WorldWideScience

Sample records for linked multiple gene

  1. A BAC-bacterial recombination method to generate physically linked multiple gene reporter DNA constructs

    Directory of Open Access Journals (Sweden)

    Gong Shiaochin

    2009-03-01

    Full Text Available Abstract Background Reporter gene mice are valuable animal models for biological research providing a gene expression readout that can contribute to cellular characterization within the context of a developmental process. With the advancement of bacterial recombination techniques to engineer reporter gene constructs from BAC genomic clones and the generation of optically distinguishable fluorescent protein reporter genes, there is an unprecedented capability to engineer more informative transgenic reporter mouse models relative to what has been traditionally available. Results We demonstrate here our first effort on the development of a three stage bacterial recombination strategy to physically link multiple genes together with their respective fluorescent protein (FP reporters in one DNA fragment. This strategy uses bacterial recombination techniques to: (1 subclone genes of interest into BAC linking vectors, (2 insert desired reporter genes into respective genes and (3 link different gene-reporters together. As proof of concept, we have generated a single DNA fragment containing the genes Trap, Dmp1, and Ibsp driving the expression of ECFP, mCherry, and Topaz FP reporter genes, respectively. Using this DNA construct, we have successfully generated transgenic reporter mice that retain two to three gene readouts. Conclusion The three stage methodology to link multiple genes with their respective fluorescent protein reporter works with reasonable efficiency. Moreover, gene linkage allows for their common chromosomal integration into a single locus. However, the testing of this multi-reporter DNA construct by transgenesis does suggest that the linkage of two different genes together, despite their large size, can still create a positional effect. We believe that gene choice, genomic DNA fragment size and the presence of endogenous insulator elements are critical variables.

  2. A BAC-bacterial recombination method to generate physically linked multiple gene reporter DNA constructs.

    Science.gov (United States)

    Maye, Peter; Stover, Mary Louise; Liu, Yaling; Rowe, David W; Gong, Shiaochin; Lichtler, Alexander C

    2009-03-13

    Reporter gene mice are valuable animal models for biological research providing a gene expression readout that can contribute to cellular characterization within the context of a developmental process. With the advancement of bacterial recombination techniques to engineer reporter gene constructs from BAC genomic clones and the generation of optically distinguishable fluorescent protein reporter genes, there is an unprecedented capability to engineer more informative transgenic reporter mouse models relative to what has been traditionally available. We demonstrate here our first effort on the development of a three stage bacterial recombination strategy to physically link multiple genes together with their respective fluorescent protein (FP) reporters in one DNA fragment. This strategy uses bacterial recombination techniques to: (1) subclone genes of interest into BAC linking vectors, (2) insert desired reporter genes into respective genes and (3) link different gene-reporters together. As proof of concept, we have generated a single DNA fragment containing the genes Trap, Dmp1, and Ibsp driving the expression of ECFP, mCherry, and Topaz FP reporter genes, respectively. Using this DNA construct, we have successfully generated transgenic reporter mice that retain two to three gene readouts. The three stage methodology to link multiple genes with their respective fluorescent protein reporter works with reasonable efficiency. Moreover, gene linkage allows for their common chromosomal integration into a single locus. However, the testing of this multi-reporter DNA construct by transgenesis does suggest that the linkage of two different genes together, despite their large size, can still create a positional effect. We believe that gene choice, genomic DNA fragment size and the presence of endogenous insulator elements are critical variables.

  3. Isolation and characterization of multiple F-box genes linked to the S9- and S10-RNase in apple (Malus × domestica Borkh.).

    Science.gov (United States)

    Okada, Kazuma; Moriya, Shigeki; Haji, Takashi; Abe, Kazuyuki

    2013-06-01

    Using 11 consensus primer pairs designed from S-linked F-box genes of apple and Japanese pear, 10 new F-box genes (MdFBX21 to 30) were isolated from the apple cultivar 'Spartan' (S(9)S(10)). MdFBX21 to 23 and MdFBX24 to 30 were completely linked to the S(9) -RNase and S(10-)RNase, respectively, and showed pollen-specific expression and S-haplotype-specific polymorphisms. Therefore, these 10 F-box genes are good candidates for the pollen determinant of self-incompatibility in apple. Phylogenetic analysis and comparison of deduced amino acid sequences of MdFBX21 to 30 with those of 25 S-linked F-box genes previously isolated from apple showed that a deduced amino acid identity of greater than 88.0 % can be used as the tentative criterion to classify F-box genes into one type. Using this criterion, 31 of 35 F-box genes of apple were classified into 11 types (SFBB1-11). All types included F-box genes derived from S(3-) and S(9-)haplotypes, and seven types included F-box genes derived from S(3-), S(9-), and S(10-)haplotypes. Moreover, comparison of nucleotide sequences of S-RNases and multiple F-box genes among S(3-), S(9-), and S(10-)haplotypes suggested that F-box genes within each type showed high nucleotide identity regardless of the identity of the S-RNase. The large number of F-box genes as candidates for the pollen determinant and the high degree of conservation within each type are consistent with the collaborative non-self-recognition model reported for Petunia. These findings support that the collaborative non-self-recognition system also exists in apple.

  4. Alteration of Multiple Leukocyte Gene Expression Networks is Linked with Magnetic Resonance Markers of Prognosis After Acute ST-Elevation Myocardial Infarction.

    Science.gov (United States)

    Teren, A; Kirsten, H; Beutner, F; Scholz, M; Holdt, L M; Teupser, D; Gutberlet, M; Thiery, J; Schuler, G; Eitel, I

    2017-02-03

    Prognostic relevant pathways of leukocyte involvement in human myocardial ischemic-reperfusion injury are largely unknown. We enrolled 136 patients with ST-elevation myocardial infarction (STEMI) after primary angioplasty within 12 h after onset of symptoms. Following reperfusion, whole blood was collected within a median time interval of 20 h (interquartile range: 15-25 h) for genome-wide gene expression analysis. Subsequent CMR scans were performed using a standard protocol to determine infarct size (IS), area at risk (AAR), myocardial salvage index (MSI) and the extent of late microvascular obstruction (lateMO). We found 398 genes associated with lateMO and two genes with IS. Neither AAR, nor MSI showed significant correlations with gene expression. Genes correlating with lateMO were strongly related to several canonical pathways, including positive regulation of T-cell activation (p = 3.44 × 10 -5 ), and regulation of inflammatory response (p = 1.86 × 10 -3 ). Network analysis of multiple gene expression alterations associated with larger lateMO identified the following functional consequences: facilitated utilisation and decreased concentration of free fatty acid, repressed cell differentiation, enhanced phagocyte movement, increased cell death, vascular disease and compensatory vasculogenesis. In conclusion, the extent of lateMO after acute, reperfused STEMI correlated with altered activation of multiple genes related to fatty acid utilisation, lymphocyte differentiation, phagocyte mobilisation, cell survival, and vascular dysfunction.

  5. Towards linked open gene mutations data

    Science.gov (United States)

    2012-01-01

    Background With the advent of high-throughput technologies, a great wealth of variation data is being produced. Such information may constitute the basis for correlation analyses between genotypes and phenotypes and, in the future, for personalized medicine. Several databases on gene variation exist, but this kind of information is still scarce in the Semantic Web framework. In this paper, we discuss issues related to the integration of mutation data in the Linked Open Data infrastructure, part of the Semantic Web framework. We present the development of a mapping from the IARC TP53 Mutation database to RDF and the implementation of servers publishing this data. Methods A version of the IARC TP53 Mutation database implemented in a relational database was used as first test set. Automatic mappings to RDF were first created by using D2RQ and later manually refined by introducing concepts and properties from domain vocabularies and ontologies, as well as links to Linked Open Data implementations of various systems of biomedical interest. Since D2RQ query performances are lower than those that can be achieved by using an RDF archive, generated data was also loaded into a dedicated system based on tools from the Jena software suite. Results We have implemented a D2RQ Server for TP53 mutation data, providing data on a subset of the IARC database, including gene variations, somatic mutations, and bibliographic references. The server allows to browse the RDF graph by using links both between classes and to external systems. An alternative interface offers improved performances for SPARQL queries. The resulting data can be explored by using any Semantic Web browser or application. Conclusions This has been the first case of a mutation database exposed as Linked Data. A revised version of our prototype, including further concepts and IARC TP53 Mutation database data sets, is under development. The publication of variation information as Linked Data opens new perspectives

  6. Towards linked open gene mutations data.

    Science.gov (United States)

    Zappa, Achille; Splendiani, Andrea; Romano, Paolo

    2012-03-28

    With the advent of high-throughput technologies, a great wealth of variation data is being produced. Such information may constitute the basis for correlation analyses between genotypes and phenotypes and, in the future, for personalized medicine. Several databases on gene variation exist, but this kind of information is still scarce in the Semantic Web framework. In this paper, we discuss issues related to the integration of mutation data in the Linked Open Data infrastructure, part of the Semantic Web framework. We present the development of a mapping from the IARC TP53 Mutation database to RDF and the implementation of servers publishing this data. A version of the IARC TP53 Mutation database implemented in a relational database was used as first test set. Automatic mappings to RDF were first created by using D2RQ and later manually refined by introducing concepts and properties from domain vocabularies and ontologies, as well as links to Linked Open Data implementations of various systems of biomedical interest. Since D2RQ query performances are lower than those that can be achieved by using an RDF archive, generated data was also loaded into a dedicated system based on tools from the Jena software suite. We have implemented a D2RQ Server for TP53 mutation data, providing data on a subset of the IARC database, including gene variations, somatic mutations, and bibliographic references. The server allows to browse the RDF graph by using links both between classes and to external systems. An alternative interface offers improved performances for SPARQL queries. The resulting data can be explored by using any Semantic Web browser or application. This has been the first case of a mutation database exposed as Linked Data. A revised version of our prototype, including further concepts and IARC TP53 Mutation database data sets, is under development.The publication of variation information as Linked Data opens new perspectives: the exploitation of SPARQL searches on

  7. Mining gene expression data of multiple sclerosis.

    Directory of Open Access Journals (Sweden)

    Pi Guo

    Full Text Available Microarray produces a large amount of gene expression data, containing various biological implications. The challenge is to detect a panel of discriminative genes associated with disease. This study proposed a robust classification model for gene selection using gene expression data, and performed an analysis to identify disease-related genes using multiple sclerosis as an example.Gene expression profiles based on the transcriptome of peripheral blood mononuclear cells from a total of 44 samples from 26 multiple sclerosis patients and 18 individuals with other neurological diseases (control were analyzed. Feature selection algorithms including Support Vector Machine based on Recursive Feature Elimination, Receiver Operating Characteristic Curve, and Boruta algorithms were jointly performed to select candidate genes associating with multiple sclerosis. Multiple classification models categorized samples into two different groups based on the identified genes. Models' performance was evaluated using cross-validation methods, and an optimal classifier for gene selection was determined.An overlapping feature set was identified consisting of 8 genes that were differentially expressed between the two phenotype groups. The genes were significantly associated with the pathways of apoptosis and cytokine-cytokine receptor interaction. TNFSF10 was significantly associated with multiple sclerosis. A Support Vector Machine model was established based on the featured genes and gave a practical accuracy of ∼86%. This binary classification model also outperformed the other models in terms of Sensitivity, Specificity and F1 score.The combined analytical framework integrating feature ranking algorithms and Support Vector Machine model could be used for selecting genes for other diseases.

  8. X-linked hydrocephalus : A novel missense mutation in the L1CAM gene

    NARCIS (Netherlands)

    Sztriha, L; Vos, YJ; Verlind, E; Johansen, J; Berg, B

    2002-01-01

    X-linked hydrocephalus is associated with mutations in the L1 neuronal cell adhesion molecule gene. L1 protein plays a key role in neurite outgrowth, axonal guidance, and pathfinding during the development of the nervous system. A male is described with X-linked hydrocephalus who had multiple small

  9. Evolution of closely linked gene pairs in vertebrate genomes

    NARCIS (Netherlands)

    Franck, E.; Hulsen, T.; Huynen, M.A.; Jong, de W.W.; Lunsen, N.H.; Madsen, O.

    2008-01-01

    The orientation of closely linked genes in mammalian genomes is not random: there are more head-to-head (h2h) gene pairs than expected. To understand the origin of this enrichment in h2h gene pairs, we have analyzed the phylogenetic distribution of gene pairs separated by less than 600 bp of

  10. Fractional populations in multiple gene inheritance.

    Science.gov (United States)

    Chung, Myung-Hoon; Kim, Chul Koo; Nahm, Kyun

    2003-01-22

    With complete knowledge of the human genome sequence, one of the most interesting tasks remaining is to understand the functions of individual genes and how they communicate. Using the information about genes (locus, allele, mutation rate, fitness, etc.), we attempt to explain population demographic data. This population evolution study could complement and enhance biologists' understanding about genes. We present a general approach to study population genetics in complex situations. In the present approach, multiple allele inheritance, multiple loci inheritance, natural selection and mutations are allowed simultaneously in order to consider a more realistic situation. A simulation program is presented so that readers can readily carry out studies with their own parameters. It is shown that the multiplicity of the loci greatly affects the demographic results of fractional population ratios. Furthermore, the study indicates that some high infant mortality rates due to congenital anomalies can be attributed to multiple loci inheritance. The simulation program can be downloaded from http://won.hongik.ac.kr/~mhchung/index_files/yapop.htm. In order to run this program, one needs Visual Studio.NET platform, which can be downloaded from http://msdn.microsoft.com/netframework/downloads/default.asp.

  11. Gene Linked to Excess Male Hormones in Female Infertility Disorder

    Science.gov (United States)

    ... April 15, 2014 Gene linked to excess male hormones in female infertility disorder Discovery by NIH-supported ... may lead to the overproduction of androgens — male hormones similar to testosterone — occurring in women with polycystic ...

  12. MyGeneFriends: A Social Network Linking Genes, Genetic Diseases, and Researchers.

    Science.gov (United States)

    Allot, Alexis; Chennen, Kirsley; Nevers, Yannis; Poidevin, Laetitia; Kress, Arnaud; Ripp, Raymond; Thompson, Julie Dawn; Poch, Olivier; Lecompte, Odile

    2017-06-16

    The constant and massive increase of biological data offers unprecedented opportunities to decipher the function and evolution of genes and their roles in human diseases. However, the multiplicity of sources and flow of data mean that efficient access to useful information and knowledge production has become a major challenge. This challenge can be addressed by taking inspiration from Web 2.0 and particularly social networks, which are at the forefront of big data exploration and human-data interaction. MyGeneFriends is a Web platform inspired by social networks, devoted to genetic disease analysis, and organized around three types of proactive agents: genes, humans, and genetic diseases. The aim of this study was to improve exploration and exploitation of biological, postgenomic era big data. MyGeneFriends leverages conventions popularized by top social networks (Facebook, LinkedIn, etc), such as networks of friends, profile pages, friendship recommendations, affinity scores, news feeds, content recommendation, and data visualization. MyGeneFriends provides simple and intuitive interactions with data through evaluation and visualization of connections (friendships) between genes, humans, and diseases. The platform suggests new friends and publications and allows agents to follow the activity of their friends. It dynamically personalizes information depending on the user's specific interests and provides an efficient way to share information with collaborators. Furthermore, the user's behavior itself generates new information that constitutes an added value integrated in the network, which can be used to discover new connections between biological agents. We have developed MyGeneFriends, a Web platform leveraging conventions from popular social networks to redefine the relationship between humans and biological big data and improve human processing of biomedical data. MyGeneFriends is available at lbgi.fr/mygenefriends. ©Alexis Allot, Kirsley Chennen, Yannis

  13. Simultaneous gene finding in multiple genomes.

    Science.gov (United States)

    König, Stefanie; Romoth, Lars W; Gerischer, Lizzy; Stanke, Mario

    2016-11-15

    As the tree of life is populated with sequenced genomes ever more densely, the new challenge is the accurate and consistent annotation of entire clades of genomes. We address this problem with a new approach to comparative gene finding that takes a multiple genome alignment of closely related species and simultaneously predicts the location and structure of protein-coding genes in all input genomes, thereby exploiting negative selection and sequence conservation. The model prefers potential gene structures in the different genomes that are in agreement with each other, or-if not-where the exon gains and losses are plausible given the species tree. We formulate the multi-species gene finding problem as a binary labeling problem on a graph. The resulting optimization problem is NP hard, but can be efficiently approximated using a subgradient-based dual decomposition approach. The proposed method was tested on whole-genome alignments of 12 vertebrate and 12 Drosophila species. The accuracy was evaluated for human, mouse and Drosophila melanogaster and compared to competing methods. Results suggest that our method is well-suited for annotation of (a large number of) genomes of closely related species within a clade, in particular, when RNA-Seq data are available for many of the genomes. The transfer of existing annotations from one genome to another via the genome alignment is more accurate than previous approaches that are based on protein-spliced alignments, when the genomes are at close to medium distances. The method is implemented in C ++ as part of Augustus and available open source at http://bioinf.uni-greifswald.de/augustus/ CONTACT: stefaniekoenig@ymail.com or mario.stanke@uni-greifswald.deSupplementary information: Supplementary data are available at Bioinformatics online. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  14. The integration of weighted human gene association networks based on link prediction.

    Science.gov (United States)

    Yang, Jian; Yang, Tinghong; Wu, Duzhi; Lin, Limei; Yang, Fan; Zhao, Jing

    2017-01-31

    Physical and functional interplays between genes or proteins have important biological meaning for cellular functions. Some efforts have been made to construct weighted gene association meta-networks by integrating multiple biological resources, where the weight indicates the confidence of the interaction. However, it is found that these existing human gene association networks share only quite limited overlapped interactions, suggesting their incompleteness and noise. Here we proposed a workflow to construct a weighted human gene association network using information of six existing networks, including two weighted specific PPI networks and four gene association meta-networks. We applied link prediction algorithm to predict possible missing links of the networks, cross-validation approach to refine each network and finally integrated the refined networks to get the final integrated network. The common information among the refined networks increases notably, suggesting their higher reliability. Our final integrated network owns much more links than most of the original networks, meanwhile its links still keep high functional relevance. Being used as background network in a case study of disease gene prediction, the final integrated network presents good performance, implying its reliability and application significance. Our workflow could be insightful for integrating and refining existing gene association data.

  15. Mutational landscape of the human Y chromosome-linked genes ...

    Indian Academy of Sciences (India)

    Mutational landscape of the human Y chromosome-linked genes and loci in patients with hypogonadism. Deepali Pathak, Sandeep Kumar Yadav, Leena Rawal and Sher Ali. J. Genet. 94, 677–687. Table 1. Details showing age, sex, karyotype, clinical features and diagnosis results of the patients with H. Hormone profile.

  16. The SAIL databank: linking multiple health and social care datasets

    Directory of Open Access Journals (Sweden)

    Ford David V

    2009-01-01

    Full Text Available Abstract Background Vast amounts of data are collected about patients and service users in the course of health and social care service delivery. Electronic data systems for patient records have the potential to revolutionise service delivery and research. But in order to achieve this, it is essential that the ability to link the data at the individual record level be retained whilst adhering to the principles of information governance. The SAIL (Secure Anonymised Information Linkage databank has been established using disparate datasets, and over 500 million records from multiple health and social care service providers have been loaded to date, with further growth in progress. Methods Having established the infrastructure of the databank, the aim of this work was to develop and implement an accurate matching process to enable the assignment of a unique Anonymous Linking Field (ALF to person-based records to make the databank ready for record-linkage research studies. An SQL-based matching algorithm (MACRAL, Matching Algorithm for Consistent Results in Anonymised Linkage was developed for this purpose. Firstly the suitability of using a valid NHS number as the basis of a unique identifier was assessed using MACRAL. Secondly, MACRAL was applied in turn to match primary care, secondary care and social services datasets to the NHS Administrative Register (NHSAR, to assess the efficacy of this process, and the optimum matching technique. Results The validation of using the NHS number yielded specificity values > 99.8% and sensitivity values > 94.6% using probabilistic record linkage (PRL at the 50% threshold, and error rates were Conclusion With the infrastructure that has been put in place, the reliable matching process that has been developed enables an ALF to be consistently allocated to records in the databank. The SAIL databank represents a research-ready platform for record-linkage studies.

  17. The SAIL databank: linking multiple health and social care datasets.

    Science.gov (United States)

    Lyons, Ronan A; Jones, Kerina H; John, Gareth; Brooks, Caroline J; Verplancke, Jean-Philippe; Ford, David V; Brown, Ginevra; Leake, Ken

    2009-01-16

    Vast amounts of data are collected about patients and service users in the course of health and social care service delivery. Electronic data systems for patient records have the potential to revolutionise service delivery and research. But in order to achieve this, it is essential that the ability to link the data at the individual record level be retained whilst adhering to the principles of information governance. The SAIL (Secure Anonymised Information Linkage) databank has been established using disparate datasets, and over 500 million records from multiple health and social care service providers have been loaded to date, with further growth in progress. Having established the infrastructure of the databank, the aim of this work was to develop and implement an accurate matching process to enable the assignment of a unique Anonymous Linking Field (ALF) to person-based records to make the databank ready for record-linkage research studies. An SQL-based matching algorithm (MACRAL, Matching Algorithm for Consistent Results in Anonymised Linkage) was developed for this purpose. Firstly the suitability of using a valid NHS number as the basis of a unique identifier was assessed using MACRAL. Secondly, MACRAL was applied in turn to match primary care, secondary care and social services datasets to the NHS Administrative Register (NHSAR), to assess the efficacy of this process, and the optimum matching technique. The validation of using the NHS number yielded specificity values > 99.8% and sensitivity values > 94.6% using probabilistic record linkage (PRL) at the 50% threshold, and error rates were SAIL databank represents a research-ready platform for record-linkage studies.

  18. Nur77 coordinately regulates expression of genes linked to glucose metabolism in skeletal muscle.

    Science.gov (United States)

    Chao, Lily C; Zhang, Zidong; Pei, Liming; Saito, Tsugumichi; Tontonoz, Peter; Pilch, Paul F

    2007-09-01

    Innervation is important for normal metabolism in skeletal muscle, including insulin-sensitive glucose uptake. However, the transcription factors that transduce signals from the neuromuscular junction to the nucleus and affect changes in metabolic gene expression are not well defined. We demonstrate here that the orphan nuclear receptor Nur77 is a regulator of gene expression linked to glucose utilization in muscle. In vivo, Nur77 is preferentially expressed in glycolytic compared with oxidative muscle and is responsive to beta-adrenergic stimulation. Denervation of rat muscle compromises expression of Nur77 in parallel with that of numerous genes linked to glucose metabolism, including glucose transporter 4 and genes involved in glycolysis, glycogenolysis, and the glycerophosphate shuttle. Ectopic expression of Nur77, either in rat muscle or in C2C12 muscle cells, induces expression of a highly overlapping set of genes, including glucose transporter 4, muscle phosphofructokinase, and glycogen phosphorylase. Furthermore, selective knockdown of Nur77 in rat muscle by small hairpin RNA or genetic deletion of Nur77 in mice reduces the expression of a battery of genes involved in skeletal muscle glucose utilization in vivo. Finally, we show that Nur77 binds the promoter regions of multiple genes involved in glucose metabolism in muscle. These results identify Nur77 as a potential mediator of neuromuscular signaling in the control of metabolic gene expression.

  19. Methods for monitoring multiple gene expression

    Energy Technology Data Exchange (ETDEWEB)

    Berka, Randy [Davis, CA; Bachkirova, Elena [Davis, CA; Rey, Michael [Davis, CA

    2012-05-01

    The present invention relates to methods for monitoring differential expression of a plurality of genes in a first filamentous fungal cell relative to expression of the same genes in one or more second filamentous fungal cells using microarrays containing Trichoderma reesei ESTs or SSH clones, or a combination thereof. The present invention also relates to computer readable media and substrates containing such array features for monitoring expression of a plurality of genes in filamentous fungal cells.

  20. Methods for monitoring multiple gene expression

    Energy Technology Data Exchange (ETDEWEB)

    Berka, Randy; Bachkirova, Elena; Rey, Michael

    2013-10-01

    The present invention relates to methods for monitoring differential expression of a plurality of genes in a first filamentous fungal cell relative to expression of the same genes in one or more second filamentous fungal cells using microarrays containing Trichoderma reesei ESTs or SSH clones, or a combination thereof. The present invention also relates to computer readable media and substrates containing such array features for monitoring expression of a plurality of genes in filamentous fungal cells.

  1. Variant in GALNT3 Gene Linked with Reduced Coronary Artery Disease Risk in Chinese Population.

    Science.gov (United States)

    Guo, Liwei; Li, Duan; Li, Mengting; Li, Lin; Huang, Yanmei

    2017-07-01

    Our previous study found expression of GALNT3 gene was reduced in coronary artery disease (CAD) patients, and it contributed to endothelial injury by regulating apoptosis and matrix metalloproteinase (MMP) expression. GALNT3 gene may be a potential target for future therapeutic intervention of CAD. However, none reports linking the GALNT3 gene to susceptibility of CAD. This study investigated the variant associations of GALNT3 gene and CAD. Thirteen single nucleotide polymorphism (SNP) in and around the GALNT3 gene were tagged and analyzed in CAD patients (n = 1515) and control individuals (n = 5019), and the SNPs with CAD were tested with multiple logistic regression analysis in an additive genetic model (with one degree of freedom) after adjusting for age and sex. Expression of GALNT3 gene was detected by real-time PCR and Western blot. Luciferase reporter assays were used to detect the allele-specific effect of rs4621175 on transcriptional activity. Two GALNT3 markers, rs13427924 and rs4621175, were significantly associated with CAD (odds ratio [OR] = 0.87, p = 1.01 × 10 -3 and OR = 0.75, p = 2.51 × 10 -4 , respectively), and the risk A allele of rs4621175 was associated with lower GALNT3 expression in both mRNA and protein level; also, A allele showed decreased reporter activity. In addition, we found the level of GALNT3 negatively correlated with MMP-2 gene expression. This study identified GALNT3 as a novel gene that rendered patients susceptible to CAD, and the A allele of a disease-associated variant rs4621175 linked reduced CAD risk through decreased GALNT3 expression. These results confirmed the role of GALNT3 gene in CAD and provided new insights into the genetic regulation of the GALNT3 gene with respect to the pathogenesis of CAD.

  2. Link-based quantitative methods to identify differentially coexpressed genes and gene Pairs

    Directory of Open Access Journals (Sweden)

    Ye Zhi-Qiang

    2011-08-01

    Full Text Available Abstract Background Differential coexpression analysis (DCEA is increasingly used for investigating the global transcriptional mechanisms underlying phenotypic changes. Current DCEA methods mostly adopt a gene connectivity-based strategy to estimate differential coexpression, which is characterized by comparing the numbers of gene neighbors in different coexpression networks. Although it simplifies the calculation, this strategy mixes up the identities of different coexpression neighbors of a gene, and fails to differentiate significant differential coexpression changes from those trivial ones. Especially, the correlation-reversal is easily missed although it probably indicates remarkable biological significance. Results We developed two link-based quantitative methods, DCp and DCe, to identify differentially coexpressed genes and gene pairs (links. Bearing the uniqueness of exploiting the quantitative coexpression change of each gene pair in the coexpression networks, both methods proved to be superior to currently popular methods in simulation studies. Re-mining of a publicly available type 2 diabetes (T2D expression dataset from the perspective of differential coexpression analysis led to additional discoveries than those from differential expression analysis. Conclusions This work pointed out the critical weakness of current popular DCEA methods, and proposed two link-based DCEA algorithms that will make contribution to the development of DCEA and help extend it to a broader spectrum.

  3. Assembly of a biocompatible triazole-linked gene by one-pot click-DNA ligation

    Science.gov (United States)

    Kukwikila, Mikiembo; Gale, Nittaya; El-Sagheer, Afaf H.; Brown, Tom; Tavassoli, Ali

    2017-11-01

    The chemical synthesis of oligonucleotides and their enzyme-mediated assembly into genes and genomes has significantly advanced multiple scientific disciplines. However, these approaches are not without their shortcomings; enzymatic amplification and ligation of oligonucleotides into genes and genomes makes automation challenging, and site-specific incorporation of epigenetic information and/or modified bases into large constructs is not feasible. Here we present a fully chemical one-pot method for the assembly of oligonucleotides into a gene by click-DNA ligation. We synthesize the 335 base-pair gene that encodes the green fluorescent protein iLOV from ten functionalized oligonucleotides that contain 5ʹ-azide and 3ʹ-alkyne units. The resulting click-linked iLOV gene contains eight triazoles at the sites of chemical ligation, and yet is fully biocompatible; it is replicated by DNA polymerases in vitro and encodes a functional iLOV protein in Escherichia coli. We demonstrate the power and potential of our one-pot gene-assembly method by preparing an epigenetically modified variant of the iLOV gene.

  4. Linking Multiple Databases: Term Project Using "Sentences" DBMS.

    Science.gov (United States)

    King, Ronald S.; Rainwater, Stephen B.

    This paper describes a methodology for use in teaching an introductory Database Management System (DBMS) course. Students master basic database concepts through the use of a multiple component project implemented in both relational and associative data models. The associative data model is a new approach for designing multi-user, Web-enabled…

  5. Lentiviral hematopoietic cell gene therapy for X-linked adrenoleukodystrophy.

    Science.gov (United States)

    Cartier, Nathalie; Hacein-Bey-Abina, Salima; Bartholomae, Cynthia C; Bougnères, Pierre; Schmidt, Manfred; Kalle, Christof Von; Fischer, Alain; Cavazzana-Calvo, Marina; Aubourg, Patrick

    2012-01-01

    X-linked adrenoleukodystrophy (X-ALD) is a severe genetic demyelinating disease caused by a deficiency in ALD protein, an adenosine triphosphate-binding cassette transporter encoded by the ABCD1 gene. When performed at an early stage of the disease, allogeneic hematopoietic stem cell transplantation (HCT) can arrest the progression of cerebral demyelinating lesions. To overcome the limitations of allogeneic HCT, hematopoietic stem cell (HSC) gene therapy strategy aiming to perform autologous transplantation of lentivirally corrected cells was developed. We demonstrated the preclinical feasibility of HSC gene therapy for ALD based on the correction of CD34+ cells from X-ALD patients using an HIV1-derived lentiviral vector. These results prompted us to initiate an HSC gene therapy trial in two X-ALD patients who had developed progressive cerebral demyelination, were candidates for allogeneic HCT, but had no HLA-matched donors or cord blood. Autologous CD34+ cells were purified from the peripheral blood after G-CSF stimulation, genetically corrected ex vivo with a lentiviral vector encoding wild-type ABCD1 cDNA, and then reinfused into the patients after they had received full myeloablative conditioning. Over 3 years of follow-up, the hematopoiesis remained polyclonal in the two patients treated with 7-14% of granulocytes, monocytes, and T and B lymphocytes expressing the lentivirally encoded ALD protein. There was no evidence of clonal dominance or skewing based on the retrieval of lentiviral insertion repertoire in different hematopoietic lineages by deep sequencing. Cerebral demyelination was arrested 14 and 16months, respectively, in the two treated patients, without further progression up to the last follow-up, a clinical outcome that is comparable to that observed after allogeneic HCT. Longer follow-up of these two treated patients and HSC gene therapy performed in additional ALD patients are however needed to evaluate the safety and efficacy of lentiviral HSC

  6. A Bayesian Hierarchical Model for Relating Multiple SNPs within Multiple Genes to Disease Risk

    Directory of Open Access Journals (Sweden)

    Lewei Duan

    2013-01-01

    Full Text Available A variety of methods have been proposed for studying the association of multiple genes thought to be involved in a common pathway for a particular disease. Here, we present an extension of a Bayesian hierarchical modeling strategy that allows for multiple SNPs within each gene, with external prior information at either the SNP or gene level. The model involves variable selection at the SNP level through latent indicator variables and Bayesian shrinkage at the gene level towards a prior mean vector and covariance matrix that depend on external information. The entire model is fitted using Markov chain Monte Carlo methods. Simulation studies show that the approach is capable of recovering many of the truly causal SNPs and genes, depending upon their frequency and size of their effects. The method is applied to data on 504 SNPs in 38 candidate genes involved in DNA damage response in the WECARE study of second breast cancers in relation to radiotherapy exposure.

  7. Multiple chronic health conditions and their link with wealth assets.

    Science.gov (United States)

    Schofield, Deborah J; Callander, Emily J; Shrestha, Rupendra N; Passey, Megan E; Kelly, Simon J; Percival, Richard

    2015-04-01

    There has been little research on the economic status of those with multiple health conditions, particularly on the relationship between multiple health conditions and wealth. This paper will assess the difference in the value and type of wealth assets held by Australians who have multiple chronic health conditions. Using Health&WealthMOD, a microsimulation model of the 45-64-year-old Australian population in 2009, a counterfactual analysis was undertaken. The actual proportion of people with different numbers of chronic health conditions with any wealth, and the value of this wealth was estimated. This was compared with the counterfactual values had the individuals had no chronic health conditions. There was no change in the proportion of people with one health condition who actually had any wealth, compared to the counterfactual proportion had they had no chronic health conditions. Ninety-four percent of those with four or more health conditions had some accumulated wealth; however, under the counterfactual, 100% would have had some accumulated wealth. There was little change in the value of non-income-producing assets under the counterfactual, regardless of number of health conditions. Those with four or more chronic health conditions had a mean value of $17 000 in income-producing assets; under the counterfactual, the average would have been $78 000. This study has highlighted the variation in the value of wealth according to number of chronic health conditions, and hence the importance of considering multiple morbidities when discussing the relationship between health and wealth. © The Author 2014. Published by Oxford University Press on behalf of the European Public Health Association. All rights reserved.

  8. Meta-Analysis of Multiple Sclerosis Microarray Data Reveals Dysregulation in RNA Splicing Regulatory Genes

    Directory of Open Access Journals (Sweden)

    Elvezia Maria Paraboschi

    2015-09-01

    Full Text Available Abnormalities in RNA metabolism and alternative splicing (AS are emerging as important players in complex disease phenotypes. In particular, accumulating evidence suggests the existence of pathogenic links between multiple sclerosis (MS and altered AS, including functional studies showing that an imbalance in alternatively-spliced isoforms may contribute to disease etiology. Here, we tested whether the altered expression of AS-related genes represents a MS-specific signature. A comprehensive comparative analysis of gene expression profiles of publicly-available microarray datasets (190 MS cases, 182 controls, followed by gene-ontology enrichment analysis, highlighted a significant enrichment for differentially-expressed genes involved in RNA metabolism/AS. In detail, a total of 17 genes were found to be differentially expressed in MS in multiple datasets, with CELF1 being dysregulated in five out of seven studies. We confirmed CELF1 downregulation in MS (p = 0.0015 by real-time RT-PCRs on RNA extracted from blood cells of 30 cases and 30 controls. As a proof of concept, we experimentally verified the unbalance in alternatively-spliced isoforms in MS of the NFAT5 gene, a putative CELF1 target. In conclusion, for the first time we provide evidence of a consistent dysregulation of splicing-related genes in MS and we discuss its possible implications in modulating specific AS events in MS susceptibility genes.

  9. Aberrant gene promoter methylation associated with sporadic multiple colorectal cancer.

    Directory of Open Access Journals (Sweden)

    Victoria Gonzalo

    Full Text Available BACKGROUND: Colorectal cancer (CRC multiplicity has been mainly related to polyposis and non-polyposis hereditary syndromes. In sporadic CRC, aberrant gene promoter methylation has been shown to play a key role in carcinogenesis, although little is known about its involvement in multiplicity. To assess the effect of methylation in tumor multiplicity in sporadic CRC, hypermethylation of key tumor suppressor genes was evaluated in patients with both multiple and solitary tumors, as a proof-of-concept of an underlying epigenetic defect. METHODOLOGY/PRINCIPAL FINDINGS: We examined a total of 47 synchronous/metachronous primary CRC from 41 patients, and 41 gender, age (5-year intervals and tumor location-paired patients with solitary tumors. Exclusion criteria were polyposis syndromes, Lynch syndrome and inflammatory bowel disease. DNA methylation at the promoter region of the MGMT, CDKN2A, SFRP1, TMEFF2, HS3ST2 (3OST2, RASSF1A and GATA4 genes was evaluated by quantitative methylation specific PCR in both tumor and corresponding normal appearing colorectal mucosa samples. Overall, patients with multiple lesions exhibited a higher degree of methylation in tumor samples than those with solitary tumors regarding all evaluated genes. After adjusting for age and gender, binomial logistic regression analysis identified methylation of MGMT2 (OR, 1.48; 95% CI, 1.10 to 1.97; p = 0.008 and RASSF1A (OR, 2.04; 95% CI, 1.01 to 4.13; p = 0.047 as variables independently associated with tumor multiplicity, being the risk related to methylation of any of these two genes 4.57 (95% CI, 1.53 to 13.61; p = 0.006. Moreover, in six patients in whom both tumors were available, we found a correlation in the methylation levels of MGMT2 (r = 0.64, p = 0.17, SFRP1 (r = 0.83, 0.06, HPP1 (r = 0.64, p = 0.17, 3OST2 (r = 0.83, p = 0.06 and GATA4 (r = 0.6, p = 0.24. Methylation in normal appearing colorectal mucosa from patients with multiple and solitary CRC showed no relevant

  10. Linking and Psychological Functioning in a Chinese Sample: The Multiple Mediation of Response to Positive Affect

    Science.gov (United States)

    Yang, Hongfei; Li, Juan

    2016-01-01

    The present study examined the associations between linking, response to positive affect, and psychological functioning in Chinese college students. The results of conducting multiple mediation analyses indicated that emotion- and self-focused positive rumination mediated the relationship between linking and psychological functioning, whereas…

  11. Entropy and Multifractality for the Myeloma Multiple TET 2 Gene

    Directory of Open Access Journals (Sweden)

    Carlo Cattani

    2012-01-01

    Full Text Available The nucleotide and amino-acid distributions are studied for two variants of mRNA of gene that codes for a protein which is involved in multiple myeloid. Some patches and symmetries are singled out, thus, showing some distinctions between the two variants. Fractal dimensions and entropy are discussed as well.

  12. Pediatric Multiple Sclerosis: Genes, Environment, and a Comprehensive Therapeutic Approach.

    Science.gov (United States)

    Cappa, Ryan; Theroux, Liana; Brenton, J Nicholas

    2017-10-01

    Pediatric multiple sclerosis is an increasingly recognized and studied disorder that accounts for 3% to 10% of all patients with multiple sclerosis. The risk for pediatric multiple sclerosis is thought to reflect a complex interplay between environmental and genetic risk factors. Environmental exposures, including sunlight (ultraviolet radiation, vitamin D levels), infections (Epstein-Barr virus), passive smoking, and obesity, have been identified as potential risk factors in youth. Genetic predisposition contributes to the risk of multiple sclerosis, and the major histocompatibility complex on chromosome 6 makes the single largest contribution to susceptibility to multiple sclerosis. With the use of large-scale genome-wide association studies, other non-major histocompatibility complex alleles have been identified as independent risk factors for the disease. The bridge between environment and genes likely lies in the study of epigenetic processes, which are environmentally-influenced mechanisms through which gene expression may be modified. This article will review these topics to provide a framework for discussion of a comprehensive approach to counseling and ultimately treating the pediatric patient with multiple sclerosis. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. The ALMT Gene Family Performs Multiple Functions in Plants

    Directory of Open Access Journals (Sweden)

    Jie Liu

    2018-02-01

    Full Text Available The aluminium activated malate transporter (ALMT gene family is named after the first member of the family identified in wheat (Triticum aestivum L.. The product of this gene controls resistance to aluminium (Al toxicity. ALMT genes encode transmembrane proteins that function as anion channels and perform multiple functions involving the transport of organic anions (e.g., carboxylates and inorganic anions in cells. They share a PF11744 domain and are classified in the Fusaric acid resistance protein-like superfamily, CL0307. The proteins typically have five to seven transmembrane regions in the N-terminal half and a long hydrophillic C-terminal tail but predictions of secondary structure vary. Although widely spread in plants, relatively little information is available on the roles performed by other members of this family. In this review, we summarized functions of ALMT gene families, including Al resistance, stomatal function, mineral nutrition, microbe interactions, fruit acidity, light response and seed development.

  14. Constrained Active Learning for Anchor Link Prediction Across Multiple Heterogeneous Social Networks.

    Science.gov (United States)

    Zhu, Junxing; Zhang, Jiawei; Wu, Quanyuan; Jia, Yan; Zhou, Bin; Wei, Xiaokai; Yu, Philip S

    2017-08-03

    Nowadays, people are usually involved in multiple heterogeneous social networks simultaneously. Discovering the anchor links between the accounts owned by the same users across different social networks is crucial for many important inter-network applications, e.g., cross-network link transfer and cross-network recommendation. Many different supervised models have been proposed to predict anchor links so far, but they are effective only when the labeled anchor links are abundant. However, in real scenarios, such a requirement can hardly be met and most anchor links are unlabeled, since manually labeling the inter-network anchor links is quite costly and tedious. To overcome such a problem and utilize the numerous unlabeled anchor links in model building, in this paper, we introduce the active learning based anchor link prediction problem. Different from the traditional active learning problems, due to the one-to-one constraint on anchor links, if an unlabeled anchor link a = ( u , v ) is identified as positive (i.e., existing), all the other unlabeled anchor links incident to account u or account v will be negative (i.e., non-existing) automatically. Viewed in such a perspective, asking for the labels of potential positive anchor links in the unlabeled set will be rewarding in the active anchor link prediction problem. Various novel anchor link information gain measures are defined in this paper, based on which several constraint active anchor link prediction methods are introduced. Extensive experiments have been done on real-world social network datasets to compare the performance of these methods with state-of-art anchor link prediction methods. The experimental results show that the proposed Mean-entropy-based Constrained Active Learning (MC) method can outperform other methods with significant advantages.

  15. A Comparison of Selective Pressures in Plant X-Linked and Autosomal Genes.

    Science.gov (United States)

    Krasovec, Marc; Nevado, Bruno; Filatov, Dmitry A

    2018-05-03

    Selection is expected to work differently in autosomal and X-linked genes because of their ploidy difference and the exposure of recessive X-linked mutations to haploid selection in males. However, it is not clear whether these expectations apply to recently evolved sex chromosomes, where many genes retain functional X- and Y-linked gametologs. We took advantage of the recently evolved sex chromosomes in the plant Silene latifolia and its closely related species to compare the selective pressures between hemizygous and non-hemizygous X-linked genes as well as between X-linked genes and autosomal genes. Our analysis, based on over 1000 genes, demonstrated that, similar to animals, X-linked genes in Silene evolve significantly faster than autosomal genes—the so-called faster-X effect. Contrary to expectations, faster-X divergence was detectable only for non-hemizygous X-linked genes. Our phylogeny-based analyses of selection revealed no evidence for faster adaptation in X-linked genes compared to autosomal genes. On the other hand, partial relaxation of purifying selection was apparent on the X-chromosome compared to the autosomes, consistent with a smaller genetic diversity in S. latifolia X-linked genes (π x = 0.016; π aut = 0.023). Thus, the faster-X divergence in S. latifolia appears to be a consequence of the smaller effective population size rather than of a faster adaptive evolution on the X-chromosome. We argue that this may be a general feature of “young” sex chromosomes, where the majority of X-linked genes are not hemizygous, preventing haploid selection in heterogametic sex.

  16. Gene expression profiling reveals multiple toxicity endpoints induced by hepatotoxicants

    Energy Technology Data Exchange (ETDEWEB)

    Huang Qihong; Jin Xidong; Gaillard, Elias T.; Knight, Brian L.; Pack, Franklin D.; Stoltz, James H.; Jayadev, Supriya; Blanchard, Kerry T

    2004-05-18

    Microarray technology continues to gain increased acceptance in the drug development process, particularly at the stage of toxicology and safety assessment. In the current study, microarrays were used to investigate gene expression changes associated with hepatotoxicity, the most commonly reported clinical liability with pharmaceutical agents. Acetaminophen, methotrexate, methapyrilene, furan and phenytoin were used as benchmark compounds capable of inducing specific but different types of hepatotoxicity. The goal of the work was to define gene expression profiles capable of distinguishing the different subtypes of hepatotoxicity. Sprague-Dawley rats were orally dosed with acetaminophen (single dose, 4500 mg/kg for 6, 24 and 72 h), methotrexate (1 mg/kg per day for 1, 7 and 14 days), methapyrilene (100 mg/kg per day for 3 and 7 days), furan (40 mg/kg per day for 1, 3, 7 and 14 days) or phenytoin (300 mg/kg per day for 14 days). Hepatic gene expression was assessed using toxicology-specific gene arrays containing 684 target genes or expressed sequence tags (ESTs). Principal component analysis (PCA) of gene expression data was able to provide a clear distinction of each compound, suggesting that gene expression data can be used to discern different hepatotoxic agents and toxicity endpoints. Gene expression data were applied to the multiplicity-adjusted permutation test and significantly changed genes were categorized and correlated to hepatotoxic endpoints. Repression of enzymes involved in lipid oxidation (acyl-CoA dehydrogenase, medium chain, enoyl CoA hydratase, very long-chain acyl-CoA synthetase) were associated with microvesicular lipidosis. Likewise, subsets of genes associated with hepatotocellular necrosis, inflammation, hepatitis, bile duct hyperplasia and fibrosis have been identified. The current study illustrates that expression profiling can be used to: (1) distinguish different hepatotoxic endpoints; (2) predict the development of toxic endpoints; and

  17. Refinement of the localization of the X-linked ocular albinism gene

    NARCIS (Netherlands)

    Bergen, A. A.; Zijp, P.; Schuurman, E. J.; Bleeker-Wagemakers, E. M.; Apkarian, P.; van Ommen, G. J.

    1993-01-01

    Although physical and genetic mapping studies assigned the X-linked ocular albinism gene to Xp22.3, the exact gene order in this region is still unclear. We present additional genetic mapping data concerning X-linked ocular albinism that suggests the consensus order Xpter-STS-DXS237-KAL-(OA1,

  18. An AFLP marker linked to turnip mosaic virus resistance gene in pak ...

    African Journals Online (AJOL)

    An AFLP marker linked to turnip mosaic virus resistance gene in pak-choi. W Xinhua, C Huoying, Z Yuying, H Ruixian. Abstract. Pak-choi is one of the most important vegetable crops in China. Turnip mosaic virus (TuMV) is one of its main pathogen. Screening the molecular marker linked to the TuMV resistance gene is an ...

  19. Dynamic Copy Number Evolution of X- and Y-Linked Ampliconic Genes in Human Populations

    DEFF Research Database (Denmark)

    Lucotte, Elise A; Skov, Laurits; Jensen, Jacob Malte

    2018-01-01

    we explore the evolution of human X- and Y-linked ampliconic genes by investigating copy number variation (CNV) and coding variation between populations using the Simons Genome Diversity Project. We develop a method to assess CNVs using the read-depth on modified X and Y chromosome targets containing...... related Y haplogroups, that diversified less than 50,000 years ago. Moreover, X and Y-linked ampliconic genes seem to have a faster amplification dynamic than autosomal multicopy genes. Looking at expression data from another study, we also find that XY-linked ampliconic genes with extensive copy number...

  20. Multiple genes encode the major surface glycoprotein of Pneumocystis carinii

    DEFF Research Database (Denmark)

    Kovacs, J A; Powell, F; Edman, J C

    1993-01-01

    hydrophobic region at the carboxyl terminus. The presence of multiple related msg genes encoding the major surface glycoprotein of P. carinii suggests that antigenic variation is a possible mechanism for evading host defenses. Further characterization of this family of genes should allow the development......The major surface antigen of Pneumocystis carinii, a life-threatening opportunistic pathogen in human immunodeficiency virus-infected patients, is an abundant glycoprotein that functions in host-organism interactions. A monoclonal antibody to this antigen is protective in animals, and thus...... blot studies using chromosomal or restricted DNA, the major surface glycoproteins are the products of a multicopy family of genes. The predicted protein has an M(r) of approximately 123,000, is relatively rich in cysteine residues (5.5%) that are very strongly conserved, and contains a well conserved...

  1. Multiple roles of integrin-linked kinase in epidermal development, maturation and pigmentation revealed by molecular profiling.

    Directory of Open Access Journals (Sweden)

    David Judah

    Full Text Available Integrin-linked kinase (ILK is an important scaffold protein that mediates a variety of cellular responses to integrin stimulation by extracellular matrix proteins. Mice with epidermis-restricted inactivation of the Ilk gene exhibit pleiotropic phenotypic defects, including impaired hair follicle morphogenesis, reduced epidermal adhesion to the basement membrane, compromised epidermal integrity, as well as wasting and failure to thrive leading to perinatal death. To better understand the underlying molecular mechanisms that cause such a broad range of alterations, we investigated the impact of Ilk gene inactivation on the epidermis transcriptome. Microarray analysis showed over 700 differentially regulated mRNAs encoding proteins involved in multiple aspects of epidermal function, including keratinocyte differentiation and barrier formation, inflammation, regeneration after injury, and fundamental epidermal developmental pathways. These studies also revealed potential effects on genes not previously implicated in ILK functions, including those important for melanocyte and melanoblast development and function, regulation of cytoskeletal dynamics, and homeobox genes. This study shows that ILK is a critical regulator of multiple aspects of epidermal function and homeostasis, and reveals the previously unreported involvement of ILK not only in epidermal differentiation and barrier formation, but also in melanocyte genesis and function.

  2. Multiple roles of integrin-linked kinase in epidermal development, maturation and pigmentation revealed by molecular profiling.

    Science.gov (United States)

    Judah, David; Rudkouskaya, Alena; Wilson, Ryan; Carter, David E; Dagnino, Lina

    2012-01-01

    Integrin-linked kinase (ILK) is an important scaffold protein that mediates a variety of cellular responses to integrin stimulation by extracellular matrix proteins. Mice with epidermis-restricted inactivation of the Ilk gene exhibit pleiotropic phenotypic defects, including impaired hair follicle morphogenesis, reduced epidermal adhesion to the basement membrane, compromised epidermal integrity, as well as wasting and failure to thrive leading to perinatal death. To better understand the underlying molecular mechanisms that cause such a broad range of alterations, we investigated the impact of Ilk gene inactivation on the epidermis transcriptome. Microarray analysis showed over 700 differentially regulated mRNAs encoding proteins involved in multiple aspects of epidermal function, including keratinocyte differentiation and barrier formation, inflammation, regeneration after injury, and fundamental epidermal developmental pathways. These studies also revealed potential effects on genes not previously implicated in ILK functions, including those important for melanocyte and melanoblast development and function, regulation of cytoskeletal dynamics, and homeobox genes. This study shows that ILK is a critical regulator of multiple aspects of epidermal function and homeostasis, and reveals the previously unreported involvement of ILK not only in epidermal differentiation and barrier formation, but also in melanocyte genesis and function.

  3. Visual Comparison of Multiple Gene Expression Datasets in a Genomic Context

    Directory of Open Access Journals (Sweden)

    Borowski Krzysztof

    2008-06-01

    Full Text Available The need for novel methods of visualizing microarray data is growing. New perspectives are beneficial to finding patterns in expression data. The Bluejay genome browser provides an integrative way of visualizing gene expression datasets in a genomic context. We have now developed the functionality to display multiple microarray datasets simultaneously in Bluejay, in order to provide researchers with a comprehensive view of their datasets linked to a graphical representation of gene function. This will enable biologists to obtain valuable insights on expression patterns, by allowing them to analyze the expression values in relation to the gene locations as well as to compare expression profiles of related genomes or of di erent experiments for the same genome.

  4. A family with X-linked anophthalmia: exclusion of SOX3 as a candidate gene.

    Science.gov (United States)

    Slavotinek, Anne; Lee, Stephen S; Hamilton, Steven P

    2005-10-01

    We report on a four-generation family with X-linked anophthalmia in four affected males and show that this family has LOD scores consistent with linkage to Xq27, the third family reported to be linked to the ANOP1 locus. We sequenced the SOX3 gene at Xq27 as a candidate gene for the X-linked anophthalmia based on the high homology of this gene to SOX2, a gene previously mutated in bilateral anophthlamia. However, no amino acid sequence alterations were identified in SOX3. We have improved the definition of the phenotype in males with anophthalmia linked to the ANOP1 locus, as microcephaly, ocular colobomas, and severe renal malformations have not been described in families linked to ANOP1. (c) 2005 Wiley-Liss, Inc.

  5. NIMEFI: gene regulatory network inference using multiple ensemble feature importance algorithms.

    Directory of Open Access Journals (Sweden)

    Joeri Ruyssinck

    Full Text Available One of the long-standing open challenges in computational systems biology is the topology inference of gene regulatory networks from high-throughput omics data. Recently, two community-wide efforts, DREAM4 and DREAM5, have been established to benchmark network inference techniques using gene expression measurements. In these challenges the overall top performer was the GENIE3 algorithm. This method decomposes the network inference task into separate regression problems for each gene in the network in which the expression values of a particular target gene are predicted using all other genes as possible predictors. Next, using tree-based ensemble methods, an importance measure for each predictor gene is calculated with respect to the target gene and a high feature importance is considered as putative evidence of a regulatory link existing between both genes. The contribution of this work is twofold. First, we generalize the regression decomposition strategy of GENIE3 to other feature importance methods. We compare the performance of support vector regression, the elastic net, random forest regression, symbolic regression and their ensemble variants in this setting to the original GENIE3 algorithm. To create the ensemble variants, we propose a subsampling approach which allows us to cast any feature selection algorithm that produces a feature ranking into an ensemble feature importance algorithm. We demonstrate that the ensemble setting is key to the network inference task, as only ensemble variants achieve top performance. As second contribution, we explore the effect of using rankwise averaged predictions of multiple ensemble algorithms as opposed to only one. We name this approach NIMEFI (Network Inference using Multiple Ensemble Feature Importance algorithms and show that this approach outperforms all individual methods in general, although on a specific network a single method can perform better. An implementation of NIMEFI has been made

  6. A simple optical fibre-linked remote control system for multiple devices

    Indian Academy of Sciences (India)

    We report on the development of a simple control system which can handle multiple devices through an optical fibre data link. The devices are controlled using a set of DACs through serial data communication via a serial port of a PC. Serial data from the PC get converted to parallel mode using a homemade “serial in ...

  7. Property Values Associated with the Failure of Individual Links in a System with Multiple Weak and Strong Links.

    Energy Technology Data Exchange (ETDEWEB)

    Helton, Jon C. [Arizona State Univ., Tempe, AZ (United States); Brooks, Dusty Marie [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Sallaberry, Cedric Jean-Marie. [Engineering Mechanics Corp. of Columbus, OH (United States)

    2018-02-01

    Representations are developed and illustrated for the distribution of link property values at the time of link failure in the presence of aleatory uncertainty in link properties. The following topics are considered: (i) defining properties for weak links and strong links, (ii) cumulative distribution functions (CDFs) for link failure time, (iii) integral-based derivation of CDFs for link property at time of link failure, (iv) sampling-based approximation of CDFs for link property at time of link failure, (v) verification of integral-based and sampling-based determinations of CDFs for link property at time of link failure, (vi) distributions of link properties conditional on time of link failure, and (vii) equivalence of two different integral-based derivations of CDFs for link property at time of link failure.

  8. New genes linked to lung cancer susceptibility in Asian women

    Science.gov (United States)

    An international group of scientists has identified three genes that predispose Asian women who have never smoked to lung cancer. The discovery of specific genetic variations, which have not previously been associated with lung cancer risk in other popul

  9. O-linked glycosylation of retroviral envelope gene products

    Energy Technology Data Exchange (ETDEWEB)

    Pinter, A.; Honnen, W.J. (Public Health Research Institute of the City of New York Inc., NY (USA))

    1988-03-01

    Treatment of ({sup 3}H)glucosamine-labeled Friend mink cell focus-forming virus (FrMCF) gp70 with excess peptide:N-glycanase F (PNGase F) resulted in removal of the expected seven N-linked oligosaccharide chains; however, approximately 10% of the glucosamine label was retained in the resulting 49,000-M{sub r} (49K) product. For ({sup 3}H)mannose-labeled gp70, similar treatment led to removal of all the carbohydrate label from the protein. Prior digestion of the PNGase F-treated gp70 with neuraminidase resulted in an addition size shift, and treatment with O-glycanase led to the removal of almost all of the PNGase F-resistant sugars. These results indicate that gp70 possesses sialic acid-containing O-linked oligosaccharides. Analysis of intracellular env precursors demonstrated that O-linked sugars were present in gPr90{sup env}, the polyprotein intermediate which contains complex sugars, but not in the primary translation product, gPr80{sup env}, and proteolytic digestion studies allowed localization of the O-linked carbohydrates to a 10K region near the center of the gp70 molecule. similar substituents were detected on the gp70s of ecotropic and xenotropic murine leukemia viruses and two subgroups of feline leukemia virus, indicting that O-linked glycosylation is a conserved feature of retroviral env proteins.

  10. O-linked glycosylation of retroviral envelope gene products

    International Nuclear Information System (INIS)

    Pinter, A.; Honnen, W.J.

    1988-01-01

    Treatment of [ 3 H]glucosamine-labeled Friend mink cell focus-forming virus (FrMCF) gp70 with excess peptide:N-glycanase F (PNGase F) resulted in removal of the expected seven N-linked oligosaccharide chains; however, approximately 10% of the glucosamine label was retained in the resulting 49,000-M r (49K) product. For [ 3 H]mannose-labeled gp70, similar treatment led to removal of all the carbohydrate label from the protein. Prior digestion of the PNGase F-treated gp70 with neuraminidase resulted in an addition size shift, and treatment with O-glycanase led to the removal of almost all of the PNGase F-resistant sugars. These results indicate that gp70 possesses sialic acid-containing O-linked oligosaccharides. Analysis of intracellular env precursors demonstrated that O-linked sugars were present in gPr90 env , the polyprotein intermediate which contains complex sugars, but not in the primary translation product, gPr80 env , and proteolytic digestion studies allowed localization of the O-linked carbohydrates to a 10K region near the center of the gp70 molecule. similar substituents were detected on the gp70s of ecotropic and xenotropic murine leukemia viruses and two subgroups of feline leukemia virus, indicting that O-linked glycosylation is a conserved feature of retroviral env proteins

  11. Protein functional links in Trypanosoma brucei, identified by gene fusion analysis

    Directory of Open Access Journals (Sweden)

    Trimpalis Philip

    2011-07-01

    Full Text Available Abstract Background Domain or gene fusion analysis is a bioinformatics method for detecting gene fusions in one organism by comparing its genome to that of other organisms. The occurrence of gene fusions suggests that the two original genes that participated in the fusion are functionally linked, i.e. their gene products interact either as part of a multi-subunit protein complex, or in a metabolic pathway. Gene fusion analysis has been used to identify protein functional links in prokaryotes as well as in eukaryotic model organisms, such as yeast and Drosophila. Results In this study we have extended this approach to include a number of recently sequenced protists, four of which are pathogenic, to identify fusion linked proteins in Trypanosoma brucei, the causative agent of African sleeping sickness. We have also examined the evolution of the gene fusion events identified, to determine whether they can be attributed to fusion or fission, by looking at the conservation of the fused genes and of the individual component genes across the major eukaryotic and prokaryotic lineages. We find relatively limited occurrence of gene fusions/fissions within the protist lineages examined. Our results point to two trypanosome-specific gene fissions, which have recently been experimentally confirmed, one fusion involving proteins involved in the same metabolic pathway, as well as two novel putative functional links between fusion-linked protein pairs. Conclusions This is the first study of protein functional links in T. brucei identified by gene fusion analysis. We have used strict thresholds and only discuss results which are highly likely to be genuine and which either have already been or can be experimentally verified. We discuss the possible impact of the identification of these novel putative protein-protein interactions, to the development of new trypanosome therapeutic drugs.

  12. Horizontal acquisition of multiple mitochondrial genes from a parasitic plant followed by gene conversion with host mitochondrial genes

    Science.gov (United States)

    2010-01-01

    Background Horizontal gene transfer (HGT) is relatively common in plant mitochondrial genomes but the mechanisms, extent and consequences of transfer remain largely unknown. Previous results indicate that parasitic plants are often involved as either transfer donors or recipients, suggesting that direct contact between parasite and host facilitates genetic transfer among plants. Results In order to uncover the mechanistic details of plant-to-plant HGT, the extent and evolutionary fate of transfer was investigated between two groups: the parasitic genus Cuscuta and a small clade of Plantago species. A broad polymerase chain reaction (PCR) survey of mitochondrial genes revealed that at least three genes (atp1, atp6 and matR) were recently transferred from Cuscuta to Plantago. Quantitative PCR assays show that these three genes have a mitochondrial location in the one species line of Plantago examined. Patterns of sequence evolution suggest that these foreign genes degraded into pseudogenes shortly after transfer and reverse transcription (RT)-PCR analyses demonstrate that none are detectably transcribed. Three cases of gene conversion were detected between native and foreign copies of the atp1 gene. The identical phylogenetic distribution of the three foreign genes within Plantago and the retention of cytidines at ancestral positions of RNA editing indicate that these genes were probably acquired via a single, DNA-mediated transfer event. However, samplings of multiple individuals from two of the three species in the recipient Plantago clade revealed complex and perplexing phylogenetic discrepancies and patterns of sequence divergence for all three of the foreign genes. Conclusions This study reports the best evidence to date that multiple mitochondrial genes can be transferred via a single HGT event and that transfer occurred via a strictly DNA-level intermediate. The discovery of gene conversion between co-resident foreign and native mitochondrial copies suggests

  13. Horizontal acquisition of multiple mitochondrial genes from a parasitic plant followed by gene conversion with host mitochondrial genes

    Directory of Open Access Journals (Sweden)

    Hao Weilong

    2010-12-01

    Full Text Available Abstract Background Horizontal gene transfer (HGT is relatively common in plant mitochondrial genomes but the mechanisms, extent and consequences of transfer remain largely unknown. Previous results indicate that parasitic plants are often involved as either transfer donors or recipients, suggesting that direct contact between parasite and host facilitates genetic transfer among plants. Results In order to uncover the mechanistic details of plant-to-plant HGT, the extent and evolutionary fate of transfer was investigated between two groups: the parasitic genus Cuscuta and a small clade of Plantago species. A broad polymerase chain reaction (PCR survey of mitochondrial genes revealed that at least three genes (atp1, atp6 and matR were recently transferred from Cuscuta to Plantago. Quantitative PCR assays show that these three genes have a mitochondrial location in the one species line of Plantago examined. Patterns of sequence evolution suggest that these foreign genes degraded into pseudogenes shortly after transfer and reverse transcription (RT-PCR analyses demonstrate that none are detectably transcribed. Three cases of gene conversion were detected between native and foreign copies of the atp1 gene. The identical phylogenetic distribution of the three foreign genes within Plantago and the retention of cytidines at ancestral positions of RNA editing indicate that these genes were probably acquired via a single, DNA-mediated transfer event. However, samplings of multiple individuals from two of the three species in the recipient Plantago clade revealed complex and perplexing phylogenetic discrepancies and patterns of sequence divergence for all three of the foreign genes. Conclusions This study reports the best evidence to date that multiple mitochondrial genes can be transferred via a single HGT event and that transfer occurred via a strictly DNA-level intermediate. The discovery of gene conversion between co-resident foreign and native

  14. Three gene expression vector sets for concurrently expressing multiple genes in Saccharomyces cerevisiae.

    Science.gov (United States)

    Ishii, Jun; Kondo, Takashi; Makino, Harumi; Ogura, Akira; Matsuda, Fumio; Kondo, Akihiko

    2014-05-01

    Yeast has the potential to be used in bulk-scale fermentative production of fuels and chemicals due to its tolerance for low pH and robustness for autolysis. However, expression of multiple external genes in one host yeast strain is considerably labor-intensive due to the lack of polycistronic transcription. To promote the metabolic engineering of yeast, we generated systematic and convenient genetic engineering tools to express multiple genes in Saccharomyces cerevisiae. We constructed a series of multi-copy and integration vector sets for concurrently expressing two or three genes in S. cerevisiae by embedding three classical promoters. The comparative expression capabilities of the constructed vectors were monitored with green fluorescent protein, and the concurrent expression of genes was monitored with three different fluorescent proteins. Our multiple gene expression tool will be helpful to the advanced construction of genetically engineered yeast strains in a variety of research fields other than metabolic engineering. © 2014 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  15. Cross-species multiple environmental stress responses: An integrated approach to identify candidate genes for multiple stress tolerance in sorghum (Sorghum bicolor (L. Moench and related model species.

    Directory of Open Access Journals (Sweden)

    Adugna Abdi Woldesemayat

    Full Text Available Crop response to the changing climate and unpredictable effects of global warming with adverse conditions such as drought stress has brought concerns about food security to the fore; crop yield loss is a major cause of concern in this regard. Identification of genes with multiple responses across environmental stresses is the genetic foundation that leads to crop adaptation to environmental perturbations.In this paper, we introduce an integrated approach to assess candidate genes for multiple stress responses across-species. The approach combines ontology based semantic data integration with expression profiling, comparative genomics, phylogenomics, functional gene enrichment and gene enrichment network analysis to identify genes associated with plant stress phenotypes. Five different ontologies, viz., Gene Ontology (GO, Trait Ontology (TO, Plant Ontology (PO, Growth Ontology (GRO and Environment Ontology (EO were used to semantically integrate drought related information.Target genes linked to Quantitative Trait Loci (QTLs controlling yield and stress tolerance in sorghum (Sorghum bicolor (L. Moench and closely related species were identified. Based on the enriched GO terms of the biological processes, 1116 sorghum genes with potential responses to 5 different stresses, such as drought (18%, salt (32%, cold (20%, heat (8% and oxidative stress (25% were identified to be over-expressed. Out of 169 sorghum drought responsive QTLs associated genes that were identified based on expression datasets, 56% were shown to have multiple stress responses. On the other hand, out of 168 additional genes that have been evaluated for orthologous pairs, 90% were conserved across species for drought tolerance. Over 50% of identified maize and rice genes were responsive to drought and salt stresses and were co-located within multifunctional QTLs. Among the total identified multi-stress responsive genes, 272 targets were shown to be co-localized within QTLs

  16. Cognitive genomics: Linking genes to behavior in the human brain

    Directory of Open Access Journals (Sweden)

    Genevieve Konopka

    2017-02-01

    Full Text Available Correlations of genetic variation in DNA with functional brain activity have already provided a starting point for delving into human cognitive mechanisms. However, these analyses do not provide the specific genes driving the associations, which are complicated by intergenic localization as well as tissue-specific epigenetics and expression. The use of brain-derived expression datasets could build upon the foundation of these initial genetic insights and yield genes and molecular pathways for testing new hypotheses regarding the molecular bases of human brain development, cognition, and disease. Thus, coupling these human brain gene expression data with measurements of brain activity may provide genes with critical roles in brain function. However, these brain gene expression datasets have their own set of caveats, most notably a reliance on postmortem tissue. In this perspective, I summarize and examine the progress that has been made in this realm to date, and discuss the various frontiers remaining, such as the inclusion of cell-type-specific information, additional physiological measurements, and genomic data from patient cohorts.

  17. Gene prediction using the Self-Organizing Map: automatic generation of multiple gene models.

    Science.gov (United States)

    Mahony, Shaun; McInerney, James O; Smith, Terry J; Golden, Aaron

    2004-03-05

    Many current gene prediction methods use only one model to represent protein-coding regions in a genome, and so are less likely to predict the location of genes that have an atypical sequence composition. It is likely that future improvements in gene finding will involve the development of methods that can adequately deal with intra-genomic compositional variation. This work explores a new approach to gene-prediction, based on the Self-Organizing Map, which has the ability to automatically identify multiple gene models within a genome. The current implementation, named RescueNet, uses relative synonymous codon usage as the indicator of protein-coding potential. While its raw accuracy rate can be less than other methods, RescueNet consistently identifies some genes that other methods do not, and should therefore be of interest to gene-prediction software developers and genome annotation teams alike. RescueNet is recommended for use in conjunction with, or as a complement to, other gene prediction methods.

  18. Relationship-Oriented Software Defined AS-Level Fast Rerouting for Multiple Link Failures

    Directory of Open Access Journals (Sweden)

    Chunxiu Li

    2015-01-01

    Full Text Available Large-scale deployments of mission-critical services have led to stringent demands on Internet routing, but frequently occurring network failures can dramatically degrade the network performance. However, Border Gateway Protocol (BGP can not react quickly to recover from them. Although extensive research has been conducted to deal with the problem, the multiple failure scenarios have never been properly addressed due to the limit of distributed control plane. In this paper, we propose a local fast reroute approach to effectively recover from multiple link failures in one administrative domain. The principle of Software Defined Networking (SDN is used to achieve the software defined AS-level fast rerouting. Considering AS relationships, efficient algorithms are proposed to automatically and dynamically find protection paths for multiple link failures; then OpenFlow forwarding rules are installed on routers to provide data forwarding continuity. Our approach is able to ensure applicability to ASes with flexibility and adaptability to multiple link failures, contributing toward improving the network performance. Through experimental results, we show that our proposal provides effective failure recovery and does not introduce significant control overhead to the network.

  19. Mutational landscape of the human Y chromosome-linked genes ...

    Indian Academy of Sciences (India)

    arsenic pollution (Ali and Ali 2010), cases of prostate can- cer (Pathak et al. ...... of function of the KiSS1-derived peptide receptor GPR54. Proc. Natl. Acad. Sci. .... genes and loci in prostate cancer cell lines DU145 and LNCaP. BMC Genomics ...

  20. X-linked genes and risk of orofacial clefts

    DEFF Research Database (Denmark)

    Jugessur, Astanand; Skare, Øivind; Lie, Rolv T

    2012-01-01

    Orofacial clefts are common birth defects of complex etiology, with an excess of males among babies with cleft lip and palate, and an excess of females among those with cleft palate only. Although genes on the X chromosome have been implicated in clefting, there has been no association analysis...

  1. Adaptive Horizontal Gene Transfers between Multiple Cheese-Associated Fungi.

    Science.gov (United States)

    Ropars, Jeanne; Rodríguez de la Vega, Ricardo C; López-Villavicencio, Manuela; Gouzy, Jérôme; Sallet, Erika; Dumas, Émilie; Lacoste, Sandrine; Debuchy, Robert; Dupont, Joëlle; Branca, Antoine; Giraud, Tatiana

    2015-10-05

    Domestication is an excellent model for studies of adaptation because it involves recent and strong selection on a few, identified traits [1-5]. Few studies have focused on the domestication of fungi, with notable exceptions [6-11], despite their importance to bioindustry [12] and to a general understanding of adaptation in eukaryotes [5]. Penicillium fungi are ubiquitous molds among which two distantly related species have been independently selected for cheese making-P. roqueforti for blue cheeses like Roquefort and P. camemberti for soft cheeses like Camembert. The selected traits include morphology, aromatic profile, lipolytic and proteolytic activities, and ability to grow at low temperatures, in a matrix containing bacterial and fungal competitors [13-15]. By comparing the genomes of ten Penicillium species, we show that adaptation to cheese was associated with multiple recent horizontal transfers of large genomic regions carrying crucial metabolic genes. We identified seven horizontally transferred regions (HTRs) spanning more than 10 kb each, flanked by specific transposable elements, and displaying nearly 100% identity between distant Penicillium species. Two HTRs carried genes with functions involved in the utilization of cheese nutrients or competition and were found nearly identical in multiple strains and species of cheese-associated Penicillium fungi, indicating recent selective sweeps; they were experimentally associated with faster growth and greater competitiveness on cheese and contained genes highly expressed in the early stage of cheese maturation. These findings have industrial and food safety implications and improve our understanding of the processes of adaptation to rapid environmental changes. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  2. Multiple repair pathways mediate tolerance to chemotherapeutic cross-linking agents in vertebrate cells.

    Science.gov (United States)

    Nojima, Kuniharu; Hochegger, Helfrid; Saberi, Alihossein; Fukushima, Toru; Kikuchi, Koji; Yoshimura, Michio; Orelli, Brian J; Bishop, Douglas K; Hirano, Seiki; Ohzeki, Mioko; Ishiai, Masamichi; Yamamoto, Kazuhiko; Takata, Minoru; Arakawa, Hiroshi; Buerstedde, Jean-Marie; Yamazoe, Mitsuyoshi; Kawamoto, Takuo; Araki, Kasumi; Takahashi, Jun A; Hashimoto, Nobuo; Takeda, Shunichi; Sonoda, Eiichiro

    2005-12-15

    Cross-linking agents that induce DNA interstrand cross-links (ICL) are widely used in anticancer chemotherapy. Yeast genetic studies show that nucleotide excision repair (NER), Rad6/Rad18-dependent postreplication repair, homologous recombination, and cell cycle checkpoint pathway are involved in ICL repair. To study the contribution of DNA damage response pathways in tolerance to cross-linking agents in vertebrates, we made a panel of gene-disrupted clones from chicken DT40 cells, each defective in a particular DNA repair or checkpoint pathway, and measured the sensitivities to cross-linking agents, including cis-diamminedichloroplatinum (II) (cisplatin), mitomycin C, and melphalan. We found that cells harboring defects in translesion DNA synthesis (TLS), Fanconi anemia complementation groups (FANC), or homologous recombination displayed marked hypersensitivity to all the cross-linking agents, whereas NER seemed to play only a minor role. This effect of replication-dependent repair pathways is distinctively different from the situation in yeast, where NER seems to play a major role in dealing with ICL. Cells deficient in Rev3, the catalytic subunit of TLS polymerase Polzeta, showed the highest sensitivity to cisplatin followed by fanc-c. Furthermore, epistasis analysis revealed that these two mutants work in the same pathway. Our genetic comprehensive study reveals a critical role for DNA repair pathways that release DNA replication block at ICLs in cellular tolerance to cross-linking agents and could be directly exploited in designing an effective chemotherapy.

  3. Medial prefrontal cortex: genes linked to bipolar disorder and schizophrenia have altered expression in the highly social maternal phenotype

    Directory of Open Access Journals (Sweden)

    Brian E Eisinger

    2014-04-01

    Full Text Available The transition to motherhood involves CNS changes that modify sociability and affective state. However, these changes also put females at risk for postpartum depression and psychosis, which impairs parenting abilities and adversely affects children. Thus, changes in expression and interactions in a core subset of genes may be critical for emergence of a healthy maternal phenotype, but inappropriate changes of the same genes could put women at risk for postpartum disorders. This study evaluated microarray gene expression changes in medial prefrontal cortex (mPFC, a region implicated in both maternal behavior and psychiatric disorders. Postpartum mice were compared to virgin controls housed with females and isolated for identical durations. Using the Modular Single-set Enrichment Test (MSET, we found that the genetic landscape of maternal mPFC bears statistical similarity to gene databases associated with schizophrenia (5 of 5 sets and bipolar disorder (BPD, 3 of 3 sets. In contrast to previous studies of maternal lateral septum and medial preoptic area, enrichment of autism and depression-linked genes was not significant (2 of 9 sets, 0 of 4 sets. Among genes linked to multiple disorders were fatty acid binding protein 7 (Fabp7, glutamate metabotropic receptor 3 (Grm3, platelet derived growth factor, beta polypeptide (Pdgfrb, and nuclear receptor subfamily 1, group D, member 1 (Nr1d1. RT-qPCR confirmed these gene changes as well as FMS-like tyrosine kinase 1 (Flt1 and proenkephalin (Penk. Systems-level methods revealed involvement of developmental gene networks in establishing the maternal phenotype and indirectly suggested a role for numerous microRNAs and transcription factors in mediating expression changes. Together, this study suggests that a subset of genes involved in shaping the healthy maternal brain may also be dysregulated in mental health disorders and put females at risk for postpartum psychosis with aspects of schizophrenia and BPD.

  4. Possible Links among Mirror Neurons and Genes Related to Autism

    OpenAIRE

    MOCHIZUKI, Mai; 望月,麻衣

    2016-01-01

    Autism includes many neurodevelopmental disorders and defi cits in communication. Althoughresearchers have considered various origins, the onset mechanism is still not clear. The aim ofthis article is to provide some clues for interaction of autism with mirror neuronal and geneticfactors. First, the impact of neural brain cells considered to infl uence autism will be discussedwith reference to mirror neurons. Then, the discussion will move to genes related to autism.Consequently, it is argued...

  5. Birth and death of genes linked to chromosomal inversion

    Science.gov (United States)

    Furuta, Yoshikazu; Kawai, Mikihiko; Yahara, Koji; Takahashi, Noriko; Handa, Naofumi; Tsuru, Takeshi; Oshima, Kenshiro; Yoshida, Masaru; Azuma, Takeshi; Hattori, Masahira; Uchiyama, Ikuo; Kobayashi, Ichizo

    2011-01-01

    The birth and death of genes is central to adaptive evolution, yet the underlying genome dynamics remain elusive. The availability of closely related complete genome sequences helps to follow changes in gene contents and clarify their relationship to overall genome organization. Helicobacter pylori, bacteria in our stomach, are known for their extreme genome plasticity through mutation and recombination and will make a good target for such an analysis. In comparing their complete genome sequences, we found that gain and loss of genes (loci) for outer membrane proteins, which mediate host interaction, occurred at breakpoints of chromosomal inversions. Sequence comparison there revealed a unique mechanism of DNA duplication: DNA duplication associated with inversion. In this process, a DNA segment at one chromosomal locus is copied and inserted, in an inverted orientation, into a distant locus on the same chromosome, while the entire region between these two loci is also inverted. Recognition of this and three more inversion modes, which occur through reciprocal recombination between long or short sequence similarity or adjacent to a mobile element, allowed reconstruction of synteny evolution through inversion events in this species. These results will guide the interpretation of extensive DNA sequencing results for understanding long- and short-term genome evolution in various organisms and in cancer cells. PMID:21212362

  6. Genome-wide misexpression of X-linked versus autosomal genes associated with hybrid male sterility.

    Science.gov (United States)

    Lu, Xuemei; Shapiro, Joshua A; Ting, Chau-Ti; Li, Yan; Li, Chunyan; Xu, Jin; Huang, Huanwei; Cheng, Ya-Jen; Greenberg, Anthony J; Li, Shou-Hsien; Wu, Mao-Lien; Shen, Yang; Wu, Chung-I

    2010-08-01

    Postmating reproductive isolation is often manifested as hybrid male sterility, for which X-linked genes are overrepresented (the so-called large X effect). In contrast, X-linked genes are significantly under-represented among testis-expressing genes. This seeming contradiction may be germane to the X:autosome imbalance hypothesis on hybrid sterility, in which the X-linked effect is mediated mainly through the misexpression of autosomal genes. In this study, we compared gene expression in fertile and sterile males in the hybrids between two Drosophila species. These hybrid males differ only in a small region of the X chromosome containing the Ods-site homeobox (OdsH) (also known as Odysseus) locus of hybrid sterility. Of genes expressed in the testis, autosomal genes were, indeed, more likely to be misexpressed than X-linked genes under the sterilizing action of OdsH. Since this mechanism of X:autosome interaction is only associated with spermatogenesis, a connection between X:autosome imbalance and the high rate of hybrid male sterility seems plausible.

  7. Infectious mononucleosis-linked HLA class I single nucleotide polymorphism is associated with multiple sclerosis.

    Science.gov (United States)

    Jafari, Naghmeh; Broer, Linda; Hoppenbrouwers, Ilse A; van Duijn, Cornelia M; Hintzen, Rogier Q

    2010-11-01

    Multiple sclerosis is a presumed autoimmune disease associated with genetic and environmental risk factors such as infectious mononucleosis. Recent research has shown infectious mononucleosis to be associated with a specific HLA class I polymorphism. Our aim was to test if the infectious mononucleosis-linked HLA class I single nucleotide polymorphism (rs6457110) is also associated with multiple sclerosis. Genotyping of the HLA-A single nucleotide polymorphism rs6457110 using TaqMan was performed in 591 multiple sclerosis cases and 600 controls. The association of multiple sclerosis with the HLA-A single nucleotide polymorphism was tested using logistic regression adjusted for age, sex and HLA-DRB1*1501. HLA-A minor allele (A) is associated with multiple sclerosis (OR = 0.68; p = 4.08 × 10( -5)). After stratification for HLA-DRB1*1501 risk allele (T) carrier we showed a significant OR of 0.70 (p = 0.003) for HLA-A. HLA class I single nucleotide polymorphism rs6457110 is associated with infectious mononucleosis and multiple sclerosis, independent of the major class II allele, supporting the hypothesis that shared genetics may contribute to the association between infectious mononucleosis and multiple sclerosis.

  8. Gene-environment interactions linking air pollution and inflammation in Parkinson's disease.

    Science.gov (United States)

    Lee, Pei-Chen; Raaschou-Nielsen, Ole; Lill, Christina M; Bertram, Lars; Sinsheimer, Janet S; Hansen, Johnni; Ritz, Beate

    2016-11-01

    Both air pollution exposure and systemic inflammation have been linked to Parkinson's disease (PD). In the PASIDA study, 408 incident cases of PD diagnosed in 2006-2009 and their 495 population controls were interviewed and provided DNA samples. Markers of long term traffic related air pollution measures were derived from geographic information systems (GIS)-based modeling. Furthermore, we genotyped functional polymorphisms in genes encoding proinflammatory cytokines, namely rs1800629 in TNFα (tumor necrosis factor alpha) and rs16944 in IL1B (interleukin-1β). In logistic regression models, long-term exposure to NO 2 increased PD risk overall (odds ratio (OR)=1.06 per 2.94μg/m 3 increase, 95% CI=1.00-1.13). The OR for PD in individuals with high NO 2 exposure (≧75th percentile) and the AA genotype of IL1B rs16944 was 3.10 (95% CI=1.14-8.38) compared with individuals with lower NO 2 exposure (<75th percentile) and the GG genotype. The interaction term was nominally significant on the multiplicative scale (p=0.01). We did not find significant gene-environment interactions with TNF rs1800629. Our finds may provide suggestive evidence that a combination of traffic-related air pollution and genetic variation in the proinflammatory cytokine gene IL1B contribute to risk of developing PD. However, as statistical evidence was only modest in this large sample we cannot rule out that these results represent a chance finding, and additional replication efforts are warranted. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. Risk score modeling of multiple gene to gene interactions using aggregated-multifactor dimensionality reduction

    Directory of Open Access Journals (Sweden)

    Dai Hongying

    2013-01-01

    Full Text Available Abstract Background Multifactor Dimensionality Reduction (MDR has been widely applied to detect gene-gene (GxG interactions associated with complex diseases. Existing MDR methods summarize disease risk by a dichotomous predisposing model (high-risk/low-risk from one optimal GxG interaction, which does not take the accumulated effects from multiple GxG interactions into account. Results We propose an Aggregated-Multifactor Dimensionality Reduction (A-MDR method that exhaustively searches for and detects significant GxG interactions to generate an epistasis enriched gene network. An aggregated epistasis enriched risk score, which takes into account multiple GxG interactions simultaneously, replaces the dichotomous predisposing risk variable and provides higher resolution in the quantification of disease susceptibility. We evaluate this new A-MDR approach in a broad range of simulations. Also, we present the results of an application of the A-MDR method to a data set derived from Juvenile Idiopathic Arthritis patients treated with methotrexate (MTX that revealed several GxG interactions in the folate pathway that were associated with treatment response. The epistasis enriched risk score that pooled information from 82 significant GxG interactions distinguished MTX responders from non-responders with 82% accuracy. Conclusions The proposed A-MDR is innovative in the MDR framework to investigate aggregated effects among GxG interactions. New measures (pOR, pRR and pChi are proposed to detect multiple GxG interactions.

  10. Multiple Brain Markers are Linked to Age-Related Variation in Cognition

    Science.gov (United States)

    Hedden, Trey; Schultz, Aaron P.; Rieckmann, Anna; Mormino, Elizabeth C.; Johnson, Keith A.; Sperling, Reisa A.; Buckner, Randy L.

    2016-01-01

    Age-related alterations in brain structure and function have been challenging to link to cognition due to potential overlapping influences of multiple neurobiological cascades. We examined multiple brain markers associated with age-related variation in cognition. Clinically normal older humans aged 65–90 from the Harvard Aging Brain Study (N = 186) were characterized on a priori magnetic resonance imaging markers of gray matter thickness and volume, white matter hyperintensities, fractional anisotropy (FA), resting-state functional connectivity, positron emission tomography markers of glucose metabolism and amyloid burden, and cognitive factors of processing speed, executive function, and episodic memory. Partial correlation and mediation analyses estimated age-related variance in cognition shared with individual brain markers and unique to each marker. The largest relationships linked FA and striatum volume to processing speed and executive function, and hippocampal volume to episodic memory. Of the age-related variance in cognition, 70–80% was accounted for by combining all brain markers (but only ∼20% of total variance). Age had significant indirect effects on cognition via brain markers, with significant markers varying across cognitive domains. These results suggest that most age-related variation in cognition is shared among multiple brain markers, but potential specificity between some brain markers and cognitive domains motivates additional study of age-related markers of neural health. PMID:25316342

  11. Reading, writing, and reserve: Literacy activities are linked to hippocampal volume and memory in multiple sclerosis.

    Science.gov (United States)

    Sumowski, James F; Rocca, Maria A; Leavitt, Victoria M; Riccitelli, Gianna; Meani, Alessandro; Comi, Giancarlo; Filippi, Massimo

    2016-10-01

    Engagement in cognitive leisure activities during early adulthood has been linked to preserved memory and larger hippocampal volume in persons with multiple sclerosis (MS). To investigate which specific types of cognitive leisure activities contribute to hippocampal volume and memory. We investigated links between three types of cognitive activities (Reading-Writing, Art-Music, Games-Hobbies) and (a) hippocampal volume within independent samples of Italian (n=187) and American (n=55) MS patients and (b) memory in subsamples of Italian (n=97) and American (n=53) patients. Reading-Writing was the only predictor of hippocampal volume (rp=.204, p=.002), and the best predictor of memory (rp=.288, p=.001). Findings inform the development of targeted evidence-based enrichment programs aiming to bolster reserve against memory decline. © The Author(s), 2016.

  12. Protective personality traits: High openness and low neuroticism linked to better memory in multiple sclerosis.

    Science.gov (United States)

    Leavitt, Victoria M; Buyukturkoglu, Korhan; Inglese, Matilde; Sumowski, James F

    2017-11-01

    Memory impairment in multiple sclerosis (MS) is common, although few risk/protective factors are known. To examine relationships of personality to memory/non-memory cognition in MS. 80 patients completed a cognitive battery and a personality scale measuring the "Big 5" traits: openness, neuroticism, agreeableness, extraversion, and conscientiousness. Memory was most related to openness, with higher openness linked to better memory and lower risk for memory impairment, controlling for age, atrophy, education, and intelligence quotient (IQ). Lower neuroticism was also related to better memory, and lower conscientiousness to memory impairment. Non-memory cognition was unrelated to personality. Personality may inform predictive models of memory impairment in MS.

  13. Unprecedented linking of two polyoxometalate units with a metal-metal multiple bond.

    Science.gov (United States)

    Sokolov, Maxim N; Korenev, Vladimir S; Izarova, Natalya V; Peresypkina, Eugenia V; Vicent, Cristian; Fedin, Vladimir P

    2009-03-02

    The reaction of (Bu(4)N)(2)[Re(2)Cl(8)] with lacunary Keggin polyoxometalate K(7)[PW(11)O(39)] in water produces a new dumbbell-shaped heteropolyoxometalate anion, [Re(2)(PW(11)O(39))(2)](8-), whose structure contains a central Re(2) core with a quadruple bond between Re atoms (Re-Re 2.25 A), coordinated to two polyoxometalate units. This complex represents the first example of the direct linking of two polyoxometalate units via a metal-metal multiple bond. The compounds were characterized by X-ray analysis, IR, and electrospray ionization mass spectrometry.

  14. The organization structure and regulatory elements of Chlamydomonas histone genes reveal features linking plant and animal genes.

    Science.gov (United States)

    Fabry, S; Müller, K; Lindauer, A; Park, P B; Cornelius, T; Schmitt, R

    1995-09-01

    The genome of the green alga Chlamydomonas reinhardtii contains approximately 15 gene clusters of the nucleosomal (or core) histone H2A, H2B, H3 and H4 genes and at least one histone H1 gene. Seven non-allelic histone gene loci were isolated from a genomic library, physically mapped, and the nucleotide sequences of three isotypes of each core histone gene species and one linked H1 gene determined. The core histone genes are organized in clusters of H2A-H2B and H3-H4 pairs, in which each gene pair shows outwardly divergent transcription from a short (< 300 bp) intercistronic region. These intercistronic regions contain typically conserved promoter elements, namely a TATA-box and the three motifs TGGCCAG-G(G/C)-CGAG, CGTTGACC and CGGTTG. Different from the genes of higher plants, but like those of animals and the related alga Volvox, the 3' untranslated regions contain no poly A signal, but a palindromic sequence (3' palindrome) essential for mRNA processing is present. One single H1 gene was found in close linkage to a H2A-H2B pair. The H1 upstream region contains the octameric promoter element GGTTGACC (also found upstream of the core histone genes) and two specific sequence motifs that are shared only with the Volvox H1 promoters. This suggests differential transcription of the H1 and the core histone genes. The H1 gene is interrupted by two introns. Unlike Volvox H3 genes, the three sequenced H3 isoforms are intron-free. Primer-directed PCR of genomic DNA demonstrated, however, that at least 8 of the about 15 H3 genes do contain one intron at a conserved position. In synchronized C. reinhardtii cells, H4 mRNA levels (representative of all core histone mRNAs) peak during cell division, suggesting strict replication-dependent gene control. The derived peptide sequences place C. reinhardtii core histones closer to plants than to animals, except that the H2A histones are more animal-like. The peptide sequence of histone H1 is closely related to the V. carteri VH1-II

  15. Screening of point mutations by multiple SSCP analysis in the dystrophin gene

    Energy Technology Data Exchange (ETDEWEB)

    Lasa, A.; Baiget, M.; Gallano, P. [Hospital Sant Pau, Barcelona (Spain)

    1994-09-01

    Duchenne muscular dystrophy (DMD) is a lethal, X-linked neuromuscular disorder. The population frequency of DMD is one in approximately 3500 boys, of which one third is thought to be a new mutant. The DMD gene is the largest known to date, spanning over 2,3 Mb in band Xp21.2; 79 exons are transcribed into a 14 Kb mRNA coding for a protein of 427 kD which has been named dystrophin. It has been shown that about 65% of affected boys have a gene deletion with a wide variation in localization and size. The remaining affected individuals who have no detectable deletions or duplications would probably carry more subtle mutations that are difficult to detect. These mutations occur in several different exons and seem to be unique to single patients. Their identification represents a formidable goal because of the large size and complexity of the dystrophin gene. SSCP is a very efficient method for the detection of point mutations if the parameters that affect the separation of the strands are optimized for a particular DNA fragment. The multiple SSCP allows the simultaneous study of several exons, and implies the use of different conditions because no single set of conditions will be optimal for all fragments. Seventy-eight DMD patients with no deletion or duplication in the dystrophin gene were selected for the multiple SSCP analysis. Genomic DNA from these patients was amplified using the primers described for the diagnosis procedure (muscle promoter and exons 3, 8, 12, 16, 17, 19, 32, 45, 48 and 51). We have observed different mobility shifts in bands corresponding to exons 8, 12, 43 and 51. In exons 17 and 45, altered electrophoretic patterns were found in different samples identifying polymorphisms already described.

  16. Molecular patterns of X chromosome-linked color vision genes among 134 menof European ancestry

    International Nuclear Information System (INIS)

    Drummond-Borg, M.; Deeb, S.S.; Motulsky, A.G.

    1989-01-01

    The authors used Southern blot hybridization to study X chromosome-linked color vision genes encoding the apoproteins of red and green visual pigments in 134 unselected Caucasian men. One hundred and thirteen individuals (84.3%) had a normal arrangement of their color vision pigment genes. All had one red pigment gene; the number of green pigment genes ranged from one to five with a mode of two. The frequency of molecular genotypes indicative of normal color vision (84.3%) was significantly lower than had been observed in previous studies of color vision phenotypes. Color vision defects can be due to deletions of red or green pigment genes or due to formation of hybrid genes comprising portions of both red and green pigment genes. Characteristic anomalous patterns were seen in 15 (11.2%) individuals: 7 (5.2%) had patterns characteristic of deuteranomaly, 2 (1.5%) had patterns characteristic of deuteranopia, and 6 (4.5%) had protan patterns. Previously undescribed hybrid gene patterns consisting of both green and red pigment gene fragments in addition to normal red and green genes were observed in another 6 individuals (4.5%). Thus, DNA testing detected anomalous color vision pigment genes at a higher frequency than expected from phenotypic color vision tests

  17. Nur77 coordinately regulates expression of genes linked to glucose metabolism in skeletal muscle

    OpenAIRE

    Chao, Lily C.; Zhang, Zidong; Pei, Liming; Saito, Tsugumichi; Tontonoz, Peter; Pilch, Paul F.

    2007-01-01

    Innervation is important for normal metabolism in skeletal muscle, including insulin-sensitive glucose uptake. However, the transcription factors that transduce signals from the neuromuscular junction to the nucleus and affect changes in metabolic gene expression are not well defined. We demonstrate here that the orphan nuclear receptor Nur77 is a regulator of gene expression linked to glucose utilization in muscle. In vivo, Nur77 is preferentially expressed in glycolytic compared to oxidativ...

  18. Multiple Sclerosis and EIF2B5: A Paradox or a Missing Link.

    Science.gov (United States)

    Zahoor, Insha; Haq, Ehtishamul; Asimi, Ravouf

    2017-01-01

    Multiple sclerosis (MS) is an encumbering inflammatory condition of the central nervous system (CNS) caused by axonal demyelination. There is sufficient evidence suggesting role of eukaryotic translation initiation factor 2B (EIF2B) gene family encoding the five subunits of eIF2B complex-α, β, γ, δ and ε respectively, in causing vanishing white matter (VWM) disease of the brain. Incidentally researchers have proposed overlapping between MS and VWM in terms of clinical, biochemical and genetic aspects, which incited us to write this chapter to explore the association between EIF2B5 and MS. eIF2B plays an essential role in translation initiation and its regulation in eukaryotes. Among EIF2B gene family, EIF2B5 gene encodes the catalytic and a crucial epsilon subunit of the eIF2B protein as most of the alterations have been found in this gene. The recent findings on the association between EIF2B5 and MS susceptibility point towards unfathomable and contentious role of EIF2B5 in MS development. This chapter briefly reviews the insights gleaned from recent studies conducted in understanding the association between EIF2B5 and MS risk. The need of hour is to conduct large scale conclusive studies aimed at expounding the mechanisms behind this relationship.

  19. Iron-related gene variants and brain iron in multiple sclerosis and healthy individuals

    Directory of Open Access Journals (Sweden)

    Jesper Hagemeier

    2018-01-01

    Full Text Available Brain iron homeostasis is known to be disturbed in multiple sclerosis (MS, yet little is known about the association of common gene variants linked to iron regulation and pathological tissue changes in the brain. In this study, we investigated the association of genetic determinants linked to iron regulation with deep gray matter (GM magnetic susceptibility in both healthy controls (HC and MS patients. Four hundred (400 patients with MS and 150 age- and sex-matched HCs were enrolled and obtained 3 T MRI examination. Three (3 single nucleotide polymorphisms (SNPs associated with iron regulation were genotyped: two SNPs in the human hereditary hemochromatosis protein gene HFE: rs1800562 (C282Y mutation and rs1799945 (H63D mutation, as well as the rs1049296 SNP in the transferrin gene (C2 mutation. The effects of disease and genetic status were studied using quantitative susceptibility mapping (QSM voxel-based analysis (VBA and region-of-interest (ROI analysis of the deep GM. The general linear model framework was used to compare groups. Analyses were corrected for age and sex, and adjusted for false discovery rate. We found moderate increases in susceptibility in the right putamen of participants with the C282Y (+6.1 ppb and H63D (+6.9 ppb gene variants vs. non-carriers, as well as a decrease in thalamic susceptibility of progressive MS patients with the C282Y mutation (left: −5.3 ppb, right: −6.7 ppb, p < 0.05. Female MS patients had lower susceptibility in the caudate (−6.0 ppb and putamen (left: −3.9 ppb, right: −4.6 ppb than men, but only when they had a wild-type allele (p < 0.05. Iron-gene linked increases in putamen susceptibility (in HC and relapsing remitting MS and decreases in thalamus susceptibility (in progressive MS, coupled with apparent sex interactions, indicate that brain iron in healthy and disease states may be influenced by genetic factors.

  20. Expression of osteoblast and osteoclast regulatory genes in the bone marrow microenvironment in multiple myeloma

    DEFF Research Database (Denmark)

    Kristensen, Ida B; Christensen, Jacob Haaber; Lyng, Maria Bibi

    2014-01-01

    Multiple myeloma (MM) lytic bone disease (LBD) is caused by osteoclast activation and osteoblast inhibition. RANK/RANKL/OPG play central roles in osteoclast activation and Wnt inhibitor DKK1 in osteoblast inhibition. The role of other Wnt inhibitors is less clear. We evaluated gene expression...... of osteoclast regulators (RANK, RANKL, OPG, TRAIL, MIP1A), Wnt inhibitors (DKK1, SFRP2, SFRP3, sclerostin, WIF1) and osteoblast transcription factors (RUNX2, osterix) by quantitative reverse transcriptase polymerase chain reaction (RT-PCR) in the bone marrow (BM) microenvironment using snap-frozen BM biopsies...... radiographs and the bone resorption marker CTX-1. Protein levels were evaluated by enzyme-linked immunosorbent assay (ELISA) and immunohistochemistry. Among Wnt inhibitors, only SFRP3 and DKK1 were significantly overexpressed in advanced LBD, correlating with protein levels. SFRP3 correlated with CTX-1. Our...

  1. A RAMP marker linked to the tobacco black shank resistant gene ...

    African Journals Online (AJOL)

    Bulk segregant analysis (BSA) and randomly amplified microsatellite polymorphism (RAMP) were employed to analyze F2 individuals of the Yunyan 317×Hubei 517 to screen and characterize molecular markers linked to black shank resistant gene. A total of 800 arbitrary decamer oligonucleotide primerpairs were used for ...

  2. Mutations in the polyglutamine binding protein 1 gene cause X-linked mental retardation.

    NARCIS (Netherlands)

    Kalscheuer, V.M.M.; Freude, K.; Musante, L.; Jensen, L.R.; Yntema, H.G.; Gecz, J.; Sefiani, A.; Hoffmann, K.; Moser, B.; Haas, S.; Gurok, U.; Haesler, S.; Aranda, B.; Nshedjan, A.; Tzschach, A.; Hartmann, N.; Roloff, T.C.; Shoichet, S.; Hagens, O.; Tao, J.; Bokhoven, J.H.L.M. van; Turner, G.; Chelly, J.; Moraine, C.; Fryns, J.P.; Nuber, U.; Hoeltzenbein, M.; Scharff, C.; Scherthan, H.; Lenzner, S.; Hamel, B.C.J.; Schweiger, S.; Ropers, H.H.

    2003-01-01

    We found mutations in the gene PQBP1 in 5 of 29 families with nonsyndromic (MRX) and syndromic (MRXS) forms of X-linked mental retardation (XLMR). Clinical features in affected males include mental retardation, microcephaly, short stature, spastic paraplegia and midline defects. PQBP1 has previously

  3. Mutations in the polyglutamine binding protein 1 gene cause X-linked mental retardation

    DEFF Research Database (Denmark)

    Kalscheuer, Vera M; Freude, Kristine; Musante, Luciana

    2003-01-01

    We found mutations in the gene PQBP1 in 5 of 29 families with nonsyndromic (MRX) and syndromic (MRXS) forms of X-linked mental retardation (XLMR). Clinical features in affected males include mental retardation, microcephaly, short stature, spastic paraplegia and midline defects. PQBP1 has previou...

  4. Mutations in the polyglutamine binding protein 1 gene cause X-linked mental retardation

    NARCIS (Netherlands)

    Kalscheuer, VM; Freude, K; Musante, L; Jensen, LR; Yntema, HG; Gecz, J; Sefiani, A; Hoffmann, K; Moser, B; Haas, S; Gurok, U; Haesler, S; Aranda, B; Nshedjan, A; Tzschach, A; Hartmann, N; Roloff, TC; Shoichet, S; Hagens, O; Tao, J; van Bokhoven, H; Turner, G; Chelly, J; Moraine, C; Fryns, JP; Nuber, U; Hoeltzenbein, M; Scharff, C; Scherthan, H; Lenzner, S; Hamel, BCJ; Schweiger, S; Ropers, Hans-Hilger

    2003-01-01

    We found mutations in the gene PQBP1 in 5 of 29 families with nonsyndromic (MRX) and syndromic (MRXS) forms of X-linked mental retardation (XLMR). Clinical features in affected males include mental retardation, microcephaly, short stature, spastic paraplegia and midline defects. PQBP1 has previously

  5. Identifying new sex-linked genes through BAC sequencing in the dioecious plant Silene latifolia

    Czech Academy of Sciences Publication Activity Database

    Blavet, Nicolas; Blavet, Hana; Muyle, A.; Käfer, J.; Cegan, R.; Deschamps, C.; Zemp, N.; Mousset, S.; Aubourg, S.; Bergero, R.; Charlesworth, D.; Hobza, Roman; Widmer, A.; Marais, G.A.B.

    2015-01-01

    Roč. 16, JUL 25 (2015), s. 546 ISSN 1471-2164 R&D Projects: GA ČR GAP501/12/2220 Institutional support: RVO:61389030 Keywords : Sex chromosomes * Sex-linked genes * Plant Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 3.867, year: 2015

  6. Seven mutations in the human insulin gene linked to permanent neonatal/infancy-onset diabetes mellitus

    DEFF Research Database (Denmark)

    Colombo, Carlo; Porzio, Ottavia; Liu, Ming

    2008-01-01

    Permanent neonatal diabetes mellitus (PNDM) is a rare disorder usually presenting within 6 months of birth. Although several genes have been linked to this disorder, in almost half the cases documented in Italy, the genetic cause remains unknown. Because the Akita mouse bearing a mutation in the ...

  7. The cfr and cfr-like multiple resistance genes

    DEFF Research Database (Denmark)

    Vester, Birte

    2018-01-01

    . The cfr gene is found in various bacteria in many geographical locations and placed on plasmids or associated with transposons. Cfr-related genes providing similar resistance have been identified in Bacillales, and now also in the pathogens Clostridium difficile and Enterococcus faecium. In addition......, the presence of the cfr gene has been detected in harbours and food markets....

  8. Distinct gene expression profiles in ovarian cancer linked to Lynch syndrome

    DEFF Research Database (Denmark)

    Jönsson, Jenny-Maria; Bartuma, Katarina; Dominguez-Valentin, Mev

    2014-01-01

    Ovarian cancer linked to Lynch syndrome represents a rare subset that typically presents at young age as early-stage tumors with an overrepresentation of endometrioid and clear cell histologies. We investigated the molecular profiles of Lynch syndrome-associated and sporadic ovarian cancer...... with the aim to identify key discriminators and central tumorigenic mechanisms in hereditary ovarian cancer. Global gene expression profiling using whole-genome c-DNA-mediated Annealing, Selection, extension, and Ligation was applied to 48 histopathologically matched Lynch syndrome-associated and sporadic...... ovarian cancers. Lynch syndrome-associated and sporadic ovarian cancers differed by 349 significantly deregulated genes, including PTPRH, BIRC3, SHH and TNFRSF6B. The genes involved were predominantly linked to cell growth, proliferation, and cell-to-cell signaling and interaction. When stratified...

  9. Origination of an X-linked testes chimeric gene by illegitimate recombination in Drosophila.

    Directory of Open Access Journals (Sweden)

    J Roman Arguello

    2006-05-01

    Full Text Available The formation of chimeric gene structures provides important routes by which novel proteins and functions are introduced into genomes. Signatures of these events have been identified in organisms from wide phylogenic distributions. However, the ability to characterize the early phases of these evolutionary processes has been difficult due to the ancient age of the genes or to the limitations of strictly computational approaches. While examples involving retrotransposition exist, our understanding of chimeric genes originating via illegitimate recombination is limited to speculations based on ancient genes or transfection experiments. Here we report a case of a young chimeric gene that has originated by illegitimate recombination in Drosophila. This gene was created within the last 2-3 million years, prior to the speciation of Drosophila simulans, Drosophila sechellia, and Drosophila mauritiana. The duplication, which involved the Bällchen gene on Chromosome 3R, was partial, removing substantial 3' coding sequence. Subsequent to the duplication onto the X chromosome, intergenic sequence was recruited into the protein-coding region creating a chimeric peptide with approximately 33 new amino acid residues. In addition, a novel intron-containing 5' UTR and novel 3' UTR evolved. We further found that this new X-linked gene has evolved testes-specific expression. Following speciation of the D. simulans complex, this novel gene evolved lineage-specifically with evidence for positive selection acting along the D. simulans branch.

  10. CRISPR/Cas9 Promotes Functional Study of Testis Specific X-Linked Gene In Vivo.

    Directory of Open Access Journals (Sweden)

    Minyan Li

    Full Text Available Mammalian spermatogenesis is a highly regulated multistage process of sperm generation. It is hard to uncover the real function of a testis specific gene in vitro since the in vitro model is not yet mature. With the development of the CRISPR/Cas9 (Clustered Regularly Interspaced Short Palindromic Repeats/CRISPR-associated 9 system, we can now rapidly generate knockout mouse models of testis specific genes to study the process of spermatogenesis in vivo. SYCP3-like X-linked 2 (SLX2 is a germ cell specific component, which contains a Cor1 domain and belongs to the XLR (X-linked, lymphocyte regulated family. Previous studies suggested that SLX2 might play an important role in mouse spermatogenesis based on its subcellular localization and interacting proteins. However, the function of SLX2 in vivo is still elusive. Here, to investigate the functions of SLX2 in spermatogenesis, we disrupted the Slx2 gene by using the CRISPR/Cas9 system. Since Slx2 is a testis specific X-linked gene, we obtained knockout male mice in the first generation and accelerated the study process. Compared with wild-type mice, Slx2 knockout mice have normal testis and epididymis. Histological observation of testes sections showed that Slx2 knockout affected none of the three main stages of spermatogenesis: mitosis, meiosis and spermiogenesis. In addition, we further confirmed that disruption of Slx2 did not affect the number of spermatogonial stem cells, meiosis progression or XY body formation by immunofluorescence analysis. As spermatogenesis was normal in Slx2 knockout mice, these mice were fertile. Taken together, we showed that Slx2 itself is not an essential gene for mouse spermatogenesis and CRISPR/Cas9 technique could speed up the functional study of testis specific X-linked gene in vivo.

  11. Multiple independent insertions of 5S rRNA genes in the spliced-leader gene family of trypanosome species.

    Science.gov (United States)

    Beauparlant, Marc A; Drouin, Guy

    2014-02-01

    Analyses of the 5S rRNA genes found in the spliced-leader (SL) gene repeat units of numerous trypanosome species suggest that such linkages were not inherited from a common ancestor, but were the result of independent 5S rRNA gene insertions. In trypanosomes, 5S rRNA genes are found either in the tandemly repeated units coding for SL genes or in independent tandemly repeated units. Given that trypanosome species where 5S rRNA genes are within the tandemly repeated units coding for SL genes are phylogenetically related, one might hypothesize that this arrangement is the result of an ancestral insertion of 5S rRNA genes into the tandemly repeated SL gene family of trypanosomes. Here, we use the types of 5S rRNA genes found associated with SL genes, the flanking regions of the inserted 5S rRNA genes and the position of these insertions to show that most of the 5S rRNA genes found within SL gene repeat units of trypanosome species were not acquired from a common ancestor but are the results of independent insertions. These multiple 5S rRNA genes insertion events in trypanosomes are likely the result of frequent founder events in different hosts and/or geographical locations in species having short generation times.

  12. Changes in gene expression linked to methamphetamine-induced dopaminergic neurotoxicity.

    Science.gov (United States)

    Xie, Tao; Tong, Liqiong; Barrett, Tanya; Yuan, Jie; Hatzidimitriou, George; McCann, Una D; Becker, Kevin G; Donovan, David M; Ricaurte, George A

    2002-01-01

    The purpose of these studies was to examine the role of gene expression in methamphetamine (METH)-induced dopamine (DA) neurotoxicity. First, the effects of the mRNA synthesis inhibitor, actinomycin-D, and the protein synthesis inhibitor, cycloheximide, were examined. Both agents afforded complete protection against METH-induced DA neurotoxicity and did so independently of effects on core temperature, DA transporter function, or METH brain levels, suggesting that gene transcription and mRNA translation play a role in METH neurotoxicity. Next, microarray technology, in combination with an experimental approach designed to facilitate recognition of relevant gene expression patterns, was used to identify gene products linked to METH-induced DA neurotoxicity. This led to the identification of several genes in the ventral midbrain associated with the neurotoxic process, including genes for energy metabolism [cytochrome c oxidase subunit 1 (COX1), reduced nicotinamide adenine dinucleotide ubiquinone oxidoreductase chain 2, and phosphoglycerate mutase B], ion regulation (members of sodium/hydrogen exchanger and sodium/bile acid cotransporter family), signal transduction (adenylyl cyclase III), and cell differentiation and degeneration (N-myc downstream-regulated gene 3 and tau protein). Of these differentially expressed genes, we elected to further examine the increase in COX1 expression, because of data implicating energy utilization in METH neurotoxicity and the known role of COX1 in energy metabolism. On the basis of time course studies, Northern blot analyses, in situ hybridization results, and temperature studies, we now report that increased COX1 expression in the ventral midbrain is linked to METH-induced DA neuronal injury. The precise role of COX1 and other genes in METH neurotoxicity remains to be elucidated.

  13. Multiple Time Series Forecasting Using Quasi-Randomized Functional Link Neural Networks

    Directory of Open Access Journals (Sweden)

    Thierry Moudiki

    2018-03-01

    Full Text Available We are interested in obtaining forecasts for multiple time series, by taking into account the potential nonlinear relationships between their observations. For this purpose, we use a specific type of regression model on an augmented dataset of lagged time series. Our model is inspired by dynamic regression models (Pankratz 2012, with the response variable’s lags included as predictors, and is known as Random Vector Functional Link (RVFL neural networks. The RVFL neural networks have been successfully applied in the past, to solving regression and classification problems. The novelty of our approach is to apply an RVFL model to multivariate time series, under two separate regularization constraints on the regression parameters.

  14. Attenuated familial adenomatous polyposis and Muir-Torre syndrome linked to compound biallelic constitutional MYH gene mutations.

    Science.gov (United States)

    Ponti, G; Ponz de Leon, M; Maffei, S; Pedroni, M; Losi, L; Di Gregorio, C; Gismondi, V; Scarselli, A; Benatti, P; Roncari, B; Seidenari, S; Pellacani, G; Varotti, C; Prete, E; Varesco, L; Roncucci, L

    2005-11-01

    Attenuated familial adenomatous polyposis and Muir-Torre syndrome linked to compound biallelic constitutional MYH gene mutations.Peculiar dermatologic manifestations are present in several heritable gastrointestinal disorders. Muir-Torre syndrome (MTS) is a genodermatosis whose peculiar feature is the presence of sebaceous gland tumors associated with visceral malignancies. We describe one patient in whom multiple sebaceous gland tumors were associated with early onset colon and thyroid cancers and attenuated polyposis coli. Her family history was positive for colonic adenomas. She had a daughter presenting with yellow papules in the forehead region developed in the late infancy. Skin and visceral neoplasms were tested for microsatellite instability and immunohistochemical status of mismatch repair (MMR), APC and MYH proteins. The proband colon and skin tumors were microsatellite stable and showed normal expression of MMR proteins. Cytoplasmic expression of MYH protein was revealed in colonic cancer cells. Compound heterozygosity due to biallelic mutations in MYH, R168H and 379delC, was identified in the proband. The 11-year-old daughter was carrier of the monoallelic constitutional mutation 379delC in the MYH gene; in the sister, the R168H MYH gene mutation was detected. This report presents an interesting case of association between MYH-associated polyposis and sebaceous gland tumors. These findings suggest that patients with MTS phenotype that include colonic polyposis should be screened for MYH gene mutations.

  15. Multiple Suboptimal Solutions for Prediction Rules in Gene Expression Data

    Directory of Open Access Journals (Sweden)

    Osamu Komori

    2013-01-01

    Full Text Available This paper discusses mathematical and statistical aspects in analysis methods applied to microarray gene expressions. We focus on pattern recognition to extract informative features embedded in the data for prediction of phenotypes. It has been pointed out that there are severely difficult problems due to the unbalance in the number of observed genes compared with the number of observed subjects. We make a reanalysis of microarray gene expression published data to detect many other gene sets with almost the same performance. We conclude in the current stage that it is not possible to extract only informative genes with high performance in the all observed genes. We investigate the reason why this difficulty still exists even though there are actively proposed analysis methods and learning algorithms in statistical machine learning approaches. We focus on the mutual coherence or the absolute value of the Pearson correlations between two genes and describe the distributions of the correlation for the selected set of genes and the total set. We show that the problem of finding informative genes in high dimensional data is ill-posed and that the difficulty is closely related with the mutual coherence.

  16. Upregulation of Immunoglobulin-related Genes in Cortical Sections from Multiple Sclerosis Patients

    NARCIS (Netherlands)

    Torkildsen, O.; Stansberg, C.; Angelskar, S.M.; Kooi, E.J.; Geurts, J.J.G.; van der Valk, P.; Myhr, K.M.; Steen, V.M.; Bo, L.

    2010-01-01

    Multiple sclerosis (MS) is a demyelinating disease of the central nervous system (CNS). Microarray-based global gene expression profiling is a promising method, used to study potential genes involved in the pathogenesis of the disease. In the present study, we have examined global gene expression in

  17. Estimating under-reporting of road crash injuries to police using multiple linked data collections.

    Science.gov (United States)

    Watson, Angela; Watson, Barry; Vallmuur, Kirsten

    2015-10-01

    The reliance on police data for the counting of road crash injuries can be problematic, as it is well known that not all road crash injuries are reported to police which under-estimates the overall burden of road crash injuries. The aim of this study was to use multiple linked data sources to estimate the extent of under-reporting of road crash injuries to police in the Australian state of Queensland. Data from the Queensland Road Crash Database (QRCD), the Queensland Hospital Admitted Patients Data Collection (QHAPDC), Emergency Department Information System (EDIS), and the Queensland Injury Surveillance Unit (QISU) for the year 2009 were linked. The completeness of road crash cases reported to police was examined via discordance rates between the police data (QRCD) and the hospital data collections. In addition, the potential bias of this discordance (under-reporting) was assessed based on gender, age, road user group, and regional location. Results showed that the level of under-reporting varied depending on the data set with which the police data was compared. When all hospital data collections are examined together the estimated population of road crash injuries was approximately 28,000, with around two-thirds not linking to any record in the police data. The results also showed that the under-reporting was more likely for motorcyclists, cyclists, males, young people, and injuries occurring in Remote and Inner Regional areas. These results have important implications for road safety research and policy in terms of: prioritising funding and resources; targeting road safety interventions into areas of higher risk; and estimating the burden of road crash injuries. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. PhenoLink - a web-tool for linking phenotype to ~omics data for bacteria: application to gene-trait matching for Lactobacillus plantarum strains

    Directory of Open Access Journals (Sweden)

    Bayjanov Jumamurat R

    2012-05-01

    Full Text Available Abstract Background Linking phenotypes to high-throughput molecular biology information generated by ~omics technologies allows revealing cellular mechanisms underlying an organism's phenotype. ~Omics datasets are often very large and noisy with many features (e.g., genes, metabolite abundances. Thus, associating phenotypes to ~omics data requires an approach that is robust to noise and can handle large and diverse data sets. Results We developed a web-tool PhenoLink (http://bamics2.cmbi.ru.nl/websoftware/phenolink/ that links phenotype to ~omics data sets using well-established as well new techniques. PhenoLink imputes missing values and preprocesses input data (i to decrease inherent noise in the data and (ii to counterbalance pitfalls of the Random Forest algorithm, on which feature (e.g., gene selection is based. Preprocessed data is used in feature (e.g., gene selection to identify relations to phenotypes. We applied PhenoLink to identify gene-phenotype relations based on the presence/absence of 2847 genes in 42 Lactobacillus plantarum strains and phenotypic measurements of these strains in several experimental conditions, including growth on sugars and nitrogen-dioxide production. Genes were ranked based on their importance (predictive value to correctly predict the phenotype of a given strain. In addition to known gene to phenotype relations we also found novel relations. Conclusions PhenoLink is an easily accessible web-tool to facilitate identifying relations from large and often noisy phenotype and ~omics datasets. Visualization of links to phenotypes offered in PhenoLink allows prioritizing links, finding relations between features, finding relations between phenotypes, and identifying outliers in phenotype data. PhenoLink can be used to uncover phenotype links to a multitude of ~omics data, e.g., gene presence/absence (determined by e.g.: CGH or next-generation sequencing, gene expression (determined by e.g.: microarrays or RNA

  19. Identification of a RAPD marker linked to the Co-6 anthracnose resistant gene in common bean cultivar AB 136

    Directory of Open Access Journals (Sweden)

    Alzate-Marin Ana Lilia

    2000-01-01

    Full Text Available The pathogenic variability of the fungus Colletotrichum lindemuthianum represents an obstacle for the creation of resistant common bean (Phaseolus vulgaris L. varieties. Gene pyramiding is an alternative strategy for the development of varieties with durable resistance. RAPD markers have been proposed as a means to facilitate pyramiding of resistance genes without the need for multiple inoculations of the pathogens. The main aims of this work were to define the inheritance pattern of resistance present in common bean cultivar AB 136 in segregating populations derived from crosses with cultivar Rudá (susceptible to most C. lindemuthianum races and to identify RAPD markers linked to anthracnose resistance. The two progenitors, populations F1 and F2, F2:3 families and backcross-derived plants were inoculated with race 89 of C. lindemuthianum under environmentally controlled greenhouse conditions. The results indicate that a single dominant gene, Co-6, controls common bean resistance to this race, giving a segregation ratio between resistant and susceptible plants of 3:1 in the F2, 1:0 in the backcrosses to AB 136 and 1:1 in the backcross to Rudá. The segregation ratio of F2:3 families derived from F2 resistant plants was 1:2 (homozygous to heterozygous resistant. Molecular marker analyses in the F2 population identified a DNA band of approximately 940 base pairs (OPAZ20(940, linked in coupling phase at 7.1 cM of the Co-6 gene. This marker is being used in our backcross breeding program to develop Rudá-derived common bean cultivars resistant to anthracnose and adapted to central Brazil.

  20. SINA: accurate high-throughput multiple sequence alignment of ribosomal RNA genes.

    Science.gov (United States)

    Pruesse, Elmar; Peplies, Jörg; Glöckner, Frank Oliver

    2012-07-15

    In the analysis of homologous sequences, computation of multiple sequence alignments (MSAs) has become a bottleneck. This is especially troublesome for marker genes like the ribosomal RNA (rRNA) where already millions of sequences are publicly available and individual studies can easily produce hundreds of thousands of new sequences. Methods have been developed to cope with such numbers, but further improvements are needed to meet accuracy requirements. In this study, we present the SILVA Incremental Aligner (SINA) used to align the rRNA gene databases provided by the SILVA ribosomal RNA project. SINA uses a combination of k-mer searching and partial order alignment (POA) to maintain very high alignment accuracy while satisfying high throughput performance demands. SINA was evaluated in comparison with the commonly used high throughput MSA programs PyNAST and mothur. The three BRAliBase III benchmark MSAs could be reproduced with 99.3, 97.6 and 96.1 accuracy. A larger benchmark MSA comprising 38 772 sequences could be reproduced with 98.9 and 99.3% accuracy using reference MSAs comprising 1000 and 5000 sequences. SINA was able to achieve higher accuracy than PyNAST and mothur in all performed benchmarks. Alignment of up to 500 sequences using the latest SILVA SSU/LSU Ref datasets as reference MSA is offered at http://www.arb-silva.de/aligner. This page also links to Linux binaries, user manual and tutorial. SINA is made available under a personal use license.

  1. Simple and Efficient Targeting of Multiple Genes Through CRISPR-Cas9 in Physcomitrella patens

    Directory of Open Access Journals (Sweden)

    Mauricio Lopez-Obando

    2016-11-01

    Full Text Available Powerful genome editing technologies are needed for efficient gene function analysis. The CRISPR-Cas9 system has been adapted as an efficient gene-knock-out technology in a variety of species. However, in a number of situations, knocking out or modifying a single gene is not sufficient; this is particularly true for genes belonging to a common family, or for genes showing redundant functions. Like many plants, the model organism Physcomitrella patens has experienced multiple events of polyploidization during evolution that has resulted in a number of families of duplicated genes. Here, we report a robust CRISPR-Cas9 system, based on the codelivery of a CAS9 expressing cassette, multiple sgRNA vectors, and a cassette for transient transformation selection, for gene knock-out in multiple gene families. We demonstrate that CRISPR-Cas9-mediated targeting of five different genes allows the selection of a quintuple mutant, and all possible subcombinations of mutants, in one experiment, with no mutations detected in potential off-target sequences. Furthermore, we confirmed the observation that the presence of repeats in the vicinity of the cutting region favors deletion due to the alternative end joining pathway, for which induced frameshift mutations can be potentially predicted. Because the number of multiple gene families in Physcomitrella is substantial, this tool opens new perspectives to study the role of expanded gene families in the colonization of land by plants.

  2. X-Linked Dyskeratosis Congenita Is Predominantly Caused by Missense Mutations in the DKC1 Gene

    OpenAIRE

    Knight, S.W.; Heiss, N.S.; Vulliamy, T.J.; Greschner, S.; Stavrides, G.; Pai, G.S.; Lestringant, G.; Varma, N.; Mason, P.J.; Dokal, I.; Poustka, A.

    1999-01-01

    Dyskeratosis congenita is a rare inherited bone marrow-failure syndrome characterized by abnormal skin pigmentation, nail dystrophy, and mucosal leukoplakia. More than 80% of patients develop bone-marrow failure, and this is the major cause of premature death. The X-linked form of the disease (MIM 305000) has been shown to be caused by mutations in the DKC1 gene. The gene encodes a 514-amino-acid protein, dyskerin, that is homologous to Saccharomyces cerevisiae Cbf5p and rat Nap57 proteins. B...

  3. Consequences of population topology for studying gene flow using link-based landscape genetic methods.

    Science.gov (United States)

    van Strien, Maarten J

    2017-07-01

    Many landscape genetic studies aim to determine the effect of landscape on gene flow between populations. These studies frequently employ link-based methods that relate pairwise measures of historical gene flow to measures of the landscape and the geographical distance between populations. However, apart from landscape and distance, there is a third important factor that can influence historical gene flow, that is, population topology (i.e., the arrangement of populations throughout a landscape). As the population topology is determined in part by the landscape configuration, I argue that it should play a more prominent role in landscape genetics. Making use of existing literature and theoretical examples, I discuss how population topology can influence results in landscape genetic studies and how it can be taken into account to improve the accuracy of these results. In support of my arguments, I have performed a literature review of landscape genetic studies published during the first half of 2015 as well as several computer simulations of gene flow between populations. First, I argue why one should carefully consider which population pairs should be included in link-based analyses. Second, I discuss several ways in which the population topology can be incorporated in response and explanatory variables. Third, I outline why it is important to sample populations in such a way that a good representation of the population topology is obtained. Fourth, I discuss how statistical testing for link-based approaches could be influenced by the population topology. I conclude the article with six recommendations geared toward better incorporating population topology in link-based landscape genetic studies.

  4. The interaction between smoking and HLA genes in multiple sclerosis

    DEFF Research Database (Denmark)

    Hedström, Anna Karin; Katsoulis, Michail; Hössjer, Ola

    2017-01-01

    Interactions between environment and genetics may contribute to multiple sclerosis (MS) development. We investigated whether the previously observed interaction between smoking and HLA genotype in the Swedish population could be replicated, refined and extended to include other populations. We us...

  5. Promotion of growth by Coenzyme Q10 is linked to gene expression in C. elegans.

    Science.gov (United States)

    Fischer, Alexandra; Niklowitz, Petra; Menke, Thomas; Döring, Frank

    2014-10-03

    Coenzyme Q (CoQ, ubiquinone) is an essential component of the respiratory chain, a cofactor of pyrimidine biosynthesis and acts as an antioxidant in extra mitochondrial membranes. More recently CoQ has been identified as a modulator of apoptosis, inflammation and gene expression. CoQ deficient Caenorhabditis elegans clk-1 mutants show several phenotypes including a delayed postembryonic growth. Using wild type and two clk-1 mutants, here we established an experimental set-up to study the consequences of endogenous CoQ deficiency or exogenous CoQ supply on gene expression and growth. We found that a deficiency of endogenous CoQ synthesis down-regulates a cluster of genes that are important for growth (i.e., RNA polymerase II, eukaryotic initiation factor) and up-regulates oxidation reactions (i.e., cytochrome P450, superoxide dismutase) and protein interactions (i.e., F-Box proteins). Exogenous CoQ supply partially restores the expression of these genes as well as the growth retardation of CoQ deficient clk-1 mutants. On the other hand exogenous CoQ supply does not alter the expression of a further sub-set of genes. These genes are involved in metabolism (i.e., succinate dehydrogenase complex), cell signalling or synthesis of lectins. Thus, our work provides a comprehensive overview of genes which can be modulated in their expression by endogenous or exogenous CoQ. As growth retardation in CoQ deficiency is linked to the gene expression profile we suggest that CoQ promotes growth via gene expression. Copyright © 2014 Elsevier Inc. All rights reserved.

  6. APPRIS 2017: principal isoforms for multiple gene sets

    Science.gov (United States)

    Rodriguez-Rivas, Juan; Di Domenico, Tomás; Vázquez, Jesús; Valencia, Alfonso

    2018-01-01

    Abstract The APPRIS database (http://appris-tools.org) uses protein structural and functional features and information from cross-species conservation to annotate splice isoforms in protein-coding genes. APPRIS selects a single protein isoform, the ‘principal’ isoform, as the reference for each gene based on these annotations. A single main splice isoform reflects the biological reality for most protein coding genes and APPRIS principal isoforms are the best predictors of these main proteins isoforms. Here, we present the updates to the database, new developments that include the addition of three new species (chimpanzee, Drosophila melangaster and Caenorhabditis elegans), the expansion of APPRIS to cover the RefSeq gene set and the UniProtKB proteome for six species and refinements in the core methods that make up the annotation pipeline. In addition APPRIS now provides a measure of reliability for individual principal isoforms and updates with each release of the GENCODE/Ensembl and RefSeq reference sets. The individual GENCODE/Ensembl, RefSeq and UniProtKB reference gene sets for six organisms have been merged to produce common sets of splice variants. PMID:29069475

  7. Distribution of mutations in the PEX gene in families with X-linked hypophosphataemic rickets (HYP).

    Science.gov (United States)

    Rowe, P S; Oudet, C L; Francis, F; Sinding, C; Pannetier, S; Econs, M J; Strom, T M; Meitinger, T; Garabedian, M; David, A; Macher, M A; Questiaux, E; Popowska, E; Pronicka, E; Read, A P; Mokrzycki, A; Glorieux, F H; Drezner, M K; Hanauer, A; Lehrach, H; Goulding, J N; O'Riordan, J L

    1997-04-01

    Mutations in the PEX gene at Xp22.1 (phosphate-regulating gene with homologies to endopeptidases, on the X-chromosome), are responsible for X-linked hypophosphataemic rickets (HYP). Homology of PEX to the M13 family of Zn2+ metallopeptidases which include neprilysin (NEP) as prototype, has raised important questions regarding PEX function at the molecular level. The aim of this study was to analyse 99 HYP families for PEX gene mutations, and to correlate predicted changes in the protein structure with Zn2+ metallopeptidase gene function. Primers flanking 22 characterised exons were used to amplify DNA by PCR, and SSCP was then used to screen for mutations. Deletions, insertions, nonsense mutations, stop codons and splice mutations occurred in 83% of families screened for in all 22 exons, and 51% of a separate set of families screened in 17 PEX gene exons. Missense mutations in four regions of the gene were informative regarding function, with one mutation in the Zn2+-binding site predicted to alter substrate enzyme interaction and catalysis. Computer analysis of the remaining mutations predicted changes in secondary structure, N-glycosylation, protein phosphorylation and catalytic site molecular structure. The wide range of mutations that align with regions required for protease activity in NEP suggests that PEX also functions as a protease, and may act by processing factor(s) involved in bone mineral metabolism.

  8. Four linked genes participate in controlling sporulation efficiency in budding yeast.

    Directory of Open Access Journals (Sweden)

    Giora Ben-Ari

    2006-11-01

    Full Text Available Quantitative traits are conditioned by several genetic determinants. Since such genes influence many important complex traits in various organisms, the identification of quantitative trait loci (QTLs is of major interest, but still encounters serious difficulties. We detected four linked genes within one QTL, which participate in controlling sporulation efficiency in Saccharomyces cerevisiae. Following the identification of single nucleotide polymorphisms by comparing the sequences of 145 genes between the parental strains SK1 and S288c, we analyzed the segregating progeny of the cross between them. Through reciprocal hemizygosity analysis, four genes, RAS2, PMS1, SWS2, and FKH2, located in a region of 60 kilobases on Chromosome 14, were found to be associated with sporulation efficiency. Three of the four "high" sporulation alleles are derived from the "low" sporulating strain. Two of these sporulation-related genes were verified through allele replacements. For RAS2, the causative variation was suggested to be a single nucleotide difference in the upstream region of the gene. This quantitative trait nucleotide accounts for sporulation variability among a set of ten closely related winery yeast strains. Our results provide a detailed view of genetic complexity in one "QTL region" that controls a quantitative trait and reports a single nucleotide polymorphism-trait association in wild strains. Moreover, these findings have implications on QTL identification in higher eukaryotes.

  9. X-Linked Hypohidrotic Ectodermal Dysplasia: New Features and a Novel EDA Gene Mutation.

    Science.gov (United States)

    Savasta, Salvatore; Carlone, Giorgia; Castagnoli, Riccardo; Chiappe, Francesca; Bassanese, Francesco; Piras, Roberta; Salpietro, Vincenzo; Brazzelli, Valeria; Verrotti, Alberto; Marseglia, Gian L

    2017-01-01

    We described a 5-year-old male with hypodontia, hypohidrosis, and facial dysmorphisms characterized by a depressed nasal bridge, maxillary hypoplasia, and protuberant lips. Chromosomal analysis revealed a normal 46,XY male karyotype. Due to the presence of clinical features of hypohidrotic ectodermal dysplasia (HED), the EDA gene, located at Xq12q13.1, of the patient and his family was sequenced. Analysis of the proband's sequence revealed a missense mutation (T to A transversion) in hemizygosity state at nucleotide position 158 in exon 1 of the EDA gene, which changes codon 53 from leucine to histidine, while heterozygosity at this position was detected in the slightly affected mother; moreover, this mutation was not found in the publically available Human Gene Mutation Database. To date, our findings indicate that a novel mutation in EDA is associated with X-linked HED, adding it to the repertoire of EDA mutations. © 2017 S. Karger AG, Basel.

  10. X-linked juvenile retinoschisis: mutations at the retinoschisis and Norrie disease gene loci?

    Science.gov (United States)

    Hiraoka, M; Rossi, F; Trese, M T; Shastry, B S

    2001-01-01

    Juvenile retinoschisis (RS) and Norrie disease (ND) are X-linked recessive retinal disorders. Both disorders, in the majority of cases, are monogenic and are caused by mutations in the RS and ND genes, respectively. Here we report the identification of a family in which mutations in both the RS and ND genes are segregating with RS pathology. Although the mutations identified in this report were not functionally characterized with regard to their pathogenicity, it is likely that both of them are involved in RS pathology in the family analyzed. This suggests the complexity and digenic nature of monogenic human disorders in some cases. If this proves to be a widespread problem, it will complicate the strategies used to identify the genes involved in diseases and to develop methods for intervention.

  11. A mutation in the Norrie disease gene (NDP) associated with X-linked familial exudative vitreoretinopathy.

    Science.gov (United States)

    Chen, Z Y; Battinelli, E M; Fielder, A; Bundey, S; Sims, K; Breakefield, X O; Craig, I W

    1993-10-01

    Familial exudative vitreoretinopathy (FEVR) is a hereditary disorder characterized by an abnormality of the peripheral retina. Both autosomal dominant (adFEVR) and X-linked (XLFEVR) forms have been described, but the biochemical defect(s) underlying the symptoms are unknown. Molecular analysis of the Norrie gene locus (NDP) in a four generation FEVR family (shown previously to exhibit linkage to the X-chromosome markers DXS228 and MAOA (Xp11.4-p11.3)) reveals a missense mutation in the highly conserved region of the NDP gene, which caused a neutral amino acid substitution (Leu124Phe), was detected in all of the affected males, but not in the unaffected family members, nor in normal controls. The observations suggest that phenotypes of both XLFEVR and Norrie disease can result from mutations in the same gene.

  12. Linking Advanced Visualization and MATLAB for the Analysis of 3D Gene Expression Data

    Energy Technology Data Exchange (ETDEWEB)

    Ruebel, Oliver; Keranen, Soile V.E.; Biggin, Mark; Knowles, David W.; Weber, Gunther H.; Hagen, Hans; Hamann, Bernd; Bethel, E. Wes

    2011-03-30

    Three-dimensional gene expression PointCloud data generated by the Berkeley Drosophila Transcription Network Project (BDTNP) provides quantitative information about the spatial and temporal expression of genes in early Drosophila embryos at cellular resolution. The BDTNP team visualizes and analyzes Point-Cloud data using the software application PointCloudXplore (PCX). To maximize the impact of novel, complex data sets, such as PointClouds, the data needs to be accessible to biologists and comprehensible to developers of analysis functions. We address this challenge by linking PCX and Matlab via a dedicated interface, thereby providing biologists seamless access to advanced data analysis functions and giving bioinformatics researchers the opportunity to integrate their analysis directly into the visualization application. To demonstrate the usefulness of this approach, we computationally model parts of the expression pattern of the gene even skipped using a genetic algorithm implemented in Matlab and integrated into PCX via our Matlab interface.

  13. Non-linked inhibitory gene controls a disease mimicking mutant in rice [Oryza sativa L.

    International Nuclear Information System (INIS)

    Jambhulkar, S.J.; Joshua, D.C.; Goswamy, D.G.

    2001-01-01

    A gamma ray induced disease mimicking mutant called luchai lesion was isolated in the rice variety White Luchai 112. The appearance of small light red lesions and their development continued from seedling to flowering. The lesions appeared gradually on older leaves and their uncontrolled spread eventually lead to leaf senescence. They resembled the disease spots caused by Magnaporthe grisea. However, pathological studies ruled out the possibility of pathogen mediated disease symptoms. Genetic studies revealed that lesions were governed by a dominant gene; however, their expression was suppressed in presence of a non-linked inhibitory gene. It is hypothesised that the plant cells of the mutant are able to sense inbuilt spontaneous signals leading to lesion development, but in presence of an inhibitory gene the signals are suppressed by perturbation in the signal transduction pathway [it

  14. A search engine to identify pathway genes from expression data on multiple organisms

    Directory of Open Access Journals (Sweden)

    Zambon Alexander C

    2007-05-01

    Full Text Available Abstract Background The completion of several genome projects showed that most genes have not yet been characterized, especially in multicellular organisms. Although most genes have unknown functions, a large collection of data is available describing their transcriptional activities under many different experimental conditions. In many cases, the coregulatation of a set of genes across a set of conditions can be used to infer roles for genes of unknown function. Results We developed a search engine, the Multiple-Species Gene Recommender (MSGR, which scans gene expression datasets from multiple organisms to identify genes that participate in a genetic pathway. The MSGR takes a query consisting of a list of genes that function together in a genetic pathway from one of six organisms: Homo sapiens, Drosophila melanogaster, Caenorhabditis elegans, Saccharomyces cerevisiae, Arabidopsis thaliana, and Helicobacter pylori. Using a probabilistic method to merge searches, the MSGR identifies genes that are significantly coregulated with the query genes in one or more of those organisms. The MSGR achieves its highest accuracy for many human pathways when searches are combined across species. We describe specific examples in which new genes were identified to be involved in a neuromuscular signaling pathway and a cell-adhesion pathway. Conclusion The search engine can scan large collections of gene expression data for new genes that are significantly coregulated with a pathway of interest. By integrating searches across organisms, the MSGR can identify pathway members whose coregulation is either ancient or newly evolved.

  15. Genetic moderation of multiple pathways linking early cumulative socioeconomic adversity and young adults' cardiometabolic disease risk.

    Science.gov (United States)

    Wickrama, Kandauda A S; Lee, Tae Kyoung; O'Neal, Catherine Walker

    2018-02-01

    Recent research suggests that psychosocial resources and life stressors are mediating pathways explaining socioeconomic variation in young adults' health risks. However, less research has examined both these pathways simultaneously and their genetic moderation. A nationally representative sample of 11,030 respondents with prospective data collected over 13 years from the National Study of Adolescent to Adult Health was examined. First, the association between early cumulative socioeconomic adversity and young adults' (ages 25-34) cardiometabolic disease risk, as measured by 10 biomarkers, through psychosocial resources (educational attainment) and life stressors (accelerated transition to adulthood) was examined. Second, moderation of these pathways by the serotonin transporter linked polymorphic region gene (5-HTTLPR) was examined. There was evidence for the association between early socioeconomic adversity and young adults' cardiometabolic disease risk directly and indirectly through educational attainment and accelerated transitions. These direct and mediating pathways were amplified by the 5-HTTLPR polymorphism. These findings elucidate how early adversity can have an enduring influence on young adults' cardiometabolic disease risk directly and indirectly through psychosocial resources and life stressors and their genetic moderation. This information suggests that effective intervention and prevention programs should focus on early adversity, youth educational attainment, and their transition to young adulthood.

  16. Restriction genes for retroviruses influence the risk of multiple sclerosis

    DEFF Research Database (Denmark)

    Nexø, Bjørn A; Hansen, Bettina; Nissen, Kari K

    2013-01-01

    known for a long time. Today human restriction genes for retroviruses include amongst others TRIMs, APOBEC3s, BST2 and TREXs. We have therefore looked for a role of these retroviral restriction genes in MS using genetic epidemiology. We here report that markers in two TRIMs, TRIM5 and TRIM22...... and a marker in BST2, associated statistically with the risk of getting MS, while markers in or near APOBEC3s and TREXs showed little or no effect. This indicates that the two TRIMs and BST2 influence the risk of disease and thus supports the hypothesis of a viral involvement....

  17. X-Linked Lymphoproliferative Syndrome and Common Variable Immunodeficiency May Not Be Differentiated by SH2D1A and XIAP/BIRC4 Genes Sequence Analysis

    Directory of Open Access Journals (Sweden)

    Nesrin Gulez

    2011-01-01

    Full Text Available The X-linked lymphoproliferative syndrome (XLP is a rare, inherited immunodeficiency characterized by recurrent episodes of hemophagocytic lymphohistiocytosis, hypogammaglobulinemia, and/or lymphomas. Recently, X-linked inhibitor of apoptosis (XIAP/BIRC4 gene defects, in families with XLP but without SH2D1A gene defects, has been defined. The distinction from primary immunodeficiencies with a defined genetic cause is mandatory. A six-year-old male patient was admitted with the complaints of persistent general lymphadenopathy, for two years had fever, bilateral cervical multiple microlymphadenopathy, hepatic/splenic enlargement with laboratory findings as decreased serum immunoglobulins, negative EBV VCA IgM (viral capsid antigen and anti-EBV EA (antibody to early D antigen, positive EBV VCA IgG (viral capsid antigen and EBV EBNA (antibody to nuclear antigen. SH2D1A gene analysis was negative. XIAP/BIRC4 sequencing revealed two novel single nucleotide variants (exon 7, 1978G > A, and 1996T > A in the 3′UTR of the gene in both patient and mother which were not disease causing. XIAP protein expression was found to be normal. The clinical and laboratory resemblance, no gene mutations, and normal XIAP protein expression led us to think that there may be another responsible gene for XLP. The patient will to be followed up as CVID until he presents new diagnostic signs or until the identification of a new gene.

  18. Arteriolosclerosis that affects multiple brain regions is linked to hippocampal sclerosis of ageing.

    Science.gov (United States)

    Neltner, Janna H; Abner, Erin L; Baker, Steven; Schmitt, Frederick A; Kryscio, Richard J; Jicha, Gregory A; Smith, Charles D; Hammack, Eleanor; Kukull, Walter A; Brenowitz, Willa D; Van Eldik, Linda J; Nelson, Peter T

    2014-01-01

    Hippocampal sclerosis of ageing is a prevalent brain disease that afflicts older persons and has been linked with cerebrovascular pathology. Arteriolosclerosis is a subtype of cerebrovascular pathology characterized by concentrically thickened arterioles. Here we report data from multiple large autopsy series (University of Kentucky Alzheimer's Disease Centre, Nun Study, and National Alzheimer's Coordinating Centre) showing a specific association between hippocampal sclerosis of ageing pathology and arteriolosclerosis. The present analyses incorporate 226 cases of autopsy-proven hippocampal sclerosis of ageing and 1792 controls. Case-control comparisons were performed including digital pathological assessments for detailed analyses of blood vessel morphology. We found no evidence of associations between hippocampal sclerosis of ageing pathology and lacunar infarcts, large infarcts, Circle of Willis atherosclerosis, or cerebral amyloid angiopathy. Individuals with hippocampal sclerosis of ageing pathology did not show increased rates of clinically documented hypertension, diabetes, or other cardiac risk factors. The correlation between arteriolosclerosis and hippocampal sclerosis of ageing pathology was strong in multiple brain regions outside of the hippocampus. For example, the presence of arteriolosclerosis in the frontal cortex (Brodmann area 9) was strongly associated with hippocampal sclerosis of ageing pathology (P studies to optimize immunostaining methods for small blood vessel visualization, our analyses focused on sections immunostained for smooth muscle actin (a marker of arterioles) and CD34 (an endothelial marker), with separate analyses on grey and white matter. A total of 43 834 smooth muscle actin-positive vascular profiles and 603 798 CD34-positive vascular profiles were evaluated. In frontal cortex of cases with hippocampal sclerosis of ageing, smooth muscle actin-immunoreactive arterioles had thicker walls (P < 0.05), larger perimeters (P < 0

  19. Arteriolosclerosis that affects multiple brain regions is linked to hippocampal sclerosis of ageing

    Science.gov (United States)

    Neltner, Janna H.; Abner, Erin L.; Baker, Steven; Schmitt, Frederick A.; Kryscio, Richard J.; Jicha, Gregory A.; Smith, Charles D.; Hammack, Eleanor; Kukull, Walter A.; Brenowitz, Willa D.; Van Eldik, Linda J.

    2014-01-01

    Hippocampal sclerosis of ageing is a prevalent brain disease that afflicts older persons and has been linked with cerebrovascular pathology. Arteriolosclerosis is a subtype of cerebrovascular pathology characterized by concentrically thickened arterioles. Here we report data from multiple large autopsy series (University of Kentucky Alzheimer’s Disease Centre, Nun Study, and National Alzheimer’s Coordinating Centre) showing a specific association between hippocampal sclerosis of ageing pathology and arteriolosclerosis. The present analyses incorporate 226 cases of autopsy-proven hippocampal sclerosis of ageing and 1792 controls. Case–control comparisons were performed including digital pathological assessments for detailed analyses of blood vessel morphology. We found no evidence of associations between hippocampal sclerosis of ageing pathology and lacunar infarcts, large infarcts, Circle of Willis atherosclerosis, or cerebral amyloid angiopathy. Individuals with hippocampal sclerosis of ageing pathology did not show increased rates of clinically documented hypertension, diabetes, or other cardiac risk factors. The correlation between arteriolosclerosis and hippocampal sclerosis of ageing pathology was strong in multiple brain regions outside of the hippocampus. For example, the presence of arteriolosclerosis in the frontal cortex (Brodmann area 9) was strongly associated with hippocampal sclerosis of ageing pathology (P ageing (n = 15) and control (n = 42) cases. Following technical studies to optimize immunostaining methods for small blood vessel visualization, our analyses focused on sections immunostained for smooth muscle actin (a marker of arterioles) and CD34 (an endothelial marker), with separate analyses on grey and white matter. A total of 43 834 smooth muscle actin-positive vascular profiles and 603 798 CD34-positive vascular profiles were evaluated. In frontal cortex of cases with hippocampal sclerosis of ageing, smooth muscle actin

  20. Multiple CMS-restorer gene polymorphism in gynodioecious Plantago coronopus

    NARCIS (Netherlands)

    Damme, van J.M.M.; Hundscheid, M.P.J.; Ivanovic, S.; Koelewijn, H.P.

    2004-01-01

    The mode of inheritance of the male sterility trait is crucial for understanding the evolutionary dynamics of the sexual system gynodioecy, which is the co-occurrence of female and hermaphrodite plants in natural populations. Both cytoplasmic (CMS) and nuclear (restorer) genes are known to be

  1. Comparison of multiple gene assembly methods for metabolic engineering

    Science.gov (United States)

    Chenfeng Lu; Karen Mansoorabadi; Thomas Jeffries

    2007-01-01

    A universal, rapid DNA assembly method for efficient multigene plasmid construction is important for biological research and for optimizing gene expression in industrial microbes. Three different approaches to achieve this goal were evaluated. These included creating long complementary extensions using a uracil-DNA glycosylase technique, overlap extension polymerase...

  2. Adverse Childhood Experiences Are Linked to Age of Onset and Reading Recognition in Multiple Sclerosis

    Directory of Open Access Journals (Sweden)

    Michael T. Shaw

    2017-06-01

    Full Text Available BackgroundAdverse childhood experiences (ACEs exert a psychological and physiological toll that increases risk of chronic conditions, poorer social functioning, and cognitive impairment in adulthood.ObjectiveTo investigate the relationship between childhood adversity and clinical disease features in multiple sclerosis (MS.MethodsSixty-seven participants with MS completed the ACE assessment and neuropsychological assessments as part of a larger clinical trial of cognitive remediation.ResultsAdverse childhood experience scores, a measure of exposure to adverse events in childhood, significantly predicted age of MS onset (r = –0.30, p = 0.04. ACEs were also linked to reading recognition (a proxy for premorbid IQ (r = –0.25, p = 0.04. ACE scores were not related to age, current disability, or current level of cognitive impairment measured by the Symbol Digit Modalities Test (SDMT.ConclusionChildhood adversity may increase the likelihood of earlier age of onset and poorer estimated premorbid IQ in MS.

  3. Linking Fine-Scale Observations and Model Output with Imagery at Multiple Scales

    Science.gov (United States)

    Sadler, J.; Walthall, C. L.

    2014-12-01

    The development and implementation of a system for seasonal worldwide agricultural yield estimates is underway with the international Group on Earth Observations GeoGLAM project. GeoGLAM includes a research component to continually improve and validate its algorithms. There is a history of field measurement campaigns going back decades to draw upon for ways of linking surface measurements and model results with satellite observations. Ground-based, in-situ measurements collected by interdisciplinary teams include yields, model inputs and factors affecting scene radiation. Data that is comparable across space and time with careful attention to calibration is essential for the development and validation of agricultural applications of remote sensing. Data management to ensure stewardship, availability and accessibility of the data are best accomplished when considered an integral part of the research. The expense and logistical challenges of field measurement campaigns can be cost-prohibitive and because of short funding cycles for research, access to consistent, stable study sites can be lost. The use of a dedicated staff for baseline data needed by multiple investigators, and conducting measurement campaigns using existing measurement networks such as the USDA Long Term Agroecosystem Research network can fulfill these needs and ensure long-term access to study sites.

  4. Polyuridylylation and processing of transcripts from multiple gene minicircles in chloroplasts of the dinoflagellate Amphidinium carterae

    KAUST Repository

    Barbrook, Adrian C.; Dorrell, Richard G.; Burrows, Jennifer; Plenderleith, Lindsey J.; Nisbet, R. Ellen R.; Howe, Christopher J.

    2012-01-01

    -PCR to study transcription and transcript processing in the chloroplasts of Amphidinium carterae, a model peridinin-containing dinoflagellate. These organisms have a highly unusual chloroplast genome, with genes located on multiple small 'minicircle' elements

  5. Multiple controls affect arsenite oxidase gene expression in Herminiimonas arsenicoxydans

    Directory of Open Access Journals (Sweden)

    Coppée Jean-Yves

    2010-02-01

    Full Text Available Abstract Background Both the speciation and toxicity of arsenic are affected by bacterial transformations, i.e. oxidation, reduction or methylation. These transformations have a major impact on environmental contamination and more particularly on arsenic contamination of drinking water. Herminiimonas arsenicoxydans has been isolated from an arsenic- contaminated environment and has developed various mechanisms for coping with arsenic, including the oxidation of As(III to As(V as a detoxification mechanism. Results In the present study, a differential transcriptome analysis was used to identify genes, including arsenite oxidase encoding genes, involved in the response of H. arsenicoxydans to As(III. To get insight into the molecular mechanisms of this enzyme activity, a Tn5 transposon mutagenesis was performed. Transposon insertions resulting in a lack of arsenite oxidase activity disrupted aoxR and aoxS genes, showing that the aox operon transcription is regulated by the AoxRS two-component system. Remarkably, transposon insertions were also identified in rpoN coding for the alternative N sigma factor (σ54 of RNA polymerase and in dnaJ coding for the Hsp70 co-chaperone. Western blotting with anti-AoxB antibodies and quantitative RT-PCR experiments allowed us to demonstrate that the rpoN and dnaJ gene products are involved in the control of arsenite oxidase gene expression. Finally, the transcriptional start site of the aoxAB operon was determined using rapid amplification of cDNA ends (RACE and a putative -12/-24 σ54-dependent promoter motif was identified upstream of aoxAB coding sequences. Conclusion These results reveal the existence of novel molecular regulatory processes governing arsenite oxidase expression in H. arsenicoxydans. These data are summarized in a model that functionally integrates arsenite oxidation in the adaptive response to As(III in this microorganism.

  6. A pipeline to determine RT-QPCR control genes for evolutionary studies: application to primate gene expression across multiple tissues.

    Directory of Open Access Journals (Sweden)

    Olivier Fedrigo

    Full Text Available Because many species-specific phenotypic differences are assumed to be caused by differential regulation of gene expression, many recent investigations have focused on measuring transcript abundance. Despite the availability of high-throughput platforms, quantitative real-time polymerase chain reaction (RT-QPCR is often the method of choice because of its low cost and wider dynamic range. However, the accuracy of this technique heavily relies on the use of multiple valid control genes for normalization. We created a pipeline for choosing genes potentially useful as RT-QPCR control genes for measuring expression between human and chimpanzee samples across multiple tissues, using published microarrays and a measure of tissue-specificity. We identified 13 genes from the pipeline and from commonly used control genes: ACTB, USP49, ARGHGEF2, GSK3A, TBP, SDHA, EIF2B2, GPDH, YWHAZ, HPTR1, RPL13A, HMBS, and EEF2. We then tested these candidate genes and validated their expression stability across species. We established the rank order of the most preferable set of genes for single and combined tissues. Our results suggest that for at least three tissues (cerebral cortex, liver, and skeletal muscle, EIF2B2, EEF2, HMBS, and SDHA are useful genes for normalizing human and chimpanzee expression using RT-QPCR. Interestingly, other commonly used control genes, including TBP, GAPDH, and, especially ACTB do not perform as well. This pipeline could be easily adapted to other species for which expression data exist, providing taxonomically appropriate control genes for comparisons of gene expression among species.

  7. Chloroplast two-component systems: evolution of the link between photosynthesis and gene expression.

    Science.gov (United States)

    Puthiyaveetil, Sujith; Allen, John F

    2009-06-22

    Two-component signal transduction, consisting of sensor kinases and response regulators, is the predominant signalling mechanism in bacteria. This signalling system originated in prokaryotes and has spread throughout the eukaryotic domain of life through endosymbiotic, lateral gene transfer from the bacterial ancestors and early evolutionary precursors of eukaryotic, cytoplasmic, bioenergetic organelles-chloroplasts and mitochondria. Until recently, it was thought that two-component systems inherited from an ancestral cyanobacterial symbiont are no longer present in chloroplasts. Recent research now shows that two-component systems have survived in chloroplasts as products of both chloroplast and nuclear genes. Comparative genomic analysis of photosynthetic eukaryotes shows a lineage-specific distribution of chloroplast two-component systems. The components and the systems they comprise have homologues in extant cyanobacterial lineages, indicating their ancient cyanobacterial origin. Sequence and functional characteristics of chloroplast two-component systems point to their fundamental role in linking photosynthesis with gene expression. We propose that two-component systems provide a coupling between photosynthesis and gene expression that serves to retain genes in chloroplasts, thus providing the basis of cytoplasmic, non-Mendelian inheritance of plastid-associated characters. We discuss the role of this coupling in the chronobiology of cells and in the dialogue between nuclear and cytoplasmic genetic systems.

  8. A systems approach identifies networks and genes linking sleep and stress: implications for neuropsychiatric disorders.

    Science.gov (United States)

    Jiang, Peng; Scarpa, Joseph R; Fitzpatrick, Karrie; Losic, Bojan; Gao, Vance D; Hao, Ke; Summa, Keith C; Yang, He S; Zhang, Bin; Allada, Ravi; Vitaterna, Martha H; Turek, Fred W; Kasarskis, Andrew

    2015-05-05

    Sleep dysfunction and stress susceptibility are comorbid complex traits that often precede and predispose patients to a variety of neuropsychiatric diseases. Here, we demonstrate multilevel organizations of genetic landscape, candidate genes, and molecular networks associated with 328 stress and sleep traits in a chronically stressed population of 338 (C57BL/6J × A/J) F2 mice. We constructed striatal gene co-expression networks, revealing functionally and cell-type-specific gene co-regulations important for stress and sleep. Using a composite ranking system, we identified network modules most relevant for 15 independent phenotypic categories, highlighting a mitochondria/synaptic module that links sleep and stress. The key network regulators of this module are overrepresented with genes implicated in neuropsychiatric diseases. Our work suggests that the interplay among sleep, stress, and neuropathology emerges from genetic influences on gene expression and their collective organization through complex molecular networks, providing a framework for interrogating the mechanisms underlying sleep, stress susceptibility, and related neuropsychiatric disorders. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  9. Potential translational targets revealed by linking mouse grooming behavioral phenotypes to gene expression using public databases.

    Science.gov (United States)

    Roth, Andrew; Kyzar, Evan J; Cachat, Jonathan; Stewart, Adam Michael; Green, Jeremy; Gaikwad, Siddharth; O'Leary, Timothy P; Tabakoff, Boris; Brown, Richard E; Kalueff, Allan V

    2013-01-10

    Rodent self-grooming is an important, evolutionarily conserved behavior, highly sensitive to pharmacological and genetic manipulations. Mice with aberrant grooming phenotypes are currently used to model various human disorders. Therefore, it is critical to understand the biology of grooming behavior, and to assess its translational validity to humans. The present in-silico study used publicly available gene expression and behavioral data obtained from several inbred mouse strains in the open-field, light-dark box, elevated plus- and elevated zero-maze tests. As grooming duration differed between strains, our analysis revealed several candidate genes with significant correlations between gene expression in the brain and grooming duration. The Allen Brain Atlas, STRING, GoMiner and Mouse Genome Informatics databases were used to functionally map and analyze these candidate mouse genes against their human orthologs, assessing the strain ranking of their expression and the regional distribution of expression in the mouse brain. This allowed us to identify an interconnected network of candidate genes (which have expression levels that correlate with grooming behavior), display altered patterns of expression in key brain areas related to grooming, and underlie important functions in the brain. Collectively, our results demonstrate the utility of large-scale, high-throughput data-mining and in-silico modeling for linking genomic and behavioral data, as well as their potential to identify novel neural targets for complex neurobehavioral phenotypes, including grooming. Copyright © 2012 Elsevier Inc. All rights reserved.

  10. IGEMS: The Consortium on Interplay of Genes and Environment Across Multiple Studies

    DEFF Research Database (Denmark)

    Pedersen, Nancy L; Christensen, Kaare; Dahl, Anna K

    2013-01-01

    The Interplay of Genes and Environment across Multiple Studies (IGEMS) group is a consortium of eight longitudinal twin studies established to explore the nature of social context effects and gene-environment interplay in late-life functioning. The resulting analysis of the combined data from ove...

  11. Linkage and candidate gene analysis of X-linked familial exudative vitreoretinopathy.

    Science.gov (United States)

    Shastry, B S; Hejtmancik, J F; Plager, D A; Hartzer, M K; Trese, M T

    1995-05-20

    Familial exudative vitreoretinopathy (FEVR) is a hereditary eye disorder characterized by avascularity of the peripheral retina, retinal exudates, tractional detachment, and retinal folds. The disorder is most commonly transmitted as an autosomal dominant trait, but X-linked transmission also occurs. To initiate the process of identifying the gene responsible for the X-linked disorder, linkage analysis has been performed with three previously unreported three- or four-generation families. Two-point analysis showed linkage to MAOA (Zmax = 2.1, theta max = 0) and DXS228 (Zmax = 0.5, theta max = 0.11), and this was further confirmed by multipoint analysis with these same markers (Zmax = 2.81 at MAOA), which both lie near the gene causing Norrie disease. Molecular genetic analysis further reveals a missense mutation (R121W) in the third exon of the Norrie's disease gene that perfectly cosegregates with the disease through three generations in one family. This mutation was not detected in the unaffected family members and six normal unrelated controls, suggesting that it is likely to be the pathogenic mutation. Additionally, a polymorphic missense mutation (H127R) was detected in a severely affected patient.

  12. Genome-wide analysis of gene expression in primate taste buds reveals links to diverse processes.

    Directory of Open Access Journals (Sweden)

    Peter Hevezi

    Full Text Available Efforts to unravel the mechanisms underlying taste sensation (gustation have largely focused on rodents. Here we present the first comprehensive characterization of gene expression in primate taste buds. Our findings reveal unique new insights into the biology of taste buds. We generated a taste bud gene expression database using laser capture microdissection (LCM procured fungiform (FG and circumvallate (CV taste buds from primates. We also used LCM to collect the top and bottom portions of CV taste buds. Affymetrix genome wide arrays were used to analyze gene expression in all samples. Known taste receptors are preferentially expressed in the top portion of taste buds. Genes associated with the cell cycle and stem cells are preferentially expressed in the bottom portion of taste buds, suggesting that precursor cells are located there. Several chemokines including CXCL14 and CXCL8 are among the highest expressed genes in taste buds, indicating that immune system related processes are active in taste buds. Several genes expressed specifically in endocrine glands including growth hormone releasing hormone and its receptor are also strongly expressed in taste buds, suggesting a link between metabolism and taste. Cell type-specific expression of transcription factors and signaling molecules involved in cell fate, including KIT, reveals the taste bud as an active site of cell regeneration, differentiation, and development. IKBKAP, a gene mutated in familial dysautonomia, a disease that results in loss of taste buds, is expressed in taste cells that communicate with afferent nerve fibers via synaptic transmission. This database highlights the power of LCM coupled with transcriptional profiling to dissect the molecular composition of normal tissues, represents the most comprehensive molecular analysis of primate taste buds to date, and provides a foundation for further studies in diverse aspects of taste biology.

  13. Optimising case detection within UK electronic health records : use of multiple linked databases for detecting liver injury

    NARCIS (Netherlands)

    Wing, Kevin; Bhaskaran, Krishnan; Smeeth, Liam; van Staa, Tjeerd P|info:eu-repo/dai/nl/304827762; Klungel, Olaf H|info:eu-repo/dai/nl/181447649; Reynolds, Robert F; Douglas, Ian

    2016-01-01

    OBJECTIVES: We aimed to create a 'multidatabase' algorithm for identification of cholestatic liver injury using multiple linked UK databases, before (1) assessing the improvement in case ascertainment compared to using a single database and (2) developing a new single-database case-definition

  14. Linking landscape characteristics to local grizzly bear abundance using multiple detection methods in a hierarchical model

    Science.gov (United States)

    Graves, T.A.; Kendall, Katherine C.; Royle, J. Andrew; Stetz, J.B.; Macleod, A.C.

    2011-01-01

    Few studies link habitat to grizzly bear Ursus arctos abundance and these have not accounted for the variation in detection or spatial autocorrelation. We collected and genotyped bear hair in and around Glacier National Park in northwestern Montana during the summer of 2000. We developed a hierarchical Markov chain Monte Carlo model that extends the existing occupancy and count models by accounting for (1) spatially explicit variables that we hypothesized might influence abundance; (2) separate sub-models of detection probability for two distinct sampling methods (hair traps and rub trees) targeting different segments of the population; (3) covariates to explain variation in each sub-model of detection; (4) a conditional autoregressive term to account for spatial autocorrelation; (5) weights to identify most important variables. Road density and per cent mesic habitat best explained variation in female grizzly bear abundance; spatial autocorrelation was not supported. More female bears were predicted in places with lower road density and with more mesic habitat. Detection rates of females increased with rub tree sampling effort. Road density best explained variation in male grizzly bear abundance and spatial autocorrelation was supported. More male bears were predicted in areas of low road density. Detection rates of males increased with rub tree and hair trap sampling effort and decreased over the sampling period. We provide a new method to (1) incorporate multiple detection methods into hierarchical models of abundance; (2) determine whether spatial autocorrelation should be included in final models. Our results suggest that the influence of landscape variables is consistent between habitat selection and abundance in this system.

  15. A non-inheritable maternal Cas9-based multiple-gene editing system in mice

    OpenAIRE

    Takayuki Sakurai; Akiko Kamiyoshi; Hisaka Kawate; Chie Mori; Satoshi Watanabe; Megumu Tanaka; Ryuichi Uetake; Masahiro Sato; Takayuki Shindo

    2016-01-01

    The CRISPR/Cas9 system is capable of editing multiple genes through one-step zygote injection. The preexisting method is largely based on the co-injection of Cas9 DNA (or mRNA) and guide RNAs (gRNAs); however, it is unclear how many genes can be simultaneously edited by this method, and a reliable means to generate transgenic (Tg) animals with multiple gene editing has yet to be developed. Here, we employed non-inheritable maternal Cas9 (maCas9) protein derived from Tg mice with systemic Cas9...

  16. Identification of AFLP molecular linked to row- type gene in barley

    International Nuclear Information System (INIS)

    Sayed- Tabatabaei, B.E.

    2005-01-01

    Formation of the two-and six-rowed types in barley is predominantly controlled by alleles at a single locus (vrzl) which is located in long armn of chromosome 2H. This gene is a key character on the study of barley domestication and yield. Near-isogenic lines of barley were produced from crosses between Kanto Nakate Gold (tow-rowed) and Azumamugi (six-rowed). The selected lines were used for screening of AFLP polymorphic bands which are linked to vrs1 locus. After screening of a total of 1792 primer combination, five polymorphic bands were identified. A construction of high resolution map around the vrs1 locus was made using recombinant inbred lines. These markers can be used for a map-based cloning of the genes at the vrsl locus

  17. Linking susceptibility genes and pathogenesis mechanisms using mouse models of systemic lupus erythematosus

    Science.gov (United States)

    Crampton, Steve P.; Morawski, Peter A.; Bolland, Silvia

    2014-01-01

    Systemic lupus erythematosus (SLE) represents a challenging autoimmune disease from a clinical perspective because of its varied forms of presentation. Although broad-spectrum steroids remain the standard treatment for SLE, they have many side effects and only provide temporary relief from the symptoms of the disease. Thus, gaining a deeper understanding of the genetic traits and biological pathways that confer susceptibility to SLE will help in the design of more targeted and effective therapeutics. Both human genome-wide association studies (GWAS) and investigations using a variety of mouse models of SLE have been valuable for the identification of the genes and pathways involved in pathogenesis. In this Review, we link human susceptibility genes for SLE with biological pathways characterized in mouse models of lupus, and discuss how the mechanistic insights gained could advance drug discovery for the disease. PMID:25147296

  18. Linking susceptibility genes and pathogenesis mechanisms using mouse models of systemic lupus erythematosus

    Directory of Open Access Journals (Sweden)

    Steve P. Crampton

    2014-09-01

    Full Text Available Systemic lupus erythematosus (SLE represents a challenging autoimmune disease from a clinical perspective because of its varied forms of presentation. Although broad-spectrum steroids remain the standard treatment for SLE, they have many side effects and only provide temporary relief from the symptoms of the disease. Thus, gaining a deeper understanding of the genetic traits and biological pathways that confer susceptibility to SLE will help in the design of more targeted and effective therapeutics. Both human genome-wide association studies (GWAS and investigations using a variety of mouse models of SLE have been valuable for the identification of the genes and pathways involved in pathogenesis. In this Review, we link human susceptibility genes for SLE with biological pathways characterized in mouse models of lupus, and discuss how the mechanistic insights gained could advance drug discovery for the disease.

  19. Regulatory divergence of X-linked genes and hybrid male sterility in mice.

    Science.gov (United States)

    Oka, Ayako; Shiroishi, Toshihiko

    2014-01-01

    Postzygotic reproductive isolation is the reduction of fertility or viability in hybrids between genetically diverged populations. One example of reproductive isolation, hybrid male sterility, may be caused by genetic incompatibility between diverged genetic factors in two distinct populations. Genetic factors involved in hybrid male sterility are disproportionately located on the X chromosome. Recent studies showing the evolutionary divergence in gene regulatory networks or epigenetic effects suggest that the genetic incompatibilities occur at much broader levels than had previously been thought (e.g., incompatibility of protein-protein interactions). The latest studies suggest that evolutionary divergence of transcriptional regulation causes genetic incompatibilities in hybrid animals, and that such incompatibilities preferentially involve X-linked genes. In this review, we focus on recent progress in understanding hybrid sterility in mice, including our studies, and we discuss the evolutionary significance of regulatory divergence for speciation.

  20. A Convenient Cas9-based Conditional Knockout Strategy for Simultaneously Targeting Multiple Genes in Mouse.

    Science.gov (United States)

    Chen, Jiang; Du, Yinan; He, Xueyan; Huang, Xingxu; Shi, Yun S

    2017-03-31

    The most powerful way to probe protein function is to characterize the consequence of its deletion. Compared to conventional gene knockout (KO), conditional knockout (cKO) provides an advanced gene targeting strategy with which gene deletion can be performed in a spatially and temporally restricted manner. However, for most species that are amphiploid, the widely used Cre-flox conditional KO (cKO) system would need targeting loci in both alleles to be loxP flanked, which in practice, requires time and labor consuming breeding. This is considerably significant when one is dealing with multiple genes. CRISPR/Cas9 genome modulation system is advantaged in its capability in targeting multiple sites simultaneously. Here we propose a strategy that could achieve conditional KO of multiple genes in mouse with Cre recombinase dependent Cas9 expression. By transgenic construction of loxP-stop-loxP (LSL) controlled Cas9 (LSL-Cas9) together with sgRNAs targeting EGFP, we showed that the fluorescence molecule could be eliminated in a Cre-dependent manner. We further verified the efficacy of this novel strategy to target multiple sites by deleting c-Maf and MafB simultaneously in macrophages specifically. Compared to the traditional Cre-flox cKO strategy, this sgRNAs-LSL-Cas9 cKO system is simpler and faster, and would make conditional manipulation of multiple genes feasible.

  1. DIA1R is an X-linked gene related to Deleted In Autism-1.

    Directory of Open Access Journals (Sweden)

    Azhari Aziz

    Full Text Available BACKGROUND: Autism spectrum disorders (ASDS are frequently occurring disorders diagnosed by deficits in three core functional areas: social skills, communication, and behaviours and/or interests. Mental retardation frequently accompanies the most severe forms of ASDs, while overall ASDs are more commonly diagnosed in males. Most ASDs have a genetic origin and one gene recently implicated in the etiology of autism is the Deleted-In-Autism-1 (DIA1 gene. METHODOLOGY/PRINCIPAL FINDINGS: Using a bioinformatics-based approach, we have identified a human gene closely related to DIA1, we term DIA1R (DIA1-Related. While DIA1 is autosomal (chromosome 3, position 3q24, DIA1R localizes to the X chromosome at position Xp11.3 and is known to escape X-inactivation. The gene products are of similar size, with DIA1 encoding 430, and DIA1R 433, residues. At the amino acid level, DIA1 and DIA1R are 62% similar overall (28% identical, and both encode signal peptides for targeting to the secretory pathway. Both genes are ubiquitously expressed, including in fetal and adult brain tissue. CONCLUSIONS/SIGNIFICANCE: Examination of published literature revealed point mutations in DIA1R are associated with X-linked mental retardation (XLMR and DIA1R deletion is associated with syndromes with ASD-like traits and/or XLMR. Together, these results support a model where the DIA1 and DIA1R gene products regulate molecular traffic through the cellular secretory pathway or affect the function of secreted factors, and functional deficits cause disorders with ASD-like symptoms and/or mental retardation.

  2. Three novel PHEX gene mutations in four Chinese families with X-linked dominant hypophosphatemic rickets

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Qing-lin [Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People' s Hospital, Shanghai 200233 (China); Xu, Jia [Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People' s Hospital, Shanghai 200233 (China); Metabolic Bone Disease and Genetic Research Unit, Department of Osteoporosis and Bone Diseases, Shanghai Jiao Tong University Affiliated Sixth People' s Hospital, Shanghai 200233 (China); Medical College of Soochow University, Suzhou, Jiangsu province 215000 (China); Zhang, Zeng [Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People' s Hospital, Shanghai 200233 (China); Metabolic Bone Disease and Genetic Research Unit, Department of Osteoporosis and Bone Diseases, Shanghai Jiao Tong University Affiliated Sixth People' s Hospital, Shanghai 200233 (China); He, Jin-wei [Metabolic Bone Disease and Genetic Research Unit, Department of Osteoporosis and Bone Diseases, Shanghai Jiao Tong University Affiliated Sixth People' s Hospital, Shanghai 200233 (China); Lu, Lian-song [Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People' s Hospital, Shanghai 200233 (China); Medical College of Soochow University, Suzhou, Jiangsu province 215000 (China); Fu, Wen-zhen [Metabolic Bone Disease and Genetic Research Unit, Department of Osteoporosis and Bone Diseases, Shanghai Jiao Tong University Affiliated Sixth People' s Hospital, Shanghai 200233 (China); Zhang, Zhen-lin, E-mail: zzl2002@medmail.com.cn [Metabolic Bone Disease and Genetic Research Unit, Department of Osteoporosis and Bone Diseases, Shanghai Jiao Tong University Affiliated Sixth People' s Hospital, Shanghai 200233 (China)

    2012-07-13

    Highlights: Black-Right-Pointing-Pointer In our study, all of the patients were of Han Chinese ethnicity, which were rarely reported. Black-Right-Pointing-Pointer We identified three novel PHEX gene mutations in four unrelated families with XLH. Black-Right-Pointing-Pointer We found that the relationship between the phenotype and genotype of the PHEX gene was not invariant. Black-Right-Pointing-Pointer We found that two PHEX gene sites, p.534 and p.731, were conserved. -- Abstract: Background: X-linked hypophosphatemia (XLH), the most common form of inherited rickets, is a dominant disorder that is characterized by renal phosphate wasting with hypophosphatemia, abnormal bone mineralization, short stature, and rachitic manifestations. The related gene with inactivating mutations associated with XLH has been identified as PHEX, which is a phosphate-regulating gene with homologies to endopeptidases on the X chromosome. In this study, a variety of PHEX mutations were identified in four Chinese families with XLH. Methods: We investigated four unrelated Chinese families who exhibited typical features of XLH by using PCR to analyze mutations that were then sequenced. The laboratory and radiological investigations were conducted simultaneously. Results: Three novel mutations were found in these four families: one frameshift mutation, c.2033dupT in exon 20, resulting in p.T679H; one nonsense mutation, c.1294A > T in exon 11, resulting in p.K432X; and one missense mutation, c.2192T > C in exon 22, resulting in p.F731S. Conclusions: We found that the PHEX gene mutations were responsible for XLH in these Chinese families. Our findings are useful for understanding the genetic basis of Chinese patients with XLH.

  3. Three novel PHEX gene mutations in four Chinese families with X-linked dominant hypophosphatemic rickets

    International Nuclear Information System (INIS)

    Kang, Qing-lin; Xu, Jia; Zhang, Zeng; He, Jin-wei; Lu, Lian-song; Fu, Wen-zhen; Zhang, Zhen-lin

    2012-01-01

    Highlights: ► In our study, all of the patients were of Han Chinese ethnicity, which were rarely reported. ► We identified three novel PHEX gene mutations in four unrelated families with XLH. ► We found that the relationship between the phenotype and genotype of the PHEX gene was not invariant. ► We found that two PHEX gene sites, p.534 and p.731, were conserved. -- Abstract: Background: X-linked hypophosphatemia (XLH), the most common form of inherited rickets, is a dominant disorder that is characterized by renal phosphate wasting with hypophosphatemia, abnormal bone mineralization, short stature, and rachitic manifestations. The related gene with inactivating mutations associated with XLH has been identified as PHEX, which is a phosphate-regulating gene with homologies to endopeptidases on the X chromosome. In this study, a variety of PHEX mutations were identified in four Chinese families with XLH. Methods: We investigated four unrelated Chinese families who exhibited typical features of XLH by using PCR to analyze mutations that were then sequenced. The laboratory and radiological investigations were conducted simultaneously. Results: Three novel mutations were found in these four families: one frameshift mutation, c.2033dupT in exon 20, resulting in p.T679H; one nonsense mutation, c.1294A > T in exon 11, resulting in p.K432X; and one missense mutation, c.2192T > C in exon 22, resulting in p.F731S. Conclusions: We found that the PHEX gene mutations were responsible for XLH in these Chinese families. Our findings are useful for understanding the genetic basis of Chinese patients with XLH.

  4. Phylostratigraphic tracking of cancer genes suggests a link to the emergence of multicellularity in metazoa

    Directory of Open Access Journals (Sweden)

    Domazet-Lošo Tomislav

    2010-05-01

    Full Text Available Abstract Background Phylostratigraphy is a method used to correlate the evolutionary origin of founder genes (that is, functional founder protein domains of gene families with particular macroevolutionary transitions. It is based on a model of genome evolution that suggests that the origin of complex phenotypic innovations will be accompanied by the emergence of such founder genes, the descendants of which can still be traced in extant organisms. The origin of multicellularity can be considered to be a macroevolutionary transition, for which new gene functions would have been required. Cancer should be tightly connected to multicellular life since it can be viewed as a malfunction of interaction between cells in a multicellular organism. A phylostratigraphic tracking of the origin of cancer genes should, therefore, also provide insights into the origin of multicellularity. Results We find two strong peaks of the emergence of cancer related protein domains, one at the time of the origin of the first cell and the other around the time of the evolution of the multicellular metazoan organisms. These peaks correlate with two major classes of cancer genes, the 'caretakers', which are involved in general functions that support genome stability and the 'gatekeepers', which are involved in cellular signalling and growth processes. Interestingly, this phylogenetic succession mirrors the ontogenetic succession of tumour progression, where mutations in caretakers are thought to precede mutations in gatekeepers. Conclusions A link between multicellularity and formation of cancer has often been predicted. However, this has not so far been explicitly tested. Although we find that a significant number of protein domains involved in cancer predate the origin of multicellularity, the second peak of cancer protein domain emergence is, indeed, connected to a phylogenetic level where multicellular animals have emerged. The fact that we can find a strong and

  5. Susceptibility to experimental biliary atresia linked to different hepatic gene expression profiles in two mouse strains.

    Science.gov (United States)

    Leonhardt, Johannes; Kuebler, Joachim F; Turowski, Carmen; Tschernig, Thomas; Geffers, Robert; Petersen, Claus

    2010-02-01

    To compare hepatic gene expression during the development of experimental biliary atresia (BA) in two different mouse strains. Balb/c mice and C57Black/6 (Black/6) mice were infected with rhesus rotavirus (RRV) postpartum, clinical signs of BA and survival were noted. Liver sections were assessed for cluster of differentiation antigen (CD) 3, CD4 and CD8 expression, and the hepatic virus load was determined. Second, mice of both strains were sacrificed three days after infection. Isolated hepatic RNA was subjected to gene expression analysis using Affymetrix Gene Chip MOE 430 2.0. The incidence of BA was significantly lower in Black/6 mice compared to Balb/c mice (13.5% vs. 67%, P < 0.05). The mean virus titers were higher in mice with BA compared to mice without BA. Different gene profiles three days after virus infection were noted, with differential expression of 201 genes, including those regulating apoptosis, nucleic acid binding, transport function and particularly the immune response (chemokine C-C motif ligand 2, toll-like receptor 3, CD antigen 14, chemokine (C-X-C motif) ligands 10 and 11). This correlated with a significant increase of CD4 positive cells only in Balb/c mice with BA compared to healthy mice (13.5 vs. 5.0; P < 0.05). Black/6 mice did not exhibit any significant increase of CD3 or CD4 leukocytes despite cholestasis. The different susceptibility to experimental BA was associated with an increase of CD4 T-cells in the liver of Balb/c mice, which is linked to different gene profiles at the onset of bile duct obstruction.

  6. Identification of multiple FXYD genes in a teleost fish

    DEFF Research Database (Denmark)

    Tipsmark, Christian Kølbæk; Madsen, Steffen

    2007-01-01

    It is increasingly clear, that alterations in Na+,K+-ATPase kinetics to fit the demands in specialized cell types is vital for the enzyme to execute its different physiological roles in diverse tissues. In addition to tissue dependent expression of isoforms of the conventional subunits, and a and ß...... the tissue dependent expression of the different isoforms in gill, kidney, intestine, heart, muscle, brain and liver. When inspecting the relative expression levels we found, that while two isoforms were detected at comparable levels in several of the examined tissues, 6 isoforms were expressed in a more...... discrete manner. In excitatory tissues, two isoforms were highly expressed in brain and one in skeletal muscle. In osmoregulatory tissues, one isoform was expressed predominantly in gill, one in kidney and one equally in kidney and intestine. We observed that expression of several FXYD genes in kidney...

  7. Bayesian models and meta analysis for multiple tissue gene expression data following corticosteroid administration

    Directory of Open Access Journals (Sweden)

    Kelemen Arpad

    2008-08-01

    Full Text Available Abstract Background This paper addresses key biological problems and statistical issues in the analysis of large gene expression data sets that describe systemic temporal response cascades to therapeutic doses in multiple tissues such as liver, skeletal muscle, and kidney from the same animals. Affymetrix time course gene expression data U34A are obtained from three different tissues including kidney, liver and muscle. Our goal is not only to find the concordance of gene in different tissues, identify the common differentially expressed genes over time and also examine the reproducibility of the findings by integrating the results through meta analysis from multiple tissues in order to gain a significant increase in the power of detecting differentially expressed genes over time and to find the differential differences of three tissues responding to the drug. Results and conclusion Bayesian categorical model for estimating the proportion of the 'call' are used for pre-screening genes. Hierarchical Bayesian Mixture Model is further developed for the identifications of differentially expressed genes across time and dynamic clusters. Deviance information criterion is applied to determine the number of components for model comparisons and selections. Bayesian mixture model produces the gene-specific posterior probability of differential/non-differential expression and the 95% credible interval, which is the basis for our further Bayesian meta-inference. Meta-analysis is performed in order to identify commonly expressed genes from multiple tissues that may serve as ideal targets for novel treatment strategies and to integrate the results across separate studies. We have found the common expressed genes in the three tissues. However, the up/down/no regulations of these common genes are different at different time points. Moreover, the most differentially expressed genes were found in the liver, then in kidney, and then in muscle.

  8. Do Fanconi anemia genes control cell response to cross-linking agents by modulating cytochrome P-450 reductase activity?

    NARCIS (Netherlands)

    Kruyt, FAE; Youssoufian, H

    2000-01-01

    The Fanconi anemia (FA) genes play an important role in maintaining chromosomal stability and the defense of mammalian cells against cross-linking agents, such as cisplatin and mitomycin C (MMC). Cells derived from FA patients display a characteristic hypersensitivity toward cross-linking agents.

  9. Gene expression analysis of interferon-beta treatment in multiple sclerosis

    DEFF Research Database (Denmark)

    Sellebjerg, F.; Datta, P.; Larsen, J.

    2008-01-01

    by treatment with IFN-beta. We use DNA microarrays to study gene expression in 10 multiple sclerosis (MS) patients who began de novo treatment with IFN-beta. After the first injection of IFN-beta, the expression of 74 out of 3428 genes changed at least two-fold and statistically significantly (after Bonferroni......Treatment with interferon-beta (IFN-beta) induces the expression of hundreds of genes in blood mononuclear cells, and the expression of several genes has been proposed as a marker of the effect of treatment with IFN-beta. However, to date no molecules have been identified that are stably induced...

  10. The pkI gene encoding pyruvate kinase I links to the luxZ gene which enhances bioluminescence of the lux operon from Photobacterium leiognathi.

    Science.gov (United States)

    Lin, J W; Lu, H C; Chen, H Y; Weng, S F

    1997-10-09

    Partial 3'-end nucleotide sequence of the pkI gene (GenBank accession No. AF019143) from Photobacterium leiognathi ATCC 25521 has been determined, and the encoded pyruvate kinase I is deduced. Pyruvate kinase I is the key enzyme of glycolysis, which converts phosphoenol pyruvate to pyruvate. Alignment and comparison of pyruvate kinase Is from P. leiognathi, E. coli and Salmonella typhimurium show that they are homologous. Nucleotide sequence reveals that the pkI gene is linked to the luxZ gene that enhances bioluminescence of the lux operon from P. leiognathi. The gene order of the pkI and luxZ genes is-pk1-ter-->-R&R"-luxZ-ter"-->, whereas ter is transcriptional terminator for the pkI and related genes, and R&R" is the regulatory region and ter" is transcriptional terminator for the luxZ gene. It clearly elicits that the pkI gene and luxZ gene are divided to two operons. Functional analysis confirms that the potential hairpin loop omega T is the transcriptional terminator for the pkI and related genes. It infers that the pkI and related genes are simply linked to the luxZ gene in P. leiognathi genome.

  11. Identification of molecular markers linked to rice bacterial blight resistance genes from Oryza meyeriana

    Directory of Open Access Journals (Sweden)

    Jing WANG,Chen CHENG,Yanru ZHOU,Yong YANG,Qiong MEI,Junmin LI,Ye CHENG,Chengqi YAN,Jianping CHEN

    2015-09-01

    Full Text Available Y73 is a progeny of asymmetric somatic hybridization between Oryza sativa cv. Dalixiang and the wild rice species Oryza meyeriana. Inoculation with a range of strains of Xanthomonas oryzae pv. oryzae showed that Y73 had inherited a high level of resistance to rice bacterial blight (BB from its wild parent. An F2 population of 7125 individuals was constructed from the cross between Y73 and a BB-susceptible cultivar IR24. After testing 615 SSR and STS markers covering the 12 rice chromosomes, 186 markers were selected that showed polymorphism between Y73 and IR24. Molecular markers linked to the BB resistance genes in Y73 were scanned using the F2 population and the polymorphic markers. The SSR marker RM128 on chromosome 1, the STS marker R03D159 on chromosome 3 and the STS marker R05D104 on chromosome 5 were found to be linked to the rice BB resistance genes in Y73.

  12. The first de novo mutation of the connexin 32 gene associated with X linked Charcot-Marie-Tooth disease

    NARCIS (Netherlands)

    Meggouh, F.; Benomar, A.; Rouger, H.; Tardieu, S.; Birouk, N.; Tassin, J.; Barhoumi, C.; Yahyaoui, M.; Chkili, T.; Brice, A.; LeGuern, E.

    1998-01-01

    X linked Charcot-Marie-Tooth disease (CMTX) is a hereditary motor and sensory neuropathy caused by mutations in the connexin 32 gene (Cx32). Using the SSCP technique and direct sequencing of PCR amplified genomic DNA fragments of the Cx32 gene from a Moroccan patient and her relatives, we identified

  13. Fully automated pipeline for detection of sex linked genes using RNA-Seq data.

    Science.gov (United States)

    Michalovova, Monika; Kubat, Zdenek; Hobza, Roman; Vyskot, Boris; Kejnovsky, Eduard

    2015-03-11

    Sex chromosomes present a genomic region which to some extent, differs between the genders of a single species. Reliable high-throughput methods for detection of sex chromosomes specific markers are needed, especially in species where genome information is limited. Next generation sequencing (NGS) opens the door for identification of unique sequences or searching for nucleotide polymorphisms between datasets. A combination of classical genetic segregation analysis along with RNA-Seq data can present an ideal tool to map and identify sex chromosome-specific expressed markers. To address this challenge, we established genetic cross of dioecious plant Rumex acetosa and generated RNA-Seq data from both parental generation and male and female offspring. We present a pipeline for detection of sex linked genes based on nucleotide polymorphism analysis. In our approach, tracking of nucleotide polymorphisms is carried out using a cross of preferably distant populations. For this reason, only 4 datasets are needed - reads from high-throughput sequencing platforms for parent generation (mother and father) and F1 generation (male and female progeny). Our pipeline uses custom scripts together with external assembly, mapping and variant calling software. Given the resource-intensive nature of the computation, servers with high capacity are a requirement. Therefore, in order to keep this pipeline easily accessible and reproducible, we implemented it in Galaxy - an open, web-based platform for data-intensive biomedical research. Our tools are present in the Galaxy Tool Shed, from which they can be installed to any local Galaxy instance. As an output of the pipeline, user gets a FASTA file with candidate transcriptionally active sex-linked genes, sorted by their relevance. At the same time, a BAM file with identified genes and alignment of reads is also provided. Thus, polymorphisms following segregation pattern can be easily visualized, which significantly enhances primer design

  14. Multiple post-transcriptional regulatory mechanisms in ferritin gene expression

    International Nuclear Information System (INIS)

    Mattia, E.; Den Blaauwen, J.; Van Renswoude, J.; Ashwell, G.

    1989-01-01

    The authors have investigated the mechanisms involved in the regulation of ferritin biosynthesis in K562 human erythroleukemia cells during prolonged exposure to iron. They show that, upon addition of hemin (an efficient iron donor) to the cell culture, the rate of ferritin biosynthesis reaches a maximum after a few hours and then decreases. During a 24-hr incubation with the iron donor the concentrations of total ferritin heavy (H) and light (L) subunit mRNAs rise 2- to 5-fold and 2- to 3-fold, respectively, over the control values, while the amount of the protein increases 10- to 30-fold. The hemin-induced increment in ferritin subunit mRNA is not prevented by deferoxamine, suggesting that it is not directly mediated by chelatable iron. In vitro nuclear transcription analyses performed on nuclei isolated from control cells and cells grown in the presence of hemin indicate that the rates of synthesis of H- and L-subunit mRNAs remain constant. They conclude that iron-induced ferritin biosynthesis is governed by multiple post-transcriptional regulatory mechanisms. They propose that exposure of cells to iron leads to stabilization of ferritin mRNAs, in addition to activation and translation of stored H-and L-subunit mRNAs

  15. A new resource for characterizing X-linked genes in Drosophila melanogaster: systematic coverage and subdivision of the X chromosome with nested, Y-linked duplications.

    Science.gov (United States)

    Cook, R Kimberley; Deal, Megan E; Deal, Jennifer A; Garton, Russell D; Brown, C Adam; Ward, Megan E; Andrade, Rachel S; Spana, Eric P; Kaufman, Thomas C; Cook, Kevin R

    2010-12-01

    Interchromosomal duplications are especially important for the study of X-linked genes. Males inheriting a mutation in a vital X-linked gene cannot survive unless there is a wild-type copy of the gene duplicated elsewhere in the genome. Rescuing the lethality of an X-linked mutation with a duplication allows the mutation to be used experimentally in complementation tests and other genetic crosses and it maps the mutated gene to a defined chromosomal region. Duplications can also be used to screen for dosage-dependent enhancers and suppressors of mutant phenotypes as a way to identify genes involved in the same biological process. We describe an ongoing project in Drosophila melanogaster to generate comprehensive coverage and extensive breakpoint subdivision of the X chromosome with megabase-scale X segments borne on Y chromosomes. The in vivo method involves the creation of X inversions on attached-XY chromosomes by FLP-FRT site-specific recombination technology followed by irradiation to induce large internal X deletions. The resulting chromosomes consist of the X tip, a medial X segment placed near the tip by an inversion, and a full Y. A nested set of medial duplicated segments is derived from each inversion precursor. We have constructed a set of inversions on attached-XY chromosomes that enable us to isolate nested duplicated segments from all X regions. To date, our screens have provided a minimum of 78% X coverage with duplication breakpoints spaced a median of nine genes apart. These duplication chromosomes will be valuable resources for rescuing and mapping X-linked mutations and identifying dosage-dependent modifiers of mutant phenotypes.

  16. X-linked primary immunodeficiency associated with hemizygous mutations in the moesin (MSN) gene.

    Science.gov (United States)

    Lagresle-Peyrou, Chantal; Luce, Sonia; Ouchani, Farid; Soheili, Tayebeh Shabi; Sadek, Hanem; Chouteau, Myriam; Durand, Amandine; Pic, Isabelle; Majewski, Jacek; Brouzes, Chantal; Lambert, Nathalie; Bohineust, Armelle; Verhoeyen, Els; Cosset, François-Loïc; Magerus-Chatinet, Aude; Rieux-Laucat, Frédéric; Gandemer, Virginie; Monnier, Delphine; Heijmans, Catherine; van Gijn, Marielle; Dalm, Virgil A; Mahlaoui, Nizar; Stephan, Jean-Louis; Picard, Capucine; Durandy, Anne; Kracker, Sven; Hivroz, Claire; Jabado, Nada; de Saint Basile, Geneviève; Fischer, Alain; Cavazzana, Marina; André-Schmutz, Isabelle

    2016-12-01

    We investigated 7 male patients (from 5 different families) presenting with profound lymphopenia, hypogammaglobulinemia, fluctuating monocytopenia and neutropenia, a poor immune response to vaccine antigens, and increased susceptibility to bacterial and varicella zoster virus infections. We sought to characterize the genetic defect involved in a new form of X-linked immunodeficiency. We performed genetic analyses and an exhaustive phenotypic and functional characterization of the lymphocyte compartment. We observed hemizygous mutations in the moesin (MSN) gene (located on the X chromosome and coding for MSN) in all 7 patients. Six of the latter had the same missense mutation, which led to an amino acid substitution (R171W) in the MSN four-point-one, ezrin, radixin, moesin domain. The seventh patient had a nonsense mutation leading to a premature stop codon mutation (R533X). The naive T-cell counts were particularly low for age, and most CD8 + T cells expressed the senescence marker CD57. This phenotype was associated with impaired T-cell proliferation, which was rescued by expression of wild-type MSN. MSN-deficient T cells also displayed poor chemokine receptor expression, increased adhesion molecule expression, and altered migration and adhesion capacities. Our observations establish a causal link between an ezrin-radixin-moesin protein mutation and a primary immunodeficiency that could be referred to as X-linked moesin-associated immunodeficiency. Copyright © 2016 American Academy of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.

  17. Linking genes to ecosystem trace gas fluxes in a large-scale model system

    Science.gov (United States)

    Meredith, L. K.; Cueva, A.; Volkmann, T. H. M.; Sengupta, A.; Troch, P. A.

    2017-12-01

    Soil microorganisms mediate biogeochemical cycles through biosphere-atmosphere gas exchange with significant impact on atmospheric trace gas composition. Improving process-based understanding of these microbial populations and linking their genomic potential to the ecosystem-scale is a challenge, particularly in soil systems, which are heterogeneous in biodiversity, chemistry, and structure. In oligotrophic systems, such as the Landscape Evolution Observatory (LEO) at Biosphere 2, atmospheric trace gas scavenging may supply critical metabolic needs to microbial communities, thereby promoting tight linkages between microbial genomics and trace gas utilization. This large-scale model system of three initially homogenous and highly instrumented hillslopes facilitates high temporal resolution characterization of subsurface trace gas fluxes at hundreds of sampling points, making LEO an ideal location to study microbe-mediated trace gas fluxes from the gene to ecosystem scales. Specifically, we focus on the metabolism of ubiquitous atmospheric reduced trace gases hydrogen (H2), carbon monoxide (CO), and methane (CH4), which may have wide-reaching impacts on microbial community establishment, survival, and function. Additionally, microbial activity on LEO may facilitate weathering of the basalt matrix, which can be studied with trace gas measurements of carbonyl sulfide (COS/OCS) and carbon dioxide (O-isotopes in CO2), and presents an additional opportunity for gene to ecosystem study. This work will present initial measurements of this suite of trace gases to characterize soil microbial metabolic activity, as well as links between spatial and temporal variability of microbe-mediated trace gas fluxes in LEO and their relation to genomic-based characterization of microbial community structure (phylogenetic amplicons) and genetic potential (metagenomics). Results from the LEO model system will help build understanding of the importance of atmospheric inputs to

  18. Interactions between SNPs affecting inflammatory response genes are associated with multiple myeloma disease risk and survival

    DEFF Research Database (Denmark)

    Nielsen, Kaspar René; Rodrigo-Domingo, Maria; Steffensen, Rudi

    2017-01-01

    The origin of multiple myeloma depends on interactions with stromal cells in the course of normal B-cell differentiation and evolution of immunity. The concept of the present study is that genes involved in MM pathogenesis, such as immune response genes, can be identified by screening for single......3L1 gene promoters. The occurrence of single polymorphisms, haplotypes and SNP-SNP interactions were statistically analyzed for association with disease risk and outcome following high-dose therapy. Identified genes that carried SNPs or haplotypes that were identified as risk or prognostic factors......= .005). The 'risk genes' were analyzed for expression in normal B-cell subsets (N = 6) from seven healthy donors and we found TNFA and IL-6 expressed both in naïve and in memory B cells when compared to preBI, II, immature and plasma cells. The 'prognosis genes' CHI3L1, IL-6 and IL-10 were differential...

  19. A gene pathway analysis highlights the role of cellular adhesion molecules in multiple sclerosis susceptibility

    DEFF Research Database (Denmark)

    Damotte, V; Guillot-Noel, L; Patsopoulos, N A

    2014-01-01

    adhesion molecule (CAMs) biological pathway using Cytoscape software. This network is a strong candidate, as it is involved in the crossing of the blood-brain barrier by the T cells, an early event in MS pathophysiology, and is used as an efficient therapeutic target. We drew up a list of 76 genes...... in interaction with other genes as a group. Pathway analysis is an alternative way to highlight such group of genes. Using SNP association P-values from eight multiple sclerosis (MS) GWAS data sets, we performed a candidate pathway analysis for MS susceptibility by considering genes interacting in the cell...... belonging to the CAM network. We highlighted 64 networks enriched with CAM genes with low P-values. Filtering by a percentage of CAM genes up to 50% and rejecting enriched signals mainly driven by transcription factors, we highlighted five networks associated with MS susceptibility. One of them, constituted...

  20. On the capacity of multiple cognitive links through common relay under spectrum-sharing constraints

    KAUST Repository

    Yang, Yuli

    2011-06-01

    In this paper, we consider an underlay cognitive relaying network consisting of multiple secondary users and introduce a cooperative transmission protocol using a common relay to help with the communications between all secondary source-destination pairs for higher throughput and lower realization complexity. A whole relay-assisted transmission procedure is composed of multiple access phase and broadcast phase, where the relay is equipped with multiple antennas, and the secondary sources and destinations are single-antenna nodes. Considering the spectrum-sharing constraints on the secondary sources and the relay, we analyze the capacity behaviors of the underlay cognitive relaying network under study. The corresponding numerical results provide a convenient tool for the presented network design and substantiate a distinguishing feature of introduced design in that multiple secondary users\\' communications do not rely on multiple relays, hence allowing for a more efficient use of the radio resources. © 2011 IEEE.

  1. The SH2D2A gene and susceptibility to multiple sclerosis

    DEFF Research Database (Denmark)

    Lorentzen, A.R.; Smestad, C.; Lie, B.A.

    2008-01-01

    We previously reported an association between the SH2D2A gene encoding TSAd and multiple sclerosis (MS). Here a total of 2128 Nordic MS patients and 2004 controls were genotyped for the SH2D2A promoter GA repeat polymorphism and rs926103 encoding a serine to asparagine substitution at amino acid...... that the SH2D2A gene may contribute to susceptibility to MS Udgivelsesdato: 2008/7/15...

  2. Identification of multiple sites suitable for insertion of foreign genes in herpes simplex virus genomes.

    Science.gov (United States)

    Morimoto, Tomomi; Arii, Jun; Akashi, Hiroomi; Kawaguchi, Yasushi

    2009-03-01

    Information on sites in HSV genomes at which foreign gene(s) can be inserted without disrupting viral genes or affecting properties of the parental virus are important for basic research on HSV and development of HSV-based vectors for human therapy. The intergenic region between HSV-1 UL3 and UL4 genes has been reported to satisfy the requirements for such an insertion site. The UL3 and UL4 genes are oriented toward the intergenic region and, therefore, insertion of a foreign gene(s) into the region between the UL3 and UL4 polyadenylation signals should not disrupt any viral genes or transcriptional units. HSV-1 and HSV-2 each have more than 10 additional regions structurally similar to the intergenic region between UL3 and UL4. In the studies reported here, it has been demonstrated that insertion of a reporter gene expression cassette into several of the HSV-1 and HSV-2 intergenic regions has no effect on viral growth in cell culture or virulence in mice, suggesting that these multiple intergenic regions may be suitable HSV sites for insertion of foreign genes.

  3. Substitution rates in the X- and Y-linked genes of the plants, Silene latifolia and S. dioica.

    Science.gov (United States)

    Filatov, Dmitry A; Charlesworth, Deborah

    2002-06-01

    Theory predicts that selection should be less effective in the nonrecombining genes of Y-chromosomes, relative to the situation for genes on the other chromosomes, and this should lead to the accumulation of deleterious nonsynonymous substitutions. In addition, synonymous substitution rates may differ between X- and Y-linked genes because of the male-driven evolution effect and also because of actual differences in per-replication mutation rates between the sex chromosomes. Here, we report the first study of synonymous and nonsynonymous substitution rates on plant sex chromosomes. We sequenced two pairs of sex-linked genes, SlX1-SlY1 and SlX4-SlY4, from dioecious Silene latifolia and S. dioica, and their non-sex-linked homologues from nondioecious S. vulgaris and Lychnis flos-jovis, respectively. The rate of nonsynonymous substitutions in the SlY4 gene is significantly higher than that in the SlX4 gene. Silent substitution rates are also significantly higher in both Y-linked genes, compared with their X-linked homologues. The higher nonsynonymous substitution rate in the SlY4 gene is therefore likely to be caused by a mutation rate difference between the sex chromosomes. The difference in silent substitution rates between the SlX4 and SlY4 genes is too great to be explained solely by a higher per-generation mutation rate in males than females. It is thus probably caused by a difference in per-replication mutation rates between the sex chromosomes. This suggests that the local mutation rate can change in a relatively short evolutionary time.

  4. An Interference-Aware Traffic-Priority-Based Link Scheduling Algorithm for Interference Mitigation in Multiple Wireless Body Area Networks

    Directory of Open Access Journals (Sweden)

    Thien T. T. Le

    2016-12-01

    Full Text Available Currently, wireless body area networks (WBANs are effectively used for health monitoring services. However, in cases where WBANs are densely deployed, interference among WBANs can cause serious degradation of network performance and reliability. Inter-WBAN interference can be reduced by scheduling the communication links of interfering WBANs. In this paper, we propose an interference-aware traffic-priority-based link scheduling (ITLS algorithm to overcome inter-WBAN interference in densely deployed WBANs. First, we model a network with multiple WBANs as an interference graph where node-level interference and traffic priority are taken into account. Second, we formulate link scheduling for multiple WBANs as an optimization model where the objective is to maximize the throughput of the entire network while ensuring the traffic priority of sensor nodes. Finally, we propose the ITLS algorithm for multiple WBANs on the basis of the optimization model. High spatial reuse is also achieved in the proposed ITLS algorithm. The proposed ITLS achieves high spatial reuse while considering traffic priority, packet length, and the number of interfered sensor nodes. Our simulation results show that the proposed ITLS significantly increases spatial reuse and network throughput with lower delay by mitigating inter-WBAN interference.

  5. An X-linked homologue of the autosomal inprinted gene ZNF127 escapes X inactivation

    Energy Technology Data Exchange (ETDEWEB)

    Longstreet, M.; Nicholls, R.D.; Willard, H.F. [Case Western Reserve Univ., Cleveland, OH (United States)] [and others

    1994-09-01

    The ZNF127 gene has been shown to be subject to parental imprinting in both humans and the mouse and maps to within the Prader-Willi/Angelman Syndrome critical region on chromosome 15. We have cloned two X-linked related loci, one of which, ZNFXp is a transcribed gene while the other, ZNFXq, is an untranscribed pseudogene. ZNFXp is 83.6% identical to ZNFXq and 65.4% identical to ZNF127 over 1.4 kb of open reading frame they share in common, Like ZNF127, the predicted protein sequence of ZNFXp contains a C{sub 3}HC{sub 4} zinc finger domain and C{sub 3}H zinc finger-like motifs. Whereas ZNF127 has three C{sub 3}H motifs, ZNFXp has four. A strong CpG island is located within 1 kb 5{prime} of the predicted amino terminus of ZNFXp. Expression of ZNFXp has been detected from mouse/human somatic cell hybrids containing either an active (n=2) or an inactive (n=4) chromosome, and thus escapes X inactivation. Probes made from the 3{prime} UTR of ZNFXp detect a number of related loci in both human and murine DNA, none of which is the ZNF127 locus on chromosome 15. None of the detectable murine bands shows dosage differences between males and females as would be expected for X-linked loci. This raises the possibility that ZNFXp inserted into the human X chromosome after its divergence from a common ancestor with the murine X. We have mapped ZNFXp to Xp11.4 by Southern blotting and PCR of hybrid DNAs and by fluorescence in situ hybridization (FISH). ZNFXq maps within the X Inactivation Center (XIC) region on Xq13.2, approximately 300 kb distal to the XIST gene. We find it intriguing, and perhaps significant, that two members of this gene family are subject to epigenetic regulation -- one autosomal imprinting, and the other escape from X inactivation. These results could imply an evolutionary and mechanistic relationship between these two processes.

  6. Novel method to load multiple genes onto a mammalian artificial chromosome.

    Science.gov (United States)

    Tóth, Anna; Fodor, Katalin; Praznovszky, Tünde; Tubak, Vilmos; Udvardy, Andor; Hadlaczky, Gyula; Katona, Robert L

    2014-01-01

    Mammalian artificial chromosomes are natural chromosome-based vectors that may carry a vast amount of genetic material in terms of both size and number. They are reasonably stable and segregate well in both mitosis and meiosis. A platform artificial chromosome expression system (ACEs) was earlier described with multiple loading sites for a modified lambda-integrase enzyme. It has been shown that this ACEs is suitable for high-level industrial protein production and the treatment of a mouse model for a devastating human disorder, Krabbe's disease. ACEs-treated mutant mice carrying a therapeutic gene lived more than four times longer than untreated counterparts. This novel gene therapy method is called combined mammalian artificial chromosome-stem cell therapy. At present, this method suffers from the limitation that a new selection marker gene should be present for each therapeutic gene loaded onto the ACEs. Complex diseases require the cooperative action of several genes for treatment, but only a limited number of selection marker genes are available and there is also a risk of serious side-effects caused by the unwanted expression of these marker genes in mammalian cells, organs and organisms. We describe here a novel method to load multiple genes onto the ACEs by using only two selectable marker genes. These markers may be removed from the ACEs before therapeutic application. This novel technology could revolutionize gene therapeutic applications targeting the treatment of complex disorders and cancers. It could also speed up cell therapy by allowing researchers to engineer a chromosome with a predetermined set of genetic factors to differentiate adult stem cells, embryonic stem cells and induced pluripotent stem (iPS) cells into cell types of therapeutic value. It is also a suitable tool for the investigation of complex biochemical pathways in basic science by producing an ACEs with several genes from a signal transduction pathway of interest.

  7. Novel method to load multiple genes onto a mammalian artificial chromosome.

    Directory of Open Access Journals (Sweden)

    Anna Tóth

    Full Text Available Mammalian artificial chromosomes are natural chromosome-based vectors that may carry a vast amount of genetic material in terms of both size and number. They are reasonably stable and segregate well in both mitosis and meiosis. A platform artificial chromosome expression system (ACEs was earlier described with multiple loading sites for a modified lambda-integrase enzyme. It has been shown that this ACEs is suitable for high-level industrial protein production and the treatment of a mouse model for a devastating human disorder, Krabbe's disease. ACEs-treated mutant mice carrying a therapeutic gene lived more than four times longer than untreated counterparts. This novel gene therapy method is called combined mammalian artificial chromosome-stem cell therapy. At present, this method suffers from the limitation that a new selection marker gene should be present for each therapeutic gene loaded onto the ACEs. Complex diseases require the cooperative action of several genes for treatment, but only a limited number of selection marker genes are available and there is also a risk of serious side-effects caused by the unwanted expression of these marker genes in mammalian cells, organs and organisms. We describe here a novel method to load multiple genes onto the ACEs by using only two selectable marker genes. These markers may be removed from the ACEs before therapeutic application. This novel technology could revolutionize gene therapeutic applications targeting the treatment of complex disorders and cancers. It could also speed up cell therapy by allowing researchers to engineer a chromosome with a predetermined set of genetic factors to differentiate adult stem cells, embryonic stem cells and induced pluripotent stem (iPS cells into cell types of therapeutic value. It is also a suitable tool for the investigation of complex biochemical pathways in basic science by producing an ACEs with several genes from a signal transduction pathway of interest.

  8. A Hox Gene, Antennapedia, Regulates Expression of Multiple Major Silk Protein Genes in the Silkworm Bombyx mori.

    Science.gov (United States)

    Tsubota, Takuya; Tomita, Shuichiro; Uchino, Keiro; Kimoto, Mai; Takiya, Shigeharu; Kajiwara, Hideyuki; Yamazaki, Toshimasa; Sezutsu, Hideki

    2016-03-25

    Hoxgenes play a pivotal role in the determination of anteroposterior axis specificity during bilaterian animal development. They do so by acting as a master control and regulating the expression of genes important for development. Recently, however, we showed that Hoxgenes can also function in terminally differentiated tissue of the lepidopteranBombyx mori In this species,Antennapedia(Antp) regulates expression of sericin-1, a major silk protein gene, in the silk gland. Here, we investigated whether Antpcan regulate expression of multiple genes in this tissue. By means of proteomic, RT-PCR, and in situ hybridization analyses, we demonstrate that misexpression of Antpin the posterior silk gland induced ectopic expression of major silk protein genes such assericin-3,fhxh4, and fhxh5 These genes are normally expressed specifically in the middle silk gland as is Antp Therefore, the evidence strongly suggests that Antpactivates these silk protein genes in the middle silk gland. The putativesericin-1 activator complex (middle silk gland-intermolt-specific complex) can bind to the upstream regions of these genes, suggesting that Antpdirectly activates their expression. We also found that the pattern of gene expression was well conserved between B. moriand the wild species Bombyx mandarina, indicating that the gene regulation mechanism identified here is an evolutionarily conserved mechanism and not an artifact of the domestication of B. mori We suggest that Hoxgenes have a role as a master control in terminally differentiated tissues, possibly acting as a primary regulator for a range of physiological processes. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  9. Default mode network links to visual hallucinations: A comparison between Parkinson's disease and multiple system atrophy.

    Science.gov (United States)

    Franciotti, Raffaella; Delli Pizzi, Stefano; Perfetti, Bernardo; Tartaro, Armando; Bonanni, Laura; Thomas, Astrid; Weis, Luca; Biundo, Roberta; Antonini, Angelo; Onofrj, Marco

    2015-08-01

    Studying default mode network activity or connectivity in different parkinsonisms, with or without visual hallucinations, could highlight its roles in clinical phenotypes' expression. Multiple system atrophy is the archetype of parkinsonism without visual hallucinations, variably appearing instead in Parkinson's disease (PD). We aimed to evaluate default mode network functions in multiple system atrophy in comparison with PD. Functional magnetic resonance imaging evaluated default mode network activity and connectivity in 15 multiple system atrophy patients, 15 healthy controls, 15 early PD patients matched for disease duration, 30 severe PD patients (15 with and 15 without visual hallucinations), matched with multiple system atrophy for disease severity. Cortical thickness and neuropsychological evaluations were also performed. Multiple system atrophy had reduced default mode network activity compared with controls and PD with hallucinations, and no differences with PD (early or severe) without hallucinations. In PD with visual hallucinations, activity and connectivity was preserved compared with controls and higher than in other groups. In early PD, connectivity was lower than in controls but higher than in multiple system atrophy and severe PD without hallucinations. Cortical thickness was reduced in severe PD, with and without hallucinations, and correlated only with disease duration. Higher anxiety scores were found in patients without hallucinations. Default mode network activity and connectivity was higher in PD with visual hallucinations and reduced in multiple system atrophy and PD without visual hallucinations. Cortical thickness comparisons suggest that functional, rather than structural, changes underlie the activity and connectivity differences. © 2015 International Parkinson and Movement Disorder Society.

  10. Subcortical laminar heterotopia and lissencephaly in two families: a single X linked dominant gene.

    Science.gov (United States)

    Pinard, J M; Motte, J; Chiron, C; Brian, R; Andermann, E; Dulac, O

    1994-01-01

    Neuronal migration disorders can now be recognised by MRI. This paper reports two families in which the mothers had subcortical laminar heterotopia and four of their children had either similar heterotopia (two girls) or severe pachygyria or lissencephaly (two boys). Laminar heterotopia was more evident on MRI T2 weighted images. The patients had mild to severe epilepsy and mental retardation depending on the extent of cortical abnormalities. In these families, subcortical laminar heterotopia, pachygyria, and lissencephaly seem to share the same X linked or autosomal dominant gene. No chromosomal abnormalities, especially of chromosome 17, could be identified. For appropriate genetic counselling of the family of a child with lissencephaly or subcortical laminar heterotopia, MRI should be performed in parents or siblings with mental retardation or epilepsy. Images PMID:8057113

  11. The Obesity-Linked Gene Nudt3 Drosophila Homolog Aps Is Associated With Insulin Signaling.

    Science.gov (United States)

    Williams, Michael J; Eriksson, Anders; Shaik, Muksheed; Voisin, Sarah; Yamskova, Olga; Paulsson, Johan; Thombare, Ketan; Fredriksson, Robert; Schiöth, Helgi B

    2015-09-01

    Several genome-wide association studies have linked the Nudix hydrolase family member nucleoside diphosphate-linked moiety X motif 3 (NUDT3) to obesity. However, the manner of NUDT3 involvement in obesity is unknown, and NUDT3 expression, regulation, and signaling in the central nervous system has not been studied. We performed an extensive expression analysis in mice, as well as knocked down the Drosophila NUDT3 homolog Aps in the nervous system, to determine its effect on metabolism. Detailed in situ hybridization studies in the mouse brain revealed abundant Nudt3 mRNA and protein expression throughout the brain, including reward- and feeding-related regions of the hypothalamus and amygdala, whereas Nudt3 mRNA expression was significantly up-regulated in the hypothalamus and brainstem of food-deprived mice. Knocking down Aps in the Drosophila central nervous system, or a subset of median neurosecretory cells, known as the insulin-producing cells (IPCs), induces hyperinsulinemia-like phenotypes, including a decrease in circulating trehalose levels as well as significantly decreasing all carbohydrate levels under starvation conditions. Moreover, lowering Aps IPC expression leads to a decreased ability to recruit these lipids during starvation. Also, loss of neuronal Aps expression caused a starvation susceptibility phenotype while inducing hyperphagia. Finally, the loss of IPC Aps lowered the expression of Akh, Ilp6, and Ilp3, genes known to be inhibited by insulin signaling. These results point toward a role for this gene in the regulation of insulin signaling, which could explain the robust association with obesity in humans.

  12. X-linked gene transcription patterns in female and male in vivo, in vitro and cloned porcine individual blastocysts.

    Directory of Open Access Journals (Sweden)

    Chi-Hun Park

    Full Text Available To determine the presence of sexual dimorphic transcription and how in vitro culture environments influence X-linked gene transcription patterns in preimplantation embryos, we analyzed mRNA expression levels in in vivo-derived, in vitro-fertilized (IVF, and cloned porcine blastocysts. Our results clearly show that sex-biased expression occurred between female and male in vivo blastocysts in X-linked genes. The expression levels of XIST, G6PD, HPRT1, PGK1, and BEX1 were significantly higher in female than in male blastocysts, but ZXDA displayed higher levels in male than in female blastocysts. Although we found aberrant expression patterns for several genes in IVF and cloned blastocysts, similar sex-biased expression patterns (on average were observed between the sexes. The transcript levels of BEX1 and XIST were upregulated and PGK1 was downregulated in both IVF and cloned blastocysts compared with in vivo counterparts. Moreover, a remarkable degree of expression heterogeneity was observed among individual cloned embryos (the level of heterogeneity was similar in both sexes but only a small proportion of female IVF embryos exhibited variability, indicating that this phenomenon may be primarily caused by faulty reprogramming by the somatic cell nuclear transfer (SCNT process rather than in vitro conditions. Aberrant expression patterns in cloned embryos of both sexes were not ameliorated by treatment with Scriptaid as a potent HDACi, although the blastocyst rate increased remarkably after this treatment. Taken together, these results indicate that female and male porcine blastocysts produced in vivo and in vitro transcriptional sexual dimorphisms in the selected X-linked genes and compensation of X-linked gene dosage may not occur at the blastocyst stage. Moreover, altered X-linked gene expression frequently occurred in porcine IVF and cloned embryos, indicating that X-linked gene regulation is susceptible to in vitro culture and the SCNT process

  13. On the capacity of multiple cognitive links through common relay under spectrum-sharing constraints

    KAUST Repository

    Yang, Yuli; Aissa, Sonia

    2011-01-01

    In this paper, we consider an underlay cognitive relaying network consisting of multiple secondary users and introduce a cooperative transmission protocol using a common relay to help with the communications between all secondary source

  14. A fast and efficient gene-network reconstruction method from multiple over-expression experiments

    Directory of Open Access Journals (Sweden)

    Thurner Stefan

    2009-08-01

    Full Text Available Abstract Background Reverse engineering of gene regulatory networks presents one of the big challenges in systems biology. Gene regulatory networks are usually inferred from a set of single-gene over-expressions and/or knockout experiments. Functional relationships between genes are retrieved either from the steady state gene expressions or from respective time series. Results We present a novel algorithm for gene network reconstruction on the basis of steady-state gene-chip data from over-expression experiments. The algorithm is based on a straight forward solution of a linear gene-dynamics equation, where experimental data is fed in as a first predictor for the solution. We compare the algorithm's performance with the NIR algorithm, both on the well known E. coli experimental data and on in-silico experiments. Conclusion We show superiority of the proposed algorithm in the number of correctly reconstructed links and discuss computational time and robustness. The proposed algorithm is not limited by combinatorial explosion problems and can be used in principle for large networks.

  15. RF bandwidth capacity and SCM in a radio-over-fibre link employing optical frequency multiplication

    NARCIS (Netherlands)

    Garcia Larrode, M.; Koonen, A.M.J.; Vegas Olmos, J.J.; Tafur Monroy, I.; Schenk, T.C.W.

    2005-01-01

    We demonstrate the feasibility of generating two 24Mbps 64-QAM radio signals simultaneously at 17.3GHz and 17.8GHz after 4.4km of multimode fibre in an OFM radio-over-fibre link for wireless multistandard support at the antenna site.

  16. Ecological Production Functions Linking Multiple Stressors to Ecosystem Services – A Case Study

    Science.gov (United States)

    The ecosystem services concept is being used to frame environmental protection goals that guide management of the risks of chemicals. Ecosystem services link changes in ecological systems to the benefits received by people. The use of ecosystem services in risk assessments and th...

  17. Disruption of a Plasmodium falciparum gene linked to male sexual development causes early arrest in gametocytogenesis.

    Science.gov (United States)

    Furuya, Tetsuya; Mu, Jianbing; Hayton, Karen; Liu, Anna; Duan, Junhui; Nkrumah, Louis; Joy, Deirdre A; Fidock, David A; Fujioka, Hisashi; Vaidya, Akhil B; Wellems, Thomas E; Su, Xin-zhuan

    2005-11-15

    A male gametocyte defect in the Plasmodium falciparum Dd2 parasite was previously discovered through the observation that all progeny clones in a Dd2 x HB3 genetic cross were the result of fertilization events between Dd2 female and HB3 male gametes. A determinant linked to the defect in Dd2 was subsequently mapped to an 800-kb segment on chromosome 12. Here, we report further mapping of the determinant to an 82-kb region and the identification of a candidate gene, P. falciparum male development gene 1 (pfmdv-1), that is expressed at a lower level in Dd2 compared with the wild-type normal male gametocyte-producing ancestor W2. Pfmdv-1 protein is sexual-stage specific and is located on the gametocyte plasma membrane, parasitophorous vacuole membrane, and the membranes of cleft-like structures within the erythrocyte. Disruption of pfmdv-1 results in a dramatic reduction in mature gametocytes, especially functional male gametocytes, with the majority of sexually committed parasites developmentally arrested at stage I. The pfmdv-1-knockout parasites show disturbed membrane structures, particularly multimembrane vesicles/tubes that likely derive from deformed cleft-like structures. Mosquito infectivity of the knockout parasites was also greatly reduced but not completely lost. The results suggest that pfmdv-1 plays a key role in gametocyte membrane formation and integrity.

  18. Role of MHC-Linked Susceptibility Genes in the Pathogenesis of Human and Murine Lupus

    Directory of Open Access Journals (Sweden)

    Manfred Relle

    2012-01-01

    Full Text Available Systemic lupus erythematosus (SLE is a chronic autoimmune disease characterized by the production of autoantibodies against nuclear antigens and a systemic inflammation that can damage a broad spectrum of organs. SLE patients suffer from a wide variety of symptoms, which can affect virtually almost any tissue. As lupus is difficult to diagnose, the worldwide prevalence of SLE can only be roughly estimated to range from 10 and 200 cases per 100,000 individuals with dramatic differences depending on gender, ethnicity, and location. Although the treatment of this disease has been significantly ameliorated by new therapies, improved conventional drug therapy options, and a trained expert eye, the underlying pathogenesis of lupus still remain widely unknown. The complex etiology reflects the complex genetic background of the disease, which is also not well understood yet. However, in the past few years advances in lupus genetics have been made, notably with the publication of genome-wide association studies (GWAS in humans and the identification of susceptibility genes and loci in mice. This paper reviews the role of MHC-linked susceptibility genes in the pathogenesis of systemic lupus erythematosus.

  19. Comparative gene expression in sexual and apomictic ovaries of Pennisetum ciliare (L.) Link.

    Science.gov (United States)

    Vielle-Calzada, J P; Nuccio, M L; Budiman, M A; Thomas, T L; Burson, B L; Hussey, M A; Wing, R A

    1996-12-01

    Limited emphasis has been given to the molecular study of apomixis, an asexual method of reproduction where seeds are produced without fertilization. Most buffelgrass (Pennisetum ciliare (L.) Link syn = Cenchrus ciliaris L.) genotypes reproduce by obligate apomixis (apospory); however, rare sexual plants have been recovered. A modified differential display procedure was used to compare gene expression in unpollinated ovaries containing ovules with either sexual or apomictic female gametophytes. The modification incorporated end-labeled poly(A)+ anchored primers as the only isotopic source, and was a reliable and consistent approach for detecting differentially displayed transcripts. Using 20 different decamers and two anchor primers, 2268 cDNA fragments between 200 and 600 bp were displayed. From these, eight reproducible differentially displayed cDNAs were identified and cloned. Based on northern analysis, one cDNA was detected in only the sexual ovaries, two cDNAs in only apomictic ovaries and one cDNA was present in both types of ovaries. Three fragments could not be detected and one fragment was detected in ovaries, stems, and leaves. Comparison of gene expression during sexual and apomictic development in buffelgrass represents a new model system and a strategy for investigating female reproductive development in the angiosperms.

  20. Immuno-Oncology-The Translational Runway for Gene Therapy: Gene Therapeutics to Address Multiple Immune Targets.

    Science.gov (United States)

    Weß, Ludger; Schnieders, Frank

    2017-12-01

    Cancer therapy is once again experiencing a paradigm shift. This shift is based on extensive clinical experience demonstrating that cancer cannot be successfully fought by addressing only single targets or pathways. Even the combination of several neo-antigens in cancer vaccines is not sufficient for successful, lasting tumor eradication. The focus has therefore shifted to the immune system's role in cancer and the striking abilities of cancer cells to manipulate and/or deactivate the immune system. Researchers and pharma companies have started to target the processes and cells known to support immune surveillance and the elimination of tumor cells. Immune processes, however, require novel concepts beyond the traditional "single-target-single drug" paradigm and need parallel targeting of diverse cells and mechanisms. This review gives a perspective on the role of gene therapy technologies in the evolving immuno-oncology space and identifies gene therapy as a major driver in the development and regulation of effective cancer immunotherapy. Present challenges and breakthroughs ranging from chimeric antigen receptor T-cell therapy, gene-modified oncolytic viruses, combination cancer vaccines, to RNA therapeutics are spotlighted. Gene therapy is recognized as the most prominent technology enabling effective immuno-oncology strategies.

  1. Genome-Wide Association Study of Metabolic Traits Reveals Novel Gene-Metabolite-Disease Links

    Science.gov (United States)

    Nicholls, Andrew W.; Salek, Reza M.; Marques-Vidal, Pedro; Morya, Edgard; Sameshima, Koichi; Montoliu, Ivan; Da Silva, Laeticia; Collino, Sebastiano; Martin, François-Pierre; Rezzi, Serge; Steinbeck, Christoph; Waterworth, Dawn M.; Waeber, Gérard; Vollenweider, Peter; Beckmann, Jacques S.; Le Coutre, Johannes; Mooser, Vincent; Bergmann, Sven; Genick, Ulrich K.; Kutalik, Zoltán

    2014-01-01

    Metabolic traits are molecular phenotypes that can drive clinical phenotypes and may predict disease progression. Here, we report results from a metabolome- and genome-wide association study on 1H-NMR urine metabolic profiles. The study was conducted within an untargeted approach, employing a novel method for compound identification. From our discovery cohort of 835 Caucasian individuals who participated in the CoLaus study, we identified 139 suggestively significant (P<5×10−8) and independent associations between single nucleotide polymorphisms (SNP) and metabolome features. Fifty-six of these associations replicated in the TasteSensomics cohort, comprising 601 individuals from São Paulo of vastly diverse ethnic background. They correspond to eleven gene-metabolite associations, six of which had been previously identified in the urine metabolome and three in the serum metabolome. Our key novel findings are the associations of two SNPs with NMR spectral signatures pointing to fucose (rs492602, P = 6.9×10−44) and lysine (rs8101881, P = 1.2×10−33), respectively. Fine-mapping of the first locus pinpointed the FUT2 gene, which encodes a fucosyltransferase enzyme and has previously been associated with Crohn's disease. This implicates fucose as a potential prognostic disease marker, for which there is already published evidence from a mouse model. The second SNP lies within the SLC7A9 gene, rare mutations of which have been linked to severe kidney damage. The replication of previous associations and our new discoveries demonstrate the potential of untargeted metabolomics GWAS to robustly identify molecular disease markers. PMID:24586186

  2. Role of the X-linked gene GPR174 in autoimmune Addison's disease.

    Science.gov (United States)

    Napier, C; Mitchell, A L; Gan, E; Wilson, I; Pearce, S H S

    2015-01-01

    Autoimmune endocrinopathies demonstrate a profound gender bias, but the reasons for this remain obscure. The 1000 genes on the X chromosome are likely to be implicated in this inherent susceptibility; various theories, including skewed X chromosome inactivation and fetal microchimerism, have been proposed. GPR174 is an Xq21 putative purinergic receptor that is widely expressed in lymphoid tissues. A single-nucleotide polymorphism, rs3827440, encoding Ser162Pro, has recently been associated with Graves' disease in Chinese and Polish populations, suggesting a role of this X chromosome gene in autoimmune disease. We investigated the role of rs3827440 in a UK cohort of patients with autoimmune Addison's disease (AAD). Samples from 286 AAD cases and 288 healthy controls were genotyped using TaqMan single-nucleotide polymorphism genotyping assays (C_25954273_10) on the Applied Biosystems 7900HT Fast real-time PCR system. Using a dominant (present/absent) model, the serine-encoding T allele of rs3827440 was present in 189 of 286 AAD patients (66%) compared with 132 of 288 unaffected controls (46%) [P = .010, odds ratio 1.80 (5%-95% confidence interval 1.22-2.67)]. An allele dosage model found a significant excess of the T allele in AAD patients compared with controls [P = .03, odds ratio 1.34 (5%-95% confidence interval 1.07-1.67)]. We have demonstrated a significant association of this X chromosome-encoded immunoreceptor with AAD for the first time. This X-linked gene could have a more generalized role in autoimmunity pathogenesis: G protein-coupled receptors are promising drugable targets, and further work to elucidate the functional role of GPR174 is now warranted.

  3. Loss of 5-hydroxymethylcytosine is linked to gene body hypermethylation in kidney cancer.

    Science.gov (United States)

    Chen, Ke; Zhang, Jing; Guo, Zhongqiang; Ma, Qin; Xu, Zhengzheng; Zhou, Yuanyuan; Xu, Ziying; Li, Zhongwu; Liu, Yiqiang; Ye, Xiongjun; Li, Xuesong; Yuan, Bifeng; Ke, Yuwen; He, Chuan; Zhou, Liqun; Liu, Jiang; Ci, Weimin

    2016-01-01

    Both 5-methylcytosine (5mC) and its oxidized form 5-hydroxymethylcytosine (5hmC) have been proposed to be involved in tumorigenesis. Because the readout of the broadly used 5mC mapping method, bisulfite sequencing (BS-seq), is the sum of 5mC and 5hmC levels, the 5mC/5hmC patterns and relationship of these two modifications remain poorly understood. By profiling real 5mC (BS-seq corrected by Tet-assisted BS-seq, TAB-seq) and 5hmC (TAB-seq) levels simultaneously at single-nucleotide resolution, we here demonstrate that there is no global loss of 5mC in kidney tumors compared with matched normal tissues. Conversely, 5hmC was globally lost in virtually all kidney tumor tissues. The 5hmC level in tumor tissues is an independent prognostic marker for kidney cancer, with lower levels of 5hmC associated with shorter overall survival. Furthermore, we demonstrated that loss of 5hmC is linked to hypermethylation in tumors compared with matched normal tissues, particularly in gene body regions. Strikingly, gene body hypermethylation was significantly associated with silencing of the tumor-related genes. Downregulation of IDH1 was identified as a mechanism underlying 5hmC loss in kidney cancer. Restoring 5hmC levels attenuated the invasion capacity of tumor cells and suppressed tumor growth in a xenograft model. Collectively, our results demonstrate that loss of 5hmC is both a prognostic marker and an oncogenic event in kidney cancer by remodeling the DNA methylation pattern.

  4. Gene expression profiling for molecular classification of multiple myeloma in newly diagnosed patients

    NARCIS (Netherlands)

    Broyl, Annemiek; Hose, Dirk; Lokhorst, Henk; de Knegt, Yvonne; Peeters, Justine; Jauch, Anna; Bertsch, Uta; Buijs, Arjan; Stevens-Kroef, Marian; Beverloo, H. Berna; Vellenga, Edo; Zweegman, Sonja; Kersten, Marie-Josée; van der Holt, Bronno; el Jarari, Laila; Mulligan, George; Goldschmidt, Hartmut; van Duin, Mark; Sonneveld, Pieter

    2010-01-01

    To identify molecularly defined subgroups in multiple myeloma, gene expression profiling was performed on purified CD138(+) plasma cells of 320 newly diagnosed myeloma patients included in the Dutch-Belgian/German HOVON-65/GMMG-HD4 trial. Hierarchical clustering identified 10 subgroups; 6

  5. X-linked gene expression and X-chromosome inactivation: marsupials, mouse, and man compared.

    Science.gov (United States)

    VandeBerg, J L; Robinson, E S; Samollow, P B; Johnston, P G

    1987-01-01

    The existence of paternal X inactivation in Australian and American marsupial species suggests that this feature of X-chromosome dosage compensation is not a recent adaptation, but probably predates the evolutionary separation of the Australian and American marsupial lineages. Although it is theoretically possible that the marsupial system is one of random X inactivation with p greater than 0.99 and q less than 0.01 and dependent on parental source, no instance of random X inactivation (p = q or p not equal to q) has ever been verified in any tissue or cell type of any marsupial species. Therefore, we conclude that the most fundamental difference in X inactivation of marsupials and eutherians is whether the inactive X is the paternal one or is determined at random (with p = q in most but not all cases). The only other unequivocal difference between eutherians and marsupials is that both X chromosomes are active in mice and human oocytes, but not in kangaroo oocytes. Apparently, the inactive X is reactivated at a later meiotic stage or during early embryogenesis in kangaroos. X-chromosome inactivation takes place early in embryogenesis of eutherians and marsupials. Extraembryonic membranes of mice exhibit paternal X inactivation, whereas those of humans seem to exhibit random X inactivation with p greater than q (i.e., preferential paternal X inactivation). In general, extraembryonic membranes of marsupial exhibit paternal X inactivation, but the Gpd locus is active on both X chromosomes in at least some cells of kangaroo yolk sac. It is difficult to draw any general conclusion because of major differences in embryogeny of mice, humans, and marsupials, and uncertainties in interpreting the data from humans. Other differences between marsupials and eutherians in patterns of X-linked gene expression and X-chromosome inactivation seem to be quantitative rather than qualitative. Partial expression of some genes on the inactive X is characteristic of marsupials, with

  6. Reference gene selection for quantitative gene expression studies during biological invasions: A test on multiple genes and tissues in a model ascidian Ciona savignyi.

    Science.gov (United States)

    Huang, Xuena; Gao, Yangchun; Jiang, Bei; Zhou, Zunchun; Zhan, Aibin

    2016-01-15

    As invasive species have successfully colonized a wide range of dramatically different local environments, they offer a good opportunity to study interactions between species and rapidly changing environments. Gene expression represents one of the primary and crucial mechanisms for rapid adaptation to local environments. Here, we aim to select reference genes for quantitative gene expression analysis based on quantitative Real-Time PCR (qRT-PCR) for a model invasive ascidian, Ciona savignyi. We analyzed the stability of ten candidate reference genes in three tissues (siphon, pharynx and intestine) under two key environmental stresses (temperature and salinity) in the marine realm based on three programs (geNorm, NormFinder and delta Ct method). Our results demonstrated only minor difference for stability rankings among the three methods. The use of different single reference gene might influence the data interpretation, while multiple reference genes could minimize possible errors. Therefore, reference gene combinations were recommended for different tissues - the optimal reference gene combination for siphon was RPS15 and RPL17 under temperature stress, and RPL17, UBQ and TubA under salinity treatment; for pharynx, TubB, TubA and RPL17 were the most stable genes under temperature stress, while TubB, TubA and UBQ were the best under salinity stress; for intestine, UBQ, RPS15 and RPL17 were the most reliable reference genes under both treatments. Our results suggest that the necessity of selection and test of reference genes for different tissues under varying environmental stresses. The results obtained here are expected to reveal mechanisms of gene expression-mediated invasion success using C. savignyi as a model species. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Association of circadian rhythm genes ARNTL/BMAL1 and CLOCK with multiple sclerosis.

    Directory of Open Access Journals (Sweden)

    Polona Lavtar

    Full Text Available Prevalence of multiple sclerosis varies with geographic latitude. We hypothesized that this fact might be partially associated with the influence of latitude on circadian rhythm and consequently that genetic variability of key circadian rhythm regulators, ARNTL and CLOCK genes, might contribute to the risk for multiple sclerosis. Our aim was to analyse selected polymorphisms of ARNTL and CLOCK, and their association with multiple sclerosis. A total of 900 Caucasian patients and 1024 healthy controls were compared for genetic signature at 8 SNPs, 4 for each of both genes. We found a statistically significant difference in genotype (ARNTL rs3789327, P = 7.5·10-5; CLOCK rs6811520 P = 0.02 distributions in patients and controls. The ARNTL rs3789327 CC genotype was associated with higher risk for multiple sclerosis at an OR of 1.67 (95% CI 1.35-2.07, P = 0.0001 and the CLOCK rs6811520 genotype CC at an OR of 1.40 (95% CI 1.13-1.73, P = 0.002. The results of this study suggest that genetic variability in the ARNTL and CLOCK genes might be associated with risk for multiple sclerosis.

  8. Circadian Enhancers Coordinate Multiple Phases of Rhythmic Gene Transcription In Vivo

    Science.gov (United States)

    Fang, Bin; Everett, Logan J.; Jager, Jennifer; Briggs, Erika; Armour, Sean M.; Feng, Dan; Roy, Ankur; Gerhart-Hines, Zachary; Sun, Zheng; Lazar, Mitchell A.

    2014-01-01

    SUMMARY Mammalian transcriptomes display complex circadian rhythms with multiple phases of gene expression that cannot be accounted for by current models of the molecular clock. We have determined the underlying mechanisms by measuring nascent RNA transcription around the clock in mouse liver. Unbiased examination of eRNAs that cluster in specific circadian phases identified functional enhancers driven by distinct transcription factors (TFs). We further identify on a global scale the components of the TF cistromes that function to orchestrate circadian gene expression. Integrated genomic analyses also revealed novel mechanisms by which a single circadian factor controls opposing transcriptional phases. These findings shed new light on the diversity and specificity of TF function in the generation of multiple phases of circadian gene transcription in a mammalian organ. PMID:25416951

  9. A Partial Least Square Approach for Modeling Gene-gene and Gene-environment Interactions When Multiple Markers Are Genotyped

    Science.gov (United States)

    Wang, Tao; Ho, Gloria; Ye, Kenny; Strickler, Howard; Elston, Robert C.

    2008-01-01

    Genetic association studies achieve an unprecedented level of resolution in mapping disease genes by genotyping dense SNPs in a gene region. Meanwhile, these studies require new powerful statistical tools that can optimally handle a large amount of information provided by genotype data. A question that arises is how to model interactions between two genes. Simply modeling all possible interactions between the SNPs in two gene regions is not desirable because a greatly increased number of degrees of freedom can be involved in the test statistic. We introduce an approach to reduce the genotype dimension in modeling interactions. The genotype compression of this approach is built upon the information on both the trait and the cross-locus gametic disequilibrium between SNPs in two interacting genes, in such a way as to parsimoniously model the interactions without loss of useful information in the process of dimension reduction. As a result, it improves power to detect association in the presence of gene-gene interactions. This approach can be similarly applied for modeling gene-environment interactions. We compare this method with other approaches: the corresponding test without modeling any interaction, that based on a saturated interaction model, that based on principal component analysis, and that based on Tukey’s 1-df model. Our simulations suggest that this new approach has superior power to that of the other methods. In an application to endometrial cancer case-control data from the Women’s Health Initiative (WHI), this approach detected AKT1 and AKT2 as being significantly associated with endometrial cancer susceptibility by taking into account their interactions with BMI. PMID:18615621

  10. Verification of the utility of molecular markers linked to the multiple ...

    African Journals Online (AJOL)

    GREGORY

    2010-08-30

    Aug 30, 2010 ... Feng Hui*, Wang Lili, Wei Peng, Liu Zhiyong, Li Chengyu, Wang Yugang, Ji Ruiqin and Zhang. Huaqing ..... Chin. Agric. Sci. Bull. 22: 377-379. Li CY, Feng H, Wei P, Wang LL, Zhang J, Yang HN, Jiang N (2009). Directional transfer of the genic multiple allele inherited male sterile line in Chinese cabbage.

  11. Links between Bloom's Taxonomy and Gardener's Multiple Intelligences: The Issue of Textbook Analysis

    Science.gov (United States)

    Tabari, Mahmoud Abdi; Tabari, Iman Abdi

    2015-01-01

    The major thrust of this research was to investigate the cognitive aspect of the high school textbooks and interchange series, due to their extensive use, through content analysis based on Bloom's taxonomy and Gardner's Multiple Intelligences (MI). This study embraced two perspectives in a grid in order to broaden and deepen the analysis by…

  12. A Link-Based Cluster Ensemble Approach For Improved Gene Expression Data Analysis

    Directory of Open Access Journals (Sweden)

    P.Balaji

    2015-01-01

    Full Text Available Abstract It is difficult from possibilities to select a most suitable effective way of clustering algorithm and its dataset for a defined set of gene expression data because we have a huge number of ways and huge number of gene expressions. At present many researchers are preferring to use hierarchical clustering in different forms this is no more totally optimal. Cluster ensemble research can solve this type of problem by automatically merging multiple data partitions from a wide range of different clusterings of any dimensions to improve both the quality and robustness of the clustering result. But we have many existing ensemble approaches using an association matrix to condense sample-cluster and co-occurrence statistics and relations within the ensemble are encapsulated only at raw level while the existing among clusters are totally discriminated. Finding these missing associations can greatly expand the capability of those ensemble methodologies for microarray data clustering. We propose general K-means cluster ensemble approach for the clustering of general categorical data into required number of partitions.

  13. Gene Expression Profiles Link Respiratory Viral Infection, Platelet Response to Aspirin, and Acute Myocardial Infarction

    Science.gov (United States)

    Cyr, Derek D.; Lucas, Joseph E.; Zaas, Aimee K.; Woods, Christopher W.; Newby, L. Kristin; Kraus, William E.; Ginsburg, Geoffrey S.

    2015-01-01

    Background Influenza infection is associated with myocardial infarction (MI), suggesting that respiratory viral infection may induce biologic pathways that contribute to MI. We tested the hypotheses that 1) a validated blood gene expression signature of respiratory viral infection (viral GES) was associated with MI and 2) respiratory viral exposure changes levels of a validated platelet gene expression signature (platelet GES) of platelet function in response to aspirin that is associated with MI. Methods A previously defined viral GES was projected into blood RNA data from 594 patients undergoing elective cardiac catheterization and used to classify patients as having evidence of viral infection or not and tested for association with acute MI using logistic regression. A previously defined platelet GES was projected into blood RNA data from 81 healthy subjects before and after exposure to four respiratory viruses: Respiratory Syncytial Virus (RSV) (n=20), Human Rhinovirus (HRV) (n=20), Influenza A virus subtype H1N1 (H1N1) (n=24), Influenza A Virus subtype H3N2 (H3N2) (n=17). We tested for the change in platelet GES with viral exposure using linear mixed-effects regression and by symptom status. Results In the catheterization cohort, 32 patients had evidence of viral infection based upon the viral GES, of which 25% (8/32) had MI versus 12.2% (69/567) among those without evidence of viral infection (OR 2.3; CI [1.03-5.5], p=0.04). In the infection cohorts, only H1N1 exposure increased platelet GES over time (time course p-value = 1e-04). Conclusions A viral GES of non-specific, respiratory viral infection was associated with acute MI; 18% of the top 49 genes in the viral GES are involved with hemostasis and/or platelet aggregation. Separately, H1N1 exposure, but not exposure to other respiratory viruses, increased a platelet GES previously shown to be associated with MI. Together, these results highlight specific genes and pathways that link viral infection

  14. EasyClone: method for iterative chromosomal integration of multiple genes in Saccharomyces cerevisiae

    DEFF Research Database (Denmark)

    Jensen, Niels Bjerg; Strucko, Tomas; Kildegaard, Kanchana Rueksomtawin

    2014-01-01

    of multiple genes with an option of recycling selection markers. The vectors combine the advantage of efficient uracil excision reaction-based cloning and Cre-LoxP-mediated marker recycling system. The episomal and integrative vector sets were tested by inserting genes encoding cyan, yellow, and red...... fluorescent proteins into separate vectors and analyzing for co-expression of proteins by flow cytometry. Cells expressing genes encoding for the three fluorescent proteins from three integrations exhibited a much higher level of simultaneous expression than cells producing fluorescent proteins encoded...... on episomal plasmids, where correspondingly 95% and 6% of the cells were within a fluorescence interval of Log10 mean ± 15% for all three colors. We demonstrate that selective markers can be simultaneously removed using Cre-mediated recombination and all the integrated heterologous genes remain...

  15. Improvement of MARS code through the removal of bit-packed words and multiple use of DLLs (Dynamic Link Library)

    Energy Technology Data Exchange (ETDEWEB)

    Jung, B. D.; Jung, J. J.; Ha, K. S.; Hwang, M. K.; Lee, Y. S.; Lee, W. J. [KAERI, Taejon (Korea, Republic of)

    1999-10-01

    The readability of MARS code has been enhanced greatly by replacing the bit-packed word with several logical words and integer words and recoding the related subroutines, which have the complicated bit operations and packed words. Functional improvements of code has been achieved through the multiple uses of dynamic link libraries(DLL) for containment analysis module CONTEMPT4 and multidimensional kinetics analysis module MASTER. The establishment of integrated analysis system, MARS/CONTEMPT/MASTER, was validated through the verification calculation for a postulated problem. MARS user-friendly features are also improved by displaying the 2D contour map of 3 D module data on-line. In addition to the on-line-graphics, the MARS windows menus were upgraded to include the on-line-manual, pre-view of input and output, and link to MARS web site. As a result, the readability, applicability, and user-friendly features of MARS code has been greatly enhanced.

  16. Improvement of MARS code through the removal of bit-packed words and multiple use of DLLs (Dynamic Link Library)

    International Nuclear Information System (INIS)

    Jung, B. D.; Jung, J. J.; Ha, K. S.; Hwang, M. K.; Lee, Y. S.; Lee, W. J.

    1999-01-01

    The readability of MARS code has been enhanced greatly by replacing the bit-packed word with several logical words and integer words and recoding the related subroutines, which have the complicated bit operations and packed words. Functional improvements of code has been achieved through the multiple uses of dynamic link libraries(DLL) for containment analysis module CONTEMPT4 and multidimensional kinetics analysis module MASTER. The establishment of integrated analysis system, MARS/CONTEMPT/MASTER, was validated through the verification calculation for a postulated problem. MARS user-friendly features are also improved by displaying the 2D contour map of 3 D module data on-line. In addition to the on-line-graphics, the MARS windows menus were upgraded to include the on-line-manual, pre-view of input and output, and link to MARS web site. As a result, the readability, applicability, and user-friendly features of MARS code has been greatly enhanced

  17. Links between Bloom's Taxonomy and Gardener's Multiple Intelligences: The issue of Textbook Analysis

    Directory of Open Access Journals (Sweden)

    Mahmoud Abdi Tabari

    2015-02-01

    Full Text Available The major thrust of this research was to investigate the cognitive aspect of the high school textbooks and interchange series, due to their extensive use, through content analysis based on Bloom's taxonomy and Gardner's Multiple Intelligences (MI. This study embraced two perspectives in a grid in order to broaden and deepen the analysis by determining the numbers and the types of intelligences with respect to their learning objectives tapped in the textbooks and comparing them. Through codification of Bloom’s learning objectives and Gardner's MI, the results showed that there was a significant difference between the numbers of intelligences with respect to their learning objectives in the textbooks. However, the interchange series enjoyed a large number of the spatial and the interpersonal intelligences across eight levels of learning objectives, whereas they had the least number of the intrapersonal, the musical, and the bodily-kinesthetic intelligences across knowledge understanding and application levels. Keywords: learning objectives, multiple intelligences, textbook analysis

  18. Stable carbon isotope fractionation of chlorinated ethenes by a microbial consortium containing multiple dechlorinating genes.

    Science.gov (United States)

    Liu, Na; Ding, Longzhen; Li, Haijun; Zhang, Pengpeng; Zheng, Jixing; Weng, Chih-Huang

    2018-08-01

    The study aimed to determine the possible contribution of specific growth conditions and community structures to variable carbon enrichment factors (Ɛ- carbon ) values for the degradation of chlorinated ethenes (CEs) by a bacterial consortium with multiple dechlorinating genes. Ɛ- carbon values for trichloroethylene, cis-1,2-dichloroethylene, and vinyl chloride were -7.24% ± 0.59%, -14.6% ± 1.71%, and -21.1% ± 1.14%, respectively, during their degradation by a microbial consortium containing multiple dechlorinating genes including tceA and vcrA. The Ɛ- carbon values of all CEs were not greatly affected by changes in growth conditions and community structures, which directly or indirectly affected reductive dechlorination of CEs by this consortium. Stability analysis provided evidence that the presence of multiple dechlorinating genes within a microbial consortium had little effect on carbon isotope fractionation, as long as the genes have definite, non-overlapping functions. Copyright © 2018 Elsevier Ltd. All rights reserved.

  19. Detection of denitrification genes by in situ rolling circle amplification - fluorescence in situ hybridization (in situ RCA-FISH) to link metabolic potential with identity inside bacterial cells

    DEFF Research Database (Denmark)

    Hoshino, Tatsuhiko; Schramm, Andreas

    2010-01-01

    target site. Finally, the RCA product inside the cells was detected by standard fluorescence in situ hybridization (FISH). The optimized protocol showed high specificity and signal-to-noise ratio but low detection frequency (up to 15% for single-copy genes and up to 43% for the multi-copy 16S rRNA gene...... as Candidatus Accumulibacter phosphatis by combining in situ RCA-FISH with 16S rRNA-targeted FISH. While not suitable for quantification because of its low detection frequency, in situ RCA-FISH will allow to link metabolic potential with 16S rRNA (gene)-based identification of single microbial cells.......). Nevertheless, multiple genes (nirS and nosZ; nirS and the 16S rRNA gene) could be detected simultaneously in P. stutzeri. Environmental application of in situ RCA-FISH was demonstrated on activated sludge by the differential detection of two types of nirS-defined denitrifiers; one of them was identified...

  20. Linking genes to microbial growth kinetics: an integrated biochemical systems engineering approach.

    Science.gov (United States)

    Koutinas, Michalis; Kiparissides, Alexandros; Silva-Rocha, Rafael; Lam, Ming-Chi; Martins Dos Santos, Vitor A P; de Lorenzo, Victor; Pistikopoulos, Efstratios N; Mantalaris, Athanasios

    2011-07-01

    The majority of models describing the kinetic properties of a microorganism for a given substrate are unstructured and empirical. They are formulated in this manner so that the complex mechanism of cell growth is simplified. Herein, a novel approach for modelling microbial growth kinetics is proposed, linking biomass growth and substrate consumption rates to the gene regulatory programmes that control these processes. A dynamic model of the TOL (pWW0) plasmid of Pseudomonas putida mt-2 has been developed, describing the molecular interactions that lead to the transcription of the upper and meta operons, known to produce the enzymes for the oxidative catabolism of m-xylene. The genetic circuit model was combined with a growth kinetic model decoupling biomass growth and substrate consumption rates, which are expressed as independent functions of the rate-limiting enzymes produced by the operons. Estimation of model parameters and validation of the model's predictive capability were successfully performed in batch cultures of mt-2 fed with different concentrations of m-xylene, as confirmed by relative mRNA concentration measurements of the promoters encoded in TOL. The growth formation and substrate utilisation patterns could not be accurately described by traditional Monod-type models for a wide range of conditions, demonstrating the critical importance of gene regulation for the development of advanced models closely predicting complex bioprocesses. In contrast, the proposed strategy, which utilises quantitative information pertaining to upstream molecular events that control the production of rate-limiting enzymes, predicts the catabolism of a substrate and biomass formation and could be of central importance for the design of optimal bioprocesses. Copyright © 2011 Elsevier Inc. All rights reserved.

  1. Relapsing Remitting Multiple Sclerosis in X-Linked Charcot-Marie-Tooth Disease with Central Nervous System Involvement

    OpenAIRE

    Koutsis, Georgios; Karadima, Georgia; Floroskoufi, Paraskewi; Raftopoulou, Maria; Panas, Marios

    2015-01-01

    We report a patient with relapsing remitting multiple sclerosis (MS) and X-linked Charcot-Marie-Tooth disease (CMTX), carrying a GJB1 mutation affecting connexin-32 (c.191G>A, p. Cys64Tyr) which was recently reported by our group. This is the third case report of a patient with CMTX developing MS, but it is unique in the fact that other family members carrying the same mutation were found to have asymptomatic central nervous system (CNS) involvement (diffuse white matter hyperintensity on bra...

  2. Detailed assessment of gene activation levels by multiple hypoxia-responsive elements under various hypoxic conditions.

    Science.gov (United States)

    Takeuchi, Yasuto; Inubushi, Masayuki; Jin, Yong-Nan; Murai, Chika; Tsuji, Atsushi B; Hata, Hironobu; Kitagawa, Yoshimasa; Saga, Tsuneo

    2014-12-01

    HIF-1/HRE pathway is a promising target for the imaging and the treatment of intractable malignancy (HIF-1; hypoxia-inducible factor 1, HRE; hypoxia-responsive element). The purposes of our study are: (1) to assess the gene activation levels resulting from various numbers of HREs under various hypoxic conditions, (2) to evaluate the bidirectional activity of multiple HREs, and (3) to confirm whether multiple HREs can induce gene expression in vivo. Human colon carcinoma HCT116 cells were transiently transfected by the constructs containing a firefly luciferase reporter gene and various numbers (2, 4, 6, 8, 10, and 12) of HREs (nHRE+, nHRE-). The relative luciferase activities were measured under various durations of hypoxia (6, 12, 18, and 24 h), O2 concentrations (1, 2, 4, 8, and 16 %), and various concentrations of deferoxamine mesylate (20, 40, 80, 160, and 320 µg/mL growth medium). The bidirectional gene activation levels by HREs were examined in the constructs (dual-luc-nHREs) containing firefly and Renilla luciferase reporter genes at each side of nHREs. Finally, to test whether the construct containing 12HRE and the NIS reporter gene (12HRE-NIS) can induce gene expression in vivo, SPECT imaging was performed in a mouse xenograft model. (1) gene activation levels by HREs tended to increase with increasing HRE copy number, but a saturation effect was observed in constructs with more than 6 or 8 copies of an HRE, (2) gene activation levels by HREs increased remarkably during 6-12 h of hypoxia, but not beyond 12 h, (3) gene activation levels by HREs decreased with increasing O2 concentrations, but could be detected even under mild hypoxia at 16 % O2, (4) the bidirectionally proportional activity of the HRE was confirmed regardless of the hypoxic severity, and (5) NIS expression driven by 12 tandem copies of an HRE in response to hypoxia could be visualized on in vivo SPECT imaging. The results of this study will help in the understanding and assessment of

  3. Phase I metabolic genes and risk of lung cancer: multiple polymorphisms and mRNA expression.

    Directory of Open Access Journals (Sweden)

    Melissa Rotunno

    2009-05-01

    Full Text Available Polymorphisms in genes coding for enzymes that activate tobacco lung carcinogens may generate inter-individual differences in lung cancer risk. Previous studies had limited sample sizes, poor exposure characterization, and a few single nucleotide polymorphisms (SNPs tested in candidate genes. We analyzed 25 SNPs (some previously untested in 2101 primary lung cancer cases and 2120 population controls from the Environment And Genetics in Lung cancer Etiology (EAGLE study from six phase I metabolic genes, including cytochrome P450s, microsomal epoxide hydrolase, and myeloperoxidase. We evaluated the main genotype effects and genotype-smoking interactions in lung cancer risk overall and in the major histology subtypes. We tested the combined effect of multiple SNPs on lung cancer risk and on gene expression. Findings were prioritized based on significance thresholds and consistency across different analyses, and accounted for multiple testing and prior knowledge. Two haplotypes in EPHX1 were significantly associated with lung cancer risk in the overall population. In addition, CYP1B1 and CYP2A6 polymorphisms were inversely associated with adenocarcinoma and squamous cell carcinoma risk, respectively. Moreover, the association between CYP1A1 rs2606345 genotype and lung cancer was significantly modified by intensity of cigarette smoking, suggesting an underlying dose-response mechanism. Finally, increasing number of variants at CYP1A1/A2 genes revealed significant protection in never smokers and risk in ever smokers. Results were supported by differential gene expression in non-tumor lung tissue samples with down-regulation of CYP1A1 in never smokers and up-regulation in smokers from CYP1A1/A2 SNPs. The significant haplotype associations emphasize that the effect of multiple SNPs may be important despite null single SNP-associations, and warrants consideration in genome-wide association studies (GWAS. Our findings emphasize the necessity of post

  4. Multiple BiP genes of Arabidopsis thaliana are required for male gametogenesis and pollen competitiveness.

    Science.gov (United States)

    Maruyama, Daisuke; Sugiyama, Tomoyuki; Endo, Toshiya; Nishikawa, Shuh-Ichi

    2014-04-01

    Immunoglobulin-binding protein (BiP) is a molecular chaperone of the heat shock protein 70 (Hsp70) family. BiP is localized in the endoplasmic reticulum (ER) and plays key roles in protein translocation, protein folding and quality control in the ER. The genomes of flowering plants contain multiple BiP genes. Arabidopsis thaliana has three BiP genes. BIP1 and BIP2 are ubiquitously expressed. BIP3 encodes a less well conserved BiP paralog, and it is expressed only under ER stress conditions in the majority of organs. Here, we report that all BiP genes are expressed and functional in pollen and pollen tubes. Although the bip1 bip2 double mutation does not affect pollen viability, the bip1 bip2 bip3 triple mutation is lethal in pollen. This result indicates that lethality of the bip1 bip2 double mutation is rescued by BiP3 expression. A decrease in the copy number of the ubiquitously expressed BiP genes correlates well with a decrease in pollen tube growth, which leads to reduced fitness of mutant pollen during fertilization. Because an increased protein secretion activity is expected to increase the protein folding demand in the ER, the multiple BiP genes probably cooperate with each other to ensure ER homeostasis in cells with active secretion such as rapidly growing pollen tubes.

  5. Multiple episodes of convergence in genes of the dim light vision pathway in bats.

    Directory of Open Access Journals (Sweden)

    Yong-Yi Shen

    Full Text Available The molecular basis of the evolution of phenotypic characters is very complex and is poorly understood with few examples documenting the roles of multiple genes. Considering that a single gene cannot fully explain the convergence of phenotypic characters, we choose to study the convergent evolution of rod vision in two divergent bats from a network perspective. The Old World fruit bats (Pteropodidae are non-echolocating and have binocular vision, whereas the sheath-tailed bats (Emballonuridae are echolocating and have monocular vision; however, they both have relatively large eyes and rely more on rod vision to find food and navigate in the night. We found that the genes CRX, which plays an essential role in the differentiation of photoreceptor cells, SAG, which is involved in the desensitization of the photoactivated transduction cascade, and the photoreceptor gene RH, which is directly responsible for the perception of dim light, have undergone parallel sequence evolution in two divergent lineages of bats with larger eyes (Pteropodidae and Emballonuroidea. The multiple convergent events in the network of genes essential for rod vision is a rare phenomenon that illustrates the importance of investigating pathways and networks in the evolution of the molecular basis of phenotypic convergence.

  6. Assembly and multiple gene expression of thermophilic enzymes in Escherichia coli for in vitro metabolic engineering.

    Science.gov (United States)

    Ninh, Pham Huynh; Honda, Kohsuke; Sakai, Takaaki; Okano, Kenji; Ohtake, Hisao

    2015-01-01

    In vitro reconstitution of an artificial metabolic pathway is an emerging approach for the biocatalytic production of industrial chemicals. However, several enzymes have to be separately prepared (and purified) for the construction of an in vitro metabolic pathway, thereby limiting the practical applicability of this approach. In this study, genes encoding the nine thermophilic enzymes involved in a non-ATP-forming chimeric glycolytic pathway were assembled in an artificial operon and co-expressed in a single recombinant Escherichia coli strain. Gene expression levels of the thermophilic enzymes were controlled by their sequential order in the artificial operon. The specific activities of the recombinant enzymes in the cell-free extract of the multiple-gene-expression E. coli were 5.0-1,370 times higher than those in an enzyme cocktail prepared from a mixture of single-gene-expression strains, in each of which a single one of the nine thermophilic enzymes was overproduced. Heat treatment of a crude extract of the multiple-gene-expression cells led to the denaturation of indigenous proteins and one-step preparation of an in vitro synthetic pathway comprising only a limited number of thermotolerant enzymes. Coupling this in vitro pathway with other thermophilic enzymes including the H2 O-forming NADH oxidase or the malate/lactate dehydrogenase facilitated one-pot conversion of glucose to pyruvate or lactate, respectively. © 2014 Wiley Periodicals, Inc.

  7. Metabolic gene expression changes in astrocytes in Multiple Sclerosis cerebral cortex are indicative of immune-mediated signaling

    KAUST Repository

    Zeis, T.

    2015-04-01

    Emerging as an important correlate of neurological dysfunction in Multiple Sclerosis (MS), extended focal and diffuse gray matter abnormalities have been found and linked to clinical manifestations such as seizures, fatigue and cognitive dysfunction. To investigate possible underlying mechanisms we analyzed the molecular alterations in histopathological normal appearing cortical gray matter (NAGM) in MS. By performing a differential gene expression analysis of NAGM of control and MS cases we identified reduced transcription of astrocyte specific genes involved in the astrocyte–neuron lactate shuttle (ANLS) and the glutamate–glutamine cycle (GGC). Additional quantitative immunohistochemical analysis demonstrating a CX43 loss in MS NAGM confirmed a crucial involvement of astrocytes and emphasizes their importance in MS pathogenesis. Concurrently, a Toll-like/IL-1β signaling expression signature was detected in MS NAGM, indicating that immune-related signaling might be responsible for the downregulation of ANLS and GGC gene expression in MS NAGM. Indeed, challenging astrocytes with immune stimuli such as IL-1β and LPS reduced their ANLS and GGC gene expression in vitro. The detected upregulation of IL1B in MS NAGM suggests inflammasome priming. For this reason, astrocyte cultures were treated with ATP and ATP/LPS as for inflammasome activation. This treatment led to a reduction of ANLS and GGC gene expression in a comparable manner. To investigate potential sources for ANLS and GGC downregulation in MS NAGM, we first performed an adjuvant-driven stimulation of the peripheral immune system in C57Bl/6 mice in vivo. This led to similar gene expression changes in spinal cord demonstrating that peripheral immune signals might be one source for astrocytic gene expression changes in the brain. IL1B upregulation in MS NAGM itself points to a possible endogenous signaling process leading to ANLS and GGC downregulation. This is supported by our findings that, among others

  8. Plasmid metagenomics reveals multiple antibiotic resistance gene classes among the gut microbiomes of hospitalised patients

    DEFF Research Database (Denmark)

    Jitwasinkul, Tossawan; Suriyaphol, Prapat; Tangphatsornruang, Sithichoke

    2016-01-01

    Antibiotic resistance genes are rapidly spread between pathogens and the normal flora, with plasmids playing an important role in their circulation. This study aimed to investigate antibiotic resistance plasmids in the gut microbiome of hospitalised patients. Stool samples were collected from seven...... inpatients at Siriraj Hospital (Bangkok, Thailand) and were compared with a sample from a healthy volunteer. Plasmids from the gut microbiomes extracted from the stool samples were subjected to high-throughput DNA sequencing (GS Junior). Newbler-assembled DNA reads were categorised into known and unknown...... in the gut microbiome; however, it was difficult to link these to the antibiotic resistance genes identified. That the antibiotic resistance genes came from hospital and community environments is worrying....

  9. Development of SRAP, SRAP-RGA, RAPD and SCAR markers linked with a Fusarium wilt resistance gene in eggplant.

    Science.gov (United States)

    Mutlu, Nedim; Boyaci, Filiz Hatice; Göçmen, Münevver; Abak, Kazim

    2008-11-01

    Fusarium wilt (Fusarium oxysporum Schlecht. f. sp. melongenae) is a vascular disease of eggplant (Solanum melongena L.). The objectives of this work were (1) to confirm the monogenic inheritance of fusarium wilt resistance in eggplant, (2) to identify molecular markers linked to this resistance, and (3) to develop SCAR markers from most informative markers. We report the tagging of the gene for resistance to fusarium wilt (FOM) in eggplant using SRAP, RGA, SRAP-RGA and RAPD markers. Analysis of segregation data confirmed the monogenic inheritance of resistance. DNA from F(2) and BC(1) populations of eggplant segregating for fusarium wilt resistance was screened with 2,316 primer combinations to detect polymorphism. Three markers were linked within 2.6 cM of the gene. The codominant SRAP marker Me8/Em5 and dominant SRAP-RGA marker Em12/GLPL2 were tightly linked to each other and mapped 1.2 cM from the resistance gene, whereas RAPD marker H12 mapped 2.6 cM from the gene and on the same side as the other two markers. The SRAP marker was converted into two dominant SCAR markers that were confirmed to be linked to the resistance gene in the F(2,) BC(1) and F(2) of BC(3) generations of the same cross. These markers provide a starting point for mapping the eggplant FOM resistance gene in eggplant and for exploring the synteny between solanaceous crops for fusarium wilt resistance genes. The SCAR markers will be useful for identifying fusarium wilt-resistant genotypes in marker-assisted selection breeding programs using segregating progenies of the resistant eggplant progenitor used in this study.

  10. An Efficient Stepwise Statistical Test to Identify Multiple Linked Human Genetic Variants Associated with Specific Phenotypic Traits.

    Directory of Open Access Journals (Sweden)

    Iksoo Huh

    Full Text Available Recent advances in genotyping methodologies have allowed genome-wide association studies (GWAS to accurately identify genetic variants that associate with common or pathological complex traits. Although most GWAS have focused on associations with single genetic variants, joint identification of multiple genetic variants, and how they interact, is essential for understanding the genetic architecture of complex phenotypic traits. Here, we propose an efficient stepwise method based on the Cochran-Mantel-Haenszel test (for stratified categorical data to identify causal joint multiple genetic variants in GWAS. This method combines the CMH statistic with a stepwise procedure to detect multiple genetic variants associated with specific categorical traits, using a series of associated I × J contingency tables and a null hypothesis of no phenotype association. Through a new stratification scheme based on the sum of minor allele count criteria, we make the method more feasible for GWAS data having sample sizes of several thousands. We also examine the properties of the proposed stepwise method via simulation studies, and show that the stepwise CMH test performs better than other existing methods (e.g., logistic regression and detection of associations by Markov blanket for identifying multiple genetic variants. Finally, we apply the proposed approach to two genomic sequencing datasets to detect linked genetic variants associated with bipolar disorder and obesity, respectively.

  11. A conceptual model linking functional gene expression and reductive dechlorination rates of chlorinated ethenes in clay rich groundwater sediment

    DEFF Research Database (Denmark)

    Bælum, Jacob; Chambon, Julie Claire Claudia; Scheutz, Charlotte

    2013-01-01

    We used current knowledge of cellular processes involved in reductive dechlorination to develop a conceptual model to describe the regulatory system of dechlorination at the cell level; the model links bacterial growth and substrate consumption to the abundance of messenger RNA of functional gene...

  12. Radiological sacroiliitis, a hallmark of spondylitis, is linked with CARD15 gene polymorphisms in patients with Crohn's disease

    OpenAIRE

    Peeters, Harald; Vander Cruyssen, Bert; Laukens, Debby; Coucke, Paul; MARICHAL, DENIS; VAN DEN BERGHE, MARTINA; Cuvelier, Claude; Remaut, Erik; Mielants, Herman; De Keyser, Filip; De Vos, Martine

    2004-01-01

    Background: Sacroiliitis is a common extraintestinal manifestation of Crohn's disease but its association with the HLA-B27 phenotype is less evident. Polymorphisms in the CARD15 gene have been linked to higher susceptibility for Crohn's disease. In particular, associations have been found with ileal and fibrostenosing disease, young age at onset of disease, and familial cases.

  13. Mutation pattern in the Bruton's tyrosine kinase gene in 26 unrelated patients with X-linked agammaglobulinemia

    DEFF Research Database (Denmark)

    Vorechovský, I; Luo, L; Hertz, Jens Michael

    1997-01-01

    Mutation pattern was characterized in the Bruton's tyrosine kinase gene (BTK) in 26 patients with X-linked agammaglobulinemia, the first described immunoglobulin deficiency, and was related to BTK expression. A total of 24 different mutations were identified. Most BTK mutations were found to result...

  14. Multiple Gene-Environment Interactions on the Angiogenesis Gene-Pathway Impact Rectal Cancer Risk and Survival

    Directory of Open Access Journals (Sweden)

    Noha Sharafeldin

    2017-09-01

    Full Text Available Characterization of gene-environment interactions (GEIs in cancer is limited. We aimed at identifying GEIs in rectal cancer focusing on a relevant biologic process involving the angiogenesis pathway and relevant environmental exposures: cigarette smoking, alcohol consumption, and animal protein intake. We analyzed data from 747 rectal cancer cases and 956 controls from the Diet, Activity and Lifestyle as a Risk Factor for Rectal Cancer study. We applied a 3-step analysis approach: first, we searched for interactions among single nucleotide polymorphisms on the pathway genes; second, we searched for interactions among the genes, both steps using Logic regression; third, we examined the GEIs significant at the 5% level using logistic regression for cancer risk and Cox proportional hazards models for survival. Permutation-based test was used for multiple testing adjustment. We identified 8 significant GEIs associated with risk among 6 genes adjusting for multiple testing: TNF (OR = 1.85, 95% CI: 1.10, 3.11, TLR4 (OR = 2.34, 95% CI: 1.38, 3.98, and EGR2 (OR = 2.23, 95% CI: 1.04, 4.78 with smoking; IGF1R (OR = 1.69, 95% CI: 1.04, 2.72, TLR4 (OR = 2.10, 95% CI: 1.22, 3.60 and EGR2 (OR = 2.12, 95% CI: 1.01, 4.46 with alcohol; and PDGFB (OR = 1.75, 95% CI: 1.04, 2.92 and MMP1 (OR = 2.44, 95% CI: 1.24, 4.81 with protein. Five GEIs were associated with survival at the 5% significance level but not after multiple testing adjustment: CXCR1 (HR = 2.06, 95% CI: 1.13, 3.75 with smoking; and KDR (HR = 4.36, 95% CI: 1.62, 11.73, TLR2 (HR = 9.06, 95% CI: 1.14, 72.11, EGR2 (HR = 2.45, 95% CI: 1.42, 4.22, and EGFR (HR = 6.33, 95% CI: 1.95, 20.54 with protein. GEIs between angiogenesis genes and smoking, alcohol, and animal protein impact rectal cancer risk. Our results support the importance of considering the biologic hypothesis to characterize GEIs associated with cancer outcomes.

  15. Methylation state of the EDA gene promoter in Chinese X-linked hypohidrotic ectodermal dysplasia carriers.

    Directory of Open Access Journals (Sweden)

    Wei Yin

    Full Text Available Hypodontia, hypohidrosis, sparse hair and characteristic faces are the main characters of X-linked hypohidrotic ectodermal dysplasia (XLHED which is caused by genetic ectodysplasin A (EDA deficiency. Heterozygous female carriers tend to have mild to moderate XLHED phenotype, even though 30% of them present no obvious symptom.A large Chinese XLHED family was reported and the entire coding region and exon-intron boundaries of EDA gene were sequenced. To elucidate the mechanism for carriers' tempered phenotype, we analyzed the methylation level on four sites of the promoter of EDA by the pyrosequencing system.A known frameshift mutation (c.573-574 insT was found in this pedigree. Combined with the pedigrees we reported before, 120 samples comprised of 23 carrier females from 11 families and 97 healthy females were analyzed for the methylation state of EDA promoter. Within 95% confidence interval (CI, 18 (78.26% carriers were hypermethylated at these 4 sites.Chinese XLHED carriers often have a hypermethylated EDA promoter.

  16. Serotonin transporter gene-linked polymorphism affects detection of facial expressions.

    Directory of Open Access Journals (Sweden)

    Ai Koizumi

    Full Text Available Previous studies have demonstrated that the serotonin transporter gene-linked polymorphic region (5-HTTLPR affects the recognition of facial expressions and attention to them. However, the relationship between 5-HTTLPR and the perceptual detection of others' facial expressions, the process which takes place prior to emotional labeling (i.e., recognition, is not clear. To examine whether the perceptual detection of emotional facial expressions is influenced by the allelic variation (short/long of 5-HTTLPR, happy and sad facial expressions were presented at weak and mid intensities (25% and 50%. Ninety-eight participants, genotyped for 5-HTTLPR, judged whether emotion in images of faces was present. Participants with short alleles showed higher sensitivity (d' to happy than to sad expressions, while participants with long allele(s showed no such positivity advantage. This effect of 5-HTTLPR was found at different facial expression intensities among males and females. The results suggest that at the perceptual stage, a short allele enhances the processing of positive facial expressions rather than that of negative facial expressions.

  17. From the genome to the phenome and back: linking genes with human brain function and structure using genetically informed neuroimaging

    DEFF Research Database (Denmark)

    Siebner, H R; Callicott, J H; Sommer, T

    2009-01-01

    In recent years, an array of brain mapping techniques has been successfully employed to link individual differences in circuit function or structure in the living human brain with individual variations in the human genome. Several proof-of-principle studies provided converging evidence that brain...... imaging can establish important links between genes and behaviour. The overarching goal is to use genetically informed brain imaging to pinpoint neurobiological mechanisms that contribute to behavioural intermediate phenotypes or disease states. This special issue on "Linking Genes to Brain Function...... in Health and Disease" provides an overview over how the "imaging genetics" approach is currently applied in the various fields of systems neuroscience to reveal the genetic underpinnings of complex behaviours and brain diseases. While the rapidly emerging field of imaging genetics holds great promise...

  18. Sex-linked pheromone receptor genes of the European corn borer, Ostrinia nubilalis, are in tandem arrays.

    Directory of Open Access Journals (Sweden)

    Yuji Yasukochi

    Full Text Available BACKGROUND: Tuning of the olfactory system of male moths to conspecific female sex pheromones is crucial for correct species recognition; however, little is known about the genetic changes that drive speciation in this system. Moths of the genus Ostrinia are good models to elucidate this question, since significant differences in pheromone blends are observed within and among species. Odorant receptors (ORs play a critical role in recognition of female sex pheromones; eight types of OR genes expressed in male antennae were previously reported in Ostrinia moths. METHODOLOGY/PRINCIPAL FINDINGS: We screened an O. nubilalis bacterial artificial chromosome (BAC library by PCR, and constructed three contigs from isolated clones containing the reported OR genes. Fluorescence in situ hybridization (FISH analysis using these clones as probes demonstrated that the largest contig, which contained eight OR genes, was located on the Z chromosome; two others harboring two and one OR genes were found on two autosomes. Sequence determination of BAC clones revealed the Z-linked OR genes were closely related and tandemly arrayed; moreover, four of them shared 181-bp direct repeats spanning exon 7 and intron 7. CONCLUSIONS/SIGNIFICANCE: This is the first report of tandemly arrayed sex pheromone receptor genes in Lepidoptera. The localization of an OR gene cluster on the Z chromosome agrees with previous findings for a Z-linked locus responsible for O. nubilalis male behavioral response to sex pheromone. The 181-bp direct repeats might enhance gene duplications by unequal crossovers. An autosomal locus responsible for male response to sex pheromone in Heliothis virescens and H. subflexa was recently reported to contain at least four OR genes. Taken together, these findings support the hypothesis that generation of additional copies of OR genes can increase the potential for male moths to acquire altered specificity for pheromone components, and accordingly

  19. Overvoltage and Insulation Coordination of Overhead Lines in Multiple-Terminal MMC-HVDC Link for Wind Power Delivery

    Directory of Open Access Journals (Sweden)

    Huiwen He

    2017-01-01

    Full Text Available The voltage-sourced converter-based HVDC link, including the modular multilevel converter (MMC configuration, is suitable for wind power, photovoltaic energy, and other kinds of new energy delivery and grid-connection. Current studies are focused on the MMC principles and controls and few studies have been done on the overvoltage of transmission line for the MMC-HVDC link. The main reason is that environmental factors have little effect on DC cables and the single-phase/pole fault rate is low. But if the cables were replaced by the overhead lines, although the construction cost of the project would be greatly reduced, the single-pole ground fault rate would be much higher. This paper analyzed the main overvoltage types in multiple-terminal MMC-HVDC network which transmit electric power by overhead lines. Based on ±500 kV multiple-terminal MMC-HVDC for wind power delivery project, the transient simulation model was built and the overvoltage types mentioned above were studied. The results showed that the most serious overvoltage was on the healthy adjacent line of the faulty line caused by the fault clearing of DC breaker. Then the insulation coordination for overhead lines was conducted according to the overvoltage level. The recommended clearance values were given.

  20. An evolvable oestrogen receptor activity sensor: development of a modular system for integrating multiple genes into the yeast genome

    NARCIS (Netherlands)

    Fox, J.E.; Bridgham, J.T.; Bovee, T.F.H.; Thornton, J.W.

    2007-01-01

    To study a gene interaction network, we developed a gene-targeting strategy that allows efficient and stable genomic integration of multiple genetic constructs at distinct target loci in the yeast genome. This gene-targeting strategy uses a modular plasmid with a recyclable selectable marker and a

  1. Day-care treatment for multiple drug abusing adolescents: social factors linked with completing treatment.

    Science.gov (United States)

    Feigelman, W

    1987-01-01

    By identifying some of the social correlates linked with completing day-care drug abuse treatment, the present study has sought to broaden understanding of how drug rehabilitations are effected. As the findings have demonstrated, completing care is a result of a complex array of causes and their interaction. The disposition of the entering patient (i.e., their determination and other strengths) has a great bearing on treatment outcome. It is also a result of the patient's family, their motivations, resources and perseverance in enduring a long course of demanding therapeutic interventions. In addition, it is the product of meanings shared and transmitted between the patient's family and the treatment staff. Patients and their families project positive attitudes about the value of the therapeutic enterprise as well as a compliant demeanor. As staff recognize that patients and parents are acting cooperatively, then such perceptions tend to create self-fulfilling prophecies. The data has established that older adolescent patients are more likely to possess the motivational resources needed for program completion than younger patients. Apparently, self-referred patients are also more inclined to meet the demands of program requirements than those referred by the courts or other outside social agencies, although the differences fell short of the .05 level of statistical significance. Those completing the program are less likely to be diagnosed as depressed at intake. Parental characteristics comprise another group of variables that are related to treatment completion. Parents of higher occupational rank, who have had mental health care for themselves, and who are of Jewish ethnicity appear to possess useful strengths for meeting program challenges. The pattern of spouse mutuality in dealing with a child's needs as it exists preceding and during treatment seems to be another useful asset for successfully getting through this form of treatment. While parents with the

  2. EBF factors drive expression of multiple classes of target genes governing neuronal development.

    Science.gov (United States)

    Green, Yangsook S; Vetter, Monica L

    2011-04-30

    Early B cell factor (EBF) family members are transcription factors known to have important roles in several aspects of vertebrate neurogenesis, including commitment, migration and differentiation. Knowledge of how EBF family members contribute to neurogenesis is limited by a lack of detailed understanding of genes that are transcriptionally regulated by these factors. We performed a microarray screen in Xenopus animal caps to search for targets of EBF transcriptional activity, and identified candidate targets with multiple roles, including transcription factors of several classes. We determined that, among the most upregulated candidate genes with expected neuronal functions, most require EBF activity for some or all of their expression, and most have overlapping expression with ebf genes. We also found that the candidate target genes that had the most strongly overlapping expression patterns with ebf genes were predicted to be direct transcriptional targets of EBF transcriptional activity. The identification of candidate targets that are transcription factor genes, including nscl-1, emx1 and aml1, improves our understanding of how EBF proteins participate in the hierarchy of transcription control during neuronal development, and suggests novel mechanisms by which EBF activity promotes migration and differentiation. Other candidate targets, including pcdh8 and kcnk5, expand our knowledge of the types of terminal differentiated neuronal functions that EBF proteins regulate.

  3. EBF factors drive expression of multiple classes of target genes governing neuronal development

    Directory of Open Access Journals (Sweden)

    Vetter Monica L

    2011-04-01

    Full Text Available Abstract Background Early B cell factor (EBF family members are transcription factors known to have important roles in several aspects of vertebrate neurogenesis, including commitment, migration and differentiation. Knowledge of how EBF family members contribute to neurogenesis is limited by a lack of detailed understanding of genes that are transcriptionally regulated by these factors. Results We performed a microarray screen in Xenopus animal caps to search for targets of EBF transcriptional activity, and identified candidate targets with multiple roles, including transcription factors of several classes. We determined that, among the most upregulated candidate genes with expected neuronal functions, most require EBF activity for some or all of their expression, and most have overlapping expression with ebf genes. We also found that the candidate target genes that had the most strongly overlapping expression patterns with ebf genes were predicted to be direct transcriptional targets of EBF transcriptional activity. Conclusions The identification of candidate targets that are transcription factor genes, including nscl-1, emx1 and aml1, improves our understanding of how EBF proteins participate in the hierarchy of transcription control during neuronal development, and suggests novel mechanisms by which EBF activity promotes migration and differentiation. Other candidate targets, including pcdh8 and kcnk5, expand our knowledge of the types of terminal differentiated neuronal functions that EBF proteins regulate.

  4. SATB1 tethers multiple gene loci to reprogram expression profiledriving breast cancer metastasis

    Energy Technology Data Exchange (ETDEWEB)

    Han, Hye-Jung; Kohwi, Yoshinori; Kohwi-Shigematsu, Terumi

    2006-07-13

    Global changes in gene expression occur during tumor progression, as indicated by expression profiling of metastatic tumors. How this occurs is poorly understood. SATB1 functions as a genome organizer by folding chromatin via tethering multiple genomic loci and recruiting chromatin remodeling enzymes to regulate chromatin structure and expression of a large number of genes. Here we show that SATB1 is expressed at high levels in aggressive breast cancer cells, and is undetectable in non-malignant breast epithelial cells. Importantly, RNAi-mediated removal of SATB1 from highly-aggressive MDA-MB-231 cells altered the expression levels of over 1200 genes, restored breast-like acinar polarity in three-dimensional cultures, and prevented the metastastic phenotype in vivo. Conversely, overexpression of SATB1 in the less-aggressive breast cancer cell line Hs578T altered the gene expression profile and increased metastasis dramatically in vivo. Thus, SATB1 is a global regulator of gene expression in breast cancer cells, directly regulating crucial metastasis-associated genes, including ERRB2 (HER2/NEU), TGF-{beta}1, matrix metalloproteinase 3, and metastasin. The identification of SATB1 as a protein that re-programs chromatin organization and transcription profiles to promote breast cancer metastasis suggests a new model for metastasis and may provide means of therapeutic intervention.

  5. Permethrin induction of multiple cytochrome P450 genes in insecticide resistant mosquitoes, Culex quinquefasciatus.

    Science.gov (United States)

    Gong, Youhui; Li, Ting; Zhang, Lee; Gao, Xiwu; Liu, Nannan

    2013-01-01

    The expression of some insect P450 genes can be induced by both exogenous and endogenous compounds and there is evidence to suggest that multiple constitutively overexpressed P450 genes are co-responsible for the development of resistance to permethrin in resistant mosquitoes. This study characterized the permethrin induction profiles of P450 genes known to be constitutively overexpressed in resistant mosquitoes, Culex quinquefasciatus. The gene expression in 7 of the 19 P450 genes CYP325K3v1, CYP4D42v2, CYP9J45, (CYP) CPIJ000926, CYP325G4, CYP4C38, CYP4H40 in the HAmCqG8 strain, increased more than 2-fold after exposure to permethrin at an LC50 concentration (10 ppm) compared to their acetone treated counterpart; no significant differences in the expression of these P450 genes in susceptible S-Lab mosquitoes were observed after permethrin treatment. Eleven of the fourteen P450 genes overexpressed in the MAmCqG6 strain, CYP9M10, CYP6Z12, CYP9J33, CYP9J43, CYP9J34, CYP306A1, CYP6Z15, CYP9J45, CYPPAL1, CYP4C52v1, CYP9J39, were also induced more than doubled after exposure to an LC50 (0.7 ppm) dose of permethrin. No significant induction in P450 gene expression was observed in the susceptible S-Lab mosquitoes after permethrin treatment except for CYP6Z15 and CYP9J39, suggesting that permethrin induction of these two P450 genes are common to both susceptible and resistant mosquitoes while the induction of the others are specific to insecticide resistant mosquitoes. These results demonstrate that multiple P450 genes are co-up-regulated in insecticide resistant mosquitoes through both constitutive overexpression and induction mechanisms, providing additional support for their involvement in the detoxification of insecticides and the development of insecticide resistance.

  6. PSP: rapid identification of orthologous coding genes under positive selection across multiple closely related prokaryotic genomes.

    Science.gov (United States)

    Su, Fei; Ou, Hong-Yu; Tao, Fei; Tang, Hongzhi; Xu, Ping

    2013-12-27

    With genomic sequences of many closely related bacterial strains made available by deep sequencing, it is now possible to investigate trends in prokaryotic microevolution. Positive selection is a sub-process of microevolution, in which a particular mutation is favored, causing the allele frequency to continuously shift in one direction. Wide scanning of prokaryotic genomes has shown that positive selection at the molecular level is much more frequent than expected. Genes with significant positive selection may play key roles in bacterial adaption to different environmental pressures. However, selection pressure analyses are computationally intensive and awkward to configure. Here we describe an open access web server, which is designated as PSP (Positive Selection analysis for Prokaryotic genomes) for performing evolutionary analysis on orthologous coding genes, specially designed for rapid comparison of dozens of closely related prokaryotic genomes. Remarkably, PSP facilitates functional exploration at the multiple levels by assignments and enrichments of KO, GO or COG terms. To illustrate this user-friendly tool, we analyzed Escherichia coli and Bacillus cereus genomes and found that several genes, which play key roles in human infection and antibiotic resistance, show significant evidence of positive selection. PSP is freely available to all users without any login requirement at: http://db-mml.sjtu.edu.cn/PSP/. PSP ultimately allows researchers to do genome-scale analysis for evolutionary selection across multiple prokaryotic genomes rapidly and easily, and identify the genes undergoing positive selection, which may play key roles in the interactions of host-pathogen and/or environmental adaptation.

  7. Molecular evolution of the Paramyxoviridae and Rhabdoviridae multiple-protein-encoding P gene.

    Science.gov (United States)

    Jordan, I K; Sutter, B A; McClure, M A

    2000-01-01

    Presented here is an analysis of the molecular evolutionary dynamics of the P gene among 76 representative sequences of the Paramyxoviridae and Rhabdoviridae RNA virus families. In a number of Paramyxoviridae taxa, as well as in vesicular stomatitis viruses of the Rhabdoviridae, the P gene encodes multiple proteins from a single genomic RNA sequence. These products include the phosphoprotein (P), as well as the C and V proteins. The complexity of the P gene makes it an intriguing locus to study from an evolutionary perspective. Amino acid sequence alignments of the proteins encoded at the P and N loci were used in independent phylogenetic reconstructions of the Paramyxoviridae and Rhabdoviridae families. P-gene-coding capacities were mapped onto the Paramyxoviridae phylogeny, and the most parsimonious path of multiple-coding-capacity evolution was determined. Levels of amino acid variation for Paramyxoviridae and Rhabdoviridae P-gene-encoded products were also analyzed. Proteins encoded in overlapping reading frames from the same nucleotides have different levels of amino acid variation. The nucleotide architecture that underlies the amino acid variation was determined in order to evaluate the role of selection in the evolution of the P gene overlapping reading frames. In every case, the evolution of one of the proteins encoded in the overlapping reading frames has been constrained by negative selection while the other has evolved more rapidly. The integrity of the overlapping reading frame that represents a derived state is generally maintained at the expense of the ancestral reading frame encoded by the same nucleotides. The evolution of such multicoding sequences is likely a response by RNA viruses to selective pressure to maximize genomic information content while maintaining small genome size. The ability to evolve such a complex genomic strategy is intimately related to the dynamics of the viral quasispecies, which allow enhanced exploration of the adaptive

  8. C/EBPβ Mediates Growth Hormone-Regulated Expression of Multiple Target Genes

    Science.gov (United States)

    Cui, Tracy X.; Lin, Grace; LaPensee, Christopher R.; Calinescu, Anda-Alexandra; Rathore, Maanjot; Streeter, Cale; Piwien-Pilipuk, Graciela; Lanning, Nathan; Jin, Hui; Carter-Su, Christin; Qin, Zhaohui S.

    2011-01-01

    Regulation of c-Fos transcription by GH is mediated by CCAAT/enhancer binding protein β (C/EBPβ). This study examines the role of C/EBPβ in mediating GH activation of other early response genes, including Cyr61, Btg2, Socs3, Zfp36, and Socs1. C/EBPβ depletion using short hairpin RNA impaired responsiveness of these genes to GH, as seen for c-Fos. Rescue with wild-type C/EBPβ led to GH-dependent recruitment of the coactivator p300 to the c-Fos promoter. In contrast, rescue with C/EBPβ mutated at the ERK phosphorylation site at T188 failed to induce GH-dependent recruitment of p300, indicating that ERK-mediated phosphorylation of C/EBPβ at T188 is required for GH-induced recruitment of p300 to c-Fos. GH also induced the occupancy of phosphorylated C/EBPβ and p300 on Cyr61, Btg2, and Socs3 at predicted C/EBP-cAMP response element-binding protein motifs in their promoters. Consistent with a role for ERKs in GH-induced expression of these genes, treatment with U0126 to block ERK phosphorylation inhibited their GH-induced expression. In contrast, GH-dependent expression of Zfp36 and Socs1 was not inhibited by U0126. Thus, induction of multiple early response genes by GH in 3T3-F442A cells is mediated by C/EBPβ. A subset of these genes is regulated similarly to c-Fos, through a mechanism involving GH-stimulated ERK 1/2 activation, phosphorylation of C/EBPβ, and recruitment of p300. Overall, these studies suggest that C/EBPβ, like the signal transducer and activator of transcription proteins, regulates multiple genes in response to GH. PMID:21292824

  9. The evolution of multiple isotypic IgM heavy chain genes in the shark.

    Science.gov (United States)

    Lee, Victor; Huang, Jing Li; Lui, Ming Fai; Malecek, Karolina; Ohta, Yuko; Mooers, Arne; Hsu, Ellen

    2008-06-01

    The IgM H chain gene organization of cartilaginous fishes consists of 15-200 miniloci, each with a few gene segments (V(H)-D1-D2-J(H)) and one C gene. This is a gene arrangement ancestral to the complex IgH locus that exists in all other vertebrate classes. To understand the molecular evolution of this system, we studied the nurse shark, which has relatively fewer loci, and characterized the IgH isotypes for organization, functionality, and the somatic diversification mechanisms that act upon them. Gene numbers differ slightly between individuals ( approximately 15), but five active IgM subclasses are always present. Each gene undergoes rearrangement that is strictly confined within the minilocus; in B cells there is no interaction between adjacent loci located > or =120 kb apart. Without combinatorial events, the shark IgM H chain repertoire is based on junctional diversity and, subsequently, somatic hypermutation. We suggest that the significant contribution by junctional diversification reflects the selected novelty introduced by RAG in the early vertebrate ancestor, whereas combinatorial diversity coevolved with the complex translocon organization. Moreover, unlike other cartilaginous fishes, there are no germline-joined VDJ at any nurse shark mu locus, and we suggest that such genes, when functional, are species-specific and may have specialized roles. With an entire complement of IgM genes available for the first time, phylogenetic analyses were performed to examine how the multiple Ig loci evolved. We found that all domains changed at comparable rates, but V(H) appears to be under strong positive selection for increased amino acid sequence diversity, and surprisingly, so does Cmicro2.

  10. Whole exome sequencing reveals concomitant mutations of multiple FA genes in individual Fanconi anemia patients.

    Science.gov (United States)

    Chang, Lixian; Yuan, Weiping; Zeng, Huimin; Zhou, Quanquan; Wei, Wei; Zhou, Jianfeng; Li, Miaomiao; Wang, Xiaomin; Xu, Mingjiang; Yang, Fengchun; Yang, Yungui; Cheng, Tao; Zhu, Xiaofan

    2014-05-15

    Fanconi anemia (FA) is a rare inherited genetic syndrome with highly variable clinical manifestations. Fifteen genetic subtypes of FA have been identified. Traditional complementation tests for grouping studies have been used generally in FA patients and in stepwise methods to identify the FA type, which can result in incomplete genetic information from FA patients. We diagnosed five pediatric patients with FA based on clinical manifestations, and we performed exome sequencing of peripheral blood specimens from these patients and their family members. The related sequencing data were then analyzed by bioinformatics, and the FANC gene mutations identified by exome sequencing were confirmed by PCR re-sequencing. Homozygous and compound heterozygous mutations of FANC genes were identified in all of the patients. The FA subtypes of the patients included FANCA, FANCM and FANCD2. Interestingly, four FA patients harbored multiple mutations in at least two FA genes, and some of these mutations have not been previously reported. These patients' clinical manifestations were vastly different from each other, as were their treatment responses to androstanazol and prednisone. This finding suggests that heterozygous mutation(s) in FA genes could also have diverse biological and/or pathophysiological effects on FA patients or FA gene carriers. Interestingly, we were not able to identify de novo mutations in the genes implicated in DNA repair pathways when the sequencing data of patients were compared with those of their parents. Our results indicate that Chinese FA patients and carriers might have higher and more complex mutation rates in FANC genes than have been conventionally recognized. Testing of the fifteen FANC genes in FA patients and their family members should be a regular clinical practice to determine the optimal care for the individual patient, to counsel the family and to obtain a better understanding of FA pathophysiology.

  11. Dysregulation of X-Linked Gene Expression in Klinefelter’s Syndrome and Association With Verbal Cognition

    Science.gov (United States)

    Vawter, Marquis P.; Harvey, Philip D.; DeLisi, Lynn E.

    2007-01-01

    Klinefelter’s Syndrome (KS) is a chromosomal karyotype with one or more extra X chromosomes. KS individuals often show language impairment and the phenotype might be due to overexpression of genes on the extra X chromosome(s). We profiled mRNA derived from lymphoblastoid cell lines from males with documented KS and control males using the Affymetrix U133P microarray platform. There were 129 differentially expressed genes (DEGs) in KS group compared with controls after Benjamini–Hochberg false discovery adjustment. The DEGs included 14 X chromosome genes which were significantly over-represented. The Y chromosome had zero DEGs. In exploratory analysis of gene expression–cognition relationships, 12 DEGs showed significant correlation of expression with measures of verbal cognition in KS. Overexpression of one pseudoautosomal gene, GTPBP6 (GTP binding protein 6, putative) was inversely correlated with verbal IQ (r = −0.86, P < 0.001) and four other measures of verbal ability. Overexpression of XIST was found in KS compared to XY controls suggesting that silencing of many genes on the X chromosome might occur in KS similar to XX females. The microarray findings for eight DEGs were validated by quantitative PCR. The 14 X chromosome DEGs were not differentially expressed in prior studies comparing female and male brains suggesting a dysregulation profile unique to KS. Examination of X-linked DEGs, such as GTPBP6, TAF9L, and CXORF21, that show verbal cognition–gene expression correlations may establish a causal link between these genes, neurodevelopment, and language function. A screen of candidate genes may serve as biomarkers of KS for early diagnosis. PMID:17347996

  12. GENIE: a software package for gene-gene interaction analysis in genetic association studies using multiple GPU or CPU cores

    Directory of Open Access Journals (Sweden)

    Wang Kai

    2011-05-01

    Full Text Available Abstract Background Gene-gene interaction in genetic association studies is computationally intensive when a large number of SNPs are involved. Most of the latest Central Processing Units (CPUs have multiple cores, whereas Graphics Processing Units (GPUs also have hundreds of cores and have been recently used to implement faster scientific software. However, currently there are no genetic analysis software packages that allow users to fully utilize the computing power of these multi-core devices for genetic interaction analysis for binary traits. Findings Here we present a novel software package GENIE, which utilizes the power of multiple GPU or CPU processor cores to parallelize the interaction analysis. GENIE reads an entire genetic association study dataset into memory and partitions the dataset into fragments with non-overlapping sets of SNPs. For each fragment, GENIE analyzes: 1 the interaction of SNPs within it in parallel, and 2 the interaction between the SNPs of the current fragment and other fragments in parallel. We tested GENIE on a large-scale candidate gene study on high-density lipoprotein cholesterol. Using an NVIDIA Tesla C1060 graphics card, the GPU mode of GENIE achieves a speedup of 27 times over its single-core CPU mode run. Conclusions GENIE is open-source, economical, user-friendly, and scalable. Since the computing power and memory capacity of graphics cards are increasing rapidly while their cost is going down, we anticipate that GENIE will achieve greater speedups with faster GPU cards. Documentation, source code, and precompiled binaries can be downloaded from http://www.cceb.upenn.edu/~mli/software/GENIE/.

  13. The link between smoking status and co-morbid conditions in individuals with multiple sclerosis (MS).

    Science.gov (United States)

    Newland, Pamela; Flick, Louise; Salter, Amber; Dixon, David; Jensen, Mark P

    2017-10-01

    In individuals with multiple sclerosis (MS) comorbidities and quality of life (QOL) may be affected by tobacco use. To evaluate the associations between smoking status, in particular quit attempts, and comorbidities among individuals with MS. We used a web-based survey to obtain cross-sectional data from 335 individuals with MS who were members of the Gateway Chapter of the National MS Society email registry. We then examined the associations between smoking variables (current use, frequency, and quit attempts) and comorbidities. The prevalence of participants who ever smoked was 50%, which is greater than that reported for the general population; 20% were current smokers. Migraine headaches were associated with current use and everyday smoking, and those with recent failed quit attempts had a higher prevalence of depression than those who were current smokers but who did not attempt to quit or had successfully quit in the past year. Given the associations between smoking and comorbidities in individuals with MS, health care providers should both (1) assess smoking history and quit attempts, and (2) encourage individuals with MS who smoke to become non-smokers and refer for treatment, as indicated. In order to increase the chances that individuals will be successful in becoming non-smokers, clinicians would do well to also assess and treat depression in their patients who smoke and are also depressed. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Action of multiple intra-QTL genes concerted around a co-localized transcription factor underpins a large effect QTL

    Science.gov (United States)

    Dixit, Shalabh; Kumar Biswal, Akshaya; Min, Aye; Henry, Amelia; Oane, Rowena H.; Raorane, Manish L.; Longkumer, Toshisangba; Pabuayon, Isaiah M.; Mutte, Sumanth K.; Vardarajan, Adithi R.; Miro, Berta; Govindan, Ganesan; Albano-Enriquez, Blesilda; Pueffeld, Mandy; Sreenivasulu, Nese; Slamet-Loedin, Inez; Sundarvelpandian, Kalaipandian; Tsai, Yuan-Ching; Raghuvanshi, Saurabh; Hsing, Yue-Ie C.; Kumar, Arvind; Kohli, Ajay

    2015-01-01

    Sub-QTLs and multiple intra-QTL genes are hypothesized to underpin large-effect QTLs. Known QTLs over gene families, biosynthetic pathways or certain traits represent functional gene-clusters of genes of the same gene ontology (GO). Gene-clusters containing genes of different GO have not been elaborated, except in silico as coexpressed genes within QTLs. Here we demonstrate the requirement of multiple intra-QTL genes for the full impact of QTL qDTY12.1 on rice yield under drought. Multiple evidences are presented for the need of the transcription factor ‘no apical meristem’ (OsNAM12.1) and its co-localized target genes of separate GO categories for qDTY12.1 function, raising a regulon-like model of genetic architecture. The molecular underpinnings of qDTY12.1 support its effectiveness in further improving a drought tolerant genotype and for its validity in multiple genotypes/ecosystems/environments. Resolving the combinatorial value of OsNAM12.1 with individual intra-QTL genes notwithstanding, identification and analyses of qDTY12.1has fast-tracked rice improvement towards food security. PMID:26507552

  15. Type 1 Diabetes Candidate Genes Linked to Pancreatic Islet Cell Inflammation and Beta-Cell Apoptosis

    DEFF Research Database (Denmark)

    Størling, Joachim; Pociot, Flemming

    2017-01-01

    (GWAS) have identified more than 50 genetic regions that affect the risk of developing T1D. Most of these susceptibility loci, however, harbor several genes, and the causal variant(s) and gene(s) for most of the loci remain to be established. A significant part of the genes located in the T1D...... susceptibility loci are expressed in human islets and β cells and mounting evidence suggests that some of these genes modulate the β-cell response to the immune system and viral infection and regulate apoptotic β-cell death. Here, we discuss the current status of T1D susceptibility loci and candidate genes...

  16. Missed epidemics and missing links: international birth cohort trends in multiple sclerosis.

    Science.gov (United States)

    Ajdacic-Gross, V; Tschopp, A; Schmid, M; Bopp, M; Gutzwiller, F

    2013-03-01

    Many hypotheses on the etiopathogenesis of multiple sclerosis (MS) focus on risk factors occurring early in life. This study examined the variability of birth cohort trends in international MS data by means of age-period-cohort (APC) analysis. The data from 25 countries were taken from the WHO mortality database. Data were encoded according to the International Classification of Diseases and covered slightly varying periods between 1951 and 2009. The APC analyses were based on logit models applied to cohort tables with 5-year age- and period intervals. In most countries, the birth cohort estimates peaked in those born in the first half of the 20th century. In countries from Central and Western Europe, the peak concerned those born before and around 1920. A second group of countries (Denmark, Sweden, Italy, Ireland, Scotland) shared a later peak amongst cohorts born in the 1920s and 1930s. Group 3 included Commonwealth countries, the USA and Norway, with a double or extended peak starting in the 1910s or 1920s, and ending by the 1950s. The fourth group, consisting of Mediterranean countries and Finland, was characterized by a steady increase in the birth cohort estimates until the 1950s. The fifth group with countries from Eastern Europe and Japan showed no particular pattern. Birth cohort trends have influenced the change in MS risk across the 20th century in many Western countries. This silent epidemic points to a most important but unknown latent risk factor in MS. © 2012 The Author(s) European Journal of Neurology © 2012 EFNS.

  17. Fine tuning of RFX/DAF-19-regulated target gene expression through binding to multiple sites in Caenorhabditis elegans

    OpenAIRE

    Chu, Jeffery S. C.; Tarailo-Graovac, Maja; Zhang, Di; Wang, Jun; Uyar, Bora; Tu, Domena; Trinh, Joanne; Baillie, David L.; Chen, Nansheng

    2011-01-01

    In humans, mutations of a growing list of regulatory factor X (RFX) target genes have been associated with devastating genetics disease conditions including ciliopathies. However, mechanisms underlying RFX transcription factors (TFs)-mediated gene expression regulation, especially differential gene expression regulation, are largely unknown. In this study, we explore the functional significance of the co-existence of multiple X-box motifs in regulating differential gene expression in Caenorha...

  18. Metabolic gene expression changes in astrocytes in Multiple Sclerosis cerebral cortex are indicative of immune-mediated signaling

    KAUST Repository

    Zeis, T.; Allaman, I.; Gentner, M.; Schroder, K.; Tschopp, J.; Magistretti, Pierre J.; Schaeren-Wiemers, N.

    2015-01-01

    Emerging as an important correlate of neurological dysfunction in Multiple Sclerosis (MS), extended focal and diffuse gray matter abnormalities have been found and linked to clinical manifestations such as seizures, fatigue and cognitive dysfunction

  19. Global map of physical interactions among differentially expressed genes in multiple sclerosis relapses and remissions.

    Science.gov (United States)

    Tuller, Tamir; Atar, Shimshi; Ruppin, Eytan; Gurevich, Michael; Achiron, Anat

    2011-09-15

    Multiple sclerosis (MS) is a central nervous system autoimmune inflammatory T-cell-mediated disease with a relapsing-remitting course in the majority of patients. In this study, we performed a high-resolution systems biology analysis of gene expression and physical interactions in MS relapse and remission. To this end, we integrated 164 large-scale measurements of gene expression in peripheral blood mononuclear cells of MS patients in relapse or remission and healthy subjects, with large-scale information about the physical interactions between these genes obtained from public databases. These data were analyzed with a variety of computational methods. We find that there is a clear and significant global network-level signal that is related to the changes in gene expression of MS patients in comparison to healthy subjects. However, despite the clear differences in the clinical symptoms of MS patients in relapse versus remission, the network level signal is weaker when comparing patients in these two stages of the disease. This result suggests that most of the genes have relatively similar expression levels in the two stages of the disease. In accordance with previous studies, we found that the pathways related to regulation of cell death, chemotaxis and inflammatory response are differentially expressed in the disease in comparison to healthy subjects, while pathways related to cell adhesion, cell migration and cell-cell signaling are activated in relapse in comparison to remission. However, the current study includes a detailed report of the exact set of genes involved in these pathways and the interactions between them. For example, we found that the genes TP53 and IL1 are 'network-hub' that interacts with many of the differentially expressed genes in MS patients versus healthy subjects, and the epidermal growth factor receptor is a 'network-hub' in the case of MS patients with relapse versus remission. The statistical approaches employed in this study enabled us

  20. Combating oncogene activation associated with retrovirus-mediated gene therapy of X-linked severe combined immunodeficiency

    Directory of Open Access Journals (Sweden)

    B.E. Strauss

    2007-05-01

    Full Text Available A successful gene therapy clinical trial that also encountered serious adverse effects has sparked extensive study and debate about the future directions for retrovirus-mediated interventions. Treatment of X-linked severe combined immunodeficiency with an oncoretrovirus harboring a normal copy of the gc gene was applied in two clinical trials, essentially curing 13 of 16 infants, restoring a normal immune system without the need for additional immune-related therapies. Approximately 3 years after their gene therapy, tragically, 3 of these children, all from the same trial, developed leukemia as a result of this experimental treatment. The current understanding of the mechanism behind this leukemogenesis involves three critical and cooperating factors, i.e., viral integration, oncogene activation, and the function of the therapeutic gene. In this review, we will explore the causes of this unwanted event and some of the possibilities for reducing the risk of its reoccurrence.

  1. Dynamic evolution of Geranium mitochondrial genomes through multiple horizontal and intracellular gene transfers.

    Science.gov (United States)

    Park, Seongjun; Grewe, Felix; Zhu, Andan; Ruhlman, Tracey A; Sabir, Jamal; Mower, Jeffrey P; Jansen, Robert K

    2015-10-01

    The exchange of genetic material between cellular organelles through intracellular gene transfer (IGT) or between species by horizontal gene transfer (HGT) has played an important role in plant mitochondrial genome evolution. The mitochondrial genomes of Geraniaceae display a number of unusual phenomena including highly accelerated rates of synonymous substitutions, extensive gene loss and reduction in RNA editing. Mitochondrial DNA sequences assembled for 17 species of Geranium revealed substantial reduction in gene and intron content relative to the ancestor of the Geranium lineage. Comparative analyses of nuclear transcriptome data suggest that a number of these sequences have been functionally relocated to the nucleus via IGT. Evidence for rampant HGT was detected in several Geranium species containing foreign organellar DNA from diverse eudicots, including many transfers from parasitic plants. One lineage has experienced multiple, independent HGT episodes, many of which occurred within the past 5.5 Myr. Both duplicative and recapture HGT were documented in Geranium lineages. The mitochondrial genome of Geranium brycei contains at least four independent HGT tracts that are absent in its nearest relative. Furthermore, G. brycei mitochondria carry two copies of the cox1 gene that differ in intron content, providing insight into contrasting hypotheses on cox1 intron evolution. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.

  2. An Approach for Predicting Essential Genes Using Multiple Homology Mapping and Machine Learning Algorithms.

    Science.gov (United States)

    Hua, Hong-Li; Zhang, Fa-Zhan; Labena, Abraham Alemayehu; Dong, Chuan; Jin, Yan-Ting; Guo, Feng-Biao

    Investigation of essential genes is significant to comprehend the minimal gene sets of cell and discover potential drug targets. In this study, a novel approach based on multiple homology mapping and machine learning method was introduced to predict essential genes. We focused on 25 bacteria which have characterized essential genes. The predictions yielded the highest area under receiver operating characteristic (ROC) curve (AUC) of 0.9716 through tenfold cross-validation test. Proper features were utilized to construct models to make predictions in distantly related bacteria. The accuracy of predictions was evaluated via the consistency of predictions and known essential genes of target species. The highest AUC of 0.9552 and average AUC of 0.8314 were achieved when making predictions across organisms. An independent dataset from Synechococcus elongatus , which was released recently, was obtained for further assessment of the performance of our model. The AUC score of predictions is 0.7855, which is higher than other methods. This research presents that features obtained by homology mapping uniquely can achieve quite great or even better results than those integrated features. Meanwhile, the work indicates that machine learning-based method can assign more efficient weight coefficients than using empirical formula based on biological knowledge.

  3. Phylogenetic Relationships of Pseudorasbora, Pseudopungtungia, and Pungtungia (Teleostei; Cypriniformes; Gobioninae Inferred from Multiple Nuclear Gene Sequences

    Directory of Open Access Journals (Sweden)

    Keun-Yong Kim

    2013-01-01

    Full Text Available Gobionine species belonging to the genera Pseudorasbora, Pseudopungtungia, and Pungtungia (Teleostei; Cypriniformes; Cyprinidae have been heavily studied because of problems on taxonomy, threats of extinction, invasion, and human health. Nucleotide sequences of three nuclear genes, that is, recombination activating protein gene 1 (rag1, recombination activating gene 2 (rag2, and early growth response 1 gene (egr1, from Pseudorasbora, Pseudopungtungia, and Pungtungia species residing in China, Japan, and Korea, were analyzed to elucidate their intergeneric and interspecific phylogenetic relationships. In the phylogenetic tree inferred from their multiple gene sequences, Pseudorasbora, Pseudopungtungia and Pungtungia species ramified into three phylogenetically distinct clades; the “tenuicorpa” clade composed of Pseudopungtungia tenuicorpa, the “parva” clade composed of all Pseudorasbora species/subspecies, and the “herzi” clade composed of Pseudopungtungia nigra, and Pungtungia herzi. The genus Pseudorasbora was recovered as monophyletic, while the genus Pseudopungtungia was recovered as polyphyletic. Our phylogenetic result implies the unstable taxonomic status of the genus Pseudopungtungia.

  4. Connexin 43 astrocytopathy linked to rapidly progressive multiple sclerosis and neuromyelitis optica.

    Directory of Open Access Journals (Sweden)

    Katsuhisa Masaki

    Full Text Available BACKGROUND: Multiple sclerosis (MS and neuromyelitis optica (NMO occasionally have an extremely aggressive and debilitating disease course; however, its molecular basis is unknown. This study aimed to determine a relationship between connexin (Cx pathology and disease aggressiveness in Asian patients with MS and NMO. METHODS/PRINCIPAL FINDINGS: Samples included 11 autopsied cases with NMO and NMO spectrum disorder (NMOSD, six with MS, and 20 with other neurological diseases (OND. Methods of analysis included immunohistochemical expression of astrocytic Cx43/Cx30, oligodendrocytic Cx47/Cx32 relative to AQP4 and other astrocytic and oligodendrocytic proteins, extent of demyelination, the vasculocentric deposition of complement and immunoglobulin, and lesion staging by CD68 staining for macrophages. Lesions were classified as actively demyelinating (n=59, chronic active (n=58 and chronic inactive (n=23. Sera from 120 subjects including 30 MS, 30 NMO, 40 OND and 20 healthy controls were examined for anti-Cx43 antibody by cell-based assay. Six NMO/NMOSD and three MS cases showed preferential loss of astrocytic Cx43 beyond the demyelinated areas in actively demyelinating and chronic active lesions, where heterotypic Cx43/Cx47 astrocyte oligodendrocyte gap junctions were extensively lost. Cx43 loss was significantly associated with a rapidly progressive disease course as six of nine cases with Cx43 loss, but none of eight cases without Cx43 loss regardless of disease phenotype, died within two years after disease onset (66.7% vs. 0%, P=0.0090. Overall, five of nine cases with Cx43 loss and none of eight cases without Cx43 loss had distal oligodendrogliopathy characterized by selective myelin associated glycoprotein loss (55.6% vs. 0.0%, P=0.0296. Loss of oligodendrocytic Cx32 and Cx47 expression was observed in most active and chronic lesions from all MS and NMO/NMOSD cases. Cx43-specific antibodies were absent in NMO/NMOSD and MS patients. CONCLUSIONS

  5. Detection of mutations in the COL4A5 gene by SSCP in X-linked Alport syndrome

    DEFF Research Database (Denmark)

    Hertz, Jens Michael; Juncker, I; Persson, U

    2001-01-01

    , three in-frame deletions, four nonsense mutations, and six splice site mutations. Twenty-two of the mutations have not previously been reported. Furthermore, we found one non-pathogenic amino acid substitution, one rare variant in a non-coding region, and one polymorphism with a heterozygosity of 28...... of type IV-collagen. We performed mutation analysis of the COL4A5 gene by PCR-SSCP analysis of each of the 51 exons with flanking intronic sequences in 81 patients suspected of X-linked Alport syndrome including 29 clear X-linked cases, 37 cases from families with a pedigree compatible with X...

  6. Organization of a resistance gene cluster linked to rhizomania resistance in sugar beet

    Science.gov (United States)

    Genetic resistance to rhizomania has been in use for over 40 years. Characterization of the molecular basis for susceptibility and resistance has proved challenging. Nucleotide-binding leucine-rich-repeat-containing (NB-LRR) genes have been implicated in numerous gene-for-gene resistance interaction...

  7. Overexpression of multiple detoxification genes in deltamethrin resistant Laodelphax striatellus (Hemiptera: Delphacidae in China.

    Directory of Open Access Journals (Sweden)

    Lu Xu

    Full Text Available BACKGROUND: The small brown planthopper (SBPH, Laodelphax striatellus (Fallén, is one of the major rice pests in Asia and has developed resistance to multiple classes of insecticides. Understanding resistance mechanisms is essential to the management of this pest. Biochemical and molecular assays were performed in this study to systematically characterize deltamethrin resistance mechanisms with laboratory-selected resistant and susceptible strains of SBPH. METHODOLOGY/PRINCIPAL FINDINGS: Deltamethrin resistant strains of SBPH (JH-del were derived from a field population by continuously selections (up to 30 generations in the laboratory, while a susceptible strain (JHS was obtained from the same population by removing insecticide pressure for 30 generations. The role of detoxification enzymes in the resistance was investigated using synergism and enzyme activity assays with strains of different resistant levels. Furthermore, 71 cytochrome P450, 93 esterases and 12 glutathione-S-transferases cDNAs were cloned based on transcriptome data of a field collected population. Semi-quantitative RT-PCR screening analysis of 176 identified detoxification genes demonstrated that multiple P450 and esterase genes were overexpressed (>2-fold in JH-del strains (G4 and G30 when compared to that in JHS, and the results of quantitative PCR coincided with the semi-quantitative RT-PCR results. Target mutation at IIS3-IIS6 regions encoded by the voltage-gated sodium channel gene was ruled out for conferring the observed resistance. CONCLUSION/SIGNIFICANCE: As the first attempt to discover genes potentially involved in SBPH pyrethroid resistance, this study putatively identified several candidate genes of detoxification enzymes that were significantly overexpressed in the resistant strain, which matched the synergism and enzyme activity testing. The biochemical and molecular evidences suggest that the high level pyrethroid resistance in L. striatellus could be due to

  8. Interactive processes link the multiple symptoms of fatigue in sport competition.

    Science.gov (United States)

    Knicker, Axel J; Renshaw, Ian; Oldham, Anthony R H; Cairns, Simeon P

    2011-04-01

    kinematic components. Longer sport events involve pacing strategies, central and peripheral fatigue contributions and elevated RPE. During match play, the work rate can decline late in a match (or tournament) and/or transiently after intense exercise bursts. Repeated sprint ability, agility and leg strength become slightly impaired. Technique outcomes, such as velocity and accuracy for throwing, passing, hitting and kicking, can deteriorate. Physical and subjective changes are both less severe in real rather than simulated sport activities. Little objective evidence exists to support exercise-induced mental lapses during sport. A model depicting mind-body interactions during sport competition shows that the RPE centre-motor cortex-working muscle sequence drives overall performance levels and, hence, fatigue symptoms. The sporting outputs from this sequence can be modulated by interactions with muscle afferent and circulatory feedback, psychological and decision-making inputs. Importantly, compensatory processes exist at many levels to protect against performance decrements. Small changes of putative fatigue factors can also be protective. We show that individual fatigue factors including diminished carbohydrate availability, elevated serotonin, hypoxia, acidosis, hyperkalaemia, hyperthermia, dehydration and reactive oxygen species, each contribute to several fatigue symptoms. Thus, multiple symptoms of fatigue can occur simultaneously and the underlying mechanisms overlap and interact. Based on this understanding, we reinforce the proposal that fatigue is best described globally as an exercise-induced decline of performance as this is inclusive of all viewpoints. © 2011 Adis Data Information BV. All rights reserved.

  9. Relapsing Remitting Multiple Sclerosis in X-Linked Charcot-Marie-Tooth Disease with Central Nervous System Involvement

    Directory of Open Access Journals (Sweden)

    Georgios Koutsis

    2015-01-01

    Full Text Available We report a patient with relapsing remitting multiple sclerosis (MS and X-linked Charcot-Marie-Tooth disease (CMTX, carrying a GJB1 mutation affecting connexin-32 (c.191G>A, p. Cys64Tyr which was recently reported by our group. This is the third case report of a patient with CMTX developing MS, but it is unique in the fact that other family members carrying the same mutation were found to have asymptomatic central nervous system (CNS involvement (diffuse white matter hyperintensity on brain MRI and extensor plantars. Although this may be a chance association, the increasing number of cases with CMTX and MS, especially with mutations involving the CNS, may imply some causative effect and provide insights into MS pathogenesis.

  10. Relapsing remitting multiple sclerosis in x-linked charcot-marie-tooth disease with central nervous system involvement.

    Science.gov (United States)

    Koutsis, Georgios; Karadima, Georgia; Floroskoufi, Paraskewi; Raftopoulou, Maria; Panas, Marios

    2015-01-01

    We report a patient with relapsing remitting multiple sclerosis (MS) and X-linked Charcot-Marie-Tooth disease (CMTX), carrying a GJB1 mutation affecting connexin-32 (c.191G>A, p. Cys64Tyr) which was recently reported by our group. This is the third case report of a patient with CMTX developing MS, but it is unique in the fact that other family members carrying the same mutation were found to have asymptomatic central nervous system (CNS) involvement (diffuse white matter hyperintensity on brain MRI and extensor plantars). Although this may be a chance association, the increasing number of cases with CMTX and MS, especially with mutations involving the CNS, may imply some causative effect and provide insights into MS pathogenesis.

  11. A Bioinformatics Analysis Reveals a Group of MocR Bacterial Transcriptional Regulators Linked to a Family of Genes Coding for Membrane Proteins

    Directory of Open Access Journals (Sweden)

    Teresa Milano

    2016-01-01

    Full Text Available The MocR bacterial transcriptional regulators are characterized by an N-terminal domain, 60 residues long on average, possessing the winged-helix-turn-helix (wHTH architecture responsible for DNA recognition and binding, linked to a large C-terminal domain (350 residues on average that is homologous to fold type-I pyridoxal 5′-phosphate (PLP dependent enzymes like aspartate aminotransferase (AAT. These regulators are involved in the expression of genes taking part in several metabolic pathways directly or indirectly connected to PLP chemistry, many of which are still uncharacterized. A bioinformatics analysis is here reported that studied the features of a distinct group of MocR regulators predicted to be functionally linked to a family of homologous genes coding for integral membrane proteins of unknown function. This group occurs mainly in the Actinobacteria and Gammaproteobacteria phyla. An analysis of the multiple sequence alignments of their wHTH and AAT domains suggested the presence of specificity-determining positions (SDPs. Mapping of SDPs onto a homology model of the AAT domain hinted at possible structural/functional roles in effector recognition. Likewise, SDPs in wHTH domain suggested the basis of specificity of Transcription Factor Binding Site recognition. The results reported represent a framework for rational design of experiments and for bioinformatics analysis of other MocR subgroups.

  12. Body temperature is elevated and linked to fatigue in relapsing-remitting multiple sclerosis, even without heat exposure.

    Science.gov (United States)

    Sumowski, James F; Leavitt, Victoria M

    2014-07-01

    To investigate whether (1) resting body temperature is elevated in patients with relapsing-remitting multiple sclerosis (RRMS) relative to healthy individuals and patients with secondary progressive multiple sclerosis (SPMS), and (2) warmer body temperature is linked to worse fatigue in patients with RRMS. Cross-sectional study. Climate-controlled laboratory (∼22°C) within a nonprofit medical rehabilitation research center. Patients with RRMS (n=50), matched healthy controls (n=40), and patients with SPMS (n=22). Not applicable. Body temperature was measured with an aural infrared thermometer (normative body temperature for this thermometer, 36.75°C), and differences were compared across patients with RRMS and SPMS and healthy persons. Patients with RRMS completed measures of general fatigue (Fatigue Severity Scale [FSS]), as well as physical and cognitive fatigue (Modified Fatigue Impact Scale [MFIS]). There was a large effect of group (Pphysical fatigue (physical fatigue subscale of the MFIS; rp=.318, P=.026), but not cognitive fatigue (cognitive fatigue subscale of the MIFS; rp=-.017, P=.909). These are the first-ever demonstrations that body temperature is elevated endogenously in patients with RRMS and linked to worse fatigue. We discuss these findings in the context of failed treatments for fatigue in RRMS, including several failed randomized controlled trials (RCTs) of stimulants (modafinil). In contrast, our findings may help explain how RCTs of cooling garments and antipyretics (aspirin) have effectively reduced MS fatigue, and encourage further research on cooling/antipyretic treatments of fatigue in RRMS. Copyright © 2014 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.

  13. The pituitary tumor transforming gene 1 (PTTG-1: An immunological target for multiple myeloma

    Directory of Open Access Journals (Sweden)

    Gagliano Nicoletta

    2008-04-01

    Full Text Available Abstract Background Multiple Myeloma is a cancer of B plasma cells, which produce non-specific antibodies and proliferate uncontrolled. Due to the potential relapse and non-specificity of current treatments, immunotherapy promises to be more specific and may induce long-term immunity in patients. The pituitary tumor transforming gene 1 (PTTG-1 has been shown to be a novel oncogene, expressed in the testis, thymus, colon, lung and placenta (undetectable in most other tissues. Furthermore, it is over expressed in many tumors such as the pituitary adenoma, breast, gastrointestinal cancers, leukemia, lymphoma, and lung cancer and it seems to be associated with tumorigenesis, angiogenesis and cancer progression. The purpose was to investigate the presence/rate of expression of PTTG-1 in multiple myeloma patients. Methods We analyzed the PTTG-1 expression at the transcriptional and the protein level, by PCR, immunocytochemical methods, Dot-blot and ELISA performed on patient's sera in 19 multiple myeloma patients, 6 different multiple myeloma cell lines and in normal human tissue. Results We did not find PTTG-1 presence in the normal human tissue panel, but PTTG-1 mRNA was detectable in 12 of the 19 patients, giving evidence of a 63% rate of expression (data confirmed by ELISA. Four of the 6 investigated cell lines (66.6% were positive for PTTG-1. Investigations of protein expression gave evidence of 26.3% cytoplasmic expression and 16% surface expression in the plasma cells of multiple myeloma patients. Protein presence was also confirmed by Dot-blot in both cell lines and patients. Conclusion We established PTTG-1's presence at both the transcriptional and protein levels. These data suggest that PTTG-1 is aberrantly expressed in multiple myeloma plasma cells, is highly immunogenic and is a suitable target for immunotherapy of multiple myeloma.

  14. Genetic diversity and population structure of Lantana camara in India indicates multiple introductions and gene flow.

    Science.gov (United States)

    Ray, A; Quader, S

    2014-05-01

    Lantana camara is a highly invasive plant, which has spread over 60 countries and island groups of Asia, Africa and Australia. In India, it was introduced in the early nineteenth century, since when it has expanded and gradually established itself in almost every available ecosystem. We investigated the genetic diversity and population structure of this plant in India in order to understand its introduction, subsequent range expansion and gene flow. A total of 179 individuals were sequenced at three chloroplast loci and 218 individuals were genotyped for six nuclear microsatellites. Both chloroplasts (nine haplotypes) and microsatellites (83 alleles) showed high genetic diversity. Besides, each type of marker confirmed the presence of private polymorphism. We uncovered low to medium population structure in both markers, and found a faint signal of isolation by distance with microsatellites. Bayesian clustering analyses revealed multiple divergent genetic clusters. Taken together, these findings (i.e. high genetic diversity with private alleles and multiple genetic clusters) suggest that Lantana was introduced multiple times and gradually underwent spatial expansion with recurrent gene flow. © 2013 German Botanical Society and The Royal Botanical Society of the Netherlands.

  15. Intervene: a tool for intersection and visualization of multiple gene or genomic region sets.

    Science.gov (United States)

    Khan, Aziz; Mathelier, Anthony

    2017-05-31

    A common task for scientists relies on comparing lists of genes or genomic regions derived from high-throughput sequencing experiments. While several tools exist to intersect and visualize sets of genes, similar tools dedicated to the visualization of genomic region sets are currently limited. To address this gap, we have developed the Intervene tool, which provides an easy and automated interface for the effective intersection and visualization of genomic region or list sets, thus facilitating their analysis and interpretation. Intervene contains three modules: venn to generate Venn diagrams of up to six sets, upset to generate UpSet plots of multiple sets, and pairwise to compute and visualize intersections of multiple sets as clustered heat maps. Intervene, and its interactive web ShinyApp companion, generate publication-quality figures for the interpretation of genomic region and list sets. Intervene and its web application companion provide an easy command line and an interactive web interface to compute intersections of multiple genomic and list sets. They have the capacity to plot intersections using easy-to-interpret visual approaches. Intervene is developed and designed to meet the needs of both computer scientists and biologists. The source code is freely available at https://bitbucket.org/CBGR/intervene , with the web application available at https://asntech.shinyapps.io/intervene .

  16. PCA-based bootstrap confidence interval tests for gene-disease association involving multiple SNPs

    Directory of Open Access Journals (Sweden)

    Xue Fuzhong

    2010-01-01

    Full Text Available Abstract Background Genetic association study is currently the primary vehicle for identification and characterization of disease-predisposing variant(s which usually involves multiple single-nucleotide polymorphisms (SNPs available. However, SNP-wise association tests raise concerns over multiple testing. Haplotype-based methods have the advantage of being able to account for correlations between neighbouring SNPs, yet assuming Hardy-Weinberg equilibrium (HWE and potentially large number degrees of freedom can harm its statistical power and robustness. Approaches based on principal component analysis (PCA are preferable in this regard but their performance varies with methods of extracting principal components (PCs. Results PCA-based bootstrap confidence interval test (PCA-BCIT, which directly uses the PC scores to assess gene-disease association, was developed and evaluated for three ways of extracting PCs, i.e., cases only(CAES, controls only(COES and cases and controls combined(CES. Extraction of PCs with COES is preferred to that with CAES and CES. Performance of the test was examined via simulations as well as analyses on data of rheumatoid arthritis and heroin addiction, which maintains nominal level under null hypothesis and showed comparable performance with permutation test. Conclusions PCA-BCIT is a valid and powerful method for assessing gene-disease association involving multiple SNPs.

  17. The effect of hitch-hiking on genes linked to a balanced polymorphism in a subdivided population

    DEFF Research Database (Denmark)

    Schierup, M H; Charlesworth, D; Vekemans, X

    2000-01-01

    types of subdivision are present: (1) into demes (connected by migration), and (2) into classes defined by different functional alleles at the selected locus (connected by recombination). Previous theoretical studies of each type of subdivision separately have shown that each increases diversity...... to detect balancing selection by its effects on linked variation, using tests such as Tajima's D, is reduced when genes in a subdivided population are sampled from the total population, rather than within demes. Udgivelsesdato: 2000-Aug...

  18. The CanOE strategy: integrating genomic and metabolic contexts across multiple prokaryote genomes to find candidate genes for orphan enzymes.

    Directory of Open Access Journals (Sweden)

    Adam Alexander Thil Smith

    2012-05-01

    Full Text Available Of all biochemically characterized metabolic reactions formalized by the IUBMB, over one out of four have yet to be associated with a nucleic or protein sequence, i.e. are sequence-orphan enzymatic activities. Few bioinformatics annotation tools are able to propose candidate genes for such activities by exploiting context-dependent rather than sequence-dependent data, and none are readily accessible and propose result integration across multiple genomes. Here, we present CanOE (Candidate genes for Orphan Enzymes, a four-step bioinformatics strategy that proposes ranked candidate genes for sequence-orphan enzymatic activities (or orphan enzymes for short. The first step locates "genomic metabolons", i.e. groups of co-localized genes coding proteins catalyzing reactions linked by shared metabolites, in one genome at a time. These metabolons can be particularly helpful for aiding bioanalysts to visualize relevant metabolic data. In the second step, they are used to generate candidate associations between un-annotated genes and gene-less reactions. The third step integrates these gene-reaction associations over several genomes using gene families, and summarizes the strength of family-reaction associations by several scores. In the final step, these scores are used to rank members of gene families which are proposed for metabolic reactions. These associations are of particular interest when the metabolic reaction is a sequence-orphan enzymatic activity. Our strategy found over 60,000 genomic metabolons in more than 1,000 prokaryote organisms from the MicroScope platform, generating candidate genes for many metabolic reactions, of which more than 70 distinct orphan reactions. A computational validation of the approach is discussed. Finally, we present a case study on the anaerobic allantoin degradation pathway in Escherichia coli K-12.

  19. I just ran a thousand analyses: benefits of multiple testing in understanding equivocal evidence on gene-environment interactions.

    Directory of Open Access Journals (Sweden)

    Vera E Heininga

    Full Text Available In psychiatric genetics research, the volume of ambivalent findings on gene-environment interactions (G x E is growing at an accelerating pace. In response to the surging suspicions of systematic distortion, we challenge the notion of chance capitalization as a possible contributor. Beyond qualifying multiple testing as a mere methodological issue that, if uncorrected, leads to chance capitalization, we advance towards illustrating the potential benefits of multiple tests in understanding equivocal evidence in genetics literature.We focused on the interaction between the serotonin-transporter-linked promotor region (5-HTTLPR and childhood adversities with regard to depression. After testing 2160 interactions with all relevant measures available within the Dutch population study of adolescents TRAILS, we calculated percentages of significant (p < .05 effects for several subsets of regressions. Using chance capitalization (i.e. overall significance rate of 5% alpha and randomly distributed findings as a competing hypothesis, we expected more significant effects in the subsets of regressions involving: 1 interview-based instead of questionnaire-based measures; 2 abuse instead of milder childhood adversities; and 3 early instead of later adversities. Furthermore, we expected equal significance percentages across 4 male and female subsamples, and 5 various genotypic models of 5-HTTLPR.We found differences in the percentages of significant interactions among the subsets of analyses, including those regarding sex-specific subsamples and genetic modeling, but often in unexpected directions. Overall, the percentage of significant interactions was 7.9% which is only slightly above the 5% that might be expected based on chance.Taken together, multiple testing provides a novel approach to better understand equivocal evidence on G x E, showing that methodological differences across studies are a likely reason for heterogeneity in findings - but chance

  20. Human mast cell tryptase: Multiple cDNAs and genes reveal a multigene serine protease family

    International Nuclear Information System (INIS)

    Vanderslice, P.; Ballinger, S.M.; Tam, E.K.; Goldstein, S.M.; Craik, C.S.; Caughey, G.H.

    1990-01-01

    Three different cDNAs and a gene encoding human skin mast cell tryptase have been cloned and sequenced in their entirety. The deduced amino acid sequences reveal a 30-amino acid prepropeptide followed by a 245-amino acid catalytic domain. The C-terminal undecapeptide of the human preprosequence is identical in dog tryptase and appears to be part of a prosequence unique among serine proteases. The differences among the three human tryptase catalytic domains include the loss of a consensus N-glycosylation site in one cDNA, which may explain some of the heterogeneity in size and susceptibility to deglycosylation seen in tryptase preparations. All three tryptase cDNAs are distinct from a recently reported cDNA obtained from a human lung mast cell library. A skin tryptase cDNA was used to isolate a human tryptase gene, the exons of which match one of the skin-derived cDNAs. The organization of the ∼1.8-kilobase-pair tryptase gene is unique and is not closely related to that of any other mast cell or leukocyte serine protease. The 5' regulatory regions of the gene share features with those of other serine proteases, including mast cell chymase, but are unusual in being separated from the protein-coding sequence by an intron. High-stringency hybridization of a human genomic DNA blot with a fragment of the tryptase gene confirms the presence of multiple tryptase genes. These findings provide genetic evidence that human mast cell tryptases are the products of a multigene family

  1. The multiple roles of hypothetical gene BPSS1356 in Burkholderia pseudomallei.

    Directory of Open Access Journals (Sweden)

    Hokchai Yam

    Full Text Available Burkholderia pseudomallei is an opportunistic pathogen and the causative agent of melioidosis. It is able to adapt to harsh environments and can live intracellularly in its infected hosts. In this study, identification of transcriptional factors that associate with the β' subunit (RpoC of RNA polymerase was performed. The N-terminal region of this subunit is known to trigger promoter melting when associated with a sigma factor. A pull-down assay using histidine-tagged B. pseudomallei RpoC N-terminal region as bait showed that a hypothetical protein BPSS1356 was one of the proteins bound. This hypothetical protein is conserved in all B. pseudomallei strains and present only in the Burkholderia genus. A BPSS1356 deletion mutant was generated to investigate its biological function. The mutant strain exhibited reduced biofilm formation and a lower cell density during the stationary phase of growth in LB medium. Electron microscopic analysis revealed that the ΔBPSS1356 mutant cells had a shrunken cytoplasm indicative of cell plasmolysis and a rougher surface when compared to the wild type. An RNA microarray result showed that a total of 63 genes were transcriptionally affected by the BPSS1356 deletion with fold change values of higher than 4. The expression of a group of genes encoding membrane located transporters was concurrently down-regulated in ΔBPSS1356 mutant. Amongst the affected genes, the putative ion transportation genes were the most severely suppressed. Deprivation of BPSS1356 also down-regulated the transcriptions of genes for the arginine deiminase system, glycerol metabolism, type III secretion system cluster 2, cytochrome bd oxidase and arsenic resistance. It is therefore obvious that BPSS1356 plays a multiple regulatory roles on many genes.

  2. A Fast Multiple-Kernel Method With Applications to Detect Gene-Environment Interaction.

    Science.gov (United States)

    Marceau, Rachel; Lu, Wenbin; Holloway, Shannon; Sale, Michèle M; Worrall, Bradford B; Williams, Stephen R; Hsu, Fang-Chi; Tzeng, Jung-Ying

    2015-09-01

    Kernel machine (KM) models are a powerful tool for exploring associations between sets of genetic variants and complex traits. Although most KM methods use a single kernel function to assess the marginal effect of a variable set, KM analyses involving multiple kernels have become increasingly popular. Multikernel analysis allows researchers to study more complex problems, such as assessing gene-gene or gene-environment interactions, incorporating variance-component based methods for population substructure into rare-variant association testing, and assessing the conditional effects of a variable set adjusting for other variable sets. The KM framework is robust, powerful, and provides efficient dimension reduction for multifactor analyses, but requires the estimation of high dimensional nuisance parameters. Traditional estimation techniques, including regularization and the "expectation-maximization (EM)" algorithm, have a large computational cost and are not scalable to large sample sizes needed for rare variant analysis. Therefore, under the context of gene-environment interaction, we propose a computationally efficient and statistically rigorous "fastKM" algorithm for multikernel analysis that is based on a low-rank approximation to the nuisance effect kernel matrices. Our algorithm is applicable to various trait types (e.g., continuous, binary, and survival traits) and can be implemented using any existing single-kernel analysis software. Through extensive simulation studies, we show that our algorithm has similar performance to an EM-based KM approach for quantitative traits while running much faster. We also apply our method to the Vitamin Intervention for Stroke Prevention (VISP) clinical trial, examining gene-by-vitamin effects on recurrent stroke risk and gene-by-age effects on change in homocysteine level. © 2015 WILEY PERIODICALS, INC.

  3. Stem loop sequences specific to transposable element IS605 are found linked to lipoprotein genes in Borrelia plasmids.

    Directory of Open Access Journals (Sweden)

    Nicholas Delihas

    Full Text Available BACKGROUND: Plasmids of Borrelia species are dynamic structures that contain a large number of repetitive genes, gene fragments, and gene fusions. In addition, the transposable element IS605/200 family, as well as degenerate forms of this IS element, are prevalent. In Helicobacter pylori, flanking regions of the IS605 transposase gene contain sequences that fold into identical small stem loops. These function in transposition at the single-stranded DNA level. METHODOLOGY/PRINCIPAL FINDINGS: In work reported here, bioinformatics techniques were used to scan Borrelia plasmid genomes for IS605 transposable element specific stem loop sequences. Two variant stem loop motifs are found in the left and right flanking regions of the transposase gene. Both motifs appear to have dispersed in plasmid genomes and are found "free-standing" and phylogenetically conserved without the associated IS605 transposase gene or the adjacent flanking sequence. Importantly, IS605 specific stem loop sequences are also found at the 3' ends of lipoprotein genes (PFam12 and PFam60, however the left and right sequences appear to develop their own evolutionary patterns. The lipoprotein gene-linked left stem loop sequences maintain the IS605 stem loop motif in orthologs but only at the RNA level. These show mutations whereby variants fold into phylogenetically conserved RNA-type stem loops that contain the wobble non-Watson-Crick G-U base-pairing. The right flanking sequence is associated with the family lipoprotein-1 genes. A comparison of homologs shows that the IS605 stem loop motif rapidly dissipates, but a more elaborate secondary structure appears to develop in its place. CONCLUSIONS/SIGNIFICANCE: Stem loop sequences specific to the transposable element IS605 are present in plasmid regions devoid of a transposase gene and significantly, are found linked to lipoprotein genes in Borrelia plasmids. These sequences are evolutionarily conserved and/or structurally developed in

  4. An AFLP marker linked to the Pm-1 gene that confers resistance to Podosphaera xanthii race 1 in Cucumis melo

    Directory of Open Access Journals (Sweden)

    Ana Paula Matoso Teixeira

    2008-01-01

    Full Text Available Brazil produced 330,000 metric tons of melons in 2005, principally in the Northeast region where one of the most important melon pathogens is the powdery mildew fungus Podosphaera xanthii. The disease is controlled mainly by incorporating single dominant resistance genes into commercial hybrids. We report on linkage analysis of the Pm-1 resistance gene, introgressed from the AF125Pm-1 Cantalupensis Charentais-type breeding line into the yellow-fleshed melon (Group Inodorus breeding line AF426-S by backcrossing to produce the resistant line AF426-R, and the amplified fragment length polymorphism (AFLP marker M75/H35_155 reported to be polymorphic between AF426-S and AF426-R. Segregation analysis of M75/H35_155 using a backcross population of 143 plants derived from [AF426-R x AF426-S] x AF426-S and screened for resistance to P. xanthii race 1 produced a recombination frequency of 4.9%, indicating close linkage between M75/H35_155 and Pm-1. Using the same segregating population, the M75/H35_155 marker had previously been reported to be distantly linked to Prv¹, a gene conferring resistance to papaya ringspot virus-type W. Since M75/H35_155 is linked to Prv¹ at a distance of 40.9 cM it is possible that Pm-1 and Prv¹ are also linked.

  5. Pareto evolution of gene networks: an algorithm to optimize multiple fitness objectives

    International Nuclear Information System (INIS)

    Warmflash, Aryeh; Siggia, Eric D; Francois, Paul

    2012-01-01

    The computational evolution of gene networks functions like a forward genetic screen to generate, without preconceptions, all networks that can be assembled from a defined list of parts to implement a given function. Frequently networks are subject to multiple design criteria that cannot all be optimized simultaneously. To explore how these tradeoffs interact with evolution, we implement Pareto optimization in the context of gene network evolution. In response to a temporal pulse of a signal, we evolve networks whose output turns on slowly after the pulse begins, and shuts down rapidly when the pulse terminates. The best performing networks under our conditions do not fall into categories such as feed forward and negative feedback that also encode the input–output relation we used for selection. Pareto evolution can more efficiently search the space of networks than optimization based on a single ad hoc combination of the design criteria. (paper)

  6. Pareto evolution of gene networks: an algorithm to optimize multiple fitness objectives.

    Science.gov (United States)

    Warmflash, Aryeh; Francois, Paul; Siggia, Eric D

    2012-10-01

    The computational evolution of gene networks functions like a forward genetic screen to generate, without preconceptions, all networks that can be assembled from a defined list of parts to implement a given function. Frequently networks are subject to multiple design criteria that cannot all be optimized simultaneously. To explore how these tradeoffs interact with evolution, we implement Pareto optimization in the context of gene network evolution. In response to a temporal pulse of a signal, we evolve networks whose output turns on slowly after the pulse begins, and shuts down rapidly when the pulse terminates. The best performing networks under our conditions do not fall into categories such as feed forward and negative feedback that also encode the input-output relation we used for selection. Pareto evolution can more efficiently search the space of networks than optimization based on a single ad hoc combination of the design criteria.

  7. Polymorphisms in genes encoding leptin, ghrelin and their receptors in German multiple sclerosis patients.

    Science.gov (United States)

    Rey, Linda K; Wieczorek, Stefan; Akkad, Denis A; Linker, Ralf A; Chan, Andrew; Hoffjan, Sabine

    2011-01-01

    Multiple sclerosis (MS) is a neuro-inflammatory, autoimmune disease influenced by environmental and polygenic components. There is growing evidence that the peptide hormone leptin, known to regulate energy homeostasis, as well as its antagonist ghrelin play an important role in inflammatory processes in autoimmune diseases, including MS. Recently, single nucleotide polymorphisms (SNPs) in the genes encoding leptin, ghrelin and their receptors were evaluated, amongst others, in Wegener's granulomatosis and Churg-Strauss syndrome. The Lys656Asn SNP in the LEPR gene showed a significant but contrasting association with these vasculitides. We therefore aimed at investigating these polymorphisms in a German MS case-control cohort. Twelve SNPs in the LEP, LEPR, GHRL and GHSR genes were genotyped in 776 MS patients and 878 control subjects. We found an association of a haplotype in the GHSR gene with MS that could not be replicated in a second cohort. Otherwise, no significant differences in allele or genotype frequencies were observed between patients and controls in this particular cohort. Thus, the present results do not support the hypothesis that genetic variation in the leptin/ghrelin system contributes substantially to the pathogenesis of MS. However, a modest effect of GHSR variation cannot be ruled out and needs to be further evaluated in future studies. Copyright © 2011 Elsevier Ltd. All rights reserved.

  8. Multiple gene analyses identify distinct “bois noir” phytoplasma genotypes in the Republic of Macedonia

    Directory of Open Access Journals (Sweden)

    Emilija KOSTADINOVSKA

    2015-01-01

    Full Text Available “Bois noir” (BN is a grapevine yellows disease, associated with phytoplasma strains related to ‘Candidatus Phytoplasma solani’, that causes severe losses to viticulture in the Euro-Mediterranean basin. Due to the complex ecological cycle of its etiological agent, BN epidemiology is only partially known, and no effective control strategies have been developed. Numerous studies have focused on molecular characterization of BN phytoplasma strains, to identify molecular markers useful to accurately describe their genetic diversity, geographic distribution and host range. In the present study, a multiple gene analysess were carried out on 16S rRNA, tuf, vmp1, and stamp genes to study the genetic variability among 18 BN phytoplasma strains detected in diverse regions of the Republic of Macedonia. Restriction fragment length polymorphism (RFLP assays showed the presence of one 16S rRNA (16SrXII-A, two tuf (tuf-type a, tuf-type b, five vmp1 (V2-TA, V3, V4, V14, V18, and three stamp (S1, S2, S3 gene patterns among the examined strains. Based on the collective RFLP patterns, seven genotypes (Mac1 to Mac7 were described as evidence for genetic heterogeneity, and highlighting their prevalence and distribution in the investigated regions. Phylogenetic analyses on vmp1 and stamp genes underlined the affiliation of Macedonian BN phytoplasma strains to clusters associated with distinct ecologies.

  9. Multiple organ gigantism caused by mutation in VmPPD gene in blackgram (Vigna mungo).

    Science.gov (United States)

    Naito, Ken; Takahashi, Yu; Chaitieng, Bubpa; Hirano, Kumi; Kaga, Akito; Takagi, Kyoko; Ogiso-Tanaka, Eri; Thavarasook, Charaspon; Ishimoto, Masao; Tomooka, Norihiko

    2017-03-01

    Seed size is one of the most important traits in leguminous crops. We obtained a recessive mutant of blackgram that had greatly enlarged leaves, stems and seeds. The mutant produced 100% bigger leaves, 50% more biomass and 70% larger seeds though it produced 40% less number of seeds. We designated the mutant as multiple-organ-gigantism ( mog ) and found the mog phenotype was due to increase in cell numbers but not in cell size. We also found the mog mutant showed a rippled leaf ( rl ) phenotype, which was probably caused by a pleiotropic effect of the mutation. We performed a map-based cloning and successfully identified an 8 bp deletion in the coding sequence of VmPPD gene, an orthologue of Arabidopsis PEAPOD ( PPD ) that regulates arrest of cell divisions in meristematic cells . We found no other mutations in the neighboring genes between the mutant and the wild type. We also knocked down GmPPD genes and reproduced both the mog and rl phenotypes in soybean. Controlling PPD genes to produce the mog phenotype is highly valuable for breeding since larger seed size could directly increase the commercial values of grain legumes.

  10. Prediction potential of candidate biomarker sets identified and validated on gene expression data from multiple datasets

    Directory of Open Access Journals (Sweden)

    Karacali Bilge

    2007-10-01

    Full Text Available Abstract Background Independently derived expression profiles of the same biological condition often have few genes in common. In this study, we created populations of expression profiles from publicly available microarray datasets of cancer (breast, lymphoma and renal samples linked to clinical information with an iterative machine learning algorithm. ROC curves were used to assess the prediction error of each profile for classification. We compared the prediction error of profiles correlated with molecular phenotype against profiles correlated with relapse-free status. Prediction error of profiles identified with supervised univariate feature selection algorithms were compared to profiles selected randomly from a all genes on the microarray platform and b a list of known disease-related genes (a priori selection. We also determined the relevance of expression profiles on test arrays from independent datasets, measured on either the same or different microarray platforms. Results Highly discriminative expression profiles were produced on both simulated gene expression data and expression data from breast cancer and lymphoma datasets on the basis of ER and BCL-6 expression, respectively. Use of relapse-free status to identify profiles for prognosis prediction resulted in poorly discriminative decision rules. Supervised feature selection resulted in more accurate classifications than random or a priori selection, however, the difference in prediction error decreased as the number of features increased. These results held when decision rules were applied across-datasets to samples profiled on the same microarray platform. Conclusion Our results show that many gene sets predict molecular phenotypes accurately. Given this, expression profiles identified using different training datasets should be expected to show little agreement. In addition, we demonstrate the difficulty in predicting relapse directly from microarray data using supervised machine

  11. Association of a novel point mutation in MSH2 gene with familial multiple primary cancers

    Directory of Open Access Journals (Sweden)

    Hai Hu

    2017-10-01

    Full Text Available Abstract Background Multiple primary cancers (MPC have been identified as two or more cancers without any subordinate relationship that occur either simultaneously or metachronously in the same or different organs of an individual. Lynch syndrome is an autosomal dominant genetic disorder that increases the risk of many types of cancers. Lynch syndrome patients who suffer more than two cancers can also be considered as MPC; patients of this kind provide unique resources to learn how genetic mutation causes MPC in different tissues. Methods We performed a whole genome sequencing on blood cells and two tumor samples of a Lynch syndrome patient who was diagnosed with five primary cancers. The mutational landscape of the tumors, including somatic point mutations and copy number alternations, was characterized. We also compared Lynch syndrome with sporadic cancers and proposed a model to illustrate the mutational process by which Lynch syndrome progresses to MPC. Results We revealed a novel pathologic mutation on the MSH2 gene (G504 splicing that associates with Lynch syndrome. Systematical comparison of the mutation landscape revealed that multiple cancers in the proband were evolutionarily independent. Integrative analysis showed that truncating mutations of DNA mismatch repair (MMR genes were significantly enriched in the patient. A mutation progress model that included germline mutations of MMR genes, double hits of MMR system, mutations in tissue-specific driver genes, and rapid accumulation of additional passenger mutations was proposed to illustrate how MPC occurs in Lynch syndrome patients. Conclusion Our findings demonstrate that both germline and somatic alterations are driving forces of carcinogenesis, which may resolve the carcinogenic theory of Lynch syndrome.

  12. Multiple coupled landscapes and non-adiabatic dynamics with applications to self-activating genes.

    Science.gov (United States)

    Chen, Cong; Zhang, Kun; Feng, Haidong; Sasai, Masaki; Wang, Jin

    2015-11-21

    Many physical, chemical and biochemical systems (e.g. electronic dynamics and gene regulatory networks) are governed by continuous stochastic processes (e.g. electron dynamics on a particular electronic energy surface and protein (gene product) synthesis) coupled with discrete processes (e.g. hopping among different electronic energy surfaces and on and off switching of genes). One can also think of the underlying dynamics as the continuous motion on a particular landscape and discrete hoppings among different landscapes. The main difference of such systems from the intra-landscape dynamics alone is the emergence of the timescale involved in transitions among different landscapes in addition to the timescale involved in a particular landscape. The adiabatic limit when inter-landscape hoppings are fast compared to continuous intra-landscape dynamics has been studied both analytically and numerically, but the analytical treatment of the non-adiabatic regime where the inter-landscape hoppings are slow or comparable to continuous intra-landscape dynamics remains challenging. In this study, we show that there exists mathematical mapping of the dynamics on 2(N) discretely coupled N continuous dimensional landscapes onto one single landscape in 2N dimensional extended continuous space. On this 2N dimensional landscape, eddy current emerges as a sign of non-equilibrium non-adiabatic dynamics and plays an important role in system evolution. Many interesting physical effects such as the enhancement of fluctuations, irreversibility, dissipation and optimal kinetics emerge due to non-adiabaticity manifested by the eddy current illustrated for an N = 1 self-activator. We further generalize our theory to the N-gene network with multiple binding sites and multiple synthesis rates for discretely coupled non-equilibrium stochastic physical and biological systems.

  13. Linking Genes and Brain Development of Honeybee Workers: A Whole-Transcriptome Approach.

    Directory of Open Access Journals (Sweden)

    Christina Vleurinck

    Full Text Available Honeybees live in complex societies whose capabilities far exceed those of the sum of their single members. This social synergism is achieved mainly by the worker bees, which form a female caste. The worker bees display diverse collaborative behaviors and engage in different behavioral tasks, which are controlled by the central nervous system (CNS. The development of the worker brain is determined by the female sex and the worker caste determination signal. Here, we report on genes that are controlled by sex or by caste during differentiation of the worker's pupal brain. We sequenced and compared transcriptomes from the pupal brains of honeybee workers, queens and drones. We detected 333 genes that are differently expressed and 519 genes that are differentially spliced between the sexes, and 1760 genes that are differentially expressed and 692 genes that are differentially spliced between castes. We further found that 403 genes are differentially regulated by both the sex and caste signals, providing evidence of the integration of both signals through differential gene regulation. In this gene set, we found that the molecular processes of restructuring the cell shape and cell-to-cell signaling are overrepresented. Our approach identified candidate genes that may be involved in brain differentiation that ensures the various social worker behaviors.

  14. Rapid evolution and copy number variation of primate RHOXF2, an X-linked homeobox gene involved in male reproduction and possibly brain function.

    Science.gov (United States)

    Niu, Ao-lei; Wang, Yin-qiu; Zhang, Hui; Liao, Cheng-hong; Wang, Jin-kai; Zhang, Rui; Che, Jun; Su, Bing

    2011-10-12

    Homeobox genes are the key regulators during development, and they are in general highly conserved with only a few reported cases of rapid evolution. RHOXF2 is an X-linked homeobox gene in primates. It is highly expressed in the testicle and may play an important role in spermatogenesis. As male reproductive system is often the target of natural and/or sexual selection during evolution, in this study, we aim to dissect the pattern of molecular evolution of RHOXF2 in primates and its potential functional consequence. We studied sequences and copy number variation of RHOXF2 in humans and 16 nonhuman primate species as well as the expression patterns in human, chimpanzee, white-browed gibbon and rhesus macaque. The gene copy number analysis showed that there had been parallel gene duplications/losses in multiple primate lineages. Our evidence suggests that 11 nonhuman primate species have one RHOXF2 copy, and two copies are present in humans and four Old World monkey species, and at least 6 copies in chimpanzees. Further analysis indicated that the gene duplications in primates had likely been mediated by endogenous retrovirus (ERV) sequences flanking the gene regions. In striking contrast to non-human primates, humans appear to have homogenized their two RHOXF2 copies by the ERV-mediated non-allelic recombination mechanism. Coding sequence and phylogenetic analysis suggested multi-lineage strong positive selection on RHOXF2 during primate evolution, especially during the origins of humans and chimpanzees. All the 8 coding region polymorphic sites in human populations are non-synonymous, implying on-going selection. Gene expression analysis demonstrated that besides the preferential expression in the reproductive system, RHOXF2 is also expressed in the brain. The quantitative data suggests expression pattern divergence among primate species. RHOXF2 is a fast-evolving homeobox gene in primates. The rapid evolution and copy number changes of RHOXF2 had been driven by

  15. Rapid evolution and copy number variation of primate RHOXF2, an X-linked homeobox gene involved in male reproduction and possibly brain function

    Directory of Open Access Journals (Sweden)

    Zhang Rui

    2011-10-01

    Full Text Available Abstract Background Homeobox genes are the key regulators during development, and they are in general highly conserved with only a few reported cases of rapid evolution. RHOXF2 is an X-linked homeobox gene in primates. It is highly expressed in the testicle and may play an important role in spermatogenesis. As male reproductive system is often the target of natural and/or sexual selection during evolution, in this study, we aim to dissect the pattern of molecular evolution of RHOXF2 in primates and its potential functional consequence. Results We studied sequences and copy number variation of RHOXF2 in humans and 16 nonhuman primate species as well as the expression patterns in human, chimpanzee, white-browed gibbon and rhesus macaque. The gene copy number analysis showed that there had been parallel gene duplications/losses in multiple primate lineages. Our evidence suggests that 11 nonhuman primate species have one RHOXF2 copy, and two copies are present in humans and four Old World monkey species, and at least 6 copies in chimpanzees. Further analysis indicated that the gene duplications in primates had likely been mediated by endogenous retrovirus (ERV sequences flanking the gene regions. In striking contrast to non-human primates, humans appear to have homogenized their two RHOXF2 copies by the ERV-mediated non-allelic recombination mechanism. Coding sequence and phylogenetic analysis suggested multi-lineage strong positive selection on RHOXF2 during primate evolution, especially during the origins of humans and chimpanzees. All the 8 coding region polymorphic sites in human populations are non-synonymous, implying on-going selection. Gene expression analysis demonstrated that besides the preferential expression in the reproductive system, RHOXF2 is also expressed in the brain. The quantitative data suggests expression pattern divergence among primate species. Conclusions RHOXF2 is a fast-evolving homeobox gene in primates. The rapid

  16. Association of interleukin-1 gene variations with moderate to severe chronic periodontitis in multiple ethnicities

    Science.gov (United States)

    Wu, X; Offenbacher, S; Lόpez, N J; Chen, D; Wang, H-Y; Rogus, J; Zhou, J; Beck, J; Jiang, S; Bao, X; Wilkins, L; Doucette-Stamm, L; Kornman, K

    2015-01-01

    Background and Objective Genetic markers associated with disease are often non-functional and generally tag one or more functional “causative” variants in linkage disequilibrium. Markers may not show tight linkage to the causative variants across multiple ethnicities due to evolutionary divergence, and therefore may not be informative across different population groups. Validated markers of disease suggest causative variants exist in the gene and, if the causative variants can be identified, it is reasonable to hypothesize that such variants will be informative across diverse populations. The aim of this study was to test that hypothesis using functional Interleukin-1 (IL-1) gene variations across multiple ethnic populations to replace the non-functional markers originally associated with chronic adult periodontitis in Caucasians. Material and Methods Adult chronic periodontitis cases and controls from four ethnic groups (Caucasians, African Americans, Hispanics and Asians) were recruited in the USA, Chile and China. Genotypes of IL1B gene single nucleotide polymorphisms (SNPs), including three functional SNPs (rs16944, rs1143623, rs4848306) in the promoter and one intronic SNP (rs1143633), were determined using a single base extension method or TaqMan 5′ nuclease assay. Logistic regression and other statistical analyses were used to examine the association between moderate to severe periodontitis and IL1B gene variations, including SNPs, haplotypes and composite genotypes. Genotype patterns associated with disease in the discovery study were then evaluated in independent validation studies. Results Significant associations were identified in the discovery study, consisting of Caucasians and African Americans, between moderate to severe adult chronic periodontitis and functional variations in the IL1B gene, including a pattern of four IL1B SNPs (OR = 1.87, p < 0.0001). The association between the disease and this IL1B composite genotype pattern was validated

  17. A conceptual framework that links pollinator foraging behavior to gene flow

    Science.gov (United States)

    In insect-pollinated crops such as alfalfa, a better understanding of how pollinator foraging behavior affects gene flow could lead to the development of management strategies to reduce gene flow and facilitate the coexistence of distinct seed-production markets. Here, we introduce a conceptual fram...

  18. Genes for and molecular markers linked with resistance to Phytophthora fragariae in strawberry

    NARCIS (Netherlands)

    Weg, van de W.E.; Henken, B.; Haymes, K.M.; Nijs, den A.P.M.

    1998-01-01

    A gene-for-gene model is presented which explains interactions between cultivars of strawberry and races of Phytophthora fragariae var. fragariae, the causal agent of red core (red stele) root rot. The model allows the constitution of a universal differential set of strawberry genotypes and the

  19. Misregulation of Gene Expression and Sterility in Interspecies Hybrids: Causal Links and Alternative Hypotheses.

    Science.gov (United States)

    Civetta, Alberto

    2016-05-01

    Understanding the origin of species is of interest to biologist in general and evolutionary biologist in particular. Hybrid male sterility (HMS) has been a focus in studies of speciation because sterility imposes a barrier to free gene flow between organisms, thus effectively isolating them as distinct species. In this review, I focus on the role of differential gene expression in HMS and speciation. Microarray and qPCR assays have established associations between misregulation of gene expression and sterility in hybrids between closely related species. These studies originally proposed disrupted expression of spermatogenesis genes as a causative of sterility. Alternatively, rapid genetic divergence of regulatory elements, particularly as they relate to the male sex (fast-male evolution), can drive the misregulation of sperm developmental genes in the absence of sterility. The use of fertile hybrids (both backcross and F1 progeny) as controls has lent support to this alternative explanation. Differences in gene expression between fertile and sterile hybrids can also be influenced by a pattern of faster evolution of the sex chromosome (fast-X evolution) than autosomes. In particular, it would be desirable to establish whether known X-chromosome sterility factors can act as trans-regulatory drivers of genome-wide patterns of misregulation. Genome-wide expression studies coupled with assays of proxies of sterility in F1 and BC progeny have identified candidate HMS genes but functional assays, and a better phenotypic characterization of sterility phenotypes, are needed to rigorously test how these genes might contribute to HMS.

  20. Genetic evaluation with major genes and polygenic inheritance when some animals are not genotyped using gene content multiple-trait BLUP.

    Science.gov (United States)

    Legarra, Andrés; Vitezica, Zulma G

    2015-11-17

    In pedigreed populations with a major gene segregating for a quantitative trait, it is not clear how to use pedigree, genotype and phenotype information when some individuals are not genotyped. We propose to consider gene content at the major gene as a second trait correlated to the quantitative trait, in a gene content multiple-trait best linear unbiased prediction (GCMTBLUP) method. The genetic covariance between the trait and gene content at the major gene is a function of the substitution effect of the gene. This genetic covariance can be written in a multiple-trait form that accommodates any pattern of missing values for either genotype or phenotype data. Effects of major gene alleles and the genetic covariance between genotype at the major gene and the phenotype can be estimated using standard EM-REML or Gibbs sampling. Prediction of breeding values with genotypes at the major gene can use multiple-trait BLUP software. Major genes with more than two alleles can be considered by including negative covariances between gene contents at each different allele. We simulated two scenarios: a selected and an unselected trait with heritabilities of 0.05 and 0.5, respectively. In both cases, the major gene explained half the genetic variation. Competing methods used imputed gene contents derived by the method of Gengler et al. or by iterative peeling. Imputed gene contents, in contrast to GCMTBLUP, do not consider information on the quantitative trait for genotype prediction. GCMTBLUP gave unbiased estimates of the gene effect, in contrast to the other methods, with less bias and better or equal accuracy of prediction. GCMTBLUP improved estimation of genotypes in non-genotyped individuals, in particular if these individuals had own phenotype records and the trait had a high heritability. Ignoring the major gene in genetic evaluation led to serious biases and decreased prediction accuracy. CGMTBLUP is the best linear predictor of additive genetic merit including

  1. Development of the Multiple Gene Knockout System with One-Step PCR in Thermoacidophilic Crenarchaeon Sulfolobus acidocaldarius

    Directory of Open Access Journals (Sweden)

    Shoji Suzuki

    2017-01-01

    Full Text Available Multiple gene knockout systems developed in the thermoacidophilic crenarchaeon Sulfolobus acidocaldarius are powerful genetic tools. However, plasmid construction typically requires several steps. Alternatively, PCR tailing for high-throughput gene disruption was also developed in S. acidocaldarius, but repeated gene knockout based on PCR tailing has been limited due to lack of a genetic marker system. In this study, we demonstrated efficient homologous recombination frequency (2.8 × 104 ± 6.9 × 103 colonies/μg DNA by optimizing the transformation conditions. This optimized protocol allowed to develop reliable gene knockout via double crossover using short homologous arms and to establish the multiple gene knockout system with one-step PCR (MONSTER. In the MONSTER, a multiple gene knockout cassette was simply and rapidly constructed by one-step PCR without plasmid construction, and the PCR product can be immediately used for target gene deletion. As an example of the applications of this strategy, we successfully made a DNA photolyase- (phr- and arginine decarboxylase- (argD- deficient strain of S. acidocaldarius. In addition, an agmatine selection system consisting of an agmatine-auxotrophic strain and argD marker was also established. The MONSTER provides an alternative strategy that enables the very simple construction of multiple gene knockout cassettes for genetic studies in S. acidocaldarius.

  2. Structural defect linked to nonrandom mutations in the matrix gene of Biden strain subacute sclerosing panencephalitis virus defined by cDNA cloning and expression of chimeric genes

    International Nuclear Information System (INIS)

    Ayata, M.; Hirano, A.; Wong, T.C.

    1989-01-01

    Biken strain, a nonproductive measles viruslike agent isolated from a subacute sclerosing panencephalitis (SSPE) patient, contains a posttranscriptional defect affecting matrix (M) protein. A putative M protein was translated in vitro with RNA from Biken strain-infected cells. A similar protein was detected in vivo by an antiserum against a peptide synthesized from the cloned M gene of Edmonston strain measles virus. By using a novel method, full-length cDNAs of the Biken M gene were selectively cloned. The cloned Biken M gene contained an open reading frame which encoded 8 extra carboxy-terminal amino acid residues and 20 amino acid substitutions predicted to affect both the hydrophobicity and secondary structure of the gene product. The cloned gene was expressed in vitro and in vivo into a 37,500 M r protein electrophoretically and antigenically distinct from the M protein of Edmonston strain but identical to the M protein in Biken strain-infected cells. Chimeric M proteins synthesized in vitro and in vivo showed that the mutations in the carboxy-proximal region altered the local antigenicity and those in the amino region affected the overall protein conformation. The protein expressed from the Biken M gene was unstable in vivo. Instability was attributed to multiple mutations. These results offer insights into the basis of the defect in Biken strain and pose intriguing questions about the evolutionary origins of SSPE viruses in general

  3. Understanding the links among neuromedin U gene, beta2-adrenoceptor gene and bone health: an observational study in European children.

    Directory of Open Access Journals (Sweden)

    Francesco Gianfagna

    Full Text Available Neuromedin U, encoded by the NMU gene, is a hypothalamic neuropeptide that regulates both energy metabolism and bone mass. The beta-2 adrenergic receptor, encoded by the ADRB2 gene, mediates several effects of catecholamine hormones and neurotransmitters in bone. We investigated whether NMU single nucleotide polymorphisms (SNPs and haplotypes, as well as functional ADRB2 SNPs, are associated with bone stiffness in children from the IDEFICS cohort, also evaluating whether NMU and ADRB2 interact to affect this trait. A sample of 2,274 subjects (52.5% boys, age 6.2 ± 1.8 years from eight European countries, having data on calcaneus bone stiffness index (SI, mean of both feet and genotyping (NMU gene: rs6827359, rs12500837, rs9999653; ADRB2 gene: rs1042713, rs1042714, was studied. After false discovery rate adjustment, SI was significantly associated with all NMU SNPs. rs6827359 CC homozygotes showed the strongest association (recessive model, Δ= -1.8, p=0.006. Among the five retrieved haplotypes with frequencies higher than 1% (range 2.0-43.9%, the CCT haplotype (frequency=39.7% was associated with lower SI values (dominant model, Δ= -1.0, p=0.04 as compared to the most prevalent haplotype. A non-significant decrease in SI was observed in in ADRB2 rs1042713 GG homozygotes, while subjects carrying SI-lowering genotypes at both SNPs (frequency = 8.4% showed much lower SI than non-carriers (Δ= -3.9, p<0.0001; p for interaction=0.025. The association was more evident in preschool girls, in whom SI showed a curvilinear trend across ages. In subgroup analyses, rs9999653 CC NMU or both GG ADRB2 genotypes were associated with either lower serum calcium or β-CrossLaps levels (p=0.01. This study in European children shows, for the first time in humans, a role for NMU gene through interaction with ADRB2 gene in bone strength regulation, more evident in preschool girls.

  4. Analyzing Multiple-Probe Microarray: Estimation and Application of Gene Expression Indexes

    KAUST Repository

    Maadooliat, Mehdi

    2012-07-26

    Gene expression index estimation is an essential step in analyzing multiple probe microarray data. Various modeling methods have been proposed in this area. Amidst all, a popular method proposed in Li and Wong (2001) is based on a multiplicative model, which is similar to the additive model discussed in Irizarry et al. (2003a) at the logarithm scale. Along this line, Hu et al. (2006) proposed data transformation to improve expression index estimation based on an ad hoc entropy criteria and naive grid search approach. In this work, we re-examined this problem using a new profile likelihood-based transformation estimation approach that is more statistically elegant and computationally efficient. We demonstrate the applicability of the proposed method using a benchmark Affymetrix U95A spiked-in experiment. Moreover, We introduced a new multivariate expression index and used the empirical study to shows its promise in terms of improving model fitting and power of detecting differential expression over the commonly used univariate expression index. As the other important content of the work, we discussed two generally encountered practical issues in application of gene expression index: normalization and summary statistic used for detecting differential expression. Our empirical study shows somewhat different findings from the MAQC project (MAQC, 2006).

  5. Removal of unwanted variation reveals novel patterns of gene expression linked to sleep homeostasis in murine cortex

    Directory of Open Access Journals (Sweden)

    Jason R. Gerstner

    2016-10-01

    Full Text Available Abstract Background Why we sleep is still one of the most perplexing mysteries in biology. Strong evidence indicates that sleep is necessary for normal brain function and that sleep need is a tightly regulated process. Surprisingly, molecular mechanisms that determine sleep need are incompletely described. Moreover, very little is known about transcriptional changes that specifically accompany the accumulation and discharge of sleep need. Several studies have characterized differential gene expression changes following sleep deprivation. Much less is known, however, about changes in gene expression during the compensatory response to sleep deprivation (i.e. recovery sleep. Results In this study we present a comprehensive analysis of the effects of sleep deprivation and subsequent recovery sleep on gene expression in the mouse cortex. We used a non-traditional analytical method for normalization of genome-wide gene expression data, Removal of Unwanted Variation (RUV. RUV improves detection of differential gene expression following sleep deprivation. We also show that RUV normalization is crucial to the discovery of differentially expressed genes associated with recovery sleep. Our analysis indicates that the majority of transcripts upregulated by sleep deprivation require 6 h of recovery sleep to return to baseline levels, while the majority of downregulated transcripts return to baseline levels within 1–3 h. We also find that transcripts that change rapidly during recovery (i.e. within 3 h do so on average with a time constant that is similar to the time constant for the discharge of sleep need. Conclusions We demonstrate that proper data normalization is essential to identify changes in gene expression that are specifically linked to sleep deprivation and recovery sleep. Our results provide the first evidence that recovery sleep is comprised of two waves of transcriptional regulation that occur at different times and affect functionally

  6. Body temperature is elevated and linked to fatigue in relapsing-remitting multiple sclerosis, even without heat exposure

    Science.gov (United States)

    Sumowski, James F.; Leavitt, Victoria M.

    2014-01-01

    Objective To investigate whether resting body temperature is elevated and linked to fatigue in patients with relapsing-remitting multiple sclerosis (RRMS). Design Cross-sectional study investigating (a) differences in resting body temperature across RRMS, SPMS, and healthy groups, and (b) the relationship between body temperature and fatigue in RRMS patients. Setting Climate-controlled laboratory (~22°C) within a non-profit medical rehabilitation research center. Participants Fifty patients with RRMS, 40 matched healthy controls, and 22 patients with secondary-progressive MS (SPMS). Intervention None. Main Outcome Measure(s) Body temperature was measured with an aural infrared thermometer (normal body temperature for this thermometer is 36.75°C), and differences were compared across RRMS, SPMS, and healthy persons. RRMS patients completed measures of general fatigue (Fatigue Severity Scale; FSS), as well as physical and cognitive fatigue (Modified Fatigue Impact Scale; MFIS). Results There was a large effect of group (ptemperature was higher in RRMS patients (37.04°C±0.27) relative to healthy controls (36.83 ± 0.33; p = .009) and SPMS patients (36.75°C±0.39; p=.001). Warmer body temperature in RRMS patients was associated with worse general fatigue (FSS; rp=.315, p=.028) and physical fatigue (pMFIS; rp=.318, p=.026), but not cognitive fatigue (cMIFS; rp=−.017, p=.909). Conclusions These are the first-ever demonstrations that body temperature is elevated endogenously in RRMS patients, and linked to worse fatigue. We discuss these findings in the context of failed treatments for fatigue in RRMS, including several failed randomized controlled trials (RCTs) of stimulants (modafinil). In contrast, our findings may help explain how RCTs of cooling garments and antipyretics (aspirin) have effectively reduced MS fatigue, and encourage further research on cooling/antipyretic treatments of fatigue in RRMS. PMID:24561056

  7. Multiple imputation using linked proxy outcome data resulted in important bias reduction and efficiency gains: a simulation study.

    Science.gov (United States)

    Cornish, R P; Macleod, J; Carpenter, J R; Tilling, K

    2017-01-01

    When an outcome variable is missing not at random (MNAR: probability of missingness depends on outcome values), estimates of the effect of an exposure on this outcome are often biased. We investigated the extent of this bias and examined whether the bias can be reduced through incorporating proxy outcomes obtained through linkage to administrative data as auxiliary variables in multiple imputation (MI). Using data from the Avon Longitudinal Study of Parents and Children (ALSPAC) we estimated the association between breastfeeding and IQ (continuous outcome), incorporating linked attainment data (proxies for IQ) as auxiliary variables in MI models. Simulation studies explored the impact of varying the proportion of missing data (from 20 to 80%), the correlation between the outcome and its proxy (0.1-0.9), the strength of the missing data mechanism, and having a proxy variable that was incomplete. Incorporating a linked proxy for the missing outcome as an auxiliary variable reduced bias and increased efficiency in all scenarios, even when 80% of the outcome was missing. Using an incomplete proxy was similarly beneficial. High correlations (> 0.5) between the outcome and its proxy substantially reduced the missing information. Consistent with this, ALSPAC analysis showed inclusion of a proxy reduced bias and improved efficiency. Gains with additional proxies were modest. In longitudinal studies with loss to follow-up, incorporating proxies for this study outcome obtained via linkage to external sources of data as auxiliary variables in MI models can give practically important bias reduction and efficiency gains when the study outcome is MNAR.

  8. Imprinted Genes and the Environment: Links to the Toxic Metals Arsenic, Cadmium and Lead

    Directory of Open Access Journals (Sweden)

    Lisa Smeester

    2014-06-01

    Full Text Available Imprinted genes defy rules of Mendelian genetics with their expression tied to the parent from whom each allele was inherited. They are known to play a role in various diseases/disorders including fetal growth disruption, lower birth weight, obesity, and cancer. There is increasing interest in understanding their influence on environmentally-induced disease. The environment can be thought of broadly as including chemicals present in air, water and soil, as well as food. According to the Agency for Toxic Substances and Disease Registry (ATSDR, some of the highest ranking environmental chemicals of concern include metals/metalloids such as arsenic, cadmium, lead and mercury. The complex relationships between toxic metal exposure, imprinted gene regulation/expression and health outcomes are understudied. Herein we examine trends in imprinted gene biology, including an assessment of the imprinted genes and their known functional roles in the cell, particularly as they relate to toxic metals exposure and disease. The data highlight that many of the imprinted genes have known associations to developmental diseases and are enriched for their role in the TP53 and AhR pathways. Assessment of the promoter regions of the imprinted genes resulted in the identification of an enrichment of binding sites for two transcription factor families, namely the zinc finger family II and PLAG transcription factors. Taken together these data contribute insight into the complex relationships between toxic metals in the environment and imprinted gene biology.

  9. Imprinted Genes and the Environment: Links to the Toxic Metals Arsenic, Cadmium and Lead

    Science.gov (United States)

    Smeester, Lisa; Yosim, Andrew E.; Nye, Monica D.; Hoyo, Cathrine; Murphy, Susan K.; Fry, Rebecca C.

    2014-01-01

    Imprinted genes defy rules of Mendelian genetics with their expression tied to the parent from whom each allele was inherited. They are known to play a role in various diseases/disorders including fetal growth disruption, lower birth weight, obesity, and cancer. There is increasing interest in understanding their influence on environmentally-induced disease. The environment can be thought of broadly as including chemicals present in air, water and soil, as well as food. According to the Agency for Toxic Substances and Disease Registry (ATSDR), some of the highest ranking environmental chemicals of concern include metals/metalloids such as arsenic, cadmium, and lead. The complex relationships between toxic metal exposure, imprinted gene regulation/expression and health outcomes are understudied. Herein we examine trends in imprinted gene biology, including an assessment of the imprinted genes and their known functional roles in the cell, particularly as they relate to toxic metals exposure and disease. The data highlight that many of the imprinted genes have known associations to developmental diseases and are enriched for their role in the TP53 and AhR pathways. Assessment of the promoter regions of the imprinted genes resulted in the identification of an enrichment of binding sites for two transcription factor families, namely the zinc finger family II and PLAG transcription factors. Taken together these data contribute insight into the complex relationships between toxic metals in the environment and imprinted gene biology. PMID:24921406

  10. Imprinted genes and the environment: links to the toxic metals arsenic, cadmium, lead and mercury.

    Science.gov (United States)

    Smeester, Lisa; Yosim, Andrew E; Nye, Monica D; Hoyo, Cathrine; Murphy, Susan K; Fry, Rebecca C

    2014-06-11

    Imprinted genes defy rules of Mendelian genetics with their expression tied to the parent from whom each allele was inherited. They are known to play a role in various diseases/disorders including fetal growth disruption, lower birth weight, obesity, and cancer. There is increasing interest in understanding their influence on environmentally-induced disease. The environment can be thought of broadly as including chemicals present in air, water and soil, as well as food. According to the Agency for Toxic Substances and Disease Registry (ATSDR), some of the highest ranking environmental chemicals of concern include metals/metalloids such as arsenic, cadmium, lead and mercury. The complex relationships between toxic metal exposure, imprinted gene regulation/expression and health outcomes are understudied. Herein we examine trends in imprinted gene biology, including an assessment of the imprinted genes and their known functional roles in the cell, particularly as they relate to toxic metals exposure and disease. The data highlight that many of the imprinted genes have known associations to developmental diseases and are enriched for their role in the TP53 and AhR pathways. Assessment of the promoter regions of the imprinted genes resulted in the identification of an enrichment of binding sites for two transcription factor families, namely the zinc finger family II and PLAG transcription factors. Taken together these data contribute insight into the complex relationships between toxic metals in the environment and imprinted gene biology.

  11. ADA5/SPT20 links the ADA and SPT genes, which are involved in yeast transcription.

    OpenAIRE

    Marcus, G A; Horiuchi, J; Silverman, N; Guarente, L

    1996-01-01

    In this report we described the cloning and characterization of ADA5, a gene identified by resistance to GAL4-VP16-mediated toxicity. ADA5 binds directly to the VP16 activation domain but not to a transcriptionally defective VP16 double point mutant. Double mutants with mutations in ada5 and other genes (ada2 or ada3) isolated by resistance to GAL4-VP16 grow like ada5 single mutants, suggesting that ADA5 is in the same pathway as the other ADA genes. Further, ADA5 cofractionates and coprecipi...

  12. Multiple zebrafish atoh1 genes specify a diversity of neuronal types in the zebrafish cerebellum.

    Science.gov (United States)

    Kidwell, Chelsea U; Su, Chen-Ying; Hibi, Masahiko; Moens, Cecilia B

    2018-06-01

    A single Atoh1 basic-helix-loop-helix transcription factor specifies multiple neuron types in the mammalian cerebellum and anterior hindbrain. The zebrafish genome encodes three paralagous atoh1 genes whose functions in cerebellum and anterior hindbrain development we explore here. With use of a transgenic reporter, we report that zebrafish atoh1c-expressing cells are organized in two distinct domains that are separated both by space and developmental time. An early isthmic expression domain gives rise to an extracerebellar population in rhombomere 1 and an upper rhombic lip domain gives rise to granule cell progenitors that migrate to populate all four granule cell territories of the fish cerebellum. Using genetic mutants we find that of the three zebrafish atoh1 paralogs, atoh1c and atoh1a are required for the full complement of granule neurons. Surprisingly, the two genes are expressed in non-overlapping granule cell progenitor populations, indicating that fish use duplicate atoh1 genes to generate granule cell diversity that is not detected in mammals. Finally, live imaging of granule cell migration in wildtype and atoh1c mutant embryos reveals that while atoh1c is not required for granule cell specification per se, it is required for granule cells to delaminate and migrate away from the rhombic lip. Copyright © 2018 Elsevier Inc. All rights reserved.

  13. Bayesian inference based modelling for gene transcriptional dynamics by integrating multiple source of knowledge

    Directory of Open Access Journals (Sweden)

    Wang Shu-Qiang

    2012-07-01

    Full Text Available Abstract Background A key challenge in the post genome era is to identify genome-wide transcriptional regulatory networks, which specify the interactions between transcription factors and their target genes. Numerous methods have been developed for reconstructing gene regulatory networks from expression data. However, most of them are based on coarse grained qualitative models, and cannot provide a quantitative view of regulatory systems. Results A binding affinity based regulatory model is proposed to quantify the transcriptional regulatory network. Multiple quantities, including binding affinity and the activity level of transcription factor (TF are incorporated into a general learning model. The sequence features of the promoter and the possible occupancy of nucleosomes are exploited to estimate the binding probability of regulators. Comparing with the previous models that only employ microarray data, the proposed model can bridge the gap between the relative background frequency of the observed nucleotide and the gene's transcription rate. Conclusions We testify the proposed approach on two real-world microarray datasets. Experimental results show that the proposed model can effectively identify the parameters and the activity level of TF. Moreover, the kinetic parameters introduced in the proposed model can reveal more biological sense than previous models can do.

  14. Genetic transformation and gene silencing mediated by multiple copies of a transgene in eastern white pine.

    Science.gov (United States)

    Tang, Wei; Newton, Ronald J; Weidner, Douglas A

    2007-01-01

    An efficient transgenic eastern white pine (Pinus strobus L.) plant regeneration system has been established using Agrobacterium tumefaciens strain GV3850-mediated transformation and the green fluorescent protein (gfp) gene as a reporter in this investigation. Stable integration of transgenes in the plant genome of pine was confirmed by polymerase chain reaction (PCR), Southern blot, and northern blot analyses. Transgene expression was analysed in pine T-DNA transformants carrying different numbers of copies of T-DNA insertions. Post-transcriptional gene silencing (PTGS) was mostly obtained in transgenic lines with more than three copies of T-DNA, but not in transgenic lines with one copy of T-DNA. In situ hybridization chromosome analysis of transgenic lines demonstrated that silenced transgenic lines had two or more T-DNA insertions in the same chromosome. These results suggest that two or more T-DNA insertions in the same chromosome facilitate efficient gene silencing in transgenic pine cells expressing green fluorescent protein. There were no differences in shoot differentiation and development between transgenic lines with multiple T-DNA copies and transgenic lines with one or two T-DNA copies.

  15. Hairpin RNA Targeting Multiple Viral Genes Confers Strong Resistance to Rice Black-Streaked Dwarf Virus

    Directory of Open Access Journals (Sweden)

    Fangquan Wang

    2016-05-01

    Full Text Available Rice black-streaked dwarf virus (RBSDV belongs to the genus Fijivirus in the family of Reoviridae and causes severe yield loss in rice-producing areas in Asia. RNA silencing, as a natural defence mechanism against plant viruses, has been successfully exploited for engineering virus resistance in plants, including rice. In this study, we generated transgenic rice lines harbouring a hairpin RNA (hpRNA construct targeting four RBSDV genes, S1, S2, S6 and S10, encoding the RNA-dependent RNA polymerase, the putative core protein, the RNA silencing suppressor and the outer capsid protein, respectively. Both field nursery and artificial inoculation assays of three generations of the transgenic lines showed that they had strong resistance to RBSDV infection. The RBSDV resistance in the segregating transgenic populations correlated perfectly with the presence of the hpRNA transgene. Furthermore, the hpRNA transgene was expressed in the highly resistant transgenic lines, giving rise to abundant levels of 21–24 nt small interfering RNA (siRNA. By small RNA deep sequencing, the RBSDV-resistant transgenic lines detected siRNAs from all four viral gene sequences in the hpRNA transgene, indicating that the whole chimeric fusion sequence can be efficiently processed by Dicer into siRNAs. Taken together, our results suggest that long hpRNA targeting multiple viral genes can be used to generate stable and durable virus resistance in rice, as well as other plant species.

  16. Hairpin RNA Targeting Multiple Viral Genes Confers Strong Resistance to Rice Black-Streaked Dwarf Virus.

    Science.gov (United States)

    Wang, Fangquan; Li, Wenqi; Zhu, Jinyan; Fan, Fangjun; Wang, Jun; Zhong, Weigong; Wang, Ming-Bo; Liu, Qing; Zhu, Qian-Hao; Zhou, Tong; Lan, Ying; Zhou, Yijun; Yang, Jie

    2016-05-11

    Rice black-streaked dwarf virus (RBSDV) belongs to the genus Fijivirus in the family of Reoviridae and causes severe yield loss in rice-producing areas in Asia. RNA silencing, as a natural defence mechanism against plant viruses, has been successfully exploited for engineering virus resistance in plants, including rice. In this study, we generated transgenic rice lines harbouring a hairpin RNA (hpRNA) construct targeting four RBSDV genes, S1, S2, S6 and S10, encoding the RNA-dependent RNA polymerase, the putative core protein, the RNA silencing suppressor and the outer capsid protein, respectively. Both field nursery and artificial inoculation assays of three generations of the transgenic lines showed that they had strong resistance to RBSDV infection. The RBSDV resistance in the segregating transgenic populations correlated perfectly with the presence of the hpRNA transgene. Furthermore, the hpRNA transgene was expressed in the highly resistant transgenic lines, giving rise to abundant levels of 21-24 nt small interfering RNA (siRNA). By small RNA deep sequencing, the RBSDV-resistant transgenic lines detected siRNAs from all four viral gene sequences in the hpRNA transgene, indicating that the whole chimeric fusion sequence can be efficiently processed by Dicer into siRNAs. Taken together, our results suggest that long hpRNA targeting multiple viral genes can be used to generate stable and durable virus resistance in rice, as well as other plant species.

  17. Calibration of Multiple In Silico Tools for Predicting Pathogenicity of Mismatch Repair Gene Missense Substitutions

    Science.gov (United States)

    Thompson, Bryony A.; Greenblatt, Marc S.; Vallee, Maxime P.; Herkert, Johanna C.; Tessereau, Chloe; Young, Erin L.; Adzhubey, Ivan A.; Li, Biao; Bell, Russell; Feng, Bingjian; Mooney, Sean D.; Radivojac, Predrag; Sunyaev, Shamil R.; Frebourg, Thierry; Hofstra, Robert M.W.; Sijmons, Rolf H.; Boucher, Ken; Thomas, Alun; Goldgar, David E.; Spurdle, Amanda B.; Tavtigian, Sean V.

    2015-01-01

    Classification of rare missense substitutions observed during genetic testing for patient management is a considerable problem in clinical genetics. The Bayesian integrated evaluation of unclassified variants is a solution originally developed for BRCA1/2. Here, we take a step toward an analogous system for the mismatch repair (MMR) genes (MLH1, MSH2, MSH6, and PMS2) that confer colon cancer susceptibility in Lynch syndrome by calibrating in silico tools to estimate prior probabilities of pathogenicity for MMR gene missense substitutions. A qualitative five-class classification system was developed and applied to 143 MMR missense variants. This identified 74 missense substitutions suitable for calibration. These substitutions were scored using six different in silico tools (Align-Grantham Variation Grantham Deviation, multivariate analysis of protein polymorphisms [MAPP], Mut-Pred, PolyPhen-2.1, Sorting Intolerant From Tolerant, and Xvar), using curated MMR multiple sequence alignments where possible. The output from each tool was calibrated by regression against the classifications of the 74 missense substitutions; these calibrated outputs are interpretable as prior probabilities of pathogenicity. MAPP was the most accurate tool and MAPP + PolyPhen-2.1 provided the best-combined model (R2 = 0.62 and area under receiver operating characteristic = 0.93). The MAPP + PolyPhen-2.1 output is sufficiently predictive to feed as a continuous variable into the quantitative Bayesian integrated evaluation for clinical classification of MMR gene missense substitutions. PMID:22949387

  18. Multiple episodes of extensive marine anoxia linked to global warming and continental weathering following the latest Permian mass extinction.

    Science.gov (United States)

    Zhang, Feifei; Romaniello, Stephen J; Algeo, Thomas J; Lau, Kimberly V; Clapham, Matthew E; Richoz, Sylvain; Herrmann, Achim D; Smith, Harrison; Horacek, Micha; Anbar, Ariel D

    2018-04-01

    Explaining the ~5-million-year delay in marine biotic recovery following the latest Permian mass extinction, the largest biotic crisis of the Phanerozoic, is a fundamental challenge for both geological and biological sciences. Ocean redox perturbations may have played a critical role in this delayed recovery. However, the lack of quantitative constraints on the details of Early Triassic oceanic anoxia (for example, time, duration, and extent) leaves the links between oceanic conditions and the delayed biotic recovery ambiguous. We report high-resolution U-isotope (δ 238 U) data from carbonates of the uppermost Permian to lowermost Middle Triassic Zal section (Iran) to characterize the timing and global extent of ocean redox variation during the Early Triassic. Our δ 238 U record reveals multiple negative shifts during the Early Triassic. Isotope mass-balance modeling suggests that the global area of anoxic seafloor expanded substantially in the Early Triassic, peaking during the latest Permian to mid-Griesbachian, the late Griesbachian to mid-Dienerian, the Smithian-Spathian transition, and the Early/Middle Triassic transition. Comparisons of the U-, C-, and Sr-isotope records with a modeled seawater PO 4 3- concentration curve for the Early Triassic suggest that elevated marine productivity and enhanced oceanic stratification were likely the immediate causes of expanded oceanic anoxia. The patterns of redox variation documented by the U-isotope record show a good first-order correspondence to peaks in ammonoid extinctions during the Early Triassic. Our results indicate that multiple oscillations in oceanic anoxia modulated the recovery of marine ecosystems following the latest Permian mass extinction.

  19. Knowledge Discovery in Biological Databases for Revealing Candidate Genes Linked to Complex Phenotypes.

    Science.gov (United States)

    Hassani-Pak, Keywan; Rawlings, Christopher

    2017-06-13

    Genetics and "omics" studies designed to uncover genotype to phenotype relationships often identify large numbers of potential candidate genes, among which the causal genes are hidden. Scientists generally lack the time and technical expertise to review all relevant information available from the literature, from key model species and from a potentially wide range of related biological databases in a variety of data formats with variable quality and coverage. Computational tools are needed for the integration and evaluation of heterogeneous information in order to prioritise candidate genes and components of interaction networks that, if perturbed through potential interventions, have a positive impact on the biological outcome in the whole organism without producing negative side effects. Here we review several bioinformatics tools and databases that play an important role in biological knowledge discovery and candidate gene prioritization. We conclude with several key challenges that need to be addressed in order to facilitate biological knowledge discovery in the future.

  20. Identifying Genes Controlling Ferulate Cross-Linking Formation in Grass Cell Walls

    Energy Technology Data Exchange (ETDEWEB)

    de O. Buanafina, Marcia Maria [Pennsylvania State Univ., University Park, PA (United States)

    2013-10-16

    This proposal focuses on cell wall feruloylation and our long term goal is to identify and isolate novel genes controlling feruloylation and to characterize the phenotype of mutants in this pathway, with a spotlight on cell wall properties.

  1. Positive selection of Plasmodium falciparum parasites with multiple var2csa-type PfEMP1 genes during the course of infection in pregnant women

    DEFF Research Database (Denmark)

    Sander, Adam F; Salanti, Ali; Lavstsen, Thomas

    2011-01-01

    multiple genes coding for different VAR2CSA proteins, and parasites with >1 var2csa gene appear to be more common in pregnant women with placental malaria than in nonpregnant individuals. We present evidence that, in pregnant women, parasites containing multiple var2csa-type genes possess a selective...... advantage over parasites with a single var2csa gene. Accumulation of parasites with multiple copies of the var2csa gene during the course of pregnancy was also correlated with the development of antibodies involved in blocking VAR2CSA adhesion. The data suggest that multiplicity of var2csa-type genes...

  2. Inhibition of estrogen-responsive gene activation by the retinoid X receptor beta: evidence for multiple inhibitory pathways.

    Science.gov (United States)

    Segars, J H; Marks, M S; Hirschfeld, S; Driggers, P H; Martinez, E; Grippo, J F; Brown, M; Wahli, W; Ozato, K

    1993-04-01

    The retinoid X receptor beta (RXR beta; H-2RIIBP) forms heterodimers with various nuclear hormone receptors and binds multiple hormone response elements, including the estrogen response element (ERE). In this report, we show that endogenous RXR beta contributes to ERE binding activity in nuclear extracts of the human breast cancer cell line MCF-7. To define a possible regulatory role of RXR beta regarding estrogen-responsive transcription in breast cancer cells, RXR beta and a reporter gene driven by the vitellogenin A2 ERE were transfected into estrogen-treated MCF-7 cells. RXR beta inhibited ERE-driven reporter activity in a dose-dependent and element-specific fashion. This inhibition occurred in the absence of the RXR ligand 9-cis retinoic acid. The RXR beta-induced inhibition was specific for estrogen receptor (ER)-mediated ERE activation because inhibition was observed in ER-negative MDA-MB-231 cells only following transfection of the estrogen-activated ER. No inhibition of the basal reporter activity was observed. The inhibition was not caused by simple competition of RXR beta with the ER for ERE binding, since deletion mutants retaining DNA binding activity but lacking the N-terminal or C-terminal domain failed to inhibit reporter activity. In addition, cross-linking studies indicated the presence of an auxiliary nuclear factor present in MCF-7 cells that contributed to RXR beta binding of the ERE. Studies using known heterodimerization partners of RXR beta confirmed that RXR beta/triiodothyronine receptor alpha heterodimers avidly bind the ERE but revealed the existence of another triiodothyronine-independent pathway of ERE inhibition. These results indicate that estrogen-responsive genes may be negatively regulated by RXR beta through two distinct pathways.

  3. Novel functional polymorphism in IGF-1 gene associated with multiple sclerosis: A new insight to MS.

    Science.gov (United States)

    Shahbazi, Majid; Abdolmohammadi, Reza; Ebadi, Hamid; Farazmandfar, Touraj

    2017-04-01

    Interactions between several genes and environment may play a role in susceptibility to multiple sclerosis (MS). The IGF-1 plays a key role in proliferation, maintenance and survival of nerve cells. Therefore, we hypothesized that IGF-1 may be a target for prediction and control MS. We aimed to analysis IGF-1 gene promoter sequence, to investigate the effect of the single nucleotide variants on IGF-1 expression and its association with MS. We enrolled 339 MS patients and 431 healthy controls. A specific region in IGF-1 gene promoter was investigated by SSCP analysis. All samples were genotyped by SSP-PCR. In-vitro and in-vivo IGF-1 production was measured by ELISA assay. IGF-1 expression in PBMCs was measured using real-time PCR. We identified a T to C single nucleotide substitution at position -1089 and a C to T at position -383 from transcription start site in the IGF-1 gene promoter. There was a significant association between MS and genotypes IGF-1(-383) C/T (p=0.001) and IGF-1(-383) C/C (pMS (p=0.001). In-vitro and in-vivo IGF-1 level showed that IGF-1 production in samples with genotype IGF-1(-383) C/C significantly was less than T/T (p=0.004) but not T/C (p=0.220). According to IGF-1 roles in CNS and our results, this study suggests that low IGF-1 level may be associated with susceptibility to MS. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Beyond Streptococcus mutans: Dental Caries Onset Linked to Multiple Species by 16S rRNA Community Analysis

    Science.gov (United States)

    Gross, Erin L.; Beall, Clifford J.; Kutsch, Stacey R.; Firestone, Noah D.; Leys, Eugene J.; Griffen, Ann L.

    2012-01-01

    Dental caries in very young children may be severe, result in serious infection, and require general anesthesia for treatment. Dental caries results from a shift within the biofilm community specific to the tooth surface, and acidogenic species are responsible for caries. Streptococcus mutans, the most common acid producer in caries, is not always present and occurs as part of a complex microbial community. Understanding the degree to which multiple acidogenic species provide functional redundancy and resilience to caries-associated communities will be important for developing biologic interventions. In addition, microbial community interactions in health and caries pathogenesis are not well understood. The purpose of this study was to investigate bacterial community profiles associated with the onset of caries in the primary dentition. In a combination cross-sectional and longitudinal design, bacterial community profiles at progressive stages of caries and over time were examined and compared to those of health. 16S rRNA gene sequencing was used for bacterial community analysis. Streptococcus mutans was the dominant species in many, but not all, subjects with caries. Elevated levels of S. salivarius, S. sobrinus, and S. parasanguinis were also associated with caries, especially in subjects with no or low levels of S. mutans, suggesting these species are alternative pathogens, and that multiple species may need to be targeted for interventions. Veillonella, which metabolizes lactate, was associated with caries and was highly correlated with total acid producing species. Among children without previous history of caries, Veillonella, but not S. mutans or other acid-producing species, predicted future caries. Bacterial community diversity was reduced in caries as compared to health, as many species appeared to occur at lower levels or be lost as caries advanced, including the Streptococcus mitis group, Neisseria, and Streptococcus sanguinis. This may have

  5. Toward epigenetic and gene regulation models of specific language impairment: looking for links among growth, genes, and impairments

    Directory of Open Access Journals (Sweden)

    Rice Mabel L

    2012-11-01

    Full Text Available Abstract Children with specific language impairment (SLI are thought to have an inherited form of language impairment that spares other developmental domains. SLI shows strong heritability and recent linkage and association studies have replicated results for candidate genes. Regulatory regions of the genes may be involved. Behavioral growth models of language development of children with SLI reveal that the onset of language is delayed, and the growth trajectories of children with SLI parallel those of younger children without SLI. The rate of language acquisition decelerates in the pre-adolescent period, resulting in immature language levels for the children with SLI that persist into adolescence and beyond. Recent genetic and epigenetic discoveries and models relevant to language impairment are reviewed. T cell regulation of onset, acceleration, and deceleration signaling are described as potential conceptual parallels to the growth timing elements of language acquisition and impairment. A growth signaling disruption (GSD hypothesis is proposed for SLI, which posits that faulty timing mechanisms at the cellular level, intrinsic to neurocortical functioning essential for language onset and growth regulation, are at the core of the growth outcomes of SLI. The GSD highlights the need to document and account for growth patterns over childhood and suggests needed directions for future investigation.

  6. Combination of adenovirus and cross-linked low molecular weight PEI improves efficiency of gene transduction

    International Nuclear Information System (INIS)

    Han Jianfeng; Zhao Dong; Zhong Zhirong; Zhang Zhirong; Gong Tao; Sun Xun

    2010-01-01

    Recombinant adenovirus (Ad)-mediated gene therapy is an exciting novel strategy in cancer treatment. However, poor infection efficiency with coxsackievirus and adenovirus receptor (CAR) down-regulated cancer cell lines is one of the major challenges for its practical and extensive application. As an alternative method of viral gene delivery, a non-viral carrier using cationic materials could compensate for the limitation of adenovirus. In our study, adenovectors were complexed with a new synthetic polymer PEI-DEG-bis-NPC (PDN) based on polyethylenimine (PEI), and then the properties of the vehicle were characterized by measurement of size distribution, zeta potential and transmission electron microscopy (TEM). Enhancement of gene transduction by Ad/PDN complexes was observed in both CAR-overexpressing cell lines (A549) and CAR-lacking cell lines (MDCK, CHO, LLC), as a result of facilitating binding and cell uptake of adenoviral particles by the cationic component. Ad/PDN complexes also promoted the inhibition of tumor growth in vivo and prolonged the survival time of tumor-bearing mice. These data suggest that a combination of viral and non-viral gene delivery methods may offer a new approach to successful cancer gene therapy.

  7. Missing Links in Genes to Traits: Toward Teaching for an Integrated Framework of Genetics

    Science.gov (United States)

    Pavlova, Iglika V.; Kreher, Scott A.

    2013-01-01

    Genetics, one of the most influential fields, underlies all of biology and produces discoveries that are in the news daily. However, many students leave introductory biology and genetics courses lacking a coherent framework of knowledge to use in their daily lives. We identify substantial "missing links" in the teaching of foundational…

  8. An AFLP marker linked to turnip mosaic virus resistance gene in pak ...

    African Journals Online (AJOL)

    STORAGESEVER

    2009-06-03

    Jun 3, 2009 ... polymorphism (AFLP) technique and bulked segregant analysis (BSA) method were used to study the. F2 population. An AFLP marker ... TuRB03 (Hughes et al., 2003), TuRB04-05 (Jenner et al.,. 2002), ConTR01 ... The resistance evaluation was done by visual observation and direct enzyme-linked ...

  9. The X-linked gene G4.5 is responsible for different infantile dilated cardiomyopathies

    NARCIS (Netherlands)

    D'Adamo, P.; Fassone, L.; Gedeon, A.; Janssen, E. A.; Bione, S.; Bolhuis, P. A.; Barth, P. G.; Wilson, M.; Haan, E.; Orstavik, K. H.; Patton, M. A.; Green, A. J.; Zammarchi, E.; Donati, M. A.; Toniolo, D.

    1997-01-01

    Barth syndrome (BTHS) is an X-linked disorder characterized clinically by the associated features of cardiac and skeletal myopathy, short stature, and neutropenia. The clinical manifestations of the disease are, in general, quite variable, but cardiac failure as a consequence of cardiac dilatation

  10. Linking fungal secondary metabolites and pathways to their genes in Aspergillus

    DEFF Research Database (Denmark)

    Petersen, Lene Maj

    . oryzae metabolites, however, revealed the chemical link between the two species. In two parallel projects, involving A. niger and A. aculeatus respectively, the polyketide 6-methyl salicylic acid (6-MSA), and corresponding biosynthetic pathways, were investigated. In A. niger, 6-MSA was converted...

  11. X-linked NDUFA1 gene mutations associated with mitochondrial encephalomyopathy.

    NARCIS (Netherlands)

    Fernandez-Moreira, D.; Ugalde, C.; Smeets, R.; Rodenburg, R.J.T.; Lopez-Laso, E.; Ruiz-Falco, M.L.; Briones, P.; Martin, M.A.; Smeitink, J.A.M.; Arenas, J.

    2007-01-01

    OBJECTIVE: Mitochondrial complex I deficiency is the commonest diagnosed respiratory chain defect, being genetically heterogeneous. The male preponderance of previous patient cohorts suggested an X-linked underlying genetic defect. We investigated mutations in the X-chromosomal complex I structural

  12. Methylation-sensitive linking libraries enhance gene-enriched sequencing of complex genomes and map DNA methylation domains

    Directory of Open Access Journals (Sweden)

    Bharti Arvind K

    2008-12-01

    Full Text Available Abstract Background Many plant genomes are resistant to whole-genome assembly due to an abundance of repetitive sequence, leading to the development of gene-rich sequencing techniques. Two such techniques are hypomethylated partial restriction (HMPR and methylation spanning linker libraries (MSLL. These libraries differ from other gene-rich datasets in having larger insert sizes, and the MSLL clones are designed to provide reads localized to "epigenetic boundaries" where methylation begins or ends. Results A large-scale study in maize generated 40,299 HMPR sequences and 80,723 MSLL sequences, including MSLL clones exceeding 100 kb. The paired end reads of MSLL and HMPR clones were shown to be effective in linking existing gene-rich sequences into scaffolds. In addition, it was shown that the MSLL clones can be used for anchoring these scaffolds to a BAC-based physical map. The MSLL end reads effectively identified epigenetic boundaries, as indicated by their preferential alignment to regions upstream and downstream from annotated genes. The ability to precisely map long stretches of fully methylated DNA sequence is a unique outcome of MSLL analysis, and was also shown to provide evidence for errors in gene identification. MSLL clones were observed to be significantly more repeat-rich in their interiors than in their end reads, confirming the correlation between methylation and retroelement content. Both MSLL and HMPR reads were found to be substantially gene-enriched, with the SalI MSLL libraries being the most highly enriched (31% align to an EST contig, while the HMPR clones exhibited exceptional depletion of repetitive DNA (to ~11%. These two techniques were compared with other gene-enrichment methods, and shown to be complementary. Conclusion MSLL technology provides an unparalleled approach for mapping the epigenetic status of repetitive blocks and for identifying sequences mis-identified as genes. Although the types and natures of

  13. Multiple and sequential data acquisition method: an improved method for fragmentation and detection of cross-linked peptides on a hybrid linear trap quadrupole Orbitrap Velos mass spectrometer.

    Science.gov (United States)

    Rudashevskaya, Elena L; Breitwieser, Florian P; Huber, Marie L; Colinge, Jacques; Müller, André C; Bennett, Keiryn L

    2013-02-05

    The identification and validation of cross-linked peptides by mass spectrometry remains a daunting challenge for protein-protein cross-linking approaches when investigating protein interactions. This includes the fragmentation of cross-linked peptides in the mass spectrometer per se and following database searching, the matching of the molecular masses of the fragment ions to the correct cross-linked peptides. The hybrid linear trap quadrupole (LTQ) Orbitrap Velos combines the speed of the tandem mass spectrometry (MS/MS) duty circle with high mass accuracy, and these features were utilized in the current study to substantially improve the confidence in the identification of cross-linked peptides. An MS/MS method termed multiple and sequential data acquisition method (MSDAM) was developed. Preliminary optimization of the MS/MS settings was performed with a synthetic peptide (TP1) cross-linked with bis[sulfosuccinimidyl] suberate (BS(3)). On the basis of these results, MSDAM was created and assessed on the BS(3)-cross-linked bovine serum albumin (BSA) homodimer. MSDAM applies a series of multiple sequential fragmentation events with a range of different normalized collision energies (NCE) to the same precursor ion. The combination of a series of NCE enabled a considerable improvement in the quality of the fragmentation spectra for cross-linked peptides, and ultimately aided in the identification of the sequences of the cross-linked peptides. Concurrently, MSDAM provides confirmatory evidence from the formation of reporter ions fragments, which reduces the false positive rate of incorrectly assigned cross-linked peptides.

  14. The presence of p53 influences the expression of multiple human cytomegalovirus genes at early times postinfection.

    Science.gov (United States)

    Hannemann, Holger; Rosenke, Kyle; O'Dowd, John M; Fortunato, Elizabeth A

    2009-05-01

    Human cytomegalovirus (HCMV) is a common cause of morbidity and mortality in immunocompromised and immunosuppressed individuals. During infection, HCMV is known to employ host transcription factors to facilitate viral gene expression. To further understand the previously observed delay in viral replication and protein expression in p53 knockout cells, we conducted microarray analyses of p53(+/+) and p53(-/-) immortalized fibroblast cell lines. At a multiplicity of infection (MOI) of 1 at 24 h postinfection (p.i.), the expression of 22 viral genes was affected by the absence of p53. Eleven of these 22 genes (group 1) were examined by real-time reverse transcriptase, or quantitative, PCR (q-PCR). Additionally, five genes previously determined to have p53 bound to their nearest p53-responsive elements (group 2) and three control genes without p53 binding sites in their upstream sequences (group 3) were also examined. At an MOI of 1, >3-fold regulation was found for five group 1 genes. The expression of group 2 and 3 genes was not changed. At an MOI of 5, all genes from group 1 and four of five genes from group 2 were found to be regulated. The expression of control genes from group 3 remained unchanged. A q-PCR time course of four genes revealed that p53 influences viral gene expression most at immediate-early and early times p.i., suggesting a mechanism for the reduced and delayed production of virions in p53(-/-) cells.

  15. RNAi screen of DAF-16/FOXO target genes in C. elegans links pathogenesis and dauer formation.

    Directory of Open Access Journals (Sweden)

    Victor L Jensen

    2010-12-01

    Full Text Available The DAF-16/FOXO transcription factor is the major downstream output of the insulin/IGF1R signaling pathway controlling C. elegans dauer larva development and aging. To identify novel downstream genes affecting dauer formation, we used RNAi to screen candidate genes previously identified to be regulated by DAF-16. We used a sensitized genetic background [eri-1(mg366; sdf-9(m708], which enhances both RNAi efficiency and constitutive dauer formation (Daf-c. Among 513 RNAi clones screened, 21 displayed a synthetic Daf-c (SynDaf phenotype with sdf-9. One of these genes, srh-100, was previously identified to be SynDaf, but twenty have not previously been associated with dauer formation. Two of the latter genes, lys-1 and cpr-1, are known to participate in innate immunity and six more are predicted to do so, suggesting that the immune response may contribute to the dauer decision. Indeed, we show that two of these genes, lys-1 and clc-1, are required for normal resistance to Staphylococcus aureus. clc-1 is predicted to function in epithelial cohesion. Dauer formation exhibited by daf-8(m85, sdf-9(m708, and the wild-type N2 (at 27°C were all enhanced by exposure to pathogenic bacteria, while not enhanced in a daf-22(m130 background. We conclude that knockdown of the genes required for proper pathogen resistance increases pathogenic infection, leading to increased dauer formation in our screen. We propose that dauer larva formation is a behavioral response to pathogens mediated by increased dauer pheromone production.

  16. Conjugation and Evaluation of Triazole?Linked Single Guide RNA for CRISPR?Cas9 Gene Editing

    OpenAIRE

    He, Kaizhang; Chou, Eldon T.; Begay, Shawn; Anderson, Emily M.; van?Brabant?Smith, Anja

    2016-01-01

    Abstract The CRISPR?Cas9 gene editing system requires Cas9 endonuclease and guide RNAs (either the natural dual RNA consisting of crRNA and tracrRNA or a chimeric single guide RNA) that direct site?specific double?stranded DNA cleavage. This communication describes a click ligation approach that uses alkyne?azide cycloaddition to generate a triazole?linked single guide RNA (sgRNA). The conjugated sgRNA shows efficient and comparable genome editing activity to natural dual RNA and unmodified s...

  17. Serodiagnosis of cutaneous leishmaniasis: assessment of an enzyme-linked immunosorbent assay using a peptide sequence from gene B protein

    DEFF Research Database (Denmark)

    Jensen, A T; Gaafar, A; Ismail, A

    1996-01-01

    An enzyme-linked immunosorbent assay (ELISA) using a 28 amino acid sequence of the repetitive element of gene B protein (GBP) from Leishmania major was developed for serodiagnosis of cutaneous leishmaniasis (CL). The assay was compared to ELISAs using crude amastigote and promastigote antigens from...... samples from healthy Sudanese individuals living in an area endemic for malaria but free of leish-maniasis were negative in all the assays. Significantly higher levels of antibodies were found in the patients who had suffered from the disease for more than eight weeks than in patients with a shorter...

  18. Elevated urinary albumin excretion is not linked to the angiotensin I-converting enzyme gene polymorphism in clinically healthy subjects

    DEFF Research Database (Denmark)

    Clausen, P; Jensen, J S; Borch-Johnsen, K

    2000-01-01

    An elevated urinary albumin excretion (UAE) in non-diabetic subjects without renal or cardiovascular disease has been shown to be predictive of ischaemic heart disease. An insertion (I)/deletion (D) polymorphism in the angiotensin I-converting enzyme (ACE) gene has been identified and the D allele...... control group (n = 46). Elevated UAE in clinically healthy subjects is not linked to the ACE gene polymorphism....... aged 40-65 years with elevated UAE in a dipstick negative urinary sample (n = 27) from The Copenhagen City Heart Study. Neither the ACE genotype distribution (p = 0.12) nor the D and I allele frequencies (p = 0.69) differed significantly between subjects with elevated UAE and a matched normoalbuminuric...

  19. Non-equilibrium repressor binding kinetics link DNA damage dose to transcriptional timing within the SOS gene network.

    Science.gov (United States)

    Culyba, Matthew J; Kubiak, Jeffrey M; Mo, Charlie Y; Goulian, Mark; Kohli, Rahul M

    2018-06-01

    Biochemical pathways are often genetically encoded as simple transcription regulation networks, where one transcription factor regulates the expression of multiple genes in a pathway. The relative timing of each promoter's activation and shut-off within the network can impact physiology. In the DNA damage repair pathway (known as the SOS response) of Escherichia coli, approximately 40 genes are regulated by the LexA repressor. After a DNA damaging event, LexA degradation triggers SOS gene transcription, which is temporally separated into subsets of 'early', 'middle', and 'late' genes. Although this feature plays an important role in regulating the SOS response, both the range of this separation and its underlying mechanism are not experimentally defined. Here we show that, at low doses of DNA damage, the timing of promoter activities is not separated. Instead, timing differences only emerge at higher levels of DNA damage and increase as a function of DNA damage dose. To understand mechanism, we derived a series of synthetic SOS gene promoters which vary in LexA-operator binding kinetics, but are otherwise identical, and then studied their activity over a large dose-range of DNA damage. In distinction to established models based on rapid equilibrium assumptions, the data best fit a kinetic model of repressor occupancy at promoters, where the drop in cellular LexA levels associated with higher doses of DNA damage leads to non-equilibrium binding kinetics of LexA at operators. Operators with slow LexA binding kinetics achieve their minimal occupancy state at later times than operators with fast binding kinetics, resulting in a time separation of peak promoter activity between genes. These data provide insight into this remarkable feature of the SOS pathway by demonstrating how a single transcription factor can be employed to control the relative timing of each gene's transcription as a function of stimulus dose.

  20. Gene expression profiling of prostate tissue identifies chromatin regulation as a potential link between obesity and lethal prostate cancer.

    Science.gov (United States)

    Ebot, Ericka M; Gerke, Travis; Labbé, David P; Sinnott, Jennifer A; Zadra, Giorgia; Rider, Jennifer R; Tyekucheva, Svitlana; Wilson, Kathryn M; Kelly, Rachel S; Shui, Irene M; Loda, Massimo; Kantoff, Philip W; Finn, Stephen; Vander Heiden, Matthew G; Brown, Myles; Giovannucci, Edward L; Mucci, Lorelei A

    2017-11-01

    Obese men are at higher risk of advanced prostate cancer and cancer-specific mortality; however, the biology underlying this association remains unclear. This study examined gene expression profiles of prostate tissue to identify biological processes differentially expressed by obesity status and lethal prostate cancer. Gene expression profiling was performed on tumor (n = 402) and adjacent normal (n = 200) prostate tissue from participants in 2 prospective cohorts who had been diagnosed with prostate cancer from 1982 to 2005. Body mass index (BMI) was calculated from the questionnaire immediately preceding cancer diagnosis. Men were followed for metastases or prostate cancer-specific death (lethal disease) through 2011. Gene Ontology biological processes differentially expressed by BMI were identified using gene set enrichment analysis. Pathway scores were computed by averaging the signal intensities of member genes. Odds ratios (ORs) for lethal prostate cancer were estimated with logistic regression. Among 402 men, 48% were healthy weight, 31% were overweight, and 21% were very overweight/obese. Fifteen gene sets were enriched in tumor tissue, but not normal tissue, of very overweight/obese men versus healthy-weight men; 5 of these were related to chromatin modification and remodeling (false-discovery rate 7, 41% vs 17%; P = 2 × 10 -4 ) and an increased risk of lethal disease that was independent of grade and stage (OR, 5.26; 95% confidence interval, 2.37-12.25). This study improves our understanding of the biology of aggressive prostate cancer and identifies a potential mechanistic link between obesity and prostate cancer death that warrants further study. Cancer 2017;123:4130-4138. © 2017 American Cancer Society. © 2017 American Cancer Society.

  1. Refinement of the X-linked cataract locus (CXN) and gene analysis for CXN and Nance-Horan syndrome (NHS).

    Science.gov (United States)

    Brooks, Simon; Ebenezer, Neil; Poopalasundaram, Subathra; Maher, Eamonn; Francis, Peter; Moore, Anthony; Hardcastle, Alison

    2004-06-01

    The X-linked congenital cataract (CXN) locus has been mapped to a 3-cM (approximately 3.5 Mb) interval on chromosome Xp22.13, which is syntenic to the mouse cataract disease locus Xcat and encompasses the recently refined Nance-Horan syndrome (NHS) locus. A positional cloning strategy has been adopted to identify the causative gene. In an attempt to refine the CXN locus, seven microsatellites were analysed within 21 individuals of a CXN family. Haplotypes were reconstructed confirming disease segregation with markers on Xp22.13. In addition, a proximal cross-over was observed between markers S3 and S4, thereby refining the CXN disease interval by approximately 400 Kb to 3.2 Mb, flanked by markers DXS9902 and S4. Two known genes (RAI2 and RBBP7) and a novel gene (TL1) were screened for mutations within an affected male from the CXN family and an NHS family by direct sequencing of coding exons and intron- exon splice sites. No mutations or polymorphisms were identified, therefore excluding them as disease-causative in CXN and NHS. In conclusion, the CXN locus has been successfully refined and excludes PPEF1 as a candidate gene. A further three candidates were excluded based on sequence analysis. Future positional cloning efforts will focus on the region of overlap between CXN, Xcat, and NHS.

  2. A Splice Defect in the EDA Gene in Dogs with an X-Linked Hypohidrotic Ectodermal Dysplasia (XLHED) Phenotype.

    Science.gov (United States)

    Waluk, Dominik P; Zur, Gila; Kaufmann, Ronnie; Welle, Monika M; Jagannathan, Vidhya; Drögemüller, Cord; Müller, Eliane J; Leeb, Tosso; Galichet, Arnaud

    2016-09-08

    X-linked hypohidrotic ectodermal dysplasia (XLHED) caused by variants in the EDA gene represents the most common ectodermal dysplasia in humans. We investigated three male mixed-breed dogs with an ectodermal dysplasia phenotype characterized by marked hypotrichosis and multifocal complete alopecia, almost complete absence of sweat and sebaceous glands, and altered dentition with missing and abnormally shaped teeth. Analysis of SNP chip genotypes and whole genome sequence data from the three affected dogs revealed that the affected dogs shared the same haplotype on a large segment of the X-chromosome, including the EDA gene. Unexpectedly, the whole genome sequence data did not reveal any nonsynonymous EDA variant in the affected dogs. We therefore performed an RNA-seq experiment on skin biopsies to search for changes in the transcriptome. This analysis revealed that the EDA transcript in the affected dogs lacked 103 nucleotides encoded by exon 2. We speculate that this exon skipping is caused by a genetic variant located in one of the large introns flanking this exon, which was missed by whole genome sequencing with the illumina short read technology. The altered EDA transcript splicing most likely causes the observed ectodermal dysplasia in the affected dogs. These dogs thus offer an excellent opportunity to gain insights into the complex splicing processes required for expression of the EDA gene, and other genes with large introns. Copyright © 2016 Waluk et al.

  3. Site-Specific Gene Editing of Human Hematopoietic Stem Cells for X-Linked Hyper-IgM Syndrome

    Directory of Open Access Journals (Sweden)

    Caroline Y. Kuo

    2018-05-01

    Full Text Available X-linked hyper-immunoglobulin M (hyper-IgM syndrome (XHIM is a primary immunodeficiency due to mutations in CD40 ligand that affect immunoglobulin class-switch recombination and somatic hypermutation. The disease is amenable to gene therapy using retroviral vectors, but dysregulated gene expression results in abnormal lymphoproliferation in mouse models, highlighting the need for alternative strategies. Here, we demonstrate the ability of both the transcription activator-like effector nuclease (TALEN and clustered regularly interspaced short palindromic repeats-associated protein 9 (CRISPR/Cas9 platforms to efficiently drive integration of a normal copy of the CD40L cDNA delivered by Adeno-Associated Virus. Site-specific insertion of the donor sequence downstream of the endogenous CD40L promoter maintained physiologic expression of CD40L while overriding all reported downstream mutations. High levels of gene modification were achieved in primary human hematopoietic stem cells (HSCs, as well as in cell lines and XHIM-patient-derived T cells. Notably, gene-corrected HSCs engrafted in immunodeficient mice at clinically relevant frequencies. These studies provide the foundation for a permanent curative therapy in XHIM.

  4. A novel AVPR2 gene mutation of X-linked congenital nephrogenic diabetes insipidus in an Asian pedigree.

    Science.gov (United States)

    Guo, Wei-Hong; Li, Qiang; Wei, Hong-Yan; Lu, Hong-Yan; Qu, Hui-Qi; Zhu, Mei

    2016-10-01

    Polyuria and polydipsia are the characteristics of congenital nephrogenic diabetes insipidus (CNDI). Approximately 90% of all patients with CNDI have X-linked hereditary disease, which is due to a mutation of the arginine vasopressin receptor 2 ( AVPR2) gene. This case report describes a 54-year-old male with polyuria and polydipsia and several male members of his pedigree who had the same symptoms. The proband was diagnosed with diabetes insipidus using a water-deprivation and arginine vasopressin stimulation test. Genomic DNA from the patient and his family members was extracted and the AVPR2 gene was sequenced. A novel missense mutation of a cytosine to guanine transition at position 972 (c.972C > G) was found, which resulted in the substitution of isoleucine for methionine at amino acid position 324 (p.I324M) in the seventh transmembrane domain of the protein. The proband's mother and daughter were heterozygous for this mutation. The novel mutation of the AVPR2 gene further broadens the phenotypic spectrum of the AVPR2 gene.

  5. Genetic variants of the alpha-synuclein gene SNCA are associated with multiple system atrophy.

    Directory of Open Access Journals (Sweden)

    Ammar Al-Chalabi

    Full Text Available BACKGROUND: Multiple system atrophy (MSA is a progressive neurodegenerative disorder characterized by parkinsonism, cerebellar ataxia and autonomic dysfunction. Pathogenic mechanisms remain obscure but the neuropathological hallmark is the presence of alpha-synuclein-immunoreactive glial cytoplasmic inclusions. Genetic variants of the alpha-synuclein gene, SNCA, are thus strong candidates for genetic association with MSA. One follow-up to a genome-wide association of Parkinson's disease has identified association of a SNP in SNCA with MSA. METHODOLOGY/FINDINGS: We evaluated 32 SNPs in the SNCA gene in a European population of 239 cases and 617 controls recruited as part of the Neuroprotection and Natural History in Parkinson Plus Syndromes (NNIPPS study. We used 161 independently collected samples for replication. Two SNCA SNPs showed association with MSA: rs3822086 (P = 0.0044, and rs3775444 (P = 0.012, although only the first survived correction for multiple testing. In the MSA-C subgroup the association strengthened despite more than halving the number of cases: rs3822086 P = 0.0024, OR 2.153, (95% CI 1.3-3.6; rs3775444 P = 0.0017, OR 4.386 (95% CI 1.6-11.7. A 7-SNP haplotype incorporating three SNPs either side of rs3822086 strengthened the association with MSA-C further (best haplotype, P = 8.7 x 10(-4. The association with rs3822086 was replicated in the independent samples (P = 0.035. CONCLUSIONS/SIGNIFICANCE: We report a genetic association between MSA and alpha-synuclein which has replicated in independent samples. The strongest association is with the cerebellar subtype of MSA. TRIAL REGISTRATION: ClinicalTrials.gov NCT00211224.

  6. Multiple and variable NHEJ-like genes are involved in resistance to DNA damage in Streptomyces ambofaciens

    Directory of Open Access Journals (Sweden)

    Grégory Hoff

    2016-11-01

    Full Text Available Non homologous end-joining (NHEJ is a double strand break (DSB repair pathway which does not require any homologous template and can ligate two DNA ends together. The basic bacterial NHEJ machinery involves two partners: the Ku protein, a DNA end binding protein for DSB recognition and the multifunctional LigD protein composed a ligase, a nuclease and a polymerase domain, for end processing and ligation of the broken ends. In silico analyses performed in the 38 sequenced genomes of Streptomyces species revealed the existence of a large panel of NHEJ-like genes. Indeed, ku genes or ligD domain homologues are scattered throughout the genome in multiple copies and can be distinguished in two categories: the core NHEJ gene set constituted of conserved loci and the variable NHEJ gene set constituted of NHEJ-like genes present in only a part of the species. In Streptomyces ambofaciens ATCC 23877, not only the deletion of core genes but also that of variable genes led to an increased sensitivity to DNA damage induced by electron beam irradiation. Multiple mutants of ku, ligase or polymerase encoding genes showed an aggravated phenotype compared to single mutants. Biochemical assays revealed the ability of Ku-like proteins to protect and to stimulate ligation of DNA ends. RT-qPCR and GFP fusion experiments suggested that ku-like genes show a growth phase dependent expression profile consistent with their involvement in DNA repair during spores formation and/or germination.

  7. Antibiotic and antiseptic resistance genes are linked on a novel mobile genetic element: Tn6087

    Science.gov (United States)

    Ciric, Lena; Mullany, Peter; Roberts, Adam P.

    2011-01-01

    Objectives Tn916-like elements are one of the most common types of integrative and conjugative element (ICE). In this study we aimed to determine whether novel accessory genes, i.e. genes whose products are not involved in mobility or regulation, were present on a Tn916-like element (Tn6087) isolated from Streptococcus oralis from the human oral cavity. Methods A minocycline-resistant isolate was analysed using restriction fragment length polymorphism (RFLP) analysis on amplicons derived from Tn916 and DNA sequencing to determine whether there were genetic differences in Tn6087 compared with Tn916. Mutational analysis was used to determine whether the novel accessory gene found was responsible for an observed extra phenotype. Results A novel Tn916-like element, Tn6087, is described that encodes both antibiotic and antiseptic resistance. The antiseptic resistance protein is encoded by a novel small multidrug resistance gene, designated qrg, that was shown to encode resistance to cetyltrimethylammonium bromide (CTAB), also known as cetrimide bromide. Conclusions This is the first Tn916-like element described that confers both antibiotic and antiseptic resistance, suggesting that selection of either antibiotic or antiseptic resistance will also select for the other and further highlights the need for prudent use of both types of compound. PMID:21816764

  8. Transcription factor 7-like 2 gene links increased in vivo insulin synthesis to type 2 diabetes

    NARCIS (Netherlands)

    S. Jainandunsing (Sjaam); Koole, H.R. (H. Rita); van Miert, J.N.I. (Joram N.I.); T. Rietveld (Trinet); J.L.D. Wattimena (Josias); E.J.G. Sijbrands (Eric); F.W.M. de Rooij (Felix)

    2018-01-01

    textabstractTranscription factor 7-like 2 (TCF7L2) is the main susceptibility gene for type 2 diabetes, primarily through impairing the insulin secretion by pancreatic β cells. However, the exact in vivo mechanisms remain poorly understood. We performed a family study and determined if the T risk

  9. Rigid aromatic linking moiety in cationic lipids for enhanced gene transfection efficiency.

    Science.gov (United States)

    Wang, Bing; Zhao, Rui-Mo; Zhang, Ji; Liu, Yan-Hong; Huang, Zheng; Yu, Qing-Ying; Yu, Xiao-Qi

    2017-08-18

    Although numerous cationic lipids have been developed as non-viral gene vectors, the structure-activity relationship (SAR) of these materials remains unclear and needs further investigation. In this work, a series of lysine-derived cationic lipids containing linkages with different rigidity were designed and synthesized. SAR studies showed that lipids with rigid aromatic linkage could promote the formation of tight liposomes and enhance DNA condensation, which is essential for the gene delivery process. These lipids could give much higher transfection efficiency than those containing more flexible aliphatic linkage in various cell lines. Moreover, the rigid aromatic linkage also affords the material higher serum tolerance ability. Flow cytometry assay revealed that the target lipids have good cellular uptake, while confocal microscopy observation showed weaker endosome escape than Lipofectamine 2000. To solve such problem and further increase the transfection efficiency, some lysosomotropic reagents were used to improve the endosome escape of lipoplex. As expected, higher transfection efficiency than Lipofectamine 2000 could be obtained via this strategy. Cytotoxicity assay showed that these lipids have lower toxicity in various cell lines than Lipofectamine 2000, suggesting their potential for further application. This work demonstrates that a rigid aromatic linkage might distinctly improve the gene transfection abilities of cationic lipids and affords information to construct safe and efficient gene vector towards practical application. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  10. Identification of 42 Genes Linked to Stage II Colorectal Cancer Metastatic Relapse

    Directory of Open Access Journals (Sweden)

    Rabeah A. Al-Temaimi

    2016-04-01

    Full Text Available Colorectal cancer (CRC is one of the leading causes of cancer mortality. Metastasis remains the primary cause of CRC death. Predicting the possibility of metastatic relapse in early-stage CRC is of paramount importance to target therapy for patients who really need it and spare those with low-potential of metastasis. Ninety-six stage II CRC cases were stratified using high-resolution array comparative genomic hybridization (aCGH data based on a predictive survival algorithm and supervised clustering. All genes included within the resultant copy number aberrations were each interrogated independently at mRNA level using CRC expression datasets available from public repositories, which included 1820 colon cancers, and 167 normal colon tissues. Reduced mRNA expression driven by copy number losses and increased expression driven by copy number gains revealed 42 altered transcripts (29 reduced and 13 increased transcripts associated with metastatic relapse, short disease-free or overall survival, and/or epithelial to mesenchymal transition (EMT. Resultant genes were classified based on gene ontology (GO, which identified four functional enrichment groups involved in growth regulation, genomic integrity, metabolism, and signal transduction pathways. The identified 42 genes may be useful for predicting metastatic relapse in stage II CRC. Further studies are necessary to validate these findings.

  11. Oligophrenin-1 (OPHN1, a gene involved in X-linked intellectual disability, undergoes RNA editing and alternative splicing during human brain development.

    Directory of Open Access Journals (Sweden)

    Sabina Barresi

    Full Text Available Oligophrenin-1 (OPHN1 encodes for a Rho-GTPase-activating protein, important for dendritic morphogenesis and synaptic function. Mutations in this gene have been identified in patients with X-linked intellectual disability associated with cerebellar hypoplasia. ADAR enzymes are responsible for A-to-I RNA editing, an essential post-transcriptional RNA modification contributing to transcriptome and proteome diversification. Specifically, ADAR2 activity is essential for brain development and function. Herein, we show that the OPHN1 transcript undergoes post-transcriptional modifications such as A-to-I RNA editing and alternative splicing in human brain and other tissues. We found that OPHN1 editing is detectable already at the 18th week of gestation in human brain with a boost of editing at weeks 20 to 33, concomitantly with OPHN1 expression increase and the appearance of a novel OPHN1 splicing isoform. Our results demonstrate that multiple post-transcriptional events occur on OPHN1, a gene playing an important role in brain function and development.

  12. Structured association analysis leads to insight into Saccharomyces cerevisiae gene regulation by finding multiple contributing eQTL hotspots associated with functional gene modules.

    Science.gov (United States)

    Curtis, Ross E; Kim, Seyoung; Woolford, John L; Xu, Wenjie; Xing, Eric P

    2013-03-21

    Association analysis using genome-wide expression quantitative trait locus (eQTL) data investigates the effect that genetic variation has on cellular pathways and leads to the discovery of candidate regulators. Traditional analysis of eQTL data via pairwise statistical significance tests or linear regression does not leverage the availability of the structural information of the transcriptome, such as presence of gene networks that reveal correlation and potentially regulatory relationships among the study genes. We employ a new eQTL mapping algorithm, GFlasso, which we have previously developed for sparse structured regression, to reanalyze a genome-wide yeast dataset. GFlasso fully takes into account the dependencies among expression traits to suppress false positives and to enhance the signal/noise ratio. Thus, GFlasso leverages the gene-interaction network to discover the pleiotropic effects of genetic loci that perturb the expression level of multiple (rather than individual) genes, which enables us to gain more power in detecting previously neglected signals that are marginally weak but pleiotropically significant. While eQTL hotspots in yeast have been reported previously as genomic regions controlling multiple genes, our analysis reveals additional novel eQTL hotspots and, more interestingly, uncovers groups of multiple contributing eQTL hotspots that affect the expression level of functional gene modules. To our knowledge, our study is the first to report this type of gene regulation stemming from multiple eQTL hotspots. Additionally, we report the results from in-depth bioinformatics analysis for three groups of these eQTL hotspots: ribosome biogenesis, telomere silencing, and retrotransposon biology. We suggest candidate regulators for the functional gene modules that map to each group of hotspots. Not only do we find that many of these candidate regulators contain mutations in the promoter and coding regions of the genes, in the case of the Ribi group

  13. Development and mapping of SSR markers linked to resistance-gene homologue clusters in common bean

    Institute of Scientific and Technical Information of China (English)

    Luz; Nayibe; Garzon; Matthew; Wohlgemuth; Blair

    2014-01-01

    Common bean is an important but often a disease-susceptible legume crop of temperate,subtropical and tropical regions worldwide. The crop is affected by bacterial, fungal and viral pathogens. The strategy of resistance-gene homologue(RGH) cloning has proven to be an efficient tool for identifying markers and R(resistance) genes associated with resistances to diseases. Microsatellite or SSR markers can be identified by physical association with RGH clones on large-insert DNA clones such as bacterial artificial chromosomes(BACs). Our objectives in this work were to identify RGH-SSR in a BAC library from the Andean genotype G19833 and to test and map any polymorphic markers to identify associations with known positions of disease resistance genes. We developed a set of specific probes designed for clades of common bean RGH genes and then identified positive BAC clones and developed microsatellites from BACs having SSR loci in their end sequences. A total of 629 new RGH-SSRs were identified and named BMr(bean microsatellite RGH-associated markers). A subset of these markers was screened for detecting polymorphism in the genetic mapping population DOR364 × G19833. A genetic map was constructed with a total of 264 markers,among which were 80 RGH loci anchored to single-copy RFLP and SSR markers. Clusters of RGH-SSRs were observed on most of the linkage groups of common bean and in positions associated with R-genes and QTL. The use of these new markers to select for disease resistance is discussed.

  14. Structure-activity relationship of carbamate-linked cationic lipids bearing hydroxyethyl headgroup for gene delivery.

    Science.gov (United States)

    Zhi, Defu; Zhang, Shubiao; Qureshi, Farooq; Zhao, Yinan; Cui, Shaohui; Wang, Bing; Chen, Huiying; Yang, Baoling; Zhao, Defeng

    2013-12-01

    A novel series of carbamate-linked cationic lipids containing hydroxyl headgroup were synthesized and included in formulations for transfection assays. The DNA-lipid complexes were characterized for their ability to bind DNA, their size, ζ-potential and cytotoxicity. Compared with our previously reported cationic transfection lipid DDCDMA lacking the hydroxyl group and the commercially available, these cationic liposomes exhibited relatively higher transfection efficiency. Copyright © 2013 Elsevier B.V. All rights reserved.

  15. Involvement of Multiple Gene-Silencing Pathways in a Paramutation-like Phenomenon in Arabidopsis

    Directory of Open Access Journals (Sweden)

    Zhimin Zheng

    2015-05-01

    Full Text Available Paramutation is an epigenetic phenomenon that has been observed in a number of multicellular organisms. The epigenetically silenced state of paramutated alleles is not only meiotically stable but also “infectious” to active homologous alleles. The molecular mechanism of paramutation remains unclear, but components involved in RNA-directed DNA methylation (RdDM are required. Here, we report a multi-copy pRD29A-LUC transgene in Arabidopsis thaliana that behaves like a paramutation locus. The silent state of LUC is induced by mutations in the DNA glycosylase gene ROS1. The silent alleles of LUC are not only meiotically stable but also able to transform active LUC alleles into silent ones, in the absence of ros1 mutations. Maintaining silencing at the LUC gene requires action of multiple pathways besides RdDM. Our study identified specific factors that are involved in the paramutation-like phenomenon and established a model system for the study of paramutation in Arabidopsis.

  16. Identification of gene expression patterns crucially involved in experimental autoimmune encephalomyelitis and multiple sclerosis

    Directory of Open Access Journals (Sweden)

    Martin M. Herrmann

    2016-10-01

    Full Text Available After encounter with a central nervous system (CNS-derived autoantigen, lymphocytes leave the lymph nodes and enter the CNS. This event leads only rarely to subsequent tissue damage. Genes relevant to CNS pathology after cell infiltration are largely undefined. Myelin-oligodendrocyte-glycoprotein (MOG-induced experimental autoimmune encephalomyelitis (EAE is an animal model of multiple sclerosis (MS, a chronic autoimmune disease of the CNS that results in disability. To assess genes that are involved in encephalitogenicity and subsequent tissue damage mediated by CNS-infiltrating cells, we performed a DNA microarray analysis from cells derived from lymph nodes and eluted from CNS in LEW.1AV1 (RT1av1 rats immunized with MOG 91-108. The data was compared to immunizations with adjuvant alone or naive rats and to immunizations with the immunogenic but not encephalitogenic MOG 73-90 peptide. Here, we show involvement of Cd38, Cxcr4 and Akt and confirm these findings by the use of Cd38-knockout (B6.129P2-Cd38tm1Lnd/J mice, S1P-receptor modulation during EAE and quantitative expression analysis in individuals with MS. The hereby-defined underlying pathways indicate cellular activation and migration pathways mediated by G-protein-coupled receptors as crucial events in CNS tissue damage. These pathways can be further explored for novel therapeutic interventions.

  17. Multiple genetic interaction experiments provide complementary information useful for gene function prediction.

    Directory of Open Access Journals (Sweden)

    Magali Michaut

    Full Text Available Genetic interactions help map biological processes and their functional relationships. A genetic interaction is defined as a deviation from the expected phenotype when combining multiple genetic mutations. In Saccharomyces cerevisiae, most genetic interactions are measured under a single phenotype - growth rate in standard laboratory conditions. Recently genetic interactions have been collected under different phenotypic readouts and experimental conditions. How different are these networks and what can we learn from their differences? We conducted a systematic analysis of quantitative genetic interaction networks in yeast performed under different experimental conditions. We find that networks obtained using different phenotypic readouts, in different conditions and from different laboratories overlap less than expected and provide significant unique information. To exploit this information, we develop a novel method to combine individual genetic interaction data sets and show that the resulting network improves gene function prediction performance, demonstrating that individual networks provide complementary information. Our results support the notion that using diverse phenotypic readouts and experimental conditions will substantially increase the amount of gene function information produced by genetic interaction screens.

  18. Hydrocephalus due to multiple ependymal malformations is caused by mutations in the MPDZ gene.

    Science.gov (United States)

    Saugier-Veber, Pascale; Marguet, Florent; Lecoquierre, François; Adle-Biassette, Homa; Guimiot, Fabien; Cipriani, Sara; Patrier, Sophie; Brasseur-Daudruy, Marie; Goldenberg, Alice; Layet, Valérie; Capri, Yline; Gérard, Marion; Frébourg, Thierry; Laquerrière, Annie

    2017-05-01

    Congenital hydrocephalus is considered as either acquired due to haemorrhage, infection or neoplasia or as of developmental nature and is divided into two subgroups, communicating and obstructive. Congenital hydrocephalus is either syndromic or non-syndromic, and in the latter no cause is found in more than half of the patients. In patients with isolated hydrocephalus, L1CAM mutations represent the most common aetiology. More recently, a founder mutation has also been reported in the MPDZ gene in foetuses presenting massive hydrocephalus, but the neuropathology remains unknown. We describe here three novel homozygous null mutations in the MPDZ gene in foetuses whose post-mortem examination has revealed a homogeneous phenotype characterized by multiple ependymal malformations along the aqueduct of Sylvius, the third and fourth ventricles as well as the central canal of the medulla, consisting in multifocal rosettes with immature cell accumulation in the vicinity of ependymal lining early detached from the ventricular zone. MPDZ also named MUPP1 is an essential component of tight junctions which are expressed from early brain development in the choroid plexuses and ependyma. Alterations in the formation of tight junctions within the ependyma very likely account for the lesions observed and highlight for the first time that primary multifocal ependymal malformations of the ventricular system is genetically determined in humans. Therefore, MPDZ sequencing should be performed when neuropathological examination reveals multifocal ependymal rosette formation within the aqueduct of Sylvius, of the third and fourth ventricles and of the central canal of the medulla.

  19. The analysis of correlation between IL-1B gene expression and genotyping in multiple sclerosis patients.

    Science.gov (United States)

    Heidary, Masoumeh; Rakhshi, Nahid; Pahlevan Kakhki, Majid; Behmanesh, Mehrdad; Sanati, Mohammad Hossein; Sanadgol, Nima; Kamaladini, Hossein; Nikravesh, Abbas

    2014-08-15

    IL-1B is released by monocytes, astrocytes and brain endothelial cells and seems to be involved in inflammatory reactions of the central nervous system (CNS) in multiple sclerosis (MS). This study aims to evaluate the expression level of IL-1B mRNA in peripheral blood mononuclear cells (PBMCs), genotype the rs16944 SNP and find out the role of this SNP on the expression level of IL-1B in MS patients. We found that the expression level of IL-1B in MS patients increased 3.336 times more than controls in PBMCs but the rs16944 SNP in the promoter region of IL-1B did not affect the expression level of this gene and there was not association of this SNP with MS in the examined population. Also, our data did not reveal any correlation between normalized expressions of IL-1B gene with age of participants, age of onset, and disease duration. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Methylation of class II transactivator gene promoter IV is not associated with susceptibility to Multiple Sclerosis

    Directory of Open Access Journals (Sweden)

    Lincoln Matthew R

    2008-07-01

    Full Text Available Abstract Background Multiple sclerosis (MS is a complex trait in which alleles at or near the class II loci HLA-DRB1 and HLA-DQB1 contribute significantly to genetic risk. The MHC class II transactivator (MHC2TA is the master controller of expression of class II genes, and methylation of the promoter of this gene has been previously been shown to alter its function. In this study we sought to assess whether or not methylation of the MHC2TA promoter pIV could contribute to MS disease aetiology. Methods In DNA from peripheral blood mononuclear cells from a sample of 50 monozygotic disease discordant MS twins the MHC2TA promoter IV was sequenced and analysed by methylation specific PCR. Results No methylation or sequence variation of the MHC2TA promoter pIV was found. Conclusion The results of this study cannot support the notion that methylation of the pIV promoter of MHC2TA contributes to MS disease risk, although tissue and timing specific epigenetic modifications cannot be ruled out.

  1. Multiple Linear Regression for Reconstruction of Gene Regulatory Networks in Solving Cascade Error Problems

    Directory of Open Access Journals (Sweden)

    Faridah Hani Mohamed Salleh

    2017-01-01

    Full Text Available Gene regulatory network (GRN reconstruction is the process of identifying regulatory gene interactions from experimental data through computational analysis. One of the main reasons for the reduced performance of previous GRN methods had been inaccurate prediction of cascade motifs. Cascade error is defined as the wrong prediction of cascade motifs, where an indirect interaction is misinterpreted as a direct interaction. Despite the active research on various GRN prediction methods, the discussion on specific methods to solve problems related to cascade errors is still lacking. In fact, the experiments conducted by the past studies were not specifically geared towards proving the ability of GRN prediction methods in avoiding the occurrences of cascade errors. Hence, this research aims to propose Multiple Linear Regression (MLR to infer GRN from gene expression data and to avoid wrongly inferring of an indirect interaction (A → B → C as a direct interaction (A → C. Since the number of observations of the real experiment datasets was far less than the number of predictors, some predictors were eliminated by extracting the random subnetworks from global interaction networks via an established extraction method. In addition, the experiment was extended to assess the effectiveness of MLR in dealing with cascade error by using a novel experimental procedure that had been proposed in this work. The experiment revealed that the number of cascade errors had been very minimal. Apart from that, the Belsley collinearity test proved that multicollinearity did affect the datasets used in this experiment greatly. All the tested subnetworks obtained satisfactory results, with AUROC values above 0.5.

  2. A polymorphism in the HLA-DPB1 gene is associated with susceptibility to multiple sclerosis.

    Directory of Open Access Journals (Sweden)

    Judith Field

    2010-10-01

    Full Text Available We conducted an association study across the human leukocyte antigen (HLA complex to identify loci associated with multiple sclerosis (MS. Comparing 1927 SNPs in 1618 MS cases and 3413 controls of European ancestry, we identified seven SNPs that were independently associated with MS conditional on the others (each P ≤ 4 x 10(-6. All associations were significant in an independent replication cohort of 2212 cases and 2251 controls (P ≤ 0.001 and were highly significant in the combined dataset (P ≤ 6 x 10(-8. The associated SNPs included proxies for HLA-DRB1*15:01 and HLA-DRB1*03:01, and SNPs in moderate linkage disequilibrium (LD with HLA-A*02:01, HLA-DRB1*04:01 and HLA-DRB1*13:03. We also found a strong association with rs9277535 in the class II gene HLA-DPB1 (discovery set P = 9 x 10(-9, replication set P = 7 x 10(-4, combined P = 2 x 10(-10. HLA-DPB1 is located centromeric of the more commonly typed class II genes HLA-DRB1, -DQA1 and -DQB1. It is separated from these genes by a recombination hotspot, and the association is not affected by conditioning on genotypes at DRB1, DQA1 and DQB1. Hence rs9277535 represents an independent MS-susceptibility locus of genome-wide significance. It is correlated with the HLA-DPB1*03:01 allele, which has been implicated previously in MS in smaller studies. Further genotyping in large datasets is required to confirm and resolve this association.

  3. Multiple Linear Regression for Reconstruction of Gene Regulatory Networks in Solving Cascade Error Problems.

    Science.gov (United States)

    Salleh, Faridah Hani Mohamed; Zainudin, Suhaila; Arif, Shereena M

    2017-01-01

    Gene regulatory network (GRN) reconstruction is the process of identifying regulatory gene interactions from experimental data through computational analysis. One of the main reasons for the reduced performance of previous GRN methods had been inaccurate prediction of cascade motifs. Cascade error is defined as the wrong prediction of cascade motifs, where an indirect interaction is misinterpreted as a direct interaction. Despite the active research on various GRN prediction methods, the discussion on specific methods to solve problems related to cascade errors is still lacking. In fact, the experiments conducted by the past studies were not specifically geared towards proving the ability of GRN prediction methods in avoiding the occurrences of cascade errors. Hence, this research aims to propose Multiple Linear Regression (MLR) to infer GRN from gene expression data and to avoid wrongly inferring of an indirect interaction (A → B → C) as a direct interaction (A → C). Since the number of observations of the real experiment datasets was far less than the number of predictors, some predictors were eliminated by extracting the random subnetworks from global interaction networks via an established extraction method. In addition, the experiment was extended to assess the effectiveness of MLR in dealing with cascade error by using a novel experimental procedure that had been proposed in this work. The experiment revealed that the number of cascade errors had been very minimal. Apart from that, the Belsley collinearity test proved that multicollinearity did affect the datasets used in this experiment greatly. All the tested subnetworks obtained satisfactory results, with AUROC values above 0.5.

  4. Hybridisation-based resequencing of 17 X-linked intellectual disability genes in 135 patients reveals novel mutations in ATRX, SLC6A8 and PQBP1

    NARCIS (Netherlands)

    Jensen, L.R.; Chen, W.; Moser, B.; Lipkowitz, B.; Schroeder, C.; Musante, L.; Tzschach, A.; Kalscheuer, V.M.M.; Meloni, I.; Raynaud, M.; Esch, H. van; Chelly, J.; Brouwer, A.P. de; Hackett, A.; Haar, S. van der; Henn, W.; Gecz, J.; Riess, O.; Bonin, M.; Reinhardt, R.; Ropers, H.H.; Kuss, A.W.

    2011-01-01

    X-linked intellectual disability (XLID), also known as X-linked mental retardation, is a highly genetically heterogeneous condition for which mutations in >90 different genes have been identified. In this study, we used a custom-made sequencing array based on the Affymetrix 50k platform for mutation

  5. The development and application of a multiple gene co-silencing system using endogenous URA3 as a reporter gene in Ganoderma lucidum.

    Directory of Open Access Journals (Sweden)

    Dashuai Mu

    Full Text Available Ganoderma lucidum is one of the most important medicinal mushrooms; however, molecular genetics research on this species has been limited due to a lack of reliable reverse genetic tools. In this study, the endogenous orotidine 5'-monophosphate decarboxylase gene (URA3 was cloned as a silencing reporter, and four gene-silencing methods using hairpin, sense, antisense, and dual promoter constructs, were introduced into G. lucidum through a simple electroporation procedure. A comparison and evaluation of silencing efficiency demonstrated that all of the four methods differentially suppressed the expression of URA3. Our data unequivocally indicate that the dual promoter silencing vector yields the highest rate of URA3 silencing compared with other vectors (up to 81.9%. To highlight the advantages of the dual promoter system, we constructed a co-silencing system based on the dual promoter method and succeeded in co-silencing URA3 and laccase in G. lucidum. The reduction of the mRNA levels of the two genes were correlated. Thus, the screening efficiency for RNAi knockdown of multiple genes may be improved by the co-silencing of an endogenous reporter gene. The molecular tools developed in this study should facilitate the isolation of genes and the characterization of the functions of multiple genes in this pharmaceutically important species, and these tools should be highly useful for the study of other basidiomycetes.

  6. Activation tagging of the two closely linked genes LEP and VAS independently affects vascular cell number

    DEFF Research Database (Denmark)

    van der Graaff, Eric; Hooykaas, Paul J J; Keller, Beat

    2002-01-01

    report that in addition to this leafy petiole phenotype, the size of the vascular bundles is increased in all aerial organs in let as a result of an increase in the number of xylem, phloem (pro)cambial and pericycle cells. This vascular phenotype is caused by activation tagging of the two genes VASCULAR......-promoting factor. The activation tagging of VAS only resulted in a specific increase in phloem (pro)cambial and pericycle cells. We conclude that activation tagging of LEP and VAS results in additive phenotypes. Insertional mutants for LEP and VAS display wild-type vascular development, indicating the relevance...... of activation tagging for functional analysis of novel genes involved in plant development....

  7. Linking gene regulation to cell behaviors in the posterior growth zone of sequentially segmenting arthropods.

    Science.gov (United States)

    Williams, Terri A; Nagy, Lisa M

    2017-05-01

    Virtually all arthropods all arthropods add their body segments sequentially, one by one in an anterior to posterior progression. That process requires not only segment specification but typically growth and elongation. Here we review the functions of some of the key genes that regulate segmentation: Wnt, caudal, Notch pathway, and pair-rule genes, and discuss what can be inferred about their evolution. We focus on how these regulatory factors are integrated with growth and elongation and discuss the importance and challenges of baseline measures of growth and elongation. We emphasize a perspective that integrates the genetic regulation of segment patterning with the cellular mechanisms of growth and elongation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. [Analysis of the NDP gene in a Chinese family with X-linked recessive Norrie disease].

    Science.gov (United States)

    Mei, Libin; Huang, Yanru; Pan, Qian; Liang, Desheng; Wu, Lingqian

    2015-05-01

    The purpose of the current research was to investigate the NDP (Norrie disease protein) gene in one Chinese family with Norrie disease (ND) and to characterize the related clinical features. Clinical data of the proband and his family members were collected. Complete ophthalmic examinations were carried out on the proband. Genomic DNA was extracted from peripheral blood leukocytes of 35 family members. Molecular analysis of the NDP gene was performed by polymerase chain reaction and direct sequencing of all exons and flanking regions. A hemizygous NDP missense mutation c.362G > A (p.Arg121Gln) in exon 3 was identified in the affected members, but not in any of the unaffected family individuals. The missense mutation c.362G > A in NDP is responsible for the Norrie disease in this family. This discovery will help provide the family members with accurate and reliable genetic counseling and prenatal diagnosis.

  9. Linking Genes and Brain Development of Honeybee Workers: A Whole-Transcriptome Approach

    OpenAIRE

    Vleurinck, Christina; Raub, Stephan; Sturgill, David; Oliver, Brian; Beye, Martin

    2016-01-01

    Honeybees live in complex societies whose capabilities far exceed those of the sum of their single members. This social synergism is achieved mainly by the worker bees, which form a female caste. The worker bees display diverse collaborative behaviors and engage in different behavioral tasks, which are controlled by the central nervous system (CNS). The development of the worker brain is determined by the female sex and the worker caste determination signal. Here, we report on genes that are ...

  10. Early Phenylpropanoid Biosynthetic Steps in Cannabis sativa: Link between Genes and Metabolites

    Directory of Open Access Journals (Sweden)

    Immacolata Coraggio

    2013-06-01

    Full Text Available Phenylalanine ammonia-lyase (PAL, Cinnamic acid 4-hydroxylase (C4H and 4-Coumarate: CoA ligase (4CL catalyze the first three steps of the general phenylpropanoid pathway whereas chalcone synthase (CHS catalyzes the first specific step towards flavonoids production. This class of specialized metabolites has a wide range of biological functions in plant development and defence and a broad spectrum of therapeutic activities for human health. In this study, we report the isolation of hemp PAL and 4CL cDNA and genomic clones. Through in silico analysis of their deduced amino acid sequences, more than an 80% identity with homologues genes of other plants was shown and phylogenetic relationships were highlighted. Quantitative expression analysis of the four above mentioned genes, PAL and 4CL enzymatic activities, lignin content and NMR metabolite fingerprinting in different Cannabis sativa tissues were evaluated. Furthermore, the use of different substrates to assay PAL and 4CL enzymatic activities indicated that different isoforms were active in different tissues. The diversity in secondary metabolites content observed in leaves (mainly flavonoids and roots (mainly lignin was discussed in relation to gene expression and enzymatic activities data.

  11. Early phenylpropanoid biosynthetic steps in Cannabis sativa: link between genes and metabolites.

    Science.gov (United States)

    Docimo, Teresa; Consonni, Roberto; Coraggio, Immacolata; Mattana, Monica

    2013-06-28

    Phenylalanine ammonia-lyase (PAL), Cinnamic acid 4-hydroxylase (C4H) and 4-Coumarate: CoA ligase (4CL) catalyze the first three steps of the general phenylpropanoid pathway whereas chalcone synthase (CHS) catalyzes the first specific step towards flavonoids production. This class of specialized metabolites has a wide range of biological functions in plant development and defence and a broad spectrum of therapeutic activities for human health. In this study, we report the isolation of hemp PAL and 4CL cDNA and genomic clones. Through in silico analysis of their deduced amino acid sequences, more than an 80% identity with homologues genes of other plants was shown and phylogenetic relationships were highlighted. Quantitative expression analysis of the four above mentioned genes, PAL and 4CL enzymatic activities, lignin content and NMR metabolite fingerprinting in different Cannabis sativa tissues were evaluated. Furthermore, the use of different substrates to assay PAL and 4CL enzymatic activities indicated that different isoforms were active in different tissues. The diversity in secondary metabolites content observed in leaves (mainly flavonoids) and roots (mainly lignin) was discussed in relation to gene expression and enzymatic activities data.

  12. Construction of an integrated gene regulatory network link to stress-related immune system in cattle.

    Science.gov (United States)

    Behdani, Elham; Bakhtiarizadeh, Mohammad Reza

    2017-10-01

    The immune system is an important biological system that is negatively impacted by stress. This study constructed an integrated regulatory network to enhance our understanding of the regulatory gene network used in the stress-related immune system. Module inference was used to construct modules of co-expressed genes with bovine leukocyte RNA-Seq data. Transcription factors (TFs) were then assigned to these modules using Lemon-Tree algorithms. In addition, the TFs assigned to each module were confirmed using the promoter analysis and protein-protein interactions data. Therefore, our integrated method identified three TFs which include one TF that is previously known to be involved in immune response (MYBL2) and two TFs (E2F8 and FOXS1) that had not been recognized previously and were identified for the first time in this study as novel regulatory candidates in immune response. This study provides valuable insights on the regulatory programs of genes involved in the stress-related immune system.

  13. Systems Nutrigenomics Reveals Brain Gene Networks Linking Metabolic and Brain Disorders.

    Science.gov (United States)

    Meng, Qingying; Ying, Zhe; Noble, Emily; Zhao, Yuqi; Agrawal, Rahul; Mikhail, Andrew; Zhuang, Yumei; Tyagi, Ethika; Zhang, Qing; Lee, Jae-Hyung; Morselli, Marco; Orozco, Luz; Guo, Weilong; Kilts, Tina M; Zhu, Jun; Zhang, Bin; Pellegrini, Matteo; Xiao, Xinshu; Young, Marian F; Gomez-Pinilla, Fernando; Yang, Xia

    2016-05-01

    Nutrition plays a significant role in the increasing prevalence of metabolic and brain disorders. Here we employ systems nutrigenomics to scrutinize the genomic bases of nutrient-host interaction underlying disease predisposition or therapeutic potential. We conducted transcriptome and epigenome sequencing of hypothalamus (metabolic control) and hippocampus (cognitive processing) from a rodent model of fructose consumption, and identified significant reprogramming of DNA methylation, transcript abundance, alternative splicing, and gene networks governing cell metabolism, cell communication, inflammation, and neuronal signaling. These signals converged with genetic causal risks of metabolic, neurological, and psychiatric disorders revealed in humans. Gene network modeling uncovered the extracellular matrix genes Bgn and Fmod as main orchestrators of the effects of fructose, as validated using two knockout mouse models. We further demonstrate that an omega-3 fatty acid, DHA, reverses the genomic and network perturbations elicited by fructose, providing molecular support for nutritional interventions to counteract diet-induced metabolic and brain disorders. Our integrative approach complementing rodent and human studies supports the applicability of nutrigenomics principles to predict disease susceptibility and to guide personalized medicine. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  14. Mutations in the FTSJ1 gene coding for a novel S-adenosylmethionine-binding protein cause nonsyndromic X-linked mental retardation

    DEFF Research Database (Denmark)

    Freude, Kristine; Hoffmann, Kirsten; Jensen, Lars-Riff

    2004-01-01

    Nonsyndromic X-linked mental retardation (NSXLMR) is a very heterogeneous condition, and most of the underlying gene defects are still unknown. Recently, we have shown that approximately 30% of these genes cluster on the proximal Xp, which prompted us to perform systematic mutation screening...

  15. A PRACTICAL APPROACH TO THE DETECTION OF ANDROGEN RECEPTOR GENE-MUTATIONS AND PEDIGREE ANALYSIS IN FAMILIES WITH X-LINKED ANDROGEN INSENSITIVITY

    NARCIS (Netherlands)

    RISSTALPERS, C; HOOGENBOEZEM, T; SLEDDENS, HFBM; VERLEUNMOOIJMAN, MCT; DEGENHART, HJ; DROP, SLS; HALLEY, DJJ; Oosterwijk, Jan; HODGINS, MB; TRAPMAN, J; BRINKMANN, AO

    Androgen insensitivity syndrome (AIS) is an X-linked disorder in which defects in the androgen receptor gene have prevented the normal development of both internal and external male structures in 46,XY individuals. This survey reports the analysis of 11 AIS subjects. The androgen receptor gene of

  16. A practical approach to the detection of androgen receptor gene mutations and pedigree analysis in families with x-linked androgen insensitivity

    NARCIS (Netherlands)

    Ris-Stalpers, C.; Hoogenboezem, T.; Sleddens, H. F.; Verleun-Mooijman, M. C.; Degenhart, H. J.; Drop, S. L.; Halley, D. J.; Oosterwijk, J. C.; Hodgins, M. B.; Trapman, J.

    1994-01-01

    Androgen insensitivity syndrome (AIS) is an X-linked disorder in which defects in the androgen receptor gene have prevented the normal development of both internal and external male structures in 46,XY individuals. This survey reports the analysis of 11 AIS subjects. The androgen receptor gene of

  17. Immotile cilia syndrome: A recombinant family at HLA-linked gene locus

    Energy Technology Data Exchange (ETDEWEB)

    Gasparini, P.; Grifa, A.; Oggiano, N.; Fabbrizzi, E.; Giorgi, P.L. [Univsita di Ancona (Israel)

    1994-02-15

    The immotile-cilia syndrome (ICS) is an autosomal recessive trait of congenital dismobility or even complete immobility of cilia in the ciliated epithelia (MIM 244400). Recurrent upper respiratory infections in early childhood are the most common clinical findings. Recently a disease locus was mapped by sib pair analysis in two unrelated families on 6p tightly linked to HLA class II loci, such as DR and DQ. In order to confirm this assignment and to test the presence of possible heterogeneity, the authors analyzed several ICS families utilizing DNA makers of HLA class II region. Here they report the identification of a recombinant family at this locus. 3 refs., 1 fig.

  18. X-linked gene expression in the Virginia opossum: differences between the paternally derived Gpd and Pgk-A loci

    Energy Technology Data Exchange (ETDEWEB)

    Samollow, P.B.; Ford, A.L.; VandeBerg, J.L.

    1987-01-01

    Expression of X-linked glucose-6-phosphate dehydrogenase (G6PD) and phosphoglycerate kinase-A (PGK-A) in the Virginia opossum (Didelphis virginiana) was studied electrophoretically in animals from natural populations and those produced through controlled laboratory crosses. Blood from most of the wild animals exhibited a common single-banded phenotype for both enzymes. Rare variant animals, regardless of sex, exhibited single-banded phenotypes different in mobility from the common mobility class of the respective enzyme. The laboratory crosses confirmed the allelic basis for the common and rare phenotypes. Transmission of PGK-A phenotypes followed the pattern of determinate (nonrandom) inactivation of the paternally derived Pgk-A allele, and transmission of G6PD also was consistent with this pattern. A survey of tissue-specific expression of G6PD phenotypes of heterozygous females revealed, in almost all tissues, three-banded patterns skewed in favor of the allele that was expressed in blood cells. Three-banded patterns were never observed in males or in putatively homozygous females. These patterns suggest simultaneous, but unequal, expression of the maternally and paternally derived Gpd alleles within individual cells. The absence of such partial expression was noted in a parallel survey of females heterozygous at the Pgd-A locus. Thus, it appears that Gpd and Pgk-A are X-linked in D. virginiana and subject to preferential paternal allele inactivation, but that dosage compensation may not be complete for all paternally derived X-linked genes.

  19. Role of inflammation gene polymorphisms on pain and response to radiotherapy in multiple myeloma patients with painful bone destructions

    OpenAIRE

    Rudžianskienė, Milda; Inčiūra, Arturas; Gerbutavičius, Rolandas; Dambrauskienė, Rūta; Rudžianskas, Viktoras; Juozaitytė, Elona

    2016-01-01

    Background: Previous researches have demonstrated, that the severity of pain perception and it’s response to analgesia is highly dependent on gene polymorphism encoding for cytokines. We evaluated 12 single nucleotide polymorphisms (SNP) in 6 genes encoding for cytokines in multiple myeloma patients (n = 81) and assessed their influence on pain severity and response to palliative radiotherapy. Methods: Pain intensity was assessed by Visual Analogue Scale. The total dose of opioids was convert...

  20. [Associations between chronotype, road accidents and polymorphisms in genes linked with biological clock and dopaminergic system].

    Science.gov (United States)

    Taranov, A O; Puchkova, A N; Slominsky, P A; Tupitsyna, T V; Dementiyenko, V V; Dorokhov, V B

    2017-01-01

    Public transport driving is a highly demanding activity requiring high skills and responsibility. Shift work, problems with regular sleep schedule negatively impact psychomotor reactions, cognitive functions and ability to react appropriately to the changing environment. For professional drivers all these factors may lead to the increased risk of a road accident. Individual differences in chronotype, cognitive and emotional control are partially genetically determined. Our study aimed to investigate the possible associations between chronotype parameters, traffic accident history and single nucleotide polymorphisms (SNPs) in a number of genes: RORA (rs1159814), CLOCK (rs12649507), PER3 (rs2640909), NPSR1 (rs324981), NPAS2 (rs4851377), DRD3 (rs6280), SLC6A3 (rs6347), DBH (rs1611125). We have studied 303 professional bus drivers working on rolling shifts in the Moscow region who had a recorded history of road accidents. The studied group was genotyped on selected SNPs and has filled out two chronotype questionnaires: MCTQ and shortened SWPAQ (Putilov A.A, 2014). A mixed chronotype with high levels of morning and evening alertness prevailed in the group. A prominent social jetlag caused by shift work was found. For SNP in PER3 gene there was an association with morning activation. SNP in CLOCK gene was associated with social jetlag and the risk to cause a crash. Minor alleles of SNPs in NPSR1and SLC6A3 correlated with later chronotype and increased risk of a road accident. We suppose that these polymorphisms may be amongst the genetic factors connecting chronotype and road accident risk.

  1. A single nucleotide polymorphism within the novel sex-linked testis-specific retrotransposed PGAM4 gene influences human male fertility.

    Directory of Open Access Journals (Sweden)

    Hidenobu Okuda

    Full Text Available The development of novel fertilization treatments, including in vitro fertilization and intracytoplasmic injection, has made pregnancy possible regardless of the level of activity of the spermatozoa; however, the etiology of male-factor infertility is poorly understood. Multiple studies, primarily through the use of transgenic animals, have contributed to a list of candidate genes that may affect male infertility in humans. We examined single nucleotide polymorphisms (SNPs as a cause of male infertility in an analysis of spermatogenesis-specific genes.We carried out the prevalence of SNPs in the coding region of phosphoglycerate mutase 4 (PGAM4 on the X chromosome by the direct sequencing of PCR-amplified DNA from male patients. Using RT-PCR and western blot analyses, we identified that PGAM4 is a functional retrogene that is expressed predominantly in the testes and is associated with male infertility. PGAM4 is expressed in post-meiotic stages, including spermatids and spermatozoa in the testes, and the principal piece of the flagellum and acrosome in ejaculated spermatozoa. A case-control study revealed that 4.5% of infertile patients carry the G75C polymorphism, which causes an amino acid substitution in the encoded protein. Furthermore, an assay for enzymatic activity demonstrated that this polymorphism decreases the enzyme's activity both in vitro and in vivo.These results suggest that PGAM4, an X-linked retrogene, is a fundamental gene in human male reproduction and may escape meiotic sex chromosome inactivation. These findings provide fresh insight into elucidating the mechanisms of male infertility.

  2. Transcriptional Regulation of Chemokine Genes: A Link to Pancreatic Islet Inflammation?

    Directory of Open Access Journals (Sweden)

    Susan J. Burke

    2015-05-01

    Full Text Available Enhanced expression of chemotactic cytokines (aka chemokines within pancreatic islets likely contributes to islet inflammation by regulating the recruitment and activation of various leukocyte populations, including macrophages, neutrophils, and T-lymphocytes. Because of the powerful actions of these chemokines, precise transcriptional control is required. In this review, we highlight what is known about the signals and mechanisms that govern the transcription of genes encoding specific chemokine proteins in pancreatic islet β-cells, which include contributions from the NF-κB and STAT1 pathways. We further discuss increased chemokine expression in pancreatic islets during autoimmune-mediated and obesity-related development of diabetes.

  3. A multicolor panel of TALE-KRAB based transcriptional repressor vectors enabling knockdown of multiple gene targets.

    Science.gov (United States)

    Zhang, Zhonghui; Wu, Elise; Qian, Zhijian; Wu, Wen-Shu

    2014-12-05

    Stable and efficient knockdown of multiple gene targets is highly desirable for dissection of molecular pathways. Because it allows sequence-specific DNA binding, transcription activator-like effector (TALE) offers a new genetic perturbation technique that allows for gene-specific repression. Here, we constructed a multicolor lentiviral TALE-Kruppel-associated box (KRAB) expression vector platform that enables knockdown of multiple gene targets. This platform is fully compatible with the Golden Gate TALEN and TAL Effector Kit 2.0, a widely used and efficient method for TALE assembly. We showed that this multicolor TALE-KRAB vector system when combined together with bone marrow transplantation could quickly knock down c-kit and PU.1 genes in hematopoietic stem and progenitor cells of recipient mice. Furthermore, our data demonstrated that this platform simultaneously knocked down both c-Kit and PU.1 genes in the same primary cell populations. Together, our results suggest that this multicolor TALE-KRAB vector platform is a promising and versatile tool for knockdown of multiple gene targets and could greatly facilitate dissection of molecular pathways.

  4. Global gene expression profiling of brown to white adipose tissue transformation in sheep reveals novel transcriptional components linked to adipose remodeling

    DEFF Research Database (Denmark)

    Basse, Astrid L.; Dixen, Karen; Yadav, Rachita

    2015-01-01

    . Conclusions: Using global gene expression profiling of the postnatal BAT to WAT transformation in sheep, we provide novel insight into adipose tissue plasticity in a large mammal, including identification of novel transcriptional components linked to adipose tissue remodeling. Moreover, our data set provides...... NR1H3, MYC, KLF4, ESR1, RELA and BCL6, which were linked to the overall changes in gene expression during the adipose tissue remodeling. Finally, the perirenal adipose tissue expressed both brown and brite/beige adipocyte marker genes at birth, the expression of which changed substantially over time...

  5. Function and structure in social brain regions can link oxytocin-receptor genes with autistic social behavior.

    Science.gov (United States)

    Yamasue, Hidenori

    2013-02-01

    Difficulties in appropriate social and communicative behaviors are the most prevalent and core symptoms of autism spectrum disorders (ASDs). Although recent intensive research has focused on the neurobiological background of these difficulties, many aspects of them were not yet elucidated. Recent studies have employed multimodal magnetic resonance imaging (MRI) indices as intermediate phenotypes of this behavioral phenotype to link candidate genes with the autistic social difficulty. As MRI indices, functional MRI (fMRI), structural MRI, and MR-spectroscopy have been examined in subjects with autism spectrum disorders. As candidate genes, this mini-review has much interest in oxytocin-receptor genes (OXTR), since recent studies have repeatedly reported their associations with normal variations in social cognition and behavior as well as with their extremes, autistic social dysfunction. Through previous increasing studies, medial prefrontal cortex, hypothalamus and amygdala have repeatedly been revealed as neural correlates of autistic social behavior by MRI multimodalities and their relationship to OXTR. For further development of this research area, this mini-review integrates recent accumulating evidence about human behavioral and neural correlates of OXTR. Copyright © 2012 The Japanese Society of Child Neurology. Published by Elsevier B.V. All rights reserved.

  6. Genome Wide Association Mapping in Arabidopsis thaliana Identifies Novel Genes Involved in Linking Allyl Glucosinolate to Altered Biomass and Defense.

    Science.gov (United States)

    Francisco, Marta; Joseph, Bindu; Caligagan, Hart; Li, Baohua; Corwin, Jason A; Lin, Catherine; Kerwin, Rachel E; Burow, Meike; Kliebenstein, Daniel J

    2016-01-01

    A key limitation in modern biology is the ability to rapidly identify genes underlying newly identified complex phenotypes. Genome wide association studies (GWAS) have become an increasingly important approach for dissecting natural variation by associating phenotypes with genotypes at a genome wide level. Recent work is showing that the Arabidopsis thaliana defense metabolite, allyl glucosinolate (GSL), may provide direct feedback regulation, linking defense metabolism outputs to the growth, and defense responses of the plant. However, there is still a need to identify genes that underlie this process. To start developing a deeper understanding of the mechanism(s) that modulate the ability of exogenous allyl GSL to alter growth and defense, we measured changes in plant biomass and defense metabolites in a collection of natural 96 A. thaliana accessions fed with 50 μM of allyl GSL. Exogenous allyl GSL was introduced exclusively to the roots and the compound transported to the leaf leading to a wide range of heritable effects upon plant biomass and endogenous GSL accumulation. Using natural variation we conducted GWAS to identify a number of new genes which potentially control allyl responses in various plant processes. This is one of the first instances in which this approach has been successfully utilized to begin dissecting a novel phenotype to the underlying molecular/polygenic basis.

  7. Genome wide association mapping in Arabidopsis thaliana identifies novel genes involved in linking allyl glucosinolate to altered biomass and defense

    Directory of Open Access Journals (Sweden)

    Marta Francisco

    2016-07-01

    Full Text Available A key limitation in modern biology is the ability to rapidly identify genes underlying newly identified complex phenotypes. Genome wide association studies (GWAS have become an increasingly important approach for dissecting natural variation by associating phenotypes with genotypes at a genome wide level. Recent work is showing that the Arabidopsis thaliana defense metabolite, allyl glucosinolate (GSL, may provide direct feedback regulation, linking defense metabolism outputs to the growth and defense responses of the plant. However, there is still a need to identify genes that underlie this process. To start developing a deeper understanding of the mechanism(s that modulate the ability of exogenous allyl GSL to alter growth and defense, we measured changes in plant biomass and defense metabolites in a collection of natural 96 A. thaliana accessions fed with 50 µM of allyl GSL. Exogenous allyl GSL was introduced exclusively to the roots and the compound transported to the leaf leading to a wide range of heritable effects upon plant biomass and endogenous GSL accumulation. Using natural variation we conducted GWAS to identify a number of new genes which potentially control allyl responses in various plant processes. This is one of the first instances in which this approach has been successfully utilized to begin dissecting a novel phenotype to the underlying molecular/polygenic basis.

  8. New mutations of DAX-1 genes in two Japanese patients with X-linked congenital adrenal hypoplasia and hypogonadotropic hypogonadism

    Energy Technology Data Exchange (ETDEWEB)

    Yanase, Toshihiko; Takayanagi, Ryoichi; Oba, Koichi [Kyushu Univ., Fukuoka (Japan)] [and others

    1996-02-01

    Congenital adrenal hypoplasia, an X-linked disorder, is characterized by primary adrenal insufficiency and frequent association with hypogonadotropic hypogonadism. The X-chromosome gene DAX-1 has been most recently identified and shown to be responsible for this disorder. We analyzed the DAX-1 genes of two unrelated Japanese patients with congenital adrenal hypoplasia and hypogonadotropic hypogonadism by using PCR amplification of genomic DNA and its complete exonic sequencing. In a family containing several affected individuals, the proband male patient had a stop codon (TGA) in place of tryptophan (TGG) at amino acid position 171. As expected, his mother was a heterozygous carrier for the mutation, whereas his father and unaffected brother did not carry this mutation. In another male patient with noncontributory family history, sequencing revealed a 1-bp (T) deletion at amino acid position 280, leading to a frame shift and, subsequently a premature stop codon at amino acid position 371. The presence of this mutation in the patients` genome was further confirmed by digestion of genomic PCR product with MspI created by this mutation. Family studies using MspI digestion of genomic PCR products revealed that neither parent of this individual carried the mutation. These results clearly indicate that congenital adrenal hypoplasia and hypogonadotropic hypogonadism result from not only inherited but also de novo mutation in the DAX-1 gene. 31 refs., 4 figs., 2 tabs.

  9. Simultaneous inference of phenotype-associated genes and relevant tissues from GWAS data via Bayesian integration of multiple tissue-specific gene networks.

    Science.gov (United States)

    Wu, Mengmeng; Lin, Zhixiang; Ma, Shining; Chen, Ting; Jiang, Rui; Wong, Wing Hung

    2017-12-01

    Although genome-wide association studies (GWAS) have successfully identified thousands of genomic loci associated with hundreds of complex traits in the past decade, the debate about such problems as missing heritability and weak interpretability has been appealing for effective computational methods to facilitate the advanced analysis of the vast volume of existing and anticipated genetic data. Towards this goal, gene-level integrative GWAS analysis with the assumption that genes associated with a phenotype tend to be enriched in biological gene sets or gene networks has recently attracted much attention, due to such advantages as straightforward interpretation, less multiple testing burdens, and robustness across studies. However, existing methods in this category usually exploit non-tissue-specific gene networks and thus lack the ability to utilize informative tissue-specific characteristics. To overcome this limitation, we proposed a Bayesian approach called SIGNET (Simultaneously Inference of GeNEs and Tissues) to integrate GWAS data and multiple tissue-specific gene networks for the simultaneous inference of phenotype-associated genes and relevant tissues. Through extensive simulation studies, we showed the effectiveness of our method in finding both associated genes and relevant tissues for a phenotype. In applications to real GWAS data of 14 complex phenotypes, we demonstrated the power of our method in both deciphering genetic basis and discovering biological insights of a phenotype. With this understanding, we expect to see SIGNET as a valuable tool for integrative GWAS analysis, thereby boosting the prevention, diagnosis, and treatment of human inherited diseases and eventually facilitating precision medicine.

  10. Quantitative trait loci linked to PRNP gene controlling health and production traits in INRA 401 sheep

    Directory of Open Access Journals (Sweden)

    Brunel Jean-Claude

    2007-07-01

    Full Text Available Abstract In this study, the potential association of PrP genotypes with health and productive traits was investigated. Data were recorded on animals of the INRA 401 breed from the Bourges-La Sapinière INRA experimental farm. The population consisted of 30 rams and 852 ewes, which produced 1310 lambs. The animals were categorized into three PrP genotype classes: ARR homozygous, ARR heterozygous, and animals without any ARR allele. Two analyses differing in the approach considered were carried out. Firstly, the potential association of the PrP genotype with disease (Salmonella resistance and production (wool and carcass traits was studied. The data used included 1042, 1043 and 1013 genotyped animals for the Salmonella resistance, wool and carcass traits, respectively. The different traits were analyzed using an animal model, where the PrP genotype effect was included as a fixed effect. Association analyses do not indicate any evidence of an effect of PrP genotypes on traits studied in this breed. Secondly, a quantitative trait loci (QTL detection approach using the PRNP gene as a marker was applied on ovine chromosome 13. Interval mapping was used. Evidence for one QTL affecting mean fiber diameter was found at 25 cM from the PRNP gene. However, a linkage between PRNP and this QTL does not imply unfavorable linkage disequilibrium for PRNP selection purposes.

  11. Prosecutor: parameter-free inference of gene function for prokaryotes using DNA microarray data, genomic context and multiple gene annotation sources

    Directory of Open Access Journals (Sweden)

    van Hijum Sacha AFT

    2008-10-01

    Full Text Available Abstract Background Despite a plethora of functional genomic efforts, the function of many genes in sequenced genomes remains unknown. The increasing amount of microarray data for many species allows employing the guilt-by-association principle to predict function on a large scale: genes exhibiting similar expression patterns are more likely to participate in shared biological processes. Results We developed Prosecutor, an application that enables researchers to rapidly infer gene function based on available gene expression data and functional annotations. Our parameter-free functional prediction method uses a sensitive algorithm to achieve a high association rate of linking genes with unknown function to annotated genes. Furthermore, Prosecutor utilizes additional biological information such as genomic context and known regulatory mechanisms that are specific for prokaryotes. We analyzed publicly available transcriptome data sets and used literature sources to validate putative functions suggested by Prosecutor. We supply the complete results of our analysis for 11 prokaryotic organisms on a dedicated website. Conclusion The Prosecutor software and supplementary datasets available at http://www.prosecutor.nl allow researchers working on any of the analyzed organisms to quickly identify the putative functions of their genes of interest. A de novo analysis allows new organisms to be studied.

  12. Fine Mapping and Functional Analysis of the Multiple Sclerosis Risk Gene CD6

    Science.gov (United States)

    Swaminathan, Bhairavi; Cuapio, Angélica; Alloza, Iraide; Matesanz, Fuencisla; Alcina, Antonio; García-Barcina, Maria; Fedetz, Maria; Fernández, Óscar; Lucas, Miguel; Órpez, Teresa; Pinto-Medel, Mª Jesus; Otaegui, David; Olascoaga, Javier; Urcelay, Elena; Ortiz, Miguel A.; Arroyo, Rafael; Oksenberg, Jorge R.; Antigüedad, Alfredo; Tolosa, Eva; Vandenbroeck, Koen

    2013-01-01

    CD6 has recently been identified and validated as risk gene for multiple sclerosis (MS), based on the association of a single nucleotide polymorphism (SNP), rs17824933, located in intron 1. CD6 is a cell surface scavenger receptor involved in T-cell activation and proliferation, as well as in thymocyte differentiation. In this study, we performed a haptag SNP screen of the CD6 gene locus using a total of thirteen tagging SNPs, of which three were non-synonymous SNPs, and replicated the recently reported GWAS SNP rs650258 in a Spanish-Basque collection of 814 controls and 823 cases. Validation of the six most strongly associated SNPs was performed in an independent collection of 2265 MS patients and 2600 healthy controls. We identified association of haplotypes composed of two non-synonymous SNPs [rs11230563 (R225W) and rs2074225 (A257V)] in the 2nd SRCR domain with susceptibility to MS (P max(T) permutation = 1×10−4). The effect of these haplotypes on CD6 surface expression and cytokine secretion was also tested. The analysis showed significantly different CD6 expression patterns in the distinct cell subsets, i.e. – CD4+ naïve cells, P = 0.0001; CD8+ naïve cells, P<0.0001; CD4+ and CD8+ central memory cells, P = 0.01 and 0.05, respectively; and natural killer T (NKT) cells, P = 0.02; with the protective haplotype (RA) showing higher expression of CD6. However, no significant changes were observed in natural killer (NK) cells, effector memory and terminally differentiated effector memory T cells. Our findings reveal that this new MS-associated CD6 risk haplotype significantly modifies expression of CD6 on CD4+ and CD8+ T cells. PMID:23638056

  13. The architecture of gene regulatory variation across multiple human tissues: the MuTHER study.

    Directory of Open Access Journals (Sweden)

    Alexandra C Nica

    2011-02-01

    Full Text Available While there have been studies exploring regulatory variation in one or more tissues, the complexity of tissue-specificity in multiple primary tissues is not yet well understood. We explore in depth the role of cis-regulatory variation in three human tissues: lymphoblastoid cell lines (LCL, skin, and fat. The samples (156 LCL, 160 skin, 166 fat were derived simultaneously from a subset of well-phenotyped healthy female twins of the MuTHER resource. We discover an abundance of cis-eQTLs in each tissue similar to previous estimates (858 or 4.7% of genes. In addition, we apply factor analysis (FA to remove effects of latent variables, thus more than doubling the number of our discoveries (1,822 eQTL genes. The unique study design (Matched Co-Twin Analysis--MCTA permits immediate replication of eQTLs using co-twins (93%-98% and validation of the considerable gain in eQTL discovery after FA correction. We highlight the challenges of comparing eQTLs between tissues. After verifying previous significance threshold-based estimates of tissue-specificity, we show their limitations given their dependency on statistical power. We propose that continuous estimates of the proportion of tissue-shared signals and direct comparison of the magnitude of effect on the fold change in expression are essential properties that jointly provide a biologically realistic view of tissue-specificity. Under this framework we demonstrate that 30% of eQTLs are shared among the three tissues studied, while another 29% appear exclusively tissue-specific. However, even among the shared eQTLs, a substantial proportion (10%-20% have significant differences in the magnitude of fold change between genotypic classes across tissues. Our results underline the need to account for the complexity of eQTL tissue-specificity in an effort to assess consequences of such variants for complex traits.

  14. Deleting multiple lytic genes enhances biomass yield and production of recombinant proteins by Bacillus subtilis.

    Science.gov (United States)

    Wang, Yi; Chen, Zhenmin; Zhao, Ruili; Jin, Tingting; Zhang, Xiaoming; Chen, Xiangdong

    2014-08-31

    Bacillus subtilis is widely used in agriculture and industrial biotechnology; however, cell autolysis significantly decreases its yield in liquid cultures. Numerous factors mediate the lysis of B. subtilis, such as cannibalism factors, prophages, and peptidoglycan (PG) hydrolases. The aim of this work was to use molecular genetic techniques to develop a new strategy to prevent cell lysis and enhance biomass as well as the production of recombinant proteins. Five genes or genetic elements representing three different functional categories were studied as follows: lytC encoding PG hydrolases, the prophage genes xpf and yqxG-yqxH-cwlA (yGlA), and skfA and sdpC that encode cannibalism factors. Cell lysis was reduced and biomass was enhanced by deleting individually skfA, sdpC, xpf, and lytC. We constructed the multiple deletion mutant LM2531 (skfA sdpC lytC xpf) and found that after 4 h of culture, its biomass yield was significantly increased compared with that of prototypical B. subtilis 168 (wild-type) strain and that 15% and 92% of the cells were lysed in cultures of LM2531 and wild-type, respectively. Moreover, two expression vectors were constructed for producing recombinant proteins (β-galactosidase and nattokinase) under the control of the P43 promoter. Cultures of LM2531 and wild-type transformants produced 13741 U/ml and 7991 U/ml of intracellular β-galactosidase, respectively (1.72-fold increase). Further, the level of secreted nattokinase produced by strain LM2531 increased by 2.6-fold compared with wild-type (5226 IU/ml vs. 2028 IU/ml, respectively). Our novel, systematic multigene deletion approach designed to inhibit cell lysis significantly increased the biomass yield and the production of recombinant proteins by B. subtilis. These findings show promise for guiding efforts to manipulate the genomes of other B. subtilis strains that are used for industrial purposes.

  15. Multiple Genes Cause Postmating Prezygotic Reproductive Isolation in the Drosophila virilis Group.

    Science.gov (United States)

    Ahmed-Braimah, Yasir H

    2016-12-07

    Understanding the genetic basis of speciation is a central problem in evolutionary biology. Studies of reproductive isolation have provided several insights into the genetic causes of speciation, especially in taxa that lend themselves to detailed genetic scrutiny. Reproductive barriers have usually been divided into those that occur before zygote formation (prezygotic) and after (postzygotic), with the latter receiving a great deal of attention over several decades. Reproductive barriers that occur after mating but before zygote formation [postmating prezygotic (PMPZ)] are especially understudied at the genetic level. Here, I present a phenotypic and genetic analysis of a PMPZ reproductive barrier between two species of the Drosophila virilis group: D. americana and D. virilis This species pair shows strong PMPZ isolation, especially when D. americana males mate with D. virilis females: ∼99% of eggs laid after these heterospecific copulations are not fertilized. Previous work has shown that the paternal loci contributing to this incompatibility reside on two chromosomes, one of which (chromosome 5) likely carries multiple factors. The other (chromosome 2) is fixed for a paracentric inversion that encompasses nearly half the chromosome. Here, I present two results. First, I show that PMPZ in this species cross is largely due to defective sperm storage in heterospecific copulations. Second, using advanced intercross and backcross mapping approaches, I identify genomic regions that carry genes capable of rescuing heterospecific fertilization. I conclude that paternal incompatibility between D. americana males and D. virilis females is underlain by four or more genes on chromosomes 2 and 5. Copyright © 2016 Ahmed-Braimah.

  16. Rapid genome reshaping by multiple-gene loss after whole-genome duplication in teleost fish suggested by mathematical modeling

    Science.gov (United States)

    Sato, Yukuto; Tsukamoto, Katsumi; Nishida, Mutsumi

    2015-01-01

    Whole-genome duplication (WGD) is believed to be a significant source of major evolutionary innovation. Redundant genes resulting from WGD are thought to be lost or acquire new functions. However, the rates of gene loss and thus temporal process of genome reshaping after WGD remain unclear. The WGD shared by all teleost fish, one-half of all jawed vertebrates, was more recent than the two ancient WGDs that occurred before the origin of jawed vertebrates, and thus lends itself to analysis of gene loss and genome reshaping. Using a newly developed orthology identification pipeline, we inferred the post–teleost-specific WGD evolutionary histories of 6,892 protein-coding genes from nine phylogenetically representative teleost genomes on a time-calibrated tree. We found that rapid gene loss did occur in the first 60 My, with a loss of more than 70–80% of duplicated genes, and produced similar genomic gene arrangements within teleosts in that relatively short time. Mathematical modeling suggests that rapid gene loss occurred mainly by events involving simultaneous loss of multiple genes. We found that the subsequent 250 My were characterized by slow and steady loss of individual genes. Our pipeline also identified about 1,100 shared single-copy genes that are inferred to have become singletons before the divergence of clupeocephalan teleosts. Therefore, our comparative genome analysis suggests that rapid gene loss just after the WGD reshaped teleost genomes before the major divergence, and provides a useful set of marker genes for future phylogenetic analysis. PMID:26578810

  17. GAP1, a novel selection and counter-selection marker for multiple gene disruptions in Saccharomyces cerevisiae

    DEFF Research Database (Denmark)

    Regenberg, Birgitte; Hansen, J.

    2000-01-01

    the GAP1 gene. This is caused by recombination between two Salmonella typuimurium hisG direct repeats embracing GAP1, and will result in a sub-population of gap1 cells. Such cells are selected on a medium containing D-histidine, and may subsequently be used for a second gene disruption. Hence, multiple...... flanked by short (60 bp) stretches of the gene in question. Through homologous recombination, the cassette will integrate into the target gene, which is thus replaced by GAP1, and mutants are selected for on minimal L-citrulline medium. When propagated under non-selective conditions, some cells will lose...... gene disruptions can be made fast, cheaply and easily in a gap1 strain, with two positive selection steps for each disruption. Copyright (C) 2000 John Wiley & Sons, Ltd....

  18. The Drosophila Perlecan gene trol regulates multiple signaling pathways in different developmental contexts

    Directory of Open Access Journals (Sweden)

    Perry Trinity L

    2007-11-01

    Full Text Available Abstract Background Heparan sulfate proteoglycans modulate signaling by a variety of growth factors. The mammalian proteoglycan Perlecan binds and regulates signaling by Sonic Hedgehog, Fibroblast Growth Factors (FGFs, Vascular Endothelial Growth Factor (VEGF and Platelet Derived Growth Factor (PDGF, among others, in contexts ranging from angiogenesis and cardiovascular development to cancer progression. The Drosophila Perlecan homolog trol has been shown to regulate the activity of Hedgehog and Branchless (an FGF homolog to control the onset of stem cell proliferation in the developing brain during first instar. Here we extend analysis of trol mutant phenotypes to show that trol is required for a variety of developmental events and modulates signaling by multiple growth factors in different situations. Results Different mutations in trol allow developmental progression to varying extents, suggesting that trol is involved in multiple cell-fate and patterning decisions. Analysis of the initiation of neuroblast proliferation at second instar demonstrated that trol regulates this event by modulating signaling by Hedgehog and Branchless, as it does during first instar. Trol protein is distributed over the surface of the larval brain, near the regulated neuroblasts that reside on the cortical surface. Mutations in trol also decrease the number of circulating plasmatocytes. This is likely to be due to decreased expression of pointed, the response gene for VEGF/PDGF signaling that is required for plasmatocyte proliferation. Trol is found on plasmatocytes, where it could regulate VEGF/PDGF signaling. Finally, we show that in second instar brains but not third instar brain lobes and eye discs, mutations in trol affect signaling by Decapentaplegic (a Transforming Growth Factor family member, Wingless (a Wnt growth factor and Hedgehog. Conclusion These studies extend the known functions of the Drosophila Perlecan homolog trol in both developmental and

  19. Ergodic channel capacity of spatial correlated multiple-input multiple-output free space optical links using multipulse pulse-position modulation

    Science.gov (United States)

    Wang, Huiqin; Wang, Xue; Cao, Minghua

    2017-02-01

    The spatial correlation extensively exists in the multiple-input multiple-output (MIMO) free space optical (FSO) communication systems due to the channel fading and the antenna space limitation. Wilkinson's method was utilized to investigate the impact of spatial correlation on the MIMO FSO communication system employing multipulse pulse-position modulation. Simulation results show that the existence of spatial correlation reduces the ergodic channel capacity, and the reception diversity is more competent to resist this kind of performance degradation.

  20. Morphogenesis in sea urchin embryos: linking cellular events to gene regulatory network states

    Science.gov (United States)

    Lyons, Deidre; Kaltenbach, Stacy; McClay, David R.

    2013-01-01

    Gastrulation in the sea urchin begins with ingression of the primary mesenchyme cells (PMCs) at the vegetal pole of the embryo. After entering the blastocoel the PMCs migrate, form a syncitium, and synthesize the skeleton of the embryo. Several hours after the PMCs ingress the vegetal plate buckles to initiate invagination of the archenteron. That morphogenetic process occurs in several steps. The non-skeletogenic cells produce the initial inbending of the vegetal plate. Endoderm cells then rearrange and extend the length of the gut across the blastocoel to a target near the animal pole. Finally, cells that will form part of the midgut and hindgut are added to complete gastrulation. Later, the stomodeum invaginates from the oral ectoderm and fuses with the foregut to complete the archenteron. In advance of, and during these morphogenetic events an increasingly complex gene regulatory network controls the specification and the cell biological events that conduct the gastrulation movements. PMID:23801438

  1. Surfactant Protein-D-Encoding Gene Variant Polymorphisms Are Linked to Respiratory Outcome in Premature Infants

    DEFF Research Database (Denmark)

    Sorensen, Grith Lykke; Dahl, Marianne; Tan, Qihua

    2014-01-01

    OBJECTIVE: Associations between the genetic variation within or downstream of the surfactant protein-D-encoding gene (SFTPD), which encodes the collectin surfactant protein-D (SP-D) and may lead to respiratory distress syndrome or bronchopulmonary dysplasia, recently were reported. Our aim...... were used to associate genetic variation to SP-D, respiratory distress (RD), oxygen requirement, and respiratory support. RESULTS: The 5'-upstream SFTPD SNP rs1923534 and the 3 structural SNPs rs721917, rs2243639, and rs3088308 were associated with the SP-D level. The same SNPs were associated with RD......, a requirement for supplemental oxygen, and a requirement for respiratory support. Haplotype analyses identified 3 haplotypes that included the minor alleles of rs1923534, rs721917, and rs3088308 that exhibited highly significant associations with decreased SP-D levels and decreased ORs for RD, oxygen...

  2. Nitrogen Cycle Evaluation (NiCE) Chip for the Simultaneous Analysis of Multiple N-Cycle Associated Genes.

    Science.gov (United States)

    Oshiki, Mamoru; Segawa, Takahiro; Ishii, Satoshi

    2018-02-02

    Various microorganisms play key roles in the Nitrogen (N) cycle. Quantitative PCR (qPCR) and PCR-amplicon sequencing of the N cycle functional genes allow us to analyze the abundance and diversity of microbes responsible in the N transforming reactions in various environmental samples. However, analysis of multiple target genes can be cumbersome and expensive. PCR-independent analysis, such as metagenomics and metatranscriptomics, is useful but expensive especially when we analyze multiple samples and try to detect N cycle functional genes present at relatively low abundance. Here, we present the application of microfluidic qPCR chip technology to simultaneously quantify and prepare amplicon sequence libraries for multiple N cycle functional genes as well as taxon-specific 16S rRNA gene markers for many samples. This approach, named as N cycle evaluation (NiCE) chip, was evaluated by using DNA from pure and artificially mixed bacterial cultures and by comparing the results with those obtained by conventional qPCR and amplicon sequencing methods. Quantitative results obtained by the NiCE chip were comparable to those obtained by conventional qPCR. In addition, the NiCE chip was successfully applied to examine abundance and diversity of N cycle functional genes in wastewater samples. Although non-specific amplification was detected on the NiCE chip, this could be overcome by optimizing the primer sequences in the future. As the NiCE chip can provide high-throughput format to quantify and prepare sequence libraries for multiple N cycle functional genes, this tool should advance our ability to explore N cycling in various samples. Importance. We report a novel approach, namely Nitrogen Cycle Evaluation (NiCE) chip by using microfluidic qPCR chip technology. By sequencing the amplicons recovered from the NiCE chip, we can assess diversities of the N cycle functional genes. The NiCE chip technology is applicable to analyze the temporal dynamics of the N cycle gene

  3. The metabolic trinity, glucose-glycogen-lactate, links astrocytes and neurons in brain energetics, signaling, memory, and gene expression.

    Science.gov (United States)

    Dienel, Gerald A

    2017-01-10

    Glucose, glycogen, and lactate are traditionally identified with brain energetics, ATP turnover, and pathophysiology. However, recent studies extend their roles to include involvement in astrocytic signaling, memory consolidation, and gene expression. Emerging roles for these brain fuels and a readily-diffusible by-product are linked to differential fluxes in glycolytic and oxidative pathways, astrocytic glycogen dynamics, redox shifts, neuron-astrocyte interactions, and regulation of astrocytic activities by noradrenaline released from the locus coeruleus. Disproportionate utilization of carbohydrate compared with oxygen during brain activation is influenced by catecholamines, but its physiological basis is not understood and its magnitude may be affected by technical aspects of metabolite assays. Memory consolidation and gene expression are impaired by glycogenolysis blockade, and prevention of these deficits by injection of abnormally-high concentrations of lactate was interpreted as a requirement for astrocyte-to-neuron lactate shuttling in memory and gene expression. However, lactate transport was not measured and evidence for presumed shuttling is not compelling. In fact, high levels of lactate used to preserve memory consolidation and induce gene expression are sufficient to shut down neuronal firing via the HCAR1 receptor. In contrast, low lactate levels activate a receptor in locus coeruleus that stimulates noradrenaline release that may activate astrocytes throughout brain. Physiological relevance of exogenous concentrations of lactate used to mimic and evaluate metabolic, molecular, and behavioral effects of lactate requires close correspondence with the normal lactate levels, the biochemical and cellular sources and sinks, and specificity of lactate delivery to target cells. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  4. Heterogeneic dynamics of the structures of multiple gene clusters in two pathogenetically different lines originating from the same phytoplasma.

    Science.gov (United States)

    Arashida, Ryo; Kakizawa, Shigeyuki; Hoshi, Ayaka; Ishii, Yoshiko; Jung, Hee-Young; Kagiwada, Satoshi; Yamaji, Yasuyuki; Oshima, Kenro; Namba, Shigetou

    2008-04-01

    Phytoplasmas are phloem-limited plant pathogens that are transmitted by insect vectors and are associated with diseases in hundreds of plant species. Despite their small sizes, phytoplasma genomes have repeat-rich sequences, which are due to several genes that are encoded as multiple copies. These multiple genes exist in a gene cluster, the potential mobile unit (PMU). PMUs are present at several distinct regions in the phytoplasma genome. The multicopy genes encoded by PMUs (herein named mobile unit genes [MUGs]) and similar genes elsewhere in the genome (herein named fundamental genes [FUGs]) are likely to have the same function based on their annotations. In this manuscript we show evidence that MUGs and FUGs do not cluster together within the same clade. Each MUG is in a cluster with a short branch length, suggesting that MUGs are recently diverged paralogs, whereas the origin of FUGs is different from that of MUGs. We also compared the genome structures around the lplA gene in two derivative lines of the 'Candidatus Phytoplasma asteris' OY strain, the severe-symptom line W (OY-W) and the mild-symptom line M (OY-M). The gene organizations of the nucleotide sequences upstream of the lplA genes of OY-W and OY-M were dramatically different. The tra5 insertion sequence, an element of PMUs, was found only in this region in OY-W. These results suggest that transposition of entire PMUs and PMU sections has occurred frequently in the OY phytoplasma genome. The difference in the pathogenicities of OY-W and OY-M might be caused by the duplication and transposition of PMUs, followed by genome rearrangement.

  5. Cre/lox-based multiple markerless gene disruption in the genome of the extreme thermophile Thermus thermophilus.

    Science.gov (United States)

    Togawa, Yoichiro; Nunoshiba, Tatsuo; Hiratsu, Keiichiro

    2018-02-01

    Markerless gene-disruption technology is particularly useful for effective genetic analyses of Thermus thermophilus (T. thermophilus), which have a limited number of selectable markers. In an attempt to develop a novel system for the markerless disruption of genes in T. thermophilus, we applied a Cre/lox system to construct a triple gene disruptant. To achieve this, we constructed two genetic tools, a loxP-htk-loxP cassette and cre-expressing plasmid, pSH-Cre, for gene disruption and removal of the selectable marker by Cre-mediated recombination. We found that the Cre/lox system was compatible with the proliferation of the T. thermophilus HB27 strain at the lowest growth temperature (50 °C), and thus succeeded in establishing a triple gene disruptant, the (∆TTC1454::loxP, ∆TTC1535KpnI::loxP, ∆TTC1576::loxP) strain, without leaving behind a selectable marker. During the process of the sequential disruption of multiple genes, we observed the undesired deletion and inversion of the chromosomal region between multiple loxP sites that were induced by Cre-mediated recombination. Therefore, we examined the effects of a lox66-htk-lox71 cassette by exploiting the mutant lox sites, lox66 and lox71, instead of native loxP sites. We successfully constructed a (∆TTC1535::lox72, ∆TTC1537::lox72) double gene disruptant without inducing the undesired deletion of the 0.7-kbp region between the two directly oriented lox72 sites created by the Cre-mediated recombination of the lox66-htk-lox71 cassette. This is the first demonstration of a Cre/lox system being applicable to extreme thermophiles in a genetic manipulation. Our results indicate that this system is a powerful tool for multiple markerless gene disruption in T. thermophilus.

  6. Mycobacterium malmesburyense sp. nov., a non-tuberculous species of the genus Mycobacterium revealed by multiple gene sequence characterization

    CSIR Research Space (South Africa)

    Gcebe, N

    2017-04-01

    Full Text Available Journal of Systematic and Evolutionary Microbiology: DOI 10.1099/ijsem.0.001678 Mycobacterium malmesburyense sp. nov., a non-tuberculous species of the genus Mycobacterium revealed by multiple gene sequence characterization Gcebe N Rutten V Gey...

  7. Rare germline alterations in cancer-related genes associated with the risk of multiple primary tumor development

    DEFF Research Database (Denmark)

    Villacis, Rolando A. R.; Basso, Tatiane R; Canto, Luisa M

    2017-01-01

    Multiple primary tumors (MPT) have been described in carriers of inherited cancer predisposition genes. However, the genetic etiology of a large proportion of MPT cases remains unclear. We reviewed 267 patients with hereditary cancer predisposition syndromes (HCPS) that underwent genetic counseli...

  8. DLC1 tumor suppressor gene inhibits migration and invasion of multiple myeloma cells through RhoA GTPase pathway

    Czech Academy of Sciences Publication Activity Database

    Ullmannová-Benson, Veronika; Guan, M.; Zhou, X. G.; Tripathi, V.; Yang, V.; Zimonjic, D. B.; Popescu, C.

    2009-01-01

    Roč. 23, č. 2 (2009), s. 383-390 ISSN 0887-6924 Institutional research plan: CEZ:AV0Z50200510 Keywords : multiple myeloma * tumor suppressor gene * promoter methylation Subject RIV: EC - Immunology Impact factor: 8.296, year: 2009

  9. AS3MT-mediated tolerance to arsenic evolved by multiple independent horizontal gene transfers from bacteria to eukaryotes

    DEFF Research Database (Denmark)

    Palmgren, Michael; Engström, Karin; Hallström, Björn M.

    2017-01-01

    the evolutionary origin of AS3MT and assessed the ability of different genotypes to produce methylated arsenic metabolites. Phylogenetic analysis suggests that multiple, independent horizontal gene transfers between different bacteria, and from bacteria to eukaryotes, increased tolerance to environmental arsenic...

  10. No evidence that polymorphisms of the vanishing white matter disease genes are risk factors in multiple sclerosis

    NARCIS (Netherlands)

    Pronk, J.C.; Scheper, G.C.; Andel, R.J.; van Berkel, C.G.M.; Polman, C.H.; Uitdehaag, B.M.J.; van der Knaap, M.S.

    2008-01-01

    Febrile infections are known to cause exacerbations in the white matter disorders 'vanishing white matter' (VWM) and multiple sclerosis (MS). We hypothesized that polymorphisms in EIF2B1-5, the genes involved in VWM, might be risk factors for the development of MS or temperature sensitivity in

  11. Polyuridylylation and processing of transcripts from multiple gene minicircles in chloroplasts of the dinoflagellate Amphidinium carterae

    KAUST Repository

    Barbrook, Adrian C.

    2012-05-05

    Although transcription and transcript processing in the chloroplasts of plants have been extensively characterised, the RNA metabolism of other chloroplast lineages across the eukaryotes remains poorly understood. In this paper, we use RT-PCR to study transcription and transcript processing in the chloroplasts of Amphidinium carterae, a model peridinin-containing dinoflagellate. These organisms have a highly unusual chloroplast genome, with genes located on multiple small \\'minicircle\\' elements, and a number of idiosyncratic features of RNA metabolism including transcription via a rolling circle mechanism, and 3′ terminal polyuridylylation of transcripts. We demonstrate that transcription occurs in A. carterae via a rolling circle mechanism, as previously shown in the dinoflagellate Heterocapsa, and present evidence for the production of both polycistronic and monocistronic transcripts from A. carterae minicircles, including several regions containing ORFs previously not known to be expressed. We demonstrate the presence of both polyuridylylated and non-polyuridylylated transcripts in A. carterae, and show that polycistronic transcripts can be terminally polyuridylylated. We present a model for RNA metabolism in dinoflagellate chloroplasts where long polycistronic precursors are processed to form mature transcripts. Terminal polyuridylylation may mark transcripts with the correct 3′ end. © 2012 Springer Science+Business Media B.V.

  12. Mutations of the Birt–Hogg–Dubé gene in patients with multiple lung cysts and recurrent pneumothorax

    Science.gov (United States)

    Gunji, Yoko; Akiyoshi, Taeko; Sato, Teruhiko; Kurihara, Masatoshi; Tominaga, Shigeru; Takahashi, Kazuhisa; Seyama, Kuniaki

    2007-01-01

    Rationale Birt–Hogg–Dubé (BHD) syndrome, a rare inherited autosomal genodermatosis first recognised in 1977, is characterised by fibrofolliculomas of the skin, an increased risk of renal tumours and multiple lung cysts with spontaneous pneumothorax. The BHD gene, a tumour suppressor gene located at chromosome 17p11.2, has recently been shown to be defective. Recent genetic studies revealed that clinical pictures of the disease may be variable and may not always present the full expression of the phenotypes. Objectives We hypothesised that mutations of the BHD gene are responsible for patients who have multiple lung cysts of which the underlying causes have not yet been elucidated. Methods We studied eight patients with lung cysts, without skin and renal disease; seven of these patients have a history of spontaneous pneumothorax and five have a family history of pneumothorax. The BHD gene was examined using PCR, denaturing high‐performance liquid chromatography and direct sequencing. Main results We found that five of the eight patients had a BHD germline mutation. All mutations were unique and four of them were novel, including three different deletions or insertions detected in exons 6, 12 and 13, respectively and one splice acceptor site mutation in intron 5 resulting in an in‐frame deletion of exon 6. Conclusions We found that germline mutations of the BHD gene are involved in some patients with multiple lung cysts and pneumothorax. Pulmonologists should be aware that BHD syndrome can occur as an isolated phenotype with pulmonary involvement. PMID:17496196

  13. Mutational analysis of the Wolfram syndrome gene in two families with chromosome 4p-linked bipolar affective disorder.

    Science.gov (United States)

    Evans, K L; Lawson, D; Meitinger, T; Blackwood, D H; Porteous, D J

    2000-04-03

    Bipolar affective disorder (BPAD) is a complex disease with a significant genetic component. Heterozygous carriers of Wolfram syndrome (WFS) are at increased risk of psychiatric illness. A gene for WFS (WFS1) has recently been cloned and mapped to chromosome 4p, in the general region we previously reported as showing linkage to BPAD. Here we present sequence analysis of the WFS1 coding sequence in five affected individuals from two chromosome 4p-linked families. This resulted in the identification of six polymorphisms, two of which are predicted to change the amino acid sequence of the WFS1 protein, however none of the changes segregated with disease status. Am. J. Med. Genet. (Neuropsychiatr. Genet.) 96:158-160, 2000. Copyright 2000 Wiley-Liss, Inc.

  14. A variation in the cerebroside sulfotransferase gene is linked to exercise-modified insulin resistance and to type 2 diabetes

    DEFF Research Database (Denmark)

    Roeske-Nielsen, A.; Buschard, K.; Manson, J.E.

    2009-01-01

    .8.2.11). The aim of this study was to investigate whether two single nucleotide polymorphisms (SNP), rs2267161 located in an exon or rs42929 located in an intron, in the gene encoding CST are linked to type 2 diabetes (T2D). METHODS: As a population survey, 265 male and female patients suffering from T2D and 291...... gender matched controls were examined. RESULTS: A higher proportion of T2D patients were heterozygous at SNP rs2267161 with both T (methionine) and C (valine) alleles present (49.8% versus 41.3%, P = .04). The calculated odd risk for T2D was 1.47 (1.01-2.15, P = .047). Among female controls...

  15. Free-Space Optical Communications Link at 1550-nm using Multiple-Quantum-Well Modulating Retroreflectors in a Marine Environment

    National Research Council Canada - National Science Library

    Rabinovich, W. S; Mahon, R; Burris, H. R; Gilbreath, G. C; Goetz, P. G; Moore, C. I; Stell, M. F; Vilcheck, M. J; Witkowsky, J. L; Swingen, L

    2005-01-01

    A 1550-nm eye-safe, free-space optical communications link is demonstrated at rates up to 5 Mbits/s over a distance of 2 km in the Chesapeake Bay, using quantum-well-based modulating retroreflectors...

  16. Integration of multiple networks and pathways identifies cancer driver genes in pan-cancer analysis.

    Science.gov (United States)

    Cava, Claudia; Bertoli, Gloria; Colaprico, Antonio; Olsen, Catharina; Bontempi, Gianluca; Castiglioni, Isabella

    2018-01-06

    Modern high-throughput genomic technologies represent a comprehensive hallmark of molecular changes in pan-cancer studies. Although different cancer gene signatures have been revealed, the mechanism of tumourigenesis has yet to be completely understood. Pathways and networks are important tools to explain the role of genes in functional genomic studies. However, few methods consider the functional non-equal roles of genes in pathways and the complex gene-gene interactions in a network. We present a novel method in pan-cancer analysis that identifies de-regulated genes with a functional role by integrating pathway and network data. A pan-cancer analysis of 7158 tumour/normal samples from 16 cancer types identified 895 genes with a central role in pathways and de-regulated in cancer. Comparing our approach with 15 current tools that identify cancer driver genes, we found that 35.6% of the 895 genes identified by our method have been found as cancer driver genes with at least 2/15 tools. Finally, we applied a machine learning algorithm on 16 independent GEO cancer datasets to validate the diagnostic role of cancer driver genes for each cancer. We obtained a list of the top-ten cancer driver genes for each cancer considered in this study. Our analysis 1) confirmed that there are several known cancer driver genes in common among different types of cancer, 2) highlighted that cancer driver genes are able to regulate crucial pathways.

  17. Sex-specific expression of the X-linked histone demethylase gene Jarid1c in brain.

    Directory of Open Access Journals (Sweden)

    Jun Xu

    Full Text Available Jarid1c, an X-linked gene coding for a histone demethylase, plays an important role in brain development and function. Notably, JARID1C mutations cause mental retardation and increased aggression in humans. These phenotypes are consistent with the expression patterns we have identified in mouse brain where Jarid1c mRNA was detected in hippocampus, hypothalamus, and cerebellum. Jarid1c expression and associated active histone marks at its 5'end are high in P19 neurons, indicating that JARID1C demethylase plays an important role in differentiated neuronal cells. We found that XX mice expressed Jarid1c more highly than XY mice, independent of their gonadal types (testes versus ovaries. This increased expression in XX mice is consistent with Jarid1c escape from X inactivation and is not compensated by expression from the Y-linked paralogue Jarid1d, which is expressed at a very low level compared to the X paralogue in P19 cells. Our observations suggest that sex-specific expression of Jarid1c may contribute to sex differences in brain function.

  18. A novel missense mutation in the CLCN7 gene linked to benign autosomal dominant osteopetrosis: a case series

    Directory of Open Access Journals (Sweden)

    Rashid Ban Mousa

    2013-01-01

    channel 7 gene in this patient (Case 2. The missense mutation (CGG>TGG located in exon 15 (c.1225C>T of the Chloride channel 7 gene changed the amino acid position 409 from arginine to tryptophan (p.R409W, c.1225C>T. In addition to the clinical diagnosis of both cases, the missense mutation we identified in one allele of the Chloride channel 7 gene could be linked to autosomal dominant osteopetrosis-II because the symptoms appear in late childhood or adolescence. Conclusion In this family, the molecular diagnosis was confirmed after identification of the same mutation in the older son (sibling. Furthermore, we detected that the father and his brother (the uncle are carriers of the same mutation, whereas the mother and her sister (the aunt do not carry any mutation of the Chloride channel 7 gene. Thus, the disease penetrance is at least 60% in the family. The mother and father are cousins and a further consanguineous marriage between the aunt and the uncle is not recommended because the dominant allele of the Chloride channel 7 gene will be transferred to the progeny. However, a similar risk is also expected following a marriage between the uncle and an unrelated woman. The p.R409W mutation in the Chloride channel 7 gene has not yet been described in the literature and it possibly has a dominant-negative impact on the protein.

  19. A novel missense mutation in the CLCN7 gene linked to benign autosomal dominant osteopetrosis: a case series.

    Science.gov (United States)

    Rashid, Ban Mousa; Rashid, Nawshirwan Gafoor; Schulz, Ansgar; Lahr, Georgia; Nore, Beston Faiek

    2013-01-09

    mutation (CGG>TGG) located in exon 15 (c.1225C>T) of the Chloride channel 7 gene changed the amino acid position 409 from arginine to tryptophan (p.R409W, c.1225C>T).In addition to the clinical diagnosis of both cases, the missense mutation we identified in one allele of the Chloride channel 7 gene could be linked to autosomal dominant osteopetrosis-II because the symptoms appear in late childhood or adolescence. In this family, the molecular diagnosis was confirmed after identification of the same mutation in the older son (sibling). Furthermore, we detected that the father and his brother (the uncle) are carriers of the same mutation, whereas the mother and her sister (the aunt) do not carry any mutation of the Chloride channel 7 gene. Thus, the disease penetrance is at least 60% in the family. The mother and father are cousins and a further consanguineous marriage between the aunt and the uncle is not recommended because the dominant allele of the Chloride channel 7 gene will be transferred to the progeny. However, a similar risk is also expected following a marriage between the uncle and an unrelated woman. The p.R409W mutation in the Chloride channel 7 gene has not yet been described in the literature and it possibly has a dominant-negative impact on the protein.

  20. Novel and recurrent NDP gene mutations in familial cases of Norrie disease and X-linked exudative vitreoretinopathy.

    Science.gov (United States)

    Pelcastre, Erika L; Villanueva-Mendoza, Cristina; Zenteno, Juan C

    2010-05-01

    To present the results of molecular analysis of the NDP gene in Mexican families with Norrie disease (ND) and X-linked familial exudative vitreoretinopathy (XL-FEVR). Two unrelated families with ND and two with XL-FEVR were studied. Clinical diagnosis was suspected on the basis of a complete ophthalmologic examination. Molecular methods included DNA isolation from peripheral blood leucocytes, polymerase chain reaction amplification and direct nucleotide sequencing analysis of the complete coding region and exon-intron junctions of NDP. Haplotype analysis using NDP-linked microsatellites markers was performed in both ND families. A novel Norrin missense mutation, p.Arg41Thr, was identified in two apparently unrelated families with ND. Haplotype analysis demonstrated that affected males in these two families shared the same ND-linked haplotype, suggesting a common origin for this novel mutation. The previously reported p.Arg121Trp and p.Arg121Gln Norrin mutations were identified in the two families with XL-FEVR. Our results expand the mutational spectrum in ND. This is the first report of ND resulting from mutation at arginine position 41 of Norrin. Interestingly, mutations at the same residue but resulting in a different missense change were previously described in subjects with XL-FEVR (p.Arg41Lys) or persistent fetal vasculature syndrome (p.Arg41Ser), indicating that the novel p.Arg41Thr change causes a more severe retinal phenotype. Preliminary data suggest a founder effect for the ND p.Arg41Thr mutation in these two Mexican families.

  1. A viral microRNA down-regulates multiple cell cycle genes through mRNA 5'UTRs.

    Directory of Open Access Journals (Sweden)

    Finn Grey

    2010-06-01

    Full Text Available Global gene expression data combined with bioinformatic analysis provides strong evidence that mammalian miRNAs mediate repression of gene expression primarily through binding sites within the 3' untranslated region (UTR. Using RNA induced silencing complex immunoprecipitation (RISC-IP techniques we have identified multiple cellular targets for a human cytomegalovirus (HCMV miRNA, miR-US25-1. Strikingly, this miRNA binds target sites primarily within 5'UTRs, mediating significant reduction in gene expression. Intriguingly, many of the genes targeted by miR-US25-1 are associated with cell cycle control, including cyclin E2, BRCC3, EID1, MAPRE2, and CD147, suggesting that miR-US25-1 is targeting genes within a related pathway. Deletion of miR-US25-1 from HCMV results in over expression of cyclin E2 in the context of viral infection. Our studies demonstrate that a viral miRNA mediates translational repression of multiple cellular genes by targeting mRNA 5'UTRs.

  2. A genome-wide study of DNA methylation patterns and gene expression levels in multiple human and chimpanzee tissues.

    Directory of Open Access Journals (Sweden)

    Athma A Pai

    2011-02-01

    Full Text Available The modification of DNA by methylation is an important epigenetic mechanism that affects the spatial and temporal regulation of gene expression. Methylation patterns have been described in many contexts within and across a range of species. However, the extent to which changes in methylation might underlie inter-species differences in gene regulation, in particular between humans and other primates, has not yet been studied. To this end, we studied DNA methylation patterns in livers, hearts, and kidneys from multiple humans and chimpanzees, using tissue samples for which genome-wide gene expression data were also available. Using the multi-species gene expression and methylation data for 7,723 genes, we were able to study the role of promoter DNA methylation in the evolution of gene regulation across tissues and species. We found that inter-tissue methylation patterns are often conserved between humans and chimpanzees. However, we also found a large number of gene expression differences between species that might be explained, at least in part, by corresponding differences in methylation levels. In particular, we estimate that, in the tissues we studied, inter-species differences in promoter methylation might underlie as much as 12%-18% of differences in gene expression levels between humans and chimpanzees.

  3. Brain white matter structure and COMT gene are linked to second-language learning in adults.

    Science.gov (United States)

    Mamiya, Ping C; Richards, Todd L; Coe, Bradley P; Eichler, Evan E; Kuhl, Patricia K

    2016-06-28

    Adult human brains retain the capacity to undergo tissue reorganization during second-language learning. Brain-imaging studies show a relationship between neuroanatomical properties and learning for adults exposed to a second language. However, the role of genetic factors in this relationship has not been investigated. The goal of the current study was twofold: (i) to characterize the relationship between brain white matter fiber-tract properties and second-language immersion using diffusion tensor imaging, and (ii) to determine whether polymorphisms in the catechol-O-methyltransferase (COMT) gene affect the relationship. We recruited incoming Chinese students enrolled in the University of Washington and scanned their brains one time. We measured the diffusion properties of the white matter fiber tracts and correlated them with the number of days each student had been in the immersion program at the time of the brain scan. We found that higher numbers of days in the English immersion program correlated with higher fractional anisotropy and lower radial diffusivity in the right superior longitudinal fasciculus. We show that fractional anisotropy declined once the subjects finished the immersion program. The relationship between brain white matter fiber-tract properties and immersion varied in subjects with different COMT genotypes. Subjects with the Methionine (Met)/Valine (Val) and Val/Val genotypes showed higher fractional anisotropy and lower radial diffusivity during immersion, which reversed immediately after immersion ended, whereas those with the Met/Met genotype did not show these relationships. Statistical modeling revealed that subjects' grades in the language immersion program were best predicted by fractional anisotropy and COMT genotype.

  4. SuhB Is a Regulator of Multiple Virulence Genes and Essential for Pathogenesis of Pseudomonas aeruginosa

    Science.gov (United States)

    Li, Kewei; Xu, Chang; Jin, Yongxin; Sun, Ziyu; Liu, Chang; Shi, Jing; Chen, Gukui; Chen, Ronghao; Jin, Shouguang; Wu, Weihui

    2013-01-01

    ABSTRACT During initial colonization and chronic infection, pathogenic bacteria encounter distinct host environments. Adjusting gene expression accordingly is essential for the pathogenesis. Pseudomonas aeruginosa has evolved complicated regulatory networks to regulate different sets of virulence factors to facilitate colonization and persistence. The type III secretion system (T3SS) and motility are associated with acute infections, while biofilm formation and the type VI secretion system (T6SS) are associated with chronic persistence. To identify novel regulatory genes required for pathogenesis, we screened a P. aeruginosa transposon (Tn) insertion library and found suhB to be an essential gene for the T3SS gene expression. The expression of suhB was upregulated in a mouse acute lung infection model, and loss of suhB resulted in avirulence. Suppression of T3SS gene expression in the suhB mutant is linked to a defective translation of the T3SS master regulator, ExsA. Further studies demonstrated that suhB mutation led to the upregulation of GacA and its downstream small RNAs, RsmY and RsmZ, triggering T6SS expression and biofilm formation while inhibiting the T3SS. Our results demonstrate that an in vivo-inducible gene, suhB, reciprocally regulates genes associated with acute and chronic infections and plays an essential role in the pathogenesis of P. aeruginosa. PMID:24169572

  5. Quantitative variation in obesity-related traits and insulin precursors linked to the OB gene region on human chromosome 7

    Energy Technology Data Exchange (ETDEWEB)

    Duggirala, R.; Stern, M.P.; Reinhart, L.J. [Univ. of Texas Health Science Center, San Antonio, TX (United States)] [and others

    1996-09-01

    Despite the evidence that human obesity has strong genetic determinants, efforts at identifying specific genes that influence human obesity have largely been unsuccessful. Using the sibship data obtained from 32 low-income Mexican American pedigrees ascertained on a type II diabetic proband and a multipoint variance-components method, we tested for linkage between various obesity-related traits plus associated metabolic traits and 15 markers on human chromosome 7. We found evidence for linkage between markers in the OB gene region and various traits, as follows: D7S514 and extremity skinfolds (LOD = 3.1), human carboxypeptidase A1 (HCPA1) and 32,33-split proinsulin level (LOD = 4.2), and HCPA1 and proinsulin level (LOD = 3.2). A putative susceptibility locus linked to the marker D7S514 explained 56% of the total phenotypic variation in extremity skinfolds. Variation at the HCPA1 locus explained 64% of phenotypic variation in proinsulin level and {approximately}73% of phenotypic variation in split proinsulin concentration, respectively. Weaker evidence for linkage to several other obesity-related traits (e.g., waist circumference, body-mass index, fat mass by bioimpedance, etc.) was observed for a genetic location, which is {approximately}15 cM telomeric to OB. In conclusion, our study reveals that the OB region plays a significant role in determining the phenotypic variation of both insulin precursors and obesity-related traits, at least in Mexican Americans. 66 refs., 3 figs., 4 tabs.

  6. A Variation in the Cerebroside Sulfotransferase Gene Is Linked to Exercise-Modified Insulin Resistance and to Type 2 Diabetes

    Directory of Open Access Journals (Sweden)

    A. Roeske-Nielsen

    2009-01-01

    Full Text Available Aims. The glycosphingolipid β-galactosylceramide-3-O-sulfate (sulfatide is present in the secretory granules of the insulin producing β-cells and may act as a molecular chaperone of insulin. The final step in sulfatide synthesis is performed by cerebroside sulfotransferase (CST (EC 2.8.2.11. The aim of this study was to investigate whether two single nucleotide polymorphisms (SNP, rs2267161 located in an exon or rs42929 located in an intron, in the gene encoding CST are linked to type 2 diabetes (T2D. Methods. As a population survey, 265 male and female patients suffering from T2D and 291 gender matched controls were examined. Results. A higher proportion of T2D patients were heterozygous at SNP rs2267161 with both T (methionine and C (valine alleles present (49.8% versus 41.3%, P=.04. The calculated odd risk for T2D was 1.47 (1.01–2.15, P=.047. Among female controls, the homozygous CC individuals displayed lower insulin resistance measured by HOMA-IR (P=.05 than the C/T or TT persons; this was particularly prevalent in individuals who exercise (P=.03. Conclusion. Heterozygosity at SNP rs2267161 in the gene encoding the CST enzyme confers increased risk of T2D. Females with the CC allele showed lower insulin resistance.

  7. Understanding Autoimmune Mechanisms in Multiple Sclerosis Using Gene Expression Microarrays: Treatment Effect and Cytokine-related Pathways

    Directory of Open Access Journals (Sweden)

    A. Achiron

    2004-01-01

    Full Text Available Multiple sclerosis (MS is a central nervous system disease in which activated autoreactive T-cells invade the blood brain barrier and initiate an inflammatory response that leads to myelin destruction and axonal loss. The etiology of MS, as well as the mechanisms associated with its unexpected onset, the unpredictable clinical course spanning decades, and the different rates of progression leading to disability over time, remains an enigma. We have applied gene expression microarrays technology in peripheral blood mononuclear cells (PBMC to better understand MS pathogenesis and better target treatment approaches. A signature of 535 genes were found to distinguish immunomodulatory treatment effects between 13 treated and 13 untreated MS patients. In addition, the expression pattern of 1109 gene transcripts that were previously reported to significantly differentiate between MS patients and healthy subjects were further analyzed to study the effect of cytokine-related pathways on disease pathogenesis. When relative gene expression for 26 MS patients was compared to 18 healthy controls, 30 genes related to various cytokine-associated pathways were identified. These genes belong to a variety of families such as interleukins, small inducible cytokine subfamily and tumor necrosis factor ligand and receptor. Further analysis disclosed seven cytokine-associated genes within the immunomodulatory treatment signature, and two cytokine-associated genes SCYA4 (small inducible cytokine A4 and FCAR (Fc fragment of IgA, CD89 that were common to both the MS gene expression signature and the immunomodulatory treatment gene expression signature. Our results indicate that cytokine-associated genes are involved in various pathogenic pathways in MS and also related to immunomodulatory treatment effects.

  8. A Hybrid One-Way ANOVA Approach for the Robust and Efficient Estimation of Differential Gene Expression with Multiple Patterns.

    Directory of Open Access Journals (Sweden)

    Mohammad Manir Hossain Mollah

    Full Text Available Identifying genes that are differentially expressed (DE between two or more conditions with multiple patterns of expression is one of the primary objectives of gene expression data analysis. Several statistical approaches, including one-way analysis of variance (ANOVA, are used to identify DE genes. However, most of these methods provide misleading results for two or more conditions with multiple patterns of expression in the presence of outlying genes. In this paper, an attempt is made to develop a hybrid one-way ANOVA approach that unifies the robustness and efficiency of estimation using the minimum β-divergence method to overcome some problems that arise in the existing robust methods for both small- and large-sample cases with multiple patterns of expression.The proposed method relies on a β-weight function, which produces values between 0 and 1. The β-weight function with β = 0.2 is used as a measure of outlier detection. It assigns smaller weights (≥ 0 to outlying expressions and larger weights (≤ 1 to typical expressions. The distribution of the β-weights is used to calculate the cut-off point, which is compared to the observed β-weight of an expression to determine whether that gene expression is an outlier. This weight function plays a key role in unifying the robustness and efficiency of estimation in one-way ANOVA.Analyses of simulated gene expression profiles revealed that all eight methods (ANOVA, SAM, LIMMA, EBarrays, eLNN, KW, robust BetaEB and proposed perform almost identically for m = 2 conditions in the absence of outliers. However, the robust BetaEB method and the proposed method exhibited considerably better performance than the other six methods in the presence of outliers. In this case, the BetaEB method exhibited slightly better performance than the proposed method for the small-sample cases, but the the proposed method exhibited much better performance than the BetaEB method for both the small- and large

  9. Loss of heterozygosity on chromosome 11q13 in two families with acromegaly/gigantism is independent of mutations of the multiple endocrine neoplasia type I gene.

    Science.gov (United States)

    Gadelha, M R; Prezant, T R; Une, K N; Glick, R P; Moskal, S F; Vaisman, M; Melmed, S; Kineman, R D; Frohman, L A

    1999-01-01

    Familial acromegaly/gigantism occurring in the absence of multiple endocrine neoplasia type I (MEN-1) or the Carney complex has been reported in 18 families since the biochemical diagnosis of GH excess became available, and the genetic defect is unknown. In the present study we examined 2 unrelated families with isolated acromegaly/gigantism. In family A, 3 of 4 siblings were affected, with ages at diagnosis of 19, 21, and 23 yr. In family B, 5 of 13 siblings exhibited the phenotype and were diagnosed at 13, 15, 17, 17, and 24 yr of age. All 8 affected patients had elevated basal GH levels associated with high insulin-like growth factor I levels and/or nonsuppressible serum GH levels during an oral glucose tolerance test. GHRH levels were normal in affected members of family A. An invasive macroadenoma was found in 6 subjects, and a microadenoma was found in 1 subject from family B. The sequence of the GHRH receptor complementary DNA in 1 tumor from family A was normal. There was no history of consanguinity in either family, and the past medical history and laboratory results excluded MEN-1 and the Carney complex in all affected and unaffected screened subjects. Five of 8 subjects have undergone pituitary surgery to date, and paraffin-embedded pituitary blocks were available for analysis. Loss of heterozygosity on chromosome 11q13 was studied by comparing microsatellite polymorphisms of leukocyte and tumor DNA using PYGM (centromeric) and D11S527 (telomeric), markers closely linked to the MEN-1 tumor suppressor gene. All tumors exhibited a loss of heterozygosity at both markers. Sequencing of the MEN-1 gene revealed no germline mutations in either family, nor was a somatic mutation found in tumor DNA from one subject in family A. The integrity of the MEN-1 gene in this subject was further supported by demonstration of the presence of MEN-1 messenger ribonucleic acid, as assessed by RT-PCR. These data indicate that loss of heterozygosity in these affected family

  10. Gene expression profiles of lung adenocarcinoma linked to histopathological grading and survival but not to EGF-R status: a microarray study

    Directory of Open Access Journals (Sweden)

    Passlick Bernward

    2010-03-01

    Full Text Available Abstract Background Several different gene expression signatures have been proposed to predict response to therapy and clinical outcome in lung adenocarcinoma. Herein, we investigate if elements of published gene sets can be reproduced in a small dataset, and how gene expression profiles based on limited sample size relate to clinical parameters including histopathological grade and EGFR protein expression. Methods Affymetrix Human Genome U133A platform was used to obtain gene expression profiles of 28 pathologically and clinically annotated adenocarcinomas of the lung. EGFR status was determined by fluorescent in situ hybridization and immunohistochemistry. Results Using unsupervised clustering algorithms, the predominant gene expression signatures correlated with the histopathological grade but not with EGFR protein expression as detected by immunohistochemistry. In a supervised analysis, the signature of high grade tumors but not of EGFR overexpressing cases showed significant enrichment of gene sets reflecting MAPK activation and other potential signaling cascades downstream of EGFR. Out of four different previously published gene sets that had been linked to prognosis, three showed enrichment in the gene expression signature associated with favorable prognosis. Conclusions In this dataset, histopathological tumor grades but not EGFR status were associated with dominant gene expression signatures and gene set enrichment reflecting oncogenic pathway activation, suggesting that high immunohistochemistry EGFR scores may not necessarily be linked to downstream effects that cause major changes in gene expression patterns. Published gene sets showed association with patient survival; however, the small sample size of this study limited the options for a comprehensive validation of previously reported prognostic gene expression signatures.

  11. Multiple ETS family proteins regulate PF4 gene expression by binding to the same ETS binding site.

    Directory of Open Access Journals (Sweden)

    Yoshiaki Okada

    Full Text Available In previous studies on the mechanism underlying megakaryocyte-specific gene expression, several ETS motifs were found in each megakaryocyte-specific gene promoter. Although these studies suggested that several ETS family proteins regulate megakaryocyte-specific gene expression, only a few ETS family proteins have been identified. Platelet factor 4 (PF4 is a megakaryocyte-specific gene and its promoter includes multiple ETS motifs. We had previously shown that ETS-1 binds to an ETS motif in the PF4 promoter. However, the functions of the other ETS motifs are still unclear. The goal of this study was to investigate a novel functional ETS motif in the PF4 promoter and identify proteins binding to the motif. In electrophoretic mobility shift assays and a chromatin immunoprecipitation assay, FLI-1, ELF-1, and GABP bound to the -51 ETS site. Expression of FLI-1, ELF-1, and GABP activated the PF4 promoter in HepG2 cells. Mutation of a -51 ETS site attenuated FLI-1-, ELF-1-, and GABP-mediated transactivation of the promoter. siRNA analysis demonstrated that FLI-1, ELF-1, and GABP regulate PF4 gene expression in HEL cells. Among these three proteins, only FLI-1 synergistically activated the promoter with GATA-1. In addition, only FLI-1 expression was increased during megakaryocytic differentiation. Finally, the importance of the -51 ETS site for the activation of the PF4 promoter during physiological megakaryocytic differentiation was confirmed by a novel reporter gene assay using in vitro ES cell differentiation system. Together, these data suggest that FLI-1, ELF-1, and GABP regulate PF4 gene expression through the -51 ETS site in megakaryocytes and implicate the differentiation stage-specific regulation of PF4 gene expression by multiple ETS factors.

  12. Expression of 5 S rRNA genes linked to 35 S rDNA in plants, their epigenetic modification and regulatory element divergence

    Directory of Open Access Journals (Sweden)

    Garcia Sònia

    2012-06-01

    Full Text Available Abstract Background In plants, the 5 S rRNA genes usually occur as separate tandems (S-type arrangement or, less commonly, linked to 35 S rDNA units (L-type. The activity of linked genes remains unknown so far. We studied the homogeneity and expression of 5 S genes in several species from family Asteraceae known to contain linked 35 S-5 S units. Additionally, their methylation status was determined using bisulfite sequencing. Fluorescence in situ hybridization was applied to reveal the sub-nuclear positions of rDNA arrays. Results We found that homogenization of L-type units went to completion in most (4/6 but not all species. Two species contained major L-type and minor S-type units (termed Ls-type. The linked genes dominate 5 S rDNA expression while the separate tandems do not seem to be expressed. Members of tribe Anthemideae evolved functional variants of the polymerase III promoter in which a residing C-box element differs from the canonical angiosperm motif by as much as 30%. On this basis, a more relaxed consensus sequence of a plant C-box: (5’-RGSWTGGGTG-3’ is proposed. The 5 S paralogs display heavy DNA methylation similarly as to their unlinked counterparts. FISH revealed the close association of 35 S-5 S arrays with nucleolar periphery indicating that transcription of 5 S genes may occur in this territory. Conclusions We show that the unusual linked arrangement of 5 S genes, occurring in several plant species, is fully compatible with their expression and functionality. This extraordinary 5 S gene dynamics is manifested at different levels, such as variation in intrachromosomal positions, unit structure, epigenetic modification and considerable divergence of regulatory motifs.

  13. The percentage of bacterial genes on leading versus lagging strands is influenced by multiple balancing forces

    Science.gov (United States)

    Mao, Xizeng; Zhang, Han; Yin, Yanbin; Xu, Ying

    2012-01-01

    The majority of bacterial genes are located on the leading strand, and the percentage of such genes has a large variation across different bacteria. Although some explanations have been proposed, these are at most partial explanations as they cover only small percentages of the genes and do not even consider the ones biased toward the lagging strand. We have carried out a computational study on 725 bacterial genomes, aiming to elucidate other factors that may have influenced the strand location of genes in a bacterium. Our analyses suggest that (i) genes of some functional categories such as ribosome have higher preferences to be on the leading strands; (ii) genes of some functional categories such as transcription factor have higher preferences on the lagging strands; (iii) there is a balancing force that tends to keep genes from all moving to the leading and more efficient strand and (iv) the percentage of leading-strand genes in an bacterium can be accurately explained based on the numbers of genes in the functional categories outlined in (i) and (ii), genome size and gene density, indicating that these numbers implicitly contain the information about the percentage of genes on the leading versus lagging strand in a genome. PMID:22735706

  14. Common inversion polymorphism at 17q21.31 affects expression of multiple genes in tissue-specific manner.

    Science.gov (United States)

    de Jong, Simone; Chepelev, Iouri; Janson, Esther; Strengman, Eric; van den Berg, Leonard H; Veldink, Jan H; Ophoff, Roel A

    2012-09-06

    Chromosome 17q21.31 contains a common inversion polymorphism of approximately 900 kb in populations with European ancestry. Two divergent MAPT haplotypes, H1 and H2 are described with distinct linkage disequilibrium patterns across the region reflecting the inversion status at this locus. The MAPT H1 haplotype has been associated with progressive supranuclear palsy, corticobasal degeneration, Parkinson's disease and Alzheimer's disease, while the H2 is linked to recurrent deletion events associated with the 17q21.31 microdeletion syndrome, a disease characterized by developmental delay and learning disability. In this study, we investigate the effect of the inversion on the expression of genes in the 17q21.31 region. We find the expression of several genes in and at the borders of the inversion to be affected; specific either to whole blood or different regions of the human brain. The H1 haplotype was found to be associated with an increased expression of LRRC37A4, PLEKH1M and MAPT. In contrast, a decreased expression of MGC57346, LRRC37A and CRHR1 was associated with H1. Studies thus far have focused on the expression of MAPT in the inversion region. However, our results show that the inversion status affects expression of other genes in the 17q21.31 region as well. Given the link between the inversion status and different neurological diseases, these genes may also be involved in disease pathology, possibly in a tissue-specific manner.

  15. Double silencing of relevant genes suggests the existence of the direct link between DNA replication/repair and central carbon metabolism in human fibroblasts.

    Science.gov (United States)

    Wieczorek, Aneta; Fornalewicz, Karolina; Mocarski, Łukasz; Łyżeń, Robert; Węgrzyn, Grzegorz

    2018-04-15

    Genetic evidence for a link between DNA replication and glycolysis has been demonstrated a decade ago in Bacillus subtilis, where temperature-sensitive mutations in genes coding for replication proteins could be suppressed by mutations in genes of glycolytic enzymes. Then, a strong influence of dysfunctions of particular enzymes from the central carbon metabolism (CCM) on DNA replication and repair in Escherichia coli was reported. Therefore, we asked if such a link occurs only in bacteria or it is a more general phenomenon. Here, we demonstrate that effects of silencing (provoked by siRNA) of expression of genes coding for proteins involved in DNA replication and repair (primase, DNA polymerase ι, ligase IV, and topoisomerase IIIβ) on these processes (less efficient entry into the S phase of the cell cycle and decreased level of DNA synthesis) could be suppressed by silencing of specific genes of enzymes from CMM. Silencing of other pairs of replication/repair and CMM genes resulted in enhancement of the negative effects of lower expression levels of replication/repair genes. We suggest that these results may be proposed as a genetic evidence for the link between DNA replication/repair and CMM in human cells, indicating that it is a common biological phenomenon, occurring from bacteria to humans. Copyright © 2018 Elsevier B.V. All rights reserved.

  16. Functional consequences of mutations in CDKL5, an X-linked gene involved in infantile spasms and mental retardation.

    Science.gov (United States)

    Bertani, Ilaria; Rusconi, Laura; Bolognese, Fabrizio; Forlani, Greta; Conca, Barbara; De Monte, Lucia; Badaracco, Gianfranco; Landsberger, Nicoletta; Kilstrup-Nielsen, Charlotte

    2006-10-20

    Mutations in the X-linked cyclin-dependent kinase-like 5 (CDKL5) gene have been identified in patients with Rett syndrome, West syndrome, and X-linked infantile spasms sharing the common features of generally intractable early seizures and mental retardation. Disease-causing mutations are distributed in both the catalytic domain and in the large COOH terminus. In this report, we examine the functional consequences of some Rett mutations of CDKL5 together with some synthetically designed derivatives useful to underline the functional domains of the protein. The mutated CDKL5 derivatives have been subjected to in vitro kinase assays and analyzed for phosphorylation of the TEY (Thr-Glu-Tyr) motif within the activation loop, their subcellular localization, and the capacity of CDKL5 to interact with itself. Whereas wild-type CDKL5 autophosphorylates and mediates the phosphorylation of the methyl-CpG-binding protein 2 (MeCP2) in vitro, Rett-mutated proteins show both impaired and increased catalytic activity suggesting that a tight regulation of CDKL5 is required for correct brain functions. Furthermore, we show that CDKL5 can self-associate and mediate the phosphorylation of its own TEY (Thr-Glu-Tyr) motif. Eventually, we show that the COOH terminus regulates CDKL5 properties; in particular, it negatively influences the catalytic activity and is required for its proper sub-nuclear localization. We propose a model in which CDKL5 phosphorylation is required for its entrance into the nucleus whereas a portion of the COOH-terminal domain is responsible for a stable residency in this cellular compartment probably through protein-protein interactions.

  17. Synergistic interactions between Drosophila orthologues of genes spanned by de novo human CNVs support multiple-hit models of autism.

    Science.gov (United States)

    Grice, Stuart J; Liu, Ji-Long; Webber, Caleb

    2015-03-01

    Autism spectrum disorders (ASDs) are highly heritable and characterised by deficits in social interaction and communication, as well as restricted and repetitive behaviours. Although a number of highly penetrant ASD gene variants have been identified, there is growing evidence to support a causal role for combinatorial effects arising from the contributions of multiple loci. By examining synaptic and circadian neurological phenotypes resulting from the dosage variants of unique human:fly orthologues in Drosophila, we observe numerous synergistic interactions between pairs of informatically-identified candidate genes whose orthologues are jointly affected by large de novo copy number variants (CNVs). These CNVs were found in the genomes of individuals with autism, including a patient carrying a 22q11.2 deletion. We first demonstrate that dosage alterations of the unique Drosophila orthologues of candidate genes from de novo CNVs that harbour only a single candidate gene display neurological defects similar to those previously reported in Drosophila models of ASD-associated variants. We then considered pairwise dosage changes within the set of orthologues of candidate genes that were affected by the same single human de novo CNV. For three of four CNVs with complete orthologous relationships, we observed significant synergistic effects following the simultaneous dosage change of gene pairs drawn from a single CNV. The phenotypic variation observed at the Drosophila synapse that results from these interacting genetic variants supports a concordant phenotypic outcome across all interacting gene pairs following the direction of human gene copy number change. We observe both specificity and transitivity between interactors, both within and between CNV candidate gene sets, supporting shared and distinct genetic aetiologies. We then show that different interactions affect divergent synaptic processes, demonstrating distinct molecular aetiologies. Our study illustrates

  18. Gene expression profiles of prostate cancer reveal involvement of multiple molecular pathways in the metastatic process

    International Nuclear Information System (INIS)

    Chandran, Uma R; Ma, Changqing; Dhir, Rajiv; Bisceglia, Michelle; Lyons-Weiler, Maureen; Liang, Wenjing; Michalopoulos, George; Becich, Michael; Monzon, Federico A

    2007-01-01

    Prostate cancer is characterized by heterogeneity in the clinical course that often does not correlate with morphologic features of the tumor. Metastasis reflects the most adverse outcome of prostate cancer, and to date there are no reliable morphologic features or serum biomarkers that can reliably predict which patients are at higher risk of developing metastatic disease. Understanding the differences in the biology of metastatic and organ confined primary tumors is essential for developing new prognostic markers and therapeutic targets. Using Affymetrix oligonucleotide arrays, we analyzed gene expression profiles of 24 androgen-ablation resistant metastatic samples obtained from 4 patients and a previously published dataset of 64 primary prostate tumor samples. Differential gene expression was analyzed after removing potentially uninformative stromal genes, addressing the differences in cellular content between primary and metastatic tumors. The metastatic samples are highly heterogenous in expression; however, differential expression analysis shows that 415 genes are upregulated and 364 genes are downregulated at least 2 fold in every patient with metastasis. The expression profile of metastatic samples reveals changes in expression of a unique set of genes representing both the androgen ablation related pathways and other metastasis related gene networks such as cell adhesion, bone remodelling and cell cycle. The differentially expressed genes include metabolic enzymes, transcription factors such as Forkhead Box M1 (FoxM1) and cell adhesion molecules such as Osteopontin (SPP1). We hypothesize that these genes have a role in the biology of metastatic disease and that they represent potential therapeutic targets for prostate cancer

  19. Intellectual Enrichment Is Linked to Cerebral Efficiency in Multiple Sclerosis: Functional Magnetic Resonance Imaging Evidence for Cognitive Reserve

    Science.gov (United States)

    Sumowski, James F.; Wylie, Glenn R.; DeLuca, John; Chiaravalloti, Nancy

    2010-01-01

    The cognitive reserve hypothesis helps to explain the incomplete relationship between brain disease and cognitive status in people with neurologic diseases, including Alzheimer's; disease and multiple sclerosis. Lifetime intellectual enrichment (estimated with education or vocabulary knowledge) lessens the negative impact of brain disease on…

  20. Linking Teacher Education to Redesigned Systems of Accountability: A Call for Multiple Measures in Pre-Service Teacher Effectiveness

    Science.gov (United States)

    Farley, Amy N.; Clayton, Grant; Kaka, Sarah J.

    2018-01-01

    In this written commentary for the special issue of "Education Policy Analysis Archives" focused on "Redesigning Assessment and Accountability," we call for teacher preparation to embrace a multiple measures philosophy by providing teacher candidates with rich opportunities to engage with data from a variety of sources, beyond…

  1. Inhibition of estrogen-responsive gene activation by the retinoid X receptor beta: evidence for multiple inhibitory pathways.

    OpenAIRE

    Segars, J H; Marks, M S; Hirschfeld, S; Driggers, P H; Martinez, E; Grippo, J F; Brown, M; Wahli, W; Ozato, K

    1993-01-01

    The retinoid X receptor beta (RXR beta; H-2RIIBP) forms heterodimers with various nuclear hormone receptors and binds multiple hormone response elements, including the estrogen response element (ERE). In this report, we show that endogenous RXR beta contributes to ERE binding activity in nuclear extracts of the human breast cancer cell line MCF-7. To define a possible regulatory role of RXR beta regarding estrogen-responsive transcription in breast cancer cells, RXR beta and a reporter gene d...

  2. Butyrate induces profound changes in gene expression related to multiple signal pathways in bovine kidney epithelial cells

    Directory of Open Access Journals (Sweden)

    Li CongJun

    2006-09-01

    Full Text Available Abstract Background Global gene expression profiles of bovine kidney epithelial cells regulated by sodium butyrate were investigated with high-density oligonucleotide microarrays. The bovine microarray with 86,191 distinct 60mer oligonucleotides, each with 4 replicates, was designed and produced with Maskless Array Synthesizer technology. These oligonucleotides represent approximately 45,383 unique cattle sequences. Results 450 genes significantly regulated by butyrate with a median False Discovery Rate (FDR = 0 % were identified. The majority of these genes were repressed by butyrate and associated with cell cycle control. The expression levels of 30 selected genes identified by the microarray were confirmed using real-time PCR. The results from real-time PCR positively correlated (R = 0.867 with the results from the microarray. Conclusion This study presented the genes related to multiple signal pathways such as cell cycle control and apoptosis. The profound changes in gene expression elucidate the molecular basis for the pleiotropic effects of butyrate on biological processes. These findings enable better recognition of the full range of beneficial roles butyrate may play during cattle energy metabolism, cell growth and proliferation, and possibly in fighting gastrointestinal pathogens.

  3. Distinctive mitochondrial genome of Calanoid copepod Calanus sinicus with multiple large non-coding regions and reshuffled gene order: Useful molecular markers for phylogenetic and population studies

    Science.gov (United States)

    2011-01-01

    Background Copepods are highly diverse and abundant, resulting in extensive ecological radiation in marine ecosystems. Calanus sinicus dominates continental shelf waters in the northwest Pacific Ocean and plays an important role in the local ecosystem by linking primary production to higher trophic levels. A lack of effective molecular markers has hindered phylogenetic and population genetic studies concerning copepods. As they are genome-level informative, mitochondrial DNA sequences can be used as markers for population genetic studies and phylogenetic studies. Results The mitochondrial genome of C. sinicus is distinct from other arthropods owing to the concurrence of multiple non-coding regions and a reshuffled gene arrangement. Further particularities in the mitogenome of C. sinicus include low A + T-content, symmetrical nucleotide composition between strands, abbreviated stop codons for several PCGs and extended lengths of the genes atp6 and atp8 relative to other copepods. The monophyletic Copepoda should be placed within the Vericrustacea. The close affinity between Cyclopoida and Poecilostomatoida suggests reassigning the latter as subordinate to the former. Monophyly of Maxillopoda is rejected. Within the alignment of 11 C. sinicus mitogenomes, there are 397 variable sites harbouring three 'hotspot' variable sites and three microsatellite loci. Conclusion The occurrence of the circular subgenomic fragment during laboratory assays suggests that special caution should be taken when sequencing mitogenomes using long PCR. Such a phenomenon may provide additional evidence of mitochondrial DNA recombination, which appears to have been a prerequisite for shaping the present mitochondrial profile of C. sinicus during its evolution. The lack of synapomorphic gene arrangements among copepods has cast doubt on the utility of gene order as a useful molecular marker for deep phylogenetic analysis. However, mitochondrial genomic sequences have been valuable markers for

  4. SPINE: SParse eIgengene NEtwork linking gene expression clusters in Dehalococcoides mccartyi to perturbations in experimental conditions.

    Directory of Open Access Journals (Sweden)

    Cresten B Mansfeldt

    Full Text Available We present a statistical model designed to identify the effect of experimental perturbations on the aggregate behavior of the transcriptome expressed by the bacterium Dehalococcoides mccartyi strain 195. Strains of Dehalococcoides are used in sub-surface bioremediation applications because they organohalorespire tetrachloroethene and trichloroethene (common chlorinated solvents that contaminate the environment to non-toxic ethene. However, the biochemical mechanism of this process remains incompletely described. Additionally, the response of Dehalococcoides to stress-inducing conditions that may be encountered at field-sites is not well understood. The constructed statistical model captured the aggregate behavior of gene expression phenotypes by modeling the distinct eigengenes of 100 transcript clusters, determining stable relationships among these clusters of gene transcripts with a sparse network-inference algorithm, and directly modeling the effect of changes in experimental conditions by constructing networks conditioned on the experimental state. Based on the model predictions, we discovered new response mechanisms for DMC, notably when the bacterium is exposed to solvent toxicity. The network identified a cluster containing thirteen gene transcripts directly connected to the solvent toxicity condition. Transcripts in this cluster include an iron-dependent regulator (DET0096-97 and a methylglyoxal synthase (DET0137. To validate these predictions, additional experiments were performed. Continuously fed cultures were exposed to saturating levels of tetrachloethene, thereby causing solvent toxicity, and transcripts that were predicted to be linked to solvent toxicity were monitored by quantitative reverse-transcription polymerase chain reaction. Twelve hours after being shocked with saturating levels of tetrachloroethene, the control transcripts (encoding for a key hydrogenase and the 16S rRNA did not significantly change. By contrast

  5. Transcriptome analysis of recurrently deregulated genes across multiple cancers identifies new pan-cancer biomarkers

    DEFF Research Database (Denmark)

    Kaczkowski, Bogumil; Tanaka, Yuji; Kawaji, Hideya

    2016-01-01

    Genes that are commonly deregulated in cancer are clinically attractive as candidate pan-diagnostic markers and therapeutic targets. To globally identify such targets, we compared Cap Analysis of Gene Expression (CAGE) profiles from 225 different cancer cell lines and 339 corresponding primary cell...

  6. Phylogenetic reconstruction and DNA barcoding for closely related pine moth species (Dendrolimus) in China with multiple gene markers.

    Science.gov (United States)

    Dai, Qing-Yan; Gao, Qiang; Wu, Chun-Sheng; Chesters, Douglas; Zhu, Chao-Dong; Zhang, Ai-Bing

    2012-01-01

    Unlike distinct species, closely related species offer a great challenge for phylogeny reconstruction and species identification with DNA barcoding due to their often overlapping genetic variation. We tested a sibling species group of pine moth pests in China with a standard cytochrome c oxidase subunit I (COI) gene and two alternative internal transcribed spacer (ITS) genes (ITS1 and ITS2). Five different phylogenetic/DNA barcoding analysis methods (Maximum likelihood (ML)/Neighbor-joining (NJ), "best close match" (BCM), Minimum distance (MD), and BP-based method (BP)), representing commonly used methodology (tree-based and non-tree based) in the field, were applied to both single-gene and multiple-gene analyses. Our results demonstrated clear reciprocal species monophyly for three relatively distant related species, Dendrolimus superans, D. houi, D. kikuchii, as recovered by both single and multiple genes while the phylogenetic relationship of three closely related species, D. punctatus, D. tabulaeformis, D. spectabilis, could not be resolved with the traditional tree-building methods. Additionally, we find the standard COI barcode outperforms two nuclear ITS genes, whatever the methods used. On average, the COI barcode achieved a success rate of 94.10-97.40%, while ITS1 and ITS2 obtained a success rate of 64.70-81.60%, indicating ITS genes are less suitable for species identification in this case. We propose the use of an overall success rate of species identification that takes both sequencing success and assignation success into account, since species identification success rates with multiple-gene barcoding system were generally overestimated, especially by tree-based methods, where only successfully sequenced DNA sequences were used to construct a phylogenetic tree. Non-tree based methods, such as MD, BCM, and BP approaches, presented advantages over tree-based methods by reporting the overall success rates with statistical significance. In addition, our

  7. Phylogenetic reconstruction and DNA barcoding for closely related pine moth species (Dendrolimus in China with multiple gene markers.

    Directory of Open Access Journals (Sweden)

    Qing-Yan Dai

    Full Text Available Unlike distinct species, closely related species offer a great challenge for phylogeny reconstruction and species identification with DNA barcoding due to their often overlapping genetic variation. We tested a sibling species group of pine moth pests in China with a standard cytochrome c oxidase subunit I (COI gene and two alternative internal transcribed spacer (ITS genes (ITS1 and ITS2. Five different phylogenetic/DNA barcoding analysis methods (Maximum likelihood (ML/Neighbor-joining (NJ, "best close match" (BCM, Minimum distance (MD, and BP-based method (BP, representing commonly used methodology (tree-based and non-tree based in the field, were applied to both single-gene and multiple-gene analyses. Our results demonstrated clear reciprocal species monophyly for three relatively distant related species, Dendrolimus superans, D. houi, D. kikuchii, as recovered by both single and multiple genes while the phylogenetic relationship of three closely related species, D. punctatus, D. tabulaeformis, D. spectabilis, could not be resolved with the traditional tree-building methods. Additionally, we find the standard COI barcode outperforms two nuclear ITS genes, whatever the methods used. On average, the COI barcode achieved a success rate of 94.10-97.40%, while ITS1 and ITS2 obtained a success rate of 64.70-81.60%, indicating ITS genes are less suitable for species identification in this case. We propose the use of an overall success rate of species identification that takes both sequencing success and assignation success into account, since species identification success rates with multiple-gene barcoding system were generally overestimated, especially by tree-based methods, where only successfully sequenced DNA sequences were used to construct a phylogenetic tree. Non-tree based methods, such as MD, BCM, and BP approaches, presented advantages over tree-based methods by reporting the overall success rates with statistical significance. In

  8. Serodiagnosis of Leishmania donovani infections: assessment of enzyme-linked immunosorbent assays using recombinant L. donovani gene B protein (GBP) and a peptide sequence of L. donovani GBP

    DEFF Research Database (Denmark)

    Jensen, A T; Gasim, S; Moller, T

    1999-01-01

    The repetitive sequence of Leishmania major gene B protein (GBP) has previously been shown to be a useful tool in the diagnosis of cutaneous leishmaniasis (CL). Here, we have assessed enzyme-linked immunosorbent assays (ELISAs) using recombinant L. donovani GBP (rGBP) and a peptide sequence of L...... for malaria but free of leishmaniasis was negative in both assays....

  9. CONFIRMATION OF X-LINKED INHERITANCE AND PROVISIONAL MAPPING OF THE KERATOSIS FOLLICULARIS SPINULOSA DECALVANS GENE ON XP IN A LARGE DUTCH FAMILY

    NARCIS (Netherlands)

    Oosterwijk, JC; NELEN, M; VANZANDVOORT, PM; VANOSCH, LDM; ORANJE, AP; WITTEBOLPOST, D; VANOOST, BA

    In a large Dutch family with keratosis follicularis spinulosa decalvans (KFSD, MIM 308800), DNA linkage analysis was performed in order to locate the gene. Pedigree analysis and lod score calculation confirmed X-linked inheritance and revealed significant linkage to DNA markers on Xp. A maximum lod

  10. DNA sequences from two SSRs (CIR316 and MUCS088) linked to root-knot nematode resistance genes from diverse cottons (Gossypium spp).

    Science.gov (United States)

    We investigated DNA sequencing information from alleles (DNA amplified fragments) of two previously reported SSR markers (CIR316 and MUCS088) linked to root-knot nematode (RKN) resistance genes. Markers based on electrophoretic differences, including RFLPs, AFLPs and SSRs can sometimes mask underlyi...

  11. A multiple genome analysis of Mycobacterium tuberculosis reveals specific novel genes and mutations associated with pyrazinamide resistance

    KAUST Repository

    Sheen, Patricia

    2017-10-11

    Tuberculosis (TB) is a major global health problem and drug resistance compromises the efforts to control this disease. Pyrazinamide (PZA) is an important drug used in both first and second line treatment regimes. However, its complete mechanism of action and resistance remains unclear.We genotyped and sequenced the complete genomes of 68 M. tuberculosis strains isolated from unrelated TB patients in Peru. No clustering pattern of the strains was verified based on spoligotyping. We analyzed the association between PZA resistance with non-synonymous mutations and specific genes. We found mutations in pncA and novel genes significantly associated with PZA resistance in strains without pncA mutations. These included genes related to transportation of metal ions, pH regulation and immune system evasion.These results suggest potential alternate mechanisms of PZA resistance that have not been found in other populations, supporting that the antibacterial activity of PZA may hit multiple targets.

  12. Could age modify the effect of genetic variants in IL6 and TNF-α genes in multiple myeloma?

    Science.gov (United States)

    Martino, Alessandro; Buda, Gabriele; Maggini, Valentina; Lapi, Francesco; Lupia, Antonella; Di Bello, Domenica; Orciuolo, Enrico; Galimberti, Sara; Barale, Roberto; Petrini, Mario; Rossi, Anna Maria

    2012-05-01

    Cytokines play a central role in multiple myeloma (MM) pathogenesis thus genetic variations within cytokines coding genes could influence MM susceptibility and therapy outcome. We investigated the impact of 8 SNPs in these genes in 202 MM cases and 235 controls also evaluating their impact on therapy outcome in a subset of 91 patients. Despite the overall negative findings, we found a significant age-modified effect of IL6 and TNF-α SNPs, on MM risk and therapy outcome, respectively. Therefore, this observation suggests that genetic variation in inflammation-related genes could be an important mediator of the complex interplay between ageing and cancer. Copyright © 2012 Elsevier Ltd. All rights reserved.

  13. A multiple genome analysis of Mycobacterium tuberculosis reveals specific novel genes and mutations associated with pyrazinamide resistance

    KAUST Repository

    Sheen, Patricia; Requena, David; Gushiken, Eduardo; Gilman, Robert H.; Antiparra, Ricardo; Lucero, Bryan; Lizá rraga, Pilar; Cieza, Basilio; Roncal, Elisa; Grandjean, Louis; Pain, Arnab; McNerney, Ruth; Clark, Taane G.; Moore, David; Zimic, Mirko

    2017-01-01

    Tuberculosis (TB) is a major global health problem and drug resistance compromises the efforts to control this disease. Pyrazinamide (PZA) is an important drug used in both first and second line treatment regimes. However, its complete mechanism of action and resistance remains unclear.We genotyped and sequenced the complete genomes of 68 M. tuberculosis strains isolated from unrelated TB patients in Peru. No clustering pattern of the strains was verified based on spoligotyping. We analyzed the association between PZA resistance with non-synonymous mutations and specific genes. We found mutations in pncA and novel genes significantly associated with PZA resistance in strains without pncA mutations. These included genes related to transportation of metal ions, pH regulation and immune system evasion.These results suggest potential alternate mechanisms of PZA resistance that have not been found in other populations, supporting that the antibacterial activity of PZA may hit multiple targets.

  14. Cloning a T-DNA-Linked Phosphate Gene that mediates Salt Tolerance on Mutant of Arabidopsis thaliana

    International Nuclear Information System (INIS)

    Njoroge, N.C; Tremblay, L.; Lefebvre, D.D.

    2006-01-01

    T-DNA insertionally mutagenized seeds of Arabidopsis thaliana were used to unravel genetic mechanisms underlying salt tolerance in plants. Over a period of two weeks, kanamycin homozygous (KK) seeds of the mutant NN143 attain germination levels of 65% and 77% on 175mM Nacl and 300mM mannitol respectively. Under these conditions of osmotic stress, the wild type seeds were incapable of germination. The mutant was also capable of germination on a medium containing 2μM abscisic acid (ABA). After two weeks on 2μM ABA, it attained 100% germination and the wild type did not germinate. The ABA level in the mutant was 40% higher than the wild type. Segregation analysis indicated that salt tolerance in the mutant is T-DNA linked. Genetic analysis of the F1 and F2 generations indicated that the salt tolerance trait in the mutant is dominant. The putative salt tolerance gene of mutant NN143 was cloned by plasmid rescue and sequence data indicated involvement of a protein phosphatase. The possible mechanism underlying salt tolerance in the mutant is discussed.(author)

  15. A novel gene encoding a TIG multiple domain protein is a positional candidate for autosomal recessive polycystic kidney disease.

    Science.gov (United States)

    Xiong, Huaqi; Chen, Yongxiong; Yi, Yajun; Tsuchiya, Karen; Moeckel, Gilbert; Cheung, Joseph; Liang, Dan; Tham, Kyi; Xu, Xiaohu; Chen, Xing-Zhen; Pei, York; Zhao, Zhizhuang Jeo; Wu, Guanqing

    2002-07-01

    Autosomal recessive polycystic kidney disease (ARPKD) is a common hereditary renal cystic disease in infants and children. By genetic linkage analyses, the gene responsible for this disease, termed polycystic kidney and hepatic disease 1 (PKHD1), was mapped on human chromosome 6p21.1-p12, and has been further localized to a 1-cM genetic interval flanked by the D6S1714/D6S243 (telomeric) and D6S1024 (centromeric) markers. We recently identified a novel gene in this genetic interval from kidney cDNA, using cloning strategies. The gene PKHD1 (PKHD1-tentative) encodes a novel 3396-amino-acid protein with no apparent homology with any known proteins. We named its gene product "tigmin" because it contains multiple TIG domains, which usually are seen in proteins containing immunoglobulin-like folds. PKHD1 encodes an 11.6-kb transcript and is composed of 61 exons spanning an approximately 365-kb genomic region on chromosome 6p12-p11.2 adjacent to the marker D6S1714. Northern blot analyses demonstrated that the gene has discrete bands with one peak signal at approximately 11 kb, indicating that PKHD1 is likely to have multiple alternative transcripts. PKHD1 is highly expressed in adult and infant kidneys and weakly expressed in liver in northern blot analysis. This expression pattern parallels the tissue involvement observed in ARPKD. In situ hybridization analysis further revealed that the expression of PKHD1 in the kidney is mainly localized to the epithelial cells of the collecting duct, the specific tubular segment involved in cyst formation in ARPKD. These features of PKHD1 make it a strong positional candidate gene for ARPKD.

  16. Fine-mapping and cross-validation of QTLs linked to fatty acid composition in multiple independent interspecific crosses of oil palm.

    Science.gov (United States)

    Ting, Ngoot-Chin; Yaakub, Zulkifli; Kamaruddin, Katialisa; Mayes, Sean; Massawe, Festo; Sambanthamurthi, Ravigadevi; Jansen, Johannes; Low, Leslie Eng Ti; Ithnin, Maizura; Kushairi, Ahmad; Arulandoo, Xaviar; Rosli, Rozana; Chan, Kuang-Lim; Amiruddin, Nadzirah; Sritharan, Kandha; Lim, Chin Ching; Nookiah, Rajanaidu; Amiruddin, Mohd Din; Singh, Rajinder

    2016-04-14

    The commercial oil palm (Elaeis guineensis Jacq.) produces a mesocarp oil (commonly called 'palm oil') with approximately equal proportions of saturated and unsaturated fatty acids (FAs). An increase in unsaturated FAs content or iodine value (IV) as a measure of the degree of unsaturation would help to open up new markets for the oil. One way to manipulate the fatty acid composition (FAC) in palm oil is through introgression of favourable alleles from the American oil palm, E. oleifera, which has a more unsaturated oil. In this study, a segregating E. oleifera x E. guineensis (OxG) hybrid population for FAC is used to identify quantitative trait loci (QTLs) linked to IV and various FAs. QTL analysis revealed 10 major and two putative QTLs for IV and six FAs, C14:0, C16:0, C16:1, C18:0, C18:1 and C18:2 distributed across six linkage groups (LGs), OT1, T2, T3, OT4, OT6 and T9. The major QTLs for IV and C16:0 on LGOT1 explained 60.0 - 69.0 % of the phenotypic trait variation and were validated in two independent BC2 populations. The genomic interval contains several key structural genes in the FA and oil biosynthesis pathways such as PATE/FATB, HIBCH, BASS2, LACS4 and DGAT1 and also a relevant transcription factor (TF), WRI1. The literature suggests that some of these genes can exhibit pleiotropic effects in the regulatory networks of these traits. Using the whole genome sequence data, markers tightly linked to the candidate genes were also developed. Clustering trait values according to the allelic forms of these candidate markers revealed significant differences in the IV and FAs of the palms in the mapping and validation crosses. The candidate gene approach described and exploited here is useful to identify the potential causal genes linked to FAC and can be adopted for marker-assisted selection (MAS) in oil palm.

  17. Multiple plasmid-borne virulence genes of Clavibacter michiganensis ssp. capsici critical for disease development in pepper.

    Science.gov (United States)

    Hwang, In Sun; Oh, Eom-Ji; Kim, Donghyuk; Oh, Chang-Sik

    2018-02-01

    Clavibacter michiganensis ssp. capsici is a Gram-positive plant-pathogenic bacterium causing bacterial canker disease in pepper. Virulence genes and mechanisms of C. michiganensis ssp. capsici in pepper have not yet been studied. To identify virulence genes of C. michiganensis ssp. capsici, comparative genome analyses with C. michiganensis ssp. capsici and its related C. michiganensis subspecies, and functional analysis of its putative virulence genes during infection were performed. The C. michiganensis ssp. capsici type strain PF008 carries one chromosome (3.056 Mb) and two plasmids (39 kb pCM1 Cmc and 145 kb pCM2 Cmc ). The genome analyses showed that this bacterium lacks a chromosomal pathogenicity island and celA gene that are important for disease development by C. michiganensis ssp. michiganensis in tomato, but carries most putative virulence genes in both plasmids. Virulence of pCM1 Cmc -cured C. michiganensis ssp. capsici was greatly reduced compared with the wild-type strain in pepper. The complementation analysis with pCM1 Cmc -located putative virulence genes showed that at least five genes, chpE, chpG, ppaA1, ppaB1 and pelA1, encoding serine proteases or pectate lyase contribute to disease development in pepper. In conclusion, C. michiganensis ssp. capsici has a unique genome structure, and its multiple plasmid-borne genes play critical roles in virulence in pepper, either separately or together. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.

  18. Linked Patient-Reported Outcomes Data From Patients With Multiple Sclerosis Recruited on an Open Internet Platform to Health Care Claims Databases Identifies a Representative Population for Real-Life Data Analysis in Multiple Sclerosis.

    Science.gov (United States)

    Risson, Valery; Ghodge, Bhaskar; Bonzani, Ian C; Korn, Jonathan R; Medin, Jennie; Saraykar, Tanmay; Sengupta, Souvik; Saini, Deepanshu; Olson, Melvin

    2016-09-22

    An enormous amount of information relevant to public health is being generated directly by online communities. To explore the feasibility of creating a dataset that links patient-reported outcomes data, from a Web-based survey of US patients with multiple sclerosis (MS) recruited on open Internet platforms, to health care utilization information from health care claims databases. The dataset was generated by linkage analysis to a broader MS population in the United States using both pharmacy and medical claims data sources. US Facebook users with an interest in MS were alerted to a patient-reported survey by targeted advertisements. Eligibility criteria were diagnosis of MS by a specialist (primary progressive, relapsing-remitting, or secondary progressive), ≥12-month history of disease, age 18-65 years, and commercial health insurance. Participants completed a questionnaire including data on demographic and disease characteristics, current and earlier therapies, relapses, disability, health-related quality of life, and employment status and productivity. A unique anonymous profile was generated for each survey respondent. Each anonymous profile was linked to a number of medical and pharmacy claims datasets in the United States. Linkage rates were assessed and survey respondents' representativeness was evaluated based on differences in the distribution of characteristics between the linked survey population and the general MS population in the claims databases. The advertisement was placed on 1,063,973 Facebook users' pages generating 68,674 clicks, 3719 survey attempts, and 651 successfully completed surveys, of which 440 could be linked to any of the claims databases for 2014 or 2015 (67.6% linkage rate). Overall, no significant differences were found between patients who were linked and not linked for educational status, ethnicity, current or prior disease-modifying therapy (DMT) treatment, or presence of a relapse in the last 12 months. The frequencies of the

  19. The Immature Fiber Mutant Phenotype of Cotton (Gossypium hirsutum Is Linked to a 22-bp Frame-Shift Deletion in a Mitochondria Targeted Pentatricopeptide Repeat Gene

    Directory of Open Access Journals (Sweden)

    Gregory N. Thyssen

    2016-06-01

    Full Text Available Cotton seed trichomes are the most important source of natural fibers globally. The major fiber thickness properties influence the price of the raw material, and the quality of the finished product. The recessive immature fiber (im gene reduces the degree of fiber cell wall thickening by a process that was previously shown to involve mitochondrial function in allotetraploid Gossypium hirsutum. Here, we present the fine genetic mapping of the im locus, gene expression analysis of annotated proteins near the locus, and association analysis of the linked markers. Mapping-by-sequencing identified a 22-bp deletion in a pentatricopeptide repeat (PPR gene that is completely linked to the immature fiber phenotype in 2837 F2 plants, and is absent from all 163 cultivated varieties tested, although other closely linked marker polymorphisms are prevalent in the diversity panel. This frame-shift mutation results in a transcript with two long open reading frames: one containing the N-terminal transit peptide that targets mitochondria, the other containing only the RNA-binding PPR domains, suggesting that a functional PPR protein cannot be targeted to mitochondria in the im mutant. Taken together, these results suggest that PPR gene Gh_A03G0489 is involved in the cotton fiber wall thickening process, and is a promising candidate gene at the im locus. Our findings expand our understanding of the molecular mechanisms that modulate cotton fiber fineness and maturity, and may facilitate the development of cotton varieties with superior fiber attributes.

  20. Divergent evolution of multiple virus-resistance genes from a progenitor in Capsicum spp.

    Science.gov (United States)

    Kim, Saet-Byul; Kang, Won-Hee; Huy, Hoang Ngoc; Yeom, Seon-In; An, Jeong-Tak; Kim, Seungill; Kang, Min-Young; Kim, Hyun Jung; Jo, Yeong Deuk; Ha, Yeaseong; Choi, Doil; Kang, Byoung-Cheorl

    2017-01-01

    Plants have evolved hundreds of nucleotide-binding and leucine-rich domain proteins (NLRs) as potential intracellular immune receptors, but the evolutionary mechanism leading to the ability to recognize specific pathogen effectors is elusive. Here, we cloned Pvr4 (a Potyvirus resistance gene in Capsicum annuum) and Tsw (a Tomato spotted wilt virus resistance gene in Capsicum chinense) via a genome-based approach using independent segregating populations. The genes both encode typical NLRs and are located at the same locus on pepper chromosome 10. Despite the fact that these two genes recognize completely different viral effectors, the genomic structures and coding sequences of the two genes are strikingly similar. Phylogenetic studies revealed that these two immune receptors diverged from a progenitor gene of a common ancestor. Our results suggest that sequence variations caused by gene duplication and neofunctionalization may underlie the evolution of the ability to specifically recognize different effectors. These findings thereby provide insight into the divergent evolution of plant immune receptors. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.

  1. JS-X syndrome: A multiple congenital malformation with vocal cord paralysis, ear deformity, hearing loss, shoulder musculature underdevelopment, and X-linked recessive inheritance.

    Science.gov (United States)

    Hoeve, Hans L J; Brooks, Alice S; Smit, Liesbeth S

    2015-07-01

    We report on a family with a not earlier described multiple congenital malformation. Several male family members suffer from laryngeal obstruction caused by bilateral vocal cord paralysis, outer and middle ear deformity with conductive and sensorineural hearing loss, facial dysmorphisms, and underdeveloped shoulder musculature. The affected female members only have middle ear deformity and hearing loss. The pedigree is suggestive of an X-linked recessive inheritance pattern. SNP-array revealed a deletion and duplication on Xq28 in the affected family members. A possible aetiology is a neurocristopathy with most symptoms expressed in structures derived from branchial arches. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  2. System performances of optical space code-division multiple-access-based fiber-optic two-dimensional parallel data link.

    Science.gov (United States)

    Nakamura, M; Kitayama, K

    1998-05-10

    Optical space code-division multiple access is a scheme to multiplex and link data between two-dimensional processors such as smart pixels and spatial light modulators or arrays of optical sources like vertical-cavity surface-emitting lasers. We examine the multiplexing characteristics of optical space code-division multiple access by using optical orthogonal signature patterns. The probability density function of interference noise in interfering optical orthogonal signature patterns is calculated. The bit-error rate is derived from the result and plotted as a function of receiver threshold, code length, code weight, and number of users. Furthermore, we propose a prethresholding method to suppress the interference noise, and we experimentally verify that the method works effectively in improving system performance.

  3. In-depth comparative analysis of malaria parasite genomes reveals protein-coding genes linked to human disease in Plasmodium falciparum genome.

    Science.gov (United States)

    Liu, Xuewu; Wang, Yuanyuan; Liang, Jiao; Wang, Luojun; Qin, Na; Zhao, Ya; Zhao, Gang

    2018-05-02

    Plasmodium falciparum is the most virulent malaria parasite capable of parasitizing human erythrocytes. The identification of genes related to this capability can enhance our understanding of the molecular mechanisms underlying human malaria and lead to the development of new therapeutic strategies for malaria control. With the availability of several malaria parasite genome sequences, performing computational analysis is now a practical strategy to identify genes contributing to this disease. Here, we developed and used a virtual genome method to assign 33,314 genes from three human malaria parasites, namely, P. falciparum, P. knowlesi and P. vivax, and three rodent malaria parasites, namely, P. berghei, P. chabaudi and P. yoelii, to 4605 clusters. Each cluster consisted of genes whose protein sequences were significantly similar and was considered as a virtual gene. Comparing the enriched values of all clusters in human malaria parasites with those in rodent malaria parasites revealed 115 P. falciparum genes putatively responsible for parasitizing human erythrocytes. These genes are mainly located in the chromosome internal regions and participate in many biological processes, including membrane protein trafficking and thiamine biosynthesis. Meanwhile, 289 P. berghei genes were included in the rodent parasite-enriched clusters. Most are located in subtelomeric regions and encode erythrocyte surface proteins. Comparing cluster values in P. falciparum with those in P. vivax and P. knowlesi revealed 493 candidate genes linked to virulence. Some of them encode proteins present on the erythrocyte surface and participate in cytoadhesion, virulence factor trafficking, or erythrocyte invasion, but many genes with unknown function were also identified. Cerebral malaria is characterized by accumulation of infected erythrocytes at trophozoite stage in brain microvascular. To discover cerebral malaria-related genes, fast Fourier transformation (FFT) was introduced to extract

  4. Positive association of vitamin D receptor gene variations with multiple sclerosis in South East Iranian population.

    Science.gov (United States)

    Narooie-Nejad, Mehrnaz; Moossavi, Maryam; Torkamanzehi, Adam; Moghtaderi, Ali

    2015-01-01

    Among the factors postulated to play a role in MS susceptibility, the role of vitamin D is outstanding. Since the function of vitamin D receptor (VDR) represents the effect of vitamin D on the body and genetic variations in VDR gene may affect its function, we aim to highlight the association of two VDR gene polymorphisms with MS susceptibility. In current study, we recruited 113 MS patients and 122 healthy controls. TaqI (rs731236) and ApaI (rs7975232) genetic variations in these two groups were evaluated using the polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) technique. All genotype and allele frequencies in both variations showed association with the disease status. However, to find the definite connection between genetic variations in VDR gene and MS disease in a population of South East of Iran, more researches on gene structure and its function with regard to patients' conditions are required.

  5. Global gene expression and comparison between multiple populations in the mouse epidermis

    Directory of Open Access Journals (Sweden)

    Anders Patrik Gunnarsson

    2016-07-01

    Our data shows that flow cytometry using multicolor panels can identify further subsets of cells within the epidermis and also highlights a marked discrepancy in gene expression between directly isolated cells and tissue cultured cells.

  6. Differential effects of multiplicity of infection on Helicobacter pylori-induced signaling pathways and interleukin-8 gene transcription.

    Science.gov (United States)

    Ritter, Birgit; Kilian, Petra; Reboll, Marc Rene; Resch, Klaus; DiStefano, Johanna Kay; Frank, Ronald; Beil, Winfried; Nourbakhsh, Mahtab

    2011-02-01

    Interleukin-8 (IL-8) plays a central role in the pathogenesis of Helicobacter pylori infection. We used four different H. pylori strains isolated from patients with gastritis or duodenal ulcer disease to examine their differential effects on signaling pathways and IL-8 gene response in gastric epithelial cells. IL-8 mRNA level is elevated in response to high (100) multiplicity of infection (MOI) independent of cagA, vacA, and dupA gene characteristics. By lower MOIs (1 or 10), only cagA ( + ) strains significantly induce IL-8 gene expression. This is based on differential regulation of IL-8 promoter activity. Analysis of intracellular signaling pathways indicates that H. pylori clinical isolates induce IL-8 gene transcription through NF-κB p65, but by a MOI-dependent differential activation of MAPK pathways. Thus, the major virulence factors of H. pylori CagA, VacA, and DupA might play a minor role in the level of IL-8 gene response to a high bacterial load.

  7. Synaptic genes are extensively downregulated across multiple brain regions in normal human aging and Alzheimer’s disease

    Science.gov (United States)

    Berchtold, Nicole C.; Coleman, Paul D.; Cribbs, David H.; Rogers, Joseph; Gillen, Daniel L.; Cotman, Carl W.

    2014-01-01

    Synapses are essential for transmitting, processing, and storing information, all of which decline in aging and Alzheimer’s disease (AD). Because synapse loss only partially accounts for the cognitive declines seen in aging and AD, we hypothesized that existing synapses might undergo molecular changes that reduce their functional capacity. Microarrays were used to evaluate expression profiles of 340 synaptic genes in aging (20–99 years) and AD across 4 brain regions from 81 cases. The analysis revealed an unexpectedly large number of significant expression changes in synapse-related genes in aging, with many undergoing progressive downregulation across aging and AD. Functional classification of the genes showing altered expression revealed that multiple aspects of synaptic function are affected, notably synaptic vesicle trafficking and release, neurotransmitter receptors and receptor trafficking, postsynaptic density scaffolding, cell adhesion regulating synaptic stability, and neuromodulatory systems. The widespread declines in synaptic gene expression in normal aging suggests that function of existing synapses might be impaired, and that a common set of synaptic genes are vulnerable to change in aging and AD. PMID:23273601

  8. Multiple-endpoints gene alteration-based (MEGA) assay: A toxicogenomics approach for water quality assessment of wastewater effluents.

    Science.gov (United States)

    Fukushima, Toshikazu; Hara-Yamamura, Hiroe; Nakashima, Koji; Tan, Lea Chua; Okabe, Satoshi

    2017-12-01

    Wastewater effluents contain a significant number of toxic contaminants, which, even at low concentrations, display a wide variety of toxic actions. In this study, we developed a multiple-endpoints gene alteration-based (MEGA) assay, a real-time PCR-based transcriptomic analysis, to assess the water quality of wastewater effluents for human health risk assessment and management. Twenty-one genes from the human hepatoblastoma cell line (HepG2), covering the basic health-relevant stress responses such as response to xenobiotics, genotoxicity, and cytotoxicity, were selected and incorporated into the MEGA assay. The genes related to the p53-mediated DNA damage response and cytochrome P450 were selected as markers for genotoxicity and response to xenobiotics, respectively. Additionally, the genes that were dose-dependently regulated by exposure to the wastewater effluents were chosen as markers for cytotoxicity. The alterations in the expression of an individual gene, induced by exposure to the wastewater effluents, were evaluated by real-time PCR and the results were validated by genotoxicity (e.g., comet assay) and cell-based cytotoxicity tests. In summary, the MEGA assay is a real-time PCR-based assay that targets cellular responses to contaminants present in wastewater effluents at the transcriptional level; it is rapid, cost-effective, and high-throughput and can thus complement any chemical analysis for water quality assessment and management. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. A partial least-square approach for modeling gene-gene and gene-environment interactions when multiple markers are genotyped.

    Science.gov (United States)

    Wang, Tao; Ho, Gloria; Ye, Kenny; Strickler, Howard; Elston, Robert C

    2009-01-01

    Genetic association studies achieve an unprecedented level of resolution in mapping disease genes by genotyping dense single nucleotype polymorphisms (SNPs) in a gene region. Meanwhile, these studies require new powerful statistical tools that can optimally handle a large amount of information provided by genotype data. A question that arises is how to model interactions between two genes. Simply modeling all possible interactions between the SNPs in two gene regions is not desirable because a greatly increased number of degrees of freedom can be involved in the test statistic. We introduce an approach to reduce the genotype dimension in modeling interactions. The genotype compression of this approach is built upon the information on both the trait and the cross-locus gametic disequilibrium between SNPs in two interacting genes, in such a way as to parsimoniously model the interactions without loss of useful information in the process of dimension reduction. As a result, it improves power to detect association in the presence of gene-gene interactions. This approach can be similarly applied for modeling gene-environment interactions. We compare this method with other approaches, the corresponding test without modeling any interaction, that based on a saturated interaction model, that based on principal component analysis, and that based on Tukey's one-degree-of-freedom model. Our simulations suggest that this new approach has superior power to that of the other methods. In an application to endometrial cancer case-control data from the Women's Health Initiative, this approach detected AKT1 and AKT2 as being significantly associated with endometrial cancer susceptibility by taking into account their interactions with body mass index.

  10. Reanalysis of RNA-sequencing data reveals several additional fusion genes with multiple isoforms.

    Science.gov (United States)

    Kangaspeska, Sara; Hultsch, Susanne; Edgren, Henrik; Nicorici, Daniel; Murumägi, Astrid; Kallioniemi, Olli

    2012-01-01

    RNA-sequencing and tailored bioinformatic methodologies have paved the way for identification of expressed fusion genes from the chaotic genomes of solid tumors. We have recently successfully exploited RNA-sequencing for the discovery of 24 novel fusion genes in breast cancer. Here, we demonstrate the importance of continuous optimization of the bioinformatic methodology for this purpose, and report the discovery and experimental validation of 13 additional fusion genes from the same samples. Integration of copy number profiling with the RNA-sequencing results revealed that the majority of the gene fusions were promoter-donating events that occurred at copy number transition points or involved high-level DNA-amplifications. Sequencing of genomic fusion break points confirmed that DNA-level rearrangements underlie selected fusion transcripts. Furthermore, a significant portion (>60%) of the fusion genes were alternatively spliced. This illustrates the importance of reanalyzing sequencing data as gene definitions change and bioinformatic methods improve, and highlights the previously unforeseen isoform diversity among fusion transcripts.

  11. Reanalysis of RNA-sequencing data reveals several additional fusion genes with multiple isoforms.

    Directory of Open Access Journals (Sweden)

    Sara Kangaspeska

    Full Text Available RNA-sequencing and tailored bioinformatic methodologies have paved the way for identification of expressed fusion genes from the chaotic genomes of solid tumors. We have recently successfully exploited RNA-sequencing for the discovery of 24 novel fusion genes in breast cancer. Here, we demonstrate the importance of continuous optimization of the bioinformatic methodology for this purpose, and report the discovery and experimental validation of 13 additional fusion genes from the same samples. Integration of copy number profiling with the RNA-sequencing results revealed that the majority of the gene fusions were promoter-donating events that occurred at copy number transition points or involved high-level DNA-amplifications. Sequencing of genomic fusion break points confirmed that DNA-level rearrangements underlie selected fusion transcripts. Furthermore, a significant portion (>60% of the fusion genes were alternatively spliced. This illustrates the importance of reanalyzing sequencing data as gene definitions change and bioinformatic methods improve, and highlights the previously unforeseen isoform diversity among fusion transcripts.

  12. Multiple ace genes encoding acetylcholinesterases of Caenorhabditis elegans have distinct tissue expression.

    Science.gov (United States)

    Combes, Didier; Fedon, Yann; Toutant, Jean-Pierre; Arpagaus, Martine

    2003-08-01

    ace-1 and ace-2 genes encoding acetylcholinesterase in the nematode Caenorhabditis elegans present 35% identity in coding sequences but no homology in noncoding regions (introns, 5'- and 3'-untranslated regions). A 5'-region of ace-2 was defined by rescue of ace-1;ace-2 mutants. When green fluorescent protein (GFP) expression was driven by this regulatory region, the resulting pattern was distinct from that of ace-1. This latter gene is expressed in all body-wall and vulval muscle cells (Culetto et al., 1999), whereas ace-2 is expressed almost exclusively in neurons. ace-3 and ace-4 genes are located in close proximity on chromosome II (Combes et al., 2000). These two genes were first transcribed in vivo as a bicistronic messenger and thus constitute an ace-3;ace-4 operon. However, there was a very low level of monocistronic mRNA of ace-4 (the upstream gene) in vivo, and no ACE-4 enzymatic activity was ever detected. GFP expression driven by a 5' upstream region of the ace-3;ace-4 operon was detected in several muscle cells of the pharynx (pm3, pm4, pm5 and pm7) and in the two canal associated neurons (CAN cells). A dorsal row of body-wall muscle cells was intensively labelled in larval stages but no longer detected in adults. The distinct tissue-specific expression of ace-1, ace-2 and ace-3 (coexpressed only in pm5 cells) indicates that ace genes are not redundant.

  13. Medroxyprogesterone acetate-treated human, primary endometrial epithelial cells reveal unique gene expression signature linked to innate immunity and HIV-1 susceptibility.

    Science.gov (United States)

    Woods, Matthew W; Zahoor, Muhammad Atif; Dizzell, Sara; Verschoor, Chris P; Kaushic, Charu

    2018-01-01

    Medroxyprogesterone acetate (MPA), a progestin-based hormonal contraceptive designed to mimic progesterone, has been linked to increased human immunodeficiency virus (HIV-1) susceptibility. Genital epithelial cells (GECs) form the mucosal lining of the female genital tract (FGT) and provide the first line of protection against HIV-1. The impact of endogenous sex hormones or MPA on the gene expression profile of GECs has not been comprehensively documented. Using microarray analysis, we characterized the transcriptional profile of primary endometrial epithelial cells grown in physiological levels of E2, P4, and MPA. Each hormone treatment altered the gene expression profile of GECs in a unique manner. Interestingly, although MPA is a progestogen, the gene expression profile induced by it was distinct from P4. MPA increased gene expression of genes related to inflammation and cholesterol synthesis linked to innate immunity and HIV-1 susceptibility. The analysis of gene expression profiles provides insights into the effects of sex hormones and MPA on GECs and allows us to posit possible mechanisms of the MPA-mediated increase in HIV-1 acquisition. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  14. Ventilator-associated pneumonia caused by carbapenem-resistant Enterobacteriaceae carrying multiple metallo-beta-lactamase genes

    Directory of Open Access Journals (Sweden)

    Dwivedi Mayank

    2009-07-01

    Full Text Available Context: Ventilator-associated pneumonia (VAP is a leading nosocomial infection in the intensive care unit (ICU. Members of Enterobacteriaceae are the most common causative agents and carbapenems are the most commonly used antibiotics. Metallo-beta-lactamase (MBL production leading to treatment failure may go unnoticed by routine disc diffusion susceptibility testing. Moreover, there is not much information on association of MBL-producing Enterobacteriaceae with ICU-acquired VAP. Therefore, a study was undertaken to find out the association of MBL-producing Enterobacteriaceae with VAP. Settings: This study was conducted in a large tertiary care hospital of North India with an eight-bed critical care unit. Materials and Methods: The respiratory samples (bronchoalveolar lavage, protected brush catheter specimens and endotracheal or transtracheal aspirates obtained from VAP patients (during January 2005-December 2006 were processed, isolated bacteria identified and their antibiotic susceptibilities tested as per standard protocols. The isolates of Enterobacteriaceae resistant to carbapenem were subjected to phenotypic and genotypic tests for the detection of MBLs. Results: Twelve of 64 isolates of Enterobacteriaceae were detected as MBL producers, bla IMP being the most prevalent gene. Additionally, in three strains, simultaneous coexistence of multiple MBL genes was detected. Conclusion: The coexistence of multiple MBL genes in Enterobacteriaceae is an alarming situation. As MBL genes are associated with integrons that can be embedded in transposons, which in turn can be accommodated on plasmids thereby resulting in a highly mobile genetic apparatus, the further spread of these genes in different pathogens is likely to occur.

  15. Impact of genetic risk loci for multiple sclerosis on expression of proximal genes in patients

    KAUST Repository

    James, Tojo; Lindé n, Magdalena; Morikawa, Hiromasa; Fernandes, Sunjay Jude; Ruhrmann, Sabrina; Huss, Mikael; Brandi, Maya; Piehl, Fredrik; Jagodic, Maja; Tegner, Jesper; Khademi, Mohsen; Olsson, Tomas; Gomez-Cabrero, David; Kockum, Ingrid

    2018-01-01

    Despite advancements in genetic studies, it is difficult to understand and characterize the functional relevance of disease-associated genetic variants, especially in the context of a complex multifactorial disease such as Multiple Sclerosis (MS

  16. Human sex hormone-binding globulin gene expression- multiple promoters and complex alternative splicing

    Directory of Open Access Journals (Sweden)

    Rosner William

    2009-05-01

    Full Text Available Abstract Background Human sex hormone-binding globulin (SHBG regulates free sex steroid concentrations in plasma and modulates rapid, membrane based steroid signaling. SHBG is encoded by an eight exon-long transcript whose expression is regulated by a downstream promoter (PL. The SHBG gene was previously shown to express a second major transcript of unknown function, derived from an upstream promoter (PT, and two minor transcripts. Results We report that transcriptional expression of the human SHBG gene is far more complex than previously described. PL and PT direct the expression of at least six independent transcripts each, resulting from alternative splicing of exons 4, 5, 6, and/or 7. We mapped two transcriptional start sites downstream of PL and PT, and present evidence for a third SHBG gene promoter (PN within the neighboring FXR2 gene; PN regulates the expression of at least seven independent SHBG gene transcripts, each possessing a novel, 164-nt first exon (1N. Transcriptional expression patterns were generated for human prostate, breast, testis, liver, and brain, and the LNCaP, MCF-7, and HepG2 cell lines. Each expresses the SHBG transcript, albeit in varying abundance. Alternative splicing was more pronounced in the cancer cell lines. PL- PT- and PN-derived transcripts were most abundant in liver, testis, and prostate, respectively. Initial findings reveal the existence of a smaller immunoreactive SHBG species in LNCaP, MCF-7, and HepG2 cells. Conclusion These results extend our understanding of human SHBG gene transcription, and raise new and important questions regarding the role of novel alternatively spliced transcripts, their function in hormonally responsive tissues including the breast and prostate, and the role that aberrant SHBG gene expression may play in cancer.

  17. Improving the Reliability of Optimised Link State Routing in a Smart Grid Neighbour Area Network based Wireless Mesh Network Using Multiple Metrics

    Directory of Open Access Journals (Sweden)

    Yakubu Tsado

    2017-02-01

    Full Text Available Reliable communication is the backbone of advanced metering infrastructure (AMI. Within the AMI, the neighbourhood area network (NAN transports a multitude of traffic, each with unique requirements. In order to deliver an acceptable level of reliability and latency, the underlying network, such as the wireless mesh network(WMN, must provide or guarantee the quality-of-service (QoS level required by the respective application traffic. Existing WMN routing protocols, such as optimised link state routing (OLSR, typically utilise a single metric and do not consider the requirements of individual traffic; hence, packets are delivered on a best-effort basis. This paper presents a QoS-aware WMN routing technique that employs multiple metrics in OLSR optimal path selection for AMI applications. The problems arising from this approach are non deterministic polynomial time (NP-complete in nature, which were solved through the combined use of the analytical hierarchy process (AHP algorithm and pruning techniques. For smart meters transmitting Internet Protocol (IP packets of varying sizes at different intervals, the proposed technique considers the constraints of NAN and the applications’ traffic characteristics. The technique was developed by combining multiple OLSR path selection metrics with the AHP algorithminns-2. Compared with the conventional link metric in OLSR, the results show improvements of about 23% and 45% in latency and Packet Delivery Ratio (PDR, respectively, in a 25-node grid NAN.

  18. A parametric interpretation of Bayesian Nonparametric Inference from Gene Genealogies: Linking ecological, population genetics and evolutionary processes.

    Science.gov (United States)

    Ponciano, José Miguel

    2017-11-22

    Using a nonparametric Bayesian approach Palacios and Minin (2013) dramatically improved the accuracy, precision of Bayesian inference of population size trajectories from gene genealogies. These authors proposed an extension of a Gaussian Process (GP) nonparametric inferential method for the intensity function of non-homogeneous Poisson processes. They found that not only the statistical properties of the estimators were improved with their method, but also, that key aspects of the demographic histories were recovered. The authors' work represents the first Bayesian nonparametric solution to this inferential problem because they specify a convenient prior belief without a particular functional form on the population trajectory. Their approach works so well and provides such a profound understanding of the biological process, that the question arises as to how truly "biology-free" their approach really is. Using well-known concepts of stochastic population dynamics, here I demonstrate that in fact, Palacios and Minin's GP model can be cast as a parametric population growth model with density dependence and environmental stochasticity. Making this link between population genetics and stochastic population dynamics modeling provides novel insights into eliciting biologically meaningful priors for the trajectory of the effective population size. The results presented here also bring novel understanding of GP as models for the evolution of a trait. Thus, the ecological principles foundation of Palacios and Minin (2013)'s prior adds to the conceptual and scientific value of these authors' inferential approach. I conclude this note by listing a series of insights brought about by this connection with Ecology. Copyright © 2017 The Author. Published by Elsevier Inc. All rights reserved.

  19. The homeobox gene mirror links EGF signalling to embryonic dorso-ventral axis formation through notch activation.

    Science.gov (United States)

    Jordan, K C; Clegg, N J; Blasi, J A; Morimoto, A M; Sen, J; Stein, D; McNeill, H; Deng, W M; Tworoger, M; Ruohola-Baker, H

    2000-04-01

    Recent studies in vertebrates and Drosophila melanogaster have revealed that Fringe-mediated activation of the Notch pathway has a role in patterning cell layers during organogenesis. In these processes, a homeobox-containing transcription factor is responsible for spatially regulating fringe (fng) expression and thus directing activation of the Notch pathway along the fng expression border. Here we show that this may be a general mechanism for patterning epithelial cell layers. At three stages in Drosophila oogenesis, mirror (mirr) and fng have complementary expression patterns in the follicle-cell epithelial layer, and at all three stages loss of mirr enlarges, and ectopic expression of mirr restricts, fng expression, with consequences for follicle-cell patterning. These morphological changes are similar to those caused by Notch mutations. Ectopic expression of mirr in the posterior follicle cells induces a stripe of rhomboid (rho) expression and represses pipe (pip), a gene with a role in the establishment of the dorsal-ventral axis, at a distance. Ectopic Notch activation has a similar long-range effect on pip. Our results suggest that Mirror and Notch induce secretion of diffusible morphogens and we have identified TGF-beta (encoded by dpp) as such a molecule in germarium. We also found that mirr expression in dorsal follicle cells is induced by the EGF-receptor (EGFR) pathway and that mirr then represses pip expression in all but the ventral follicle cells, connecting EGFR activation in the dorsal follicle cells to repression of pip in the dorsal and lateral follicle cells. Our results suggest that the differentiation of ventral follicle cells is not a direct consequence of germline signalling, but depends on long-range signals from dorsal follicle cells, and provide a link between early and late events in Drosophila embryonic dorsal-ventral axis formation.

  20. Apoptosis-linked Gene-2 (ALG-2)/Sec31 Interactions Regulate Endoplasmic Reticulum (ER)-to-Golgi Transport

    Science.gov (United States)

    Helm, Jared R.; Bentley, Marvin; Thorsen, Kevin D.; Wang, Ting; Foltz, Lauren; Oorschot, Viola; Klumperman, Judith; Hay, Jesse C.

    2014-01-01

    Luminal calcium released from secretory organelles has been suggested to play a regulatory role in vesicle transport at several steps in the secretory pathway; however, its functional roles and effector pathways have not been elucidated. Here we demonstrate for the first time that specific luminal calcium depletion leads to a significant decrease in endoplasmic reticulum (ER)-to-Golgi transport rates in intact cells. Ultrastructural analysis revealed that luminal calcium depletion is accompanied by increased accumulation of intermediate compartment proteins in COPII buds and clusters of unfused COPII vesicles at ER exit sites. Furthermore, we present several lines of evidence suggesting that luminal calcium affected transport at least in part through calcium-dependent interactions between apoptosis-linked gene-2 (ALG-2) and the Sec31A proline-rich region: 1) targeted disruption of ALG-2/Sec31A interactions caused severe defects in ER-to-Golgi transport in intact cells; 2) effects of luminal calcium and ALG-2/Sec31A interactions on transport mutually required each other; and 3) Sec31A function in transport required luminal calcium. Morphological phenotypes of disrupted ALG-2/Sec31A interactions were characterized. We found that ALG-2/Sec31A interactions were not required for the localization of Sec31A to ER exit sites per se but appeared to acutely regulate the stability and trafficking of the cargo receptor p24 and the distribution of the vesicle tether protein p115. These results represent the first outline of a mechanism that connects luminal calcium to specific protein interactions regulating vesicle trafficking machinery. PMID:25006245

  1. miR-137 inhibits the invasion of melanoma cells through downregulation of multiple oncogenic target genes.

    Science.gov (United States)

    Luo, Chonglin; Tetteh, Paul W; Merz, Patrick R; Dickes, Elke; Abukiwan, Alia; Hotz-Wagenblatt, Agnes; Holland-Cunz, Stefan; Sinnberg, Tobias; Schittek, Birgit; Schadendorf, Dirk; Diederichs, Sven; Eichmüller, Stefan B

    2013-03-01

    MicroRNAs are small noncoding RNAs that regulate gene expression and have important roles in various types of cancer. Previously, miR-137 was reported to act as a tumor suppressor in different cancers, including malignant melanoma. In this study, we show that low miR-137 expression is correlated with poor survival in stage IV melanoma patients. We identified and validated two genes (c-Met and YB1) as direct targets of miR-137 and confirmed two previously known targets, namely enhancer of zeste homolog 2 (EZH2) and microphthalmia-associated transcription factor (MITF). Functional studies showed that miR-137 suppressed melanoma cell invasion through the downregulation of multiple target genes. The decreased invasion caused by miR-137 overexpression could be phenocopied by small interfering RNA knockdown of EZH2, c-Met, or Y box-binding protein 1 (YB1). Furthermore, miR-137 inhibited melanoma cell migration and proliferation. Finally, miR-137 induced apoptosis in melanoma cell lines and decreased BCL2 levels. In summary, our study confirms that miR-137 acts as a tumor suppressor in malignant melanoma and reveals that miR-137 regulates multiple targets including c-Met, YB1, EZH2, and MITF.

  2. Multiple Patterns of FHIT Gene Homozygous Deletion in Egyptian Breast Cancer Patients

    International Nuclear Information System (INIS)

    Ismail, H.M.S.; Zakhary, N.I.; Medhat, A.M.; Karim, A.M.

    2011-01-01

    Fragile histidine triad (FHIT) gene encodes a putative tumour suppressor protein. Loss of Fhit protein in cancer is attributed to different genetic alterations that affect the FHIT gene structure. In this study, we investigated the pattern of homozygous deletion that target the FHIT gene exons 3 to 9 genomic structure in Egyptian breast cancer patients. We have found that 65% (40 out of 62) of the cases exhibited homozygous deletion in at least one FHIT exon. The incidence of homozygous deletion was not associated with patients clinico pathological parameters including patients age, tumour grade, tumour type, and lymph node involvement. Using correlation analysis, we have observed a strong correlation between homozygous deletions of exon 3 and exon 4 (P<0.0001). Deletions in exon 5 were positively correlated with deletions in exon 7 (P<0.0001), Exon 8 (P<0.027), and exon 9 (P=0.04). Additionally, a strong correlation was observed between exons 8 and exon 9 (P<0.0001).We conclude that FHIT gene exons are homozygously deleted at high frequency in Egyptian women population diagnosed with breast cancer. Three different patterns of homozygous deletion were observed in this population indicating different mechanisms of targeting FHIT gene genomic structure.

  3. Cell-Specific PEAR1 Methylation Studies Reveal a Locus that Coordinates Expression of Multiple Genes

    Directory of Open Access Journals (Sweden)

    Benedetta Izzi

    2018-04-01

    Full Text Available Chromosomal interactions connect distant enhancers and promoters on the same chromosome, activating or repressing gene expression. PEAR1 encodes the Platelet-Endothelial Aggregation Receptor 1, a contact receptor involved in platelet function and megakaryocyte and endothelial cell proliferation. PEAR1 expression during megakaryocyte differentiation is controlled by DNA methylation at its first CpG island. We identified a PEAR1 cell-specific methylation sensitive region in endothelial cells and megakaryocytes that showed strong chromosomal interactions with ISGL20L2, RRNAD1, MRLP24, HDGF and PRCC, using available promoter capture Hi-C datasets. These genes are involved in ribosome processing, protein synthesis, cell cycle and cell proliferation. We next studied the methylation and expression profile of these five genes in Human Umbilical Vein Endothelial Cells (HUVECs and megakaryocyte precursors. While cell-specific PEAR1 methylation corresponded to variability in expression for four out of five genes, no methylation change was observed in their promoter regions across cell types. Our data suggest that PEAR1 cell-type specific methylation changes may control long distance interactions with other genes. Further studies are needed to show whether such interaction data might be relevant for the genome-wide association data that showed a role for non-coding PEAR1 variants in the same region and platelet function, platelet count and cardiovascular risk.

  4. A gene expression system offering multiple levels of regulation: the Dual Drug Control (DDC) system.

    Science.gov (United States)

    Sudomoina, Marina; Latypova, Ekaterina; Favorova, Olga O; Golemis, Erica A; Serebriiskii, Ilya G

    2004-04-29

    Whether for cell culture studies of protein function, construction of mouse models to enable in vivo analysis of disease epidemiology, or ultimately gene therapy of human diseases, a critical enabling step is the ability to achieve finely controlled regulation of gene expression. Previous efforts to achieve this goal have explored inducible drug regulation of gene expression, and construction of synthetic promoters based on two-hybrid paradigms, among others. In this report, we describe the combination of dimerizer-regulated two-hybrid and tetracycline regulatory elements in an ordered cascade, placing expression of endpoint reporters under the control of two distinct drugs. In this Dual Drug Control (DDC) system, a first plasmid expresses fusion proteins to DBD and AD, which interact only in the presence of a small molecule dimerizer; a second plasmid encodes a cassette transcriptionally responsive to the first DBD, directing expression of the Tet-OFF protein; and a third plasmid encodes a reporter gene transcriptionally responsive to binding by Tet-OFF. We evaluate the dynamic range and specificity of this system in comparison to other available systems. This study demonstrates the feasibility of combining two discrete drug-regulated expression systems in a temporally sequential cascade, without loss of dynamic range of signal induction. The efficient layering of control levels allowed by this combination of elements provides the potential for the generation of complex control circuitry that may advance ability to regulate gene expression in vivo.

  5. A gene expression system offering multiple levels of regulation: the Dual Drug Control (DDC system

    Directory of Open Access Journals (Sweden)

    Golemis Erica A

    2004-04-01

    Full Text Available Abstract Background Whether for cell culture studies of protein function, construction of mouse models to enable in vivo analysis of disease epidemiology, or ultimately gene therapy of human diseases, a critical enabling step is the ability to achieve finely controlled regulation of gene expression. Previous efforts to achieve this goal have explored inducible drug regulation of gene expression, and construction of synthetic promoters based on two-hybrid paradigms, among others. Results In this report, we describe the combination of dimerizer-regulated two-hybrid and tetracycline regulatory elements in an ordered cascade, placing expression of endpoint reporters under the control of two distinct drugs. In this Dual Drug Control (DDC system, a first plasmid expresses fusion proteins to DBD and AD, which interact only in the presence of a small molecule dimerizer; a second plasmid encodes a cassette transcriptionally responsive to the first DBD, directing expression of the Tet-OFF protein; and a third plasmid encodes a reporter gene transcriptionally responsive to binding by Tet-OFF. We evaluate the dynamic range and specificity of this system in comparison to other available systems. Conclusion This study demonstrates the feasibility of combining two discrete drug-regulated expression systems in a temporally sequential cascade, without loss of dynamic range of signal induction. The efficient layering of control levels allowed by this combination of elements provides the potential for the generation of complex control circuitry that may advance ability to regulate gene expression in vivo.

  6. Variations in the Gender Ratio of Multiple Sclerosis Linked to Converging Smoking Trends in Men and Women

    DEFF Research Database (Denmark)

    Palacios, Natalia; Alonso, Alvaro; Brønnum-Hansen, Henrik

    2010-01-01

    -dependent relationship exists between changing female-to male ratios of smoking and Multiple Sclerosis (MS) in worldwide birth cohorts from previously published studies. BACKGROUND: Smoking behavior in industrialized nations has changed dramatically over the second half of the 20th century, with diverging patterns...... in male and female smoking rates. During the same time period, an increase in the female to male ratio in MS incidence has been reported. We examined whether MS incidence in the two genders changed concomitantly with smoking, as would be expected if smoking truly increased MS risk. DESIGN/METHODS: We...... identified relevant studies reporting male and female age-specific incidence of MS throughout the world using within-country birth cohorts as units of observation. For each country and birth cohort, we then estimated the male to female ratio in MS incidence, and correlated these ratios with the corresponding...

  7. Identification of novel missense mutations in the Norrie disease gene associated with one X-linked and four sporadic cases of familial exudative vitreoretinopathy.

    Science.gov (United States)

    Shastry, B S; Hejtmancik, J F; Trese, M T

    1997-01-01

    X-linked Familial Exudative Vitreoretinopathy (XLFEVR) is a hereditary eye disorder that affects both the retina and the vitreous body. It is characterized by an abnormal vascularization of the peripheral retina. It has been previously shown by linkage and candidate gene analysis that XLFEVR and Norrie disease are allelic. In this report we describe four novel mutations (R41K, H42R, K58N, and Y120C) in the Norrie disease gene associated with one X-linked and four sporadic cases of FEVR. One mutation (H42R) was found to be segregating with the disease in three generations (X-linked family), and the others are sporadic. These sequence alterations changed the encoded amino acids in the Norrie disease protein and were not found in 17 unaffected family members or in 36 randomly selected normal individuals. This study provides additional evidence that mutations in the same gene can result in FEVR and Norrie disease. It also demonstrates that it may be beneficial for clinical diagnosis to screen for mutations in the Norrie disease gene in sporadic FEVR cases.

  8. Gene stacking of multiple traits for high yield of fermentable sugars in plant biomass

    DEFF Research Database (Denmark)

    Aznar, Aude; Chalvin, Camille; Shih, Patrick M.

    2018-01-01

    the ratio of C6 to C5 sugars in the cell wall and decreasing the lignin content are two important targets in engineering of plants that are more suitable for downstream processing for second-generation biofuel production.Results: We have studied the basic mechanisms of