WorldWideScience

Sample records for linking collagen structure

  1. Chemical structure, biosynthesis and synthesis of free and glycosylated pyridinolines formed by cross-link of bone and synovium collagen.

    Anastasia, Luigi; Rota, Paola; Anastasia, Mario; Allevi, Pietro

    2013-09-21

    This review focuses on the chemical structure, biosynthesis and synthesis of free and glycosylated pyridinolines (Pyds), fluorescent collagen cross-links, with a pyridinium salt structure. Pyds derive from the degradation of bone collagen and have attracted attention for their use as biochemical markers of bone resorption and to assess fracture risk prediction in persons suffering from osteoporosis, bone cancer and other bone or collagen diseases. We consider and critically discuss all reported syntheses of free and glycosylated Pyds evidencing an unrevised chemistry, original and of general utility, analysis of which allows us to also support a previously suggested non-enzymatic formation of Pyds in collagen better rationalizing and justifying the chemical events.

  2. Collagen cross linking: Current perspectives

    Srinivas K Rao

    2013-01-01

    Full Text Available Keratoconus is a common ectatic disorder occurring in more than 1 in 1,000 individuals. The condition typically starts in adolescence and early adulthood. It is a disease with an uncertain cause and its progression is unpredictable, but in extreme cases, vision deteriorates and can require corneal transplant surgery. Corneal collagen cross-linking (CCL with riboflavin (C3R is a recent treatment option that can enhance the rigidity of the cornea and prevent disease progression. Since its inception, the procedure has evolved with newer instrumentation, surgical techniques, and is also now performed for expanded indications other than keratoconus. With increasing experience, newer guidelines regarding optimization of patient selection, the spectrum of complications and their management, and combination procedures are being described. This article in conjunction with the others in this issue, will try and explore the uses of collagen cross-linking (CXL in its current form.

  3. Collagens - structure, function and biosynthesis.

    Gelse, K; Poschl, E; Aigner, T

    2003-01-01

    The extracellular matrix represents a complex alloy of variable members of diverse protein families defining structural integrity and various physiological functions. The most abundant family is the collagens with more than 20 different collagen types identified so far. Collagens are centrally involved in the formation of fibrillar and microfibrillar networks of the extracellular matrix, basement membranes as well as other structures of the extracellular matrix. This review focuses on the dis...

  4. [Biophysical principles of collagen cross-linking].

    Spörl, E; Raiskup-Wolf, F; Pillunat, L E

    2008-02-01

    The reduced mechanical stability of the cornea in keratoconus or in keratectasia after Lasik may be increased by photooxidative cross-linking of corneal collagen. The biophysical principles are compiled for the safe and effective application of this new treatment method. The setting of the therapy parameters should be elucidated from the absorption behaviour of the cornea. The safety of the method for the endothelium cells and the lens will be discussed. The induced cross-links are shown to be the result of changes in the physico-chemical properties of the cornea. To reach a high absorption of the irradiation energy in the cornea, riboflavin of a concentration of 0.1% and UV light of a wavelength of 370 nm, corresponding to the relative maximum of absorption of riboflavin, were used. An irradiance of 3 mW/cm(2) and an irradiation time of 30 min lead to an increase of the mechanical stiffness. The endothelium cells will be protected due to the high absorption within the cornea, that means the damaging threshold of the endothelium cells will not be reached in a 400 microm thick stroma. As evidence for cross-links we can consider the increase of the biomechanical stiffness, the increased resistance against enzymatic degradation, a higher shrinkage temperature, a lower swelling rate and an increased diameter of collagen fibres. The therapy parameters were tested experimentally and have been proven clinically in the corneal collagen cross-linking. These parameters should be respected to reach a safe cross-linking effect without damage of the adjacent tissues.

  5. Collagen cross-linking in thin corneas

    Prema Padmanabhan

    2013-01-01

    Full Text Available Collagen cross-linking (CXL has become the standard of care for progressive keratoconus, after numerous clinical studies have established its efficacy and safety in suitably selected eyes. The standard protocol is applicable in eyes which have a minimum corneal thickness of 400 μm after epithelial debridement. This prerequisite was stipulated to protect the corneal endothelium and intraocular tissues from the deleterious effect of ultraviolet-A (UVA radiation. However, patients with keratoconus often present with corneal thickness of less than 400 μm and could have otherwise benefited from this procedure. A few modifications of the standard procedure have been suggested to benefit these patients without a compromise in safety. Transepithelial cross-linking, pachymetry-guided epithelial debridement before cross-linking, and the use of hypoosmolar riboflavin are some of the techniques that have been attempted. Although clinical data is limited at the present time, these techniques are worth considering in patients with thin corneas. Further studies are needed to scientifically establish their efficacy and safety.

  6. Collagens--structure, function, and biosynthesis.

    Gelse, K; Pöschl, E; Aigner, T

    2003-11-28

    The extracellular matrix represents a complex alloy of variable members of diverse protein families defining structural integrity and various physiological functions. The most abundant family is the collagens with more than 20 different collagen types identified so far. Collagens are centrally involved in the formation of fibrillar and microfibrillar networks of the extracellular matrix, basement membranes as well as other structures of the extracellular matrix. This review focuses on the distribution and function of various collagen types in different tissues. It introduces their basic structural subunits and points out major steps in the biosynthesis and supramolecular processing of fibrillar collagens as prototypical members of this protein family. A final outlook indicates the importance of different collagen types not only for the understanding of collagen-related diseases, but also as a basis for the therapeutical use of members of this protein family discussed in other chapters of this issue.

  7. Chitosan Cross-linked Reconstituted Amniotic Collagen Membrane ...

    First page Back Continue Last page Overview Graphics. Chitosan Cross-linked Reconstituted Amniotic Collagen Membrane – An Excellent Cell Substratum. The KERATINOCYTE proliferation and Differentiation into multiple layers is due to the presence of type - IV collagen in the amnion. Cultured FIBROBLASTS had good ...

  8. The effect of riboflavin/UVA collagen cross-linking therapy on the structure and hydrodynamic behaviour of the ungulate and rabbit corneal stroma.

    Sally Hayes

    Full Text Available To examine the effect of riboflavin/UVA corneal crosslinking on stromal ultrastructure and hydrodynamic behaviour.One hundred and seventeen enucleated ungulate eyes (112 pig and 5 sheep and 3 pairs of rabbit eyes, with corneal epithelium removed, were divided into four treatment groups: Group 1 (28 pig, 2 sheep and 3 rabbits were untreated; Group 2 (24 pig were exposed to UVA light (3.04 mW/cm(2 for 30 minutes and Group 3 (29 pig and Group 4 (31 pig, 3 sheep and 3 rabbits had riboflavin eye drops applied to the corneal surface every 5 minutes for 35 minutes. Five minutes after the initial riboflavin instillation, the corneas in Group 4 experienced a 30 minute exposure to UVA light (3.04 mW/cm(2. X-ray scattering was used to obtain measurements of collagen interfibrillar spacing, spatial order, fibril diameter, D-periodicity and intermolecular spacing throughout the whole tissue thickness and as a function of tissue depth in the treated and untreated corneas. The effect of each treatment on the hydrodynamic behaviour of the cornea (its ability to swell in saline solution and its resistance to enzymatic digestion were assessed using in vitro laboratory techniques.Corneal thickness decreased significantly following riboflavin application (p<0.01 and also to a lesser extent after UVA exposure (p<0.05. With the exception of the spatial order factor, which was higher in Group 4 than Group 1 (p<0.01, all other measured collagen parameters were unaltered by cross-linking, even within the most anterior 300 microns of the cornea. The cross-linking treatment had no effect on the hydrodynamic behaviour of the cornea but did cause a significant increase in its resistance to enzymatic digestion.It seems likely that cross-links formed during riboflavin/UVA therapy occur predominantly at the collagen fibril surface and in the protein network surrounding the collagen.

  9. Peripheral hepatic arterial embolization with cross-linked collagen fibers

    Daniels, J.R.; Kerlan, R.K. Jr.; Dodds, L.; McLaughlin, P.; La Berge, J.M.; Harrington, D.; Daniels, A.M.; Ring, E.J.

    1986-01-01

    Hepatic artery embolization with a nonimmunogenic, cross-linked collagen preparation (Angiostat, collagen for embolization, Target Therapeutics) was studied in mongrel dogs. Flow-directed technique was used to achieve complete distal arterial occlusion. Serial liver function evaluation demonstrated marked alterations at 48 to 72 hours, partial correction at 1 week, and resolution of abnormalities by 1 month. Restoration of large-vessel blood flow was angiographically demonstrable at 1 week. Recanalization, achieved by migration of endothelial cells around the collagen, resulted in complete restoration of normal hepatic vascular and tissue anatomy at 1 month. Repeated embolization at biweekly intervals was well tolerated

  10. Collagen cross-linking: insights on the evolution of metazoan extracellular matrix.

    Rodriguez-Pascual, Fernando; Slatter, David Anthony

    2016-11-23

    Collagens constitute a large family of extracellular matrix (ECM) proteins that play a fundamental role in supporting the structure of various tissues in multicellular animals. The mechanical strength of fibrillar collagens is highly dependent on the formation of covalent cross-links between individual fibrils, a process initiated by the enzymatic action of members of the lysyl oxidase (LOX) family. Fibrillar collagens are present in a wide variety of animals, therefore often being associated with metazoan evolution, where the emergence of an ancestral collagen chain has been proposed to lead to the formation of different clades. While LOX-generated collagen cross-linking metabolites have been detected in different metazoan families, there is limited information about when and how collagen acquired this particular modification. By analyzing telopeptide and helical sequences, we identified highly conserved, potential cross-linking sites throughout the metazoan tree of life. Based on this analysis, we propose that they have importantly contributed to the formation and further expansion of fibrillar collagens.

  11. Collagen and elastin cross-linking is altered during aberrant late lung development associated with hyperoxia.

    Mižíková, Ivana; Ruiz-Camp, Jordi; Steenbock, Heiko; Madurga, Alicia; Vadász, István; Herold, Susanne; Mayer, Konstantin; Seeger, Werner; Brinckmann, Jürgen; Morty, Rory E

    2015-06-01

    Maturation of the lung extracellular matrix (ECM) plays an important role in the formation of alveolar gas exchange units. A key step in ECM maturation is cross-linking of collagen and elastin, which imparts stability and functionality to the ECM. During aberrant late lung development in bronchopulmonary dysplasia (BPD) patients and animal models of BPD, alveolarization is blocked, and the function of ECM cross-linking enzymes is deregulated, suggesting that perturbed ECM cross-linking may impact alveolarization. In a hyperoxia (85% O2)-based mouse model of BPD, blunted alveolarization was accompanied by alterations to lung collagen and elastin levels and cross-linking. Total collagen levels were increased (by 63%). The abundance of dihydroxylysinonorleucine collagen cross-links and the dihydroxylysinonorleucine-to-hydroxylysinonorleucine ratio were increased by 11 and 18%, respectively, suggestive of a profibrotic state. In contrast, insoluble elastin levels and the abundance of the elastin cross-links desmosine and isodesmosine in insoluble elastin were decreased by 35, 30, and 21%, respectively. The lung collagen-to-elastin ratio was threefold increased. Treatment of hyperoxia-exposed newborn mice with the lysyl oxidase inhibitor β-aminopropionitrile partially restored normal collagen levels, normalized the dihydroxylysinonorleucine-to-hydroxylysinonorleucine ratio, partially normalized desmosine and isodesmosine cross-links in insoluble elastin, and partially restored elastin foci structure in the developing septa. However, β-aminopropionitrile administration concomitant with hyperoxia exposure did not improve alveolarization, evident from unchanged alveolar surface area and alveoli number, and worsened septal thickening (increased by 12%). These data demonstrate that collagen and elastin cross-linking are perturbed during the arrested alveolarization of developing mouse lungs exposed to hyperoxia. Copyright © 2015 the American Physiological Society.

  12. The mechanism of collagen cross-linking in diabetes: a puzzle nearing resolution.

    Monnier, V M; Glomb, M; Elgawish, A; Sell, D R

    1996-07-01

    Considerable interest has been focused in recent years on the mechanism of collagen cross-linking by high glucose in vitro and in vivo. Experiments in both diabetic humans and in animals have shown that over time collagen becomes less soluble, less digestible by collagenase, more stable to heat-induced denaturation, and more glycated. In addition, collagen becomes more modified by advanced products of the Maillard reaction, i.e., immunoreactive advanced glycation end products and the glycoxidation markers carboxymethyllysine and pentosidine. Mechanistic studies have shown that collagen cross-linking in vitro can be uncoupled from glycation by the use of antioxidants and chelating agents. Experiments in the authors' laboratory revealed that approximately 50% of carboxymethyllysine formed in vitro originates from pathways other than oxidation of Amadori products, i.e., most likely the oxidation of Schiff base-linked glucose. In addition, the increase in thermal stability of rat tail tendons exposed to high glucose in vitro or in vivo was found to strongly depend on H2O2 formation. The final missing piece of the puzzle is that of the structure of the major cross-link. We speculate that it is a nonfluorescent nonultraviolet active cross-link between two lysine residues, which includes a fragmentation product of glucose linked in a nonreducible bond labile to both strong acids and bases.

  13. Recent advances in corneal collagen cross-linking

    Gitansha Shreyas Sachdev

    2017-01-01

    Full Text Available Corneal collagen cross-linking has become the preferred modality of treatment for corneal ectasia since its inception in late 1990s. Numerous studies have demonstrated the safety and efficacy of the conventional protocol. Our understanding of the cross-linking process is ever evolving, with its wide implications in the form of accelerated and pulsed protocols. Newer advancements in technology include various riboflavin formulations and the ability to deliver higher fluence protocols with customised irradiation patterns. A greater degree of customisation is likely the path forward, which will aim at achieving refractive improvements along with disease stability. The use of cross-linking for myopic correction is another avenue under exploration. Combination of half fluence cross-linking with refractive correction for high errors to prevent post LASIK regression is gaining interest. This review aims to highlight the various advancements in the cross-linking technology and its clinical applications.

  14. Mechanical properties and collagen cross-linking of the patellar tendon in old and young men

    Couppé, C; Hansen, P; Kongsgaard, M

    2009-01-01

    were higher in OM than in YM (73 +/- 13 vs. 11 +/- 2 mmol/mol; P appreciably influence the dimensions or mechanical properties of the human patellar tendon in vivo. Collagen concentration was reduced, whereas both enzymatic......Age-related loss in muscle mass and strength impairs daily life function in the elderly. However, it remains unknown whether tendon properties also deteriorate with age. Cross-linking of collagen molecules provides structural integrity to the tendon fibrils and has been shown to change with age...... in animals but has never been examined in humans in vivo. In this study, we examined the mechanical properties and pyridinoline and pentosidine cross-link and collagen concentrations of the patellar tendon in vivo in old (OM) and young men (YM). Seven OM (67 +/- 3 years, 86 +/- 10 kg) and 10 YM (27 +/- 2...

  15. Collagen cross-linking in sun-exposed and unexposed sites of aged human skin

    Yamauchi, M.; Prisayanh, P.; Haque, Z.; Woodley, D. T.

    1991-01-01

    A recently described nonreducible, acid-heat stable compound, histidinohydroxylysinonorleucine (HHL), is a collagen cross-link isolated from mature skin tissue. Its abundance is related to chronologic aging of skin. The present communication describes the quantity of HHL from aged human skin of the same individuals in sun-exposed (wrist) and unexposed (buttock) sites. Punch biopsies were obtained from these sites from nine people of age 60 or older. HHL contents (moles/mole of collagen) at these sites were for wrist 0.13 +/- 0.07 and for buttock 0.69 +/- 0.17 (mean +/- SD, p less than 0.001). In addition, it was found that acute irradiation of the cross-linked peptides with UVA (up to 250 J/cm2) and UVB (up to 1 J/cm2) had no effect on HHL structure. The same treatment significantly degraded another nonreducible, stable collagen cross-link, pyridinoline. The results suggest that chronic sunlight exposure may be associated with an impediment to normal maturation of human dermal collagen resulting in tenuous amount of HHL. Thus, the process of photoaging in dermal collagen is different from that of chronologic aging in human skin.

  16. Collagen Cross-Linking: Current Status and Future Directions

    Marine Hovakimyan

    2012-01-01

    Full Text Available Collagen cross-linking (CXL using UVA light and riboflavin (vitamin B2 was introduced as a clinical application to stabilize the cornea by inducing cross-links within and between collagen fibers. CXL has been investigated extensively and has been shown clinically to arrest the progression of keratoconic or post-LASIK ectasia. With its minimal cost, simplicity, and proven positive clinical outcome, CXL can be regarded as a useful approach to reduce the number of penetrating keratoplasties performed. Small case series have also indicated that CXL is beneficial in corneal edema by reducing stromal swelling behavior and in keratitis by inhibiting pathogen growth. Despite these encouraging results, CXL remains a relatively new method that is potentially associated with complications. Aspects such as side effects and recurrence rates have still to be elucidated. In light of the growing interest in CXL, our paper summarizes present knowledge about this promising approach. We have intentionally endeavored to include the more relevant studies from the recent literature to provide an overview of the current status of CXL.

  17. The Effect of Riboflavin/UVA Collagen Cross-linking Therapy on the Structure and Hydrodynamic Behaviour of the Ungulate and Rabbit Corneal Stroma

    Hayes, Sally; Kamma-Lorger, Christina S.; Boote, Craig; Young, Robert D.; Quantock, Andrew J.; Rost, Anika; Khatib, Yasmeen; Harris, Jonathan; Yagi, Naoto; Terrill, Nicholas; Meek, Keith M.

    2013-01-01

    Purpose To examine the effect of riboflavin/UVA corneal crosslinking on stromal ultrastructure and hydrodynamic behaviour. Methods One hundred and seventeen enucleated ungulate eyes (112 pig and 5 sheep) and 3 pairs of rabbit eyes, with corneal epithelium removed, were divided into four treatment groups: Group 1 (28 pig, 2 sheep and 3 rabbits) were untreated; Group 2 (24 pig) were exposed to UVA light (3.04 mW/cm2) for 30 minutes and Group 3 (29 pig) and Group 4 (31 pig, 3 sheep and 3 rabbits) had riboflavin eye drops applied to the corneal surface every 5 minutes for 35 minutes. Five minutes after the initial riboflavin instillation, the corneas in Group 4 experienced a 30 minute exposure to UVA light (3.04 mW/cm2). X-ray scattering was used to obtain measurements of collagen interfibrillar spacing, spatial order, fibril diameter, D-periodicity and intermolecular spacing throughout the whole tissue thickness and as a function of tissue depth in the treated and untreated corneas. The effect of each treatment on the hydrodynamic behaviour of the cornea (its ability to swell in saline solution) and its resistance to enzymatic digestion were assessed using in vitro laboratory techniques. Results Corneal thickness decreased significantly following riboflavin application (priboflavin/UVA therapy occur predominantly at the collagen fibril surface and in the protein network surrounding the collagen. PMID:23349690

  18. Structure to function: Spider silk and human collagen

    Rabotyagova, Olena S.

    Nature has the ability to assemble a variety of simple molecules into complex functional structures with diverse properties. Collagens, silks and muscles fibers are some examples of fibrous proteins with self-assembling properties. One of the great challenges facing Science is to mimic these designs in Nature to find a way to construct molecules that are capable of organizing into functional supra-structures by self-assembly. In order to do so, a construction kit consisting of molecular building blocks along with a complete understanding on how to form functional materials is required. In this current research, the focus is on spider silk and collagen as fibrous protein-based biopolymers that can shed light on how to generate nanostructures through the complex process of self-assembly. Spider silk in fiber form offers a unique combination of high elasticity, toughness, and mechanical strength, along with biological compatibility and biodegrability. Spider silk is an example of a natural block copolymer, in which hydrophobic and hydrophilic blocks are linked together generating polymers that organize into functional materials with extraordinary properties. Since silks resemble synthetic block copolymer systems, we adopted the principles of block copolymer design from the synthetic polymer literature to build block copolymers based on spider silk sequences. Moreover, we consider spider silk to be an important model with which to study the relationships between structure and properties in our system. Thus, the first part of this work was dedicated to a novel family of spider silk block copolymers, where we generated a new family of functional spider silk-like block copolymers through recombinant DNA technology. To provide fundamental insight into relationships between peptide primary sequence, block composition, and block length and observed morphological and structural features, we used these bioengineered spider silk block copolymers to study secondary structure

  19. Fluorescence imaging of tryptophan and collagen cross-links to evaluate wound closure ex vivo

    Wang, Ying; Ortega-Martinez, Antonio; Farinelli, Bill; Anderson, R. R.; Franco, Walfre

    2016-02-01

    Wound size is a key parameter in monitoring healing. Current methods to measure wound size are often subjective, time-consuming and marginally invasive. Recently, we developed a non-invasive, non-contact, fast and simple but robust fluorescence imaging (u-FEI) method to monitor the healing of skin wounds. This method exploits the fluorescence of native molecules to tissue as functional and structural markers. The objective of the present study is to demonstrate the feasibility of using variations in the fluorescence intensity of tryptophan and cross-links of collagen to evaluate proliferation of keratinocyte cells and quantitate size of wound during healing, respectively. Circular dermal wounds were created in ex vivo human skin and cultured in different media. Two serial fluorescence images of tryptophan and collagen cross-links were acquired every two days. Histology and immunohistology were used to validate correlation between fluorescence and epithelialization. Images of collagen cross-links show fluorescence of the exposed dermis and, hence, are a measure of wound area. Images of tryptophan show higher fluorescence intensity of proliferating keratinocytes forming new epithelium, as compared to surrounding keratinocytes not involved in epithelialization. These images are complementary since collagen cross-links report on structure while tryptophan reports on function. HE and immunohistology show that tryptophan fluorescence correlates with newly formed epidermis. We have established a fluorescence imaging method for studying epithelialization processes during wound healing in a skin organ culture model, our approach has the potential to provide a non-invasive, non-contact, quick, objective and direct method for quantitative measurements in wound healing in vivo.

  20. Evaluation of nanohydroxyapaptite (nano-HA) coated epigallocatechin-3-gallate (EGCG) cross-linked collagen membranes.

    Chu, Chenyu; Deng, Jia; Man, Yi; Qu, Yili

    2017-09-01

    Collagen is the main component of extracellular matrix (ECM) with desirable biological activities and low antigenicity. Collagen materials have been widely utilized in guided bone regeneration (GBR) surgery due to its abilities to maintain space for hard tissue growth. However, pure collagen lacks optimal mechanical properties. In our previous study, epigallocatechin-3-gallate (EGCG) cross-linked collagen membranes, with better biological activities and enhanced mechanical properties, may promote osteoblast proliferation, but their effect on osteoblast differentiation is not very significant. Nanohydroxyapatite (nano-HA) is the main component of mineral bone, which possesses exceptional bioactivity properties including good biocompatibility, high osteoconductivity and osteoinductivity, non-immunogenicity and non-inflammatory behavior. Herein, by analyzing the physical and chemical properties as well as the effects on promoting bone regeneration, we have attempted to present a novel EGCG-modified collagen membrane with nano-HA coating, and have found evidence that the novel collagen membrane may promote bone regeneration with a better surface morphology, without destroying collagen backbone. To evaluate the surface morphologies, chemical and mechanical properties of pure collagen membranes, epigallocatechin-3-gallate (EGCG) cross-linked collagen membranes, nano-HA coated collagen membranes, nano-HA coated EGCG-collagen membranes, (ii) to evaluate the bone regeneration promoted by theses membranes. In the present study, collagen membranes were divided into 4 groups: (1) untreated collagen membranes (2) EGCG cross-linked collagen membranes (3) nano-HA modified collagen membranes (4) nano-HA modified EGCG-collagen membranes. Scanning electron microscope (SEM) and Fourier transform infrared spectroscopy (FTIR) were used to evaluate surface morphologies and chemical properties, respectively. Mechanical properties were determined by differential scanning calorimeter (DSC

  1. Collagen Structural Hierarchy and Susceptibility to Degradation by Ultraviolet Radiation.

    Rabotyagova, Olena S; Cebe, Peggy; Kaplan, David L

    2008-12-01

    Collagen type I is the most abundant extracellular matrix protein in the human body, providing the basis for tissue structure and directing cellular functions. Collagen has complex structural hierarchy, organized at different length scales, including the characteristic triple helical feature. In the present study, the relationship between collagen structure (native vs. denatured) and sensitivity to UV radiation was assessed, with a focus on changes in primary structure, changes in conformation, microstructure and material properties. A brief review of free radical reactions involved in collagen degradation is also provided as a mechanistic basis for the changes observed in the study. Structural and functional changes in the collagens were related to the initial conformation (native vs. denatured) and the energy of irradiation. These changes were tracked using SDS-PAGE to assess molecular weight, Fourier transform infrared (FTIR) spectroscopy to study changes in the secondary structure, and atomic force microscopy (AFM) to characterize changes in mechanical properties. The results correlate differences in sensitivity to irradiation with initial collagen structural state: collagen in native conformation vs. heat-treated (denatured) collagen. Changes in collagen were found at all levels of the hierarchical structural organization. In general, the native collagen triple helix is most sensitive to UV-254nm radiation. The triple helix delays single chain degradation. The loss of the triple helix in collagen is accompanied by hydrogen abstraction through free radical mechanisms. The results received suggest that the effects of electromagnetic radiation on biologically relevant extracellular matrices (collagen in the present study) are important to assess in the context of the state of collagen structure. The results have implications in tissue remodeling, wound repair and disease progression.

  2. Radiation cross-linked collagen/dextran dermal scaffolds: effects of dextran on cross-linking and degradation.

    Zhang, Yaqing; Zhang, Xiangmei; Xu, Ling; Wei, Shicheng; Zhai, Maolin

    2015-01-01

    Ionizing radiation effectively cross-links collagen into network with enhanced anti-degradability and biocompatibility, while radiation-cross-linked collagen scaffold lacks flexibility, satisfactory surface appearance, and performs poor in cell penetration and ingrowth. To make the radiation-cross-linked collagen scaffold to serve as an ideal artificial dermis, dextran was incorporated into collagen. Scaffolds with the collagen/dextran (Col/Dex) ratios of 10/0, 7/3, and 5/5 were fabricated via (60)Co γ-irradiation cross-linking, followed by lyophilization. The morphology, microstructure, physicochemical, and biological properties were investigated. Compared with pure collagen, scaffolds with dextran demonstrated more porous appearance, enhanced hydrophilicity while the cross-linking density was lower with the consequence of larger pore size, higher water uptake, as well as reduced stiffness. Accelerated degradation was observed when dextran was incorporated in both the in vitro and in vivo assays, which led to earlier integration with cell and host tissue. The effect of dextran on degradation was ascribed to the decreased cross-linking density, looser microstructure, more porous and hydrophilic surface. Considering the better appearance, softness, moderate degradation rate due to controllable cross-linking degree and good biocompatibility as well, radiation-cross-linked collagen/dextran scaffolds are expected to serve as promising artificial dermal substitutes.

  3. Quantitative Raman characterization of cross-linked collagen thin films as a model system for diagnosing early osteoarthritis

    Wang, Chao; Durney, Krista M.; Fomovsky, Gregory; Ateshian, Gerard A.; Vukelic, Sinisa

    2016-03-01

    The onset of osteoarthritis (OA)in articular cartilage is characterized by degradation of extracellular matrix (ECM). Specifically, breakage of cross-links between collagen fibrils in the articular cartilage leads to loss of structural integrity of the bulk tissue. Since there are no broadly accepted, non-invasive, label-free tools for diagnosing OA at its early stage, Raman spectroscopyis therefore proposed in this work as a novel, non-destructive diagnostic tool. In this study, collagen thin films were employed to act as a simplified model system of the cartilage collagen extracellular matrix. Cross-link formation was controlled via exposure to glutaraldehyde (GA), by varying exposure time and concentration levels, and Raman spectral information was collected to quantitatively characterize the cross-link assignments imparted to the collagen thin films during treatment. A novel, quantitative method was developed to analyze the Raman signal obtained from collagen thin films. Segments of Raman signal were decomposed and modeled as the sum of individual bands, providing an optimization function for subsequent curve fitting against experimental findings. Relative changes in the concentration of the GA-induced pyridinium cross-links were extracted from the model, as a function of the exposure to GA. Spatially resolved characterization enabled construction of spectral maps of the collagen thin films, which provided detailed information about the variation of cross-link formation at various locations on the specimen. Results showed that Raman spectral data correlate with glutaraldehyde treatment and therefore may be used as a proxy by which to measure loss of collagen cross-links in vivo. This study proposes a promising system of identifying onset of OA and may enable early intervention treatments that may serve to slow or prevent osteoarthritis progression.

  4. Variation in the Helical Structure of Native Collagen

    2014-02-24

    notochord were obtained in previous studies [4,10,20–22]. The scaled amplitudes of the central, meridional section of each data set were used to...including helical, structure) from rat tail tendon (collagen type I) and lamprey notochord (collagen type II) show several common features (Figure 5). Of...also a possible consequence of the type II collagen notochord samples being stretched, perhaps to a greater extant then the type I tendon samples to aid

  5. Postnatal development of collagen structure in ovine articular cartilage

    Kranenbarg Sander

    2010-06-01

    Full Text Available Abstract Background Articular cartilage (AC is the layer of tissue that covers the articulating ends of the bones in diarthrodial joints. Across species, adult AC shows an arcade-like structure with collagen predominantly perpendicular to the subchondral bone near the bone, and collagen predominantly parallel to the articular surface near the articular surface. Recent studies into collagen fibre orientation in stillborn and juvenile animals showed that this structure is absent at birth. Since the collagen structure is an important factor for AC mechanics, the absence of the adult Benninghoff structure has implications for perinatal AC mechanobiology. The current objective is to quantify the dynamics of collagen network development in a model animal from birth to maturity. We further aim to show the presence or absence of zonal differentiation at birth, and to assess differences in collagen network development between different anatomical sites of a single joint surface. We use quantitative polarised light microscopy to investigate properties of the collagen network and we use the sheep (Ovis aries as our model animal. Results Predominant collagen orientation is parallel to the articular surface throughout the tissue depth for perinatal cartilage. This remodels to the Benninghoff structure before the sheep reach sexual maturity. Remodelling of predominant collagen orientation starts at a depth just below the future transitional zone. Tissue retardance shows a minimum near the articular surface at all ages, which indicates the presence of zonal differentiation at all ages. The absolute position of this minimum does change between birth and maturity. Between different anatomical sites, we find differences in the dynamics of collagen remodelling, but no differences in adult collagen structure. Conclusions The collagen network in articular cartilage remodels between birth and sexual maturity from a network with predominant orientation parallel to the

  6. Evaluation of epigallocatechin-3-gallate (EGCG) cross-linked collagen membranes and concerns on osteoblasts

    Chu, Chenyu; Deng, Jia [State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041 (China); Xiang, Lin; Wu, Yingying [State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041 (China); Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu 610041 (China); Wei, Xiawei [State Key Laboratory of Biotherapy and Laboratory for Aging Research, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, Sichuan 610041 (China); Qu, Yili [State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041 (China); Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu 610041 (China); Man, Yi, E-mail: manyi780203@126.com [State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041 (China); Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu 610041 (China)

    2016-10-01

    Collagen membranes have ideal biological and mechanical properties for supporting infiltration and proliferation of osteoblasts and play a vital role in guided bone regeneration (GBR). However, pure collagen can lead to inflammation, resulting in progressive bone resorption. Therefore, a method for regulating the level of inflammatory cytokines at surgical sites is paramount for the healing process. Epigallocatechin-3-gallate (EGCG) is a component extracted from green tea with numerous biological activities including an anti-inflammatory effect. Herein, we present a novel cross-linked collagen membrane containing different concentrations of EGCG (0.0064%, 0.064%, and 0.64%) to regulate the level of inflammatory factors secreted by pre-osteoblast cells; improve cell proliferation; and increase the tensile strength, wettability, and thermal stability of collagen membranes. Scanning electron microscope images show that the surfaces of collagen membranes became smoother and the collagen fiber diameters became larger with EGCG treatment. Measurement of the water contact angle demonstrated that introducing EGCG improved membrane wettability. Fourier transform infrared spectroscopy analyses indicated that the backbone of collagen was intact, and the thermal stability was significant improved in differential scanning calorimetry. The mechanical properties of 0.064% and 0.64% EGCG-treated collagen membranes were 1.5-fold greater than those of the control. The extent of cross-linking was significantly increased, as determined by a 2,4,6-trinitrobenzenesulfonic acid solution assay. The Cell Counting Kit-8 (CCK-8) and live/dead assays revealed that collagen membrane cross-linked by 0.0064% EGCG induced greater cell proliferation than pure collagen membranes. Additionally, real-time polymerase chain reaction and enzyme-linked immunosorbent assay results showed that EGCG significantly affected the production of inflammatory factors secreted by MC3T3-E1 cells. Taken together, our

  7. Postnatal development of collagen structure in ovine articular cartilage

    Turnhout, van M.C.; Schipper, H.; Engel, B.; Buist, W.; Kranenbarg, S.; Leeuwen, van J.L.

    2010-01-01

    Background Articular cartilage (AC) is the layer of tissue that covers the articulating ends of the bones in diarthrodial joints. Across species, adult AC shows an arcade-like structure with collagen predominantly perpendicular to the subchondral bone near the bone, and collagen predominantly

  8. Postnatal development of collagen structure in ovine articular cartilage

    Turnhout, van M.C.; Schipper, H.; Engel, B.; Buist, W.; Kranenbarg, S.; Leeuwen, van J.L.

    2010-01-01

    BACKGROUND:Articular cartilage (AC) is the layer of tissue that covers the articulating ends of the bones in diarthrodial joints. Across species, adult AC shows an arcade-like structure with collagen predominantly perpendicular to the subchondral bone near the bone, and collagen predominantly

  9. Molecular crowding of collagen: a pathway to produce highly-organized collagenous structures.

    Saeidi, Nima; Karmelek, Kathryn P; Paten, Jeffrey A; Zareian, Ramin; DiMasi, Elaine; Ruberti, Jeffrey W

    2012-10-01

    Collagen in vertebrate animals is often arranged in alternating lamellae or in bundles of aligned fibrils which are designed to withstand in vivo mechanical loads. The formation of these organized structures is thought to result from a complex, large-area integration of individual cell motion and locally-controlled synthesis of fibrillar arrays via cell-surface fibripositors (direct matrix printing). The difficulty of reproducing such a process in vitro has prevented tissue engineers from constructing clinically useful load-bearing connective tissue directly from collagen. However, we and others have taken the view that long-range organizational information is potentially encoded into the structure of the collagen molecule itself, allowing the control of fibril organization to extend far from cell (or bounding) surfaces. We here demonstrate a simple, fast, cell-free method capable of producing highly-organized, anistropic collagen fibrillar lamellae de novo which persist over relatively long-distances (tens to hundreds of microns). Our approach to nanoscale organizational control takes advantage of the intrinsic physiochemical properties of collagen molecules by inducing collagen association through molecular crowding and geometric confinement. To mimic biological tissues which comprise planar, aligned collagen lamellae (e.g. cornea, lamellar bone or annulus fibrosus), type I collagen was confined to a thin, planar geometry, concentrated through molecular crowding and polymerized. The resulting fibrillar lamellae show a striking resemblance to native load-bearing lamellae in that the fibrils are small, generally aligned in the plane of the confining space and change direction en masse throughout the thickness of the construct. The process of organizational control is consistent with embryonic development where the bounded planar cell sheets produced by fibroblasts suggest a similar confinement/concentration strategy. Such a simple approach to nanoscale

  10. Cross-linking of dermal sheep collagen using a water-soluble carbodiimide

    Damink, LHHO; Dijkstra, PJ; vanLuyn, MJA; vanWachem, PB; Nieuwenhuis, P; Feijen, J

    A cross-linking method for collagen-based biomaterials was developed using the water-soluble carbodiimide 1-ethyl-3-(3-dimethyl aminopropyl)carbodiimide hydrochloride (EDC). Cross-linking using EDC involves the activation of carboxylic acid groups to give O-acylisourea groups, which form cross-links

  11. Cross-linking of dermal sheep collagen using a water-soluble carbodiimide

    Olde damink, L.H.H.; Olde Damink, L.H.H.; Dijkstra, Pieter J.; van Luyn, M.J.A.; van Wachem, P.B.; Nieuwenhuis, P.; Feijen, Jan

    1996-01-01

    A cross-linking method for collagen-based biomaterials was developed using the water-soluble carbodiimide 1-ethyl-3-(3-dimethyl aminopropyl)carbodiimide hydrochloride (EDC). Cross-linking using EDC involves the activation of carboxylic acid groups to give O-acylisourea groups, which form cross-links

  12. Cross-linking of collagen-based materials

    Zeeman, R.

    1998-01-01

    An example of a collagen-based tissue is the aortic heart valve. A variety of pathological processes can lead to heart valve malfunction and this is usually associated with degenerative changes of the tissue. The most commonly used types of prosthetic valves are mechanical and tissue valves. One

  13. MICROWAVE IRRADIATION AND CROSS-LINKING OF COLLAGEN

    VISSER, CE; VOUTE, ABE; OOSTING, J; BOON, ME; KOK, LP

    1992-01-01

    In a multifactorial experiment, dermal sheep collagen was treated in diluted glutaraldehyde solutions, 70% ethyl alcohol, Cialit 1:5000, and distilled water for 1, 3 and 5 min, respectively, in combination with microwave irradiation at different temperature settings. The shrinkage temperature

  14. Corneal changes following collagen cross linking and simultaneous topography guided photoablation with collagen cross linking for keratoconus

    Prema Padmanabhan

    2014-01-01

    Full Text Available Purpose: To compare the outcome of Collagen cross-linking (CXL with that following topography-guided customized ablation treatment (T-CAT with simultaneous CXL in eyes with progressive keratoconus. Materials and Methods: This was a prospective, non-randomized single centre study of 66 eyes with progressive keratoconus. Of these, 40 eyes underwent CXL and 26 eyes underwent T-CAT + CXL. The refractive, topographic, tomographic and aberrometric changes measured at baseline, 1, 3 and 6 months post-operatively were compared between both groups. Results: After a mean follow-up of 7.7 ± 1.3 months, the mean retinoscopic cylinder decreased by 1.02 ± 3.16 D in the CXL group ( P = 0.1 and 2.87 ± 3.22 D in the T-CAT + CXL group ( P = 0.04. The Best corrected visual acuity increased by 2 lines or more in 10% of eyes in the CXL group and in 23.3% of eyes in the T-CAT + CXL group. The mean steepest-K reduced by 0.40 ± 3.71 D ( P = 0.77 in the CXL group and by 2.91 ± 2.01D ( P = 0.03 in the T-CAT + CXL group. The sag factor and surface asymmetry index showed no significant change in the CXL group but reduced by 3.59 ± 5.94 D ( P = 0.01 and 0.72 ± 1.18 ( P = 0.02 respectively in the T-CAT + CXL group. There was a significant increase in the highest posterior corneal elevation in both groups (9.57 ± 14.93 μ in the CXL group and 7.85 ± 9.25 μ in the T-CAT + CXL group, P ≤ 0.001 for both. There was significantly greater reduction of mean coma ( P < 0.001 and mean higher-order aberrations ( P = 0.01 following T-CAT + CXL compared to CXL. Conclusions: CAT + CXL is an effective approach to confer biomechanical stability and to improve the corneal contour in eyes with keratoconus and results in better refractive, topographic and aberrometric outcomes than CXL alone.

  15. Cross-linking in collagen by nonenzymatic glycation increases the matrix stiffness in rabbit achilles tendon.

    Reddy, G Kesava

    2004-01-01

    Nonenzymatic glycation of connective tissue matrix proteins is a major contributor to the pathology of diabetes and aging. Previously the author and colleagues have shown that nonenzymatic glycation significantly enhances the matrix stability in the Achilles tendon (Reddy et al., 2002, Arch. Biochem. Biophys., 399, 174-180). The present study was designed to gain further insight into glycation-induced collagen cross-linking and its relationship to matrix stiffness in the rabbit Achilles tendon. The glycation process was initiated by incubating the Achilles tendons (n = 6) in phosphate-buffered saline containing ribose, whereas control tendons (n = 6) were incubated in phosphate-buffered saline without ribose. Eight weeks following glycation, the biomechanical attributes as well as the degree of collagen cross-linking were determined to examine the potential associations between matrix stiffness and molecular properties of collagen. Compared to nonglycated tendons, the glycated tendons showed increased maximum load, stress, strain, Young's modulus of elasticity, and toughness indicating that glycation increases the matrix stiffness in the tendons. Glycation of tendons resulted in a considerable decrease in soluble collagen content and a significant increase in insoluble collagen and pentosidine. Analysis of potential associations between the matrix stiffness and degree of collagen cross-linking showed that both insoluble collagen and pentosidine exhibited a significant positive correlation with the maximum load, stress, and strain, Young's modulus of elasticity, and toughness (r values ranging from.61 to.94) in the Achilles tendons. However, the soluble collagen content present in neutral salt buffer, acetate buffer, and acetate buffer containing pepsin showed an inverse relation with the various biomechanical attributes tested (r values ranging from.22 to.84) in the Achilles tendons. The results of the study demonstrate that glycation-induced collagen cross-linking

  16. Multiscale structure and mechanics of collagen

    Amuasi, H.E.

    2012-01-01

    While we are 70% water, in a very real sense collagen is the stuff we are made of. It is the most abundant protein in multicellular organisms, such as ourselves, making up roughly 25% of our total protein content. If you have ever wondered how the human body holds together all its different parts in

  17. Progress of research on corneal collagen cross-linking for corneal melting

    Ke-Ren Xiao

    2016-06-01

    Full Text Available Corneal collagen cross-linking(CXLcould increase the mechanical strength, biological stability and halt ectasia progression due to covalent bond formed by photochemical reaction between ultraviolet-A and emulsion of riboflavin between collagen fibers in corneal stroma. Corneal melting is an autoimmune related noninfectious corneal ulcer. The mechanism of corneal melting, major treatment, the basic fundamental of ultraviolet-A riboflavin induced CXL and the clinical researches status and experiment in CXL were summarized in the study.

  18. SECONDARY CYTOTOXICITY OF CROSS-LINKED DERMAL SHEEP COLLAGENS DURING REPEATED EXPOSURE TO HUMAN FIBROBLASTS

    VANLUYN, MJA; VANWACHEM, PB; DAMINK, LHHO; DIJKSTRA, PJ; FEIJEN, J; NIEUWENHUIS, P

    1992-01-01

    We investigated commercially available dermal sheep collagen either cross-linked with hexamethylenedlisocyanate, or cross-linked with glutaraldehyde. In previous in vitro studies we could discriminate primary, i.e. extractable, and secondary cytotoxicity, due to cell-biomaterial interactions, i.e.

  19. Variation in the helical structure of native collagen.

    Joseph P R O Orgel

    Full Text Available The structure of collagen has been a matter of curiosity, investigation, and debate for the better part of a century. There has been a particularly productive period recently, during which much progress has been made in better describing all aspects of collagen structure. However, there remain some questions regarding its helical symmetry and its persistence within the triple-helix. Previous considerations of this symmetry have sometimes confused the picture by not fully recognizing that collagen structure is a highly complex and large hierarchical entity, and this affects and is effected by the super-coiled molecules that make it. Nevertheless, the symmetry question is not trite, but of some significance as it relates to extracellular matrix organization and cellular integration. The correlation between helical structure in the context of the molecular packing arrangement determines which parts of the amino acid sequence of the collagen fibril are buried or accessible to the extracellular matrix or the cell. In this study, we concentrate primarily on the triple-helical structure of fibrillar collagens I and II, the two most predominant types. By comparing X-ray diffraction data collected from type I and type II containing tissues, we point to evidence for a range of triple-helical symmetries being extant in the molecules native environment. The possible significance of helical instability, local helix dissociation and molecular packing of the triple-helices is discussed in the context of collagen's supramolecular organization, all of which must affect the symmetry of the collagen triple-helix.

  20. Riboflavin/UVA Collagen Cross-Linking-Induced Changes in Normal and Keratoconus Corneal Stroma

    Hayes, Sally; Boote, Craig; Kamma-Lorger, Christina S.; Rajan, Madhavan S.; Harris, Jonathan; Dooley, Erin; Hawksworth, Nicholas; Hiller, Jennifer; Terill, Nick J.; Hafezi, Farhad; Brahma, Arun K.; Quantock, Andrew J.; Meek, Keith M.

    2011-01-01

    Purpose To determine the effect of Ultraviolet-A collagen cross-linking with hypo-osmolar and iso-osmolar riboflavin solutions on stromal collagen ultrastructure in normal and keratoconus ex vivo human corneas. Methods Using small-angle X-ray scattering, measurements of collagen D-periodicity, fibril diameter and interfibrillar spacing were made at 1 mm intervals across six normal post-mortem corneas (two above physiological hydration (swollen) and four below (unswollen)) and two post-transplant keratoconus corneal buttons (one swollen; one unswollen), before and after hypo-osmolar cross-linking. The same parameters were measured in three other unswollen normal corneas before and after iso-osmolar cross-linking and in three pairs of swollen normal corneas, in which only the left was cross-linked (with iso-osmolar riboflavin). Results Hypo-osmolar cross-linking resulted in an increase in corneal hydration in all corneas. In the keratoconus corneas and unswollen normal corneas, this was accompanied by an increase in collagen interfibrillar spacing (priboflavin solutions are more likely a consequence of treatment-induced changes in tissue hydration rather than cross-linking. PMID:21850225

  1. An evaluation of meniscal collagenous structure using optical projection tomography

    Andrews, Stephen HJ; Ronsky, Janet L; Rattner, Jerome B; Shrive, Nigel G; Jamniczky, Heather A

    2013-01-01

    The collagenous structure of menisci is a complex network of circumferentially oriented fascicles and interwoven radially oriented tie-fibres. To date, examination of this micro- architecture has been limited to two-dimensional imaging techniques. The purpose of this study was to evaluate the ability of the three-dimensional imaging technique; optical projection tomography (OPT), to visualize the collagenous structure of the meniscus. If successful, this technique would be the first to visualize the macroscopic orientation of collagen fascicles in 3-D in the meniscus and could further refine load bearing mechanisms in the tissue. OPT is an imaging technique capable of imaging samples on the meso-scale (1-10 mm) at a micro-scale resolution. The technique, similar to computed tomography, takes two-dimensional images of objects from incremental angles around the object and reconstructs them using a back projection algorithm to determine three-dimensional structure. Bovine meniscal samples were imaged from four locations (outer main body, femoral surface, tibial surface and inner main body) to determine the variation in collagen orientation throughout the tissue. Bovine stifles (n = 2) were obtained from a local abattoir and the menisci carefully dissected. Menisci were fixed in methanol and subsequently cut using a custom cutting jig (n = 4 samples per meniscus). Samples were then mounted in agarose, dehydrated in methanol and subsequently cleared using benzyl alcohol benzyl benzoate (BABB) and imaged using OPT. Results indicate circumferential, radial and oblique collagenous orientations at the contact surfaces and in the inner third of the main body of the meniscus. Imaging identified fascicles ranging from 80-420 μm in diameter. Transition zones where fascicles were found to have a woven or braided appearance were also identified. The outer-third of the main body was composed of fascicles oriented predominantly in the circumferential direction. Blood vessels were

  2. Nodular Epithelial Hyperplasia after Photorefractive Keratectomy Followed by Corneal Collagen Cross-Linking

    Bogoni, Ayla; Salerno, Liberdade Cezaro; Ghanem, Vinícius Coral; Ghanem, Ramon Coral

    2013-01-01

    This study describes a case of nodular epithelial hyperplasia and stromal alterations in a patient with keratoconus who was submitted to topography-guided photorefractive keratectomy (PRK) followed by corneal collagen cross-linking. Debridement of the epithelial nodule was performed. After a 2-year followup, a new topography-guided PRK was indicated.

  3. Structural properties of pepsin-solubilized collagen acylated by lauroyl chloride along with succinic anhydride

    Li, Conghu; Tian, Zhenhua; Liu, Wentao; Li, Guoying

    2015-01-01

    The structural properties of pepsin-solubilized calf skin collagen acylated by lauroyl chloride along with succinic anhydride were investigated in this paper. Compared with native collagen, acylated collagen retained the unique triple helix conformation, as determined by amino acid analysis, circular dichroism and X-ray diffraction. Meanwhile, the thermostability of acylated collagen using thermogravimetric measurements was enhanced as the residual weight increased by 5%. With the temperature increased from 25 to 115 °C, the secondary structure of native and acylated collagens using Fourier transform infrared spectroscopy measurements was destroyed since the intensity of the major amide bands decreased and the positions of the major amide bands shifted to lower wavenumber, respectively. Meanwhile, two-dimensional correlation spectroscopy revealed that the most sensitive bands for acylated and native collagens were amide I and II bands, respectively. Additionally, the corresponding order of the groups between native and acylated collagens was different and the correlation degree for acylated collagen was weaker than that of native collagen, suggesting that temperature played a small influence on the conformation of acylated collagen, which might be concluded that the hydrophobic interaction improved the thermostability of collagen. - Highlights: • Acylated collagen retained the unique triple helix conformation. • Acylated collagen had stronger thermostability than native collagen. • Amide I was the most sensitive band to the temperature for acylated collagen. • Amide II was the most sensitive band to the temperature for native collagen. • Auto-peak at 1680 cm −1 for acylated collagen disappeared at higher temperature

  4. Two-photon induced collagen cross-linking in bioartificial cardiac tissue

    Kuetemeyer, Kai; Kensah, George; Heidrich, Marko; Meyer, Heiko; Martin, Ulrich; Gruh, Ina; Heisterkamp, Alexander

    2011-08-01

    Cardiac tissue engineering is a promising strategy for regenerative therapies to overcome the shortage of donor organs for transplantation. Besides contractile function, the stiffness of tissue engineered constructs is crucial to generate transplantable tissue surrogates with sufficient mechanical stability to withstand the high pressure present in the heart. Although several collagen cross-linking techniques have proven to be efficient in stabilizing biomaterials, they cannot be applied to cardiac tissue engineering, as cell death occurs in the treated area. Here, we present a novel method using femtosecond (fs) laser pulses to increase the stiffness of collagen-based tissue constructs without impairing cell viability. Raster scanning of the fs laser beam over riboflavin-treated tissue induced collagen cross-linking by two-photon photosensitized singlet oxygen production. One day post-irradiation, stress-strain measurements revealed increased tissue stiffness by around 40% being dependent on the fibroblast content in the tissue. At the same time, cells remained viable and fully functional as demonstrated by fluorescence imaging of cardiomyocyte mitochondrial activity and preservation of active contraction force. Our results indicate that two-photon induced collagen cross-linking has great potential for studying and improving artificially engineered tissue for regenerative therapies.

  5. Effect of nordihydroguaiaretic acid cross-linking on fibrillar collagen: in vitro evaluation of fibroblast adhesion strength and migration

    Ana Y. Rioja

    2017-04-01

    Full Text Available Fixation is required to reinforce reconstituted collagen for orthopedic bioprostheses such as tendon or ligament replacements. Previous studies have demonstrated that collagen fibers cross-linked by the biocompatible dicatechol nordihydroguaiaretic acid (NDGA have mechanical strength comparable to native tendons. This work focuses on investigating fibroblast behavior on fibrillar and NDGA cross-linked type I collagen to determine if NDGA modulates cell adhesion, morphology, and migration. A spinning disk device that applies a range of hydrodynamic forces under uniform chemical conditions was employed to sensitively quantify cell adhesion strength, and a radial barrier removal assay was used to measure cell migration on films suitable for these quantitative in vitro assays. The compaction of collagen films, mediated by the drying and cross-linking fabrication process, suggests a less open organization compared to native fibrillar collagen that likely allowed the collagen to form more inter-chain bonds and chemical links with NDGA polymers. Fibroblasts strongly adhered to and migrated on native and NDGA cross-linked fibrillar collagen; however, NDGA modestly reduced cell spreading, adhesion strength and migration rate. Thus, it is hypothesized that NDGA cross-linking masked some adhesion receptor binding sites either physically, chemically, or both, thereby modulating adhesion and migration. This alteration in the cell-material interface is considered a minimal trade-off for the superior mechanical and compatibility properties of NDGA cross-linked collagen compared to other fixation approaches.

  6. Structure of collagen-glycosaminoglycan matrix and the influence to its integrity and stability.

    Bi, Yuying; Patra, Prabir; Faezipour, Miad

    2014-01-01

    Glycosaminoglycan (GAG) is a chain-like disaccharide that is linked to polypeptide core to connect two collagen fibrils/fibers and provide the intermolecular force in Collagen-GAG matrix (C-G matrix). Thus, the distribution of GAG in C-G matrix contributes to the integrity and mechanical properties of the matrix and related tissue. This paper analyzes the transverse isotropic distribution of GAG in C-G matrix. The angle of GAGs related to collagen fibrils is used as parameters to qualify the GAGs isotropic characteristic in both 3D and 2D rendering. Statistical results included that over one third of GAGs were perpendicular directed to collagen fibril with symmetrical distribution for both 3D matrix and 2D plane cross through collagen fibrils. The three factors tested in this paper: collagen radius, collagen distribution, and GAGs density, were not statistically significant for the strength of Collagen-GAG matrix in 3D rendering. However in 2D rendering, a significant factor found was the radius of collagen in matrix for the GAGs directed to orthogonal plane of Collagen-GAG matrix. Between two cross-section selected from Collagen-GAG matrix model, the plane cross through collagen fibrils was symmetrically distributed but the total percentage of perpendicular directed GAG was deducted by decreasing collagen radius. There were some symmetry features of GAGs angle distribution in selected 2D plane that passed through space between collagen fibrils, but most models showed multiple peaks in GAGs angle distribution. With less GAGs directed to perpendicular of collagen fibril, strength in collagen cross-section weakened. Collagen distribution was also a factor that influences GAGs angle distribution in 2D rendering. True hexagonal collagen packaging is reported in this paper to have less strength at collagen cross-section compared to quasi-hexagonal collagen arrangement. In this work focus is on GAGs matrix within the collagen and its relevance to anisotropy.

  7. The structural and optical properties of type III human collagen biosynthetic corneal substitutes

    Hayes, Sally; Lewis, Phillip; Islam, M. Mirazul; Doutch, James; Sorensen, Thomas; White, Tomas; Griffith, May; Meek, Keith M.

    2015-01-01

    The structural and optical properties of clinically biocompatible, cell-free hydrogels comprised of synthetically cross-linked and moulded recombinant human collagen type III (RHCIII) with and without the incorporation of 2-methacryloyloxyethyl phosphorylcholine (MPC) were assessed using transmission electron microscopy (TEM), X-ray scattering, spectroscopy and refractometry. These findings were examined alongside similarly obtained data from 21 human donor corneas. TEM demonstrated the presence of loosely bundled aggregates of fine collagen filaments within both RHCIII and RHCIII-MPC implants, which X-ray scattering showed to lack D-banding and be preferentially aligned in a uniaxial orientation throughout. This arrangement differs from the predominantly biaxial alignment of collagen fibrils that exists in the human cornea. By virtue of their high water content (90%), very fine collagen filaments (2–9 nm) and lack of cells, the collagen hydrogels were found to transmit almost all incident light in the visible spectrum. They also transmitted a large proportion of UV light compared to the cornea which acts as an effective UV filter. Patients implanted with these hydrogels should be cautious about UV exposure prior to regrowth of the epithelium and in-growth of corneal cells into the implants. PMID:26159106

  8. Cyclophilin-B Modulates Collagen Cross-linking by Differentially Affecting Lysine Hydroxylation in the Helical and Telopeptidyl Domains of Tendon Type I Collagen.

    Terajima, Masahiko; Taga, Yuki; Chen, Yulong; Cabral, Wayne A; Hou-Fu, Guo; Srisawasdi, Sirivimol; Nagasawa, Masako; Sumida, Noriko; Hattori, Shunji; Kurie, Jonathan M; Marini, Joan C; Yamauchi, Mitsuo

    2016-04-29

    Covalent intermolecular cross-linking provides collagen fibrils with stability. The cross-linking chemistry is tissue-specific and determined primarily by the state of lysine hydroxylation at specific sites. A recent study on cyclophilin B (CypB) null mice, a model of recessive osteogenesis imperfecta, demonstrated that lysine hydroxylation at the helical cross-linking site of bone type I collagen was diminished in these animals (Cabral, W. A., Perdivara, I., Weis, M., Terajima, M., Blissett, A. R., Chang, W., Perosky, J. E., Makareeva, E. N., Mertz, E. L., Leikin, S., Tomer, K. B., Kozloff, K. M., Eyre, D. R., Yamauchi, M., and Marini, J. C. (2014) PLoS Genet 10, e1004465). However, the extent of decrease appears to be tissue- and molecular site-specific, the mechanism of which is unknown. Here we report that although CypB deficiency resulted in lower lysine hydroxylation in the helical cross-linking sites, it was increased in the telopeptide cross-linking sites in tendon type I collagen. This resulted in a decrease in the lysine aldehyde-derived cross-links but generation of hydroxylysine aldehyde-derived cross-links. The latter were absent from the wild type and heterozygous mice. Glycosylation of hydroxylysine residues was moderately increased in the CypB null tendon. We found that CypB interacted with all lysyl hydroxylase isoforms (isoforms 1-3) and a putative lysyl hydroxylase-2 chaperone, 65-kDa FK506-binding protein. Tendon collagen in CypB null mice showed severe size and organizational abnormalities. The data indicate that CypB modulates collagen cross-linking by differentially affecting lysine hydroxylation in a site-specific manner, possibly via its interaction with lysyl hydroxylases and associated molecules. This study underscores the critical importance of collagen post-translational modifications in connective tissue formation. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  9. Cyclophilin-B Modulates Collagen Cross-linking by Differentially Affecting Lysine Hydroxylation in the Helical and Telopeptidyl Domains of Tendon Type I Collagen*

    Terajima, Masahiko; Taga, Yuki; Chen, Yulong; Cabral, Wayne A.; Hou-Fu, Guo; Srisawasdi, Sirivimol; Nagasawa, Masako; Sumida, Noriko; Hattori, Shunji; Kurie, Jonathan M.; Marini, Joan C.; Yamauchi, Mitsuo

    2016-01-01

    Covalent intermolecular cross-linking provides collagen fibrils with stability. The cross-linking chemistry is tissue-specific and determined primarily by the state of lysine hydroxylation at specific sites. A recent study on cyclophilin B (CypB) null mice, a model of recessive osteogenesis imperfecta, demonstrated that lysine hydroxylation at the helical cross-linking site of bone type I collagen was diminished in these animals (Cabral, W. A., Perdivara, I., Weis, M., Terajima, M., Blissett, A. R., Chang, W., Perosky, J. E., Makareeva, E. N., Mertz, E. L., Leikin, S., Tomer, K. B., Kozloff, K. M., Eyre, D. R., Yamauchi, M., and Marini, J. C. (2014) PLoS Genet. 10, e1004465). However, the extent of decrease appears to be tissue- and molecular site-specific, the mechanism of which is unknown. Here we report that although CypB deficiency resulted in lower lysine hydroxylation in the helical cross-linking sites, it was increased in the telopeptide cross-linking sites in tendon type I collagen. This resulted in a decrease in the lysine aldehyde-derived cross-links but generation of hydroxylysine aldehyde-derived cross-links. The latter were absent from the wild type and heterozygous mice. Glycosylation of hydroxylysine residues was moderately increased in the CypB null tendon. We found that CypB interacted with all lysyl hydroxylase isoforms (isoforms 1–3) and a putative lysyl hydroxylase-2 chaperone, 65-kDa FK506-binding protein. Tendon collagen in CypB null mice showed severe size and organizational abnormalities. The data indicate that CypB modulates collagen cross-linking by differentially affecting lysine hydroxylation in a site-specific manner, possibly via its interaction with lysyl hydroxylases and associated molecules. This study underscores the critical importance of collagen post-translational modifications in connective tissue formation. PMID:26934917

  10. Absence of FKBP10 in recessive type XI osteogenesis imperfecta leads to diminished collagen cross-linking and reduced collagen deposition in extracellular matrix.

    Barnes, Aileen M; Cabral, Wayne A; Weis, MaryAnn; Makareeva, Elena; Mertz, Edward L; Leikin, Sergey; Eyre, David; Trujillo, Carlos; Marini, Joan C

    2012-11-01

    Recessive osteogenesis imperfecta (OI) is caused by defects in genes whose products interact with type I collagen for modification and/or folding. We identified a Palestinian pedigree with moderate and lethal forms of recessive OI caused by mutations in FKBP10 or PPIB, which encode endoplasmic reticulum resident chaperone/isomerases FKBP65 and CyPB, respectively. In one pedigree branch, both parents carry a deletion in PPIB (c.563_566delACAG), causing lethal type IX OI in their two children. In another branch, a child with moderate type XI OI has a homozygous FKBP10 mutation (c.1271_1272delCCinsA). Proband FKBP10 transcripts are 4% of control and FKBP65 protein is absent from proband cells. Proband collagen electrophoresis reveals slight band broadening, compatible with ≈10% over-modification. Normal chain incorporation, helix folding, and collagen T(m) support a minimal general collagen chaperone role for FKBP65. However, there is a dramatic decrease in collagen deposited in culture despite normal collagen secretion. Mass spectrometry reveals absence of hydroxylation of the collagen telopeptide lysine involved in cross-linking, suggesting that FKBP65 is required for lysyl hydroxylase activity or access to type I collagen telopeptide lysines, perhaps through its function as a peptidylprolyl isomerase. Proband collagen to organics ratio in matrix is approximately 30% of normal in Raman spectra. Immunofluorescence shows sparse, disorganized collagen fibrils in proband matrix. Published 2012 Wiley Periodicals, Inc.*This article is a US Government work and, as such, is in the public domain of the United States of America.

  11. Cross-Linking in Collagen by Nonenzymatic Glycation Increases the Matrix Stiffness in Rabbit Achilles Tendon

    Reddy, G. Kesava

    2004-01-01

    Nonenzymatic glycation of connective tissue matrix proteins is a major contributor to the pathology of diabetes and aging. Previously the author and colleagues have shown that nonenzymatic glycation significantly enhances the matrix stability in the Achilles tendon (Reddy et al., 2002, Arch. Biochem. Biophys., 399, 174–180). The present study was designed to gain further insight into glycation-induced collagen cross-linking and its relationship to matrix stiffness in the rabbit Achilles tendo...

  12. Long-term results of cornea collagen cross-linking with riboflavin for keratoconus

    Vinay Agrawal

    2013-01-01

    Full Text Available Corneal collagen cross-linking with riboflavin and UVA light (CXL is the only method designed to arrest the progression of keratoconus. Visual improvement generally starts 3 months after treatment. Reduction is coma seen on aberrometry in early postoperative phase is also responsible for the improvement in visual acuity. In the light of currently available data we can thus say that CXL is a safe procedure that is successful in arresting keratoconus.

  13. Strategies for Directing the Structure and Function of 3D Collagen Biomaterials across Length Scales

    Walters, Brandan D.; Stegemann, Jan P.

    2013-01-01

    Collagen type I is a widely used natural biomaterial that has found utility in a variety of biological and medical applications. Its well characterized structure and role as an extracellular matrix protein make it a highly relevant material for controlling cell function and mimicking tissue properties. Collagen type I is abundant in a number of tissues, and can be isolated as a purified protein. This review focuses on hydrogel biomaterials made by reconstituting collagen type I from a solubilized form, with an emphasis on in vitro studies in which collagen structure can be controlled. The hierarchical structure of collagen from the nanoscale to the macroscale is described, with an emphasis on how structure is related to function across scales. Methods of reconstituting collagen into hydrogel materials are presented, including molding of macroscopic constructs, creation of microscale modules, and electrospinning of nanoscale fibers. The modification of collagen biomaterials to achieve desired structures and functions is also addressed, with particular emphasis on mechanical control of collagen structure, creation of collagen composite materials, and crosslinking of collagenous matrices. Biomaterials scientists have made remarkable progress in rationally designing collagen-based biomaterials and in applying them to both the study of biology and for therapeutic benefit. This broad review illustrates recent examples of techniques used to control collagen structure, and to thereby direct its biological and mechanical functions. PMID:24012608

  14. Studies on Cross-linking of succinic acid with chitosan/collagen

    Tapas Mitra

    2013-01-01

    Full Text Available The present study summarizes the cross-linking property of succinic acid with chitosan /collagen. In detail, the chemistry behind the cross-linking and the improvement in mechanical and thermal properties of the cross-linked material were discussed with suitable instruments and bioinformatics tools. The concentration of succinic acid with reference to the chosen polymers was optimized. A 3D scaffold prepared using an optimized concentration of succinic acid (0.2% (w/v with chitosan (1.0% (w/v and similarly with collagen (0.5% (w/v, was subjected to surface morphology, FT-IR analysis, tensile strength assessment, thermal stability and biocompatibility. Results revealed, cross-linking with succinic acid impart appreciable mechanical strength to the scaffold material. In silico analysis suggested the prevalence of non-covalent interactions, which played a crucial role in improving the mechanical and thermal properties of the cross-linked scaffold. The resultant 3D scaffold may find application as wound dressing material, as an implant in clinical applications and as a tissue engineering material.

  15. Simultaneous topography-guided PRK followed by corneal collagen cross-linking for keratoconus.

    Kymionis, George D; Kontadakis, Georgios A; Kounis, George A; Portaliou, Dimitra M; Karavitaki, Alexandra E; Magarakis, Michael; Yoo, Sonia; Pallikaris, Ioannis G

    2009-09-01

    To present the results after simultaneous photorefractive keratectomy (PRK) followed by corneal collagen cross-linking (CXL) for progressive keratoconus. Twelve patients (14 eyes) with progressive keratoconus were prospectively treated with customized topography-guided PRK with the Pulzar Z1 (wavelength 213 nm, CustomVis) immediately followed by corneal collagen CXL with the use of riboflavin and ultraviolet A irradiation. Mean follow-up was 10.69+/-5.95 months (range: 3 to 16 months). Mean preoperative spherical equivalent refraction (SE) was -3.03+/-3.23 diopters (D) and defocus was 4.67+/-3.29 D; at last follow-up SE and defocus were statistically significantly reduced to -1.29+/-2.05 D and 3.04+/-2.53 D, respectively (PPRK followed by CXL seems to be a promising treatment capable of offering functional vision in patients with keratoconus. Copyright 2009, SLACK Incorporated.

  16. Disentangling mechanisms involved in collagen pyridinoline cross-linking : The immunophilin FKBP65 is critical for dimerization of lysyl hydroxylase 2

    Gjaltema, Rutger A. F.; van der Stoel, Miesje M.; Boersema, Miriam; Bank, Ruud A.

    2016-01-01

    Collagens are subjected to extensive posttranslational modifications, such as lysine hydroxylation. Bruck syndrome (BS) is a connective tissue disorder characterized at the molecular level by a loss of telopeptide lysine hydroxylation, resulting in reduced collagen pyridinoline cross-linking. BS

  17. Induction of corneal collagen cross-linking in experimental corneal alkali burns in rabbits

    Marcello Colombo-Barboza

    2014-10-01

    Full Text Available Objective: To evaluate the effect of riboflavin-ultraviolet-A-induced cross-linking (CXL following corneal alkali burns in rabbits. Methods: The right corneas and limbi of ten rabbits were burned using a 1N solution of NaOH and the animals were then divided into two groups: a control group submitted to clinical treatment alone and an experimental group that was treated 1 h after injury with CXL, followed by the same clinical treatment as administered to the controls. Clinical parameters were evaluated post-injury at 1, 7, 15, and 30 days by two independent observers. Following this evaluation, the corneas were excised and examined histologically. Results: There were no statistically significant differences in clinical parameters, such as hyperemia, corneal edema, ciliary injection, limbal ischemia, secretion, corneal neovascularization, symblepharon, or blepharospasm, at any of the time-points evaluated. However, the size of the epithelial defect was significantly smaller in the CXL group (p<0.05 (day 15: p=0.008 and day 30: p=0.008 and the extent of the corneal injury (opacity lesion was also smaller (day 30: p=0.021. Histopathology showed the presence of collagen bridges linking the collagen fibers in only the CXL group. Conclusions: These results suggest that the use of CXL may improve the prognosis of acute corneal alkali burns.

  18. Corneal collagen cross-linking and liposomal amphotericin B combination therapy for fungal keratitis in rabbits

    Zhao-Qin Hao

    2016-11-01

    Full Text Available AIM: To observe the therapeutic effect of corneal collagen cross-linking (CXL in combination with liposomal amphotericin B in fungal corneal ulcers. METHODS: New Zealand rabbits were induced fungal corneal ulcers by scratching and randomly divided into 3 groups, i.e. control, treated with CXL, and combined therapy of CXL with 0.25% liposomal amphotericin B (n=5 each. The corneal lesions were documented with slit-lamp and confocal microscopy on 3, 7, 14, 21 and 28d after treatment. The corneas were examined with transmission electron microscopy (TEM at 4wk. RESULTS: A rabbit corneal ulcer model of Fusarium was successfully established. The corneal epithelium defect areas in the two treatment groups were smaller than that in the control group on 3, 7, 14 and 21d (P<0.05. The corneal epithelium defect areas of the combined group was smaller than that of the CXL group (P<0.05 on 7 and 14d, but there were no statistical differences on 3, 21 and 28d. The corneal epithelium defects of the two treatment groups have been healed by day 21. The corneal epithelium defects of the control group were healed on 28d. The diameters of the corneal collagen fiber bundles (42.960±7.383 nm in the CXL group and 37.040±4.160 nm in the combined group were thicker than that of the control group (24.900±1.868 nm, but there was no difference between the two treatment groups. Some corneal collagen fiber bundles were distorted and with irregular arrangement, a large number of fibroblasts could be seen among them but no inflammatory cells in both treatment groups. CONCLUSION: CXL combined with liposomal amphotericin B have beneficial effects on fungal corneal ulcers. The combined therapy could alleviate corneal inflammattions, accelerate corneal repair, and shorten the course of disease.

  19. Is Wikipedia link structure different?

    Kamps, J.; Koolen, M.; Baeza-Yates, R.; Boldi, P.; Ribeiro-Neto, B.; Cambazoglu, B.B.

    2010-01-01

    In this paper, we investigate the difference between Wikipedia and Web link structure with respect to their value as indicators of the relevance of a page for a given topic of request. Our experimental evidence is from two IR test-collections: the .GOV collection used at the TREC Web tracks and the

  20. Microbiologic Examination of Bandage Contact Lenses Used after Corneal Collagen Cross-linking Treatment.

    Yuksel, Erdem; Yalcin, Nuriye Gokçen; Kilic, Gaye; Cubuk, Mehmet Ozgur; Ozmen, Mehmet Cuneyt; Altay, Aylin; Çağlar, Kayhan; Bilgihan, Kamil

    2016-01-01

    To investigate the agents of bacterial contamination of contact lenses after corneal collagen cross-linking (CCL), and to present the possible changes of ocular flora after riboflavin/ultraviolet A. Seventy-two contact lenses of patients who underwent CCL and 41 contact lenses of patients who underwent photorefractive keratectomy (PRK) as control group were enrolled to the study. After 48 h of incubation, broth culture media was transferred to plates. Samples were accepted as positive if one or more colony-forming units were shown. There were positive cultures in 12 (16.7%) contact lenses in the CCL group and 5 (12.2%) had positive cultures in PRK group. Coagulase-negative staphlycocci (CNS) were the most frequent microorganism. Alpha hemolytic streptococci and Diphteroid spp. were the other isolated microorganisms. Bacterial colonization can occur during and early after the CCL procedure in epithelial healing. To prevent corneal infections after the treatment, prophylactic antibiotics should be prescribed.

  1. Preparation and structure characterization of soluble bone collagen ...

    In this study, G-25 gel chromatography, X-diffraction, scanning electron microscopy (SEM), UV and Fourier transform infrared spectroscopy (FTIR) were used to analyze soluble collagen peptides chelating calcium. Collagen peptide hydrolysis can be divided into four components using G-25 gel chromatography.

  2. Confocal Raman mapping of collagen cross-link and crystallinity of human dentin-enamel junction

    Slimani, Amel; Nouioua, Fares; Desoutter, Alban; Levallois, Bernard; Cuisinier, Frédéric J. G.; Tassery, Hervé; Terrer, Elodie; Salehi, Hamideh

    2017-08-01

    The separation zone between enamel and dentin [dentin-enamel junction (DEJ)] with different properties in biomechanical composition has an important role in preventing crack propagation from enamel to dentin. The understanding of the chemical structure (inorganic and organic components), physical properties, and chemical composition of the human DEJ could benefit biomimetic materials in dentistry. Spatial distribution of calcium phosphate crystallinity and the collagen crosslinks near DEJ were studied using confocal Raman microscopy and calculated by different methods. To obtain collagen crosslinking, the ratio of two peaks 1660 cm-1 over 1690 cm-1 (amide I bands) is calculated. For crystallinity, the inverse full-width at half maximum of phosphate peak at 960 cm-1, and the ratio of two Raman peaks of phosphate at 960/950 cm-1 is provided. In conclusion, the study of chemical and physical properties of DEJ provides many benefits in the biomaterial field to improve the synthesis of dental materials in respect to the natural properties of human teeth. Confocal Raman microscopy as a powerful tool provides the molecular structure to identify the changes along DEJ and can be expanded for other mineralized tissues.

  3. RELATIONS BETWEEN INVITRO CYTOTOXICITY AND CROSS-LINKED DERMAL SHEEP COLLAGENS

    VANLUYN, MJA; VANWACHEM, PB; DAMINK, LO; DIJKSTRA, PJ; FEIJEN, J; NIEUWENHUIS, P

    Collagen-based biomaterials have found various applications in the biomedical field. However, collagen-based biomaterials may induce cytotoxic effects. This study evaluated possible cytotoxic effects of (crosslinked) dermal sheep collagen (DSC) using a 7-d-methylcellulose cell culture with human

  4. Action of trypsin on structural changes of collagen fibres from sea cucumber (Stichopus japonicus).

    Liu, Zi-Qiang; Tuo, Feng-Yan; Song, Liang; Liu, Yu-Xin; Dong, Xiu-Ping; Li, Dong-Mei; Zhou, Da-Yong; Shahidi, Fereidoon

    2018-08-01

    Trypsin, a representative serine proteinase, was used to hydrolyse the collagen fibres from sea cucumber (Stichopus japonicus) to highlight the role of serine proteinase in the autolysis of sea cucumber. Partial disaggregation of collagen fibres into collagen fibrils upon trypsin treatment occurred. The trypsin treatment also caused a time-dependent release of water-soluble glycosaminoglycans and proteins. Therefore, the degradation of the proteoglycan bridges between collagen fibrils might account for the disaggregation of collagen fibrils. For trypsin-treated collagen fibres (72 h), the collagen fibrils still kept their structural integrity and showed characteristic D-banding pattern, and the dissolution rate of hydroxyproline was just 0.21%. Meanwhile, Fourier transform infrared analysis showed the collagen within trypsin-treated collagen fibres (72 h) still retaining their triple-helical conformation. These results suggested that serine proteinase participated in the autolysis of S. japonicus body wall by damaging the proteoglycan bridges between collagen fibrils and disintegrating the latter. Copyright © 2018 Elsevier Ltd. All rights reserved.

  5. Tranexamic acid, an inhibitor of plasminogen activation, reduces urinary collagen cross-link excretion in both experimental and rheumatoid arthritis

    Ronday, H.K.; TeKoppele, J.M.; Greenwald, R.A.; Moak, S.A.; Roos, J.A.D.M. de; Dijkmans, B.A.C.; Breedveld, F.C.; Verheijen, J.H.

    1998-01-01

    The plasminogen activation system is one of the enzyme systems held responsible for bone and cartilage degradation in rheumatoid arthritis (RA). In this study, we evaluated the effect of tranexamic acid (TEA), an inhibitor of plasminogen activation, on urinary collagen cross-link excretion and

  6. Determination of the relationship between collagen cross-links and the bone-tissue stiffness in the porcine mandibular condyle

    Willems, N.M.B.K.; Mulder, L.; Bank, R.A.; Grünheid, T.; Toonder, J.M.J. den; Zentner, A.; Langenbach, G.E.J.

    2011-01-01

    Although bone-tissue stiffness is closely related to the degree to which bone has been mineralized, other determinants are yet to be identified. We, therefore, examined the extent to which the mineralization degree, collagen, and its cross-links are related to bone-tissue stiffness. A total of 50

  7. Effect of pore size and cross-linking of a novel collagen-elastin dermal substitute on wound healing

    Boekema, B.K.H.L.; Vlig, M.; Damink, L.O.; Middelkoop, E.; Eummelen, L.; Buhren, A.V.; Ulrich, M.M.W.

    2014-01-01

    Collagen-elastin (CE) scaffolds are frequently used for dermal replacement in the treatment of full-thickness skin defects such as burn wounds. But little is known about the optimal pore size and level of cross-linking. Different formulations of dermal substitutes with unidirectional pores were

  8. Orbscan II anterior elevation changes following corneal collagen cross-linking treatment for keratoconus.

    Tu, Kyaw Lin; Aslanides, Ioannis M

    2009-08-01

    To analyze anterior corneal elevation changes on Orbscan II following corneal collagen cross-linking (CXL) with riboflavin. This retrospective study included 8 patients (14 eyes) with keratoconus who underwent CXL, with a mean follow-up of 7 months (range: 5 to 10 months). Pre- and postoperative (at last clinic attendance) anterior elevation difference maps were examined for overall patterns of change. On preoperative maps, distances from maximum anterior elevation to pupil center and to topographic geometric center were compared between the two patterns identified. Pre- and postoperative topography, best spectacle-corrected visual acuity (BSCVA), and refraction were also compared between the two patterns. Two patterns of anterior elevation change were visually identified: (1) paracentral steepening, no change, or flattening centrally; and (2) central steepening. The preoperative maps of eyes that manifested pattern 1 had shorter mean distances for maximum anterior elevation to pupil center (1.70 vs. 2.27 mm) and maximum anterior elevation to geometric center (1.45 vs. 1.99 mm) than those that resulted in pattern 2. Mean maximum topographic simulated keratometry decreased (P = .004) and mean irregularity indices at 3 mm (P =.03) and 5 mm (P =.04) were reduced postoperatively in pattern 1 eyes; all increased in pattern 2 eyes. Mean BSCVA improved postoperatively for both patterns. Mean preoperative myopia decreased in pattern 1 eyes by 0.44 diopters (D), whereas it increased for pattern 2 eyes by 1.83 D. Corneal shape change influenced by anisotropy of collagen distribution is a factor in the outcome of CXL treatment for keratoconus.

  9. Protein Oxidation Levels After Different Corneal Collagen Cross-Linking Methods.

    Turkcu, Ummuhani Ozel; Yuksel, Nilay; Novruzlu, Sahin; Yalinbas, Duygu; Bilgihan, Ayse; Bilgihan, Kamil

    2016-03-01

    To evaluate advanced oxidation protein products (AOPP) levels, superoxide dismutase (SOD) enzyme activity, and total sulfhydryl (TSH) levels in rabbit corneas after different corneal collagen cross-linking (CXL) methods. Eighteen eyes of 9 adult New Zealand rabbits were divided into 3 groups of 6 eyes. The standard CXL group was continuously exposed to UV-A at a power setting of 3 mW/cm for 30 minutes. The accelerated CXL (A-CXL) group was continuously exposed to UV-A at a power setting of 30 mW/cm for 3 minutes. The pulse light-accelerated CXL (PLA-CXL) group received UV-A at a power setting of 30 mW/cm for 6 minutes of pulsed exposure (1 second on, 1 second off). Corneas were obtained after 1 hour of UV-A exposure, and 360-degree keratotomy was performed. SOD enzyme activity, AOPP, and TSH levels were measured in the corneal tissues. Compared with the standard CXL and A-CXL groups (133.2 ± 8.5 and 140.2 ± 6.2 μmol/mg, respectively), AOPP levels were found to be significantly increased in the PLA-CXL group (230.7 ± 30.2 μmol/mg) (P = 0.005 and 0.009, respectively). SOD enzyme activities and TSH levels did not differ between the groups (P = 0.167 and 0.187, respectively). CXL creates covalent bonds between collagen fibers because of reactive oxygen species. This means that more oxygen concentration during the CXL method will produce more reactive oxygen species and, thereby, AOPP. This means that in which CXL method occurs in more oxygen concentration that will produce more reactive oxygen species and thereby AOPP. This study demonstrated that PLA-CXL results in more AOPP formation than did standard CXL and A-CXL.

  10. The Use of Polymerized Genipin for the Stabilization of the Collagen Structure of Animal Hides

    Animal hides are the major byproduct of meat industry and the collagen fibers is the main constituent. Crosslinkers play a key role in stabilizing the collagen structure for useful applications. Genipin is widely used as an ideal biological protein crosslinking agent due to its low toxicity compare...

  11. Effects of endogenous cysteine proteinases on structures of collagen fibres from dermis of sea cucumber (Stichopus japonicus).

    Liu, Yu-Xin; Zhou, Da-Yong; Ma, Dong-Dong; Liu, Zi-Qiang; Liu, Yan-Fei; Song, Liang; Dong, Xiu-Ping; Li, Dong-Mei; Zhu, Bei-Wei; Konno, Kunihiko; Shahidi, Fereidoon

    2017-10-01

    Autolysis of sea cucumber, caused by endogenous enzymes, leads to postharvest quality deterioration of sea cucumber. However, the effects of endogenous proteinases on structures of collagen fibres, the major biologically relevant substrates in the body wall of sea cucumber, are less clear. Collagen fibres were prepared from the dermis of sea cucumber (Stichopus japonicus), and the structural consequences of degradation of the collagen fibres caused by endogenous cysteine proteinases (ECP) from Stichopus japonicus were examined. Scanning electron microscopic images showed that ECP caused partial disaggregation of collagen fibres into collagen fibrils by disrupting interfibrillar proteoglycan bridges. Differential scanning calorimetry and Fourier transform infrared analysis revealed increased structural disorder of fibrillar collagen caused by ECP. SDS-PAGE and chemical analysis indicated that ECP can liberate glycosaminoglycan, hydroxyproline and collagen fragments from collagen fibres. Thus ECP can cause disintegration of collagen fibres by degrading interfibrillar proteoglycan bridges. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Changes in corneal topography and biomechanical properties after collagen cross linking for keratoconus: 1-year results.

    Sedaghat, Mohammadreza; Bagheri, Mansooreh; Ghavami, Shahri; Bamdad, Shahram

    2015-01-01

    To evaluate changes in corneal topography and biomechanical properties after collagen cross-linking (CXL) for progressive keratoconus. Collagen cross-linking was performed on 97 eyes. We assessed uncorrected visual acuity (UCVA) and best corrected visual acuity (BCVA). Corneal topography indices were evaluated using placido disc topography, scanning slit anterior topography (Orbscan II), and rotating Scheimpflug topography (Pentacam). Specular microscopy and corneal biomechanics were evaluated. A 1-year-follow-up results revealed that UCVA improved from 0.31 to 0.45 and BCVA changed from 0.78 to 0.84 (P < 0.001). The mean of average keratometry value decreased from 49.62 to 47.95 D (P < 0.001). Astigmatism decreased from 4.84 to 4.24 D (P < 0.001). Apex corneal thickness decreased from 458.11 to 444.46 μm. Corneal volume decreased from 56.66 to 55.97 mm(3) (P < 0.001). Posterior best fit sphere increased from 55.50 to 46.03 mm (P = 0.025). Posterior elevation increased from 99.2 to 112.22 μm (P < 0.001). Average progressive index increased from 2.26 to 2.56 (P < 0.001). A nonsignificant decrease was observed in mean endothelial count from 2996 to 2928 cell/mm(2) (P = 0.190). Endothelial coefficient of variation (CV) increased nonsignificantly from 18.26 to 20.29 (P = 0.112). Corneal hysteresis changed from 8.18 to 8.36 (P = 0.552) and corneal resistance factor increased from 6.98 to 7.21 (P = 0.202), so these changes were not significant. Visual acuity and K values improved after CXL. In spite of the nonsignificant increase in endothelial cell count and increase in the CV, CLX seems to be a safe treatment for keratoconus. Further studies with larger sample sizes and longer follow-up periods are recommended.

  13. Diaphragm Repair with a Novel Cross-Linked Collagen Biomaterial in a Growing Rabbit Model.

    Steffi Mayer

    Full Text Available Neonates with congenital diaphragmatic hernia and large defects often require patch closure. Acellular collagen matrices (ACM have been suggested as an alternative to synthetic durable patches as they are remodeled by the host or could also be used for tissue engineering purposes.2.0x1.0 cm diaphragmatic defects were created in 6-weeks old New-Zealand white rabbits. We compared reconstruction with a purpose-designed cross-linked ACM (Matricel to 4-layer non-cross-linked small intestinal submucosa (SIS and a 1-layer synthetic Dual Mesh (Gore-Tex. Unoperated animals or animals undergoing primary closure (4/0 polyglecaprone served as age-matched controls. 60 (n = 25 resp. 90 (n = 17 days later, animals underwent chest x-ray and obduction for gross examination of explants, scoring of adhesion and inflammatory response. Also, uniaxial tensiometry was done, comparing explants to contralateral native diaphragmatic tissue.Overall weight nearly doubled from 1,554±242 g at surgery to 2,837±265 g at obduction (+84%. X-rays did show rare elevation of the left diaphragm (SIS = 1, Gore-Tex = 1, unoperated control = 1, but no herniation of abdominal organs. 56% of SIS and 10% of Matricel patches degraded with visceral bulging in four (SIS = 3, Matricel = 1. Adhesion scores were limited: 0.5 (Matricel to 1 (SIS, Gore-Tex to the left lung (p = 0.008 and 2.5 (Gore-Tex, 3 (SIS and 4 (Matricel to the liver (p<0.0001. Tensiometry revealed a reduced bursting strength but normal compliance for SIS. Compliance was reduced in Matricel and Gore-Tex (p<0.01. Inflammatory response was characterized by a more polymorphonuclear cell (SIS resp. macrophage (Matricel type of infiltrate (p<0.05. Fibrosis was similar for all groups, except there was less mature collagen deposited to Gore-Tex implants (p<0.05.Matricel induced a macrophage-dominated inflammatory response, more adhesions, had appropriate strength but a lesser compliance compared to native tissue. The herein

  14. Fabrication of Collagen Gel Hollow Fibers by Covalent Cross-Linking for Construction of Bioengineering Renal Tubules.

    Shen, Chong; Zhang, Guoliang; Wang, Qichen; Meng, Qin

    2015-09-09

    Collagen, the most used natural biomacromolecule, has been extensively utilized to make scaffolds for cell cultures in tissue engineering, but has never been fabricated into the configuration of a hollow fiber (HF) for cell culture due to its poor mechanical properties. In this study, renal tubular cell-laden collagen hollow fiber (Col HF) was fabricated by dissolving sacrificial Ca-alginate cores from collagen shells strengthened by carbodiimide cross-linking. The inner/outer diameters of the Col HF were precisely controlled by the flow rates of core alginate/shell collagen solution in the microfluidic device. As found, the renal tubular cells self-assembled into renal tubules with diameters of 50-200 μm post to the culture in Col HF for 10 days. According to the 3D reconstructed confocal images or HE staining, the renal cells appeared as a tight tubular monolayer on the Col HF inner surface, sustaining more 3D cell morphology than the cell layer on the 2D flat collagen gel surface. Moreover, compared with the cultures in either a Transwell or polymer HF membrane, the renal tubules in Col HF exhibited at least 1-fold higher activity on brush border enzymes of alkaline phosphatase and γ-glutamyltransferase, consistent with their gene expressions. The enhancement occurred similarly on multidrug resistance protein 2 and glucose uptake. Such bioengineered renal tubules in Col HF will present great potential as alternatives to synthetic HF in both clinical use and pharmaceutical investigation.

  15. Corneal collagen cross-linking in the stabilization of PRK, LASIK, thermal keratoplasty, and orthokeratology.

    Nguyen, Michelle K; Chuck, Roy S

    2013-07-01

    To describe the use of corneal collagen cross-linking (CXL) and its efficacy in the stabilization of keratorefractive procedures, including PRK, laser in-situ keratomileusis (LASIK), thermal keratoplasty, and orthokeratology. Since its introduction, CXL has quickly gained interest in the treatment of ectactic disorders due to its ability to increase the biomechanical stability of the cornea. In its earliest use, it has shown to be effective in the treatment of both keratoconus and post-LASIK ectasia. More recent studies of CXL in combination with keratorefractive procedures have shown varying degrees of success. CXL with PRK has shown to be effective in slowing or halting the progression of keratoconus, pellucid marginal degeneration, and post-LASIK ectasia, in addition to potentially decreasing or delaying the need for penetrating keratoplasty. Several small case series have also demonstrated improved stability and efficacy of PRK and LASIK when combined with CXL, as well as a potentially decreased risk of postprocedure ectasia. In conjunction with thermokeratoplasty and orthokeratology, CXL has shown improved but only temporary results in the treatment of keratoconus. Future studies are needed to determine the efficacy and long-term stability of CXL in combination with keratorefractive procedures, as well as to address possible complications.

  16. Are the surgeons safe during UV-A radiation exposure in collagen cross-linking procedure?

    Shetty, Rashmi; Shetty, Rohit; Mahendradas, Padmamalini; Shetty, Bhujang K

    2012-02-01

    To quantify the effect of scattered UV-A radiation used in the collagen cross-linking (CXL) procedure and the amount of radiation reaching the surgeon and the surrounding area and to estimate the dampening effect by various protective devices. In this case series, 3 patients [aged 25-30 (±2.5) years] with keratoconus underwent a CXL procedure with UV-A light and riboflavin. Irradiance was measured using a spectrometer (Model USB2000; Ocean Optics, Inc) for various distances from the source, at various angles, and for different durations of radiation. The spectrometer was also used to measure the dampening effect produced by gown, latex gloves, and UV-protective glasses. Maximum UV-A radiation (1.4 × 10(-9) mW/cm(2)) was measured at 2 cm from the limbus, when the probe was held at a 45-degree angle to the floor. UV-A radiation reaching the surgeon's eye and the abdomen was 3.403 × 10(-11) and 2.36 × 10(-11) mW/cm(2), respectively. Gown, latex gloves, and UV-protective glasses showed dampening effects of 99.58%, 95.01%, and 99.73%, respectively. CXL appears to be a safe procedure with respect to UV-A radiation exposure to the surgeon. Further safety can be ensured by UV-protective devices.

  17. Decorin core protein (decoron) shape complements collagen fibril surface structure and mediates its binding.

    Orgel, Joseph P R O; Eid, Aya; Antipova, Olga; Bella, Jordi; Scott, John E

    2009-09-15

    Decorin is the archetypal small leucine rich repeat proteoglycan of the vertebrate extracellular matrix (ECM). With its glycosaminoglycuronan chain, it is responsible for stabilizing inter-fibrillar organization. Type I collagen is the predominant member of the fibrillar collagen family, fulfilling both organizational and structural roles in animal ECMs. In this study, interactions between decoron (the decorin core protein) and binding sites in the d and e(1) bands of the type I collagen fibril were investigated through molecular modeling of their respective X-ray diffraction structures. Previously, it was proposed that a model-based, highly curved concave decoron interacts with a single collagen molecule, which would form extensive van der Waals contacts and give rise to strong non-specific binding. However, the large well-ordered aggregate that is the collagen fibril places significant restraints on modes of ligand binding and necessitates multi-collagen molecular contacts. We present here a relatively high-resolution model of the decoron-fibril collagen complex. We find that the respective crystal structures complement each other well, although it is the monomeric form of decoron that shows the most appropriate shape complementarity with the fibril surface and favorable calculated energies of interaction. One molecule of decoron interacts with four to six collagen molecules, and the binding specificity relies on a large number of hydrogen bonds and electrostatic interactions, primarily with the collagen motifs KXGDRGE and AKGDRGE (d and e(1) bands). This work helps us to understand collagen-decorin interactions and the molecular architecture of the fibrillar ECM in health and disease.

  18. Decorin core protein (decoron shape complements collagen fibril surface structure and mediates its binding.

    Joseph P R O Orgel

    2009-09-01

    Full Text Available Decorin is the archetypal small leucine rich repeat proteoglycan of the vertebrate extracellular matrix (ECM. With its glycosaminoglycuronan chain, it is responsible for stabilizing inter-fibrillar organization. Type I collagen is the predominant member of the fibrillar collagen family, fulfilling both organizational and structural roles in animal ECMs. In this study, interactions between decoron (the decorin core protein and binding sites in the d and e(1 bands of the type I collagen fibril were investigated through molecular modeling of their respective X-ray diffraction structures. Previously, it was proposed that a model-based, highly curved concave decoron interacts with a single collagen molecule, which would form extensive van der Waals contacts and give rise to strong non-specific binding. However, the large well-ordered aggregate that is the collagen fibril places significant restraints on modes of ligand binding and necessitates multi-collagen molecular contacts. We present here a relatively high-resolution model of the decoron-fibril collagen complex. We find that the respective crystal structures complement each other well, although it is the monomeric form of decoron that shows the most appropriate shape complementarity with the fibril surface and favorable calculated energies of interaction. One molecule of decoron interacts with four to six collagen molecules, and the binding specificity relies on a large number of hydrogen bonds and electrostatic interactions, primarily with the collagen motifs KXGDRGE and AKGDRGE (d and e(1 bands. This work helps us to understand collagen-decorin interactions and the molecular architecture of the fibrillar ECM in health and disease.

  19. Dermal regeneration in native non-cross-linked collagen sponges with different extracellular matrix molecules

    de Vries, H. J.; Middelkoop, E.; Mekkes, J. R.; Dutrieux, R. P.; Wildevuur, C. H.; Westerhof, H.

    1994-01-01

    Collagenous dermal templates can prevent scarring and wound contraction in the healing of full-thickness defects. In a porcine wound model, full-thickness wounds were substituted by reconstituted and native collagen sponges in combination with autologous split-skin mesh grafts and covered with a

  20. Association of Cross Linked C-Telopeptide II Collagen and Hyaluronic Acid with Knee Osteoarthritis Severity

    John Butar Butar

    2013-12-01

    Full Text Available BACKGROUND: This study was carried out to investigate the association of Cross Linked C-Telopeptide Type I & II Collagen (CTX-I and II and hyaluronic acid (HA with knee osteoarthritis (OA severity. METHODS: Sixty menopause women with primary knee OA were enrolled in this study during their visits to the Outpatient Department. Patients with knee pain during weight bearing, active or passive range of motion, or tenderness with Kellgren-Lawrence (KL grade of more than I were included. Patients with injury, inflammatory and metabolic diseases were excluded. Patients were put in a 10-hour fasting prior to withdrawal of morning blood samples for examinations of HA, CTX-I, interleukin 1 beta (IL-1β, and high sensitivity C reactive protein (hs-CRP level. Second void morning urine specimens were taken for CTXII assessment. HA, CTX-I and II levels were measured by enzyme-linked immunosorbent assay. RESULTS: Sixty menopausal female patients were included in this study, 35 with KL grade II, 17 grade III, and 8 grade IV. Means of CTX-II were significantly different between subjects KL grade IV and III (p=0.021. Correlation of KL grade was significant with CTX-II (p=0.001, r=0.412 and HA (p=0.0411, r=0.269. KL grades were not significantly associated with CTX-I (p=0.8364, r=-0.0272; IL-1β (p=0.5773, r=0.0853 and hs-CRP (p=0.2625, r=0.1470. CONCLUSIONS: CTX-II and HA were associated with severity of knee OA, suggesting that CTX-II and HA can be used as marker for knee OA severity. KEYWORDS: CTX-II, hyaluronic acid, otestoarthritis, knee.

  1. Corneal Absorption of a New Riboflavin-Nanostructured System for Transepithelial Collagen Cross-Linking

    Bottos, Katia M.; Oliveira, Anselmo G.; Bersanetti, Patrícia A.; Nogueira, Regina F.; Lima-Filho, Acácio A. S.; Cardillo, José A.; Schor, Paulo; Chamon, Wallace

    2013-01-01

    Corneal collagen cross-linking (CXL) has been described as a promising therapy for keratoconus. According to standard CXL protocol, epithelium should be debrided before treatment to allow penetration of riboflavin into the corneal stroma. However, removal of the epithelium can increase procedure risks. In this study we aim to evaluate stromal penetration of a biocompatible riboflavin-based nanoemulsion system (riboflavin-5-phosphate and riboflavin-base) in rabbit corneas with intact epithelium. Two riboflavin nanoemulsions were developed. Transmittance and absorption coefficient were measured on corneas with intact epithelia after 30, 60, 120, 180, and 240 minutes following exposure to either the nanoemulsions or standard 0.1% or 1% riboflavin-dextran solutions. For the nanoemulsions, the epithelium was removed after measurements to assure that the riboflavin had passed through the hydrophobic epithelium and retained within the stroma. Results were compared to de-epithelialized corneas exposed to 0.1% riboflavin solution and to the same riboflavin nanoemulsions for 30 minutes (standard protocol). Mean transmittance and absorption measured in epithelialized corneas receiving the standard 0.1% riboflavin solution did not reach the levels found on the debrided corneas using the standard technique. Neither increasing the time of exposure nor the concentration of the riboflavin solution from 0.1% to 1% improved riboflavin penetration through the epithelium. When using riboflavin-5-phosphate nanoemulsion for 240 minutes, we found no difference between the mean absorption coefficients to the standard cross-linking protocol (p = 0.54). Riboflavin nanoemulsion was able to penetrate the corneal epithelium, achieving, after 240 minutes, greater stromal concentration when compared to debrided corneas with the standard protocol (p = 0.002). The riboflavin-5-phosphate nanoemulsion diffused better into the stroma than the riboflavin-base nanoemulsion. PMID:23785497

  2. Denaturation of collagen structures and their transformation under the physical and chemical effects

    Ivankin, A.; Boldirev, V.; Fadeev, G.; Baburina, M.; Kulikovskii, A.; Vostrikova, N.

    2017-11-01

    The process of denaturation of collagen structures under the influence of physical and chemical factors play an important role in the manufacture of food technology and the production of drugs for medicine and cosmetology. The paper discussed the problem of the combined effects of heat treatment, mechanical dispersion and ultrasonic action on the structural changes of the animal collagen in the presence of weak protonated organic acids. Algorithm combined effects of physical and chemical factors as a result of the formation of the technological properties of products containing collagen has been shown.

  3. Structural determinants of hydration, mechanics and fluid flow in freeze-dried collagen scaffolds.

    Offeddu, G S; Ashworth, J C; Cameron, R E; Oyen, M L

    2016-09-01

    Freeze-dried scaffolds provide regeneration templates for a wide range of tissues, due to their flexibility in physical and biological properties. Control of structure is crucial for tuning such properties, and therefore scaffold functionality. However, the common approach of modeling these scaffolds as open-cell foams does not fully account for their structural complexity. Here, the validity of the open-cell model is examined across a range of physical characteristics, rigorously linking morphology to hydration and mechanical properties. Collagen scaffolds with systematic changes in relative density were characterized using Scanning Electron Microscopy, X-ray Micro-Computed Tomography and spherical indentation analyzed in a time-dependent poroelastic framework. Morphologically, all scaffolds were mid-way between the open- and closed-cell models, approaching the closed-cell model as relative density increased. Although pore size remained constant, transport pathway diameter decreased. Larger collagen fractions also produced greater volume swelling on hydration, although the change in pore diameter was constant, and relatively small at ∼6%. Mechanically, the dry and hydrated scaffold moduli varied quadratically with relative density, as expected of open-cell materials. However, the increasing pore wall closure was found to determine the time-dependent nature of the hydrated scaffold response, with a decrease in permeability producing increasingly elastic rather than viscoelastic behavior. These results demonstrate that characterizing the deviation from the open-cell model is vital to gain a full understanding of scaffold biophysical properties, and provide a template for structural studies of other freeze-dried biomaterials. Freeze-dried collagen sponges are three-dimensional microporous scaffolds that have been used for a number of exploratory tissue engineering applications. The characterization of the structure-properties relationships of these scaffolds is

  4. Parametric imaging of collagen structural changes in human osteoarthritic cartilage using optical polarization tractography

    Ravanfar, Mohammadreza; Pfeiffer, Ferris M.; Bozynski, Chantelle C.; Wang, Yuanbo; Yao, Gang

    2017-12-01

    Collagen degeneration is an important pathological feature of osteoarthritis. The purpose of this study is to investigate whether the polarization-sensitive optical coherence tomography (PSOCT)-based optical polarization tractography (OPT) can be useful in imaging collagen structural changes in human osteoarthritic cartilage samples. OPT eliminated the banding artifacts in conventional PSOCT by calculating the depth-resolved local birefringence and fiber orientation. A close comparison between OPT and PSOCT showed that OPT provided improved visualization and characterization of the zonal structure in human cartilage. Experimental results obtained in this study also underlined the importance of knowing the collagen fiber orientation in conventional polarized light microscopy assessment. In addition, parametric OPT imaging was achieved by quantifying the surface roughness, birefringence, and fiber dispersion in the superficial zone of the cartilage. These quantitative parametric images provided complementary information on the structural changes in cartilage, which can be useful for a comprehensive evaluation of collagen damage in osteoarthritic cartilage.

  5. Comparison of Aqueous Humor Nitric Oxide Levels After Different Corneal Collagen Cross-Linking Methods.

    Yuksel, Nilay; Ozel-Turkcu, Ummuhani; Yalinbas, Duygu; Novruzlu, Sahin; Bilgihan, Ayse; Bilgihan, Kamil

    2016-12-01

    Nitric oxide production can cause either apoptotic or necrotic cell death through oxidative stress. We aimed to investigate the nitrite oxide metabolites (NO x ) and nitrite levels in the aqueous humor of rabbit eyes after different methods of corneal collagen cross-linking (CXL). Twenty-four eyes of 12 adult New Zealand rabbits were used. They were assigned into four groups, each including six eyes. Group 1 (control) consisted of eyes with no treatment. Group 2 received UV-A power setting at 3 mW/cm 2 for 30 minutes of continuous exposure and named as standard CXL group. Group 3 received UV-A power setting at 30 mW/cm 2 for 3 minutes of continuous exposure and named as accelerated CXL (A-CXL) group. Group 4 received UV-A power setting at 30 mW/cm 2 for 6 minutes of pulsed exposure (1 sec on, 1 sec off) and named as pulse-light accelerated CXL (PLA-CXL). Aqueous humors were aspirated from anterior chamber with a 27G needle after 1 hour UV-A exposure. NO x and nitrite levels were measured Results: The nitrite levels in aqueous humor were significantly increased in Group 2 and Group 3 when compared with Group 1 (p = 0.000, p = 0.036, respectively). When treatment modalities were compared with each other, high nitrite level in Group 2 was statistically significant when compared with Group 4 (p = 0.019). NO x levels were higher in Group 2 when compared with Group 1 (p = 0.006). Numerous studies investigated the physiological and pathophysiological roles of NO. NO is considered one of the most important molecule for ocular health. According to NO x level in aqueous humor, it seems that PLA-CXL is the safest method due to the similar results with control group.

  6. Corneal Collagen Cross-Linking with Hypoosmolar Riboflavin Solution in Keratoconic Corneas

    Shaofeng Gu

    2014-01-01

    Full Text Available Purpose. To report the 12-month outcomes of corneal collagen cross-linking (CXL with a hypoosmolar riboflavin and ultraviolet-A (UVA irradiation in thin corneas. Methods. Eight eyes underwent CXL using a hypoosmolar riboflavin solution after epithelial removal. The corrected distance visual acuity (CDVA, manifest refraction, the mean thinnest corneal thickness (MTCT, and the endothelial cell density (ECD were evaluated before and 6 and 12 months after CXL. Results. The MTCT was 413.9 ± 12.4 μm before treatment and reduced to 381.1 ± 7.3 μm after the removal of the epithelium. After CXL, the thickness decreased to 410.3 ± 14.5 μm at the last follow-up. Before treatment, the mean K-value of the apex of the keratoconus corneas was 58.7 ± 3.5 diopters and slightly decreased (57.7 ± 4.9 diopters at 12 months. The mean CDVA was 0.54 ± 0.23 logarithm of the minimal angle of resolution before treatment and increased to 0.51 ± 0.21 logarithm at the last follow-up. The ECD was 2731.4 ± 191.8 cells/mm2 before treatment and was 2733.4 ± 222.6 cells/mm2 at 12 months after treatment. Conclusions. CXL with a hypoosmolar riboflavin in thin corneas seems to be a promising method for keratoconic eyes with the mean thinnest corneal thickness less than 400 μm without epithelium.

  7. Uncoupling of collagen II metabolism in newly diagnosed, untreated rheumatoid arthritis is linked to inflammation and antibodies against cyclic citrullinated peptides

    Christensen, Anne Friesgaard; Hørslev-Petersen, Kim; Christgau, Stephan

    2010-01-01

    . METHODS: One hundred sixty patients with newly diagnosed, untreated RA entered the Cyclosporine, Methotrexate, Steroid in RA (CIMESTRA) trial. Disease activity and radiograph status were measured at baseline and 4 years. The N-terminal propeptide of collagen IIA (PIIANP) and the cross-linked C...... associations of collagen II anabolism (PIIANP) and collagen II degradation (CTX-II) with anti-CCP, synovitis, and radiographic progression indicate that at this early stage of RA, cartilage collagen degradation is mainly driven by synovitis, while anti-CCP antibodies may interfere with cartilage regeneration...

  8. Assembly of Collagen Matrices as a Phase Transition Revealed by Structural and Rheologic Studies

    Forgacs, Gabor; Newman, Stuart A.; Hinner, Bernhard; Maier, Christian W.; Sackmann, Erich

    2003-01-01

    We have studied the structural and viscoelastic properties of assembling networks of the extracellular matrix protein type-I collagen by means of phase contrast microscopy and rotating disk rheometry. The initial stage of the assembly is a nucleation process of collagen monomers associating to randomly distributed branched clusters with extensions of several microns. Eventually a sol-gel transition takes place, which is due to the interconnection of these clusters. We analyzed this transition...

  9. Evaluation of subbasal nerve morphology and corneal sensation after accelerated corneal collagen cross-linking treatment on keratoconus.

    Ozgurhan, Engin Bilge; Celik, Ugur; Bozkurt, Ercument; Demirok, Ahmet

    2015-05-01

    The aim of this study was to report on the evaluation of corneal nerve fiber density and corneal sensation after accelerated corneal collagen cross-linking on keratoconus patients. The study was performed on 30 keratoconus eyes (30 participants: 16 M, 14 F; 17-32 years old) treated with accelerated collagen cross-linking for disease stabilization. Mean outcome measures were corneal sensation evaluation by Cochet-Bonnet esthesiometry and subbasal nerve fiber density assessment by corneal in vivo confocal microscopy. All corneal measurements were performed using scanning slit confocal microscopy (ConfoScan 4, Nidek Technologies, Padova, Italy). The accelerated corneal collagen cross-linking procedure was performed on 30 eyes of 30 patients (19 right, 63.3%; 11 left, 27.7%). The mean age was 23.93 ± 4. The preoperative mean keratometry, apex keratometry and pachymetry values were 47.19 ± 2.82 D, 56.79 ± 5.39 and 426.1 ± 25.6 μm, respectively. Preoperative mean corneal sensation was 56.3 ± 5.4 mm (with a range from 40 to 60 mm), it was significantly decreased at 1st and 3rd month visit and increased to preoperative values after 6th month visit. Preoperative mean of subbasal nerve fiber density measurements was 22.8 ± 9.7 nerve fiber/mm(2) (with a range of 5-45 mm), it was not still at the preoperative values at 6th month (p = 0.0001), however reached to the preoperative values at 12th month (p = 0.914). Subbasal nerve fibers could reach the preoperative values at the 12th month after accelerated corneal collagen cross-linking treatment although the corneal sensation was improved at 6th month. These findings imply that the subjective healing process is faster than the objective evaluation of the keratoconus patients' cornea treated with accelerated corneal collagen cross-linking.

  10. Nano-structural analysis of fish collagen extracts for new process ...

    GREGORY

    2011-12-16

    Dec 16, 2011 ... linked rods observed in SBA denote adequate removal of non-collagen content of the fish skin and increased its surface area. SBA is suggested as the best pretreatment for perch fish gelatin. The result of viscosity was also highest for sample SBA (0.0245 ± 0.0001 pas), while viscosity for others are 0.0155.

  11. Force Spectroscopy of Collagen Fibers to Investigate Their Mechanical Properties and Structural Organization

    Gutsmann, Thomas; Fantner, Georg E.; Kindt, Johannes H.; Venturoni, Manuela; Danielsen, Signe; Hansma, Paul K.

    2004-01-01

    Tendons are composed of collagen and other molecules in a highly organized hierarchical assembly, leading to extraordinary mechanical properties. To probe the cross-links on the lower level of organization, we used a cantilever to pull substructures out of the assembly. Advanced force probe technology, using small cantilevers (length

  12. An age-related study of morphology and cross-link composition of collagen fibrils in the digital flexor tendons of young thoroughbred horses.

    Patterson-Kane, J C; Parry, D A; Birch, H L; Goodship, A E; Firth, E C

    1997-01-01

    The superficial digital flexor tendon is the most commonly injured tendon in the racing Thoroughbred. Despite the clinical significance of this structure, only limited data exist regarding normal age-related morphology of the tensile units, the collagen fibrils. The age at which these collagen fibrils become mature in composition and structure may be of importance. Consequently, the association of age and collagen fibril crosslink composition, diameter distribution and crimp morphology in the superficial and deep digital flexor tendons of Thoroughbreds up to and including three years of age has been studied. Replacement of immature crosslinks, peaking of the collagen fibril mass-average diameter and collagen fibril index, and stabilization of collagen crimp morphology changes supported the hypothesis that both digital flexor tendons become mature in structure by two years of age.

  13. Stabilization of collagen nanofibers with l-lysine improves the ability of carbodiimide cross-linked amniotic membranes to preserve limbal epithelial progenitor cells

    Lai JY

    2014-11-01

    Full Text Available Jui-Yang Lai,1–3 Pei-Ran Wang,1 Li-Jyuan Luo,1 Si-Tan Chen1 1Institute of Biochemical and Biomedical Engineering, 2Biomedical Engineering Research Center, 3Molecular Medicine Research Center, Chang Gung University, Taoyuan, Taiwan, Republic of ChinaAbstract: To overcome the drawbacks associated with limited cross-linking efficiency of carbodiimide modified amniotic membrane, this study investigated the use of L-lysine as an additional amino acid bridge to enhance the stability of a nanofibrous tissue matrix for a limbal epithelial cell culture platform. Results of ninhydrin assays and zeta potential measurements showed that the amount of positively charged amino acid residues incorporated into the tissue collagen chains is highly correlated with the L-lysine -pretreated concentration. The cross-linked structure and hydrophilicity of amniotic membrane scaffolding materials affected by the lysine molecular bridging effects were determined. With an increase in the L-lysine-pretreated concentration from 1 to 30 mM, the cross-linking density was significantly increased and water content was markedly decreased. The variations in resistance to thermal denaturation and enzymatic degradation were in accordance with the number of cross-links per unit mass of amniotic membrane, indicating L-lysine-modulated stabilization of collagen molecules. It was also noteworthy that the carbodiimide cross-linked tissue samples prepared using a relatively high L-lysine-pretreated concentration (ie, 30 mM appeared to have decreased light transmittance and biocompatibility, probably due to the influence of a large nanofiber size and a high charge density. The rise in stemness gene and protein expression levels was dependent on improved cross-link formation, suggesting the crucial role of amino acid bridges in constructing suitable scaffolds to preserve limbal progenitor cells. It is concluded that mild to moderate pretreatment conditions (ie, 3–10 mM L-lysine can

  14. In vitro degradation of dermal sheep collagen cross-linked using a water-soluble carbodiimide

    Damink, LHHO; Dijkstra, PJ; vanLuyn, MJA; vanWachem, PB; Nieuwenhuis, P; Feijen, J

    Bacterial collagenase was used to study the susceptibility of dermal sheep collagen (DSC) cross-inked with a mixture of the water-soluble carbodiimide 1-ethyl-3-(3-dimethyl aminopropyl)carbodiimide hydrochloride and N-hydroxysuccinimide (EIN-DSC) towards enzymatic degradation. Contrary to

  15. BIOCOMPATIBILITY AND TISSUE REGENERATING CAPACITY OF CROSS-LINKED DERMAL SHEEP COLLAGEN

    VANWACHEM, PB; VANLUYN, MJA; DAMINK, LHHO; DIJKSTRA, PJ; FEIJEN, J; NIEUWENHUIS, P

    The biocompatibility and tissue regenerating capacity of four crosslinked dermal sheep collagens (DSC) was studied. In vitro, the four DSC versions were found to be noncytotoxic or very low in cytoxicity. After subcutaneous implantation in rats, hexamethylenediisocyanate-crosslinked DSC (HDSC)

  16. Quantitative analysis of the synthesis and secretion of type VII collagen in cultured human dermal fibroblasts with a sensitive sandwich enzyme-linked immunoassay.

    Amano, Satoshi; Ogura, Yuki; Akutsu, Nobuko; Nishiyama, Toshio

    2007-02-01

    Type VII collagen is the major component of anchoring fibrils in the epidermal basement membrane. Its expression has been analyzed by immunostaining or Northern blotting, but rarely at the protein level. In this study, we have quantitatively examined the effects of ascorbic acid and various cytokines/growth factors on the protein synthesis and secretion of type VII collagen by human dermal fibroblasts in culture, using a developed, highly sensitive sandwich enzyme-linked immunoassay with two kinds of specific monoclonal antibodies against the non-collagenous domain-1. Ascorbic acid and its derivative induced a twofold increase in type VII collagen synthesis, and markedly increased the secretion of type VII collagen into the medium when compared with the control culture. This effect was not influenced by the presence of transforming growth factor-beta1 (TGF-beta1). The synthesis of type VII collagen was elevated by TGF-beta1, platelet-derived growth factor, tumor necrosis factor-alpha, and interleukin-1beta, but not by TGF-alpha. Thus, our data indicate that the synthesis and secretion of type VII collagen in human dermal fibroblasts are regulated by ascorbate and the enhancement of type VII collagen gene expression by cytokines/growth factors is accompanied with elevated production of type VII collagen at the protein level.

  17. Occlusal loading and cross-linking effects on dentin collagen degradation in physiological conditions.

    Turco, Gianluca; Frassetto, Andrea; Fontanive, Luca; Mazzoni, Annalisa; Cadenaro, Milena; Di Lenarda, Roberto; Tay, Franklin R; Pashley, David H; Breschi, Lorenzo

    2016-02-01

    This study evaluated the ability of 1-ethyl-3-(3-dimethylaminopropyl)-carbodiimide hydrochloride (EDC) to improve the stability of demineralized dentin collagen matrices when subjected to mechanical cycling by means of Chewing Simulation (CS). Demineralized dentin disks were randomly assigned to four groups (N=4): (1) immersion in artificial saliva at 37°C for 30 days; (2) pre-treatment with 0.5 M EDC for 60 s, then stored as in Group 1; (3) CS challenge (50 N occlusal load, 30 s occlusal time plus 30 s with no load, for 30 days); (4) pre-treatment with 0.5 M EDC as in Group 2 and CS challenge as in Group 3. Collagen degradation was evaluated by sampling storage media for ICTP and CTX telopeptides. EDC treated specimens showed no significant telopeptides release, irrespective of the aging method. Cyclic stressing of EDC-untreated specimens caused significantly higher ICTP release at day 1, compared to static storage, while by days 3 and 4, the ICTP release in the cyclic group fell significantly below the static group, and then remained undetectable from 5 to 30 days. CTX release in the cyclic groups, on EDC-untreated control specimens was always lower than in the static group in days 1-4, and then fell to undetectable for 30 days. This study showed that chewing stresses applied to control untreated demineralized dentin increased degradation of collagen in terms of CTX release, while collagen crosslinking agents may prevent dentin collagen degradation, irrespective of simulated occlusal function. Copyright © 2015 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  18. The close-packed triple helix as a possible new structural motif for collagen

    Bohr, Jakob; Olsen, Kasper

    2010-01-01

    that close packing form the underlying principle behind the structure of collagen, and the implications of this suggestion are considered. Further, it is shown that the unique zero-twist structure with no strain-twist coupling is practically identical to the close-packed triple helix. Some...

  19. Evidence of structurally continuous collagen fibrils in tendon

    Svensson, Rene B; Herchenhan, Andreas; Starborg, Tobias

    2017-01-01

    favor continuity. This study initially set out to trace the full length of individual fibrils in adult human tendons, using serial block face-scanning electron microscopy. But even with this advanced technique the required length could not be covered. Instead a statistical approach was used on a large...... volume of fibrils in shorter image stacks. Only a single end was observed after tracking 67.5 mm of combined fibril lengths, in support of fibril continuity. To shed more light on this observation, the full length of a short tendon (mouse stapedius, 125 μm) was investigated and continuity of individual...... fibrils was confirmed. In light of these results, possible mechanisms that could reconcile the opposing findings on fibril continuity are discussed. STATEMENT OF SIGNIFICANCE: Connective tissues hold all parts of the body together and are mostly constructed from thin threads of the protein collagen...

  20. Collagen I self-assembly: revealing the developing structures that generate turbidity.

    Zhu, Jieling; Kaufman, Laura J

    2014-04-15

    Type I collagen gels are routinely used in biophysical studies and bioengineering applications. The structural and mechanical properties of these fibrillar matrices depend on the conditions under which collagen fibrillogenesis proceeds, and developing a fuller understanding of this process will enhance control over gel properties. Turbidity measurements have long been the method of choice for monitoring developing gels, whereas imaging methods are regularly used to visualize fully developed gels. In this study, turbidity and confocal reflectance microscopy (CRM) were simultaneously employed to track collagen fibrillogenesis and reconcile the information reported by the two techniques, with confocal fluorescence microscopy (CFM) used to supplement information about early events in fibrillogenesis. Time-lapse images of 0.5 mg/ml, 1.0 mg/ml, and 2.0 mg/ml acid-solubilized collagen I gels forming at 27°C, 32°C, and 37°C were collected. It was found that in situ turbidity measured in a scanning transmittance configuration was interchangeable with traditional turbidity measurements using a spectrophotometer. CRM and CFM were employed to reveal the structures responsible for the turbidity that develops during collagen self-assembly. Information from CRM and transmittance images was collapsed into straightforward single variables; total intensity in CRM images tracked turbidity development closely for all collagen gels investigated, and the two techniques were similarly sensitive to fibril number and dimension. Complementary CRM, CFM, and in situ turbidity measurements revealed that fibril and network formation occurred before substantial turbidity was present, and the majority of increasing turbidity during collagen self-assembly was due to increasing fibril thickness. Copyright © 2014 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  1. Ultrastructural and biochemical characterization of mechanically adaptable collagenous structures in the edible sea urchin Paracentrotus lividus.

    Barbaglio, Alice; Tricarico, Serena; Ribeiro, Ana R; Di Benedetto, Cristiano; Barbato, Marta; Dessì, Desirèe; Fugnanesi, Valeria; Magni, Stefano; Mosca, Fabio; Sugni, Michela; Bonasoro, Francesco; Barbosa, Mario A; Wilkie, Iain C; Candia Carnevali, M Daniela

    2015-06-01

    The viscoelastic properties of vertebrate connective tissues rarely undergo significant changes within physiological timescales, the only major exception being the reversible destiffening of the mammalian uterine cervix at the end of pregnancy. In contrast to this, the connective tissues of echinoderms (sea urchins, starfish, sea cucumbers, etc.) can switch reversibly between stiff and compliant conditions in timescales of around a second to minutes. Elucidation of the molecular mechanism underlying such mutability has implications for the zoological, ecological and evolutionary field. Important information could also arise for veterinary and biomedical sciences, particularly regarding the pathological plasticization or stiffening of connective tissue structures. In the present investigation we analyzed aspects of the ultrastructure and biochemistry in two representative models, the compass depressor ligament and the peristomial membrane of the edible sea urchin Paracentrotus lividus, compared in three different mechanical states. The results provide further evidence that the mechanical adaptability of echinoderm connective tissues does not necessarily imply changes in the collagen fibrils themselves. The higher glycosaminoglycan (GAG) content registered in the peristomial membrane with respect to the compass depressor ligament suggests a diverse role of these molecules in the two mutable collagenous tissues. The possible involvement of GAG in the mutability phenomenon will need further clarification. During the shift from a compliant to a standard condition, significant changes in GAG content were detected only in the compass depressor ligament. Similarities in terms of ultrastructure (collagen fibrillar assembling) and biochemistry (two alpha chains) were found between the two models and mammalian collagen. Nevertheless, differences in collagen immunoreactivity, alpha chain migration on SDS-PAGE and BLAST alignment highlighted the uniqueness of sea urchin

  2. Nanoscale Structure of Type I Collagen Fibrils: Quantitative Measurement of D-spacing

    Erickson, Blake; Fang, Ming; Wallace, Joseph M.; Orr, Bradford G.; Les, Clifford M.; Holl, Mark M. Banaszak

    2012-01-01

    This paper details a quantitative method to measure the D-periodic spacing of Type I collagen fibrils using Atomic Force Microscopy coupled with analysis using a 2D Fast Fourier Transform approach. Instrument calibration, data sampling and data analysis are all discussed and comparisons of the data to the complementary methods of electron microscopy and X-ray scattering are made. Examples of the application of this new approach to the analysis of Type I collagen morphology in disease models of estrogen depletion and Osteogenesis Imperfecta are provided. We demonstrate that it is the D-spacing distribution, not the D-spacing mean, that showed statistically significant differences in estrogen depletion associated with early stage Osteoporosis and Osteogenesis Imperfecta. The ability to quantitatively characterize nanoscale morphological features of Type I collagen fibrils will provide important structural information regarding Type I collagen in many research areas, including tissue aging and disease, tissue engineering, and gene knock out studies. Furthermore, we also envision potential clinical applications including evaluation of tissue collagen integrity under the impact of diseases or drug treatments. PMID:23027700

  3. Determination of collagen fibril structure and orientation in connective tissues by X-ray diffraction

    Wilkinson, S. J.; Hukins, D. W. L.

    1999-08-01

    Elastic scattering of X-rays can provide the following information on the fibrous protein collagen: its molecular structure, the axial arrangement of rod-like collagen molecules in a fibril, the lateral arrangement of molecules within a fibril, and the orientation of fibrils within a biological tissue. The first part of the paper reviews the principles involved in deducing this information. The second part describes a new computer program for measuring the equatorial intensity distribution, that provides information on the lateral arrangement of molecules within a fibril, and the angular distribution of the equatorial peaks that provides information on the orientation of fibrils. Orientation of fibrils within a tissue is quantified by the orientation distribution function, g( φ), which represents the probability of finding a fibril oriented between φ and φ+ δφ. The application of the program is illustrated by measurement of g( φ) for the collagen fibrils in demineralised cortical bone from cow tibia.

  4. Fibril growth kinetics link buffer conditions and topology of 3D collagen I networks.

    Kalbitzer, Liv; Pompe, Tilo

    2018-02-01

    Three-dimensional fibrillar networks reconstituted from collagen I are widely used as biomimetic scaffolds for in vitro and in vivo cell studies. Various physicochemical parameters of buffer conditions for in vitro fibril formation are well known, including pH-value, ion concentrations and temperature. However, there is a lack of a detailed understanding of reconstituting well-defined 3D network topologies, which is required to mimic specific properties of the native extracellular matrix. We screened a wide range of relevant physicochemical buffer conditions and characterized the topology of the reconstituted 3D networks in terms of mean pore size and fibril diameter. A congruent analysis of fibril formation kinetics by turbidimetry revealed the adjustment of the lateral growth phase of fibrils by buffer conditions to be key in the determination of pore size and fibril diameter of the networks. Although the kinetics of nucleation and linear growth phase were affected by buffer conditions as well, network topology was independent of those two growth phases. Overall, the results of our study provide necessary insights into how to engineer 3D collagen matrices with an independent control over topology parameters, in order to mimic in vivo tissues in in vitro experiments and tissue engineering applications. The study reports a comprehensive analysis of physicochemical conditions of buffer solutions to reconstitute defined 3D collagen I matrices. By a combined analysis of network topology, i.e., pore size and fibril diameter, and the kinetics of fibril formation we can reveal the dependence of 3D network topology on buffer conditions, such as pH-value, phosphate concentration and sodium chloride content. With those results we are now able to provide engineering strategies to independently tune the topology parameters of widely used 3D collagen scaffolds based on the buffer conditions. By that, we enable the straightforward mimicking of extracellular matrices of in vivo

  5. Modification of mature non-reducible collagen cross-link concentrations in bovine m. gluteus medius and semitendinosus with steer age at slaughter, breed cross and growth promotants.

    Roy, B C; Sedgewick, G; Aalhus, J L; Basarab, J A; Bruce, H L

    2015-12-01

    Increased meat toughness with animal age has been attributed to mature trivalent collagen cross-link formation. Intramuscular trivalent collagen cross-link content may be decreased by reducing animal age at slaughter and/or inducing muscle re-modeling with growth promotants. This hypothesis was tested in m. gluteus medius (GM) and m. semitendinosus (ST) from 112 beef steers finished at either 12 to 13 (rapid growth) or 18 to 20 (slow growth) months of age. Hereford-Aberdeen Angus (HAA) or Charolais-Red Angus (CRA) steers were randomly assigned to receive implants (IMP), ractopamine (RAC), both IMP and RAC, or none (control). RAC decreased pyridinoline (mol/mol collagen) and IMP increased Ehrlich chromogen (EC) (mol/mol collagen) in the GM. In the ST, RAC increased EC (mol/mol collagen) but decreased EC (nmol/g raw muscle) in slow growing CRA steers. Also, IMP increased ST pyridinoline (nmol/g raw muscle) of slow-growing HAA steers. Results indicated alteration of perimysium collagen cross-links content in muscle in response to growth promotants. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Effect of pore size and cross-linking of a novel collagen-elastin dermal substitute on wound healing.

    Boekema, Bouke K H L; Vlig, Marcel; Olde Damink, Leon; Middelkoop, Esther; Eummelen, Lizette; Bühren, Anne V; Ulrich, Magda M W

    2014-02-01

    Collagen-elastin (CE) scaffolds are frequently used for dermal replacement in the treatment of full-thickness skin defects such as burn wounds. But little is known about the optimal pore size and level of cross-linking. Different formulations of dermal substitutes with unidirectional pores were tested in porcine full-thickness wounds in combination with autologous split skin mesh grafts (SSG). Effect on wound healing was evaluated both macro- and microscopically. CE scaffolds with a pore size of 80 or 100 μm resulted in good wound healing after one-stage grafting. Application of scaffolds with a larger average pore size (120 μm) resulted in more myofibroblasts and more foreign body giant cells (FBGC). Moderate crosslinking impaired wound healing as it resulted in more wound contraction, more FBGC and increased epidermal thickness compared to no cross-linking. In addition, take rate and redness were negatively affected compared to SSG only. Vascularization and the number of myofibroblasts were not affected by cross-linking. Surprisingly, stability of cross-linked scaffolds was not increased in the wound environment, in contrast to in vitro results. Cross-linking reduced the proliferation of fibroblasts in vitro, which might explain the reduced clinical outcome. The non-cross-linked CE substitute with unidirectional pores allowed one-stage grafting of SSG, resulting in good wound healing. In addition, only a very mild foreign body reaction was observed. Cross-linking of CE scaffolds negatively affected wound healing on several important parameters. The optimal non-cross-linked CE substitute is a promising candidate for future clinical evaluation.

  7. The triple helix of collagens - an ancient protein structure that enabled animal multicellularity and tissue evolution.

    Fidler, Aaron L; Boudko, Sergei P; Rokas, Antonis; Hudson, Billy G

    2018-04-09

    The cellular microenvironment, characterized by an extracellular matrix (ECM), played an essential role in the transition from unicellularity to multicellularity in animals (metazoans), and in the subsequent evolution of diverse animal tissues and organs. A major ECM component are members of the collagen superfamily -comprising 28 types in vertebrates - that exist in diverse supramolecular assemblies ranging from networks to fibrils. Each assembly is characterized by a hallmark feature, a protein structure called a triple helix. A current gap in knowledge is understanding the mechanisms of how the triple helix encodes and utilizes information in building scaffolds on the outside of cells. Type IV collagen, recently revealed as the evolutionarily most ancient member of the collagen superfamily, serves as an archetype for a fresh view of fundamental structural features of a triple helix that underlie the diversity of biological activities of collagens. In this Opinion, we argue that the triple helix is a protein structure of fundamental importance in building the extracellular matrix, which enabled animal multicellularity and tissue evolution. © 2018. Published by The Company of Biologists Ltd.

  8. Novel myopic refractive correction with transepithelial very high-fluence collagen cross-linking applied in a customized pattern: early clinical results of a feasibility study

    Kanellopoulos AJ

    2014-04-01

    Full Text Available Anastasios John Kanellopoulos LaserVision.gr Institute, Athens, Greece, and New York Medical School, New York, NY, USA Background: The purpose of this study is to report the safety and efficacy of a new application of collagen cross-linking using a novel device to achieve predictable refractive myopic changes in virgin corneas. Methods: Four cases were treated with a novel device employing very high-fluence collagen cross-linking applied in a myopic pattern. Prior to treatment, riboflavin solution was applied to the intact epithelium. The collagen cross-linking device was then engaged for a total of 12 J/cm2, to be applied transepithelially in a predetermined pattern. Cornea clarity, corneal keratometry, and corneal topography were evaluated by both Placido disc and Scheimpflug imaging, along with cornea anterior segment optical coherence tomography and endothelial cell counts. Results: An average of 2.3 diopters was achieved in the first week in all four cases treated with the very high-fluence myopic collagen cross-linking intervention. There was a slight regression to 1.44 diopters at 1 month, which remained stable at 6-month follow-up. The mean keratometry change was from 44.90 diopters to 43.46 diopters. There was no significant change in endothelial cell counts or corneal clarity. There was some mild change in epithelial thickness distribution, with the treated area showing a slight but homogeneous reduction in mean thickness from 52 µm to 44 µm. Conclusion: This report describes the novel application of very high-fluence collagen cross-linking with a predictable well defined myopic refractive (flattening corneal effect. This technique has the advantages of essentially no postoperative morbidity, immediate visual rehabilitation, and the potential for tapering until the desired result is achieved. Keywords: myopia, refractive correction, high-fluence collagen cross-linking, clinical results

  9. Force spectroscopy of collagen fibers to investigate their mechanical properties and structural organization.

    Gutsmann, Thomas; Fantner, Georg E; Kindt, Johannes H; Venturoni, Manuela; Danielsen, Signe; Hansma, Paul K

    2004-05-01

    Tendons are composed of collagen and other molecules in a highly organized hierarchical assembly, leading to extraordinary mechanical properties. To probe the cross-links on the lower level of organization, we used a cantilever to pull substructures out of the assembly. Advanced force probe technology, using small cantilevers (length exponential increase in force and two different periodic rupture events, one with strong bonds (jumps in force of several hundred pN) with a periodicity of 78 nm and one with weak bonds (jumps in force of <7 pN) with a periodicity of 22 nm. We demonstrate a good correlation between the measured mechanical behavior of collagen fibers and their appearance in the micrographs taken with the atomic force microscope.

  10. Preparation and characterization of malonic acid cross-linked chitosan and collagen 3D scaffolds: an approach on non-covalent interactions.

    Mitra, Tapas; Sailakshmi, G; Gnanamani, A; Mandal, A B

    2012-05-01

    The present study emphasizes the influence of non-covalent interactions on the mechanical and thermal properties of the scaffolds of chitosan/collagen origin. Malonic acid (MA), a bifuncitonal diacid was chosen to offer non-covalent cross-linking. Three dimensional scaffolds was prepared using chitosan at 1.0% (w/v) and MA at 0.2% (w/v), similarly collagen 0.5% (w/v) and MA 0.2% (w/v) and characterized. Results on FT-IR, TGA, DSC, SEM and mechanical properties (tensile strength, stiffness, Young's modulus, etc.) assessment demonstrated the existence of non-covalent interaction between MA and chitosan/collagen, which offered flexibility and high strength to the scaffolds suitable for tissue engineering research. Studies using NIH 3T3 fibroblast cells suggested biocompatibility nature of the scaffolds. Docking simulation study further supports the intermolecular hydrogen bonding interactions between MA and chitosan/collagen.

  11. Herpetic keratitis after corneal collagen cross-linking with riboflavin and ultraviolet-A for progressive keratoconus.

    Yuksel, Nilay; Bilgihan, Kamil; Hondur, Ahmet M

    2011-12-01

    To describe a case of herpetic keratitis after corneal collagen cross-linking (CXL) with riboflavin and ultraviolet-A for progressive keratoconus. A 31-year-old woman with rapidly progressive keratoconus in the left eye was treated with CXL. Four days postoperatively, a dendritic ulcer developed in the treated eye. The diagnosis was confirmed with polymerase chain reaction analysis of the corneal swab for herpes simplex. The patient had no prior history of herpetic eye disease or cold sores. The keratitis resolved in 10 days with treatment. At 1 month, the visual acuity was stable, but a mild superficial opacity was noted. Herpetic keratitis can be induced by CXL even in patients with no history of previous herpetic eye disease. Early diagnosis and proper treatment can facilitate successful management of this rare but important complication.

  12. The effects of different cross-linking conditions on collagen-based nanocomposite scaffolds—an in vitro evaluation using mesenchymal stem cells

    Suchý, Tomáš; Šupová, Monika; Sucharda, Zbyněk; Rýglová, Šárka; Žaloudková, Margit; Sauerová, Pavla; Kalbáčová, Marie Hubálek; Verdánová, Martina; Sedláček, Radek

    2015-01-01

    Nanocomposite scaffolds which aimed to imitate a bone extracellular matrix were prepared for bone surgery applications. The scaffolds consisted of polylactide electrospun nano/sub-micron fibres, a natural collagen matrix supplemented with sodium hyaluronate and natural calcium phosphate nano-particles (bioapatite). The mechanical properties of the scaffolds were improved by means of three different cross-linking agents: N-(3-dimethylamino propyl)-N’-ethylcarbodiimide hydrochloride and N-hydroxysuccinimide in an ethanol solution (EDC/NHS/EtOH), EDC/NHS in a phosphate buffer saline solution (EDC/NHS/PBS) and genipin. The effect of the various cross-linking conditions on the pore size, structure and mechanical properties of the scaffolds were subsequently studied. In addition, the mass loss, the swelling ratio and the pH of the scaffolds were determined following their immersion in a cell culture medium. Furthermore, the metabolic activity of human mesenchymal stem cells (hMSCs) cultivated in scaffold infusions for 2 and 7 days was assessed. Finally, studies were conducted of cell adhesion, proliferation and penetration into the scaffolds. With regard to the structural stability of the tested scaffolds, it was determined that EDC/NHS/PBS and genipin formed the most effectively cross-linked materials. Moreover, it was discovered that the genipin cross-linked scaffold also provided the best conditions for hMSC cultivation. In addition, the infusions from all the scaffolds were found to be non-cytotoxic. Thus, the genipin and EDC/NHS/PBS cross-linked scaffolds can be considered to be promising biomaterials for further in vivo testing and bone surgery applications. (paper)

  13. Collagen-chitosan scaffold modified with Au and Ag nanoparticles: Synthesis and structure

    Rubina, M.S.; Kamitov, E.E. [A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Moscow, 119991 Russian Federation (Russian Federation); Zubavichus, Ya. V.; Peters, G.S. [National Research center «Kurchatov Institute», Moscow, 123182 Russian Federation (Russian Federation); Naumkin, A.V. [A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Moscow, 119991 Russian Federation (Russian Federation); Suzer, S. [Department of Chemistry, Bilkent University, Ankara, 06800 Turkey (Turkey); Vasil’kov, A.Yu., E-mail: alexandervasilkov@yandex.ru [A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Moscow, 119991 Russian Federation (Russian Federation)

    2016-03-15

    Graphical abstract: - Highlights: • Biocompatible collagen-chitosan scaffolds were modified by Au and Ag nanoparticles via the metal-vapor synthesis. • Structural and morphological parameters of the nanocomposites were assessed using a set of modern instrumental techniques, including electron microscopy, X-ray diffraction, small-angle X-ray scattering, EXAFS, XPS. • Potential application of the nanocomposites are envisaged. - Abstract: Nowadays, the dermal biomimetic scaffolds are widely used in regenerative medicine. Collagen-chitosan scaffold one of these materials possesses antibacterial activity, good compatibility with living tissues and has been already used as a wound-healing material. In this article, collagen-chitosan scaffolds modified with Ag and Au nanoparticles have been synthesized using novel method - the metal-vapor synthesis. The nanocomposite materials are characterized by XPS, TEM, SEM and synchrotron radiation-based X-ray techniques. According to XRD data, the mean size of the nanoparticles (NPs) is 10.5 nm and 20.2 nm in Au-Collagen-Chitosan (Au-CollCh) and Ag-Collagen-Chitosan (Ag-CollCh) scaffolds, respectively in fair agreement with the TEM data. SAXS analysis of the composites reveals an asymmetric size distribution peaked at 10 nm for Au-CollCh and 25 nm for Ag-CollCh indicative of particle's aggregation. According to SEM data, the metal-carrying scaffolds have layered structure and the nanoparticles are rather uniformly distributed on the surface material. XPS data indicate that the metallic nanoparticles are in their unoxidized/neutral states and dominantly stabilized within the chitosan-rich domains.

  14. Collagen-chitosan scaffold modified with Au and Ag nanoparticles: Synthesis and structure

    Rubina, M.S.; Kamitov, E.E.; Zubavichus, Ya. V.; Peters, G.S.; Naumkin, A.V.; Suzer, S.; Vasil’kov, A.Yu.

    2016-01-01

    Graphical abstract: - Highlights: • Biocompatible collagen-chitosan scaffolds were modified by Au and Ag nanoparticles via the metal-vapor synthesis. • Structural and morphological parameters of the nanocomposites were assessed using a set of modern instrumental techniques, including electron microscopy, X-ray diffraction, small-angle X-ray scattering, EXAFS, XPS. • Potential application of the nanocomposites are envisaged. - Abstract: Nowadays, the dermal biomimetic scaffolds are widely used in regenerative medicine. Collagen-chitosan scaffold one of these materials possesses antibacterial activity, good compatibility with living tissues and has been already used as a wound-healing material. In this article, collagen-chitosan scaffolds modified with Ag and Au nanoparticles have been synthesized using novel method - the metal-vapor synthesis. The nanocomposite materials are characterized by XPS, TEM, SEM and synchrotron radiation-based X-ray techniques. According to XRD data, the mean size of the nanoparticles (NPs) is 10.5 nm and 20.2 nm in Au-Collagen-Chitosan (Au-CollCh) and Ag-Collagen-Chitosan (Ag-CollCh) scaffolds, respectively in fair agreement with the TEM data. SAXS analysis of the composites reveals an asymmetric size distribution peaked at 10 nm for Au-CollCh and 25 nm for Ag-CollCh indicative of particle's aggregation. According to SEM data, the metal-carrying scaffolds have layered structure and the nanoparticles are rather uniformly distributed on the surface material. XPS data indicate that the metallic nanoparticles are in their unoxidized/neutral states and dominantly stabilized within the chitosan-rich domains.

  15. A study comparing standard and transepithelial collagen cross-linking riboflavin solutions: epithelial findings and pain scores.

    Yuksel, Erdem; Novruzlu, Shahin; Ozmen, Mehmet C; Bilgihan, Kamil

    2015-06-01

    To evaluate epithelial signs and pain after epithelial-on corneal collagen cross-linking (Epi-on CCL) with new transepithelial riboflavin formulation and epithelial-off corneal collagen cross-linking (Epi-off CCL) with standard riboflavin formulation and to compare pain and duration of epithelial healing between both techniques. Thirty-nine eyes of 39 patients undergoing Epi-on CCL and 39 eyes of 39 patients undergoing Epi-off CCL were evaluated. Corneal epithelial signs and durations of corneal epithelial healing and subjective pain scores after the procedures were recorded and compared between 2 groups. Total epithelialization was observed after 2.7 ± 0.7 days in Epi-on CCL and 2.3 ± 0.4 days in Epi-off CCL (P = 0.006). The mean pain score on the first day was 3.1 ± 0.6 in Epi-on CCL and 2.3 ± 0.4 in Epi-off CCL with a significant difference (P = 0.0001). The epithelial damage was observed in both procedures; also, the epithelial healing time was longer in Epi-on CCL and it is of great importance that the patients should have therapeutic contact lenses until the epithelium heals in both procedures. The Epi-off CCL group had less pain scores than the Epi-on CCL group and more pain problems after Epi-on CCL still remains. The patient should be informed about pain, even if the Epi-on CCL procedure was performed.

  16. Urinary collagen fragments are significantly altered in diabetes: a link to pathophysiology.

    David M Maahs

    2010-09-01

    Full Text Available The pathogenesis of diabetes mellitus (DM is variable, comprising different inflammatory and immune responses. Proteome analysis holds the promise of delivering insight into the pathophysiological changes associated with diabetes. Recently, we identified and validated urinary proteomics biomarkers for diabetes. Based on these initial findings, we aimed to further validate urinary proteomics biomarkers specific for diabetes in general, and particularity associated with either type 1 (T1D or type 2 diabetes (T2D.Therefore, the low-molecular-weight urinary proteome of 902 subjects from 10 different centers, 315 controls and 587 patients with T1D (n = 299 or T2D (n = 288, was analyzed using capillary-electrophoresis mass-spectrometry. The 261 urinary biomarkers (100 were sequenced previously discovered in 205 subjects were validated in an additional 697 subjects to distinguish DM subjects (n = 382 from control subjects (n = 315 with 94% (95% CI: 92-95 accuracy in this study. To identify biomarkers that differentiate T1D from T2D, a subset of normoalbuminuric patients with T1D (n = 68 and T2D (n = 42 was employed, enabling identification of 131 biomarker candidates (40 were sequenced differentially regulated between T1D and T2D. These biomarkers distinguished T1D from T2D in an independent validation set of normoalbuminuric patients (n = 108 with 88% (95% CI: 81-94% accuracy, and in patients with impaired renal function (n = 369 with 85% (95% CI: 81-88% accuracy. Specific collagen fragments were associated with diabetes and type of diabetes indicating changes in collagen turnover and extracellular matrix as one hallmark of the molecular pathophysiology of diabetes. Additional biomarkers including inflammatory processes and pro-thrombotic alterations were observed.These findings, based on the largest proteomic study performed to date on subjects with DM, validate the previously described biomarkers for DM, and pinpoint differences in the urinary

  17. The Structure and Function of Non-Collagenous Bone Proteins

    Hook, Magnus

    1997-01-01

    The long-term goal for this program is to determine the structural and functional relationships of bone proteins and proteins that interact with bone. This information will used to design useful pharmacological compounds that will have a beneficial effect in osteoporotic patients and in the osteoporotic-like effects experienced on long duration space missions. The first phase of this program, funded under a cooperative research agreement with NASA through the Texas Medical Center, aimed to develop powerful recombinant expression systems and purification methods for production of large amounts of target proteins. Proteins expressed in sufficient'amount and purity would be characterized by a variety of structural methods, and made available for crystallization studies. In order to increase the likelihood of crystallization and subsequent high resolution solution of structures, we undertook to develop expression of normal and mutant forms of proteins by bacterial and mammalian cells. In addition to the main goals of this program, we would also be able to provide reagents for other related studies, including development of anti-fibrotic and anti-metastatic therapeutics.

  18. Cross-Linking GPVI-Fc by Anti-Fc Antibodies Potentiates Its Inhibition of Atherosclerotic Plaque- and Collagen-Induced Platelet Activation

    Janina Jamasbi, RPh

    2016-04-01

    Full Text Available To enhance the antithrombotic properties of recombinant glycoprotein VI fragment crystallizable (GPVI-Fc, the authors incubated GPVI-Fc with anti-human Fc antibodies to cross-link the Fc tails of GPVI-Fc. Cross-linking potentiated the inhibition of human plaque- and collagen-induced platelet aggregation by GPVI-Fc under static and flow conditions without increasing bleeding time in vitro. Cross-linking with anti-human-Fc Fab2 was even superior to anti-human-Fc immunoglobulin G (IgG. Advanced optical imaging revealed a continuous sheath-like coverage of collagen fibers by cross-linked GPVI-Fc complexes. Cross-linking of GPVI into oligomeric complexes provides a new, highly effective, and probably safe antithrombotic treatment as it suppresses platelet GPVI-plaque interaction selectively at the site of acute atherothrombosis.

  19. Management of pediatric keratoconus - Evolving role of corneal collagen cross-linking: An update

    Vardhaman P Kankariya

    2013-01-01

    Full Text Available Pediatric keratoconus demonstrates several distinctive management issues in comparison with adult keratoconus with respect to under-diagnosis, poor compliance and modifications in treatment patterns. The major concerns comprise of the accelerated progression of the disease in the pediatric age group and management of co-morbidities such as vernal keratoconjuntivitis. Visual impairment in pediatric patients may affect social and educational development and overall negatively impact their quality of life. The treatment algorithm between adults and pediatric keratoconus has been similar; comprising mainly of visual rehabilitation with spectacles, contacts lenses (soft or rigid and keratoplasty (lamellar or penetrating depending on the stage of the disease. There is a paradigm shift in the management of keratoconus, a new treatment modality, corneal collagen crosslinking (CXL, has been utilized in adult keratoconic patients halting the progression of the disease. CXL has been utilized for over a 10 year period and based on the evidence of efficacy and safety in the adult population; this treatment has been recently utilized in management of pediatric keratoconus. This article will present an update about current management of pediatric keratoconus with special focus on CXL in this age group.

  20. Guided Bone Regeneration in Long-Bone Defects with a Structural Hydroxyapatite Graft and Collagen Membrane

    2013-01-01

    Original Articles Guided Bone Regeneration in Long-Bone Defects with a Structural Hydroxyapatite Graft and Collagen Membrane Teja Guda, PhD,1,2 John...Joint Surg Br 90-B, 1617, 2008. 6. Carlo Reis, E.C., Borges AaPB, Araujo, M.V.F., Mendes, V.C., Guan, L., and Davies, J.E. Periodontal regeneration...Regeneration of periodontal tissues: combinations of barrier membranes and grafting materials–biological foundation and preclinical evi- dence: a

  1. The ratio 1660/1690 cm(-1) measured by infrared microspectroscopy is not specific of enzymatic collagen cross-links in bone tissue.

    Farlay, Delphine; Duclos, Marie-Eve; Gineyts, Evelyne; Bertholon, Cindy; Viguet-Carrin, Stéphanie; Nallala, Jayakrupakar; Sockalingum, Ganesh D; Bertrand, Dominique; Roger, Thierry; Hartmann, Daniel J; Chapurlat, Roland; Boivin, Georges

    2011-01-01

    In postmenopausal osteoporosis, an impairment in enzymatic cross-links (ECL) occurs, leading in part to a decline in bone biomechanical properties. Biochemical methods by high performance liquid chromatography (HPLC) are currently used to measure ECL. Another method has been proposed, by Fourier Transform InfraRed Imaging (FTIRI), to measure a mature PYD/immature DHLNL cross-links ratio, using the 1660/1690 cm(-1) area ratio in the amide I band. However, in bone, the amide I band composition is complex (collagens, non-collagenous proteins, water vibrations) and the 1660/1690 cm(-1) by FTIRI has never been directly correlated with the PYD/DHLNL by HPLC. A study design using lathyritic rats, characterized by a decrease in the formation of ECL due to the inhibition of lysyl oxidase, was used in order to determine the evolution of 1660/1690 cm(-1) by FTIR Microspectroscopy in bone tissue and compare to the ECL quantified by HPLC. The actual amount of ECL was quantified by HPLC on cortical bone from control and lathyritic rats. The lathyritic group exhibited a decrease of 78% of pyridinoline content compared to the control group. The 1660/1690 cm(-1) area ratio was increased within center bone compared to inner bone, and this was also correlated with an increase in both mineral maturity and mineralization index. However, no difference in the 1660/1690 cm(-1) ratio was found between control and lathyritic rats. Those results were confirmed by principal component analysis performed on multispectral infrared images. In bovine bone, in which PYD was physically destructed by UV-photolysis, the PYD/DHLNL (measured by HPLC) was strongly decreased, whereas the 1660/1690 cm(-1) was unmodified. In conclusion, the 1660/1690 cm(-1) is not related to the PYD/DHLNL ratio, but increased with age of bone mineral, suggesting that a modification of this ratio could be mainly due to a modification of the collagen secondary structure related to the mineralization process.

  2. The Ratio 1660/1690 cm−1 Measured by Infrared Microspectroscopy Is Not Specific of Enzymatic Collagen Cross-Links in Bone Tissue

    Farlay, Delphine; Duclos, Marie-Eve; Gineyts, Evelyne; Bertholon, Cindy; Viguet-Carrin, Stéphanie; Nallala, Jayakrupakar; Sockalingum, Ganesh D.; Bertrand, Dominique; Roger, Thierry; Hartmann, Daniel J.; Chapurlat, Roland; Boivin, Georges

    2011-01-01

    In postmenopausal osteoporosis, an impairment in enzymatic cross-links (ECL) occurs, leading in part to a decline in bone biomechanical properties. Biochemical methods by high performance liquid chromatography (HPLC) are currently used to measure ECL. Another method has been proposed, by Fourier Transform InfraRed Imaging (FTIRI), to measure a mature PYD/immature DHLNL cross-links ratio, using the 1660/1690 cm−1 area ratio in the amide I band. However, in bone, the amide I band composition is complex (collagens, non-collagenous proteins, water vibrations) and the 1660/1690 cm−1 by FTIRI has never been directly correlated with the PYD/DHLNL by HPLC. A study design using lathyritic rats, characterized by a decrease in the formation of ECL due to the inhibition of lysyl oxidase, was used in order to determine the evolution of 1660/1690 cm−1 by FTIR Microspectroscopy in bone tissue and compare to the ECL quantified by HPLC. The actual amount of ECL was quantified by HPLC on cortical bone from control and lathyritic rats. The lathyritic group exhibited a decrease of 78% of pyridinoline content compared to the control group. The 1660/1690 cm−1 area ratio was increased within center bone compared to inner bone, and this was also correlated with an increase in both mineral maturity and mineralization index. However, no difference in the 1660/1690 cm−1 ratio was found between control and lathyritic rats. Those results were confirmed by principal component analysis performed on multispectral infrared images. In bovine bone, in which PYD was physically destructed by UV-photolysis, the PYD/DHLNL (measured by HPLC) was strongly decreased, whereas the 1660/1690 cm−1 was unmodified. In conclusion, the 1660/1690 cm−1 is not related to the PYD/DHLNL ratio, but increased with age of bone mineral, suggesting that a modification of this ratio could be mainly due to a modification of the collagen secondary structure related to the mineralization process. PMID:22194900

  3. Osteoblasts extracellular matrix induces vessel like structures through glycosylated collagen I

    Palmieri, D.; Valli, M.; Viglio, S.; Ferrari, N.; Ledda, B.; Volta, C.; Manduca, P.

    2010-01-01

    Extracellular matrix (ECM) plays a fundamental role in angiogenesis affecting endothelial cells proliferation, migration and differentiation. Vessels-like network formation in vitro is a reliable test to study the inductive effects of ECM on angiogenesis. Here we utilized matrix deposed by osteoblasts as substrate where the molecular and structural complexity of the endogenous ECM is preserved, to test if it induces vessel-like network formation by endothelial cells in vitro. ECM is more similar to the physiological substrate in vivo than other substrates previously utilized for these studies in vitro. Osteogenic ECM, prepared in vitro from mature osteoblasts at the phase of maximal deposition and glycosylation of collagen I, induces EAhy926, HUVEC, and HDMEC endothelial cells to form vessels-like structures and promotes the activation of metalloproteinase-2 (MMP-2); the functionality of the p-38/MAPK signaling pathway is required. Osteogenic ECM also induces a transient increase of CXCL12 and a decrease of the receptor CXCR4. The induction of vessel-like networks is dependent from proper glycosylation of collagens and does not occur on osteogenic ECMs if deglycosylated by -galactosidase or on less glycosylated ECMs derived from preosteoblasts and normal fibroblasts, while is sustained on ECM from osteogenesis imperfecta fibroblasts only when their mutation is associated with over-glycosylation of collagen type I. These data support that post-translational glycosylation has a role in the induction in endothelial cells in vitro of molecules conductive to self-organization in vessels-like structures.

  4. Osteoblasts extracellular matrix induces vessel like structures through glycosylated collagen I

    Palmieri, D. [Genetics, DIBIO, University of Genova, Corso Europa 26, 16132 Genova (Italy); Valli, M.; Viglio, S. [Department of Biochemistry, University of Pavia (Italy); Ferrari, N. [Istituto Nazionale per la ricerca sul Cancro, Genova (Italy); Ledda, B.; Volta, C. [Genetics, DIBIO, University of Genova, Corso Europa 26, 16132 Genova (Italy); Manduca, P., E-mail: man-via@unige.it [Genetics, DIBIO, University of Genova, Corso Europa 26, 16132 Genova (Italy)

    2010-03-10

    Extracellular matrix (ECM) plays a fundamental role in angiogenesis affecting endothelial cells proliferation, migration and differentiation. Vessels-like network formation in vitro is a reliable test to study the inductive effects of ECM on angiogenesis. Here we utilized matrix deposed by osteoblasts as substrate where the molecular and structural complexity of the endogenous ECM is preserved, to test if it induces vessel-like network formation by endothelial cells in vitro. ECM is more similar to the physiological substrate in vivo than other substrates previously utilized for these studies in vitro. Osteogenic ECM, prepared in vitro from mature osteoblasts at the phase of maximal deposition and glycosylation of collagen I, induces EAhy926, HUVEC, and HDMEC endothelial cells to form vessels-like structures and promotes the activation of metalloproteinase-2 (MMP-2); the functionality of the p-38/MAPK signaling pathway is required. Osteogenic ECM also induces a transient increase of CXCL12 and a decrease of the receptor CXCR4. The induction of vessel-like networks is dependent from proper glycosylation of collagens and does not occur on osteogenic ECMs if deglycosylated by -galactosidase or on less glycosylated ECMs derived from preosteoblasts and normal fibroblasts, while is sustained on ECM from osteogenesis imperfecta fibroblasts only when their mutation is associated with over-glycosylation of collagen type I. These data support that post-translational glycosylation has a role in the induction in endothelial cells in vitro of molecules conductive to self-organization in vessels-like structures.

  5. Gum arabic modified Fe3O4 nanoparticles cross linked with collagen for isolation of bacteria

    Chittor Raghuraman

    2010-12-01

    Full Text Available Abstract Background Multifunctional magnetic nanoparticles are important class of materials in the field of nanobiotechnology, as it is an emerging area of research for material science and molecular biology researchers. One of the various methods to obtain multifunctional nanomaterials, molecular functionalization by attaching organic functional groups to nanomagnetic materials is an important technique. Recently, functionalized magnetic nanoparticles have been demonstrated to be useful in isolation/detection of dangerous pathogens (bacteria/viruses for human life. Iron (Fe based material especially FePt is used in the isolation of ultralow concentrations (2 cfu/ml of bacteria in less time and it has been demonstrated that van-FePt may be used as an alternative fast detection technique with respect to conventional polymerase chain reaction (PCR method. However, still further improved demonstrations are necessary with interest to biocompatibility and green chemistry. Herein, we report the synthesis of Fe3O4 nanoparticles by template medication and its application for the detection/isolation of S. aureus bacteria. Results The reduction of anhydrous Iron chloride (FeCl3 in presence of sodium borohydride and water soluble polyelectrolyte (polydiallyldimethyl ammonium chloride, PDADMAC produces black precipitates. The X-ray diffraction (XRD, XPS and TEM analysis of the precipitates dried at 373 K demonstrated the formation of nanocrystalline Fe3O4. Moreover, scanning electron microscopy (SEM showed isolated staphylococcous aureus (S. aureus bacteria at ultralow concentrations using collagen coated gum arabic modified iron oxide nanoparticles (CCGAMION. Conclusion We are able to synthesize nanocrystalline Fe3O4 and CCGAMION was able to isolate S. aureus bacteria at 8-10 cfu (colony forming units/ml within ~3 minutes.

  6. TGFβ affects collagen cross-linking independent of chondrocyte phenotype but strongly depending on physical environment

    Bastiaansen-Jenniskens, Y.M.; Koevoet, W.; Bart, A.C.W. de; Zuurmond, A.-M.; Bank, R.A.; Verhaar, J.A.N.; Groot, J. de; Osch, G.J.V.M. van

    2008-01-01

    Transforming growth factor beta (TGFβ) is often used in cartilage tissue engineering to increase matrix formation by cells with various phenotypes. However, adverse effects of TGFβ, such as extensive cross-linking in cultured fibroblasts, have also been reported. Our goal was to study effects of

  7. Low sensitivity of type VII collagen enzyme-linked immunosorbent assay in epidermolysis bullosa acquisita : serration pattern analysis on skin biopsy is required for diagnosis

    Terra, J. B.; Jonkman, M. F.; Diercks, G. F. H.; Pas, H. H.

    BackgroundThe type VII collagen (coll VII) enzyme-linked immunosorbent assay (ELISA) has been reported to have high sensitivity (>93%) and specificity (>96%) for diagnosing epidermolysis bullosa acquisita (EBA) in patients who are seropositive on indirect immunofluorescence on salt-split skin (SSS).

  8. Collagencin, an antibacterial peptide from fish collagen: Activity, structure and interaction dynamics with membrane

    Ennaas, Nadia; Hammami, Riadh; Gomaa, Ahmed; Bédard, François; Biron, Éric; Subirade, Muriel; Beaulieu, Lucie; Fliss, Ismail

    2016-01-01

    In this study, we first report characterization of collagencin, an antimicrobial peptide identified from fish collagen hydrolysate. The peptide completely inhibited the growth of Staphylococcus aureus at 1.88 mM. Although non-toxic up to 470 μM, collagencin was hemolytic at higher concentrations. The secondary structure of collagencin was mainly composed by β-sheet and β-turn as determined by CD measurements and molecular dynamics. The peptide is likely to form β-sheet structure under hydrophobic environments and interacts with both anionic (phosphatidylglycerol) and zwitterionic (phosphoethanolamine and phosphatidylcholine) lipids as shown with CD spectroscopy and molecular dynamics. The peptide formed several hydrogen bonds with both POPG and POPE lipids and remained at membrane–water interface, suggesting that collagencin antibacterial action follows a carpet mechanism. Collagenous fish wastes could be processed by enzymatic hydrolysis and transformed into products of high value having functional or biological properties. Marine collagens are a promising source of antimicrobial peptides with new implications in food safety and human health. - Highlights: • Collagencin, an antibacterial (G+ & G-) peptide identified from fish collagen hydrolysate. • The peptide completely inhibited the growth of S. aureus at 1.88 mM and non-toxic at 470 μM. • The secondary structure was mainly composed by β-sheet and turn as determined by CD and MD. • Collagencin interacts with both anionic and zwitterionic lipids as shown with CD and MD. • Collagencin antibacterial action probably follows a carpet mechanism.

  9. Collagencin, an antibacterial peptide from fish collagen: Activity, structure and interaction dynamics with membrane

    Ennaas, Nadia [STELA Dairy Research Centre, Institute of Nutrition and Functional Foods, Université Laval, G1V 0A6 Québec, QC (Canada); Hammami, Riadh, E-mail: riadh.hammami@fsaa.ulaval.ca [STELA Dairy Research Centre, Institute of Nutrition and Functional Foods, Université Laval, G1V 0A6 Québec, QC (Canada); Gomaa, Ahmed [STELA Dairy Research Centre, Institute of Nutrition and Functional Foods, Université Laval, G1V 0A6 Québec, QC (Canada); Bédard, François; Biron, Éric [Faculty of Pharmacy, Université Laval and Laboratory of Medicinal Chemistry, CHU de Québec Research Centre, G1V 4G2 Québec, QC (Canada); Subirade, Muriel [STELA Dairy Research Centre, Institute of Nutrition and Functional Foods, Université Laval, G1V 0A6 Québec, QC (Canada); Beaulieu, Lucie, E-mail: lucie.beaulieu@fsaa.ulaval.ca [STELA Dairy Research Centre, Institute of Nutrition and Functional Foods, Université Laval, G1V 0A6 Québec, QC (Canada); Department of Biology, Chemistry and Geography, Université du Québec à Rimouski (UQAR), 300 Allée des Ursulines, Rimouski, QC G5L 3A1 (Canada); Fliss, Ismail, E-mail: ismail.fliss@fsaa.ulaval.ca [STELA Dairy Research Centre, Institute of Nutrition and Functional Foods, Université Laval, G1V 0A6 Québec, QC (Canada)

    2016-04-29

    In this study, we first report characterization of collagencin, an antimicrobial peptide identified from fish collagen hydrolysate. The peptide completely inhibited the growth of Staphylococcus aureus at 1.88 mM. Although non-toxic up to 470 μM, collagencin was hemolytic at higher concentrations. The secondary structure of collagencin was mainly composed by β-sheet and β-turn as determined by CD measurements and molecular dynamics. The peptide is likely to form β-sheet structure under hydrophobic environments and interacts with both anionic (phosphatidylglycerol) and zwitterionic (phosphoethanolamine and phosphatidylcholine) lipids as shown with CD spectroscopy and molecular dynamics. The peptide formed several hydrogen bonds with both POPG and POPE lipids and remained at membrane–water interface, suggesting that collagencin antibacterial action follows a carpet mechanism. Collagenous fish wastes could be processed by enzymatic hydrolysis and transformed into products of high value having functional or biological properties. Marine collagens are a promising source of antimicrobial peptides with new implications in food safety and human health. - Highlights: • Collagencin, an antibacterial (G+ & G-) peptide identified from fish collagen hydrolysate. • The peptide completely inhibited the growth of S. aureus at 1.88 mM and non-toxic at 470 μM. • The secondary structure was mainly composed by β-sheet and turn as determined by CD and MD. • Collagencin interacts with both anionic and zwitterionic lipids as shown with CD and MD. • Collagencin antibacterial action probably follows a carpet mechanism.

  10. The effect of point mutations on structure and mechanical properties of collagen-like fibril: A molecular dynamics study

    Marlowe, Ashley E.; Singh, Abhishek; Yingling, Yaroslava G.

    2012-01-01

    Understanding sequence dependent mechanical and structural properties of collagen fibrils is important for the development of artificial biomaterials for medical and nanotechnological applications. Moreover, point mutations are behind many collagen associated diseases, including Osteogenesis Imperfecta (OI). We conducted a combination of classical and steered atomistic molecular dynamics simulations to examine the effect of point mutations on structure and mechanical properties of short collagen fibrils which include mutations of glycine to alanine, aspartic acid, cysteine, and serine or mutations of hydroxyproline to arginine, asparagine, glutamine, and lysine. We found that all mutations disrupt structure and reduce strength of the collagen fibrils, which may affect the hierarchical packing of the fibrils. The glycine mutations were more detrimental to mechanical strength of the fibrils (WT > Ala > Ser > Cys > Asp) than that of hydroxyproline (WT > Arg > Gln > Asn > Lys). The clinical outcome for glycine mutations agrees well with the trend in reduction of fibril's tensile strength predicted by our simulations. Overall, our results suggest that the reduction in mechanical properties of collagen fibrils may be used to predict the clinical outcome of mutations. Highlights: ► All mutations disrupt structure and bonding pattern and reduce strength of the collagen fibrils. ► Gly based mutations are worst to mechanical integrity of fibrils than that of Hyp. ► Lys and Arg mutations most dramatically destabilize collagen fibril properties. ► Clinical outcome of mutations may be related to the reduced mechanical properties of fibrils.

  11. The effect of point mutations on structure and mechanical properties of collagen-like fibril: A molecular dynamics study

    Marlowe, Ashley E.; Singh, Abhishek; Yingling, Yaroslava G., E-mail: yara_yingling@ncsu.edu

    2012-12-01

    Understanding sequence dependent mechanical and structural properties of collagen fibrils is important for the development of artificial biomaterials for medical and nanotechnological applications. Moreover, point mutations are behind many collagen associated diseases, including Osteogenesis Imperfecta (OI). We conducted a combination of classical and steered atomistic molecular dynamics simulations to examine the effect of point mutations on structure and mechanical properties of short collagen fibrils which include mutations of glycine to alanine, aspartic acid, cysteine, and serine or mutations of hydroxyproline to arginine, asparagine, glutamine, and lysine. We found that all mutations disrupt structure and reduce strength of the collagen fibrils, which may affect the hierarchical packing of the fibrils. The glycine mutations were more detrimental to mechanical strength of the fibrils (WT > Ala > Ser > Cys > Asp) than that of hydroxyproline (WT > Arg > Gln > Asn > Lys). The clinical outcome for glycine mutations agrees well with the trend in reduction of fibril's tensile strength predicted by our simulations. Overall, our results suggest that the reduction in mechanical properties of collagen fibrils may be used to predict the clinical outcome of mutations. Highlights: Black-Right-Pointing-Pointer All mutations disrupt structure and bonding pattern and reduce strength of the collagen fibrils. Black-Right-Pointing-Pointer Gly based mutations are worst to mechanical integrity of fibrils than that of Hyp. Black-Right-Pointing-Pointer Lys and Arg mutations most dramatically destabilize collagen fibril properties. Black-Right-Pointing-Pointer Clinical outcome of mutations may be related to the reduced mechanical properties of fibrils.

  12. Cross-linked structure of network evolution

    Bassett, Danielle S., E-mail: dsb@seas.upenn.edu [Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104 (United States); Department of Physics, University of California, Santa Barbara, California 93106 (United States); Sage Center for the Study of the Mind, University of California, Santa Barbara, California 93106 (United States); Wymbs, Nicholas F.; Grafton, Scott T. [Department of Psychology and UCSB Brain Imaging Center, University of California, Santa Barbara, California 93106 (United States); Porter, Mason A. [Oxford Centre for Industrial and Applied Mathematics, Mathematical Institute, University of Oxford, Oxford OX2 6GG (United Kingdom); CABDyN Complexity Centre, University of Oxford, Oxford, OX1 1HP (United Kingdom); Mucha, Peter J. [Carolina Center for Interdisciplinary Applied Mathematics, Department of Mathematics, University of North Carolina, Chapel Hill, North Carolina 27599 (United States); Department of Applied Physical Sciences, University of North Carolina, Chapel Hill, North Carolina 27599 (United States)

    2014-03-15

    We study the temporal co-variation of network co-evolution via the cross-link structure of networks, for which we take advantage of the formalism of hypergraphs to map cross-link structures back to network nodes. We investigate two sets of temporal network data in detail. In a network of coupled nonlinear oscillators, hyperedges that consist of network edges with temporally co-varying weights uncover the driving co-evolution patterns of edge weight dynamics both within and between oscillator communities. In the human brain, networks that represent temporal changes in brain activity during learning exhibit early co-evolution that then settles down with practice. Subsequent decreases in hyperedge size are consistent with emergence of an autonomous subgraph whose dynamics no longer depends on other parts of the network. Our results on real and synthetic networks give a poignant demonstration of the ability of cross-link structure to uncover unexpected co-evolution attributes in both real and synthetic dynamical systems. This, in turn, illustrates the utility of analyzing cross-links for investigating the structure of temporal networks.

  13. Cross-linked structure of network evolution

    Bassett, Danielle S.; Wymbs, Nicholas F.; Grafton, Scott T.; Porter, Mason A.; Mucha, Peter J.

    2014-01-01

    We study the temporal co-variation of network co-evolution via the cross-link structure of networks, for which we take advantage of the formalism of hypergraphs to map cross-link structures back to network nodes. We investigate two sets of temporal network data in detail. In a network of coupled nonlinear oscillators, hyperedges that consist of network edges with temporally co-varying weights uncover the driving co-evolution patterns of edge weight dynamics both within and between oscillator communities. In the human brain, networks that represent temporal changes in brain activity during learning exhibit early co-evolution that then settles down with practice. Subsequent decreases in hyperedge size are consistent with emergence of an autonomous subgraph whose dynamics no longer depends on other parts of the network. Our results on real and synthetic networks give a poignant demonstration of the ability of cross-link structure to uncover unexpected co-evolution attributes in both real and synthetic dynamical systems. This, in turn, illustrates the utility of analyzing cross-links for investigating the structure of temporal networks

  14. Serum cross-linked n-telopeptides of type 1 collagen (NTx in patients with solid tumors

    Fernando Jablonka

    Full Text Available CONTEXT AND OBJECTIVE: Cross-linked N-telopeptides of type I collagen (NTx increase in concentration in situations in which bone resorption is increased, such as osteoporosis and bone metastasis (BM. We aimed to evaluate the serum concentrations of NTx in a sample of patients with several types of solid tumors. DESIGN AND SETTING: Cross-sectional analytical study with a control group in a tertiary public hospital. METHODS: We performed the quantitative enzyme-linked immunosorbent assay (ELISA on serum NTx levels in 19 subjects without a history of cancer and 62 patients with various solid tumors who had been referred for a bone scan. Three experienced analysts read all bone scans. RESULTS: The serum NTx levels in patients with cancer and BM, with cancer but without BM and without cancer were 46.77 ± 2.58, 32.85 ± 2.05 and 22.32 ± 2.90 respectively (P < 0.0001. We did not find any significant correlations of serum NTx with age, gender, history of bone pain, tumor type and bone alkaline phosphatase levels. We found a significant correlation between serum NTx and alkaline phosphatase levels (R² = 0.08; P = 0.022. CONCLUSIONS: Serum NTx levels are significantly higher in patients with solid tumors and bone metastases than they are in patients without bone metastases and in normal controls.

  15. Intraoperative corneal thickness measurements during corneal collagen cross-linking with isotonic riboflavin solution without dextran in corneal ectasia.

    Cınar, Yasin; Cingü, Abdullah Kürşat; Sahin, Alparslan; Türkcü, Fatih Mehmet; Yüksel, Harun; Caca, Ihsan

    2014-03-01

    Abstract Objective: To monitor the changes in corneal thickness during the corneal collagen cross-linking procedure by using isotonic riboflavin solution without dextran in ectatic corneal diseases. The corneal thickness measurements were obtained before epithelial removal, after epithelial removal, following the instillation of isotonic riboflavin solution without dextran for 30 min, and after 10 min of ultraviolet A irradiation. Eleven eyes of eleven patients with progressive keratoconus (n = 10) and iatrogenic corneal ectasia (n = 1) were included in this study. The mean thinnest pachymetric measurements were 391.82 ± 30.34 µm (320-434 µm) after de-epithelialization of the cornea, 435 ± 21.17 µm (402-472 µm) following 30 min instillation of isotonic riboflavin solution without dextran and 431.73 ± 20.64 µm (387-461 µm) following 10 min of ultraviolet A irradiation to the cornea. Performing corneal cross-linking procedure with isotonic riboflavin solution without dextran might not induce corneal thinning but a little swelling throughout the procedure.

  16. Technical advances in the sectioning of dental tissue and of on-section cross-linked collagen detection in mineralized teeth.

    Singhrao, Sim K; Sloan, Alastair J; Smith, Emma L; Archer, Charles W

    2010-08-01

    Immunohistochemical detection of cross-linked fibrillar collagens in mineralized tissues is much desired for exploring the mechanisms of biomineralization in health and disease. Mineralized teeth are impossible to section when embedded in conventional media, thus limiting on-section characterization of matrix proteins by immunohistochemistry. We hypothesized that by using an especially formulated acrylic resin suitable for mineralized dental tissues, not only sectioning of teeth would be possible, but also our recently developed immunofluorescence labeling technique would be amenable to fully calcified tissues for characterization of dentinal fibrillar collagens, which remains elusive. The hypothesis was tested on fixed rodent teeth embedded in Technovit 9100 New. It was possible to cut thin (1 mum) sections of mineralized teeth, and immunofluorescence characterization of cross-linked type I fibrillar collagen was selected due to its abundance in dentine. Decalcified samples of teeth embedded in paraffin wax were also used to compare immunolabeling from either method using the same immunoreagents in equivalent concentrations. In the decalcified tissue sections, type I collagen labeling in the dentine along the tubules was "patchy" and the signal in the predentine was very weak. However, enhanced signal in mineralized samples with type I collagen was detected not only in the predentine but also at the limit between intertubular dentine, within the elements of the enamel organ and subgingival stroma. This report offers advances in sectioning mineralized dental tissues and allows the application of immunofluorescence not only for on-section protein detection but importantly for detecting cross-linked fibrous collagens in both soft and mineralized tissue sections.

  17. Persistent Epithelial Defects and Corneal Opacity After Collagen Cross-Linking With Substitution of Dextran (T-500) With Dextran Sulfate in Compounded Topical Riboflavin.

    Höllhumer, Roland; Watson, Stephanie; Beckingsale, Peter

    2017-03-01

    Collagen cross-linking (CXL) is a commonly performed procedure to prevent the progression of keratoconus. Riboflavin is an essential part of the procedure, which facilitates both the cross-linking process and protection of intraocular structures. Dextran can be added to riboflavin to create an isotonic solution. This case report highlights the importance of compounding riboflavin with the correct dextran solution. A retrospective case series. Six eyes of 4 male patients with keratoconus aged from 20 to 38 years underwent CXL with substitution of 20% dextran (T-500) with 20% dextran sulfate in a compounded riboflavin 0.1% solution. Postoperatively, persistent corneal epithelial defects, stromal haze, and then scarring occurred. Corneal transplantation was performed for visual rehabilitation but was complicated by graft rejection followed by failure (n = 1 eye), dehiscence (n = 4), cataract (n = 2), post-laser ablation haze (n = 1), and steroid-induced glaucoma (n = 2). The visual outcome was dextran (T-500) with dextran sulfate in riboflavin solutions during CXL results in loss of vision from permanent corneal opacity. Residual host changes may compromise the results of corneal transplantation.

  18. A short-term study of corneal collagen cross-linking with hypo-osmolar riboflavin solution in keratoconic corneas

    Shao-Feng Gu

    2015-02-01

    Full Text Available AIM: To report the 3mo outcomes of collagen cross-linking (CXL with a hypo-osmolar riboflavin in thin corneas with the thinnest thickness less than 400 μm without epithelium. METHODS: Eight eyes in 6 patients with age 26.2±4.8y were included in the study. All patients underwent CXL using a hypo-osmolar riboflavin solution after its de-epithelization. Best corrected visual acuity, manifest refraction, the thinnest corneal thickness, and endothelial cell density were evaluated before and 3mo after the procedure. RESULTS: The mean thinnest thickness of the cornea was 408.5±29.0 μm before treatment and reduced to 369.8±24.8 μm after the removal of epithelium. With the application of the hypo-osmolar riboflavin solution, the thickness increased to 445.0±26.5 μm before CXL and recover to 412.5±22.7 μm at 3mo after treatment, P=0.659. Before surgery, the mean K-value of the apex of the keratoconus corneas was 57.6±4.0 diopters, and slightly decreased (54.7±4.9 diopters after surgery (P=0.085. Mean best-corrected visual acuity was 0.55±0.23 logarithm of the minimal angle of resolution, and increased to 0.53±0.26 logarithm after surgery (P=0.879. The endothelial cell density was 2706.4±201.6 cells/mm2 before treatment, and slightly decreased (2641.2±218.2 cells/mm2 at last fellow up (P=0.002. CONCLUSION: Corneal collagen cross-linking with a hypo-osmolar riboflavin in thin corneas seems to be a promising treatment. Further study should be done to evaluate the safety and efficiency of CXL in thin corneas for the long-term.

  19. Corneal collagen cross-linking with riboflavin and ultraviolet - A light for keratoconus: Results in Indian eyes

    Agrawal Vinay

    2009-01-01

    Full Text Available Aim: To assess the results of corneal collagen cross-linking with riboflavin using ultraviolet - A light for keratoconus at one year in Indian eyes. Materials and Methods: Sixty-eight eyes of 41 patients with progressive keratoconus were included in this retrospective study. All eyes completed was 12 months of follow-up and 37 eyes had a one-year follow-up. The maximum follow-up was 16 months. Ocular examinations including refraction, best corrected visual acuity (BCVA, corneal topography, were recorded at each visit. Results: The mean age was 16.9 ± 3.5 years (range 12-39 years and the mean follow-up was 10.05 ± 3.55 months (range six to 16 months. Thirty seven eyes with a follow-up of at least 12 months were analyzed. The preoperative values on the day of treatment were compared with postoperative values of the 12-month examination. This showed that BCVA improved at least one line in 54% (20/37 of eyes and remained stable in 28% (10/37 of eyes ( P =0.006. Astigmatism decreased by a mean of 1.20 diopter (D in 47% (17/37 of eyes ( P =0.005 and remained stable (within ± 0.50 D in 42% (15/37 of eyes. The K value of the apex decreased by a mean of 2.73 D in 66% (24/37 of eyes ( P =0.004 and remained stable (within ± 0.50 D in 22% (8/37 of eyes. The maximum K value decreased by a mean of 2.47 D in 54% (20/37 of eyes ( P =0.004 and remained stable (within ± 0.50 D in 38% (14/37 of eyes. Corneal Wavefront analysis revealed that spherical and higher-order aberrations did not show significant variations in the follow-up period. The coma component showed a very significant reduction at six months after treatment and persisted throughout the follow-up period ( P =0.003 Conclusion: The results show a stabilization and improvement in keratoconus after collagen cross-linking in Indian eyes. This suggests that it is an effective treatment for progressive keratoconus.

  20. Assembly of collagen matrices as a phase transition revealed by structural and rheologic studies.

    Forgacs, Gabor; Newman, Stuart A; Hinner, Bernhard; Maier, Christian W; Sackmann, Erich

    2003-02-01

    We have studied the structural and viscoelastic properties of assembling networks of the extracellular matrix protein type-I collagen by means of phase contrast microscopy and rotating disk rheometry. The initial stage of the assembly is a nucleation process of collagen monomers associating to randomly distributed branched clusters with extensions of several microns. Eventually a sol-gel transition takes place, which is due to the interconnection of these clusters. We analyzed this transition in terms of percolation theory. The viscoelastic parameters (storage modulus G' and loss modulus G") were measured as a function of time for five different frequencies ranging from omega = 0.2 rad/s to 6.9 rad/s. We found that at the gel point both G' and G" obey a scaling law, with the critical exponent Delta = 0.7 and a critical loss angle being independent of frequency as predicted by percolation theory. Gelation of collagen thus represents a second order phase transition.

  1. Enzyme-linked immunosorbent serum assay specific for the 7S domain of Collagen Type IV (P4NP 7S)

    Leeming, Diana J; Nielsen, Mette J; Dai, Yueqin

    2012-01-01

    Aim:  The present study describes the ability of a newly developed N-terminal pro-peptides of type IV collagen 7S domain (P4NP 7S) competitive enzyme-linked immunosorbent assay (ELISA) for describing liver fibrosis. The assay applies a monoclonal antibody specific for a PIVNP 7S epitope 100...... were significantly elevated in rat with liver fibrosis as seen by histology (CCL4: 283% elevated in the highest quartile of total hepatic collagen compared with controls, P = 0.001; BDL: 183% elevated at week 4 compared with sham, P type IV collagen...... expression in BDL rats (r = 0.49, P serum assay specific for P4NP 7S was highly related to liver fibrosis...

  2. A multiscale analytical approach for bone remodeling simulations : linking scales from collagen to trabeculae

    Colloca, M.; Blanchard, R.; Hellmich, C.; Ito, K.; Rietbergen, van B.

    2014-01-01

    Bone is a dynamic and hierarchical porous material whose spatial and temporal mechanical properties can vary considerably due to differences in its microstructure and due to remodeling. Hence, a multiscale analytical approach, which combines bone structural information at multiple scales to the

  3. Crystal structure of the second fibronectin type III (FN3) domain from human collagen α1 type XX.

    Zhao, Jingfeng; Ren, Jixia; Wang, Nan; Cheng, Zhong; Yang, Runmei; Lin, Gen; Guo, Yi; Cai, Dayong; Xie, Yong; Zhao, Xiaohong

    2017-12-01

    Collagen α1 type XX, which contains fibronectin type III (FN3) repeats involving six FN3 domains (referred to as the FN#1-FN#6 domains), is an unusual member of the fibril-associated collagens with interrupted triple helices (FACIT) subfamily of collagens. The results of standard protein BLAST suggest that the FN3 repeats might contribute to collagen α1 type XX acting as a cytokine receptor. To date, solution NMR structures of the FN#3, FN#4 and FN#6 domains have been determined. To obtain further structural evidence to understand the relationship between the structure and function of the FN3 repeats from collagen α1 type XX, the crystal structure of the FN#2 domain from human collagen α1 type XX (residues Pro386-Pro466; referred to as FN2-HCXX) was solved at 2.5 Å resolution. The crystal structure of FN2-HCXX shows an immunoglobulin-like fold containing a β-sandwich structure, which is formed by a three-stranded β-sheet (β1, β2 and β5) packed onto a four-stranded β-sheet (β3, β4, β6 and β7). Two consensus domains, tencon and fibcon, are structural analogues of FN2-HCXX. Fn8, an FN3 domain from human oncofoetal fibronectin, is the closest structural analogue of FN2-HCXX derived from a naturally occurring sequence. Based solely on the structural similarity of FN2-HCXX to other FN3 domains, the detailed functions of FN2-HCXX and the FN3 repeats in collagen α1 type XX cannot be identified.

  4. Uncovering nanoscale electromechanical heterogeneity in the subfibrillar structure of collagen fibrils responsible for the piezoelectricity of bone.

    Minary-Jolandan, Majid; Yu, Min-Feng

    2009-07-28

    Understanding piezoelectricity, the linear electromechanical transduction, in bone and tendon and its potential role in mechanoelectric transduction leading to their growth and remodeling remains a challenging subject. With high-resolution piezoresponse force microscopy, we probed piezoelectric behavior in relevant biological samples at different scale levels: from the subfibrillar structures of single isolated collagen fibrils to bone. We revealed that, beyond the general understanding of collagen fibril being a piezoelectric material, there existed an intrinsic piezoelectric heterogeneity within a collagen fibril coinciding with the periodic variation of its gap and overlap regions. This piezoelectric heterogeneity persisted even for the collagen fibrils embedded in bone, bringing about new implications for its possible roles in structural formation and remodeling of bone.

  5. Effect of internal structure of collagen/hydroxyapatite scaffold on the osteogenic differentiation of mesenchymal stem cells.

    Chen, Guobao; Lv, Yonggang; Dong, Chanjuan; Yang, Li

    2015-01-01

    Consisting of seed cells and scaffold, regenerative medicine provides a new way for the repair and regeneration of tissue and organ. Collagen/hydroxyapatite (HA) biocomposite scaffold is highlighted due to its advantageous features of two major components of bone matrix: collagen and HA. The aim of this study is to investigate the effect of internal structure of collagen/HA scaffold on the fate of rat mesenchymal stem cells (MSCs). The internal structure of collagen/HA scaffold was characterized by micro-CT. It is found that the porosity decreased while average compressive modulus increased with the increase of collagen proportion. Within the collagen proportion of 0.35%, 0.5% and 0.7%, the porosities were 89.08%, 78.37% and 75.36%, the pore sizes were 140.6±75.5 μm, 133.9±48.4 μm and 160.7±119.6 μm, and the average compressive moduli were 6.74±1.16 kPa, 8.82±2.12 kPa and 23.61±8.06 kPa, respectively. Among these three kinds of scaffolds, MSCs on the Col 0.35/HA 22 scaffold have the highest viability and the best cell proliferation. On the contrary, the Col 0.7/HA 22 scaffold has the best ability to stimulate MSCs to differentiate into osteoblasts in a relatively short period of time. In vivo research also demonstrated that the internal structure of collagen/HA scaffold has significant effect on the cell infiltration. Therefore, precise control of the internal structure of collagen/HA scaffold can provide a more efficient carrier to the repair of bone defects.

  6. Corneal collagen cross-linking for progressive keratoconus in patients aged 9 to 14

    Fernando Plazzi Palis

    2016-04-01

    Full Text Available RESUMO Objetivo: Determinar a segurança e eficácia do cross-linking corneano (CXL em pacientes de 9 a 14 anos de idade com ceratocone progressivo. Métodos: Dezesseis olhos de onze pacientes (8 homens e 3 mulheres com ceratocone progressivo foram submetidos ao CXL, de acordo com o protocolo padrão de Dresden. A média do tempo de seguimento foi de 26 meses (variando de 12 a 60 meses. Os exames pré e pós-operatórios incluíram: acuidade visual sem correção (AVSC, melhor acuidade visual com correção (AVCC, topografia corneana, tonometria, refração, paquimetria corneana, e contagem de células endoteliais. Resultados: Na última visita de acompanhamento ambulatorial, a AVCC melhorou pelo menos uma linha na tabela de Snellen em 6 olhos (37,5% e permaneceu estável em 9 olhos (56,25%. Dois olhos (12,5% de pacientes que coçam os olhos com frequência, exigiram retratamento devido à progressão do ceratocone, 15 e 28 meses após o primeiro CXL. A refração e contagem de células endoteliais mantiveram-se estáveis. Os resultados topográficos mostraram melhora estatisticamente significativa nos valores do K máximo até dois anos após o CXL. No entanto, houve perda de significância ao longo do tempo. Nenhuma complicação peroperatória foi observada. Dois olhos (12,5% apresentaram haze grau I, que regrediu após um mês de terapia com esteróide tópico. Conclusão: Neste estudo com pacientes selecionados, de 9 a 14 anos de idade, o CXL mostrou ser uma opção segura e eficaz para o tratamento do ceratocone progressivo. No entanto, o efeito pode não ser duradouro, podendo ser necessário um novo tratamento. Maior amostragem e maior seguimento são necessários para verificar esta tendência.

  7. Linking advanced fracture models to structural analysis

    Chiesa, Matteo

    2001-07-01

    Shell structures with defects occur in many situations. The defects are usually introduced during the welding process necessary for joining different parts of the structure. Higher utilization of structural materials leads to a need for accurate numerical tools for reliable prediction of structural response. The direct discretization of the cracked shell structure with solid finite elements in order to perform an integrity assessment of the structure in question leads to large size problems, and makes such analysis infeasible in structural application. In this study a link between local material models and structural analysis is outlined. An ''ad hoc'' element formulation is used in order to connect complex material models to the finite element framework used for structural analysis. An improved elasto-plastic line spring finite element formulation, used in order to take cracks into account, is linked to shell elements which are further linked to beam elements. In this way one obtain a global model of the shell structure that also accounts for local flexibilities and fractures due to defects. An important advantage with such an approach is a direct fracture mechanics assessment e.g. via computed J-integral or CTOD. A recent development in this approach is the notion of two-parameter fracture assessment. This means that the crack tip stress tri-axiality (constraint) is employed in determining the corresponding fracture toughness, giving a much more realistic capacity of cracked structures. The present thesis is organized in six research articles and an introductory chapter that reviews important background literature related to this work. Paper I and II address the performance of shell and line spring finite elements as a cost effective tool for performing the numerical calculation needed to perform a fracture assessment. In Paper II a failure assessment, based on the testing of a constraint-corrected fracture mechanics specimen under tension, is

  8. First-principles structures for the close-packed and the 7/2 motif of collagen

    Jalkanen, Karl J.; Olsen, Kasper; Knapp-Mohammady, Michaela

    2012-01-01

    The newly proposed close-packed motif for collagen and the more established 7/2 structure are investigated and compared. First-principles semi-empirical wave function theory and Kohn-Sham density functional theory are applied in the study of these relatively large and complex structures. The stru......The newly proposed close-packed motif for collagen and the more established 7/2 structure are investigated and compared. First-principles semi-empirical wave function theory and Kohn-Sham density functional theory are applied in the study of these relatively large and complex structures...

  9. Hyriopsis cumingii Hic52-A novel nacreous layer matrix protein with a collagen-like structure.

    Liu, Xiaojun; Pu, Jingwen; Zeng, Shimei; Jin, Can; Dong, Shaojian; Li, Jiale

    2017-09-01

    Nacre is a product of a precisely regulated biomineralization process and a major contributor to the luster of pearls. Nacre is composed of calcium carbonate and an organic matrix of proteins that is secreted from mollusc mantle tissue and is exclusively associated with shell formation. In this study, hic52, a novel matrix protein gene from mantle of Hyriopsis cumingii, was cloned and functionally analyzed. The full-length cDNA of hic52 encoded 542 amino acids and contained a signal peptide of 18 amino acids. Excluding the signal peptide, the theoretical molecular mass of the polypeptide was 52.2kDa. The predicted isoelectric point was 10.37, indicating a basic shell protein. The amino acid sequence of hic52 featured high proportion of Gly (28.8%) and Gln (12.4%) residues. The predicted tertiary structure was characterized as having similarities to collagen I, alpha 1 and alpha 2 in the structure. The polypeptide sequence shared no homology with collagen. The hic52 expression pattern by quantitative real-time PCR and in situ hybridization exhibits at the dorsal epithelial cells of the mantle. Expression increased during the stages of pearl sac development. The data showed that hic52 is probably a framework shell protein that mediates and controls the nacreous biomineralization process. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Microbiologic, Pharmacokinetic, and Clinical Effects of Corneal Collagen Cross-Linking on Experimentally Induced Pseudomonas Keratitis in Rabbits.

    Cosar, C Banu; Kucuk, Mutlu; Celik, Ekrem; Gonen, Tansu; Akyar, Isin; Serteser, Mustafa; Tokat, Fatma; Ince, Umit

    2015-10-01

    To determine the effects of corneal collagen cross-linking (CXL) on the penetration of topical 0.5% moxifloxacin, on the number of colony-forming units (CFUs) in the cornea, and on the clinical course in a rabbit eye model of experimentally induced Pseudomonas aeruginosa keratitis. In this prospective animal study, experimental Pseudomonas corneal ulcers were induced in 56 corneas of 28 albino New Zealand rabbits. The corneas were randomly divided into the following 4 groups: the control group (14 eyes), the MOX group (moxifloxacin) (14 eyes), the MOX + CXL group (14 eyes), and the CXL group (14 eyes). On day 4 of the experiment, the eyes in the control group were enucleated and CFU counting was performed. On day 10 of the experiment, all eyes were enucleated and CFU counting was performed. In the MOX and MOX + CXL groups, the moxifloxacin level in the cornea, aqueous humor, iris, plasma, and serum was measured by reverse-phase high-performance liquid chromatography. The difference in the corneal CFU count between the MOX group and the MOX + CXL group was not significant (P = 0.317). Clinical improvement was greatest in the MOX + CXL group (P < 0.001). The mean corneal moxifloxacin level was 0.391 ± 0.09 μg·mg in the MOX group versus 0.291 ± 0.09 μg·mg in the MOX + CXL group; as such, CXL did not have a significant effect on antibiotic penetrance (P = 0.386). Clinical improvement was greatest in the MOX + CXL group. The synergistic effect of CXL on corneal ulcer treatment is not through antibiotic penetrance.

  11. Glutaraldehyde cross-linking of amniotic membranes affects their nanofibrous structures and limbal epithelial cell culture characteristics.

    Lai, Jui-Yang; Ma, David Hui-Kang

    2013-01-01

    Given that the cells can sense nanometer dimensions, the chemical cross-linking-mediated alteration in fibrillar structure of collagenous tissue scaffolds is critical to determining their cell culture performances. This article explores, for the first time, the effect of nanofibrous structure of glutaraldehyde (GTA) cross-linked amniotic membrane (AM) on limbal epithelial cell (LEC) cultivation. Results of ninhydrin assays demonstrated that the amount of new cross-links formed between the collagen chains is significantly increased with increasing the cross-linking time from 1 to 24 hours. By transmission electron microscopy, the AM treated with GTA for a longer duration exhibited a greater extent of molecular aggregation, thereby leading to a considerable increase in nanofiber diameter and resistance against collagenase degradation. In vitro biocompatibility studies showed that the samples cross-linked with GTA for 24 hours are not well-tolerated by the human corneal epithelial cell cultures. When the treatment duration is less than 6 hours, the biological tissues cross-linked with GTA for a longer time may cause slight reductions in 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium, inner salt, and anti-inflammatory activities. Nevertheless, significant collagen molecular aggregation also enhances the stemness gene expression, indicating a high ability of these AM matrices to preserve the progenitors of LECs in vitro. It is concluded that GTA cross-linking of collagenous tissue materials may affect their nanofibrous structures and corneal epithelial stem cell culture characteristics. The AM treated with GTA for 6 hours holds promise for use as a niche for the expansion and transplantation of limbal epithelial progenitor cells.

  12. The Chemical Chaperone, PBA, Reduces ER Stress and Autophagy and Increases Collagen IV α5 Expression in Cultured Fibroblasts From Men With X-Linked Alport Syndrome and Missense Mutations

    Dongmao Wang

    2017-07-01

    Discussion: Sodium 4-phenylbutyrate increases collagen IV α5 mRNA levels, reduces ER stress and autophagy, and possibly facilitates collagen IV α5 extracellular transport. Whether these actions delay end-stage renal failure in men with X-linked Alport syndrome and missense mutations will only be determined with clinical trials.

  13. Identification of a distinct type IV collagen α chain with restricted kidney distribution and assignment of its gene to the locus of X chromosome-linked Alport syndrome

    Hostikka, S.L.; Hoeyhtyae, M.; Tryggvason, K.; Eddy, R.L.; Byers, M.G.; Shows, T.B.

    1990-01-01

    The authors have identified and extensively characterized a type IV collagen α chain, referred to as α5(IV). Four overlapping cDNA clones isolated contain an open reading frame for 543 amino acid residues of the carboxyl-terminal end of a collagenous domain, a 229-residue carboxyl-terminal noncollagenous domain, and 1201 base pairs coding for a 3' untranslated region. The collagenous Gly-Xaa-Yaa repeat sequence has five imperfections that coincide with those in the corresponding region of the α1(IV) chain. The noncollagenous domain has 12 conserved cysteine residues and 83% and 63% sequence identity with the noncollagenous domains of the α1(IV) and α2(IV) chains, respectively. The α5(IV) chain has less sequence identity with the putative bovine α3(IV) and α4(IV) chains. Antiserum against an α5(IV) synthetic peptide stained a polypeptide chain of about 185 kDa by immunoblot analysis and immunolocalization of the chain in human kidney was almost completely restricted to the glomerulus. The gene was assigned to the Xq22 locus by somatic cell hybrids and in situ hybridization. This may be identical or close to the locus of the X chromosome-linked Alport syndrome that is believed to be a type IV collagen disease

  14. Physiologically Distributed Loading Patterns Drive the Formation of Zonally Organized Collagen Structures in Tissue-Engineered Meniscus.

    Puetzer, Jennifer L; Bonassar, Lawrence J

    2016-07-01

    The meniscus is a dense fibrocartilage tissue that withstands the complex loads of the knee via a unique organization of collagen fibers. Attempts to condition engineered menisci with compression or tensile loading alone have failed to reproduce complex structure on the microscale or anatomic scale. Here we show that axial loading of anatomically shaped tissue-engineered meniscus constructs produced spatial distributions of local strain similar to those seen in the meniscus when the knee is loaded at full extension. Such loading drove formation of tissue with large organized collagen fibers, levels of mechanical anisotropy, and compressive moduli that match native tissue. Loading accelerated the development of native-sized and aligned circumferential and radial collagen fibers. These loading patterns contained both tensile and compressive components that enhanced the major biochemical and functional properties of the meniscus, with loading significantly improved glycosaminoglycan (GAG) accumulation 200-250%, collagen accumulation 40-55%, equilibrium modulus 1000-1800%, and tensile moduli 500-1200% (radial and circumferential). Furthermore, this study demonstrates local changes in mechanical environment drive heterogeneous tissue development and organization within individual constructs, highlighting the importance of recapitulating native loading environments. Loaded menisci developed cartilage-like tissue with rounded cells, a dense collagen matrix, and increased GAG accumulation in the more compressively loaded horns, and fibrous collagen-rich tissue in the more tensile loaded outer 2/3, similar to native menisci. Loaded constructs reached a level of organization not seen in any previous engineered menisci and demonstrate great promise as meniscal replacements.

  15. HPLC detection of loss rate and cell migration of HUVECs in a proanthocyanidin cross-linked recombinant human collagen-peptide (RHC)–chitosan scaffold

    Zhang, Jing; Deng, Aipeng [School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094 (China); Yang, Yang [Faculty of Engineering, University of Nottingham, Nottingham NG7 2RD (United Kingdom); Gao, Lihu; Xu, Na; Liu, Xin; Hu, Lunxiang; Chen, Junhua [School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094 (China); Yang, Shulin, E-mail: yshulin@njust.edu.cn [School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094 (China)

    2015-11-01

    Porous scaffolds with appropriate pore structure, biocompatibility, mechanical property and processability play an important role in tissue engineering. In this paper, we fabricated a recombinant human collagen-peptide (RHC)–chitosan scaffold cross-linked by premixing 30% proanthocyanidin (PA) in one-step freeze-drying. To remove the residual acetic acid, optimized 0.2 M phosphate buffer of pH 6.24 with 30% ethanol (PBSE) was selected to neutralize the lyophilized scaffold followed by three times deionized water rinse. Ninhydrin assay was used to characterize the components loss during the fabrication process. To detect the exact RHC loss under optimized neutralization condition, high performance liquid chromatography (HPLC) equipped size exclusion chromatography column was used and the total RHC loss rate through PBSE rinse was 19.5 ± 5.08%. Fourier transform infrared spectroscopy (FT-IR) indicated hydrogen bonding among RHC, chitosan and PA, it also presented a probative but not strong hydrophobic interaction between phenyl rings of polyphenols and pyrrolidine rings of proline in RHC. Further, human umbilical vein endothelial cell (HUVEC) viability analyzed by a scanning electron microscope (SEM) and acridine orange/ethidium bromide (AO/EB) fluorescence staining exhibited that this scaffold could not only promote cell proliferation on scaffold surface but also permit cells migration into the scaffold. qRT-PCR exhibited that the optimized scaffold could stimulate angiogenesis associated genes VEGF and CD31 expression. These characterizations indicated that this scaffold can be considered as an ideal candidate for tissue engineering. - Highlights: • PA cross-linked recombinant human collagen–chitosan scaffold. • Fabrication in one-step lyophilization with neutralization. • HPLC detection of RHC loss rate • HUVEC proliferation and migration in scaffold • Angiogenesis associated gene expressions were increased in scaffold cell culturing.

  16. New composite materials prepared by calcium phosphate precipitation in chitosan/collagen/hyaluronic acid sponge cross-linked by EDC/NHS.

    Kaczmarek, B; Sionkowska, A; Kozlowska, J; Osyczka, A M

    2018-02-01

    Nowadays, fabrication of composite materials based on biopolymers is a rising field due to potential for bone repair and tissue engineering application. Blending of different biopolymers and incorporation of inorganic particles in the blend can lead to new materials with improved physicochemical properties and biocompatibility. In this work 3D porous structures called scaffolds based on chitosan, collagen and hyaluronic acid were obtained through the lyophilization process. Scaffolds were cross-linked by EDC/NHS. Infrared spectra for the materials were made, the percentage of swelling, scaffolds porosity and density, mechanical parameters, thermal stability were studied. Moreover, the scaffolds were used as matrixes for the calcium phosphate in situ precipitation. SEM images were taken and EDX analysis was carried out for calcium and phosphorous content determination in the scaffold. In addition, the adhesion and proliferation of human osteosarcoma SaOS-2 cells was examined on obtained scaffolds. The results showed that the properties of 3D composites cross-linked by EDC/NHS were altered after the addition of 1, 2 and 5% hyaluronic acid. Mechanical parameters, thermal stability and porosity of scaffolds were improved. Moreover, calcium and phosphorous were found in each kind of scaffold. SEM images showed that the precipitation was homogeneously carried in the whole volume of samples. Attachment of SaOS-2 cells to all modified materials was better compared to unmodified control and proliferation of these cells was markedly increased on scaffolds with precipitated calcium phosphate. Obtained materials can provide the support useful in tissue engineering and regenerative medicine. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. The collagen structure of bovine intervertebral disc studied using polarization-sensitive optical coherence tomography

    Matcher, Stephen J; Winlove, C Peter; Gangnus, Sergei V [Present address: JSC ' Saratovneftegeophysics' , Saratov (Russian Federation)

    2004-04-07

    Polarization-sensitive optical coherence tomography (PS-OCT) is used to measure the birefringence properties of bovine intervertebral disc and equine flexor tendon. For equine tendon the birefringence {delta}n is (6.0 {+-} 0.2) x 10{sup -3} at a wavelength of 1.3 {mu}m. This is somewhat larger than the values reported for bovine tendon. The surface region of the annulus fibrosus of a freshly excised intact bovine intervertebral disc displays an identical value of birefringence, {delta}n = (6.0 {+-} 0.6) x 10{sup -3} at 1.3 {mu}m. The nucleus pulposus does not display birefringence, the measured apparent value of {delta}n = (0.39 {+-} 0.01) x 10{sup -3} being indistinguishable from the effects of depolarization due to multiple scattering. A clear difference is found between the depth-resolved retardance of equine tendon and that of bovine intervertebral disc. This apparently relates to the lamellar structure of the latter tissue, in which the collagen fibre orientation alternates between successive lamellae. A semi-empirical model based on Jones calculus shows that the measurements are in reasonable agreement with previous optical and x-ray data. These results imply that PS-OCT could be a useful tool to study collagen organization within the intervertebral disc in vitro and possibly in vivo and its variation with applied load and disease.

  18. The collagen structure of bovine intervertebral disc studied using polarization-sensitive optical coherence tomography

    Matcher, Stephen J; Winlove, C Peter; Gangnus, Sergei V

    2004-01-01

    Polarization-sensitive optical coherence tomography (PS-OCT) is used to measure the birefringence properties of bovine intervertebral disc and equine flexor tendon. For equine tendon the birefringence Δn is (6.0 ± 0.2) x 10 -3 at a wavelength of 1.3 μm. This is somewhat larger than the values reported for bovine tendon. The surface region of the annulus fibrosus of a freshly excised intact bovine intervertebral disc displays an identical value of birefringence, Δn = (6.0 ± 0.6) x 10 -3 at 1.3 μm. The nucleus pulposus does not display birefringence, the measured apparent value of Δn = (0.39 ± 0.01) x 10 -3 being indistinguishable from the effects of depolarization due to multiple scattering. A clear difference is found between the depth-resolved retardance of equine tendon and that of bovine intervertebral disc. This apparently relates to the lamellar structure of the latter tissue, in which the collagen fibre orientation alternates between successive lamellae. A semi-empirical model based on Jones calculus shows that the measurements are in reasonable agreement with previous optical and x-ray data. These results imply that PS-OCT could be a useful tool to study collagen organization within the intervertebral disc in vitro and possibly in vivo and its variation with applied load and disease

  19. Collagen Accumulation in Osteosarcoma Cells lacking GLT25D1 Collagen Galactosyltransferase.

    Baumann, Stephan; Hennet, Thierry

    2016-08-26

    Collagen is post-translationally modified by prolyl and lysyl hydroxylation and subsequently by glycosylation of hydroxylysine. Despite the widespread occurrence of the glycan structure Glc(α1-2)Gal linked to hydroxylysine in animals, the functional significance of collagen glycosylation remains elusive. To address the role of glycosylation in collagen expression, folding, and secretion, we used the CRISPR/Cas9 system to inactivate the collagen galactosyltransferase GLT25D1 and GLT25D2 genes in osteosarcoma cells. Loss of GLT25D1 led to increased expression and intracellular accumulation of collagen type I, whereas loss of GLT25D2 had no effect on collagen secretion. Inactivation of the GLT25D1 gene resulted in a compensatory induction of GLT25D2 expression. Loss of GLT25D1 decreased collagen glycosylation by up to 60% but did not alter collagen folding and thermal stability. Whereas cells harboring individually inactivated GLT25D1 and GLT25D2 genes could be recovered and maintained in culture, cell clones with simultaneously inactive GLT25D1 and GLT25D2 genes could be not grown and studied, suggesting that a complete loss of collagen glycosylation impairs osteosarcoma cell proliferation and viability. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  20. Fracture mechanics of collagen fibrils

    Svensson, Rene B; Mulder, Hindrik; Kovanen, Vuokko

    2013-01-01

    Tendons are important load-bearing structures, which are frequently injured in both sports and work. Type I collagen fibrils are the primary components of tendons and carry most of the mechanical loads experienced by the tissue, however, knowledge of how load is transmitted between and within...... fibrils is limited. The presence of covalent enzymatic cross-links between collagen molecules is an important factor that has been shown to influence mechanical behavior of the tendons. To improve our understanding of how molecular bonds translate into tendon mechanics, we used an atomic force microscopy...... technique to measure the mechanical behavior of individual collagen fibrils loaded to failure. Fibrils from human patellar tendons, rat-tail tendons (RTTs), NaBH₄ reduced RTTs, and tail tendons of Zucker diabetic fat rats were tested. We found a characteristic three-phase stress-strain behavior in the human...

  1. Biomimetic soluble collagen purified from bones.

    Ferreira, Ana Marina; Gentile, Piergiorgio; Sartori, Susanna; Pagliano, Cristina; Cabrele, Chiara; Chiono, Valeria; Ciardelli, Gianluca

    2012-11-01

    Type I collagen has been extensively exploited as a biomaterial for biomedical applications and drug delivery; however, small molecular alterations occurring during the isolation procedure and its interaction with residual bone extracellular matrix molecules or proteins might affect the overall material biocompatibility and performance. The aim of the current work is to study the potential alterations in collagen properties and organization associated with the absence of proteoglycans, which mimic pathological conditions associated with age-related diseases. A new approach for evaluating the effect of proteoglycans on the properties of isolated type I collagen from the bone matrix is described. Additional treatment with guanidine hydrochloride was introduced to remove residual proteoglycans from the collagen matrix. The properties of the isolated collagen with/without guanidine hydrochloride treatment were investigated and compared with a commercial rabbit collagen as control. We demonstrate that the absence of proteoglycans in the isolated type I collagen affects its thermal properties, the extraction into its native structure, and its ability to hydrate and self-assemble into fibers. The fine control and tuning of all these features, linked to the absence of non-collagenous proteins as proteoglycans, offer the possibility of designing new strategies and biomaterials with advanced biomimetic properties aimed at regenerating bone tissue in the case of fragility and/or defects. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Comparative study on collagen-binding enzyme-linked immunosorbent assay and ristocetin cofactor activity assays for detection of functional activity of von Willebrand factor.

    Turecek, Peter L; Siekmann, Jürgen; Schwarz, Hans Peter

    2002-04-01

    For more than two decades, the ristocetin cofactor (RCo) assay, which measures the von Willebrand factor (vWF)-mediated agglutination of platelets in the presence of the antibiotic ristocetin, has been the most common method for measuring the functional activity of vWF. There is, however, general agreement among clinical analysts that this method has major practical disadvantages in performance and reproducibility. Today, collagen-binding assays (CBA) based on the enzyme-linked immunosorbent assay (ELISA) technique that measure the interaction of vWF and collagen are an alternative analytic procedure based on a more physiological function than that of the RCo procedure. We used both assay systems in a comparative study to assess the functional activity of vWF in plasma as well as in therapeutic preparations. We measured RCo activities of plasma from healthy donors and patients with different types of von Willebrand disease (vWD) and of vWF as a drug substance in factor (F) VIII/vWF concentrates using both the aggregometric and the macroscopic methods. In addition, we measured collagen-binding activity (vWF:CB) using a recently developed commercially available CBA system. To investigate the relation between the structure and the functional activity of vWF, we isolated vWF species with different numbers of multimers from FVIII/vWF concentrates by affinity chromatography on immobilized heparin. The vWF:RCo and vWF:CB of the different fractions were measured, and the multimeric structure of vWF was analyzed by sodium dodecyl sulfate (SDS) agarose gel electrophoresis. (vWF:CB and vWF:RCo are part of the nomenclature proposed by the International Society on Thrombosis and Hemostasis Scientific and Standardization Committee [ISTH SSC] subcommittee on von Willebrand factor, in Maastricht, Germany, June 16, 2000.) Measurement of functional vWF activity by CBA can be carried out with substantially higher interassay reproducibility than can measurement of RCo. Both assay

  3. 5-year follow-up of combined non-topography guided photorefractive keratectomy and corneal collagen cross linking for keratoconus

    Abdulrahman Mohammed Al-Amri

    2018-01-01

    Full Text Available AIM: To evaluate the visual outcomes of simultaneous non-topography guided photorefractive keratectomy (PRK and corneal collagen cross-linking (CXL in eyes with keratoconus 5y after the procedure. METHODS: Prospective, interventional, non-randomized, and non-controlled case series design was used. Sixty eyes of 30 patients (16 males and 14 females; age: 21-41y with mild, non-progressive (stages 1-2 keratoconus were enrolled. Refraction, uncorrected distance visual acuity (UDVA and corrected distance visual acuity (CDVA , flat and steep keratometry readings, and adverse events were evaluated preoperatively and postoperatively. Data were collected preoperatively and postoperatively at 3mo, 1, 2, 3, 4, and 5y follow-up visits after combined non-topography-guided PRK with CXL was performed. All patients had at least 5y of follow-up. RESULTS: All study parameters showed a statistically significant improvement at 5y over baseline values. The mean follow-up time was 68.20±4.71mo (range: 60-106mo. Patients showed a significant improvement in UDVA from 1.24±0.79 logMAR prior to combined non-TG-PRK+CXL to 0.06±0.15 logMAR postoperatively at the time of their last follow-up visit. CDVA significantly increased from 0.06±0.19 logMAR preoperatively to 0.03±0.12 logMAR postoperatively. A significant decrease in the mean spherical equivalent (SE refraction was observed from -2.28±1.8 to -0.79±0.93 diopters (D (P<0.05, and the manifest sphere decreased from -1.62±1.23 to -0.27±0.21 D (P=0.001. The manifest cylinder significantly decreased from -1.73±0.86 to -0.29±0.34 D postoperatively (P=0.001. The mean steep keratometry was 45.13±1.32 vs 47.28±2.12 D preoperatively (P<0.05, and the preoperative mean steepest keratometry (Kmax 48.6±3.1 was reduced significantly to 46.8±2.9 postoperatively (P<0.05. CONCLUSION: Combined non-TG-PRK with 15min CXL is an effective and safe option for correcting mild refractive error and improving visual acuity in

  4. Long-term safety and efficacy follow-up of prophylactic higher fluence collagen cross-linking in high myopic laser-assisted in situ keratomileusis

    Kanellopoulos AJ

    2012-07-01

    Full Text Available Anastasios John KanellopoulosLaservision.gr Institute, Athens, Greece, and New York University Medical School, New York, NY, USABackground: The purpose of this study was to evaluate the safety and efficacy of ultraviolet A irradiation cross-linking on completion for cases of high myopic laser-assisted in situ keratomileusis (LASIK.Methods: Forty-three consecutive LASIK cases treated with femtosecond laser flap and the WaveLight excimer platform were evaluated perioperatively for uncorrected visual acuity, best corrected spectacle visual acuity, refraction, keratometry, topography, total and flap pachymetry, corneal optical coherence tomography, and endothelial cell count. All eyes at the completion of LASIK had cross-linking through the repositioned flap, with higher fluence (10 mW/cm2 ultraviolet light of an average 370 µm wavelength and 10 mW/cm2 fluence applied for 3 minutes following an earlier single instillation of 0.1% riboflavin within the flap interface. Mean follow-up duration was 3.5 (range 1.0–4.5 years.Results: Mean uncorrected visual acuity changed from 0.2 to 1.2, best corrected spectacle visual acuity from 1.1 to 1.2, spherical equivalent from -7.5 diopters (D to -0.2 D, keratometry from 44.5 D to 38 D, flap pachymetry from 105 µm to, total pachymetry from 525 to 405, and endothelial cell count from 2750 to 2800. None of the cases developed signs of ectasia or significant regression during follow-up.Conclusion: Prophylactic collagen cross-linking for high-risk LASIK cases appears to be a safe and effective adjunctive treatment for refractive regression and potential ectasia. This application may be viewed as prophylactic customization of the biomechanical behavior of corneal collagen.Keywords: prophylactic collagen cross-linking, laser-assisted in situ keratomileusis, high-risk, post-LASIK ectasia

  5. Alternative activation of macrophages and pulmonary fibrosis are modulated by scavenger receptor, macrophage receptor with collagenous structure.

    Murthy, Shubha; Larson-Casey, Jennifer L; Ryan, Alan J; He, Chao; Kobzik, Lester; Carter, A Brent

    2015-08-01

    Alternative activation of alveolar macrophages is linked to fibrosis following exposure to asbestos. The scavenger receptor, macrophage receptor with collagenous structure (MARCO), provides innate immune defense against inhaled particles and pathogens; however, a receptor for asbestos has not been identified. We hypothesized that MARCO acts as an initial signaling receptor for asbestos, polarizes macrophages to a profibrotic M2 phenotype, and is required for the development of asbestos-induced fibrosis. Compared with normal subjects, alveolar macrophages isolated from patients with asbestosis express higher amounts of MARCO and have greater profibrotic polarization. Arginase 1 (40-fold) and IL-10 (265-fold) were higher in patients. In vivo, the genetic deletion of MARCO attenuated the profibrotic environment and pulmonary fibrosis in mice exposed to chrysotile. Moreover, alveolar macrophages from MARCO(-/-) mice polarize to an M1 phenotype, whereas wild-type mice have higher Ym1 (>3.0-fold) and nearly 7-fold more active TGF-β1 in bronchoalveolar lavage (BAL) fluid (BALF). Arg(432) and Arg(434) in domain V of MARCO are required for the polarization of macrophages to a profibrotic phenotype as mutation of these residues reduced FIZZ1 expression (17-fold) compared with cells expressing MARCO. These observations demonstrate that a macrophage membrane protein regulates the fibrotic response to lung injury and suggest a novel target for therapeutic intervention. © FASEB.

  6. Lower strength of the human posterior patellar tendon seems unrelated to mature collagen cross-linking and fibril morphology

    Hansen, Philip; Haraldsson, Bjarki Thor; Aagaard, Per

    2010-01-01

    The human patellar tendon is frequently affected by tendinopathy, but the etiology of the condition is not established, although differential loading of the anterior and posterior tendon may be associated with the condition. We hypothesized that changes in fibril morphology and collagen cross-lin...

  7. In vivo Quantification of the Structural Changes of Collagens in a Melanoma Microenvironment with Second and Third Harmonic Generation Microscopy

    Wu, Pei-Chun; Hsieh, Tsung-Yuan; Tsai, Zen-Uong; Liu, Tzu-Ming

    2015-03-01

    Using in vivo second harmonic generation (SHG) and third harmonic generation (THG) microscopies, we tracked the course of collagen remodeling over time in the same melanoma microenvironment within an individual mouse. The corresponding structural and morphological changes were quantitatively analyzed without labeling using an orientation index (OI), the gray level co-occurrence matrix (GLCM) method, and the intensity ratio of THG to SHG (RTHG/SHG). In the early stage of melanoma development, we found that collagen fibers adjacent to a melanoma have increased OI values and SHG intensities. In the late stages, these collagen networks have more directionality and less homogeneity. The corresponding GLCM traces showed oscillation features and the sum of squared fluctuation VarGLCM increased with the tumor sizes. In addition, the THG intensities of the extracellular matrices increased, indicating an enhanced optical inhomogeneity. Multiplying OI, VarGLCM, and RTHG/SHG together, the combinational collagen remodeling (CR) index at 4 weeks post melanoma implantation showed a 400-times higher value than normal ones. These results validate that our quantitative indices of SHG and THG microscopies are sensitive enough to diagnose the collagen remodeling in vivo. We believe these indices have the potential to help the diagnosis of skin cancers in clinical practice.

  8. Fibromodulin deficiency reduces collagen structural network but not glycosaminoglycan content in a syngeneic model of colon carcinoma.

    Olsson, P Olof; Kalamajski, Sebastian; Maccarana, Marco; Oldberg, Åke; Rubin, Kristofer

    2017-01-01

    Tumor barrier function in carcinoma represents a major challenge to treatment and is therefore an attractive target for increasing drug delivery. Variables related to tumor barrier include aberrant blood vessels, high interstitial fluid pressure, and the composition and structure of the extracellular matrix. One of the proteins associated with dense extracellular matrices is fibromodulin, a collagen fibrillogenesis modulator expressed in tumor stroma but scarce in normal loose connective tissues. Here, we investigated the effects of fibromodulin on stroma ECM in a syngeneic murine colon carcinoma model. We show that fibromodulin deficiency decreased collagen fibril thickness but glycosaminoglycan content and composition were unchanged. Furthermore, vascular density, pericyte coverage and macrophage amount were unaffected. Fibromodulin can therefore be a unique effector of dense collagen matrix assembly in tumor stroma and, without affecting other major matrix components or the cellular composition, can function as a main agent in tumor barrier function.

  9. Modified silk fibroin scaffolds with collagen/decellularized pulp for bone tissue engineering in cleft palate: Morphological structures and biofunctionalities

    Sangkert, Supaporn; Meesane, Jirut; Kamonmattayakul, Suttatip; Chai, Wen Lin

    2016-01-01

    Cleft palate is a congenital malformation that generates a maxillofacial bone defect around the mouth area. The creation of performance scaffolds for bone tissue engineering in cleft palate is an issue that was proposed in this research. Because of its good biocompatibility, high stability, and non-toxicity, silk fibroin was selected as the scaffold of choice in this research. Silk fibroin scaffolds were prepared by freeze-drying before immerging in a solution of collagen, decellularized pulp, and collagen/decellularized pulp. Then, the immersed scaffolds were freeze-dried. Structural organization in solution was observed by Atomic Force Microscope (AFM). The molecular organization of the solutions and crystal structure of the scaffolds were characterized by Fourier transform infrared (FT-IR) and X-ray diffraction (XRD), respectively. The weight increase of the modified scaffolds and the pore size were determined. The morphology was observed by a scanning electron microscope (SEM). Mechanical properties were tested. Biofunctionalities were considered by seeding osteoblasts in silk fibroin scaffolds before analysis of the cell proliferation, viability, total protein assay, and histological analysis. The results demonstrated that dendrite structure of the fibrils occurred in those solutions. Molecular organization of the components in solution arranged themselves into an irregular structure. The fibrils were deposited in the pores of the modified silk fibroin scaffolds. The modified scaffolds showed a beta-sheet structure. The morphological structure affected the mechanical properties of the silk fibroin scaffolds with and without modification. Following assessment of the biofunctionalities, the modified silk fibroin scaffolds could induce cell proliferation, viability, and total protein particularly in modified silk fibroin with collagen/decellularized pulp. Furthermore, the histological analysis indicated that the cells could adhere in modified silk fibroin

  10. From mechanical loading to collagen synthesis, structural changes and function in human tendon

    Kjaer, M; Langberg, H; Heinemeier, K

    2009-01-01

    The adaptive response of connective tissue to loading requires increased synthesis and turnover of matrix proteins, with special emphasis on collagen. Collagen formation and degradation in the tendon increases with both acute and chronic loading, and data suggest that a gender difference exists...

  11. Structural aspects of fish skin collagen which forms ordered arrays via liquid crystalline states.

    Giraud-Guille, M M; Besseau, L; Chopin, C; Durand, P; Herbage, D

    2000-05-01

    The ability of acid-soluble type I collagen extracts from Soleidae flat fish to form ordered arrays in condensed phases has been compared with data for calf skin collagen. Liquid crystalline assemblies in vitro are optimized by preliminary treatment of the molecular population with ultrasounds. This treatment requires the stability of the fish collagen triple helicity to be controlled by X-ray diffraction and differential scanning calorimetry and the effect of sonication to be evaluated by viscosity measurements and gel electrophoresis. The collagen solution in concentrations of at least 40 mg ml(-1) showed in polarized light microscopy birefringent patterns typical of precholesteric phases indicating long-range order within the fluid collagen phase. Ultrastructural data, obtained after stabilization of the liquid crystalline collagen into a gelated matrix, showed that neutralized acid-soluble fish collagen forms cross-striated fibrils, typical of type I collagen, following sine wave-like undulations in precholesteric domains. These ordered geometries, approximating in vivo situations, give interesting mechanical properties to the material.

  12. Extracellular matrix of adipogenically differentiated mesenchymal stem cells reveals a network of collagen filaments, mostly interwoven by hexagonal structural units.

    Ullah, Mujib; Sittinger, Michael; Ringe, Jochen

    2013-01-01

    Extracellular matrix (ECM) is the non-cellular component of tissues, which not only provides biological shelter but also takes part in the cellular decisions for diverse functions. Every tissue has an ECM with unique composition and topology that governs the process of determination, differentiation, proliferation, migration and regeneration of cells. Little is known about the structural organization of matrix especially of MSC-derived adipogenic ECM. Here, we particularly focus on the composition and architecture of the fat ECM to understand the cellular behavior on functional bases. Thus, mesenchymal stem cells (MSC) were adipogenically differentiated, then, were transferred to adipogenic propagation medium, whereas they started the release of lipid droplets leaving bare network of ECM. Microarray analysis was performed, to indentify the molecular machinery of matrix. Adipogenesis was verified by Oil Red O staining of lipid droplets and by qPCR of adipogenic marker genes PPARG and FABP4. Antibody staining demonstrated the presence of collagen type I, II and IV filaments, while alkaline phosphatase activity verified the ossified nature of these filaments. In the adipogenic matrix, the hexagonal structures were abundant followed by octagonal structures, whereas they interwoven in a crisscross manner. Regarding molecular machinery of adipogenic ECM, the bioinformatics analysis revealed the upregulated expression of COL4A1, ITGA7, ITGA7, SDC2, ICAM3, ADAMTS9, TIMP4, GPC1, GPC4 and downregulated expression of COL14A1, ADAMTS5, TIMP2, TIMP3, BGN, LAMA3, ITGA2, ITGA4, ITGB1, ITGB8, CLDN11. Moreover, genes associated with integrins, glycoproteins, laminins, fibronectins, cadherins, selectins and linked signaling pathways were found. Knowledge of the interactive-language between cells and matrix could be beneficial for the artificial designing of biomaterials and bioscaffolds. © 2013.

  13. A Structural Finite Element Model for Lamellar Unit of Aortic Media Indicates Heterogeneous Stress Field After Collagen Recruitment

    Thunes, James R.; Pal, Siladitya; Fortunato, Ronald N.; Phillippi, Julie A.; Gleason, Thomas G.; Vorp, David A.; Maiti, Spandan

    2016-01-01

    Incorporation of collagen structural information into the study of biomechanical behavior of ascending thoracic aortic (ATA) wall tissue should provide better insight into the pathophysiology of ATA. Structurally motivated constitutive models that include fiber dispersion and recruitment can successfully capture overall mechanical response of the arterial wall tissue. However, these models cannot examine local microarchitectural features of the collagen network, such as the effect of fiber disruptions and interaction between fibrous and non-fibrous components, which may influence emergent biomechanical properties of the tissue. Motivated by this need, we developed a finite element based three-dimensional structural model of the lamellar units of the ATA media that directly incorporates the collagen fiber microarchitecture. The fiber architecture was computer generated utilizing network features, namely fiber orientation distribution, intersection density and areal concentration, obtained from image analysis of multiphoton microscopy images taken from human aneurysmal ascending thoracic aortic media specimens with bicuspid aortic valve (BAV) phenotype. Our model reproduces the typical J-shaped constitutive response of the aortic wall tissue. We found that the stress state in the non-fibrous matrix was homogeneous until the collagen fibers were recruited, but became highly heterogeneous after that event. The degree of heterogeneity was dependent upon local network architecture with high stresses observed near disrupted fibers. The magnitude of non-fibrous matrix stress at higher stretch levels was negatively correlated with local fiber density. The localized stress concentrations, elucidated by this model, may be a factor in the degenerative changes in aneurysmal ATA tissue. PMID:27113538

  14. Tertiary structure in N-linked oligosaccharides.

    Homans, S W; Dwek, R A; Rademacher, T W

    1987-10-06

    Distance constraints derived from two-dimensional nuclear Overhauser effect measurements have been used to define the orientation of the Man alpha 1-3Man beta linkage in seven different N-linked oligosaccharides, all containing the common pentasaccharide core Man alpha 1-6(Man alpha 1-3)Man beta 1-4GlcNAc beta 1-4GlcNAc. Conformational invariance of the Man alpha 1-3Man beta linkage was found for those structures bearing substitutions on the Man alpha 1-3Man beta antenna. However, the presence of either a GlcNAc residue in the beta 1-4 linkage to Man beta ("bisecting GlcNAc") or a xylose residue in the beta 1-2 linkage to Man beta of the trimannosyl core was found to generate conformational transitions that were similar. These transitions were accompanied by characteristic chemical shift perturbations of proton resonances in the vicinity of the Man alpha 1-3Man beta linkage. Molecular orbital energy calculations suggest that the conformational transition between the unsubstituted and substituted cores arises from energetic constraints in the vicinity of the Man alpha 1-3Man beta linkage, rather than specific long-range interactions. These data taken together with our previous results on the Man alpha 1-6Man beta linkage [Homans, S. W., Dwek R. A., Boyd, J., Mahmoudian, M., Richards, W. G., & Rademacher, T. W. (1986) Biochemistry 25, 6342] allow us to discuss the consequences of the modulation of oligosaccharide solution conformations.

  15. A case report of central toxic keratopathy in a patient post TransPRK (followed by corneal collagen cross-linking).

    Davey, Nicholas; Aslanides, Ioannis M; Selimis, Vasilis

    2017-01-01

    The purpose of this article is to report a case of central toxic keratopathy in a patient post transepithelial photorefractive keratectomy (TransPRK), followed immediately by corneal collagen cross-linking. This article describes the case of a 26-year-old male after bilateral aberration-free, TransPRK laser (Schwind Amaris 750S). The procedure was performed for compound myopic astigmatism in November 2015, followed immediately by accelerated corneal collagen cross-linking for early keratoconus. From day 3 post-op, tear film debris underneath both contact lenses with corneal haze and early, progressive central anterior stromal opacity formation only in the left eye were noted. At 2 weeks post-op, the left eye was noted to have a significant hyperopic shift with central corneal thinning in the anterior stroma. A central anterior stromal dense opacity had formed in the left eye with the surrounding superficial stromal haze. As of month 2, the opacity gradually started to improve in size and density. The hyperopic shift peaked at 2 months and continued to improve, largely due to epithelial compensation with a gradual recovery of stromal thickness. The question remains as to what provokes the typical central corneal necrosis/thinning in central toxic keratopathy. We hypothesize that the space between the contact lens and the corneal surface post TransPRK is prone to a "pseudo-interface pathology" that could mimic diffuse lamellar keratitis-like pathology. Suboptimal lid hygiene, resulting in tear film combinations of bacteria, inflammatory cells, matrix metalloproteinases and other proteolytic enzymes, contributes to the degradation of vulnerable, exposed collagen stromal tissue post TransPRK or any surface corneal ablation. Refractive surgeons should maintain a healthy lid margin and tear film, especially in contact lens wearers, to prevent potential complications in refractive surgery procedures.

  16. Changes in Structural-Mechanical Properties and Degradability of Collagen during Aging-associated Modifications*

    Panwar, Preety; Lamour, Guillaume; Mackenzie, Neil C. W.; Yang, Heejae; Ko, Frank; Li, Hongbin; Brömme, Dieter

    2015-01-01

    During aging, changes occur in the collagen network that contribute to various pathological phenotypes in the skeletal, vascular, and pulmonary systems. The aim of this study was to investigate the consequences of age-related modifications on the mechanical stability and in vitro proteolytic degradation of type I collagen. Analyzing mouse tail and bovine bone collagen, we found that collagen at both fibril and fiber levels varies in rigidity and Young's modulus due to different physiological changes, which correlate with changes in cathepsin K (CatK)-mediated degradation. A decreased susceptibility to CatK-mediated hydrolysis of fibrillar collagen was observed following mineralization and advanced glycation end product-associated modification. However, aging of bone increased CatK-mediated osteoclastic resorption by ∼27%, and negligible resorption was observed when osteoclasts were cultured on mineral-deficient bone. We observed significant differences in the excavations generated by osteoclasts and C-terminal telopeptide release during bone resorption under distinct conditions. Our data indicate that modification of collagen compromises its biomechanical integrity and affects CatK-mediated degradation both in bone and tissue, thus contributing to our understanding of extracellular matrix aging. PMID:26224630

  17. Distribution of Young's modulus in porcine corneas after riboflavin/UVA-induced collagen cross-linking as measured by atomic force microscopy.

    Jan Seifert

    Full Text Available Riboflavin/UVA-induced corneal collagen cross-linking has become an effective clinical application to treat keratoconus and other ectatic disorders of the cornea. Its beneficial effects are attributed to a marked stiffening of the unphysiologically weak stroma. Previous studies located the stiffening effect predominantly within the anterior cornea. In this study, we present an atomic force microscopy-derived analysis of the depth-dependent distribution of the Young's modulus with a depth resolution of 5 µm in 8 cross-linked porcine corneas and 8 contralateral controls. Sagittal cryosections were fabricated from every specimen and subjected to force mapping. The mean stromal depth of the zone with effective cross-linking was found to be 219 ± 67 µm. Within this cross-linked zone, the mean Young's modulus declined from 49 ± 18 kPa at the corneal surface to 46 ± 17 kPa, 33 ± 11 kPa, 17 ± 5 kPa, 10 ± 4 kPa and 10 ± 4 kPa at stromal depth intervals of 0-50 µm, 50-100 µm, 100-150 µm, 150-200 µm and 200-250 µm, respectively. This corresponded to a stiffening by a factor of 8.1 (corneal surface, 7.6 (0-50 µm, 5.4 (50-100 µm, 3.0 (100-150 µm, 1.6 (150-200 µm, and 1.5 (200-250 µm, when compared to the Young's modulus of the posterior 100 µm. The mean Young's modulus within the cross-linked zone was 20 ± 8 kPa (2.9-fold stiffening, while it was 11 ± 4 kPa (1.7-fold stiffening for the entire stroma. Both values were significantly distinct from the mean Young's modulus obtained from the posterior 100 µm of the cross-linked corneas and from the contralateral controls. In conclusion, we were able to specify the depth-dependent distribution of the stiffening effect elicited by standard collagen cross-linking in porcine corneas. Apart from determining the depth of the zone with effective corneal cross-linking, we also developed a method that allows for atomic force microscopy-based measurements of gradients of Young's modulus in soft

  18. In vivo observation of age-related structural changes of dermal collagen in human facial skin using collagen-sensitive second harmonic generation microscope equipped with 1250-nm mode-locked Cr:Forsterite laser

    Yasui, Takeshi; Yonetsu, Makoto; Tanaka, Ryosuke; Tanaka, Yuji; Fukushima, Shu-ichiro; Yamashita, Toyonobu; Ogura, Yuki; Hirao, Tetsuji; Murota, Hiroyuki; Araki, Tsutomu

    2013-03-01

    In vivo visualization of human skin aging is demonstrated using a Cr:Forsterite (Cr:F) laser-based, collagen-sensitive second harmonic generation (SHG) microscope. The deep penetration into human skin, as well as the specific sensitivity to collagen molecules, achieved by this microscope enables us to clearly visualize age-related structural changes of collagen fiber in the reticular dermis. Here we investigated intrinsic aging and/or photoaging in the male facial skin. Young subjects show dense distributions of thin collagen fibers, whereas elderly subjects show coarse distributions of thick collagen fibers. Furthermore, a comparison of SHG images between young and elderly subjects with and without a recent life history of excessive sun exposure show that a combination of photoaging with intrinsic aging significantly accelerates skin aging. We also perform image analysis based on two-dimensional Fourier transformation of the SHG images and extracted an aging parameter for human skin. The in vivo collagen-sensitive SHG microscope will be a powerful tool in fields such as cosmeceutical sciences and anti-aging dermatology.

  19. Glutaraldehyde cross-linking of amniotic membranes affects their nanofibrous structures and limbal epithelial cell culture characteristics

    Lai JY

    2013-10-01

    Full Text Available Jui-Yang Lai,1–3 David Hui-Kang Ma4,5 1Institute of Biochemical and Biomedical Engineering, 2Biomedical Engineering Research Center, 3Molecular Medicine Research Center, Chang Gung University, Taoyuan, Taiwan; 4Limbal Stem Cell Laboratory, Department of Ophthalmology, Chang Gung Memorial Hospital, Taoyuan, Taiwan; 5Department of Chinese Medicine, Chang Gung University, Taoyuan, Taiwan Abstract: Given that the cells can sense nanometer dimensions, the chemical cross-linking-mediated alteration in fibrillar structure of collagenous tissue scaffolds is critical to determining their cell culture performances. This article explores, for the first time, the effect of nanofibrous structure of glutaraldehyde (GTA cross-linked amniotic membrane (AM on limbal epithelial cell (LEC cultivation. Results of ninhydrin assays demonstrated that the amount of new cross-links formed between the collagen chains is significantly increased with increasing the cross-linking time from 1 to 24 hours. By transmission electron microscopy, the AM treated with GTA for a longer duration exhibited a greater extent of molecular aggregation, thereby leading to a considerable increase in nanofiber diameter and resistance against collagenase degradation. In vitro biocompatibility studies showed that the samples cross-linked with GTA for 24 hours are not well-tolerated by the human corneal epithelial cell cultures. When the treatment duration is less than 6 hours, the biological tissues cross-linked with GTA for a longer time may cause slight reductions in 3-(4,5-dimethylthiazol-2-yl-5-(3-carboxymethoxyphenyl-2-(4-sulfophenyl-2H-tetrazolium, inner salt, and anti-inflammatory activities. Nevertheless, significant collagen molecular aggregation also enhances the stemness gene expression, indicating a high ability of these AM matrices to preserve the progenitors of LECs in vitro. It is concluded that GTA cross-linking of collagenous tissue materials may affect their nanofibrous

  20. The chemical reactivity and structure of collagen studied by neutron diffraction

    Wess, T.J.; Wess, L.; Miller, A. [Univ. of Stirling (United Kingdom)

    1994-12-31

    The chemical reactivity of collagen can be studied using neutron diffraction (a non-destructive technique), for certain reaction types. Collagen contains a number of lysine and hydroxylysine side chains that can react with aldehydes and ketones, or these side chains can themselves be converted to aldehydes by lysyl oxidase. The reactivity of these groups not only has an important role in the maintenance of mechanical strength in collagen fibrils, but can also manifest pathologically in the cases of aging, diabetes (reactivity with a variety of sugars) and alcoholism (reactivity with acetaldehyde). The reactivity of reducing groups with collagen can be studied by neutron diffraction, since the crosslink formed in the adduction process is initially of a Schiff base or keto-imine nature. The nature of this crosslink allows it to be deuterated, and the position of this relatively heavy scattering atom can be used in a process of phase determination by multiple isomorphous replacement. This process was used to study the following: the position of natural crosslinks in collagen; the position of adducts in tendon from diabetic rats in vivo and the in vitro position of acetaidehyde adducts in tendon.

  1. The chemical reactivity and structure of collagen studied by neutron diffraction

    Wess, T.J.; Wess, L.; Miller, A.

    1994-01-01

    The chemical reactivity of collagen can be studied using neutron diffraction (a non-destructive technique), for certain reaction types. Collagen contains a number of lysine and hydroxylysine side chains that can react with aldehydes and ketones, or these side chains can themselves be converted to aldehydes by lysyl oxidase. The reactivity of these groups not only has an important role in the maintenance of mechanical strength in collagen fibrils, but can also manifest pathologically in the cases of aging, diabetes (reactivity with a variety of sugars) and alcoholism (reactivity with acetaldehyde). The reactivity of reducing groups with collagen can be studied by neutron diffraction, since the crosslink formed in the adduction process is initially of a Schiff base or keto-imine nature. The nature of this crosslink allows it to be deuterated, and the position of this relatively heavy scattering atom can be used in a process of phase determination by multiple isomorphous replacement. This process was used to study the following: the position of natural crosslinks in collagen; the position of adducts in tendon from diabetic rats in vivo and the in vitro position of acetaidehyde adducts in tendon

  2. Fibrillar structure and elasticity of hydrating collagen: a quantitative multiscale approach.

    Morin, Claire; Hellmich, Christian; Henits, Peter

    2013-01-21

    It is well known that hydration of collagenous tissues leads to their swelling, as well as to softening of their elastic behavior. However, it is much less clear which microstructural and micromechanical "rules" are involved in this process. Here, we develop a theoretical approach cast in analytical mathematical formulations, which is experimentally validated by a wealth of independent tests on collagenous tissues, such as X-ray diffraction, vacuum drying, mass measurements, and Brillouin light scattering. The overall emerging picture is the following: air-drying leaves water only in the gap zones between the triple-helical collagen molecules; upon re-hydration, the extrafibrillar space is established at volumes directly proportional to the hydration-induced swelling of the (micro) fibrils, until the maximum equatorial distance between the long collagen molecules is reached. Thereafter, the volume of the fibrils stays constant, and only the extrafibrillar volume continues to grow. At all these hydration stages, the elastic behavior is governed by the same, hydration-invariant mechanical interaction pattern of only two, interpenetrating mechanical phases: transversely isotropic molecular collagen and isotropic water (or empty pores in the vacuum-dried case). Copyright © 2012 Elsevier Ltd. All rights reserved.

  3. Simultaneous topography-guided PRK followed by corneal collagen cross-linking after lamellar keratoplasty for keratoconus

    Spadea L

    2012-11-01

    Full Text Available Leopoldo Spadea,1 Marino Paroli21University of L’Aquila, Department of Biotechnological and Applied Clinical Sciences, Eye Clinic, L’Aquila, 2La Sapienza University, Department of Biotechnology and Medical-Surgical Sciences, Latina, ItalyBackground: The purpose of this paper is to report the results of using combined treatment of customized excimer laser-assisted photorefractive keratectomy (PRK and prophylactic corneal collagen crosslinking (CXL for residual refractive error in a group of patients who had previously undergone lamellar keratoplasty for keratoconus.Methods: The study included 14 eyes from 14 patients who had originally been treated for keratoconus in one eye by excimer laser-assisted lamellar keratoplasty (ELLK, and subsequently presented with residual ametropia (-6.11 D ± 2.48, range -2.50 to -9.50. After a mean 40.1 ± 12.4 months since ELLK they underwent combined simultaneous corneal regularization treatment with topographically guided transepithelial excimer laser PRK (central corneal regularization and corneal CXL induced by riboflavin-ultraviolet A.Results: After a mean 15 ± 6.5 (range 6–24 months, all eyes gained at least one Snellen line of uncorrected distance visual acuity (range 1–10. No patient lost lines of corrected distance visual acuity, and four patients gained three lines of corrected distance visual acuity. Mean manifest refractive spherical equivalent was -0.79 ± 2.09 (range +1 to -3.0 D, and topographic keratometric astigmatism was 5.02 ± 2.93 (range 0.8–8.9 D. All the corneas remained clear (haze < 1.Conclusion: The combination of customized PRK and corneal CXL provided safe and effective results in the management of corneal regularization for refractive purposes after ELLK for keratoconus.Keywords: corneal collagen crosslinking, excimer laser-assisted lamellar keratoplasty, photorefractive keratectomy

  4. Non-Fourier thermal transport induced structural hierarchy and damage to collagen ultrastructure subjected to laser irradiation.

    Sahoo, Nilamani; Narasimhan, Arunn; Dhar, Purbarun; Das, Sarit K

    2018-05-01

    Comprehending the mechanism of thermal transport through biological tissues is an important factor for optimal ablation of cancerous tissues and minimising collateral tissue damage. The present study reports detailed mapping of the rise in internal temperature within the tissue mimics due to NIR (1064 nm) laser irradiation, both for bare mimics and with gold nanostructures infused. Gold nanostructures such as mesoflowers and nanospheres have been synthesised and used as photothermal converters to enhance the temperature rise, resulting in achieving the desired degradation of malignant tissue in targeted region. Thermal history was observed experimentally and simulated considering non-Fourier dual phase lag (DPL) model incorporated Pennes bio-heat transfer equation using COMSOL Multiphysics software. The gross deviation in temperature i.e. rise from the classical Fourier model for bio-heat conduction suggests additional effects of temperature rise on the secondary structures and morphological and physico-chemical changes to the collagen ultrastructures building the tissue mass. The observed thermal denaturation in the collagen fibril morphologies have been explained based on the physico-chemical structure of collagen and its response to thermal radiation. The large shift in frequency of amides A and B is pronounced at a depth of maximum temperature rise compared with other positions in tissue phantom. Observations for change in band of amide I, amide II, and amide III are found to be responsible for damage to collagen ultra-structure. Variation in the concentration of gold nanostructures shows the potentiality of localised hyperthermia treatment subjected to NIR radiation through a proposed free radical mechanism.

  5. Rheology of Heterotypic Collagen Networks

    Piechocka, I.K.; van Oosten, A.S.G.; Breuls, R.G.M.; Koenderink, G.H.

    2011-01-01

    Collagen fibrils are the main structural element of connective tissues. In many tissues, these fibrils contain two fibrillar collagens (types I and V) in a ratio that changes during tissue development, regeneration, and various diseases. Here we investigate the influence of collagen composition on

  6. Bioinspired coupled helical coils for soft tissue engineering of tubular structures - Improved mechanical behavior of tubular collagen type I templates.

    Janke, H P; Bohlin, J; Lomme, R M L M; Mihaila, S M; Hilborn, J; Feitz, W F J; Oosterwijk, E

    2017-09-01

    The design of constructs for tubular tissue engineering is challenging. Most biomaterials need to be reinforced with supporting structures such as knittings, meshes or electrospun material to comply with the mechanical demands of native tissues. In this study, coupled helical coils (CHCs) were manufactured to mimic collagen fiber orientation as found in nature. Monofilaments of different commercially available biodegradable polymers were wound and subsequently fused, resulting in right-handed and left-handed polymer helices fused together in joints where the filaments cross. CHCs of different polymer composition were tested to determine the tensile strength, strain recovery, hysteresis, compressive strength and degradation of CHCs of different composition. Subsequently, seamless and stable hybrid constructs consisting of PDSII® USP 2-0 CHCs embedded in porous collagen type I were produced. Compared to collagen alone, this hybrid showed superior strain recovery (93.5±0.9% vs 71.1±12.6% in longitudinal direction; 87.1±6.6% vs 57.2±4.6% in circumferential direction) and hysteresis (18.9±2.7% vs 51.1±12.0% in longitudinal direction; 11.5±4.6% vs 46.3±6.3% in circumferential direction). Furthermore, this hybrid construct showed an improved Young's modulus in both longitudinal (0.5±0.1MPavs 0.2±0.1MPa; 2.5-fold) and circumferential (1.65±0.07MPavs (2.9±0.3)×10 -2 MPa; 57-fold) direction, respectively, compared to templates created from collagen alone. Moreover, hybrid template characteristics could be modified by changing the CHC composition and CHCs were produced showing a mechanical behavior similar to the native ureter. CHC-enforced templates, which are easily tunable to meet different demands may be promising for tubular tissue engineering. Most tubular constructs lack sufficient strength and tunability to comply with the mechanical demands of native tissues. Therefore, we embedded coupled helical coils (CHCs) produced from biodegradable polymers - to

  7. When size matters: differences in demineralized bone matrix particles affect collagen structure, mesenchymal stem cell behavior, and osteogenic potential.

    Dozza, B; Lesci, I G; Duchi, S; Della Bella, E; Martini, L; Salamanna, F; Falconi, M; Cinotti, S; Fini, M; Lucarelli, E; Donati, D

    2017-04-01

    Demineralized bone matrix (DBM) is a natural, collagen-based, osteoinductive biomaterial. Nevertheless, there are conflicting reports on the efficacy of this product. The purpose of this study was to evaluate whether DBM collagen structure is affected by particle size and can influence DBM cytocompatibility and osteoinductivity. Sheep cortical bone was ground and particles were divided in three fractions with different sizes, defined as large (L, 1-2 mm), medium (M, 0.5-1 mm), and small (S, structure, with DBM-M being altered but not as much as DBM-S. DBM-M displayed a preferable trend in almost all biological characteristics tested, although all DBM particles revealed an optimal cytocompatibility. Subcutaneous implantation of DBM particles into immunocompromised mice resulted in bone induction only for DBM-M. When sheep MSC were seeded onto particles before implantation, all DBM particles were able to induce new bone formation with the best incidence for DBM-M and DBM-S. In conclusion, the collagen alteration in DBM-M is likely the best condition to promote bone induction in vivo. Furthermore, the choice of 0.5-1 mm particles may enable to obtain more efficient and consistent results among different research groups in bone tissue-engineering applications. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 1019-1033, 2017. © 2017 Wiley Periodicals, Inc.

  8. Mechanisms of lamellar collagen formation in connective tissues.

    Ghazanfari, Samaneh; Khademhosseini, Ali; Smit, Theodoor H

    2016-08-01

    The objective of tissue engineering is to regenerate functional tissues. Engineering functional tissues requires an understanding of the mechanisms that guide the formation and evolution of structure in the extracellular matrix (ECM). In particular, the three-dimensional (3D) collagen fiber arrangement is important as it is the key structural determinant that provides mechanical integrity and biological function. In this review, we survey the current knowledge on collagen organization mechanisms that can be applied to create well-structured functional lamellar tissues and in particular intervertebral disc and cornea. Thus far, the mechanisms behind the formation of cross-aligned collagen fibers in the lamellar structures is not fully understood. We start with cell-induced collagen alignment and strain-stabilization behavior mechanisms which can explain a single anisotropically aligned collagen fiber layer. These mechanisms may explain why there is anisotropy in a single layer in the first place. However, they cannot explain why a consecutive collagen layer is laid down with an alternating alignment. Therefore, we explored another mechanism, called liquid crystal phasing. While dense concentrations of collagen show such behavior, there is little evidence that the conditions for liquid crystal phasing are actually met in vivo. Instead, lysyl aldehyde-derived collagen cross-links have been found essential for correct lamellar matrix deposition. Furthermore, we suggest that supra-cellular (tissue-level) shear stress may be instrumental in the alignment of collagen fibers. Understanding the potential mechanisms behind the lamellar collagen structure in connective tissues will lead to further improvement of the regeneration strategies of functional complex lamellar tissues. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Treatment of chest burn contracture causing respiratory compromise with island release and grafting using cross-link collagen and Integra™ bilayer dressing

    Neil Doctor

    2014-04-01

    Full Text Available Post-burn skin contractures of the anterior and lateral abdomen and chest may result in respiratory compromise due to limitation of rib excursion. This case report describes a young man with respiratory compromise limiting his daily activity and function, as a result of a 90% burn sustained 6 years previously. Release of his chest and upper abdomen was achieved using “island” scar releases and a cross-linked bovine tendon collagen and glycosaminoglycan and a semi-permeable polysiloxane bilayer matrix dressing (Integra™ followed by subsequent split thickness skin graft. An immediate increase in maximal inspiratory volume was obtained intra-operatively and in the im­mediate post-operative period, and this improvement was sustained after healing of all wounds with subjective relief of the patient’s symptoms.

  10. Corneal Collagen Cross-Linking Combined with an Artiflex Iris-Fixated Anterior Chamber Phakic Intraocular Lens Implantation in a Patient with Progressive Keratoconus

    Sharif Hashmani

    2017-10-01

    Full Text Available We present here the case of a 24-year-old male who experienced progressive keratoconus and vision loss which adversely affected his ability to carry out everyday tasks. This landed him in the Hashmanis Hospital for consultation. He had a preoperative best corrected visual acuity of 6/12. He underwent multiple Oculus Pentacam examinations, which showed progressive keratoconus. Corneal collagen cross-linking (CXL was performed to stabilize his cornea and, subsequently, an Artiflex anterior chamber iris-fixated phakic intraocular lens (ACIF-PIOL was implanted to alleviate his refractive errors. The patient achieved a postoperative uncorrected visual acuity of 6/12. This report shows that CXL combined with ACIF-PIOL can be safe and effective in those with progressive keratoconus.

  11. The carboxy-terminal pyridinoline cross-linked telopeptide of type I collagen in serum as a marker of bone resorption

    Hassager, C; Jensen, L T; Pødenphant, J

    1994-01-01

    Carboxy-terminal pyridinoline cross-linked telopeptide of type I collagen (ICTP) in serum has recently been proposed as a new biochemical marker of bone resorption. In the present study we compared serum ICTP with radiopharmaceutical and histomorphometric measurements of bone turnover...... in postmenopausal women with mild osteoporosis, and assessed the effect of hormone replacement therapy (HRT) (2 mg 17 beta-estradiol plus 1 mg norethisterone daily) and anabolic steroid therapy (50 mg nandrolone decanoate (ND) i.m. every 3 weeks) on serum ICTP in two double-blind placebo-controlled studies with 55...... to 75-year-old women. Serum ICTP measured by radioimmunoassay (RIA) correlated significantly with the 24-hour whole body retention of 99m-technetium diphosphonate (Rho = 0.47, P

  12. A case report of central toxic keratopathy in a patient post TransPRK (followed by corneal collagen cross-linking

    Davey N

    2017-04-01

    Full Text Available Nicholas Davey, Ioannis M Aslanides, Vasilis Selimis Emmetropia Mediterranean Eye Institute, Heraklion, Crete, Greece Purpose: The purpose of this article is to report a case of central toxic keratopathy in a patient post transepithelial photorefractive keratectomy (TransPRK, followed immediately by corneal collagen cross-linking.Methods: This article describes the case of a 26-year-old male after bilateral aberration-free, TransPRK laser (Schwind Amaris 750S. The procedure was performed for compound myopic astigmatism in November 2015, followed immediately by accelerated corneal collagen cross-linking for early keratoconus.Results: From day 3 post-op, tear film debris underneath both contact lenses with corneal haze and early, progressive central anterior stromal opacity formation only in the left eye were noted. At 2 weeks post-op, the left eye was noted to have a significant hyperopic shift with central corneal thinning in the anterior stroma. A central anterior stromal dense opacity had formed in the left eye with the surrounding superficial stromal haze. As of month 2, the opacity gradually started to improve in size and density. The hyperopic shift peaked at 2 months and continued to improve, largely due to epithelial compensation with a gradual recovery of stromal thickness.Conclusion: The question remains as to what provokes the typical central corneal necrosis/thinning in central toxic keratopathy. We hypothesize that the space between the contact lens and the corneal surface post TransPRK is prone to a “pseudo-interface pathology” that could mimic diffuse lamellar keratitis-like pathology. Suboptimal lid hygiene, resulting in tear film combinations of bacteria, inflammatory cells, matrix metalloproteinases and other proteolytic enzymes, contributes to the degradation of vulnerable, exposed collagen stromal tissue post TransPRK or any surface corneal ablation. Refractive surgeons should maintain a healthy lid margin and tear

  13. Collagen turnover after tibial fractures

    Joerring, S; Krogsgaard, M; Wilbek, H

    1994-01-01

    Collagen turnover after tibial fractures was examined in 16 patients with fracture of the tibial diaphysis and in 8 patients with fracture in the tibial condyle area by measuring sequential changes in serological markers of turnover of types I and III collagen for up to 26 weeks after fracture....... The markers were the carboxy-terminal extension peptide of type I procollagen (PICP), the amino-terminal extension peptide of type III procollagen (PIIINP), and the pyridinoline cross-linked carboxy-terminal telopeptide of type I collagen (ICTP). The latter is a new serum marker of degradation of type I...... collagen. A group comparison showed characteristic sequential changes in the turnover of types I and III collagen in fractures of the tibial diaphysis and tibial condyles. The turnover of type III collagen reached a maximum after 2 weeks in both groups. The synthesis of type I collagen reached a maximum...

  14. Simultaneous topography-guided PRK followed by corneal collagen cross-linking after lamellar keratoplasty for keratoconus.

    Spadea, Leopoldo; Paroli, Marino

    2012-01-01

    The purpose of this paper is to report the results of using combined treatment of customized excimer laser-assisted photorefractive keratectomy (PRK) and prophylactic corneal collagen crosslinking (CXL) for residual refractive error in a group of patients who had previously undergone lamellar keratoplasty for keratoconus. The study included 14 eyes from 14 patients who had originally been treated for keratoconus in one eye by excimer laser-assisted lamellar keratoplasty (ELLK), and subsequently presented with residual ametropia (-6.11 D ± 2.48, range -2.50 to -9.50). After a mean 40.1 ± 12.4 months since ELLK they underwent combined simultaneous corneal regularization treatment with topographically guided transepithelial excimer laser PRK (central corneal regularization) and corneal CXL induced by riboflavin-ultraviolet A. After a mean 15 ± 6.5 (range 6-24) months, all eyes gained at least one Snellen line of uncorrected distance visual acuity (range 1-10). No patient lost lines of corrected distance visual acuity, and four patients gained three lines of corrected distance visual acuity. Mean manifest refractive spherical equivalent was -0.79 ± 2.09 (range +1 to -3.0) D, and topographic keratometric astigmatism was 5.02 ± 2.93 (range 0.8-8.9) D. All the corneas remained clear (haze PRK and corneal CXL provided safe and effective results in the management of corneal regularization for refractive purposes after ELLK for keratoconus.

  15. A Novel Matrix Protein Hic31 from the Prismatic Layer of Hyriopsis Cumingii Displays a Collagen-Like Structure.

    Liu, Xiaojun; Zeng, Shimei; Dong, Shaojian; Jin, Can; Li, Jiale

    2015-01-01

    In this study, we clone and characterize a novel matrix protein, hic31, from the mantle of Hyriopsis cumingii. The amino acid composition of hic31 consists of a high proportion of Glycine residues (26.67%). Tissue expression detection by RT-PCR indicates that hic31 is expressed specifically at the mantle edge. In situ hybridization results reveals strong signals from the dorsal epithelial cells of the outer fold at the mantle edge, and weak signals from inner epithelial cells of the same fold, indicating that hic31 is a prismatic-layer matrix protein. Although BLASTP results identify no shared homology with other shell-matrix proteins or any other known proteins, the hic31 tertiary structure is similar to that of collagen I, alpha 1 and alpha 2. It has been well proved that collagen forms the basic organic frameworks in way of collagen fibrils and minerals present within or outside of these fibrils. Therefore, hic31 might be a framework-matrix protein involved in the prismatic-layer biomineralization. Besides, the gene expression of hic31 increase in the early stages of pearl sac development, indicating that hic31 may play important roles in biomineralization of the pearl prismatic layer.

  16. A Novel Matrix Protein Hic31 from the Prismatic Layer of Hyriopsis Cumingii Displays a Collagen-Like Structure.

    Xiaojun Liu

    Full Text Available In this study, we clone and characterize a novel matrix protein, hic31, from the mantle of Hyriopsis cumingii. The amino acid composition of hic31 consists of a high proportion of Glycine residues (26.67%. Tissue expression detection by RT-PCR indicates that hic31 is expressed specifically at the mantle edge. In situ hybridization results reveals strong signals from the dorsal epithelial cells of the outer fold at the mantle edge, and weak signals from inner epithelial cells of the same fold, indicating that hic31 is a prismatic-layer matrix protein. Although BLASTP results identify no shared homology with other shell-matrix proteins or any other known proteins, the hic31 tertiary structure is similar to that of collagen I, alpha 1 and alpha 2. It has been well proved that collagen forms the basic organic frameworks in way of collagen fibrils and minerals present within or outside of these fibrils. Therefore, hic31 might be a framework-matrix protein involved in the prismatic-layer biomineralization. Besides, the gene expression of hic31 increase in the early stages of pearl sac development, indicating that hic31 may play important roles in biomineralization of the pearl prismatic layer.

  17. Extracting central places from the link structure in Wikipedia

    Kessler, Carsten

    2017-01-01

    of the German language edition of Wikipedia. The official upper and middle centers declared, based on German spatial laws, are used as a reference dataset. The characteristics of the link structure around their Wikipedia pages, which link to each other or mention each other, and how often, are used to develop...... a bottom-up method for extracting central places from Wikipedia. The method relies solely on the structure and number of links and mentions between the corresponding Wikipedia pages; no spatial information is used in the extraction process. The output of this method shows significant overlap...... with the official central place structure, especially for the upper centers. The results indicate that real-world relationships are in fact reflected in the link structure on the web in the case of Wikipedia....

  18. The roles of TGF-beta1 gene transfer on collagen formation during Achilles tendon healing.

    Hou, Yu; Mao, ZeBing; Wei, XueLei; Lin, Lin; Chen, LianXu; Wang, HaiJun; Fu, Xin; Zhang, JiYing; Yu, ChangLong

    2009-05-29

    Collagen content and cross-linking are believed to be major determinants of tendon structural integrity and function. The current study aimed to investigate the effects of transforming growth factor (TGF)-beta1 on the collagen content and cross-linking of Achilles tendons, and on the histological and biomechanical changes occurring during Achilles tendon healing in rabbits. Bone marrow-derived mesenchymal stem cells (BMSCs) transfected with the TGF-beta1 gene were surgically implanted into experimentally injured Achilles tendons. Collagen proteins were identified by immunohistochemical staining and fiber bundle accumulation was revealed by Sirius red staining. Achilles tendons treated with TGF-beta1-transfected BMSCs showed higher concentrations of collagen I protein, more rapid matrix remodeling, and larger fiber bundles. Thus TGF-beta1 can promote mechanical strength in healing Achilles tendons by regulating collagen synthesis, cross-link formation, and matrix remodeling.

  19. Collagenous sprue

    Soendergaard, Christoffer; Riis, Lene Buhl; Nielsen, Ole Haagen

    2014-01-01

    Collagenous sprue is a rare clinicopathological condition of the small bowel. It is characterised by abnormal subepithelial collagen deposition and is typically associated with malabsorption, diarrhoea and weight loss. The clinical features of collagenous sprue often resemble those of coeliac...... disease and together with frequent histological findings like mucosal thinning and intraepithelial lymphocytosis the diagnosis may be hard to reach without awareness of this condition. While coeliac disease is treated using gluten restriction, collagenous sprue is, however, not improved...... by this intervention. In cases of diet-refractory 'coeliac disease' it is therefore essential to consider collagenous sprue to initiate treatment at an early stage to prevent the fibrotic progression. Here, we report a case of a 78-year-old man with collagenous sprue and present the clinical and histological...

  20. A novel marker for assessment of liver matrix remodeling: An enzyme-linked immunosorbent assay (ELISA) detecting a MMP generated type I collagen neo-epitope (C1M)

    Leeming, Diana Julie; He, Y.; Veidal, S. S.

    2011-01-01

    A competitive enzyme-linked immunosorbent assay (ELISA) for detection of a type I collagen fragment generated by matrix metalloproteinases (MMP) -2, -9 and -13, was developed (CO1-764 or C1M). The biomarker was evaluated in two preclinical rat models of liver fibrosis: bile duct ligation (BDL) an...

  1. Brain structure links loneliness to social perception.

    Kanai, Ryota; Bahrami, Bahador; Duchaine, Brad; Janik, Agnieszka; Banissy, Michael J; Rees, Geraint

    2012-10-23

    Loneliness is the distressing feeling associated with the perceived absence of satisfying social relationships. Loneliness is increasingly prevalent in modern societies and has detrimental effects on health and happiness. Although situational threats to social relationships can transiently induce the emotion of loneliness, susceptibility to loneliness is a stable trait that varies across individuals [6-8] and is to some extent heritable. However, little is known about the neural processes associated with loneliness (but see [12-14]). Here, we hypothesized that individual differences in loneliness might be reflected in the structure of the brain regions associated with social processes. To test this hypothesis, we used voxel-based morphometry and showed that lonely individuals have less gray matter in the left posterior superior temporal sulcus (pSTS)--an area implicated in basic social perception. As this finding predicted, we further confirmed that loneliness was associated with difficulty in processing social cues. Although other sociopsychological factors such as social network size, anxiety, and empathy independently contributed to loneliness, only basic social perception skills mediated the association between the pSTS volume and loneliness. Taken together, our results suggest that basic social perceptual abilities play an important role in shaping an individual's loneliness. Copyright © 2012 Elsevier Ltd. All rights reserved.

  2. Microfibrous {beta}-TCP/collagen scaffolds mimic woven bone in structure and composition

    Zhang Shen; Zhang Xin; Cai Qing; Yang Xiaoping [Key Laboratory of Beijing City on Preparation and Processing of Novel Polymer Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029 (China); Wang Bo; Deng Xuliang, E-mail: yangxp@mail.buct.edu.c [Department of VIP Dental Service, School and Hospital of Stomatology, Peking University, Beijing 100081 (China)

    2010-12-15

    Woven bone, as the initial form of bone tissue, is always found in developing and repairing bone. It is thought of as a temporary scaffold for the deposition of osteogenic cells and the laying down of lamellar bone. Thus, we hypothesize that a matrix which resembles the architecture and components of woven bone can provide an osteoblastic microenvironment for bone cell growth and new bone formation. In this study, woven-bone-like beta-tricalcium phosphate ({beta}-TCP)/collagen scaffolds were fabricated by sol-gel electrospinning and impregnating methods. Optimization studies on sol-gel synthesis and electrospinning process were conducted respectively to prepare pure {beta}-TCP fibers with dimensions close to mineralized collagen fibrils in woven bone. The collagen-coating layer prepared by impregnation had an adhesive role that held the {beta}-TCP fibers together, and resulted in rapid degradation and matrix mineralization in in vitro tests. MG63 osteoblast-like cells seeded on the resultant scaffolds showed three-dimensional (3D) morphologies, and merged into multicellular layers after 7 days culture. Cytotoxicity test further revealed that extracts from the resultant scaffolds could promote the proliferation of MG63 cells. Therefore, the woven-bone-like matrix that we constructed favored the attachment and proliferation of MG63 cells in three dimensions. It has great potential ability to shorten the time of formation of new bone.

  3. Microfibrous β-TCP/collagen scaffolds mimic woven bone in structure and composition

    Zhang Shen; Zhang Xin; Cai Qing; Yang Xiaoping; Wang Bo; Deng Xuliang

    2010-01-01

    Woven bone, as the initial form of bone tissue, is always found in developing and repairing bone. It is thought of as a temporary scaffold for the deposition of osteogenic cells and the laying down of lamellar bone. Thus, we hypothesize that a matrix which resembles the architecture and components of woven bone can provide an osteoblastic microenvironment for bone cell growth and new bone formation. In this study, woven-bone-like beta-tricalcium phosphate (β-TCP)/collagen scaffolds were fabricated by sol-gel electrospinning and impregnating methods. Optimization studies on sol-gel synthesis and electrospinning process were conducted respectively to prepare pure β-TCP fibers with dimensions close to mineralized collagen fibrils in woven bone. The collagen-coating layer prepared by impregnation had an adhesive role that held the β-TCP fibers together, and resulted in rapid degradation and matrix mineralization in in vitro tests. MG63 osteoblast-like cells seeded on the resultant scaffolds showed three-dimensional (3D) morphologies, and merged into multicellular layers after 7 days culture. Cytotoxicity test further revealed that extracts from the resultant scaffolds could promote the proliferation of MG63 cells. Therefore, the woven-bone-like matrix that we constructed favored the attachment and proliferation of MG63 cells in three dimensions. It has great potential ability to shorten the time of formation of new bone.

  4. Betanin reduces the accumulation and cross-links of collagen in high-fructose-fed rat heart through inhibiting non-enzymatic glycation.

    Han, Junyan; Tan, Chang; Wang, Yiheng; Yang, Shaobin; Tan, Dehong

    2015-02-05

    We attempted to determine whether betanin (from natural pigments) that has antioxidant properties would be protective against fructose-induced diabetic cardiac fibrosis in Sprague-Dawley rats. Fructose water solution (30%) was accessed freely, and betanin (25 and 100 mg/kg/d) was administered by intra-gastric gavage continuously for 60 d. Rats were sacrificed after overnight fast. The rat blood and left ventricle were collected. In vitro antiglycation assay in bovine serum albumin/fructose system was also performed. In rats treated only with fructose, levels of plasma markers: glucose, insulin, HOMA and glycated hemoglobin rised, left ventricle collagen accumulated and cross-linked, profibrotic factor-transforming growth factor (TGF)-β1 and connective tissue growth factor (CTGF) protein expression increased, and soluble collagen decreased, compared with those in normal rats, showing fructose induces diabetic cardiac fibrosis. Treatment with betanin antagonized the changes of these parameters, demonstrating the antifibrotic role of betanin in the selected diabetic models. In further mechanistic study, betanin decreased protein glycation indicated by the decreased levels of protein glycation reactive intermediate (methylglyoxal), advanced glycation end product (N(ε)-(carboxymethyl) lysine) and receptors for advanced glycation end products (AGEs), antagonized oxidative stress and nuclear factor-κB activation elicited by fructose feeding, suggesting inhibition of glycation, oxidative stress and nuclear factor-κB activation may be involved in the antifibrotic mechanisms. Betanin also showed anitglycative effect in BSA/fructose system, which supported that anitglycation was involved in betanin's protective roles in vivo. Taken together, the potential for using betanin as an auxillary therapy for diabetic cardiomyopathy deserves to be explored further. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  5. Shear bond strength of composite to deep dentin after treatment with two different collagen cross-linking agents at varying time intervals.

    Srinivasulu, S; Vidhya, S; Sujatha, M; Mahalaxmi, S

    2012-01-01

    This in vitro study evaluated the shear bond strength of composite resin to deep dentin using a total etch adhesive after treatment with two collagen cross-linking agents at varying time intervals. Thirty freshly extracted human maxillary central incisors were sectioned longitudinally into equal mesial and distal halves (n=60). The proximal deep dentin was exposed, maintaining a remaining dentin thickness (RDT) of approximately 1 mm. The specimens were randomly divided into three groups based on the surface treatment of dentin prior to bonding as follows: group I (n=12, control): no prior dentin surface treatment; group II (n=24): dentin surface pretreated with 10% sodium ascorbate; and group III (n=24): dentin surface pretreated with 6.5% proanthocyanidin. Groups II and III were further subdivided into two subgroups of 12 specimens each, based on the pretreatment time of five minutes (subgroup A) and 10 minutes (subgroup B). Shear bond strength of the specimens was tested with a universal testing machine, and the data were statistically analyzed. Significantly higher shear bond strength to deep dentin was observed in teeth treated with 10% sodium ascorbate (group II) and 6.5% proanthocyanidin (group III) compared to the control group (group I). Among the collagen cross-linkers used, specimens treated with proanthocyanidin showed significantly higher shear bond strength values than those treated with sodium ascorbate. No significant difference was observed between the five-minute and 10-minute pretreatment times in groups II and III. It can be concluded that dentin surface pretreatment with both 10% sodium ascorbate and 6.5% proanthocyanidin resulted in significant improvement in bond strength of resin composite to deep dentin.

  6. Minerals and aligned collagen fibrils in tilapia fish scales: structural analysis using dark-field and energy-filtered transmission electron microscopy and electron tomography.

    Okuda, Mitsuhiro; Ogawa, Nobuhiro; Takeguchi, Masaki; Hashimoto, Ayako; Tagaya, Motohiro; Chen, Song; Hanagata, Nobutaka; Ikoma, Toshiyuki

    2011-10-01

    The mineralized structure of aligned collagen fibrils in a tilapia fish scale was investigated using transmission electron microscopy (TEM) techniques after a thin sample was prepared using aqueous techniques. Electron diffraction and electron energy loss spectroscopy data indicated that a mineralized internal layer consisting of aligned collagen fibrils contains hydroxyapatite crystals. Bright-field imaging, dark-field imaging, and energy-filtered TEM showed that the hydroxyapatite was mainly distributed in the hole zones of the aligned collagen fibrils structure, while needle-like materials composed of calcium compounds including hydroxyapatite existed in the mineralized internal layer. Dark-field imaging and three-dimensional observation using electron tomography revealed that hydroxyapatite and needle-like materials were mainly found in the matrix between the collagen fibrils. It was observed that hydroxyapatite and needle-like materials were preferentially distributed on the surface of the hole zones in the aligned collagen fibrils structure and in the matrix between the collagen fibrils in the mineralized internal layer of the scale.

  7. Study of the collagen structure in the superficial zone and physiological state of articular cartilage using a 3D confocal imaging technique

    Zheng Ming H

    2008-07-01

    Full Text Available Abstract Introduction The collagen structure in the superficial zone of articular cartilage is critical to the tissue's durability. Early osteoarthritis is often characterized with fissures on the articular surface. This is closely related to the disruption of the collagen network. However, the traditional histology can not offer visualization of the collagen structure in articular cartilage because it uses conventional optical microscopy that does not have insufficient imaging resolution to resolve collagen from proteoglycans in hyaline articular cartilage. This study examines the 3D collagen network of articular cartilage scored from 0 to 2 in the scoring system of International Cartilage Repair Society, and aims to develop a 3D histology for assessing early osteoarthritis. Methods Articular cartilage was visually classified into five physiological groups: normal cartilage, aged cartilage, cartilage with artificial and natural surface disruption, and fibrillated. The 3D collagen matrix of the cartilage was acquired using a 3D imaging technique developed previously. Traditional histology was followed to grade the physiological status of the cartilage in the scoring system of International Cartilage Repair Society. Results Normal articular cartilage contains interwoven collagen bundles near the articular surface, approximately within the lamina splendens. However, its collagen fibres in the superficial zone orient predominantly in a direction spatially oblique to the articular surface. With age and disruption of the articular surface, the interwoven collagen bundles are gradually disappeared, and obliquely oriented collagen fibres change to align predominantly in a direction spatially perpendicular to the articular surface. Disruption of the articular surface is well related to the disappearance of the interwoven collagen bundles. Conclusion A 3D histology has been developed to supplement the traditional histology and study the subtle changes in

  8. Formaldehyde cross-linking and structural proteomics: Bridging the gap.

    Srinivasa, Savita; Ding, Xuan; Kast, Juergen

    2015-11-01

    Proteins are dynamic entities constantly moving and altering their structures based on their functions and interactions inside and outside the cell. Formaldehyde cross-linking combined with mass spectrometry can accurately capture interactions of these rapidly changing biomolecules while maintaining their physiological surroundings. Even with its numerous established uses in biology and compatibility with mass spectrometry, formaldehyde has not yet been applied in structural proteomics. However, formaldehyde cross-linking is moving toward analyzing tertiary structure, which conventional cross-linkers have already accomplished. The purpose of this review is to describe the potential of formaldehyde cross-linking in structural proteomics by highlighting its applications, characteristics and current status in the field. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. The synthesis and coupling of photoreactive collagen-based peptides to restore integrin reactivity to an inert substrate, chemically-crosslinked collagen

    Malcor, Jean-Daniel; Bax, Daniel; Hamaia, Samir W.; Davidenko, Natalia; Best, Serena M.; Cameron, Ruth E.; Farndale, Richard W.; Bihan, Dominique

    2016-01-01

    Collagen is frequently advocated as a scaffold for use in regenerative medicine. Increasing the mechanical stability of a collagen scaffold is widely achieved by cross-linking using 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide (EDC) and N-hydroxysuccinimide (NHS). However, this treatment consumes the carboxylate-containing amino acid sidechains that are crucial for recognition by the cell-surface integrins, abolishing cell adhesion. Here, we restore cell reactivity to a cross-linked type I collagen film by covalently linking synthetic triple-helical peptides (THPs), mimicking the structure of collagen. These THPs are ligands containing an active cell-recognition motif, GFOGER, a high-affinity binding site for the collagen-binding integrins. We end-stapled peptide strands containing GFOGER by coupling a short diglutamate-containing peptide to their N-terminus, improving the thermal stability of the resulting THP. A photoreactive Diazirine group was grafted onto the end-stapled THP to allow covalent linkage to the collagen film upon UV activation. Such GFOGER-derivatized collagen films showed restored affinity for the ligand-binding I domain of integrin α2β1, and increased integrin-dependent cell attachment and spreading of HT1080 and Rugli cell lines, expressing integrins α2β1 and α1β1, respectively. The method we describe has wide application, beyond collagen films or scaffolds, since the photoreactive diazirine will react with many organic carbon skeletons. PMID:26854392

  10. Using Second Harmonic Generation Microscopy to Study the Three-Dimensional Structure of Collagen and its Degradation Mechanism

    Mega, Yair

    Collagen is one of the most abundant proteins found in the human body. Its crystalline structure possesses no centrosymmetry, allowing it to emit second-harmonic waves. Second harmonic generation (SHG) microscopy utilizes the latter quality to produce high-resolution images of collagen rich tissues and therefore become a key research tool in the biomedical field. We developed a new model, intended to be used together with second harmonic generation (SHG) microscopy, to thoroughly investigate collagen-based tissues. We use our SHG model to reveal information in real time from enzymatic biochemical processes. We also present a novel method used to measure quantitatively the direction of the fibers within the tissue, from SHG images. Using this method, we were able to reconstruct an angular map of the orientation of collagen fibers from multiple sections across the entire area of a human cornea. The structure we obtained demonstrates the criss-crossing structure of the human cornea, previously suggested in the literature. In addition, we also report work on a unique step-wise three-photon fluorescence excitation discovered in melanin. This unique fluorescence mechanism was exploited to discriminate melanin on a small-size, low-cost and low laser power setup which was used as a prototype for a handheld device. The latter study is a part of a larger on-going effort in our group to explore new diagnosis methods to be used for early skin cancer screening. Finally, this work demonstrates a spectroscopy-based method to correct for blood vessel thickness effect. The method analyzes spectral shift from a molecular imaging agent and correlate the shifts to the length of the optical path in blood. The correction method described in this work is intended to be implemented on a guided catheter near infrared fluorescence (NIRF) intra-vascular imaging system. In this imaging system, this study's results will used to correct for the radial distance between the imaging tip of the

  11. The collagen structure of equine articular cartilage, characterized using polarization-sensitive optical coherence tomography

    Ugryumova, Nadya; Attenburrow, Don P; Winlove, C Peter; Matcher, Stephen J

    2005-01-01

    Optical coherence tomography and polarization-sensitive optical coherence tomography images of equine articular cartilage are presented. Measurements were made on intact joint surfaces. Significant (e.g. x 2) variations in the intrinsic birefringence were found over spatial scales of a few millimetres, even on samples taken from young (18 month) animals that appeared visually homogeneous. A comparison of data obtained on a control tissue (equine flexor tendon) further suggests that significant variations in the orientation of the collagen fibres relative to the plane of the joint surface exist. Images of visually damaged cartilage tissue show characteristic features both in terms of the distribution of optical scatterers and of the birefringent components

  12. The collagen structure of equine articular cartilage, characterized using polarization-sensitive optical coherence tomography

    Ugryumova, Nadya; Attenburrow, Don P; Winlove, C Peter; Matcher, Stephen J [Biomedical Physics Group, School of Physics, University of Exeter, Stocker Road, Exeter EX4 4QL (United Kingdom)

    2005-08-07

    Optical coherence tomography and polarization-sensitive optical coherence tomography images of equine articular cartilage are presented. Measurements were made on intact joint surfaces. Significant (e.g. x 2) variations in the intrinsic birefringence were found over spatial scales of a few millimetres, even on samples taken from young (18 month) animals that appeared visually homogeneous. A comparison of data obtained on a control tissue (equine flexor tendon) further suggests that significant variations in the orientation of the collagen fibres relative to the plane of the joint surface exist. Images of visually damaged cartilage tissue show characteristic features both in terms of the distribution of optical scatterers and of the birefringent components.

  13. Building blocks of Collagen based biomaterial devices

    First page Back Continue Last page Overview Graphics. Building blocks of Collagen based biomaterial devices. Collagen as a protein. Collagen in tissues and organs. Stabilizing and cross linking agents. Immunogenicity. Hosts (drugs). Controlled release mechanisms of hosts. Biodegradability, workability into devices ...

  14. PHAGOCYTOSIS AND REMODELING OF COLLAGEN MATRICES

    Abraham, Leah C.; Dice, J Fred.; Lee, Kyongbum; Kaplan, David L.

    2007-01-01

    The biodegradation of collagen and the deposition of new collagen-based extracellular matrices are of central importance in tissue remodeling and function. Similarly, for collagen-based biomaterials used in tissue engineering, the degradation of collagen scaffolds with accompanying cellular infiltration and generation of new extracellular matrix is critical for integration of in vitro grown tissues in vivo. In earlier studies we observed significant impact of collagen structure on primary lun...

  15. Collagen macromolecular drug delivery systems

    Gilbert, D.L.

    1988-01-01

    The objective of this study was to examine collagen for use as a macromolecular drug delivery system by determining the mechanism of release through a matrix. Collagen membranes varying in porosity, crosslinking density, structure and crosslinker were fabricated. Collagen characterized by infrared spectroscopy and solution viscosity was determined to be pure and native. The collagen membranes were determined to possess native vs. non-native quaternary structure and porous vs. dense aggregate membranes by electron microscopy. Collagen monolithic devices containing a model macromolecule (inulin) were fabricated. In vitro release rates were found to be linear with respect to t 1/2 and were affected by crosslinking density, crosslinker and structure. The biodegradation of the collagen matrix was also examined. In vivo biocompatibility, degradation and 14 C-inulin release rates were evaluated subcutaneously in rats

  16. Conventional Corneal Collagen Cross-Linking Versus Transepithelial Diluted Alcohol and Iontophoresis-Assisted Corneal Cross-Linking in Progressive Keratoconus.

    Bilgihan, Kamil; Yesilirmak, Nilufer; Altay, Yesim; Yuvarlak, Armagan; Ozdemir, Huseyin Baran

    2017-12-01

    To compare clinical outcomes of conventional corneal cross-linking (C-CXL) and diluted alcohol and iontophoresis-assisted corneal cross-linking (DAI-CXL) for the treatment of progressive keratoconus (KC). Ninety-three eyes of 80 patients with KC were treated by C-CXL (n = 47) or DAI-CXL (n = 46). Visual acuity, keratometry, KC indexes, pachymetry, and aberrations were recorded before treatment and 1, 3, 6, and 12 months after treatment. The demarcation line was assessed 1 month after treatment. A significant improvement in visual acuity was observed at month 3 and month 6 after DAI-CXL and C-CXL, respectively. A significant decrease in maximum keratometry was observed in both groups at month 6. The front symmetry index significantly improved in both groups after 6 months, whereas the Baiocchi Calossi Versaci index significantly improved only after DAI-CXL at month 12 (P = 0.01). Average keratometry and other KC indexes were stable during 12 months of follow-up. Central corneal thickness decreased by 28.6 and 40.2 μm after DAI-CXL and C-CXL at month 1, respectively (P < 0.01), and it reached baseline at the 12th month (P = 0.14) only in the DAI-CXL group. Higher-order aberrations, coma, and spherical aberration significantly worsened at month 1 (P < 0.01) only after C-CXL; however, they improved significantly at month 12 compared with baseline (P < 0.05) in both groups. The demarcation line was visible in all cases at month 1 at a mean depth of 302 ± 56 μm and 311 ± 57 μm after DAI-CXL and C-CXL, respectively (P = 0.7). The DAI-CXL protocol seems as effective as the C-CXL protocol in halting KC progression after 1 year of follow-up.

  17. [Collagen nephritis].

    Lago, N R; Bulos, M J; Monserrat, A J

    1997-01-01

    Fibrillar collagen in the glomeruli is considered specific of the nail-patella syndrome. A new nephropathy with diffuse intraglomerular deposition of type III collagen without nail and skeletal abnormalities has been described. We report the case of a 26-year-old woman who presented persistent proteinuria, hematuria, deafness without nail and skeletal abnormalities. The renal biopsy showed focal and segmental glomerulosclerosis by light microscopy. The electron microscopy revealed the presence of massive fibrillar collagen within the mesangial matriz and the basement membrane. This is the first patient reported in our country. We emphasize the usefulness of electron microscopy in the study of glomerular diseases.

  18. Safety and Efficacy of Epithelium-On Corneal Collagen Cross-Linking Using a Multifactorial Approach to Achieve Proper Stromal Riboflavin Saturation

    Aleksandar Stojanovic

    2012-01-01

    Full Text Available Purpose. To evaluate the efficacy and safety of epithelium-on corneal collagen cross-linking (CXL using a multifactorial approach to achieve proper stromal riboflavin saturation. Methods. This non-randomized retrospective study comprised 61 eyes with progressive keratoconus treated with epithelium-on CXL. Chemical epithelial penetration enhancement (benzalkonium chloride-containing local medication and hypotonic riboflavin solution, mechanical disruption of the superficial epithelium, and prolongation of the riboflavin-induction time until verification of stromal saturation were used before the UVA irradiation. Uncorrected and corrected distance visual acuity (UDVA, CDVA, refraction, corneal topography, and aberrometry were evaluated at baseline and at 1, 3, 6, and 12 months postoperative. Results. At 12-month, UDVA and CDVA improved significantly. None of the eyes lost lines of CDVA, while 27.4% of the eyes gained 2 or more lines. Mean spherical equivalent decreased by 0.74 D, and mean cylindrical reduction was 1.15 D. Irregularity index and asymmetry from Scheimpflug-based topography and Max-K at the location of cone from Placido-based topography showed a significant decrease. Higher-order-aberration data demonstrated a slight reduction in odd-order aberrations S 3, 5,7 (=0.04. Postoperative pain without other complications was recorded. Conclusion. Epithelium-on CXL with our novel protocol appeared to be safe and effective in the treatment of progressive keratoconus.

  19. Alpha-ketoglutarate decreases serum levels of C-terminal cross-linking telopeptide of type I collagen (CTX) in postmenopausal women with osteopenia: six-month study.

    Filip, Rafał S; Pierzynowski, Stefan G; Lindegard, Birger; Wernerman, Jan; Haratym-Maj, Agnieszka; Podgurniak, Małgorzata

    2007-03-01

    Several studies have shown that alpha-ketoglutaric acid (AKG) increases serum levels of proline and has beneficial effects on skeletal development. We studied the effect of alpha-ketoglutaric (AKG) acid calcium salt (6 g AKG and 1.68 Ca/day) or calcium alone (1.68 Ca/day) on serum C-terminal cross-linked telopeptide of type I collagen (CTX) and osteocalcin (OC), as well as on lumbar spine bone mineral density (BMD) in a randomized, parallel group, double-blind, 6-month study conducted on 76 postmenopausal women with osteopenia. The maximum decrease of the mean CTX level in the AKG-Ca group was observed after 24 weeks (37.0%, p = 0.006). The differences in CTX between study groups were statistically significant after 12 and 24 weeks. The OC serum level was not affected by treatments. The BMD of the AKG-Ca group increased by 1.6% from baseline; however, the difference between treatment groups was estimated as 0.9% (non-significant). This study suggests the potential usefulness of AKG-Ca in osteopenic postmenopausal women. AKG-Ca induced beneficial changes in serum CTX, which was consistent with preserving the bone mass in the lumbar spine; however, the long-term effect needs to be further investigated.

  20. Safety and efficacy of simultaneous corneal collagen cross-linking with topography-guided PRK in managing low-grade keratoconus: 1-year follow-up.

    Tuwairqi, Waleed S; Sinjab, Mazen M

    2012-05-01

    To evaluate 1-year visual and topographic outcomes and safety and efficacy of corneal collagen cross-linking (CXL) combined with topography-guided photorefractive keratectomy (TG-PRK) to achieve near emmetropia in eyes with low-grade keratoconus. Twenty-two eyes from 15 patients (11 women, 4 men) were included in a prospective, nonrandomized, noncontrolled clinical study. Mean patient age was 26.6±6.07 years (range: 19 to 40 years). Inclusion criteria were low-grade keratoconus with evidence of progression, transparent cornea, corrected distance visual acuity (CDVA) 0.8 (decimal) or better, corneal thickness >440 μm, and maximum keratometry readings (K-max) PRK with CXL. Study parameters were uncorrected distance visual acuity, CDVA, manifest refractive error, manifest and topographic (corneal) astigmatism, patient satisfaction, and efficacy and safety of the treatment. Follow-up was 1 year. After 1 year, statistically significant improvement was noted in all study parameters (PPRK with CXL is an effective and safe treatment with remarkable visual and topographic outcomes in patients with low-grade keratoconus who meet the recommended inclusion criteria. Copyright 2012, SLACK Incorporated.

  1. Management of corneal ectasia after LASIK with combined, same-day, topography-guided partial transepithelial PRK and collagen cross-linking: the athens protocol.

    Kanellopoulos, Anastasios John; Binder, Perry S

    2011-05-01

    To evaluate a series of patients with corneal ectasia after LASIK that underwent the Athens Protocol: combined topography-guided photorefractive keratectomy (PRK) to reduce or eliminate induced myopia and astigmatism followed by sequential, same-day ultraviolet A (UVA) corneal collagen cross-linking (CXL). Thirty-two consecutive corneal ectasia cases underwent transepithelial PRK (WaveLight ALLEGRETTO) immediately followed by CXL (3 mW/cm(2)) for 30 minutes using 0.1% topical riboflavin sodium phosphate. Uncorrected distance visual acuity (UDVA), corrected distance visual acuity (CDVA), manifest refraction spherical equivalent, keratometry, central ultrasonic pachymetry, corneal tomography (Oculus Pentacam), and endothelial cell counts were analyzed. Mean follow-up was 27 months (range: 6 to 59 months). Twenty-seven of 32 eyes had an improvement in UDVA and CDVA of 20/45 or better (2.25 logMAR) at last follow-up. Four eyes showed some topographic improvement but no improvement in CDVA. One of the treated eyes required a subsequent penetrating keratoplasty. Corneal haze grade 2 was present in 2 eyes. Combined, same-day, topography-guided PRK and CXL appeared to offer tomographic stability, even after long-term follow-up. Only 2 of 32 eyes had corneal ectasia progression after the intervention. Seventeen of 32 eyes appeared to have improvement in UDVA and CDVA with follow-up >1.5 years. This technique may offer an alternative in the management of iatrogenic corneal ectasia. Copyright 2011, SLACK Incorporated.

  2. Serum Bone Resorption Markers after Parathyroidectomy for Renal Hyperparathyroidism: Correlation Analyses for the Cross-Linked N-telopeptide of Collagen I and Tartrate-Resistant Acid Phosphatase

    Kuo-Chin Hung

    2012-01-01

    Full Text Available Patients on long-term dialysis may develop secondary hyperparathyroidism (SHPT with increased serum concentrations of bone resorption markers such as the cross-linked N-telopeptide of type I collagen (NTX and type-5b tartrate-resistant acid phosphatase (TRAP. When SHPT proves refractory to treatment, parathyroidectomy (PTX may be needed. Renal patients on maintenance HD who received PTX for refractory SHPT (n=23 or who did not develop refractory SHPT (control subjects; n=25 were followed prospectively for 4 weeks. Serum intact parathyroid hormone (iPTH, NTX, TRAP, and bone alkaline phosphatase (BAP concentrations were measured serially and correlation analyses were performed. iPTH values decreased rapidly and dramatically. BAP values increased progressively with peak increases observed at 2 weeks after surgery. NTX and TRAP values decreased concurrently and progressively through 4 weeks following PTX. A significant correlation between TRAP and NTX values was observed before PTX but not at 4 weeks after PTX. Additionally, the fractional changes in serum TRAP were larger than those in serum NTX at all times examined after PTX. Serum iPTH, TRAP, and NTX values declined rapidly following PTX for SHPT. Serum TRAP values declined to greater degrees than serum NTX values throughout the 4-week period following PTX.

  3. Deployment of a multi-link flexible structure

    Na, Kyung-Su; Kim, Ji-Hwan

    2006-06-01

    Deployment of a multi-link beam structure undergoing locking is analyzed in the Timoshenko beam theory. In the modeling of the system, dynamic forces are assumed to be torques and restoring forces due to the torsion spring at each joint. Hamilton's principle is used to determine the equations of motion and the finite element method is adopted to analyze the system. Newmark time integration and Newton-Raphson iteration methods are used to solve for the non-linear equations of motion at each time step. The locking at the joints of the multi-link flexible structure is analyzed by the momentum balance method. Numerical results are compared with the previous experimental data. The angles and angular velocities of each joint, tip displacement, and velocity of each link are investigated to study the motions of the links at each time step. To analyze the effect of thickness on the motion of the link, the angle and the tip displacement of each link are compared according to the various slenderness ratios. Additionally, in order to investigate the effect of shear, the tip displacements of a Timoshenko beam are compared with those of an Euler-Bernoulli beam.

  4. Collagen organization in the chicken cornea and structural alterations in the retinopathy, globe enlarged (rge) phenotype--an X-ray diffraction study.

    Boote, Craig; Hayes, Sally; Jones, Simon; Quantock, Andrew J; Hocking, Paul M; Inglehearn, Chris F; Ali, Manir; Meek, Keith M

    2008-01-01

    An investigation into the collagenous structure of the mature avian cornea is presented. Wide-angle X-ray diffraction is employed to assess collagen organization in 9-month-old chicken corneas. The central 2-4mm corneal region features a preponderance of fibrils directed along the superior-inferior and nasal-temporal orthogonal meridians. More peripherally the orientation of fibrils alters in favor of a predominantly tangential arrangement. The chicken cornea appears to be circumscribed by an annulus of fibrils that extends into the limbus. The natural arrangement of collagen in the chicken cornea is discussed in relation to corneal shape and the mechanical requirements of avian corneal accommodation. Equivalent data are also presented from age-matched blind chickens affected with the retinopathy, globe enlarged (rge) mutation, characterized by an abnormally thick and flat cornea. The data indicate considerable realignment and redistribution of collagen lamellae in the peripheral rge cornea. In contrast to normal chickens, no obvious tangential collagen alignment was evident in the periphery of rge corneas. In mammals, the presence of a limbal fibril annulus is believed to be important in corneal shape preservation. We postulate that corneal flattening in rge chickens may be related to biomechanical changes brought about by an alteration in collagen arrangement at the corneal periphery.

  5. Corneal Collagen Cross-Linking in the Management of Keratoconus in Canada: A Cost-Effectiveness Analysis.

    Leung, Victoria C; Pechlivanoglou, Petros; Chew, Hall F; Hatch, Wendy

    2017-08-01

    To use patient-level microsimulation models to evaluate the comparative cost-effectiveness of early corneal cross-linking (CXL) and conventional management with penetrating keratoplasty (PKP) when indicated in managing keratoconus in Canada. Cost-utility analysis using individual-based, state-transition microsimulation models. Simulated cohorts of 100 000 individuals with keratoconus who entered each treatment arm at 25 years of age. Fellow eyes were modeled separately. Simulated individuals lived up to a maximum of 110 years. We developed 2 state-transition microsimulation models to reflect the natural history of keratoconus progression and the impact of conventional management with PKP versus CXL. We collected data from the published literature to inform model parameters. We used realistic parameters that maximized the potential costs and complications of CXL, while minimizing those associated with PKP. In each treatment arm, we allowed simulated individuals to move through health states in monthly cycles from diagnosis until death. For each treatment strategy, we calculated the total cost and number of quality-adjusted life years (QALYs) gained. Costs were measured in Canadian dollars. Costs and QALYs were discounted at 5%, converting future costs and QALYs into present values. We used an incremental cost-effectiveness ratio (ICER = difference in lifetime costs/difference in lifetime health outcomes) to compare the cost-effectiveness of CXL versus conventional management with PKP. Lifetime costs and QALYs for CXL were estimated to be Can$5530 (Can$4512, discounted) and 50.12 QALYs (16.42 QALYs, discounted). Lifetime costs and QALYs for conventional management with PKP were Can$2675 (Can$1508, discounted) and 48.93 QALYs (16.09 QALYs, discounted). The discounted ICER comparing CXL to conventional management was Can$9090/QALY gained. Sensitivity analyses revealed that in general, parameter variations did not influence the cost-effectiveness of CXL. CXL is

  6. Collagen-Gold Nanoparticle Conjugates for Versatile Biosensing

    Sarah Unser

    2017-02-01

    Full Text Available Integration of noble metal nanoparticles with proteins offers promising potential to create a wide variety of biosensors that possess both improved selectivity and versatility. The multitude of functionalities that proteins offer coupled with the unique optical properties of noble metal nanoparticles can allow for the realization of simple, colorimetric sensors for a significantly larger range of targets. Herein, we integrate the structural protein collagen with 10 nm gold nanoparticles to develop a protein-nanoparticle conjugate which possess the functionality of the protein with the desired colorimetric properties of the nanoparticles. Applying the many interactions that collagen undergoes in the extracellular matrix, we are able to selectively detect both glucose and heparin with the same collagen-nanoparticle conjugate. Glucose is directly detected through the cross-linking of the collagen fibrils, which brings the attached nanoparticles into closer proximity, leading to a red-shift in the LSPR frequency. Conversely, heparin is detected through a competition assay in which heparin-gold nanoparticles are added to solution and compete with heparin in the solution for the binding sites on the collagen fibrils. The collagen-nanoparticle conjugates are shown to detect both glucose and heparin in the physiological range. Lastly, glucose is selectively detected in 50% mouse serum with the collagen-nanoparticle devices possessing a linear range of 3–25 mM, which is also within the physiologically relevant range.

  7. Fibrin Gels Exhibit Improved Biological, Structural, and Mechanical Properties Compared with Collagen Gels in Cell-Based Tendon Tissue-Engineered Constructs

    Dyment, Nathaniel A.; Lu, Yinhui; Rao, Marepalli; Shearn, Jason T.; Rowe, David W.; Kadler, Karl E.; Butler, David L.

    2015-01-01

    The prevalence of tendon and ligament injuries and inadequacies of current treatments is driving the need for alternative strategies such as tissue engineering. Fibrin and collagen biopolymers have been popular materials for creating tissue-engineered constructs (TECs), as they exhibit advantages of biocompatibility and flexibility in construct design. Unfortunately, a few studies have directly compared these materials for tendon and ligament applications. Therefore, this study aims at determining how collagen versus fibrin hydrogels affect the biological, structural, and mechanical properties of TECs during formation in vitro. Our findings show that tendon and ligament progenitor cells seeded in fibrin constructs exhibit improved tenogenic gene expression patterns compared with their collagen-based counterparts for approximately 14 days in culture. Fibrin-based constructs also exhibit improved cell-derived collagen alignment, increased linear modulus (2.2-fold greater) compared with collagen-based constructs. Cyclic tensile loading, which promotes the maturation of tendon constructs in a previous work, exhibits a material-dependent effect in this study. Fibrin constructs show trending reductions in mechanical, biological, and structural properties, whereas collagen constructs only show improved tenogenic expression in the presence of mechanical stimulation. These findings highlight that components of the mechanical stimulus (e.g., strain amplitude or time of initiation) need to be tailored to the material and cell type. Given the improvements in tenogenic expression, extracellular matrix organization, and material properties during static culture, in vitro findings presented here suggest that fibrin-based constructs may be a more suitable alternative to collagen-based constructs for tissue-engineered tendon/ligament repair. PMID:25266738

  8. Enhanced stabilization of collagen by furfural.

    Lakra, Rachita; Kiran, Manikantan Syamala; Usha, Ramamoorthy; Mohan, Ranganathan; Sundaresan, Raja; Korrapati, Purna Sai

    2014-04-01

    Furfural (2-furancarboxaldehyde), a product derived from plant pentosans, has been investigated for its interaction with collagen. Introduction of furfural during fibril formation enhanced the thermal and mechanical stability of collagen. Collagen films treated with furfural exhibited higher denaturation temperature (Td) (pFurfural and furfural treated collagen films did not have any cytotoxic effect. Rheological characterization showed an increase in shear stress and shear viscosity with increasing shear rate for treated collagen. Circular dichroism (CD) studies indicated that the furfural did not have any impact on triple helical structure of collagen. Scanning electron microscopy (SEM) of furfural treated collagen exhibited small sized porous structure in comparison with untreated collagen. Thus this study provides an alternate ecologically safe crosslinking agent for improving the stability of collagen for biomedical and industrial applications. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Chirality and helicity of poly-benzyl-L-glutamate in liquid crystals and a wave structure that mimics collagen helicity in crimp

    Vidal Benedicto de Campos

    2001-01-01

    Full Text Available Ideal biocompatible polymers must show a mimetic superstructure with biological supra-organization. Collagen-rich structures like tendons and ligaments are materials with various levels of order, from molecules to bundles of fibers, which affect their biomechanical properties and cellular interactions. Poly-benzyl-L-glutamate (PBLG displaying helicity was used here to test the development of wave-like structures as those occurring in collagen fibers. Birefringence of PBLG under various crystallization conditions was studied with a lambda/4 compensator according to Sénarmont. Qualitative observations were plainly sufficient to conclude that the PBLG fibrils were supra-organized helically as a chiral object. During crystallization stretched PBLG formed a helical superstructure with characteristic striation resembling waves (crimp. Supported by optical anisotropy findings, a twisted grain boundary liquid crystal type is proposed as a transition phase in the formation of the PBLG chiral object. A similarity with the wavy organization (crimp of collagen bundles is proposed.

  10. Medial/skeletal linking structures for multi-region configurations

    Damon, James

    2018-01-01

    The authors consider a generic configuration of regions, consisting of a collection of distinct compact regions \\{ \\Omega_i\\} in \\mathbb{R}^{n+1} which may be either regions with smooth boundaries disjoint from the others or regions which meet on their piecewise smooth boundaries \\mathcal{B}_i in a generic way. They introduce a skeletal linking structure for the collection of regions which simultaneously captures the regions' individual shapes and geometric properties as well as the "positional geometry" of the collection. The linking structure extends in a minimal way the individual "skeletal structures" on each of the regions. This allows the authors to significantly extend the mathematical methods introduced for single regions to the configuration of regions.

  11. Acceleration of bone union after structural bone grafts with a collagen-binding basic fibroblast growth factor anchored-collagen sheet for critical-size bone defects

    Ueno, Masaki; Uchida, Kentaro; Saito, Wataru; Inoue, Gen; Takahira, Naonobu; Takaso, Masashi; Matsushita, Osamu; Yogoro, Mizuki; Nishi, Nozomu; Ogura, Takayuki; Hattori, Shunji; Tanaka, Keisuke

    2014-01-01

    Bone allografts are commonly used for the repair of critical-size bone defects. However, the loss of cellular activity in processed grafts markedly reduces their healing potential compared with autografts. To overcome this obstacle, we developed a healing system for critical-size bone defects that consists of overlaying an implanted bone graft with a collagen sheet (CS) loaded with basic fibroblast growth factor (bFGF) fused to the collagen-binding domain derived from a Clostridium histolyticum collagenase (CB-bFGF). In a murine femoral defect model, defect sites treated with CS/CB-bFGF had a significantly larger callus volume than those treated with CS/native bFGF. In addition, treatment with CS/CB-bFGF resulted in the rapid formation of a hard callus bridge and a larger total callus volume at the host–graft junction than treatment with CS/bFGF. Our results suggest that the combined use of CS and CB-bFGF helps accelerate the union of allogenic bone grafts. (paper)

  12. A pilot study for distinguishing chromophobe renal cell carcinoma and oncocytoma using second harmonic generation imaging and convolutional neural network analysis of collagen fibrillar structure

    Judd, Nicolas; Smith, Jason; Jain, Manu; Mukherjee, Sushmita; Icaza, Michael; Gallagher, Ryan; Szeligowski, Richard; Wu, Binlin

    2018-02-01

    A clear distinction between oncocytoma and chromophobe renal cell carcinoma (chRCC) is critically important for clinical management of patients. But it may often be difficult to distinguish the two entities based on hematoxylin and eosin (H and E) stained sections alone. In this study, second harmonic generation (SHG) signals which are very specific to collagen were used to image collagen fibril structure. We conduct a pilot study to develop a new diagnostic method based on the analysis of collagen associated with kidney tumors using convolutional neural networks (CNNs). CNNs comprise a type of machine learning process well-suited for drawing information out of images. This study examines a CNN model's ability to differentiate between oncocytoma (benign), and chRCC (malignant) kidney tumor images acquired with second harmonic generation (SHG), which is very specific for collagen matrix. To the best of our knowledge, this is the first study that attempts to distinguish the two entities based on their collagen structure. The model developed from this study demonstrated an overall classification accuracy of 68.7% with a specificity of 66.3% and sensitivity of 74.6%. While these results reflect an ability to classify the kidney tumors better than chance, further studies will be carried out to (a) better realize the tumor classification potential of this method with a larger sample size and (b) combining SHG with two-photon excited intrinsic fluorescence signal to achieve better classification.

  13. Identifying structural variants using linked-read sequencing data.

    Elyanow, Rebecca; Wu, Hsin-Ta; Raphael, Benjamin J

    2017-11-03

    Structural variation, including large deletions, duplications, inversions, translocations, and other rearrangements, is common in human and cancer genomes. A number of methods have been developed to identify structural variants from Illumina short-read sequencing data. However, reliable identification of structural variants remains challenging because many variants have breakpoints in repetitive regions of the genome and thus are difficult to identify with short reads. The recently developed linked-read sequencing technology from 10X Genomics combines a novel barcoding strategy with Illumina sequencing. This technology labels all reads that originate from a small number (~5-10) DNA molecules ~50Kbp in length with the same molecular barcode. These barcoded reads contain long-range sequence information that is advantageous for identification of structural variants. We present Novel Adjacency Identification with Barcoded Reads (NAIBR), an algorithm to identify structural variants in linked-read sequencing data. NAIBR predicts novel adjacencies in a individual genome resulting from structural variants using a probabilistic model that combines multiple signals in barcoded reads. We show that NAIBR outperforms several existing methods for structural variant identification - including two recent methods that also analyze linked-reads - on simulated sequencing data and 10X whole-genome sequencing data from the NA12878 human genome and the HCC1954 breast cancer cell line. Several of the novel somatic structural variants identified in HCC1954 overlap known cancer genes. Software is available at compbio.cs.brown.edu/software. braphael@princeton.edu. Supplementary data are available at Bioinformatics online. © The Author (2017). Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com

  14. Corneal thickness changes during corneal collagen cross-linking with UV-A irradiation and hypo-osmolar riboflavin in thin corneas

    Belquiz Amaral Nassaralla

    2013-06-01

    Full Text Available PURPOSE: To evaluate the thinnest corneal thickness changes during and after corneal collagen cross-linking treatment with ultraviolet-A irradiation, using hypo-osmolar riboflavin solution in thin corneas. METHODS: Eighteen eyes of 18 patients were included in this study. After epithelium removal, iso-osmolar 0.1% riboflavin solution was instilled to the cornea every 3 minutes for 30 minutes. Hypo-osmolar 0.1% riboflavin solution was then applied every 20 seconds for 5 minutes or until the thinnest corneal thickness reached 400 µm. Ultraviolet-A irradiation was performed for 30 minutes. During irradiation, iso-osmolar 0.1% riboflavin drops were applied every 5 minutes. Ultrasound pachymetry was performed at approximately the thinnest point of the cornea preoperatively, after epithelial removal, after iso-osmolar riboflavin instillation, after hypo-osmolar riboflavin instillation, after ultraviolet-A irradiation, and at 1, 6 and 12 months after treatment. RESULTS: Mean preoperative thinnest corneal thickness was 380 ± 11 µm. After epithelial removal it decreased to 341 ± 11 µm, and after 30 minutes of iso-osmolar 0.1% riboflavin drops, to 330 ± 7.6 µm. After hypo-osmolar 0.1% riboflavin drops, mean thinnest corneal thickness increased to 418 ± 11 µm. After UVA irradiation, it was 384 ± 10 µm. At 1, 6 and 12 months after treatment, it was 372 ± 10 µm, 381 ± 12.7, and 379 ± 15 µm, respectively. No intraoperative, early postoperative, or late postoperative complications were noted. CONCLUSIONS: Hypo-osmolar 0.1% riboflavin solution seems to be effective for swelling thin corneas. The swelling effect is transient and short acting. Corneal thickness should be monitored throughout the procedure. Larger sample sizes and longer follow-up are required in order to make meaningful conclusions regarding safety.

  15. Treatment Results of Corneal Collagen Cross-Linking Combined with Riboflavin and 440 Nm Blue Light for Bacterial Corneal Ulcer in Rabbits.

    Wei, Shufang; Zhang, Cuiying; Zhang, Shaoru; Xu, Yanyun; Mu, Guoying

    2017-10-01

    To study the treatment effect of corneal collagen cross-linking (CXL) combined with 440 nm blue light and riboflavin on bacterial corneal ulcer using animal experiments. A total of 21 New Zealand white rabbits that developed Staphylococcus aureus corneal ulcer were randomly divided into three groups. Seven rabbits were used as blank control groups; seven rabbits were treated with CXL combined with riboflavin and 440 nm blue light; and seven rabbits were treated with CXL combined with riboflavin and 370 nm ultraviolet A light. Necrotic tissues or secretions from the ulcer surface, eye secretions, conjunctival hyperemia, hypopyon, corneal infiltration, and pathological changes of the cornea were all observed. The 1st, 3th, and 7th day after CXL treatment, a statistically significant difference was found among the inflammation scores of the three groups. The scores of 440 and 370 groups decreased gradually, significantly lower than that of the control group. Bacterial cultures of 440 and 370 groups turned to be negative while that of the control group remained positive. After 1 day of CXL treatment, pathology pictures of the three groups all showed loss of corneal epithelia with many inflammatory cells in deep stroma. After 7 days of CXL treatment, abscess formed in almost all corneal area in the control group, while in 440 and 370 groups, multilayer healing of corneal epithelia, neovascularization, and many inflammatory cells within ulcers and proliferation of a small amount of fibroblast were seen. CXL combined with riboflavin and 440 nm blue light is effective in treating S. aureus corneal ulcer.

  16. Application of Collagen Scaffold in Tissue Engineering: Recent Advances and New Perspectives

    Chanjuan Dong

    2016-02-01

    Full Text Available Collagen is the main structural protein of most hard and soft tissues in animals and the human body, which plays an important role in maintaining the biological and structural integrity of the extracellular matrix (ECM and provides physical support to tissues. Collagen can be extracted and purified from a variety of sources and offers low immunogenicity, a porous structure, good permeability, biocompatibility and biodegradability. Collagen scaffolds have been widely used in tissue engineering due to these excellent properties. However, the poor mechanical property of collagen scaffolds limits their applications to some extent. To overcome this shortcoming, collagen scaffolds can be cross-linked by chemical or physical methods or modified with natural/synthetic polymers or inorganic materials. Biochemical factors can also be introduced to the scaffold to further improve its biological activity. This review will summarize the structure and biological characteristics of collagen and introduce the preparation methods and modification strategies of collagen scaffolds. The typical application of a collagen scaffold in tissue engineering (including nerve, bone, cartilage, tendon, ligament, blood vessel and skin will be further provided. The prospects and challenges about their future research and application will also be pointed out.

  17. A three-dimensional computational model of collagen network mechanics.

    Byoungkoo Lee

    Full Text Available Extracellular matrix (ECM strongly influences cellular behaviors, including cell proliferation, adhesion, and particularly migration. In cancer, the rigidity of the stromal collagen environment is thought to control tumor aggressiveness, and collagen alignment has been linked to tumor cell invasion. While the mechanical properties of collagen at both the single fiber scale and the bulk gel scale are quite well studied, how the fiber network responds to local stress or deformation, both structurally and mechanically, is poorly understood. This intermediate scale knowledge is important to understanding cell-ECM interactions and is the focus of this study. We have developed a three-dimensional elastic collagen fiber network model (bead-and-spring model and studied fiber network behaviors for various biophysical conditions: collagen density, crosslinker strength, crosslinker density, and fiber orientation (random vs. prealigned. We found the best-fit crosslinker parameter values using shear simulation tests in a small strain region. Using this calibrated collagen model, we simulated both shear and tensile tests in a large linear strain region for different network geometry conditions. The results suggest that network geometry is a key determinant of the mechanical properties of the fiber network. We further demonstrated how the fiber network structure and mechanics evolves with a local formation, mimicking the effect of pulling by a pseudopod during cell migration. Our computational fiber network model is a step toward a full biomechanical model of cellular behaviors in various ECM conditions.

  18. Collagen organization regulates stretch-initiated pain-related neuronal signals in vitro: Implications for structure-function relationships in innervated ligaments.

    Zhang, Sijia; Singh, Sagar; Winkelstein, Beth A

    2018-02-01

    Injury to the spinal facet capsule, an innervated ligament with heterogeneous collagen organization, produces pain. Although mechanical facet joint trauma activates embedded afferents, it is unclear if, and how, the varied extracellular microstructure of its ligament affects sensory transduction for pain from mechanical inputs. To investigate the effects of macroscopic deformations on afferents in collagen matrices with different organizations, an in vitro neuron-collagen construct (NCC) model was used. NCCs with either randomly organized or parallel aligned collagen fibers were used to mimic the varied microstructure in the facet capsular ligament. Embryonic rat dorsal root ganglia (DRG) were encapsulated in the NCCs; axonal outgrowth was uniform and in all directions in random NCCs, but parallel in aligned NCCs. NCCs underwent uniaxial stretch (0.25 ± 0.06 strain) corresponding to sub-failure facet capsule strains that induce pain. Macroscopic NCC mechanics were measured and axonal expression of phosphorylated extracellular signal-regulated kinase (pERK) and the neurotransmitter substance P (SP) was assayed at 1 day to assess neuronal activation and nociception. Stretch significantly upregulated pERK expression in both random and aligned gels (p organization. These findings suggest that collagen organization differentially modulates pain-related neuronal signaling and support structural heterogeneity of ligament tissue as mediating sensory function. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 36:770-777, 2018. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  19. Dermatan Sulfate Epimerase 1-Deficient Mice Have Reduced Content and Changed Distribution of Iduronic Acids in Dermatan Sulfate and an Altered Collagen Structure in Skin

    Maccarana, M.; Kalamajski, S.; Kongsgaard, M.

    2009-01-01

    Dermatan sulfate epimerase 1 (DS-epi1) and DS-epi2 convert glucuronic acid to iduronic acid in chondroitin/dermatan sulfate biosynthesis. Here we report on the generation of DS-epi1-null mice and the resulting alterations in the chondroitin/dermatan polysaccharide chains. The numbers of long blocks......-derived chains. DS-epi1-deficient mice are smaller than their wild-type littermates but otherwise have no gross macroscopic alterations. The lack of DS-epi1 affects the chondroitin/dermatan sulfate in many proteoglycans, and the consequences for skin collagen structure were initially analyzed. We found...... that the skin collagen architecture was altered, and electron microscopy showed that the DS-epi1-null fibrils have a larger diameter than the wild-type fibrils. The altered chondroitin/dermatan sulfate chains carried by decorin in skin are likely to affect collagen fibril formation and reduce the tensile...

  20. Collagen Homeostasis and Metabolism

    Magnusson, S Peter; Heinemeier, Katja M; Kjaer, Michael

    2016-01-01

    The musculoskeletal system and its collagen rich tissue is important for ensuring architecture of skeletal muscle, energy storage in tendon and ligaments, joint surface protection, and for ensuring the transfer of muscular forces into resulting limb movement. Structure of tendon is stable...... inactivity or immobilization of the human body will conversely result in a dramatic loss in tendon stiffness and collagen synthesis. This illustrates the importance of regular mechanical load in order to preserve the stabilizing role of the connective tissue for the overall function of the musculoskeletal...

  1. Stromal matrix metalloprotease-13 knockout alters Collagen I structure at the tumor-host interface and increases lung metastasis of C57BL/6 syngeneic E0771 mammary tumor cells.

    Perry, Seth W; Schueckler, Jill M; Burke, Kathleen; Arcuri, Giuseppe L; Brown, Edward B

    2013-09-05

    Matrix metalloproteases and collagen are key participants in breast cancer, but their precise roles in cancer etiology and progression remain unclear. MMP13 helps regulate collagen structure and has been ascribed largely harmful roles in cancer, but some studies demonstrate that MMP13 may also protect against tumor pathology. Other studies indicate that collagen's organizational patterns at the breast tumor-host interface influence metastatic potential. Therefore we investigated how MMP13 modulates collagen I, a principal collagen subtype in breast tissue, and affects tumor pathology and metastasis in a mouse model of breast cancer. Tumors were implanted into murine mammary tissues, and their growth analyzed in Wildtype and MMP13 KO mice. Following extraction, tumors were analyzed for collagen I levels and collagen I macro- and micro-structural properties at the tumor-host boundary using immunocytochemistry and two-photon and second harmonic generation microscopy. Lungs were analyzed for metastases counts, to correlate collagen I changes with a clinically significant functional parameter. Statistical analyses were performed by t-test, analysis of variance, or Wilcoxon-Mann-Whitney tests as appropriate. We found that genetic ablation of host stromal MMP13 led to: 1. Increased mammary tumor collagen I content, 2. Marked changes in collagen I spatial organization, and 3. Altered collagen I microstructure at the tumor-host boundary, as well as 4. Increased metastasis from the primary mammary tumor to lungs. These results implicate host MMP13 as a key regulator of collagen I structure and metastasis in mammary tumors, thus making it an attractive potential therapeutic target by which we might alter metastatic potential, one of the chief determinants of clinical outcome in breast cancer. In addition to identifying stromal MMP13 is an important regulator of the tumor microenvironment and metastasis, these results also suggest that stromal MMP13 may protect against breast

  2. Coevolution of game and network structure with adjustable linking

    Qin, Shao-Meng; Zhang, Guo-Yong; Chen, Yong

    2009-12-01

    Most papers about the evolutionary game on graph assume the statistic network structure. However, in the real world, social interaction could change the relationship among people. And the change of social structure will also affect people’s strategies. We build a coevolution model of prisoner’s dilemma game and network structure to study the dynamic interaction in the real world. Differing from other coevolution models, players rewire their network connections according to the density of cooperation and other players’ payoffs. We use a parameter α to control the effect of payoff in the process of rewiring. Based on the asynchronous update rule and Monte Carlo simulation, we find that, when players prefer to rewire their links to those who are richer, the temptation can increase the cooperation density.

  3. Comparison of sequential vs same-day simultaneous collagen cross-linking and topography-guided PRK for treatment of keratoconus.

    Kanellopoulos, Anastasios John

    2009-09-01

    The safety and efficacy of corneal collagen cross-linking (CXL) and topography-guided photorefractive keratectomy (PRK) using a different sequence and timing were evaluated in consecutive keratoconus cases. This study included a total of 325 eyes with keratoconus. Eyes were divided into two groups. The first group (n=127 eyes) underwent CXL with subsequent topography-guided PRK performed 6 months later (sequential group) and the second group (n=198 eyes) underwent CXL and PRK in a combined procedure on the same day (simultaneous group). Statistical differences were examined for pre- to postoperative changes in uncorrected (UCVA, logMAR) and best-spectacle-corrected visual acuity (BSCVA, logMAR), manifest refraction spherical equivalent (MRSE), keratometry (K), topography, central corneal thickness, endothelial cell count, corneal haze, and ectatic progression. Mean follow-up was 36+/-18 months (range: 24 to 68 months). At last follow-up in the sequential group, the mean UCVA improved from 0.9+/-0.3 logMAR to 0.49+/-0.25 logMAR, and mean BSCVA from 0.41+/-0.25 logMAR to 0.16+/-0.22 logMAR. Mean reduction in spherical equivalent refraction was 2.50+/-1.20 diopters (D), mean haze score was 1.2+/-0.5, and mean reduction in K was 2.75+/-1.30 D. In the simultaneous group, mean UCVA improved from 0.96+/-0.2 logMAR to 0.3+/-0.2 logMAR, and mean BSCVA from 0.39+/-0.3 logMAR to 0.11+/-0.16 logMAR. Mean reduction in spherical equivalent refraction was 3.20+/-1.40 D, mean haze score was 0.5+/-0.3, and mean reduction in K was 3.50+/-1.3 D. Endothelial cell count preoperatively and at last follow-up was unchanged (PPRK and CXL appears to be superior to sequential CXL with later PRK in the visual rehabilitation of progressing keratoconus. Copyright 2009, SLACK Incorporated.

  4. Collagen Peptides from Crucian Skin Improve Calcium Bioavailability and Structural Characterization by HPLC-ESI-MS/MS.

    Hou, Tao; Liu, Yanshuang; Guo, Danjun; Li, Bo; He, Hui

    2017-10-11

    The effects of collagen peptides (CPs), which are derived from crucian skin, were investigated in a retinoic acid-induced bone loss model. The level of serum bone alkaline phosphatase (BALP) in the model group (117.65 ± 4.66 units/L) was significantly higher than those of the other three groups (P group. In addition, the bone mineral density in the 600 mg of CPs/kg group was significantly higher (femur, 0.37 ± 0.02 g/cm 2 ; tibia, 0.33 ± 0.02 g/cm 2 ) than in the model group (femur, 0.26 ± 0.01 g/cm 2 ; tibia, 0.23 ± 0.02 g/cm 2 ). The morphology results indicated bone structure improved after the treatment with CPs. Structural characterization demonstrated that Glu, Lys, and Arg play important roles in binding calcium and promoting calcium uptake. Our results indicated that CPs could promote calcium uptake and regulate bone formation.

  5. Enzyme-linked immunosorbent assay (ELISAs) for metalloproteinase derived type II collagen neoepitope, CIIM--increased serum CIIM in subjects with severe radiographic osteoarthritis

    Bay-Jensen, Anne-Christine; Liu, Qi; Byrjalsen, Inger

    2011-01-01

    OBJECTIVES: In joint degenerative diseases, the collagens are degraded by matrix metalloproteinases and protein fragments are released to serum as potential biomarkers. METHODS: A collagen type II specific neoepitope, CIIM, was identified (…RDGAAG(1053)) by mass spectrometry. Two ELISAs against...... the neoepitope were developed. CIIM was measured in cartilage explants in the presence or absence of protease inhibitors. CIIM was measured in OA synovial fluid (n=51) and serum (n=156). Knee OA was graded by standard Kellgren-Lawrence (KL) score. RESULTS: The ELISAs showed good technical performance; CV%,

  6. Collagen tissue treated with chitosan solution in H2O/CO2 mixtures: Influence of clathrates hydrates on the structure and mechanical properties.

    Chaschin, Ivan S; Bakuleva, Natalia P; Grigoriev, Timofei E; Krasheninnikov, Sergey V; Nikitin, Lev N

    2017-03-01

    A mixture of water/carbon dioxide is a "green" perspective solvent from the viewpoint of biomedical applications. Clathrate hydrates are formed this solvent under certain conditions and a very interesting question is the impact of clathrates hydrates on the structure and properties of bovine pericardium, which is used in biomedicine, in particular as a main part of biological heart valve prostheses. The aim of the present work is to investigate the influence of clathrates on the structure and mechanical properties of the collagen tissue treated with chitosan in H 2 O/CO 2 mixtures under pressure 3.0-3.5MPa and temperatures 2-4°C. It was first found that the clathrate hydrates in this media due to the strong fluctuations "bomb" collagen tissue of bovine pericardium, which is manifested in the appearance of numerous small gaps (pores) with mean size of 225±25nm and large pores with size of 1-3μ on the surface and within collagen matrices. High porosity leads to averaging characteristics of the organization structure in tissues with different orientation of the collagen fibers. As a result, the mechanical properties of the collagen tissue with a different orientation of the collagen fibrils become similar, which is quite different from their original properties. The structural changes caused by the influence of the environment clathrate hydrates led to a significant decrease of the tensile strength (30-47% in total, p<0.05) and initial elastic moduli (74-83%, p<0.05). However, the final elastic moduli and the maximum tensile virtually unchanged compared to the control. Nevertheless, it was found that the direct deposition of chitosan from the H 2 O/CO 2 mixtures with clathrate improve the mechanical-strength properties of the porous matrices. We believe that these improved mechanical properties are achieved due to particularly deep and uniform impregnation of the collagen matrix with chitosan from its pressurized solutions in H 2 O/CO 2 mixtures. Copyright © 2016

  7. Subharmonic energy-gap structure in superconducting weak links

    Flensberg, K.; Hansen, Jørn Bindslev; Octavio, M.

    1988-01-01

    We present corrected calculations of the subharmonic energy-gap structure using the model of Octavio, Tinkham, Blonder, and Klapwijk, which includes the effect of normal scattering in the weak link. We show that while the overall predictions of this model do not change qualitatively, the details...... of the predicted curves are different and in better agreement with experiment. We also present calculation of the current-voltage characteristics and of the excess currents for T=0, as the normal scattering parameter Z is varied. We also show how the calculation can be shortened using symmetry arguments...

  8. APPLICATION OF RIGID LINKS IN STRUCTURAL DESIGN MODELS

    Sergey Yu. Fialko

    2017-09-01

    Full Text Available A special finite element modelling rigid links is proposed for the linear static and buckling analysis. Unlike the classical approach based on the theorems of rigid body kinematics, the proposed approach preserves the similarity between the adjacency graph for a sparse matrix and the adjacency graph for nodes of the finite element model, which allows applying sparse direct solvers more effectively. Besides, the proposed approach allows significantly reducing the number of nonzero entries in the factored stiffness matrix in comparison with the classical one, which greatly reduces the duration of the solution. For buckling problems of structures containing rigid bodies, this approach gives correct results. Several examples demonstrate its efficiency.

  9. Complete primary structure of rainbow trout type I collagen consisting of alpha1(I)alpha2(I)alpha3(I) heterotrimers.

    Saito, M; Takenouchi, Y; Kunisaki, N; Kimura, S

    2001-05-01

    The subunit compositions of skin and muscle type I collagens from rainbow trout were found to be alpha1(I)alpha2(I)alpha3(I) and [alpha1(I)](2)alpha2(I), respectively. The occurrence of alpha3(I) has been observed only for bonyfish. The skin collagen exhibited more susceptibility to both heat denaturation and MMP-13 digestion than the muscle counterpart; the former had a lower denaturation temperature by about 0.5 degrees C than the latter. The lower stability of skin collagen, however, is not due to the low levels of imino acids because the contents of Pro and Hyp were almost constant in both collagens. On the other hand, some cDNAs coding for the N-terminal and/or a part of triple-helical domains of proalpha(I) chains were cloned from the cDNA library of rainbow trout fibroblasts. These cDNAs together with the previously cloned collagen cDNAs gave information about the complete primary structure of type I procollagen. The main triple-helical domain of each proalpha(I) chain had 338 uninterrupted Gly-X-Y triplets consisting of 1014 amino acids and was unique in its high content of Gly-Gly doublets. In particular, the bonyfish-specific alpha(I) chain, proalpha3(I) was characterized by the small number of Gly-Pro-Pro triplets, 19, and the large number of Gly-Gly doublets, 38, in the triple-helical domain, compared to 23 and 22, respectively, for proalpha1(I). The small number of Gly-Pro-Pro and the large number of Gly-Gly in proalpha3(I) was assumed to partially loosen the triple-helical structure of skin collagen, leading to the lower stability of skin collagen mentioned above. Finally, phylogenetic analyses revealed that proalpha3(I) had diverged from proalpha1(I). This study is the first report of the complete primary structure of fish type I procollagen.

  10. Collagen cross-linking by adipose-derived mesenchymal stromal cells and scar-derived mesenchymal cells: Are mesenchymal stromal cells involved in scar formation?

    Bogaerdt, van den A.J.; Veen, van der A.G.; Zuijlen, van P.P.; Reijnen, L.; Verkerk, M.; Bank, R.A.; Middelkoop, E.; Ulrich, M.

    2009-01-01

    In this work, different fibroblast-like (mesenchymal) cell populations that might be involved in wound healing were characterized and their involvement in scar formation was studied by determining collagen synthesis and processing. Depending on the physical and mechanical properties of the tissues,

  11. Collagen cross-linking by adipose-derived mesenchymal stromal cells and scar-derived mesenchymal cells : Are mesenchymal stromal cells involved in scar formation?

    van den Bogaerdt, Antoon J.; van der Veen, Vincent C.; van Zuijlen, Paul P. M.; Reijnen, Linda; Verkerk, Michelle; Bank, Ruud A.; Middelkoop, Esther; Ulrich, Magda M. W.

    2009-01-01

    In this work, different fibroblast-like (mesenchymal) cell populations that might be involved in wound healing were characterized and their involvement in scar formation was studied by determining collagen synthesis and processing. Depending on the physical and mechanical properties of the tissues,

  12. Changes in anterior ocular structures and macula following deep sclerectomy with collagen implant.

    Suominen, Sakari M A; Harju, Mika P; Hautamäki, Asta M E; Vesti, Eija T

    2018-01-01

    To determine the effect of intraocular pressure (IOP) lowering with deep sclerectomy (DS) on visual acuity, macular structures, and anterior ocular dimensions during the early postoperative period. We prospectively analyzed 35 eyes of 35 patients scheduled for DS. Our focus with the measurements was on early postoperative changes in anterior ocular and macular structures related to IOP lowering during the first month after DS. In addition to a clinical ophthalmologic examination, our measurements included corneal topography, measurement of ocular dimensions with optical biometry, and examination of macular structure with optical coherence tomography. These measurements were repeated 1, 2, and 4 weeks postoperatively. Best-corrected visual acuity (BCVA) decreased 1 week postoperatively to 0.22 (0.20) LogMAR (p = 0.006). The BCVA then increased to its preoperative level, 0.17 (0.18) (p = 0.28), after 4 weeks. Axial length decreased from 24.12 (1.81) mm to 24.04 (1.81) (p<0.001) 4 weeks postoperatively. The steeper meridian of corneal curvature and average corneal power increased postoperatively; central corneal thickness was decreased. No significant change appeared in other measurements. We found changes in corneal curvature and ocular dimensions after DS. These changes were relatively small and do not completely explain the decrease in visual acuity postoperatively. Macular structures showed no changes.

  13. In vitro study of vancomycin release and osteoblast-like cell growth on structured calcium phosphate-collagen

    Pon-On, Weeraphat; Charoenphandhu, Narattaphol; Teerapornpuntakit, Jarinthorn; Thongbunchoo, Jirawan; Krishnamra, Nateetip; Tang, I-Ming

    2013-01-01

    A drug delivery vehicle consisting of spherical calcium phosphate-collagen particles covered by flower-like (SFCaPCol) blossoms composed of nanorod building blocks and their cellular response is studied. The spherical structure was achieved by a combination of sonication and freeze-drying. The SFCaPCol blossoms have a high surface area of approximately 280 m 2 g −1 . The blossom-like formation having a high surface area allows a drug loading efficiency of 77.82%. The release profile for one drug, vancomycin (VCM), shows long term sustained release in simulated body fluid (SBF), in a phosphate buffer saline (PBS, pH 7.4) solution and in culture media over 2 weeks with a cumulative release ∼ 53%, 75% and 50%, respectively, over the first 7 days. The biocompatibility of the VCM-loaded SFCaPCol scaffold was determined by in vitro cell adhesion and proliferation tests of rat osteoblast-like UMR-106 cells. MTT tests indicated that UMR-106 cells were viable after exposure to the VCM loaded SFCaPCol, meaning that the scaffold (the flower-like blossoms) did not impair the cell's viability. The density of cells on the substrate was seen to increase with increasing cultured time. - Graphical abstract: A spherical calcium phosphate-collagen with flower-like blossoms consisting of nanorod building blocks (SFCaPCol) particles was achieved by a combination of sonication and freeze-drying. In vitro drug release profile and the biocompatibility of the VCM-loaded SFCaPCol composite cell adhesion and proliferation in rat osteoblast-like UMR-106 cells were determined for biomaterial applications. Highlights: ► SFCaPCol and VCM-loaded SFCaPCol composite were synthesized by a combination of ultra sonication and freeze-drying. ► VCM drug-loaded SFCaPCol composite was used as substrate for the growth of rat osteoblast-like UMR-106 cells. ► Controlled release of VCM from the composite is critically medium dependent. ► The VCM-loaded SFCaPCol composite is also bioactive by in

  14. Collagen crosslinks in chondromalacia of the patella.

    Väätäinen, U; Kiviranta, I; Jaroma, H; Arokosi, J; Tammi, M; Kovanen, V

    1998-02-01

    The aim of the study was to determine collagen concentration and collagen crosslinks in cartilage samples from chondromalacia of the patella. To study the extracellular matrix alterations associated to chondromalacia, we determined the concentration of collagen (hydroxyproline) and its hydroxylysylpyridinoline and lysylpyridinoline crosslinks from chondromalacia foci of the patellae in 12 patients and 7 controls from apparently normal cadavers. The structure of the collagen network in 8 samples of grades II-IV chondromalacia was examined under polarized light microscopy. The full-thickness cartilage samples taken with a surgical knife from chondromalacia lesions did not show changes in collagen, hydroxylysylpyridinoline and lysylpyridinoline concentration as compared with the controls. Polarized light microscopy showed decreased birefringence in the superficial cartilage of chondromalacia lesions, indicating disorganization or disappearance of collagen fibers in this zone. It is concluded that the collagen network shows gradual disorganization with the severity of chondromalacia lesion of the patella without changes in the concentration or crosslinks of collagen.

  15. Unusual Glycosaminoglycans from a Deep Sea Hydrothermal Bacterium Improve Fibrillar Collagen Structuring and Fibroblast Activities in Engineered Connective Tissues

    Jean Guezennec

    2013-04-01

    Full Text Available Biopolymers produced by marine organisms can offer useful tools for regenerative medicine. Particularly, HE800 exopolysaccharide (HE800 EPS secreted by a deep-sea hydrothermal bacterium displays an interesting glycosaminoglycan-like feature resembling hyaluronan. Previous studies demonstrated its effectiveness to enhance in vivo bone regeneration and to support osteoblastic cell metabolism in culture. Thus, in order to assess the usefulness of this high-molecular weight polymer in tissue engineering and tissue repair, in vitro reconstructed connective tissues containing HE800 EPS were performed. We showed that this polysaccharide promotes both collagen structuring and extracellular matrix settle by dermal fibroblasts. Furthermore, from the native HE800 EPS, a low-molecular weight sulfated derivative (HE800 DROS displaying chemical analogy with heparan-sulfate, was designed. Thus, it was demonstrated that HE800 DROS mimics some properties of heparan-sulfate, such as promotion of fibroblast proliferation and inhibition of matrix metalloproteinase (MMP secretion. Therefore, we suggest that the HE800EPS family can be considered as an innovative biotechnological source of glycosaminoglycan-like compounds useful to design biomaterials and drugs for tissue engineering and repair.

  16. Unusual Glycosaminoglycans from a Deep Sea Hydrothermal Bacterium Improve Fibrillar Collagen Structuring and Fibroblast Activities in Engineered Connective Tissues

    Senni, Karim; Gueniche, Farida; Changotade, Sylvie; Septier, Dominique; Sinquin, Corinne; Ratiskol, Jacqueline; Lutomski, Didier; Godeau, Gaston; Guezennec, Jean; Colliec-Jouault, Sylvia

    2013-01-01

    Biopolymers produced by marine organisms can offer useful tools for regenerative medicine. Particularly, HE800 exopolysaccharide (HE800 EPS) secreted by a deep-sea hydrothermal bacterium displays an interesting glycosaminoglycan-like feature resembling hyaluronan. Previous studies demonstrated its effectiveness to enhance in vivo bone regeneration and to support osteoblastic cell metabolism in culture. Thus, in order to assess the usefulness of this high-molecular weight polymer in tissue engineering and tissue repair, in vitro reconstructed connective tissues containing HE800 EPS were performed. We showed that this polysaccharide promotes both collagen structuring and extracellular matrix settle by dermal fibroblasts. Furthermore, from the native HE800 EPS, a low-molecular weight sulfated derivative (HE800 DROS) displaying chemical analogy with heparan-sulfate, was designed. Thus, it was demonstrated that HE800 DROS mimics some properties of heparan-sulfate, such as promotion of fibroblast proliferation and inhibition of matrix metalloproteinase (MMP) secretion. Therefore, we suggest that the HE800EPS family can be considered as an innovative biotechnological source of glycosaminoglycan-like compounds useful to design biomaterials and drugs for tissue engineering and repair. PMID:23612369

  17. Stromal matrix metalloprotease-13 knockout alters Collagen I structure at the tumor-host interface and increases lung metastasis of C57BL/6 syngeneic E0771 mammary tumor cells

    Perry, Seth W; Schueckler, Jill M; Burke, Kathleen; Arcuri, Giuseppe L; Brown, Edward B

    2013-01-01

    Matrix metalloproteases and collagen are key participants in breast cancer, but their precise roles in cancer etiology and progression remain unclear. MMP13 helps regulate collagen structure and has been ascribed largely harmful roles in cancer, but some studies demonstrate that MMP13 may also protect against tumor pathology. Other studies indicate that collagen’s organizational patterns at the breast tumor-host interface influence metastatic potential. Therefore we investigated how MMP13 modulates collagen I, a principal collagen subtype in breast tissue, and affects tumor pathology and metastasis in a mouse model of breast cancer. Tumors were implanted into murine mammary tissues, and their growth analyzed in Wildtype and MMP13 KO mice. Following extraction, tumors were analyzed for collagen I levels and collagen I macro- and micro-structural properties at the tumor-host boundary using immunocytochemistry and two-photon and second harmonic generation microscopy. Lungs were analyzed for metastases counts, to correlate collagen I changes with a clinically significant functional parameter. Statistical analyses were performed by t-test, analysis of variance, or Wilcoxon-Mann–Whitney tests as appropriate. We found that genetic ablation of host stromal MMP13 led to: 1. Increased mammary tumor collagen I content, 2. Marked changes in collagen I spatial organization, and 3. Altered collagen I microstructure at the tumor-host boundary, as well as 4. Increased metastasis from the primary mammary tumor to lungs. These results implicate host MMP13 as a key regulator of collagen I structure and metastasis in mammary tumors, thus making it an attractive potential therapeutic target by which we might alter metastatic potential, one of the chief determinants of clinical outcome in breast cancer. In addition to identifying stromal MMP13 is an important regulator of the tumor microenvironment and metastasis, these results also suggest that stromal MMP13 may protect against

  18. Association of collagen architecture with glioblastoma patient survival.

    Pointer, Kelli B; Clark, Paul A; Schroeder, Alexandra B; Salamat, M Shahriar; Eliceiri, Kevin W; Kuo, John S

    2017-06-01

    OBJECTIVE Glioblastoma (GBM) is the most malignant primary brain tumor. Collagen is present in low amounts in normal brain, but in GBMs, collagen gene expression is reportedly upregulated. However, to the authors' knowledge, direct visualization of collagen architecture has not been reported. The authors sought to perform the first direct visualization of GBM collagen architecture, identify clinically relevant collagen signatures, and link them to differential patient survival. METHODS Second-harmonic generation microscopy was used to detect collagen in a GBM patient tissue microarray. Focal and invasive GBM mouse xenografts were stained with Picrosirius red. Quantitation of collagen fibers was performed using custom software. Multivariate survival analysis was done to determine if collagen is a survival marker for patients. RESULTS In focal xenografts, collagen was observed at tumor brain boundaries. For invasive xenografts, collagen was intercalated with tumor cells. Quantitative analysis showed significant differences in collagen fibers for focal and invasive xenografts. The authors also found that GBM patients with more organized collagen had a longer median survival than those with less organized collagen. CONCLUSIONS Collagen architecture can be directly visualized and is different in focal versus invasive GBMs. The authors also demonstrate that collagen signature is associated with patient survival. These findings suggest that there are collagen differences in focal versus invasive GBMs and that collagen is a survival marker for GBM.

  19. Structure and pathogenicity of antibodies specific for citrullinated collagen type II in experimental arthritis

    Uysal, Hüseyin; Bockermann, Robert; Nandakumar, Kutty S

    2009-01-01

    Antibodies to citrulline-modified proteins have a high diagnostic value in rheumatoid arthritis (RA). However, their biological role in disease development is still unclear. To obtain insight into this question, a panel of mouse monoclonal antibodies was generated against a major triple helical...... is indeed citrullinated in vivo. The structure determination of a Fab fragment of one of these antibodies in complex with a citrullinated peptide showed a surprising beta-turn conformation of the peptide and provided information on citrulline recognition. Based on these findings, we propose...

  20. Abnormal arrangement of a collagen/apatite extracellular matrix orthogonal to osteoblast alignment is constructed by a nanoscale periodic surface structure.

    Matsugaki, Aira; Aramoto, Gento; Ninomiya, Takafumi; Sawada, Hiroshi; Hata, Satoshi; Nakano, Takayoshi

    2015-01-01

    Morphological and directional alteration of cells is essential for structurally appropriate construction of tissues and organs. In particular, osteoblast alignment is crucial for the realization of anisotropic bone tissue microstructure. In this article, the orientation of a collagen/apatite extracellular matrix (ECM) was established by controlling osteoblast alignment using a surface geometry with nanometer-sized periodicity induced by laser ablation. Laser irradiation induced self-organized periodic structures (laser-induced periodic surface structures; LIPSS) with a spatial period equal to the wavelength of the incident laser on the surface of biomedical alloys of Ti-6Al-4V and Co-Cr-Mo. Osteoblast orientation was successfully induced parallel to the grating structure. Notably, both the fibrous orientation of the secreted collagen matrix and the c-axis of the produced apatite crystals were orientated orthogonal to the cell direction. To the best of our knowledge, this is the first report demonstrating that bone tissue anisotropy is controllable, including the characteristic organization of a collagen/apatite composite orthogonal to the osteoblast orientation, by controlling the cell alignment using periodic surface geometry. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. A constitutive model of soft tissue: From nanoscale collagen to tissue continuum

    Tang, Huang

    2009-04-08

    Soft collagenous tissue features many hierarchies of structure, starting from tropocollagen molecules that form fibrils, and proceeding to a bundle of fibrils that form fibers. Here we report the development of an atomistically informed continuum model of collagenous tissue. Results from full atomistic and molecular modeling are linked with a continuum theory of a fiber-reinforced composite, handshaking the fibril scale to the fiber and continuum scale in a hierarchical multi-scale simulation approach. Our model enables us to study the continuum-level response of the tissue as a function of cross-link density, making a link between nanoscale collagen features and material properties at larger tissue scales. The results illustrate a strong dependence of the continuum response as a function of nanoscopic structural features, providing evidence for the notion that the molecular basis for protein materials is important in defining their larger-scale mechanical properties. © 2009 Biomedical Engineering Society.

  2. Reinforcement of a porous collagen scaffold with surface-activated PLA fibers.

    Liu, Xi; Huang, Changbin; Feng, Yujie; Liang, Jie; Fan, Yujiang; Gu, Zhongwei; Zhang, Xingdong

    2010-01-01

    A hybrid porous collagen scaffold mechanically reinforced with surface-activated poly(lactic acid) (PLA) fiber was prepared. PLA fibers, 20 mum in diameter and 1 mm in length, were aminolyzed with hexanediamine to introduce free amino groups on the surfaces. After the amino groups were transferred to aldehyde groups by treatment with glutaraldehyde, different amounts (1.5, 3, 5 and 8 mg) of surface-activated PLA fibers were homogeneously mixed with 2 ml type-I collagen solution (pH 2.8, 0.6 wt%). This mixture solution was then freeze-dried and cross-linked to obtain collagen sponges with surface-activated PLA fiber. Scanning electron microscopy observation indicated that the collagen sponges had a highly interconnected porous structure with an average pore size of 170 mum, irrespective of PLA fiber incorporation. The dispersion of surface-activated PLA fibers was homogeneous in collagen sponge, in contrast to unactivated PLA fibers. The compression modulus test results showed that, compared with unactivated PLA fibers, the surface-activated PLA fibers enhanced the resistance of collagen sponge to compression more significantly. Cytotoxicity assay by MTT test showed no cytotoxicity of these collagen sponges. L929 mouse fibroblast cell-culture studies in vitro revealed that the number of L929 cells attached to the collagen sponge with surface-activated PLA fibers, both 6 h and 24 h after seeding, was higher than that in pure collagen sponge and sponge with unactivated PLA fibers. In addition, a better distribution of cells infiltrated in collagen sponge with surface-activated PLA fibers was observed by histological staining. These results indicated that the collagen sponge reinforced with surface-activated PLA fibers is a promising biocompatible scaffold for tissue engineering.

  3. Linking structure and activity in nonlinear spiking networks.

    Gabriel Koch Ocker

    2017-06-01

    Full Text Available Recent experimental advances are producing an avalanche of data on both neural connectivity and neural activity. To take full advantage of these two emerging datasets we need a framework that links them, revealing how collective neural activity arises from the structure of neural connectivity and intrinsic neural dynamics. This problem of structure-driven activity has drawn major interest in computational neuroscience. Existing methods for relating activity and architecture in spiking networks rely on linearizing activity around a central operating point and thus fail to capture the nonlinear responses of individual neurons that are the hallmark of neural information processing. Here, we overcome this limitation and present a new relationship between connectivity and activity in networks of nonlinear spiking neurons by developing a diagrammatic fluctuation expansion based on statistical field theory. We explicitly show how recurrent network structure produces pairwise and higher-order correlated activity, and how nonlinearities impact the networks' spiking activity. Our findings open new avenues to investigating how single-neuron nonlinearities-including those of different cell types-combine with connectivity to shape population activity and function.

  4. Linking structure and activity in nonlinear spiking networks.

    Ocker, Gabriel Koch; Josić, Krešimir; Shea-Brown, Eric; Buice, Michael A

    2017-06-01

    Recent experimental advances are producing an avalanche of data on both neural connectivity and neural activity. To take full advantage of these two emerging datasets we need a framework that links them, revealing how collective neural activity arises from the structure of neural connectivity and intrinsic neural dynamics. This problem of structure-driven activity has drawn major interest in computational neuroscience. Existing methods for relating activity and architecture in spiking networks rely on linearizing activity around a central operating point and thus fail to capture the nonlinear responses of individual neurons that are the hallmark of neural information processing. Here, we overcome this limitation and present a new relationship between connectivity and activity in networks of nonlinear spiking neurons by developing a diagrammatic fluctuation expansion based on statistical field theory. We explicitly show how recurrent network structure produces pairwise and higher-order correlated activity, and how nonlinearities impact the networks' spiking activity. Our findings open new avenues to investigating how single-neuron nonlinearities-including those of different cell types-combine with connectivity to shape population activity and function.

  5. In vitro degradation of porous nano-hydroxyapatite/collagen/PLLA scaffold reinforced by chitin fibres

    Li Xiaoming; Feng Qingling; Cui Fuzhai

    2006-01-01

    In this paper, a novel porous scaffold for bone tissue engineering was prepared with nano-hydroxyapatite/collagen/Poly-L-lactic acid (PLLA) composite reinforced by chitin fibres. To enhance the strength of the scaffold further, PLLA was linked with chitin fibres by Dicyclohexylcarbodimide (DCC). The structures of the reinforced scaffold with and without linking were characterized by Scanning Electron Microscopy (SEM). The chemical characteristics of the chitin fibres with and without linking were evaluated by Fourier-transformed infrared (FTIR) spectroscopy. The mechanical performance during degradation in vitro was investigated. The results indicated that the nano-hydroxyapatite/collagen/PLLA composite reinforced by chitin fibres with linking kept better mechanical properties than that of the composite without linking. These results denoted that the stronger interfacial bonding strength of the scaffold with linking could decrease the degradation rate in vitro. The reinforced composite with the link-treatment can be severed as a scaffold for bone tissue engineering

  6. Characterization of Genipin-Modified Dentin Collagen

    Hiroko Nagaoka

    2014-01-01

    Full Text Available Application of biomodification techniques to dentin can improve its biochemical and biomechanical properties. Several collagen cross-linking agents have been reported to strengthen the mechanical properties of dentin. However, the characteristics of collagen that has undergone agent-induced biomodification are not well understood. The objective of this study was to analyze the effects of a natural cross-linking agent, genipin (GE, on dentin discoloration, collagen stability, and changes in amino acid composition and lysyl oxidase mediated natural collagen cross-links. Dentin collagen obtained from extracted bovine teeth was treated with three different concentrations of GE (0.01%, 0.1%, and 0.5% for several treatment times (0–24 h. Changes in biochemical properties of NaB3H4-reduced collagen were characterized by amino acid and cross-link analyses. The treatment of dentin collagen with GE resulted in a concentration- and time-dependent pigmentation and stability against bacterial collagenase. The lysyl oxidase-mediated trivalent mature cross-link, pyridinoline, showed no difference among all groups while the major divalent immature cross-link, dehydro-dihydroxylysinonorleucine/its ketoamine in collagen treated with 0.5% GE for 24 h, significantly decreased compared to control (P< 0.05. The newly formed GE-induced cross-links most likely involve lysine and hydroxylysine residues of collagen in a concentration-dependent manner. Some of these cross-links appear to be reducible and stabilized with NaB3H4.

  7. High resolution imaging of collagen organisation and synthesis using a versatile collagen specific probe

    Boerboom, R.A.; Krahn - Nash, K.; Megens, R.T.A.; Zandvoort, van M.; Merkx, M.; Bouten, C.V.C.

    2007-01-01

    Collagen is the protein primarily responsible for the load-bearing properties of tissues and collagen architecture is one of the main determinants of the mechanical properties of tissues. Visualisation of changes in collagen three-dimensional structure is essential in order to improve our

  8. Framework of collagen type I - vasoactive vessels structuring invariant geometric attractor in cancer tissues: insight into biological magnetic field.

    Jairo A Díaz

    Full Text Available In a previous research, we have described and documented self-assembly of geometric triangular chiral hexagon crystal-like complex organizations (GTCHC in human pathological tissues. This article documents and gathers insights into the magnetic field in cancer tissues and also how it generates an invariant functional geometric attractor constituted for collider partners in their entangled environment. The need to identify this hierarquic attractor was born out of the concern to understand how the vascular net of these complexes are organized, and to determine if the spiral vascular subpatterns observed adjacent to GTCHC complexes and their assembly are interrelational. The study focuses on cancer tissues and all the macroscopic and microscopic material in which GTCHC complexes are identified, which have been overlooked so far, and are rigorously revised. This revision follows the same parameters that were established in the initial phase of the investigation, but with a new item: the visualization and documentation of external dorsal serous vascular bed areas in spatial correlation with the localization of GTCHC complexes inside the tumors. Following the standard of the electro-optical collision model, we were able to reproduce and replicate collider patterns, that is, pairs of left and right hand spin-spiraled subpatterns, associated with the orientation of the spinning process that can be an expansion or contraction disposition of light particles. Agreement between this model and tumor data is surprisingly close; electromagnetic spiral patterns generated were identical at the spiral vascular arrangement in connection with GTCHC complexes in malignant tumors. These findings suggest that the framework of collagen type 1 - vasoactive vessels that structure geometric attractors in cancer tissues with invariant morphology sets generate collider partners in their magnetic domain with opposite biological behavior. If these principles are incorporated

  9. Brain structure links everyday creativity to creative achievement.

    Zhu, Wenfeng; Chen, Qunlin; Tang, Chaoying; Cao, Guikang; Hou, Yuling; Qiu, Jiang

    2016-03-01

    Although creativity is commonly considered to be a cornerstone of human progress and vital to all realms of our lives, its neural basis remains elusive, partly due to the different tasks and measurement methods applied in research. In particular, the neural correlates of everyday creativity that can be experienced by everyone, to some extent, are still unexplored. The present study was designed to investigate the brain structure underlying individual differences in everyday creativity, as measured by the Creative Behavioral Inventory (CBI) (N=163). The results revealed that more creative activities were significantly and positively associated with larger gray matter volume (GMV) in the regional premotor cortex (PMC), which is a motor planning area involved in the creation and selection of novel actions and inhibition. In addition, the gray volume of the PMC had a significant positive relationship with creative achievement and Art scores, which supports the notion that training and practice may induce changes in brain structures. These results indicate that everyday creativity is linked to the PMC and that PMC volume can predict creative achievement, supporting the view that motor planning may play a crucial role in creative behavior. Published by Elsevier Inc.

  10. Brain Structure Linking Delay Discounting and Academic Performance.

    Wang, Song; Kong, Feng; Zhou, Ming; Chen, Taolin; Yang, Xun; Chen, Guangxiang; Gong, Qiyong

    2017-08-01

    As a component of self-discipline, delay discounting refers to the ability to wait longer for preferred rewards and plays a pivotal role in shaping students' academic performance. However, the neural basis of the association between delay discounting and academic performance remains largely unknown. Here, we examined the neuroanatomical substrates underlying delay discounting and academic performance in 214 adolescents via voxel-based morphometry (VBM) by performing structural magnetic resonance imaging (S-MRI). Behaviorally, we confirmed the significant correlation between delay discounting and academic performance. Neurally, whole-brain regression analyses indicated that regional gray matter volume (rGMV) of the left dorsolateral prefrontal cortex (DLPFC) was associated with both delay discounting and academic performance. Furthermore, delay discounting partly accounted for the association between academic performance and brain structure. Differences in the rGMV of the left DLPFC related to academic performance explained over one-third of the impact of delay discounting on academic performance. Overall, these results provide the first evidence for the common neural basis linking delay discounting and academic performance. Hum Brain Mapp 38:3917-3926, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  11. Optimal optical communication terminal structure for maximizing the link budget

    Huang, Jian; Jiang, Dagang; Deng, Ke; Zhang, Peng

    2015-02-01

    Ordinary inter-satellite optical includes at least three optical paths for acquisition, tracking and communication, the three optical paths work simultaneously and share the received power. An optimal structure of inter-satellite optical communication terminal with single working optical path at each of working stages of acquisition and communication is introduced. A space optical switch based on frustrated total internal reflection effect is applied to switch the received laser power between the acquisition sensor and the communication sensor between the stages of acquisition and communication, this is named as power fusion which means power is transferred for shutting down unused optical path. For the stages of tracking and communication, a multiple cells sensor is used to accomplish the operation of tracking while communication, this is named as function fusion which means accomplishing multiple functions by one device to reduce the redundant optical paths. For optical communication terminal with single working path structure, the total received laser power would be detected by one sensor for each different stages of acquisition, tracking and communication, the link budget would be maximized, and this design would help to enlarge the system tolerance and reduce the acquisition time.

  12. In vitro characterization of a novel tissue engineered based hybridized nano and micro structured collagen implant and its in vivo role on tenoinduction, tenoconduction, tenogenesis and tenointegration.

    Oryan, Ahmad; Moshiri, Ali; Meimandi-Parizi, Abdolhamid

    2014-03-01

    Surgical reconstruction of large tendon defects is technically demanding. Tissue engineering is a new option. We produced a novel tissue engineered, collagen based, bioimplant and in vitro characterizations of the implant were investigated. In addition, we investigated role of the collagen implant on the healing of a large tendon defect model in rabbits. A two cm length of the left rabbit's Achilles tendon was transected and discarded. The injured tendons of all the rabbits were repaired by Kessler pattern to create and maintain a 2 cm tendon gap. The collagen implant was inserted in the tendon defect of the treatment group (n = 30). The defect area was left intact in the control group (n = 30). The animals were euthanized at 60 days post injury (DPI) and the macro- micro- and nano- morphologies and the biomechanical characteristics of the tendon samples were studied. Differences of P implant properly incorporated with the healing tissue and was replaced by the new tendinous structure which was superior both ultra-structurally and physically than the loose areolar connective tissue regenerated in the control lesions. The results of this study may be valuable in the clinical practice.

  13. A three-dimensional collagen-fiber network model of the extracellular matrix for the simulation of the mechanical behaviors and micro structures.

    Dong, Shoubin; Huang, Zetao; Tang, Liqun; Zhang, Xiaoyang; Zhang, Yongrou; Jiang, Yi

    2017-07-01

    The extracellular matrix (ECM) provides structural and biochemical support to cells and tissues, which is a critical factor for modulating cell dynamic behavior and intercellular communication. In order to further understand the mechanisms of the interactive relationship between cell and the ECM, we developed a three-dimensional (3D) collagen-fiber network model to simulate the micro structure and mechanical behaviors of the ECM and studied the stress-strain relationship as well as the deformation of the ECM under tension. In the model, the collagen-fiber network consists of abundant random distributed collagen fibers and some crosslinks, in which each fiber is modeled as an elastic beam and a crosslink is modeled as a linear spring with tensile limit, it means crosslinks will fail while the tensile forces exceed the limit of spring. With the given parameters of the beam and the spring, the simulated tensile stress-strain relation of the ECM highly matches the experimental results including damaged and failed behaviors. Moreover, by applying the maximal inscribed sphere method, we measured the size distribution of pores in the fiber network and learned the variation of the distribution with deformation. We also defined the alignment of the collagen-fibers to depict the orientation of fibers in the ECM quantitatively. By the study of changes of the alignment and the damaged crosslinks against the tensile strain, this paper reveals the comprehensive mechanisms of four stages of 'toe', 'linear', 'damage' and 'failure' in the tensile stress-strain relation of the ECM which can provide further insight in the study of cell-ECM interaction.

  14. Collagen type XI alpha1 may be involved in the structural plasticity of the vertebral column in Atlantic salmon (Salmo salar L.).

    Wargelius, A; Fjelldal, P G; Nordgarden, U; Grini, A; Krossøy, C; Grotmol, S; Totland, G K; Hansen, T

    2010-04-01

    Atlantic salmon (Salmo salar L.) vertebral bone displays plasticity in structure, osteoid secretion and mineralization in response to photoperiod. Other properties of the vertebral bone, such as mineral content and mechanical strength, are also associated with common malformations in farmed Atlantic salmon. The biological mechanisms that underlie these changes in bone physiology are unknown, and in order to elucidate which factors might be involved in this process, microarray assays were performed on vertebral bone of Atlantic salmon reared under natural or continuous light. Eight genes were upregulated in response to continuous light treatment, whereas only one of them was upregulated in a duplicate experiment. The transcriptionally regulated gene was predicted to code for collagen type XI alpha1, a protein known to be involved in controlling the diameter of fibrillar collagens in mammals. Furthermore, the gene was highly expressed in the vertebrae, where spatial expression was found in trabecular and compact bone osteoblasts and in the chordoblasts of the notochordal sheath. When we measured the expression level of the gene in the tissue compartments of the vertebrae, the collagen turned out to be 150 and 25 times more highly expressed in the notochord and compact bone respectively, relative to the expression in the trabecular bone. Gene expression was induced in response to continuous light, and reduced in compressed vertebrae. The downregulation in compressed vertebrae was due to reduced expression in the compact bone, while expression in the trabecular bone and the notochord was unaffected. These data support the hypothesis that this gene codes for a presumptive collagen type XI alpha1, which may be involved in the regulatory pathway leading to structural adaptation of the vertebral architecture.

  15. A novel collagen film with micro-rough surface structure for corneal epithelial repair fabricated by freeze drying technique

    Liu, Yang; Ren, Li; Wang, Yingjun

    2014-01-01

    Highlights: • Collagen film with micro-rough surface is fabricated by freeze drying technique. • The film has suitable water uptake capability and toughness performance. • The film has good optical performance. • Human corneal epithelial cells studies confirmed the biocompatibility of the film. - Abstract: Corneal epithelial defect is a common disease and keratoplasty is a common treatment method. A collagen film with micro-rough surface was fabricated through a simple freeze drying technique in this study. Compared with the air-dried collagen film (AD-Col), this freeze-dried collagen film (FD-Col) has a more suitable water uptake capability (about 85.5%) and toughness performance. Both of the two films have good optical properties and the luminousness of them is higher than 80%. Besides, the adhesion and proliferation rate of human corneal epithelial cells on the micro-rough surface of FD-Col film is higher than that on the smooth surface of AD-Col film. The results indicate that this FD-Col film may have potential applications for corneal epithelial repair

  16. A novel collagen film with micro-rough surface structure for corneal epithelial repair fabricated by freeze drying technique

    Liu, Yang [School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641 (China); National Engineering Research Center for Tissue Restoration and Reconstruction, Guangzhou 510006 (China); Guangdong Province Key Laboratory of Biomedical Engineering, South China University of Technology, Guangzhou 510006 (China); Ren, Li, E-mail: psliren@scut.edu.cn [School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641 (China); National Engineering Research Center for Tissue Restoration and Reconstruction, Guangzhou 510006 (China); Guangdong Province Key Laboratory of Biomedical Engineering, South China University of Technology, Guangzhou 510006 (China); Wang, Yingjun, E-mail: imwangyj@163.com [School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641 (China); National Engineering Research Center for Tissue Restoration and Reconstruction, Guangzhou 510006 (China); Guangdong Province Key Laboratory of Biomedical Engineering, South China University of Technology, Guangzhou 510006 (China)

    2014-05-01

    Highlights: • Collagen film with micro-rough surface is fabricated by freeze drying technique. • The film has suitable water uptake capability and toughness performance. • The film has good optical performance. • Human corneal epithelial cells studies confirmed the biocompatibility of the film. - Abstract: Corneal epithelial defect is a common disease and keratoplasty is a common treatment method. A collagen film with micro-rough surface was fabricated through a simple freeze drying technique in this study. Compared with the air-dried collagen film (AD-Col), this freeze-dried collagen film (FD-Col) has a more suitable water uptake capability (about 85.5%) and toughness performance. Both of the two films have good optical properties and the luminousness of them is higher than 80%. Besides, the adhesion and proliferation rate of human corneal epithelial cells on the micro-rough surface of FD-Col film is higher than that on the smooth surface of AD-Col film. The results indicate that this FD-Col film may have potential applications for corneal epithelial repair.

  17. Structure and characteristics of acid and pepsin-solubilized collagens from the skin of cobia (Rachycentron canadum).

    Zeng, Shaokui; Yin, Juanjuan; Yang, Shuqi; Zhang, Chaohua; Yang, Ping; Wu, Wenlong

    2012-12-01

    Acid-solubilized collagen (ASC) and pepsin-solubilized collagen (PSC) were extracted from the skin of cobia (Rachycentron canadum). The yields of ASC and PSC were 35.5% and 12.3%, respectively. Based on the protein patterns and carboxymethyl-cellulose chromatography, ASC and PSC were composed of α1α2α3 heterotrimers and were characterised as type I collagen with no disulfide bond. Their amounts of imino acids were 203 and 191 residues per 1000 residues, respectively. LC-MS/MS analysis demonstrated the high sequences similarities of ASC and PSC. Fourier transform infrared spectroscopy spectra showed that the amide I, II and III peaks of PSC were obtained at a lower wave number compared with ASC. The thermal denaturation temperatures of ASC and PSC, as measured by viscometry, were 34.62 and 33.97°C, respectively. The transition temperatures (T(max)) were 38.17 and 36.03°C, respectively, as determined by differential scanning calorimetry (DSC). Both collagens were soluble at acidic pH and below 2% (w/v) NaCl concentration. Copyright © 2012 Elsevier Ltd. All rights reserved.

  18. Collagen derived serum markers in carcinoma of the prostate

    Rudnicki, M; Jensen, L T; Iversen, P

    1995-01-01

    Three new collagen markers deriving from the collagenous matrix, e.g. carboxyterminal propeptide of type I procollagen (PICP), carboxy-terminal pyridinoline cross-linked telopeptide of type I collagen (ICTP), and aminoterminal propeptide of type III procollagen (PIIINP) were used for the diagnose...

  19. Collagen V haploinsufficiency in a murine model of classic Ehlers-Danlos syndrome is associated with deficient structural and mechanical healing in tendons.

    Johnston, Jessica M; Connizzo, Brianne K; Shetye, Snehal S; Robinson, Kelsey A; Huegel, Julianne; Rodriguez, Ashley B; Sun, Mei; Adams, Sheila M; Birk, David E; Soslowsky, Louis J

    2017-12-01

    Classic Ehlers-Danlos syndrome (EDS) patients suffer from connective tissue hyperelasticity, joint instability, skin hyperextensibility, tissue fragility, and poor wound healing due to heterozygous mutations in COL5a1 or COL5a2 genes. This study investigated the roles of collagen V in establishing structure and function in uninjured patellar tendons as well as in the injury response using a Col5a1 +/- mouse, a model for classic EDS. These analyses were done comparing tendons from a classic EDS model (Col5a1 +/- ) with wild-type controls. Tendons were subjected to mechanical testing, histological, and fibril analysis before injury as well as 3 and 6 weeks after injury. We found that Col5a1 +/- tendons demonstrated diminished recovery of mechanical competency after injury as compared to normal wild-type tendons, which recovered their pre-injury values by 6 weeks post injury. Additionally, the Col5a1 +/- tendons demonstrated altered fibril morphology and diameter distributions compared to the wild-type tendons. This study indicates that collagen V plays an important role in regulating collagen fibrillogenesis and the associated recovery of mechanical integrity in tendons after injury. In addition, the dysregulation with decreased collagen V expression in EDS is associated with a diminished injury response. The results presented herein have the potential to direct future targeted therapeutics for classic EDS patients. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 35:2707-2715, 2017. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  20. Structure/Psychophysical Relationships in X-Linked Retinoschisis.

    Bennett, Lea D; Wang, Yi-Zhong; Klein, Martin; Pennesi, Mark E; Jayasundera, Thiran; Birch, David G

    2016-02-01

    To compare structural properties from spectral-domain optical coherence tomography (SDOCT) and psychophysical measures from a subset of patients enrolled in a larger multicenter natural history study of X-linked retinoschisis (XLRS). A subset of males (n = 24) participating in a larger natural history study of XLRS underwent high-resolution SDOCT. Total retina (TR) thickness and outer segment (OS) thickness were measured manually. Shape discrimination hyperacuity (SDH) and contour integration perimetry (CIP) were performed on an iPad with the myVisionTrack application. Sensitivity was measured with fundus-guided perimetry (4-2 threshold testing strategy; 10-2 grid, spot size 3, 68 points). Correlation was determined with Pearson's r correlation. Values are presented as the mean ± SD. Mean macular OS thickness was less in XLRS patients (17.2 ± 8.1 μm) than in controls (37.1 ± 5.7 μm; P weak correlation with TR thickness (R(2) = 0.22, P = 0.0158). The XLRS subjects had a logMAR best corrected visual acuity (BCVA) of 0.5 ± 0.3 that was associated with OS (R(2) = 0.79, P < 0.0001) but not TR thickness (R(2) = 0.01, P = 0.6166). Shape DH and CIP inner ring correlated with OS (R(2) = 0.33, P = 0.0085 and R(2) = 0.47, P = 0.0001, respectively) but not TR thickness (R(2) = 0.0004, P = 0.93; R(2) = 0.0043, P = 0.75, respectively). When considered from a single visit, OS thickness within the macula is more closely associated with macular function than TR thickness within the macula in patients with XLRS.

  1. Structural investigation of nitrogen-linked saccharinate-tetrazole

    Gómez-Zavaglia, A.; Ismael, A.; Cabral, L. I. L.; Kaczor, A.; Paixão, J. A.; Fausto, R.; Cristiano, M. L. S.

    2011-09-01

    The molecular structure of nitrogen-linked saccharinate-tetrazole, N-(1,1-dioxo-1,2-benzisothiazol-3-yl)-amine-1 H-tetrazole (BAT), was investigated in the crystalline state using X-ray crystallography and infrared and Raman spectroscopies, and isolated in argon matrix by infrared spectroscopy. Interpretation of the experimental results was supported by quantum chemical calculations undertaken at the DFT(B3LYP)/6-311++G(3df,3pd) level of theory. In the neat crystalline solid (space group C2/ c, a = 21.7493(3) Å, b = 8.85940(10) Å, c = 10.76900(10) Å, β = 103.3300(10) deg; Z = 8), BAT units exist in the (1 H)-tetrazole aminosaccharin tautomeric form, with the NH spacer establishing a hydrogen bond to the nitrogen in position-4 of the tetrazole group of a neighbour molecule, and the NH group of the tetrazole fragment forming a bifurcated H-bond to the saccharyl nitrogen of the same molecule and to one of the oxygen atoms of a second neighbour molecule. On the other hand, according to both the matrix isolation infrared studies and the theoretical calculations, the isolated BAT molecule exists preferentially as the (1 H)-tetrazole iminosaccharin tautomer, where the main stabilizing interaction is the intramolecular H-bond established between the NH group of the saccharyl ring and the tetrazole nitrogen atom in position 4. A detailed conformational analysis of the studied molecule and full assignment of the vibrational spectra for both the matrix-isolated compound and crystalline sample were undertaken.

  2. Quantification of three-dimensional cell-mediated collagen remodeling using graph theory.

    Bilgin, Cemal Cagatay; Lund, Amanda W; Can, Ali; Plopper, George E; Yener, Bülent

    2010-09-30

    Cell cooperation is a critical event during tissue development. We present the first precise metrics to quantify the interaction between mesenchymal stem cells (MSCs) and extra cellular matrix (ECM). In particular, we describe cooperative collagen alignment process with respect to the spatio-temporal organization and function of mesenchymal stem cells in three dimensions. We defined two precise metrics: Collagen Alignment Index and Cell Dissatisfaction Level, for quantitatively tracking type I collagen and fibrillogenesis remodeling by mesenchymal stem cells over time. Computation of these metrics was based on graph theory and vector calculus. The cells and their three dimensional type I collagen microenvironment were modeled by three dimensional cell-graphs and collagen fiber organization was calculated from gradient vectors. With the enhancement of mesenchymal stem cell differentiation, acceleration through different phases was quantitatively demonstrated. The phases were clustered in a statistically significant manner based on collagen organization, with late phases of remodeling by untreated cells clustering strongly with early phases of remodeling by differentiating cells. The experiments were repeated three times to conclude that the metrics could successfully identify critical phases of collagen remodeling that were dependent upon cooperativity within the cell population. Definition of early metrics that are able to predict long-term functionality by linking engineered tissue structure to function is an important step toward optimizing biomaterials for the purposes of regenerative medicine.

  3. Quantification of three-dimensional cell-mediated collagen remodeling using graph theory.

    Cemal Cagatay Bilgin

    2010-09-01

    Full Text Available Cell cooperation is a critical event during tissue development. We present the first precise metrics to quantify the interaction between mesenchymal stem cells (MSCs and extra cellular matrix (ECM. In particular, we describe cooperative collagen alignment process with respect to the spatio-temporal organization and function of mesenchymal stem cells in three dimensions.We defined two precise metrics: Collagen Alignment Index and Cell Dissatisfaction Level, for quantitatively tracking type I collagen and fibrillogenesis remodeling by mesenchymal stem cells over time. Computation of these metrics was based on graph theory and vector calculus. The cells and their three dimensional type I collagen microenvironment were modeled by three dimensional cell-graphs and collagen fiber organization was calculated from gradient vectors. With the enhancement of mesenchymal stem cell differentiation, acceleration through different phases was quantitatively demonstrated. The phases were clustered in a statistically significant manner based on collagen organization, with late phases of remodeling by untreated cells clustering strongly with early phases of remodeling by differentiating cells. The experiments were repeated three times to conclude that the metrics could successfully identify critical phases of collagen remodeling that were dependent upon cooperativity within the cell population.Definition of early metrics that are able to predict long-term functionality by linking engineered tissue structure to function is an important step toward optimizing biomaterials for the purposes of regenerative medicine.

  4. Initiating fibro-proliferation through interfacial interactions of myoglobin colloids with collagen in solution.

    Dhanasekaran, Madhumitha; Dhathathreyan, Aruna

    2017-08-01

    This work examines fibro-proliferation through interaction of myoglobin (Mb), a globular protein with collagen, an extracellular matrix fibrous protein. Designed colloids of Mb at pH 4.5 and 7.5 have been mixed with collagen solution at pH 7.5 and 4.5 in different concentrations altering their surface charges. For the Mb colloids, 100-200nm sizes have been measured from Transmission electron micrographs and zeta sizer. CD spectra shows a shift to beta sheet like structure for the protein in the colloids. Interaction at Mb/Collagen interface studied using Dilational rheology, Quartz crystal microbalance with dissipation and Differential Scanning calorimetry show that the perturbation is not only by the charge compensation arising from the difference in pH of the colloids and collagen, but also by the organized assembly of collagen at that particular pH. Results demonstrate that positive Mb colloids at pH 4.5, having more% of entrained water stabilize the collagen fibrils (pH 7.5) around them. Ensuing dehydration leads to effective cross-linking and inherently anisotropic growth of fibrils/fibres of collagen. In the case of Mb colloids at pH 7.5, the fibril formation seems to supersede the clustering of Mb suggesting that the fibro-proliferation is both pH and hydrophilic-hydrophobic balance dependent at the interface. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Collagen V expression is crucial in regional development of the supraspinatus tendon.

    Connizzo, Brianne K; Adams, Sheila M; Adams, Thomas H; Birk, David E; Soslowsky, Louis J

    2016-12-01

    Manipulations in cell culture and mouse models have demonstrated that reduction of collagen V results in altered fibril structure and matrix assembly. A tissue-dependent role for collagen V in determining mechanical function was recently established, but its role in determining regional properties has not been addressed. The objective of this study was to define the role(s) of collagen V expression in establishing the site-specific properties of the supraspinatus tendon. The insertion and midsubstance of tendons from wild type, heterozygous and tendon/ligament-specific null mice were assessed for crimp morphology, fibril morphology, cell morphology, as well as total collagen and pyridinoline cross-link (PYD) content. Fibril morphology was altered at the midsubstance of both groups with larger, but fewer, fibrils and no change in cell morphology or collagen compared to the wild type controls. In contrast, a significant disruption of fibril assembly was observed at the insertion site of the null group with the presence of structurally aberrant fibrils. Alterations were also present in cell density and PYD content. Altogether, these results demonstrate that collagen V plays a crucial role in determining region-specific differences in mouse supraspinatus tendon structure. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 34:2154-2161, 2016. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  6. Development and validation of an enzyme-linked immunosorbent assay for the quantification of a specific MMP-9 mediated degradation fragment of type III collagen--A novel biomarker of atherosclerotic plaque remodeling

    Barascuk, Natasha; Vassiliadis, Efstathios; Larsen, Lise

    2011-01-01

    Degradation of collagen in the arterial wall by matrix metalloproteinases is the hallmark of atherosclerosis. We have developed an ELISA for the quantification of type III collagen degradation mediated by MMP-9 in urine.......Degradation of collagen in the arterial wall by matrix metalloproteinases is the hallmark of atherosclerosis. We have developed an ELISA for the quantification of type III collagen degradation mediated by MMP-9 in urine....

  7. Comparison of the Early Clinical Outcomes between Combined Small-Incision Lenticule Extraction and Collagen Cross-Linking versus SMILE for Myopia.

    Ng, Alex L K; Chan, Tommy C Y; Cheng, George P M; Jhanji, Vishal; Ye, Cong; Woo, Victor C P; Lai, Jimmy S M

    2016-01-01

    Background. To compare the early outcome of combined SMILE and collagen crosslinking (SMILE Xtra) with SMILE. Method. Prospective, comparative interventional study of 21 eyes receiving SMILE Xtra using a low energy protocol and 32 control eyes receiving SMILE only. The outcomes were compared at 1, 3, and 6 months postoperatively. Results. Both groups had myopia with spherical equivalent refraction (SEQ) > 4.00 D. The SMILE Xtra group had thinner preoperative central corneal thickness and residual stromal bed thickness (p line in corrected distance visual acuity. The safety index was 0.96 ± 0.06 and 1.00 ± 0.00 in SMILE Xtra and control, respectively (p SMILE Xtra and +0.03 ± 0.25 D for control (p = 0.021). The efficacy index was 0.88 ± 0.13 and 0.97 ± 0.06, respectively (p = 0.005). Conclusion. SMILE Xtra had good overall safety profile and predictability at 6 months. However, when compared with control, the safety index and efficacy index were statistically significantly lower in the early postoperative period.

  8. Comparison of the Early Clinical Outcomes between Combined Small-Incision Lenticule Extraction and Collagen Cross-Linking versus SMILE for Myopia

    Alex L. K. Ng

    2016-01-01

    Full Text Available Background. To compare the early outcome of combined SMILE and collagen crosslinking (SMILE Xtra with SMILE. Method. Prospective, comparative interventional study of 21 eyes receiving SMILE Xtra using a low energy protocol and 32 control eyes receiving SMILE only. The outcomes were compared at 1, 3, and 6 months postoperatively. Results. Both groups had myopia with spherical equivalent refraction (SEQ > 4.00 D. The SMILE Xtra group had thinner preoperative central corneal thickness and residual stromal bed thickness (p<0.021. At 6 months, no eyes lost more than 1 line in corrected distance visual acuity. The safety index was 0.96±0.06 and 1.00±0.00 in SMILE Xtra and control, respectively (p<0.001. 89% and 94% of eyes were within ±0.50 D of target refraction, respectively, with the mean error in SEQ correction being -0.17±0.26 D for SMILE Xtra and +0.03±0.25 D for control (p=0.021. The efficacy index was 0.88±0.13 and 0.97±0.06, respectively (p=0.005. Conclusion. SMILE Xtra had good overall safety profile and predictability at 6 months. However, when compared with control, the safety index and efficacy index were statistically significantly lower in the early postoperative period.

  9. The degree of collagen crosslinks in medical collagen membranes determined by water absorption

    Braczko, M.; Tederko, A.; Grzybowski, J.

    1994-01-01

    Collagen membranes were crosslinked by using three agents: glutaraldehyde, hexametylenediisocyanate, and UV irradiation. The increasing concentrations of above chemical agents or longer time of UV exposition resulted in the higher cross-links degree and in the decrease of collagen membranes swelling (measured as water absorption), their elasticity and mechanical resistance. According to American standards, the degree of collagen biomaterial cross-links is determined by measuring of the digestion time by pepsin. However, that method is very time-consuming. In our study, we have that a simple, linear regression between logarithm of digestion time by pepsin exists and it was identical for all three cross-linking agents used. We have concluded that determination of water absorption can be an alternative, simple and fast method for examination of collagen membrane cross-links degree. (author). 16 refs, 7 figs, 1 tab

  10. Comparison of Changes in Central Corneal Thickness During Corneal Collagen Cross-Linking, Using Isotonic Riboflavin Solutions With and Without Dextran, in the Treatment of Progressive Keratoconus.

    Zaheer, Naima; Khan, Wajid Ali; Khan, Shama; Khan, M Abdul Moqeet

    2018-03-01

    To compare intraoperative changes in central corneal thickness (CCT) during corneal cross-linking, using 2 different isotonic riboflavin solutions either with dextran or with hydroxy propyl methylcellulose, in the treatment of progressive keratoconus. In this retrospective study, we analyzed records of corneal thickness measurements, taken during various steps of cross-linking. Cross-linking was performed using either isotonic riboflavin with dextran (group A) or isotonic riboflavin with hydroxy propyl methylcellulose (without dextran) (group B). CCT measurements were recorded before and after epithelial removal, after saturation with respective isotonic riboflavin solution, after use of hypotonic riboflavin in selected cases, and after ultraviolet A (UV-A) application. A mixed-way analysis of variance was conducted on CCT readings within each group and between both groups, and p dextran causes a significant decrease in corneal thickness, whereas dextran-free isotonic riboflavin causes a significant increase in corneal thickness, thus facilitating the procedure.

  11. Recombinant gelatin and collagen from methylotrophic yeasts

    Bruin, de E.C.

    2002-01-01

    Based on its structural role and compatibility within the human body, collagen is a commonly used biomaterial in medical applications, such as cosmetic surgery, wound treatment and tissue engineering. Gelatin is in essence denatured and partly degraded collagen and is,

  12. Immune responses to implanted human collagen graft in rats

    Quteish, D.; Dolby, A.E.

    1991-01-01

    Immunity to collagen implants may be mediated by cellular and humoral immune responses. To examine the possibility of such immunological reactivity and crossreactivity to collagen, 39 Sprague-Dawley rats (female, 10 weeks old, approximately 250 g wt) were implanted subcutaneously at thigh sites with crosslinked, freeze-dried human placental type I collagen grafts (4x4x2 mm) which had been irradiated (520 Gray) or left untreated. Blood was obtained by intracardiac sampling prior to implantation or from normal rats, and at various times afterwards when the animals were sacrificed. The sera from these animals were examined for circulating antibodies to human, bovine and rat tail (type I) collagens by enzyme-linked immunosorbent assay (ELISA). Also, the lymphoblastogenic responses of spleen lymphocytes from the irradiated collagen-implanted animals were assessed in culture by measuring thymidine uptake with autologous and normal rat sera in the presence of human bovine type I collagens. Implantation of the irradiated and non-irradiated collagen graft in rats led to a significant increase in the level of circulating antibodies to human collagen. Also antibody to bovine and rat tail collagens was detectable in the animals implanted with irradiated collagen grafts but at a lower level than the human collagen. There was a raised lymphoblastogenic response to both human and bovine collagens. The antibody level and lymphoblastogenesis to the tested collagens gradually decreased towards the end of the post-implantation period. (author)

  13. The effects of different cross-linking conditions on collagen-based nanocomposite scaffolds-an in vitro evaluation using mesenchymal stem cells

    Suchý, Tomáš; Šupová, Monika; Sauerová, P.; Verdánová, M.; Sucharda, Zbyněk; Rýglová, Šárka; Žaloudková, Margit; Sedláček, R.; Hubálek Kalbáčová, M.

    2015-01-01

    Roč. 10, DEC (2015), č. článku 065008. ISSN 1748-6041 R&D Projects: GA MZd(CZ) NV15-25813A Institutional support: RVO:67985891 Keywords : cross-linking agents * nano-composite scaffolds * human mesenchymal stem cells * EDC/NHS * genipin Subject RIV: JI - Composite Materials Impact factor: 3.361, year: 2015

  14. Dermatan Sulfate Epimerase 1-Deficient Mice Have Reduced Content and Changed Distribution of Iduronic Acids in Dermatan Sulfate and an Altered Collagen Structure in Skin

    Maccarana, M.; Kalamajski, S.; Kongsgaard, M.

    2009-01-01

    Dermatan sulfate epimerase 1 (DS-epi1) and DS-epi2 convert glucuronic acid to iduronic acid in chondroitin/dermatan sulfate biosynthesis. Here we report on the generation of DS-epi1-null mice and the resulting alterations in the chondroitin/dermatan polysaccharide chains. The numbers of long blocks...... of adjacent iduronic acids are greatly decreased in skin decorin and biglycan chondroitin/dermatan sulfate, along with a parallel decrease in iduronic-2-O-sulfated-galactosamine-4-O-sulfated structures. Both iduronic acid blocks and iduronic acids surrounded by glucuronic acids are also decreased in versican......-derived chains. DS-epi1-deficient mice are smaller than their wild-type littermates but otherwise have no gross macroscopic alterations. The lack of DS-epi1 affects the chondroitin/dermatan sulfate in many proteoglycans, and the consequences for skin collagen structure were initially analyzed. We found...

  15. Proximal collagenous gastroenteritides:

    Nielsen, Ole Haagen; Riis, Lene Buhl; Danese, Silvio

    2014-01-01

    AIM: While collagenous colitis represents the most common form of the collagenous gastroenteritides, the collagenous entities affecting the proximal part of the gastrointestinal tract are much less recognized and possibly overlooked. The aim was to summarize the latest information through a syste...

  16. Visual rehabilitation in low-moderate keratoconus:intracorneal ring segment implantation followed by same-day topography-guided photorefractive keratectomy and collagen cross linking

    Ferial M. Zeraid

    2014-10-01

    Full Text Available AIM:To present the results of same-day topography-guided photorefractive keratectomy (TG-PRK and corneal collagen crosslinking (CXL after previous intrastromal corneal ring segment (ISCR implantation for keratoconus.METHODS:An experimental clinical study on twenty-one eyes of 19 patients aged 27.1±6.6y (range 19-43y, with low to moderate keratoconus who were selected to undergo customized TG-PRK immediately followed by same-day CXL, 9mo after ISCR implantation in a university ophthalmology clinic. Refraction, uncorrected distance visual acuities (UDVA and corrected distance visual acuities (CDVA, keratometry (K values, central corneal thickness (CCT and coma were assessed 3mo after TG-PRK and CXL.RESULTS:After TG-PRK/CXL:the mean UDVA (logMAR improved significantly from 0.66±0.41 to 0.20±0.25 (P<0.05; Kflat value decreased from:48.44±3.66 D to 43.71±1.95 D; Ksteep value decreased from 45.61±2.40 D to 41.56±2.05 D; Kaverage also decreased from 47.00±2.66 D to 42.42±2.07 D (P<0.05 for all. The mean sphere and cylinder decreased significantly post-surgery from, -3.10±2.99 D to -0.11±0.93 D and from -3.68±1.53 to -1.11±0.75 D respectively, while the CDVA, CCT and coma showed no significant changes. Compared to post-ISCR, significant reductions (P<0.05 or all in all K values, sphere and cylinder were observed after TG-PRK/CXL.CONCLUSION:Same-day combined topography-guided PRK and corneal crosslinking following placement of ISCR is a safe and potentially effective option in treating low-moderate keratoconus. It significantly improves all visual acuity, reduced keratometry, sphere and astigmatism, but causes no change in central corneal thickness and coma.

  17. Mapping protein structural changes by quantitative cross-linking

    Kukačka, Zdeněk; Strohalm, Martin; Kavan, Daniel; Novák, Petr

    2015-01-01

    Roč. 89, NOV 2015 (2015), s. 112-120 ISSN 1046-2023 R&D Projects: GA MŠk(CZ) EE2.3.20.0055; GA MŠk(CZ) EE2.3.30.0003; GA MŠk(CZ) ED1.1.00/02.0109 Grant - others:OPPC(XE) CZ.2.16/3.1.00/24023 Institutional support: RVO:61388971 Keywords : Chemical cross-linking * Proteolysis * Mass spectrometry Subject RIV: CE - Biochemistry Impact factor: 3.503, year: 2015

  18. Linking Neural and Symbolic Representation and Processing of Conceptual Structures

    Frank van der Velde

    2017-08-01

    Full Text Available We compare and discuss representations in two cognitive architectures aimed at representing and processing complex conceptual (sentence-like structures. First is the Neural Blackboard Architecture (NBA, which aims to account for representation and processing of complex and combinatorial conceptual structures in the brain. Second is IDyOT (Information Dynamics of Thinking, which derives sentence-like structures by learning statistical sequential regularities over a suitable corpus. Although IDyOT is designed at a level more abstract than the neural, so it is a model of cognitive function, rather than neural processing, there are strong similarities between the composite structures developed in IDyOT and the NBA. We hypothesize that these similarities form the basis of a combined architecture in which the individual strengths of each architecture are integrated. We outline and discuss the characteristics of this combined architecture, emphasizing the representation and processing of conceptual structures.

  19. Linking neural and symbolic representation and processing of conceptual structures

    van der Velde, Frank; Forth, Jamie; Nazareth, Deniece S.; Wiggins, Geraint A.

    2017-01-01

    We compare and discuss representations in two cognitive architectures aimed at representing and processing complex conceptual (sentence-like) structures. First is the Neural Blackboard Architecture (NBA), which aims to account for representation and processing of complex and combinatorial conceptual

  20. Quaternary epitopes of α345(IV) collagen initiate Alport post-transplant anti-GBM nephritis

    Olaru, Florina; Luo, Wentian; Wang, Xu-Ping

    2013-01-01

    Alport post-transplant nephritis (APTN) is an aggressive form of anti-glomerular basement membrane disease that targets the allograft in transplanted patients with X-linked Alport syndrome. Alloantibodies develop against the NC1 domain of α5(IV) collagen, which occurs in normal kidneys, including...... of alloantibodies against allogeneic collagen IV. Some alloantibodies targeted alloepitopes within α5NC1 monomers, shared by α345NC1 and α1256NC1 hexamers. Other alloantibodies specifically targeted alloepitopes that depended on the quaternary structure of α345NC1 hexamers. In Col4a5-null mice, immunization...... with native forms of allogeneic collagen IV exclusively elicited antibodies to quaternary α345NC1 alloepitopes, whereas alloimmunogens lacking native quaternary structure elicited antibodies to shared α5NC1 alloepitopes. These results imply that quaternary epitopes within α345NC1 hexamers may initiate...

  1. A Case of “en bloc” Excision of a Chest Wall Leiomyosarcoma and Closure of the Defect with Non-Cross-Linked Collagen Matrix (Egis®

    Marco Rastrelli

    2016-10-01

    Full Text Available Sarcomas arising from the chest wall account for less than 20% of all soft tissue sarcomas, and at this site, primitive tumors are the most frequent to occur. Leiomyosarcoma is a malignant smooth muscle tumor and the best outcomes are achieved with wide surgical excision. Although advancements have been made in treatment protocols, leiomyosarcoma remains one of the more difficult soft tissue sarcoma to treat. Currently, general local control is obtained with surgical treatment with wide negative margins. We describe the case of a 50-year-old man who underwent a chest wall resection involving a wide portion of the pectoralis major and minor muscle, the serratus and part of the second, third and fourth ribs of the left side. The full-thickness chest wall defect of 10 × 8 cm was closed using a non-cross-linked acellular dermal matrix (Egis® placed in two layers, beneath the rib plane and over it. A successful repair was achieved with no incisional herniation and with complete tissue regeneration, allowing natural respiratory movements. No complications were observed in the postoperative course. Biological non-cross-linked matrix, derived from porcine dermis, behaves like a scaffold supporting tissue regeneration; it can be successfully used as an alternative to synthetic mesh for chest wall reconstruction.

  2. A Case of “en bloc” Excision of a Chest Wall Leiomyosarcoma and Closure of the Defect with Non-Cross-Linked Collagen Matrix (Egis®)

    Rastrelli, Marco; Tropea, Saveria; Spina, Romina; Costa, Alessandra; Stramare, Roberto; Mocellin, Simone; Bonavina, Maria Giuseppina; Rossi, Carlo Riccardo

    2016-01-01

    Sarcomas arising from the chest wall account for less than 20% of all soft tissue sarcomas, and at this site, primitive tumors are the most frequent to occur. Leiomyosarcoma is a malignant smooth muscle tumor and the best outcomes are achieved with wide surgical excision. Although advancements have been made in treatment protocols, leiomyosarcoma remains one of the more difficult soft tissue sarcoma to treat. Currently, general local control is obtained with surgical treatment with wide negative margins. We describe the case of a 50-year-old man who underwent a chest wall resection involving a wide portion of the pectoralis major and minor muscle, the serratus and part of the second, third and fourth ribs of the left side. The full-thickness chest wall defect of 10 × 8 cm was closed using a non-cross-linked acellular dermal matrix (Egis®) placed in two layers, beneath the rib plane and over it. A successful repair was achieved with no incisional herniation and with complete tissue regeneration, allowing natural respiratory movements. No complications were observed in the postoperative course. Biological non-cross-linked matrix, derived from porcine dermis, behaves like a scaffold supporting tissue regeneration; it can be successfully used as an alternative to synthetic mesh for chest wall reconstruction. PMID:27920698

  3. The management of cornea blindness from severe corneal scarring, with the Athens Protocol (transepithelial topography-guided PRK therapeutic remodeling, combined with same-day, collagen cross-linking

    Kanellopoulos AJ

    2012-02-01

    Full Text Available Anastasios John KanellopoulosLaservision.gr Institute, Athens, Greece; Manhattan Eye, Ear and Throat Hospital, New York, NY, USA; New York University Medical School, New York, NY, USAPurpose: To evaluate the safety and efficacy of combined transepithelial topography-guided photorefractive keratectomy (PRK therapeutic remodeling, combined with same-day, collagen cross-linking (CXL. This protocol was used for the management of cornea blindness due to severe corneal scarring.Methods: A 57-year-old man had severe corneal blindness in both eyes. Both corneas had significant central scars attributed to a firework explosion 45 years ago, when the patient was 12 years old. Corrected distance visual acuity (CDVA was 20/100 both eyes (OU with refraction: +4.00, –4.50 at 135° in the right eye and +3.50, –1.00 at 55° in the left. Respective keratometries were: 42.3, 60.4 at 17° and 35.8, 39.1 at 151.3°. Cornea transplantation was the recommendation by multiple cornea specialists as the treatment of choice. We decided prior to considering a transplant to employ the Athens Protocol (combined topography-guided partial PRK and CXL in the right eye in February 2010 and in the left eye in September 2010. The treatment plan for both eyes was designed on the topography-guided wavelight excimer laser platform.Results: Fifteen months after the right eye treatment, the right cornea had improved translucency and was topographically stable with uncorrected distance visual acuity (UDVA 20/50 and CDVA 20/40 with refraction +0.50, –2.00 at 5°. We noted a similar outcome after similar treatment applied in the left eye with UDVA 20/50 and CDVA 20/40 with –0.50, –2.00 at 170° at the 8-month follow-up.Conclusion: In this case, the introduction of successful management of severe cornea abnormalities and scarring with the Athens Protocol may provide an effective alternative to other existing surgical or medical options.Keywords: Athens Protocol, collagen cross-linking

  4. Approaches to link RNA secondary structures with splicing regulation

    Plass, Mireya; Eyras, Eduardo

    2014-01-01

    In higher eukaryotes, alternative splicing is usually regulated by protein factors, which bind to the pre-mRNA and affect the recognition of splicing signals. There is recent evidence that the secondary structure of the pre-mRNA may also play an important role in this process, either by facilitat...... describes the steps in the analysis of the secondary structure of the pre-mRNA and its possible relation to splicing. As a working example, we use the case of yeast and the problem of the recognition of the 3' splice site (3'ss).......In higher eukaryotes, alternative splicing is usually regulated by protein factors, which bind to the pre-mRNA and affect the recognition of splicing signals. There is recent evidence that the secondary structure of the pre-mRNA may also play an important role in this process, either...

  5. Nonlinear optical response of the collagen triple helix and second harmonic microscopy of collagen liquid crystals

    Deniset-Besseau, A.; De Sa Peixoto, P.; Duboisset, J.; Loison, C.; Hache, F.; Benichou, E.; Brevet, P.-F.; Mosser, G.; Schanne-Klein, M.-C.

    2010-02-01

    Collagen is characterized by triple helical domains and plays a central role in the formation of fibrillar and microfibrillar networks, basement membranes, as well as other structures of the connective tissue. Remarkably, fibrillar collagen exhibits efficient Second Harmonic Generation (SHG) and SHG microscopy proved to be a sensitive tool to score fibrotic pathologies. However, the nonlinear optical response of fibrillar collagen is not fully characterized yet and quantitative data are required to further process SHG images. We therefore performed Hyper-Rayleigh Scattering (HRS) experiments and measured a second order hyperpolarisability of 1.25 10-27 esu for rat-tail type I collagen. This value is surprisingly large considering that collagen presents no strong harmonophore in its amino-acid sequence. In order to get insight into the physical origin of this nonlinear process, we performed HRS measurements after denaturation of the collagen triple helix and for a collagen-like short model peptide [(Pro-Pro-Gly)10]3. It showed that the collagen large nonlinear response originates in the tight alignment of a large number of weakly efficient harmonophores, presumably the peptide bonds, resulting in a coherent amplification of the nonlinear signal along the triple helix. To illustrate this mechanism, we successfully recorded SHG images in collagen liquid solutions by achieving liquid crystalline ordering of the collagen triple helices.

  6. Water linked 3D coordination polymers: Syntheses, structures and applications

    Singh, Suryabhan; Bhim, Anupam

    2016-12-01

    Three new coordination polymers (CPs) based on Cd and Pb, [Cd(OBA)(μ-H2O)(H2O)]n1, [Pb(OBA)(μ-H2O)]n2 [where OBA=4,4'-Oxybis(benzoate)] and [Pb(SDBA)(H2O)]n.1/4DMF 3 (SDBA=4,4'-Sulfonyldibenzoate), have been synthesized and characterized. The single crystal structural studies reveal that CPs 1 and 2 have three dimensional structure. A water molecule bridges two metal centres which appears to the responsible for the dimensionality increase from 2D to 3D. Compound 3 has a supramolecular 3D structure involving water molecule and hydrogen bonds. A structural transformation is observed when 3 was heated at 100 °C or kept in methanol, forming [Pb(SDBA)]n4. Compound 4 is used as supporting matrix for palladium nanoparticles, PdNPs@4. The PdNPs@4 exhibits good catalytic activity toward the reduction of 4-nitrophenol (4-NP) to 4-aminophenol (4-AP) in the presence of NaBH4 at room temperature. Luminescence studies revealed that all CPs could be an effective sensor for nitroaromatic explosives.

  7. Simultaneous versus Sequential Accelerated Corneal Collagen Cross-Linking and Wave Front Guided PRK for Treatment of Keratoconus: Objective and Subjective Evaluation.

    Abou Samra, Waleed Ali; El Emam, Dalia Sabry; Farag, Rania Kamel; Abouelkheir, Hossam Youssef

    2016-01-01

    Aim . To compare objective and subjective outcome after simultaneous wave front guided (WFG) PRK and accelerated corneal cross-linking (CXL) in patients with progressive keratoconus versus sequential WFG PRK 6 months after CXL. Methods . 62 eyes with progressive keratoconus were divided into two groups; the first including 30 eyes underwent simultaneous WFG PRK with accelerated CXL. The second including 32 eyes underwent subsequent WFG PRK performed 6 months later after accelerated CXL. Visual, refractive, topographic, and aberrometric data were determined preoperatively and during 1-year follow-up period and the results compared in between the 2 studied groups. Results . All evaluated visual, refractive, and aberrometric parameters demonstrated highly significant improvement in both studied groups (all P PRK and accelerated CXL is an effective and safe option to improve the vision in mild to moderate keratoconus. In one-year follow-up, there is no statistically significant difference between the simultaneous and sequential procedure.

  8. Exploiting link structure for web page genre identification

    Zhu, Jia; Xie, Qing; Yu, Shoou I.; Wong, Wai Hung

    2015-01-01

    As the World Wide Web develops at an unprecedented pace, identifying web page genre has recently attracted increasing attention because of its importance in web search. A common approach for identifying genre is to use textual features that can be extracted directly from a web page, that is, On-Page features. The extracted features are subsequently inputted into a machine learning algorithm that will perform classification. However, these approaches may be ineffective when the web page contains limited textual information (e.g., the page is full of images). In this study, we address genre identification of web pages under the aforementioned situation. We propose a framework that uses On-Page features while simultaneously considering information in neighboring pages, that is, the pages that are connected to the original page by backward and forward links. We first introduce a graph-based model called GenreSim, which selects an appropriate set of neighboring pages. We then construct a multiple classifier combination module that utilizes information from the selected neighboring pages and On-Page features to improve performance in genre identification. Experiments are conducted on well-known corpora, and favorable results indicate that our proposed framework is effective, particularly in identifying web pages with limited textual information. © 2015 The Author(s)

  9. Exploiting link structure for web page genre identification

    Zhu, Jia

    2015-07-07

    As the World Wide Web develops at an unprecedented pace, identifying web page genre has recently attracted increasing attention because of its importance in web search. A common approach for identifying genre is to use textual features that can be extracted directly from a web page, that is, On-Page features. The extracted features are subsequently inputted into a machine learning algorithm that will perform classification. However, these approaches may be ineffective when the web page contains limited textual information (e.g., the page is full of images). In this study, we address genre identification of web pages under the aforementioned situation. We propose a framework that uses On-Page features while simultaneously considering information in neighboring pages, that is, the pages that are connected to the original page by backward and forward links. We first introduce a graph-based model called GenreSim, which selects an appropriate set of neighboring pages. We then construct a multiple classifier combination module that utilizes information from the selected neighboring pages and On-Page features to improve performance in genre identification. Experiments are conducted on well-known corpora, and favorable results indicate that our proposed framework is effective, particularly in identifying web pages with limited textual information. © 2015 The Author(s)

  10. Modern collagen wound dressings: function and purpose.

    Fleck, Cynthia Ann; Simman, Richard

    2010-09-01

    Collagen, which is produced by fibroblasts, is the most abundant protein in the human body. A natural structural protein, collagen is involved in all 3 phases of the wound-healing cascade. It stimulates cellular migration and contributes to new tissue development. Because of their chemotactic properties on wound fibroblasts, collagen dressings encourage the deposition and organization of newly formed collagen, creating an environment that fosters healing. Collagen-based biomaterials stimulate and recruit specific cells, such as macrophages and fibroblasts, along the healing cascade to enhance and influence wound healing. These biomaterials can provide moisture or absorption, depending on the delivery system. Collagen dressings are easy to apply and remove and are conformable. Collagen dressings are usually formulated with bovine, avian, or porcine collagen. Oxidized regenerated cellulose, a plant-based material, has been combined with collagen to produce a dressing capable of binding to and protecting growth factors by binding and inactivating matrix metalloproteinases in the wound environment. The increased understanding of the biochemical processes involved in chronic wound healing allows the design of wound care products aimed at correcting imbalances in the wound microenvironment. Traditional advanced wound care products tend to address the wound's macroenvironment, including moist wound environment control, fluid management, and controlled transpiration of wound fluids. The newer class of biomaterials and wound-healing agents, such as collagen and growth factors, targets specific defects in the chronic wound environment. In vitro laboratory data point to the possibility that these agents benefit the wound healing process at a biochemical level. Considerable evidence has indicated that collagen-based dressings may be capable of stimulating healing by manipulating wound biochemistry.

  11. Metal stabilization of collagen and de novo designed mimetic peptides

    Parmar, Avanish S.; Xu, Fei; Pike, Douglas H.; Belure, Sandeep V.; Hasan, Nida F.; Drzewiecki, Kathryn E.; Shreiber, David I.; Nanda, Vikas

    2015-01-01

    We explore the design of metal binding sites to modulate triple-helix stability of collagen and collagen-mimetic peptides. Globular proteins commonly utilize metals to connect tertiary structural elements that are well separated in sequence, constraining structure and enhancing stability. It is more challenging to engineer structural metals into fibrous protein scaffolds, which lack the extensive tertiary contacts seen in globular proteins. In the collagen triple helix, the structural adjacen...

  12. Water linked 3D coordination polymers: Syntheses, structures and applications

    Singh, Suryabhan, E-mail: sbs.bhu@gmail.com; Bhim, Anupam

    2016-12-15

    Three new coordination polymers (CPs) based on Cd and Pb, [Cd(OBA)(μ-H{sub 2}O)(H{sub 2}O)]{sub n}1, [Pb(OBA)(μ-H{sub 2}O)]{sub n}2 [where OBA=4,4’-Oxybis(benzoate)] and [Pb(SDBA)(H{sub 2}O)]{sub n}.1/4DMF 3 (SDBA=4,4’-Sulfonyldibenzoate), have been synthesized and characterized. The single crystal structural studies reveal that CPs 1 and 2 have three dimensional structure. A water molecule bridges two metal centres which appears to the responsible for the dimensionality increase from 2D to 3D. Compound 3 has a supramolecular 3D structure involving water molecule and hydrogen bonds. A structural transformation is observed when 3 was heated at 100 °C or kept in methanol, forming [Pb(SDBA)]{sub n}4. Compound 4 is used as supporting matrix for palladium nanoparticles, PdNPs@4. The PdNPs@4 exhibits good catalytic activity toward the reduction of 4-nitrophenol (4-NP) to 4-aminophenol (4-AP) in the presence of NaBH{sub 4} at room temperature. Luminescence studies revealed that all CPs could be an effective sensor for nitroaromatic explosives. - Graphical abstract: Three new CPs based on Cd and Pb, have been synthesized and characterized. A water molecule bridges two metal centres which appears to the responsible for the dimensionality increase from 2D to 3D. One of the CP is used as supporting matrix for palladium nanoparticles, PdNPs@4. The PdNPs@4 exhibits good catalytic activity toward the reduction of 4-nitrophenol. Luminescence studies shown that all CPs could be an effective sensor for nitroaromatic explosives. - Highlights: • Three new CPs based on Cd and Pb, have been synthesized and characterized. • A water molecule bridges two metal centres which appears to the responsible for the dimensionality increase from 2D to 3D. • One of the CP is used as supporting matrix for palladium nanoparticles, PdNPs@4. • Luminescence studies shown that all CPs could be an effective sensor for nitroaromatic explosives.

  13. Simultaneous versus Sequential Accelerated Corneal Collagen Cross-Linking and Wave Front Guided PRK for Treatment of Keratoconus: Objective and Subjective Evaluation

    Waleed Ali Abou Samra

    2016-01-01

    Full Text Available Aim. To compare objective and subjective outcome after simultaneous wave front guided (WFG PRK and accelerated corneal cross-linking (CXL in patients with progressive keratoconus versus sequential WFG PRK 6 months after CXL. Methods. 62 eyes with progressive keratoconus were divided into two groups; the first including 30 eyes underwent simultaneous WFG PRK with accelerated CXL. The second including 32 eyes underwent subsequent WFG PRK performed 6 months later after accelerated CXL. Visual, refractive, topographic, and aberrometric data were determined preoperatively and during 1-year follow-up period and the results compared in between the 2 studied groups. Results. All evaluated visual, refractive, and aberrometric parameters demonstrated highly significant improvement in both studied groups (all P<0.001. A significant improvement was observed in keratometric and Q values. The improvement in all parameters was stable till the end of follow-up. Likewise, no significant difference was determined in between the 2 groups in any of recorded parameters. Subjective data revealed similarly significant improvement in both groups. Conclusions. WFG PRK and accelerated CXL is an effective and safe option to improve the vision in mild to moderate keratoconus. In one-year follow-up, there is no statistically significant difference between the simultaneous and sequential procedure.

  14. X-linked Alport syndrome associated with a synonymous p.Gly292Gly mutation alters the splicing donor site of the type IV collagen alpha chain 5 gene.

    Fu, Xue Jun; Nozu, Kandai; Eguchi, Aya; Nozu, Yoshimi; Morisada, Naoya; Shono, Akemi; Taniguchi-Ikeda, Mariko; Shima, Yuko; Nakanishi, Koichi; Vorechovsky, Igor; Iijima, Kazumoto

    2016-10-01

    X-linked Alport syndrome (XLAS) is a progressive hereditary nephropathy caused by mutations in the type IV collagen alpha chain 5 gene (COL4A5). Although many COL4A5 mutations have previously been identified, pathogenic synonymous mutations have not yet been described. A family with XLAS underwent mutational analyses of COL4A5 by PCR and direct sequencing, as well as transcript analysis of potential splice site mutations. In silico analysis was also conducted to predict the disruption of splicing factor binding sites. Immunohistochemistry (IHC) of kidney biopsies was used to detect α2 and α5 chain expression. We identified a hemizygous point mutation, c.876A>T, in exon 15 of COL4A5 in the proband and his brother, which is predicted to result in a synonymous amino acid change, p.(Gly292Gly). Transcript analysis showed that this mutation potentially altered splicing because it disrupted the splicing factor binding site. The kidney biopsy of the proband showed lamellation of the glomerular basement membrane (GBM), while IHC revealed negative α5(IV) staining in the GBM and Bowman's capsule, which is typical of XLAS. This is the first report of a synonymous COL4A5 substitution being responsible for XLAS. Our findings suggest that transcript analysis should be conducted for the future correct assessment of silent mutations.

  15. Linking structural features of protein complexes and biological function.

    Sowmya, Gopichandran; Breen, Edmond J; Ranganathan, Shoba

    2015-09-01

    Protein-protein interaction (PPI) establishes the central basis for complex cellular networks in a biological cell. Association of proteins with other proteins occurs at varying affinities, yet with a high degree of specificity. PPIs lead to diverse functionality such as catalysis, regulation, signaling, immunity, and inhibition, playing a crucial role in functional genomics. The molecular principle of such interactions is often elusive in nature. Therefore, a comprehensive analysis of known protein complexes from the Protein Data Bank (PDB) is essential for the characterization of structural interface features to determine structure-function relationship. Thus, we analyzed a nonredundant dataset of 278 heterodimer protein complexes, categorized into major functional classes, for distinguishing features. Interestingly, our analysis has identified five key features (interface area, interface polar residue abundance, hydrogen bonds, solvation free energy gain from interface formation, and binding energy) that are discriminatory among the functional classes using Kruskal-Wallis rank sum test. Significant correlations between these PPI interface features amongst functional categories are also documented. Salt bridges correlate with interface area in regulator-inhibitors (r = 0.75). These representative features have implications for the prediction of potential function of novel protein complexes. The results provide molecular insights for better understanding of PPIs and their relation to biological functions. © 2015 The Protein Society.

  16. Nanomechanical mapping of hydrated rat tail tendon collagen I fibrils.

    Baldwin, Samuel J; Quigley, Andrew S; Clegg, Charlotte; Kreplak, Laurent

    2014-10-21

    Collagen fibrils play an important role in the human body, providing tensile strength to connective tissues. These fibrils are characterized by a banding pattern with a D-period of 67 nm. The proposed origin of the D-period is the internal staggering of tropocollagen molecules within the fibril, leading to gap and overlap regions and a corresponding periodic density fluctuation. Using an atomic force microscope high-resolution modulus maps of collagen fibril segments, up to 80 μm in length, were acquired at indentation speeds around 10(5) nm/s. The maps revealed a periodic modulation corresponding to the D-period as well as previously undocumented micrometer scale fluctuations. Further analysis revealed a 4/5, gap/overlap, ratio in the measured modulus providing further support for the quarter-staggered model of collagen fibril axial structure. The modulus values obtained at indentation speeds around 10(5) nm/s are significantly larger than those previously reported. Probing the effect of indentation speed over four decades reveals two distinct logarithmic regimes of the measured modulus and point to the existence of a characteristic molecular relaxation time around 0.1 ms. Furthermore, collagen fibrils exposed to temperatures between 50 and 62°C and cooled back to room temperature show a sharp decrease in modulus and a sharp increase in fibril diameter. This is also associated with a disappearance of the D-period and the appearance of twisted subfibrils with a pitch in the micrometer range. Based on all these data and a similar behavior observed for cross-linked polymer networks below the glass transition temperature, we propose that collagen I fibrils may be in a glassy state while hydrated.

  17. Collagen derived serum markers in carcinoma of the prostate

    Rudnicki, M; Jensen, L T; Iversen, P

    1995-01-01

    Three new collagen markers deriving from the collagenous matrix, e.g. carboxyterminal propeptide of type I procollagen (PICP), carboxy-terminal pyridinoline cross-linked telopeptide of type I collagen (ICTP), and aminoterminal propeptide of type III procollagen (PIIINP) were used for the diagnose......, ICTP, and PICP did not differ between these two groups. In patients with metastatic prostatic cancer all five markers were increased compared to the level measured in patients with localized cancer (p

  18. Linking the Pilot Structural Model and Pilot Workload

    Bachelder, Edward; Hess, Ronald; Aponso, Bimal; Godfroy-Cooper, Martine

    2018-01-01

    Behavioral models are developed that closely reproduced pulsive control response of two pilots using markedly different control techniques while conducting a tracking task. An intriguing find was that the pilots appeared to: 1) produce a continuous, internally-generated stick signal that they integrated in time; 2) integrate the actual stick position; and 3) compare the two integrations to either issue or cease a pulse command. This suggests that the pilots utilized kinesthetic feedback in order to sense and integrate stick position, supporting the hypothesis that pilots can access and employ the proprioceptive inner feedback loop proposed by Hess's pilot Structural Model. A Pilot Cost Index was developed, whose elements include estimated workload, performance, and the degree to which the pilot employs kinesthetic feedback. Preliminary results suggest that a pilot's operating point (parameter values) may be based on control style and index minimization.

  19. Endocytic collagen degradation

    Madsen, Daniel H.; Jürgensen, Henrik J.; Ingvarsen, Signe Ziir

    2012-01-01

    it crucially important to understand both the collagen synthesis and turnover mechanisms in this condition. Here we show that the endocytic collagen receptor, uPARAP/Endo180, is a major determinant in governing the balance between collagen deposition and degradation. Cirrhotic human livers displayed a marked...... up-regulation of uPARAP/Endo180 in activated fibroblasts and hepatic stellate cells located close to the collagen deposits. In a hepatic stellate cell line, uPARAP/Endo180 was shown to be active in, and required for, the uptake and intracellular degradation of collagen. To evaluate the functional...... groups of mice clearly revealed a fibrosis protective role of uPARAP/Endo180. This effect appeared to directly reflect the activity of the collagen receptor, since no compensatory events were noted when comparing the mRNA expression profiles of the two groups of mice in an array system focused on matrix-degrading...

  20. Orchestration of Structural, Stereoelectronic, and Hydrogen-Bonding Effects in Stabilizing Triplexes from Engineered Chimeric Collagen Peptides (Pro(X)-Pro(Y)-Gly)6 Incorporating 4(R/S)-Aminoproline.

    Umashankara, Muddegowda; Sonar, Mahesh V; Bansode, Nitin D; Ganesh, Krishna N

    2015-09-04

    Collagens are an important family of structural proteins found in the extracellular matrix with triple helix as the characteristic structural motif. The collagen triplex is made of three left-handed polyproline II (PPII) helices with each PPII strand consisting of repetitive units of the tripeptide motif X-Y-Gly, where the amino acids X and Y are most commonly proline (Pro) and 4R-hydroxyproline (Hyp), respectively. A C4-endo pucker at X-site and C4-exo pucker at Y-site have been proposed to be the key for formation of triplex, and the nature of pucker is dependent on both the electronegativity and stereochemistry of the substituent. The present manuscript describes a new class of collagen analogues-chimeric cationic collagens-wherein both X- and Y-sites in collagen triad are simultaneously substituted by a combination of 4(R/S)-(OH/NH2/NH3(+)/NHCHO)-prolyl units and triplex stabilities measured at different pHs and in EG:H2O. Based on the results a model has been proposed with the premise that any factors which specifically favor the ring puckers of C4-endo at X-site and C4-exo at Y-site stabilize the PPII conformation and hence the derived triplexes. The pH-dependent triplex stability uniquely observed with ionizable 4-amino substituent on proline enables one to define the critical combination of factors C4-(exo/endo), intraresidue H-bonding, stereoelectronic (R/S) and n → π* interactions in dictating the triplex strength. The ionizable NH2 substituent at C4 in R/S configuration is thus a versatile probe for delineating the triplex stabilizing factors and the results have potential for designing of collagen analogues with customized properties for material and biological applications.

  1. Linking vegetation structure, function and physiology through spectroscopic remote sensing

    Serbin, S.; Singh, A.; Couture, J. J.; Shiklomanov, A. N.; Rogers, A.; Desai, A. R.; Kruger, E. L.; Townsend, P. A.

    2015-12-01

    Terrestrial ecosystem process models require detailed information on ecosystem states and canopy properties to properly simulate the fluxes of carbon (C), water and energy from the land to the atmosphere and assess the vulnerability of ecosystems to perturbations. Current models fail to adequately capture the magnitude, spatial variation, and seasonality of terrestrial C uptake and storage, leading to significant uncertainties in the size and fate of the terrestrial C sink. By and large, these parameter and process uncertainties arise from inadequate spatial and temporal representation of plant traits, vegetation structure, and functioning. With increases in computational power and changes to model architecture and approaches, it is now possible for models to leverage detailed, data rich and spatially explicit descriptions of ecosystems to inform parameter distributions and trait tradeoffs. In this regard, spectroscopy and imaging spectroscopy data have been shown to be invaluable observational datasets to capture broad-scale spatial and, eventually, temporal dynamics in important vegetation properties. We illustrate the linkage of plant traits and spectral observations to supply key data constraints for model parameterization. These constraints can come either in the form of the raw spectroscopic data (reflectance, absorbtance) or physiological traits derived from spectroscopy. In this presentation we highlight our ongoing work to build ecological scaling relationships between critical vegetation characteristics and optical properties across diverse and complex canopies, including temperate broadleaf and conifer forests, Mediterranean vegetation, Arctic systems, and agriculture. We focus on work at the leaf, stand, and landscape scales, illustrating the importance of capturing the underlying variability in a range of parameters (including vertical variation within canopies) to enable more efficient scaling of traits related to functional diversity of ecosystems.

  2. Mesenchymal Stem Cells Sense Three Dimensional Type I Collagen through Discoidin Domain Receptor 1.

    Lund, A W; Stegemann, J P; Plopper, G E

    2009-01-01

    The extracellular matrix provides structural and organizational cues for tissue development and defines and maintains cellular phenotype during cell fate determination. Multipotent mesenchymal stem cells use this matrix to tightly regulate the balance between their differentiation potential and self-renewal in the native niche. When understood, the mechanisms that govern cell-matrix crosstalk during differentiation will allow for efficient engineering of natural and synthetic matrices to specifically direct and maintain stem cell phenotype. This work identifies the discoidin domain receptor 1 (DDR1), a collagen activated receptor tyrosine kinase, as a potential link through which stem cells sense and respond to the 3D organization of their extracellular matrix microenvironment. DDR1 is dependent upon both the structure and proteolytic state of its collagen ligand and is specifically expressed and localized in three dimensional type I collagen culture. Inhibition of DDR1 expression results in decreased osteogenic potential, increased cell spreading, stress fiber formation and ERK1/2 phosphorylation. Additionally, loss of DDR1 activity alters the cell-mediated organization of the naïve type I collagen matrix. Taken together, these results demonstrate a role for DDR1 in the stem cell response to and interaction with three dimensional type I collagen. Dynamic changes in cell shape in 3D culture and the tuning of the local ECM microstructure, directs crosstalk between DDR1 and two dimensional mechanisms of osteogenesis that can alter their traditional roles.

  3. Influence of the freezing process on the pore structure of freeze-dried collagen sponges; Einfluss des Einfriervorganges auf die Porenstruktur gefriergetrockneter Kollagenschwaemme

    Schoof, H.; Bruns, L.; Apel, J.; Heschel, I.; Rau, G. [Helmholz-Inst. fuer Biomedizinische Technik, Aachen (Germany)

    1997-12-31

    Freeze-dried sponges are used as colonisable tissue implants. As their porous structure is important for rapid colonisation it was found desirable to be able to produce homogeneous pore structures to specification. The structure of freeze-dried sponges is largely the same as the ice crystal morphology of frozen samples. In industrial manufacture suspensions are solidified in a cold bath. Freezing conditions are not stationary in this process, rendering ice crystal morphology inhomogeneous. However, studies on directed solidification as it is used in the Bridgman or the power-down method have shown that certain freezing conditions permit the production of collagen sponges of homogenous predefined pore size. [Deutsch] Gefriergetrocknete Kollagenschwaemme werden als besiedelbare Gewebeimplantate eingesetzt. Da die poroese Struktur fuer eine zuegige Besiedelung von grosser Bedeutung ist, sollen Kollagenschwaemme mit einer einstellbaren und homogenen Porenstruktur hergestellt werden. Die Struktur der gefriergetrockneten Schwaemme entspricht weitestgehend der Eiskristallmorphologie der gefrorenen Probe. Bei der industriellen Herstellung werden Suspensionen in einem Kaeltebad erstarrt. Die Einfrierbedingungen sind dabei nicht stationaer, was zu einer inhomogenen Eiskristallmorphologie fuehrt. Untersuchungen zur gerichteten Erstarrung nach dem Bridgman- und dem Power-Down-Verfahren ergaben jedoch, dass unter bestimmten Einfrierbedingungen Kollagenschwaemme mit homogener und definierbarer Porengroesse hergestellt werden koennen. (orig.)

  4. Fluorescence, aggregation properties and FT-IR microspectroscopy of elastin and collagen fibers.

    Vidal, Benedicto de Campos

    2014-10-01

    Histological and histochemical observations support the hypothesis that collagen fibers can link to elastic fibers. However, the resulting organization of elastin and collagen type complexes and differences between these materials in terms of macromolecular orientation and frequencies of their chemical vibrational groups have not yet been solved. This study aimed to investigate the macromolecular organization of pure elastin, collagen type I and elastin-collagen complexes using polarized light DIC-microscopy. Additionally, differences and similarities between pure elastin and collagen bundles (CB) were investigated by Fourier transform-infrared (FT-IR) microspectroscopy. Although elastin exhibited a faint birefringence, the elastin-collagen complex aggregates formed in solution exhibited a deep birefringence and formation of an ordered-supramolecular complex typical of collagen chiral structure. The FT-IR study revealed elastin and CB peptide NH groups involved in different types of H-bonding. More energy is absorbed in the vibrational transitions corresponding to CH, CH2 and CH3 groups (probably associated with the hydrophobicity demonstrated by 8-anilino-1-naphtalene sulfonic acid sodium salt [ANS] fluorescence), and to νCN, δNH and ωCH2 groups of elastin compared to CB. It is assumed that the α-helix contribution to the pure elastin amide I profile is 46.8%, whereas that of the B-sheet is 20% and that unordered structures contribute to the remaining percentage. An FT-IR profile library reveals that the elastin signature within the 1360-1189cm(-1) spectral range resembles that of Conex-Toray aramid fibers. Copyright © 2014 Elsevier GmbH. All rights reserved.

  5. Macrophage receptor with collagenous structure (MARCO) is a dynamic adhesive molecule that enhances uptake of carbon nanotubes by CHO-K1 Cells

    Hirano, Seishiro, E-mail: seishiro@nies.go.jp [Environmental Nanotoxicology Project, RCER, National Institute for Environmental Studies (Japan); Fujitani, Yuji; Furuyama, Akiko [Environmental Nanotoxicology Project, RCER, National Institute for Environmental Studies (Japan); Kanno, Sanae [Department of Legal Medicine, St. Marianna School of Medicine (Japan)

    2012-02-15

    The toxicity of carbon nanotubes (CNTs), a highly promising nanomaterial, is similar to that of asbestos because both types of particles have a fibrous shape and are biopersistent. Here, we investigated the characteristics of macrophage receptor with collagenous structure (MARCO), a membrane receptor expressed on macrophages that recognizes environmental or unopsonized particles, and we assessed whether and how MARCO was involved in cellular uptake of multi-walled CNTs (MWCNTs). MARCO-transfected Chinese hamster ovary (CHO-K1) cells took up polystyrene beads irrespective of the particle size (20 nm–1 μm). In the culture of MARCO-transfected CHO-K1 cells dendritic structures were observed on the bottom of culture dishes, and the edges of these dendritic structures were continually renewed as the cell body migrated along the dendritic structures. MWCNTs were first tethered to the dendritic structures and then taken up by the cell body. MWCNTs appeared to be taken up via membrane ruffling like macropinocytosis, rather than phagocytosis. The cytotoxic EC{sub 50} value of MWCNTs in MARCO-transfected CHO-K1 cells was calculated to be 6.1 μg/mL and transmission electron microscopic observation indicated that the toxicity of MWCNTs may be due to the incomplete inclusion of MWCNTs by the membrane structure. -- Highlights: ►Carbon nanotubes (CNTs) were tethered to MARCO in vitro. ►CNTs were taken up rapidly into the cell body via MARCO by membrane ruffling. ►The incomplete inclusion of CNTs by membranes caused cytotoxicity.

  6. Probing the 3-D Structure, Dynamics, and Stability of Bacterial Collagenase Collagen Binding Domain (apo- versus holo-) by Limited Proteolysis MALDI-TOF MS

    Sides, Cynthia R.; Liyanage, Rohana; Lay, Jackson O.; Philominathan, Sagaya Theresa Leena; Matsushita, Osamu; Sakon, Joshua

    2012-03-01

    Pairing limited proteolysis and matrix-assisted laser desorption/ionization-time of flight mass spectrometry (MALDI-TOF MS) to probe clostridial collagenase collagen binding domain (CBD) reveals the solution dynamics and stability of the protein, as these factors are crucial to CBD effectiveness as a drug-delivery vehicle. MS analysis of proteolytic digests indicates initial cleavage sites, thereby specifying the less stable and highly accessible regions of CBD. Modulation of protein structure and stability upon metal binding is shown through MS analysis of calcium-bound and cobalt-bound CBD proteolytic digests. Previously determined X-ray crystal structures illustrate that calcium binding induces secondary structure transformation in the highly mobile N-terminal arm and increases protein stability. MS-based detection of exposed residues confirms protein flexibility, accentuates N-terminal dynamics, and demonstrates increased global protein stability exported by calcium binding. Additionally, apo- and calcium-bound CBD proteolysis sites correlate well with crystallographic B-factors, accessibility, and enzyme specificity. MS-observed cleavage sites with no clear correlations are explained either by crystal contacts of the X-ray crystal structures or by observed differences between Molecules A and B in the X-ray crystal structures. The study newly reveals the absence of the βA strand and thus the very dynamic N-terminal linker, as corroborated by the solution X-ray scattering results. Cobalt binding has a regional effect on the solution phase stability of CBD, as limited proteolysis data implies the capture of an intermediate-CBD solution structure when cobalt is bound.

  7. Fibrous mini-collagens in hydra nematocysts.

    Holstein, T W; Benoit, M; Herder, G V; David, C N; Wanner, G; Gaub, H E

    1994-07-15

    Nematocysts (cnidocysts) are exocytotic organelles found in all cnidarians. Here, atomic force microscopy and field emission scanning electron microscopy reveal the structure of the nematocyst capsule wall. The outer wall consists of globular proteins of unknown function. The inner wall consists of bundles of collagen-like fibrils having a spacing of 50 to 100 nanometers and cross-striations at intervals of 32 nanometers. The fibrils consist of polymers of "mini-collagens," which are abundant in the nematocysts of Hydra. The distinct pattern of mini-collagen fibers in the inner wall can provide the tensile strength necessary to withstand the high osmotic pressure (15 megapascals) in the capsules.

  8. Imaging collagen type I fibrillogenesis with high spatiotemporal resolution

    Stamov, Dimitar R; Stock, Erik; Franz, Clemens M; Jähnke, Torsten; Haschke, Heiko

    2015-01-01

    Fibrillar collagens, such as collagen type I, belong to the most abundant extracellular matrix proteins and they have received much attention over the last five decades due to their large interactome, complex hierarchical structure and high mechanical stability. Nevertheless, the collagen self-assembly process is still incompletely understood. Determining the real-time kinetics of collagen type I formation is therefore pivotal for better understanding of collagen type I structure and function, but visualising the dynamic self-assembly process of collagen I on the molecular scale requires imaging techniques offering high spatiotemporal resolution. Fast and high-speed scanning atomic force microscopes (AFM) provide the means to study such processes on the timescale of seconds under near-physiological conditions. In this study we have applied fast AFM tip scanning to study the assembly kinetics of fibrillar collagen type I nanomatrices with a temporal resolution reaching eight seconds for a frame size of 500 nm. By modifying the buffer composition and pH value, the kinetics of collagen fibrillogenesis can be adjusted for optimal analysis by fast AFM scanning. We furthermore show that amplitude-modulation imaging can be successfully applied to extract additional structural information from collagen samples even at high scan rates. Fast AFM scanning with controlled amplitude modulation therefore provides a versatile platform for studying dynamic collagen self-assembly processes at high resolution. - Highlights: • Continuous non-invasive time-lapse investigation of collagen I fibrillogenesis in situ. • Imaging of collagen I self-assembly with high spatiotemporal resolution. • Application of setpoint modulation to study the hierarchical structure of collagen I. • Observing real-time formation of the D-banding pattern in collagen I

  9. Imaging collagen type I fibrillogenesis with high spatiotemporal resolution

    Stamov, Dimitar R, E-mail: stamov@jpk.com [JPK Instruments AG, Bouchéstrasse 12, 12435 Berlin (Germany); Stock, Erik [JPK Instruments AG, Bouchéstrasse 12, 12435 Berlin (Germany); Franz, Clemens M [DFG-Center for Functional Nanostructures (CFN), Karlsruhe Institute of Technology (KIT), Wolfgang-Gaede-Strasse 1a, 76131 Karlsruhe (Germany); Jähnke, Torsten; Haschke, Heiko [JPK Instruments AG, Bouchéstrasse 12, 12435 Berlin (Germany)

    2015-02-15

    Fibrillar collagens, such as collagen type I, belong to the most abundant extracellular matrix proteins and they have received much attention over the last five decades due to their large interactome, complex hierarchical structure and high mechanical stability. Nevertheless, the collagen self-assembly process is still incompletely understood. Determining the real-time kinetics of collagen type I formation is therefore pivotal for better understanding of collagen type I structure and function, but visualising the dynamic self-assembly process of collagen I on the molecular scale requires imaging techniques offering high spatiotemporal resolution. Fast and high-speed scanning atomic force microscopes (AFM) provide the means to study such processes on the timescale of seconds under near-physiological conditions. In this study we have applied fast AFM tip scanning to study the assembly kinetics of fibrillar collagen type I nanomatrices with a temporal resolution reaching eight seconds for a frame size of 500 nm. By modifying the buffer composition and pH value, the kinetics of collagen fibrillogenesis can be adjusted for optimal analysis by fast AFM scanning. We furthermore show that amplitude-modulation imaging can be successfully applied to extract additional structural information from collagen samples even at high scan rates. Fast AFM scanning with controlled amplitude modulation therefore provides a versatile platform for studying dynamic collagen self-assembly processes at high resolution. - Highlights: • Continuous non-invasive time-lapse investigation of collagen I fibrillogenesis in situ. • Imaging of collagen I self-assembly with high spatiotemporal resolution. • Application of setpoint modulation to study the hierarchical structure of collagen I. • Observing real-time formation of the D-banding pattern in collagen I.

  10. Identifying the Critical Links in Road Transportation Networks: Centrality-based approach utilizing structural properties

    Chinthavali, Supriya [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2016-04-01

    Surface transportation road networks share structural properties similar to other complex networks (e.g., social networks, information networks, biological networks, and so on). This research investigates the structural properties of road networks for any possible correlation with the traffic characteristics such as link flows those determined independently. Additionally, we define a criticality index for the links of the road network that identifies the relative importance in the network. We tested our hypotheses with two sample road networks. Results show that, correlation exists between the link flows and centrality measures of a link of the road (dual graph approach is followed) and the criticality index is found to be effective for one test network to identify the vulnerable nodes.

  11. Influence of tetrahydrocurcumin on tail tendon collagen contents and its properties in rats with streptozotocin-nicotinamide-induced type 2 diabetes.

    Pari, Leelavinothan; Murugan, Pidaran

    2007-12-01

    Changes in the structural and functional properties of collagen caused by advanced glycation might be of importance for the etiology of late-stage complications in diabetics. Curcumin is the most active component of turmeric. It is believed that curcumin is a potent antioxidant and anti-inflammatory agent. Tetrahydrocurcumin (THC) is one of the major metabolites of curcumin, exhibiting many of the same physiological and pharmacological activities of curcumin and in some systems may exert greater antioxidant activity than curcumin. In diabetic rats, hydroxyproline and collagen content as well as its degree of cross-linking were increased, as shown by increased extent of glycation, collagen-linked fluorescence, neutral salt collagen, and decreased acid and pepsin solubility. Administration of THC for 45 days to diabetic rats significantly reduced the accumulation and cross-linking of collagen. The effects of THC were comparable with those of curcumin. In conclusion, administration of THC had a positive influence on the content of collagen and its properties in streptozotocin- and nicotinamide-induced diabetic rats. THC was found to be more effective than curcumin.

  12. Collagen Fibrils: Nature's Highly Tunable Nonlinear Springs.

    Andriotis, Orestis G; Desissaire, Sylvia; Thurner, Philipp J

    2018-03-21

    Tissue hydration is well known to influence tissue mechanics and can be tuned via osmotic pressure. Collagen fibrils are nature's nanoscale building blocks to achieve biomechanical function in a broad range of biological tissues and across many species. Intrafibrillar covalent cross-links have long been thought to play a pivotal role in collagen fibril elasticity, but predominantly at large, far from physiological, strains. Performing nanotensile experiments of collagen fibrils at varying hydration levels by adjusting osmotic pressure in situ during atomic force microscopy experiments, we show the power the intrafibrillar noncovalent interactions have for defining collagen fibril tensile elasticity at low fibril strains. Nanomechanical tensile tests reveal that osmotic pressure increases collagen fibril stiffness up to 24-fold in transverse (nanoindentation) and up to 6-fold in the longitudinal direction (tension), compared to physiological saline in a reversible fashion. We attribute the stiffening to the density and strength of weak intermolecular forces tuned by hydration and hence collagen packing density. This reversible mechanism may be employed by cells to alter their mechanical microenvironment in a reversible manner. The mechanism could also be translated to tissue engineering approaches for customizing scaffold mechanics in spatially resolved fashion, and it may help explain local mechanical changes during development of diseases and inflammation.

  13. The management of cornea blindness from severe corneal scarring, with the Athens Protocol (transepithelial topography-guided PRK therapeutic remodeling, combined with same-day, collagen cross-linking).

    Kanellopoulos, Anastasios John

    2012-01-01

    To evaluate the safety and efficacy of combined transepithelial topography-guided photorefractive keratectomy (PRK) therapeutic remodeling, combined with same-day, collagen cross-linking (CXL). This protocol was used for the management of cornea blindness due to severe corneal scarring. A 57-year-old man had severe corneal blindness in both eyes. Both corneas had significant central scars attributed to a firework explosion 45 years ago, when the patient was 12 years old. Corrected distance visual acuity (CDVA) was 20/100 both eyes (OU) with refraction: +4.00, -4.50 at 135° in the right eye and +3.50, -1.00 at 55° in the left. Respective keratometries were: 42.3, 60.4 at 17° and 35.8, 39.1 at 151.3°. Cornea transplantation was the recommendation by multiple cornea specialists as the treatment of choice. We decided prior to considering a transplant to employ the Athens Protocol (combined topography-guided partial PRK and CXL) in the right eye in February 2010 and in the left eye in September 2010. The treatment plan for both eyes was designed on the topography-guided wavelight excimer laser platform. Fifteen months after the right eye treatment, the right cornea had improved translucency and was topographically stable with uncorrected distance visual acuity (UDVA) 20/50 and CDVA 20/40 with refraction +0.50, -2.00 at 5°. We noted a similar outcome after similar treatment applied in the left eye with UDVA 20/50 and CDVA 20/40 with -0.50, -2.00 at 170° at the 8-month follow-up. In this case, the introduction of successful management of severe cornea abnormalities and scarring with the Athens Protocol may provide an effective alternative to other existing surgical or medical options.

  14. Cosmetic Potential of Marine Fish Skin Collagen

    Ana L. Alves

    2017-10-01

    Full Text Available Many cosmetic formulations have collagen as a major component because of its significant benefits as a natural humectant and moisturizer. This industry is constantly looking for innovative, sustainable, and truly efficacious products, so marine collagen based formulations are arising as promising alternatives. A solid description and characterization of this protein is fundamental to guarantee the highest quality of each batch. In the present study, we present an extensive characterization of marine-derived collagen extracted from salmon and codfish skins, targeting its inclusion as component in cosmetic formulations. Chemical and physical characterizations were performed using several techniques such as sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE, Fourier Transformation Infrared (FTIR spectroscopy rheology, circular dichroism, X-ray diffraction, humidity uptake, and a biological assessment of the extracts regarding their irritant potential. The results showed an isolation of type I collagen with high purity but with some structural and chemical differences between sources. Collagen demonstrated a good capacity to retain water, thus being suitable for dermal applications as a moisturizer. A topical exposure of collagen in a human reconstructed dermis, as well as the analysis of molecular markers for irritation and inflammation, exhibited no irritant potential. Thus, the isolation of collagen from fish skins for inclusion in dermocosmetic applications may constitute a sustainable and low-cost platform for the biotechnological valorization of fish by-products.

  15. Association of altered collagen content and lysyl oxidase expression in degenerative mitral valve disease.

    Purushothaman, K-Raman; Purushothaman, Meerarani; Turnbull, Irene C; Adams, David H; Anyanwu, Anelechi; Krishnan, Prakash; Kini, Annapoorna; Sharma, Samin K; O'Connor, William N; Moreno, Pedro R

    Collagen cross-linking is mediated by lysyl oxidase (LOX) enzyme in the extracellular matrix (ECM) of mitral valve leaflets. Alterations in collagen content and LOX protein expression in the ECM of degenerative mitral valve may enhance leaflet expansion and disease severity. Twenty posterior degenerative mitral valve leaflets from patients with severe mitral regurgitation were obtained at surgery. Five normal posterior mitral valve leaflets procured during autopsy served as controls. Valvular interstitial cells (VICs) density was quantified by immunohistochemistry, collagen Types I and III by picro-sirius red staining and immunohistochemistry, and proteoglycans by alcian blue staining. Protein expression of LOX and its mediator TGFβ1 were quantified by immunofluorescence and gene expression by PCR. VIC density was increased, structural Type I collagen density was reduced, while reparative Type III collagen and proteoglycan densities were increased (PDegenerative Mitral Valve Disease may be secondary to alterations in LOX protein expression, contributing to disorganization of ECM and disease severity. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Distinct characteristics of mandibular bone collagen relative to long bone collagen: relevance to clinical dentistry.

    Matsuura, Takashi; Tokutomi, Kentaro; Sasaki, Michiko; Katafuchi, Michitsuna; Mizumachi, Emiri; Sato, Hironobu

    2014-01-01

    Bone undergoes constant remodeling throughout life. The cellular and biochemical mechanisms of bone remodeling vary in a region-specific manner. There are a number of notable differences between the mandible and long bones, including developmental origin, osteogenic potential of mesenchymal stem cells, and the rate of bone turnover. Collagen, the most abundant matrix protein in bone, is responsible for determining the relative strength of particular bones. Posttranslational modifications of collagen, such as intermolecular crosslinking and lysine hydroxylation, are the most essential determinants of bone strength, although the amount of collagen is also important. In comparison to long bones, the mandible has greater collagen content, a lower amount of mature crosslinks, and a lower extent of lysine hydroxylation. The great abundance of immature crosslinks in mandibular collagen suggests that there is a lower rate of cross-link maturation. This means that mandibular collagen is relatively immature and thus more readily undergoes degradation and turnover. The greater rate of remodeling in mandibular collagen likely renders more flexibility to the bone and leaves it more suited to constant exercise. As reviewed here, it is important in clinical dentistry to understand the distinctive features of the bones of the jaw.

  17. Distinct Characteristics of Mandibular Bone Collagen Relative to Long Bone Collagen: Relevance to Clinical Dentistry

    Takashi Matsuura

    2014-01-01

    Full Text Available Bone undergoes constant remodeling throughout life. The cellular and biochemical mechanisms of bone remodeling vary in a region-specific manner. There are a number of notable differences between the mandible and long bones, including developmental origin, osteogenic potential of mesenchymal stem cells, and the rate of bone turnover. Collagen, the most abundant matrix protein in bone, is responsible for determining the relative strength of particular bones. Posttranslational modifications of collagen, such as intermolecular crosslinking and lysine hydroxylation, are the most essential determinants of bone strength, although the amount of collagen is also important. In comparison to long bones, the mandible has greater collagen content, a lower amount of mature crosslinks, and a lower extent of lysine hydroxylation. The great abundance of immature crosslinks in mandibular collagen suggests that there is a lower rate of cross-link maturation. This means that mandibular collagen is relatively immature and thus more readily undergoes degradation and turnover. The greater rate of remodeling in mandibular collagen likely renders more flexibility to the bone and leaves it more suited to constant exercise. As reviewed here, it is important in clinical dentistry to understand the distinctive features of the bones of the jaw.

  18. Do structural changes (eg, collagen/matrix) explain the response to therapeutic exercises in tendinopathy: a systematic review.

    Drew, Benjamin T; Smith, Toby O; Littlewood, Chris; Sturrock, Ben

    2014-06-01

    Previous reviews have highlighted the benefit of loaded therapeutic exercise in the treatment of tendinopathy. Changes in observable structural outcomes have been suggested as a possible explanation for this response to therapeutic exercise. However, the mechanism for the efficacy of therapeutic exercise remains unclear. To systematically review the relationship between the observable structural change and clinical outcomes following therapeutic exercise. An electronic search of AMED, CiNAHL, Cochrane Central Register of Controlled Trials (CENTRAL), MEDLINE, PEDro and SPORTDiscus was undertaken from their inception to June 2012. Any study design that incorporated observable structural outcomes and clinical outcomes when assessing the effect of therapeutic exercise on participants with tendinopathy. Included studies were appraised for risk of bias using the tool developed by the Cochrane Back Review Group. Due to heterogeneity of studies, a qualitative synthesis was undertaken. Twenty articles describing 625 patients were included. Overall, there is a strong evidence to refute any observable structural change as an explanation for the response to therapeutic exercise when treated by eccentric exercise training. Moderate evidence does exist to support the response of heavy-slow resistance training (HSR). The available literature does not support observable structural change as an explanation for the response of therapeutic exercise except for some support from HSR. Future research should focus on indentifying other explanations including neural, biochemical and myogenic changes. Registered with PROSPERO, registration number CRD42011001638. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  19. Computational investigation of kinetics of cross-linking reactions in proteins: importance in structure prediction.

    Bandyopadhyay, Pradipta; Kuntz, Irwin D

    2009-01-01

    The determination of protein structure using distance constraints is a new and promising field of study. One implementation involves attaching residues of a protein using a cross-linking agent, followed by protease digestion, analysis of the resulting peptides by mass spectroscopy, and finally sequence threading to detect the protein folds. In the present work, we carry out computational modeling of the kinetics of cross-linking reactions in proteins using the master equation approach. The rate constants of the cross-linking reactions are estimated using the pKas and the solvent-accessible surface areas of the residues involved. This model is tested with fibroblast growth factor (FGF) and cytochrome C. It is consistent with the initial experimental rate data for individual lysine residues for cytochrome C. Our model captures all observed cross-links for FGF and almost 90% of the observed cross-links for cytochrome C, although it also predicts cross-links that were not observed experimentally (false positives). However, the analysis of the false positive results is complicated by the fact that experimental detection of cross-links can be difficult and may depend on specific experimental conditions such as pH, ionic strength. Receiver operator characteristic plots showed that our model does a good job in predicting the observed cross-links. Molecular dynamics simulations showed that for cytochrome C, in general, the two lysines come closer for the observed cross-links as compared to the false positive ones. For FGF, no such clear pattern exists. The kinetic model and MD simulation can be used to study proposed cross-linking protocols.

  20. Bi-allelic Alterations in AEBP1 Lead to Defective Collagen Assembly and Connective Tissue Structure Resulting in a Variant of Ehlers-Danlos Syndrome

    Blackburn, Patrick R.; Xu, Zhi; Tumelty, Kathleen E.; Zhao, Rose W.; Monis, William J.; Harris, Kimberly G.; Gass, Jennifer M.; Cousin, Margot A.; Boczek, Nicole J.; Mitkov, Mario V.; Cappel, Mark A.; Francomano, Clair A.; Parisi, Joseph E.; Klee, Eric W.; Faqeih, Eissa; Alkuraya, Fowzan S.; Layne, Matthew D.; McDonnell, Nazli B.; Atwal, Paldeep S.

    2018-01-01

    AEBP1 encodes the aortic carboxypeptidase-like protein (ACLP) that associates with collagens in the extracellular matrix (ECM) and has several roles in development, tissue repair, and fibrosis. ACLP is expressed in bone, the vasculature, and dermal tissues and is involved in fibroblast proliferation and mesenchymal stem cell differentiation into collagen-producing cells. Aebp1 mice have abnormal, delayed wound repair correlating with defects in fibroblast proliferation. In this study, we describe four individuals from three unrelated families that presented with a unique constellation of clinical findings including joint laxity, redundant and hyperextensible skin, poor wound healing with abnormal scarring, osteoporosis, and other features reminiscent of Ehlers-Danlos syndrome (EDS). Analysis of skin biopsies revealed decreased dermal collagen with abnormal collagen fibrils that were ragged in appearance. Exome sequencing revealed compound heterozygous variants in AEBP1 (c.1470delC [p.Asn490_Met495delins(40)] and c.1743C>A [p.Cys581]) in the first individual, a homozygous variant (c.1320_1326del [p.Arg440Serfs3]) in the second individual, and a homozygous splice site variant (c.1630+1G>A) in two siblings from the third family. We show that ACLP enhances collagen polymerization and binds to several fibrillar collagens via its discoidin domain. These studies support the conclusion that biallelic pathogenic variants in AEBP1 are the cause of this autosomal-recessive EDS subtype.

  1. Bi-allelic Alterations in AEBP1 Lead to Defective Collagen Assembly and Connective Tissue Structure Resulting in a Variant of Ehlers-Danlos Syndrome

    Blackburn, Patrick R.

    2018-03-29

    AEBP1 encodes the aortic carboxypeptidase-like protein (ACLP) that associates with collagens in the extracellular matrix (ECM) and has several roles in development, tissue repair, and fibrosis. ACLP is expressed in bone, the vasculature, and dermal tissues and is involved in fibroblast proliferation and mesenchymal stem cell differentiation into collagen-producing cells. Aebp1 mice have abnormal, delayed wound repair correlating with defects in fibroblast proliferation. In this study, we describe four individuals from three unrelated families that presented with a unique constellation of clinical findings including joint laxity, redundant and hyperextensible skin, poor wound healing with abnormal scarring, osteoporosis, and other features reminiscent of Ehlers-Danlos syndrome (EDS). Analysis of skin biopsies revealed decreased dermal collagen with abnormal collagen fibrils that were ragged in appearance. Exome sequencing revealed compound heterozygous variants in AEBP1 (c.1470delC [p.Asn490_Met495delins(40)] and c.1743C>A [p.Cys581]) in the first individual, a homozygous variant (c.1320_1326del [p.Arg440Serfs3]) in the second individual, and a homozygous splice site variant (c.1630+1G>A) in two siblings from the third family. We show that ACLP enhances collagen polymerization and binds to several fibrillar collagens via its discoidin domain. These studies support the conclusion that biallelic pathogenic variants in AEBP1 are the cause of this autosomal-recessive EDS subtype.

  2. Role of special cross-links in structure formation of bacterial DNA polymer

    Agarwal, Tejal; Manjunath, G. P.; Habib, Farhat; Lakshmi Vaddavalli, Pavana; Chatterji, Apratim

    2018-01-01

    Using data from contact maps of the DNA-polymer of Escherichia coli (E. Coli) (at kilobase pair resolution) as an input to our model, we introduce cross-links between monomers in a bead-spring model of a ring polymer at very specific points along the chain. Via suitable Monte Carlo simulations, we show that the presence of these cross-links leads to a particular organization of the chain at large (micron) length scales of the DNA. We also investigate the structure of a ring polymer with an equal number of cross-links at random positions along the chain. We find that though the polymer does get organized at the large length scales, the nature of the organization is quite different from the organization observed with cross-links at specific biologically determined positions. We used the contact map of E. Coli bacteria which has around 4.6 million base pairs in a single circular chromosome. In our coarse-grained flexible ring polymer model, we used 4642 monomer beads and observed that around 80 cross-links are enough to induce the large-scale organization of the molecule accounting for statistical fluctuations caused by thermal energy. The length of a DNA chain even of a simple bacterial cell such as E. Coli is much longer than typical proteins, hence we avoided methods used to tackle protein folding problems. We define new suitable quantities to identify the large scale structure of a polymer chain with a few cross-links.

  3. The minor collagens in articular cartilage

    Luo, Yunyun; Sinkeviciute, Dovile; He, Yi

    2017-01-01

    Articular cartilage is a connective tissue consisting of a specialized extracellular matrix (ECM) that dominates the bulk of its wet and dry weight. Type II collagen and aggrecan are the main ECM proteins in cartilage. However, little attention has been paid to less abundant molecular components......, especially minor collagens, including type IV, VI, IX, X, XI, XII, XIII, and XIV, etc. Although accounting for only a small fraction of the mature matrix, these minor collagens not only play essential structural roles in the mechanical properties, organization, and shape of articular cartilage, but also...... fulfil specific biological functions. Genetic studies of these minor collagens have revealed that they are associated with multiple connective tissue diseases, especially degenerative joint disease. The progressive destruction of cartilage involves the degradation of matrix constituents including...

  4. Mechanisms of Plastic Deformation in Collagen Networks Induced by Cellular Forces.

    Ban, Ehsan; Franklin, J Matthew; Nam, Sungmin; Smith, Lucas R; Wang, Hailong; Wells, Rebecca G; Chaudhuri, Ovijit; Liphardt, Jan T; Shenoy, Vivek B

    2018-01-23

    Contractile cells can reorganize fibrous extracellular matrices and form dense tracts of fibers between neighboring cells. These tracts guide the development of tubular tissue structures and provide paths for the invasion of cancer cells. Here, we studied the mechanisms of the mechanical plasticity of collagen tracts formed by contractile premalignant acinar cells and fibroblasts. Using fluorescence microscopy and second harmonic generation, we quantified the collagen densification, fiber alignment, and strains that remain within the tracts after cellular forces are abolished. We explained these observations using a theoretical fiber network model that accounts for the stretch-dependent formation of weak cross-links between nearby fibers. We tested the predictions of our model using shear rheology experiments. Both our model and rheological experiments demonstrated that increasing collagen concentration leads to substantial increases in plasticity. We also considered the effect of permanent elongation of fibers on network plasticity and derived a phase diagram that classifies the dominant mechanisms of plasticity based on the rate and magnitude of deformation and the mechanical properties of individual fibers. Plasticity is caused by the formation of new cross-links if moderate strains are applied at small rates or due to permanent fiber elongation if large strains are applied over short periods. Finally, we developed a coarse-grained model for plastic deformation of collagen networks that can be employed to simulate multicellular interactions in processes such as morphogenesis, cancer invasion, and fibrosis. Copyright © 2017 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  5. The collagen microfibril model, a tool for biomaterials scientists

    Animal hides, a major byproduct of the meat industry, are a rich source of collagen, a structural protein of the extracellular matrix that gives strength and form to the skin, tendons and bones of mammals. The structure of fibrous collagen, a long triple helix that self-associates in a staggered arr...

  6. Collagen Quantification in Tissue Specimens.

    Coentro, João Quintas; Capella-Monsonís, Héctor; Graceffa, Valeria; Wu, Zhuning; Mullen, Anne Maria; Raghunath, Michael; Zeugolis, Dimitrios I

    2017-01-01

    Collagen is the major extracellular protein in mammals. Accurate quantification of collagen is essential in the biomaterials (e.g., reproducible collagen scaffold fabrication), drug discovery (e.g., assessment of collagen in pathophysiologies, such as fibrosis), and tissue engineering (e.g., quantification of cell-synthesized collagen) fields. Although measuring hydroxyproline content is the most widely used method to quantify collagen in biological specimens, the process is very laborious. To this end, the Sircol™ Collagen Assay is widely used due to its inherent simplicity and convenience. However, this method leads to overestimation of collagen content due to the interaction of Sirius red with basic amino acids of non-collagenous proteins. Herein, we describe the addition of an ultrafiltration purification step in the process to accurately determine collagen content in tissues.

  7. Vision-based stress estimation model for steel frame structures with rigid links

    Park, Hyo Seon; Park, Jun Su; Oh, Byung Kwan

    2017-07-01

    This paper presents a stress estimation model for the safety evaluation of steel frame structures with rigid links using a vision-based monitoring system. In this model, the deformed shape of a structure under external loads is estimated via displacements measured by a motion capture system (MCS), which is a non-contact displacement measurement device. During the estimation of the deformed shape, the effective lengths of the rigid link ranges in the frame structure are identified. The radius of the curvature of the structural member to be monitored is calculated using the estimated deformed shape and is employed to estimate stress. Using MCS in the presented model, the safety of a structure can be assessed gauge-freely. In addition, because the stress is directly extracted from the radius of the curvature obtained from the measured deformed shape, information on the loadings and boundary conditions of the structure are not required. Furthermore, the model, which includes the identification of the effective lengths of the rigid links, can consider the influences of the stiffness of the connection and support on the deformation in the stress estimation. To verify the applicability of the presented model, static loading tests for a steel frame specimen were conducted. By comparing the stress estimated by the model with the measured stress, the validity of the model was confirmed.

  8. Enhancing amine terminals in an amine-deprived collagen matrix.

    Tiong, William H C

    2008-10-21

    Collagen, though widely used as a core biomaterial in many clinical applications, is often limited by its rapid degradability which prevents full exploitation of its potential in vivo. Polyamidoamine (PAMAM) dendrimer, a highly branched macromolecule, possesses versatile multiterminal amine surface groups that enable them to be tethered to collagen molecules and enhance their potential. In this study, we hypothesized that incorporation of PAMAM dendrimer in a collagen matrix through cross-linking will result in a durable, cross-linked collagen biomaterial with free -NH 2 groups available for further multi-biomolecular tethering. The aim of this study was to assess the physicochemical properties of a G1 PAMAM cross-linked collagen matrix and its cellular sustainability in vitro. Different amounts of G1 PAMAM dendrimer (5 or 10 mg) were integrated into bovine-derived collagen matrices through a cross-linking process, mediated by 5 or 25 mM 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDC) in 5 mM N-hydroxysuccinimide (NHS) and 50 mM 2-morpholinoethane sulfonic acid buffer at pH 5.5. The physicochemical properties of resultant matrices were investigated with scanning electron microscopy (SEM), collagenase degradation assay, differential scanning calorimetry (DSC), Fourier transform infrared (FTIR) spectra, and ninhydrin assay. Cellular sustainability of the matrices was assessed with Alamar Blue assay and SEM. There was no significant difference in cellular behavior between the treated and nontreated groups. However, the benefit of incorporating PAMAM in the cross-linking reaction was limited when higher concentrations of either agent were used. These results confirm the hypothesis that PAMAM dendrimer can be incorporated in the collagen cross-linking process in order to modulate the properties of the resulting cross-linked collagen biomaterial with free -NH 2 groups available for multi-biomolecular tethering.

  9. The decorin sequence SYIRIADTNIT binds collagen type I

    Kalamajski, Sebastian; Aspberg, Anders; Oldberg, Ake

    2007-01-01

    Decorin belongs to the small leucine-rich repeat proteoglycan family, interacts with fibrillar collagens, and regulates the assembly, structure, and biomechanical properties of connective tissues. The decorin-collagen type I-binding region is located in leucine-rich repeats 5-6. Site......-directed mutagenesis of this 54-residue-long collagen-binding sequence identifies Arg-207 and Asp-210 in leucine-rich repeat 6 as crucial for the binding to collagen. The synthetic peptide SYIRIADTNIT, which includes Arg-207 and Asp-210, inhibits the binding of full-length recombinant decorin to collagen in vitro....... These collagen-binding amino acids are exposed on the exterior of the beta-sheet-loop structure of the leucine-rich repeat. This resembles the location of interacting residues in other leucine-rich repeat proteins....

  10. Revealing the Link between Structural Relaxation and Dynamic Heterogeneity in Glass-Forming Liquids.

    Wang, Lijin; Xu, Ning; Wang, W H; Guan, Pengfei

    2018-03-23

    Despite the use of glasses for thousands of years, the nature of the glass transition is still mysterious. On approaching the glass transition, the growth of dynamic heterogeneity has long been thought to play a key role in explaining the abrupt slowdown of structural relaxation. However, it still remains elusive whether there is an underlying link between structural relaxation and dynamic heterogeneity. Here, we unravel the link by introducing a characteristic time scale hiding behind an identical dynamic heterogeneity for various model glass-forming liquids. We find that the time scale corresponds to the kinetic fragility of liquids. Moreover, it leads to scaling collapse of both the structural relaxation time and dynamic heterogeneity for all liquids studied, together with a characteristic temperature associated with the same dynamic heterogeneity. Our findings imply that studying the glass transition from the viewpoint of dynamic heterogeneity is more informative than expected.

  11. Revealing the Link between Structural Relaxation and Dynamic Heterogeneity in Glass-Forming Liquids

    Wang, Lijin; Xu, Ning; Wang, W. H.; Guan, Pengfei

    2018-03-01

    Despite the use of glasses for thousands of years, the nature of the glass transition is still mysterious. On approaching the glass transition, the growth of dynamic heterogeneity has long been thought to play a key role in explaining the abrupt slowdown of structural relaxation. However, it still remains elusive whether there is an underlying link between structural relaxation and dynamic heterogeneity. Here, we unravel the link by introducing a characteristic time scale hiding behind an identical dynamic heterogeneity for various model glass-forming liquids. We find that the time scale corresponds to the kinetic fragility of liquids. Moreover, it leads to scaling collapse of both the structural relaxation time and dynamic heterogeneity for all liquids studied, together with a characteristic temperature associated with the same dynamic heterogeneity. Our findings imply that studying the glass transition from the viewpoint of dynamic heterogeneity is more informative than expected.

  12. Assessment of proteolytic degradation of the basement membrane: a fragment of type IV collagen as a biochemical marker for liver fibrosis

    Veidal, Sanne S.; Karsdal, Morten A.; Nawrocki, Arkadiusz

    2011-01-01

    Collagen deposition and an altered matrix metalloproteinase (MMP) expression profile are hallmarks of fibrosis. Type IV collagen is the most abundant structural basement membrane component of tissue, which increases 14-fold during fibrogenesis in the liver. Proteolytic degradation of collagens...

  13. Electronic structure and self-assembly of cross-linked semiconductor nanocrystal arrays

    Steiner, Dov; Azulay, Doron; Aharoni, Assaf; Salant, Assaf; Banin, Uri; Millo, Oded

    2008-01-01

    We studied the electronic level structure of assemblies of InAs quantum dots and CdSe nanorods cross-linked by 1,4-phenylenediamine molecules using scanning tunneling spectroscopy. We found that the bandgap in these arrays is reduced with respect to the corresponding ligand-capped nanocrystal arrays. In addition, a pronounced sub-gap spectral structure commonly appeared which can be attributed to unpassivated nanocrystal surface states or associated with linker-molecule-related levels. The exchange of the ligands by the linker molecules also affected the structural array properties. Most significantly, clusters of close-packed standing CdSe nanorods were formed

  14. Bi-allelic Alterations in AEBP1 Lead to Defective Collagen Assembly and Connective Tissue Structure Resulting in a Variant of Ehlers-Danlos Syndrome.

    Blackburn, Patrick R; Xu, Zhi; Tumelty, Kathleen E; Zhao, Rose W; Monis, William J; Harris, Kimberly G; Gass, Jennifer M; Cousin, Margot A; Boczek, Nicole J; Mitkov, Mario V; Cappel, Mark A; Francomano, Clair A; Parisi, Joseph E; Klee, Eric W; Faqeih, Eissa; Alkuraya, Fowzan S; Layne, Matthew D; McDonnell, Nazli B; Atwal, Paldeep S

    2018-04-05

    AEBP1 encodes the aortic carboxypeptidase-like protein (ACLP) that associates with collagens in the extracellular matrix (ECM) and has several roles in development, tissue repair, and fibrosis. ACLP is expressed in bone, the vasculature, and dermal tissues and is involved in fibroblast proliferation and mesenchymal stem cell differentiation into collagen-producing cells. Aebp1 -/- mice have abnormal, delayed wound repair correlating with defects in fibroblast proliferation. In this study, we describe four individuals from three unrelated families that presented with a unique constellation of clinical findings including joint laxity, redundant and hyperextensible skin, poor wound healing with abnormal scarring, osteoporosis, and other features reminiscent of Ehlers-Danlos syndrome (EDS). Analysis of skin biopsies revealed decreased dermal collagen with abnormal collagen fibrils that were ragged in appearance. Exome sequencing revealed compound heterozygous variants in AEBP1 (c.1470delC [p.Asn490_Met495delins(40)] and c.1743C>A [p.Cys581 ∗ ]) in the first individual, a homozygous variant (c.1320_1326del [p.Arg440Serfs ∗ 3]) in the second individual, and a homozygous splice site variant (c.1630+1G>A) in two siblings from the third family. We show that ACLP enhances collagen polymerization and binds to several fibrillar collagens via its discoidin domain. These studies support the conclusion that bi-allelic pathogenic variants in AEBP1 are the cause of this autosomal-recessive EDS subtype. Copyright © 2018 American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.

  15. Mac-2 binding protein is a cell-adhesive protein of the extracellular matrix which self-assembles into ring-like structures and binds beta1 integrins, collagens and fibronectin

    Sasaki, T; Brakebusch, C; Engel, J

    1998-01-01

    Human Mac-2 binding protein (M2BP) was prepared in recombinant form from the culture medium of 293 kidney cells and consisted of a 92 kDa subunit. The protein was obtained in a native state as indicated by CD spectroscopy, demonstrating alpha-helical and beta-type structure, and by protease resis...... in the extracellular matrix of several mouse tissues....... in solid-phase assays to collagens IV, V and VI, fibronectin and nidogen, but not to fibrillar collagens I and III or other basement membrane proteins. The protein also mediated adhesion of cell lines at comparable strength with laminin. Adhesion to M2BP was inhibited by antibodies to integrin beta1...

  16. Binding of collagens to an enterotoxigenic strain of Escherichia coli

    Visai, L.; Speziale, P.; Bozzini, S.

    1990-01-01

    An enterotoxigenic strain of Escherichia coli, B34289c, has been shown to bind the N-terminal region of fibronectin with high affinity. We now report that this strain also binds collagen. The binding of 125I-labeled type II collagen to bacteria was time dependent and reversible. Bacteria expressed a limited number of collagen receptors (2.2 x 10(4) per cell) and bound collagen with a Kd of 20 nM. All collagen types tested (I to V) as well as all tested cyanogen bromide-generated peptides [alpha 1(I)CB2, alpha 1(I)CB3, alpha 1(I)CB7, alpha 1(I)CB8, and alpha 2(I)CB4] were recognized by bacterial receptors, as demonstrated by the ability of these proteins to inhibit the binding of 125I-labeled collagen to bacteria. Of several unlabeled proteins tested in competition experiments, fibronectin and its N-terminal region strongly inhibited binding of the radiolabeled collagen to E. coli cells. Conversely, collagen competed with an 125I-labeled 28-kilodalton fibronectin fragment for bacterial binding. Collagen bound to bacteria could be displaced by excess amounts of either unlabeled fibronectin or its N-terminal fragment. Similarly, collagen could displace 125I-labeled N-terminal peptide of fibronectin bound to the bacterial cell surface. Bacteria grown at 41 degrees C or in the presence of glucose did not express collagen or fibronectin receptors. These results indicate the presence of specific binding sites for collagen on the surface of E. coli cells and furthermore that the collagen and fibronectin binding sites are located in close proximity, possibly on the same structure

  17. Noninvasive Quantitative Imaging of Collagen Microstructure in Three-Dimensional Hydrogels Using High-Frequency Ultrasound.

    Mercado, Karla P; Helguera, María; Hocking, Denise C; Dalecki, Diane

    2015-07-01

    Collagen I is widely used as a natural component of biomaterials for both tissue engineering and regenerative medicine applications. The physical and biological properties of fibrillar collagens are strongly tied to variations in collagen fiber microstructure. The goal of this study was to develop the use of high-frequency quantitative ultrasound to assess collagen microstructure within three-dimensional (3D) hydrogels noninvasively and nondestructively. The integrated backscatter coefficient (IBC) was employed as a quantitative ultrasound parameter to detect, image, and quantify spatial variations in collagen fiber density and diameter. Collagen fiber microstructure was varied by fabricating hydrogels with different collagen concentrations or polymerization temperatures. IBC values were computed from measurements of the backscattered radio-frequency ultrasound signals collected using a single-element transducer (38-MHz center frequency, 13-47 MHz bandwidth). The IBC increased linearly with increasing collagen concentration and decreasing polymerization temperature. Parametric 3D images of the IBC were generated to visualize and quantify regional variations in collagen microstructure throughout the volume of hydrogels fabricated in standard tissue culture plates. IBC parametric images of corresponding cell-embedded collagen gels showed cell accumulation within regions having elevated collagen IBC values. The capability of this ultrasound technique to noninvasively detect and quantify spatial differences in collagen microstructure offers a valuable tool to monitor the structural properties of collagen scaffolds during fabrication, to detect functional differences in collagen microstructure, and to guide fundamental research on the interactions of cells and collagen matrices.

  18. Mineralized Collagen: Rationale, Current Status, and Clinical Applications

    Zhi-Ye Qiu

    2015-07-01

    Full Text Available This paper presents a review of the rationale for the in vitro mineralization process, preparation methods, and clinical applications of mineralized collagen. The rationale for natural mineralized collagen and the related mineralization process has been investigated for decades. Based on the understanding of natural mineralized collagen and its formation process, many attempts have been made to prepare biomimetic materials that resemble natural mineralized collagen in both composition and structure. To date, a number of bone substitute materials have been developed based on the principles of mineralized collagen, and some of them have been commercialized and approved by regulatory agencies. The clinical outcomes of mineralized collagen are of significance to advance the evaluation and improvement of related medical device products. Some representative clinical cases have been reported, and there are more clinical applications and long-term follow-ups that currently being performed by many research groups.

  19. Collagen metabolism in obesity

    Rasmussen, M H; Jensen, L T; Andersen, T

    1995-01-01

    OBJECTIVE: To investigate the impact of obesity, fat distribution and weight loss on collagen turnover using serum concentrations of the carboxyterminal propeptide of type I procollagen (S-PICP) and the aminoterminal propeptide of type III pro-collagen (S-PIIINP) as markers for collagen turnover...... (r = 0.37; P = 0.004), height (r = 0.27; P = 0.04), waist circumference (r = 0.35; P = 0.007), as well as with WHR (r = 0.33; P = 0.01) and was inversely correlated to age (r = -0.40; P = 0.002). Compared with randomly selected controls from a large pool of healthy volunteers, the obese patients had...... restriction (P obesity and associated with body fat distribution, suggesting...

  20. Marine-derived collagen biomaterials from echinoderm connective tissues

    Ferrario, Cinzia; Leggio, Livio; Leone, Roberta; Di Benedetto, Cristiano; Guidetti, Luca; Coccè , Valentina; Ascagni, Miriam; Bonasoro, Francesco; La Porta, Caterina A.M.; Candia Carnevali, M. Daniela; Sugni, Michela

    2016-01-01

    The use of marine collagens is a hot topic in the field of tissue engineering. Echinoderms possess unique connective tissues (Mutable Collagenous Tissues, MCTs) which can represent an innovative source of collagen to develop collagen barrier-membranes for Guided Tissue Regeneration (GTR). In the present work we used MCTs from different echinoderm models (sea urchin, starfish and sea cucumber) to produce echinoderm-derived collagen membranes (EDCMs). Commercial membranes for GTR or soluble/reassembled (fibrillar) bovine collagen substrates were used as controls. The three EDCMs were similar among each other in terms of structure and mechanical performances and were much thinner and mechanically more resistant than the commercial membranes. Number of fibroblasts seeded on sea-urchin membranes were comparable to the bovine collagen substrates. Cell morphology on all EDCMs was similar to that of structurally comparable (reassembled) bovine collagen substrates. Overall, echinoderms, and sea urchins particularly, are alternative collagen sources to produce efficient GTR membranes. Sea urchins display a further advantage in terms of eco-sustainability by recycling tissues from food wastes.

  1. Marine-derived collagen biomaterials from echinoderm connective tissues

    Ferrario, Cinzia

    2016-03-31

    The use of marine collagens is a hot topic in the field of tissue engineering. Echinoderms possess unique connective tissues (Mutable Collagenous Tissues, MCTs) which can represent an innovative source of collagen to develop collagen barrier-membranes for Guided Tissue Regeneration (GTR). In the present work we used MCTs from different echinoderm models (sea urchin, starfish and sea cucumber) to produce echinoderm-derived collagen membranes (EDCMs). Commercial membranes for GTR or soluble/reassembled (fibrillar) bovine collagen substrates were used as controls. The three EDCMs were similar among each other in terms of structure and mechanical performances and were much thinner and mechanically more resistant than the commercial membranes. Number of fibroblasts seeded on sea-urchin membranes were comparable to the bovine collagen substrates. Cell morphology on all EDCMs was similar to that of structurally comparable (reassembled) bovine collagen substrates. Overall, echinoderms, and sea urchins particularly, are alternative collagen sources to produce efficient GTR membranes. Sea urchins display a further advantage in terms of eco-sustainability by recycling tissues from food wastes.

  2. Manipulation of in vitro collagen matrix architecture for scaffolds of improved physiological relevance

    Hapach, Lauren A.; VanderBurgh, Jacob A.; Miller, Joseph P.; Reinhart-King, Cynthia A.

    2015-12-01

    Type I collagen is a versatile biomaterial that is widely used in medical applications due to its weak antigenicity, robust biocompatibility, and its ability to be modified for a wide array of applications. As such, collagen has become a major component of many tissue engineering scaffolds, drug delivery platforms, and substrates for in vitro cell culture. In these applications, collagen constructs are fabricated to recapitulate a diverse set of conditions. Collagen fibrils can be aligned during or post-fabrication, cross-linked via numerous techniques, polymerized to create various fibril sizes and densities, and copolymerized into a wide array of composite scaffolds. Here, we review approaches that have been used to tune collagen to better recapitulate physiological environments for use in tissue engineering applications and studies of basic cell behavior. We discuss techniques to control fibril alignment, methods for cross-linking collagen constructs to modulate stiffness, and composite collagen constructs to better mimic physiological extracellular matrix.

  3. Chemical cross-linking and mass spectrometry as structure determination tools

    Novák, Petr; Giannakopulos, A.

    2007-01-01

    Roč. 13, - (2007), s. 105-113 ISSN 1469-0667 R&D Projects: GA AV ČR KJB400200501; GA MŠk LC545 Grant - others:SE(XE) Marie Curie Actions TOK, Contract No. MTKD-CT-2004-014407 Institutional research plan: CEZ:AV0Z50200510 Keywords : cross-linking * protein * high order structure Subject RIV: EE - Microbiology, Virology Impact factor: 1.198, year: 2007

  4. Geochip: A high throughput genomic tool for linking community structure to functions

    Van Nostrand, Joy D.; Liang, Yuting; He, Zhili; Li, Guanghe; Zhou, Jizhong

    2009-01-30

    GeoChip is a comprehensive functional gene array that targets key functional genes involved in the geochemical cycling of N, C, and P, sulfate reduction, metal resistance and reduction, and contaminant degradation. Studies have shown the GeoChip to be a sensitive, specific, and high-throughput tool for microbial community analysis that has the power to link geochemical processes with microbial community structure. However, several challenges remain regarding the development and applications of microarrays for microbial community analysis.

  5. Blooming Knit Flowers: Loop-Linked Soft Morphing Structures for Soft Robotics.

    Han, Min-Woo; Ahn, Sung-Hoon

    2017-04-01

    A loop-linked structure, which is capable of morphing in various modes, including volumetric transformation, is developed based on knitting methods. Morphing flowers (a lily-like, a daffodil-like, gamopetalous, and a calla-like flower) are fabricated using loop patterning, and their blooming motion is demonstrated by controlling a current that selectively actuates the flowers petals. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Photo-induced processes in collagen-hypericin system revealed by fluorescence spectroscopy and multiphoton microscopy.

    Hovhannisyan, V; Guo, H W; Hovhannisyan, A; Ghukasyan, V; Buryakina, T; Chen, Y F; Dong, C Y

    2014-05-01

    Collagen is the main structural protein and the key determinant of mechanical and functional properties of tissues and organs. Proper balance between synthesis and degradation of collagen molecules is critical for maintaining normal physiological functions. In addition, collagen influences tumor development and drug delivery, which makes it a potential cancer therapy target. Using second harmonic generation, two-photon excited fluorescence microscopy, and spectrofluorimetry, we show that the natural pigment hypericin induces photosensitized destruction of collagen-based tissues. We demonstrate that hypericin-mediated processes in collagen fibers are irreversible and may be used for the treatment of cancer and collagen-related disorders.

  7. The collagen receptor uPARAP/Endo180 in tissue degradation and cancer (Review)

    Carlsen Melander, Eva Maria; Jürgensen, Henrik J; Madsen, Daniel H

    2015-01-01

    The collagen receptor uPARAP/Endo180, the product of the MRC2 gene, is a central component in the collagen turnover process governed by various mesenchymal cells. Through the endocytosis of collagen or large collagen fragments, this recycling receptor serves to direct basement membrane collagen...... as well as interstitial collagen to lysosomal degradation. This capacity, shared only with the mannose receptor from the same protein family, endows uPARAP/Endo180 with a critical role in development and homeostasis, as well as in pathological disruptions of the extracellular matrix structure. Important...

  8. [The genetics of collagen diseases].

    Kaplan, J; Maroteaux, P; Frezal, J

    1986-01-01

    Heritable disorders of collagen include Ehler-Danlos syndromes (11 types are actually known), Larsen syndrome and osteogenesis imperfecta. Their clinical, genetic and biochemical features are reviewed. Marfan syndrome is closely related to heritable disorders of collagen.

  9. Fish collagen is an important panallergen in the Japanese population.

    Kobayashi, Y; Akiyama, H; Huge, J; Kubota, H; Chikazawa, S; Satoh, T; Miyake, T; Uhara, H; Okuyama, R; Nakagawara, R; Aihara, M; Hamada-Sato, N

    2016-05-01

    Collagen was identified as a fish allergen in early 2000s. Although its allergenic potential has been suggested to be low, risks associated with collagen as a fish allergen have not been evaluated to a greater extent. In this study, we aimed to clarify the importance of collagen as a fish allergen. Our results showed that 50% of Japanese patients with fish allergy had immunoglobulin E (IgE) against mackerel collagen, whereas 44% had IgE against mackerel parvalbumin. IgE inhibition assay revealed high cross-reactivity of mackerel collagen to 22 fish species (inhibition rates: 87-98%). Furthermore, a recently developed allergy test demonstrated that collagen triggered IgE cross-linking on mast cells. These data indicate that fish collagen is an important and very common panallergen in fish consumed in Japan. The high rate of individuals' collagen allergy may be attributable to the traditional Japanese custom of raw fish consumption. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  10. Collagen derived serum markers in carcinoma of the prostate

    Rudnicki, M; Jensen, L T; Iversen, P

    1995-01-01

    Three new collagen markers deriving from the collagenous matrix, e.g. carboxyterminal propeptide of type I procollagen (PICP), carboxy-terminal pyridinoline cross-linked telopeptide of type I collagen (ICTP), and aminoterminal propeptide of type III procollagen (PIIINP) were used for the diagnose...... of prostatic bone metastases. Blood samples were obtained prior to biopsy or TURP. Serum PICP, PIIINP and ICTP were measured with commercial available RIAs and PSA by IRMA. Serum PSA was increased in patients with local prostatic cancer compared with patients with hyperplasia (p

  11. Novel synthesis and characterization of a collagen-based biopolymer initiated by hydroxyapatite nanoparticles.

    Bhuiyan, D; Jablonsky, M J; Kolesov, I; Middleton, J; Wick, T M; Tannenbaum, R

    2015-03-01

    In this study, we developed a novel synthesis method to create a complex collagen-based biopolymer that promises to possess the necessary material properties for a bone graft substitute. The synthesis was carried out in several steps. In the first step, a ring-opening polymerization reaction initiated by hydroxyapatite nanoparticles was used to polymerize d,l-lactide and glycolide monomers to form poly(lactide-co-glycolide) co-polymer. In the second step, the polymerization product was coupled with succinic anhydride, and subsequently was reacted with N-hydroxysuccinimide in the presence of dicyclohexylcarbodiimide as the cross-linking agent, in order to activate the co-polymer for collagen attachment. In the third and final step, the activated co-polymer was attached to calf skin collagen type I, in hydrochloric acid/phosphate buffer solution and the precipitated co-polymer with attached collagen was isolated. The synthesis was monitored by proton nuclear magnetic resonance, infrared and Raman spectroscopies, and the products after each step were characterized by thermal and mechanical analysis. Calculations of the relative amounts of the various components, coupled with initial dynamic mechanical analysis testing of the resulting biopolymer, afforded a preliminary assessment of the structure of the complex biomaterial formed by this novel polymerization process. Copyright © 2015. Published by Elsevier Ltd.

  12. Chemical Stabilisation of Collagen as a Biomimetic

    R. Gordon Paul

    2003-01-01

    Full Text Available Collagen is the most abundant protein in animals and because of its high mechanical strength and good resistance to degradation has been utilized in a wide range of products in industry whilst its low antigenicity has resulted in its widespread use in medicine. Collagen products can be purified from fibres, molecules reconstituted as fibres or from specific recombinant polypeptides with preferred properties. A common feature of all these biomaterials is the need for stable chemical cross-linking to control the mechanical properties and the residence time in the body, and to some extent the immunogenicity of the device. This can be achieved by a number of different cross-linking agents that react with specific amino acid residues on the collagen molecule imparting individual biochemical, thermal and mechanical characteristics to the biomaterial. In this review we have summarised the major techniques for testing these characteristics and the mechanisms involved in the variety of cross-linking reactions to achieve particular properties..

  13. [Three-dimensional parallel collagen scaffold promotes tendon extracellular matrix formation].

    Zheng, Zefeng; Shen, Weiliang; Le, Huihui; Dai, Xuesong; Ouyang, Hongwei; Chen, Weishan

    2016-03-01

    To investigate the effects of three-dimensional parallel collagen scaffold on the cell shape, arrangement and extracellular matrix formation of tendon stem cells. Parallel collagen scaffold was fabricated by unidirectional freezing technique, while random collagen scaffold was fabricated by freeze-drying technique. The effects of two scaffolds on cell shape and extracellular matrix formation were investigated in vitro by seeding tendon stem/progenitor cells and in vivo by ectopic implantation. Parallel and random collagen scaffolds were produced successfully. Parallel collagen scaffold was more akin to tendon than random collagen scaffold. Tendon stem/progenitor cells were spindle-shaped and unified orientated in parallel collagen scaffold, while cells on random collagen scaffold had disorder orientation. Two weeks after ectopic implantation, cells had nearly the same orientation with the collagen substance. In parallel collagen scaffold, cells had parallel arrangement, and more spindly cells were observed. By contrast, cells in random collagen scaffold were disorder. Parallel collagen scaffold can induce cells to be in spindly and parallel arrangement, and promote parallel extracellular matrix formation; while random collagen scaffold can induce cells in random arrangement. The results indicate that parallel collagen scaffold is an ideal structure to promote tendon repairing.

  14. Verrucomicrobial community structure and abundance as indicators for changes in chemical factors linked to soil fertility.

    Navarrete, Acacio Aparecido; Soares, Tielle; Rossetto, Raffaella; van Veen, Johannes Antonie; Tsai, Siu Mui; Kuramae, Eiko Eurya

    2015-09-01

    Here we show that verrucomicrobial community structure and abundance are extremely sensitive to changes in chemical factors linked to soil fertility. Terminal restriction fragment length polymorphism fingerprint and real-time quantitative PCR assay were used to analyze changes in verrucomicrobial communities associated with contrasting soil nutrient conditions in tropical regions. In case study Model I ("Slash-and-burn deforestation") the verrucomicrobial community structures revealed disparate patterns in nutrient-enriched soils after slash-and-burn deforestation and natural nutrient-poor soils under an adjacent primary forest in the Amazonia (R = 0.819, P = 0.002). The relative proportion of Verrucomicrobia declined in response to increased soil fertility after slash-and-burn deforestation, accounting on average, for 4 and 2 % of the total bacterial signal, in natural nutrient-poor forest soils and nutrient-enriched deforested soils, respectively. In case study Model II ("Management practices for sugarcane") disparate patterns were revealed in sugarcane rhizosphere sampled on optimal and deficient soil fertility for sugarcane (R = 0.786, P = 0.002). Verrucomicrobial community abundance in sugarcane rhizosphere was negatively correlated with soil fertility, accounting for 2 and 5 % of the total bacterial signal, under optimal and deficient soil fertility conditions for sugarcane, respectively. In nutrient-enriched soils, verrucomicrobial community structures were related to soil factors linked to soil fertility, such as total nitrogen, phosphorus, potassium and sum of bases, i.e., the sum of calcium, magnesium and potassium contents. We conclude that community structure and abundance represent important ecological aspects in soil verrucomicrobial communities for tracking the changes in chemical factors linked to soil fertility under tropical environmental conditions.

  15. Effect of silver nanoparticles and hydroxyproline, administered in ovo, on the development of blood vessels and cartilage collagen structure in chicken embryos

    Beck, Iwona; Hotowy, Anna; Sawosz, Ewa

    2015-01-01

    . An assessment of the mass of embryo and selected organs was carried out followed by measurements of the expression of the key signalling factors' fibroblast growth factor-2 (FGF-2) and vascular endothelial growth factor-A (VEGF-A). Finally, an evaluation of collagen microstructure using scanning electron...... microscopy was performed. Our results clearly indicate that Hyp, Ag and AgHyp administered in ovo to chicken embryos did not harm embryos. Comparing to the control group, Hyp, Ag and the AgHyp complex significantly upregulated expression of the FGF-2 at the mRNA and protein levels. Moreover, Hyp, Ag and......It has been considered that concentrations of certain amino acids in the egg are not sufficient to fully support embryonic development of modern broilers. In this study we evaluated embryo growth and development with particular emphasis on one of the major components of connective tissue, collagen...

  16. Stability and cellular responses to fluorapatite-collagen composites.

    Yoon, Byung-Ho; Kim, Hae-Won; Lee, Su-Hee; Bae, Chang-Jun; Koh, Young-Hag; Kong, Young-Min; Kim, Hyoun-Ee

    2005-06-01

    Fluorapatite (FA)-collagen composites were synthesized via a biomimetic coprecipitation method in order to improve the structural stability and cellular responses. Different amounts of ammonium fluoride (NH4F), acting as a fluorine source for FA, were added to the precipitation of the composites. The precipitated composites were freeze-dried and isostatically pressed in a dense body. The added fluorine was incorporated nearly fully into the apatite structure (fluoridation), and a near stoichiometric FA-collagen composite was obtained with complete fluoridation. The freeze-dried composites had a typical biomimetic network, consisting of collagen fibers and precipitates of nano-sized apatite crystals. The human osteoblast-like cells on the FA-collagen composites exhibited significantly higher proliferation and differentiation (according to alkaline phosphatase activity) than those on the hydroxyapatite-collagen composite. These enhanced osteoblastic cell responses were attributed to the fluorine release and the reduced dissolution rate.

  17. Linking Wave Forcing to Coral Cover and Structural Complexity Across Coral Reef Flats

    Harris, D. L.; Rovere, A.; Parravicini, V.; Casella, E.

    2015-12-01

    The hydrodynamic regime is a significant component in the geomorphic and ecological development of coral reefs. The energy gradients and flow conditions generated by the breaking and transformation of waves across coral reef crests and flats drive changes in geomorphic structure, and coral growth form and distribution. One of the key aspects in regulating the wave energy propagating across reef flats is the rugosity or roughness of the benthic substrate. Rugosity and structural complexity of coral reefs is also a key indicator of species diversity, ecological functioning, and reef health. However, the links between reef rugosity, coral species distribution and abundance, and hydrodynamic forcing are poorly understood. In this study we examine this relationship by using high resolution measurement of waves in the surf zone and coral reef benthic structure.Pressure transducers (logging at 4 Hz) were deployed in cross reef transects at two sites (Tiahura and Ha'apiti reef systems) in Moorea, French Polynesia with wave characteristics determined on a wave by wave basis. A one dimensional hydrodynamic model (XBeach) was calibrated from this data to determine wave processes on the reef flats under average conditions. Transects of the reef benthic structure were conducted using photographic analysis and the three dimensional reef surface was constructed using structure from motion procedures. From this analysis reef rugosity, changes in coral genus and growth form, and across reef shifts in benthic community were determined. The results show clear changes in benthic assemblages along wave energy gradients with some indication of threshold values of wave induced bed shear stress above which live coral cover was reduced. Reef rugosity was shown to be significantly along the cross-reef transect which has important implications for accurate assessment of wave dissipation across coral reef flats. Links between reef rugosity and coral genus were also observed and may indicate

  18. LARP6 Meets Collagen mRNA: Specific Regulation of Type I Collagen Expression

    Yujie Zhang

    2016-03-01

    Full Text Available Type I collagen is the most abundant structural protein in all vertebrates, but its constitutive rate of synthesis is low due to long half-life of the protein (60–70 days. However, several hundred fold increased production of type I collagen is often seen in reparative or reactive fibrosis. The mechanism which is responsible for this dramatic upregulation is complex, including multiple levels of regulation. However, posttranscriptional regulation evidently plays a predominant role. Posttranscriptional regulation comprises processing, transport, stabilization and translation of mRNAs and is executed by RNA binding proteins. There are about 800 RNA binding proteins, but only one, La ribonucleoprotein domain family member 6 (LARP6, is specifically involved in type I collagen regulation. In the 5′untranslated region (5’UTR of mRNAs encoding for type I and type III collagens there is an evolutionally conserved stem-loop (SL structure; this structure is not found in any other mRNA, including any other collagen mRNA. LARP6 binds to the 5′SL in sequence specific manner to regulate stability of collagen mRNAs and their translatability. Here, we will review current understanding of how is LARP6 involved in posttranscriptional regulation of collagen mRNAs. We will also discuss how other proteins recruited by LARP6, including nonmuscle myosin, vimentin, serine threonine kinase receptor associated protein (STRAP, 25 kD FK506 binding protein (FKBP25 and RNA helicase A (RHA, contribute to this process.

  19. In vitro influence of 2% chlorhexidine on links established at the ...

    Cornel Boitor

    2013-03-20

    Mar 20, 2013 ... teeth of each group were subjected to the bonding strength tests after 24 h and ... longevity of composite materials to tooth structure is determined by the links established in the hybrid layer between the network of collagen fibers in dentin and fluid .... a well-known general antibacterial agent for endodontic.

  20. A novel nano-structured porous polycaprolactone scaffold improves hyaline cartilage repair in a rabbit model compared to a collagen type I/III scaffold: in vitro and in vivo studies.

    Christensen, Bjørn Borsøe; Foldager, Casper Bindzus; Hansen, Ole Møller; Kristiansen, Asger Albæk; Le, Dang Quang Svend; Nielsen, Agnete Desirée; Nygaard, Jens Vinge; Bünger, Cody Erik; Lind, Martin

    2012-06-01

    To develop a nano-structured porous polycaprolactone (NSP-PCL) scaffold and compare the articular cartilage repair potential with that of a commercially available collagen type I/III (Chondro-Gide) scaffold. By combining rapid prototyping and thermally induced phase separation, the NSP-PCL scaffold was produced for matrix-assisted autologous chondrocyte implantation. Lyophilizing a water-dioxane-PCL solution created micro and nano-pores. In vitro: The scaffolds were seeded with rabbit chondrocytes and cultured in hypoxia for 6 days. qRT-PCR was performed using primers for sox9, aggrecan, collagen type 1 and 2. In vivo: 15 New Zealand White Rabbits received bilateral osteochondral defects in the femoral intercondylar grooves. Autologous chondrocytes were harvested 4 weeks prior to surgery. There were 3 treatment groups: (1) NSP-PCL scaffold without cells. (2) The Chondro-Gide scaffold with autologous chondrocytes and (3) NSP-PCL scaffold with autologous chondrocytes. Observation period was 13 weeks. Histological evaluation was made using the O'Driscoll score. In vitro: The expressions of sox9 and aggrecan were higher in the NSP-PCL scaffold, while expression of collagen 1 was lower compared to the Chondro-Gide scaffold. In vivo: Both NSP-PCL scaffolds with and without cells scored significantly higher than the Chondro-Gide scaffold when looking at the structural integrity and the surface regularity of the repair tissue. No differences were found between the NSP-PCL scaffold with and without cells. The NSP-PCL scaffold demonstrated higher in vitro expression of chondrogenic markers and had higher in vivo histological scores compared to the Chondro-Gide scaffold. The improved chondrocytic differentiation can potentially produce more hyaline cartilage during clinical cartilage repair. It appears to be a suitable cell-free implant for hyaline cartilage repair and could provide a less costly and more effective treatment option than the Chondro-Gide scaffold with cells.

  1. Structuring of Amide Cross-Linked Non-Bridged and Bridged Alkyl-Based Silsesquioxanes.

    Nunes, S C; de Zea Bermudez, V

    2018-02-06

    The development of sophisticated organized materials exhibiting enhanced properties is a challenging topic of the domain of organic/inorganic hybrid materials. This review, composed of four sections, reports the work we have carried out over the last 10 years on the synthesis of amide cross-linked alkyl/siloxane hybrids by means of sol-gel chemistry and self-directed assembly/self-organization routes relying on weak interactions (hydrophobic interactions and hydrogen bonding). The various as-produced lamellar structures displaying a myriad of morphologies, often closely resembling those found in natural materials, are discussed. The major role played by the synthetic conditions (pH, water content, co-solvent(s) nature/concentration and dopant presence/concentration), the alkyl chains (length and presence of ramification or not) and the number of the amide cross-links present in the precursor, is evidenced. Examples of highly organized hybrids structures incorporating ionic species (alkali and alkaline earth metal salts) and optically-active centers (organic dyes and lanthanide ions) are described. A useful qualitative relationship deduced between the emission quantum yield of the ordered hybrid materials and the degree of order of the hydrogen-bonded network is highlighted. © 2018 The Chemical Society of Japan & Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Sharp kink of DNA at psoralen-cross-link site deduced from crystal structure of psoralen-thymine monoadduct

    Kim, S.H.; Peckler, S.; Graves, B.; Kanne, D.; Rapoport, H.; Hearst, J.E.

    1983-01-01

    Light-induced cross-linking of double-stranded nucleic acids by psoralens has been exploited to locate, in vivo or in vitro, those double-helical regions of DNA or RNA that can accommodate any structural changes caused by the psoralen cross-links. To determine three-dimensional structural parameters of the cross-link, we have solved the crystal structure of the psoralen-thymine monoadduct formed in photoreaction between calf thymus DNA and 8-methoxypsoralen (8MOP). There are eight possible configurations for psoralen-thymine monoadducts and 64 for diadducts. We describe here the structural details of a psoralen-thymine monoadduct obtained in a biological environment and the consequences of the photo-cross-link between 8MOP and double-helical DNA

  3. Design and fabrication of a chitosan hydrogel with gradient structures via a step-by-step cross-linking process.

    Xu, Yongxiang; Yuan, Shenpo; Han, Jianmin; Lin, Hong; Zhang, Xuehui

    2017-11-15

    The development of scaffolds to mimic the gradient structure of natural tissue is an important consideration for effective tissue engineering. In the present study, a physical cross-linking chitosan hydrogel with gradient structures was fabricated via a step-by-step cross-linking process using sodium tripolyphosphate and sodium hydroxide as sequential cross-linkers. Chitosan hydrogels with different structures (single, double, and triple layers) were prepared by modifying the gelling process. The properties of the hydrogels were further adjusted by varying the gelling conditions, such as gelling time, pH, and composition of the crosslinking solution. Slight cytotoxicity was showed in MTT assay for hydrogels with uncross-linking chitosan solution and non-cytotoxicity was showed for other hydrogels. The results suggest that step-by-step cross-linking represents a practicable method to fabricate scaffolds with gradient structures. Copyright © 2017. Published by Elsevier Ltd.

  4. The collagenic architecture of human dura mater.

    Protasoni, Marina; Sangiorgi, Simone; Cividini, Andrea; Culuvaris, Gloria Tiffany; Tomei, Giustino; Dell'Orbo, Carlo; Raspanti, Mario; Balbi, Sergio; Reguzzoni, Marcella

    2011-06-01

    Human dura mater is the most external meningeal sheet surrounding the CNS. It provides an efficient protection to intracranial structures and represents the most important site for CSF turnover. Its intrinsic architecture is made up of fibrous tissue including collagenic and elastic fibers that guarantee the maintenance of its biophysical features. The recent technical advances in the repair of dural defects have allowed for the creation of many synthetic and biological grafts. However, no detailed studies on the 3D microscopic disposition of collagenic fibers in dura mater are available. The authors report on the collagenic 3D architecture of normal dura mater highlighting the orientation, disposition in 3 dimensions, and shape of the collagen fibers with respect to the observed layer. Thirty-two dura mater specimens were collected during cranial decompressive surgical procedures, fixed in 2.5% Karnovsky solution, and digested in 1 N NaOH solution. After a routine procedure, the specimens were observed using a scanning electron microscope. The authors distinguished the following 5 layers in the fibrous dura mater of varying thicknesses, orientation, and structures: bone surface, external median, vascular, internal median, and arachnoid layers. The description of the ultrastructural 3D organization of the different layers of dura mater will give us more information for the creation of synthetic grafts that are as similar as possible to normal dura mater. This description will be also related to the study of the neoplastic invasion.

  5. Electrophoretic mobility patterns of collagen following laser welding

    Bass, Lawrence S.; Moazami, Nader; Pocsidio, Joanne O.; Oz, Mehmet C.; LoGerfo, Paul; Treat, Michael R.

    1991-06-01

    Clinical application of laser vascular anastomosis in inhibited by a lack of understanding of its mechanism. Whether tissue fusion results from covalent or non-covalent bonding of collagen and other structural proteins is unknown. We compared electrophoretic mobility of collagen in laser treated and untreated specimens of rat tail tendon (>90% type I collagen) and rabbit aorta. Welding was performed, using tissue shrinkage as the clinical endpoint, using the 808 nm diode laser (power density 14 watts/cm2) and topical indocyanine green dye (max absorption 805 nm). Collagen was extracted with 8 M urea (denaturing), 0.5 M acetic acid (non-denaturing) and acetic acid/pepsin (cleaves non- helical protein). Mobility patterns on gel electrophoresis (SDS-PAGE) after urea or acetic acid extraction were identical in the lasered and control tendon and vessel (confirmed by optical densitometry), revealing no evidence of formation of novel covalent bonds. Alpha and beta band intensity was diminished in pepsin incubated lasered specimens compared with controls (optical density ratio 0.00 +/- 9 tendon, 0.65 +/- 0.12 aorta), indicating the presence of denatured collagen. With the laser parameters used, collagen is denatured without formation of covalent bonds, suggesting that non-covalent interaction between denatured collagen molecules may be responsible for the weld. Based on this mechanism, welding parameters can be chosen which produce collagen denaturation without cell death.

  6. A simple structure wavelet transform circuit employing function link neural networks and SI filters

    Mu, Li; Yigang, He

    2016-12-01

    Signal processing by means of analog circuits offers advantages from a power consumption viewpoint. Implementing wavelet transform (WT) using analog circuits is of great interest when low-power consumption becomes an important issue. In this article, a novel simple structure WT circuit in analog domain is presented by employing functional link neural network (FLNN) and switched-current (SI) filters. First, the wavelet base is approximated using FLNN algorithms for giving a filter transfer function that is suitable for simple structure WT circuit implementation. Next, the WT circuit is constructed with the wavelet filter bank, whose impulse response is the approximated wavelet and its dilations. The filter design that follows is based on a follow-the-leader feedback (FLF) structure with multiple output bilinear SI integrators and current mirrors as the main building blocks. SI filter is well suited for this application since the dilation constant across different scales of the transform can be precisely implemented and controlled by the clock frequency of the circuit with the same system architecture. Finally, to illustrate the design procedure, a seventh-order FLNN-approximated Gaussian wavelet is implemented as an example. Simulations have successfully verified that the designed simple structure WT circuit has low sensitivity, low-power consumption and litter effect to the imperfections.

  7. Disintegration of collagen fibrils by Glucono-δ-lactone: An implied lead for disintegration of fibrosis.

    Jayamani, Jayaraman; Ravikanth Reddy, R; Madhan, Balaraman; Shanmugam, Ganesh

    2018-02-01

    Excess accumulation of collagen (fibrosis) undergoes self-aggregation, which leads to fibrillar collagen, on the extracellular matrix is the hallmark of a number of diseases such as keloids, hypertrophic scars, and systemic scleroderma. Direct inhibition or disintegration of collagen fibrils by small molecules offer a therapeutic approach to prevent or treat the diseases related to fibrosis. Herein, the anti-fibrotic property of Glucono-δ-lactone (GdL), known as acidifier, on the fibrillation and its disintegration of collagen was investigated. As collagen fibrillation is pH dependent, the pH modulation property of GdL is attractive to inhibit self-association of collagen. Optical density and microscopic data indicate that GdL elicits concentration-dependent fibril inhibition and also disintegrates pre-formed collagen fibrils. The simultaneous pH analysis showed that the modulation(lowering) of pH by GdL is the primary cause for its anti-fibrotic activity. The intact triple helical structure of collagen upon treatment of GdL suggests that collagen fibril disintegration can be achieved without affecting the native structure of collagen which is essential for any anti-fibrotic agents. Saturation transfer difference (STD) NMR result reveals that GdL is in proximity to collagen. The present results thus suggest that GdL provides a lead to design novel anti-fibrotic agents for the pathologies related to collagen deposition. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Structure–mechanics relationships of collagen fibrils in the osteogenesis imperfecta mouse model

    Andriotis, O. G.; Chang, S. W.; Vanleene, M.; Howarth, P. H.; Davies, D. E.; Shefelbine, S. J.; Buehler, M. J.; Thurner, P. J.

    2015-01-01

    The collagen molecule, which is the building block of collagen fibrils, is a triple helix of two α1(I) chains and one α2(I) chain. However, in the severe mouse model of osteogenesis imperfecta (OIM), deletion of the COL1A2 gene results in the substitution of the α2(I) chain by one α1(I) chain. As this substitution severely impairs the structure and mechanics of collagen-rich tissues at the tissue and organ level, the main aim of this study was to investigate how the structure and mechanics are altered in OIM collagen fibrils. Comparing results from atomic force microscopy imaging and cantilever-based nanoindentation on collagen fibrils from OIM and wild-type (WT) animals, we found a 33% lower indentation modulus in OIM when air-dried (bound water present) and an almost fivefold higher indentation modulus in OIM collagen fibrils when fully hydrated (bound and unbound water present) in phosphate-buffered saline solution (PBS) compared with WT collagen fibrils. These mechanical changes were accompanied by an impaired swelling upon hydration within PBS. Our experimental and atomistic simulation results show how the structure and mechanics are altered at the individual collagen fibril level as a result of collagen gene mutation in OIM. We envisage that the combination of experimental and modelling approaches could allow mechanical phenotyping at the collagen fibril level of virtually any alteration of collagen structure or chemistry. PMID:26468064

  9. Investigation of the influence of UV irradiation on collagen thin films by AFM imaging

    Stylianou, Andreas; Yova, Dido; Alexandratou, Eleni

    2014-01-01

    Collagen is the major fibrous extracellular matrix protein and due to its unique properties, it has been widely used as biomaterial, scaffold and cell-substrate. The aim of the paper was to use Atomic Force Microscopy (AFM) in order to investigate well-characterized collagen thin films after ultraviolet light (UV) irradiation. The films were also used as in vitro culturing substrates in order to investigate the UV-induced alterations to fibroblasts. A special attention was given in the alteration on collagen D-periodicity. For short irradiation times, spectroscopy (fluorescence/absorption) studies demonstrated that photodegradation took place and AFM imaging showed alterations in surface roughness. Also, it was highlighted that UV-irradiation had different effects when it was applied on collagen solution than on films. Concerning fibroblast culturing, it was shown that fibroblast behavior was affected after UV irradiation of both collagen solution and films. Furthermore, after a long irradiation time, collagen fibrils were deformed revealing that collagen fibrils are consisting of multiple shells and D-periodicity occurred on both outer and inner shells. The clarification of the effects of UV light on collagen and the induced modifications of cell behavior on UV-irradiated collagen-based surfaces will contribute to the better understanding of cell–matrix interactions in the nanoscale and will assist in the appropriate use of UV light for sterilizing and photo-cross-linking applications. - Highlights: • Collagen thin films were formed and exposed in UV irradiation. • Collagen thin films were formed from UV-irradiated collagen solution. • Nanocharacterization of collagen thin films by AFM • Fluorescence and absorption spectroscopy studies on collagen films • Investigation of fibroblast response on collagen films

  10. Investigation of the influence of UV irradiation on collagen thin films by AFM imaging

    Stylianou, Andreas, E-mail: styliand@mail.ntua.gr; Yova, Dido; Alexandratou, Eleni

    2014-12-01

    Collagen is the major fibrous extracellular matrix protein and due to its unique properties, it has been widely used as biomaterial, scaffold and cell-substrate. The aim of the paper was to use Atomic Force Microscopy (AFM) in order to investigate well-characterized collagen thin films after ultraviolet light (UV) irradiation. The films were also used as in vitro culturing substrates in order to investigate the UV-induced alterations to fibroblasts. A special attention was given in the alteration on collagen D-periodicity. For short irradiation times, spectroscopy (fluorescence/absorption) studies demonstrated that photodegradation took place and AFM imaging showed alterations in surface roughness. Also, it was highlighted that UV-irradiation had different effects when it was applied on collagen solution than on films. Concerning fibroblast culturing, it was shown that fibroblast behavior was affected after UV irradiation of both collagen solution and films. Furthermore, after a long irradiation time, collagen fibrils were deformed revealing that collagen fibrils are consisting of multiple shells and D-periodicity occurred on both outer and inner shells. The clarification of the effects of UV light on collagen and the induced modifications of cell behavior on UV-irradiated collagen-based surfaces will contribute to the better understanding of cell–matrix interactions in the nanoscale and will assist in the appropriate use of UV light for sterilizing and photo-cross-linking applications. - Highlights: • Collagen thin films were formed and exposed in UV irradiation. • Collagen thin films were formed from UV-irradiated collagen solution. • Nanocharacterization of collagen thin films by AFM • Fluorescence and absorption spectroscopy studies on collagen films • Investigation of fibroblast response on collagen films.

  11. Arterial extracellular matrix: a mechanobiological study of the contributions and interactions of elastin and collagen.

    Chow, Ming-Jay; Turcotte, Raphaël; Lin, Charles P; Zhang, Yanhang

    2014-06-17

    The complex network structure of elastin and collagen extracellular matrix (ECM) forms the primary load bearing components in the arterial wall. The structural and mechanobiological interactions between elastin and collagen are important for properly functioning arteries. Here, we examined the elastin and collagen organization, realignment, and recruitment by coupling mechanical loading and multiphoton imaging. Two-photon excitation fluorescence and second harmonic generation methods were performed with a multiphoton video-rate microscope to capture real time changes to the elastin and collagen structure during biaxial deformation. Enzymatic removal of elastin was performed to assess the structural changes of the remaining collagen structure. Quantitative analysis of the structural changes to elastin and collagen was made using a combination of two-dimensional fast Fourier transform and fractal analysis, which allows for a more complete understanding of structural changes. Our study provides new quantitative evidence, to our knowledge on the sequential engagement of different arterial ECM components in response to mechanical loading. The adventitial collagen exists as large wavy bundles of fibers that exhibit fiber engagement after 20% strain. The medial collagen is engaged throughout the stretching process, and prominent elastic fiber engagement is observed up to 20% strain after which the engagement plateaus. The fiber orientation distribution functions show remarkably different changes in the ECM structure in response to mechanical loading. The medial collagen shows an evident preferred circumferential distribution, however the fiber families of adventitial collagen are obscured by their waviness at no or low mechanical strains. Collagen fibers in both layers exhibit significant realignment in response to unequal biaxial loading. The elastic fibers are much more uniformly distributed and remained relatively unchanged due to loading. Removal of elastin produces

  12. Vibro-acoustic modelling of aircraft double-walls with structural links using Statistical Energy Analysis

    Campolina, Bruno L.

    The prediction of aircraft interior noise involves the vibroacoustic modelling of the fuselage with noise control treatments. This structure is composed of a stiffened metallic or composite panel, lined with a thermal and acoustic insulation layer (glass wool), and structurally connected via vibration isolators to a commercial lining panel (trim). The goal of this work aims at tailoring the noise control treatments taking design constraints such as weight and space optimization into account. For this purpose, a representative aircraft double-wall is modelled using the Statistical Energy Analysis (SEA) method. Laboratory excitations such as diffuse acoustic field and point force are addressed and trends are derived for applications under in-flight conditions, considering turbulent boundary layer excitation. The effect of the porous layer compression is firstly addressed. In aeronautical applications, compression can result from the installation of equipment and cables. It is studied analytically and experimentally, using a single panel and a fibrous uniformly compressed over 100% of its surface. When compression increases, a degradation of the transmission loss up to 5 dB for a 50% compression of the porous thickness is observed mainly in the mid-frequency range (around 800 Hz). However, for realistic cases, the effect should be reduced since the compression rate is lower and compression occurs locally. Then the transmission through structural connections between panels is addressed using a four-pole approach that links the force-velocity pair at each side of the connection. The modelling integrates experimental dynamic stiffness of isolators, derived using an adapted test rig. The structural transmission is then experimentally validated and included in the double-wall SEA model as an equivalent coupling loss factor (CLF) between panels. The tested structures being flat, only axial transmission is addressed. Finally, the dominant sound transmission paths are

  13. Linking perception and action by structure or process? Toward an integrative perspective.

    Herwig, Arvid

    2015-05-01

    Over the past decades cognitive neuroscience's renewed interest in action has intensified the search of principles explaining how the cognitive system links perception to action and vice versa. To date, at least two seemingly alternative approaches can be distinguished. Perception and action might be linked either by common representational structures, as assumed by the ideomotor approach, or by common attentional processes, as assumed by the attention approach. This article first reviews the evidence from different paradigms supporting each approach. It becomes clear that most studies selectively focus either on actions directed at goals outside the actors' perceptual range (supporting the ideomotor approach) or on actions directed at targets within the actors' perceptual range (supporting the attention approach). In a second step, I will try to reconcile both approaches by reviewing recent eye movement studies that abolish the classical combination of approach and goals under study. Demonstrating that both approaches cover target- as well as goal-directed actions, it is proposed that operations addressed in both conceptual frameworks interact with each other. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Evaluation of Biomechanical Changes in Myopia Patients with Unsatisfactory Corneas After Femto Second-Laser In Situ Keratomileusis (FS-LASIK) Concurrent with Accelerated Corneal Collagen Cross-Linking Using Corvis-ST: Two-Year Follow-Up Results.

    Xu, Weiwei; Tao, Ye; Wang, Liqiang; Huang, Yifei

    2017-07-27

    BACKGROUND Some myopia patients with unsatisfactory corneas consider corneal refractive surgery for different reasons. Accelerated corneal collagen crosslinking (ACXL) is an effective method to enhance the resistance of the cornea. The present investigation was designed to evaluate the changes of biomechanical properties in patients with myopia and thin corneas after femtosecond-laser in situ keratomileusis (FS-LASIK) concurrent with ACXL. MATERIAL AND METHODS A prospective study was designed. A total of 22 eyes of 11 myopia astigmatism patients with unsatisfactory corneas were enrolled. The patients were assigned to femtosecond-laser in situ keratomileusis concurrent with accelerated corneal collagen crosslinking (FS-LASIK-ACXL). The follow-up duration was 24 months. Manifest refraction, uncorrected (UDVA), and corrected distance visual acuity (CDVA), ultra-high-speed camera (Corvis-ST), corneal topography, anterior segment OCT (AS-OCT), Pentacam, and endothelial cell density (ECD) were examined before and after the operation. The corneal biomechanical and refractive data was analyzed using SAS9.3. Data were analyzed through normal distribution test and variance of analysis. The difference was considered as statistically significant when pLASIK-ACXL operation. The values of first applanation length (A1L), the second applanation length (A2L), the first applanation velocity (A1V), the second applanation velocity (A2V), deformation amplitude (DA), highest concavity peak distance (PD), and radius of curvature at the time of highest concavity (HCR) did not show significant difference after the operation. CONCLUSIONS FS-LASIK-ACXL is an effective and safe surgery for improving visual acuity for myopic patients with thin corneas, and it does not increase the risk of iatrogenic keratectasia.

  15. Vertical Structure of Radiation-pressure-dominated Thin Disks: Link between Vertical Advection and Convective Stability

    Gong, Hong-Yu; Gu, Wei-Min

    2017-01-01

    In the classic picture of standard thin accretion disks, viscous heating is balanced by radiative cooling through the diffusion process, and the radiation-pressure-dominated inner disk suffers convective instability. However, recent simulations have shown that, owing to the magnetic buoyancy, the vertical advection process can significantly contribute to energy transport. In addition, in comparing the simulation results with the local convective stability criterion, no convective instability has been found. In this work, following on from simulations, we revisit the vertical structure of radiation-pressure-dominated thin disks and include the vertical advection process. Our study indicates a link between the additional energy transport and the convectively stable property. Thus, the vertical advection not only significantly contributes to the energy transport, but it also plays an important role in making the disk convectively stable. Our analyses may help to explain the discrepancy between classic theory and simulations on standard thin disks.

  16. A didactical structural model – linking analysis of teaching and analysis of educational media

    Graf, Stefan Ting

    1. Gap between general didactics and textbook/media research There seems to be a gap between general didactics (theory of teaching) and research in textbooks or educational media in general at least in the Nordic and German speaking countries. General didactic and their models seem to underestimate...... related questions (e.g. readability) without establishing a link to what is useful for the teacher’s tasks both on the level of preparation, practice and reflection, i.e. without an explicit theory of teaching. 2. Media in general didactics I will discuss the status of media in some current models...... of reflection in general didactics (Hiim/Hippe, Meyer, Klafki) and present a reconstruction of a didactical model of structure (Strukturmodel), whose counterstones are ‘intentional content’, ‘media/expression’ and ‘teaching method/activity’. The inclusion of media/expression in the model resumes a seemingly...

  17. Random blebbing motion: A simple model linking cell structural properties to migration characteristics

    Woolley, Thomas E.; Gaffney, Eamonn A.; Goriely, Alain

    2017-07-01

    If the plasma membrane of a cell is able to delaminate locally from its actin cortex, a cellular bleb can be produced. Blebs are pressure-driven protrusions, which are noteworthy for their ability to produce cellular motion. Starting from a general continuum mechanics description, we restrict ourselves to considering cell and bleb shapes that maintain approximately spherical forms. From this assumption, we obtain a tractable algebraic system for bleb formation. By including cell-substrate adhesions, we can model blebbing cell motility. Further, by considering mechanically isolated blebbing events, which are randomly distributed over the cell, we can derive equations linking the macroscopic migration characteristics to the microscopic structural parameters of the cell. This multiscale modeling framework is then used to provide parameter estimates, which are in agreement with current experimental data. In summary, the construction of the mathematical model provides testable relationships between the bleb size and cell motility.

  18. Random blebbing motion: A simple model linking cell structural properties to migration characteristics.

    Woolley, Thomas E; Gaffney, Eamonn A; Goriely, Alain

    2017-07-01

    If the plasma membrane of a cell is able to delaminate locally from its actin cortex, a cellular bleb can be produced. Blebs are pressure-driven protrusions, which are noteworthy for their ability to produce cellular motion. Starting from a general continuum mechanics description, we restrict ourselves to considering cell and bleb shapes that maintain approximately spherical forms. From this assumption, we obtain a tractable algebraic system for bleb formation. By including cell-substrate adhesions, we can model blebbing cell motility. Further, by considering mechanically isolated blebbing events, which are randomly distributed over the cell, we can derive equations linking the macroscopic migration characteristics to the microscopic structural parameters of the cell. This multiscale modeling framework is then used to provide parameter estimates, which are in agreement with current experimental data. In summary, the construction of the mathematical model provides testable relationships between the bleb size and cell motility.

  19. Cyclophilin B Deficiency Causes Abnormal Dentin Collagen Matrix.

    Terajima, Masahiko; Taga, Yuki; Cabral, Wayne A; Nagasawa, Masako; Sumida, Noriko; Hattori, Shunji; Marini, Joan C; Yamauchi, Mitsuo

    2017-08-04

    Cyclophilin B (CypB) is an endoplasmic reticulum-resident protein that regulates collagen folding, and also contributes to prolyl 3-hydroxylation (P3H) and lysine (Lys) hydroxylation of collagen. In this study, we characterized dentin type I collagen in CypB null (KO) mice, a model of recessive osteogenesis imperfecta type IX, and compared to those of wild-type (WT) and heterozygous (Het) mice. Mass spectrometric analysis demonstrated that the extent of P3H in KO collagen was significantly diminished compared to WT/Het. Lys hydroxylation in KO was significantly diminished at the helical cross-linking sites, α1/α2(I) Lys-87 and α1(I) Lys-930, leading to a significant increase in the under-hydroxylated cross-links and a decrease in fully hydroxylated cross-links. The extent of glycosylation of hydroxylysine residues was, except α1(I) Lys-87, generally higher in KO than WT/Het. Some of these molecular phenotypes were distinct from other KO tissues reported previously, indicating the dentin-specific control mechanism through CypB. Histological analysis revealed that the width of predentin was greater and irregular, and collagen fibrils were sparse and significantly smaller in KO than WT/Het. These results indicate a critical role of CypB in dentin matrix formation, suggesting a possible association between recessive osteogenesis imperfecta and dentin defects that have not been clinically detected.

  20. Ovine tendon collagen: Extraction, characterisation and fabrication of thin films for tissue engineering applications

    Fauzi, M.B.; Lokanathan, Y. [Tissue Engineering Centre, UKM Medical Centre, Jalan Yaacob Latiff, Bandar Tun Razak, 56000 Cheras, Kuala Lumpur (Malaysia); Aminuddin, B.S. [Tissue Engineering Centre, UKM Medical Centre, Jalan Yaacob Latiff, Bandar Tun Razak, 56000 Cheras, Kuala Lumpur (Malaysia); Ear, Nose & Throat Consultant Clinic, Ampang Puteri Specialist Hospital, Taman Dato Ahmad Razali, 68000 Ampang, Selangor (Malaysia); Ruszymah, B.H.I. [Tissue Engineering Centre, UKM Medical Centre, Jalan Yaacob Latiff, Bandar Tun Razak, 56000 Cheras, Kuala Lumpur (Malaysia); Department of Physiology, UKM Medical Centre, Jalan Yaacob Latiff, Bandar Tun Razak, 56000 Cheras, Kuala Lumpur (Malaysia); Chowdhury, S.R., E-mail: shiplu@ppukm.ukm.edu.my [Tissue Engineering Centre, UKM Medical Centre, Jalan Yaacob Latiff, Bandar Tun Razak, 56000 Cheras, Kuala Lumpur (Malaysia)

    2016-11-01

    Collagen is the most abundant extracellular matrix (ECM) protein in the human body, thus widely used in tissue engineering and subsequent clinical applications. This study aimed to extract collagen from ovine (Ovis aries) Achilles tendon (OTC), and to evaluate its physicochemical properties and its potential to fabricate thin film with collagen fibrils in a random or aligned orientation. Acid-solubilized protein was extracted from ovine Achilles tendon using 0.35 M acetic acid, and 80% of extracted protein was measured as collagen. SDS-PAGE and mass spectrometry analysis revealed the presence of alpha 1 and alpha 2 chain of collagen type I (col I). Further analysis with Fourier transform infrared spectrometry (FTIR), X-ray diffraction (XRD) and energy dispersive X-ray spectroscopy (EDS) confirms the presence of triple helix structure of col I, similar to commercially available rat tail col I. Drying the OTC solution at 37°C resulted in formation of a thin film with randomly orientated collagen fibrils (random collagen film; RCF). Introduction of unidirectional mechanical intervention using a platform rocker prior to drying facilitated the fabrication of a film with aligned orientation of collagen fibril (aligned collagen film; ACF). It was shown that both RCF and ACF significantly enhanced human dermal fibroblast (HDF) attachment and proliferation than that on plastic surface. Moreover, cells were distributed randomly on RCF, but aligned with the direction of mechanical intervention on ACF. In conclusion, ovine tendon could be an alternative source of col I to fabricate scaffold for tissue engineering applications. - Highlights: • Isolated collagen from ovine tendon was characterized as collagen type I. • Collagen film was fabricated via air drying of ovine tendon collagen. • Collagen fibril alignment was realized via unidirectional platform rocker. • Orientation of cells was attained depending on collagen fibril direction in the film. • Collagen films

  1. Prediction of collagen orientation in articular cartilage by a collagen remodeling algorithm

    Wilson, W.; Driessen, N.J.B.; Donkelaar, van C.C.; Ito, K.

    2006-01-01

    Tissue engineering is a promising method to treat damaged cartilage. So far it has not been possible to create tissue-engineered cartilage with an appropriate structural organization. It is envisaged that cartilage tissue engineering will significantly benefit from knowledge of how the collagen

  2. Fluorescence studies on the aggregation behaviors of collagen modified with NHS-activated poly(γ-glutamic acid).

    Zhang, Min; Yang, Junhui; Yang, Qili; Huang, Liulian; Wu, Hui; Chen, Lihui; Ding, Cuicui

    2018-06-01

    The poly(γ-glutamic acid)-NHS (γ-PGA-NHS) esters were used to endow collagen with both of excellent water-solubility and thermal stability via cross-linking reaction between γ-PGA-NHS and collagen. In the present work, the effect of γ-PGA-NHS on the aggregation of collagen molecules was studied by fluorescence techniques. The fluorescence emission spectra of pyrene in collagen solutions and the intrinsic fluorescence emission spectra of collagen suggested different effects of γ-PGA-NHS on collagen molecules: inhibiting aggregation below critical aggregation concentration (CAC) and promoting aggregation above CAC. The two-dimensional (2D) fluorescence correlation spectra indicated that the intermolecular hydrogen bonding and cross-linking between γ-PGA-NHS and collagen would influence the aggregation of collagen molecules. By the ultra-sensitive differential scanning calorimeter (VP-DSC), it was found that the main denaturational transition temperature (T m2 ) of modified collagen increased, while its calorimetric enthalpy changes (ΔH 2 ) decreased compared to those of native collagen, further indicating that the modification of γ-PGA-NHS influenced the aggregation of collagen molecules. The study provide useful information for the utilizing and or the processing of water-soluble collagen in aqueous solution in the fields such as cosmetics, health care products, tissue engineering and biomedical materials, etc. Copyright © 2018 Elsevier B.V. All rights reserved.

  3. Asporin-deficient mice have tougher skin and altered skin glycosaminoglycan content and structure

    Maccarana, Marco; Svensson, René B; Knutsson, Anki

    2017-01-01

    SLRPs is asporin. Here we describe the successful generation of an Aspn-/- mouse model and the investigation of the Aspn-/- skin phenotype. Functionally, Aspn-/- mice had an increased skin mechanical toughness, although there were no structural changes present on histology or immunohistochemistry......) was downregulated. Intriguingly no differences were observed in collagen protein content or in collagen cross-linking-related lysine oxidation or hydroxylation. The glycosaminoglycan content and structure in Aspn-/- skin was profoundly altered: chondroitin/dermatan sulfate was more than doubled and had an altered......The main structural component of connective tissues is fibrillar, cross-linked collagen whose fibrillogenesis can be modulated by Small Leucine-Rich Proteins/Proteoglycans (SLRPs). Not all SLRPs' effects on collagen and extracellular matrix in vivo have been elucidated; one of the less investigated...

  4. Ecological-network models link diversity, structure and function in the plankton food-web

    D'Alelio, Domenico; Libralato, Simone; Wyatt, Timothy; Ribera D'Alcalà, Maurizio

    2016-02-01

    A planktonic food-web model including sixty-three functional nodes (representing auto- mixo- and heterotrophs) was developed to integrate most trophic diversity present in the plankton. The model was implemented in two variants - which we named ‘green’ and ‘blue’ - characterized by opposite amounts of phytoplankton biomass and representing, respectively, bloom and non-bloom states of the system. Taxonomically disaggregated food-webs described herein allowed to shed light on how components of the plankton community changed their trophic behavior in the two different conditions, and modified the overall functioning of the plankton food web. The green and blue food-webs showed distinct organizations in terms of trophic roles of the nodes and carbon fluxes between them. Such re-organization stemmed from switches in selective grazing by both metazoan and protozoan consumers. Switches in food-web structure resulted in relatively small differences in the efficiency of material transfer towards higher trophic levels. For instance, from green to blue states, a seven-fold decrease in phytoplankton biomass translated into only a two-fold decrease in potential planktivorous fish biomass. By linking diversity, structure and function in the plankton food-web, we discuss the role of internal mechanisms, relying on species-specific functionalities, in driving the ‘adaptive’ responses of plankton communities to perturbations.

  5. Binding of von Willebrand factor to collagen type III: role of specific amino acids in the collagen binding domain of vWF and effects of neighboring domains

    van der Plas, R. M.; Gomes, L.; Marquart, J. A.; Vink, T.; Meijers, J. C.; de Groot, P. G.; Sixma, J. J.; Huizinga, E. G.

    2000-01-01

    Binding of von Willebrand Factor (vWF) to sites of vascular injury is the first step of hemostasis. Collagen types I and III are important binding sites for vWF. We have previously determined the three-dimensional structure of the collagen binding A3 domain of vWF (Huizinga et al., Structure 1997;

  6. Collagen Conduit Versus Microsurgical Neurorrhaphy

    Boeckstyns, Michel; Sørensen, Allan Ibsen; Viñeta, Joaquin Fores

    2013-01-01

    To compare repair of acute lacerations of mixed sensory-motor nerves in humans using a collagen tube versus conventional repair.......To compare repair of acute lacerations of mixed sensory-motor nerves in humans using a collagen tube versus conventional repair....

  7. Double thermal transitions of type I collagen in acidic solution.

    Liu, Yan; Liu, Lingrong; Chen, Mingmao; Zhang, Qiqing

    2013-01-01

    Contributed equally to this work. To further understand the origin of the double thermal transitions of collagen in acidic solution induced by heating, the denaturation of acidic soluble collagen was investigated by micro-differential scanning calorimeter (micro-DSC), circular dichroism (CD), dynamic laser light scattering (DLLS), transmission electron microscopy (TEM), and two-dimensional (2D) synchronous fluorescence spectrum. Micro-DSC experiments revealed that the collagen exhibited double thermal transitions, which were located within 31-37 °C (minor thermal transition, T(s) ∼ 33 °C) and 37-55 °C (major thermal transition, T(m) ∼ 40 °C), respectively. The CD spectra suggested that the thermal denaturation of collagen resulted in transition from polyproline II type structure to unordered structure. The DLLS results showed that there were mainly two kinds of collagen fibrillar aggregates with different sizes in acidic solution and the larger fibrillar aggregates (T(p2) = 40 °C) had better heat resistance than the smaller one (T(p1) = 33 °C). TEM revealed that the depolymerization of collagen fibrils occurred and the periodic cross-striations of collagen gradually disappeared with increasing temperature. The 2D fluorescence correlation spectra were also applied to investigate the thermal responses of tyrosine and phenylalanine residues at the molecular level. Finally, we could draw the conclusion that (1) the minor thermal transition was mainly due to the defibrillation of the smaller collagen fibrillar aggregates and the unfolding of a little part of triple helices; (2) the major thermal transition primarily arose from the defibrillation of the larger collagen fibrillar aggregates and the complete denaturation of the majority part of triple helices.

  8. Collagenous and other organizations in mature annelid cuticle and epidermis.

    Humphreys, S; Porter, K R

    1976-05-01

    The mature annelid cuticle contains orthogonally oriented collagen in a matrix capped superficially by a dense epicuticle with external corpuscles. The underlying epidermis is a simple columnar epithelium with two major cell types, mucous-secreting cells which secrete through channels in the cuticle to the exterior of the worm, and "supportive" cells which presumably produce and increase the cuticle by secreting into it. The structures of supportive cells, previously interpreted as specialized for establishing interfibrillar collagen order, are revealed by glutaraldehyde fixation as common cellular components without the qualities deemed useful to align collagen. Cell processes which penetrate and sometimes pass completely through the cuticle are not stable, not in geometric order, and lack cilia-like structure. Cilia, unlike the ubiquitous cellular processes, are highly restricted to regions of the epidermis with specialized functions. Cellular control, or other control, of collagen fibrillogenesis remains unestablished.

  9. Linking habitat structure to life history strategy: Insights from a Mediterranean killifish

    Cavraro, Francesco; Daouti, Irini; Leonardos, Ioannis; Torricelli, Patrizia; Malavasi, Stefano

    2014-01-01

    Modern theories of life history evolution deal with finding links between environmental factors, demographic structure of animal populations and the optimal life history strategy. Small-sized teleost fish, occurring in fragmented populations under contrasting environments, have been widely used as study models to investigate these issues. In the present study, the Mediterranean killifish Aphanius fasciatus was used to investigate the relationships between some habitat features and life history strategy. We selected four sites in the Venice lagoon inhabited by this species, exhibiting different combinations of two factors: overall adult mortality, related to intertidal water coverage and a consequent higher level of predator exposure, and the level of sediment organic matter, as indicator of habitat trophic richness. Results showed that these were the two most important factors influencing demography and life history traits in the four sites. Fish from salt marshes with high predator pressure were smaller and produced a higher number of eggs, whereas bigger fish and a lower reproductive investment were found in the two closed, not tidally influenced habitats. Habitat richness was positively related with population density, but negatively related with growth rate. In particular the synergy between high resources and low predation level was found to be important in shaping peculiar life history traits. Results were discussed in the light of the interactions between selective demographic forces acting differentially on age/size classes, such as predation, and habitat trophic richness that may represent an important energetic constraint on life history traits. The importance to link habitat productivity and morphology to demographic factors for a better understanding of the evolution of life history strategy under contrasting environments was finally suggested.

  10. Linking epigenetic function to electrostatics: The DNMT2 structural model example.

    Vieira, Gilberto Cavalheiro; Vieira, Gustavo Fioravanti; Sinigaglia, Marialva; Silva Valente, Vera Lúcia da

    2017-01-01

    The amino acid sequence of DNMT2 is very similar to the catalytic domains of bacterial and eukaryotic proteins. However, there is great variability in the region of recognition of the target sequence. While bacterial DNMT2 acts as a DNA methyltransferase, previous studies have indicated low DNA methylation activity in eukaryotic DNMT2, with preference by tRNA methylation. Drosophilids are known as DNMT2-only species and the DNA methylation phenomenon is a not elucidated case yet, as well as the ontogenetic and physiologic importance of DNMT2 for this species group. In addition, more recently study showed that methylation in the genome in Drosophila melanogaster is independent in relation to DNMT2. Despite these findings, Drosophilidae family has more than 4,200 species with great ecological diversity and historical evolution, thus we, therefore, aimed to examine the drosophilids DNMT2 in order to verify its conservation at the physicochemical and structural levels in a functional context. We examined the twenty-six DNMT2 models generated by molecular modelling and five crystallographic structures deposited in the Protein Data Bank (PDB) using different approaches. Our results showed that despite sequence and structural similarity between species close related, we found outstanding differences when they are analyzed in the context of surface distribution of electrostatic properties. The differences found in the electrostatic potentials may be linked with different affinities and processivity of DNMT2 for its different substrates (DNA, RNA or tRNA) and even for interactions with other proteins involved in the epigenetic mechanisms.

  11. Polarized Raman anisotropic response of collagen in tendon: towards 3D orientation mapping of collagen in tissues.

    Leonardo Galvis

    Full Text Available In this study, polarized Raman spectroscopy (PRS was used to characterize the anisotropic response of the amide I band of collagen as a basis for evaluating three-dimensional collagen fibril orientation in tissues. Firstly, the response was investigated theoretically by applying classical Raman theory to collagen-like peptide crystal structures. The theoretical methodology was then tested experimentally, by measuring amide I intensity anisotropy in rat tail as a function of the orientation of the incident laser polarization. For the theoretical study, several collagen-like triple-helical peptide crystal structures obtained from the Protein Data Bank were rotated "in plane" and "out of plane" to evaluate the role of molecular orientation on the intensity of the amide I band. Collagen-like peptides exhibit a sinusoidal anisotropic response when rotated "in plane" with respect to the polarized incident laser. Maximal intensity was obtained when the polarization of the incident light is perpendicular to the molecule and minimal when parallel. In the case of "out of plane" rotation of the molecular structure a decreased anisotropic response was observed, becoming completely isotropic when the structure was perpendicular to the plane of observation. The theoretical Raman response of collagen was compared to that of alpha helical protein fragments. In contrast to collagen, alpha helices have a maximal signal when incident light is parallel to the molecule and minimal when perpendicular. For out-of-plane molecular orientations alpha-helix structures display a decreased average intensity. Results obtained from experiments on rat tail tendon are in excellent agreement with the theoretical predictions, thus demonstrating the high potential of PRS for experimental evaluation of the three-dimensional orientation of collagen fibers in biological tissues.

  12. Dynamic interplay between the collagen scaffold and tumor evolution

    Egeblad, Mikala; Rasch, Morten G; Weaver, Valerie M

    2010-01-01

    and remodeling of the ECM network regulate tissue tension, generate pathways for migration, and release ECM protein fragments to direct normal developmental processes such as branching morphogenesis. Collagens are major components of the ECM of which basement membrane type IV and interstitial matrix type I...... are the most prevalent. Here we discuss how abnormal expression, proteolysis and structure of these collagens influence cellular functions to elicit multiple effects on tumors, including proliferation, initiation, invasion, metastasis, and therapy response....

  13. Extraction and Characterization of Collagen from Sea Cucumber Flesh

    Alhana

    2015-11-01

    Full Text Available Sea cucumber (Stichopus variegatus is one of the Echinodermata phylum that grows along Indonesian coastal. Sea cucumber is potential source of collagen. The purposes of this research were to determine the optimal concentration of NaOH and CH3COOH solution in collagen production and analyze the physicochemical characteristics of collagen from S. variegatus. Yield of the collagen was 1.5% (based on wet weight basis, produced by pretreatment with NaOH 0,30%, hydrolysis with CH3COOH 0.10% and extracted using distilled water. Protein, moisture, and ash content of the collagen was 67.68%, 13.64%, and 4.15%, respectively. Collagen was extracted using distilled water at 45°C during 2h and still had triple helix structure ; pH 7.37 ; melting temperature 163.67°C and whiteness 69.25%. The major amino acid content of collagen were glycine, alanine, proline and glutamic acid.

  14. Effects of Thermal Cross-Linking on the Structure and Property of Asymmetric Membrane Prepared from the Polyacrylonitrile

    Xin Jin

    2018-05-01

    Full Text Available Improving the thermal and chemical stabilities of classical polymer membranes will be beneficial to extend their applications in the high temperature or aggressive environment. In this work, the asymmetric ultrafiltration membranes prepared from the polyacrylonitrile (PAN were used to fabricate the cross-linking asymmetric (CLA PAN membranes via thermal cross-linking in air to improve their thermal and chemical stabilities. The effects of thermal cross-linking parameters such as temperature and holding time on the structure, gas separation performance, thermal and chemical stabilities of PAN membranes were investigated by Fourier transform infrared spectroscopy (FTIR, X-ray photoelectron spectroscopy (XPS, positron annihilation lifetime spectroscopy (PALS, scanning electron microscopy (SEM, thermogravimetic analysis (TGA and gas permeation test. The thermal cross-linking significantly influences the chemical structure, microstructure and pore structure of PAN membrane. During the thermal cross-linking, the shrinkage of membrane and coalescence or collapse of pore and microstructure make large pores diminish, small pores disappear and pore volumes reduce. The gas permeances of CLA-PAN membranes increase as the increasing of cross-linking temperature and holding time due to the volatilization of small molecules. The CLA-PAN membranes demonstrate excellent thermal and chemical stabilities and present good prospects for application in ultrafiltration for water treatment and for use as a substrate for nanofiltration or gas separation with an aggressive and demanding environment.

  15. Relative orientation of collagen molecules within a fibril: a homology model for homo sapiens type I collagen.

    Collier, Thomas A; Nash, Anthony; Birch, Helen L; de Leeuw, Nora H

    2018-02-15

    Type I collagen is an essential extracellular protein that plays an important structural role in tissues that require high tensile strength. However, owing to the molecule's size, to date no experimental structural data are available for the Homo sapiens species. Therefore, there is a real need to develop a reliable homology model and a method to study the packing of the collagen molecules within the fibril. Through the use of the homology model and implementation of a novel simulation technique, we have ascertained the orientations of the collagen molecules within a fibril, which is currently below the resolution limit of experimental techniques. The longitudinal orientation of collagen molecules within a fibril has a significant effect on the mechanical and biological properties of the fibril, owing to the different amino acid side chains available at the interface between the molecules.

  16. Cartilage turnover reflected by metabolic processing of type II collagen

    Gudmann, Karoline Natasja Stæhr; Wang, Jianxia; Hoielt, Sabine

    2014-01-01

    The aim of this study was to enable measurement of cartilage formation by a novel biomarker of type II collagen formation. The competitive enzyme-linked immunosorbent assay (ELISA) Pro-C2 was developed and characterized for assessment of the beta splice variant of type II procollagen (PIIBNP). Th...

  17. Newly identified interfibrillar collagen crosslinking suppresses cell proliferation and remodelling.

    Marelli, Benedetto; Le Nihouannen, Damien; Hacking, S Adam; Tran, Simon; Li, Jingjing; Murshed, Monzur; Doillon, Charles J; Ghezzi, Chiara E; Zhang, Yu Ling; Nazhat, Showan N; Barralet, Jake E

    2015-06-01

    Copper is becoming recognised as a key cation in a variety of biological processes. Copper chelation has been studied as a potential anti-angiogenic strategy for arresting tumour growth. Conversely the delivery of copper ions and complexes in vivo can elicit a pro-angiogenic effect. Previously we unexpectedly found that copper-stimulated intraperitoneal angiogenesis was accompanied by collagen deposition. Here, in hard tissue, not only was healing accelerated by copper, but again enhanced deposition of collagen was detected at 2 weeks. Experiments with reconstituted collagen showed that addition of copper ions post-fibrillogenesis rendered plastically-compressed gels resistant to collagenases, enhanced their mechanical properties and increased the denaturation temperature of the protein. Unexpectedly, this apparently interfibrillar crosslinking was not affected by addition of glucose or ascorbic acid, which are required for crosslinking by advanced glycation end products (AGEs). Fibroblasts cultured on copper-crosslinked gels did not proliferate, whereas those cultured with an equivalent quantity of copper on either tissue culture plastic or collagen showed no effect compared with controls. Although non-proliferative, fibroblasts grown on copper-cross-linked collagen could migrate, remained metabolically active for at least 14 days and displayed a 6-fold increase in Mmps 1 and 3 mRNA expression compared with copper-free controls. The ability of copper ions to crosslink collagen fibrils during densification and independently of AGEs or Fenton type reactions is previously unreported. The effect on MMP susceptibility of collagen and the dramatic change in cell behaviour on this crosslinked ECM may contribute to shedding some light on unexplained phenomena as the apparent benefit of copper complexation in fibrotic disorders or the enhanced collagen deposition in response to localised copper delivery. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Changes in type I collagen following laser welding.

    Bass, L S; Moazami, N; Pocsidio, J; Oz, M C; LoGerfo, P; Treat, M R

    1992-01-01

    Selection of ideal laser parameters for tissue welding is inhibited by poor understanding of the mechanism. We investigated structural changes in collagen molecules extracted from rat tail tendon (> 90% type I collagen) after tissue welding using an 808 nm diode laser and indocyanine green dye applied to the weld site. Mobility patterns on SDS-PAGE were identical in the lasered and untreated tendon extracts with urea or acetic acid. Pepsin incubation after acetic acid extraction revealed a reduction of collagen alpha and beta bands in lasered compared with untreated specimens. Circular dichroism studies of rat tail tendon showed absence of helical structure in collagen from lasered tendon. No evidence for covalent bonding was present in laser-treated tissues. Collagen molecules are denatured by the laser wavelength and parameters used in this study. No significant amount of helical structure is regenerated on cooling. We conclude that non-covalent interactions between denatured collagen molecules may be responsible for the creation of tissue welding.

  19. Effects of isopropanol on collagen fibrils in new parchment

    Gonzalez Lee G

    2012-03-01

    Full Text Available Abstract Background Isopropanol is widely used by conservators to relax the creases and folds of parchment artefacts. At present, little is known of the possible side effects of the chemical on parchments main structural component- collagen. This study uses X-ray Diffraction to investigate the effects of a range of isopropanol concentrations on the dimensions of the nanostructure of the collagen component of new parchment. Results It is found in this study that the packing features of the collagen molecules within the collagen fibril are altered by exposure to isopropanol. The results suggest that this chemical treatment can induce a loss of structural water from the collagen within parchment and thus a rearrangement of intermolecular bonding. This study also finds that the effects of isopropanol treatment are permanent to parchment artefacts and cannot be reversed with rehydration using deionised water. Conclusions This study has shown that isopropanol induces permanent changes to the packing features of collagen within parchment artefacts and has provided scientific evidence that its use to remove creases and folds on parchment artefacts will cause structural change that may contribute to long-term deterioration of parchment artefacts. This work provides valuable information that informs conservation practitioners regarding the use of isopropanol on parchment artefacts.

  20. Complex Determinants in Specific Members of the Mannose Receptor Family Govern Collagen Endocytosis

    Jürgensen, Henrik J; Johansson, Kristina; Madsen, Daniel H

    2014-01-01

    Members of the well-conserved mannose receptor (MR) protein family have been functionally implicated in diverse biological and pathological processes. Importantly, a proposed common function is the internalization of collagen for intracellular degradation occurring during bone development, cancer...... invasion, and fibrosis protection. This functional relationship is suggested by a common endocytic capability and a candidate collagen-binding domain. Here we conducted a comparative investigation of each member's ability to facilitate intracellular collagen degradation. As expected, the family members u......PARAP/Endo180 and MR bound collagens in a purified system and internalized collagens for degradation in cellular settings. In contrast, the remaining family members, PLA2R and DEC-205, showed no collagen binding activity and were unable to mediate collagen internalization. To pinpoint the structural elements...

  1. Behavior of Shear Link of WF Section with Diagonal Web Stiffener of Eccentrically Braced Frame (EBF of Steel Structure

    Yurisman

    2010-11-01

    Full Text Available This paper presents results of numerical and experimental study of shear link behavior, utilizing diagonal stiffener on web of steel profile to increase shear link performance in an eccentric braced frame (EBF of a steel structure system. The specimen is to examine the behavior of shear link by using diagonal stiffener on web part under static monotonic and cyclic load. The cyclic loading pattern conducted in the experiment is adjusted according to AISC loading standards 2005. Analysis was carried out using non-linear finite element method using MSC/NASTRAN software. Link was modeled as CQUAD shell element. Along the boundary of the loading area the nodal are constraint to produce only one direction loading. The length of the link in this analysis is 400mm of the steel profile of WF 200.100. Important parameters considered to effect significantly to the performance of shear link have been analyzed, namely flange and web thicknesses, , thickness and length of web stiffener, thickness of diagonal stiffener and geometric of diagonal stiffener. The behavior of shear link with diagonal web stiffener was compared with the behavior of standard link designed based on AISC 2005 criteria. Analysis results show that diagonal web stiffener is capable to increase shear link performance in terms of stiffness, strength and energy dissipation in supporting lateral load. However, differences in displacement ductility’s between shear links with diagonal stiffener and shear links based on AISC standards have not shown to be significant. Analysis results also show thickness of diagonal stiffener and geometric model of stiffener to have a significant influence on the performance of shear links. To perform validation of the numerical study, the research is followed by experimental work conducted in Structural Mechanic Laboratory Center for Industrial Engineering ITB. The Structures and Mechanics Lab rotary PAU-ITB. The experiments were carried out using three test

  2. Tenomodulin is Required for Tendon Endurance Running and Collagen I Fibril Adaptation to Mechanical Load

    Sarah Dex

    2017-06-01

    Full Text Available Tendons are dense connective tissues that attach muscles to bone with an indispensable role in locomotion because of their intrinsic properties of storing and releasing muscle- generated elastic energy. Tenomodulin (Tnmd is a well-accepted gene marker for the mature tendon/ligament lineage and its loss-of -function in mice leads to a phenotype with distinct signs of premature aging on tissue and stem/progenitor cell levels. Based on these findings, we hypothesized that Tnmd might be an important factor in the functional performance of tendons. Firstly, we revealed that Tnmd is a mechanosensitive gene and that the C-terminus of the protein co-localize with collagen I-type fibers in the extracellular matrix. Secondly, using an endurance training protocol, we compared Tnmd knockout mice with wild types and showed that Tnmd deficiency leads to significantly inferior running performance that further worsens with training. In these mice, endurance running was hindered due to abnormal response of collagen I cross-linking and proteoglycan genes leading to an inadequate collagen I fiber thickness and elasticity. In sum, our study demonstrates that Tnmd is required for proper tendon tissue adaptation to endurance running and aids in better understanding of the structural-functional relationships of tendon tissues.

  3. Fibrillar, fibril-associated and basement membrane collagens of the arterial wall: architecture, elasticity and remodeling under stress.

    Osidak, M S; Osidak, E O; Akhmanova, M A; Domogatsky, S P; Domogatskaya, A S

    2015-01-01

    The ability of a human artery to pass through 150 million liters of blood sustaining 2 billion pulsations of blood pressure with minor deterioration depends on unique construction of the arterial wall. Viscoelastic properties of this construction enable to re-seal the occuring damages apparently without direct immediate participance of the constituent cells. Collagen structures are considered to be the elements that determine the mechanoelastic properties of the wall in parallel with elastin responsible for elasticity and resilience. Collagen scaffold architecture is the function-dependent dynamic arrangement of a dozen different collagen types composing three distinct interacting forms inside the extracellular matrix of the wall. Tightly packed molecules of collagen types I, III, V provide high tensile strength along collagen fibrils but toughness of the collagen scaffold as a whole depends on molecular bonds between distinct fibrils. Apart of other macromolecules in the extracellular matrix (ECM), collagen-specific interlinks involve microfilaments of collagen type VI, meshwork-organized collagen type VIII, and FACIT collagen type XIV. Basement membrane collagen types IV, XV, XVIII and cell-associated collagen XIII enable transmission of mechanical signals between cells and whole artery matrix. Collagen scaffold undergoes continuous remodeling by decomposition promoted with MMPs and reconstitution from newly produced collagen molecules. Pulsatile stress-strain load modulates both collagen synthesis and MMP-dependent collagen degradation. In this way the ECM structure becomes adoptive to mechanical challenges. The mechanoelastic properties of the arterial wall are changed in atherosclerosis concomitantly with collagen turnover both type-specific and dependent on the structure. Improving the feedback could be another approach to restore sufficient blood circulation.

  4. Collagen-like proteins in pathogenic E. coli strains.

    Neelanjana Ghosh

    Full Text Available The genome sequences of enterohaemorrhagic E. coli O157:H7 strains show multiple open-reading frames with collagen-like sequences that are absent from the common laboratory strain K-12. These putative collagens are included in prophages embedded in O157:H7 genomes. These prophages carry numerous genes related to strain virulence and have been shown to be inducible and capable of disseminating virulence factors by horizontal gene transfer. We have cloned two collagen-like proteins from E. coli O157:H7 into a laboratory strain and analysed the structure and conformation of the recombinant proteins and several of their constituting domains by a variety of spectroscopic, biophysical, and electron microscopy techniques. We show that these molecules exhibit many of the characteristics of vertebrate collagens, including trimer formation and the presence of a collagen triple helical domain. They also contain a C-terminal trimerization domain, and a trimeric α-helical coiled-coil domain with an unusual amino acid sequence almost completely lacking leucine, valine or isoleucine residues. Intriguingly, these molecules show high thermal stability, with the collagen domain being more stable than those of vertebrate fibrillar collagens, which are much longer and post-translationally modified. Under the electron microscope, collagen-like proteins from E. coli O157:H7 show a dumbbell shape, with two globular domains joined by a hinged stalk. This morphology is consistent with their likely role as trimeric phage side-tail proteins that participate in the attachment of phage particles to E. coli target cells, either directly or through assembly with other phage tail proteins. Thus, collagen-like proteins in enterohaemorrhagic E. coli genomes may have a direct role in the dissemination of virulence-related genes through infection of harmless strains by induced bacteriophages.

  5. Collagen: A review on its sources and potential cosmetic applications.

    Avila Rodríguez, María Isabela; Rodríguez Barroso, Laura G; Sánchez, Mirna Lorena

    2018-02-01

    Collagen is a fibrillar protein that conforms the conjunctive and connective tissues in the human body, essentially skin, joints, and bones. This molecule is one of the most abundant in many of the living organisms due to its connective role in biological structures. Due to its abundance, strength and its directly proportional relation with skin aging, collagen has gained great interest in the cosmetic industry. It has been established that the collagen fibers are damaged with the pass of time, losing thickness and strength which has been strongly related with skin aging phenomena [Colágeno para todo. 60 y más. 2016. http://www.revista60ymas.es/InterPresent1/groups/revistas/documents/binario/ses330informe.pdf.]. As a solution, the cosmetic industry incorporated collagen as an ingredient of different treatments to enhance the user youth and well-being, and some common presentations are creams, nutritional supplement for bone and cartilage regeneration, vascular and cardiac reconstruction, skin replacement, and augmentation of soft skin among others [J App Pharm Sci. 2015;5:123-127]. Nowadays, the biomolecule can be obtained by extraction from natural sources such as plants and animals or by recombinant protein production systems including yeast, bacteria, mammalian cells, insects or plants, or artificial fibrils that mimic collagen characteristics like the artificial polymer commercially named as KOD. Because of its increased use, its market size is valued over USD 6.63 billion by 2025 [Collagen Market By Source (Bovine, Porcine, Poultry, Marine), Product (Gelatin, Hydrolyzed Collagen), Application (Food & Beverages, Healthcare, Cosmetics), By Region, And Segment Forecasts, 2014 - 2025. Grand View Research. http://www.grandviewresearch.com/industry-analysis/collagen-market. Published 2017.]. Nevertheless, there has been little effort on identifying which collagen types are the most suitable for cosmetic purposes, for which the present review will try to enlighten

  6. Function of dynamic models in systems biology: linking structure to behaviour.

    Knüpfer, Christian; Beckstein, Clemens

    2013-10-08

    Dynamic models in Systems Biology are used in computational simulation experiments for addressing biological questions. The complexity of the modelled biological systems and the growing number and size of the models calls for computer support for modelling and simulation in Systems Biology. This computer support has to be based on formal representations of relevant knowledge fragments. In this paper we describe different functional aspects of dynamic models. This description is conceptually embedded in our "meaning facets" framework which systematises the interpretation of dynamic models in structural, functional and behavioural facets. Here we focus on how function links the structure and the behaviour of a model. Models play a specific role (teleological function) in the scientific process of finding explanations for dynamic phenomena. In order to fulfil this role a model has to be used in simulation experiments (pragmatical function). A simulation experiment always refers to a specific situation and a state of the model and the modelled system (conditional function). We claim that the function of dynamic models refers to both the simulation experiment executed by software (intrinsic function) and the biological experiment which produces the phenomena under investigation (extrinsic function). We use the presented conceptual framework for the function of dynamic models to review formal accounts for functional aspects of models in Systems Biology, such as checklists, ontologies, and formal languages. Furthermore, we identify missing formal accounts for some of the functional aspects. In order to fill one of these gaps we propose an ontology for the teleological function of models. We have thoroughly analysed the role and use of models in Systems Biology. The resulting conceptual framework for the function of models is an important first step towards a comprehensive formal representation of the functional knowledge involved in the modelling and simulation process

  7. Allocating structure to function: the strong links between neuroplasticity and natural selection

    Michael L Anderson

    2014-01-01

    Full Text Available A central question in brain evolution is how species-typical behaviors, and the neural function-structure mappings supporting them, can be acquired and inherited. Advocates of brain modularity, in its different incarnations across scientific subfields, argue that natural selection must target domain-dedicated, separately modifiable neural subsystems, resulting in genetically-specified functional modules. In such modular systems, specification of neuron number and functional connectivity are necessarily linked. Mounting evidence, however, from allometric, developmental, comparative, systems-physiological, neuroimaging and neurological studies suggests that brain elements are used and reused in multiple functional systems. This variable allocation can be seen in short-term neuromodulation, in neuroplasticity over the lifespan and in response to damage. We argue that the same processes are evident in brain evolution. Natural selection must preserve behavioral functions that may co-locate in variable amounts with other functions. In genetics, the uses and problems of pleiotropy, the re-use of genes in multiple networks have been much discussed, but this issue has been sidestepped in neural systems by the invocation of modules. Here we highlight the interaction between evolutionary and developmental mechanisms to produce distributed and overlapping functional architectures in the brain. These adaptive mechanisms must be robust to perturbations that might disrupt critical information processing and action selection, but must also recognize useful new sources of information arising from internal genetic or environmental variability, when those appear. These contrasting properties of robustness and evolvability have been discussed for the basic organization of body plan and fundamental cell physiology. Here we extend them to the evolution and development, evo-devo, of brain structure.

  8. Structure of a DNA glycosylase that unhooks interstrand cross-links

    Mullins, Elwood A.; Warren, Garrett M.; Bradley, Noah P.; Eichman, Brandt F. (Vanderbilt)

    2017-04-10

    DNA glycosylases are important editing enzymes that protect genomic stability by excising chemically modified nucleobases that alter normal DNA metabolism. These enzymes have been known only to initiate base excision repair of small adducts by extrusion from the DNA helix. However, recent reports have described both vertebrate and microbial DNA glycosylases capable of unhooking highly toxic interstrand cross-links (ICLs) and bulky minor groove adducts normally recognized by Fanconi anemia and nucleotide excision repair machinery, although the mechanisms of these activities are unknown. Here we report the crystal structure of Streptomyces sahachiroi AlkZ (previously Orf1), a bacterial DNA glycosylase that protects its host by excising ICLs derived from azinomycin B (AZB), a potent antimicrobial and antitumor genotoxin. AlkZ adopts a unique fold in which three tandem winged helix-turn-helix motifs scaffold a positively charged concave surface perfectly shaped for duplex DNA. Through mutational analysis, we identified two glutamine residues and a β-hairpin within this putative DNA-binding cleft that are essential for catalytic activity. Additionally, we present a molecular docking model for how this active site can unhook either or both sides of an AZB ICL, providing a basis for understanding the mechanisms of base excision repair of ICLs. Given the prevalence of this protein fold in pathogenic bacteria, this work also lays the foundation for an emerging role of DNA repair in bacteria-host pathogenesis.

  9. Production and in vitro characterization of 3D porous scaffolds made of magnesium carbonate apatite (MCA)/anionic collagen using a biomimetic approach

    Sader, Marcia S.; Martins, Virginia C.A.; Gomez, Santiago; LeGeros, Racquel Z.; Soares, Gloria A.

    2013-01-01

    3D porous scaffolds are relevant biomaterials to bone engineering as they can be used as templates to tissue reconstruction. The aim of the present study was to produce and characterize in vitro 3D magnesium-carbonate apatite/collagen (MCA/col) scaffolds. They were prepared by using biomimetic approach, followed by cross-linking with 0.25% glutaraldehyde solution (GA) and liofilization. Results obtained with Fourier-transform infrared spectroscopy (FT-IR) confirmed the type-B carbonate substitution, while by X-ray diffraction (XRD), a crystallite size of ∼ 10 nm was obtained. Optical and electron microscopy showed that the cylindrical samples exhibited an open-porous morphology, with apatite nanocrystals precipitated on collagen fibrils. The cross-linked 3D scaffolds showed integrity when immersed in culture medium up to 14 days. Also, the immersion of such samples into an acid buffer solution, to mimic the osteoclastic resorption environment, promotes the release of important ions for bone repair, such as calcium, phosphorus and magnesium. Bone cells (SaOs2) adhered, and proliferated on the 3D composite scaffolds, showing that synthesis and the cross-linking processes did not induce cytotoxicity. Highlights: • 3D scaffolds of Mg-carbonate–apatite and anionic-collagen were produced. • The biomimetic approach and the cross-linking with 0.25% GA solution were employed. • The scaffolds showed open-porous structure and apatite crystals on collagen fibrils. • The cross-linked scaffolds exhibited integrity when immersed in culture medium. • SaOs2 cells adhered and proliferated on the cross-linked scaffolds confirming no cytotoxicity

  10. Production and in vitro characterization of 3D porous scaffolds made of magnesium carbonate apatite (MCA)/anionic collagen using a biomimetic approach

    Sader, Marcia S., E-mail: msader@metalmat.ufrj.br [Prog. Engenharia Metalúrgica e Materiais, COPPE/UFRJ, RJ (Brazil); Martins, Virginia C.A. [Depto. de Química e Física Molecular, IQSC/USP, SP (Brazil); Gomez, Santiago [Dept. Anatomía Patológica, Universidad de Cádiz, Cadiz (Spain); LeGeros, Racquel Z. [Department of Biomaterials and Biomimetics, New York University College of Dentistry, NY (United States); Soares, Gloria A. [Prog. Engenharia Metalúrgica e Materiais, COPPE/UFRJ, RJ (Brazil)

    2013-10-15

    3D porous scaffolds are relevant biomaterials to bone engineering as they can be used as templates to tissue reconstruction. The aim of the present study was to produce and characterize in vitro 3D magnesium-carbonate apatite/collagen (MCA/col) scaffolds. They were prepared by using biomimetic approach, followed by cross-linking with 0.25% glutaraldehyde solution (GA) and liofilization. Results obtained with Fourier-transform infrared spectroscopy (FT-IR) confirmed the type-B carbonate substitution, while by X-ray diffraction (XRD), a crystallite size of ∼ 10 nm was obtained. Optical and electron microscopy showed that the cylindrical samples exhibited an open-porous morphology, with apatite nanocrystals precipitated on collagen fibrils. The cross-linked 3D scaffolds showed integrity when immersed in culture medium up to 14 days. Also, the immersion of such samples into an acid buffer solution, to mimic the osteoclastic resorption environment, promotes the release of important ions for bone repair, such as calcium, phosphorus and magnesium. Bone cells (SaOs2) adhered, and proliferated on the 3D composite scaffolds, showing that synthesis and the cross-linking processes did not induce cytotoxicity. Highlights: • 3D scaffolds of Mg-carbonate–apatite and anionic-collagen were produced. • The biomimetic approach and the cross-linking with 0.25% GA solution were employed. • The scaffolds showed open-porous structure and apatite crystals on collagen fibrils. • The cross-linked scaffolds exhibited integrity when immersed in culture medium. • SaOs2 cells adhered and proliferated on the cross-linked scaffolds confirming no cytotoxicity.

  11. A collagen-binding EGFR antibody fragment targeting tumors with a collagen-rich extracellular matrix

    Hui Liang; Xiaoran Li; Bin Wang; Bing Chen; Yannan Zhao; Jie Sun; Yan Zhuang; Jiajia Shi; He Shen; Zhijun Zhang; Jianwu Dai

    2016-01-01

    Many tumors over-express collagen, which constitutes the physical scaffold of tumor microenvironment. Collagen has been considered to be a target for cancer therapy. The collagen-binding domain (CBD) is a short peptide, which could bind to collagen and achieve the sustained release of CBD-fused proteins in collagen scaffold. Here, a collagen-binding EGFR antibody fragment was designed and expressed for targeting the collagen-rich extracellular matrix in tumors. The antibody fragment (Fab) of ...

  12. Bone Collagen: New Clues to its Mineralization Mechanism From Recessive Osteogenesis Imperfecta

    Eyre, David R.; Ann Weis, Mary

    2013-01-01

    Until 2006 the only mutations known to cause osteogenesis imperfecta (OI) were in the two genes coding for type I collagen chains. These dominant mutations affecting the expression or primary sequence of collagen α1(I) and α2(I) chains account for over 90% of OI cases. Since then a growing list of mutant genes causing the 5–10% of recessive cases has rapidly emerged. They include CRTAP, LEPRE1 and PPIB, which encode three proteins forming the prolyl 3-hydroxylase complex; PLOD2 and FKBP10, which encode respectively lysyl hydroxylase 2 and a foldase required for its activity in forming mature cross-links in bone collagen; SERPIN H1, which encodes the collagen chaperone HSP47; SERPIN F1, which encodes pigment epithelium-derived factor required for osteoid mineralization; and BMP1, which encodes the type I procollagen C-propeptidase. All cause fragile bone in infancy, which can include over-mineralization or under-mineralization defects as well as abnormal collagen post-translational modifications. Consistently both dominant and recessive variants lead to abnormal cross-linking chemistry in bone collagen. These recent discoveries strengthen the potential for a common pathogenic mechanism of misassembled collagen fibrils. Of the new genes identified, eight encode proteins required for collagen post-translational modification, chaperoning of newly synthesized collagen chains into native molecules or transport through the endoplasmic reticulum and Golgi for polymerization, cross-linking and mineralization. In reviewing these findings, we conclude that a common theme is emerging in the pathogenesis of brittle bone disease of mishandled collagen assembly with important insights on post-translational features of bone collagen that have evolved to optimize it as a biomineral template. PMID:23508630

  13. Preparation, Cell Compatibility and Degradability of Collagen-Modified Poly(lactic acid

    Miaomiao Cui

    2015-01-01

    Full Text Available Poly(lactic acid (PLA was modified using collagen through a grafting method to improve its biocompatibility and degradability. The carboxylic group at the open end of PLA was transferred into the reactive acylchlorided group by a reaction with phosphorus pentachloride. Then, collagen-modified PLA (collagen-PLA was prepared by the reaction between the reactive acylchlorided group and amino/hydroxyl groups on collagen. Subsequently, the structure of collagen-PLA was confirmed by Fourier transform infrared spectroscopy, fluorescein isothiocyanate-labeled fluorescence spectroscopy, X-ray photoelectron spectroscopy, and DSC analyses. Finally, some properties of collagen-PLA, such as hydrophilicity, cell compatibility and degradability were characterized. Results showed that collagen had been grafted onto the PLA with 5% graft ratio. Water contact angle and water absorption behavior tests indicated that the hydrophilicity of collagen-PLA was significantly higher than that of PLA. The cell compatibility of collagen-PLA with mouse embryonic fibroblasts (3T3 was also significantly better than PLA in terms of cell morphology and cell proliferation, and the degradability of PLA was also improved after introducing collagen. Results suggested that collagen-PLA was a promising candidate for biomedical applications.

  14. Osmotic pressure induced tensile forces in tendon collagen.

    Masic, Admir; Bertinetti, Luca; Schuetz, Roman; Chang, Shu-Wei; Metzger, Till Hartmut; Buehler, Markus J; Fratzl, Peter

    2015-01-22

    Water is an important component of collagen in tendons, but its role for the function of this load-carrying protein structure is poorly understood. Here we use a combination of multi-scale experimentation and computation to show that water is an integral part of the collagen molecule, which changes conformation upon water removal. The consequence is a shortening of the molecule that translates into tensile stresses in the range of several to almost 100 MPa, largely surpassing those of about 0.3 MPa generated by contractile muscles. Although a complete drying of collagen would be relevant for technical applications, such as the fabrication of leather or parchment, stresses comparable to muscle contraction already occur at small osmotic pressures common in biological environments. We suggest, therefore, that water-generated tensile stresses may play a role in living collagen-based materials such as tendon or bone.

  15. Effect of controlled release of brain-derived neurotrophic factor and neurotrophin-3 from collagen gel on neural stem cells.

    Huang, Fei; Wu, Yunfeng; Wang, Hao; Chang, Jun; Ma, Guangwen; Yin, Zongsheng

    2016-01-20

    This study aimed to examine the effect of controlled release of brain-derived neurotrophic factor (BDNF) and neurotrophin-3 (NT-3) from collagen gel on rat neural stem cells (NSCs). With three groups of collagen gel, BDNF/collagen gel, and NT-3/collagen gel as controls, BDNF and NT-3 were tested in the BDNF-NT-3/collagen gel group at different time points. The enzyme-linked immunosorbent assay results showed that BDNF and NT-3 were steadily released from collagen gels for 10 days. The cell viability test and the bromodeoxyuridine incorporation assay showed that BDNF-NT-3/collagen gel supported the survival and proliferation of NSCs. The results also showed that the length of processes was markedly longer and differentiation percentage from NSCs into neurons was much higher in the BDNF-NT-3/collagen gel group than those in the collagen gel, BDNF/collagen gel, and NT-3/collagen gel groups. These findings suggest that BDNF-NT-3/collagen gel could significantly improve the ability of NSCs proliferation and differentiation.

  16. Second harmonic generation microscopy differentiates collagen type I and type III in COPD

    Suzuki, Masaru; Kayra, Damian; Elliott, W. Mark; Hogg, James C.; Abraham, Thomas

    2012-03-01

    The structural remodeling of extracellular matrix proteins in peripheral lung region is an important feature in chronic obstructive pulmonary disease (COPD). Multiphoton microscopy is capable of inducing specific second harmonic generation (SHG) signal from non-centrosymmetric structural proteins such as fibrillar collagens. In this study, SHG microscopy was used to examine structural remodeling of the fibrillar collagens in human lungs undergoing emphysematous destruction (n=2). The SHG signals originating from these diseased lung thin sections from base to apex (n=16) were captured simultaneously in both forward and backward directions. We found that the SHG images detected in the forward direction showed well-developed and well-structured thick collagen fibers while the SHG images detected in the backward direction showed striking different morphological features which included the diffused pattern of forward detected structures plus other forms of collagen structures. Comparison of these images with the wellestablished immunohistochemical staining indicated that the structures detected in the forward direction are primarily the thick collagen type I fibers and the structures identified in the backward direction are diffusive structures of forward detected collagen type I plus collagen type III. In conclusion, we here demonstrate the feasibility of SHG microscopy in differentiating fibrillar collagen subtypes and understanding their remodeling in diseased lung tissues.

  17. Magnet Cycles and Stability Periods of the CMS Structures from 2008 to 2013 as Observed by the Link Alignment System

    Arce, P.; Barcala, J.M.; Calvo, E.; Ferrando, A.; Josa, M.I.; Molinero, A.; Navarrete, J.; Oller, J.C.

    2015-01-01

    In this document Magnet Cycles and Stability Periods of the CMS Experiment are studied with the recorded Alignment Link System data along the 2008 to 2013 years of operation. The motions of the mechanical structures due to the magnetic field forces are studied including an in-depth analysis of the relative distance between the endcap structures and the central Tracker body during the Stability Periods to verify the mechanical stability of the detector during the physics data taking.

  18. Effects of Genipin Concentration on Cross-Linked Chitosan Scaffolds for Bone Tissue Engineering: Structural Characterization and Evidence of Biocompatibility Features

    Simona Dimida

    2017-01-01

    Full Text Available Genipin (GN is a natural molecule extracted from the fruit of Gardenia jasminoides Ellis according to modern microbiological processes. Genipin is considered as a favorable cross-linking agent due to its low cytotoxicity compared to widely used cross-linkers; it cross-links compounds with primary amine groups such as proteins, collagen, and chitosan. Chitosan is a biocompatible polymer that is currently studied in bone tissue engineering for its capacity to promote growth and mineral-rich matrix deposition by osteoblasts in culture. In this work, two genipin cross-linked chitosan scaffolds for bone repair and regeneration were prepared with different GN concentrations, and their chemical, physical, and biological properties were explored. Scanning electron microscopy and mechanical tests revealed that nonremarkable changes in morphology, porosity, and mechanical strength of scaffolds are induced by increasing the cross-linking degree. Also, the degradation rate was shown to decrease while increasing the cross-linking degree, with the high cross-linking density of the scaffold disabling the hydrolysis activity. Finally, basic biocompatibility was investigated in vitro, by evaluating proliferation of two human-derived cell lines, namely, the MG63 (human immortalized osteosarcoma and the hMSCs (human mesenchymal stem cells, as suitable cell models for bone tissue engineering applications of biomaterials.

  19. Operative Links

    Wistoft, Karen; Højlund, Holger

    2012-01-01

    educational goals, learning content, or value clarification. Health pedagogy is often a matter of retrospective rationalization rather than the starting point of planning. Health and risk behaviour approaches override health educational approaches. Conclusions: Operational links between health education......, health professionalism, and management strategies pose the foremost challenge. Operational links indicates cooperative levels that facilitate a creative and innovative effort across traditional professional boundaries. It is proposed that such links are supported by network structures, shared semantics...

  20. A role for collagen IV in cardiovascular disease?

    Steffensen, Lasse Bach; Rasmussen, Lars M

    2018-01-01

    Over the past decade, studies have repeatedly found single nucleotide polymorphisms located in the COL4A1 and COL4A2 genes to be associated with cardiovascular disease (CVD), and the 13q34 locus harboring these genes is one of approximately 160 genome-wide significant risk loci for coronary artery...... disease. COL4A1 and COL4A2 encode the ⍺1- and ⍺2-chains of collagen IV, a major component of basement membranes in various tissues including arteries. In spite of the growing body of evidence indicating a role for collagen IV in CVD, remarkably few studies aim at directly investigating such a role....... The purpose of this review is to summarize the clinical reports linking 13q34 to coronary artery disease, atherosclerosis and artery stiffening and to assemble the scattered pieces of evidence from experimental studies based on vascular cells and -tissue collectively supporting a role for collagen IV...

  1. The energy band structure of ultra small capacitance weak links - QED in condensed matter circuits

    Prance, H.; Clark, T.D.; Prance, R.J.; Spiller, T.P.; Diggins, J.; Ralph, J.F.

    1993-01-01

    We consider various superconducting weak link circuits in which quantum effects dominate. We show that in this quantum regime these circuits take on a quantum electrodynamic description, at least as far as the electromagnetic field contribution is concerned. (orig.)

  2. Photo-induced processes in collagen-hypericin system revealed by fluorescence spectroscopy and multiphoton microscopy

    Hovhannisyan, V.; Guo, H. W.; Hovhannisyan, A.; Ghukasyan, V.; Buryakina, T.; Chen, Y. F.; Dong, C. Y.

    2014-01-01

    Collagen is the main structural protein and the key determinant of mechanical and functional properties of tissues and organs. Proper balance between synthesis and degradation of collagen molecules is critical for maintaining normal physiological functions. In addition, collagen influences tumor development and drug delivery, which makes it a potential cancer therapy target. Using second harmonic generation, two-photon excited fluorescence microscopy, and spectrofluorimetry, we show that the ...

  3. A Simple and Efficient Method to Improve Mechanical Properties of Collagen Scaffolds by UV Irradiation

    F. Khayyatan

    2010-12-01

    Full Text Available Collagen is the major protein component of cartilage, bone, skin and connective tissue and constitutes the major part of the extracellular matrix. Collagen type I has complex structural hierarchy, which consists of treepolypeptide α-chains wound together in a rod-like helical structure. Collagen is an important biomaterial, finding many applications in the field of tissue engineering. It has been processed into various shapes, such as, gel, film, sponge and fiber. It is commonly used as the scaffolding material for tissue engineering due to its many superior properties including low antigenicity and high growth promotion. Unfortunately, poor mechanical properties and rapid degradation rates of collagen scaffolds can cause instability and difficulty in handling. By crosslinking, the structural stability of the collagen and its rate of resorption can be adapted with respect to its demanding requirements. The strength, resorption rate, and biocompatibility of collagenous biomaterials are profoundly influenced by the method and extent of crosslinking. In thisstudy, the effect of UV irradiation on collagen scaffolds has been carried out.Collagen scaffolds were fabricated using freeze drying method with freezing temperature of -80oC, then exposed to UV irradiation. Mean pore size of the scaffolds was obtained as 98.52±14.51 μm using scanning electron microscopy. Collagen scaffolds exposed to UV Irradiation (254 nm for 15 min showed the highest tensile strain (17.37±0.98 %, modulus (1.67±0.15 MPa and maximum load (24.47±2.38 cN values. As partial loss of the native collagen structure may influence attachment, migration, and proliferation of cells on collagen scaffolds, we detected no intact α-chains after SDS-Page chromatography. We demonstrate that UV irradiation is a rapid and easily controlled means of increasing the mechanical strength of collagen scaffolds without any molecular fracture.

  4. Structure of the Dispase Autolysis-inducing Protein from Streptomyces mobaraensis and Glutamine Cross-linking Sites for Transglutaminase.

    Fiebig, David; Schmelz, Stefan; Zindel, Stephan; Ehret, Vera; Beck, Jan; Ebenig, Aileen; Ehret, Marina; Fröls, Sabrina; Pfeifer, Felicitas; Kolmar, Harald; Fuchsbauer, Hans-Lothar; Scrima, Andrea

    2016-09-23

    Transglutaminase from Streptomyces mobaraensis (MTG) is an important enzyme for cross-linking and modifying proteins. An intrinsic substrate of MTG is the dispase autolysis-inducing protein (DAIP). The amino acid sequence of DAIP contains 5 potential glutamines and 10 lysines for MTG-mediated cross-linking. The aim of the study was to determine the structure and glutamine cross-linking sites of the first physiological MTG substrate. A production procedure was established in Escherichia coli BL21 (DE3) to obtain high yields of recombinant DAIP. DAIP variants were prepared by replacing four of five glutamines for asparagines in various combinations via site-directed mutagenesis. Incorporation of biotin cadaverine revealed a preference of MTG for the DAIP glutamines in the order of Gln-39 ≫ Gln-298 > Gln-345 ∼ Gln-65 ≫ Gln-144. In the structure of DAIP the preferred glutamines do cluster at the top of the seven-bladed β-propeller. This suggests a targeted cross-linking of DAIP by MTG that may occur after self-assembly in the bacterial cell wall. Based on our biochemical and structural data of the first physiological MTG substrate, we further provide novel insight into determinants of MTG-mediated modification, specificity, and efficiency. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  5. Inelastic behaviour of collagen networks in cell–matrix interactions and mechanosensation

    Mohammadi, Hamid; Arora, Pamma D.; Simmons, Craig A.; Janmey, Paul A.; McCulloch, Christopher A.

    2015-01-01

    The mechanical properties of extracellular matrix proteins strongly influence cell-induced tension in the matrix, which in turn influences cell function. Despite progress on the impact of elastic behaviour of matrix proteins on cell–matrix interactions, little is known about the influence of inelastic behaviour, especially at the large and slow deformations that characterize cell-induced matrix remodelling. We found that collagen matrices exhibit deformation rate-dependent behaviour, which leads to a transition from pronounced elastic behaviour at fast deformations to substantially inelastic behaviour at slow deformations (1 μm min−1, similar to cell-mediated deformation). With slow deformations, the inelastic behaviour of floating gels was sensitive to collagen concentration, whereas attached gels exhibited similar inelastic behaviour independent of collagen concentration. The presence of an underlying rigid support had a similar effect on cell–matrix interactions: cell-induced deformation and remodelling were similar on 1 or 3 mg ml−1 attached collagen gels while deformations were two- to fourfold smaller in floating gels of high compared with low collagen concentration. In cross-linked collagen matrices, which did not exhibit inelastic behaviour, cells did not respond to the presence of the underlying rigid foundation. These data indicate that at the slow rates of collagen compaction generated by fibroblasts, the inelastic responses of collagen gels, which are influenced by collagen concentration and the presence of an underlying rigid foundation, are important determinants of cell–matrix interactions and mechanosensation. PMID:25392399

  6. Mycobacterial laminin-binding histone-like protein mediates collagen-dependent cytoadherence

    André Alves Dias

    2012-12-01

    Full Text Available When grown in the presence of exogenous collagen I, Mycobacterium bovis BCG was shown to form clumps. Scanning electron microscopy examination of these clumps revealed the presence of collagen fibres cross-linking the bacilli. Since collagen is a major constituent of the eukaryotic extracellular matrices, we assayed BCG cytoadherence in the presence of exogenous collagen I. Collagen increased the interaction of the bacilli with A549 type II pneumocytes or U937 macrophages, suggesting that BCG is able to recruit collagen to facilitate its attachment to host cells. Using an affinity chromatography approach, we have isolated a BCG collagen-binding protein corresponding to the previously described mycobacterial laminin-binding histone-like protein (LBP/Hlp, a highly conserved protein associated with the mycobacterial cell wall. Moreover, Mycobacterium leprae LBP/Hlp, a well-characterized adhesin, was also able to bind collagen I. Finally, using recombinant fragments of M. leprae LBP/Hlp, we mapped the collagen-binding activity within the C-terminal domain of the adhesin. Since this protein was already shown to be involved in the recognition of laminin and heparan sulphate-containing proteoglycans, the present observations reinforce the adhesive activities of LBP/Hlp, which can be therefore considered as a multifaceted mycobacterial adhesin, playing an important role in both leprosy and tuberculosis pathogenesis.

  7. Peroxidasin-mediated crosslinking of collagen IV is independent of NADPH oxidases

    Gábor Sirokmány

    2018-06-01

    Full Text Available Collagen IV is a major component of the basement membrane in epithelial tissues. The NC1 domains of collagen IV protomers are covalently linked together through sulfilimine bonds, the formation of which is catalyzed by peroxidasin. Although hydrogen peroxide is essential for this reaction, the exact source of the oxidant remains elusive. Members of the NOX/DUOX NADPH oxidase family are specifically devoted to the production of superoxide and hydrogen peroxide. Our aim in this study was to find out if NADPH oxidases contribute in vivo to the formation of collagen IV sulfilimine crosslinks. We used multiple genetically modified in vivo model systems to provide a detailed assessment of this question. Our data indicate that in various peroxidasin-expressing tissues sulfilimine crosslinks between the NC1 domains of collagen IV can be readily detected in the absence of functioning NADPH oxidases. We also analyzed how subatmospheric oxygen levels influence the collagen IV network in collagen-producing cultured cells with rapid matrix turnover. We showed that collagen IV crosslinks remain intact even under strongly hypoxic conditions. Our hypothesis is that during collagen IV network formation PXDN cooperates with a NOX/DUOX-independent H2O2 source that is functional also at very low ambient oxygen levels. Keywords: Peroxidasin, NADPH oxidase, Hydrogen peroxide, Collagen IV, Sulfilimine

  8. Effects of tissue fixation and dehydration on tendon collagen nanostructure.

    Turunen, Mikael J; Khayyeri, Hanifeh; Guizar-Sicairos, Manuel; Isaksson, Hanna

    2017-09-01

    Collagen is the most prominent protein in biological tissues. Tissue fixation is often required for preservation or sectioning of the tissue. This may affect collagen nanostructure and potentially provide incorrect information when analyzed after fixation. We aimed to unravel the effect of 1) ethanol and formalin fixation and 2) 24h air-dehydration on the organization and structure of collagen fibers at the nano-scale using small and wide angle X-ray scattering. Samples were divided into 4 groups: ethanol fixed, formalin fixed, and two untreated sample groups. Samples were allowed to air-dehydrate in handmade Kapton pockets during the measurements (24h) except for one untreated group. Ethanol fixation affected the collagen organization and nanostructure substantially and during 24h of dehydration dramatic changes were evident. Formalin fixation had minor effects on the collagen organization but after 12h of air-dehydration the spatial variation increased substantially, not evident in the untreated samples. Generally, collagen shrinkage and loss of alignment was evident in all samples during 24h of dehydration but the changes were subtle in all groups except the ethanol fixed samples. This study shows that tissue fixation needs to be chosen carefully in order to preserve the features of interest in the tissue. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Anisotropic Shape-Memory Alginate Scaffolds Functionalized with Either Type I or Type II Collagen for Cartilage Tissue Engineering.

    Almeida, Henrique V; Sathy, Binulal N; Dudurych, Ivan; Buckley, Conor T; O'Brien, Fergal J; Kelly, Daniel J

    2017-01-01

    Regenerating articular cartilage and fibrocartilaginous tissue such as the meniscus is still a challenge in orthopedic medicine. While a range of different scaffolds have been developed for joint repair, none have facilitated the development of a tissue that mimics the complexity of soft tissues such as articular cartilage. Furthermore, many of these scaffolds are not designed to function in mechanically challenging joint environments. The overall goal of this study was to develop a porous, biomimetic, shape-memory alginate scaffold for directing cartilage regeneration. To this end, a scaffold was designed with architectural cues to guide cellular and neo-tissue alignment, which was additionally functionalized with a range of extracellular matrix cues to direct stem cell differentiation toward the chondrogenic lineage. Shape-memory properties were introduced by covalent cross-linking alginate using carbodiimide chemistry, while the architecture of the scaffold was modified using a directional freezing technique. Introducing such an aligned pore structure was found to improve the mechanical properties of the scaffold, and promoted higher levels of sulfated glycosaminoglycans (sGAG) and collagen deposition compared to an isotropic (nonaligned) pore geometry when seeded with adult human stem cells. Functionalization with collagen improved stem cell recruitment into the scaffold and facilitated more homogenous cartilage tissue deposition throughout the construct. Incorporating type II collagen into the scaffolds led to greater cell proliferation, higher sGAG and collagen accumulation, and the development of a stiffer tissue compared to scaffolds functionalized with type I collagen. The results of this study demonstrate how both scaffold architecture and composition can be tailored in a shape-memory alginate scaffold to direct stem cell differentiation and support the development of complex cartilaginous tissues.

  10. Graphical linking of MO multicenter bond index and VB structures. II-5-c rings and 6-c heterocyclic rings

    Bollini, Carlos Guido; Giambiagi, Mario; Giambiagi, Myriam Segre de; Figueiredo, Aloysio Paiva de

    2001-02-01

    Through the graphical method proposed it is possible to set a link between an MO multicenter bond index and VB structures. The value of the index depends on the order of the atoms involved if they are more than three. For 5-c rings three basic structures are required; the eventually different values are 12. Unlike the 6-c case it may happen that different pairs of basic structures are used to build the same polygon. For the 6-c rings including heteroatoms the original degeneracy of benzene splits leading eventually to 60 different I ring values. (author)

  11. Graphical linking of MO multicenter bond index and VB structures. II-5-c rings and 6-c heterocyclic rings

    Bollini, C G; Giambiagi, M

    2001-01-01

    Through the graphical method proposed it is possible to set a link between an MO multicenter bond index and VB structures. The value of the index depends on the order of the atoms involved if they are more than three. For 5-c rings three basic structures are required; the eventually different values are 12. Unlike the 6-c case it may happen that different pairs of basic structures are used to build the same polygon. For the 6-c rings including heteroatoms the original degeneracy of benzene splits leading eventually to 60 different I sub r sub i sub n sub g values.

  12. Measurement of the quadratic hyperpolarizability of the collagen triple helix and application to second harmonic imaging of natural and biomimetic collagenous tissues

    Deniset-Besseau, A.; Strupler, M.; Duboisset, J.; De Sa Peixoto, P.; Benichou, E.; Fligny, C.; Tharaux, P.-L.; Mosser, G.; Brevet, P.-F.; Schanne-Klein, M.-C.

    2009-09-01

    Collagen is a major protein of the extracellular matrix that is characterized by triple helical domains. It plays a central role in the formation of fibrillar and microfibrillar networks, basement membranes, as well as other structures of the connective tissue. Remarkably, fibrillar collagen exhibits efficient Second Harmonic Generation (SHG) so that SHG microscopy proved to be a sensitive tool to probe the three-dimensional architecture of fibrillar collagen and to assess the progression of fibrotic pathologies. We obtained sensitive and reproducible measurements of the fibrosis extent, but we needed quantitative data at the molecular level to further process SHG images. We therefore performed Hyper- Rayleigh Scattering (HRS) experiments and measured a second order hyperpolarisability of 1.25 10-27 esu for rat-tail type I collagen. This value is surprisingly large considering that collagen presents no strong harmonophore in its aminoacid sequence. In order to get insight into the physical origin of this nonlinear process, we performed HRS measurements after denaturation of the collagen triple helix and for a collagen-like short model peptide [(Pro-Pro- Gly)10]3. It showed that the collagen large nonlinear response originates in the tight alignment of a large number of weakly efficient harmonophores, presumably the peptide bonds, resulting in a coherent amplification of the nonlinear signal along the triple helix. To illustrate this mechanism, we successfully recorded SHG images in collagenous biomimetic matrices.

  13. Age-related modifications of type I collagen impair DDR1-induced apoptosis in non-invasive breast carcinoma cells.

    Charles, Saby; Hassan, Rammal; Kevin, Magnien; Emilie, Buache; Sylvie, Brassart-Pasco; Laurence, Van-Gulick; Pierre, Jeannesson; Erik, Maquoi; Hamid, Morjani

    2018-05-07

    Type I collagen and DDR1 axis has been described to decrease cell proliferation and to initiate apoptosis in non-invasive breast carcinoma in three-dimensional cell culture matrices. Moreover, MT1-MMP down-regulates these effects. Here, we address the effect of type I collagen aging and MT1-MMP expression on cell proliferation suppression and induced-apoptosis in non-invasive MCF-7 and ZR-75-1 breast carcinoma. We provide evidence for a decrease in cell growth and an increase in apoptosis in the presence of adult collagen when compared to old collagen. This effect involves a differential activation of DDR1, as evidenced by a higher DDR1 phosphorylation level in adult collagen. In adult collagen, inhibition of DDR1 expression and kinase function induced an increase in cell growth to a level similar to that observed in old collagen. The impact of aging on the sensitivity of collagen to MT1-MMP has been reported recently. We used the MT1-MMP expression strategy to verify whether, by degrading adult type I collagen, it could lead to the same phenotype observed in old collagen 3D matrix. MT1-MMP overexpression abrogated the proliferation suppression and induced-apoptosis effects only in the presence of adult collagen. This suggests that differential collagen degradation by MT1-MMP induced a structural disorganization of adult collagen and inhibits DDR1 activation. This could in turn impair DDR1-induced cell growth suppression and apoptosis. Taken together, our data suggest that modifications of collagen structural organization, due to aging, contribute to the loss of the growth suppression and induced apoptosis effect of collagen in luminal breast carcinoma. MT1-MMP-dependent degradation and aging of collagen have no additive effects on these processes.

  14. A structural and kinetic study on myofibrils prevented from shortening by chemical cross-linking.

    Herrmann, C; Sleep, J; Chaussepied, P; Travers, F; Barman, T

    1993-07-20

    In previous work, we studied the early steps of the Mg(2+)-ATPase activity of Ca(2+)-activated myofibrils [Houadjeto, M., Travers, F., & Barman, T. (1992) Biochemistry 31, 1564-1569]. The myofibrils were free to contract, and the results obtained refer to the ATPase cycle of myofibrils contracting with no external load. Here we studied the ATPase of myofibrils contracting isometrically. To prevent shortening, we cross-linked them with 1-ethyl-3-[3-(dimethylamino)propyl]carbodiimide (EDC). SDS-PAGE and Western blot analyses showed that the myosin rods were extensively cross-linked and that 8% of the myosin heads were cross-linked to the thin filament. The transient kinetics of the cross-linked myofibrils were studied in 0.1 M potassium acetate, pH 7.4 and 4 degrees C, by the rapid-flow quench method. The ATP binding steps were studied by the cold ATP chase and the cleavage and release of products steps by the Pi burst method. In Pi burst experiments, the sizes of the bursts were equal within experimental error to the ATPase site concentrations (as determined by the cold ATP chase methods) for both cross-linked (isometric) and un-cross-linked (isotonic) myofibrils. This shows that in both cases the rate-limiting step is after the cleavage of ATP. When cross-linked, the kcat of Ca(2+)-activated myofibrils was reduced from 1.7 to 0.8 s-1. This is consistent with the observation that fibers shortening at moderate velocity have a higher ATPase activity than isometric fibers.(ABSTRACT TRUNCATED AT 250 WORDS)

  15. Preparation and characterization of collagen/PLA, chitosan/PLA, and collagen/chitosan/PLA hybrid scaffolds for cartilage tissue engineering.

    Haaparanta, Anne-Marie; Järvinen, Elina; Cengiz, Ibrahim Fatih; Ellä, Ville; Kokkonen, Harri T; Kiviranta, Ilkka; Kellomäki, Minna

    2014-04-01

    In this study, three-dimensional (3D) porous scaffolds were developed for the repair of articular cartilage defects. Novel collagen/polylactide (PLA), chitosan/PLA, and collagen/chitosan/PLA hybrid scaffolds were fabricated by combining freeze-dried natural components and synthetic PLA mesh, where the 3D PLA mesh gives mechanical strength, and the natural polymers, collagen and/or chitosan, mimic the natural cartilage tissue environment of chondrocytes. In total, eight scaffold types were studied: four hybrid structures containing collagen and/or chitosan with PLA, and four parallel plain scaffolds with only collagen and/or chitosan. The potential of these types of scaffolds for cartilage tissue engineering applications were determined by the analysis of the microstructure, water uptake, mechanical strength, and the viability and attachment of adult bovine chondrocytes to the scaffolds. The manufacturing method used was found to be applicable for the manufacturing of hybrid scaffolds with highly porous 3D structures. All the hybrid scaffolds showed a highly porous structure with open pores throughout the scaffold. Collagen was found to bind water inside the structure in all collagen-containing scaffolds better than the chitosan-containing scaffolds, and the plain collagen scaffolds had the highest water absorption. The stiffness of the scaffold was improved by the hybrid structure compared to plain scaffolds. The cell viability and attachment was good in all scaffolds, however, the collagen hybrid scaffolds showed the best penetration of cells into the scaffold. Our results show that from the studied scaffolds the collagen/PLA hybrids are the most promising scaffolds from this group for cartilage tissue engineering.

  16. Influence of functionalized nanoparticles on conformational stability of type I collagen for possible biomedical applications.

    Kandamchira, Aswathy; Selvam, Sangeetha; Marimuthu, Nidhin; Janardhanan, Sreeram Kalarical; Fathima, Nishter Nishad

    2013-12-01

    Collagen-nanoparticle interactions are vital for many biomedical applications including drug delivery and tissue engineering applications. Iron oxide nanoparticles synthesized using starch template according to our earlier reported procedures were functionalized by treating them with Gum Arabic (GA), a biocompatible polysaccharide, so as to enhance the interaction between nanoparticle surfaces and collagen. Viscosity, circular dichroism (CD) and Fourier transform infrared spectroscopy (FTIR) techniques have been used to study the collagen-nanoparticle interactions. The relative viscosity for collagen-nanoparticle conjugate was found to increase with increase in concentration of the nanoparticle within the concentration range investigated, which is due to the aggregation of protein onto the surface of nanoparticle. The CD spectra for the collagen-nanoparticle at different concentration ratios do not have much variation in the Rpn values (ratio of positive peak intensity over negative peak intensity) after functionalization with GA. The variation of molar ellipticity values for collagen-nanoparticle is due to the glycoprotein present in GA. The collagen triple helical structure is maintained after interaction with nanoparticles. The FTIR spectra of native collagen, Coll-Fs (nanoparticle without functionalization) and Coll-FsG (nanoparticle functionalized with GA) show clearly the amide I, II, III bands, with respect to collagen. The ability of polysaccharide stabilized/functionalized nanoparticles to maintain the collagen properties would help in its biomedical applications. © 2013.

  17. Collagen films with stabilized liquid crystalline phases and concerns on osteoblast behaviors

    Tang, Minjian; Ding, Shan; Min, Xiang; Jiao, Yanpeng, E-mail: tjiaoyp@jnu.edu.cn; Li, Lihua; Li, Hong; Zhou, Changren, E-mail: tcrz9@jnu.edu.cn

    2016-01-01

    To duplicate collagen's in vivo liquid crystalline (LC) phase and investigate the relationship between the morphology of LC collagen and osteoblast behavior, a self-assembly method was introduced for preparing collagen films with a stabilized LC phase. The LC texture and topological structure of the films before and after stabilization were observed with polarizing optical microscopy, scanning electron microscopy (SEM), and atomic force microscopy (AFM). The relationship between the collagen films and osteoblast behavior was studied with the 3-(4,5)-dimethylthiahiazo(-z-y1)-3,5-di-phenytetrazoliumromide method, proliferation index detection, alkaline phosphatase measurements, osteocalcin assay, inverted microscopy, SEM observation, AFM observation, and cytoskeleton fluorescence staining. The results showed that the LC collagen film had continuously twisting orientations in the cholesteric phase with a typical series of arced patterns. The collagen fibers assembled in a well-organized orientation in the LC film. Compared to the non-LC film, the LC collagen film can promote cell proliferation, and increase ALP and osteocalcin expression, revealing a contact guide effect on osteoblasts. - Highlights: • Collagen film with liquid crystalline (LC) phase was observed by POM, SEM and AFM. • The effect of LC collagen film on osteoblasts behaviors was studied in detail. • LC collagen film promoted osteoblast proliferation and osteogenesis activity.

  18. A comparative study of the properties and self-aggregation behavior of collagens from the scales and skin of grass carp (Ctenopharyngodon idella).

    Liu, Yaowen; Ma, Donghui; Wang, Yihao; Qin, Wen

    2018-01-01

    Collagens were extracted from the scales and skin of Ctenopharyngodon idella (C. idella) as raw materials using an acid-enzyme hybrid method. The structural properties of the extracted collagens were compared using ultraviolet-visible spectrophotometry, Fourier transform infrared spectroscopy, sodium dodecyl sulfate-polyacrylamide gel electrophoresis, and differential scanning calorimetry. Additionally, the in vitro self-aggregation behaviors of the two types of collagens (fish skin- and scale-derived collagens) were compared using turbidimetric assays, aggregation assays, and scanning electron microscopy (SEM). The results showed that both types of extracted collagen were typical type I collagen with two α chains and intact triple-helical structures. The denaturation temperatures of the collagens from fish scales and skin were 34.99°C and 39.75°C, respectively. Both types of collagens were capable of self-aggregation in neutral salt solution at 30°C, with aggregation degrees of 28% and 27.33% for the scale and skin collagens, respectively. SEM analysis revealed that both types of collagens could self-aggregate into interwoven fibers, and the fish scale-derived collagen had a more pronounced reticular fiber structure with a striped periodic D-band pattern of collagen fibrils, whereas the collagen fibers from the self-aggregation of fish skin-derived collagen had a certain degree of disruption without any D-band pattern. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Cone photoreceptor structure in patients with x-linked cone dysfunction and red-green color vision deficiency

    Patterson, Emily J.; Wilk, Melissa; Langlo, Christopher S.

    2016-01-01

    encoded by exon 4, and two with a novel insertion in exon 2. Foveal cone structure and retinal thickness was disrupted to a variable degree, even among related individuals with the same L/M array. CONCLUSIONS. Our findings provide a direct link between disruption of the cone mosaic and L/ M opsin variants......PURPOSE. Mutations in the coding sequence of the L and M opsin genes are often associated with X-linked cone dysfunction (such as Bornholm Eye Disease, BED), though the exact color vision phenotype associated with these disorders is variable. We examined individuals with L/ M opsin gene mutations...... to clarify the link between color vision deficiency and cone dysfunction.  METHODS. We recruited 17 males for imaging. The thickness and integrity of the photoreceptor layers were evaluated using spectral-domain optical coherence tomography. Cone density was measured using high-resolution images of the cone...

  20. From the genome to the phenome and back: linking genes with human brain function and structure using genetically informed neuroimaging

    Siebner, H R; Callicott, J H; Sommer, T

    2009-01-01

    In recent years, an array of brain mapping techniques has been successfully employed to link individual differences in circuit function or structure in the living human brain with individual variations in the human genome. Several proof-of-principle studies provided converging evidence that brain...... imaging can establish important links between genes and behaviour. The overarching goal is to use genetically informed brain imaging to pinpoint neurobiological mechanisms that contribute to behavioural intermediate phenotypes or disease states. This special issue on "Linking Genes to Brain Function...... in Health and Disease" provides an overview over how the "imaging genetics" approach is currently applied in the various fields of systems neuroscience to reveal the genetic underpinnings of complex behaviours and brain diseases. While the rapidly emerging field of imaging genetics holds great promise...

  1. Elastic dynamic research of high speed multi-link precision press considering structural stiffness of rotation joints

    Hu, Feng Feng; Sun, Yu; Peng, Bin Bin [School of Mechanical Engineering, Nanjing University of Science and Technology, Nanjing (China)

    2016-10-15

    An elastic dynamic model of high-speed multi-link precision press considering structural stiffness of rotation joints was established by the finite element method. In the finite element model, rotation joint was established by four bar elements with equivalent stiffness, and connected link was established by beam element. Then, the elastic dynamics equation of the system was established, and modal superposition method was used to solve the dynamic response. Compared with the traditional elastic dynamic model with perfect constraint of the rotation joints, the elastic dynamic response value of the improved model is larger. To validate the presented new method of elastic dynamics analysis with stiffness of rotation joints, a related test of slider Bottom dead center (BDC) position in different speed was designed. The test shows that the model with stiffness of rotation joints is more reasonable. So it provides a reasonable theory and method for dynamic characteristics research of such a multi-link machine.

  2. Collagen and mineral deposition in rabbit cortical bone during maturation and growth: effects on tissue properties.

    Isaksson, Hanna; Harjula, Terhi; Koistinen, Arto; Iivarinen, Jarkko; Seppänen, Kari; Arokoski, Jari P A; Brama, Pieter A; Jurvelin, Jukka S; Helminen, Heikki J

    2010-12-01

    We characterized the composition and mechanical properties of cortical bone during maturation and growth and in adult life in the rabbit. We hypothesized that the collagen network develops earlier than the mineralized matrix. Growth was monitored, and the rabbits were euthanized at birth (newborn), and at 1, 3, 6, 9, and 18 months of age. The collagen network was assessed biochemically (collagen content, enzymatic and non-enzymatic cross-links) in specimens from the mid-diaphysis of the tibia and femur and biomechanically (tensile testing) from decalcified whole tibia specimens. The mineralized matrix was analyzed using pQCT and 3-point bend tests from intact femur specimens. The collagen content and the Young's modulus of the collagen matrix increased significantly until the rabbits were 3 months old, and thereafter remained stable. The amount of HP and LP collagen cross-links increased continuously from newborn to 18 months of age, whereas PEN cross-links increased after 6 months of age. Bone mineral density and the Young's modulus of the mineralized bone increased until the rabbits were at least 6 months old. We concluded that substantial changes take place during the normal process of development in both the biochemical and biomechanical properties of rabbit cortical bone. In cortical bone, the collagen network reaches its mature composition and mechanical strength prior to the mineralized matrix. © 2010 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  3. How do SMA-linked mutations of SMN1 lead to structural/functional deficiency of the SMA protein?

    Wei Li

    Full Text Available Spinal muscular atrophy (SMA is an autosomal recessive neuromuscular disease with dysfunctional α-motor neurons in the anterior horn of the spinal cord. SMA is caused by loss (∼95% of SMA cases or mutation (∼5% of SMA cases of the survival motor neuron 1 gene SMN1. As the product of SMN1, SMN is a component of the SMN complex, and is also involved in the biosynthesis of the small nuclear ribonucleoproteins (snRNPs, which play critical roles in pre-mRNA splicing in the pathogenesis of SMA. To investigate how SMA-linked mutations of SMN1 lead to structural/functional deficiency of SMN, a set of computational analysis of SMN-related structures were conducted and are described in this article. Of extraordinary interest, the structural analysis highlights three SMN residues (Asp44, Glu134 and Gln136 with SMA-linked missense mutations, which cause disruptions of electrostatic interactions for Asp44, Glu134 and Gln136, and result in three functionally deficient SMA-linked SMN mutants, Asp44Val, Glu134Lys and Gln136Glu. From the computational analysis, it is also possible that SMN's Lys45 and Asp36 act as two electrostatic clips at the SMN-Gemin2 complex structure interface.

  4. The structural role of weak and strong links in a financial market network

    Garas, A.; Argyrakis, P.; Havlin, S.

    2008-05-01

    We investigate the properties of correlation based networks originating from economic complex systems, such as the network of stocks traded at the New York Stock Exchange (NYSE). The weaker links (low correlation) of the system are found to contribute to the overall connectivity of the network significantly more than the strong links (high correlation). We find that nodes connected through strong links form well defined communities. These communities are clustered together in more complex ways compared to the widely used classification according to the economic activity. We find that some companies, such as General Electric (GE), Coca Cola (KO), and others, can be involved in different communities. The communities are found to be quite stable over time. Similar results were obtained by investigating markets completely different in size and properties, such as the Athens Stock Exchange (ASE). The present method may be also useful for other networks generated through correlations.

  5. Linking landscape structure and rainfall runoff behaviour in a thermodynamic optimality context

    Zehe, Erwin; Ehret, Uwe; Blume, Theresa; Kleidon, Axel; Scherer, Ulrike; Westhoff, Martijn

    2015-04-01

    The fact that persistent spatial organization in catchments exists has inspired many scientists to speculate whether this is the manifestation of an underlying organizing principle. In line with these studies we developed and tested a thermodynamic framework to link rainfall runoff generation and self-organization in catchments. From a thermodynamic perspective any water mass flux is equal to a "potential gradient" divided by a "resistance", and fluxes deplete due to the second law of thermodynamics their driving gradients. Relevant potentials controlling rainfall runoff are soil water potentials, piezometric heads and surface water levels and their gradients are associated with spatial differences in associated forms of free energy. Rainfall runoff processes thus are associated with conversions of capillary binding energy, potential energy and kinetic energy. These conversions reflect energy conservation and irreversibility as they imply small amounts of dissipation of free energy into heat and thus production of entropy. Energy conversions during rainfall runoff transformation are, though being small, nevertheless of key importance, because they are related to the partitioning of incoming rainfall mass into runoff components and storage dynamics. This splitting and the subsequent subsurface dynamics is strongly controlled by preferential flow paths, which in turn largely influence hydrologically relevant resistance fields in larger control volumes. The field of subsurface flow resistances depends for instance on soil hydraulic conductivity, its spatial covariance and soil moisture. Apparent preferential pathways reduce, depending on their density, topology and spatial extent, subsurface flow resistances along their main extent, resulting in accelerated fluxes against the driving gradient. This implies an enlarged power in the subsurface flux thereby either an enlarged free energy export from the control volume or an increased depletion of internal driving

  6. Assembly of collagen into microribbons: effects of pH and electrolytes.

    Jiang, Fengzhi; Hörber, Heinrich; Howard, Jonathon; Müller, Daniel J

    2004-12-01

    Collagen represents the major structural protein of the extracellular matrix. Elucidating the mechanism of its assembly is important for understanding many cell biological and medical processes as well as for tissue engineering and biotechnological approaches. In this work, conditions for the self-assembly of collagen type I molecules on a supporting surface were characterized. By applying hydrodynamic flow, collagen assembled into ultrathin ( approximately 3 nm) highly anisotropic ribbon-like structures coating the entire support. We call these novel collagen structures microribbons. High-resolution atomic force microscopy topographs show that subunits of these microribbons are built by fibrillar structures. The smallest units of these fibrillar structures have cross-sections of approximately 3 x 5nm, consistent with current models of collagen microfibril formation. By varying the pH and electrolyte of the buffer solution during the self-assembly process, the microfibril density and contacts formed within this network could be controlled. Under certain electrolyte compositions the microribbons and microfibers display the characteristic D-periodicity of approximately 65 nm observed for much thicker collagen fibrils. In addition to providing insight into the mechanism of collagen assembly, the ultraflat collagen matrices may also offer novel ways to bio-functionalize surfaces.

  7. Examining Culturally Structured Learning Environments with Different Types of Music-Linked Movement Opportunity

    Cole, Juanita M.; Boykin, A. Wade

    2008-01-01

    This study describes two experiments that extended earlier work on the Afrocultural theme Movement Expression. The impact of various learning conditions characterized by different types of music-linked movement on story recall performance was examined. African American children were randomly assigned to a learning condition, presented a story, and…

  8. Mesoscale structure and techno-functional properties of enzymatically cross-linked a-lactalbumin nanoparticles

    Dhayal, S.K.

    2015-01-01

    Abstract

    The aim of this thesis is to understand the connection between molecular, meso and macroscales of enzymatically cross-linked proteins. It was hypothesised that the techno-functional properties at macroscale, such as bulk rheology and foam stability, are affected

  9. Structures linking physical and biological processes in headwater streams of the Maybeso watershed, Southeast Alaska

    Mason D. Bryant; Takashi Gomi; Jack J. Piccolo

    2007-01-01

    We focus on headwater streams originating in the mountainous terrain of northern temperate rain forests. These streams rapidly descend from gradients greater than 20% to less than 5% in U-shaped glacial valleys. We use a set of studies on headwater streams in southeast Alaska to define headwater stream catchments, link physical and biological processes, and describe...

  10. Driving innovation through big open linked data (BOLD) : Exploring antecedents using interpretive structural modelling

    Dwivedi, Yogesh K.; Janssen, M.F.W.H.A.; Slade, Emma L.; Rana, Nripendra P.; Weerakkody, Vishanth; Millard, Jeremy; Hidders, Jan; Snijders, D.

    2016-01-01

    Innovation is vital to find new solutions to problems, increase quality, and improve profitability. Big open linked data (BOLD) is a fledgling and rapidly evolving field that creates new opportunities for innovation. However, none of the existing literature has yet considered the

  11. In search of new lead compounds for trypanosomiasis drug design: A protein structure-based linked-fragment approach

    Verlinde, Christophe L. M. J.; Rudenko, Gabrielle; Hol, Wim G. J.

    1992-04-01

    A modular method for pursuing structure-based inhibitor design in the framework of a design cycle is presented. The approach entails four stages: (1) a design pathway is defined in the three-dimensional structure of a target protein; (2) this pathway is divided into subregions; (3) complementary building blocks, also called fragments, are designed in each subregion; complementarity is defined in terms of shape, hydrophobicity, hydrogen bond properties and electrostatics; and (4) fragments from different subregions are linked into potential lead compounds. Stages (3) and (4) are qualitatively guided by force-field calculations. In addition, the designed fragments serve as entries for retrieving existing compounds from chemical databases. This linked-fragment approach has been applied in the design of potentially selective inhibitors of triosephosphate isomerase from Trypanosoma brucei, the causative agent of sleeping sickness.

  12. The Secret Life of Collagen: Temporal Changes in Nanoscale Fibrillar Pre-Strain and Molecular Organization during Physiological Loading of Cartilage.

    Inamdar, Sheetal R; Knight, David P; Terrill, Nicholas J; Karunaratne, Angelo; Cacho-Nerin, Fernando; Knight, Martin M; Gupta, Himadri S

    2017-10-24

    Articular cartilage is a natural biomaterial whose structure at the micro- and nanoscale is critical for healthy joint function and where degeneration is associated with widespread disorders such as osteoarthritis. At the nanoscale, cartilage mechanical functionality is dependent on the collagen fibrils and hydrated proteoglycans that form the extracellular matrix. The dynamic response of these ultrastructural building blocks at the nanoscale, however, remains unclear. Here we measure time-resolved changes in collagen fibril strain, using small-angle X-ray diffraction during compression of bovine and human cartilage explants. We demonstrate the existence of a collagen fibril tensile pre-strain, estimated from the D-period at approximately 1-2%, due to osmotic swelling pressure from the proteoglycan. We reveal a rapid reduction and recovery of this pre-strain which occurs during stress relaxation, approximately 60 s after the onset of peak load. Furthermore, we show that this reduction in pre-strain is linked to disordering in the intrafibrillar molecular packing, alongside changes in the axial overlapping of tropocollagen molecules within the fibril. Tissue degradation in the form of selective proteoglycan removal disrupts both the collagen fibril pre-strain and the transient response during stress relaxation. This study bridges a fundamental gap in the knowledge describing time-dependent changes in collagen pre-strain and molecular organization that occur during physiological loading of articular cartilage. The ultrastructural details of this transient response are likely to transform our understanding of the role of collagen fibril nanomechanics in the biomechanics of cartilage and other hydrated soft tissues.

  13. Version of the galaxy spiral structure model with opposite-directed arms and inter-arm links

    Dolidze, M V [AN Gruzinskoj SSR, Abastumani. Abastumanskaya Astrofizicheskaya Observatoriya

    1963-05-01

    An attempt is made to explain some peculiarities of the local spiral structure and large-scale distribution of HII regions in the Galaxy by coexistence of the trailing and leading arm systems of different power and development. The existence of opposite-directed arms and inter-arm links in the circular zone (5-15 kpc) is analysed from the point of view of different Galaxy models.

  14. Insights into early extracellular matrix evolution: spongin short chain collagen-related proteins are homologous to basement membrane type IV collagens and form a novel family widely distributed in invertebrates.

    Aouacheria, Abdel; Geourjon, Christophe; Aghajari, Nushin; Navratil, Vincent; Deléage, Gilbert; Lethias, Claire; Exposito, Jean-Yves

    2006-12-01

    Collagens are thought to represent one of the most important molecular innovations in the metazoan line. Basement membrane type IV collagen is present in all Eumetazoa and was found in Homoscleromorpha, a sponge group with a well-organized epithelium, which may represent the first stage of tissue differentiation during animal evolution. In contrast, spongin seems to be a demosponge-specific collagenous protein, which can totally substitute an inorganic skeleton, such as in the well-known bath sponge. In the freshwater sponge Ephydatia mülleri, we previously characterized a family of short-chain collagens that are likely to be main components of spongins. Using a combination of sequence- and structure-based methods, we present evidence of remote homology between the carboxyl-terminal noncollagenous NC1 domain of spongin short-chain collagens and type IV collagen. Unexpectedly, spongin short-chain collagen-related proteins were retrieved in nonsponge animals, suggesting that a family related to spongin constitutes an evolutionary sister to the type IV collagen family. Formation of the ancestral NC1 domain and divergence of the spongin short-chain collagen-related and type IV collagen families may have occurred before the parazoan-eumetazoan split, the earliest divergence among extant animal phyla. Molecular phylogenetics based on NC1 domain sequences suggest distinct evolutionary histories for spongin short-chain collagen-related and type IV collagen families that include spongin short-chain collagen-related gene loss in the ancestors of Ecdyzosoa and of vertebrates. The fact that a majority of invertebrates encodes spongin short-chain collagen-related proteins raises the important question to the possible function of its members. Considering the importance of collagens for animal structure and substratum attachment, both families may have played crucial roles in animal diversification.

  15. Collagen fibril architecture, domain organization, and triple-helical conformation govern its proteolysis.

    Perumal, Shiamalee; Antipova, Olga; Orgel, Joseph P R O

    2008-02-26

    We describe the molecular structure of the collagen fibril and how it affects collagen proteolysis or "collagenolysis." The fibril-forming collagens are major components of all mammalian connective tissues, providing the structural and organizational framework for skin, blood vessels, bone, tendon, and other tissues. The triple helix of the collagen molecule is resistant to most proteinases, and the matrix metalloproteinases that do proteolyze collagen are affected by the architecture of collagen fibrils, which are notably more resistant to collagenolysis than lone collagen monomers. Until now, there has been no molecular explanation for this. Full or limited proteolysis of the collagen fibril is known to be a key process in normal growth, development, repair, and cell differentiation, and in cancerous tumor progression and heart disease. Peptide fragments generated by collagenolysis, and the conformation of exposed sites on the fibril as a result of limited proteolysis, regulate these processes and that of cellular attachment, but it is not known how or why. Using computational and molecular visualization methods, we found that the arrangement of collagen monomers in the fibril (its architecture) protects areas vulnerable to collagenolysis and strictly governs the process. This in turn affects the accessibility of a cell interaction site located near the cleavage region. Our observations suggest that the C-terminal telopeptide must be proteolyzed before collagenase can gain access to the cleavage site. Collagenase then binds to the substrate's "interaction domain," which facilitates the triple-helix unwinding/dissociation function of the enzyme before collagenolysis.

  16. Influence of 1,2-PB matrix cross-linking on structure and properties of selectively etched 1,2-PB-b-PDMS block copolymers

    Guo, Fengxiao; Andreasen, Jens Wenzel; Vigild, Martin Etchells

    2007-01-01

    of the cross-linked samples in toluene was converted into a degree of cross-linking following the Flory scheme; a simple relation between the Flory cross-linking degree and the fraction of consumed double bonds during the cross-linking reaction followed. The structure of the block copolymer at different stages...... of preparation was characterized by small-angle X-ray scattering (SAXS). In addition, scanning electron microscopy (SEM) gave direct images of the nanoporous polymer structure. Nanocavities are accessible to methanol, and observations of methanol uptake were combined with structural information from SAXS...

  17. Characterization of Acid Soluble Collagen from Redbelly Yellowtail Fusilier Fish Skin (Caesio cuning

    Ika Astiana

    2016-04-01

    Full Text Available Fish skin can be used as raw material for producing collagen. The collagen can be extracted by chemicalor combination of chemical and enzymatic processes. Extraction of collagen chemically can do with theacid process that produces acid soluble collagen (ASC. This study aimed to determine the optimumconcentration and time of pretreatment and extraction, also to determine the characteristics of the acidsoluble collagen from the skin of yellow tail fish. Extraction of collagen done by pretreatment using NaOH atthe concentration of 0.05; 0.1; and 0.15 M and extraction using acetic acid at the concentration of 0.3; 0.5; and0.7 M. Pretreatment NaOH with concentration 0.05 M and soaking time of 8 hours is the best combinationfor eliminating non collagen protein. Combination treatment of acetic acid at the concentration of 0.3 Mfor 3 days obtained the best solubility. The yield of collagen ASC was 18.4±1.49% (db and 5.79±0.47%(wb. Amino acid composition that is dominant in the ASC collagen was glycine (25.09±0.003%, alanine(13.71±0.075%, and proline (12.15±0.132%. Collagen from yellow tail fish skin has α1, α2, β and γprotein structure with the molecular weight of 125, 113, 170-181, and 208 KDa. The transition and meltingtemperatures of collagen were 67.69oC and 144.4oC. The surface structure of collagen by analysis of SEM hasfibers on the surface.Keywords: cholesterol, fatty acids, meat tissue, proximate, red snapper (L. argentimaculatus

  18. Characterization of Acid Soluble Collagen from Redbelly Yellowtail Fusilier Fish Skin (Caesio cuning

    Ika Astiana

    2016-04-01

    Full Text Available Fish skin can be used as raw material for producing collagen. The collagen can be extracted by chemical or combination of chemical and enzymatic processes. Extraction of collagen chemically can do with the acid process that produces acid soluble collagen (ASC. This study aimed to determine the optimum concentration and time of pretreatment and extraction, also to determine the characteristics of the acid soluble collagen from the skin of yellow tail fish. Extraction of collagen done by pretreatment using NaOH at the concentration of 0.05; 0.1; and 0.15 M and extraction using acetic acid at the concentration of 0.3; 0.5; and 0.7 M. Pretreatment NaOH with concentration 0.05 M and soaking time of 8 hours is the best combination for eliminating non collagen protein. Combination treatment of acetic acid at the concentration of 0.3 M for 3 days obtained the best solubility. The yield of collagen ASC was 18.4±1.49% (db and 5.79±0.47% (wb. Amino acid composition that is dominant in the ASC collagen was glycine (25.09±0.003%, alanine (13.71±0.075%, and proline (12.15±0.132%. Collagen from yellow tail fish skin has α1, α2, β and γ protein structure with the molecular weight of 125, 113, 170-181, and 208 KDa. The transition and melting temperatures of collagen were 67.69oC and 144.4oC. The surface structure of collagen by analysis of SEM has fibers on the surface.

  19. Structural and Functional Characterization of an Ancient Bacterial Transglutaminase Sheds Light on the Minimal Requirements for Protein Cross-Linking.

    Fernandes, Catarina G; Plácido, Diana; Lousa, Diana; Brito, José A; Isidro, Anabela; Soares, Cláudio M; Pohl, Jan; Carrondo, Maria A; Archer, Margarida; Henriques, Adriano O

    2015-09-22

    Transglutaminases are best known for their ability to catalyze protein cross-linking reactions that impart chemical and physical resilience to cellular structures. Here, we report the crystal structure and characterization of Tgl, a transglutaminase from the bacterium Bacillus subtilis. Tgl is produced during sporulation and cross-links the surface of the highly resilient spore. Tgl-like proteins are found only in spore-forming bacteria of the Bacillus and Clostridia classes, indicating an ancient origin. Tgl is a single-domain protein, produced in active form, and the s