flexible β-sandwich domain to recognize and interact with a broad range of misfolded proteins.

  15. The Effect of Boric Acid and Borax on Oxidative Stress, Inflammation, ER Stress and Apoptosis in Cisplatin Toxication and Nephrotoxicity Developing as a Result of Toxication.

    Science.gov (United States)

    Hazman, Ömer; Bozkurt, Mehmet Fatih; Fidan, Abdurrahman Fatih; Uysal, Fadime Erkan; Çelik, Sefa

    2018-03-02

    The development of treatment protocols that can reduce side effects in chemotherapy applications is extremely important in terms of cancer treatment. In this context, it was aimed to investigate the effects of boric acid and borax on cisplatin toxicity (nephrotoxicity) in rats. In the experimental phase, eight groups were formed from rats. Boric acid and borax were given to the treatment groups with three different doses using gavage. On the fifth day of the study, cisplatin (10 mg/kg) was administered to all rats except the control group. At the end of the study, oxidative stress-related (GSH, MDA, PCO, GPx, 8-OHdG), inflammation-related (TNF-α, IL-1β, IL-18, MCP-1, ICAM, TGF-β), apoptosis-related (p53, caspase 1, 3, 8, 12, bcl-2, bcl-xL, NFkB), and ER stress-related (GRP78, ATF-6, PERK) basic parameters were analyzed in serum, erythrocyte, and kidney tissues. Kidney tissues were also examined by histopathological and immunohistochemical methods. Borax and boric acid at different doses decreased inflammation and oxidative stress caused by cisplatin toxicity and increased ER stress. As a result of the treatments applied to experimental animals, it was determined that boric acid and borax reduced apoptotic damage in kidney tissue, but the decrease was statistically significant only in 200 mg/kg boric acid-administered group. In the study, low anti-apoptotic effects of borate doses with the anti-inflammatory and antioxidant effect may be due to increased ER stress at the relevant doses. Further studies on the effects of boron compounds on ER stress and apoptotic mechanisms may clarify this issue. Thus, possible side effects or if there are new usage areas of borone compounds which have many usage areas in clinics can be detected.

  16. ER stress in retinal degeneration in S334ter Rho rats.

    Directory of Open Access Journals (Sweden)

    Vishal M Shinde

    Full Text Available The S334ter rhodopsin (Rho rat (line 4 bears the rhodopsin gene with an early termination codon at residue 334 that is a model for several such mutations found in human patients with autosomal dominant retinitis pigmentosa (ADRP. The Unfolded Protein Response (UPR is implicated in the pathophysiology of several retinal disorders including ADRP in P23H Rho rats. The aim of this study was to examine the onset of UPR gene expression in S334ter Rho retinas to determine if UPR is activated in ADRP animal models and to investigate how the activation of UPR molecules leads to the final demise of S334ter Rho photoreceptors. RT-PCR was performed to evaluate the gene expression profiles for the P10, P12, P15, and P21 stages of the development and progression of ADRP in S334ter Rho photoreceptors. We determined that during the P12-P15 period, ER stress-related genes are strongly upregulated in transgenic retinas, resulting in the activation of the UPR that was confirmed using western blot analysis and RT-PCR. The activation of UPR was associated with the increased expression of JNK, Bik, Bim, Bid, Noxa, and Puma genes and cleavage of caspase-12 that together with activated calpains presumably compromise the integrity of the mitochondrial MPTP, leading to the release of pro-apoptotic AIF1 into the cytosol of S334ter Rho photoreceptor cells. Therefore, two major cross-talking pathways, the UPR and mitochondrial MPTP occur in S334ter-4 Rho retina concomitantly and eventually promote the death of the photoreceptor cells.

  17. Calcineurin Interacts with PERK and Dephosphorylates Calnexin to Relieve ER Stress in Mammals and Frogs

    OpenAIRE

    Bollo, Mariana; Paredes, R. Madelaine; Holstein, Deborah; Zheleznova, Nadezhda; Camacho, Patricia; Lechleiter, James D.

    2010-01-01

    Background The accumulation of misfolded proteins within the endoplasmic reticulum (ER) triggers a cellular process known as the Unfolded Protein Response (UPR). One of the earliest responses is the attenuation of protein translation. Little is known about the role that Ca2+ mobilization plays in the early UPR. Work from our group has shown that cytosolic phosphorylation of calnexin (CLNX) controls Ca2+ uptake into the ER via the sarco-endoplasmic reticulum Ca2+-ATPase (SERCA) 2b. Methodology...

  18. Palmitate-induced ER stress increases trastuzumab sensitivity in HER2/neu-positive breast cancer cells

    International Nuclear Information System (INIS)

    Baumann, Jan; Wong, Jason; Sun, Yan; Conklin, Douglas S.

    2016-01-01

    CHOP-dependent apoptosis as well as a partial activation of the ER stress response network via XBP1 and ATF6. This response appears to be a general feature of HER2/neu-positive breast cancer cells but not cells that overexpress only HER2/neu. Exogenous palmitate reduces HER2 and HER3 protein levels without changes in phosphorylation and sensitizes HER2/neu-positive breast cancer cells to treatment with the HER2-targeted therapy trastuzumab. Several studies have shown that HER2, FASN and fatty acid synthesis are functionally linked. Exogenous palmitate exerts its toxic effects in part through inducing ER stress, reducing HER2 expression and thereby sensitizing cells to trastuzumab. These data provide further evidence that HER2 signaling and fatty acid metabolism are highly integrated processes that may be important for disease development and progression. The online version of this article (doi:10.1186/s12885-016-2611-8) contains supplementary material, which is available to authorized users

  19. Bcl-2 associated athanogene 5 (Bag5) is overexpressed in prostate cancer and inhibits ER-stress induced apoptosis

    International Nuclear Information System (INIS)

    Bruchmann, Anja; Roller, Corinna; Walther, Tamara Vanessa; Schäfer, Georg; Lehmusvaara, Sara; Visakorpi, Tapio; Klocker, Helmut; Cato, Andrew C B; Maddalo, Danilo

    2013-01-01

    The Bag (Bcl-2 associated athanogene) family of proteins consists of 6 members sharing a common, single-copied Bag domain through which they interact with the molecular chaperone Hsp70. Bag5 represents an exception in the Bag family since it consists of 5 Bag domains covering the whole protein. Bag proteins like Bag1 and Bag3 have been implicated in tumor growth and survival but it is not known whether Bag5 also exhibits this function. Bag5 mRNA and protein expression levels were investigated in prostate cancer patient samples using real-time PCR and immunoblot analyses. In addition immunohistological studies were carried out to determine the expression of Bag5 in tissue arrays. Analysis of Bag5 gene expression was carried out using one-way ANOVA and Bonferroni’s Multiple Comparison test. The mean values of the Bag5 stained cells in the tissue array was analyzed by Mann-Whitney test. Functional studies of the role of Bag5 in prostate cancer cell lines was performed using overexpression and RNA interference analyses. Our results show that Bag5 is overexpressed in malignant prostate tissue compared to benign samples. In addition we could show that Bag5 levels are increased following endoplasmic reticulum (ER)-stress induction, and Bag5 relocates from the cytoplasm to the ER during this process. We also demonstrate that Bag5 interacts with the ER-resident chaperone GRP78/BiP and enhances its ATPase activity. Bag5 overexpression in 22Rv.1 prostate cancer cells inhibited ER-stress induced apoptosis in the unfolded protein response by suppressing PERK-eIF2-ATF4 activity while enhancing the IRE1-Xbp1 axis of this pathway. Cells expressing high levels of Bag5 showed reduced sensitivity to apoptosis induced by different agents while Bag5 downregulation resulted in increased stress-induced cell death. We have therefore shown that Bag5 is overexpressed in prostate cancer and plays a role in ER-stress induced apoptosis. Furthermore we have identified GRP78/BiP as a novel

  20. Inhibition of advanced glycation endproduct (AGE) rescues against streptozotocin-induced diabetic cardiomyopathy: Role of autophagy and ER stress.

    Science.gov (United States)

    Pei, Zhaohui; Deng, Qinqin; Babcock, Sara A; He, Emily Y; Ren, Jun; Zhang, Yingmei

    2018-03-01

    Diabetes mellitus leads to oxidative stress and contractile dysfunction in the heart. Although several rationales have been speculated, the precise mechanism behind diabetic cardiomyopathy remains elusive. This study was designed to assess the role of inhibition of advanced glycation endproducts (AGE) in streptozotocin (STZ)-induced diabetic cardiac dysfunction. Cardiac contractile function was assessed in normal C57BL/6 and STZ (200mg/kg, single injection and maintained for 2 wks)-induced diabetic mice treated with or without the AGE inhibitor aminoguanidine (50mg/kg/d in drinking water) for 2 weeks using echocardiography and IonOptix MyoCam techniques. Diabetes compromised cardiac contractile function shown as reduced fractional shortening and ejection fraction, enlarged left ventricular end systolic/diastolic diameters, decreased peak shortening, maximal velocity of shortening/relengthening, prolonged shortening and relengthening duration as well as impaired intracellular Ca 2+ homeostasis, the effects of which were alleviated or reversed by aminoguanidine treatment. Diabetes also inhibited autophagy, increased ER stress and phosphorylation of pro-hypertrophic signaling molecules Akt and mTOR, the effect of which was reversed by aminoguanidine. In vitro study revealed that methylglyoxal-derived AGE (MG-AGE) incubation in isolated cardiomyocytes promoted oxidation of sarco(endo)plasmic reticulum Ca 2+ -ATPase (SERCA2a) and production of superoxide, the effects of which were negated by the autophagy inducer rapamycin, the ER stress chaperone TUDCA or the antioxidant N-acetylcysteine. Taken together, these data revealed that inhibition of AGE formation rescues against experimental diabetes-induced cardiac remodeling and contractile dysfunction possible through regulation of autophagy and ER stress. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Gliadin peptides induce tissue transglutaminase activation and ER-stress through Ca2+ mobilization in Caco-2 cells.

    Directory of Open Access Journals (Sweden)

    Ivana Caputo

    Full Text Available BACKGROUND: Celiac disease (CD is an intestinal inflammatory condition that develops in genetically susceptible individuals after exposure to dietary wheat gliadin. The role of post-translational modifications of gliadin catalyzed by tissue transglutaminase (tTG seems to play a crucial role in CD. However, it remains to be established how and where tTG is activated in vivo. We have investigated whether gliadin peptides modulate intracellular Ca(2+ homeostasis and tTG activity. METHODS/PRINCIPAL FINDINGS: We studied Ca(2+ homeostasis in Caco-2 cells by single cell microfluorimetry. Under our conditions, A-gliadin peptides 31-43 and 57-68 rapidly mobilized Ca(2+ from intracellular stores. Specifically, peptide 31-43 mobilized Ca(2+ from the endoplasmic reticulum (ER and mitochondria, whereas peptide 57-68 mobilized Ca(2+ only from mitochondria. We also found that gliadin peptide-induced Ca(2+ mobilization activates the enzymatic function of intracellular tTG as revealed by in situ tTG activity using the tTG substrate pentylamine-biotin. Moreover, we demonstrate that peptide 31-43, but not peptide 57-68, induces an increase of tTG expression. Finally, we monitored the expression of glucose-regulated protein-78 and of CCAAT/enhancer binding protein-homologous protein, which are two biochemical markers of ER-stress, by real-time RT-PCR and western blot. We found that chronic administration of peptide 31-43, but not of peptide 57-68, induces the expression of both genes. CONCLUSIONS: By inducing Ca(2+ mobilization from the ER, peptide 31-43 could promote an ER-stress pathway that may be relevant in CD pathogenesis. Furthermore, peptides 31-43 and 57-68, by activating intracellular tTG, could alter inflammatory key regulators, and induce deamidation of immunogenic peptides and gliadin-tTG crosslinking in enterocytes and specialized antigen-presenting cells.

  2. Curcumin abates hypoxia-induced oxidative stress based-ER stress-mediated cell death in mouse hippocampal cells (HT22) by controlling Prdx6 and NF-κB regulation

    Science.gov (United States)

    Chhunchha, Bhavana; Fatma, Nigar; Kubo, Eri; Rai, Prerana; Singh, Sanjay P.

    2013-01-01

    Oxidative stress and endoplasmic reticulum (ER) stress are emerging as crucial events in the etiopathology of many neurodegenerative diseases. While the neuroprotective contributions of the dietary compound curcumin has been recognized, the molecular mechanisms underlying curcumin's neuroprotection under oxidative and ER stresses remains elusive. Herein, we show that curcumin protects HT22 from oxidative and ER stresses evoked by the hypoxia (1% O2 or CoCl2 treatment) by enhancing peroxiredoxin 6 (Prdx6) expression. Cells exposed to CoCl2 displayed reduced expression of Prdx6 with higher reactive oxygen species (ROS) expression and activation of NF-κB with IκB phosphorylation. When NF-κB activity was blocked by using SN50, an inhibitor of NF-κB, or cells treated with curcumin, the repression of Prdx6 expression was restored, suggesting the involvement of NF-κB in modulating Prdx6 expression. These cells were enriched with an accumulation of ER stress proteins, C/EBP homologous protein (CHOP), GRP/78, and calreticulin, and had activated states of caspases 12, 9, and 3. Reinforced expression of Prdx6 in HT22 cells by curcumin reestablished survival signaling by reducing propagation of ROS and blunting ER stress signaling. Intriguingly, knockdown of Prdx6 by antisense revealed that loss of Prdx6 contributed to cell death by sustaining enhanced levels of ER stress-responsive proapoptotic proteins, which was due to elevated ROS production, suggesting that Prdx6 deficiency is a cause of initiation of ROS-mediated ER stress-induced apoptosis. We propose that using curcumin to reinforce the naturally occurring Prdx6 expression and attenuate ROS-based ER stress and NF-κB-mediated aberrant signaling improves cell survival and may provide an avenue to treat and/or postpone diseases associated with ROS or ER stress. PMID:23364261

  3. Physical exercise alleviates ER stress in obese humans through reduction in the expression and release of GRP78 chaperone.

    Science.gov (United States)

    Khadir, Abdelkrim; Kavalakatt, Sina; Abubaker, Jehad; Cherian, Preethi; Madhu, Dhanya; Al-Khairi, Irina; Abu-Farha, Mohamed; Warsame, Samia; Elkum, Naser; Dehbi, Mohammed; Tiss, Ali

    2016-09-01

    Perturbation of the endoplasmic reticulum (ER) homeostasis has emerged as one of the prominent features of obesity and diabetes. This occurs when the adaptive unfolded protein response (UPR) fails to restore ER function in key metabolic tissues. We previously reported increased inflammation and impaired heat shock response (HSR) in obese human subjects that were restored by physical exercise. Here, we investigated the status of ER stress chaperone; glucose-regulated protein 78 (GRP78) and its downstream UPR pathways in human obese, and their modulation by a supervised 3-month physical exercise. Subcutaneous adipose tissue (SAT) and blood samples were collected from non-diabetic adult human lean (n=40) and obese (n=40, at baseline and after 3months of physical exercise). Transcriptomic profiling was used as a primary screen to identify differentially expressed genes and it was carried out on SAT samples using the UPR RT(2) Profiler PCR Array. Conventional RT-PCR, immunohistochemistry, immunofluorescence, Western blot and ELISA were used to validate the transcriptomic data. Correlation analyses with the physical, clinical and biochemical outcomes were performed using Pearson's rank correlation coefficient. Levels of GRP78 and its three downstream UPR arms; activating transcription factor-6 (ATF6), inositol-requiring enzyme-1α (IRE1α) and protein kinase RNA-like endoplasmic reticulum kinase (PERK) were increased in obese subjects. More interestingly, higher levels of circulating GRP78 protein were found in obese compared to lean subjects which correlated negatively with maximum oxygen uptake (VO2 Max) but positively with high-sensitivity C-reactive protein (hsCRP) and obesity indicators such as BMI, percentage body fat (PBF) and waist circumference. GRP78 increased secretion in obese was further confirmed in vitro using 3T3-L1 preadipocyte cells under ER stress. Finally, we showed that physical exercise significantly attenuated the expression and release of GRP78

  4. Estrogen receptor (ER)α-regulated lipocalin 2 expression in adipose tissue links obesity with breast cancer progression.

    Science.gov (United States)

    Drew, Brian G; Hamidi, Habib; Zhou, Zhenqi; Villanueva, Claudio J; Krum, Susan A; Calkin, Anna C; Parks, Brian W; Ribas, Vicent; Kalajian, Nareg Y; Phun, Jennifer; Daraei, Pedram; Christofk, Heather R; Hewitt, Sylvia C; Korach, Kenneth S; Tontonoz, Peter; Lusis, Aldons J; Slamon, Dennis J; Hurvitz, Sara A; Hevener, Andrea L

    2015-02-27

    Obesity is associated with increased breast cancer (BrCA) incidence. Considering that inactivation of estrogen receptor (ER)α promotes obesity and metabolic dysfunction in women and female mice, understanding the mechanisms and tissue-specific sites of ERα action to combat metabolic-related disease, including BrCA, is of clinical importance. To study the role of ERα in adipose tissue we generated fat-specific ERα knock-out (FERKO) mice. Herein we show that ERα deletion increased adipocyte size, fat pad weight, and tissue expression and circulating levels of the secreted glycoprotein, lipocalin 2 (Lcn2), an adipokine previously associated with BrCA development. Chromatin immunoprecipitation and luciferase reporter studies showed that ERα binds the Lcn2 promoter to repress its expression. Because adipocytes constitute an important cell type of the breast microenvironment, we examined the impact of adipocyte ERα deletion on cancer cell behavior. Conditioned medium from ERα-null adipocytes and medium containing pure Lcn2 increased proliferation and migration of a subset of BrCA cells in culture. The proliferative and promigratory effects of ERα-deficient adipocyte-conditioned medium on BrCA cells was reversed by Lcn2 deletion. BrCA cell responsiveness to exogenous Lcn2 was heightened in cell types where endogenous Lcn2 expression was minimal, but components of the Lcn2 signaling pathway were enriched, i.e. SLC22A17 and 3-hydroxybutyrate dehydrogenase (BDH2). In breast tumor biopsies from women diagnosed with BrCA we found that BDH2 expression was positively associated with adiposity and circulating Lcn2 levels. Collectively these data suggest that reduction of ERα expression in adipose tissue promotes adiposity and is linked with the progression and severity of BrCA via increased adipocyte-specific Lcn2 production and enhanced tumor cell Lcn2 sensitivity. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  5. ER stress stimulates production of the key antimicrobial peptide, cathelicidin, by forming a previously unidentified intracellular S1P signaling complex.

    Science.gov (United States)

    Park, Kyungho; Ikushiro, Hiroko; Seo, Ho Seong; Shin, Kyong-Oh; Kim, Young Il; Kim, Jong Youl; Lee, Yong-Moon; Yano, Takato; Holleran, Walter M; Elias, Peter; Uchida, Yoshikazu

    2016-03-08

    We recently identified a previously unidentified sphingosine-1-phosphate (S1P) signaling mechanism that stimulates production of a key innate immune element, cathelicidin antimicrobial peptide (CAMP), in mammalian cells exposed to external perturbations, such as UVB irradiation and other oxidative stressors that provoke subapoptotic levels of endoplasmic reticulum (ER) stress, independent of the well-known vitamin D receptor-dependent mechanism. ER stress increases cellular ceramide and one of its distal metabolites, S1P, which activates NF-κB followed by C/EBPα activation, leading to CAMP production, but in a S1P receptor-independent fashion. We now show that S1P activates NF-κB through formation of a previously unidentified signaling complex, consisting of S1P, TRAF2, and RIP1 that further associates with three stress-responsive proteins; i.e., heat shock proteins (GRP94 and HSP90α) and IRE1α. S1P specifically interacts with the N-terminal domain of heat shock proteins. Because this ER stress-initiated mechanism is operative in both epithelial cells and macrophages, it appears to be a universal, highly conserved response, broadly protective against diverse external perturbations that lead to increased ER stress. Finally, these studies further illuminate how ER stress and S1P orchestrate critical stress-specific signals that regulate production of one protective response by stimulating production of the key innate immune element, CAMP.

  6. Jolkinolide B induces apoptosis of colorectal carcinoma through ROS-ER stress-Ca2+-mitochondria dependent pathway.

    Science.gov (United States)

    Zhang, Jing; Wang, Yang; Zhou, Ye; He, Qing-Yu

    2017-10-31

    Colorectal carcinoma (CRC) remains one of the leading causes of death in cancer-related diseases. In this study, we aimed to investigate the anticancer effect of Jolkinolide B (JB), a bioactive diterpenoid component isolated from the dried roots of Euphorbia fischeriana Steud, on CRC cells and its underlying mechanisms. We found that JB suppressed the cell viability and colony formation of CRC cells, HT29 and SW620. Annexin V/PI assay revealed that JB induced apoptosis in CRC cells, which was further confirmed by the increased expression of cleaved-caspase3 and cleaved-PARP. iTRAQ-based quantitative proteomics was performed to identify JB-regulated proteins in CRC cells. Gene Ontology (GO) analysis revealed that these JB-regulated proteins were mainly involved in ER stress response, which was evidenced by the expression of ER stress marker proteins, HSP90, Bip and PDI. Moreover, we found that JB provoked the generation of reactive oxygen species (ROS), and that inhibition of the ROS generation with N-acetyl L-cysteine could reverse the JB-induced apoptosis. Confocal microscopy and flow cytometry showed that JB treatment enhanced intracellular and mitochondrial Ca 2+ level and JC-1 assay revealed a loss of mitochondrial membrane potential in CRC after JB treatment. The mitochondrial Ca 2+ uptake and depolarization can be blocked by Ruthenium Red (RuRed), an inhibitor of mitochondrial Ca 2+ uniporter. Taken together, we demonstrated that JB exerts its anticancer effect by ER stress-Ca 2+ -mitochondria signaling, suggesting the promising chemotherapeutic potential of JB for the treatment of CRC.

  7. EFP1 is an ER stress-induced glycoprotein which interacts with the pro-apoptotic protein Par-4

    Directory of Open Access Journals (Sweden)

    Sarah Appel

    2009-05-01

    Full Text Available Sarah Appel1,2,6, Susanne Vetterkind1,2,6, Ansgar Koplin1,3, Barbara Maertens1,4, Meike Boosen1,5, Ute Preuss11The Institute of Genetics, University of Bonn, Bonn, Germany; 2Department of Health Sciences, Sargent College of Health and Rehabilitation Sciences, Boston University, Boston, MA, USA; 3Center for Molecular Biology Heidelberg (ZMBH, Heidelberg, Germany; 4Institute of Biochemistry II, University of Cologne, Cologne, Germany; 5Institute of Pharmacology and Toxicology, University Hospital of Johann Wolfgang Goethe-University Frankfurt am Main, Frankfurt am Main, Germany; 6These authors contributed equally to this work.Abstract: We have isolated the rat ortholog of EFP1 (EF-hand binding protein 1 as a novel interaction partner of the pro-apoptotic protein Par-4 (prostate apoptosis response-4. Rat EFP1 contains two thioredoxin domains, the COOH-terminal one harboring a CGFC motif, and has a similar protein domain structure as members of the protein disulfide isomerase (PDI family. In REF52.2 and CHO cells, EFP1 colocalized with the endoplasmic reticulum (ER marker PDI. Furthermore, EFP1 possesses catalytic activity as demonstrated by an insulin disulfide reduction assay. Western blot analysis revealed two EFP1 protein bands of approximately 136 and 155 kDa, representing different glycosylation states of the protein. Complex formation between EFP1 and Par-4 was confirmed in vitro and in vivo by co-immunoprecipitation, dot blot overlay and pull-down experiments. In CHO cells, coexpression of EFP1 and Par-4 resulted in enhanced Par-4-mediated apoptosis, which required the catalytic activity of EFP1. Interestingly, EFP1 was specifically upregulated in NIH3T3 cells after induction of ER stress by thapsigargin, tunicamycin, and brefeldin A, but not by agents that induce oxidative stress or ER-independent apoptosis. Furthermore, we could show that the induction of apoptosis by Ca2+ stress-inducing agents was significantly decreased after si

  8. Nicotine improves obesity and hepatic steatosis and ER stress in diet-induced obese male rats.

    Science.gov (United States)

    Seoane-Collazo, Patricia; Martínez de Morentin, Pablo B; Fernø, Johan; Diéguez, Carlos; Nogueiras, Rubén; López, Miguel

    2014-05-01

    Nicotine, the main addictive component of tobacco, promotes body weight reduction in humans and rodents. Recent evidence has suggested that nicotine acts in the central nervous system to modulate energy balance. Specifically, nicotine modulates hypothalamic AMP-activated protein kinase to decrease feeding and to increase brown adipose tissue thermogenesis through the sympathetic nervous system, leading to weight loss. Of note, most of this evidence has been obtained in animal models fed with normal diet or low-fat diet (LFD). However, its effectiveness in obese models remains elusive. Because obesity causes resistance towards many factors involved in energy homeostasis, the aim of this study has been to compare the effect of nicotine in a diet-induced obese (DIO) model, namely rats fed a high-fat diet, with rats fed a LFD. Our data show that chronic peripheral nicotine treatment reduced body weight by decreasing food intake and increasing brown adipose tissue thermogenesis in both LFD and DIO rats. This overall negative energy balance was associated to decreased activation of hypothalamic AMP-activated protein kinase in both models. Furthermore, nicotine improved serum lipid profile, decreased insulin serum levels, as well as reduced steatosis, inflammation, and endoplasmic reticulum stress in the liver of DIO rats but not in LFD rats. Overall, this evidence suggests that nicotine diminishes body weight and improves metabolic disorders linked to DIO and might offer a clear-cut strategy to develop new therapeutic approaches against obesity and its metabolic complications.

  9. Sex difference in link between interleukin-6 and stress.

    Science.gov (United States)

    Jankord, Ryan; Turk, James R; Schadt, James C; Casati, Jennifer; Ganjam, Venkataseshu K; Price, Elmer M; Keisler, Duane H; Laughlin, M Harold

    2007-08-01

    Inflammation contributes to disease development, and the neuroimmunoendocrine interface is a potential site of action for inflammatory products like IL-6 to affect health. Although plasma IL-6 can stimulate the activity of the hypothalamo-pituitary-adrenocortical (HPA) axis, the precise role, if any, for IL-6 in the HPA response to nonimmunological stressors is unclear. The purpose of this study was to test the hypothesis that IL-6 in the stalk median eminence (SME) can be directly involved in stimulating ACTH secretion in response to acute stress in female swine. This study was undertaken as a result of finding IL-6 localized to the external zone of the SME next to the hypophyseal portal vessels. Results indicate that content of IL-6 in the SME decreases in response to acute stress along with an increase in nuclear phosphorylated signal transducer and activator of transcription-3 (pSTAT-3) in pituitary corticotrophs and a simultaneous increase in plasma concentrations of IL-6 and ACTH. Furthermore, we show that females concomitantly display greater SME content of IL-6 and greater HPA responsiveness to stress, thereby suggesting that IL-6 release from the SME is an integral factor contributing to enhanced stress responsiveness in females. Our results provide evidence for a direct link between IL-6 and ACTH release and reveal a sex difference in this relationship.

  10. Sex Difference in Link between IL-6 and Stress

    Science.gov (United States)

    Jankord, Ryan; Turk, James R.; Schadt, James C.; Casati, Jennifer; Ganjam, Venkataseshu K.; Price, Elmer M.; Keisler, Duane H.; Laughlin, M. Harold

    2009-01-01

    Inflammation contributes to disease development, and the neuro-immuno-endocrine interface is a potential site of action for inflammatory products like IL-6 to affect health. Although plasma IL-6 can stimulate the activity of the hypothalamo-pituitary-adrenocortical (HPA) axis, the precise role, if any, for IL-6 in the HPA response to non-immunological stressors is unclear. The purpose of this study was to test the hypothesis that IL-6 in the stalk median eminence (SME) can be directly involved in stimulating ACTH secretion in response to acute stress in female swine. This study was undertaken as a result of finding IL-6 localized to the external zone of the stalk median eminence (SME) next to the hypophyseal portal vessels. Results indicate that content of IL-6 in the SME decreases in response to acute stress along with an increase in phosphorylation of STAT3 in the anterior pituitary and a simultaneous increase in plasma concentrations of IL-6 and ACTH. Furthermore, we show that females concomitantly display greater SME content of IL-6 and greater HPA responsiveness to stress, thereby suggesting that IL-6 release from the SME is an integral factor contributing to enhanced stress responsiveness in females. Our results provide evidence for a direct link between IL-6 and ACTH release and reveal a sex difference in this relationship. PMID:17510233

  11. Stress--the battle for hearts and minds: links between depression, stress and ischemic heart disease.

    Science.gov (United States)

    Korszun, Ania; Frenneaux, Michael P

    2006-09-01

    Depression and ischemic heart disease (IHD) are strongly related common disorders. Depression itself is an independent cardiac risk factor and is associated with a two- to threefold increase in IHD mortality. Attention has now shifted to identifying the common underlying mechanisms that could make individuals susceptible to both disorders. Abnormalities that have been implicated in this relationship include abnormal platelet activation, decreased baroreceptor sensitivity and endothelial dysfunction. Depression and IHD both have a high association with environmental stress, and depression is characterized by abnormalities of the stress-hormone axis. This review provides a brief overview of some recent developments in our understanding of the pathophysiological links between stress, depression and IHD.

  12. Baicalin Ameliorates H2O2 Induced Cytotoxicity in HK-2 Cells through the Inhibition of ER Stress and the Activation of Nrf2 Signaling

    Directory of Open Access Journals (Sweden)

    Miao Lin

    2014-07-01

    Full Text Available Renal ischemia-reperfusion injury plays a key role in renal transplantation and greatly affects the outcome of allograft. Our previous study proved that Baicalin, a flavonoid glycoside isolated from Scutellaria baicalensis, protects kidney from ischemia-reperfusion injury. This study aimed to study the underlying mechanism in vitro. Human renal proximal tubular epithelial cell line HK-2 cells were stimulated by H2O2 with and without Baicalin pretreatment. The cell viability, apoptosis and oxidative stress level were measured. The expression of endoplasmic reticulum (ER stress hallmarks, such as binding immunoglobulin protein (BiP and C/EBP homologous protein (CHOP, were analyzed by western blot and real-time PCR. NF-E2-related factor 2 (Nrf2 expression was also measured. In the H2O2 group, cell viability decreased and cell apoptosis increased. Reactive Oxygen Species (ROS and Glutathione/Oxidized Glutathione (GSH/GSSG analysis revealed increased oxidative stress. ER stress and Nrf2 signaling also increased. Baicalin pretreatment ameliorated H2O2-induced cytotoxicity, reduced oxidative stress and ER stress and further activated the anti-oxidative Nrf2 signaling pathway. The inducer of ER stress and the inhibitor of Nrf2 abrogated the protective effects, while the inhibitor of ER stress and the inducer of Nrf2 did not improve the outcome. This study revealed that Baicalin pretreatment serves a protective role against H2O2-induced cytotoxicity in HK-2 cells, where the inhibition of ER stress and the activation of downstream Nrf2 signaling are involved.

  13. Polyphenolic Extract of Euphorbia supina Attenuates Manganese-Induced Neurotoxicity by Enhancing Antioxidant Activity through Regulation of ER Stress and ER Stress-Mediated Apoptosis

    Directory of Open Access Journals (Sweden)

    Entaz Bahar

    2017-01-01

    Full Text Available Manganese (Mn is an important trace element present in human body, which acts as an enzyme co-factor or activator in various metabolic reactions. While essential in trace amounts, excess levels of Mn in human brain can produce neurotoxicity, including idiopathic Parkinson’s disease (PD-like extrapyramidal manganism symptoms. This study aimed to investigate the protective role of polyphenolic extract of Euphorbia supina (PPEES on Mn-induced neurotoxicity and the underlying mechanism in human neuroblastoma SKNMC cells and Sprague-Dawley (SD male rat brain. PPEES possessed significant amount of total phenolic and flavonoid contents. PPEES also showed significant antioxidant activity in 1,1-diphenyl-2-picrylhydrazyl (DPPH radical scavenging and reducing power capacity (RPC assays. Our results showed that Mn treatment significantly reduced cell viability and increased lactate dehydrogenase (LDH level, which was attenuated by PPEES pretreatment at 100 and 200 µg/mL. Additionally, PPEES pretreatment markedly attenuated Mn-induced antioxidant status alteration by resolving the ROS, MDA and GSH levels and SOD and CAT activities. PPEES pretreatment also significantly attenuated Mn-induced mitochondrial membrane potential (ΔΨm and apoptosis. Meanwhile, PPEES pretreatment significantly reversed the Mn-induced alteration in the GRP78, GADD34, XBP-1, CHOP, Bcl-2, Bax and caspase-3 activities. Furthermore, administration of PPEES (100 and 200 mg/kg to Mn exposed rats showed improvement of histopathological alteration in comparison to Mn-treated rats. Moreover, administration of PPEES to Mn exposed rats showed significant reduction of 8-OHdG and Bax immunoreactivity. The results suggest that PPEES treatment reduces Mn-induced oxidative stress and neuronal cell loss in SKNMC cells and in the rat brain. Therefore, PPEES may be considered as potential treat-ment in Mn-intoxicated patients.

  14. Exposure of Jurkat cells to bis (tri-n-butyltin) oxide (TBTO) induces transcriptomics changes indicative for ER- and oxidative stress, T cell activation and apoptosis

    International Nuclear Information System (INIS)

    Katika, Madhumohan R.; Hendriksen, Peter J.M.; Loveren, Henk van; Peijnenburg, Ad

    2011-01-01

    Tributyltin oxide (TBTO) is an organotin compound that is widely used as a biocide in agriculture and as an antifouling agent in paints. TBTO is toxic for many cell types, particularly immune cells. The present study aimed to identify the effects of TBTO on the human T lymphocyte cell line Jurkat. Cells were treated with 0.2 and 0.5 μM TBTO for 3, 6, 12 and 24 h and then subjected to whole genome gene expression microarray analysis. The biological interpretation of the gene expression profiles revealed that endoplasmic reticulum (ER) stress is among the earliest effects of TBTO. Simultaneously or shortly thereafter, oxidative stress, activation of NFKB and NFAT, T cell activation, and apoptosis are induced. The effects of TBTO on genes involved in ER stress, NFAT pathway, T cell activation and apoptosis were confirmed by qRT-PCR. Activation and nuclear translocation of NFATC1 and the oxidative stress response proteins NRF2 and KEAP1 were confirmed by immunocytology. Taking advantage of previously published microarray data, we demonstrated that the induction of ER stress, oxidative stress, T cell activation and apoptosis by TBTO is not unique for Jurkat cells but does also occur in mouse thymocytes both ex vivo and in vivo and rat thymocytes ex vivo. We propose that the induction of ER stress leading to a T cell activation response is a major factor in the higher sensitivity of immune cells above other types of cells for TBTO. - Research Highlights: → The human T lymphocyte cell line Jurkat was exposed to TBTO. → Whole-genome microarray experiments were performed. → Data analysis revealed the induction of ER stress and activation of NFAT and NFKB. → Exposure to TBTO also led to T cell activation, oxidative stress and apoptosis.

  15. The CDK inhibitor p21 is a novel target gene of ATF4 and contributes to cell survival under ER stress.

    Science.gov (United States)

    Inoue, Yasumichi; Kawachi, Shiori; Ohkubo, Tsubasa; Nagasaka, Mai; Ito, Shogo; Fukuura, Keishi; Itoh, Yuka; Ohoka, Nobumichi; Morishita, Daisuke; Hayashi, Hidetoshi

    2017-11-01

    Activating transcription factor 4 (ATF4) is well known for its role in the endoplasmic reticulum (ER) stress response. ATF4 also transcriptionally induces multiple effectors that determine cell fate depending on cellular context. In addition, ATF4 can communicate both pro-apoptotic and pro-survival signals. How ATF4 mediates its prosurvival roles, however, requires further investigation. Here, we report that the CDK inhibitor p21 is a novel target gene of ATF4. We identified two ATF4-responsive elements, one of which directly binds ATF4, within the first intron of the p21 gene. Importantly, overexpression of p21 enhances cell survival following ER stress induction, while p21 knockdown increases cell death. These results suggest that p21 induction plays a vital role in the cellular response to ER stress and indicate that p21 is a prosurvival effector of ATF4. © 2017 Federation of European Biochemical Societies.

  16. Anti-Fibrotic Effect of Losartan, an Angiotensin II Receptor Blocker, Is Mediated through Inhibition of ER Stress via Up-Regulation of SIRT1, Followed by Induction of HO-1 and Thioredoxin

    Directory of Open Access Journals (Sweden)

    Hyosang Kim

    2017-01-01

    Full Text Available Endoplasmic reticulum (ER stress is increasingly identified as modulator of fibrosis. Losartan, an angiotensin II receptor blocker, has been widely used as the first choice of treatment in chronic renal diseases. We postulated that anti-fibrotic effect of losartan is mediated through inhibition of ER stress via SIRT1 (silent mating type information regulation 2 homolog 1 hemeoxygenase-1 (HO-1/thioredoxin pathway. Renal tubular cells, tunicamycin (TM-induced ER stress, and unilateral ureteral obstruction (UUO mouse model were used. Expression of ER stress was assessed by Western blot analysis and immunohistochemical stain. ER stress was induced by chemical ER stress inducer, tunicamycin, and non-chemical inducers such as TGF-β, angiotensin II, high glucose, and albumin. Losartan suppressed the TM-induced ER stress, as shown by inhibition of TM-induced expression of GRP78 (glucose related protein 78 and p-eIF2α (phosphospecific-eukaryotic translation initiation factor-2α, through up-regulation of SIRT1 via HO-1 and thioredoxin. Losartan also suppressed the ER stress by non-chemical inducers. In both animal models, losartan reduced the tubular expression of GRP78, which were abolished by pretreatment with sirtinol (SIRT1 inhibitor. Sirtinol also blocked the inhibitory effect of losartan on the UUO-induced renal fibrosis. These findings provide new insights into renoprotective effects of losartan and suggest that SIRT1, HO-1, and thioredoxin may be potential pharmacological targets in kidney diseases under excessive ER stress condition.

  17. Ubiquitin fold modifier 1 (UFM1 and its target UFBP1 protect pancreatic beta cells from ER stress-induced apoptosis.

    Directory of Open Access Journals (Sweden)

    Katleen Lemaire

    Full Text Available UFM1 is a member of the ubiquitin like protein family. While the enzymatic cascade of UFM1 conjugation has been elucidated in recent years, the biological function remains largely unknown. In this report we demonstrate that the recently identified C20orf116, which we name UFM1-binding protein 1 containing a PCI domain (UFBP1, and CDK5RAP3 interact with UFM1. Components of the UFM1 conjugation pathway (UFM1, UFBP1, UFL1 and CDK5RAP3 are highly expressed in pancreatic islets of Langerhans and some other secretory tissues. Co-localization of UFM1 with UFBP1 in the endoplasmic reticulum (ER depends on UFBP1. We demonstrate that ER stress, which is common in secretory cells, induces expression of Ufm1, Ufbp1 and Ufl1 in the beta-cell line INS-1E. siRNA-mediated Ufm1 or Ufbp1 knockdown enhances apoptosis upon ER stress. Silencing the E3 enzyme UFL1, results in similar outcomes, suggesting that UFM1-UFBP1 conjugation is required to prevent ER stress-induced apoptosis. Together, our data suggest that UFM1-UFBP1 participate in preventing ER stress-induced apoptosis in protein secretory cells.

  18. Evaluation of a curcumin analog as an anti-cancer agent inducing ER stress-mediated apoptosis in non-small cell lung cancer cells

    International Nuclear Information System (INIS)

    Liu, Zhiguo; Wang, Yi; Sun, Yusheng; Ren, Luqing; Huang, Yi; Cai, Yuepiao; Weng, Qiaoyou; Shen, Xueqian; Li, Xiaokun; Liang, Guang

    2013-01-01

    Recent advances have highlighted the importance of the endoplasmic reticulum (ER) in cell death processes. Pharmacological interventions that effectively enhance tumor cell death through activating ER stress have attracted a great deal of attention for anti-cancer therapy. A bio-evaluation on 113 curcumin analogs against four cancer cell lines was performed through MTT assay. Furthermore, real time cell assay and flow cytometer were used to evaluate the apoptotic induction of (1E,4E)-1,5-bis(5-bromo-2-ethoxyphenyl)penta-1,4-dien-3-one (B82). Western blot, RT-qPCR, and siRNA were then utilized to confirm whether B82-induced apoptosis is mediated through activating ER stress pathway. Finally, the in vivo anti-tumor effect of B82 was evaluated. B82 exhibited strong anti-tumor activity in non-small cell lung cancer (NSCLC) H460 cells. Treatment with B82 significantly induced apoptosis in H460 cells in vitro and inhibited H460 tumor growth in vivo. Further studies demonstrated that the B82-induced apoptosis is mediated by activating ER stress both in vitro and in vivo. A new monocarbonyl analog of curcumin, B82, exhibited anti-tumor effects on H460 cells via an ER stress-mediated mechanism. B82 could be further explored as a potential anticancer agent for the treatment of NSCLC

  19. Taurine Pretreatment Prevents Isoflurane-Induced Cognitive Impairment by Inhibiting ER Stress-Mediated Activation of Apoptosis Pathways in the Hippocampus in Aged Rats.

    Science.gov (United States)

    Zhang, Yanan; Li, Dongliang; Li, Haiou; Hou, Dailiang; Hou, Jingdong

    2016-10-01

    Isoflurane, a commonly used inhalation anesthetic, may induce neurocognitive deficits, especially in elderly patients after surgery. Recent study demonstrated that isoflurane caused endoplasmic reticulum (ER) stress and subsequent neuronal apoptosis in the brain, contributing to cognitive deficits. Taurine, a major intracellular free amino acid, has been shown to inhibit ER stress and neuronal apoptosis in several neurological disorders. Here, we examined whether taurine can prevent isoflurane-induced ER stress and cognitive impairment in aged rats. Thirty minutes prior to a 4-h 1.3 % isoflurane exposure, aged rats were treated with vehicle or taurine at low, middle and high doses. Aged rats without any treatment served as control. The brains were harvested 6 h after isoflurane exposure for molecular measurements, and behavioral study was performed 2 weeks later. Compared with control, isoflurane increased expression of hippocampal ER stress biomarkers including glucose-regulated protein 78, phosphorylated (P-) inositol-requiring enzyme 1, P-eukaryotic initiation factor 2-α (EIF2α), activating transcription factor 4 (ATF-4), cleaved ATF-6 and C/EBP homologous protein, along with activation of apoptosis pathways as indicated by decreased B cell lymphoma 2 (BCL-2)/BCL2-associated X protein, increased expressions of cytochrome-c and cleaved caspase-3. Taurine pretreatment dose-dependently inhibited isoflurane-induced increase in expression of ER stress biomarkers except for P-EIF2α and ATF-4, and reversed isoflurane-induced changes in apoptosis-related proteins. Moreover, isoflurane caused spatial working memory deficits in aged rats, which were prevented by taurine pretreatment. The results indicate that taurine pretreatment prevents anesthetic isoflurane-induced cognitive impairment by inhibiting ER stress-mediated activation of apoptosis pathways in the hippocampus in aged rats.

  20. The novel white spot syndrome virus-induced gene, PmERP15, encodes an ER stress-responsive protein in black tiger shrimp, Penaeus monodon.

    Science.gov (United States)

    Leu, Jiann-Horng; Liu, Kuan-Fu; Chen, Kuan-Yu; Chen, Shu-Hwa; Wang, Yu-Bin; Lin, Chung-Yen; Lo, Chu-Fang

    2015-04-01

    By microarray screening, we identified a white spot syndrome virus (WSSV)-strongly induced novel gene in gills of Penaeus monodon. The gene, PmERP15, encodes a putative transmembrane protein of 15 kDa, which only showed some degree of similarity (54-59%) to several unknown insect proteins, but had no hits to shrimp proteins. RT-PCR showed that PmERP15 was highly expressed in the hemocytes, heart and lymphoid organs, and that WSSV-induced strong expression of PmERP15 was evident in all tissues examined. Western blot analysis likewise showed that WSSV strongly up-regulated PmERP15 protein levels. In WSSV-infected hemocytes, immunofluorescence staining showed that PmERP15 protein was colocalized with an ER enzyme, protein disulfide isomerase, and in Sf9 insect cells, PmERP15-EGFP fusion protein colocalized with ER -Tracker™ Red dye as well. GRP78, an ER stress marker, was found to be up-regulated in WSSV-infected P. monodon, and both PmERP15 and GRP78 were up-regulated in shrimp injected with ER stress inducers tunicamycin and dithiothreitol. Silencing experiments showed that although PmERP15 dsRNA-injected shrimp succumbed to WSSV infection more rapidly, the WSSV copy number had no significant changes. These results suggest that PmERP15 is an ER stress-induced, ER resident protein, and its induction in WSSV-infected shrimp is caused by the ER stress triggered by WSSV infection. Furthermore, although PmERP15 has no role in WSSV multiplication, its presence is essential for the survival of WSSV-infected shrimp. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. Broad MICA/B Expression in the Small Bowel Mucosa: A Link between Cellular Stress and Celiac Disease

    Science.gov (United States)

    Allegretti, Yessica L.; Bondar, Constanza; Guzman, Luciana; Cueto Rua, Eduardo; Chopita, Nestor; Fuertes, Mercedes; Zwirner, Norberto W.; Chirdo, Fernando G.

    2013-01-01

    The MICA/B genes (MHC class I chain related genes A and B) encode for non conventional class I HLA molecules which have no role in antigen presentation. MICA/B are up-regulated by different stress conditions such as heat-shock, oxidative stress, neoplasic transformation and viral infection. Particularly, MICA/B are expressed in enterocytes where they can mediate enterocyte apoptosis when recognised by the activating NKG2D receptor present on intraepithelial lymphocytes. This mechanism was suggested to play a major pathogenic role in active celiac disease (CD). Due to the importance of MICA/B in CD pathogenesis we studied their expression in duodenal tissue from CD patients. By immunofluorescence confocal microscopy and flow cytometry we established that MICA/B was mainly intracellularly located in enterocytes. In addition, we identified MICA/B+ T cells in both the intraepithelial and lamina propria compartments. We also found MICA/B+ B cells, plasma cells and some macrophages in the lamina propria. The pattern of MICA/B staining in mucosal tissue in severe enteropathy was similar to that found in in vitro models of cellular stress. In such models, MICA/B were located in stress granules that are associated to the oxidative and ER stress response observed in active CD enteropathy. Our results suggest that expression of MICA/B in the intestinal mucosa of CD patients is linked to disregulation of mucosa homeostasis in which the stress response plays an active role. PMID:24058482

  2. Zinc Transporter SLC39A7/ZIP7 Promotes Intestinal Epithelial Self-Renewal by Resolving ER Stress

    Science.gov (United States)

    Ohashi, Wakana; Kimura, Shunsuke; Iwanaga, Toshihiko; Furusawa, Yukihiro; Irié, Tarou; Izumi, Hironori; Watanabe, Takashi; Hara, Takafumi; Ohara, Osamu; Koseki, Haruhiko; Sato, Toshiro; Robine, Sylvie; Mori, Hisashi; Hattori, Yuichi; Mishima, Kenji; Ohno, Hiroshi; Hase, Koji; Fukada, Toshiyuki

    2016-01-01

    Zinc transporters play a critical role in spatiotemporal regulation of zinc homeostasis. Although disruption of zinc homeostasis has been implicated in disorders such as intestinal inflammation and aberrant epithelial morphology, it is largely unknown which zinc transporters are responsible for the intestinal epithelial homeostasis. Here, we show that Zrt-Irt-like protein (ZIP) transporter ZIP7, which is highly expressed in the intestinal crypt, is essential for intestinal epithelial proliferation. Mice lacking Zip7 in intestinal epithelium triggered endoplasmic reticulum (ER) stress in proliferative progenitor cells, leading to significant cell death of progenitor cells. Zip7 deficiency led to the loss of Olfm4+ intestinal stem cells and the degeneration of post-mitotic Paneth cells, indicating a fundamental requirement for Zip7 in homeostatic intestinal regeneration. Taken together, these findings provide evidence for the importance of ZIP7 in maintenance of intestinal epithelial homeostasis through the regulation of ER function in proliferative progenitor cells and maintenance of intestinal stem cells. Therapeutic targeting of ZIP7 could lead to effective treatment of gastrointestinal disorders. PMID:27736879

  3. Zinc Transporter SLC39A7/ZIP7 Promotes Intestinal Epithelial Self-Renewal by Resolving ER Stress.

    Directory of Open Access Journals (Sweden)

    Wakana Ohashi

    2016-10-01

    Full Text Available Zinc transporters play a critical role in spatiotemporal regulation of zinc homeostasis. Although disruption of zinc homeostasis has been implicated in disorders such as intestinal inflammation and aberrant epithelial morphology, it is largely unknown which zinc transporters are responsible for the intestinal epithelial homeostasis. Here, we show that Zrt-Irt-like protein (ZIP transporter ZIP7, which is highly expressed in the intestinal crypt, is essential for intestinal epithelial proliferation. Mice lacking Zip7 in intestinal epithelium triggered endoplasmic reticulum (ER stress in proliferative progenitor cells, leading to significant cell death of progenitor cells. Zip7 deficiency led to the loss of Olfm4+ intestinal stem cells and the degeneration of post-mitotic Paneth cells, indicating a fundamental requirement for Zip7 in homeostatic intestinal regeneration. Taken together, these findings provide evidence for the importance of ZIP7 in maintenance of intestinal epithelial homeostasis through the regulation of ER function in proliferative progenitor cells and maintenance of intestinal stem cells. Therapeutic targeting of ZIP7 could lead to effective treatment of gastrointestinal disorders.

  4. Free fatty acids induce ER stress and block antiviral activity of interferon alpha against hepatitis C virus in cell culture

    Directory of Open Access Journals (Sweden)

    Gunduz Feyza

    2012-08-01

    Full Text Available Abstract Background Hepatic steatosis is recognized as a major risk factor for liver disease progression and impaired response to interferon based therapy in chronic hepatitis C (CHC patients. The mechanism of response to interferon-alpha (IFN-α therapy under the condition of hepatic steatosis is unexplored. We investigated the effect of hepatocellular steatosis on hepatitis C virus (HCV replication and IFN-α antiviral response in a cell culture model. Methods Sub-genomic replicon (S3-GFP and HCV infected Huh-7.5 cells were cultured with a mixture of saturated (palmitate and unsaturated (oleate long-chain free fatty acids (FFA. Intracytoplasmic fat accumulation in these cells was visualized by Nile red staining and electron microscopy then quantified by microfluorometry. The effect of FFA treatment on HCV replication and IFN-α antiviral response was measured by flow cytometric analysis, Renilla luciferase activity, and real-time RT-PCR. Results FFA treatment induced dose dependent hepatocellular steatosis and lipid droplet accumulation in the HCV replicon cells was confirmed by Nile red staining, microfluorometry, and by electron microscopy. Intracellular fat accumulation supports replication more in the persistently HCV infected culture than in the sub-genomic replicon (S3-GFP cell line. FFA treatment also partially blocked IFN-α response and viral clearance by reducing the phosphorylation of Stat1 and Stat2 dependent IFN-β promoter activation. We show that FFA treatment induces endoplasmic reticulum (ER stress response and down regulates the IFNAR1 chain of the type I IFN receptor leading to defective Jak-Stat signaling and impaired antiviral response. Conclusion These results suggest that intracellular fat accumulation in HCV cell culture induces ER stress, defective Jak-Stat signaling, and attenuates the antiviral response, thus providing an explanation to the clinical observation regarding how hepatocellular steatosis influences IFN

  5. Stress i børnefamilier: er børnene årsagen?

    DEFF Research Database (Denmark)

    Engell, Rikke; Nielsen, Naja Rod; Andersen, Anne-Marie Nybo

    2007-01-01

    Danish Health and Morbidity Survey 2000 were used. 3,083 men and 2,813 women aged 25-49 years answered one question on perceived stress. All analyses were stratified on sex and marital status and adjusted for age, socio-economic level, income and work hours/week. RESULTS: No differences in perceived...... stress between men and women with and without children were found. Women, who were lone parents and worked more than 37 hours a week, had a markedly increased level of stress (OR: 3.2, 95%CI: (1.3-7.8)) compared to single women without children working 37 hours a week. CONCLUSION: Children...... in the household did not appear to be the cause of a high level of perceived stress. Single mothers with long working hours were an exception to this conclusion. Udgivelsesdato: 2007-Jan-22...

  6. XBP1-Independent UPR Pathways Suppress C/EBP-β Mediated Chondrocyte Differentiation in ER-Stress Related Skeletal Disease.

    Directory of Open Access Journals (Sweden)

    Trevor L Cameron

    2015-09-01

    Full Text Available Schmid metaphyseal chondrodysplasia (MCDS involves dwarfism and growth plate cartilage hypertrophic zone expansion resulting from dominant mutations in the hypertrophic zone collagen, Col10a1. Mouse models phenocopying MCDS through the expression of an exogenous misfolding protein in the endoplasmic reticulum (ER in hypertrophic chondrocytes have demonstrated the central importance of ER stress in the pathology of MCDS. The resultant unfolded protein response (UPR in affected chondrocytes involved activation of canonical ER stress sensors, IRE1, ATF6, and PERK with the downstream effect of disrupted chondrocyte differentiation. Here, we investigated the role of the highly conserved IRE1/XBP1 pathway in the pathology of MCDS. Mice with a MCDS collagen X p.N617K knock-in mutation (ColXN617K were crossed with mice in which Xbp1 was inactivated specifically in cartilage (Xbp1CartΔEx2, generating the compound mutant, C/X. The severity of dwarfism and hypertrophic zone expansion in C/X did not differ significantly from ColXN617K, revealing surprising redundancy for the IRE1/XBP1 UPR pathway in the pathology of MCDS. Transcriptomic analyses of hypertrophic zone cartilage identified differentially expressed gene cohorts in MCDS that are pathologically relevant (XBP1-independent or pathologically redundant (XBP1-dependent. XBP1-independent gene expression changes included large-scale transcriptional attenuation of genes encoding secreted proteins and disrupted differentiation from proliferative to hypertrophic chondrocytes. Moreover, these changes were consistent with disruption of C/EBP-β, a master regulator of chondrocyte differentiation, by CHOP, a transcription factor downstream of PERK that inhibits C/EBP proteins, and down-regulation of C/EBP-β transcriptional co-factors, GADD45-β and RUNX2. Thus we propose that the pathology of MCDS is underpinned by XBP1 independent UPR-induced dysregulation of C/EBP-β-mediated chondrocyte differentiation

  7. Curcumin attenuates glutamate neurotoxicity in the hippocampus by suppression of ER stress-associated TXNIP/NLRP3 inflammasome activation in a manner dependent on AMPK

    Energy Technology Data Exchange (ETDEWEB)

    Li, Ying; Li, Jia; Li, Shanshan; Li, Yi; Wang, Xiangxiang; Liu, Baolin [Department of Pharmacology of Chinese Materia Medica, China Pharmaceutical University, Nanjing, 639, Longmian Road, Nanjing 211198 (China); Jiangsu Provincial Key Laboratory for TCM Evaluation and Translational Research, China Pharmaceutical University, 639, Longmian Road, Nanjing 211198 (China); Fu, Qiang, E-mail: fuqiang@cpu.edu.cn [Department of Pharmacology of Chinese Materia Medica, China Pharmaceutical University, Nanjing, 639, Longmian Road, Nanjing 211198 (China); Jiangsu Provincial Key Laboratory for TCM Evaluation and Translational Research, China Pharmaceutical University, 639, Longmian Road, Nanjing 211198 (China); Ma, Shiping, E-mail: spma@cpu.edu.cn [Department of Pharmacology of Chinese Materia Medica, China Pharmaceutical University, Nanjing, 639, Longmian Road, Nanjing 211198 (China); Jiangsu Provincial Key Laboratory for TCM Evaluation and Translational Research, China Pharmaceutical University, 639, Longmian Road, Nanjing 211198 (China)

    2015-07-01

    Curcumin is a natural polyphenolic compound in Curcuma longa with beneficial effects on neuronal protection. This study aims to investigate the action of curcumin in the hippocampus subjected to glutamate neurotoxicity. Glutamate stimulation induced reactive oxygen species (ROS), endoplasmic reticulum stress (ER stress) and TXNIP/NLRP3 inflammasome activation, leading to damage in the hippocampus. Curcumin treatment in the hippocampus or SH-SY5Y cells inhibited IRE1α and PERK phosphorylation with suppression of intracellular ROS production. Curcumin increased AMPK activity and knockdown of AMPKα with specific siRNA abrogated its inhibitory effects on IRE1α and PERK phosphorylation, indicating that AMPK activity was essential for the suppression of ER stress. As a result, curcumin reduced TXNIP expression and inhibited NLRP3 inflammasome activation by downregulation of NLRP3 and cleaved caspase-1 induction, and thus reduced IL-1β secretion. Specific fluorescent probe and flow cytometry analysis showed that curcumin prevented mitochondrial malfunction and protected cell survival from glutamate neurotoxicity. Moreover, oral administration of curcumin reduced brain infarct volume and attenuated neuronal damage in rats subjected to middle cerebral artery occlusion. Immunohistochemistry showed that curcumin inhibited p-IRE1α, p-PERK and NLRP3 expression in hippocampus CA1 region. Together, these results showed that curcumin attenuated glutamate neurotoxicity by inhibiting ER stress-associated TXNIP/NLRP3 inflammasome activation via the regulation of AMPK, and thereby protected the hippocampus from ischemic insult. - Highlights: • Curcumin attenuates glutamate neurotoxicity in the hippocampus. • Curcumin suppresses ER stress in glutamate-induced hippocampus slices. • Curcumin inhibits TXNIP/NLRP3 inflammasome activation. • Regulation of AMPK by curcumin contributes to suppressing ER stress.

  8. Curcumin attenuates glutamate neurotoxicity in the hippocampus by suppression of ER stress-associated TXNIP/NLRP3 inflammasome activation in a manner dependent on AMPK

    International Nuclear Information System (INIS)

    Li, Ying; Li, Jia; Li, Shanshan; Li, Yi; Wang, Xiangxiang; Liu, Baolin; Fu, Qiang; Ma, Shiping

    2015-01-01

    Curcumin is a natural polyphenolic compound in Curcuma longa with beneficial effects on neuronal protection. This study aims to investigate the action of curcumin in the hippocampus subjected to glutamate neurotoxicity. Glutamate stimulation induced reactive oxygen species (ROS), endoplasmic reticulum stress (ER stress) and TXNIP/NLRP3 inflammasome activation, leading to damage in the hippocampus. Curcumin treatment in the hippocampus or SH-SY5Y cells inhibited IRE1α and PERK phosphorylation with suppression of intracellular ROS production. Curcumin increased AMPK activity and knockdown of AMPKα with specific siRNA abrogated its inhibitory effects on IRE1α and PERK phosphorylation, indicating that AMPK activity was essential for the suppression of ER stress. As a result, curcumin reduced TXNIP expression and inhibited NLRP3 inflammasome activation by downregulation of NLRP3 and cleaved caspase-1 induction, and thus reduced IL-1β secretion. Specific fluorescent probe and flow cytometry analysis showed that curcumin prevented mitochondrial malfunction and protected cell survival from glutamate neurotoxicity. Moreover, oral administration of curcumin reduced brain infarct volume and attenuated neuronal damage in rats subjected to middle cerebral artery occlusion. Immunohistochemistry showed that curcumin inhibited p-IRE1α, p-PERK and NLRP3 expression in hippocampus CA1 region. Together, these results showed that curcumin attenuated glutamate neurotoxicity by inhibiting ER stress-associated TXNIP/NLRP3 inflammasome activation via the regulation of AMPK, and thereby protected the hippocampus from ischemic insult. - Highlights: • Curcumin attenuates glutamate neurotoxicity in the hippocampus. • Curcumin suppresses ER stress in glutamate-induced hippocampus slices. • Curcumin inhibits TXNIP/NLRP3 inflammasome activation. • Regulation of AMPK by curcumin contributes to suppressing ER stress

  9. Up-regulation of K{sub ir}2.1 by ER stress facilitates cell death of brain capillary endothelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Kito, Hiroaki [Department of Molecular and Cellular Pharmacology, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya (Japan); Yamazaki, Daiju [Department of Molecular and Cellular Pharmacology, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya (Japan); Department of Biological Chemistry, Kyoto University, Graduate School of Pharmaceutical Sciences, Kyoto (Japan); Department of Molecular Neurobiology, Graduate School of Medical Sciences, Nagoya City University, Nagoya (Japan); Ohya, Susumu; Yamamura, Hisao [Department of Molecular and Cellular Pharmacology, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya (Japan); Asai, Kiyofumi [Department of Molecular Neurobiology, Graduate School of Medical Sciences, Nagoya City University, Nagoya (Japan); Imaizumi, Yuji, E-mail: yimaizum@phar.nagoya-cu.ac.jp [Department of Molecular and Cellular Pharmacology, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya (Japan)

    2011-07-29

    Highlights: {yields} We found that application of endoplasmic reticulum (ER) stress with tunicamycin to brain capillary endothelial cells (BCECs) induced cell death. {yields} The ER stress facilitated the expression of inward rectifier K{sup +} channel (K{sub ir}2.1) and induced sustained membrane hyperpolarization. {yields} The membrane hyperpolarization induced sustained Ca{sup 2+} entry through voltage-independent nonspecific cation channels and consequently facilitated cell death. {yields} The K{sub ir}2.1 up-regulation by ER stress is, at least in part, responsible for cell death of BCECs under pathological conditions. -- Abstract: Brain capillary endothelial cells (BCECs) form blood brain barrier (BBB) to maintain brain homeostasis. Cell turnover of BCECs by the balance of cell proliferation and cell death is critical for maintaining the integrity of BBB. Here we found that stimuli with tunicamycin, endoplasmic reticulum (ER) stress inducer, up-regulated inward rectifier K{sup +} channel (K{sub ir}2.1) and facilitated cell death in t-BBEC117, a cell line derived from bovine BCECs. The activation of K{sub ir} channels contributed to the establishment of deeply negative resting membrane potential in t-BBEC117. The deep resting membrane potential increased the resting intracellular Ca{sup 2+} concentration due to Ca{sup 2+} influx through non-selective cation channels and thereby partly but significantly regulated cell death in t-BBEC117. The present results suggest that the up-regulation of K{sub ir}2.1 is, at least in part, responsible for cell death/cell turnover of BCECs induced by a variety of cellular stresses, particularly ER stress, under pathological conditions.

  10. BDNF/TrkB Pathway Mediates the Antidepressant-Like Role of H2S in CUMS-Exposed Rats by Inhibition of Hippocampal ER Stress.

    Science.gov (United States)

    Wei, Le; Kan, Li-Yuan; Zeng, Hai-Ying; Tang, Yi-Yun; Huang, Hong-Lin; Xie, Ming; Zou, Wei; Wang, Chun-Yan; Zhang, Ping; Tang, Xiao-Qing

    2018-06-01

    Our previous works have shown that hydrogen sulfide (H 2 S) significantly attenuates chronic unpredictable mild stress (CUMS)-induced depressive-like behaviors and hippocampal endoplasmic reticulum (ER) stress. Brain-derived neurotrophic factor (BDNF) generates an antidepressant-like effect by its receptor tyrosine protein kinase B (TrkB). We have previously found that H 2 S upregulates the expressions of BDNF and p-TrkB in the hippocampus of CUMS-exposed rats. Therefore, the present work was to explore whether BDNF/TrkB pathway mediates the antidepressant-like role of H 2 S by blocking hippocampal ER stress. We found that treatment with K252a (an inhibitor of BDNF/TrkB pathway) significantly increased the immobility time in the forced swim test and tail suspension test and increased the latency to feed in the novelty-suppressed feeding test in the rats cotreated with sodium hydrosulfide (NaHS, a donor of H 2 S) and CUMS. Similarly, K252a reversed the protective effect of NaHS against CUMS-induced hippocampal ER stress, as evidenced by increases in the levels of ER stress-related proteins, glucose-regulated protein 78, CCAAT/enhancer binding protein homologous protein and cleaved caspase-12. Taken together, our results suggest that BDNF/TrkB pathway plays an important mediatory role in the antidepressant-like action of H 2 S in CUMS-exposed rats, which is by suppression of hippocampal ER stress. These data provide a novel mechanism underlying the protection of H 2 S against CUMS-induced depressive-like behaviors.

  11. Stretching the stress boundary: Linking air pollution health effects to a neurohormonal stress response.

    Science.gov (United States)

    Kodavanti, Urmila P

    2016-12-01

    Inhaled pollutants produce effects in virtually all organ systems in our body and have been linked to chronic diseases including hypertension, atherosclerosis, Alzheimer's and diabetes. A neurohormonal stress response (referred to here as a systemic response produced by activation of the sympathetic nervous system and hypothalamus-pituitary-adrenal (HPA)-axis) has been implicated in a variety of psychological and physical stresses, which involves immune and metabolic homeostatic mechanisms affecting all organs in the body. In this review, we provide new evidence for the involvement of this well-characterized neurohormonal stress response in mediating systemic and pulmonary effects of a prototypic air pollutant - ozone. A plethora of systemic metabolic and immune effects are induced in animals exposed to inhaled pollutants, which could result from increased circulating stress hormones. The release of adrenal-derived stress hormones in response to ozone exposure not only mediates systemic immune and metabolic responses, but by doing so, also modulates pulmonary injury and inflammation. With recurring pollutant exposures, these effects can contribute to multi-organ chronic conditions associated with air pollution. This review will cover, 1) the potential mechanisms by which air pollutants can initiate the relay of signals from respiratory tract to brain through trigeminal and vagus nerves, and activate stress responsive regions including hypothalamus; and 2) the contribution of sympathetic and HPA-axis activation in mediating systemic homeostatic metabolic and immune effects of ozone in various organs. The potential contribution of chronic environmental stress in cardiovascular, neurological, reproductive and metabolic diseases, and the knowledge gaps are also discussed. This article is part of a Special Issue entitled Air Pollution, edited by Wenjun Ding, Andrew J. Ghio and Weidong Wu. Published by Elsevier B.V.

  12. ER Stress and Autophagic Perturbations Lead to Elevated Extracellular α-Synuclein in GBA-N370S Parkinson's iPSC-Derived Dopamine Neurons

    DEFF Research Database (Denmark)

    Fernandes, H. J. R.; Hartfield, E. M.; Christian Kjeldsen, Hans

    2016-01-01

    -derived neuronal culture medium, which was not associated with exosomes. Overall, ER stress, autophagic/lysosomal perturbations, and elevated extracellular α-synuclein likely represent critical early cellular phenotypes of PD, which might offer multiple therapeutic targets. © 2016 The Authors....

  13. Ultraviolet (UV and Hydrogen Peroxide Activate Ceramide-ER Stress-AMPK Signaling Axis to Promote Retinal Pigment Epithelium (RPE Cell Apoptosis

    Directory of Open Access Journals (Sweden)

    Jin Yao

    2013-05-01

    Full Text Available Ultraviolet (UV radiation and reactive oxygen species (ROS impair the physiological functions of retinal pigment epithelium (RPE cells by inducing cell apoptosis, which is the main cause of age-related macular degeneration (AMD. The mechanism by which UV/ROS induces RPE cell death is not fully addressed. Here, we observed the activation of a ceramide-endoplasmic reticulum (ER stress-AMP activated protein kinase (AMPK signaling axis in UV and hydrogen peroxide (H2O2-treated RPE cells. UV and H2O2 induced an early ceramide production, profound ER stress and AMPK activation. Pharmacological inhibitors against ER stress (salubrinal, ceramide production (fumonisin B1 and AMPK activation (compound C suppressed UV- and H2O2-induced RPE cell apoptosis. Conversely, cell permeable short-chain C6 ceramide and AMPK activator AICAR (5-amino-1-β-D-ribofuranosyl-imidazole-4-carboxamide mimicked UV and H2O2’s effects and promoted RPE cell apoptosis. Together, these results suggest that UV/H2O2 activates the ceramide-ER stress-AMPK signaling axis to promote RPE cell apoptosis.

  14. Speaking under pressure: low linguistic complexity is linked to high physiological and emotional stress reactivity.

    Science.gov (United States)

    Saslow, Laura R; McCoy, Shannon; van der Löwe, Ilmo; Cosley, Brandon; Vartan, Arbi; Oveis, Christopher; Keltner, Dacher; Moskowitz, Judith T; Epel, Elissa S

    2014-03-01

    What can a speech reveal about someone's state? We tested the idea that greater stress reactivity would relate to lower linguistic cognitive complexity while speaking. In Study 1, we tested whether heart rate and emotional stress reactivity to a stressful discussion would relate to lower linguistic complexity. In Studies 2 and 3, we tested whether a greater cortisol response to a standardized stressful task including a speech (Trier Social Stress Test) would be linked to speaking with less linguistic complexity during the task. We found evidence that measures of stress responsivity (emotional and physiological) and chronic stress are tied to variability in the cognitive complexity of speech. Taken together, these results provide evidence that our individual experiences of stress or "stress signatures"-how our body and mind react to stress both in the moment and over the longer term-are linked to how complex our speech under stress. Copyright © 2013 Society for Psychophysiological Research.

  15. Periodontal disease level-butyric acid amounts locally administered in the rat gingival mucosa induce ER stress in the systemic blood.

    Science.gov (United States)

    Cueno, Marni E; Saito, Yuko; Ochiai, Kuniyasu

    2016-05-01

    Periodontal diseases have long been postulated to contribute to systemic diseases and, likewise, it has been proposed that periodontal disease treatment may ameliorate certain systemic diseases. Short-chain fatty acids (SCFA) are major secondary metabolites produced by oral anaerobic bacteria and, among the SCFAs, butyric acid (BA) in high amounts contribute to periodontal disease development. Periodontal disease level-butyric acid (PDL-BA) is found among patients suffering from periodontal disease and has previously shown to induce oxidative stress, whereas, oxidative stress is correlated to endoplasmic reticulum (ER) stress. This would imply that PDL-BA may likewise stimulate ER stress, however, this was never elucidated. A better understanding of the correlation between PDL-BA and systemic ER stress stimulation could shed light on the possible systemic effects of PDL-BA-related periodontal diseases. Here, PDL-BA was injected into the gingival mucosa and the systemic blood obtained from the rat jugular was collected at 0, 15, 60, and 180 min post-injection. Collected blood samples were purified and only the blood cytosol was used throughout this study. Subsequently, we measured blood cytosolic GADD153, Ca(2+), representative apoptotic and inflammatory caspases, and NF-κB amounts. We found that PDL-BA presence increased blood cytosolic GADD153 and Ca(2+) amounts. Moreover, we observed that blood cytosolic caspases and NF-κB were activated only at 60 and 180 min post-injection in the rat gingival mucosa. This suggests that PDL-BA administered through the gingival mucosa may influence the systemic blood via ER stress stimulation and, moreover, prolonged PDL-BA retention in the gingival mucosa may play a significant role in ER stress-related caspase and NF-κB activation. In a periodontal disease scenario, we propose that PDL-BA-related ER stress stimulation leading to the simultaneous activation of apoptosis and inflammation may contribute to periodontal disease

  16. An inducer of VGF protects cells against ER stress-induced cell death and prolongs survival in the mutant SOD1 animal models of familial ALS.

    Directory of Open Access Journals (Sweden)

    Masamitsu Shimazawa

    2010-12-01

    Full Text Available Amyotrophic lateral sclerosis (ALS is the most frequent adult-onset motor neuron disease, and recent evidence has suggested that endoplasmic reticulum (ER stress signaling is involved in the pathogenesis of ALS. Here we identified a small molecule, SUN N8075, which has a marked protective effect on ER stress-induced cell death, in an in vitro cell-based screening, and its protective mechanism was mediated by an induction of VGF nerve growth factor inducible (VGF: VGF knockdown with siRNA completely abolished the protective effect of SUN N8075 against ER-induced cell death, and overexpression of VGF inhibited ER-stress-induced cell death. VGF level was lower in the spinal cords of sporadic ALS patients than in the control patients. Furthermore, SUN N8075 slowed disease progression and prolonged survival in mutant SOD1 transgenic mouse and rat models of ALS, preventing the decrease of VGF expression in the spinal cords of ALS mice. These data suggest that VGF plays a critical role in motor neuron survival and may be a potential new therapeutic target for ALS, and SUN N8075 may become a potential therapeutic candidate for treatment of ALS.

  17. Identification of Toyocamycin, an agent cytotoxic for multiple myeloma cells, as a potent inhibitor of ER stress-induced XBP1 mRNA splicing

    International Nuclear Information System (INIS)

    Ri, M; Tashiro, E; Oikawa, D; Shinjo, S; Tokuda, M; Yokouchi, Y; Narita, T; Masaki, A; Ito, A; Ding, J; Kusumoto, S; Ishida, T; Komatsu, H; Shiotsu, Y; Ueda, R; Iwawaki, T; Imoto, M; Iida, S

    2012-01-01

    The IRE1α-XBP1 pathway, a key component of the endoplasmic reticulum (ER) stress response, is considered to be a critical regulator for survival of multiple myeloma (MM) cells. Therefore, the availability of small-molecule inhibitors targeting this pathway would offer a new chemotherapeutic strategy for MM. Here, we screened small-molecule inhibitors of ER stress-induced XBP1 activation, and identified toyocamycin from a culture broth of an Actinomycete strain. Toyocamycin was shown to suppress thapsigargin-, tunicamycin- and 2-deoxyglucose-induced XBP1 mRNA splicing in HeLa cells without affecting activating transcription factor 6 (ATF6) and PKR-like ER kinase (PERK) activation. Furthermore, although toyocamycin was unable to inhibit IRE1α phosphorylation, it prevented IRE1α-induced XBP1 mRNA cleavage in vitro. Thus, toyocamycin is an inhibitor of IRE1α-induced XBP1 mRNA cleavage. Toyocamycin inhibited not only ER stress-induced but also constitutive activation of XBP1 expression in MM lines as well as primary samples from patients. It showed synergistic effects with bortezomib, and induced apoptosis of MM cells including bortezomib-resistant cells at nanomolar levels in a dose-dependent manner. It also inhibited growth of xenografts in an in vivo model of human MM. Taken together, our results suggest toyocamycin as a lead compound for developing anti-MM therapy and XBP1 as an appropriate molecular target for anti-MM therapy

  18. ER stress-mediated apoptosis in a new mouse model of osteogenesis imperfecta.

    Directory of Open Access Journals (Sweden)

    Thomas S Lisse

    2008-02-01

    Full Text Available Osteogenesis imperfecta is an inherited disorder characterized by increased bone fragility, fractures, and osteoporosis, and most cases are caused by mutations affecting the type I collagen genes. Here, we describe a new mouse model for Osteogenesis imperfecta termed Aga2 (abnormal gait 2 that was isolated from the Munich N-ethyl-N-nitrosourea mutagenesis program and exhibited phenotypic variability, including reduced bone mass, multiple fractures, and early lethality. The causal gene was mapped to Chromosome 11 by linkage analysis, and a C-terminal frameshift mutation was identified in the Col1a1 (procollagen type I, alpha 1 gene as the cause of the disorder. Aga2 heterozygous animals had markedly increased bone turnover and a disrupted native collagen network. Further studies showed that abnormal proalpha1(I chains accumulated intracellularly in Aga2/+ dermal fibroblasts and were poorly secreted extracellularly. This was associated with the induction of an endoplasmic reticulum stress-specific unfolded protein response involving upregulation of BiP, Hsp47, and Gadd153 with caspases-12 and -3 activation and apoptosis of osteoblasts both in vitro and in vivo. These studies resulted in the identification of a new model for Osteogenesis imperfecta, and identified a role for intracellular modulation of the endoplasmic reticulum stress-associated unfolded protein response machinery toward osteoblast apoptosis during the pathogenesis of disease.

  19. Impairment of visual function and retinal ER stress activation in Wfs1-deficient mice.

    Directory of Open Access Journals (Sweden)

    Delphine Bonnet Wersinger

    Full Text Available Wolfram syndrome is an early onset genetic disease (1/180,000 featuring diabetes mellitus and optic neuropathy, associated to mutations in the WFS1 gene. Wfs1-/- mouse model shows pancreatic beta cell atrophy, but its visual performance has not been investigated, prompting us to study its visual function and histopathology of the retina and optic nerve. Electroretinogram and visual evoked potentials (VEPs were performed in Wfs1-/- and Wfs1+/+ mice at 3, 6, 9 and 12 months of age. Fundi were pictured with Micron III apparatus. Retinal ganglion cell (RGC abundance was determined from Brn3a immunolabeling of retinal sections. RGC axonal loss was quantified by electron microscopy in transversal optic nerve sections. Endoplasmic reticulum stress was assessed using immunoglobulin binding protein (BiP, protein disulfide isomerase (PDI and inositol-requiring enzyme 1 alpha (Ire1α markers. Electroretinograms amplitudes were slightly reduced and latencies increased with time in Wfs1-/- mice. Similarly, VEPs showed decreased N+P amplitudes and increased N-wave latency. Analysis of unfolded protein response signaling revealed an activation of endoplasmic reticulum stress in Wfs1-/- mutant mouse retinas. Altogether, progressive VEPs alterations with minimal neuronal cell loss suggest functional alteration of the action potential in the Wfs1-/- optic pathways.

  20. Inhibition of autophagy exerts anti-colon cancer effects via apoptosis induced by p53 activation and ER stress

    International Nuclear Information System (INIS)

    Sakitani, Kosuke; Hirata, Yoshihiro; Hikiba, Yohko; Hayakawa, Yoku; Ihara, Sozaburo; Suzuki, Hirobumi; Suzuki, Nobumi; Serizawa, Takako; Kinoshita, Hiroto; Sakamoto, Kei; Nakagawa, Hayato; Tateishi, Keisuke; Maeda, Shin; Ikenoue, Tsuneo; Kawazu, Shoji; Koike, Kazuhiko

    2015-01-01

    Although some molecularly targeted drugs for colorectal cancer are used clinically and contribute to a better prognosis, the current median survival of advanced colorectal cancer patients is not sufficient. Autophagy, a basic cell survival mechanism mediated by recycling of cellular amino acids, plays an important role in cancer. Recently, autophagy has been highlighted as a promising new molecular target. The unfolded protein response (UPR) reportedly act in complementary fashion with autophagy in intestinal homeostasis. However, the roles of UPR in colon cancer under autophagic inhibition remain to be elucidated. We aim to clarify the inhibitory effect of autophagy on colon cancer. We crossed K19 CreERT and Atg5 flox/flox mice to generate Atg5 flox/flox /K19 CreERT mice. Atg5 flox/flox /K19 CreERT mice were first treated with azoxymethane/dextran sodium sulfate and then injected with tamoxifen to inhibit autophagy in CK19-positive epithelial cells. To examine the anti-cancer mechanisms of autophagic inhibition, we used colon cancer cell lines harboring different p53 gene statuses, as well as small interfering RNAs (siRNAs) targeting Atg5 and immunoglobulin heavy-chain binding protein (BiP), a chaperone to aid folding of unfolded proteins. Colon tumors in Atg5 flox/flox /K19 CreERT mice showed loss of autophagic activity and decreased tumor size (the total tumor diameter was 28.1 mm in the control and 20.7 mm in Atg5 flox/flox /K19 CreERT mice, p = 0.036). We found that p53 and UPR/endoplasmic reticulum (ER) stress-related proteins, such as cleaved caspase 3, and CAAT/enhancer-binding protein homologous protein, are up-regulated in colon tumors of Atg5 flox/flox /K19 CreERT mice. Although Atg5 and BiP silencing, respectively, increased apoptosis in p53 wild type cells, Atg5 silencing alone did not show the same effect on apoptosis in p53 mutant cells. However, co-transfection of Atg5 and BiP siRNAs led to increased apoptosis in p53 mutant cells. Blocking autophagy

  1. Hypothalamic AMPK-ER Stress-JNK1 Axis Mediates the Central Actions of Thyroid Hormones on Energy Balance.

    Science.gov (United States)

    Martínez-Sánchez, Noelia; Seoane-Collazo, Patricia; Contreras, Cristina; Varela, Luis; Villarroya, Joan; Rial-Pensado, Eva; Buqué, Xabier; Aurrekoetxea, Igor; Delgado, Teresa C; Vázquez-Martínez, Rafael; González-García, Ismael; Roa, Juan; Whittle, Andrew J; Gomez-Santos, Beatriz; Velagapudi, Vidya; Tung, Y C Loraine; Morgan, Donald A; Voshol, Peter J; Martínez de Morentin, Pablo B; López-González, Tania; Liñares-Pose, Laura; Gonzalez, Francisco; Chatterjee, Krishna; Sobrino, Tomás; Medina-Gómez, Gema; Davis, Roger J; Casals, Núria; Orešič, Matej; Coll, Anthony P; Vidal-Puig, Antonio; Mittag, Jens; Tena-Sempere, Manuel; Malagón, María M; Diéguez, Carlos; Martínez-Chantar, María Luz; Aspichueta, Patricia; Rahmouni, Kamal; Nogueiras, Rubén; Sabio, Guadalupe; Villarroya, Francesc; López, Miguel

    2017-07-05

    Thyroid hormones (THs) act in the brain to modulate energy balance. We show that central triiodothyronine (T3) regulates de novo lipogenesis in liver and lipid oxidation in brown adipose tissue (BAT) through the parasympathetic (PSNS) and sympathetic nervous system (SNS), respectively. Central T3 promotes hepatic lipogenesis with parallel stimulation of the thermogenic program in BAT. The action of T3 depends on AMP-activated protein kinase (AMPK)-induced regulation of two signaling pathways in the ventromedial nucleus of the hypothalamus (VMH): decreased ceramide-induced endoplasmic reticulum (ER) stress, which promotes BAT thermogenesis, and increased c-Jun N-terminal kinase (JNK) activation, which controls hepatic lipid metabolism. Of note, ablation of AMPKα1 in steroidogenic factor 1 (SF1) neurons of the VMH fully recapitulated the effect of central T3, pointing to this population in mediating the effect of central THs on metabolism. Overall, these findings uncover the underlying pathways through which central T3 modulates peripheral metabolism. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  2. ER stress inducer tunicamycin suppresses the self-renewal of glioma-initiating cell partly through inhibiting Sox2 translation.

    Science.gov (United States)

    Xing, Yang; Ge, Yuqing; Liu, Chanjuan; Zhang, Xiaobiao; Jiang, Jianhai; Wei, Yuanyan

    2016-06-14

    Glioma-initiating cells possess tumor-initiating potential and are relatively resistant to conventional chemotherapy and irradiation. Therefore, their elimination is an essential factor for the development of efficient therapy. Here, we report that endoplasmic reticulum (ER) stress inducer tunicamycin inhibits glioma-initiating cell self-renewal as determined by neurosphere formation assay. Moreover, tunicamycin decreases the efficiency of glioma-initiating cell to initiate tumor formation. Although tunicamycin induces glioma-initiating cell apoptosis, apoptosis inhibitor z-VAD-fmk only partly abrogates the reduction in glioma-initiating cell self-renewal induced by tunicamycin. Indeed, tunicamycin reduces the expression of self-renewal regulator Sox2 at translation level. Overexpression of Sox2 obviously abrogates the reduction in glioma-initiating cell self-renewal induced by tunicamycin. Taken together, tunicamycin suppresses the self-renewal and tumorigenic potential of glioma-initiating cell partly through reducing Sox2 translation. This finding provides a cue to potential effective treatment of glioblastoma through controlling stem cells.

  3. Glutathione--linking cell proliferation to oxidative stress.

    Science.gov (United States)

    Diaz-Vivancos, Pedro; de Simone, Ambra; Kiddle, Guy; Foyer, Christine H

    2015-12-01

    The multifaceted functions of reduced glutathione (gamma-glutamyl-cysteinyl-glycine; GSH) continue to fascinate plants and animal scientists, not least because of the dynamic relationships between GSH and reactive oxygen species (ROS) that underpin reduction/oxidation (redox) regulation and signalling. Here we consider the respective roles of ROS and GSH in the regulation of plant growth, with a particular focus on regulation of the plant cell cycle. Glutathione is discussed not only as a crucial low molecular weight redox buffer that shields nuclear processes against oxidative challenge but also a flexible regulator of genetic and epigenetic functions. The intracellular compartmentalization of GSH during the cell cycle is remarkably consistent in plants and animals. Moreover, measurements of in vivo glutathione redox potentials reveal that the cellular environment is much more reducing than predicted from GSH/GSSG ratios measured in tissue extracts. The redox potential of the cytosol and nuclei of non-dividing plant cells is about -300 mV. This relatively low redox potential maintained even in cells experiencing oxidative stress by a number of mechanisms including vacuolar sequestration of GSSG. We propose that regulated ROS production linked to glutathione-mediated signalling events are the hallmark of viable cells within a changing and challenging environment. The concept that the cell cycle in animals is subject to redox controls is well established but little is known about how ROS and GSH regulate this process in plants. However, it is increasingly likely that redox controls exist in plants, although possibly through different pathways. Moreover, redox-regulated proteins that function in cell cycle checkpoints remain to be identified in plants. While GSH-responsive genes have now been identified, the mechanisms that mediate and regulate protein glutathionylation in plants remain poorly defined. The nuclear GSH pool provides an appropriate redox environment

  4. ONC201 activates ER stress to inhibit the growth of triple-negative breast cancer cells.

    Science.gov (United States)

    Yuan, Xun; Kho, Dhonghyo; Xu, Jing; Gajan, Ambikai; Wu, Kongming; Wu, Gen Sheng

    2017-03-28

    ONC201 was previously identified as a first-in-class antitumor agent and small-molecule inducer of the TRAIL (tumor necrosis factor-related apoptosis-inducing ligand) gene that induces apoptosis in cancer cells. ONC201 has a safety profile and is currently in phase II clinical trials for the treatment of various malignancies. In the current study, we examine the effect of ONC201 on triple-negative breast cancer cells (TNBC), a subtype of breast cancer that is sensitive to TRAIL. We find that ONC201 inhibits the growth of TNBC cells including TNBC cells that have developed acquired TRAIL resistance. However, TNBC cells that have developed acquired ONC201 resistance are cross-resistant to TRAIL. Mechanistically, ONC201 triggers an integrated stress response (ISR) involving the activation of the transcription factor ATF4. Knockdown of ATF4 impairs ONC201-induced apoptosis of TNBC cells. Importantly, the activation of ATF4 is compromised in ONC201-resistant TNBC cells. Thus, our results indicate that ONC201 induces an ISR to cause TNBC cell death and suggest that TNBC patients may benefit from ONC201-based therapies.

  5. Ethyl Acetate Extract of Scindapsus cf. hederaceus Exerts the Inhibitory Bioactivity on Human Non-Small Cell Lung Cancer Cells through Modulating ER Stress

    Directory of Open Access Journals (Sweden)

    Chon-Kit Chou

    2018-06-01

    Full Text Available Unfolded protein response (UPR is a cytoprotective mechanism that alleviates the protein-folding burden in eukaryotic organisms. Moderate activation of UPR is required for maintaining endoplasmic reticulum (ER homeostasis and profoundly contributes to tumorigenesis. Defects in UPR signaling are implicated in the attenuation of various malignant phenotypes including cell proliferation, migration, and invasion, as well as angiogenesis. This suggests UPR as a promising target in cancer therapy. The pharmacological effects of the plant Scindapsus cf. hederaceus on human cancer cell lines is not understood. In this study, we identified an ethyl acetate extract from Scindapsus cf. hederaceus (SH-EAE, which markedly altered the protein expression of UPR-related genes in human non-small cell lung cancer (NSCLC cells. Treatment with the SH-EAE led to the dose-dependent suppression of colony forming ability of both H1299 and H460 cells, but not markedly in normal bronchial epithelial BEAS-2B cells. SH-EAE treatment also attenuated the migration and invasion ability of H1299 and H460 cells. Moreover, SH-EAE strikingly suppressed the protein expression of two ER stress sensors, including inositol requiring enzyme-1α (IRE-1α and protein kinase R-like ER kinase (PERK, and antagonized the induction of C/EBP homologous protein (CHOP expression by thapsigargin, an ER stress inducer. SH-EAE induced the formation of massive vacuoles which are probably derived from ER. Importantly, SH-EAE impaired the formation of intersegmental vessels (ISV in zebrafish larvae, an index of angiogenesis, but had no apparent effect on the rate of larval development. Together, our findings demonstrate, for the first time, that the ability of SH-EAE specifically targets the two sensors of UPR, with significant anti-proliferation and anti-migration activities as a crude extract in human NSCLC cells. Our finding also indicates potential applications of SH-EAE in preventing UPR

  6. Increased intracellular proteolysis reduces disease severity in an ER stress–associated dwarfism

    OpenAIRE

    Mullan, Lorna; Mularczyk, Ewa; Kung, Louise; Forouhan, Mitra; Wragg, Jordan; Goodacre, Royston; Bateman, John F.; Swanton, Eileithyia; Briggs, Michael; Boot-Handford, Raymond

    2017-01-01

    The short-limbed dwarfism metaphyseal chondrodysplasia type Schmid (MCDS) is linked to mutations in type X collagen, which increase ER stress by inducing misfolding of the mutant protein and subsequently disrupting hypertrophic chondrocyte differentiation. Here, we show that carbamazepine (CBZ), an autophagy-stimulating drug that is clinically approved for the treatment of seizures and bipolar disease, reduced the ER stress induced by 4 different MCDS-causing mutant forms of collagen X in hum...

  7. Salubrinal protects human skin fibroblasts against UVB-induced cell death by blocking endoplasmic reticulum (ER) stress and regulating calcium homeostasis.

    Science.gov (United States)

    Ji, Chao; Yang, Bo; Huang, Shu-Ying; Huang, Jin-Wen; Cheng, Bo

    2017-12-02

    The role of UVB in skin photo damages has been widely reported. Overexposure to UVB will induce severe DNA damages in epidermal cells and cause most cytotoxic symptoms. In the present study, we tested the potential activity of salubrinal, a selective inhibitor of Eukaryotic Initiation Factor 2 (eIF2) -alpha phosphatase, against UV-induced skin cell damages. We first exposed human fibroblasts to UVB radiation and evaluated the cytosolic Ca 2+ level as well as the induction of ER stress. We found that UVB radiation induced the depletion of ER Ca 2+ and increased the expression of ER stress marker including phosphorylated PERK, CHOP, and phosphorylated IRE1α. We then determined the effects of salubrinal in skin cell death induced by UVB radiation. We observed that cells pre-treated with salubrinal had a higher survival rate compared to cells treated with UVB alone. Pre-treatment with salubrinal successfully re-established the ER function and Ca 2+ homeostasis. Our results suggest that salubrinal can be a potential therapeutic agents used in preventing photoaging and photo damages. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Stress

    DEFF Research Database (Denmark)

    Keller, Hanne Dauer

    2015-01-01

    Kapitlet handler om stress som følelse, og det trækker primært på de få kvalitative undersøgelser, der er lavet af stressforløb.......Kapitlet handler om stress som følelse, og det trækker primært på de få kvalitative undersøgelser, der er lavet af stressforløb....

  9. Bilirubin Increases Insulin Sensitivity in Leptin-Receptor Deficient and Diet-Induced Obese Mice Through Suppression of ER Stress and Chronic Inflammation

    Science.gov (United States)

    Dong, Huansheng; Huang, Hu; Yun, Xinxu; Kim, Do-sung; Yue, Yinan; Wu, Hongju; Sutter, Alton; Chavin, Kenneth D.; Otterbein, Leo E.; Adams, David B.; Kim, Young-Bum

    2014-01-01

    Obesity-induced endoplasmic reticulum (ER) stress causes chronic inflammation in adipose tissue and steatosis in the liver, and eventually leads to insulin resistance and type 2 diabetes (T2D). The goal of this study was to understand the mechanisms by which administration of bilirubin, a powerful antioxidant, reduces hyperglycemia and ameliorates obesity in leptin-receptor-deficient (db/db) and diet-induced obese (DIO) mouse models. db/db or DIO mice were injected with bilirubin or vehicle ip. Blood glucose and body weight were measured. Activation of insulin-signaling pathways, expression of inflammatory cytokines, and ER stress markers were measured in skeletal muscle, adipose tissue, and liver of mice. Bilirubin administration significantly reduced hyperglycemia and increased insulin sensitivity in db/db mice. Bilirubin treatment increased protein kinase B (PKB/Akt) phosphorylation in skeletal muscle and suppressed expression of ER stress markers, including the 78-kDa glucose-regulated protein (GRP78), CCAAT/enhancer-binding protein (C/EBP) homologous protein, X box binding protein (XBP-1), and activating transcription factor 4 in db/db mice. In DIO mice, bilirubin treatment significantly reduced body weight and increased insulin sensitivity. Moreover, bilirubin suppressed macrophage infiltration and proinflammatory cytokine expression, including TNF-α, IL-1β, and monocyte chemoattractant protein-1, in adipose tissue. In liver and adipose tissue of DIO mice, bilirubin ameliorated hepatic steatosis and reduced expression of GRP78 and C/EBP homologous protein. These results demonstrate that bilirubin administration improves hyperglycemia and obesity by increasing insulin sensitivity in both genetically engineered and DIO mice models. Bilirubin or bilirubin-increasing drugs might be useful as an insulin sensitizer for the treatment of obesity-induced insulin resistance and type 2 diabetes based on its profound anti-ER stress and antiinflammatory properties. PMID

  10. Role of silent information regulator 1 in the protective effect of hydrogen sulfide on homocysteine-induced cognitive dysfunction: Involving reduction of hippocampal ER stress.

    Science.gov (United States)

    Tang, Yi-Yun; Wang, Ai-Ping; Wei, Hai-Jun; Li, Man-Hong; Zou, Wei; Li, Xiang; Wang, Chun-Yan; Zhang, Ping; Tang, Xiao-Qing

    2018-04-16

    Homocysteine (Hcy) causes cognitive deficits and hippocampal endoplasmic reticulum (ER) stress. Our previous study has confirmed that Hydrogen sulfide (H 2 S) attenuates Hcy-induced cognitive dysfunction and hippocampal ER stress. Silent information regulator 1 (Sirt-1) is indispensable in the formation of learning and memory. Therefore, the aim of this study was to explore the role of Sirt-1 in the protective effect of H 2 S against Hcy-induced cognitive dysfunction. We found that NaHS (a donor of H 2 S) markedly up-regulated the expression of Sirt-1 in the hippocampus of Hcy-exposed rats. Sirtinol, a specific inhibitor of Sirt-1, reversed the improving role of NaHS in the cognitive function of Hcy-exposed rats, as evidenced by that sirtinol increased the escape latency and the swim distance in the acquisition trial of morris water maze (MWM) test, decreased the times crossed through and the time spent in the target quadrant in the probe trail of MWM test, and reduced the discrimination index in the novel object recognition test (NORT) in the rats cotreated with NaHS and Hcy. We also found that sirtinol reversed the protection of NaHS against Hcy-induced hippocampal ER-stress, as evidenced by up-regulating the expressions of GRP78, CHOP, and cleaved caspase-12 in the hippocampus of rats cotreated with NaHS and Hcy. These results suggested the contribution of upregulation of hippocampal Sirt-1 to the improving role of H 2 S in the cognitive function of Hcy-exposed rats, which involves suppression of hippocampal ER stress. Our finding provides a new insight into the mechanism underlying the inhibitory role of H 2 S in Hcy-induced cognitive dysfunction. Copyright © 2018 Elsevier B.V. All rights reserved.

  11. Traversing the Links between Heavy Metal Stress and Plant Signaling

    Science.gov (United States)

    Jalmi, Siddhi K.; Bhagat, Prakash K.; Verma, Deepanjali; Noryang, Stanzin; Tayyeba, Sumaira; Singh, Kirti; Sharma, Deepika; Sinha, Alok K.

    2018-01-01

    Plants confront multifarious environmental stresses widely divided into abiotic and biotic stresses, of which heavy metal stress represents one of the most damaging abiotic stresses. Heavy metals cause toxicity by targeting crucial molecules and vital processes in the plant cell. One of the approaches by which heavy metals act in plants is by over production of reactive oxygen species (ROS) either directly or indirectly. Plants act against such overdose of metal in the environment by boosting the defense responses like metal chelation, sequestration into vacuole, regulation of metal intake by transporters, and intensification of antioxidative mechanisms. This response shown by plants is the result of intricate signaling networks functioning in the cell in order to transmit the extracellular stimuli into an intracellular response. The crucial signaling components involved are calcium signaling, hormone signaling, and mitogen activated protein kinase (MAPK) signaling that are discussed in this review. Apart from signaling components other regulators like microRNAs and transcription factors also have a major contribution in regulating heavy metal stress. This review demonstrates the key role of MAPKs in synchronously controlling the other signaling components and regulators in metal stress. Further, attempts have been made to focus on metal transporters and chelators that are regulated by MAPK signaling. PMID:29459874

  12. Urotensin II Induces ER Stress and EMT and Increase Extracellular Matrix Production in Renal Tubular Epithelial Cell in Early Diabetic Mice

    Directory of Open Access Journals (Sweden)

    Xin-Xin Pang

    2016-07-01

    Full Text Available Background/Aims: Urotensin II (UII and its receptor are highly expressed in the kidney tissue of patients with diabetic nephropathy (DN. The aim of this study is to examine the roles of UII in the induction of endoplasmic reticulum stress (ER stress and Epithelial-mesenchymal transition (EMT in DN in vivo and in vitro. Methods: Kidney tissues were collected from patients with DN. C57BL/6 mice and mice with UII receptor knock out were injected with two consecutive doses of streptozotocin to induce diabetes and were sacrificed at 3th week for in vivo study. HK-2 cells in vitro were cultured and treated with UII. Markers of ER stress and EMT, fibronectin and type IV collagen were detected by immunohistochemistry, real time PCR and western blot. Results: We found that the expressions of protein of UII, GRP78, CHOP, ALPHA-SMA, fibronectin and type IV collagen were upregulated while E-cadherin protein was downregulated as shown by immunohistochemistry or western blot analysis in kidney of diabetic mice in comparison to normal control; moreover expressions of GRP78, CHOP, ALPHA-SMA, fibronectin and type IV collagen were inhibited while E-caherin expression was enhanced in kidney in diabetic mice with UII receptor knock out in comparison to C57BL/6 diabetic mice. In HK-2 cells, UII induced upregulation of GRP78, CHOP, ALPHA-SMA, fibroblast-specifc protein 1(FSP-1, fibronectin and type collagen and downregulation of E-cadherin. UII receptor antagonist can block UII-induced ER stress and EMT; moreover, 4-PBA can inhibit the mRNA expression of ALPHA-SMA and FSP1 induced by UII in HK-2 cells. Conclusions: We are the first to verify UII induces ER stress and EMT and increase extracellular matrix production in renal tubular epithelial cell in early diabetic mice. Moreover, UII may induce renal tubular epithelial EMT via triggering ER stress pathway in vitro, which might be the new pathogenic pathway for the development of renal fibrosis in DN.

  13. Molecular and genetic substrates linking stress and addiction.

    Science.gov (United States)

    Briand, Lisa A; Blendy, Julie A

    2010-02-16

    Drug addiction is one of the top three health concerns in the United States in terms of economic and health care costs. Despite this, there are very few effective treatment options available. Therefore, understanding the causes and molecular mechanisms underlying the transition from casual drug use to compulsive drug addiction could aid in the development of treatment options. Studies in humans and animal models indicate that stress can lead to both vulnerability to develop addiction, and increased drug taking and relapse in addicted individuals. Exposure to stress or drugs of abuse results in long-term adaptations in the brain that are likely to involve persistent alterations in gene expression or activation of transcription factors, such as the cAMP Response Element Binding (CREB) protein. The signaling pathways controlled by CREB have been strongly implicated in drug addiction and stress. Many potential CREB target genes have been identified based on the presence of a CRE element in promoter DNA sequences. These include, but are not limited to CRF, BDNF, and dynorphin. These genes have been associated with initiation or reinstatement of drug reward and are altered in one direction or the other following stress. While many reviews have examined the interactions between stress and addiction, the goal of this review was to focus on specific molecules that play key roles in both stress and addiction and are therefore posed to mediate the interaction between the two. Focus on these molecules could provide us with new targets for pharmacological treatments for addiction. Copyright 2009 Elsevier B.V. All rights reserved.

  14. Power of Proteomics in Linking Oxidative Stress and Female Infertility

    Science.gov (United States)

    Gupta, Sajal; Sharma, Rakesh; Agarwal, Ashok

    2014-01-01

    Endometriosis, PCOS, and unexplained infertility are currently the most common diseases rendering large numbers of women infertile worldwide. Oxidative stress, due to its deleterious effects on proteins and nucleic acids, is postulated to be the one of the important mechanistic pathways in differential expression of proteins and in these diseases. The emerging field of proteomics has allowed identification of proteins involved in cell cycle, as antioxidants, extracellular matrix (ECM), cytoskeleton, and their linkage to oxidative stress in female infertility related diseases. The aim of this paper is to assess the association of oxidative stress and protein expression in the reproductive microenvironments such as endometrial fluid, peritoneal fluid, and follicular fluid, as well as reproductive tissues and serum. The review also highlights the literature that proposes the use of the fertility related proteins as potential biomarkers for noninvasive and early diagnosis of the aforementioned diseases rather than utilizing the more invasive methods used currently. The review will highlight the power of proteomic profiles identified in infertility related disease conditions and their linkage with underlying oxidative stress. The power of proteomics will be reviewed with regard to eliciting molecular mechanisms for early detection and management of these infertility related conditions. PMID:24900998

  15. Power of Proteomics in Linking Oxidative Stress and Female Infertility

    Directory of Open Access Journals (Sweden)

    Sajal Gupta

    2014-01-01

    Full Text Available Endometriosis, PCOS, and unexplained infertility are currently the most common diseases rendering large numbers of women infertile worldwide. Oxidative stress, due to its deleterious effects on proteins and nucleic acids, is postulated to be the one of the important mechanistic pathways in differential expression of proteins and in these diseases. The emerging field of proteomics has allowed identification of proteins involved in cell cycle, as antioxidants, extracellular matrix (ECM, cytoskeleton, and their linkage to oxidative stress in female infertility related diseases. The aim of this paper is to assess the association of oxidative stress and protein expression in the reproductive microenvironments such as endometrial fluid, peritoneal fluid, and follicular fluid, as well as reproductive tissues and serum. The review also highlights the literature that proposes the use of the fertility related proteins as potential biomarkers for noninvasive and early diagnosis of the aforementioned diseases rather than utilizing the more invasive methods used currently. The review will highlight the power of proteomic profiles identified in infertility related disease conditions and their linkage with underlying oxidative stress. The power of proteomics will be reviewed with regard to eliciting molecular mechanisms for early detection and management of these infertility related conditions.

  16. MiR-17-5p impairs trafficking of H-ERG K+ channel protein by targeting multiple er stress-related chaperones during chronic oxidative stress.

    Directory of Open Access Journals (Sweden)

    Qi Wang

    Full Text Available BACKGROUND: To investigate if microRNAs (miRNAs play a role in regulating h-ERG trafficking in the setting of chronic oxidative stress as a common deleterious factor for many cardiac disorders. METHODS: We treated neonatal rat ventricular myocytes and HEK293 cells with stable expression of h-ERG with H2O2 for 12 h and 48 h. Expression of miR-17-5p seed miRNAs was quantified by real-time RT-PCR. Protein levels of chaperones and h-ERG trafficking were measured by Western blot analysis. Luciferase reporter gene assay was used to study miRNA and target interactions. Whole-cell patch-clamp techniques were employed to record h-ERG K(+ current. RESULTS: H-ERG trafficking was impaired by H2O2 after 48 h treatment, accompanied by reciprocal changes of expression between miR-17-5p seed miRNAs and several chaperones (Hsp70, Hsc70, CANX, and Golga2, with the former upregulated and the latter downregulated. We established these chaperones as targets for miR-17-5p. Application miR-17-5p inhibitor rescued H2O2-induced impairment of h-ERG trafficking. Upregulation of endogenous by H2O2 or forced miR-17-5p expression either reduced h-ERG current. Sequestration of AP1 by its decoy molecule eliminated the upregulation of miR-17-5p, and ameliorated impairment of h-ERG trafficking. CONCLUSIONS: Collectively, deregulation of the miR-17-5p seed family miRNAs can cause severe impairment of h-ERG trafficking through targeting multiple ER stress-related chaperones, and activation of AP1 likely accounts for the deleterious upregulation of these miRNAs, in the setting of prolonged duration of oxidative stress. These findings revealed the role of miRNAs in h-ERG trafficking, which may contribute to the cardiac electrical disturbances associated with oxidative stress.

  17. MiR-17-5p impairs trafficking of H-ERG K+ channel protein by targeting multiple er stress-related chaperones during chronic oxidative stress.

    Science.gov (United States)

    Wang, Qi; Hu, Weina; Lei, Mingming; Wang, Yong; Yan, Bing; Liu, Jun; Zhang, Ren; Jin, Yuanzhe

    2013-01-01

    To investigate if microRNAs (miRNAs) play a role in regulating h-ERG trafficking in the setting of chronic oxidative stress as a common deleterious factor for many cardiac disorders. We treated neonatal rat ventricular myocytes and HEK293 cells with stable expression of h-ERG with H2O2 for 12 h and 48 h. Expression of miR-17-5p seed miRNAs was quantified by real-time RT-PCR. Protein levels of chaperones and h-ERG trafficking were measured by Western blot analysis. Luciferase reporter gene assay was used to study miRNA and target interactions. Whole-cell patch-clamp techniques were employed to record h-ERG K(+) current. H-ERG trafficking was impaired by H2O2 after 48 h treatment, accompanied by reciprocal changes of expression between miR-17-5p seed miRNAs and several chaperones (Hsp70, Hsc70, CANX, and Golga2), with the former upregulated and the latter downregulated. We established these chaperones as targets for miR-17-5p. Application miR-17-5p inhibitor rescued H2O2-induced impairment of h-ERG trafficking. Upregulation of endogenous by H2O2 or forced miR-17-5p expression either reduced h-ERG current. Sequestration of AP1 by its decoy molecule eliminated the upregulation of miR-17-5p, and ameliorated impairment of h-ERG trafficking. Collectively, deregulation of the miR-17-5p seed family miRNAs can cause severe impairment of h-ERG trafficking through targeting multiple ER stress-related chaperones, and activation of AP1 likely accounts for the deleterious upregulation of these miRNAs, in the setting of prolonged duration of oxidative stress. These findings revealed the role of miRNAs in h-ERG trafficking, which may contribute to the cardiac electrical disturbances associated with oxidative stress.

  18. ER Stress and Autophagic Perturbations Lead to Elevated Extracellular α-Synuclein in GBA-N370S Parkinson's iPSC-Derived Dopamine Neurons

    Directory of Open Access Journals (Sweden)

    Hugo J.R. Fernandes

    2016-03-01

    Full Text Available Heterozygous mutations in the glucocerebrosidase gene (GBA represent the strongest common genetic risk factor for Parkinson's disease (PD, the second most common neurodegenerative disorder. However, the molecular mechanisms underlying this association are still poorly understood. Here, we have analyzed ten independent induced pluripotent stem cell (iPSC lines from three controls and three unrelated PD patients heterozygous for the GBA-N370S mutation, and identified relevant disease mechanisms. After differentiation into dopaminergic neurons, we observed misprocessing of mutant glucocerebrosidase protein in the ER, associated with activation of ER stress and abnormal cellular lipid profiles. Furthermore, we observed autophagic perturbations and an enlargement of the lysosomal compartment specifically in dopamine neurons. Finally, we found increased extracellular α-synuclein in patient-derived neuronal culture medium, which was not associated with exosomes. Overall, ER stress, autophagic/lysosomal perturbations, and elevated extracellular α-synuclein likely represent critical early cellular phenotypes of PD, which might offer multiple therapeutic targets.

  19. Proteomic analysis of INS-1 rat insulinoma cells: ER stress effects and the protective role of exenatide, a GLP-1 receptor agonist.

    Directory of Open Access Journals (Sweden)

    Mi-Kyung Kim

    Full Text Available Beta cell death caused by endoplasmic reticulum (ER stress is a key factor aggravating type 2 diabetes. Exenatide, a glucagon-like peptide (GLP-1 receptor agonist, prevents beta cell death induced by thapsigargin, a selective inhibitor of ER calcium storage. Here, we report on our proteomic studies designed to elucidate the underlying mechanisms. We conducted comparative proteomic analyses of cellular protein profiles during thapsigargin-induced cell death in the absence and presence of exenatide in INS-1 rat insulinoma cells. Thapsigargin altered cellular proteins involved in metabolic processes and protein folding, whose alterations were variably modified by exenatide treatment. We categorized the proteins with thapsigargin initiated alterations into three groups: those whose alterations were 1 reversed by exenatide, 2 exaggerated by exenatide, and 3 unchanged by exenatide. The most significant effect of thapsigargin on INS-1 cells relevant to their apoptosis was the appearance of newly modified spots of heat shock proteins, thimet oligopeptidase and 14-3-3β, ε, and θ, and the prevention of their appearance by exenatide, suggesting that these proteins play major roles. We also found that various modifications in 14-3-3 isoforms, which precede their appearance and promote INS-1 cell death. This study provides insights into the mechanisms in ER stress-caused INS-1 cell death and its prevention by exenatide.

  20. Link Between Deployment Factors and Parenting Stress in Navy Families

    Science.gov (United States)

    2016-04-11

    5a. CONTRACT NUMBER N/A Families 5b. GRANT NUMBER HT9404-13-1-TS05 5c. PROGRAM ELEMENT NUMBER N/A 6. AUTHOR(S) 5d...Purpose: Many service members today are married, and many also have children; deployments affect all members of the military family . The purpose of this...conducted. Findings: As deployment factors increased, parenting stress increased for fathers in the reintegration period, with a potential mediation

  1. Examining Links between Post-Traumatic Stress and Gambling Motives: The Role of Positive Gambling Expectancies

    OpenAIRE

    Gutierrez, Ian; Grubbs, Joshua; Bradley, David; Chapman, Heather; Milner, Lauren

    2018-01-01

    Problem gambling and gambling disorder are associated with a range of mental health concerns that extend beyond gambling behaviors alone. Prior works have consistently linked gambling disorder with symptoms of post-traumatic stress and post-traumatic stress disorder, both cross-sectionally and over time. However, very little work has examined the specific relationships between these two disorders. The present work postulated that post-traumatic stress is likely associated with unique beliefs ...

  2. Inhibition of CLIC4 enhances autophagy and triggers mitochondrial and ER stress-induced apoptosis in human glioma U251 cells under starvation.

    Directory of Open Access Journals (Sweden)

    Jiateng Zhong

    Full Text Available CLIC4/mtCLIC, a chloride intracellular channel protein, localizes to mitochondria, endoplasmic reticulum (ER, nucleus and cytoplasm, and participates in the apoptotic response to stress. Apoptosis and autophagy, the main types of the programmed cell death, seem interconnected under certain stress conditions. However, the role of CLIC4 in autophagy regulation has yet to be determined. In this study, we demonstrate upregulation and nuclear translocation of the CLIC4 protein following starvation in U251 cells. CLIC4 siRNA transfection enhanced autophagy with increased LC3-II protein and puncta accumulation in U251 cells under starvation conditions. In that condition, the interaction of the 14-3-3 epsilon isoform with CLIC4 was abolished and resulted in Beclin 1 overactivation, which further activated autophagy. Moreover, inhibiting the expression of CLIC4 triggered both mitochondrial apoptosis involved in Bax/Bcl-2 and cytochrome c release under starvation and endoplasmic reticulum stress-induced apoptosis with CHOP and caspase-4 upregulation. These results demonstrate that CLIC4 nuclear translocation is an integral part of the cellular response to starvation. Inhibiting the expression of CLIC4 enhances autophagy and contributes to mitochondrial and ER stress-induced apoptosis under starvation.

  3. A novel transgenic mouse model of growth plate dysplasia reveals that decreased chondrocyte proliferation due to chronic ER stress is a key factor in reduced bone growth

    Directory of Open Access Journals (Sweden)

    Benedetta Gualeni

    2013-11-01

    Disease mechanisms leading to different forms of chondrodysplasia include extracellular matrix (ECM alterations and intracellular stress resulting in abnormal changes to chondrocyte proliferation and survival. Delineating the relative contribution of these two disease mechanisms is a major challenge in understanding disease pathophysiology in genetic skeletal diseases and a prerequisite for developing effective therapies. To determine the influence of intracellular stress and changes in chondrocyte phenotype to the development of chondrodysplasia, we targeted the expression of the G2320R mutant form of thyroglobulin to the endoplasmic reticulum (ER of resting and proliferating chondrocytes. Previous studies on this mutant protein have shown that it induces intracellular aggregates and causes cell stress and death in the thyroid gland. The expression and retention of this exogenous mutant protein in resting and proliferating chondrocytes resulted in a chronic cell stress response, growth plate dysplasia and reduced bone growth, without inducing any alterations to the architecture and organization of the cartilage ECM. More significantly, the decreased bone growth seemed to be the direct result of reduced chondrocyte proliferation in the proliferative zone of growth plates in transgenic mice, without transcriptional activation of a classical unfolded protein response (UPR or apoptosis. Overall, these data show that mutant protein retention in the ER of resting and proliferative zone chondrocytes is sufficient to cause disrupted bone growth. The specific disease pathways triggered by mutant protein retention do not necessarily involve a prototypic UPR, but all pathways impact upon chondrocyte proliferation in the cartilage growth plate.

  4. ALS Patient Stem Cells for Unveiling Disease Signatures of Motoneuron Susceptibility: Perspectives on the Deadly Mitochondria, ER Stress and Calcium Triad

    Science.gov (United States)

    Kaus, Anjoscha; Sareen, Dhruv

    2015-01-01

    Amyotrophic lateral sclerosis (ALS) is a largely sporadic progressive neurodegenerative disease affecting upper and lower motoneurons (MNs) whose specific etiology is incompletely understood. Mutations in superoxide dismutase-1 (SOD1), TAR DNA-binding protein 43 (TARDBP/TDP-43) and C9orf72, have been identified in subsets of familial and sporadic patients. Key associated molecular and neuropathological features include ubiquitinated TDP-43 inclusions, stress granules, aggregated dipeptide proteins from mutant C9orf72 transcripts, altered mitochondrial ultrastructure, dysregulated calcium homeostasis, oxidative and endoplasmic reticulum (ER) stress, and an unfolded protein response (UPR). Such impairments have been documented in ALS animal models; however, whether these mechanisms are initiating factors or later consequential events leading to MN vulnerability in ALS patients is debatable. Human induced pluripotent stem cells (iPSCs) are a valuable tool that could resolve this “chicken or egg” causality dilemma. Relevant systems for probing pathophysiologically affected cells from large numbers of ALS patients and discovering phenotypic disease signatures of early MN susceptibility are described. Performing unbiased ‘OMICS and high-throughput screening in relevant neural cells from a cohort of ALS patient iPSCs, and rescuing mitochondrial and ER stress impairments, can identify targeted therapeutics for increasing MN longevity in ALS. PMID:26635528

  5. Curcumin analog WZ35 induced cell death via ROS-dependent ER stress and G2/M cell cycle arrest in human prostate cancer cells

    International Nuclear Information System (INIS)

    Zhang, Xiuhua; Chen, Minxiao; Zou, Peng; Kanchana, Karvannan; Weng, Qiaoyou; Chen, Wenbo; Zhong, Peng; Ji, Jiansong; Zhou, Huiping; He, Langchong; Liang, Guang

    2015-01-01

    Prostate cancer is the most commonly diagnosed malignancy among men. The Discovery of new agents for the treatment of prostate cancer is urgently needed. Compound WZ35, a novel analog of the natural product curcumin, exhibited good anti-prostate cancer activity, with an IC 50 of 2.2 μM in PC-3 cells. However, the underlying mechanism of WZ35 against prostate cancer cells is still unclear. Human prostate cancer PC-3 cells and DU145 cells were treated with WZ35 for further proliferation, apoptosis, cell cycle, and mechanism analyses. NAC and CHOP siRNA were used to validate the role of ROS and ER stress, respectively, in the anti-cancer actions of WZ35. Our results show that WZ35 exhibited much higher cell growth inhibition than curcumin by inducing ER stress-dependent cell apoptosis in human prostate cells. The reduction of CHOP expression by siRNA partially abrogated WZ35-induced cell apoptosis. WZ35 also dose-dependently induced cell cycle arrest in the G2/M phase. Furthermore, we found that WZ35 treatment for 30 min significantly induced reactive oxygen species (ROS) production in PC-3 cells. Co-treatment with the ROS scavenger NAC completely abrogated the induction of WZ35 on cell apoptosis, ER stress activation, and cell cycle arrest, indicating an upstream role of ROS generation in mediating the anti-cancer effect of WZ35. Taken together, this work presents the novel anticancer candidate WZ35 for the treatment of prostate cancer, and importantly, reveals that increased ROS generation might be an effective strategy in human prostate cancer treatment. The online version of this article (doi:10.1186/s12885-015-1851-3) contains supplementary material, which is available to authorized users

  6. Lack of TXNIP protects against mitochondria-mediated apoptosis but not against fatty acid-induced ER stress-mediated beta-cell death.

    Science.gov (United States)

    Chen, Junqin; Fontes, Ghislaine; Saxena, Geetu; Poitout, Vincent; Shalev, Anath

    2010-02-01

    We have previously shown that lack of thioredoxin-interacting protein (TXNIP) protects against diabetes and glucotoxicity-induced beta-cell apoptosis. Because the role of TXNIP in lipotoxicity is unknown, the goal of the present study was to determine whether TXNIP expression is regulated by fatty acids and whether TXNIP deficiency also protects beta-cells against lipoapoptosis. RESARCH DESIGN AND METHODS: To determine the effects of fatty acids on beta-cell TXNIP expression, INS-1 cells and isolated islets were incubated with/without palmitate and rats underwent cyclic infusions of glucose and/or Intralipid prior to islet isolation and analysis by quantitative real-time RT-PCR and immunoblotting. Using primary wild-type and TXNIP-deficient islets, we then assessed the effects of palmitate on apoptosis (transferase-mediated dUTP nick-end labeling [TUNEL]), mitochondrial death pathway (cytochrome c release), and endoplasmic reticulum (ER) stress (binding protein [BiP], C/EBP homologous protein [CHOP]). Effects of TXNIP deficiency were also tested in the context of staurosporine (mitochondrial damage) or thapsigargin (ER stress). Glucose elicited a dramatic increase in islet TXNIP expression both in vitro and in vivo, whereas fatty acids had no such effect and, when combined with glucose, even abolished the glucose effect. We also found that TXNIP deficiency does not effectively protect against palmitate or thapsigargin-induced beta-cell apoptosis, but specifically prevents staurosporine- or glucose-induced toxicity. Our results demonstrate that unlike glucose, fatty acids do not induce beta-cell expression of proapoptotic TXNIP. They further reveal that TXNIP deficiency specifically inhibits the mitochondrial death pathway underlying beta-cell glucotoxicity, whereas it has very few protective effects against ER stress-mediated lipoapoptosis.

  7. Chronic Insulin Exposure Induces ER Stress and Lipid Body Accumulation in Mast Cells at the Expense of Their Secretory Degranulation Response.

    Directory of Open Access Journals (Sweden)

    William E Greineisen

    Full Text Available Lipid bodies (LB are reservoirs of precursors to inflammatory lipid mediators in immunocytes, including mast cells. LB numbers are dynamic, increasing dramatically under conditions of immunological challenge. We have previously shown in vitro that insulin-influenced lipogenic pathways induce LB biogenesis in mast cells, with their numbers attaining steatosis-like levels. Here, we demonstrate that in vivo hyperinsulinemia resulting from high fat diet is associated with LB accumulation in murine mast cells and basophils. We characterize the lipidome of purified insulin-induced LB, and the shifts in the whole cell lipid landscape in LB that are associated with their accumulation, in both model (RBL2H3 and primary mast cells. Lipidomic analysis suggests a gain of function associated with LB accumulation, in terms of elevated levels of eicosanoid precursors that translate to enhanced antigen-induced LTC4 release. Loss-of-function in terms of a suppressed degranulation response was also associated with LB accumulation, as were ER reprogramming and ER stress, analogous to observations in the obese hepatocyte and adipocyte. Taken together, these data suggest that chronic insulin elevation drives mast cell LB enrichment in vitro and in vivo, with associated effects on the cellular lipidome, ER status and pro-inflammatory responses.

  8. Mother's postnatal stress: an investigation of links to various factors during pregnancy and post-partum.

    Science.gov (United States)

    Andersson, Ewa; Hildingsson, Ingegerd

    2016-12-01

    Higher levels of parental stress have long-term effects on children's health and could lead to dysfunction in the parent-child interaction. Different background factors can be predictors of high parental stress. The aim of this study was to examine parental stress among Swedish women and identify different factors linked to women's parental stress. About 702 women were recruited to a clinical study and followed up six months after birth. Data were collected by two questionnaires, and 279 women completed the Swedish Parental Stress Questionnaire (SPSQ). Less than very good mental health and depressive symptoms after birth were strongly associated with parental stress, and the strongest association was found between post-partum depressive symptoms and high levels of stress in the subscale Incompetence. Multiparity was associated with high stress in two subscales, and lower level of education was a protective factor for stress in nearly all subscales. Depressive symptoms and perceived poor mental health post-partum are the most important factors related to high parental stress. The results point to the importance of identifying and supporting mothers with depressive symptoms, since these women have both mental illness and increased stress. © 2015 Nordic College of Caring Science.

  9. Induction of apoptosis through ER stress and TP53 in MCF-7 cells by the nanoparticle [Gd@C82(OH)22]n: A systems biology study.

    Science.gov (United States)

    Wang, Lin; Meng, Jie; Cao, Weipeng; Li, Qizhai; Qiu, Yuqing; Sun, Baoyun; Li, Lei M

    2014-06-01

    The nanoparticle gadolinium endohedral metallofullerenol [Gd@C82(OH)22]n is a new candidate for cancer treatment with low toxicity. However, its anti-cancer mechanisms remain mostly unknown. In this study, we took a systems biology view of the gene expression profiles of human breast cancer cells (MCF-7) and human umbilical vein endothelial cells (ECV304) treated with and without [Gd@C82(OH)22]n, respectively, measured by the Agilent Gene Chip G4112F. To properly analyze these data, we modified a suit of statistical methods we developed. For the first time we applied the sub-sub normalization to Agilent two-color microarrays. Instead of a simple linear regression, we proposed to use a one-knot SPLINE model in the sub-sub normalization to account for nonlinear spatial effects. The parameters estimated by least trimmed squares- and S-estimators show similar normalization results. We made several kinds of inferences by integrating the expression profiles with the bioinformatic knowledge in KEGG pathways, Gene Ontology, JASPAR, and TRANSFAC. In the transcriptional inference, we proposed the BASE2.0 method to infer a transcription factor's up-regulation and down-regulation activities separately. Overall, [Gd@C82(OH)22]n induces more differentiation in MCF-7 cells than in ECV304 cells, particularly in the reduction of protein processing such as protein glucosylation, folding, targeting, exporting, and transporting. Among the KEGG pathways, the ErbB signaling pathway is up-regulated, whereas protein processing in endoplasmic reticulum (ER) is down-regulated. CHOP, a key pro-apoptotic gene downstream of the ER stress pathway, increases to nine folds in MCF-7 cells after treatment. These findings indicate that ER stress may be one important factor that induces apoptosis in MCF-7 cells after [Gd@C82(OH)22]n treatment. The expression profiles of genes associated with ER stress and apoptosis are statistically consistent with other profiles reported in the literature, such as

  10. Vision-based stress estimation model for steel frame structures with rigid links

    Science.gov (United States)

    Park, Hyo Seon; Park, Jun Su; Oh, Byung Kwan

    2017-07-01

    This paper presents a stress estimation model for the safety evaluation of steel frame structures with rigid links using a vision-based monitoring system. In this model, the deformed shape of a structure under external loads is estimated via displacements measured by a motion capture system (MCS), which is a non-contact displacement measurement device. During the estimation of the deformed shape, the effective lengths of the rigid link ranges in the frame structure are identified. The radius of the curvature of the structural member to be monitored is calculated using the estimated deformed shape and is employed to estimate stress. Using MCS in the presented model, the safety of a structure can be assessed gauge-freely. In addition, because the stress is directly extracted from the radius of the curvature obtained from the measured deformed shape, information on the loadings and boundary conditions of the structure are not required. Furthermore, the model, which includes the identification of the effective lengths of the rigid links, can consider the influences of the stiffness of the connection and support on the deformation in the stress estimation. To verify the applicability of the presented model, static loading tests for a steel frame specimen were conducted. By comparing the stress estimated by the model with the measured stress, the validity of the model was confirmed.

  11. Propofol attenuates H2O2-induced oxidative stress and apoptosis via the mitochondria- and ER-medicated pathways in neonatal rat cardiomyocytes.

    Science.gov (United States)

    Liu, Xue-Ru; Cao, Lu; Li, Tao; Chen, Lin-Lin; Yu, Yi-Yan; Huang, Wen-Jun; Liu, Li; Tan, Xiao-Qiu

    2017-05-01

    Previous studies have shown that propofol, an intravenous anesthetic commonly used in clinical practice, protects the myocardium from injury. Mitochondria- and endoplasmic reticulum (ER)-mediated oxidative stress and apoptosis are two important signaling pathways involved in myocardial injury and protection. The present study aimed to test the hypothesis that propofol could exert a cardio-protective effect via the above two pathways. Cultured neonatal rat cardiomyocytes were treated with culture medium (control group), H 2 O 2 at 500 μM (H 2 O 2 group), propofol at 50 μM (propofol group), and H 2 O 2 plus propofol (H 2 O 2  + propofol group), respectively. The oxidative stress, mitochondrial membrane potential (ΔΨm) and apoptosis of the cardiomyocytes were evaluated by a series of assays including ELISA, flow cytometry, immunofluorescence microscopy and Western blotting. Propofol significantly suppressed the H 2 O 2 -induced elevations in the activities of caspases 3, 8, 9 and 12, the ratio of Bax/Bcl-2, and cell apoptosis. Propofol also inhibited the H 2 O 2 -induced reactive oxygen species (ROS) generation, lactic dehydrogenase (LDH) release and mitochondrial transmembrane potential (ΔΨm) depolarization, and restored the H 2 O 2 -induced reductions of glutathione (GSH) and superoxide dismutase (SOD). In addition, propofol decreased the expressions of glucose-regulated protein 78 kDa (Grp78) and inositol-requiring enzyme 1α (IRE1α), two important signaling molecules in the ER-mediated apoptosis pathway. Propofol protects cardiomyocytes from H 2 O 2 -induced injury by inhibiting the mitochondria- and ER-mediated apoptosis signaling pathways.

  12. The dynamics of histone H2A ubiquitination in HeLa cells exposed to rapamycin, ethanol, hydroxyurea, ER stress, heat shock and DNA damage.

    Science.gov (United States)

    Nakata, Shiori; Watanabe, Tadashi; Nakagawa, Koji; Takeda, Hiroshi; Ito, Akihiro; Fujimuro, Masahiro

    2016-03-25

    Polyubiquitination plays key roles in proteasome-dependent and independent cellular events, whereas monoubiquitination is involved in gene expression, DNA repair, protein-protein interaction, and protein trafficking. We previously developed an FK2 antibody, which specifically recognizes poly-Ub moieties but not free Ub. To elucidate the role of Ub conjugation in response to cellular stress, we used FK2 to investigate whether chemical stress (rapamycin, ethanol, or hydroxyurea), ER stress (thapsigargin or tunicamycin), heat shock or DNA damage (H2O2 or methyl methanesulfonate) affect the formation of Ub conjugates including histone H2A (hH2A) ubiquitination. First, we found that all forms of stress tested increased poly-ubiquitinated proteins in HeLa cells. Furthermore, rapamycin and hydroxyurea treatment, and ER stress increased ubiquitination of hH2A, while methyl methanesulfonate (MMS) treatment induced deubiquitination of hH2A. The ethanol and H2O2 treatments, and heat shock transiently induced hH2A de-ubiquitination, although deubiquitinated hH2A were ubiquitinated again by subsequent cultivation. We also revealed that FK2 reacts with not only polyubiquitinated proteins but also mono-ubiquitinated hH2A. With the exception of MMS, all forms of stress tested increased the acetylation of K5-hH2A, K9-hH3 and K8-hH4 in addition to ubiquitination. K118 and K119 of hH2A were ubiquitinated in cells under normal conditions, and K119 was the major ubiquitination site. The MMS-treatment and heat shock induced the deubiquitination of both K118 and K119-histone H2A. Interestingly, MMS treatment did not affect cell HeLa cell viability expressing double-mutant hH2A (KK118,119AA-hH2A), while heat shock slightly but significantly decreased viability of double-mutant hH2A expressing cells, indicating that ubiquitination of both sites associates with recovery from heat shock but not MMS treatment. Thus, we characterized FK2 reactivity and demonstrated that various stresses alter

  13. Middle School Transition Stress: Links with Academic Performance, Motivation, and School Experiences

    Science.gov (United States)

    Goldstein, Sara E.; Boxer, Paul; Rudolph, Erin

    2015-01-01

    The present study investigates links between early adolescents' subjective experiences of stress associated with the middle school transition and their academic outcomes. Seventh and eighth grade students (N?=?774) were surveyed about their experiences during their transition to middle school. Students answered questions about stress…

  14. Autonomic and inflammatory consequences of posttraumatic stress disorder and the link to cardiovascular disease.

    Science.gov (United States)

    Brudey, Chevelle; Park, Jeanie; Wiaderkiewicz, Jan; Kobayashi, Ihori; Mellman, Thomas A; Marvar, Paul J

    2015-08-15

    Stress- and anxiety-related disorders are on the rise in both military and general populations. Over the next decade, it is predicted that treatment of these conditions, in particular, posttraumatic stress disorder (PTSD), along with its associated long-term comorbidities, will challenge the health care system. Multiple organ systems are adversely affected by PTSD, and PTSD is linked to cancer, arthritis, digestive disease, and cardiovascular disease. Evidence for a strong link between PTSD and cardiovascular disease is compelling, and this review describes current clinical data linking PTSD to cardiovascular disease, via inflammation, autonomic dysfunction, and the renin-angiotensin system. Recent clinical and preclinical evidence regarding the role of the renin-angiotensin system in the extinction of fear memory and relevance in PTSD-related immune and autonomic dysfunction is also addressed. Copyright © 2015 the American Physiological Society.

  15. Cortisol dysregulation: the bidirectional link between stress, depression, and type 2 diabetes mellitus.

    Science.gov (United States)

    Joseph, Joshua J; Golden, Sherita H

    2017-03-01

    Controversy exists over the role of stress and depression in the pathophysiology of type 2 diabetes mellitus. Depression has been shown to increase the risk for progressive insulin resistance and incident type 2 diabetes mellitus in multiple studies, whereas the association of stress with diabetes is less clear, owing to differences in study designs and in forms and ascertainment of stress. The biological systems involved in adaptation that mediate the link between stress and physiological functions include the hypothalamic-pituitary-adrenal (HPA) axis and the autonomic nervous and immune systems. The HPA axis is a tightly regulated system that represents one of the body's mechanisms for responding to acute and chronic stress. Depression is associated with cross-sectional and longitudinal alterations in the diurnal cortisol curve, including a blunted cortisol awakening response and flattening of the diurnal cortisol curve. Flattening of the diurnal cortisol curve is also associated with insulin resistance and type 2 diabetes mellitus. In this article, we review and summarize the evidence supporting HPA axis dysregulation as an important biological link between stress, depression, and type 2 diabetes mellitus. © 2016 New York Academy of Sciences.

  16. Molybdenum induces pancreatic β-cell dysfunction and apoptosis via interdependent of JNK and AMPK activation-regulated mitochondria-dependent and ER stress-triggered pathways

    International Nuclear Information System (INIS)

    Yang, Tsung-Yuan; Yen, Cheng-Chieh; Lee, Kuan-I; Su, Chin-Chuan; Yang, Ching-Yao; Wu, Chin-Ching; Hsieh, Shang-Shu; Ueng, Kwo-Chang; Huang, Chun-Fa

    2016-01-01

    Molybdenum (Mo), a well-known toxic environmental and industrial pollutant, causes adverse health effects and diseases in humans and has received attention as a potential risk factor for DM. However, the roles of Mo in the mechanisms of the toxicological effects in pancreatic β-cells are mostly unclear. In this study, the results revealed dysfunction of insulin secretion and apoptosis in the pancreatic β-cell-derived RIN-m5F cells and the isolated mouse islets in response to Mo. These effects were accompanied by a mitochondria-dependent apoptotic signals including a decreased in the MMP, an increase in cytochrome c release, and the activation of caspase cascades and PARP. In addition, ER stress was triggered as indicated by several key molecules of the UPR. Furthermore, exposure to Mo induced the activation of ERK1/2, JNK, AMPKα, and GSK3-α/β. Pretreatment with specific pharmacological inhibitors (in RIN-m5F cells and isolated mouse islets) of JNK (SP600125) and AMPK (Compound C) or transfection with si-RNAs (in RIN-m5F cells) specific to JNK and AMPKα effectively prevented the Mo-induced apoptosis and related signals, but inhibitors of ERK1/2 and GSK3-α/β (PD98059 and LiCl, respectively) did not reverse the Mo-induced effects. Additionally, both the inhibitors and specific si-RNAs could suppress the Mo-induced phosphorylation of JNK and AMPKα each other. Taken together, these results suggest that Mo exerts its cytotoxicity on pancreatic β-cells by inducing dysfunction and apoptosis via interdependent JNK and AMPK activation downstream-regulated mitochondrial-dependent and ER stress-triggered apoptosis pathways. - Highlights: • Molybdenum (Mo) induces pancreatic β-cell dysfunction and apoptosis. • Mo causes β-cell death via mitochondria-dependent caspase cascades signals. • ER stress-triggered apoptotic pathway also regulates Mo-induced β-cell death. • Interdependent of JNK and AMPK activation involves in Mo-induced β-cell apoptosis.

  17. Molybdenum induces pancreatic β-cell dysfunction and apoptosis via interdependent of JNK and AMPK activation-regulated mitochondria-dependent and ER stress-triggered pathways

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Tsung-Yuan [Institute of Medicine, Chung Shan Medical University, Taichung 402, Taiwan (China); Department of Internal Medicine, Chung Shan Medical University Hospital, Taichung 402, Taiwan (China); Yen, Cheng-Chieh [Department of Occupational Safety and Health, College of Health Care and Management, Chung Shan Medical University, Taichung 402, Taiwan (China); Department of Occupational Medicine, Chung Shan Medical University Hospital, Taichung 402, Taiwan (China); Lee, Kuan-I [Department of Emergency, Taichung Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Taichung 427, Taiwan (China); Su, Chin-Chuan [Department of Otorhinolaryngology, Head and Neck Surgery, Changhua Christian Hospital, Changhua County 500, Taiwan (China); Graduate Institute of Basic Medical Science, School of Medicine, College of Medicine, China Medical University, Taichung 404, Taiwan (China); Yang, Ching-Yao [Department of Surgery, National Taiwan University Hospital, Taipei 100, Taiwan (China); Department of Surgery, College of Medicine, National Taiwan University, Taipei 100, Taiwan (China); Wu, Chin-Ching [Department of Public Health, China Medical University, Taichung 404, Taiwan (China); Hsieh, Shang-Shu, E-mail: gile1123@yahoo.com.tw [Department of Emergency, Taichung Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Taichung 427, Taiwan (China); Ueng, Kwo-Chang, E-mail: kcueng@gmail.com [Department of Internal Medicine, Chung Shan Medical University Hospital, Taichung 402, Taiwan (China); School of Medicine, Chung Shan Medical University, Taichung 402, Taiwan (China); Huang, Chun-Fa, E-mail: cfhuang@mail.cmu.edu.tw [School of Chinese Medicine, College of Chinese Medicine, China Medical University, Taichung 404, Taiwan (China)

    2016-03-01

    Molybdenum (Mo), a well-known toxic environmental and industrial pollutant, causes adverse health effects and diseases in humans and has received attention as a potential risk factor for DM. However, the roles of Mo in the mechanisms of the toxicological effects in pancreatic β-cells are mostly unclear. In this study, the results revealed dysfunction of insulin secretion and apoptosis in the pancreatic β-cell-derived RIN-m5F cells and the isolated mouse islets in response to Mo. These effects were accompanied by a mitochondria-dependent apoptotic signals including a decreased in the MMP, an increase in cytochrome c release, and the activation of caspase cascades and PARP. In addition, ER stress was triggered as indicated by several key molecules of the UPR. Furthermore, exposure to Mo induced the activation of ERK1/2, JNK, AMPKα, and GSK3-α/β. Pretreatment with specific pharmacological inhibitors (in RIN-m5F cells and isolated mouse islets) of JNK (SP600125) and AMPK (Compound C) or transfection with si-RNAs (in RIN-m5F cells) specific to JNK and AMPKα effectively prevented the Mo-induced apoptosis and related signals, but inhibitors of ERK1/2 and GSK3-α/β (PD98059 and LiCl, respectively) did not reverse the Mo-induced effects. Additionally, both the inhibitors and specific si-RNAs could suppress the Mo-induced phosphorylation of JNK and AMPKα each other. Taken together, these results suggest that Mo exerts its cytotoxicity on pancreatic β-cells by inducing dysfunction and apoptosis via interdependent JNK and AMPK activation downstream-regulated mitochondrial-dependent and ER stress-triggered apoptosis pathways. - Highlights: • Molybdenum (Mo) induces pancreatic β-cell dysfunction and apoptosis. • Mo causes β-cell death via mitochondria-dependent caspase cascades signals. • ER stress-triggered apoptotic pathway also regulates Mo-induced β-cell death. • Interdependent of JNK and AMPK activation involves in Mo-induced β-cell apoptosis.

  18. Laterality strength is linked to stress reactivity in Port Jackson sharks (Heterodontus portusjacksoni).

    Science.gov (United States)

    Byrnes, Evan E; Vila Pouca, Catarina; Brown, Culum

    2016-05-15

    Cerebral lateralization is an evolutionarily deep-rooted trait, ubiquitous among the vertebrates and present even in some invertebrates. Despite the advantages of cerebral lateralization in enhancing cognition and facilitating greater social cohesion, large within population laterality variation exists in many animal species. It is proposed that this variation is maintained due links with inter-individual personality trait differences. Here we explored for lateralization in Port Jackson sharks (Heterodontus portusjacksoni) using T-maze turn and rotational swimming tasks. Additionally, we explored for a link between personality traits, boldness and stress reactivity, and cerebral lateralization. Sharks demonstrated large individual and sex biased laterality variation, with females demonstrating greater lateralization than males overall. Stress reactivity, but not boldness, was found to significantly correlate with lateralization strength. Stronger lateralized individuals were more reactive to stress. Demonstrating laterality in elasmobranchs for the first time indicates ancient evolutionary roots of vertebrate lateralization approximately 240 million years old. Greater lateralization in female elasmobranchs may be related enhancing females' ability to process multiple stimuli during mating, which could increase survivability and facilitate insemination. Despite contrasting evidence in teleost fishes, the results of this study suggest that stress reactivity, and other personality traits, may be linked to variation in lateralization. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. AFLP marker linked to water-stress-tolerant bulks in barley (Hordeum vulgare L.

    Directory of Open Access Journals (Sweden)

    A. Altinkut

    2003-01-01

    Full Text Available The amplified fragment length polymorphism (AFLP assay is an efficient method for the identification of molecular markers, useful in the improvement of numerous crop species. Bulked Segregant Analysis (BSA was used to identify AFLP markers associated with water-stress tolerance in barley, as this would permit rapid selection of water-stress tolerant genotypes in breeding programs. AFLP markers linked to water-stress tolerance was identified in two DNA pools (tolerant and sensitive, which were established using selected F2 individuals resulting from a cross between water-stress-tolerant and sensitive barley parental genotypes, based on their paraquat (PQ tolerance, leaf size, and relative water content (RWC. All these three traits were previously shown to be associated with water-stress tolerance in segregating F2 progeny of the barley cross used in a previous study. AFLP analysis was then performed on these DNA pools, using 40 primer pairs to detect AFLP fragments that are present/absent, respectively, in the two pools and their parental lines. One separate AFLP fragment, which was present in the tolerant parent and in the tolerant bulk, but absent in the sensitive parent and in the sensitive bulk, was identified. Polymorphism of the AFLP marker was tested among tolerant and sensitive F2 individuals. The presence of this marker that is associated with water-stress tolerance will greatly enhance selection for paraquat and water-stress tolerant genotypes in future breeding programs.

  20. A systems approach identifies networks and genes linking sleep and stress: implications for neuropsychiatric disorders.

    Science.gov (United States)

    Jiang, Peng; Scarpa, Joseph R; Fitzpatrick, Karrie; Losic, Bojan; Gao, Vance D; Hao, Ke; Summa, Keith C; Yang, He S; Zhang, Bin; Allada, Ravi; Vitaterna, Martha H; Turek, Fred W; Kasarskis, Andrew

    2015-05-05

    Sleep dysfunction and stress susceptibility are comorbid complex traits that often precede and predispose patients to a variety of neuropsychiatric diseases. Here, we demonstrate multilevel organizations of genetic landscape, candidate genes, and molecular networks associated with 328 stress and sleep traits in a chronically stressed population of 338 (C57BL/6J × A/J) F2 mice. We constructed striatal gene co-expression networks, revealing functionally and cell-type-specific gene co-regulations important for stress and sleep. Using a composite ranking system, we identified network modules most relevant for 15 independent phenotypic categories, highlighting a mitochondria/synaptic module that links sleep and stress. The key network regulators of this module are overrepresented with genes implicated in neuropsychiatric diseases. Our work suggests that the interplay among sleep, stress, and neuropathology emerges from genetic influences on gene expression and their collective organization through complex molecular networks, providing a framework for interrogating the mechanisms underlying sleep, stress susceptibility, and related neuropsychiatric disorders. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  1. Clarifying the links between social support and health: culture, stress, and neuroticism matter.

    Science.gov (United States)

    Park, Jiyoung; Kitayama, Shinobu; Karasawa, Mayumi; Curhan, Katherine; Markus, Hazel R; Kawakami, Norito; Miyamoto, Yuri; Love, Gayle D; Coe, Christopher L; Ryff, Carol D

    2013-02-01

    Although it is commonly assumed that social support positively predicts health, the empirical evidence has been inconsistent. We argue that three moderating factors must be considered: (1) support-approving norms (cultural context); (2) support-requiring situations (stressful events); and (3) support-accepting personal style (low neuroticism). Our large-scale cross-cultural survey of Japanese and US adults found significant associations between perceived support and health. The association was more strongly evident among Japanese (from a support-approving cultural context) who reported high life stress (in a support-requiring situation). Moreover, the link between support and health was especially pronounced if these Japanese were low in neuroticism.

  2. ER stress and basement membrane defects combine to cause glomerular and tubular renal disease resulting from Col4a1 mutations in mice

    Directory of Open Access Journals (Sweden)

    Frances E. Jones

    2016-02-01

    Full Text Available Collagen IV is a major component of basement membranes, and mutations in COL4A1, which encodes collagen IV alpha chain 1, cause a multisystemic disease encompassing cerebrovascular, eye and kidney defects. However, COL4A1 renal disease remains poorly characterized and its pathomolecular mechanisms are unknown. We show that Col4a1 mutations in mice cause hypotension and renal disease, including proteinuria and defects in Bowman's capsule and the glomerular basement membrane, indicating a role for Col4a1 in glomerular filtration. Impaired sodium reabsorption in the loop of Henle and distal nephron despite elevated aldosterone levels indicates that tubular defects contribute to the hypotension, highlighting a novel role for the basement membrane in vascular homeostasis by modulation of the tubular response to aldosterone. Col4a1 mutations also cause diabetes insipidus, whereby the tubular defects lead to polyuria associated with medullary atrophy and a subsequent reduction in the ability to upregulate aquaporin 2 and concentrate urine. Moreover, haematuria, haemorrhage and vascular basement membrane defects confirm an important vascular component. Interestingly, although structural and compositional basement membrane defects occurred in the glomerulus and Bowman's capsule, no tubular basement membrane defects were detected. By contrast, medullary atrophy was associated with chronic ER stress, providing evidence for cell-type-dependent molecular mechanisms of Col4a1 mutations. These data show that both basement membrane defects and ER stress contribute to Col4a1 renal disease, which has important implications for the development of treatment strategies for collagenopathies.

  3. Oxidative and ER stress-dependent ASK1 activation in steatotic hepatocytes and Kupffer cells sensitizes mice fatty liver to ischemia/reperfusion injury.

    Science.gov (United States)

    Imarisio, Chiara; Alchera, Elisa; Bangalore Revanna, Chandrashekar; Valente, Guido; Follenzi, Antonia; Trisolini, Elena; Boldorini, Renzo; Carini, Rita

    2017-11-01

    Steatosis intensifies hepatic ischemia/reperfusion (I/R) injury increasing hepatocyte damage and hepatic inflammation. This study evaluates if this process is associated to a differential response of steatotic hepatocytes (HP) and Kupffer cells (KC) to I/R injury and investigates the molecular mechanisms involved. Control or steatotic (treated with 50 μmol palmitic acid, PA) mouse HP or KC were exposed to hypoxia/reoxygenation (H/R). C57BL/6 mice fed 9 week with control or High Fat diet underwent to partial hepatic IR. PA increased H/R damage of HP and further activated the ASK1-JNK axis stimulated by ER stress during H/R. PA also induced the production of oxidant species (OS), and OS prevention nullified the capacity of PA to increase H/R damage and ASK1/JNK stimulation. ASK1 inhibition prevented JNK activation and entirely protected HP damage. In KC, PA directly activated ER stress, ASK1 and p38 MAPK and increased H/R damage. However, in contrast to HP, ASK1 inhibition further increased H/R damage by preventing p38 MAPK activation. In mice liver, steatosis induced the expression of activated ASK1 in only KC, whereas I/R exposure of steatotic liver activated ASK1 expression also in HP. "In vivo", ASK1 inhibition prevented ASK1, JNK and p38 MAPK activation and protected I/R damage and expression of inflammatory markers. Lipids-induced ASK1 stimulation differentially affects HP and KC by promoting cytotoxic or protective signals. ASK1 increases H/R damage of HP by stimulating JNK and protects KC activating p38MAPK. These data support the potentiality of the therapeutic employment of ASK1 inhibitors that can antagonize the damaging effects of I/R upon fatty liver surgery by the contextual reduction of HP death and of KC-mediated reactions. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. The effect of metformin treatment on endoplasmic reticulum (ER stress induced by status epilepticus (SE via the PERK-eIF2α-CHOP pathway

    Directory of Open Access Journals (Sweden)

    Jing Chen

    2018-02-01

    Full Text Available Status epilepticus (SE is defined as continuous seizure activity lasting more than 5 minutes. It results in neuronal cell death, mediated by endoplasmic reticulum (ER stress response. Previously, metformin demonstrated neuroprotective effects in primary cortical neurons. In this study, we analyzed the effect of metformin on ER stress via the pro-apoptotic protein kinase RNA-like endoplasmic reticulum kinase (PERK-eukaryotic initiation factor 2α (eIF2α-C/EBP homologous protein (CHOP pathway. SE was induced in rats by pentylenetetrazole. Following SE, the rats were treated with salubrinal, GSK2656157, or metformin. In a control group (normal saline SE was not induced. CHOP, eIF2α, and PERK expression was determined by Western blot; apoptosis was analyzed by TUNEL assay. CHOP expression was significantly increased at 6 and 24 hours following SE. At both time points, eIF2α and PERK levels were also increased. At 6 hours, CHOP expression was significantly reduced in salubrinal, GSK2656157 and metformin groups versus SE group. eIF2α and PERK levels were decreased in metformin compared to SE group. eIF2α expression was markedly decreased in salubrinal versus SE group, while PERK expression was markedly reduced in GSK2656157 versus SE group. At 6 and 24 hours, the apoptosis rate was significantly increased in SE versus control group, while it was significantly reduced in salubrinal, GSK2656157, and metformin groups compared to SE group. The apoptosis rate also decreased in salubrinal group at 24 hours, although not to the extent observed in metformin group. Overall, CHOP expression and apoptosis induced by SE in rats were reduced with metformin. Further studies are required to evaluate the clinical relevance of metformin for patients with SE.

  5. Oxidative stress, cancer, and sleep deprivation: is there a logical link in this association?

    Science.gov (United States)

    Noguti, Juliana; Andersen, Monica Levy; Cirelli, Chiara; Ribeiro, Daniel Araki

    2013-09-01

    Sleep disorders are associated with various human pathologies and interfere with biological processes essential for health and quality of life. On the other hand, cancer is one of the most common diseases worldwide with an average of 1,500 deaths per day in the USA. Is there a factor common to both sleep disorders and cancer that serves to link these conditions? It is a normal process for cellular metabolism to produce reactive oxidant series (ROS). However, when the production of ROS overcomes the antioxidant capacity of the cell to eliminate these products, the resulting state is called oxidative stress. Oxidative DNA damage may participate in ROS-induced carcinogenesis. Moreover, ROS are also produced in the sleep deprivation process. The aim of this article is to review pathways and mechanisms that may point to oxidative stress as a link between sleep deprivation and cancer.

  6. The Missing Link between Juvenile Delinquency and Pediatric Posttraumatic Stress Disorder: An Attachment Theory Lens

    OpenAIRE

    Amatya, Pooja L.; Barzman, Drew H.

    2012-01-01

    The present paper reviews pediatric posttraumatic stress disorder, emphasizing the relational basis of the disorder and highlighting the missing link between juvenile delinquency and trauma. The first part of the paper defines trauma and the diagnostic criteria for PTSD, noting child-specific features. The second part reviews the literature emphasizing the relational and attachment relevant nature of trauma. The third part explores psychological mechanisms for how attachment relations could a...

  7. Stress induced neural reorganization: A conceptual framework linking depression and Alzheimer's disease.

    Science.gov (United States)

    Ross, Jennifer A; Gliebus, Gediminas; Van Bockstaele, Elisabeth J

    2018-07-13

    Chronic stress is a risk factor for a number of physiological disorders including cardiovascular disease, obesity and gastrointestinal disorders, as well as psychiatric and neurodegenerative disorders. There are a number of underlying molecular and cellular mechanisms altered in the course of chronic stress, which may increase the vulnerability of individuals to develop psychiatric disorders such as depression, and neurodegenerative disorders such as Alzheimer's Disease (AD). This is evident in the influence of stress on large-scale brain networks, including the resting state Default Mode Network (DMN), the effects of stress on neuronal circuitry and architecture, and the cellular and molecular adaptations to stress, which may render individuals with stress related psychiatric disorders more vulnerable to neurodegenerative disease later in life. These alterations include decreased negative feedback inhibition of the hypothalamic pituitary axis (HPA) axis, decreased dendritic arborization and spine density in the prefrontal cortex (PFC) and hippocampus, and the release of proinflammatory cytokines, which may suppress neurogenesis and promote neuronal cell death. Each of these factors are thought to play a role in stress-related psychiatric disease as well as AD, and have been observed in clinical and post-mortem studies of individuals with depression and AD. The goal of the current review is to summarize clinical and preclinical evidence supporting a role for chronic stress as a putative link between neuropsychiatric and neurodegenerative disease. Moreover, we provide a rationale for the importance of taking a medical history of stress-related psychiatric diseases into consideration during clinical trial design, as they may play an important role in the etiology of AD in stratified patient populations. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Having your cake and eating it too: a habit of comfort food may link chronic social stress exposure and acute stress-induced cortisol hyporesponsiveness.

    Science.gov (United States)

    Tryon, M S; DeCant, Rashel; Laugero, K D

    2013-04-10

    Stress has been tied to changes in eating behavior and food choice. Previous studies in rodents have shown that chronic stress increases palatable food intake which, in turn, increases visceral fat and inhibits acute stress-induced hypothalamic-pituitary-adrenal (HPA) axis activity. The effect of chronic stress on eating behavior in humans is less understood, but it may be linked to HPA responsivity. The purpose of this study was to investigate the influence of chronic social stress and acute stress reactivity on food choice and food intake. Forty-one women (BMI=25.9±5.1 kg/m(2), age range=41 to 52 years) were subjected to the Trier Social Stress Test or a control task (nature movie) to examine HPA responses to an acute laboratory stressor and then invited to eat from a buffet containing low- and high-calorie snacks. Women were also categorized as high chronic stress or low chronic stress based on Wheaton Chronic Stress Inventory scores. Women reporting higher chronic stress and exhibiting low cortisol reactivity to the acute stress task consumed significantly more calories from chocolate cake on both stress and control visits. Chronic stress in the low cortisol reactor group was also positively related to total fat mass, body fat percentage, and stress-induced negative mood. Further, women reporting high chronic stress consumed significantly less vegetables, but only in those aged 45 years and older. Chronic stress in women within the higher age category was positively related to total calories consumed at the buffet, stress-induced negative mood and food craving. Our results suggest an increased risk for stress eating in persons with a specific chronic stress signature and imply that a habit of comfort food may link chronic social stress and acute stress-induced cortisol hyporesponsiveness. Published by Elsevier Inc.

  9. Growing Up Or Growing Old? Cellular Aging Linked With Testosterone Reactivity To Stress In Youth

    Science.gov (United States)

    Drury, Stacy S.; Shirtcliff, Elizabeth A.; Shachet, Andrew; Phan, Jenny; Mabile, Emily; Brett, Zoë H.; Wren, Michael; Esteves, Kyle; Theall, Katherine P.

    2014-01-01

    Background Given the established relation between testosterone and aging in older adults, we tested whether buccal telomere length (TL), an established cellular biomarker of aging, was associated with testosterone levels in youth. Methods Children, mean age 10.2 years, were recruited from the greater New Orleans area and salivary testosterone was measured during both an acute stressor and diurnally. Buccal TL was measured using monochrome multiplex quantitative real-time PCR (MMQ-PCR). Testosterone and telomere length data was available on 77 individuals. The association between buccal TL and testosterone was tested using multivariate Generalized Estimating Equations (GEE) to account for clustering of children within families. Results Greater peak testosterone levels (β=-0.87, p < 0.01) and slower recovery (β=-0.56, p < 0.01) and reactivity (β = -1.22, p < 0.01) following a social stressor were significantly associated with shorter buccal TL after controlling for parental age at conception, child age, sex, sociodemographic factors and puberty. No association was initially present between diurnal measurements of testosterone or morning basal testosterone levels and buccal TL. Sex significantly moderated the relation between testosterone reactivity and buccal TL. Conclusions The association between testosterone and buccal TL supports gonadal maturation as a developmentally sensitive biomarker of aging within youth. As stress levels of testosterone were significantly associated with buccal TL, these findings are consistent with the growing literature linking stress exposure and accelerated maturation. The lack of association of diurnal testosterone or morning basal levels with buccal TL bolsters the notion of a shared stress-related maturational mechanism between cellular stress and the hypothalamic pituitary gonadal (HPG) axis. These data provide novel evidence supporting the interaction of aging, physiologic stress and cellular processes as an underlying

  10. Auranofin induces apoptosis by ROS-mediated ER stress and mitochondrial dysfunction and displayed synergistic lethality with piperlongumine in gastric cancer.

    Science.gov (United States)

    Zou, Peng; Chen, Minxiao; Ji, Jiansong; Chen, Weiqian; Chen, Xi; Ying, Shilong; Zhang, Junru; Zhang, Ziheng; Liu, Zhiguo; Yang, Shulin; Liang, Guang

    2015-11-03

    Gastric cancer (GC) is one of the leading causes of cancer mortality in the world. In addressing the need of treatments for relapsed disease, we report the identification of an existing U.S. Food and Drug Administration-approved small-molecule drug to repurpose for GC treatment. Auranofin (AF), clinically used to treat rheumatic arthritis, but it exhibited preclinical efficacy in GC cells. By increasing intracellular reactive oxygen species (ROS) levels, AF induces a lethal endoplasmic reticulum stress response and mitochondrial dysfunction in cultured GC cells. Blockage of ROS production reversed AF-induced ER stress and mitochondrial pathways activation as well as apoptosis. In addition, AF displays synergistic lethality with an ROS-generating agent piperlongumine, which is a natural product isolated from the long pepper Piper longum L. Taken together, this work provides a novel anticancer candidate for the treatment of gastric cancer. More importantly, it reveals that increased ROS generation might be an effective strategy in treating human gastric cancer.

  11. The Indirect Effect of Emotion Regulation on Minority Stress and Problematic Substance Use in Lesbian, Gay, and Bisexual Individuals

    Directory of Open Access Journals (Sweden)

    Andrew H. Rogers

    2017-10-01

    Full Text Available Lesbian, gay, and bisexual (LGB individuals report higher levels of problematic alcohol and substance use than their heterosexual peers. This disparity is linked to the experience of LGB-specific stressors, termed minority stress. Additionally, bisexual individuals show increased rates of psychopathology, including problematic alcohol and substance use, above and beyond lesbian and gay individuals. However, not everyone experiencing minority stress reports increased rates of alcohol and substance misuse. Emotion regulation (ER, which plays a critical role in psychopathology in general, is theorized to modulate the link between minority stress and psychopathology. However, it remains largely unknown whether ER plays a role in linking instances of minority stress with substance and alcohol use outcomes. To address the gap, the current study assessed 305 LGB individuals’ instances of minority stress, ER, and substance and alcohol use outcomes. We assessed the role of ER in problematic alcohol and substance use among LGB individuals using moderated mediation, where sexual minority status was entered as the moderator, and ER difficulties was entered as the mediator. The results indicated significant indirect effects of minority stress, through ER difficulties, on both problematic alcohol and substance use. However, there was no significant interaction with sexual orientation status, suggesting that ER may be important for all LGB individuals in predicting problematic alcohol and substance use. These results highlight the important role that ER plays between instances of minority stress and substance and alcohol use in LGB individuals, suggesting that ER skills may serve as a novel target for intervention.

  12. 9-Norbornyl-6-chloropurine (NCP) induces cell death through GSH depletion-associated ER stress and mitochondrial dysfunction

    Czech Academy of Sciences Publication Activity Database

    Plačková, Pavla; Šála, Michal; Šmídková, Markéta; Dejmek, Milan; Hřebabecký, Hubert; Nencka, Radim; Thibaut, H. J.; Neyts, J.; Mertlíková-Kaiserová, Helena

    2016-01-01

    Roč. 97, Aug (2016), s. 223-235 ISSN 0891-5849 R&D Projects: GA MŠk LO1302; GA ČR GAP303/11/1297 Institutional support: RVO:61388963 Keywords : glutathione-S-transferase * oxidative stress * leukemia Subject RIV: CE - Biochemistry Impact factor: 5.606, year: 2016 http://www.sciencedirect.com/science/article/pii/S0891584916302921

  13. High-gain polymer optical waveguide amplifiers based on core-shell NaYF4/NaLuF4: Yb3+, Er3+ NPs-PMMA covalent-linking nanocomposites

    Science.gov (United States)

    Zhang, Meiling; Zhang, Weiwei; Wang, Fei; Zhao, Dan; Qu, Chunyang; Wang, Xibin; Yi, Yunji; Cassan, Eric; Zhang, Daming

    2016-11-01

    Waveguide amplifiers have always been significant key components for optical communication. Unfortunately, the low concentration of rare earth ions doped in the host material and the inadequate optimization of the waveguide structure have been the common bottleneck limitations. Here, a novel material, NaYF4/NaLuF4: 20% Yb3+, 2% Er3+ nanoparticle-Polymeric Methyl Methacrylate covalent-linking nanocomposite, was synthesized. The concentrations of Er3+ and Yb3+ doping increased an order of magnitude. Under a 980 nm laser excitation, highly efficient emission at 1.53 μm was obtained. The characteristic parameters of the single mode waveguide were carefully designed and optimized by using a finite difference method. A formulized iteration method is presented for solving the rate equations and the propagation equations of the EYCDWA, and both the steady state behavior and the gain were numerically simulated. The optimal Er3+ and Yb3+ concentrations are 2.8 × 1026 m-3 and 2.8 × 1027 m-3, and the optimal waveguide length is 1.3 cm. Both theoretical and experimental results indicated that, for an input signal power of 0.1 mW and a pump power of 400 mW, a net gain of 15.1 dB at 1530 nm is demonstrated. This result is the highest gain ever reported in polymer-based waveguide amplifiers doped with inorganic Er3+-Yb3+ codoped nanocrystals.

  14. Application of a linked stress release model in Corinth Gulf and Central Ionian Islands (Greece)

    Science.gov (United States)

    Mangira, Ourania; Vasiliadis, Georgios; Papadimitriou, Eleftheria

    2017-06-01

    Spatio-temporal stress changes and interactions between adjacent fault segments consist of the most important component in seismic hazard assessment, as they can alter the occurrence probability of strong earthquake onto these segments. The investigation of the interactions between adjacent areas by means of the linked stress release model is attempted for moderate earthquakes ( M ≥ 5.2) in the Corinth Gulf and the Central Ionian Islands (Greece). The study areas were divided in two subareas, based on seismotectonic criteria. The seismicity of each subarea is investigated by means of a stochastic point process and its behavior is determined by the conditional intensity function, which usually gets an exponential form. A conditional intensity function of Weibull form is used for identifying the most appropriate among the models (simple, independent and linked stress release model) for the interpretation of the earthquake generation process. The appropriateness of the models was decided after evaluation via the Akaike information criterion. Despite the fact that the curves of the conditional intensity functions exhibit similar behavior, the use of the exponential-type conditional intensity function seems to fit better the data.

  15. Selenium deficiency aggravates T-2 toxin-induced injury of primary neonatal rat cardiomyocytes through ER stress.

    Science.gov (United States)

    Xu, Jing; Pan, Shengchi; Gan, Fang; Hao, Shu; Liu, Dandan; Xu, Haibin; Huang, Kehe

    2018-04-01

    Keshan disease is a potentially fatal cardiomyopathy in humans. Selenium deficiency, T-2 toxin, and myocarditis virus are thought to be the major factors contributing to Keshan disease. But the relationship among these three factors is poorly described. This study aims to explore whether selenium deficiency aggravates T-2 toxin-induced cardiomyocyte injury and its underlying mechanism. Cardiomyocytes were isolated from neonatal rat and cultured at the physiological (2.0 μM) or lower concentrations of selenium with different concentrations of T-2 toxin. Our results showed that selenium deficiencies aggravated T-2 toxin-induced cardiomyocyte injury in a concentration-dependent manner as demonstrated by MTT bioassay, LDH activity, reactive oxygen species levels and caspase 3 protein expressions. T-2 toxin treatment significantly increased mRNA expressions for stress proteins GRP78 and CHOP in cardiomyocytes compared with the control. Selenium deficiencies further promoted GRP78, CHOP and p-eIF2α expressions. Knockdown of CHOP by the specific small interfering RNA eliminated the effect of selenium deficiencies on T-2 toxin-induced injury. It could be concluded that selenium deficiency aggravates T-2 toxin-induced cardiomyocyte injury through initiating more aggressive endoplasmic reticulum stress. Copyright © 2018 Elsevier B.V. All rights reserved.

  16. Clarifying the links between social support and health: Culture, stress, and neuroticism matter

    Science.gov (United States)

    Park, Jiyoung; Kitayama, Shinobu; Karasawa, Mayumi; Curhan, Katherine; Markus, Hazel R; Kawakami, Norito; Miyamoto, Yuri; Love, Gayle D; Coe, Christopher L; Ryff, Carol D

    2012-01-01

    Although it is commonly assumed that social support positively predicts health, the empirical evidence has been inconsistent. We argue that three moderating factors must be considered: (1) support-approving norms (cultural context); (2) support-requiring situations (stressful events); and (3) support-accepting personal style (low neuroticism). Our large-scale cross-cultural survey of Japanese and US adults found significant associations between perceived support and health. The association was more strongly evident among Japanese (from a support-approving cultural context) who reported high life stress (in a support-requiring situation). Moreover, the link between support and health was especially pronounced if these Japanese were low in neuroticism. PMID:22419414

  17. Alexithymia and Somatosensory Amplification Link Perceived Psychosocial Stress and Somatic Symptoms in Outpatients with Psychosomatic Illness

    Directory of Open Access Journals (Sweden)

    Mutsuhiro Nakao

    2018-05-01

    Full Text Available Background: Psychosomatic patients often complain of a variety of somatic symptoms. We sought to clarify the role of clinical predictors of complaints of somatic symptoms. Methods: We enrolled 604 patients visiting a psychosomatic outpatient clinic. The outcome was the total number of somatic symptoms, and the candidate clinical predictors were perceived psychosocial stress, alexithymia, somatosensory amplification, adaptation, anxiety, and depression. All participants completed questionnaires assessing the outcome and the predictors. Results: The average number of reported somatic symptoms was 4.8; the most frequent was fatigue (75.3%, followed by insomnia (56.1%, low-back pain (49.5%, headache (44.7%, and palpitations (43.1%. Multiple regression analysis showed that the total number of somatic symptoms was significantly associated with the degree of perceived psychosocial stress, alexithymia, somatosensory amplification, and depression. Also, structural equation models indicated links between excessive adaptation (via perceived psychosocial stress, alexithymia, and somatosensory amplification and the total number of somatic symptoms. Conclusion: The results suggested that the association between psychosocial stress and reported somatic symptoms is mediated by alexithymia and somatosensory amplification in psychosomatic patients.

  18. Organometallic Gold(III) Complexes Similar to Tetrahydroisoquinoline Induce ER-Stress-Mediated Apoptosis and Pro-Death Autophagy in A549 Cancer Cells.

    Science.gov (United States)

    Huang, Ke-Bin; Wang, Feng-Yang; Tang, Xiao-Ming; Feng, Hai-Wen; Chen, Zhen-Feng; Liu, Yan-Cheng; Liu, You-Nian; Liang, Hong

    2018-04-26

    Agents inducing both apoptosis and autophagic death can be effective chemotherapeutic drugs. In our present work, we synthesized two organometallic gold(III) complexes harboring C^N ligands that structurally resemble tetrahydroisoquinoline (THIQ): Cyc-Au-1 (AuL 1 Cl 2 , L 1 = 3,4-dimethoxyphenethylamine) and Cyc-Au-2 (AuL 2 Cl 2 , L 2 = methylenedioxyphenethylamine). In screening their in vitro activity, we found both gold complexes exhibited lower toxicity, lower resistance factors, and better anticancer activity than those of cisplatin. The organometallic gold(III) complexes accumulate in mitochondria and induce elevated ROS and an ER stress response through mitochondrial dysfunction. These effects ultimately result in simultaneous apoptosis and autophagy. Importantly, compared to cisplatin, Cyc-Au-2 exhibits lower toxicity and better anticancer activity in a murine tumor model. To the best of our knowledge, Cyc-Au-2 is the first organometallic Au(III) compound that induces apoptosis and autophagic death. On the basis of our results, we believe Cyc-Au-2 to be a promising anticancer agent or lead compound for further anticancer drug development.

  19. Nicotine suppresses the neurotoxicity by MPP+/MPTP through activating α7nAChR/PI3K/Trx-1 and suppressing ER stress.

    Science.gov (United States)

    Cai, Yanxue; Zhang, Xianwen; Zhou, Xiaoshuang; Wu, Xiaoli; Li, Yanhui; Yao, Jianhua; Bai, Jie

    2017-03-01

    Parkinson's disease (PD) is a neurodegenerative disease. Nicotine has been reported to have the role in preventing Parkinson's disease. However, its mechanism is still unclear. In present study we found that nicotine suppressed 1-methyl-4-phenylpyridinium ion(MPP + ) toxicity in PC12 cells by MTT assay. The expression of thioredoxin-1(Trx-1) was decreased by MPP + , which was restored by nicotine. The nicotine suppressed expressions of Glucose-regulated protein 78(GRP78/Bip) and C/EBP homologous protein (CHOP) induced by MPP + . The methyllycaconitine (MLA), the inhibitor of α7nAChR and LY294002, the inhibitor of phosphatidylinositol 3-kinase (PI3K) blocked the suppressions of above molecules, respectively. Consistently, pretreatment with nicotine ameliorated the motor ability, restored the declines of Trx-1 and tyrosine hydroxylase (TH), and suppressed the expressions of Bip and CHOP induced by 1-Methy-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) in mice. Our results suggest that nicotine plays role in resisting MPP + /MPTP neurotoxicity through activating the α7nAChR/PI3K/Trx-1 pathway and suppressing ER stress. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Heme-dependent Metabolite Switching Regulates H2S Synthesis in Response to Endoplasmic Reticulum (ER) Stress.

    Science.gov (United States)

    Kabil, Omer; Yadav, Vinita; Banerjee, Ruma

    2016-08-05

    Substrate ambiguity and relaxed reaction specificity underlie the diversity of reactions catalyzed by the transsulfuration pathway enzymes, cystathionine β-synthase (CBS) and γ-cystathionase (CSE). These enzymes either commit sulfur metabolism to cysteine synthesis from homocysteine or utilize cysteine and/or homocysteine for synthesis of H2S, a signaling molecule. We demonstrate that a kinetically controlled heme-dependent metabolite switch in CBS regulates these competing reactions where by cystathionine, the product of CBS, inhibits H2S synthesis by the second enzyme, CSE. Under endoplasmic reticulum stress conditions, induction of CSE and up-regulation of the CBS inhibitor, CO, a product of heme oxygenase-1, flip the operating preference of CSE from cystathionine to cysteine, transiently stimulating H2S production. In contrast, genetic deficiency of CBS leads to chronic stimulation of H2S production. This metabolite switch from cystathionine to cysteine and/or homocysteine renders H2S synthesis by CSE responsive to the known modulators of CBS: S-adenosylmethionine, NO, and CO. Used acutely, it regulates H2S synthesis; used chronically, it might contribute to disease pathology. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  1. COPD and stroke: are systemic inflammation and oxidative stress the missing links?

    Science.gov (United States)

    Austin, Victoria; Crack, Peter J; Bozinovski, Steven; Miller, Alyson A; Vlahos, Ross

    2016-07-01

    Chronic obstructive pulmonary disease (COPD) is characterized by progressive airflow limitation and loss of lung function, and is currently the third largest cause of death in the world. It is now well established that cardiovascular-related comorbidities such as stroke contribute to morbidity and mortality in COPD. The mechanisms linking COPD and stroke remain to be fully defined but are likely to be interconnected. The association between COPD and stroke may be largely dependent on shared risk factors such as aging and smoking, or the association of COPD with traditional stroke risk factors. In addition, we propose that COPD-related systemic inflammation and oxidative stress may play important roles by promoting cerebral vascular dysfunction and platelet hyperactivity. In this review, we briefly discuss the pathogenesis of COPD, acute exacerbations of COPD (AECOPD) and cardiovascular comorbidities associated with COPD, in particular stroke. We also highlight and discuss the potential mechanisms underpinning the link between COPD and stroke, with a particular focus on the roles of systemic inflammation and oxidative stress. © 2016 The Author(s).

  2. Signaling in a polluted world: oxidative stress as an overlooked mechanism linking contaminants to animal communication

    Directory of Open Access Journals (Sweden)

    Valeria Marasco

    2016-08-01

    Full Text Available The capacity to communicate effectively with other individuals plays a critical role in the daily life of an individual and can have important fitness consequences. Animals rely on a number of visual and non-visual signals, whose production brings costs to the individual. The theory of honest signaling states that these costs are higher for low than for high-quality individuals, which prevents cheating and makes signals, such as skin and plumage colouration, indicators of individual’s quality or condition. The condition-dependent nature of signals makes them ideally suited as indicators of environmental quality, implying that signal production might be affected by contaminants. In this mini-review article, we have made the point that oxidative stress (OS is one overlooked mechanism linking exposure to contaminants to signaling because (i many contaminants can influence the individual’s oxidative balance, and (ii generation of both visual and non-visual signals is sensitive to oxidative stress. To this end, we have provided the first comprehensive review on the way both non-organic (heavy metals, especially mercury and organic (persistent organic pollutants contaminants may influence either OS or sexual signaling. We have also paid special attention to emerging classes of pollutants like brominated flame-retardants and perfluoroalkoxy alkanes in order to stimulate research in this area. We have finally provided suggestions and warnings for future work on the links among OS, sexual signaling and contaminant exposure.

  3. Environmental conditions can modulate the links among oxidative stress, age, and longevity.

    Science.gov (United States)

    Marasco, Valeria; Stier, Antoine; Boner, Winnie; Griffiths, Kate; Heidinger, Britt; Monaghan, Pat

    2017-06-01

    Understanding the links between environmental conditions and longevity remains a major focus in biological research. We examined within-individual changes between early- and mid-adulthood in the circulating levels of four oxidative stress markers linked to ageing, using zebra finches (Taeniopygia guttata): a DNA damage product (8-hydroxy-2'-deoxyguanosine; 8-OHdG), protein carbonyls (PC), non-enzymatic antioxidant capacity (OXY), and superoxide dismutase activity (SOD). We further examined whether such within-individual changes differed among birds living under control (ad lib food) or more challenging environmental conditions (unpredictable food availability), having previously found that the latter increased corticosterone levels when food was absent but improved survival over a three year period. Our key findings were: (i) 8-OHdG and PC increased with age in both environments, with a higher increase in 8-OHdG in the challenging environment; (ii) SOD increased with age in the controls but not in the challenged birds, while the opposite was true for OXY; (iii) control birds with high levels of 8-OHdG died at a younger age, but this was not the case in challenged birds. Our data clearly show that while exposure to the potentially damaging effects of oxidative stress increases with age, environmental conditions can modulate the pace of this age-related change. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Hericium erinaceus mycelium and its isolated erinacine A protection from MPTP-induced neurotoxicity through the ER stress, triggering an apoptosis cascade.

    Science.gov (United States)

    Kuo, Hsing-Chun; Lu, Chien-Chang; Shen, Chien-Heng; Tung, Shui-Yi; Hsieh, Meng Chiao; Lee, Ko-Chao; Lee, Li-Ya; Chen, Chin-Chu; Teng, Chih-Chuan; Huang, Wen-Shih; Chen, Te-Chuan; Lee, Kam-Fai

    2016-03-18

    Hericium erinaceus is an edible mushroom; its various pharmacological effects which have been investigated. This study aimed to demonstrate whether efficacy of oral administration of H. erinaceus mycelium (HEM) and its isolated diterpenoid derivative, erinacine A, can act as an anti-neuroinflammatory agent to bring about neuroprotection using an MPTP (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine) mouse model of Parkinson's disease, which results in motor disturbances, in addition to elucidating the mechanisms involved. Mice were treated with and without HEM or erinacine A, after MPTP injection for brain injuries by the degeneration of dopaminergic nigrostriatal neurons. The efficacy of oral administration of HEM improved MPTP-induced loss of tyrosine hydroxylase positive neurons and brain impairment in the substantia nigra pars compacta as measured by brain histological examination. Treatment with HEM reduced MPTP-induced dopaminergic cell loss, apoptotic cell death induced by oxidative stress, as well as the level of glutathione, nitrotyrosine and 4-hydroxy-2-nonenal (4-HNE). Furthermore, HEM reversed MPTP-associated motor deficits, as revealed by the analysis of rotarod assessment. Our results demonstrated that erinacine A decreases the impairment of MPP-induced neuronal cell cytotoxicity and apoptosis, which were accompanied by ER stress-sustained activation of the IRE1α/TRAF2, JNK1/2 and p38 MAPK pathways, the expression of C/EBP homologous protein (CHOP), IKB-β and NF-κB, as well as Fas and Bax. These physiological and brain histological changes provide HEM neuron-protective insights into the progression of Parkinson's disease, and this protective effect seems to exist both in vivo and in vitro.

  5. The biological age linked to oxidative stress modifies breast cancer aggressiveness.

    Science.gov (United States)

    Sáez-Freire, María Del Mar; Blanco-Gómez, Adrián; Castillo-Lluva, Sonia; Gómez-Vecino, Aurora; Galvis-Jiménez, Julie Milena; Martín-Seisdedos, Carmen; Isidoro-García, María; Hontecillas-Prieto, Lourdes; García-Cenador, María Begoña; García-Criado, Francisco Javier; Patino-Alonso, María Carmen; Galindo-Villardón, Purificación; Mao, Jian-Hua; Prieto, Carlos; Castellanos-Martín, Andrés; Kaderali, Lars; Pérez-Losada, Jesús

    2018-03-14

    The incidence of breast cancer increases with age until menopause, and breast cancer is more aggressive in younger women. The existence of epidemiological links between breast cancer and aging indicates that both processes share some common mechanisms of development. Oxidative stress is associated with both cancer susceptibility and aging. Here we observed that ERBB2-positive breast cancer, which developed in genetically heterogeneous ERBB2-positive transgenic mice generated by a backcross, is more aggressive in chronologically younger than in older mice (differentiated by the median survival of the cohort that was 79 weeks), similar to what occurs in humans. In this cohort, we estimated the oxidative biological age using a mathematical model that integrated several subphenotypes directly or indirectly related to oxidative stress. The model selected the serum levels of HDL-cholesterol and magnesium and total AKT1 and glutathione concentrations in the liver. The grade of aging was calculated as the difference between the predicted biological age and the chronological age. This comparison permitted the identification of biologically younger and older mice compared with their chronological age. Interestingly, biologically older mice developed more aggressive breast cancer than the biologically younger mice. Genomic regions on chromosomes 2 and 15 linked to the grade of oxidative aging were identified. The levels of expression of Zbp1 located on chromosome 2, a gene related to necroptosis and inflammation, positively correlated with the grade of aging and tumour aggressiveness. Moreover, the pattern of gene expression of genes linked to the inflammation and the response to infection pathways was enriched in the livers of biologically old mice. This study shows part of the complex interactions between breast cancer and aging. Copyright © 2018 Elsevier Inc. All rights reserved.

  6. KRE5 Suppression Induces Cell Wall Stress and Alternative ER Stress Response Required for Maintaining Cell Wall Integrity in Candida glabrata

    Science.gov (United States)

    Sasaki, Masato; Ito, Fumie; Aoyama, Toshio; Sato-Okamoto, Michiyo; Takahashi-Nakaguchi, Azusa; Chibana, Hiroji; Shibata, Nobuyuki

    2016-01-01

    The maintenance of cell wall integrity in fungi is required for normal cell growth, division, hyphae formation, and antifungal tolerance. We observed that endoplasmic reticulum stress regulated cell wall integrity in Candida glabrata, which possesses uniquely evolved mechanisms for unfolded protein response mechanisms. Tetracycline-mediated suppression of KRE5, which encodes a predicted UDP-glucose:glycoprotein glucosyltransferase localized in the endoplasmic reticulum, significantly increased cell wall chitin content and decreased cell wall β-1,6-glucan content. KRE5 repression induced endoplasmic reticulum stress-related gene expression and MAP kinase pathway activation, including Slt2p and Hog1p phosphorylation, through the cell wall integrity signaling pathway. Moreover, the calcineurin pathway negatively regulated cell wall integrity, but not the reduction of β-1,6-glucan content. These results indicate that KRE5 is required for maintaining both endoplasmic reticulum homeostasis and cell wall integrity, and that the calcineurin pathway acts as a regulator of chitin-glucan balance in the cell wall and as an alternative mediator of endoplasmic reticulum stress in C. glabrata. PMID:27548283

  7. Linking salinity stress tolerance with tissue-specific Na+ sequestration in wheat roots

    Directory of Open Access Journals (Sweden)

    Honghong eWu

    2015-02-01

    Full Text Available Salinity stress tolerance is a physiologically complex trait that is conferred by the large array of interacting mechanisms. Among these, vacuolar Na+ sequestration has always been considered as one of the key components differentiating between sensitive and tolerant species and genotypes. However, vacuolar Na+ sequestration has been rarely considered in the context of the tissue-specific expression and regulation of appropriate transporters contributing to Na+ removal from the cytosol. In this work, six bread wheat varieties contrasting in their salinity tolerance (three tolerant and three sensitive were used to understand the essentiality of vacuolar Na+ sequestration between functionally different root tissues, and link it with the overall salinity stress tolerance in this species. Roots of 4-d old wheat seedlings were treated with 100 mM NaCl for 3 days, and then Na+ distribution between cytosol and vacuole was quantified by CoroNa Green fluorescent dye imaging. Our major observations were as follows: 1 salinity stress tolerance correlated positively with vacuolar Na+ sequestration ability in the mature root zone but not in the root apex; 2 Contrary to expectations, cytosolic Na+ levels in root meristem were significantly higher in salt tolerant than sensitive group, while vacuolar Na+ levels showed an opposite trend. These results are interpreted as meristem cells playing a role of the salt sensor; 3 No significant difference in the vacuolar Na+ sequestration ability was found between sensitive and tolerant group in either transition or elongation zones; 4 The overall Na+ accumulation was highest in the elongation zone, suggesting its role in osmotic adjustment and turgor maintenance required to drive root expansion growth. Overall, the reported results suggest high tissue-specificity of Na+ uptake, signalling, and sequestration in wheat root. The implications of these findings for plant breeding for salinity stress tolerance are discussed.

  8. Linking Alzheimer's disease to insulin resistance: the FoxO response to oxidative stress.

    Science.gov (United States)

    Manolopoulos, K N; Klotz, L-O; Korsten, P; Bornstein, S R; Barthel, A

    2010-11-01

    Oxidative stress is an important determinant not only in the pathogenesis of Alzheimer's disease (AD), but also in insulin resistance (InsRes) and diabetic complications. Forkhead box class O (FoxO) transcription factors are involved in both insulin action and the cellular response to oxidative stress, thereby providing a potential integrative link between AD and InsRes. For example, the expression of intra- and extracellular antioxidant enzymes, such as manganese-superoxide dismutase and selenoprotein P, is regulated by FoxO proteins, as is the expression of important hepatic enzymes of gluconeogenesis. Here, we review the molecular mechanisms involved in the pathogenesis of AD and InsRes and discuss the function of FoxO proteins in these processes. Both InsRes and oxidative stress may promote the transcriptional activity of FoxO proteins, resulting in hyperglycaemia and a further increased production of reactive oxygen species (ROS). The consecutive activation of c-Jun N-terminal kinases and inhibition of Wingless (Wnt) signalling may result in the formation of β-amyloid plaques and τ protein phosphorylation. Wnt inhibition may also result in a sustained activation of FoxO proteins with induction of apoptosis and neuronal loss, thereby completing a vicious circle from oxidative stress, InsRes and hyperglycaemia back to the formation of ROS and consecutive neurodegeneration. In view of their central function in this model, FoxO proteins may provide a potential molecular target for the treatment of both InsRes and AD.

  9. MiR-17-5p Impairs Trafficking of H-ERG K+ Channel Protein by Targeting Multiple ER Stress-Related Chaperones during Chronic Oxidative Stress

    OpenAIRE

    Wang, Qi; Hu, Weina; Lei, Mingming; Wang, Yong; Yan, Bing; Liu, Jun; Zhang, Ren; Jin, Yuanzhe

    2013-01-01

    BACKGROUND: To investigate if microRNAs (miRNAs) play a role in regulating h-ERG trafficking in the setting of chronic oxidative stress as a common deleterious factor for many cardiac disorders. METHODS: We treated neonatal rat ventricular myocytes and HEK293 cells with stable expression of h-ERG with H2O2 for 12 h and 48 h. Expression of miR-17-5p seed miRNAs was quantified by real-time RT-PCR. Protein levels of chaperones and h-ERG trafficking were measured by Western blot analysis. Lucifer...

  10. Small molecule proteostasis regulators that reprogram the ER to reduce extracellular protein aggregation

    Science.gov (United States)

    Plate, Lars; Cooley, Christina B; Chen, John J; Paxman, Ryan J; Gallagher, Ciara M; Madoux, Franck; Genereux, Joseph C; Dobbs, Wesley; Garza, Dan; Spicer, Timothy P; Scampavia, Louis; Brown, Steven J; Rosen, Hugh; Powers, Evan T; Walter, Peter; Hodder, Peter; Wiseman, R Luke; Kelly, Jeffery W

    2016-01-01

    Imbalances in endoplasmic reticulum (ER) proteostasis are associated with etiologically-diverse degenerative diseases linked to excessive extracellular protein misfolding and aggregation. Reprogramming of the ER proteostasis environment through genetic activation of the Unfolded Protein Response (UPR)-associated transcription factor ATF6 attenuates secretion and extracellular aggregation of amyloidogenic proteins. Here, we employed a screening approach that included complementary arm-specific UPR reporters and medium-throughput transcriptional profiling to identify non-toxic small molecules that phenocopy the ATF6-mediated reprogramming of the ER proteostasis environment. The ER reprogramming afforded by our molecules requires activation of endogenous ATF6 and occurs independent of global ER stress. Furthermore, our molecules phenocopy the ability of genetic ATF6 activation to selectively reduce secretion and extracellular aggregation of amyloidogenic proteins. These results show that small molecule-dependent ER reprogramming, achieved through preferential activation of the ATF6 transcriptional program, is a promising strategy to ameliorate imbalances in ER function associated with degenerative protein aggregation diseases. DOI: http://dx.doi.org/10.7554/eLife.15550.001 PMID:27435961

  11. Deubiquitinase inhibitor b-AP15 activates endoplasmic reticulum (ER) stress and inhibits Wnt/Notch1 signaling pathway leading to the reduction of cell survival in hepatocellular carcinoma cells.

    Science.gov (United States)

    Ding, Youming; Chen, Xiaoyan; Wang, Bin; Yu, Bin; Ge, Jianhui

    2018-04-15

    b-AP15, a potent and selective inhibitor of the ubiquitin-specific peptidase 14 (USP14), displays in vitro and in vivo antitumor abilities on some types of cancer cells. However, the mechanism underlying its action is not well elucidated. The purposes of the present study are to observe the potential impacts of b-AP15 on cell survival of hepatocellular carcinoma cells and to investigate whether and how this compound inhibits some survival-promoting signaling pathways. We found that b-AP15 significantly decreased cell viability and increased cell apoptosis in a dose-dependent manner in hepatocellular carcinoma cells, along with the perturbation of cell cycle and the decreased expressions of cell cycle-related proteins. We also demonstrated that the endoplasmic reticulum (ER) stress and the unfolded protein response (UPR) were enhanced by b-AP15 supplementation. The inhibition of ER stress/UPR only partly attenuated the cytotoxicity of b-AP15 on hepatocellular carcinoma cells. In addition, b-AP15 treatment inhibited Wnt/β-catenin and Notch1 signaling pathways, and suppressed phosphorylation of STAT3, Akt, and Erk1/2, which were not restored by the inhibition of ER stress/UPR. Furthermore, the expression levels of signaling molecules in Notch1 were reduced by specific inhibitor of Wnt/β-catenin pathway. Notably, either Wnt or Notch1 signaling inhibitor mitigated phosphorylation of STAT3, Akt, and Erk1/2, and mimicked the cytotoxicity of b-AP15 on hepatocellular carcinoma cells. These results clearly indicate that b-AP15 induced cytotoxic response to hepatocellular carcinoma cells by augmenting ER stress/UPR and inhibiting Wnt/Notch1 signaling pathways. This new finding provides a novel mechanism by which b-AP15 produces its antitumor therapeutic effects. Copyright © 2018 Elsevier B.V. All rights reserved.

  12. Social Support and Relationship Satisfaction as Moderators of the Stress-Mood-Alcohol Link Association in US Navy Members.

    Science.gov (United States)

    Kelley, Michelle L; Milletich, Robert J; Hollis, Brittany F; Veprinsky, Anna; Robbins, Allison T; Snell, Alicia K

    2017-02-01

    The present study examined associations between stress and problematic alcohol use among US Navy members anticipating deployment, whether depressive symptoms mediated the stress-alcohol link, and whether social support and relationship satisfaction moderated associations between stress, depressive symptoms, and problematic alcohol use. Participants were 108 US Navy members assigned to an Arleigh Burke-class destroyer anticipating an 8-month deployment after Operational Enduring Freedom/Operation Iraqi Freedom. Stress was indirectly related to problematic alcohol use such that higher levels of stress were associated with higher levels of depressive symptoms, which were further associated with higher levels of alcohol use. The indirect effect of stress to problematic alcohol use via depressive symptoms was tested at different levels of social support and relationship satisfaction. At higher levels of social support and relationship satisfaction, the association between stress and problematic alcohol use via depressive symptoms decreased. Results help identify targets for alcohol prevention efforts among current military members.

  13. Emotional suppression explains the link between early life stress and plasma oxytocin.

    Science.gov (United States)

    Mohiyeddini, Changiz; Opacka-Juffry, Jolanta; Gross, James J

    2014-01-01

    Early life stress (ELS) has been found to be associated with lower concentrations of plasma oxytocin (OT) in adulthood. It is not yet clear, however, what mechanisms underlie this association. The goal of the present study was to test the role of emotional suppression as an intervening variable between ELS in childhood and plasma OT. In a nonclinical sample of 90 men, ELS, emotional suppression, and plasma OT were assessed. Emotional suppression was positively associated with ELS (r = 0.37, p emotion regulation strategy - was not correlated with ELS or plasma OT concentrations. Cross-sectional regression analyses revealed that the ELS explained variance in plasma OT via emotional suppression. Moderation analyses revealed that the combination of high ELS and high emotional suppression was associated with the lowest concentrations of plasma oxytocin. These findings are consistent with the view that emotional suppression may be one pathway linking ELS and OT.

  14. CTRP7 deletion attenuates obesity-linked glucose intolerance, adipose tissue inflammation, and hepatic stress.

    Science.gov (United States)

    Petersen, Pia S; Lei, Xia; Wolf, Risa M; Rodriguez, Susana; Tan, Stefanie Y; Little, Hannah C; Schweitzer, Michael A; Magnuson, Thomas H; Steele, Kimberley E; Wong, G William

    2017-04-01

    Chronic low-grade inflammation and cellular stress are important contributors to obesity-linked metabolic dysfunction. Here, we uncover an immune-metabolic role for C1q/TNF-related protein 7 (CTRP7), a secretory protein of the C1q family with previously unknown function. In obese humans, circulating CTRP7 levels were markedly elevated and positively correlated with body mass index, glucose, insulin, insulin resistance index, hemoglobin A1c, and triglyceride levels. Expression of CTRP7 in liver was also significantly upregulated in obese humans and positively correlated with gluconeogenic genes. In mice, Ctrp7 expression was differentially modulated in various tissues by fasting and refeeding and by diet-induced obesity. A genetic loss-of-function mouse model was used to determine the requirement of CTRP7 for metabolic homeostasis. When fed a control low-fat diet, male or female mice lacking CTRP7 were indistinguishable from wild-type littermates. In obese male mice consuming a high-fat diet, however, CTRP7 deficiency attenuated insulin resistance and enhanced glucose tolerance, effects that were independent of body weight, metabolic rate, and physical activity level. Improved glucose metabolism in CTRP7-deficient mice was associated with reduced adipose tissue inflammation, as well as decreased liver fibrosis and cellular oxidative and endoplasmic reticulum stress. These results provide a link between elevated CTRP7 levels and impaired glucose metabolism, frequently associated with obesity. Inhibiting CTRP7 action may confer beneficial metabolic outcomes in the setting of obesity and diabetes. Copyright © 2017 the American Physiological Society.

  15. Trans10,cis12 conjugated linoleic acid inhibits proliferation and migration of ovarian cancer cells by inducing ER stress, autophagy, and modulation of Src.

    Directory of Open Access Journals (Sweden)

    Mian M K Shahzad

    Full Text Available The goal of this study was to investigate the anti-cancer effects of Trans10,cis12 conjugated linoleic acid (t10,c12 CLA. MTT assays and QCM™ chemotaxis 96-wells were used to test the effect of t10,c12 CLA on the proliferation and migration and invasion of cancer cells. qPCR and Western Blotting were used to determine the expression of specific factors. RNA sequencing was conducted using the Illumina platform and apoptosis was measured using a flow cytometry assay. t10,c12 CLA (IC50, 7 μM inhibited proliferation of ovarian cancer cell lines SKOV-3 and A2780. c9,t11 CLA did not attenuate the proliferation of these cells. Transcription of 165 genes was significantly repressed and 28 genes were elevated. Genes related to ER stress, ATF4, CHOP, and GADD34 were overexpressed whereas EDEM2 and Hsp90, genes required for proteasomal degradation of misfolded proteins, were downregulated upon treatment. While apoptosis was not detected, t10,c12 CLA treatment led to 9-fold increase in autophagolysosomes and higher levels of LC3-II. G1 cell cycle arrest in treated cells was correlated with phosphorylation of GSK3β and loss of β-catenin. microRNA miR184 and miR215 were upregulated. miR184 likely contributed to G1 arrest by downregulating E2F1. miR215 upregulation was correlated with increased expression of p27/Kip-1. t10,c12 CLA-mediated inhibition of invasion and migration correlated with decreased expression of PTP1b and decreased Src activation by inhibiting phosphorylation at Tyr416. Due to its ability to inhibit proliferation and migration, t10,c12 CLA should be considered for treatment of ovarian cancer.

  16. Vapb/Amyotrophic lateral sclerosis 8 knock-in mice display slowly progressive motor behavior defects accompanying ER stress and autophagic response.

    Science.gov (United States)

    Larroquette, Frédérique; Seto, Lesley; Gaub, Perrine L; Kamal, Brishna; Wallis, Deeann; Larivière, Roxanne; Vallée, Joanne; Robitaille, Richard; Tsuda, Hiroshi

    2015-11-15

    Missense mutations (P56S) in Vapb are associated with autosomal dominant motor neuron diseases: amyotrophic lateral sclerosis and lower motor neuron disease. Although transgenic mice overexpressing the mutant vesicle-associated membrane protein-associated protein B (VAPB) protein with neuron-specific promoters have provided some insight into the toxic properties of the mutant proteins, their role in pathogenesis remains unclear. To identify pathological defects in animals expressing the P56S mutant VAPB protein at physiological levels in the appropriate tissues, we have generated Vapb knock-in mice replacing wild-type Vapb gene with P56S mutant Vapb gene and analyzed the resulting pathological phenotypes. Heterozygous P56S Vapb knock-in mice show mild age-dependent defects in motor behaviors as characteristic features of the disease. The homozygous P56S Vapb knock-in mice show more severe defects compared with heterozygous mice reflecting the dominant and dose-dependent effects of P56S mutation. Significantly, the knock-in mice demonstrate accumulation of P56S VAPB protein and ubiquitinated proteins in cytoplasmic inclusions, selectively in motor neurons. The mutant mice demonstrate induction of ER stress and autophagic response in motor neurons before obvious onset of behavioral defects, suggesting that these cellular biological defects might contribute to the initiation of the disease. The P56S Vapb knock-in mice could be a valuable tool to gain a better understanding of the mechanisms by which the disease arises. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  17. Trans10,cis12 conjugated linoleic acid inhibits proliferation and migration of ovarian cancer cells by inducing ER stress, autophagy, and modulation of Src.

    Science.gov (United States)

    Shahzad, Mian M K; Felder, Mildred; Ludwig, Kai; Van Galder, Hannah R; Anderson, Matthew L; Kim, Jong; Cook, Mark E; Kapur, Arvinder K; Patankar, Manish S

    2018-01-01

    The goal of this study was to investigate the anti-cancer effects of Trans10,cis12 conjugated linoleic acid (t10,c12 CLA). MTT assays and QCM™ chemotaxis 96-wells were used to test the effect of t10,c12 CLA on the proliferation and migration and invasion of cancer cells. qPCR and Western Blotting were used to determine the expression of specific factors. RNA sequencing was conducted using the Illumina platform and apoptosis was measured using a flow cytometry assay. t10,c12 CLA (IC50, 7 μM) inhibited proliferation of ovarian cancer cell lines SKOV-3 and A2780. c9,t11 CLA did not attenuate the proliferation of these cells. Transcription of 165 genes was significantly repressed and 28 genes were elevated. Genes related to ER stress, ATF4, CHOP, and GADD34 were overexpressed whereas EDEM2 and Hsp90, genes required for proteasomal degradation of misfolded proteins, were downregulated upon treatment. While apoptosis was not detected, t10,c12 CLA treatment led to 9-fold increase in autophagolysosomes and higher levels of LC3-II. G1 cell cycle arrest in treated cells was correlated with phosphorylation of GSK3β and loss of β-catenin. microRNA miR184 and miR215 were upregulated. miR184 likely contributed to G1 arrest by downregulating E2F1. miR215 upregulation was correlated with increased expression of p27/Kip-1. t10,c12 CLA-mediated inhibition of invasion and migration correlated with decreased expression of PTP1b and decreased Src activation by inhibiting phosphorylation at Tyr416. Due to its ability to inhibit proliferation and migration, t10,c12 CLA should be considered for treatment of ovarian cancer.

  18. The Missing Link between Juvenile Delinquency and Pediatric Posttraumatic Stress Disorder: An Attachment Theory Lens.

    Science.gov (United States)

    Amatya, Pooja L; Barzman, Drew H

    2012-01-01

    The present paper reviews pediatric posttraumatic stress disorder, emphasizing the relational basis of the disorder and highlighting the missing link between juvenile delinquency and trauma. The first part of the paper defines trauma and the diagnostic criteria for PTSD, noting child-specific features. The second part reviews the literature emphasizing the relational and attachment relevant nature of trauma. The third part explores psychological mechanisms for how attachment relations could affect trauma responses. Attachment relations (1) shape core schemas of the world, others, and the self and (2) foster emotional engagement or disengagement, both of which have been associated with traumatic responses. The most empirically supported pediatric trauma treatment, trauma-focused cognitive behavioral therapy (TF-CBT), acknowledges the attachment figure's influence and includes treating and training the parent and conjoint child-parent discussion. The next section reviews the noteworthy link between juvenile delinquency and trauma history. More awareness of trauma and PTSD in children and adolescents is recommended to effectively address juvenile delinquency. The review ends with a few helpful points for practicing pediatricians regarding childhood trauma.

  19. Exoproteome analysis reveals higher abundance of proteins linked to alkaline stress in persistent Listeria monocytogenes strains.

    Science.gov (United States)

    Rychli, Kathrin; Grunert, Tom; Ciolacu, Luminita; Zaiser, Andreas; Razzazi-Fazeli, Ebrahim; Schmitz-Esser, Stephan; Ehling-Schulz, Monika; Wagner, Martin

    2016-02-02

    The foodborne pathogen Listeria monocytogenes, responsible for listeriosis a rare but severe infection disease, can survive in the food processing environment for month or even years. So-called persistent L. monocytogenes strains greatly increase the risk of (re)contamination of food products, and are therefore a great challenge for food safety. However, our understanding of the mechanism underlying persistence is still fragmented. In this study we compared the exoproteome of three persistent strains with the reference strain EGDe under mild stress conditions using 2D differential gel electrophoresis. Principal component analysis including all differentially abundant protein spots showed that the exoproteome of strain EGDe (sequence type (ST) 35) is distinct from that of the persistent strain R479a (ST8) and the two closely related ST121 strains 4423 and 6179. Phylogenetic analyses based on multilocus ST genes showed similar grouping of the strains. Comparing the exoproteome of strain EGDe and the three persistent strains resulted in identification of 22 differentially expressed protein spots corresponding to 16 proteins. Six proteins were significantly increased in the persistent L. monocytogenes exoproteomes, among them proteins involved in alkaline stress response (e.g. the membrane anchored lipoprotein Lmo2637 and the NADPH dehydrogenase NamA). In parallel the persistent strains showed increased survival under alkaline stress, which is often provided during cleaning and disinfection in the food processing environments. In addition, gene expression of the proteins linked to stress response (Lmo2637, NamA, Fhs and QoxA) was higher in the persistent strain not only at 37 °C but also at 10 °C. Invasion efficiency of EGDe was higher in intestinal epithelial Caco2 and macrophage-like THP1 cells compared to the persistent strains. Concurrently we found higher expression of proteins involved in virulence in EGDe e.g. the actin-assembly-inducing protein ActA and the

  20. Day-to-Day Inconsistency in Parent Knowledge: Links with Youth Health and Parents’ Stress

    Science.gov (United States)

    Lippold, Melissa A.; McHale, Susan M.; Davis, Kelly D.; Kossek, Ellen Ernst

    2015-01-01

    Purpose Considerable evidence documents the linkages between higher levels of parental knowledge about youth activities and positive youth outcomes. This study investigated how day-to-day inconsistency in parental knowledge of youth activities was linked to youth behavioral, psychological, and physical health as well as parents’ stress. Methods Participants were employees in the Information Technology division of a Fortune 500 company and their children (N =129, Mean age youth = 13.39 years, 55% female). Data were collected from parents and youth via separate workplace and in-home surveys as well as telephone diary surveys on 8 consecutive evenings. We assessed day-to-day inconsistency in parental knowledge across these eight calls. Results Parents differed in their knowledge from day to day almost as much as their average knowledge scores differed from those of other parents. Controlling for mean levels of knowledge, youth whose parents exhibited more knowledge inconsistency reported more physical health symptoms (e.g., colds, flu). Knowledge inconsistency was also associated with more risky behavior for girls but greater psychological well-being for older adolescents. Parents who reported more stressors also had higher knowledge inconsistency. Conclusions Assessing only average levels of parental knowledge does not fully capture how this parenting dimension is associated with youth health. Consistent knowledge may promote youth physical health and less risky behavior for girls. Yet knowledge inconsistency also may reflect normative increases in autonomy as it was positively associated with psychological well-being for older adolescents. Given the linkages between parental stress and knowledge inconsistency, parent interventions should include stress-management components. PMID:25703318

  1. Day-to-day inconsistency in parent knowledge: links with youth health and parents' stress.

    Science.gov (United States)

    Lippold, Melissa A; McHale, Susan M; Davis, Kelly D; Kossek, Ellen Ernst

    2015-03-01

    Considerable evidence documents the linkages between higher levels of parental knowledge about youth activities and positive youth outcomes. This study investigated how day-to-day inconsistency in parental knowledge of youth activities was linked to youth behavioral, psychological, and physical health and parents' stress. Participants were employees in the Information Technology Division of a Fortune 500 company and their children (N = 129, mean age of youth = 13.39 years, 55% female). Data were collected from parents and youth via separate workplace and in-home surveys as well as telephone diary surveys on eight consecutive evenings. We assessed day-to-day inconsistency in parental knowledge across these eight calls. Parents differed in their knowledge from day to day almost as much as their average knowledge scores differed from those of other parents. Controlling for mean levels of knowledge, youth whose parents exhibited more knowledge inconsistency reported more physical health symptoms (e.g., colds and flu). Knowledge inconsistency was also associated with more risky behavior for girls but greater psychological well-being for older adolescents. Parents who reported more stressors also had higher knowledge inconsistency. Assessing only average levels of parental knowledge does not fully capture how this parenting dimension is associated with youth health. Consistent knowledge may promote youth physical health and less risky behavior for girls. Yet knowledge inconsistency also may reflect normative increases in autonomy as it was positively associated with psychological well-being for older adolescents. Given the linkages between parental stress and knowledge inconsistency, parent interventions should include stress management components. Copyright © 2015 Society for Adolescent Health and Medicine. Published by Elsevier Inc. All rights reserved.

  2. Gemcitabine treatment induces endoplasmic reticular (ER) stress and subsequently upregulates urokinase plasminogen activator (uPA) to block mitochondrial-dependent apoptosis in Panc-1 cancer stem-like cells (CSCs).

    Science.gov (United States)

    Wang, Li; Zhang, Yi; Wang, Weiguo; Zhu, Yunjie; Chen, Yang; Tian, Bole

    2017-01-01

    Pancreatic ductal adenocarcinoma (PDAC) is an aggressive cancer with poor survival rates. The presence of cancer stem-like cells (CSCs) is believed to be among the underlying reasons for the aggressiveness of PDAC, which contributes to chemoresistance and recurrence. However, the mechanisms that induce chemoresistance and inhibit apoptosis remain largely unknown. We used serum-free medium to enrich CSCs from panc-1 human pancreatic cancer cells and performed sphere formation testing, flow cytometry, quantitative reverse transcription polymerase chain reaction (RT-qPCR) and semi-quantitative western blotting to confirm the stemness of panc-1 CSCs. Hallmarks of endoplasmic reticulum (ER) stress, including IRE1, PERK, ATF4, ATF6α, GRP78 and uPA expression, were detected after gemcitabine treatment. Effects of gemcitabine-induced uPA expression on cell invasion, sphere formation, colony formation and gemcitabine sensitivity were detected. Electrophoretic mobility shift assays (EMSAs) and RNA-immunoprecipitation (RIP) were performed to detect interaction between the uPA mRNA 3'-UTR and mutant p53-R273H expressed by panc-1 CSCs. The effects of upregulated uPA by gemcitabine on apoptosis were detected by Annexin V-FITC/PI staining, and the impact of uPA on small molecule CP-31398-restored mutant p53 transcriptional activity was measured by a luciferase reporter assay. Enriched panc-1 CSCs expressing high levels of CD44 and CD133 also produced significantly higher amounts of Oct4 and Nanog. Compared with panc-1 cells, panc-1 CSCs presented chemoresistance to gemcitabine. ER stress gene detections demonstrated effects of gemcitabine-induced ER stress on both the pro-apoptotic and pro-survival branches. ER stress-induced ATF6α upregulated level of uPA by transcriptionally activating GRP78. Gemcitabine-induced uPA promoted invasion, sphere formation and colony formation and attenuated apoptosis induced by gemcitabine in panc-1 CSCs, depending on interaction with mutant p53

  3. The role of endoplasmic reticulum stress in hippocampal insulin resistance.

    Science.gov (United States)

    Sims-Robinson, Catrina; Bakeman, Anna; Glasser, Rebecca; Boggs, Janet; Pacut, Crystal; Feldman, Eva L

    2016-03-01

    Metabolic syndrome, which includes hypertension, hyperglycemia, obesity, insulin resistance, and dyslipidemia, has a negative impact on cognitive health. Endoplasmic reticulum (ER) stress is activated during metabolic syndrome, however it is not known which factor associated with metabolic syndrome contributes to this stress. ER stress has been reported to play a role in the development of insulin resistance in peripheral tissues. The role of ER stress in the development of insulin resistance in hippocampal neurons is not known. In the current study, we investigated ER stress in the hippocampus of 3 different mouse models of metabolic syndrome: the C57BL6 mouse on a high fat (HF) diet; apolipoprotein E, leptin, and apolipoprotein B-48 deficient (ApoE 3KO) mice; and the low density lipoprotein receptor, leptin, and apolipoprotein B-48 deficient (LDLR 3KO) mice. We demonstrate that ER stress is activated in the hippocampus of HF mice, and for the first time, in ApoE 3KO mice, but not LDLR 3KO mice. The HF and ApoE 3KO mice are hyperglycemic; however, the LDLR 3KO mice have normal glycemia. This suggests that hyperglycemia may play a role in the activation of ER stress in the hippocampus. Similarly, we also demonstrate that impaired insulin signaling is only present in the HF and ApoE 3KO mice, which suggests that ER stress may play a role in insulin resistance in the hippocampus. To confirm this we pharmacologically induced ER stress with thapsigargin in human hippocampal neurons. We demonstrate for the first time that thapsigargin leads to ER stress and impaired insulin signaling in human hippocampal neurons. Our results may provide a potential mechanism that links metabolic syndrome and cognitive health. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. Middle Childhood Support-Seeking Behavior during Stress: Links with Self-Reported Attachment and Future Depressive Symptoms

    Science.gov (United States)

    Dujardin, Adinda; Santens, Tara; Braet, Caroline; De Raedt, Rudi; Vos, Pieter; Maes, Bea; Bosmans, Guy

    2016-01-01

    This study tested whether children's more anxious and avoidant attachment is linked to decreased support-seeking behavior toward their mother during stress in middle childhood, and whether children's decreased support-seeking behavior enhances the impact of experiencing life events on the increase of depressive symptoms 18 months later.…

  5. Stress state during fixation determines susceptibility to fatigue-linked biodegradation in bioprosthetic heart valve materials.

    Science.gov (United States)

    Margueratt, Sean D; Lee, J Michael

    2002-01-01

    Mechanical loading contributes to the structural deterioration of bioprosthetic heart valves. The influence of stress state during fixation may play a substantial role in their failure, linking fatigue damage caused by buckling and tension and the enzymatic degradation of glutaraldehyde-crosslinked collagen. Bovine pericardia were obtained immediately postmortem and 100 mm x 15 mm samples were cut in the base-to-apex direction. Half the samples were subjected to a uniaxial tensile stress of 250 kPa and half remained unloaded during a crosslinking treatment in 0.5% glutaraldehyde. Tissue samples were rinsed and cut into 16 mm x 4 mm test strips. Half of these strips were exposed to cyclic compressive buckling and alternating tension at 30 Hz for 20 million cycles (approx. 7.5 days) using a custom-built multi-sample fatigue system. Fatigue-damaged and non-damaged samples were subsequently incubated at 37 C for 48 hrs in: (i) Type I bacterial collagenase (20 U/ml) buffered in 0.05 M Tris, 10 mM CaCl2 2H2O (pH 7.4) or (ii) 0.05 M Tris buffer (pH 7.4) only. In both cases, the samples were loaded sinusoidally between 40 and 80 g using a previously described microtensile culture system. Tissue removed from the bath was rinsed in 0.1 M EDTA solution and mounted in a servo-hydraulic mechanical testing system (MTS). Ultimate tensile strength (UTS), maximum tissue modulus, and fracture strain were determined. The percent collagen solubilized was assessed by a colourmetric hydroxyproline assay of the enzyme bath and tissue sample. All data were analyzed by analysis of variance (ANOVA). The results confirmed the synergy between fatigue damage and collagenase proteolysis in these materials; however, there were no significant differences in this effect between simple fixation and stress-fixation up to 20 million cycles. There were significant decreases in the mechanical properties and an increase in the amount of collagen solubilized with increased exposure to fatigue cycling.

  6. High CO2 Primes Plant Biotic Stress Defences through Redox-Linked Pathways.

    Science.gov (United States)

    Mhamdi, Amna; Noctor, Graham

    2016-10-01

    Industrial activities have caused tropospheric CO 2 concentrations to increase over the last two centuries, a trend that is predicted to continue for at least the next several decades. Here, we report that growth of plants in a CO 2 -enriched environment activates responses that are central to defense against pathogenic attack. Salicylic acid accumulation was triggered by high-growth CO 2 in Arabidopsis (Arabidopsis thaliana) and other plants such as bean (Phaseolus vulgaris). A detailed analysis in Arabidopsis revealed that elevated CO 2 primes multiple defense pathways, leading to increased resistance to bacterial and fungal challenge. Analysis of gene-specific mutants provided no evidence that activation of plant defense pathways by high CO 2 was caused by stomatal closure. Rather, the activation is partly linked to metabolic effects involving redox signaling. In support of this, genetic modification of redox components (glutathione contents and NADPH-generating enzymes) prevents full priming of the salicylic acid pathway and associated resistance by high CO 2 The data point to a particularly influential role for the nonphosphorylating glyceraldehyde-3-phosphate dehydrogenase, a cytosolic enzyme whose role in plants remains unclear. Our observations add new information on relationships between high CO 2 and oxidative signaling and provide novel insight into plant stress responses in conditions of increased CO 2 . © 2016 American Society of Plant Biologists. All Rights Reserved.

  7. Interleukin-6 Reduces β-Cell Oxidative Stress by Linking Autophagy With the Antioxidant Response.

    Science.gov (United States)

    Marasco, Michelle R; Conteh, Abass M; Reissaus, Christopher A; Cupit V, John E; Appleman, Evan M; Mirmira, Raghavendra G; Linnemann, Amelia K

    2018-05-21

    Production of reactive oxygen species (ROS) is a key instigator of β-cell dysfunction in diabetes. The pleiotropic cytokine IL-6 has previously been linked to β-cell autophagy but has not been studied in the context of β-cell antioxidant response. We used a combination of animal models of diabetes and analysis of cultured human islets and rodent β-cells to study how IL-6 influences antioxidant response. We show that IL-6 couples autophagy to antioxidant response to reduce β-cell and human islet ROS. β cell-specific loss of IL-6 signaling in vivo renders mice more susceptible to oxidative damage and cell death by the selective β-cell toxins streptozotocin and alloxan. IL-6-driven ROS reduction is associated with an increase in the master antioxidant factor NRF2, which rapidly translocates to the mitochondria to decrease mitochondrial activity and stimulate mitophagy. IL-6 also initiates a robust transient drop in cellular cAMP, likely contributing to the stimulation of mitophagy for ROS mitigation. Our findings suggest that coupling autophagy to antioxidant response in the β cell leads to stress adaptation that can reduce cellular apoptosis. These findings have implications for β-cell survival under diabetogenic conditions and present novel targets for therapeutic intervention. © 2018 by the American Diabetes Association.

  8. Protective role of integrin-linked kinase against oxidative stress and in maintenance of genomic integrity.

    Science.gov (United States)

    Im, Michelle; Dagnino, Lina

    2018-03-02

    The balance between the production of reactive oxygen species and activation of antioxidant pathways is essential to maintain a normal redox state in all tissues. Oxidative stress caused by excessive oxidant species generation can cause damage to DNA and other macromolecules, affecting cell function and viability. Here we show that integrin-linked kinase (ILK) plays a key role in eliciting a protective response to oxidative damage in epidermal cells. Inactivation of the Ilk gene causes elevated levels of intracellular oxidant species (IOS) and DNA damage in the absence of exogenous oxidative insults. In ILK-deficient cells, excessive IOS production can be prevented through inhibition of NADPH oxidase activity, with a concomitant reduction in DNA damage. Additionally, ILK is necessary for DNA repair processes following UVB-induced damage, as ILK-deficient cells show a significantly impaired ability to remove cyclobutane pyrimidine dimers following irradiation. Thus, ILK is essential to maintain cellular redox balance and, in its absence, epidermal cells become more susceptible to oxidative damage through mechanisms that involve IOS production by NADPH oxidase activity.

  9. High CO2 Primes Plant Biotic Stress Defences through Redox-Linked Pathways1[OPEN

    Science.gov (United States)

    2016-01-01

    Industrial activities have caused tropospheric CO2 concentrations to increase over the last two centuries, a trend that is predicted to continue for at least the next several decades. Here, we report that growth of plants in a CO2-enriched environment activates responses that are central to defense against pathogenic attack. Salicylic acid accumulation was triggered by high-growth CO2 in Arabidopsis (Arabidopsis thaliana) and other plants such as bean (Phaseolus vulgaris). A detailed analysis in Arabidopsis revealed that elevated CO2 primes multiple defense pathways, leading to increased resistance to bacterial and fungal challenge. Analysis of gene-specific mutants provided no evidence that activation of plant defense pathways by high CO2 was caused by stomatal closure. Rather, the activation is partly linked to metabolic effects involving redox signaling. In support of this, genetic modification of redox components (glutathione contents and NADPH-generating enzymes) prevents full priming of the salicylic acid pathway and associated resistance by high CO2. The data point to a particularly influential role for the nonphosphorylating glyceraldehyde-3-phosphate dehydrogenase, a cytosolic enzyme whose role in plants remains unclear. Our observations add new information on relationships between high CO2 and oxidative signaling and provide novel insight into plant stress responses in conditions of increased CO2. PMID:27578552

  10. Politik er ikke lykken

    DEFF Research Database (Denmark)

    Steenbuch, Johannes Aakjær

    2011-01-01

    Der er ikke længere nogen højere sandhed i livet end den, flertallet bestemmer sig for – og dermed ingen del af livet, der ikke er politisk. Højre- og venstrefløjen er i bund og grund enige - enige om, at det er politikernes opgave at forære os det gode liv. Dermed bliver demokratiet totalitært. ...

  11. Man er aldrig alene

    DEFF Research Database (Denmark)

    Hoffmeyer, Jesper

    2013-01-01

    Nu ved vi, at der er mange slags DNA i vores krop, og at samarbejdet mellem de organismer, som bærer alt dette DNA, er essentielt for vores overlevelse" … "Kroppen er en slags økosystem, hvor alle slags samarbejde hen ad vejen bliver afprøvet"...

  12. Identification of ER Proteins Involved in the Functional Organisation of the Early Secretory Pathway in Drosophila Cells by a Targeted RNAi Screen

    Science.gov (United States)

    Kondylis, Vangelis; Tang, Yang; Fuchs, Florian; Boutros, Michael; Rabouille, Catherine

    2011-01-01

    Background In Drosophila, the early secretory apparatus comprises discrete paired Golgi stacks in close proximity to exit sites from the endoplasmic reticulum (tER sites), thus forming tER-Golgi units. Although many components involved in secretion have been identified, the structural components sustaining its organisation are less known. Here we set out to identify novel ER resident proteins involved in the of tER-Golgi unit organisation. Results To do so, we designed a novel screening strategy combining a bioinformatics pre-selection with an RNAi screen. We first selected 156 proteins exhibiting known or related ER retention/retrieval signals from a list of proteins predicted to have a signal sequence. We then performed a microscopy-based primary and confirmation RNAi screen in Drosophila S2 cells directly scoring the organisation of the tER-Golgi units. We identified 49 hits, most of which leading to an increased number of smaller tER-Golgi units (MG for “more and smaller Golgi”) upon depletion. 16 of them were validated and characterised, showing that this phenotype was not due to an inhibition in secretion, a block in G2, or ER stress. Interestingly, the MG phenotype was often accompanied by an increase in the cell volume. Out of 6 proteins, 4 were localised to the ER. Conclusions This work has identified novel proteins involved in the organisation of the Drosophila early secretory pathway. It contributes to the effort of assigning protein functions to gene annotation in the secretory pathway, and analysis of the MG hits revealed an enrichment of ER proteins. These results suggest a link between ER localisation, aspects of cell metabolism and tER-Golgi structural organisation. PMID:21383842

  13. Stress contagion in the classroom? The link between classroom teacher burnout and morning cortisol in elementary school students.

    Science.gov (United States)

    Oberle, Eva; Schonert-Reichl, Kimberly A

    2016-06-01

    The purpose of this study was to explore the link between classroom teachers' burnout levels and students' physiological stress response. Drawing from a stress-contagion framework, we expected higher levels of teacher burnout to be related to elevated cortisol levels in elementary school students (N = 406, 50% female, Mean age = 11.26, SD = .89). Classroom teacher burnout was assessed with the Maslach Burnout Inventory modified for teachers. Salivary cortisol was collected as an indicator of students' hypothalamic-pituitary-adrenal (HPA) functioning. We collected salivary cortisol in children at 9 a.m., 11:30 a.m., and 2 p.m. in the classroom setting. Using Multilevel Modeling, we found that children's morning cortisol levels significantly varied between classrooms (10% variability). Higher levels of classroom teacher burnout significantly predicted the variability in morning cortisol. Teacher burnout reduced the unexplained variability in cortisol at the classroom level to 4.6%. This is the first study to show that teachers' occupational stress is linked to students' physiological stress regulation. We discuss the present findings in the context of potential stress contagion in the classroom, considering empirical and practical relevance. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Disrupted amygdala-prefrontal connectivity during emotion regulation links stress-reactive rumination and adolescent depressive symptoms

    Directory of Open Access Journals (Sweden)

    Carina H. Fowler

    2017-10-01

    Full Text Available Rumination in response to stress (stress-reactive rumination has been linked to higher levels of depressive symptoms in adolescents. However, no work to date has examined the neural mechanisms connecting stress-reactive rumination and adolescent depressive symptoms. The present work attempted to bridge this gap through an fMRI study of 41 adolescent girls (Mage = 15.42, SD = 0.33 – a population in whom elevated levels of depressive symptoms, rumination, and social stress sensitivity are displayed. During the scan, participants completed two tasks: an emotion regulation task and a social stress task. Using psychophysiological interaction (PPI analyses, we found that positive functional connectivity between the amygdala and ventrolateral prefrontal cortex (VLPFC during the emotion regulation task mediated the association between stress-reactive rumination and depressive symptoms. These results suggest that stress-reactive rumination may interfere with the expression and development of neural connectivity patterns associated with effective emotion regulation, which may contribute, in turn, to heightened depressive symptoms.

  15. Parameters for measurement of oxidative stress in diabetes mellitus: applicability of enzyme-linked immunosorbent assay for clinical evaluation.

    Science.gov (United States)

    Noiri, Eisei; Tsukahara, Hirokazu

    2005-05-01

    Investigations of the mechanisms involved in the onset and progression of diabetes have recently confronted the role of reactive oxygen species (ROS) and oxidative stress. Prolonged exposure to hyperglycemic conditions induces nonenzymatic glycation of protein via the so-called Maillard reaction, resulting in Schiff-base products and Amadori products that engender ROS production. These processes initiate and exacerbate micro- and macrovascular complications in diabetes. Increased oxidative stress is induced by excessive ROS production and inadequate antioxidant defenses. Recently, oxidative stress status markers have been associated directly with the severity and prognosis of diabetes. To examine oxidative stress, reliable and high-throughput methods are needed to examine large numbers of clinical samples. The emerging availability of enzyme-linked immunosorbent assay (ELISA) for oxidative stress status markers allows its application to assessment of various pathophysiologic conditions, including diabetes. This review outlines the recent achievements of ELISA application for clinical studies elucidating oxidative stress. It introduces the potential applicability of ELISA for investigating oxidative stress in diabetes.

  16. Impaired Hippocampal Neuroligin-2 Function by Chronic Stress or Synthetic Peptide Treatment is Linked to Social Deficits and Increased Aggression

    DEFF Research Database (Denmark)

    van der Kooij, Michael A; Fantin, Martina; Kraev, Igor

    2014-01-01

    and are related to similar abnormalities in animal models. Chronic stress increases the likelihood for affective disorders and has been shown to induce changes in neural structure and function in different brain regions, with the hippocampus being highly vulnerable to stress. Previous studies have shown evidence......Neuroligins (NLGNs) are cell adhesion molecules that are important for proper synaptic formation and functioning and are critical regulators of the balance between neural excitation/inhibition (E/I). Mutations in NLGNs have been linked to psychiatric disorders in humans involving social dysfunction...

  17. Linking stress with macroscopic and microscopic leaf response in trees: New diagnostic perspectives

    Energy Technology Data Exchange (ETDEWEB)

    Guenthardt-Goerg, Madeleine S. [Swiss Federal Institute for Forest, Snow and Landscape Research, WSL, Zuercherstrasse 111, CH-8903 Birmensdorf (Switzerland)]. E-mail: madeleine.goerg@wsl.ch; Vollenweider, Pierre [Swiss Federal Institute for Forest, Snow and Landscape Research, WSL, Zuercherstrasse 111, CH-8903 Birmensdorf (Switzerland)

    2007-06-15

    Visible symptoms in tree foliage can be used for stress diagnosis once validated with microscopical analyses. This paper reviews and illustrates macroscopical and microscopical markers of stress with a biotic (bacteria, fungi, insects) or abiotic (frost, drought, mineral deficiency, heavy metal pollution in the soil, acidic deposition and ozone) origin helpful for the validation of symptoms in broadleaved and conifer trees. Differentiation of changes in the leaf or needle physiology, through ageing, senescence, accelerated cell senescence, programmed cell death and oxidative stress, provides additional clues raising diagnosis efficiency, especially in combination with information about the target of the stress agent at the tree, leaf/needle, tissue, cell and ultrastructural level. Given the increasing stress in a changing environment, this review discusses how integrated diagnostic approaches lead to better causal analysis to be applied for specific monitoring of stress factors affecting forest ecosystems. - Macroscopic leaf symptoms and their microscopic analysis as stress bioindications.

  18. Linking stress with macroscopic and microscopic leaf response in trees: New diagnostic perspectives

    International Nuclear Information System (INIS)

    Guenthardt-Goerg, Madeleine S.; Vollenweider, Pierre

    2007-01-01

    Visible symptoms in tree foliage can be used for stress diagnosis once validated with microscopical analyses. This paper reviews and illustrates macroscopical and microscopical markers of stress with a biotic (bacteria, fungi, insects) or abiotic (frost, drought, mineral deficiency, heavy metal pollution in the soil, acidic deposition and ozone) origin helpful for the validation of symptoms in broadleaved and conifer trees. Differentiation of changes in the leaf or needle physiology, through ageing, senescence, accelerated cell senescence, programmed cell death and oxidative stress, provides additional clues raising diagnosis efficiency, especially in combination with information about the target of the stress agent at the tree, leaf/needle, tissue, cell and ultrastructural level. Given the increasing stress in a changing environment, this review discusses how integrated diagnostic approaches lead to better causal analysis to be applied for specific monitoring of stress factors affecting forest ecosystems. - Macroscopic leaf symptoms and their microscopic analysis as stress bioindications

  19. MicroRNAs meet calcium: joint venture in ER proteostasis.

    Science.gov (United States)

    Finger, Fabian; Hoppe, Thorsten

    2014-11-04

    The endoplasmic reticulum (ER) is a cellular compartment that has a key function in protein translation and folding. Maintaining its integrity is of fundamental importance for organism's physiology and viability. The dynamic regulation of intraluminal ER Ca(2+) concentration directly influences the activity of ER-resident chaperones and stress response pathways that balance protein load and folding capacity. We review the emerging evidence that microRNAs play important roles in adjusting these processes to frequently changing intracellular and environmental conditions to modify ER Ca(2+) handling and storage and maintain ER homeostasis. Copyright © 2014, American Association for the Advancement of Science.

  20. Specificity in mediated pathways by anxiety symptoms linking adolescent stress profiles to depressive symptoms: Results of a moderated mediation approach.

    Science.gov (United States)

    Anyan, Frederick; Bizumic, Boris; Hjemdal, Odin

    2018-03-01

    We investigated the specificity in mediated pathways that separately link specific stress dimensions through anxiety to depressive symptoms and the protective utility of resilience. Thus, this study goes beyond lumping together potential mediating and moderating processes that can explain the relations between stress and (symptoms of) psychopathology and the buffering effect of resilience. Ghanaian adolescents between 13 and 17 years (female = 285; male = 244) completed the Adolescent Stress Questionnaire (ASQ), Spielberger State Anxiety Inventory (STAI), Short Mood Feeling Questionnaire (SMFQ) and the Resilience Scale for Adolescents (READ). Independent samples t-test, multivariate analysis of covariance with follow-up tests and moderated mediation analyses were performed. Evidences were found for specificity in the associations between dimensions of adolescent stressors and depressive symptoms independent of transient anxiety. Transient anxiety partly accounted for the indirect effects of eight stress dimensions on depressive symptoms. Except stress of school attendance and school/leisure conflict, resilience moderated the indirect effects of specific stress dimensions on depressive symptoms. Results suggested differences in how Ghanaian adolescents view the various stress dimensions, and mediated pathways associated with anxiety and depressive symptoms. Use of cross-sectional data does not show causal process and temporal changes over time. Findings support and clarify the specificity in the interrelations and mediated pathways among dimensions of adolescent stress, transient anxiety, and depressive symptoms. Conditional process analyses shows that resilience does not only buffer direct, but also indirect psychological adversities. Interventions for good mental health may focus on low resilience subgroups in specific stress dimensions while minimizing transient anxiety. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Evaluation of behavioural and antioxidant activity of Cytisus scoparius Link in rats exposed to chronic unpredictable mild stress

    Directory of Open Access Journals (Sweden)

    Harisudhan Thanukrishnan

    2008-04-01

    Full Text Available Abstract Background Various human diseases have oxidative stress as one of their component. Many herbs have been reported to exhibit properties that combat oxidative stress through their active constituents such as flavonoids, tannins, phenolic compounds etc. Cytisus scoparius (CS Link, (Family: Leguminosae, also called Sarothamnus scoparius, has been shown in invitro experiments to be endowed with anti-diabetic, hypnotic and sedative and antioxidant activity. Therefore this study was carried out to evaluate CS for its anxiolytic, antidepressant and anti-oxidant activity in stressed rats. Methods 60% methanolic extract of CS was quantified for phenolic content by Folin-Ciocalteau's method. Chronic unpredictable mild stress (CMS was employed to induce stress in rats. CS (125 and 250 mg/kg, p.o and diazepam (DZM (2 mg/kg, p.o was administered during the 21 day stress exposure period. Anxiolytic and antidepressant activities of CS were assessed in open field exploratory and behavioural despair paradigms, respectively. Plasma glucose and total lipids; endogenous antioxidant enzymes such as superoxide dismutase (SOD, catalase (CAT; non-enzymic-ascorbic acid and thiobarbituric acid reactive substances (TBARS levels were measured in brain, kidneys and adrenals using standard protocols to assess the effect of CS. Results Total phenolic content of CS was found to be 8.54 ± 0.16% w/w. CMS produced anxiogenic and depressive behaviour in experimental rats with metabolic disturbance. Significant decrease in SOD, CAT levels and increase in lipid peroxidation level was observed in stressed rats. CS administration for 21 days during stress exposure significantly increased the ambulatory behaviour and decreased the freezing time in open field behaviour. In behavioural despair test no significant alteration in the immobility period was observed. CS also improved SOD, CAT, and ascorbic acid level and controlled the lipid peroxidation in different tissues

  2. Links between white matter microstructure and cortisol reactivity to stress in early childhood: Evidence for moderation by parenting

    Directory of Open Access Journals (Sweden)

    Haroon I. Sheikh

    2014-01-01

    Full Text Available Activity of the hypothalamic–pituitary–adrenal axis (measured via cortisol reactivity may be a biological marker of risk for depression and anxiety, possibly even early in development. However, the structural neural correlates of early cortisol reactivity are not well known, although these would potentially inform broader models of mechanisms of risk, especially if the early environment further shapes these relationships. Therefore, we examined links between white matter architecture and young girls' cortisol reactivity and whether early caregiving moderated these links. We recruited 45 6-year-old girls based on whether they had previously shown high or low cortisol reactivity to a stress task at age 3. White matter integrity was assessed by calculating fractional anisotropy (FA of diffusion-weighted magnetic resonance imaging scans. Parenting styles were measured via a standardized parent–child interaction task. Significant associations were found between FA in white matter regions adjacent to the left thalamus, the right anterior cingulate cortex, and the right superior frontal gyrus (all ps < .001. Further, positive early caregiving moderated the effect of high cortisol reactivity on white matter FA (all ps ≤ .05, with high stress reactive girls who received greater parent positive affect showing white matter structure more similar to that of low stress reactive girls. Results show associations between white matter integrity of various limbic regions of the brain and early cortisol reactivity to stress and provide preliminary support for the notion that parenting may moderate associations.

  3. Linking stress and immunity: Immunoglobulin A as a non-invasive physiological biomarker in animal welfare studies.

    Science.gov (United States)

    Staley, Molly; Conners, Melinda G; Hall, Katie; Miller, Lance J

    2018-04-26

    As the animal welfare community strives to empirically assess how care and management practices can help maintain or even enhance welfare, the development of tools for non-invasively measuring physiological biomarkers is essential. Of the suite of physiological biomarkers, Immunoglobulin A (IgA), particularly the secretory form (Secretory IgA or SIgA), is at the forefront because of its crucial role in mucosal immunity and links to physical health, stress, and overall psychological well-being. While interpretation of SIgA values on short time scales is complex, long-term SIgA patterns are consistent: conditions that create chronic stress lead to suppression of SIgA. In contrast, when welfare is enhanced, SIgA concentrations are predicted to stabilize at higher concentrations. In this review, we examine how SIgA concentrations are reflective of both physiological stress and immune function. We then review the literature associating SIgA concentrations with various metrics of animal welfare and provide detailed methodological considerations for SIgA monitoring. Overall, our aim is to provide an in-depth discussion regarding the value of SIgA as physiological biomarker to studies aiming to understand the links between stress and immunity. Copyright © 2017. Published by Elsevier Inc.

  4. Leptin and Leptin Resistance in the Pathogenesis of Obstructive Sleep Apnea: A Possible Link to Oxidative Stress and Cardiovascular Complications

    Directory of Open Access Journals (Sweden)

    Slava Berger

    2018-01-01

    Full Text Available Obesity-related sleep breathing disorders such as obstructive sleep apnea (OSA and obesity hypoventilation syndrome (OHS cause intermittent hypoxia (IH during sleep, a powerful trigger of oxidative stress. Obesity also leads to dramatic increases in circulating levels of leptin, a hormone produced in adipose tissue. Leptin acts in the hypothalamus to suppress food intake and increase metabolic rate. However, obese individuals are resistant to metabolic effects of leptin. Leptin also activates the sympathetic nervous system without any evidence of resistance, possibly because these effects occur peripherally without a need to penetrate the blood-brain barrier. IH is a potent stimulator of leptin expression and release from adipose tissue. Hyperleptinemia and leptin resistance may upregulate generation of reactive oxygen species, increasing oxidative stress and promoting inflammation. The current review summarizes recent data on a possible link between leptin and oxidative stress in the pathogenesis of sleep breathing disorders.

  5. Fluorescence lifetime imaging of microviscosity changes during ER autophagy in live cells

    Science.gov (United States)

    He, Ying; Samanta, Soham; Gong, Wanjun; Liu, Wufan; Pan, Wenhui; Yang, Zhigang; Qu, Junle

    2018-02-01

    Unfolded or misfolded protein accumulation inside Endoplasmic Reticulum (ER) will cause ER stress and subsequently will activate cellular autophagy to release ER stress, which would ultimately result in microviscosity changes. However, even though, it is highly significant to gain a quantitative assessment of microviscosity changes during ER autophagy to study ER stress and autophagy behaviors related diseases, it has rarely been reported yet. In this work, we have reported a BODIPY based fluorescent molecular rotor that can covalently bind with vicinal dithiols containing nascent proteins in ER and hence can result in ER stress through the inhibition of the folding of nascent proteins. The change in local viscosity, caused by the release of the stress in cells through autophagy, was quantified by the probe using fluorescence lifetime imaging. This work basically demonstrates the possibility of introducing synthetic chemical probe as a promising tool to diagnose ER-viscosity-related diseases.

  6. Autophagy-Related Direct Membrane Import from ER/Cytoplasm into the Vacuole or Apoplast: A Hidden Gateway also for Secondary Metabolites and Phytohormones?

    Directory of Open Access Journals (Sweden)

    Ivan Kulich

    2014-04-01

    Full Text Available Transportation of low molecular weight cargoes into the plant vacuole represents an essential plant cell function. Several lines of evidence indicate that autophagy-related direct endoplasmic reticulum (ER to vacuole (and also, apoplast transport plays here a more general role than expected. This route is regulated by autophagy proteins, including recently discovered involvement of the exocyst subcomplex. Traffic from ER into the vacuole bypassing Golgi apparatus (GA acts not only in stress-related cytoplasm recycling or detoxification, but also in developmentally-regulated biopolymer and secondary metabolite import into the vacuole (or apoplast, exemplified by storage proteins and anthocyanins. We propose that this pathway is relevant also for some phytohormones’ (e.g., auxin, abscisic acid (ABA and salicylic acid (SA degradation. We hypothesize that SA is not only an autophagy inducer, but also a cargo for autophagy-related ER to vacuole membrane container delivery and catabolism. ER membrane localized enzymes will potentially enhance the area of biosynthetic reactive surfaces, and also, abundant ER localized membrane importers (e.g., ABC transporters will internalize specific molecular species into the autophagosome biogenesis domain of ER. Such active ER domains may create tubular invaginations of tonoplast into the vacuoles as import intermediates. Packaging of cargos into the ER-derived autophagosome-like containers might be an important mechanism of vacuole and exosome biogenesis and cytoplasm protection against toxic metabolites. A new perspective on metabolic transformations intimately linked to membrane trafficking in plants is emerging.

  7. Role of symmetry-breaking induced by Er × B shear flows on developing residual stresses and intrinsic rotation in the TEXTOR tokamak

    International Nuclear Information System (INIS)

    Xu, Y.; Shesterikov, I.; Berte, M.; Dumortier, P.; Van Schoor, M.; Vergote, M.; Hidalgo, C.; Krämer-Flecken, A.; Koslowski, R.

    2013-01-01

    Direct measurements of residual stress (force) have been executed at the edge of the TEXTOR tokamak using multitip Langmuir and Mach probes, together with counter-current NBI torque to balance the existing toroidal rotation. Substantial residual stress and force have been observed at the plasma boundary, confirming the existence of a finite residual stress as possible mechanisms to drive the intrinsic toroidal rotation. In low-density discharges, the residual stress displays a quasi-linear dependence on the local pressure gradient, consistent with theoretical predictions. At high-density shots the residual stress and torque are strongly suppressed. The results show close correlation between the residual stress and the E r × B flow shear rate, suggesting a minimum threshold of the E × B flow shear required for the k ∥ symmetry breaking. These findings provide the first experimental evidence of the role of E r × B sheared flows in the development of residual stresses and intrinsic rotation. (letter)

  8. Characterization of the ER-Targeted Low Affinity Ca2+ Probe D4ER

    Directory of Open Access Journals (Sweden)

    Elisa Greotti

    2016-09-01

    Full Text Available Calcium ion (Ca2+ is a ubiquitous intracellular messenger and changes in its concentration impact on nearly every aspect of cell life. Endoplasmic reticulum (ER represents the major intracellular Ca2+ store and the free Ca2+ concentration ([Ca2+] within its lumen ([Ca2+]ER can reach levels higher than 1 mM. Several genetically-encoded ER-targeted Ca2+ sensors have been developed over the last years. However, most of them are non-ratiometric and, thus, their signal is difficult to calibrate in live cells and is affected by shifts in the focal plane and artifactual movements of the sample. On the other hand, existing ratiometric Ca2+ probes are plagued by different drawbacks, such as a double dissociation constant (Kd for Ca2+, low dynamic range, and an affinity for the cation that is too high for the levels of [Ca2+] in the ER lumen. Here, we report the characterization of a recently generated ER-targeted, Förster resonance energy transfer (FRET-based, Cameleon probe, named D4ER, characterized by suitable Ca2+ affinity and dynamic range for monitoring [Ca2+] variations within the ER. As an example, resting [Ca2+]ER have been evaluated in a known paradigm of altered ER Ca2+ homeostasis, i.e., in cells expressing a mutated form of the familial Alzheimer’s Disease-linked protein Presenilin 2 (PS2. The lower Ca2+ affinity of the D4ER probe, compared to that of the previously generated D1ER, allowed the detection of a conspicuous, more clear-cut, reduction in ER Ca2+ content in cells expressing mutated PS2, compared to controls.

  9. Down-regulation of 14-3-3β exerts anti-cancer effects through inducing ER stress in human glioma U87 cells: Involvement of CHOP–Wnt pathway

    Energy Technology Data Exchange (ETDEWEB)

    Cao, Lei; Lei, Hui; Chang, Ming-Ze; Liu, Zhi-Qin [Department of Neurological Disease, Xi' an Central Hospital, Xi' an Jiaotong University, Xi' an, Shaanxi 710000 (China); Bie, Xiao-Hua, E-mail: biexiaohua_xjtu@126.com [Department of Functional Neurosurgery, Xi' an Red Cross Hospital, Xi' an Jiaotong University, Xi' an, Shaanxi 710054 (China)

    2015-07-10

    We previously identified 14-3-3β as a tumor-specific isoform of 14-3-3 protein in astrocytoma, but its functional role in glioma cells and underlying mechanisms are poorly understood. In the present study, we investigated the effects of 14-3-3β inhibition in human glioma U87 cells using specific targeted small interfering RNA (siRNA). The results showed that 14-3-3β is highly expressed in U87 cells but not in normal astrocyte SVGp12 cells. Knockdown of 14-3-3β by Si-14-3-3β transfection significantly decreased the cell viability but increased the LDH release in a time-dependent fashion in U87 cells, and these effects were accompanied with G0/G1 cell cycle arrest and apoptosis. In addition, 14-3-3β knockdown induced ER stress in U87 cells, as evidenced by ER calcium release, increased expression of XBP1S mRNA and induction of ER related pro-apoptotic factors. Down-regulation of 14-3-3β significantly decreased the nuclear localization of β-catenin and inhibited Topflash activity, which was shown to be reversely correlated with CHOP. Furthermore, Si-CHOP and sFRP were used to inhibit CHOP and Wnt, respectively. The results showed that the anti-cancer effects of 14-3-3β knockdown in U87 cells were mediated by increased expression of CHOP and followed inhibition of Wnt/β-catenin pathway. In summary, the remarkable efficiency of 14-3-3β knockdown to induce apoptotic cell death in U87 cells may find therapeutic application for the treatment of glioma patients. - Highlights: • Knockdown of 14-3-3β leads to cytotoxicity in human glioma U87 cells. • Knockdown of 14-3-3β induces cell cycle arrest and apoptosis in U87 cells. • Knockdown of 14-3-3β results in ER stress in U87 cells. • Knockdown of 14-3-3β inhibits Wnt/β-catenin pathway via CHOP activation.

  10. Down-regulation of 14-3-3β exerts anti-cancer effects through inducing ER stress in human glioma U87 cells: Involvement of CHOP–Wnt pathway

    International Nuclear Information System (INIS)

    Cao, Lei; Lei, Hui; Chang, Ming-Ze; Liu, Zhi-Qin; Bie, Xiao-Hua

    2015-01-01

    We previously identified 14-3-3β as a tumor-specific isoform of 14-3-3 protein in astrocytoma, but its functional role in glioma cells and underlying mechanisms are poorly understood. In the present study, we investigated the effects of 14-3-3β inhibition in human glioma U87 cells using specific targeted small interfering RNA (siRNA). The results showed that 14-3-3β is highly expressed in U87 cells but not in normal astrocyte SVGp12 cells. Knockdown of 14-3-3β by Si-14-3-3β transfection significantly decreased the cell viability but increased the LDH release in a time-dependent fashion in U87 cells, and these effects were accompanied with G0/G1 cell cycle arrest and apoptosis. In addition, 14-3-3β knockdown induced ER stress in U87 cells, as evidenced by ER calcium release, increased expression of XBP1S mRNA and induction of ER related pro-apoptotic factors. Down-regulation of 14-3-3β significantly decreased the nuclear localization of β-catenin and inhibited Topflash activity, which was shown to be reversely correlated with CHOP. Furthermore, Si-CHOP and sFRP were used to inhibit CHOP and Wnt, respectively. The results showed that the anti-cancer effects of 14-3-3β knockdown in U87 cells were mediated by increased expression of CHOP and followed inhibition of Wnt/β-catenin pathway. In summary, the remarkable efficiency of 14-3-3β knockdown to induce apoptotic cell death in U87 cells may find therapeutic application for the treatment of glioma patients. - Highlights: • Knockdown of 14-3-3β leads to cytotoxicity in human glioma U87 cells. • Knockdown of 14-3-3β induces cell cycle arrest and apoptosis in U87 cells. • Knockdown of 14-3-3β results in ER stress in U87 cells. • Knockdown of 14-3-3β inhibits Wnt/β-catenin pathway via CHOP activation

  11. Vreden er over os

    DEFF Research Database (Denmark)

    Mehlsen, Camilla

    2006-01-01

    Urolige elever, cyklister - der giver fuck-finger, aggressive demonstranter. Samtiden er på vej ind i en æra domineret af vrede, siger rektor Lars-Henrik Schmidt, der er aktuel med bogen 'Om vreden'. Udgivelsesdato: Juni......Urolige elever, cyklister - der giver fuck-finger, aggressive demonstranter. Samtiden er på vej ind i en æra domineret af vrede, siger rektor Lars-Henrik Schmidt, der er aktuel med bogen 'Om vreden'. Udgivelsesdato: Juni...

  12. How does context affect intimate relationships? linking external stress and cognitive processes within marriage.

    Science.gov (United States)

    Neff, Lisa A; Karney, Benjamin R

    2004-02-01

    Stressors external to the marriage frequently affect the way spouses evaluate their marital quality. To date, however, understanding of the interplay between external stress and internal relationship processes has been limited in two ways. First, research has generally examined only the short-term consequences of stress. Second, the mechanisms through which external stressors influence relationship outcomes are unclear. This study addressed both limitations by examining relationship cognitions that may mediate the effects of external stress throughout 4 years of marriage. Analyses confirmed that stressful experiences were associated with the trajectory of marital quality overtime. Furthermore, both the content and the organization of spouses' specific relationship cognitions mediated this effect. That is, stress negatively influenced the nature of spouses' marital perceptions as well as the way spouses interpreted and processed those perceptions. These findings draw attention to ways that the context of relationships shapes and constrains relationship processes.

  13. Parenting Stress and Dimensions of Parenting Behavior : Cross-Sectional and Longitudinal Links with Adolescents' Somatization

    NARCIS (Netherlands)

    Rousseau, Sofie; Grietens, Hans; Vanderfaeillie, Johan; Hoppenbrouwers, Karel; Wiersema, Jan Roelf; Van Leeuwen, Karla

    2013-01-01

    Objective: This study explored direct and indirect associations between adolescents' somatization, parenting stress, and three parenting dimensions (warmth, psychological control, and harsh punishment). First, the associations were explored cross-sectionally. Second, significant cross-sectional

  14. Oxidative Stress and Antioxidant Defense Mechanisms Linked to Exercise During Cardiopulmonary and Metabolic Disorders

    Directory of Open Access Journals (Sweden)

    Kelsey Fisher-Wellman

    2009-01-01

    Full Text Available Oxidative stress has been implicated in the pathophysiology of multiple human diseases, in addition to the aging process. Although various stimuli exist, acute exercise is known to induce a transient increase in reactive oxygen and nitrogen species (RONS, evident by several reports of increased oxidative damage following acute bouts of aerobic and anaerobic exercise. Although the results are somewhat mixed and appear disease dependent, individuals with chronic disease experience an exacerbation in oxidative stress following acute exercise when compared to healthy individuals. However, this increased oxidant stress may serve as a necessary “signal” for the upregulation in antioxidant defenses, thereby providing protection against subsequent exposure to prooxidant environments within susceptible individuals. Here we present studies related to both acute exercise-induced oxidative stress in those with disease, in addition to studies focused on adaptations resulting from increased RONS exposure associated with chronic exercise training in persons with disease.

  15. Exploratory behavior is linked to stress physiology and social network centrality in free-living house finches (Haemorhous mexicanus).

    Science.gov (United States)

    Moyers, Sahnzi C; Adelman, James S; Farine, Damien R; Moore, Ignacio T; Hawley, Dana M

    2018-05-21

    Animal personality has been linked to individual variation in both stress physiology and social behaviors, but few studies have simultaneously examined covariation between personality traits, stress hormone levels, and behaviors in free-living animals. We investigated relationships between exploratory behavior (one aspect of animal personality), stress physiology, and social and foraging behaviors in wild house finches (Haemorhous mexicanus). We conducted novel environment assays after collecting samples of baseline and stress-induced plasma corticosterone concentrations from a subset of house finches. We then fitted individuals with Passive Integrated Transponder tags and monitored feeder use and social interactions at radio-frequency identification equipped bird feeders. First, we found that individuals with higher baseline corticosterone concentrations exhibit more exploratory behaviors in a novel environment. Second, more exploratory individuals interacted with more unique conspecifics in the wild, though this result was stronger for female than for male house finches. Third, individuals that were quick to begin exploring interacted more frequently with conspecifics than slow-exploring individuals. Finally, exploratory behaviors were unrelated to foraging behaviors, including the amount of time spent on bird feeders, a behavior previously shown to be predictive of acquiring a bacterial disease that causes annual epidemics in house finches. Overall, our results indicate that individual differences in exploratory behavior are linked to variation in both stress physiology and social network traits in free-living house finches. Such covariation has important implications for house finch ecology, as both traits can contribute to fitness in the wild. Copyright © 2018 Elsevier Inc. All rights reserved.

  16. Activation of a PGC-1-related Coactivator (PRC)-dependent Inflammatory Stress Program Linked to Apoptosis and Premature Senescence*

    Science.gov (United States)

    Gleyzer, Natalie; Scarpulla, Richard C.

    2013-01-01

    PGC-1-related coactivator (PRC), a growth-regulated member of the PGC-1 coactivator family, contributes to the expression of the mitochondrial respiratory apparatus. PRC also orchestrates a robust response to metabolic stress by promoting the expression of multiple genes specifying inflammation, proliferation, and metabolic reprogramming. Here, we demonstrate that this PRC-dependent stress program is activated during apoptosis and senescence, two major protective mechanisms against cellular dysfunction. Both PRC and its targets (IL1α, SPRR2D, and SPRR2F) were rapidly induced by menadione, an agent that promotes apoptosis through the generation of intracellular oxidants. Menadione-induced apoptosis and the PRC stress program were blocked by the antioxidant N-acetylcysteine. The PRC stress response was also activated by the topoisomerase I inhibitor 7-ethyl-10-hydroxycamptothecin (SN-38), an inducer of premature senescence in tumor cells. Cells treated with SN-38 displayed morphological characteristics of senescence and express senescence-associated β-galactosidase activity. In contrast to menadione, the SN-38 induction of the PRC program occurred over an extended time course and was antioxidant-insensitive. The potential adaptive function of the PRC stress response was investigated by treating cells with meclizine, a drug that promotes glycolytic energy metabolism and has been linked to cardio- and neuroprotection against ischemia-reperfusion injury. Meclizine increased lactate production and was a potent inducer of the PRC stress program, suggesting that PRC may contribute to the protective effects of meclizine. Finally, c-MYC and PRC were coordinately induced under all conditions tested, implicating c-MYC in the biological response to metabolic stress. The results suggest a general role for PRC in the adaptive response to cellular dysfunction. PMID:23364789

  17. An aberrant parasympathetic response: a new perspective linking chronic stress and itch.

    Science.gov (United States)

    Kim, Hei Sung; Yosipovitch, Gil

    2013-04-01

    Perceived stress has long been known to alter the dynamic equilibrium established between the nervous, endocrine and immune system and is widely recognised to trigger or enhance pruritus. However, the exact mechanism of how the major stress response systems, such as the hypothalamus-pituitary adrenal (HPA) axis and the autonomic nervous system induce or aggravate chronic itch, has not been elucidated. The limbic regions of the brain such as the prefrontal cortex and hippocampus are deeply involved in the regulation of the stress response and intersect with circuits that are responsible for memory and reward. According to the 'Polyvagal Theory', certain limbic structures that serve as a 'higher brain equivalent of the parasympathetic nervous system' play a foremost role in maintaining body homoeostasis by functioning as an active vagal brake. In addition, the limbic system has been postulated to regulate two distinct, yet related aspects of itch: (i) the sensory-discriminative aspect; and (ii) the affective-cognitive aspect. Chronic stress-induced itch is hypothesised to be caused by stress-related changes in limbic structure with subsequent rewiring of both the peripheral and central pruriceptive circuits. Herein, we review data suggesting that a dysfunctional parasympathetic nervous system associated with chronic stress may play a critical role in the regulatory control of key candidate molecules, receptors and brain structures involved in chronic itch. © 2012 John Wiley & Sons A/S.

  18. Linking Mitochondria to Synapses: New Insights for Stress-Related Neuropsychiatric Disorders

    Directory of Open Access Journals (Sweden)

    Freddy Jeanneteau

    2016-01-01

    Full Text Available The brain evolved cellular mechanisms for adapting synaptic function to energy supply. This is particularly evident when homeostasis is challenged by stress. Signaling loops between the mitochondria and synapses scale neuronal connectivity with bioenergetics capacity. A biphasic “inverted U shape” response to the stress hormone glucocorticoids is demonstrated in mitochondria and at synapses, modulating neural plasticity and physiological responses. Low dose enhances neurotransmission, synaptic growth, mitochondrial functions, learning, and memory whereas chronic, higher doses produce inhibition of these functions. The range of physiological effects by stress and glucocorticoid depends on the dose, duration, and context at exposure. These criteria are met by neuronal activity and the circadian, stress-sensitive and ultradian, stress-insensitive modes of glucocorticoid secretion. A major hallmark of stress-related neuropsychiatric disorders is the disrupted glucocorticoid rhythms and tissue resistance to signaling with the glucocorticoid receptor (GR. GR resistance could result from the loss of context-dependent glucocorticoid signaling mediated by the downregulation of the activity-dependent neurotrophin BDNF. The coincidence of BDNF and GR signaling changes glucocorticoid signaling output with consequences on mitochondrial respiration efficiency, synaptic plasticity, and adaptive trajectories.

  19. Hvad f er meningen?

    DEFF Research Database (Denmark)

    Rydén, Pernille; Ringberg, Torsten; Wilke, Ricky

    En forskningsrapport fra CBS om danske lederes opfattelse af sociale medier i detail- og servicebranchen. Rapporten er udarbejdet i regi af Service Platform.......En forskningsrapport fra CBS om danske lederes opfattelse af sociale medier i detail- og servicebranchen. Rapporten er udarbejdet i regi af Service Platform....

  20. Fluxus-øer

    DEFF Research Database (Denmark)

    van der Meijden, Peter Alexander

    2008-01-01

    "Fluxus-øer" er en introduktion til Fluxus med udgangspunkt i den tyske galleri-ejer René Blocks samling, som udstillingen "Food for Thought" i Sukkerfabrikken i Stege (Møn) præsenterede et udvalg af. Artiklen beskriver Fluxus som et heterotopi som beskrevet af Michel Foucault i "Of Other Spaces"...

  1. Links between white matter microstructure and cortisol reactivity to stress in early childhood: evidence for moderation by parenting.

    Science.gov (United States)

    Sheikh, Haroon I; Joanisse, Marc F; Mackrell, Sarah M; Kryski, Katie R; Smith, Heather J; Singh, Shiva M; Hayden, Elizabeth P

    2014-01-01

    Activity of the hypothalamic-pituitary-adrenal axis (measured via cortisol reactivity) may be a biological marker of risk for depression and anxiety, possibly even early in development. However, the structural neural correlates of early cortisol reactivity are not well known, although these would potentially inform broader models of mechanisms of risk, especially if the early environment further shapes these relationships. Therefore, we examined links between white matter architecture and young girls' cortisol reactivity and whether early caregiving moderated these links. We recruited 45 6-year-old girls based on whether they had previously shown high or low cortisol reactivity to a stress task at age 3. White matter integrity was assessed by calculating fractional anisotropy (FA) of diffusion-weighted magnetic resonance imaging scans. Parenting styles were measured via a standardized parent-child interaction task. Significant associations were found between FA in white matter regions adjacent to the left thalamus, the right anterior cingulate cortex, and the right superior frontal gyrus (all ps parent positive affect showing white matter structure more similar to that of low stress reactive girls. Results show associations between white matter integrity of various limbic regions of the brain and early cortisol reactivity to stress and provide preliminary support for the notion that parenting may moderate associations.

  2. MIT HJEM ER HVOR MIT HJERTE ER

    DEFF Research Database (Denmark)

    Høst, Jeppe Engset

    2014-01-01

    Ideen om at arbejde med det man kalder de stedbundne ressourcer på en ny måde, er relevant på Bornholm hvor events som blandt andet festivalen ’Wonderfestiwall’, strandfesten ’Vang Pier Beach Party’, karnevallet ’Svaneke Beach Party, kokkekonkurrencen ’Sol over Gudhjem’ og filmfestivalen ’Bornsho...

  3. Subducted bathymetric features linked to variations in earthquake apparent stress along the northern Japan Trench

    Science.gov (United States)

    Moyer, P. A.; Bilek, S. L.; Phillips, W. S.

    2010-12-01

    Ocean floor bathymetric features such as seamounts and ridges are thought to influence the earthquake rupture process when they enter the subduction zone by causing changes in frictional conditions along the megathrust contact between the subducting and overriding plates. Once subducted, these features have been described as localized areas of heterogeneous plate coupling, with some controversy over whether these features cause an increase or decrease in interplate coupling. Along the northern Japan Trench, a number of bathymetric features, such as horst and graben structures and seamounts, enter the subduction zone where they may vary earthquake behavior. Using seismic coda waves, scattered energy following the direct wave arrivals, we compute apparent stress (a measure of stress drop proportional to radiated seismic energy that has been tied to the strength of the fault interface contact) for 329 intermediate magnitude (3.2 earthquake spectra for path and site effects and compute apparent stress using the seismic moment and corner frequency determined from the spectra. Preliminary results indicate apparent stress values between 0.3 - 22.6 MPa for events over a depth range of 2 - 55 km, similar to those found in other studies of the region although within a different depth range, with variations both along-strike and downdip. Off the Sanriku Coast, horst and graben structures enter the Japan Trench in an area where a large number of earthquakes occur at shallow (< 30 km) depth. These shallow events have a mean apparent stress of 1.2 MPa (range 0.3 - 3.8 MPa) which is approximately 2 times lower then the mean apparent stress for other events along the northern portion of this margin in the same shallow depth range. The relatively low apparent stress for events related to subducting horst and graben structures suggests weak interplate coupling between the subducting and overriding plates due to small, irregular contact zones with these features at depth. This is in

  4. The moderator role of emotion regulation ability in the link between stress and well-being

    Directory of Open Access Journals (Sweden)

    Natalio eExtremera

    2015-10-01

    Full Text Available This article examined the moderating role of a central core dimension of emotional intelligence – emotion-regulation ability – in the relationship between perceived stress and indicators of well-being (depression and subjective happiness in a sample from a community adult population. The relationships for males and females on these dimensions were also compared. Results revealed that emotion-regulation abilities moderated both the association between perceived stress and depression/happiness for the total sample. However, a gender-specific analysis showed that the moderation effect was only significant for males. In short, when males reported a high level of perceived stress, those with high scores in regulating emotions reported higher scores in subjective happiness and lower depression symptoms than those with low regulating emotions. However, no interaction effect of regulating emotions and stress for predicting subjective happiness and depression was found for females. In developing stress management programmes for reducing depression and increasing well-being, these findings suggest that training in emotional regulation may be more beneficial for males than females. Our findings are discussed in terms of the need for future research to understand the different gender associations and to consider these differences in further intervention programmes.

  5. Measuring Social Capital Investment: Scale Development and Examination of Links to Social Capital and Perceived Stress

    Science.gov (United States)

    Wegner, Rhiana; Gong, Jie; Fang, Xiaoyi; Kaljee, Linda

    2014-01-01

    Individuals with greater social capital have better health outcomes. Investment in social capital likely increases one’s own social capital, bearing great implications for disease prevention and health promotion. In this study, the authors developed and validated the Social Capital Investment Inventory (SCII). Direct effects of social capital investment on perceived stress, and indirect effects through social capital were examined. 397 Participants from Beijing and Wuhan, China completed surveys. Analyses demonstrated that the SCII has a single factor structure and strong internal consistency. Structural equation modeling showed that individuals who invested more in social capital had greater bonding social capital, and subsequently less perceived stress. Results suggest that disease prevention and health promotion programs should consider approaches to encourage social capital investment; individuals may be able to reduce stress by increasing their investment in social capital. Future research is needed to provide additional empirical support for the SCII and observed structural relationships. PMID:25648725

  6. Linking perceptions of role stress and incivility to workplace aggression: the moderating role of personality.

    Science.gov (United States)

    Taylor, Shannon G; Kluemper, Donald H

    2012-07-01

    Although research on workplace aggression has long recognized job stressors as antecedents, little is known about the process through which employee responses to stressful workplace demands escalate from relatively mild interactions into more intense behaviors. This study investigates the influence that employees' perceptions of role stress (ambiguity, conflict, overload) have on their aggressive behavior by affecting their perceptions of incivility, and whether these downstream effects depend on personality traits (neuroticism, agreeableness, conscientiousness). Results supported moderated mediation, such that the indirect effects of perceived role ambiguity and role conflict on enacted aggression through experienced incivility varied according to individual differences in personality.

  7. Psychosocially influenced cancer: diverse early-life stress experiences and links to breast cancer.

    Science.gov (United States)

    Schuler, Linda A; Auger, Anthony P

    2010-11-01

    This perspective on Boyd et al. (beginning on page 1398 in this issue of the journal) discusses recent published research examining the interplay between social stress and breast cancer. Cross-disciplinary studies using genetically defined mouse models and established neonatal and peripubertal paradigms of social stress are illuminating biological programming by diverse early-life experiences for the risk of breast cancer. Understanding the mechanisms underlying this programming can lead to the identification of risk factors and sensitive developmental windows, enabling improved prevention and treatment strategies for this devastating disease. ©2010 AACR.

  8. Possible Link Between Stress-related Factors and Altered Body Composition in Women with Polycystic Ovarian Syndrome.

    Science.gov (United States)

    Basu, Barnali Ray; Chowdhury, Olivia; Saha, Sudip Kumar

    2018-01-01

    Stress is an invisible factor affecting modern day living and is strongly associated with many disease pathogenesis including polycystic ovarian syndrome (PCOS) in women. PCOS is the most frequent endocrinological disorder that affects women of reproductive age, leading to metabolic dysfunction and body composition alterations. Salivary amylase and cortisol are major stress mediators that have been implicated in PCOS. However, their role in altering body composition in PCOS is yet to be deciphered. The present study aimed at understanding the relation between stress-associated factors and alterations in body composition among PCOS patients. This study enrolled a total of 100 patients (PCOS) and 60 age-matched controls. The female patients were of ages between 13 and 30 years. Standard assay kits were used to evaluate the α-amylase activity and cortisol level in saliva. The participants were chosen on the basis of the Rotterdam American Society for Reproductive Medicine/European Society of Human Reproduction criteria. Saliva was collected from each participant as per the protocol of Salimetrics, USA. Statistical analysis was performed using SPSS version 20 for Windows. The quantitative variables are described as mean ± standard deviation. P stress scenario in their system. Moreover, overweight PCOS participants reflected higher amylase activity than the lean patients participants. Pulse rate, body mass index (BMI), visceral adiposity, and waist-hip ratio (WHR) was considerably higher in the PCOS patients participants compared to controls. A significant correlation could be drawn between the α-amylase activity and BMI or WHR, respectively, among PCOS patients. These observations indicate a strong link between the stress marker and alterations in the body composition parameters of PCOS patients participants. Higher prevalence of stress in PCOS patients participants has a critical role in their altered body composition.

  9. High-fructose diet is as detrimental as high-fat diet in the induction of insulin resistance and diabetes mediated by hepatic/pancreatic endoplasmic reticulum (ER) stress.

    Science.gov (United States)

    Balakumar, M; Raji, L; Prabhu, D; Sathishkumar, C; Prabu, P; Mohan, V; Balasubramanyam, M

    2016-12-01

    In the context of high human consumption of fructose diets, there is an imperative need to understand how dietary fructose intake influence cellular and molecular mechanisms and thereby affect β-cell dysfunction and insulin resistance. While evidence exists for a relationship between high-fat-induced insulin resistance and metabolic disorders, there is lack of studies in relation to high-fructose diet. Therefore, we attempted to study the effect of different diets viz., high-fat diet (HFD), high-fructose diet (HFS), and a combination (HFS + HFD) diet on glucose homeostasis and insulin sensitivity in male Wistar rats compared to control animals fed with normal pellet diet. Investigations include oral glucose tolerance test, insulin tolerance test, histopathology by H&E and Masson's trichrome staining, mRNA expression by real-time PCR, protein expression by Western blot, and caspase-3 activity by colorimetry. Rats subjected to high-fat/fructose diets became glucose intolerant, insulin-resistant, and dyslipidemic. Compared to control animals, rats subjected to different combination of fat/fructose diets showed increased mRNA and protein expression of a battery of ER stress markers both in pancreas and liver. Transcription factors of β-cell function (INSIG1, SREBP1c and PDX1) as well as hepatic gluconeogenesis (FOXO1 and PEPCK) were adversely affected in diet-induced insulin-resistant rats. The convergence of chronic ER stress towards apoptosis in pancreas/liver was also indicated by increased levels of CHOP mRNA & increased activity of both JNK and Caspase-3 in rats subjected to high-fat/fructose diets. Our study exposes the experimental support in that high-fructose diet is equally detrimental in causing metabolic disorders.

  10. Phytosterol conjugation in cold-storage apple fruit is linked to oxidative stress and ripening

    Science.gov (United States)

    Low temperature stress is implicated in a wide-range of apple fruit postharvest necrotic disorders. Previously, untargeted metabolic profiling identified alterations in multiple metabolic processes that precede superficial scald symptom development. Metabolites with free sterol (FS) –like mass spe...

  11. Phytosterol conjugation in cold-stored apple fruit is linked to oxidative stress and ripening

    Science.gov (United States)

    Low temperature stress is implicated in a wide-range of apple fruit postharvest necrotic disorders. Previously, untargeted metabolic profiling identified alterations in multiple metabolic processes that precede superficial scald symptom development. Metabolites with free sterol (FS) –like mass spe...

  12. Distress Tolerance Links Sleep Problems with Stress and Health in Homeless.

    Science.gov (United States)

    Reitzel, Lorraine R; Short, Nicole A; Schmidt, Norman B; Garey, Lorra; Zvolensky, Michael J; Moisiuc, Alexis; Reddick, Carrie; Kendzor, Darla E; Businelle, Michael S

    2017-11-01

    We examined associations between sleep problems, distress intolerance, and perceived stress and health in a convenience sample of homeless adults. Participants (N = 513, 36% women, Mage = 44.5 ±11.9) self-reported sleep adequacy, sleep duration, unintentional sleep during the daytime, distress tolerance, urban stress, and days of poor mental health and days of poor physical health over the last month. The indirect effects of sleep problems on stress and health through distress tolerance were examined using a non-parametric, bias-corrected bootstrapping procedure. Sleep problems were prevalent (eg, 13.0 ±11.4 days of inadequate sleep and 4.7 ±7.9 days of unintentionally falling asleep during the preceding month). Distress intolerance partially accounted for the associations of inadequate sleep and unintentionally falling asleep, but not sleep duration, with urban stress and more days of poor mental and physical health. Many homeless individuals endure sleep problems. Given the connections between sleep and morbidity and mortality, results further support the need for more attention directed toward facilitating improvements in sleep quality to improve the quality of life of homeless adults, potentially including attention to improving distress tolerance skills.

  13. Does "Wanting the Best" Create More Stress? The Link between Baby Sign Classes and Maternal Anxiety

    Science.gov (United States)

    Howlett, Neil; Kirk, Elizabeth; Pine, Karen J.

    2011-01-01

    This study investigated whether gesturing classes (baby sign) affected parental frustration and stress, as advertised by many commercial products. The participants were 178 mother-infant dyads, divided into a gesture group (n = 89) and a non-gesture group (n = 89), based on whether they had attended baby sign classes or not. Mothers completed a…

  14. Glucose intolerance induced by blockade of central FGF receptors is linked to an acute stress response

    Directory of Open Access Journals (Sweden)

    Jennifer M. Rojas

    2015-08-01

    Conclusions: The effect of acute inhibition of central FGFR signaling to impair glucose tolerance likely involves a stress response associated with pronounced, but transient, sympathoadrenal activation and an associated reduction of insulin secretion. Whether this effect is a true consequence of FGFR blockade or involves an off-target effect of the FGFR inhibitor requires additional study.

  15. Hvor anvendelig er PKI?

    OpenAIRE

    Nielsen, Jon Magne

    2006-01-01

    Denne oppgaven ser på bruken av elektronisk ID i statlige etater i Norge i dag. Det ses spesielt på om bruken av tekologien PKI er en god løsning på etatenes behov på dette området. Som utgangspunkt for analysen er det sett spesielt på to statlige etater. Disse etatenes behov og bruk av elektronisk ID generelt og PKI spesielt blir undersøkt. Det er videre gjort rede for hvilke lover, forskrifter og andre førende dokumenter som danner de formelle rammebetingelsene for etaters bruk av PKI. ...

  16. Taurine ameliorated homocysteine-induced H9C2 cardiomyocyte apoptosis by modulating endoplasmic reticulum stress.

    Science.gov (United States)

    Zhang, Zhimin; Zhao, Lianyou; Zhou, Yanfen; Lu, Xuanhao; Wang, Zhengqiang; Wang, Jipeng; Li, Wei

    2017-05-01

    Homocysteine (Hcy)-triggered endoplasmic reticulum (ER) stress-mediated endothelial cell apoptosis has been suggested as a cause of Hcy-dependent vascular injury. However, whether ER stress is the molecular mechanism linking Hcy and cardiomyocytes death is unclear. Taurine has been reported to exert cardioprotective effects via various mechanisms. However, whether taurine protects against Hcy-induced cardiomyocyte death by attenuating ER stress is unknown. This study aimed to evaluate the opposite effects of taurine on Hcy-induced cardiomyocyte apoptosis and their underlying mechanisms. Our results demonstrated that low-dose or short-term Hcy treatment increased the expression of glucose-regulated protein 78 (GRP78) and activated protein kinase RNA-like ER kinase (PERK), inositol-requiring enzyme 1 (IRE1), and activating transcription factor 6 (ATF6), which in turn prevented apoptotic cell death. High-dose Hcy or prolonged Hcy treatment duration significantly up-regulated levels of C/EBP homologous protein (CHOP), cleaved caspase-12, p-c-Jun N-terminal kinase (JNK), and then triggered apoptotic events. High-dose Hcy also resulted in a decrease in mitochondrial membrane potential (Δψm) and an increase in cytoplasmic cytochrome C and the expression of cleaved caspase-9. Pretreatment of cardiomyocytes with sodium 4-phenylbutyric acid (an ER stress inhibitor) significantly inhibited Hcy-induced apoptosis. Furthermore, blocking the PERK pathway partly alleviated Hcy-induced ER stress-modulated cardiomyocyte apoptosis, and down-regulated the levels of Bax and cleaved caspase-3. Experimental taurine pretreatment inhibited the expression of ER stress-related proteins, and protected against apoptotic events triggered by Hcy-induced ER stress. Taken together, our results suggest that Hcy triggered ER stress in cardiomyocytes, which was the crucial molecular mechanism mediating Hcy-induced cardiomyocyte apoptosis, and the adverse effect of Hcy could be prevented by taurine.

  17. Apoptosis of HeLa cells induced by a new targeting photosensitizer-based PDT via a mitochondrial pathway and ER stress

    Directory of Open Access Journals (Sweden)

    Li D

    2015-04-01

    Full Text Available Donghong Li,1 Lei Li,2 Pengxi Li,1 Yi Li,3 Xiangyun Chen1 1State Key Laboratory of Trauma, Burn and Combined Injury, The Second Department of Research Institute of Surgery, 2The First Department of Research Institute of Surgery, 3Cancer Center, Daping Hospital, Third Military Medical University, Chongqing, People’s Republic of China Abstract: Photodynamic therapy (PDT is emerging as a viable treatment for many cancers. To decrease the cutaneous photosensitivity induced by PDT, many attempts have been made to search for a targeting photosensitizer; however, few reports describe the molecular mechanism of PDT mediated by this type of targeting photosensitizer. The present study aimed to investigate the molecular mechanism of PDT induced by a new targeting photosensitizer (PS I, reported previously by us, on HeLa cells. Apoptosis is the primary mode of HeLa cell death in our system, and apoptosis occurs in a manner dependent on concentration, irradiation dose, and drug–light intervals. After endocytosis mediated by the folate receptor, PS I was primarily localized to the mitochondria and the endoplasmic reticulum (ER of HeLa cells. PS I PDT resulted in rapid increases in intracellular reactive oxygen species (ROS production and Ca2+ concentration, both of which reached a peak nearly simultaneously at 15 minutes, followed by the loss of mitochondrial membrane potential at 30 minutes, release of cytochrome c from mitochondria into the cytoplasm, downregulation of Bcl-2 expression, and upregulation of Bax expression. Meanwhile, activation of caspase-3, -9, and -12, as well as induction of C/EBP homologous protein (CHOP and glucose-regulated protein (GRP78, in HeLa cells after PS I PDT was also detected. These results suggest that apoptosis of HeLa cells induced by PS I PDT is not only triggered by ROS but is also regulated by Ca2+ overload. Mitochondria and the ER serve as the subcellular targets of PS I PDT, the effective activation of which

  18. Neural mechanisms linking social status and inflammatory responses to social stress.

    Science.gov (United States)

    Muscatell, Keely A; Dedovic, Katarina; Slavich, George M; Jarcho, Michael R; Breen, Elizabeth C; Bower, Julienne E; Irwin, Michael R; Eisenberger, Naomi I

    2016-06-01

    Social stratification has important implications for health and well-being, with individuals lower in standing in a hierarchy experiencing worse outcomes than those higher up the social ladder. Separate lines of past research suggest that alterations in inflammatory processes and neural responses to threat may link lower social status with poorer outcomes. This study was designed to bridge these literatures to investigate the neurocognitive mechanisms linking subjective social status and inflammation. Thirty-one participants reported their subjective social status, and underwent a functional magnetic resonance imaging scan while they were socially evaluated. Participants also provided blood samples before and after the stressor, which were analysed for changes in inflammation. Results showed that lower subjective social status was associated with greater increases in inflammation. Neuroimaging data revealed lower subjective social status was associated with greater neural activity in the dorsomedial prefrontal cortex (DMPFC) in response to negative feedback. Finally, results indicated that activation in the DMPFC in response to negative feedback mediated the relation between social status and increases in inflammatory activity. This study provides the first evidence of a neurocognitive pathway linking subjective social status and inflammation, thus furthering our understanding of how social hierarchies shape neural and physiological responses to social interactions. © The Author (2016). Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.

  19. Periodontitis and type 2 diabetes: is oxidative stress the mechanistic link?

    LENUS (Irish Health Repository)

    Allen, E M

    2009-05-01

    Periodontitis is a common, chronic inflammatory disease initiated by bacteria which has an increased prevalence and severity in patients with type 2 diabetes. Recent studies indicate that the co-morbid presence of periodontitis can, in turn, adversely affect diabetic status and the treatment of periodontitis can lead to improved metabolic control in diabetes patients. Current evidence points to a bidirectional interrelationship between diabetes and inflammatory periodontitis. The importance of oxidative stress-inflammatory pathways in the pathogenesis of type 2 diabetes and periodontitis has recently received attention. Given the bidirectional relationship between these two conditions, this review discusses the potential synergistic interactions along the oxidative stress-inflammation axis common to both type 2 diabetes and periodontitis, and the implications of this relationship for diabetic patients.

  20. ATM regulation of IL-8 links oxidative stress to cancer cell migration and invasion.

    Science.gov (United States)

    Chen, Wei-Ta; Ebelt, Nancy D; Stracker, Travis H; Xhemalce, Blerta; Van Den Berg, Carla L; Miller, Kyle M

    2015-06-01

    Ataxia-telangiectasia mutated (ATM) protein kinase regulates the DNA damage response (DDR) and is associated with cancer suppression. Here we report a cancer-promoting role for ATM. ATM depletion in metastatic cancer cells reduced cell migration and invasion. Transcription analyses identified a gene network, including the chemokine IL-8, regulated by ATM. IL-8 expression required ATM and was regulated by oxidative stress. IL-8 was validated as an ATM target by its ability to rescue cell migration and invasion defects in ATM-depleted cells. Finally, ATM-depletion in human breast cancer cells reduced lung tumors in a mouse xenograft model and clinical data validated IL-8 in lung metastasis. These findings provide insights into how ATM activation by oxidative stress regulates IL-8 to sustain cell migration and invasion in cancer cells to promote metastatic potential. Thus, in addition to well-established roles in tumor suppression, these findings identify a role for ATM in tumor progression.

  1. Circuitry linking the global Csr and σE-dependent cell envelope stress response systems.

    Science.gov (United States)

    Yakhnin, Helen; Aichele, Robert; Ades, Sarah E; Romeo, Tony; Babitzke, Paul

    2017-09-18

    CsrA of Escherichia coli is an RNA-binding protein that globally regulates a wide variety of cellular processes and behaviors including carbon metabolism, motility, biofilm formation, and the stringent response. CsrB and CsrC are sRNAs that sequester CsrA, thereby preventing CsrA-mRNA interaction. RpoE (σ E ) is the extracytoplasmic stress response sigma factor of E. coli Previous RNA-seq studies identified rpoE mRNA as a CsrA target. Here we explored the regulation of rpoE by CsrA and found that CsrA represses rpoE translation. Gel mobility shift, footprint and toeprint studies identified three CsrA binding sites in the rpoE leader transcript, one of which overlaps the rpoE Shine-Dalgarno (SD) sequence, while another overlaps the rpoE translation initiation codon. Coupled in vitro transcription-translation experiments showed that CsrA represses rpoE translation by binding to these sites. We further demonstrate that σ E indirectly activates transcription of csrB and csrC , leading to increased sequestration of CsrA such that repression of rpoE by CsrA is reduced. We propose that the Csr system fine-tunes the σ E -dependent cell envelope stress response. We also identified a 51 amino acid coding sequence whose stop codon overlaps the rpoE start codon, and demonstrate that rpoE is translationally coupled with this upstream open reading frame (ORF51). Loss of coupling reduces rpoE translation by more than 50%. Identification of a translationally coupled ORF upstream of rpoE suggests that this previously unannotated protein may participate in the cell envelope stress response. In keeping with existing nomenclature, we name ORF51 as rseD , resulting in an operon arrangement of rseD-rpoE-rseA-rseB-rseC IMPORTANCE CsrA posttranscriptionally represses genes required for bacterial stress responses, including the stringent response, catabolite repression, and the RpoS (σ S )-mediated general stress response. We show that CsrA represses translation of rpoE , encoding the

  2. Stress and food deprivation: linking physiological state to migration success in a teleost fish

    DEFF Research Database (Denmark)

    Midwood, J.D.; Larsen, Martin Hage; Aarestrup, Kim

    2016-01-01

    for the cortisol treatment. Food availability and individual energetic state appear to dictate the future life-history strategy (migrate or remain resident) of juvenile salmonids while experimental elevation of the stress hormone cortisol caused impaired growth and reduced survival of both resident and migratory......Food deprivation (FD) is a naturally occurring stressor that is thought to influence the ultimate life-history strategy of individuals. Little is known about how FD interacts with other stressors to influence migration success. European populations of brown trout (Salmo trutta) exhibit partial...... of the glucocorticoid stress response in determining life-history strategy and survival of a migratory species. Using an experimental approach, the relative influences of short-term FD and experimental cortisol elevation (i.e., intra-coelomic injection of cortisol suspended in cocoa butter) on migratory status...

  3. Overexpression of BAX INHIBITOR-1 Links Plasma Membrane Microdomain Proteins to Stress.

    Science.gov (United States)

    Ishikawa, Toshiki; Aki, Toshihiko; Yanagisawa, Shuichi; Uchimiya, Hirofumi; Kawai-Yamada, Maki

    2015-10-01

    BAX INHIBITOR-1 (BI-1) is a cell death suppressor widely conserved in plants and animals. Overexpression of BI-1 enhances tolerance to stress-induced cell death in plant cells, although the molecular mechanism behind this enhancement is unclear. We recently found that Arabidopsis (Arabidopsis thaliana) BI-1 is involved in the metabolism of sphingolipids, such as the synthesis of 2-hydroxy fatty acids, suggesting the involvement of sphingolipids in the cell death regulatory mechanism downstream of BI-1. Here, we show that BI-1 affects cell death-associated components localized in sphingolipid-enriched microdomains of the plasma membrane in rice (Oryza sativa) cells. The amount of 2-hydroxy fatty acid-containing glucosylceramide increased in the detergent-resistant membrane (DRM; a biochemical counterpart of plasma membrane microdomains) fraction obtained from BI-1-overexpressing rice cells. Comparative proteomics analysis showed quantitative changes of DRM proteins in BI-1-overexpressing cells. In particular, the protein abundance of FLOTILLIN HOMOLOG (FLOT) and HYPERSENSITIVE-INDUCED REACTION PROTEIN3 (HIR3) markedly decreased in DRM of BI-1-overexpressing cells. Loss-of-function analysis demonstrated that FLOT and HIR3 are required for cell death by oxidative stress and salicylic acid, suggesting that the decreased levels of these proteins directly contribute to the stress-tolerant phenotypes in BI-1-overexpressing rice cells. These findings provide a novel biological implication of plant membrane microdomains in stress-induced cell death, which is negatively modulated by BI-1 overexpression via decreasing the abundance of a set of key proteins involved in cell death. © 2015 American Society of Plant Biologists. All Rights Reserved.

  4. Construction of an integrated gene regulatory network link to stress-related immune system in cattle.

    Science.gov (United States)

    Behdani, Elham; Bakhtiarizadeh, Mohammad Reza

    2017-10-01

    The immune system is an important biological system that is negatively impacted by stress. This study constructed an integrated regulatory network to enhance our understanding of the regulatory gene network used in the stress-related immune system. Module inference was used to construct modules of co-expressed genes with bovine leukocyte RNA-Seq data. Transcription factors (TFs) were then assigned to these modules using Lemon-Tree algorithms. In addition, the TFs assigned to each module were confirmed using the promoter analysis and protein-protein interactions data. Therefore, our integrated method identified three TFs which include one TF that is previously known to be involved in immune response (MYBL2) and two TFs (E2F8 and FOXS1) that had not been recognized previously and were identified for the first time in this study as novel regulatory candidates in immune response. This study provides valuable insights on the regulatory programs of genes involved in the stress-related immune system.

  5. Innovation er brugerdreven!

    DEFF Research Database (Denmark)

    Helms, Niels Henrik

    2008-01-01

    Brugerdreven innovation er blevet svaret på mange af de udfordringer, som vores moderne samfund står overfor.Det er skrevet ind i såvel regeringsgrundlaget som i de forskellige tiltag, som skal ruste Danmark i forhold til globaliseringen. Vi har ifølge argumentationen her enrække særlige forudsæt....... Udgivelsesdato: marts 2008...

  6. Metabolomics er fremtiden

    DEFF Research Database (Denmark)

    Pedersern, Birger

    2010-01-01

    Forskningen i fødevarer har fået et potent redskab i hånden. Metabolomics er vejen frem, mener professor Søren Balling Engelsen fra Københavns Universitet......Forskningen i fødevarer har fået et potent redskab i hånden. Metabolomics er vejen frem, mener professor Søren Balling Engelsen fra Københavns Universitet...

  7. Er KU et mobbeuniversitet?

    DEFF Research Database (Denmark)

    Olden-Jørgensen, Sebastian

    2009-01-01

    Ansatte på KU mobber hverken mere eller mindre end på andre danske arbejdspladser. Mediernes dækning af APV-undersøgelsens resultater mht. mobning er sensationalistisk og delvis vildledende.......Ansatte på KU mobber hverken mere eller mindre end på andre danske arbejdspladser. Mediernes dækning af APV-undersøgelsens resultater mht. mobning er sensationalistisk og delvis vildledende....

  8. Er jeres ledere 'likeable'?

    DEFF Research Database (Denmark)

    Nielsen, Rikke Kristine

    2013-01-01

    Færdigheder: Oftest er lederne langtfra de første til at kaste sig over ny teknologi. It-kundskaberne på chefgangen trænger til en opgradering.......Færdigheder: Oftest er lederne langtfra de første til at kaste sig over ny teknologi. It-kundskaberne på chefgangen trænger til en opgradering....

  9. er 1999

    DEFF Research Database (Denmark)

    Jensen, J. P.; Søndergaard, M.; Jeppesen, E.

    små cladoceer og hjuldyr, og især er maksimumsforekom-sterne af calanoide vandlopper og de små og store cladoceer og daf-nier gået tilbage. Den gennemsnitlige biomasse af dafnier er derimod øget især p.g.a. stigning i de 25 % af søerne med størst forekomster. Dyreplanktons græsning Betragtet under et...

  10. er 2000

    DEFF Research Database (Denmark)

    Jensen, J. P.; Søndergaard, M.; Jeppesen, E.

    styrke det fagli-ge grundlag for de mil-jøpolitiske prioriteringer og beslut-ninger. En væsentlig del af denne opgave er overvågning af miljø og natur. Det er derfor et naturligt led i Danmarks Miljø-undersø-gelsers opgave at forestå den landsdækkende rapportering af overvågnings-program-met inden...

  11. Cognitive impairment and Alzheimer’s disease: Links with oxidative stress and cholesterol metabolism

    Directory of Open Access Journals (Sweden)

    Alejandra Sekler

    2008-08-01

    Full Text Available Alejandra Sekler1,2, José M Jiménez2, Leonel Rojo2, Edgard Pastene3, Patricio Fuentes4, Andrea Slachevsky4, Ricardo B Maccioni1,21Center of Cognitive Neurosciences, International Center for Biomedicine (ICC, Santiago, Chile; 2Laboratory of Cellular, Molecular Biology and Neurosciences, Faculty of Sciences, Universidad de Chile, Santiago, Chile; 3Department of Pharmacy, Faculty of Pharmacy, University of Concepcion, Concepción, Chile; 4Unidad de Neurología Cognitiva y Demencias, Servicio de Neurología, Hospital del Salvador, Santiago, ChileAbstract: Oxidative stress has been implicated in the progression of a number of neurodegenerative diseases, including Alzheimer’s disease (AD, Parkinson’s disease and amyotrophic lateral sclerosis. We carried out an in-depth study of cognitive impairment and its relationships with oxidative stress markers such as ferric-reducing ability of plasma (FRAP, plasma malondialdehyde and total antioxidative capacity (TAC, as well as cholesterol parameters, in two subsets of subjects, AD patients (n = 59 and a control group of neurologically normal subjects (n = 29, attending the University Hospital Salvador in Santiago, Chile. Cognitive impairment was assessed by a set of neuropsychological tests (Mini-Mental State Examination, Boston Naming Test, Ideomotor Praxia by imitation, Semantic Verbal Fluency of animals or words with initial A, Test of Memory Alteration, Frontal Assessment Battery, while the levels of those oxidative stress markers and cholesterol metabolism parameters were determined according with standard bioassays in fresh plasma samples of the two subgroups of patients. No significant differences were observed when the cholesterol parameters (low-, high-density lipoprotein, total cholesterol of the AD group were compared with normal controls. Interestingly, a correlation was evidenced when the levels of cognitive impairment were analyzed with respect to the plasma antioxidant capacity (AOC of

  12. Hepatitis B Virus Middle Protein Enhances IL-6 Production via p38 MAPK/NF-κB Pathways in an ER Stress-Dependent Manner.

    Directory of Open Access Journals (Sweden)

    Yang-Xia Li

    Full Text Available During hepatitis B virus (HBV infection, three viral envelope proteins of HBV are overexpressed in the endoplasmic reticulum (ER. The large S protein (LHBs and truncated middle S protein (MHBst have been documented to play roles in regulating host gene expression and contribute to hepatic disease development. As a predominant protein at the ultrastructural level in biopsy samples taken from viremic patients, the role of the middle S protein (MHBs remains to be understood despite its high immunogenicity. When we transfected hepatocytes with an enhanced green fluorescent protein (EGFP-tagged MHBs expressing plasmid, the results showed that expression of MHBs cause an upregulation of IL-6 at the message RNA and protein levels through activating the p38 mitogen-activated protein kinase (p38 MAPK and nuclear factor-kappa B (NF-κB pathways. The use of specific inhibitors of the signaling pathways can diminish this upregulation. The use of BAPTA-AM attenuated the stimulation caused by MHBs. We further found that MHBs accumulated in the endoplasmic reticulum and increased the amount of glucose regulated protein 78 (GRP78/BiP. Our results provide a possibility that MHBs could be involved in liver disease progression.

  13. Repertoires of emotion regulation: A person-centered approach to assessing emotion regulation strategies and links to psychopathology.

    Science.gov (United States)

    Dixon-Gordon, Katherine L; Aldao, Amelia; De Los Reyes, Andres

    2015-01-01

    Despite growing research on emotion regulation (ER) strategies and psychopathology, research has primarily focused on identifying one-to-one associations between ER strategies and symptoms. Thus, little is known about how patterns in the repertoires of ER strategies are associated with different mental disorders. We utilised latent class analysis to identify distinct repertoires of ER strategies, and their links with various psychopathology domains (i.e., anxiety, depression, disordered eating, borderline personality). Participants (N = 531) reported on their use of seven ER strategies in six recalled stressful contexts, as well as on their symptoms of psychopathology. We identified five classes of ER strategies: Low Regulators (n = 168), High Regulators (n = 140), Adaptive Regulators (n = 99), Worriers/Ruminators (n = 96) and Avoiders (n = 28). Generally, High Regulators and Worriers/Ruminators endorsed greater levels of psychopathology, relative to Low and Adaptive Regulators. Our findings underscore the importance of characterising the dynamics of ER repertoires when seeking to understand links between ER strategies and psychopathology.

  14. PERIPHERAL IMMUNE SYSTEM SUPPRESSION IN EARLY ABSTINENT ALCOHOL DEPENDENT INDIVIDUALS: LINKS TO STRESS AND CUE-RELATED CRAVING

    Science.gov (United States)

    Fox, Helen C; Milivojevic, Verica; Angarita, Gustavo A; Stowe, Raymond; Sinha, Rajita

    2017-01-01

    Background Peripheral immune system cytokines may play an integral role in underlying sensitized stress response and alcohol craving during early withdrawal. To date, the nature of these immune changes during early abstinence have not been examined. Methods Thirty-nine early abstinent, treatment-seeking alcohol dependent individuals and 46 socially drinking controls were exposed to three guided imageries: stress, alcohol cue and neutral. These were presented randomly across consecutive days. Plasma measures of tumor necrosis factor alpha (TNFα), tumor necrosis factor receptor 1 (TNFR1), interleukin-6 (IL-6), and interleukin-10 (IL-10), were collected at baseline, immediately after imagery and at various recovery time-points. Ratings of alcohol craving, negative mood and anxiety were also obtained at the same time-points. Results The alcohol group demonstrated decreased basal IL-10 compared with controls particularly following exposure to alcohol cue. They also showed a dampened TNFα and TNFR1 response to stress and cue, respectively, and a generalized suppression of IL-6. In the alcohol group, these immune system adaptations occurred alongside significant elevations in anxiety, negative mood and alcohol craving. Conclusions Findings demonstrate that broad immuno-suppression is still observed in alcohol dependent individuals after three weeks of abstinence and may be linked to motivation for alcohol. PMID:28675117

  15. Limited Link between Oxidative Stress and Ochratoxin A—Induced Renal Injury in an Acute Toxicity Rat Model

    Directory of Open Access Journals (Sweden)

    Liye Zhu

    2016-12-01

    Full Text Available Ochratoxin A (OTA displays nephrotoxicity and hepatotoxicity. However, in the acute toxicity rat model, there is no evidence on the relationship between OTA and nephrotoxicity and hepatotoxicity. Based on this, the integrated analysis of physiological status, damage biomarkers, oxidative stress, and DNA damage were performed. After OTA treatment, the body weight decreased and AST, ALP, TP, and BUN levels in serum increased. Hydropic degeneration, swelling, vacuolization, and partial drop occurred in proximal tubule epithelial cells. PCNA and Kim-1 were dose-dependently increased in the kidney, but Cox-2 expression and proliferation were not found in the liver. In OTA-treated kidneys, the mRNA expressions of Kim-1, Cox-2, Lcn2, and Clu were dose-dependently increased. The mRNA expressions of Vim and Cox-2 were decreased in OTA-treated livers. Some oxidative stress indicators were altered in the kidneys (ROS and SOD and livers (SOD and GSH. DNA damage and oxidative DNA damage were not found. In conclusion, there is a limited link between oxidative stress and OTA-induced renal injury in an acute toxicity rat model.

  16. Emotional non-acceptance links early life stress and blunted cortisol reactivity to social threat.

    Science.gov (United States)

    Cărnuţă, Mihai; Crişan, Liviu G; Vulturar, Romana; Opre, Adrian; Miu, Andrei C

    2015-01-01

    Early life stress (ELS) has been recently associated with blunted cortisol reactivity and emotion dysregulation, but no study until now examined whether these characteristics are related. The main goal of this study was to examine the potential mediator role of emotion dysregulation in the relation between ELS and cortisol reactivity to social threat. Only women who were free of psychiatric and endocrine disorders, had regular menstrual cycle and did not use oral contraceptives were selected for this study (N=62). After filling in ELS and multidimensional emotion dysregulation measures, participants underwent the Trier Social Stress Test during which cortisol and autonomic responses were assessed. Most participants (85.5%) reported one or more major stressful events (i.e., physical abuse, sexual abuse, major parental conflicts, death of a family or close friend, severe illness) experienced before age 17. ELS was negatively associated with cortisol reactivity and positively associated with skin conductance level (SCL) reactivity, but it did not influence heart rate and respiratory sinus arrhythmia. In addition, ELS was positively related to emotional non-acceptance (i.e., a tendency to develop secondary emotional responses to one's negative emotions), and the latter was negatively related to cortisol responses and positively related to SCL responses. Bootstrapping analyses indicated that emotional non-acceptance was a significant mediator in the relationships between ELS and both cortisol and SCL responses. Emotional non-acceptance is thus one of the psychological mechanisms underlying blunted cortisol and increased sympathetic reactivity in young healthy volunteers with a history of ELS. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. Environmental stress, ageing and glial cell senescence: a novel mechanistic link to Parkinson's disease?

    Science.gov (United States)

    Chinta, S J; Lieu, C A; Demaria, M; Laberge, R-M; Campisi, J; Andersen, J K

    2013-05-01

    Exposure to environmental toxins is associated with a variety of age-related diseases including cancer and neurodegeneration. For example, in Parkinson's disease (PD), chronic environmental exposure to certain toxins has been linked to the age-related development of neuropathology. Neuronal damage is believed to involve the induction of neuroinflammatory events as a consequence of glial cell activation. Cellular senescence is a potent anti-cancer mechanism that occurs in a number of proliferative cell types and causes the arrest of proliferation of cells at risk of malignant transformation following exposure to potentially oncogenic stimuli. With age, senescent cells accumulate and express a senescence-associated secretory phenotype (SASP; that is the robust secretion of many inflammatory cytokines, growth factors and proteases). Whereas cell senescence in peripheral tissues has been causally linked to a number of age-related pathologies, little is known about the induction of cellular senescence and the SASP in the brain. On the basis of recently reported findings, we propose that environmental stressors associated with PD may act in part by eliciting senescence and the SASP within non neuronal glial cells in the ageing brain, thus contributing to the characteristic decline in neuronal integrity that occurs in this disorder. © 2013 The Association for the Publication of the Journal of Internal Medicine.

  18. Environmental stress, ageing and glial cell senescence: a novel mechanistic link to Parkinson’s disease?

    Science.gov (United States)

    Chinta, Shankar J; Lieu, Christopher A; DeMaria, Marco; Laberge, Remi-Martin; Campisi, Judith; Andersen, Julie K

    2013-01-01

    Exposure to environmental toxins is associated with a variety of age-related diseases including cancer and neurodegeneration. For example, in Parkinson’s disease (PD), chronic environmental exposure to certain toxins has been linked to the age-related development of neuropathology. Neuronal damage is believed to involve the induction of neuroinflammatory events as a consequence of glial cell activation. Cellular senescence is a potent anti-cancer mechanism that occurs in a number of proliferative cell types and causes the arrest of proliferation of cells at risk of malignant transformation following exposure to potentially oncogenic stimuli. With age, senescent cells accumulate and express a senescence-associated secretory phenotype (SASP; i.e. the robust secretion of many inflammatory cytokines, growth factors and proteases). Whereas cell senescence in peripheral tissues has been causally linked to a number of age-related pathologies, little is known about the induction of cellular senescence and the SASP in the brain. Based on recently reported findings, we propose that environmental stressors associated with PD may act in part by eliciting senescence and the SASP within non-neuronal glial cells in the ageing brain, thus contributing to the characteristic decline in neuronal integrity that occurs in this disorder. PMID:23600398

  19. COPII-Dependent ER Export: A Critical Component of Insulin Biogenesis and β-Cell ER Homeostasis.

    Science.gov (United States)

    Fang, Jingye; Liu, Ming; Zhang, Xuebao; Sakamoto, Takeshi; Taatjes, Douglas J; Jena, Bhanu P; Sun, Fei; Woods, James; Bryson, Tim; Kowluru, Anjaneyulu; Zhang, Kezhong; Chen, Xuequn

    2015-08-01

    Pancreatic β-cells possess a highly active protein synthetic and export machinery in the endoplasmic reticulum (ER) to accommodate the massive production of proinsulin. ER homeostasis is vital for β-cell functions and is maintained by the delicate balance between protein synthesis, folding, export, and degradation. Disruption of ER homeostasis by diabetes-causing factors leads to β-cell death. Among the 4 components to maintain ER homeostasis in β-cells, the role of ER export in insulin biogenesis is the least understood. To address this knowledge gap, the present study investigated the molecular mechanism of proinsulin ER export in MIN6 cells and primary islets. Two inhibitory mutants of the secretion-associated RAS-related protein (Sar)1 small GTPase, known to specifically block coat protein complex II (COPII)-dependent ER export, were overexpressed in β-cells using recombinant adenoviruses. Results from this approach, as well as small interfering RNA-mediated Sar1 knockdown, demonstrated that defective Sar1 function blocked proinsulin ER export and abolished its conversion to mature insulin in MIN6 cells, isolated mouse, and human islets. It is further revealed, using an in vitro vesicle formation assay, that proinsulin was packaged into COPII vesicles in a GTP- and Sar1-dependent manner. Blockage of COPII-dependent ER exit by Sar1 mutants strongly induced ER morphology change, ER stress response, and β-cell apoptosis. These responses were mediated by the PKR (double-stranded RNA-dependent kinase)-like ER kinase (PERK)/eukaryotic translation initiation factor 2α (p-eIF2α) and inositol-requiring protein 1 (IRE1)/x-box binding protein 1 (Xbp1) pathways but not via activating transcription factor 6 (ATF6). Collectively, results from the study demonstrate that COPII-dependent ER export plays a vital role in insulin biogenesis, ER homeostasis, and β-cell survival.

  20. TFEB and TFE3: Linking Lysosomes to Cellular Adaptation to Stress.

    Science.gov (United States)

    Raben, Nina; Puertollano, Rosa

    2016-10-06

    In recent years, our vision of lysosomes has drastically changed. Formerly considered to be mere degradative compartments, they are now recognized as key players in many cellular processes. The ability of lysosomes to respond to different stimuli revealed a complex and coordinated regulation of lysosomal gene expression. This review discusses the participation of the transcription factors TFEB and TFE3 in the regulation of lysosomal function and biogenesis, as well as the role of the lysosomal pathway in cellular adaptation to a variety of stress conditions, including nutrient deprivation, mitochondrial dysfunction, protein misfolding, and pathogen infection. We also describe how cancer cells make use of TFEB and TFE3 to promote their own survival and highlight the potential of these transcription factors as therapeutic targets for the treatment of neurological and lysosomal diseases.

  1. Possible link between stress-related factors and altered body composition in women with polycystic ovarian syndrome

    Directory of Open Access Journals (Sweden)

    Barnali Ray Basu

    2018-01-01

    indicate a strong link between the stress marker and alterations in the body composition parameters of PCOS patients participants. Conclusion: Higher prevalence of stress in PCOS patients participants has a critical role in their altered body composition.

  2. Stress and food deprivation: linking physiological state to migration success in a teleost fish.

    Science.gov (United States)

    Midwood, Jonathan D; Larsen, Martin H; Aarestrup, Kim; Cooke, Steven J

    2016-12-01

    Food deprivation is a naturally occurring stressor that is thought to influence the ultimate life-history strategy of individuals. Little is known about how food deprivation interacts with other stressors to influence migration success. European populations of brown trout (Salmo trutta) exhibit partial migration, whereby a portion of the population smoltifies and migrates to the ocean, and the rest remain in their natal stream. This distinct, natural dichotomy of life-history strategies provides an excellent opportunity to explore the roles of energetic state (as affected by food deprivation) and activation of the glucocorticoid stress response in determining life-history strategy and survival of a migratory species. Using an experimental approach, the relative influences of short-term food deprivation and experimental cortisol elevation (i.e. intra-coelomic injection of cortisol suspended in cocoa butter) on migratory status, survival and growth of juvenile brown trout relative to a control were evaluated. Fewer fish migrated in both the food deprivation and cortisol treatments; however, migration of fish in cortisol and control treatments occurred at the same time while that of fish in the food deprivation treatment was delayed for approximately 1 week. A significantly greater proportion of trout in the food deprivation treatment remained in their natal stream, but unlike the cortisol treatment, there were no long-term negative effects of food deprivation on growth, relative to the control. Overall survival rates were comparable between the food deprivation and control treatments, but significantly lower for fish in the cortisol treatment. Food availability and individual energetic state appear to dictate the future life-history strategy (migrate or remain resident) of juvenile salmonids while experimental elevation of the stress hormone cortisol causes impaired growth and reduced survival of both resident and migratory individuals. © 2016. Published by The

  3. Psychological Stress, Cocaine and Natural Reward Each Induce Endoplasmic Reticulum Stress Genes in Rat Brain

    OpenAIRE

    Pavlovsky, Ashly A.; Boehning, Darren; Li, Dingge; Zhang, Yafang; Fan, Xiuzhen; Green, Thomas A.

    2013-01-01

    Our prior research has shown that the transcription of endoplasmic reticulum (ER) stress transcription factors Activating Transcription Factor 3 (ATF3) and ATF4 are induced by amphetamine and restraint stress in rat striatum. However, presently it is unknown the full extent of ER stress responses to psychological stress or cocaine, and which of the three ER stress pathways is activated. The current study examines transcriptional responses of key ER stress target genes subsequent to psychologi...

  4. Jeg Er blevet FRANKofil

    DEFF Research Database (Denmark)

    Andersson, Lasse

    2014-01-01

    afhængig af Frank Underwood fra serien House of Cards på den fremadstormende TV-streamingstjenesten Netflix. Jeg har opdaget et nyt internetbaseret datingforhold. Et surrealt, fedt miks af det kyniske og joviale personificeret i karakteren Frank Underwood, som er helt igennem ubehagelig, men fantastisk...... spillet af Kevin Spacey. Og tak til Spacey der for en tid har forladt teateret ’The Old Vic’ i London for at begejstre mig. Der er generelt to årsager til mine FRANKofile tilbøjeligheder. For det første er Netflix’s remake af den tyve år gamle BBC serie House of Cards efter min menig et stykke tv...... anden grund, til at jeg er blevet Frankofil, er, at jeg ikke skal sidde og vente på næste søndag efter søndag efter søndag for at få lov at se næste afsnit. Netflix lagde alle tretten timer af sæson 2 ud på nettet. Jeg afgør selv, hvornår jeg skal have mere Frank! Men på trods af mit narkomanlignende...

  5. Letter: The link between the Reynolds shear stress and the large structures of turbulent Couette-Poiseuille flow

    Science.gov (United States)

    Gandía-Barberá, Sergio; Hoyas, Sergio; Oberlack, Martin; Kraheberger, Stefanie

    2018-04-01

    The length and width of the long and wide structures appearing in turbulent Couette flows are studied by means of a new dataset of direct numerical simulation covering a stepped transition from pure Couette flow to pure Poiseuille one, at Reτ ≈ 130, based on the stationary wall. The existence of these structures is linked to the averaged Reynolds stress, u v ¯ : as soon as in any part of the channel u v ¯ changes its sign, the structures disappear. The length and width of the rolls are found to be, approximately, 50h and 2.5h, respectively. For this Reynolds number, simulations with a domain shorter than 100h cannot properly describe the behaviour of the longest structures of the flow.

  6. Serum levels of RBP4 and adipose tissue levels of PTP1B are increased in obese men resident in northeast Scotland without associated changes in ER stress response genes

    Directory of Open Access Journals (Sweden)

    Hoggard N

    2012-05-01

    Full Text Available Nigel Hoggard1, Abdelali Agouni2, Nimesh Mody2, Mirela Delibegovic21Rowett Institute of Nutrition and Health, 2Integrative Physiology, University of Aberdeen, Aberdeen, UKBackground: Retinol-binding protein 4 (RBP4 is an adipokine identified as a marker of insulin resistance in mice and humans. Protein tyrosine phosphatase 1B (PTP1B expression levels as well as other genes involved in the endoplasmic reticulum (ER stress response are increased in adipose tissue of obese, high-fat-diet-fed mice. In this study we investigated if serum and/or adipose tissue RBP4 protein levels and expression levels of PTP1B and other ER stress-response genes are altered in obese and obese/diabetic men resident in northeast Scotland.Methods: We studied three groups of male volunteers: (1 normal/overweight (body mass index [BMI] < 30, (2 obese (BMI > 30, and (3 obese/diabetic (BMI > 30 controlling their diabetes either by diet or the antidiabetic drug metformin. We analyzed their serum and adipose tissue RBP4 protein levels as well as adipose tissue mRNA expression of PTP1B, binding immunoglobulin protein (BIP, activated transcription factor 4 (ATF4, and glucose-regulated protein 94 (GRP94 alongside other markers of adiposity (percentage body fat, leptin, cholesterol, triglycerides and insulin resistance (oral glucose tolerance tests, insulin, homeostatic model assessment–insulin resistance, C-reactive protein, and adiponectin.Results: We found that obese Scottish subjects had significantly higher serum RBP4 protein levels in comparison to the normal/overweight subjects (P < 0.01. Serum RBP4 levels were normalized in obese/diabetic subjects treated with diet or metformin (P < 0.05. Adipose tissue RBP4 protein levels were comparable between all three groups of subjects as were serum and adipose transthyretin levels. Adipose tissue PTP1B mRNA levels were increased in obese subjects in comparison to normal/overweight subjects (P < 0.05; however diet and/or metformin

  7. Fossil intermediate-depth earthquakes in subducting slabs linked to differential stress release

    Science.gov (United States)

    Scambelluri, Marco; Pennacchioni, Giorgio; Gilio, Mattia; Bestmann, Michel; Plümper, Oliver; Nestola, Fabrizio

    2017-12-01

    The cause of intermediate-depth (50-300 km) seismicity in subduction zones is uncertain. It is typically attributed either to rock embrittlement associated with fluid pressurization, or to thermal runaway instabilities. Here we document glassy pseudotachylyte fault rocks—the products of frictional melting during coseismic faulting—in the Lanzo Massif ophiolite in the Italian Western Alps. These pseudotachylytes formed at subduction-zone depths of 60-70 km in poorly hydrated to dry oceanic gabbro and mantle peridotite. This rock suite is a fossil analogue to an oceanic lithospheric mantle that undergoes present-day subduction. The pseudotachylytes locally preserve high-pressure minerals that indicate an intermediate-depth seismic environment. These pseudotachylytes are important because they are hosted in a near-anhydrous lithosphere free of coeval ductile deformation, which excludes an origin by dehydration embrittlement or thermal runaway processes. Instead, our observations indicate that seismicity in cold subducting slabs can be explained by the release of differential stresses accumulated in strong dry metastable rocks.

  8. Ondskaben er fortryllende

    DEFF Research Database (Denmark)

    Schubart, Rikke

    2013-01-01

    Indlæg om tv-serien Once Upon a Time (2011-), der hører til genren fairytale fantasy, der blander eventyr og fantasy. Her bliver alle eventyr brugt i en fortælling om alle beboere i en lille by, der ikke ved, at de i virkeligheden er eventyr-karakterer.......Indlæg om tv-serien Once Upon a Time (2011-), der hører til genren fairytale fantasy, der blander eventyr og fantasy. Her bliver alle eventyr brugt i en fortælling om alle beboere i en lille by, der ikke ved, at de i virkeligheden er eventyr-karakterer....

  9. A Review of Posttraumatic Stress Disorder and Obesity: Exploring the Link.

    Science.gov (United States)

    Masodkar, Kanaklakshmi; Johnson, Justine; Peterson, Michael J

    The incidence of posttraumatic stress disorder (PTSD) and obesity are on the rise, and evidence continues to support the observation that individuals who have symptoms of PTSD are more likely to develop obesity in their lifetime. The incidence of obesity in individuals with PTSD, including war veterans, women, and children exposed to trauma, is not solely attributable to psychotropic medications, but actual pathophysiologic mechanisms have not been fully delineated. Additionally, there are no studies to date demonstrating that obese individuals are predisposed to developing PTSD compared to the general population. This review explores the pathogenic pathways common to both PTSD and obesity, which include inflammation, the renin-angiotensin-aldosterone system, cellular structures, and neuroendocrine activation. A PubMed search for the years 2000-2015 with the keywords PTSD and obesity was performed. There were no language restrictions. More research is needed in human subjects to understand the pathogenic pathways common to both PTSD and obesity and to further clarify the direction of identified associations. Ideally, in the future, clinical interventions targeting these pathways may be able to modify the course of PTSD and obesity. The outcome of studies investigating the utility of angiotensin-converting enzyme inhibitors and angiotensin receptor blockers in the treatment of PTSD symptoms will be relevant to control both PTSD and obesity. Importantly, outcomes assessing inflammation, obesity, and cardiac function in the same subjects also should be determined. Research is needed to reveal the multidimensional and intricate relationship between PTSD and obesity. The implications of this research would be essential for treatment, prevention, and potential public health reforms.

  10. Small-Molecule Inhibition of Rho/MKL/SRF Transcription in Prostate Cancer Cells: Modulation of Cell Cycle, ER Stress, and Metastasis Gene Networks

    Directory of Open Access Journals (Sweden)

    Chris R. Evelyn

    2016-05-01

    Full Text Available Metastasis is the major cause of cancer deaths and control of gene transcription has emerged as a critical contributing factor. RhoA- and RhoC-induced gene transcription via the actin-regulated transcriptional co-activator megakaryocytic leukemia (MKL and serum response factor (SRF drive metastasis in breast cancer and melanoma. We recently identified a compound, CCG-1423, which blocks Rho/MKL/SRF-mediated transcription and inhibits PC-3 prostate cancer cell invasion. Here, we undertook a genome-wide expression study in PC-3 cells to explore the mechanism and function of this compound. There was significant overlap in the genes modulated by CCG-1423 and Latrunculin B (Lat B, which blocks the Rho/MKL/SRF pathway by preventing actin polymerization. In contrast, the general transcription inhibitor 5,6-dichloro-1-β-d-ribofuranosyl-1H-benzimidazole (DRB showed a markedly different pattern. Effects of CCG-1423 and Lat B on gene expression correlated with literature studies of MKL knock-down. Gene sets involved in DNA synthesis and repair, G1/S transition, and apoptosis were modulated by CCG-1423. It also upregulated genes involved in endoplasmic reticulum stress. Targets of the known Rho target transcription factor family E2F and genes related to melanoma progression and metastasis were strongly suppressed by CCG-1423. These results confirm the ability of our compound to inhibit expression of numerous Rho/MKL-dependent genes and show effects on stress pathways as well. This suggests a novel approach to targeting aggressive cancers and metastasis.

  11. Aging induced endoplasmic reticulum stress alters sleep and sleep homeostasis.

    Science.gov (United States)

    Brown, Marishka K; Chan, May T; Zimmerman, John E; Pack, Allan I; Jackson, Nicholas E; Naidoo, Nirinjini

    2014-06-01

    Alterations in the quality, quantity, and architecture of baseline and recovery sleep have been shown to occur during aging. Sleep deprivation induces endoplasmic reticular (ER) stress and upregulates a protective signaling pathway termed the unfolded protein response. The effectiveness of the adaptive unfolded protein response is diminished by age. Previously, we showed that endogenous chaperone levels altered recovery sleep in Drosophila melanogaster. We now report that acute administration of the chemical chaperone sodium 4-phenylbutyrate (PBA) reduces ER stress and ameliorates age-associated sleep changes in Drosophila. PBA consolidates both baseline and recovery sleep in aging flies. The behavioral modifications of PBA are linked to its suppression of ER stress. PBA decreased splicing of X-box binding protein 1 and upregulation of phosphorylated elongation initiation factor 2 α, in flies that were subjected to sleep deprivation. We also demonstrate that directly activating ER stress in young flies fragments baseline sleep and alters recovery sleep. Alleviating prolonged or sustained ER stress during aging contributes to sleep consolidation and improves recovery sleep or sleep debt discharge. Copyright © 2014 Elsevier Inc. All rights reserved.

  12. Scenen er blevet din

    DEFF Research Database (Denmark)

    Helms, Niels Henrik

    2008-01-01

    Verden kan betragtes som en skueplads med mange forskellige scener. I bidrgaet vil læseren kunne stifte bekendtskab med forskellige refleksioner over netop denne metaforik som analyseoptik i forhold til begrebet innovation. Afsættet er ønsket om at finde en måde at analysere og begrebsliggøre inn...

  13. Er tang fremtidens superfood?

    DEFF Research Database (Denmark)

    Holdt, Susan Løvstad

    seneste år fået øjnene op for tang indenfor områderne: biokemikalier og bioaktive stoffer, ekstraktion, gastronomi, produktudvikling, foder, bioraffinaderier, dyrkning osv. Men hvad er det tang kan? Dette foredrag vil vise at vi med tangdyrkning kan rykke mere bæredygtig fødevareproduktion ud på havet...

  14. Ideologi er noget bras

    DEFF Research Database (Denmark)

    Hansen, Brian Benjamin; Bjerre, Henrik Jøker

    fra den slovenske filosof Slavoj Zizek stilles imidlertid det spørgsmål i bogen, om ideologien idag ikke blot har taget en anden form. Vi lever i dag ikke i post-ideologiske tider. Snarere er braset selv – X Factor, forbrugsobjekter, underholdning, følelser og balloner – blevet den næsten usynlige...

  15. Riget - alt er tilladt

    DEFF Research Database (Denmark)

    2017-01-01

    Riget indtager en nøglestilling, når overgangen mellem faser i Triers produktion skal karakteriseres. Riget danner bro mellem den billedfascination og de radikale stileksperimenter, der præger Triers tidlige produktion, og den genre- og plotbevidsthed, der er typisk for film som Breaking the Waves...

  16. Hvad er tidligt sprog

    DEFF Research Database (Denmark)

    Skriver Jensen, Anders

    2009-01-01

    Forfatteren argumenterer for at "early literacy" kan oversættes til "tidligt sprog"; særligt når der er tale om en helhedsorienteret tilgang med vægt på sprog som et alsidigt medie for kommunikation- og betydningsskabelse. Med inspiration fra Jerome Bruners kulturpsykologi diskuteres mulige...

  17. Er danskerne racister

    DEFF Research Database (Denmark)

    Bech, Henning; Necef, Mehmet Ümit

    Igennem de seneste årtier er det blevet almindeligt at tale om, at der er en udbredt racisme i Danmark. Påstande om danskernes racisme, fremmedhad og diskrimination optræder dagligt i offentligheden og i medierne, og der henvises ofte til, hvad ’forskerne’ og de ’videnskabelige undersøgelser’ siger...... om emnet. Der kan da næppe heller være tvivl om, at der forekommer racistiske holdninger hos nogle danskere. Men er problemet så stort, som det gøres til i den offentlige debat? Bogen ønsker at afklare, hvorvidt der er videnskabelig dokumentation for påstandene om danskernes racisme. Den går i dybden...... med en række forskeres og eksperters udtalelser på området og præsenterer en grundig analyse af deres fremstilling af dansk racisme i forhold til emner som kultur, seksualitet, kriminalitet og arbejdsmarked....

  18. Translational control of human acetyl-CoA carboxylase 1 mRNA is mediated by an internal ribosome entry site in response to ER stress, serum deprivation or hypoxia mimetic CoCl2.

    Science.gov (United States)

    Damiano, Fabrizio; Testini, Mariangela; Tocci, Romina; Gnoni, Gabriele V; Siculella, Luisa

    2018-04-01

    Acetyl-CoA carboxylase 1 (ACC1) is a cytosolic enzyme catalyzing the rate limiting step in de novo fatty acid biosynthesis. There is mounting evidence showing that ACC1 is susceptible to dysregulation and that it is over-expressed in liver diseases associated with lipid accumulation and in several cancers. In the present study, ACC1 regulation at the translational level is reported. Using several experimental approaches, the presence of an internal ribosome entry site (IRES) has been established in the 5' untranslated region (5' UTR) of the ACC1 mRNA. Transfection experiments with the ACC1 5' UTR inserted in a dicistronic reporter vector show a remarkable increase in the downstream cistron translation, through a cap-independent mechanism. The endoplasmic reticulum (ER) stress condition and the related unfolded protein response (UPR), triggered by treatment with thapsigargin and tunicamycin, cause an increase of the cap-independent translation of ACC1 mRNA in HepG2 cells, despite the overall reduction in global protein synthesis. Other stress conditions, such as serum starvation and incubation with hypoxia mimetic agent CoCl 2 , up-regulate ACC1 expression in HepG2 cells at the translational level. Overall, these findings indicate that the presence of an IRES in the ACC1 5' UTR allows ACC1 mRNA translation in conditions that are inhibitory to cap-dependent translation. A potential involvement of the cap-independent translation of ACC1 in several pathologies, such as obesity and cancer, has been discussed. Copyright © 2018 Elsevier B.V. All rights reserved.

  19. Bifunctional role of ephrin A1-Eph system in stimulating cell proliferation and protecting cells from cell death through the attenuation of ER stress and inflammatory responses in bovine mammary epithelial cells.

    Science.gov (United States)

    Kang, Minkyung; Jeong, Wooyoung; Bae, Hyocheol; Lim, Whasun; Bazer, Fuller W; Song, Gwonhwa

    2018-03-01

    Structural and functional development of the mammary gland is constant in the mammary gland life cycle. Eph receptors and their ligands, ephrins, control events through cell-to-cell interactions during embryonic development, and adult tissue homeostasis; however, little information on participation of ephrin A1, a representative ligand of the Eph receptor, in the development and function of normal mammary glands is known. In this study, we demonstrated functional effects of the ephrin A1-Eph system and mechanisms of its action on bovine mammary epithelial (MAC-T) cells. The in vitro cultured MAC-T cells expressed the ephrin A1 ligand and EphA1, A2, A4, A7, and A8 among the eight members of the Eph A family. Our results revealed that ephrin A1 induced MAC-T cell cycle progression and stimulated cell proliferation with abundant expression of nucleic PCNA and cyclin D1 proteins. Additionally, ephrin A1 induced activation of intracellular signaling molecules involved in PI3 K/AKT and MAPK signaling, and the proliferation-stimulating effect of ephrin A1 was mediated by activation of these pathways. Furthermore, ephrin A1 influenced expression and activation of various ER stress-related proteins and protected MAC-T cells from stress-induced cell death. Finally, ephrin A1 alleviated LPS-induced cell death through down-regulation of inflammatory cytokines. In conclusion, the results of this study suggest that the Eph A-ephrin A1 system is a positive factor in the increase and maintenance of epithelial cells in mammary glands of cows; the signaling system contributes to development, remodeling, and functionality of normal mammary glands and could overcome mastitis in cows and other mammals. © 2017 Wiley Periodicals, Inc.

  20. Tribbles 3 Mediates Endoplasmic Reticulum Stress-Induced Insulin Resistance in Skeletal Muscle

    Science.gov (United States)

    Koh, Ho-Jin; Toyoda, Taro; Didesch, Michelle M.; Lee, Min-Young; Sleeman, Mark W.; Kulkarni, Rohit N.; Musi, Nicolas; Hirshman, Michael F.; Goodyear, Laurie J.

    2013-01-01

    Endoplasmic Reticulum (ER) stress has been linked to insulin resistance in multiple tissues but the role of ER stress in skeletal muscle has not been explored. ER stress has also been reported to increase tribbles 3 (TRB3) expression in multiple cell lines. Here, we report that high fat feeding in mice, and obesity and type 2 diabetes in humans significantly increases TRB3 and ER stress markers in skeletal muscle. Overexpression of TRB3 in C2C12 myotubes and mouse tibialis anterior muscles significantly impairs insulin signaling. Incubation of C2C12 cells and mouse skeletal muscle with ER stressors thapsigargin and tunicamycin increases TRB3 and impairs insulin signaling and glucose uptake, effects reversed in cells overexpressing RNAi for TRB3 and in muscles from TRB3 knockout mice. Furthermore, TRB3 knockout mice are protected from high fat diet-induced insulin resistance in skeletal muscle. These data demonstrate that TRB3 mediates ER stress-induced insulin resistance in skeletal muscle. PMID:23695665

  1. Endoplasmic reticulum stress in obesity and obesity-related disorders: An expanded view.

    Science.gov (United States)

    Pagliassotti, Michael J; Kim, Paul Y; Estrada, Andrea L; Stewart, Claire M; Gentile, Christopher L

    2016-09-01

    The endoplasmic reticulum (ER) is most notable for its central roles in calcium ion storage, lipid biosynthesis, and protein sorting and processing. By virtue of its extensive membrane contact sites that connect the ER to most other organelles and to the plasma membrane, the ER can also regulate diverse cellular processes including inflammatory and insulin signaling, nutrient metabolism, and cell proliferation and death via a signaling pathway called the unfolded protein response (UPR). Chronic UPR activation has been observed in liver and/or adipose tissue of dietary and genetic murine models of obesity, and in human obesity and non-alcoholic fatty liver disease (NAFLD). Activation of the UPR in obesity and obesity-related disorders likely has two origins. One linked to classic ER stress involving the ER lumen and one linked to alterations to the ER membrane environment. This review discusses both of these origins and also considers the role of post-translational protein modifications, such as acetylation and palmitoylation, and ER-mitochondrial interactions to obesity-mediated impairments in the ER and activation of the UPR. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. Sigma-1 receptor chaperone at the ER-mitochondrion interface mediates the mitochondrion-ER-nucleus signaling for cellular survival.

    Directory of Open Access Journals (Sweden)

    Tomohisa Mori

    Full Text Available The membrane of the endoplasmic reticulum (ER of a cell forms contacts directly with mitochondria whereby the contact is referred to as the mitochondrion-associated ER membrane or the MAM. Here we found that the MAM regulates cellular survival via an MAM-residing ER chaperone the sigma-1 receptor (Sig-1R in that the Sig-1R chaperones the ER stress sensor IRE1 to facilitate inter-organelle signaling for survival. IRE1 is found in this study to be enriched at the MAM in CHO cells. We found that IRE1 is stabilized at the MAM by Sig-1Rs when cells are under ER stress. Sig-1Rs stabilize IRE1 and thus allow for conformationally correct IRE1 to dimerize into the long-lasting, activated endonuclease. The IRE1 at the MAM also responds to reactive oxygen species derived from mitochondria. Therefore, the ER-mitochondrion interface serves as an important subcellular entity in the regulation of cellular survival by enhancing the stress-responding signaling between mitochondria, ER, and nucleus.

  3. Sigma-1 receptor chaperone at the ER-mitochondrion interface mediates the mitochondrion-ER-nucleus signaling for cellular survival.

    Science.gov (United States)

    Mori, Tomohisa; Hayashi, Teruo; Hayashi, Eri; Su, Tsung-Ping

    2013-01-01

    The membrane of the endoplasmic reticulum (ER) of a cell forms contacts directly with mitochondria whereby the contact is referred to as the mitochondrion-associated ER membrane or the MAM. Here we found that the MAM regulates cellular survival via an MAM-residing ER chaperone the sigma-1 receptor (Sig-1R) in that the Sig-1R chaperones the ER stress sensor IRE1 to facilitate inter-organelle signaling for survival. IRE1 is found in this study to be enriched at the MAM in CHO cells. We found that IRE1 is stabilized at the MAM by Sig-1Rs when cells are under ER stress. Sig-1Rs stabilize IRE1 and thus allow for conformationally correct IRE1 to dimerize into the long-lasting, activated endonuclease. The IRE1 at the MAM also responds to reactive oxygen species derived from mitochondria. Therefore, the ER-mitochondrion interface serves as an important subcellular entity in the regulation of cellular survival by enhancing the stress-responding signaling between mitochondria, ER, and nucleus.

  4. Stress

    Science.gov (United States)

    ... can be life-saving. But chronic stress can cause both physical and mental harm. There are at least three different types of stress: Routine stress related to the pressures of work, family, and other daily responsibilities Stress brought about ...

  5. Er HR ude i tovene?

    DEFF Research Database (Denmark)

    Poulfelt, Flemming

    2015-01-01

    HR: Er der behov for nytænkning i HR-land? Artikler i Harvard Business Review - bakket op af en dansk undersøgelse - konkluderer, at HR stadig mangler gennemslagskraft i virksomhederne. Er HR ude i tovene? ... For i undersøgelsen "Ny Dansk Ledelse" (maj 2015), som er baseret på danske lederes...

  6. Distinct Trajectories of Cortisol Response to Prolonged Acute Stress Are Linked to Affective Responses and Hippocampal Gray Matter Volume in Healthy Females.

    Science.gov (United States)

    Admon, Roee; Treadway, Michael T; Valeri, Linda; Mehta, Malavika; Douglas, Samuel; Pizzagalli, Diego A

    2017-08-16

    The development of robust laboratory procedures for acute stress induction over the last decades has greatly advanced our understanding of stress responses in humans and their underlying neurobiological mechanisms. Nevertheless, attempts to uncover linear relationships among endocrine, neural, and affective responses to stress have generally yielded inconsistent results. Here, 79 healthy females completed a well established laboratory procedure of acute stress induction that was modified to prolong its effect. Endocrinological and subjective affect assessments revealed stress-induced increases in cortisol release and negative affect that persisted 65 and 100 min after stress onset, respectively, confirming a relatively prolonged acute stress induction. Applying latent class linear mixed modeling on individuals' patterns of cortisol responses identified three distinct trajectories of cortisol response: the hyper-response ( n = 10), moderate-response ( n = 21), and mild-response ( n = 48) groups. Notably, whereas all three groups exhibited a significant stress-induced increase in cortisol release and negative affect, the hyper-response and mild-response groups both reported more negative affect relative to the moderate-response group. Structural MRI revealed no group differences in hippocampal and amygdala volumes, yet a continuous measure of cortisol response (area under the curve) showed that high and low levels of stress-induced cortisol release were associated with less hippocampal gray matter volume compared with moderate cortisol release. Together, these results suggest that distinct trajectories of cortisol response to prolonged acute stress among healthy females may not be captured by conventional linear analyses; instead, quadratic relations may better describe links between cortisol response to stress and affective responses, as well as hippocampal structural variability. SIGNIFICANCE STATEMENT Despite substantial research, it is unclear whether and how

  7. Facebook er internettet nu

    DEFF Research Database (Denmark)

    Tække, Jesper

    2014-01-01

    Den store vision for world wide web var, at alle kunne få ubegrænset adgang til alverdens information. www var mangfoldigt og anarkistisk. I dag er der rigtig mange, der kun bruger nettet til at være på Facebook. Hvad bruger Facebook det til? Og hvad gør det ved vores udsyn?......Den store vision for world wide web var, at alle kunne få ubegrænset adgang til alverdens information. www var mangfoldigt og anarkistisk. I dag er der rigtig mange, der kun bruger nettet til at være på Facebook. Hvad bruger Facebook det til? Og hvad gør det ved vores udsyn?...

  8. Pedagogical Staff in Children's Day Care Centres in Germany--Links between Working Conditions, Job Satisfaction, Commitment and Work-Related Stress

    Science.gov (United States)

    Schreyer, Inge; Krause, Martin

    2016-01-01

    This article investigates links between staff working conditions in children's day care centres ("Kindertageseinrichtungen"--known as "Kitas" in Germany), job satisfaction, commitment and perceived stress at work. Data are based on the nationwide, representative questionnaire survey AQUA ("Arbeitsplatz und Qualität in…

  9. Serotonin Transporter-Linked Polymorphic Region (5-HTTLPR) Genotype and Stressful Life Events Interact to Predict Preschool-Onset Depression: A Replication and Developmental Extension

    Science.gov (United States)

    Bogdan, Ryan; Agrawal, Arpana; Gaffrey, Michael S.; Tillman, Rebecca; Luby, Joan L.

    2014-01-01

    Background: Scientific enthusiasm about gene × environment interactions, spurred by the 5-HTTLPR (serotonin transporter-linked polymorphic region) × SLEs (stressful life events) interaction predicting depression, have recently been tempered by sober realizations of small effects and meta-analyses reaching opposing conclusions. These mixed findings…

  10. Hvad er en by?

    DEFF Research Database (Denmark)

    Parby, Jakob; Thelle, Mikkel

    2011-01-01

    Nytænkning. Med de moderne megabyer er det slut med at forestille sig byen som noget, man planlægger og giver form. Vi skal lære at se dem som vildtvoksende urbane landskaber. Artikel om megabyer, byudvikling og forestillingen om byen gennem tiderne. Skrevet delvist i anledning af åbningen af...... udstillingen Citambulos på Københavns Museum, der handlede om Mexico City....

  11. Role of endoplasmic reticulum stress in 12/15-lipoxygenase-induced retinal microvascular dysfunction in a mouse model of diabetic retinopathy.

    Science.gov (United States)

    Elmasry, Khaled; Ibrahim, Ahmed S; Saleh, Heba; Elsherbiny, Nehal; Elshafey, Sally; Hussein, Khaled A; Al-Shabrawey, Mohamed

    2018-05-01

    -derived metabolites both in vitro and in vivo. We also found that 15-HETE increases the intracellular calcium in HRECs. ER stress contributes to 12/15-LO-induced retinal inflammation in diabetic retinopathy via activation of NADPH oxidase and VEGFR2. Perturbation of calcium homeostasis in the retina might also play a role in linking 12/15-LO to retinal ER stress and subsequent microvascular dysfunction in diabetic retinopathy.

  12. Er nogen mere lige end andre?

    DEFF Research Database (Denmark)

    Møberg, Rasmus Juul

    normativ fordring. Kohlis (2007) formulering af normalbiografien er en tredeling af livsforløbet (uddannelse – arbejdsliv - pension). En tredeling der bliver kritiseret for at være køns- og familieblind, hvorfor linked lives-begrebet bliver introduceret. Begrebet har den teoretiske implikation...... analyser tager højde for afhængighed over tid i den afhængige variabel. Overordnet set er det tre aspekter af datas karakteristika, der fordrer specielle metoder. Det er censurering af data, tidsmæssig variation i de uafhængige variable samt potentiel korrelation mellem målingerne af den afhængige variabel...... for disse ændringer, hvorved risikoen for en given transition beregnes mere præcist. Afhandlingens empiriske grundlag er registerdata for alle personer i Danmark, der tilhører fødselskohorterne 1968, 1972 og 1976. Data dækker over personlige, familiære forhold og oplysninger på arbejdspladsniveau, hvor den...

  13. Obesity-Induced Endoplasmic Reticulum Stress Causes Lung Endothelial Dysfunction and Promotes Acute Lung Injury.

    Science.gov (United States)

    Shah, Dilip; Romero, Freddy; Guo, Zhi; Sun, Jianxin; Li, Jonathan; Kallen, Caleb B; Naik, Ulhas P; Summer, Ross

    2017-08-01

    Obesity is a significant risk factor for acute respiratory distress syndrome. The mechanisms underlying this association are unknown. We recently showed that diet-induced obese mice exhibit pulmonary vascular endothelial dysfunction, which is associated with enhanced susceptibility to LPS-induced acute lung injury. Here, we demonstrate that lung endothelial dysfunction in diet-induced obese mice coincides with increased endoplasmic reticulum (ER) stress. Specifically, we observed enhanced expression of the major sensors of misfolded proteins, including protein kinase R-like ER kinase, inositol-requiring enzyme α, and activating transcription factor 6, in whole lung and in primary lung endothelial cells isolated from diet-induced obese mice. Furthermore, we found that primary lung endothelial cells exposed to serum from obese mice, or to saturated fatty acids that mimic obese serum, resulted in enhanced expression of markers of ER stress and the induction of other biological responses that typify the lung endothelium of diet-induced obese mice, including an increase in expression of endothelial adhesion molecules and a decrease in expression of endothelial cell-cell junctional proteins. Similar changes were observed in lung endothelial cells and in whole-lung tissue after exposure to tunicamycin, a compound that causes ER stress by blocking N-linked glycosylation, indicating that ER stress causes endothelial dysfunction in the lung. Treatment with 4-phenylbutyric acid, a chemical protein chaperone that reduces ER stress, restored vascular endothelial cell expression of adhesion molecules and protected against LPS-induced acute lung injury in diet-induced obese mice. Our work indicates that fatty acids in obese serum induce ER stress in the pulmonary endothelium, leading to pulmonary endothelial cell dysfunction. Our work suggests that reducing protein load in the ER of pulmonary endothelial cells might protect against acute respiratory distress syndrome in obese

  14. Exogenous FABP4 induces endoplasmic reticulum stress in HepG2 liver cells.

    Science.gov (United States)

    Bosquet, Alba; Guaita-Esteruelas, Sandra; Saavedra, Paula; Rodríguez-Calvo, Ricardo; Heras, Mercedes; Girona, Josefa; Masana, Lluís

    2016-06-01

    Fatty acid binding protein 4 (FABP4) is an intracellular fatty acid (FA) carrier protein that is, in part, secreted into circulation. Circulating FABP4 levels are increased in obesity, diabetes and other insulin resistance (IR) diseases. FAs contribute to IR by promoting endoplasmic reticulum stress (ER stress) and altering the insulin signaling pathway. The effect of FABP4 on ER stress in the liver is not known. The aim of this study was to investigate whether exogenous FABP4 (eFABP4) is involved in the lipid-induced ER stress in the liver. HepG2 cells were cultured with eFABP4 (40 ng/ml) with or without linoleic acid (LA, 200 μM) for 18 h. The expression of ER stress-related markers was determined by Western blotting (ATF6, EIF2α, IRE1 and ubiquitin) and real-time PCR (ATF6, CHOP, EIF2α and IRE1). Apoptosis was studied by flow cytometry using Annexin V-FITC and propidium iodide staining. eFABP4 increased the ER stress markers ATF6 and IRE1 in HepG2 cells. This effect led to insulin resistance mediated by changes in AKT and JNK phosphorylation. Furthermore, eFABP4 significantly induced both apoptosis, as assessed by flow cytometry, and CHOP expression, without affecting necrosis and ubiquitination. The presence of LA increased the ER stress response induced by eFABP4. eFABP4, per se, induces ER stress and potentiates the effect of LA in HepG2 cells, suggesting that FABP4 could be a link between obesity-associated metabolic abnormalities and hepatic IR mechanisms. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  15. Having your cake and eating it too: A habit of comfort food may link chronic social stress exposure and acute stress-induced cortisol hyporesponsiveness.

    Science.gov (United States)

    Stress has been tied to changes in eating behavior and food choice. Previous studies in rodents have shown that chronic stress increases palatable food intake which, in turn, increases mesenteric fat and inhibits acute stress-induced hypothalamic-pituitary-adrenal (HPA) axis activity. The effect of...

  16. HIV protease inhibitors disrupt lipid metabolism by activating endoplasmic reticulum stress and inhibiting autophagy activity in adipocytes.

    Directory of Open Access Journals (Sweden)

    Beth S Zha

    Full Text Available HIV protease inhibitors (PI are core components of Highly Active Antiretroviral Therapy (HAART, the most effective treatment for HIV infection currently available. However, HIV PIs have now been linked to lipodystrophy and dyslipidemia, which are major risk factors for cardiovascular disease and metabolic syndrome. Our previous studies have shown that HIV PIs activate endoplasmic reticulum (ER stress and disrupt lipid metabolism in hepatocytes and macrophages. Yet, little is known on how HIV PIs disrupt lipid metabolism in adipocytes, a major cell type involved in the pathogenesis of metabolic syndrome.Cultured and primary mouse adipocytes and human adipocytes were used to examine the effect of frequently used HIV PIs in the clinic, lopinavir/ritonavir, on adipocyte differentiation and further identify the underlying molecular mechanism of HIV PI-induced dysregulation of lipid metabolism in adipocytes. The results indicated that lopinavir alone or in combination with ritonavir, significantly activated the ER stress response, inhibited cell differentiation, and induced cell apoptosis in adipocytes. In addition, HIV PI-induced ER stress was closely linked to inhibition of autophagy activity. We also identified through the use of primary adipocytes of CHOP(-/- mice that CHOP, the major transcriptional factor of the ER stress signaling pathway, is involved in lopinavir/ritonavir-induced inhibition of cell differentiation in adipocytes. In addition, lopinavir/ritonavir-induced ER stress appears to be associated with inhibition of autophagy activity in adipocytes.Activation of ER stress and impairment of autophagy activity are involved in HIV PI-induced dysregulation of lipid metabolism in adipocytes. The key components of ER stress and autophagy signaling pathways are potential therapeutic targets for HIV PI-induced metabolic side effects in HIV patients.

  17. Daily Social Interactions and the Biological Stress Response: Are There Age Differences in Links Between Social Interactions and Alpha-Amylase?

    Science.gov (United States)

    Birditt, Kira S; Tighe, Lauren A; Nevitt, Michael R; Zarit, Steven H

    2017-12-12

    According to the strength and vulnerability integration (SAVI) model, older people are better able to avoid negative social interactions than younger people, but when they do experience negative interactions, they are equally or more emotionally and physiologically reactive than younger people. Less is known about the links between daily negative and positive social encounters and the sympathetic adrenal medullary system (a key stress pathway) and whether there are age differences in these links. This study considers whether negative and positive social interactions are associated with diurnal alpha-amylase (a measure of the sympathetic adrenal medullary system) and whether there are differences in these links by age. Participants were from the Daily Health, Stress, and Relationship Study, which includes a random sample of 89 individuals (aged 40-95) who completed 14 days of daily diary interviews and provided saliva samples four times a day (wake, 30 min after wake, lunch, and bedtime) for four of those days that were assayed for alpha-amylase. Days in which people reported more negative interactions were associated with flatter morning declines in alpha-amylase, indicating greater stress. Links between positive interactions and diurnal alpha-amylase varied by age group. Findings are consistent with the SAVI model indicating that older adults respond differently to social stimuli than younger people. © The Author(s) 2017. Published by Oxford University Press on behalf of The Gerontological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  18. Hvad er tekstfiktion?

    DEFF Research Database (Denmark)

    Widell, Peter

    2012-01-01

    artiklen er et bidrag til belysningen af genteori og bygger på ideen om at karakterisere skønlitteratur som et restringeret sæt af universelle tekstparametre. Artiklen fokuserer især på parametren tekstfiktion, hvor jeg forsvarer den position, at en fiktiv tekst hverken kan karakteriseres som en ...... intentioner. Det betyder dog ikke, at sandhed og mening ikke spiller noget rolle ved identifikationen af fiktion, sådan som det hævdes af Walsh og andre....

  19. A Molecular Web: Endoplasmic Reticulum Stress, Inflammation and Oxidative Stress

    Directory of Open Access Journals (Sweden)

    Namrata eChaudhari

    2014-07-01

    Full Text Available Execution of fundamental cellular functions demands regulated protein folding homeostasis. Endoplasmic reticulum (ER is an active organelle existing to implement this function by folding and modifying secretory and membrane proteins. Loss of protein folding homeostasis is central to various diseases and budding evidences suggest ER stress as being a major contributor in the development or pathology of a diseased state besides other cellular stresses. The trigger for diseases may be diverse but, inflammation and/or ER stress may be basic mechanisms increasing the severity or complicating the condition of the disease. Chronic ER stress and activation of the unfolded protein response (UPR through endogenous or exogenous insults may result in impaired calcium and redox homeostasis, oxidative stress via protein overload thereby also influencing vital mitochondrial functions. Calcium released from the ER augments the production of mitochondrial Reactive Oxygen Species (ROS. Toxic accumulation of ROS within ER and mitochondria disturb fundamental organelle functions. Sustained ER stress is known to potentially elicit inflammatory responses via UPR pathways. Additionally, ROS generated through inflammation or mitochondrial dysfunction could accelerate ER malfunction. Dysfunctional UPR pathways has been associated with a wide range of diseases including several neurodegenerative diseases, stroke, metabolic disorders, cancer, inflammatory disease, diabetes mellitus, cardiovascular disease and others. In this review we have discussed the UPR signaling pathways, and networking between ER stress induced inflammatory pathways, oxidative stress and mitochondrial signaling events which further induce or exacerbate ER stress.

  20. Poverty and involuntary engagement stress responses: examining the link to anxiety and aggression within low-income families.

    Science.gov (United States)

    Wolff, Brian C; Santiago, Catherine DeCarlo; Wadsworth, Martha E

    2009-05-01

    Families living with the burdens of poverty-related stress are at risk for developing a range of psychopathology. The present study examines the year-long prospective relationships among poverty-related stress, involuntary engagement stress response (IESR) levels, and anxiety symptoms and aggression in an ethnically diverse sample of 98 families (300 individual family members) living at or below 150% of the US federal poverty line. Hierarchical Linear Modeling (HLM) moderator model analyses provided strong evidence that IESR levels moderated the influence of poverty-related stress on anxiety symptoms and provided mixed evidence for the same interaction effect on aggression. Higher IESR levels, a proxy for physiological stress reactivity, worsened the impact of stress on symptoms. Understanding how poverty-related stress and involuntary stress responses affect psychological functioning has implications for efforts to prevent or reduce psychopathology, particularly anxiety, among individuals and families living in poverty.

  1. Increased levels of thioredoxin in patients with abdominal aortic aneurysms (AAAs). A potential link of oxidative stress with AAA evolution

    DEFF Research Database (Denmark)

    Martinez-Pinna, R; Lindholt, Jes S.; Blanco-Colio, L M

    2010-01-01

    Oxidative stress is a main mechanism involved in vascular pathologies. Increased thioredoxin (TRX) levels have been observed in several oxidative stress-associated cardiovascular diseases. We aim to test the potential role of TRX as a biomarker of oxidative stress in abdominal aortic aneurysm (AAA)....

  2. Coregulation of endoplasmic reticulum stress and oxidative stress in neuropathic pain and disinhibition of the spinal nociceptive circuitry.

    Science.gov (United States)

    Ge, Yanhu; Jiao, Yingfu; Li, Peiying; Xiang, Zhenghua; Li, Zhi; Wang, Long; Li, Wenqian; Gao, Hao; Shao, Jiayun; Wen, Daxiang; Yu, Weifeng

    2018-05-01

    The accumulation of unfolded or misfolded proteins in the endoplasmic reticulum (ER) lumen leads to ER stress, which is related to cellular reactive oxygen species production. Neuropathic pain may result from spinal dorsal horn (SDH) ER stress. In this study, we examined the cause-effect relationship between ER stress and neuropathic pain using the spinal nerve ligation (SNL) rat model. We showed that ER stress was mutually promotive with oxidative stress during the process. We also tested the hypothesis that spinal sensitization arose from reduced activities of GABA-ergic interneurons and that spinal sensitization was mediated by SDH ER stress. Other important findings in this study including the following: (1) nociceptive behavior was alleviated in SNL rat as long as tauroursodeoxycholic acid injections were repeated to inhibit ER stress; (2) inducing SDH ER stress in healthy rat resulted in mechanical hyperalgesia; (3) blocking protein disulfide isomerase pharmacologically reduced ER stress and nociceptive behavior in SNL rat; (4) cells in the dorsal horn with elevated ER stress were mainly neurons; and (5) whole-cell recordings made in slide preparations revealed significant inhibition of GABA-ergic interneuron activity in the dorsal horn with ER stress vs in the healthy dorsal horn. Taken together, results of the current study demonstrate that coregulation of ER stress and oxidative stress played an important role in neuropathic pain process. Inhibiting SDH ER stress could be a potential novel strategy to manage neuropathic pain.

  3. Pre-emptive Quality Control Protects the ER from Protein Overload via the Proximity of ERAD Components and SRP

    Directory of Open Access Journals (Sweden)

    Hisae Kadowaki

    2015-11-01

    Full Text Available Cells possess ER quality control systems to adapt to ER stress and maintain their function. ER-stress-induced pre-emptive quality control (ER pQC selectively degrades ER proteins via translocational attenuation during ER stress. However, the molecular mechanism underlying this process remains unclear. Here, we find that most newly synthesized endogenous transthyretin proteins are rerouted to the cytosol without cleavage of the signal peptide, resulting in proteasomal degradation in hepatocytes during ER stress. Derlin family proteins (Derlins, which are ER-associated degradation components, reroute specific ER proteins, but not ER chaperones, from the translocon to the proteasome through interactions with the signal recognition particle (SRP. Moreover, the cytosolic chaperone Bag6 and the AAA-ATPase p97 contribute to the degradation of ER pQC substrates. These findings demonstrate that Derlins-mediated substrate-specific rerouting and Bag6- and p97-mediated effective degradation contribute to the maintenance of ER homeostasis without the need for translocation.

  4. Rouw mag er zijn

    Directory of Open Access Journals (Sweden)

    Marlieke Moors

    2015-12-01

    Full Text Available ABSTRACTGrieving is allowedGrief is a human experience. Every form of loss shapes you into the human being you are today. Contrary to what earlier, unproven grief models postulate, grief does not have an end point. That is, bereavement does not have to be completely processed, but it should be integrated into someone’s life. The outdated grief models were often interpreted and used in a normative way, which led to a normative standard model. This portraits the belief that every mourner would experience similar symptoms and would go through a fixed pattern of phases. However, the updated vision emphasizes the individual and unique process of coping with loss: norms concerning grief should be banned. By means of literature research, interviews with professionals and personal experiences, it became clear that finding an equilibrium between restoration-orientated and loss-orientated coping styles is most beneficial. An important aspect in finding this balance is meaningfulness. Furthermore, the ability to bear a loss and to adapt accordingly are important components. Lastly, attaching significance to a loss is a constructive way of integrating the loss into one’s life. The death of a loved one should therefore not be forgotten or tucked away. After all, grief is the price we pay for love. SAMENVATTINGRouw mag er zijnRouw is een menselijke ervaring en elk verlies vormt je als mens. Rouw heeft, in tegenstelling tot wat de verouderde, niet bewezen rouwmodellen beweren, geen eindpunt. Verlies hoeft namelijk niet verwerkt te worden, maar moet juist geïntegreerd worden in iemands leven. De verouderde rouwmodellen zijn vaak normatief opgevat en toegepast, waaruit een normatief standaardmodel is ontstaan. Daarbij werd gedacht dat elke rouwende dezelfde symptomen zou vertonen en het rouwproces volgens vaste fasen zou verlopen. Binnen de vernieuwde visie wordt er juist van uitgegaan dat elk individu een unieke manier van reageren op rouw heeft. Er zou

  5. Changes in the Phosphoproteome and Metabolome Link Early Signaling Events to Rearrangement of Photosynthesis and Central Metabolism in Salinity and Oxidative Stress Response in Arabidopsis.

    Science.gov (United States)

    Chen, Yanmei; Hoehenwarter, Wolfgang

    2015-12-01

    Salinity and oxidative stress are major factors affecting and limiting the productivity of agricultural crops. The molecular and biochemical processes governing the plant response to abiotic stress have often been researched in a reductionist manner. Here, we report a systemic approach combining metabolic labeling and phosphoproteomics to capture early signaling events with quantitative metabolome analysis and enzyme activity assays to determine the effects of salt and oxidative stress on plant physiology. K(+) and Na(+) transporters showed coordinated changes in their phosphorylation pattern, indicating the importance of dynamic ion homeostasis for adaptation to salt stress. Unique phosphorylation sites were found for Arabidopsis (Arabidopsis thaliana) SNF1 kinase homolog10 and 11, indicating their central roles in the stress-regulated responses. Seven Sucrose Non-fermenting1-Related Protein Kinase2 kinases showed varying levels of phosphorylation at multiple serine/threonine residues in their kinase domain upon stress, showing temporally distinct modulation of the various isoforms. Salinity and oxidative stress also lead to changes in protein phosphorylation of proteins central to photosynthesis, in particular the kinase State Transition Protein7 required for state transition and light-harvesting II complex proteins. Furthermore, stress-induced changes of the phosphorylation of enzymes of central metabolism were observed. The phosphorylation patterns of these proteins were concurrent with changes in enzyme activity. This was reflected by altered levels of metabolites, such as the sugars sucrose and fructose, glycolysis intermediates, and amino acids. Together, our study provides evidence for a link between early signaling in the salt and oxidative stress response that regulates the state transition of photosynthesis and the rearrangement of primary metabolism. © 2015 American Society of Plant Biologists. All Rights Reserved.

  6. Han er her endnu

    DEFF Research Database (Denmark)

    Bonde, Lisbeth

    2012-01-01

    Interview med den kinesiske aktivist og billedkunstner Ai Weiwei, der sad fængslet i 81 dage i 2011. Hans pas er stadig (i februar 2014) inddraget af myndighederne, så han kan ikke forlade landet, selv om han har betalt en bøde på 13 mio. kr. for ”skatteunddragelse”. Både i sin kunst og i sine...... mange aktioner retter han en hård kritik af det korrupte kinesiske styre, som træder menneskerettighederne under fode. Men uretfærdighedsfølelsen har sin pris i et totalitært og topstyret samfund. Ligegyldigt, hvor mange vigtige udstillinger han har i udlandet, må han blive hjemme og styre aktiviteterne...... via cyberspace. I interviewet fortæller Ai Weiwei om de personlige omkostninger, som hans kamp mod systemet indebærer....

  7. Depressive Symptom Trajectories, Aging-Related Stress, and Sexual Minority Stress Among Midlife and Older Gay Men: Linking Past and Present.

    Science.gov (United States)

    Wight, Richard G; Harig, Frederick; Aneshensel, Carol S; Detels, Roger

    2016-05-01

    We concatenate 28 years of historical depressive symptoms data from a longitudinal cohort study of U.S. gay men who are now midlife and older (n = 312), with newly collected survey data to analyze trajectories of depressive symptomatology over time and their impact on associations between current stress and depressive symptoms. Symptoms are high over time, on average, and follow multiple trajectories. Aging-related stress, persistent life-course sexual minority stress, and increasing sexual minority stress are positively associated with depressive symptoms, net of symptom trajectories. Men who had experienced elevated and increasing trajectories of depressive symptoms are less susceptible to the damaging effects of aging-related stress than those who experienced a decrease in symptoms over time. Intervention efforts aimed at assisting gay men as they age should take into account life-course depressive symptom histories to appropriately contextualize the health effects of current social stressors. © The Author(s) 2015.

  8. An ER protein functionally couples neutral lipid metabolism on lipid droplets to membrane lipid synthesis in the ER.

    Science.gov (United States)

    Markgraf, Daniel F; Klemm, Robin W; Junker, Mirco; Hannibal-Bach, Hans K; Ejsing, Christer S; Rapoport, Tom A

    2014-01-16

    Eukaryotic cells store neutral lipids such as triacylglycerol (TAG) in lipid droplets (LDs). Here, we have addressed how LDs are functionally linked to the endoplasmic reticulum (ER). We show that, in S. cerevisiae, LD growth is sustained by LD-localized enzymes. When LDs grow in early stationary phase, the diacylglycerol acyl-transferase Dga1p moves from the ER to LDs and is responsible for all TAG synthesis from diacylglycerol (DAG). During LD breakdown in early exponential phase, an ER membrane protein (Ice2p) facilitates TAG utilization for membrane-lipid synthesis. Ice2p has a cytosolic domain with affinity for LDs and is required for the efficient utilization of LD-derived DAG in the ER. Ice2p breaks a futile cycle on LDs between TAG degradation and synthesis, promoting the rapid relocalization of Dga1p to the ER. Our results show that Ice2p functionally links LDs with the ER and explain how cells switch neutral lipid metabolism from storage to consumption. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  9. An ER Protein Functionally Couples Neutral Lipid Metabolism on Lipid Droplets to Membrane Lipid Synthesis in the ER

    Directory of Open Access Journals (Sweden)

    Daniel F. Markgraf

    2014-01-01

    Full Text Available Eukaryotic cells store neutral lipids such as triacylglycerol (TAG in lipid droplets (LDs. Here, we have addressed how LDs are functionally linked to the endoplasmic reticulum (ER. We show that, in S. cerevisiae, LD growth is sustained by LD-localized enzymes. When LDs grow in early stationary phase, the diacylglycerol acyl-transferase Dga1p moves from the ER to LDs and is responsible for all TAG synthesis from diacylglycerol (DAG. During LD breakdown in early exponential phase, an ER membrane protein (Ice2p facilitates TAG utilization for membrane-lipid synthesis. Ice2p has a cytosolic domain with affinity for LDs and is required for the efficient utilization of LD-derived DAG in the ER. Ice2p breaks a futile cycle on LDs between TAG degradation and synthesis, promoting the rapid relocalization of Dga1p to the ER. Our results show that Ice2p functionally links LDs with the ER and explain how cells switch neutral lipid metabolism from storage to consumption.

  10. De 9 P’er

    DEFF Research Database (Denmark)

    Rennison, Betina Wolfgang

    2017-01-01

    Ledere skal i dag selv skabe deres eget rum til ledelse, men hvad er med til at sætte det, hvilke betingelser og udfordringer er der, og hvordan kan lederne skabe sig selv i et hav af forventninger? Dette katalog inviterer til refleksion herom....

  11. Fremtidens undervisningsmiljøer

    DEFF Research Database (Denmark)

    2013-01-01

    Som oplægget til dette temanummer af LOM også indikerede, så sætter vi fokus på fremtidens undervisningsmiljøer på universiteter og UCer. Fremtidens undervisningsmiljøer har mange facetter, hvilket samlingen af artikler også illustrerer. “Fremtidens Undervisningsmiljø” handler om eksisterende erf...

  12. Den rige personlighed er livsduelig

    DEFF Research Database (Denmark)

    Holm, Claus

    2015-01-01

    For omtrent 160 år siden formulerede Karl Marx forestillingen om en rig individualitet som det kommunistiske samfunds individideal. I dag får forestillingen relevans. Lyder det lidt besynderligt, er det ikke mærkeligt. For de fleste af os går næppe rundt og tror, at vi er lige på trapperne til...

  13. Humor er en alvorlig sag

    DEFF Research Database (Denmark)

    Søltoft, Pia

    2016-01-01

    I modsætning til ironi er humor for Kierkegaard fællesskabsgivende – ironikeren hævder sig selv, men humoristen har sympati med den, man ler med. Humor er hos Kierkegaard udtryk for, at humoristen forliger sig med tilværelsen og dens luner, og dermed grænser humoren hos Kierkegaard op til det...

  14. Brandulykker er et socialt problem

    DEFF Research Database (Denmark)

    Leth, Peter Mygind

    1999-01-01

    Det er de gamle, de syge, de handicappede og alkoholikerne, der brænder inde. Typisk har de tabt en cigaret eller tændstik på tøjet. En del af disse brandulykker opstår på plejehjem og andre institutioner, hvor det ofte er plejepersonalet, der opdager og slukker branden....

  15. Stress

    Science.gov (United States)

    ... taking care of an aging parent. With mental stress, the body pumps out hormones to no avail. Neither fighting ... with type 1 diabetes. This difference makes sense. Stress blocks the body from releasing insulin in people with type 2 ...

  16. Redox systems are a potential link between drought stress susceptibility and the exacerbation of aflatoxin contamination in crops

    Science.gov (United States)

    Drought stress aggravates Aspergillus flavus infection and aflatoxin contamination in oilseed crops such as peanut and maize. Reactive oxygen species (ROS) are produced in plants in response to abiotic and biotic stresses as a means of defense. In the host plant-A. flavus interaction under drought c...

  17. Increased metabolic activity in the septum and habenula during stress is linked to subsequent expression of learned helplessness behavior.

    Science.gov (United States)

    Mirrione, Martine M; Schulz, Daniela; Lapidus, Kyle A B; Zhang, Samuel; Goodman, Wayne; Henn, Fritz A

    2014-01-01

    Uncontrollable stress can have a profound effect on an organism's ability to respond effectively to future stressful situations. Behavior subsequent to uncontrollable stress can vary greatly between individuals, falling on a spectrum between healthy resilience and maladaptive learned helplessness. It is unclear whether dysfunctional brain activity during uncontrollable stress is associated with vulnerability to learned helplessness; therefore, we measured metabolic activity during uncontrollable stress that correlated with ensuing inability to escape future stressors. We took advantage of small animal positron emission tomography (PET) and 2-deoxy-2[(18)F]fluoro-D-glucose ((18)FDG) to probe in vivo metabolic activity in wild type Sprague Dawley rats during uncontrollable, inescapable, unpredictable foot-shock stress, and subsequently tested the animals response to controllable, escapable, predictable foot-shock stress. When we correlated metabolic activity during the uncontrollable stress with consequent behavioral outcomes, we found that the degree to which animals failed to escape the foot-shock correlated with increased metabolic activity in the lateral septum and habenula. When used a seed region, metabolic activity in the habenula correlated with activity in the lateral septum, hypothalamus, medial thalamus, mammillary nuclei, ventral tegmental area, central gray, interpeduncular nuclei, periaqueductal gray, dorsal raphe, and rostromedial tegmental nucleus, caudal linear raphe, and subiculum transition area. Furthermore, the lateral septum correlated with metabolic activity in the preoptic area, medial thalamus, habenula, interpeduncular nuclei, periaqueductal gray, dorsal raphe, and caudal linear raphe. Together, our data suggest a group of brain regions involved in sensitivity to uncontrollable stress involving the lateral septum and habenula.

  18. Increased metabolic activity in the septum and habenula during stress is linked to subsequent expression of learned helplessness behavior

    Directory of Open Access Journals (Sweden)

    Martine M Mirrione

    2014-02-01

    Full Text Available Uncontrollable stress can have a profound effect on an organism’s ability to respond effectively to future stressful situations. Behavior subsequent to uncontrollable stress can vary greatly between individuals, falling on a spectrum between healthy resilience and maladaptive learned helplessness. It is unclear whether dysfunctional brain activity during uncontrollable stress is associated with vulnerability to learned helplessness; therefore, we measured metabolic activity during uncontrollable stress that correlated with ensuing inability to escape future stressors. We took advantage of small animal positron emission tomography (PET and 2-deoxy-2[18F]fluoro-D-glucose (18FDG to probe in vivo metabolic activity in wild type Sprague Dawley rats during uncontrollable, inescapable, unpredictable foot-shock stress, and subsequently tested the animals response to controllable, escapable, predictable foot-shock stress. When we correlated metabolic activity during the uncontrollable stress with consequent behavioral outcomes, we found that the degree to which animals failed to escape the foot-shock correlated with increased metabolic activity in the lateral septum and habenula. When used a seed region, metabolic activity in the habenula correlated with activity in the lateral septum, hypothalamus, medial thalamus, mammillary nuclei, ventral tegmental area, central gray, interpeduncular nuclei, periaqueductal gray, dorsal raphe, and rostromedial tegmental nucleus, caudal linear raphe, and subiculum transition area. Furthermore, the lateral septum correlated with metabolic activity in the preoptic area, medial thalamus, habenula, interpeduncular nuclei, periaqueductal gray, dorsal raphe, and caudal linear raphe. Together, our data suggest a group of brain regions involved in sensitivity to uncontrollable stress involving the lateral septum and habenula.

  19. On the link between stress field and small-scale hydraulic fracture growth in anisotropic rock derived from microseismicity

    Science.gov (United States)

    Gischig, Valentin Samuel; Doetsch, Joseph; Maurer, Hansruedi; Krietsch, Hannes; Amann, Florian; Evans, Keith Frederick; Nejati, Morteza; Jalali, Mohammadreza; Valley, Benoît; Obermann, Anne Christine; Wiemer, Stefan; Giardini, Domenico

    2018-01-01

    To characterize the stress field at the Grimsel Test Site (GTS) underground rock laboratory, a series of hydrofracturing and overcoring tests were performed. Hydrofracturing was accompanied by seismic monitoring using a network of highly sensitive piezosensors and accelerometers that were able to record small seismic events associated with metre-sized fractures. Due to potential discrepancies between the hydrofracture orientation and stress field estimates from overcoring, it was essential to obtain high-precision hypocentre locations that reliably illuminate fracture growth. Absolute locations were improved using a transverse isotropic P-wave velocity model and by applying joint hypocentre determination that allowed for the computation of station corrections. We further exploited the high degree of waveform similarity of events by applying cluster analysis and relative relocation. Resulting clouds of absolute and relative located seismicity showed a consistent east-west strike and 70° dip for all hydrofractures. The fracture growth direction from microseismicity is consistent with the principal stress orientations from the overcoring stress tests, provided that an anisotropic elastic model for the rock mass is used in the data inversions. The σ1 stress is significantly larger than the other two principal stresses and has a reasonably well-defined orientation that is subparallel to the fracture plane; σ2 and σ3 are almost equal in magnitude and thus lie on a circle defined by the standard errors of the solutions. The poles of the microseismicity planes also lie on this circle towards the north. Analysis of P-wave polarizations suggested double-couple focal mechanisms with both thrust and normal faulting mechanisms present, whereas strike-slip and thrust mechanisms would be expected from the overcoring-derived stress solution. The reasons for these discrepancies can be explained by pressure leak-off, but possibly may also involve stress field rotation around the

  20. Statistical analysis of the turbulent Reynolds stress and its link to the shear flow generation in a cylindrical laboratory plasma device

    International Nuclear Information System (INIS)

    Yan, Z.; Yu, J. H.; Holland, C.; Xu, M.; Mueller, S. H.; Tynan, G. R.

    2008-01-01

    The statistical properties of the turbulent Reynolds stress arising from collisional drift turbulence in a magnetized plasma column are studied and a physical picture of turbulent driven shear flow generation is discussed. The Reynolds stress peaks near the maximal density gradient region, and is governed by the turbulence amplitude and cross-phase between the turbulent radial and azimuthal velocity fields. The amplitude probability distribution function (PDF) of the turbulent Reynolds stress is non-Gaussian and positively skewed at the density gradient maximum. The turbulent ion-saturation (Isat) current PDF shows that the region where the bursty Isat events are born coincides with the positively skewed non-Gaussian Reynolds stress PDF, which suggests that the bursts of particle transport appear to be associated with bursts of momentum transport as well. At the shear layer the density fluctuation radial correlation length has a strong minimum (∼4-6 mm∼0.5C s /Ω ci , where C s is the ion acoustic speed and Ω ci is the ion gyrofrequency), while the azimuthal turbulence correlation length is nearly constant across the shear layer. The results link the behavior of the Reynolds stress, its statistical properties, generation of bursty radially going azimuthal momentum transport events, and the formation of the large-scale shear layer.

  1. Cmr1/WDR76 defines a nuclear genotoxic stress body linking genome integrity and protein quality control

    DEFF Research Database (Denmark)

    Gallina, Irene; Colding, Camilla Skettrup; Henriksen, Peter

    2015-01-01

    DNA replication stress is a source of genomic instability. Here we identify changed mutation rate 1 (Cmr1) as a factor involved in the response to DNA replication stress in Saccharomyces cerevisiae and show that Cmr1-together with Mrc1/Claspin, Pph3, the chaperonin containing TCP1 (CCT) and 25...... other proteins-define a novel intranuclear quality control compartment (INQ) that sequesters misfolded, ubiquitylated and sumoylated proteins in response to genotoxic stress. The diversity of proteins that localize to INQ indicates that other biological processes such as cell cycle progression...... propose that Cmr1/WDR76 plays a role in the recovery from genotoxic stress through regulation of the turnover of sumoylated and phosphorylated proteins....

  2. Preschoolers’ Genetic, Physiological, and Behavioral Sensitivity Factors Moderate Links Between Parenting Stress and Child Internalizing, Externalizing, and Sleep Problems

    Science.gov (United States)

    Davis, Molly; Thomassin, Kristel; Bilms, Joanie; Suveg, Cynthia; Shaffer, Anne; Beach, Steven R. H.

    2017-01-01

    This study examined three potential moderators of the relations between maternal parenting stress and preschoolers’ adjustment problems: a genetic polymorphism - the short allele of the serotonin transporter (5-HTTLPR, ss/sl allele) gene, a physiological indicator - children’s baseline respiratory sinus arrhythmia (RSA), and a behavioral indicator - mothers’ reports of children’s negative emotionality. A total of 108 mothers (Mage = 30.68 years, SDage = 6.06) reported on their parenting stress as well as their preschoolers’ (Mage = 3.50 years, SDage = .51, 61% boys) negative emotionality and internalizing, externalizing, and sleep problems. Results indicated that the genetic sensitivity variable functioned according to a differential susceptibility model; however, the results involving physiological and behavioral sensitivity factors were most consistent with a diathesis-stress framework. Implications for prevention and intervention efforts to counter the effects of parenting stress are discussed. PMID:28295263

  3. Linking physiological and cellular responses to thermal stress: β-adrenergic blockade reduces the heat shock response in fish.

    Science.gov (United States)

    Templeman, Nicole M; LeBlanc, Sacha; Perry, Steve F; Currie, Suzanne

    2014-08-01

    When faced with stress, animals use physiological and cellular strategies to preserve homeostasis. We were interested in how these high-level stress responses are integrated at the level of the whole animal. Here, we investigated the capacity of the physiological stress response, and specifically the β-adrenergic response, to affect the induction of the cellular heat shock proteins, HSPs, following a thermal stress in vivo. We predicted that blocking β-adrenergic stimulation during an acute heat stress in the whole animal would result in reduced levels of HSPs in red blood cells (RBCs) of rainbow trout compared to animals where adrenergic signaling remained intact. We first determined that a 1 h heat shock at 25 °C in trout acclimated to 13 °C resulted in RBC adrenergic stimulation as determined by a significant increase in cell swelling, a hallmark of the β-adrenergic response. A whole animal injection with the β2-adrenergic antagonist, ICI-118,551, successfully reduced this heat-induced RBC swelling. The acute heat shock caused a significant induction of HSP70 in RBCs of 13 °C-acclimated trout as well as a significant increase in plasma catecholamines. When heat-shocked fish were treated with ICI-118,551, we observed a significant attenuation of the HSP70 response. We conclude that circulating catecholamines influence the cellular heat shock response in rainbow trout RBCs, demonstrating physiological/hormonal control of the cellular stress response.

  4. Factor XII (Hageman factor) is a missing link between stress and hypercoagulability and plays an important role in the pathophysiology of ischemic stroke.

    Science.gov (United States)

    Eggers, Arnold E

    2006-01-01

    A new hypothesis is presented on the function of factor XII, which is postulated to be a "missing link" between acute stress and transient hypercoagulability. The implications of this idea are developed to show how chronic stress, which involves activation of hypertension and migraine as well as hypercoagulability, can cause of cerebrovascular disease. "Acute stress" is defined as "the normal short-term physiological response to the perception of major threats or demands". "Chronic stress" is "the abnormal ongoing physiological response to the continuing perception of unresolvable major threats or demands". The factor XII hypothesis is as follows: Acute stress includes release of epinephrine by the adrenal medulla. Epinephrine activates platelets by binding to alpha-2A adrenergic receptors. Activated platelets convert pre-bound factor XII to its active form, which then initiates the intrinsic coagulation cascade. This can be called the "activated platelet initiation pathway" for coagulation. Neither tissue factor nor pre-formed thrombin is required. Thrombosis proceeds to completion, but only a minute amount of thrombin is formed, and the process normally stops at this point. In people who lapse into a state of chronic stress, essential hypertension, which is also a manifestation of stress, synergizes with hypercoagulability: there is both a baseline rise in blood pressure and systemic platelet activation as well as superimposed labile rises of both. Upregulation of these two stress parameters is atherogenic: epinephrine-activated platelets stimulating thrombin formation interact with endothelial cells activated by angiotensin II to cause, first, smooth muscle cell proliferation, which is a histological hallmark of atherosclerosis, and, lastly, a symptomatic thrombotic occlusion-the stroke. The migraine symptoms which often accompany this process are a marker of chronic stress and ongoing pathophysiologic damage. Therapeutic predictions are made regarding novel

  5. Endoplasmic reticulum stress induces different molecular structural alterations in human dilated and ischemic cardiomyopathy.

    Directory of Open Access Journals (Sweden)

    Ana Ortega

    Full Text Available BACKGROUND: The endoplasmic reticulum (ER is a multifunctional organelle responsible for the synthesis and folding of proteins as well as for signalling and calcium storage, that has been linked to the contraction-relaxation process. Perturbations of its homeostasis activate a stress response in diseases such as heart failure (HF. To elucidate the alterations in ER molecular components, we analyze the levels of ER stress and structure proteins in human dilated (DCM and ischemic (ICM cardiomyopathies, and its relationship with patient's functional status. METHODS AND RESULTS: We examined 52 explanted human hearts from DCM (n = 21 and ICM (n = 21 subjects and 10 non-failing hearts as controls. Our results showed specific changes in stress (IRE1, p<0.05; p-IRE1, p<0.05 and structural (Reticulon 1, p<0.01 protein levels. The stress proteins GRP78, XBP1 and ATF6 as well as the structural proteins RRBP1, kinectin, and Nogo A and B, were upregulated in both DCM and ICM patients. Immunofluorescence results were concordant with quantified Western blot levels. Moreover, we show a novel relationship between stress and structural proteins. RRBP1, involved in procollagen synthesis and remodeling, was related with left ventricular function. CONCLUSIONS: In the present study, we report the existence of alterations in ER stress response and shaping proteins. We show a plausible effect of the ER stress on ER structure in a suitable sample of DCM and ICM subjects. Patients with higher values of RRBP1 had worse left ventricular function.

  6. ER phospholipid composition modulates lipogenesis during feeding and in obesity.

    Science.gov (United States)

    Rong, Xin; Wang, Bo; Palladino, Elisa Nd; de Aguiar Vallim, Thomas Q; Ford, David A; Tontonoz, Peter

    2017-10-02

    Sterol regulatory element-binding protein 1c (SREBP-1c) is a central regulator of lipogenesis whose activity is controlled by proteolytic cleavage. The metabolic factors that affect its processing are incompletely understood. Here, we show that dynamic changes in the acyl chain composition of ER phospholipids affect SREBP-1c maturation in physiology and disease. The abundance of polyunsaturated phosphatidylcholine in liver ER is selectively increased in response to feeding and in the setting of obesity-linked insulin resistance. Exogenous delivery of polyunsaturated phosphatidylcholine to ER accelerated SREBP-1c processing through a mechanism that required an intact SREBP cleavage-activating protein (SCAP) pathway. Furthermore, induction of the phospholipid-remodeling enzyme LPCAT3 in response to liver X receptor (LXR) activation promoted SREBP-1c processing by driving the incorporation of polyunsaturated fatty acids into ER. Conversely, LPCAT3 deficiency increased membrane saturation, reduced nuclear SREBP-1c abundance, and blunted the lipogenic response to feeding, LXR agonist treatment, or obesity-linked insulin resistance. Desaturation of the ER membrane may serve as an auxiliary signal of the fed state that promotes lipid synthesis in response to nutrient availability.

  7. Herp enhances ER-associated protein degradation by recruiting ubiquilins

    International Nuclear Information System (INIS)

    Kim, Tae-Yeon; Kim, Eunmin; Yoon, Sungjoo Kim; Yoon, Jong-Bok

    2008-01-01

    ER-associated protein degradation (ERAD) is a protein quality control system of ER, which eliminates misfolded proteins by proteasome-dependent degradation and ensures export of only properly folded proteins from ER. Herp, an ER membrane protein upregulated by ER stress, is implicated in regulation of ERAD. In the present study, we show that Herp interacts with members of the ubiquilin family, which function as a shuttle factor to deliver ubiquitinated substrates to the proteasome for degradation. Knockdown of ubiquilin expression by small interfering RNA stabilized the ERAD substrate CD3δ, whereas it did not alter or increased degradation of non-ERAD substrates tested. CD3δ was stabilized by overexpressed Herp mutants which were capable of binding to ubiquilins but were impaired in ER membrane targeting by deletion of the transmembrane domain. Our data suggest that Herp binding to ubiquilin proteins plays an important role in the ERAD pathway and that ubiquilins are specifically involved in degradation of only a subset of ubiquitinated targets, including Herp-dependent ERAD substrates

  8. Min mentor er min voksenven

    DEFF Research Database (Denmark)

    Kaiser, Birte

    2009-01-01

    En artikel i bogen: 6 belysninger af vejledning, brydninger, forståelser & praksis. Artiklen er et sammendrag af en diskursanalyse fra 2008 fra projetrapporten: Ind under huden, www.vejledning.net...

  9. Forenklingens fire F'er

    DEFF Research Database (Denmark)

    Bentzen, Tina Øllgaard

    2017-01-01

    At fjerne styring er det, man ofte forbinder med afbureaukratisering, men det er ikke tilstrækkeligt, når man vil gå fra flotte ambitioner til en styring, som reelt opleves enklere. For at forenkle må man også forandre, forankre og fastholde styring, og det må ske i et samspil mellem de aktører, ...

  10. Linking Groundwater Use and Stress to Specific Crops Using the Groundwater Footprint in the Central Valley and High Plains Aquifer Systems, U.S.

    Science.gov (United States)

    Wada, Y.; Esnault, L.; Gleeson, T.; Heinke, J.; Gerten, D.; Flanary, E.; Bierkens, M. F.; Van Beek, L. P.

    2014-12-01

    A number of aquifers worldwide are being depleted, mainly by agricultural activities, yet groundwater stress has not been explicitly linked to specific agricultural crops. Using the newly-developed concept of the groundwater footprint (the area required to sustain groundwater use and groundwater-dependent ecosystem services), we develop a methodology to derive crop-specific groundwater footprints. We illustrate this method by calculating high resolution groundwater footprint estimates of crops in two heavily used aquifer systems: the Central Valley and High Plains, U.S. In both aquifer systems, hay and haylage, corn and cotton have the largest groundwater footprints, which highlights that most of the groundwater stress is induced by crops meant for cattle feed. Our results are coherent with other studies in the High Plains but suggest lower groundwater stress in the Central Valley, likely due to artificial recharge from surface water diversions which were not taken into account in previous estimates. Uncertainties of recharge and irrigation application efficiency contribute the most to the total relative uncertainty of the groundwater footprint to aquifer area ratios. Our results and methodology will be useful for hydrologists, water resource managers, and policy makers concerned with which crops are causing the well-documented groundwater stress in semiarid to arid agricultural regions around the world.

  11. Proteomic Insights into the Protective Mechanisms of an In Vitro Oxidative Stress Model of Early Stage Parkinson’s Disease

    OpenAIRE

    Bauereis, Brian; Haskins, William E.; LeBaron, Richard G.; Renthal, Robert

    2010-01-01

    Previous studies in Parkinson's disease (PD) models suggest that early events along the path to neurodegeneration involve activation of the ubiquitin-proteasome system (UPS), endoplasmic reticulum-associated degradation (ERAD), and the unfolded protein response (UPR) pathways, in both the sporadic and familial forms of the disease, and thus ER stress may be a common feature. Furthermore, impairments in protein degradation have been linked to oxidative stress as well as pathways associated wit...

  12. Multilevel Analysis Exploring the Links between Stress, Depression, and Sleep Problems among Two-Year College Students

    Science.gov (United States)

    Wallace, Deshira D.; Boynton, Marcella H.; Lytle, Leslie A.

    2017-01-01

    Objective: This study explored the association of stress and depression with a multidimensional sleep problems construct in a sample of 2-year college students. Participants: The sample consisted of 440 students enrolled in 2-year study from Fall 2011 to Fall 2013. Methods: Participants in an obesity prevention study completed surveys assessing…

  13. Self-Esteem, Perceived Stress, and Gender During Adolescence: Interactive Links to Different Types of Interpersonal Relationships.

    Science.gov (United States)

    Bi, Yanling; Ma, Lijie; Yuan, Fei; Zhang, Baoshan

    2016-01-01

    The goal of this study was to analyze the relationships between self-esteem, perceived stress, the quality of different types of interpersonal relationships, and gender in adolescents. This study used a sample of 1614 adolescent high school students and robust data analytic techniques to test the proposed relationships. The results partially supported the initial hypothesis in that perceived stress mediated the relationships between self-esteem and four of the types of interpersonal relationships (i.e., same-sex peer relationships, opposite-sex peer relationships, parent-child relationships, and teacher-student relationships) and moderated the relationship between self-esteem and same-sex peer relationships. In addition, a moderated role of gender was also partially supported in that perceived stress mediated the relationships between self-esteem and same-sex peer relationships, opposite-sex peer relationships, and the parent-child relationship for girls, but not boys. On the basis of these findings, it was concluded that perceived stress plays an intervening role in the relationship between self-esteem and different types of interpersonal relationships and that gender seems to be a moderator for some of the patterns of the relationships between these variables. These findings are discussed in light of the possible mechanisms by which the variables could influence each other. Implications for theory and practice as well as some directions for future research were also suggested.

  14. Preschoolers' genetic, physiological, and behavioral sensitivity factors moderate links between parenting stress and child internalizing, externalizing, and sleep problems.

    Science.gov (United States)

    Davis, Molly; Thomassin, Kristel; Bilms, Joanie; Suveg, Cynthia; Shaffer, Anne; Beach, Steven R H

    2017-05-01

    This study examined three potential moderators of the relations between maternal parenting stress and preschoolers' adjustment problems: a genetic polymorphism-the short allele of the serotonin transporter (5-HTTLPR, ss/sl allele) gene, a physiological indicator-children's baseline respiratory sinus arrhythmia (RSA), and a behavioral indicator-mothers' reports of children's negative emotionality. A total of 108 mothers (M age  = 30.68 years, SD age  = 6.06) reported on their parenting stress as well as their preschoolers' (M age  = 3.50 years, SD age  = 0.51, 61% boys) negative emotionality and internalizing, externalizing, and sleep problems. Results indicated that the genetic sensitivity variable functioned according to a differential susceptibility model; however, the results involving physiological and behavioral sensitivity factors were most consistent with a diathesis-stress framework. Implications for prevention and intervention efforts to counter the effects of parenting stress are discussed. © 2017 Wiley Periodicals, Inc.

  15. Galectin-3, a biomarker linking oxidative stress and inflammation with the clinical outcomes of patients with atherothrombosis

    DEFF Research Database (Denmark)

    Madrigal-Matute, Julio; Lindholt, Jes Sandal; Fernandez-Garcia, Carlos Ernesto

    2014-01-01

    interval: 1.06 to 4.73, Pinflammation, infiltration of circulating cells and oxidative stress. Moreover, circulating Gal-3 concentrations......BACKGROUND: Galectin-3 (Gal-3) participates in different mechanisms involved in atherothrombosis, such as inflammation, proliferation, or macrophage chemotaxis. Thus, there have been committed intensive efforts to elucidate the function of Gal-3 in cardiovascular (CV) diseases. The role of Gal-3...

  16. Application of spatial synoptic classification in evaluating links between heat stress and cardiovascular mortality and morbidity in Prague, Czech Republic

    Czech Academy of Sciences Publication Activity Database

    Urban, Aleš; Kyselý, Jan

    2018-01-01

    Roč. 62, č. 1 (2018), s. 85-96 ISSN 0020-7128 R&D Projects: GA ČR(CZ) GAP209/11/1985 Institutional support: RVO:68378289 Keywords : spatial synoptic classification * mortality * morbidity * cardiovascular diseases * Central Europe Subject RIV: DG - Athmosphere Sciences, Meteorology OBOR OECD: Meteorology and atmospheric sciences Impact factor: 2.204, year: 2016 http://link.springer.com/article/10.1007%2Fs00484-015-1055-1

  17. Stress !!!

    OpenAIRE

    Fledderus, M.

    2012-01-01

    Twee op de vijf UT-studenten hebben last van ernstige studiestress, zo erg zelfs dat het ze in hun privéleven belemmert. Die cijfers komen overeen met het landelijk beeld van stress onder studenten. Samen met 14 andere universiteits- en hogeschoolbladen enquêteerde UT Nieuws bijna 5500 studenten. Opvallend is dat mannelijke studenten uit Twente zich veel minder druk lijken te maken over hun studie. Onder vrouwen ligt de stress juist erg hoog ten opzichte van het landelijk gemiddelde.

  18. Adiposity moderates links from early adversity and depressive symptoms to inflammatory reactivity to acute stress during late adolescence.

    Science.gov (United States)

    Chiang, Jessica J; Bower, Julienne E; Irwin, Michael R; Taylor, Shelley E; Fuligni, Andrew J

    2017-11-01

    Both early adversity and depression are associated with heightened inflammation. However, few studies have focused on inflammatory reactivity to psychosocial stress and examined adiposity as a potential moderator. Yet, repeated heightened inflammatory reactivity over time is thought to contribute to low-grade chronic inflammation and adipose tissue is a key source of pro-inflammatory cytokines. The purpose of the present study was to examine whether early adversity and depressive symptoms were related to stress-induced inflammation and whether these associations varied by total body and abdominal adiposity as measured by body mass index (BMI) and waist circumference (WC) in a sample of late adolescents. Participants reported on their early family environment and current depressive symptoms, had their height, weight, and WC assessed for adiposity markers, and provided blood samples for IL-6 assessment before and after a standardized laboratory stress task. No main effect of early adversity on IL-6 reactivity to acute stress was observed. However, significant interactions between early adversity and BMI and WC emerged. Greater exposure to early adversity was associated with greater IL-6 responses only among adolescents with higher BMI or WC. The same pattern of findings was observed for depressive symptoms. Additionally, moderated mediation analyses indicated that among adolescents with greater adiposity, early adversity indirectly influenced IL-6 reactivity via current depressive symptoms. These findings contribute to our understanding of vulnerability factors that may amplify the associations between early adversity and depressive symptoms and inflammation during relatively early stages of life. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Glutathionylation of the Bacterial Hsp70 Chaperone DnaK Provides a Link between Oxidative Stress and the Heat Shock Response.

    Science.gov (United States)

    Zhang, Hong; Yang, Jie; Wu, Si; Gong, Weibin; Chen, Chang; Perrett, Sarah

    2016-03-25

    DnaK is the major bacterial Hsp70, participating in DNA replication, protein folding, and the stress response. DnaK cooperates with the Hsp40 co-chaperone DnaJ and the nucleotide exchange factor GrpE. Under non-stress conditions, DnaK binds to the heat shock transcription factor σ(32)and facilitates its degradation. Oxidative stress results in temporary inactivation of DnaK due to depletion of cellular ATP and thiol modifications such as glutathionylation until normal cellular ATP levels and a reducing environment are restored. However, the biological significance of DnaK glutathionylation remains unknown, and the mechanisms by which glutathionylation may regulate the activity of DnaK are also unclear. We investigated the conditions under which Escherichia coli DnaK undergoesS-glutathionylation. We observed glutathionylation of DnaK in lysates of E. coli cells that had been subjected to oxidative stress. We also obtained homogeneously glutathionylated DnaK using purified DnaK in the apo state. We found that glutathionylation of DnaK reversibly changes the secondary structure and tertiary conformation, leading to reduced nucleotide and peptide binding ability. The chaperone activity of DnaK was reversibly down-regulated by glutathionylation, accompanying the structural changes. We found that interaction of DnaK with DnaJ, GrpE, or σ(32)becomes weaker when DnaK is glutathionylated, and the interaction is restored upon deglutathionylation. This study confirms that glutathionylation down-regulates the functions of DnaK under oxidizing conditions, and this down-regulation may facilitate release of σ(32)from its interaction with DnaK, thus triggering the heat shock response. Such a mechanism provides a link between oxidative stress and the heat shock response in bacteria. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  20. Linking medical faculty stress/burnout to willingness to implement medical school curriculum change: a preliminary investigation.

    Science.gov (United States)

    Arvandi, Zeinab; Emami, Amirhossein; Zarghi, Nazila; Alavinia, Seyed Mohammad; Shirazi, Mandana; Parikh, Sagar V

    2016-02-01

    Balancing administrative demands from the medical school while providing patient support and seeking academic advancement can cause personal hardship that ranges from high stress to clinically recognizable conditions such as burnout. Regarding the importance of clinical faculties' burnout and its effects on different aspects of their professional career, this study was conducted and aimed to evaluate the relationship between willingness to change teaching approaches as characterized by a modified stage-of-change model and measures of stress and burnout. This descriptive analytic study was conducted on 143 clinical faculty members of Tehran University of Medical Sciences in Iran. Participants were asked to complete three questionnaires: a modified stages of change questionnaire the Maslach Burnout Inventory and the General Health Questionnaire. Data were analysed by SPSS: 16 using non-parametric statistical tests such as multiple regression and ICC (intra-class coefficient) and Spearman correlation coefficient test. A significant relationship was found between faculty members' readiness to change teaching approaches and the subscales of occupational burnout. Specifically, participants with low occupational burnout were more likely to be in the action stage, while those with high burnout were in the attitude or intention stage, which could be understood as not being ready to implement change. There was no significant correlation between general health scores and stage of change. We found it feasible to measure stages of change as well as stress/burnout in academic doctors. Occupational burnout directly reduces the readiness to change. To have successful academic reform in medical schools, it therefore would be beneficial to assess and manage occupational burnout among clinical faculty members. © 2015 John Wiley & Sons, Ltd.

  1. Proteomic investigation of the ventral rat hippocampus links DRP-2 to escitalopram treatment resistance and SNAP to stress resilience in the chronic mild stress model of depression

    DEFF Research Database (Denmark)

    Bisgaard, Christina; Jayatissa, Magdalena N; Enghild, Jan J

    2007-01-01

    etiology and recovery. Thus two-dimensional differential in-gel electrophoresis was employed to compare the ventral hippocampal proteomes between different treatment groups in the chronic mild stress (CMS) model of depression. The CMS paradigm induces anhedonic behaviour, which is a major symptom......The development of depression as well as recovery from depression is most likely accompanied by a change in protein expression profiles. The purpose of the present study was to quantitatively investigate global protein expression differences independent of any hypothesis describing depression...... of depression, by exposing rats to a series of mild stressors for 7 weeks, with antidepressant treatment during the last 4 weeks. In the CMS model, animals were split into six different groups at the end of treatment; unchallenged control escitalopram (n = 12), unchallenged control vehicle (n = 12), CMS vehicle...

  2. Links between early baseline cortisol, attachment classification, and problem behaviors: A test of differential susceptibility versus diathesis-stress.

    Science.gov (United States)

    Fong, Michelle C; Measelle, Jeffrey; Conradt, Elisabeth; Ablow, Jennifer C

    2017-02-01

    The purpose of the current study was to predict concurrent levels of problem behaviors from young children's baseline cortisol and attachment classification, a proxy for the quality of caregiving experienced. In a sample of 58 children living at or below the federal poverty threshold, children's baseline cortisol levels, attachment classification, and problem behaviors were assessed at 17 months of age. We hypothesized that an interaction between baseline cortisol and attachment classification would predict problem behaviors above and beyond any main effects of baseline cortisol and attachment. However, based on limited prior research, we did not predict whether or not this interaction would be more consistent with diathesis-stress or differential susceptibility models. Consistent with diathesis-stress theory, the results indicated no significant differences in problem behavior levels among children with high baseline cortisol. In contrast, children with low baseline cortisol had the highest level of problem behaviors in the context of a disorganized attachment relationship. However, in the context of a secure attachment relationship, children with low baseline cortisol looked no different, with respect to problem behavior levels, then children with high cortisol levels. These findings have substantive implications for the socioemotional development of children reared in poverty. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. An ER Protein Functionally Couples Neutral Lipid Metabolism on Lipid Droplets to Membrane Lipid Synthesis in the ER

    DEFF Research Database (Denmark)

    Markgraf, Daniel F; Klemm, Robin W; Junker, Mirco

    2014-01-01

    Eukaryotic cells store neutral lipids such as triacylglycerol (TAG) in lipid droplets (LDs). Here, we have addressed how LDs are functionally linked to the endoplasmic reticulum (ER). We show that, in S. cerevisiae, LD growth is sustained by LD-localized enzymes. When LDs grow in early stationary...... phase, the diacylglycerol acyl-transferase Dga1p moves from the ER to LDs and is responsible for all TAG synthesis from diacylglycerol (DAG). During LD breakdown in early exponential phase, an ER membrane protein (Ice2p) facilitates TAG utilization for membrane-lipid synthesis. Ice2p has a cytosolic...... and explain how cells switch neutral lipid metabolism from storage to consumption....

  4. COPA mutations impair ER-Golgi transport causing hereditary autoimmune-mediated lung disease and arthritis

    Science.gov (United States)

    Watkin, Levi B.; Jessen, Birthe; Wiszniewski, Wojciech; Vece, Timothy; Jan, Max; Sha, Youbao; Thamsen, Maike; Santos-Cortez, Regie L. P.; Lee, Kwanghyuk; Gambin, Tomasz; Forbes, Lisa; Law, Christopher S.; Stray-Petersen, Asbjørg; Cheng, Mickie H.; Mace, Emily M.; Anderson, Mark S.; Liu, Dongfang; Tang, Ling Fung; Nicholas, Sarah K.; Nahmod, Karen; Makedonas, George; Canter, Debra; Kwok, Pui-Yan; Hicks, John; Jones, Kirk D.; Penney, Samantha; Jhangiani, Shalini N.; Rosenblum, Michael D.; Dell, Sharon D.; Waterfield, Michael R.; Papa, Feroz R.; Muzny, Donna M.; Zaitlen, Noah; Leal, Suzanne M.; Gonzaga-Jauregui, Claudia; Boerwinkle, Eric; Eissa, N. Tony; Gibbs, Richard A.; Lupski, James R.; Orange, Jordan S.; Shum, Anthony K.

    2015-01-01

    Advances in genomics have allowed unbiased genetic studies of human disease with unexpected insights into the molecular mechanisms of cellular immunity and autoimmunity1. We performed whole exome sequencing (WES) and targeted sequencing in patients with an apparent Mendelian syndrome of autoimmune disease characterized by high-titer autoantibodies, inflammatory arthritis and interstitial lung disease (ILD). In five families, we identified four unique deleterious variants in the Coatomer subunit alpha (COPA) gene all located within the same functional domain. We hypothesized that mutant COPA leads to a defect in intracellular transport mediated by coat protein complex I (COPI)2–4. We show that COPA variants impair binding of proteins targeted for retrograde Golgi to ER transport and demonstrate that expression of mutant COPA leads to ER stress and the upregulation of Th17 priming cytokines. Consistent with this pattern of cytokine expression, patients demonstrated a significant skewing of CD4+ T cells toward a T helper 17 (Th17) phenotype, an effector T cell population implicated in autoimmunity5,6. Our findings uncover an unexpected molecular link between a vesicular transport protein and a syndrome of autoimmunity manifested by lung and joint disease. These findings provide a unique opportunity to understand how alterations in cellular homeostasis caused by a defect in the intracellular trafficking pathway leads to the generation of human autoimmune disease. PMID:25894502

  5. Stress !!!

    NARCIS (Netherlands)

    Fledderus, M.

    2012-01-01

    Twee op de vijf UT-studenten hebben last van ernstige studiestress, zo erg zelfs dat het ze in hun privéleven belemmert. Die cijfers komen overeen met het landelijk beeld van stress onder studenten. Samen met 14 andere universiteits- en hogeschoolbladen enquêteerde UT Nieuws bijna 5500 studenten.

  6. Hvis en kartoffel er forkert, hvad er en Mars-bar så?

    DEFF Research Database (Denmark)

    Lichtenstein, Mia Beck; Thomsen, Freja; Hinze, Cecilie

    2016-01-01

    Danske unge er de slankeste af 41 europæiske unge, men de føler sig ofte tykke og går på slankekur. Hvad er årsagen, og hvorfor er det et problem?......Danske unge er de slankeste af 41 europæiske unge, men de føler sig ofte tykke og går på slankekur. Hvad er årsagen, og hvorfor er det et problem?...

  7. B-1 Engineering Research Simulator (ERS) Data Link Study

    National Research Council Canada - National Science Library

    Kline, Jane

    1998-01-01

    ... (DSO), were used. The dependent measures for both tasks were key strokes per target or threat, time per target or threat, errors per target or threat, and Subjective Workload Analysis Technique (SWAT...

  8. Den sproglige leg er super fly

    DEFF Research Database (Denmark)

    Just, Sine Nørholm

    2013-01-01

    Man kan rappe om alt. I hvert fald hvis man er Marvelous Mosell. I spændingsfeltet mellem fiktion og virkelighed skaber Mosell sin persona i et forjættende 80' er-univers der på en og samme tid er vildt overdrevet og helt autentisk.......Man kan rappe om alt. I hvert fald hvis man er Marvelous Mosell. I spændingsfeltet mellem fiktion og virkelighed skaber Mosell sin persona i et forjættende 80' er-univers der på en og samme tid er vildt overdrevet og helt autentisk....

  9. Ampelopsin-induced reactive oxygen species enhance the apoptosis of colon cancer cells by activating endoplasmic reticulum stress-mediated AMPK/MAPK/XAF1 signaling

    Science.gov (United States)

    Park, Ga Bin; Jeong, Jee-Yeong; Kim, Daejin

    2017-01-01

    Ampelopsin (Amp) is bioactive natural product and exerts anti-cancer effects against several cancer types. The present study investigated the anti-colon cancer activity of Amp and explored its mechanism of action. The treatment of colon cancer cells with Amp resulted in the dose- and time-dependent induction of apoptosis via the activation of endoplasmic reticulum (ER) stress, 5′ adenosine monophosphate-activated protein kinase (AMPK), and c-Jun N-terminal protein kinase (JNK)/p38 mitogen-activated protein kinases (MAPKs). Salubrinal, an ER stress inhibitor, prevented the upregulation of ER stress-associated proteins, including phosphorylated protein kinase RNA-like ER kinase, phosphorylated eukaryotic translation initiation factor 2α, glucose-regulated protein 78, and CCAAT/enhancer-binding protein homologous protein, as well as suppressing AMPK activation and the MAPK signaling pathway. Knockdown of AMPK by RNA interference failed to block ER stress. Additionally, SP600125 (a JNK inhibitor) and SB203580 (a p38-MAPK inhibitor) effectively inhibited apoptosis and attenuated the expression of X-linked IAP-associated factor 1 (XAF1) and apoptotic Bcl-2 family proteins (BCL2 antagonist/killer 1 and BCL2-associated X protein) in Amp-treated colon cancer cells. Furthermore, reactive oxygen species (ROS)-mediated ER stress/AMPK apoptotic signaling pathway in Amp-treated colon cancer cells were markedly inhibited by treatment with N-acetyl-L-cysteine, a ROS scavenger. These results demonstrate that treatment with Amp induces the apoptotic death of colon cancer cells through ER stress-initiated AMPK/MAPK/XAF1 signaling. These results also provide experimental information for developing Amp as therapeutic drug against colon cancer. PMID:29250183

  10. N-ov-emb-er

    Indian Academy of Sciences (India)

    " to. Andrew Z Fire - Stanford University School of Medicine Stanford, CA, USA. Craig C Mello - University of Massachusetts Medical School Worcester, MA, USA. -96----------------------------~~--------R-ES-O-N-A-N-C-E--1 -N-ov-e-m-b-er--2-oo-6.

  11. Hvad er ledelse af brugerinddragelse?

    DEFF Research Database (Denmark)

    Holm-Petersen, Christina; Navne, Laura Emdal

    2015-01-01

    Brugerinddragelse i det danske sundhedsvæsen står højt på den politiske dagsorden, men det er stadig en udfordring at implementere visionen i klinisk praksis. Ledelse af brugerinddragelse bliver aktuelt udpeget som en central nøgle til at føre visionen ud i livet. Samtidig er der kun relativt lidt......, at brugerinddragelse skal implementeres i en verden, hvor der allerede er en række andre mål tilstede. En central ledelsesudfordring er derfor, at nogle af målene med brugerinddragelse forudsætter nye måder at organisere ikke bare arbejdet og kompetencer på, men også relationer til patienter og pårørende. En væsentlig...... that organize relations Patient involvement in the health services in Denmark is high on the political agenda, though continues to be a challenge to implement. It is increasingly said that leadership is crucial to the implementation process. However, research into the role of leaders in patient involvement...

  12. The Ecology of Stress: linking life-history traits with physiological control mechanisms in free-living guanacos.

    Science.gov (United States)

    Ovejero Aguilar, Ramiro J A; Jahn, Graciela A; Soto-Gamboa, Mauricio; Novaro, Andrés J; Carmanchahi, Pablo

    2016-01-01

    Providing the context for the evolution of life-history traits, habitat features constrain successful ecological and physiological strategies. In vertebrates, a key response to life's challenges is the activation of the Stress (HPA) and Gonadal (HPG) axes. Much of the interest in stress ecology is motivated by the desire to understand the physiological mechanisms in which the environment affects fitness. As reported in the literature, several intrinsic and extrinsic factors affect variability in hormone levels. In both social and non-social animals, the frequency and type of interaction with conspecifics, as well as the status in social species, can affect HPA axis activity, resulting in changes in the reproductive success of animals. We predicted that a social environment can affect both guanaco axes by increasing the secretion of testosterone (T) and Glucocorticoid (GCs) in response to individual social interactions and the energetic demands of breeding. Assuming that prolonged elevated levels of GCs over time can be harmful to individuals, it is predicted that the HPA axis suppresses the HPG axis and causes T levels to decrease, as GCs increase. All of the data for individuals were collected by non-invasive methods (fecal samples) to address hormonal activities. This is a novel approach in physiological ecology because feces are easily obtained through non-invasive sampling in animal populations. As expected, there was a marked adrenal ( p -value = .3.4e-12) and gonadal ( p -value = 0.002656) response due to seasonal variation in Lama guanicoe . No significant differences were found in fecal GCs metabolites between males/females*season for the entire study period ( p -value = 0.2839). Despite the seasonal activity variation in the hormonal profiles, our results show a positive correlation ( p -value = 1.952e-11, COR = 0.50) between the adrenal and gonadal system. The marked endocrine ( r 2  = 0.806) and gonad ( r 2  = 0.7231) response due to seasonal

  13. The Ecology of Stress: linking life-history traits with physiological control mechanisms in free-living guanacos

    Directory of Open Access Journals (Sweden)

    Ramiro J.A. Ovejero Aguilar

    2016-11-01

    Full Text Available Background Providing the context for the evolution of life-history traits, habitat features constrain successful ecological and physiological strategies. In vertebrates, a key response to life’s challenges is the activation of the Stress (HPA and Gonadal (HPG axes. Much of the interest in stress ecology is motivated by the desire to understand the physiological mechanisms in which the environment affects fitness. As reported in the literature, several intrinsic and extrinsic factors affect variability in hormone levels. In both social and non-social animals, the frequency and type of interaction with conspecifics, as well as the status in social species, can affect HPA axis activity, resulting in changes in the reproductive success of animals. We predicted that a social environment can affect both guanaco axes by increasing the secretion of testosterone (T and Glucocorticoid (GCs in response to individual social interactions and the energetic demands of breeding. Assuming that prolonged elevated levels of GCs over time can be harmful to individuals, it is predicted that the HPA axis suppresses the HPG axis and causes T levels to decrease, as GCs increase. Methods All of the data for individuals were collected by non-invasive methods (fecal samples to address hormonal activities. This is a novel approach in physiological ecology because feces are easily obtained through non-invasive sampling in animal populations. Results As expected, there was a marked adrenal (p-value = .3.4e−12 and gonadal (p-value = 0.002656 response due to seasonal variation in Lama guanicoe. No significant differences were found in fecal GCs metabolites between males/females*season for the entire study period (p-value = 0.2839. Despite the seasonal activity variation in the hormonal profiles, our results show a positive correlation (p-value = 1.952e−11, COR = 0.50 between the adrenal and gonadal system. The marked endocrine (r2 = 0.806 and gonad (r2 = 0

  14. The role of perceived threat during emergency department cardiac evaluation and the age-posttraumatic stress disorder link.

    Science.gov (United States)

    Meli, Laura; Kautz, Marin; Julian, Jacob; Edmondson, Donald; Sumner, Jennifer A

    2018-06-01

    Evaluation for acute coronary syndrome (ACS) can trigger posttraumatic stress symptoms (PSS). Research suggests that younger, versus older, individuals may be at elevated risk for PSS after ACS evaluation. It has been proposed that younger individuals may be at greater risk because they perceive the suspected ACS event as more threatening than their older counterparts; however, this has yet to be tested. We examined whether perceived threat during ACS evaluation mediated the association between age and PSS after ACS evaluation in an observational cohort study of patients presenting to the emergency department (ED) with suspected ACS. Demographics and perceived threat were assessed in the ED. PSS were measured upon inpatient transfer or by phone 3 days later. The analytic sample comprised 871 adult participants. Multiple linear regression was used to examine (1) associations of age and perceived threat with PSS and (2) whether perceived threat mediated the association. Bootstrapping with percentile-based confidence intervals (CIs) was used to test the indirect effect. Each year of age was associated with lower PSS (b = - 0.12, p age was associated with lower perceived threat during ACS evaluation (b = - 0.05, p age differences in PSS development risk and the potential impact of age on threat perceptions may help inform ED treatment.

  15. Social Anxiety-Linked Attention Bias to Threat Is Indirectly Related to Post-Event Processing Via Subjective Emotional Reactivity to Social Stress.

    Science.gov (United States)

    Çek, Demet; Sánchez, Alvaro; Timpano, Kiara R

    2016-05-01

    Attention bias to threat (e.g., disgust faces) is a cognitive vulnerability factor for social anxiety occurring in early stages of information processing. Few studies have investigated the relationship between social anxiety and attention biases, in conjunction with emotional and cognitive responses to a social stressor. Elucidating these links would shed light on maintenance factors of social anxiety and could help identify malleable treatment targets. This study examined the associations between social anxiety level, attention bias to disgust (AB-disgust), subjective emotional and physiological reactivity to a social stressor, and subsequent post-event processing (PEP). We tested a mediational model where social anxiety level indirectly predicted subsequent PEP via its association with AB-disgust and immediate subjective emotional reactivity to social stress. Fifty-five undergraduates (45% female) completed a passive viewing task. Eye movements were tracked during the presentation of social stimuli (e.g., disgust faces) and used to calculate AB-disgust. Next, participants gave an impromptu speech in front of a video camera and watched a neutral video, followed by the completion of a PEP measure. Although there was no association between AB-disgust and physiological reactivity to the stressor, AB-disgust was significantly associated with greater subjective emotional reactivity from baseline to the speech. Analyses supported a partial mediation model where AB-disgust and subjective emotional reactivity to a social stressor partially accounted for the link between social anxiety levels and PEP. Copyright © 2016. Published by Elsevier Ltd.

  16. The role of postdeployment social factors in linking deployment experiences and current posttraumatic stress disorder symptomatology among male and female veterans.

    Science.gov (United States)

    Smith, Brian N; Wang, Joyce M; Vaughn-Coaxum, Rachel A; Di Leone, Brooke A L; Vogt, Dawne

    2017-01-01

    The postdeployment social context is likely highly salient in explaining mental health symptoms following deployment. The aim of this study was to examine the role of postdeployment social factors (social support and social reintegration difficulty) in linking deployment-related experiences (warfare exposure, sexual harassment, concerns about relationship disruptions, and deployment social support) and posttraumatic stress disorder (PTSD) symptomatology in male and female veterans. A survey was administered to 998 potential participants (after accounting for undeliverable mail) who had returned from deployment to Afghanistan or Iraq. Completed surveys were received from 469 veterans, yielding a response rate of 47%. Hypotheses were examined using structural equation modeling. For male and female veterans, deployment factors predicted later PTSD symptoms through postdeployment social support and social reintegration, with lower support and higher social reintegration difficulty both associated with higher PTSD symptomatology. While the final models for women and men indicated similar risk mechanisms, some differences in pathways were observed. Sexual harassment presented more of a risk for women, whereas lower social support was a greater risk factor for men. Postdeployment social factors appear to represent potentially important targets for interventions aiming to reduce the potential impact of stressful deployment experiences.

  17. Intravenous Lipid Infusion Induces Endoplasmic Reticulum Stress in Endothelial Cells and Blood Mononuclear Cells of Healthy Adults.

    Science.gov (United States)

    Tampakakis, Emmanouil; Tabit, Corey E; Holbrook, Monika; Linder, Erika A; Berk, Brittany D; Frame, Alissa A; Bretón-Romero, Rosa; Fetterman, Jessica L; Gokce, Noyan; Vita, Joseph A; Hamburg, Naomi M

    2016-01-11

    Endoplasmic reticulum (ER) stress and the subsequent unfolded protein response may initially be protective, but when prolonged, have been implicated in atherogenesis in diabetic conditions. Triglycerides and free fatty acids (FFAs) are elevated in patients with diabetes and may contribute to ER stress. We sought to evaluate the effect of acute FFA elevation on ER stress in endothelial and circulating white cells. Twenty-one healthy subjects were treated with intralipid (20%; 45 mL/h) plus heparin (12 U/kg/h) infusion for 5 hours. Along with increased triglyceride and FFA levels, intralipid/heparin infusion reduced the calf reactive hyperemic response without a change in conduit artery flow-mediated dilation consistent with microvascular dysfunction. To investigate the short-term effects of elevated triglycerides and FFA, we measured markers of ER stress in peripheral blood mononuclear cells (PBMCs) and vascular endothelial cells (VECs). In VECs, activating transcription factor 6 (ATF6) and phospho-inositol requiring kinase 1 (pIRE1) proteins were elevated after infusion (both P<0.05). In PBMCs, ATF6 and spliced X-box-binding protein 1 (XBP-1) gene expression increased by 2.0- and 2.5-fold, respectively (both P<0.05), whereas CHOP and GADD34 decreased by ≈67% and 74%, respectively (both P<0.01). ATF6 and pIRE1 protein levels also increased (both P<0.05), and confocal microscopy revealed the nuclear localization of ATF6 after infusion, suggesting activation. Along with microvascular dysfunction, intralipid infusion induced an early protective ER stress response evidenced by activation of ATF6 and IRE1 in both leukocytes and endothelial cells. Our results suggest a potential link between metabolic disturbances and ER stress that may be relevant to vascular disease. © 2016 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley Blackwell.

  18. Corticosterone stress response shows long-term repeatability and links to personality in free-living Nazca boobies.

    Science.gov (United States)

    Grace, Jacquelyn K; Anderson, David J

    2014-11-01

    The concept of "coping styles", or consistently different responses to stressors, is of broad interest in behavioral ecology and biomedicine. Two critical predictions of this concept are individual consistency of neurophysiological and behavioral responses (relative to population variability) and a negative relationship between aggression/proactivity and hypothalamic-pituitary-adrenal axis reactivity. Recent studies failed to provide strong support for these predictions, especially outside of strictly controlled conditions, and long-term measures to test the first prediction are rare. Here, we demonstrate individual repeatability across 2-3years of maximum circulating corticosterone concentration [CORT] and area under the [CORT] response curve (AUCI) during a standard capture-restraint test in wild, free-living adult Nazca boobies (Sula granti). We also show that the stress response predicts the personality traits aggression and anxiety in these birds (measured in the wild); however, the strength of these results was weak. Maximum [CORT] and AUCI showed higher repeatability between years than baseline [CORT]. After controlling breeding status, sex, mass, date sampled, and their interactions, baseline [CORT] was most closely related to personality traits, followed by AUCI, and then maximum [CORT]. The direction of these relationships depended on whether the testing context was social or non-social. [CORT] parameters had little to no relationship with cross-context plasticity in personality traits. Our results generally affirm two critical predictions of coping styles, but match the emerging trend that these relationships are weak in the wild, and may depend on testing context. Copyright © 2014 Elsevier Inc. All rights reserved.

  19. ER2OWL: Generating OWL Ontology from ER Diagram

    Science.gov (United States)

    Fahad, Muhammad

    Ontology is the fundamental part of Semantic Web. The goal of W3C is to bring the web into (its full potential) a semantic web with reusing previous systems and artifacts. Most legacy systems have been documented in structural analysis and structured design (SASD), especially in simple or Extended ER Diagram (ERD). Such systems need up-gradation to become the part of semantic web. In this paper, we present ERD to OWL-DL ontology transformation rules at concrete level. These rules facilitate an easy and understandable transformation from ERD to OWL. The set of rules for transformation is tested on a structured analysis and design example. The framework provides OWL ontology for semantic web fundamental. This framework helps software engineers in upgrading the structured analysis and design artifact ERD, to components of semantic web. Moreover our transformation tool, ER2OWL, reduces the cost and time for building OWL ontologies with the reuse of existing entity relationship models.

  20. Hvornår er man ung?

    DEFF Research Database (Denmark)

    Gundelach, Peter; Nørregård-Nielsen, Esther C.

    2002-01-01

    Hvornår er man ung, og hvornår er man voksen? Er der forskelle i befolkningens værdier i forhold til arbejde og politik, når det undersøges ud fra henholdsvis et alders- eller generationsperspektiv? Baseret på data fra den danske del af den internationale værdiundersøgelse vises at der er så store...

  1. Sigma-1 receptor chaperones at the ER-mitochondrion interface regulate Ca(2+) signaling and cell survival.

    Science.gov (United States)

    Hayashi, Teruo; Su, Tsung-Ping

    2007-11-02

    Communication between the endoplasmic reticulum (ER) and mitochondrion is important for bioenergetics and cellular survival. The ER supplies Ca(2+) directly to mitochondria via inositol 1,4,5-trisphosphate receptors (IP3Rs) at close contacts between the two organelles referred to as mitochondrion-associated ER membrane (MAM). We found here that the ER protein sigma-1 receptor (Sig-1R), which is implicated in neuroprotection, carcinogenesis, and neuroplasticity, is a Ca(2+)-sensitive and ligand-operated receptor chaperone at MAM. Normally, Sig-1Rs form a complex at MAM with another chaperone, BiP. Upon ER Ca(2+) depletion or via ligand stimulation, Sig-1Rs dissociate from BiP, leading to a prolonged Ca(2+) signaling into mitochondria via IP3Rs. Sig-1Rs can translocate under chronic ER stress. Increasing Sig-1Rs in cells counteracts ER stress response, whereas decreasing them enhances apoptosis. These results reveal that the orchestrated ER chaperone machinery at MAM, by sensing ER Ca(2+) concentrations, regulates ER-mitochondrial interorganellar Ca(2+) signaling and cell survival.

  2. Stress.

    Science.gov (United States)

    Chambers, David W

    2008-01-01

    We all experience stress as a regular, and sometimes damaging and sometimes useful, part of our daily lives. In our normal ups and downs, we have our share of exhaustion, despondency, and outrage--matched with their corresponding positive moods. But burnout and workaholism are different. They are chronic, dysfunctional, self-reinforcing, life-shortening habits. Dentists, nurses, teachers, ministers, social workers, and entertainers are especially susceptible to burnout; not because they are hard-working professionals (they tend to be), but because they are caring perfectionists who share control for the success of what they do with others and perform under the scrutiny of their colleagues (they tend to). Workaholics are also trapped in self-sealing cycles, but the elements are ever-receding visions of control and using constant activity as a barrier against facing reality. This essay explores the symptoms, mechanisms, causes, and successful coping strategies for burnout and workaholism. It also takes a look at the general stress response on the physiological level and at some of the damage American society inflicts on itself.

  3. Psychological stress, cocaine and natural reward each induce endoplasmic reticulum stress genes in rat brain.

    Science.gov (United States)

    Pavlovsky, A A; Boehning, D; Li, D; Zhang, Y; Fan, X; Green, T A

    2013-08-29

    Our prior research has shown that the transcription of endoplasmic reticulum (ER) stress transcription factors activating transcription factor 3 (ATF3) and ATF4 are induced by amphetamine and restraint stress in rat striatum. However, presently the full extent of ER stress responses to psychological stress or cocaine, and which of the three ER stress pathways is activated is unknown. The current study examines transcriptional responses of key ER stress target genes subsequent to psychological stress or cocaine. Rats were subjected to acute or repeated restraint stress or cocaine treatment and mRNA was isolated from dorsal striatum, medial prefrontal cortex and nucleus accumbens brain tissue. ER stress gene mRNA expression was measured using quantitative polymerase chain reaction (PCR) and RNA sequencing. Restraint stress and cocaine-induced transcription of the classic ER stress-induced genes (BIP, CHOP, ATF3 and GADD34) and of two other ER stress components x-box binding protein 1 (XBP1) and ATF6. In addition, rats living in an enriched environment (large group cage with novel toys changed daily) exhibited rapid induction of GADD34 and ATF3 after 30 min of exploring novel toys, suggesting these genes are also involved in normal non-pathological signaling. However, environmental enrichment, a paradigm that produces protective addiction and depression phenotypes in rats, attenuated the rapid induction of ATF3 and GADD34 after restraint stress. These experiments provide a sensitive measure of ER stress and, more importantly, these results offer good evidence of the activation of ER stress mechanisms from psychological stress, cocaine and natural reward. Thus, ER stress genes may be targets for novel therapeutic targets for depression and addiction. Copyright © 2013 IBRO. Published by Elsevier Ltd. All rights reserved.

  4. Hvorfor er sygeplejersker usynlige i offentlige medier?

    DEFF Research Database (Denmark)

    Joensen, Annemi Lund; Hall, Elisabeth

    2015-01-01

    Når der er sygeplejerelevante emner til debat i de offentlige medier på Færøerne, bærer debatten præg af sygeplejerskers manglende deltagelse. Sygeplejerskerne er usynlige. Et eksempel på dette er en debat om besparelser inden for ældreomsorgen. Til trods for at besparelsen fik omfattende konsekv...

  5. Transgenic overexpression of 14-3-3 zeta protects hippocampus against endoplasmic reticulum stress and status epilepticus in vivo.

    Directory of Open Access Journals (Sweden)

    Gary P Brennan

    Full Text Available 14-3-3 proteins are ubiquitous molecular chaperones that are abundantly expressed in the brain where they regulate cell functions including metabolism, the cell cycle and apoptosis. Brain levels of several 14-3-3 isoforms are altered in diseases of the nervous system, including epilepsy. The 14-3-3 zeta (ζ isoform has been linked to endoplasmic reticulum (ER function in neurons, with reduced levels provoking ER stress and increasing vulnerability to excitotoxic injury. Here we report that transgenic overexpression of 14-3-3ζ in mice results in selective changes to the unfolded protein response pathway in the hippocampus, including down-regulation of glucose-regulated proteins 78 and 94, activating transcription factors 4 and 6, and Xbp1 splicing. No differences were found between wild-type mice and transgenic mice for levels of other 14-3-3 isoforms or various other 14-3-3 binding proteins. 14-3-3ζ overexpressing mice were potently protected against cell death caused by intracerebroventricular injection of the ER stressor tunicamycin. 14-3-3ζ overexpressing mice were also potently protected against neuronal death caused by prolonged seizures. These studies demonstrate that increased 14-3-3ζ levels protect against ER stress and seizure-damage despite down-regulation of the unfolded protein response. Delivery of 14-3-3ζ may protect against pathologic changes resulting from prolonged or repeated seizures or where injuries provoke ER stress.

  6. Jordkvalitetskriterier for PAH'er

    DEFF Research Database (Denmark)

    Carlsen, Lars

    2009-01-01

    For to år siden forhøjede Miljøstyrelsen den administrativt fastsatte grænseværdi for polycycliske hydrocarboner (PAH’er) i jord med en faktor 3, hvilket i praksis betød at en række grunde, der tidligere var klassifi ceret som forurenede, nu ikke klassifi ceres sådan. Den hidtidige og den nye met...

  7. Consultation on the implementation of Engineering Recommendation ER G77. Volume 1: Summary report

    Energy Technology Data Exchange (ETDEWEB)

    Thornycroft, J; Cotterell, M; Collinson, A

    2002-07-01

    The paper is a summary report on consultation inside the Electricity and PV Industry leading to publication of ER G77/1: 'Connection of Single-Phase Inverter Connected Photovoltaic (PV) Generating Equipment of up to 5kVA in Parallel with a Distribution Network Operators (DNOs) Distribution System'. Technical work on ETSU/S/P2/0040 is also reported. The project is a continuation of ETSU/S/P2/00215 which set-up the 'ER G77 Working Group' in order to (i) continue consultation with DNOs and the PV industry; (ii) monitor and make use of experience resulting from implementation of ER G77; (iii) act as a forum for discussion of improvements to ER G77; (iv) assist projects like the DTI supported Domestic Field Trial; (v) provide a link to BSI Standards Work in the field; (vi) provide a link with sub-projects investigating questions related to ER G77. Overall, the goal is to develop a final version of ER G77/1 acceptable to both the electricity supply industry and the PV industry. A revised version of ER G/771 is included.

  8. Temperature Effects of Dielectric Properties of ER Fluids

    Science.gov (United States)

    Qiu, Z. Y.; Hu, L.; Liu, M. W.; Bao, H. X.; Jiang, Y. G.; Zhou, L. W.; Tang, Y.; Gao, Z.; Sun, M.; Korobko, E. V.

    Under the consideration of the role that energy transfer and dissipation play in ER effect, an improved theory frame for ER effects, polarization-dissipation-structure-rheology, is suggested. The theory frame is substantiated by the basic physical laws and certain critical experimental facts. The dielectric response of a diatomite ER fluid to temperature is measured in the temperature range of 140 K to 400 K. By comparison of the DC conductivity with the AC effective conductivity of the sample, we found that the AC dielectric loss consists of two parts. One part comes from the DC conductivity, the other from the response of the bound charges in scope of particle to AC field. It is suggested that the response of bound charges is very important to ER effects. Besides, the effect of temperature on shear stress is measured, and interpreted based on the dielectric measurements. The source of two loss peaks in the curve of the dielectric loss versus temperature is not clear.

  9. Proteomics links the redox state to calcium signaling during bleaching of the scleractinian coral Acropora microphthalma on exposure to high solar irradiance and thermal stress.

    Science.gov (United States)

    Weston, Andrew J; Dunlap, Walter C; Beltran, Victor H; Starcevic, Antonio; Hranueli, Daslav; Ward, Malcolm; Long, Paul F

    2015-03-01

    Shipboard experiments were each performed over a 2 day period to examine the proteomic response of the symbiotic coral Acropora microphthalma exposed to acute conditions of high temperature/low light or high light/low temperature stress. During these treatments, corals had noticeably bleached. The photosynthetic performance of residual algal endosymbionts was severely impaired but showed signs of recovery in both treatments by the end of the second day. Changes in the coral proteome were determined daily and, using recently available annotated genome sequences, the individual contributions of the coral host and algal endosymbionts could be extracted from these data. Quantitative changes in proteins relevant to redox state and calcium metabolism are presented. Notably, expression of common antioxidant proteins was not detected from the coral host but present in the algal endosymbiont proteome. Possible roles for elevated carbonic anhydrase in the coral host are considered: to restore intracellular pH diminished by loss of photosynthetic activity, to indirectly limit intracellular calcium influx linked with enhanced calmodulin expression to impede late-stage symbiont exocytosis, or to enhance inorganic carbon transport to improve the photosynthetic performance of algal symbionts that remain in hospite. Protein effectors of calcium-dependent exocytosis were present in both symbiotic partners. No caspase-family proteins associated with host cell apoptosis, with exception of the autophagy chaperone HSP70, were detected, suggesting that algal loss and photosynthetic dysfunction under these experimental conditions were not due to host-mediated phytosymbiont destruction. Instead, bleaching occurred by symbiont exocytosis and loss of light-harvesting pigments of algae that remain in hospite. These proteomic data are, therefore, consistent with our premise that coral endosymbionts can mediate their own retention or departure from the coral host, which may manifest as

  10. Endoplasmic reticulum (ER Chaperones and Oxidoreductases: Critical Regulators of Tumor Cell Survival and Immunorecognition

    Directory of Open Access Journals (Sweden)

    Thomas eSimmen

    2014-10-01

    Full Text Available Endoplasmic reticulum (ER chaperones and oxidoreductases are abundant enzymes that mediate the production of fully folded secretory and transmembrane proteins. Resisting the Golgi and plasma membrane-directed bulk flow, ER chaperones and oxidoreductases enter retrograde trafficking whenever they are pulled outside of the ER. However, solid tumors are characterized by the increased production of reactive oxygen species (ROS, combined with reduced blood flow that leads to low oxygen supply and ER stress. Under these conditions, hypoxia and the unfolded protein response (UPR upregulate ER chaperones and oxidoreductases. When this occurs, ER oxidoreductases and chaperones become important regulators of tumor growth. However, under these conditions, these proteins not only promote the production of proteins, but also alter the properties of the plasma membrane and hence modulate tumor immune recognition. For instance, high levels of calreticulin serve as an eat-me signal on the surface of tumor cells. Conversely, both intracellular and surface BiP/GRP78 promotes tumor growth. Other ER folding assistants able to modulate the properties of tumor tissue include protein disulfide isomerase (PDI, Ero1α and GRP94. Understanding the roles and mechanisms of ER chaperones in regulating tumor cell functions and immunorecognition will lead to important insight for the development of novel cancer therapies.

  11. Psychological intimate partner violence and sexual risk behavior: examining the role of distinct posttraumatic stress disorder symptoms in the partner violence-sexual risk link.

    Science.gov (United States)

    Overstreet, Nicole M; Willie, Tiara C; Hellmuth, Julianne C; Sullivan, Tami P

    2015-01-01

    Research has examined how physical and sexual intimate partner violence (IPV) victimization increases sexual risk behavior, yet research is lacking on 1) the effect of psychological IPV on sexual risk behavior and 2) factors through which psychological IPV may be linked to sexual risk behavior. The current study examined the relationship between psychological IPV and sexual risk behavior controlling for other forms of IPV (i.e., physical and sexual) in a sample of 186 human immunodeficiency virus (HIV)-negative community women currently experiencing IPV. Further, this study examined the potential mediating effects of four posttraumatic stress disorder (PTSD) symptom severity clusters (i.e., re-experiencing, avoidance, numbing, and hyperarousal) on this relationship. Results revealed that greater severity of psychological IPV was uniquely and directly related to greater sexual risk behavior. Additionally, of the four PTSD symptom severity clusters, only avoidance symptom severity mediated the relationship between psychological IPV and sexual risk behavior. Implications for addressing psychological IPV and PTSD to improve women's sexual health outcomes are discussed. Copyright © 2015 Jacobs Institute of Women's Health. Published by Elsevier Inc. All rights reserved.

  12. Identification of new SSR markers linked to leaf chlorophyll content, flag leaf senescence and cell membrane stability traits in wheat under water stressed condition.

    Science.gov (United States)

    Barakat, Mohamed N; Saleh, Mohamed; Al-Doss, Abdullah A; Moustafa, Khaled A; Elshafei, Adel A; Al-Qurainy, Fahed H

    2015-03-01

    Segregating F4 families from the cross between drought sensitive (Yecora Rojo) and drought tolerant (Pavon 76) genotypes were made to identify SSR markers linked to leaf chlorophyll content, flag leaf senescence and cell membrane stability traits in wheat (Triticum aestivum L.) under water-stressed condition and to map quantitative trait locus (QTL) for the three physiological traits. The parents and 150 F4 families were evaluated phenotypically for drought tolerance using two irrigation treatments (2500 and 7500 m3/ha). Using 400 SSR primers tested for polymorphism in testing parental and F4 families genotypes, the results revealed that QTL for leaf chlorophyll content, flag leaf senescence and cell membrane stability traits were associated with 12, 5 and 12 SSR markers, respectively and explained phenotypic variation ranged from 6 to 42%. The SSR markers for physiological traits had genetic distances ranged from 12.5 to 25.5 cM. These SSR markers can be further used in breeding programs for drought tolerance in wheat.

  13. Multivesicular body formation enhancement and exosome release during endoplasmic reticulum stress.

    Science.gov (United States)

    Kanemoto, Soshi; Nitani, Ryota; Murakami, Tatsuhiko; Kaneko, Masayuki; Asada, Rie; Matsuhisa, Koji; Saito, Atsushi; Imaizumi, Kazunori

    2016-11-11

    The endoplasmic reticulum (ER) plays a pivotal role in maintaining cellular homeostasis. However, numerous environmental and genetic factors give rise to ER stress by inducing an accumulation of unfolded proteins. Under ER stress conditions, cells initiate the unfolded protein response (UPR). Here, we demonstrate a novel aspect of the UPR by electron microscopy and immunostaining analyses, whereby multivesicular body (MVB) formation was enhanced after ER stress. This MVB formation was influenced by inhibition of ER stress transducers inositol required enzyme 1 (IRE1) and PKR-like ER kinase (PERK). Furthermore, exosome release was also increased during ER stress. However, in IRE1 or PERK deficient cells, exosome release was not upregulated, indicating that IRE1- and PERK-mediated pathways are involved in ER stress-dependent exosome release. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. Endoplasmic reticulum stress in amelogenesis imperfecta and phenotypic rescue using 4-phenylbutyrate.

    Science.gov (United States)

    Brookes, Steven J; Barron, Martin J; Boot-Handford, Ray; Kirkham, Jennifer; Dixon, Michael J

    2014-05-01

    Inherited diseases caused by genetic mutations can arise due to loss of protein function. Alternatively, mutated proteins may mis-fold, impairing endoplasmic reticulum (ER) trafficking, causing ER stress and triggering the unfolded protein response (UPR). The UPR attempts to restore proteostasis but if unsuccessful drives affected cells towards apoptosis. Previously, we reported that in mice, the p.Tyr64His mutation in the enamel extracellular matrix (EEM) protein amelogenin disrupts the secretory pathway in the enamel-forming ameloblasts, resulting in eruption of malformed tooth enamel that phenocopies human amelogenesis imperfecta (AI). Defective amelogenin post-secretory self-assembly and processing within the developing EEM has been suggested to underlie the pathogenesis of X chromosome-linked AI. Here, we challenge this concept by showing that AI pathogenesis associated with the p.Tyr64His amelogenin mutation involves ameloblast apoptosis induced by ER stress. Furthermore, we show that 4-phenylbutyrate can rescue the enamel phenotype in affected female mice by promoting cell survival over apoptosis such that they are able to complete enamel formation despite the presence of the mutation, offering a potential therapeutic option for patients with this form of AI and emphasizing the importance of ER stress in the pathogenesis of this inherited conformational disease.

  15. ATF6α/β-mediated adjustment of ER chaperone levels is essential for development of the notochord in medaka fish.

    Science.gov (United States)

    Ishikawa, Tokiro; Okada, Tetsuya; Ishikawa-Fujiwara, Tomoko; Todo, Takeshi; Kamei, Yasuhiro; Shigenobu, Shuji; Tanaka, Minoru; Saito, Taro L; Yoshimura, Jun; Morishita, Shinichi; Toyoda, Atsushi; Sakaki, Yoshiyuki; Taniguchi, Yoshihito; Takeda, Shunichi; Mori, Kazutoshi

    2013-05-01

    ATF6α and ATF6β are membrane-bound transcription factors activated by regulated intramembrane proteolysis in response to endoplasmic reticulum (ER) stress to induce various ER quality control proteins. ATF6α- and ATF6β single-knockout mice develop normally, but ATF6α/β double knockout causes embryonic lethality, the reason for which is unknown. Here we show in medaka fish that ATF6α is primarily responsible for transcriptional induction of the major ER chaperone BiP and that ATF6α/β double knockout, but not ATF6α- or ATF6β single knockout, causes embryonic lethality, as in mice. Analyses of ER stress reporters reveal that ER stress occurs physiologically during medaka early embryonic development, particularly in the brain, otic vesicle, and notochord, resulting in ATF6α- and ATF6β-mediated induction of BiP, and that knockdown of the α1 chain of type VIII collagen reduces such ER stress. The absence of transcriptional induction of several ER chaperones in ATF6α/β double knockout causes more profound ER stress and impaired notochord development, which is partially rescued by overexpression of BiP. Thus ATF6α/β-mediated adjustment of chaperone levels to increased demands in the ER is essential for development of the notochord, which synthesizes and secretes large amounts of extracellular matrix proteins to serve as the body axis before formation of the vertebra.

  16. The obesity-induced transcriptional regulator TRIP-Br2 mediates visceral fat endoplasmic reticulum stress-induced inflammation.

    Science.gov (United States)

    Qiang, Guifen; Kong, Hyerim Whang; Fang, Difeng; McCann, Maximilian; Yang, Xiuying; Du, Guanhua; Blüher, Matthias; Zhu, Jinfang; Liew, Chong Wee

    2016-04-25

    The intimate link between location of fat accumulation and metabolic disease risk and depot-specific differences is well established, but how these differences between depots are regulated at the molecular level remains largely unclear. Here we show that TRIP-Br2 mediates endoplasmic reticulum (ER) stress-induced inflammatory responses in visceral fat. Using in vitro, ex vivo and in vivo approaches, we demonstrate that obesity-induced circulating factors upregulate TRIP-Br2 specifically in visceral fat via the ER stress pathway. We find that ablation of TRIP-Br2 ameliorates both chemical and physiological ER stress-induced inflammatory and acute phase response in adipocytes, leading to lower circulating levels of inflammatory cytokines. Using promoter assays, as well as molecular and pharmacological experiments, we show that the transcription factor GATA3 is responsible for the ER stress-induced TRIP-Br2 expression in visceral fat. Taken together, our study identifies molecular regulators of inflammatory response in visceral fat that-given that these pathways are conserved in humans-might serve as potential therapeutic targets in obesity.

  17. Videnarbejde og stress

    DEFF Research Database (Denmark)

    Buch, Anders; Andersen, Vibeke; Sørensen, Ole Henning

    . Videnarbejde kan for den enkelte være vejen til selvrealisering og begejstring, men rummer også i sig kimen til stress og udbrændthed. Og det er netop i spændingsfeltet - i kampen - mellem begejstring og belastning, at bogen ser stress i det moderne arbejdsliv, som en uoverensstemmelse mellem ydre krav og...

  18. Optimal fodring af goldkøer

    DEFF Research Database (Denmark)

    Bjerre-Harpøth, Vibeke; Damgaard, Birthe Marie

    2013-01-01

    Et forsøg har vist, at køer på lavt energiniveau i goldperioden var fysiologisk sundere og havde mindre risiko for at udvikle stofskiftesygdomme end køer på et højt energiniveau. Forsøget viste også, at køer på et normalt energiniveau i senlaktationen gav mere mælk i den efterfølgende laktation e...

  19. Er moral bare noget vi leger?

    DEFF Research Database (Denmark)

    Thomsen, Frej Klem

    2014-01-01

    Hvis man er skeptiker, så er moral nemlig altid kun et udtryk for psykologi og kultur, også når det handler om for eksempel misbrug af børn i Tønder-sagen eller terror-angreb i Madrid, London og Mumbai .......Hvis man er skeptiker, så er moral nemlig altid kun et udtryk for psykologi og kultur, også når det handler om for eksempel misbrug af børn i Tønder-sagen eller terror-angreb i Madrid, London og Mumbai ....

  20. Thermodynamic assessments of the Ag-Er and Er-Y systems

    International Nuclear Information System (INIS)

    Wang, S.L.; Wang, C.P.; Liu, X.J.; Tang, A.T.; Pan, F.S.; Ishida, K.

    2010-01-01

    The phase diagrams and thermodynamic properties in the Ag-Er and Er-Y binary systems have been assessed by using the CALPHAD (Calculation of Phase Diagrams) method on the basis of the experimental data including the thermodynamic properties and phase equilibria. The Gibbs free energies of the liquid, bcc, fcc, and hcp phases were described by the subregular solution model with the Redlich-Kister equation, and those of intermetallic compounds (Ag 2 Er and AgEr phases) were treated as stoichiometric compounds, and Ag 51 Er 14 phase was modeled by the sublattice model in the Ag-Er binary system. The thermodynamic parameters of the Ag-Er and Er-Y binary systems were obtained, and an agreement between the calculated results and experimental data was obtained for each binary system.

  1. Dynamic O-linked N-acetylglucosamine modification of proteins affects stress responses and survival of mesothelial cells exposed to peritoneal dialysis fluids.

    Science.gov (United States)

    Herzog, Rebecca; Bender, Thorsten O; Vychytil, Andreas; Bialas, Katarzyna; Aufricht, Christoph; Kratochwill, Klaus

    2014-12-01

    The ability of cells to respond and survive stressful conditions is determined, in part, by the attachment of O-linked N-acetylglucosamine (O-GlcNAc) to proteins (O-GlcNAcylation), a post-translational modification dependent on glucose and glutamine. This study investigates the role of dynamic O-GlcNAcylation of mesothelial cell proteins in cell survival during exposure to glucose-based peritoneal dialysis fluid (PDF). Immortalized human mesothelial cells and primary mesothelial cells, cultured from human omentum or clinical effluent of PD patients, were assessed for O-GlcNAcylation under normal conditions or after exposure to PDF. The dynamic status of O-GlcNAcylation and effects on cellular survival were investigated by chemical modulation with 6-diazo-5-oxo-L-norleucine (DON) to decrease or O-(2-acetamido-2-deoxy-D-glucopyranosylidene)amino N-phenyl carbamate (PUGNAc) to increase O-GlcNAc levels. Viability was decreased by reducing O-GlcNAc levels by DON, which also led to suppressed expression of the cytoprotective heat shock protein 72. In contrast, increasing O-GlcNAc levels by PUGNAc or alanyl-glutamine led to significantly improved cell survival paralleled by higher heat shock protein 72 levels during PDF treatment. Addition of alanyl-glutamine increased O-GlcNAcylation and partly counteracted its inhibition by DON, also leading to improved cell survival. Immunofluorescent analysis of clinical samples showed that the O-GlcNAc signal primarily originates from mesothelial cells. In conclusion, this study identified O-GlcNAcylation in mesothelial cells as a potentially important molecular mechanism after exposure to PDF. Modulating O-GlcNAc levels by clinically feasible interventions might evolve as a novel therapeutic target for the preservation of peritoneal membrane integrity in PD. Copyright © 2014 by the American Society of Nephrology.

  2. Examining the link between women’s exposure to stressful life events prior to conception and infant and toddler health: The role of birthweight

    Science.gov (United States)

    Cheng, Erika R.; Park, Hyojun; Wisk, Lauren E.; Mandell, Kara C.; Wakeel, Fathima; Litzelman, Kristin; Chatterjee, Debanjana; Witt, Whitney P.

    2015-01-01

    Background The lifecourse perspective suggests a pathway may exist among maternal exposure to stressful life events prior to conception (PSLEs), infant birthweight, and subsequent offspring health, whereby PLSEs are part of a “chains-of-risk” that set children on a certain health pathway. No prior study has examined the link between PSLEs and offspring health in a nationally-representative sample of US mothers and their children. We used longitudinal, nationally-representative data to evaluate the relation between maternal exposure to PSLEs and subsequent measures of infant and toddler health, taking both maternal and obstetric characteristics into account. Methods We examined 6,900 mother-child dyads participating in two waves of the nationally-representative Early Childhood Longitudinal Study-Birth Cohort (n=6,900). Infant and toddler health outcomes assessed at 9 and 24 months included overall health status, special health care needs, and severe health conditions. Adjusted path analyses examined associations between PSLEs, birthweight, and child health outcomes. Results In adjusted analyses, PSLEs increased the risk for very low birthweight (VLBW, <1,