WorldWideScience

Sample records for link sediment contamination

  1. Equilibrium sampling of polychlorinated biphenyls in River Elbe sediments--Linking bioaccumulation in fish to sediment contamination.

    Science.gov (United States)

    Schäfer, Sabine; Antoni, Catherine; Möhlenkamp, Christel; Claus, Evelyn; Reifferscheid, Georg; Heininger, Peter; Mayer, Philipp

    2015-11-01

    Equilibrium sampling can be applied to measure freely dissolved concentrations (cfree) of hydrophobic organic chemicals (HOCs) that are considered effective concentrations for diffusive uptake and partitioning. It can also yield concentrations in lipids at thermodynamic equilibrium with the sediment (clip⇌sed) by multiplying concentrations in the equilibrium sampling polymer with lipid to polymer partition coefficients. We have applied silicone coated glass jars for equilibrium sampling of seven 'indicator' polychlorinated biphenyls (PCBs) in sediment samples from ten locations along the River Elbe to measure cfree of PCBs and their clip⇌sed. For three sites, we then related clip⇌sed to lipid-normalized PCB concentrations (cbio,lip) that were determined independently by the German Environmental Specimen Bank in common bream, a fish species living in close contact with the sediment: (1) In all cases, cbio,lip were below clip⇌sed, (2) there was proportionality between the two parameters with high R(2) values (0.92-1.00) and (3) the slopes of the linear regressions were very similar between the three stations (0.297; 0.327; 0.390). These results confirm the close link between PCB bioaccumulation and the thermodynamic potential of sediment-associated HOCs for partitioning into lipids. This novel approach gives clearer and more consistent results compared to conventional approaches that are based on total concentrations in sediment and biota-sediment accumulation factors. We propose to apply equilibrium sampling for determining bioavailability and bioaccumulation potential of HOCs, since this technique can provide a thermodynamic basis for the risk assessment and management of contaminated sediments.

  2. Center for Contaminated Sediments

    Data.gov (United States)

    Federal Laboratory Consortium — The U.S. Army Corps of Engineers Center for Contaminated Sediments serves as a clearinghouse for technology and expertise concerned with contaminated sediments. The...

  3. Equilibrium sampling of polychlorinated biphenyls in River Elbe sedimentsLinking bioaccumulation in fish to sediment contamination

    DEFF Research Database (Denmark)

    Schäfer, Sabine; Antoni, Catherine; Möhlenkamp, Christel

    2015-01-01

    Equilibrium sampling can be applied to measure freely dissolved concentrations (cfree) of hydrophobic organic chemicals (HOCs) that are considered effective concentrations for diffusive uptake and partitioning. It can also yield concentrations in lipids at thermodynamic equilibrium with the sedim...... to apply equilibrium sampling for determining bioavailability and bioaccumulation potential of HOCs, since this technique can provide a thermodynamic basis for the risk assessment and management of contaminated sediments.......Equilibrium sampling can be applied to measure freely dissolved concentrations (cfree) of hydrophobic organic chemicals (HOCs) that are considered effective concentrations for diffusive uptake and partitioning. It can also yield concentrations in lipids at thermodynamic equilibrium...... with the sediment (Clip⇔sed) by multiplying concentrations in the equilibrium sampling polymer with lipid to polymer partition coefficients. We have applied silicone coated glass jars for equilibrium sampling of seven ‘indicator’ polychlorinated biphenyls (PCBs) in sediment samples from ten locations along...

  4. The Pseudomonas community in metal-contaminated sediments as revealed by quantitative PCR: a link with metal bioavailability.

    Science.gov (United States)

    Roosa, Stéphanie; Wauven, Corinne Vander; Billon, Gabriel; Matthijs, Sandra; Wattiez, Ruddy; Gillan, David C

    2014-10-01

    Pseudomonas bacteria are ubiquitous Gram-negative and aerobic microorganisms that are known to harbor metal resistance mechanisms such as efflux pumps and intracellular redox enzymes. Specific Pseudomonas bacteria have been quantified in some metal-contaminated environments, but the entire Pseudomonas population has been poorly investigated under these conditions, and the link with metal bioavailability was not previously examined. In the present study, quantitative PCR and cell cultivation were used to monitor and characterize the Pseudomonas population at 4 different sediment sites contaminated with various levels of metals. At the same time, total metals and metal bioavailability (as estimated using an HCl 1 m extraction) were measured. It was found that the total level of Pseudomonas, as determined by qPCR using two different genes (oprI and the 16S rRNA gene), was positively and significantly correlated with total and HCl-extractable Cu, Co, Ni, Pb and Zn, with high correlation coefficients (>0.8). Metal-contaminated sediments featured isolates of the Pseudomonas putida, Pseudomonas fluorescens, Pseudomonas lutea and Pseudomonas aeruginosa groups, with other bacterial genera such as Mycobacterium, Klebsiella and Methylobacterium. It is concluded that Pseudomonas bacteria do proliferate in metal-contaminated sediments, but are still part of a complex community.

  5. Bacterial population and biodegradation potential in chronically crude oil-contaminated marine sediments are strongly linked to temperature

    KAUST Repository

    Bargiela, Rafael

    2015-06-29

    Two of the largest crude oil-polluted areas in the world are the semi-enclosed Mediterranean and Red Seas, but the effect of chronic pollution remains incompletely understood on a large scale. We compared the influence of environmental and geographical constraints and anthropogenic forces (hydrocarbon input) on bacterial communities in eight geographically separated oil-polluted sites along the coastlines of the Mediterranean and Red Seas. The differences in community compositions and their biodegradation potential were primarily associated (P < 0.05) with both temperature and chemical diversity. Furthermore, we observed a link between temperature and chemical and biological diversity that was stronger in chronically polluted sites than in pristine ones where accidental oil spills occurred. We propose that low temperature increases bacterial richness while decreasing catabolic diversity and that chronic pollution promotes catabolic diversification. Our results further suggest that the bacterial populations in chronically polluted sites may respond more promptly in degrading petroleum after accidental oil spills.

  6. Toxicity of contaminated sediments in dilution series with control sediments

    Science.gov (United States)

    Nelson, M.K.; Landrum, P.F.; Burton, G.A.; Klaine, S.J.; Crecelius, E.A.; Byl, T.D.; Gossiaux, Duane C.; Tsymbal, V.N.; Cleveland, L.; Ingersoll, Christopher G.; Sasson-Brickson, G.

    1993-01-01

    The use of dilutions has been the foundation of our approach for assessing contaminated water, and accordingly, it may be important to establish similar or parallel approaches for sediment dilutions. Test organism responses to dilution gradients can identify the degree of necessary sediment alteration to reduce the toxicity. Using whole sediment dilutions to represent the complex interactions of in situ sediments can identify the toxicity, but the selection of the appropriate diluent for the contaminated sediment may affect the results and conclusions drawn. Contaminated whole sediments were examined to evaluate the toxicity of dilutions of sediments with a diversity of test organisms. Dilutions of the contaminated sediments were prepared with differing diluents that varied in organic carbon content, particle size distribution, and volatile solids. Studies were conducted using four macroinvertebrates and a vascular, rooted plant. Responses by some test organisms followed a sigmoidal dose-response curve, but others followed a U-shaped curve. Initial dilutions reduced toxicity as expected, but further dilution resulted in an increase in toxicity. The type of diluent used was an important factor in assessing the sediment toxicity, because the control soil reduced toxicity more effectively than sand as a diluent of the same sediment. Using sediment chemical and physical characteristics as an indicator of sediment dilution may not be as useful as chemical analysis of contaminants, but warrants further investigation.

  7. Hanford contaminated sediment stabilization studies

    Energy Technology Data Exchange (ETDEWEB)

    Bruns, L.E.; Key, K.T.; Higley, B.A.

    1977-03-01

    The major problems with radionuclide waste sites in the 200 Area plateau on the Hanford Reservation is the high degree of toxicity or Hazard Index (HI). Transport Factors (TF) are fortunately low but can increase with time and certainly with episodic events such as explosions or earthquakes. Two major tests involving surface affixation were sponsored by the Atlantic Richfield Hanford Company, one by Dowell using M-166 and the other by Battelle-Northwest comparing many different surface affixants. The latex emulsion, M-166, appeared to be well suited for the Hanford desert type area. Of the many surface affixants tested by Battelle-Northwest, Coherex and Aerospray appeared to be the best. As an emergency precaution, 200 barrels of M-166 were purchased for surface affixation in case of a range fire. The subsurface affixants laboratory and field tests include organic polymers, asphalt emulsions, concrete, AM-9, and sodium silicate-calcium chloride-foramide grouts. The applications were second containment (or leak prevention) of subsurface waste tanks and piping, grouting water wells to prevent contamination leaking to the water table, and encompassing cribs, trenches, burial grounds, and other subsurface sediment contaminations. Organic polymers added strength to the soil, but penetration of the viscous liquid was not as deep as desired; it may be good for situations requiring only a few inches penetration, such as well grouting. The asphalt emulsion looked promising as an easily injected well grouting material and it may also be good for encompassing subsurface contaminated sediment plumes. The sodium silicate-calcium chloride-foramide affixant appeared best for second containment of waste tanks but may require the help of asphalt emulsion to ensure good coverage.

  8. Remediation technologies for oil-contaminated sediments.

    Science.gov (United States)

    Agarwal, Ashutosh; Liu, Yu

    2015-12-30

    Oil-contaminated sediments pose serious environmental hazards for both aquatic and terrestrial ecosystems. Innovative and environmentally compatible technologies are urgently required to remove oil-contaminated sediments. In this paper, various physical, chemical and biological technologies are investigated for the remediation of oil-contaminated sediments such as flotation and washing, coal agglomeration, thermal desorption, ultrasonic desorption, bioremediation, chemical oxidation and extraction using ionic liquids. The basic principles of these technologies as well as their advantages and disadvantages for practical application have been discussed. A combination of two or more technologies is expected to provide an innovative solution that is economical, eco-friendly and adaptable.

  9. Mercury-contaminated sediments affect amphipod feeding.

    Science.gov (United States)

    Bundschuh, Mirco; Zubrod, Jochen P; Seitz, Frank; Newman, Michael C; Schulz, Ralf

    2011-04-01

    A 125-mile reach of the South River, Virginia, was contaminated with mercury during the first half of the 20th century. As increased concentrations of mercury have persisted, researchers have carefully studied its distribution in the river biota and estimated associated risks. The present study evaluated the influence of mercury on feeding rate and uptake by the amphipod Hyalella azteca. The test organisms were exposed for 7 days with leaf discs to reference and contaminated field sediment during the preliminary experiment and additionally to Sedimite (a commercial mercury-sequestering agent) amended sediments during the final experiment. The preliminary experiment demonstrated a decreased feeding rate (approximately 35%) of H. azteca in sediment from a contaminated site relative to sediment from a reference site. The test design of the final experiment took advantage of the knowledge gained in the preliminary experiment by increasing the number of replicates, which decreased the type II error rate. First, the results of the final experiment confirmed the results of the preliminary experiment by again demonstrating differences in the feeding rate of approximately 35% between reference and contaminated sediment. Second, the results indicated a lower feeding rate in reference sediment in the presence of Sedimite. Third, an opposite tendency, although not significant, was apparent for Sedimite-amended contaminated sediment. Thus, Sedimite appears to decrease sediment quality, whereas this conclusion is based on the feeding rate of H. azteca. However, Sedimite and its value as a mercury-sequestering agent requires further evaluation.

  10. Microbial interactions with naturally occurring hydrophobic sediments: Influence on sediment and associated contaminant mobility.

    Science.gov (United States)

    Droppo, I G; Krishnappan, B G; Lawrence, J R

    2016-04-01

    The erosion, transport and fate of sediments and associated contaminants are known to be influenced by both particle characteristics and the flow dynamics imparted onto the sediment. The influential role of bitumen containing hydrophobic sediments and the microbial community on sediment dynamics are however less understood. This study links an experimental evaluation of sediment erosion with measured sediment-associated contaminant concentrations and microbial community analysis to provide an estimate of the potential for sediment to control the erosion, transport and fate of contaminants. Specifically the paper addresses the unique behaviour of hydrophobic sediments and the role that the microbial community associated with hydrophobic sediment may play in the transport of contaminated sediment. Results demonstrate that the hydrophobic cohesive sediment demonstrates unique transport and particle characteristics (poor settling and small floc size). Biofilms were observed to increase with consolidation/biostabilization times and generated a unique microbial consortium relative to the eroded flocs. Natural oil associated with the flocs appeared to be preferentially associated with microbial derived extracellular polymeric substances. While PAHs and naphthenic acid increased with increasing shear (indicative of increasing loads), they tended to decrease with consolidation/biostabilization (CB) time at similar shears suggesting a chemical and/or biological degradation. PAH and napthenic acid degrading microbes decreased with time as well, which may suggest that there was a reduced pool of PAHs and naphthenic acids available resulting in their die off. This study emphasizes the importance that any management strategies and operational assessments for the protection of human and aquatic health incorporate the sediment (suspended and bed sediment) and biological (biofilm) compartments and the energy dynamics within the system in order to better predict contaminant

  11. Intensive landfarming of contaminated sediments

    NARCIS (Netherlands)

    Wieggers, H.J.J.; Bezemer, H.W.

    1995-01-01

    The biodegradation of polycyclic aromatic hydrocarbons (PAH) and mineral oil was investigated in heavily and normally polluted sediments. The aims of the research were: to improve the knowledge of dewatering and ripening of sediments in an open land-farm, to quantify the biodegradation in two sedime

  12. Contaminated sediment dynamics in peatland headwaters

    Science.gov (United States)

    Shuttleworth, Emma; Clay, Gareth; Evans, Martin; Hutchinson, Simon; Rothwell, James

    2016-04-01

    Peatlands are an important store of soil carbon, provide multiple ecosystem services, and when located in close proximity to urban and industrial areas, can also act as sinks of atmospherically deposited heavy metals. The near-surface layer of the blanket peats of the Peak District National Park, UK, is severely contaminated with high concentrations of anthropogenically derived, atmospherically deposited lead (Pb). These peats are severely degraded, and there is increasing concern that erosion is releasing considerable quantities of this legacy pollution into surface waters. Despite substantial research into Pb dynamics in peatlands formal description of the possible mechanisms of contaminated sediment mobilisation is limited. However, there is evidence to suggest that a substantial proportion of contaminated surface sediment may be redistributed elsewhere in the catchment. This study uses the Pb contamination stored near the peat's surface as a fingerprint to trace contaminated sediment dynamics and storage in three severely degraded headwater catchments. Erosion is exposing high concentrations of Pb on interfluve surfaces, and substantial amounts of reworked contaminated material are stored on other catchment surfaces (gully walls and floors). We propose a variety of mechanisms as controls of Pb release and storage on the different surfaces, including: (i) wind action on interfluves; (ii) the aspect of gully walls, and (iii) gully depth. Vegetation also plays an important role in retaining contaminated sediment on all surfaces.

  13. Arsenic mobility in contaminated lake sediments

    Energy Technology Data Exchange (ETDEWEB)

    Nikolaidis, Nikolaos P.; Dobbs, Gregory M.; Chen, Jing; Lackovic, Jeffrey

    2004-06-01

    An arsenic contaminated lake sediment near a landfill in Maine was used to characterize the geochemistry of arsenic and assess the influence of environmental conditions on its mobility. A kinetic model was developed to simulate the leaching ability of arsenic in lake sediments under different environmental conditions. The HM1D chemical transport model was used to model the column experiments and determine the rates of arsenic mobility from the sediment. Laboratory studies provided the information to construct a conceptual model to demonstrate the mobility of arsenic in the lake sediment. The leaching ability of arsenic in lake sediments greatly depends on the flow conditions of ground water and the geochemistry of the sediments. Large amounts of arsenic were tightly bound to the sediments. The amount of arsenic leaching out of the sediment to the water column was substantially decreased due to iron/arsenic co-precipitation at the water-sediment interface. Overall, it was found that arsenic greatly accumulated at the ground water/lake interface and it formed insoluble precipitates. - Arsenic accumulates at the ground water/lake interface, where it forms insoluble precipitates.

  14. Monitored Natural Recovery at Contaminated Sediment Sites

    Science.gov (United States)

    2009-05-01

    sediments, precipitation of solids from the water column, and accumulation of the remains of aquatic biota such as plankton , algae, and aquatic...speciation in clams and seaweed from a contaminated marine environment. Mar. Pollut. Bull. 54:586-594. 15 A P P E N D I X B : C O N T A M I N A N T - S

  15. Characterizing toxicity of metal-contaminated sediments from mining areas

    Science.gov (United States)

    Besser, John M.; Brumbaugh, William G.; Ingersoll, Christopher G.

    2015-01-01

    This paper reviews methods for testing the toxicity of metals associated with freshwater sediments, linking toxic effects with metal exposure and bioavailability, and developing sediment quality guidelines. The most broadly applicable approach for characterizing metal toxicity is whole-sediment toxicity testing, which attempts to simulate natural exposure conditions in the laboratory. Standard methods for whole-sediment testing can be adapted to test a wide variety of taxa. Chronic sediment tests that characterize effects on multiple endpoints (e.g., survival, growth, and reproduction) can be highly sensitive indicators of adverse effects on resident invertebrate taxa. Methods for testing of aqueous phases (pore water, overlying water, or elutriates) are used less frequently. Analysis of sediment toxicity data focuses on statistical comparisons between responses in sediments from the study area and responses in one or more uncontaminated reference sediments. For large or complex study areas, a greater number of reference sediments is recommended to reliably define the normal range of responses in uncontaminated sediments – the ‘reference envelope’. Data on metal concentrations and effects on test organisms across a gradient of contamination may allow development of concentration-response models, which estimate metal concentrations associated with specified levels of toxic effects (e.g. 20% effect concentration or EC20). Comparisons of toxic effects in laboratory tests with measures of impacts on resident benthic invertebrate communities can help document causal relationships between metal contamination and biological effects. Total or total-recoverable metal concentrations in sediments are the most common measure of metal contamination in sediments, but metal concentrations in labile sediment fractions (e.g., determined as part of selective sediment extraction protocols) may better represent metal bioavailability. Metals released by the weak-acid extraction

  16. Assessing sediment contamination using six toxicity assays

    Directory of Open Access Journals (Sweden)

    Allen G. BURTON Jr.

    2001-08-01

    Full Text Available An evaluation of sediment toxicity at Lake Orta, Italy was conducted to compare a toxicity test battery of 6 assays and to evaluate the extent of sediment contamination at various sediment depths. Lake Orta received excessive loadings of copper and ammonia during the 1900’s until a large remediation effort was conducted in 1989-90 using lime addition. Since that time, the lake has shown signs of a steady recovery of biological communities. The study results showed acute toxicity still exists in sediments at a depth of 5 cm and greater. Assays that detected the highest levels of toxicity were two whole sediment exposures (7 d using Hyalella azteca and Ceriodaphnia dubia. The MicrotoxR assay using pore water was the third most sensitive assay. The Thamnotox, Rototox, Microtox solid phase, and Seed Germination-Root Elongation (pore and solid phase assays showed occasional to no toxicity. Based on similarity of responses and assay sensitivity, the two most useful assays were the C. dubia (or H. azteca and Microtox pore water. These assays were effective at describing sediment toxicity in a weight-of-evidence approach.

  17. Historical Changes in Polychlorinated Biphenyls Contaminated Sediments

    Directory of Open Access Journals (Sweden)

    Viet D. Dang

    2012-01-01

    Full Text Available Problem statement: PCBs contamination continues to pose a health risk to aquatic environments due to their recalcitrance and bioaccumulation. The Sangamo Weston/Twelvemile Creek/Lake Hartwell Superfund Site is an example of such a health risk as a result of PCBs discharged from a former capacitor manufacturing plant. We conducted a study in twelvemile creek (Clemson, SC, USA to examine the temporal trend of PCB contaminated sediments. Approach: Surface sediments were sampled at four sites in fall 2008 to compare with concentrations measured in past studies. Total PCBs and congener-specific analyses were performed on Gas Chromatography-Electron Capture Detector (GC-ECD. Results: Total PCB concentrations ranged from 0.026-0.18 ìg g-1, which were one order of magnitude lower than levels measured in 1987 (-1. Total PCBs in this study (based on more than 130 congeners were similar to those observed in 2003-2004 (based on only 20 congeners. PCB congener patterns indicated that PCBs near the source were dominated by lower chlorinated congeners while heavy congeners were persistent further downstream. Conclusion: Physical and biochemical processes such as natural attenuation, mixing/dispersion and PCBs degradation are contributing to the decreasing concentrations after the discharge was eliminated in 1975. The congener pattern shift is likely attributed to a loss via volatilization and export of contaminated sediment from the stream. Burial could be a potential means to prevent resuspension into the water column.

  18. Sediment contaminant surveillance in Milford Haven Waterway.

    Science.gov (United States)

    Little, D I; Bullimore, B; Galperin, Y; Langston, W J

    2016-01-01

    Sediment contaminants were monitored in Milford Haven Waterway (MHW) since 1978 (hydrocarbons) and 1982 (metals), with the aim of providing surveillance of environmental quality in one of the UK's busiest oil and gas ports. This aim is particularly important during and after large-scale investment in liquefied natural gas (LNG) facilities. However, the methods inevitably have changed over the years, compounding the difficulties of coordinating sampling and analytical programmes. After a review by the MHW Environmental Surveillance Group (MHWESG), sediment hydrocarbon chemistry was investigated in detail in 2010. Natural Resources Wales (NRW) contributed their MHW data for 2007 and 2012, collected to assess the condition of the Special Area of Conservation (SAC) designated under the European Union Habitats Directive. Datasets during 2007-2012 have thus been more comparable. The results showed conclusively that a MHW-wide peak in concentrations of sediment polycyclic aromatic hydrocarbons (PAHs), metals and other contaminants occurred in late 2007. This was corroborated by independent annual monitoring at one centrally located station with peaks in early 2008 and 2011. The spatial and temporal patterns of recovery from the 2007 peak, shown by MHW-wide surveys in 2010 and 2012, indicate several probable causes of contaminant trends, as follows: atmospheric deposition, catchment runoff, sediment resuspension from dredging, and construction of two LNG terminals and a power station. Adverse biological effects predictable in 2007 using international sediment quality guidelines were independently tested by data from monitoring schemes of more than a decade duration in MHW (starfish, limpets) and in the wider SAC (grey seals). Although not proving cause and effect, many of these potential biological receptors showed a simultaneous negative response to the elevated 2007 contamination following intense dredging activity in 2006. Wetland bird counts were typically at a peak in

  19. INNOVATIVE IN-SITU REMEDIATION OF CONTAMINATED SEDIMENTS FOR SIMULTANEOUS CONTROL OF CONTAMINATION AND EROSION

    Energy Technology Data Exchange (ETDEWEB)

    Knox, A; Michael Paller, M; Danny D. Reible, D; Ioana G. Petrisor, I

    2007-11-28

    organoclays have high potential for controlling organic contaminants. Measured partitioning coefficients were used to model the time required for a contaminant to penetrate sediment caps composed of organoclay. The results showed that a thin layer of highly sorptive organoclay can lead to very long migration times, perhaps longer than the expected lifetime of the contaminant in the sediment environment. A one-dimensional numerical model was used to examine the diffusion of metals through several cap material based on measured and assumed material and transport properties. These studies showed that active caps composed of apatite or organoclay have the potential to delay contaminant breakthrough due to diffusion by hundreds of years or more compared with passive caps composed of sand. Advectively dominated column experiments are currently underway to define effective sorption related retardation factors in promising amendments for various hydrophobic organic compounds. Upon completion of these experiments, advection transient models will be used to estimate the time required for the breakthrough of various contaminants in caps composed of different experimental materials. Biopolymer products for inclusion in active caps were evaluated on the basis of resistance to biodegradation, sorption capacity for organic and inorganic contaminants, and potential for erosion control. More than 20 biopolymer products were evaluated resulting in the selection of chitosan/guar gum cross-linked with borax and xanthan/chitosan cross-linked with calcium chloride for inclusion in active caps to produce a barrier that resists mechanical disturbance. A process was developed for coating sand with cross-linked biopolymers to provide a means for delivery to the sediment surface. Properties of biopolymer coated sand such as carbon fraction (indicating biopolymer coverage), porosity, bulk density, and biodegradability have been evaluated, and experiments are currently underway to assess the resistance

  20. Contaminant release from sediments: a mass flux approach

    NARCIS (Netherlands)

    Smit, M.P.J.

    2009-01-01

    With the predicted climate change it is expected that the chances of flooding increase. During flood events sediments will suspend and if sediments are polluted, contaminants can be released to water. Also under gentle flow regimes, when sediments are settled and form a sediment bed, transfer of

  1. A preliminary contaminant and toxicological survey of Illinois River sediments

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — Sediments from 6 sites on the Illinois River adn its tributaries were analyzed for organic and inorganic contaminants. Relative toxicity of sediments was determined...

  2. Causes and ecological effects of resuspended contaminated sediments (RCS) in marine environments.

    Science.gov (United States)

    Roberts, David A

    2012-04-01

    Sediments act as a net sink for anthropogenic contaminants in marine ecosystems and contaminated sediments may have a range of toxicological effects on benthic fauna and associated species. When resuspended, however, particulate-bound contaminants may be remobilised into the water column and become bioavailable to an additional assemblage of species. Such resuspension occurs through a range of natural and anthropogenic processes each of which may be thought of as pulsed disturbances resulting in pulsed exposures to contaminants. Thus, it is important to understand not only the toxicological responses of organisms to resuspended contaminated sediments (RCS), but also the frequency, magnitude and duration of sediment disturbance events. Such information is rarely collected together with toxicological data. Rather, the majority of published studies (>50% of the articles captured in this review) have taken the form of fixed-duration laboratory-based exposures with individual species. While this research has clearly demonstrated that resuspension of contaminated sediments can liberate sediment-bound contaminants leading to toxicity and bioaccumulation under controlled conditions, the potential for ecological effects in the field is often unclear. Monitoring studies suggest that recurrent natural disturbances such as tides and waves may cause the majority of contaminant release in many environments. However, various processes also act to limit the spatial and temporal scales across which contaminants are remobilised to the most toxic dissolved state. Various natural and anthropogenic disturbances of contaminated sediments have been linked to both community-level and sub-lethal responses in exposed populations of invertebrates and fish in the field. Together these findings suggest that resuspension of contaminated sediments is a frequently recurring ecological threat in contaminated marine habitats. Further consideration of how marine communities respond to temporally

  3. Transport simulation of sorptive contaminants considering sediment-associated processes

    Institute of Scientific and Technical Information of China (English)

    LI Ruijie; LU Shasha; ZHENG Jun

    2012-01-01

    Sediment-associated processes,such as sediment erosion,deposition,and pore water diffusion/advection affect sorptive contaminant transport.By considering these processes,we developed an equation to simulate contaminant transport.Erosion and deposition processes are considered as erosion and deposition fluxes of sediment,and adsorption-desorption processes of contaminants by sediment are simulated using the Langmuir Equation.Pore water diffusion is calculated based on the contaminant concentration gradient across the sediment-water interface.Pore water advection is estimated using pore water contained in the sediments of erosion flux.The equation is validated to simulate total phosphorus concentrations in Guanhe estuary in the northern Jiangsu,China.The simulated total phosphorus concentrations show better agreement with field observations compared to estimations that do consider sediment-associated processes.

  4. Toxicity of lead-contaminated sediment to mute swans

    Science.gov (United States)

    Day, D.D.; Beyer, W.N.; Hoffman, D.J.; Morton, Alexandra; Sileo, L.; Audet, D.J.; Ottinger, M.A.

    2003-01-01

    Most ecotoxicological risk assessments of wildlife emphasize contaminant exposure through ingestion of food and water. However, the role of incidental ingestion of sediment-bound contaminants has not been adequately appreciated in these assessments. This study evaluates the toxicological consequences of contamination of sediments with metals from hard-rock mining and smelting activities. Lead-contaminated sediments collected from the Coeur d'Alene River Basin in Idaho were combined with either a commercial avian maintenance diet or ground rice and fed to captive mute swans (Cygnus olor) for 6 weeks. Experimental treatments consisted of maintenance or rice diets containing 0, 12 (no rice group), or 24% highly contaminated (3,950 ug/g lead) sediment or 24% reference (9.7 ug/g lead) sediment. Although none of the swans died, the group fed a rice diet containing 24% lead-contaminated sediment were the most severely affected, experiencing a 24% decrease in mean body weight, including three birds that became emaciated. All birds in this treatment group had nephrosis; abnormally dark, viscous bile; and significant (p poisoning in waterfowl. Body weight and hematocrit and hemoglobin concentrations in swans on control (no sediment) and reference (uncontaminated) sediment diets remained unchanged. These data provide evidence that mute swans consuming environmentally relevant concentrations of Coeur d'Alene River Basin sediment developed severe sublethal lead poisoning. Furthermore, toxic effects were more pronounced when the birds were fed lead contaminated sediment combined with rice, which closely resembles the diet of swans in the wild.

  5. Suspended sediment and sediment-associated contaminants in San Francisco Bay

    Science.gov (United States)

    Schoellhamer, D.H.; Mumley, T.E.; Leatherbarrow, J.E.

    2007-01-01

    Water-quality managers desire information on the temporal and spatial variability of contaminant concentrations and the magnitudes of watershed and bed-sediment loads in San Francisco Bay. To help provide this information, the Regional Monitoring Program for Trace Substances in the San Francisco Estuary (RMP) takes advantage of the association of many contaminants with sediment particles by continuously measuring suspended-sediment concentration (SSC), which is an accurate, less costly, and more easily measured surrogate for several trace metals and organic contaminants. Continuous time series of SSC are collected at several sites in the Bay. Although semidiurnal and diurnal tidal fluctuations are present, most of the variability of SSC occurs at fortnightly, monthly, and semiannual tidal time scales. A seasonal cycle of sediment inflow, wind-wave resuspension, and winnowing of fine sediment also is observed. SSC and, thus, sediment-associated contaminants tend to be greater in shallower water, at the landward ends of the Bay, and in several localized estuarine turbidity maxima. Although understanding of sediment transport has improved in the first 10 years of the RMP, determining a simple mass budget of sediment or associated contaminants is confounded by uncertainties regarding sediment flux at boundaries, change in bed-sediment storage, and appropriate modeling techniques. Nevertheless, management of sediment-associated contaminants has improved greatly. Better understanding of sediment and sediment-associated contaminants in the Bay is of great interest to evaluate the value of control actions taken and the need for additional controls. ?? 2007 Elsevier Inc. All rights reserved.

  6. Contaminant variability in a sedimentation area of the river Rhine.

    NARCIS (Netherlands)

    Winkels, H.J.

    1997-01-01

    Aquatic sediments in sedimentation zones of major rivers are in general sinks for pollutants. The sedimentation zone Ketelmeer/IJsselmeer is an important sink for contaminants of the river Rhine (i.e. river IJssel). Recent and historical pollution interact here. Redistribution of suspended solids an

  7. Innovative Capping Technology To Prevent The Migration of Toxic Chemicals From Contaminated Sediments

    Science.gov (United States)

    Capping is a common strategy for decreasing the risk associated with contaminated sediments in lakes and streams. Historically, caps have been designed to physically isolate contaminated sediments and prevent the transport of contaminants from sediments into the water above them...

  8. INNOVATIVE IN-SITU REMEDIATION OF CONTAMINATED SEDIMENTS FOR SIMULTANEOUS CONTROL OF CONTAMINATION AND EROSION

    Energy Technology Data Exchange (ETDEWEB)

    Knox, A; Michael Paller, M; Danny D. Reible, D; Ioana G. Petrisor, I

    2007-11-28

    organoclays have high potential for controlling organic contaminants. Measured partitioning coefficients were used to model the time required for a contaminant to penetrate sediment caps composed of organoclay. The results showed that a thin layer of highly sorptive organoclay can lead to very long migration times, perhaps longer than the expected lifetime of the contaminant in the sediment environment. A one-dimensional numerical model was used to examine the diffusion of metals through several cap material based on measured and assumed material and transport properties. These studies showed that active caps composed of apatite or organoclay have the potential to delay contaminant breakthrough due to diffusion by hundreds of years or more compared with passive caps composed of sand. Advectively dominated column experiments are currently underway to define effective sorption related retardation factors in promising amendments for various hydrophobic organic compounds. Upon completion of these experiments, advection transient models will be used to estimate the time required for the breakthrough of various contaminants in caps composed of different experimental materials. Biopolymer products for inclusion in active caps were evaluated on the basis of resistance to biodegradation, sorption capacity for organic and inorganic contaminants, and potential for erosion control. More than 20 biopolymer products were evaluated resulting in the selection of chitosan/guar gum cross-linked with borax and xanthan/chitosan cross-linked with calcium chloride for inclusion in active caps to produce a barrier that resists mechanical disturbance. A process was developed for coating sand with cross-linked biopolymers to provide a means for delivery to the sediment surface. Properties of biopolymer coated sand such as carbon fraction (indicating biopolymer coverage), porosity, bulk density, and biodegradability have been evaluated, and experiments are currently underway to assess the resistance

  9. Passive sampling methods for contaminated sediments: scientific rationale supporting use of freely dissolved concentrations.

    Science.gov (United States)

    Mayer, Philipp; Parkerton, Thomas F; Adams, Rachel G; Cargill, John G; Gan, Jay; Gouin, Todd; Gschwend, Philip M; Hawthorne, Steven B; Helm, Paul; Witt, Gesine; You, Jing; Escher, Beate I

    2014-04-01

    Passive sampling methods (PSMs) allow the quantification of the freely dissolved concentration (Cfree ) of an organic contaminant even in complex matrices such as sediments. Cfree is directly related to a contaminant's chemical activity, which drives spontaneous processes including diffusive uptake into benthic organisms and exchange with the overlying water column. Consequently, Cfree provides a more relevant dose metric than total sediment concentration. Recent developments in PSMs have significantly improved our ability to reliably measure even very low levels of Cfree . Application of PSMs in sediments is preferably conducted in the equilibrium regime, where freely dissolved concentrations in the sediment are well-linked to the measured concentration in the sampler via analyte-specific partition ratios. The equilibrium condition can then be assured by measuring a time series or a single time point using passive samplers with different surface to volume ratios. Sampling in the kinetic regime is also possible and generally involves the application of performance reference compounds for the calibration. Based on previous research on hydrophobic organic contaminants, it is concluded that Cfree allows a direct assessment of 1) contaminant exchange and equilibrium status between sediment and overlying water, 2) benthic bioaccumulation, and 3) potential toxicity to benthic organisms. Thus, the use of PSMs to measure Cfree provides an improved basis for the mechanistic understanding of fate and transport processes in sediments and has the potential to significantly improve risk assessment and management of contaminated sediments.

  10. Bioavailability of sediment-bound contaminants to marine organisms

    Energy Technology Data Exchange (ETDEWEB)

    Brown, B. [Battelle/Marine Sciences Lab., Sequim, WA (United States)]|[Colby Coll., Waterville, ME (United States); Neff, J. [Battelle/Marine Sciences Lab., Sequim, WA (United States)]|[Battelle Ocean Sciences, Duxbury, MA (United States)

    1993-09-01

    The bioavailability of sediment-bound contaminants to marine organisms indicates that there exists a potential for transfer of these contaminants through marine food webs to commercial fisheries products consumed by humans. However, there has been relatively little effort to combine and synthesize data on chemical/biological interactions between benthic animals and seagrasses and the sediments in which they reside on the one hand, and on the chemistry of bioaccumulation on the other. This report provides a conceptual basis for an approach to bioavailability and biomagnification of sediment-bound contaminants that reviews biological and chemical approaches.

  11. Gulf of Maine Contaminated Sediments Database (GOMCSDB shapefile)

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The Contaminated Sediments Database for the Gulf of Maine provides a compilation and synthesis of existing data to help establish the environmental status of our...

  12. USING SPMDS TO ACCESS MANAGMENT STRATEGIES FOR PCB CONTAMINATED SEDIMENTS

    Science.gov (United States)

    Dredging, in-place treatment, capping and monitored natural recovery, used together or separately are the primary approaches for managing contaminated sediment risks. Understanding how well different approaches work in different environments is critical for choosing an appropria...

  13. Influence Of Groundwater Discharge On Arsenic Contamination In Sediments

    Science.gov (United States)

    A field investigation was conducted to evaluate the impact of a discharging arsenic plume on sediment contaminant characteristics at a site adjacent to a landfill in northeastern Massachusetts. Site characterization included assessment of the hydrologic and chemical samples coll...

  14. Resuspension of sediment, a new approach for remediation of contaminated sediment.

    Science.gov (United States)

    Pourabadehei, Mehdi; Mulligan, Catherine N

    2016-06-01

    Natural events and anthropogenic activities are the reasons of undesirable resuspension of contaminated sediments in aquatic environment. Uncontrolled resuspension could remobilize weakly bound heavy metals into overlying water and pose a potential risk to aquatic ecosystem. Shallow harbours, with contaminated sediments are subjected to the risk of uncontrolled resuspension. Remediation of sediments in these areas cannot be performed by conventional in situ methods (e.g. capping with or without reactive amendment). Ex situ remediation also requires dredging of sediment, which could increase the risk of spreading contaminants. Alternatively, the resuspension technique was introduced to address these issues. The concept of the resuspension method is that finer sediments have a greater tendency to adsorb the contamination. Therefore, finer sediments, believed carry more concentration of contaminants, were targeted for removal from aquatic environment by a suspension mechanism in a confined water column. The objective of this study was to evaluate the feasibility of the resuspension technique as a new approach for remediation of contaminated sediment and a viable option to reduce the risk of remobilization of contaminants in harbours due to an undesirable resuspension event. Unlike the common in situ techniques, the resuspension method could successfully reduce the total concentration of contaminants in almost all samples below the probable effect level (PEL) with no significant change in the quality of overlying water. The results indicated that removal efficiency could be drastically enhanced for metals in sediment with a higher enrichment factor. Moreover, availability of metals (e.g. Cd and Pb) with a high concentration in labile fractions was higher in finer sediments with a high enrichment factor. Consequently, removal of contaminants from sediment through the resuspension method could reduce the risk of mobility and availability of metals under changing

  15. Sediments Contamination with Organic Micropollutants: Current State and Perspectives

    Science.gov (United States)

    Popenda, Agnieszka; Włodarczyk-Makuła, Maria

    2016-06-01

    This study focused on the sediment contamination with some organic micropollutants based on the monitoring data together with available literature in Poland. The following persistent organic pollutants (POPs): polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs) and chlorinated pesticides (CP) were characterized in sediments with respect to current legislations in force. Based on accessible data, higher PAHs, PCBs and CP concentrations were found in river sediments than in lake sediments. Especially, sediments of the Oder River and its tributary in the southern part of Poland, were highly polluted. In order to minimize the risk of the secondary pollution of surface waters, it is necessary to introduce consolidated management system with sediments proceeding. Furthermore, it is also of great importance to elaborate specific regulations concerning conditions of sediments management.

  16. Bioavailability of Metals in Contaminated Sediments

    Directory of Open Access Journals (Sweden)

    Paller M. H.

    2013-04-01

    Full Text Available Bioavailability controls the transfer of metals from sediments to ecological receptors and humans. It can rarely be predicted from total metal concentrations because it is affected by metal geochemistry in sediments as well as the biochemistry, physiology, and behavior of benthic organisms. There is no single approach for including bioavailability in risk assessments because of variability in site specific conditions and the difficulty of validating methods. Acid-volatile sulfide and simultaneously extracted metals are useful in predicting bioavailability in anoxic sediments containing sulfides that react to form insoluble metal complexes. This method can be improved by adjusting for organic carbon and other ligands that also bind free metals. Site-specific desorption Kd values calculated by sequential extraction methods can be useful in predicting bioavailable metal fractions in oxic and anoxic sediments. A modified desorption distribution coefficient (Kdg can be calculated by extraction with the digestive gut fluids of sediment feeding organisms to account for the effects of ingestion on metal release from sediments. Recently developed in situ measurement technologies can accumulate dissolved metals in a controlled fashion that may correspond with bioavailable metal fractions in sediment. Successful evaluation of bioavailability requires the selection of methods suitable for the organisms and sediment environments under consideration. A weight-of-evidence approach that incorporates multiple lines of evidence can help address uncertainties and increase the likelihood of incorporating bioavailability into remedial decisions.

  17. Mercury contaminated sediment sites—An evaluation of remedial options

    Energy Technology Data Exchange (ETDEWEB)

    Randall, Paul M., E-mail: randall.paul@epa.gov [U.S. Environmental Protection Agency, Office of Research and Development, National Risk Management Research Laboratory, 26 West Martin Luther King Drive, Cincinnati, OH 45268 (United States); Chattopadhyay, Sandip, E-mail: Sandip.Chattopadhyay@tetratech.com [Tetra Tech, Inc., 250 West Court Street, Suite 200W, Cincinnati, OH 45202 (United States)

    2013-08-15

    Mercury (Hg) is a naturally-occurring element that is ubiquitous in the aquatic environment. Though efforts have been made in recent years to decrease Hg emissions, historically-emitted Hg can be retained in the sediments of aquatic bodies where they may be slowly converted to methylmercury (MeHg). Consequently, Hg in historically-contaminated sediments can result in high levels of significant exposure for aquatic species, wildlife and human populations consuming fish. Even if source control of contaminated wastewater is achievable, it may take a very long time, perhaps decades, for Hg-contaminated aquatic systems to reach relatively safe Hg levels in both water and surface sediment naturally. It may take even longer if Hg is present at higher concentration levels in deep sediment. Hg contaminated sediment results from previous releases or ongoing contributions from sources that are difficult to identify. Due to human activities or physical, chemical, or biological processes (e.g. hydrodynamic flows, bioturbation, molecular diffusion, and chemical transformation), the buried Hg can be remobilized into the overlying water. Hg speciation in the water column and sediments critically affect the reactivity (i.e. conversion of inorganic Hg(II) to MeHg), transport, and its exposure to living organisms. Also, geochemical conditions affect the activity of methylating bacteria and its availability for methylation. This review paper discusses remedial considerations (e.g. key chemical factors in fate and transport of Hg, source characterization and control, environmental management procedures, remediation options, modeling tools) and includes practical case studies for cleaning up Hg-contaminated sediment sites. -- Highlights: ► Managing mercury-contaminated sediment sites are challenging to remediate. ► Remediation technologies are making a difference in managing these sites. ► Partitioning plays a dominant role in the distribution of mercury species. ► Mathematical

  18. Assessing Anthracene and Arsenic Contamination within Buffalo River Sediments

    Directory of Open Access Journals (Sweden)

    Adrian Gawedzki

    2012-01-01

    Full Text Available Anthracene and arsenic contamination concentrations at various depths in the Buffalo River were analyzed in this study. Anthracene is known to cause damage to human skin and arsenic has been linked to lung and liver cancer. The Buffalo River is labelled as an Area of Concern defined by the Great Lakes Water Quality Agreement between Canada and the United States. It has a long history of industrial activity located in its near vicinity that has contributed to its pollution. An ordinary kriging spatial interpolation technique was used to calculate estimates between sample locations for anthracene and arsenic at various depths. The results show that both anthracene and arsenic surface sediment (0–30 cm is less contaminated than all subsurface depths. There is variability of pollution within the different subsurface levels (30–60 cm, 60–90 cm, 90–120 cm, 120–150 cm and along the river course, but major clusters are identified throughout all depths for both anthracene and arsenic.

  19. Assessment of sediment contamination in Casco Bay, Maine, USA

    Energy Technology Data Exchange (ETDEWEB)

    Wade, Terry L. [Geochemical and Environmental Research Group, Texas A and M University, 833 Graham Road, College Station, TX 77845 (United States); Sweet, Stephen T. [Geochemical and Environmental Research Group, Texas A and M University, 833 Graham Road, College Station, TX 77845 (United States)], E-mail: sweet@gerg.tamu.edu; Klein, Andrew G. [Geography Department, Texas A and M University, 814B Eller O and M Building, College Station, TX 77843 (United States)

    2008-04-15

    The current status of contaminant concentrations in Casco Bay, decadal trends of these contaminants and changes in their geographical distribution are assessed using sediment samples collected approximately 10 years apart. In general, regulated contaminants appeared to be decreasing in concentration. Total PAH and dioxins/furans concentrations did not significantly change over this period. Total organochlorine pesticides, 4,4-DDE, 4,4-DDD, total DDT, PCB, tributyltin and total butyltin decreased in concentration. Trace element concentrations in sediments decreased at the majority of the sampling sites for chromium, nickel, and selenium while arsenic, cadmium, copper, lead, mercury, silver, and zinc remained relatively constant. None of the contaminants measured has increased by more than a factor of 2. Selected sites located in the Inner Bay, where concentrations are higher and new inputs were more likely, showed increased concentrations of contaminants. Most contaminants were not found at concentrations expected to adversely affect sediment biota based on ERL/ERM guidelines. - Sediment studies indicate decadal decreases for many chemical contaminants in Casco Bay.

  20. IN SITU REMEDIATION OF CONTAMINATED SEDIMENTS - ACTIVE CAPPING TECHNOLOGY

    Energy Technology Data Exchange (ETDEWEB)

    Knox, A.; Roberts, J.; Paller, M.; Reible, D.

    2010-09-02

    Active capping is a relatively new approach for treating contaminated sediments. It involves applying chemically reactive amendments to the sediment surface. The main role of active caps is to stabilize contaminants in contaminated sediments, lower the bioavailable pool of contaminants, and reduce the release of contaminants to the water column. Metals are common contaminants in many marine and fresh water environments as a result of industrial and military activities. The mobile, soluble forms of metals are generally considered toxic. Induced chemical precipitation of these metals can shift toxic metals from the aqueous phase to a solid, precipitated phase which is often less bioavailable. This approach can be achieved through application of sequestering agents such as rock phosphates, organoclays, zeolites, clay minerals, and biopolymers (e.g., chitosan) in active capping technology. Active capping holds great potential for a more permanent solution that avoids residual risks resulting from contaminant migration through the cap or breaching of the cap. In addition to identifying superior active capping agents, research is needed to optimize application techniques, application rates, and amendment combinations that maximize sequestration of contaminants. A selected set of active capping treatment technologies has been demonstrated at a few sites, including a field demonstration at the Savannah River Site, Aiken, SC. This demonstration has provided useful information on the effects of sequestering agents on metal immobilization, bioavailability, toxicity, and resistance to mechanical disturbance.

  1. Tolerance and genetic relatedness of three meiobenthic copepod populations exposed to sediment-associated contaminant mixtures: Role of environmental history

    Energy Technology Data Exchange (ETDEWEB)

    Kovatch, C.E.; Schizas, N.V.; Chandler, G.T.; Coull, B.C.; Quattro, J.M.

    2000-04-01

    Meiobenthic copepod populations (Microarthridion littoral) were collected from three South Carolina, USA, estuaries having different pollution stress histories (i.e., pristine sediments, high polycyclic aromatic hydrocarbon [PAH] sediments, high metals/moderate PAH sediments) and then assayed for survival and reproductive output in 14-d exposures to pristine and heavily PAH/metals-contaminated sediment mixture exhibited differential survival and reproductive outputs as a function of previous environmental histories and whether genetic relatedness among populations measured as DNA sequences of the mitochondrial gene, cytochrome apoenzyme b, were linked to copepod contaminant tolerance. Overall, adult survival and reproductive success in contaminated sediments were significantly reduced relative to controls for all three populations irrespective of environmental histories. Differential resistance to sediment-contaminant mixtures by the two copepod populations inhabiting the contaminated sites was not found, despite their previous exposures to mixed contaminants at {Sigma}PAH and {Sigma}Metal concentrations of 7,287 to 2,467 ng/g dry wt and 461 to 3,497 {micro}g/g, respectively. Significant genetic differentiation, however, was found between copepod populations from the control and the two contaminated sites. Generally, cross-population survival and reproductive outputs were not significantly different and could not be linked to genetic differentiation at the population level.

  2. Variations of common riverine contaminants in reservoir sediments.

    Science.gov (United States)

    Micić, V; Kruge, M A; Hofmann, T

    2013-08-01

    Organic molecules in reservoir sediments can be used as tracers of contaminant inputs into rivers. Vertical variations in the molecular records can be ascribed to pre-depositional alteration within the water column, or in situ post-depositional alteration. We report the molecular stratigraphy of four common riverine contaminant groups in sediment of the largest reservoir on the Danube River, the Iron Gate I Reservoir. Sediments were rapidly deposited, with little variation in texture and, as revealed by analytical pyrolysis, in the concentration and composition of natural sedimentary organic matter. However, a detailed molecular inspection did reveal differences in distribution and organic carbon (OC)-normalized concentrations of contaminants. The OC-normalized concentrations of nonylphenol increased by one order of magnitude with depth down the 70 cm sediment core. There is a strong correlation between sediment depth and the ratio of nonylphenol to its precursor (nonylphenol monoethoxylate). This indicated that nonylphenol was produced in situ. While the relative proportions of C10-C14 linear alkylbenzenes remained constant with increasing depth, they exhibited variations in isomer distribution. These variations, which are due to different degrees of degradation, appear to have occurred within the water column prior to sedimentation of suspended solids. The distribution of 40 polycyclic aromatic hydrocarbons revealed origins from both pyrogenic and petrogenic sources. The differences in their compositions were not depth-related, but rather were associated with variations in the sorption capacities of texturally different sediments. Perylene showed slightly higher concentrations at greater depths, while the OC-normalized concentration of retene systematically increased with sediment depth. This is consistent with formation of retene and perylene via very early diagenetic transformation. The presence of petroleum biomarkers indicated minor contamination by fossil

  3. Heavy metal contamination in TIMS Branch sediments

    Energy Technology Data Exchange (ETDEWEB)

    Pickett, J.B.

    1990-06-25

    The objective of this memorandum is to summarize results of previous sediment studies on Tims Branch and Steed's Pond conducted by Health Protection (HP) and by the Savannah River Laboratory (SRL) in conjunction with Reactor Materials Engineering Technology (RMET). The results for other heavy metals, such as lead, nickel, copper, mercury, chromium, cadmium, zinc, and thorium are also summarized.

  4. Heavy metal contamination in TIMS Branch sediments

    Energy Technology Data Exchange (ETDEWEB)

    Pickett, J.B.

    1990-06-25

    The objective of this memorandum is to summarize results of previous sediment studies on Tims Branch and Steed`s Pond conducted by Health Protection (HP) and by the Savannah River Laboratory (SRL) in conjunction with Reactor Materials Engineering & Technology (RMET). The results for other heavy metals, such as lead, nickel, copper, mercury, chromium, cadmium, zinc, and thorium are also summarized.

  5. Solidification of sediment contaminated with volatile chlorinated hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Schwarz, E.J. [Anchor QEA LLC, Portland, OR (United States)

    2010-07-01

    A series of bench-scale treatability tests were used to evaluate the effectiveness of various solidification reagents in treating sediments contaminated with high concentrations of chlorinated hydrocarbons. The effectiveness of Portland cement, cement kiln dust, lime kiln dust, fly ash, and a combination of silica and lime were was assessed relative to their ability to reduce the leaching of contaminants, increase the strength of the contaminated sediment, and reduce the hydraulic conductivity of the sediments. The aim of the study was to develop a design for treating sediments in a stagnant water body located on the grounds of an industrial facility. The sediments were predominantly fine-grained and high in organic content. Preliminary tests identified Portland cement and the silica and lime mixture as achieving the desired strength and resistance to leaching. The solidification reagents were used to solidify more than 11,000 cubic yards of sediment with a mixture of 2 fly ashes. The full-scale solidification project surpassed the required standards for strength and permeability. 10 refs., 4 tabs., 3 figs.

  6. The use of multivariate analysis to link sediment contamination and toxicity data to establish sediment quality guidelines: an example in the Gulf of Cadiz (Spain); El uso del analisis multivariante en la union de datos de toxicidad y contaminacion para establecer guias de calidad de sedimento: Un ejemplo en la Bahia de Cadiz (Espana)

    Energy Technology Data Exchange (ETDEWEB)

    Del Valls, T. Angel; Forja, Jesus M [Departamento de Quimica Fisica, Facultad de Ciencias del Mar, Universidad de Cadiz, Cadiz, (Spain); Gomez-Parra, Abelardo [Instituto de Ciencias Marinas de Andalucia, CSIC, Puerto Real, Cadiz, (Spain)

    1998-03-01

    To evaluate marine sediment quality in the Gulf of Cadiz, chemical concentration and toxicity test endpoints from sediments were linked using multivariate analysis. Sediment samples were collected synoptically at seven stations in two littoral ecosystems of the Gulf of Cadiz (five in the Bay of Cadiz and two in the salt marsh of the Barbate River), and subjected to six separate, replicated sediment toxicity tests and comprehensive sediment chemistry analyses. The toxic effects of sediments were tested using three operational sediment phases: whole sediment, using the estuarine amphipod Microdeutopus gryllotalpa (10 d static: survival) and the estuarine clam Ruditapes philippinaru (48 h static: survival) and of the marine fish Sparus aurata (48 h static. Survival); and interstitial water, using populations of the estuarine rotifer Brachionus Plicatilis (7 d static: Population decline) and of the marine bacteria Photobacterium phosphoreum (Microtox ). To evaluate the levels of contamination, the concentrations in the sediments of organic carbon, 14 trace metals (Fe, Mn, Cu, Zn, Pb, Cd, Ag, Hg, As, Sn, V, Ni, Co and Cr) and the surfactant linear alkylbenzenesulphonate (LAS) were measured. The results of the toxicity tests were compared in a dose-response relationship between sites, demonstrating a general agreement between the toxicity values determined by all the tests, except in the case of interstitial water toxicity (principally due to toxic mixtures of trace metals). Data derived from sediment chemistry and bioassays were assembled by multivariate statistical techniques (PCA and factor analysis), showing that the two data types could be represented by only five factors corresponding to five overlapping chemical-biological effect relations. Positive prevalence of these factors in the cases studied was used to establish those ranges in chemical concentrations associated with adverse effects. The sediment quality guidelines, in terms of concentrations at or below

  7. Evaluation of Sediment Contamination in Pearl Harbor

    Science.gov (United States)

    1992-06-01

    Mercenaria mercenaria) and adult shrimp (Penaeus vannamet) in a flow-through seawater system. Adult brine shrimp ( Artemia salina) and postlarval...activities of organisms modifies many pollutant substances. The bioaccumulation of contaminants by marine organisms such as oysters, clams, crabs, shrimp ...migration pathway. The burrowing activities (bioturbation) by bottom-dwelling organisms such as snapping shrimp , mantis shrimp , worms, and certain

  8. Contaminated Sediments at Navy Facilities: Cleanup Alternatives

    Science.gov (United States)

    2007-11-02

    lack of experience and case studies and due to insufficient regulatory guidance. Report Documentation Page Report Date 01DEC2002 Report Type N...In some situations, the best solution is to allow natural burial and chemical weathering to permanently reduce risk. In other cases , sediments can...destruction) • Phytoremediation (destruction/separation) Beneficial Use • Manufactured soil/fill (separation) • Cement (destruction

  9. A biogeochemical model of contaminant fate and transport in river waters and sediments.

    Science.gov (United States)

    Massoudieh, Arash; Bombardelli, Fabián A; Ginn, Timothy R

    2010-03-01

    A quasi-two-dimensional model is presented for simulating transport and transformation of contaminant species in river waters and sediments, taking into account the effect of both biotic and abiotic geochemical reactions on the contaminant fate and mobility. The model considers the downstream transport of dissolved and sediment-associated species, and the mass transfer with bed sediments due to erosion and resuspension, using linked advection-dispersion-reaction equations. The model also couples both equations to the reactive transport within bed sediment phases. This is done by the use of a set of vertical one-dimensional columns representing sediment layers that take into account the reactive transport of chemicals, burial, sorption/desorption to/from the solid phase, and the diffusive transport of aqueous species. Kinetically-controlled reversible solid-water mass exchange models are adopted to simulate interactions between suspended sediments and bulk water, as well as the mass exchange between bed sediments and pore water. An innovative multi-time step approach is used to model the fully kinetic nonlinear reaction terms using a non-iterative explicit method. This approach enables the model to handle fast and near-equilibrium reactions without a significant increase in computational burden. At the end, two demonstration cases are simulated using the model, including transport of a sorbing, non-reactive trace metal and nitrogen cycling, both in the Colusa Basin Drain in the Central Valley of California.

  10. In-situ remediation of contaminated sediments : conceivable and feasible?!

    NARCIS (Netherlands)

    Joziasse, J.; Gun, J. van der

    2000-01-01

    In-situ remediation has assumed large proportions in dealing with terrestrial soil pollution. Although implementation of in-situ remediation for contaminated sediments is restricted by the fact that dredging is necessary for nautical or water management reasons, it should not be discarded

  11. Heavy Metals Contamination of Road-Deposited Sediments

    Directory of Open Access Journals (Sweden)

    Jonathan Yisa

    2010-01-01

    Full Text Available Problem statement: Impact of anthropogenic activities on man and his environment as a result of the growing rate of urbanization in Bida, Nigeria is of a great concern. Street sediments that accumulate along pavements in urban environments have the potential to provide considerable loadings of heavy metals to receiving waters and water bodies, particularly with changing environmental conditions. The objective of this research was to evaluate the streets sediment contamination in Bida, Nigeria. Approach: Fifty five sediment samples were collected from four roads that experience intense traffic conditions and analyzed in the laboratory for some heavy metals by atomic absorption Spectrophotometric method and multivariate statistical techniques. Results: The overall decreasing metal concentration order was: Pb > Mn > Fe > Zn > Cu > Cr > Ni > Cd. Significantly positive correlation was only found between Cd and organic matter (r = 0.580. Factor analysis shows that road deposited sediment quality data consists of four major components accounting for 77.11% of cumulative variance of the contamination: Ni, pH and silt + clay; Cr, Fe and organic matter; Mn and Zn and finally Cu and Pb. Discriminant analysis revealed that the first two Discriminate Functions (DF1 and DF2 contain 90.61% information for Cu, Pb and Ni accumulation. Conclusion: This study concluded that the concentrations of all metals measured in Bida can be considered to present a low level of contamination and that multivariate statistical analysis is a useful tool in understanding contaminants relationships.

  12. Petroleum hydrocarbon contamination in surface sediments of Beiluohe Basins, China.

    Science.gov (United States)

    Shi, Helin; Zhang, Li; Yue, Leping; Zheng, Guozhang

    2008-10-01

    Twenty-two surface sediment samples were collected from Beiluohe River, China, in 2005. Saturated hydrocarbons analysis was carried out on different river sediments in order to detect possible contaminations by petroleum development. Total concentrations of hydrocarbons in the sediments ranged from 6.4-147.3 microg g(-1) (dry wt) with an average of 76.8 microg g(-1), revealing relatively low to medium contamination in studied areas in spite of oil development for many years. The THC levels in the mainstream of Beiluohe River were relatively low. Sediment samples with higher total hydrocarbon concentrations were from the sites related to the petroleum activities or urban discharges. Gas chromatographic distribution patterns of n-alkanes are characteristic of petroleum in most samples. They show a strong unresolved complex mixture (UCM) with a small predominance of odd on even numbered n-alkanes. On the other hand, pentacyclic triterpanes and steranes occurred in all analyzed sediments and displayed similar signatures that are characteristic of mature organic matter contribution from oil contaminations. Hydrocarbons of terrestrial origin were also detected in the samples. However, contribution from plantwax hydrocarbons is overshadowed in samples by hydrocarbons of petroleum origin. This is obvious by the presence of the high relative abundance of UCM, and the identification of mature hopane and sterane in samples.

  13. Equilibrium sampling for a thermodynamic assessment of contaminated sediments

    DEFF Research Database (Denmark)

    Mayer, Philipp; Nørgaard Schmidt, Stine; Mäenpää, Kimmo

    valid equilibrium sampling (method incorporated QA/QC). The measured equilibrium concentrations in silicone (Csil) can then be divided by silicone/water partition ratios to yield Cfree. CSil can also be compared to CSil from silicone equilibrated with biota in order to determine the equilibrium status...... will focus at the latest developments in equilibrium sampling concepts and methods. Further, we will explain how these approaches can provide a new basis for a thermodynamic assessment of polluted sediments.......Hydrophobic organic contaminants (HOCs) reaching the aquatic environment are largely stored in sediments. The risk of contaminated sediments is challenging to assess since traditional exhaustive extraction methods yield total HOC concentrations, whereas freely dissolved concentrations (Cfree...

  14. EVALUATION OF BIOAEROSOL COMPONENTS, GENERATION FACTORS, AND AIRBORNE TRANSPORT ASSOCIATED WITH LIME TREATMENT OF CONTAMINATED SEDIMENT

    Science.gov (United States)

    Lime treatment has been used in contaminated sediment management activities for many purposes such as dewatering, improvement of physical properties, and reducing contaminant mobility. Exothermic volatilization of volatile organic compounds from lime-treated sediment is well kno...

  15. Histological biomarkers in liver and gills of juvenile Solea senegalensis exposed to contaminated estuarine sediments: a weighted indices approach.

    Science.gov (United States)

    Costa, Pedro M; Diniz, Mário S; Caeiro, Sandra; Lobo, Jorge; Martins, Marta; Ferreira, Ana M; Caetano, Miguel; Vale, Carlos; DelValls, T Angel; Costa, M Helena

    2009-05-05

    Young juvenile Solea senegalensis were exposed to three sediments with distinct contamination profiles collected from a Portuguese estuary subjected to anthropogenic sources of contamination (the Sado estuary, western Portugal). Sediments were surveyed for metals (cadmium, chromium, copper, nickel, lead and zinc), a metalloid (arsenic) and organic contaminants (polycyclic aromatic hydrocarbons, polychlorinated biphenyls and a pesticide, dichloro-diphenyl-trichloroethane plus its metabolites), as well as total organic matter, redox potential and particle fine fraction. The fish were exposed to freshly collected sediments in a 28-day laboratorial assay and collected for histological analyses at days 0 (T(0)), 14 (T(14)) and 28 (T(28)). Individual weighted histopathological indices were obtained, based on presence/absence data of eight and nine liver and gill pathologies, respectively, and on their biological significance. Although livers sustained more severe lesions, the sediments essentially contaminated by organic substances caused more damage to both organs than the sediments contaminated by both metallic and organic contaminants, suggesting a possible synergistic effect. Correlation analyses showed that some alterations are linked, forming distinctive histopathological patterns that are in accordance with the severity of lesions and sediment characteristics. The presence of large eosinophilic bodies in liver and degeneration of mucous cells in gills (a first-time described alteration) were some of the most noticeable alterations observed and were related to sediment organic contaminants. Body size has been found to be negatively correlated with histopathological damage in livers following longer term exposures. It is concluded that histopathological indices provide reliable and discriminatory data even when biomonitoring as complex media as natural sediments. It is also concluded that the effects of contamination may result not only from toxicant concentrations

  16. Histological biomarkers in liver and gills of juvenile Solea senegalensis exposed to contaminated estuarine sediments: A weighted indices approach

    Energy Technology Data Exchange (ETDEWEB)

    Costa, Pedro M., E-mail: pmcosta@fct.unl.pt [IMAR-Instituto do Mar, Departamento de Ciencias e Engenharia do Ambiente, Faculdade de Ciencias e Tecnologia da Universidade Nova de Lisboa, 2829-516 Caparica (Portugal); Diniz, Mario S. [IMAR-Instituto do Mar, Departamento de Ciencias e Engenharia do Ambiente, Faculdade de Ciencias e Tecnologia da Universidade Nova de Lisboa, 2829-516 Caparica (Portugal); Caeiro, Sandra [IMAR-Instituto do Mar, Departamento de Ciencias e Engenharia do Ambiente, Faculdade de Ciencias e Tecnologia da Universidade Nova de Lisboa, 2829-516 Caparica (Portugal); Departamento de Ciencias Exactas e Tecnologicas, Universidade Aberta, Rua Fernao Lopes, 9, 1000-132 Lisboa (Portugal); Lobo, Jorge [IMAR-Instituto do Mar, Departamento de Ciencias e Engenharia do Ambiente, Faculdade de Ciencias e Tecnologia da Universidade Nova de Lisboa, 2829-516 Caparica (Portugal); Martins, Marta; Ferreira, Ana M.; Caetano, Miguel; Vale, Carlos [IPIMAR-INRB, Instituto Nacional dos Recursos Biologicos, Avenida de Brasilia, 1449-006 Lisboa (Portugal); DelValls, T. Angel [UNESCO/UNITWIN/WiCop Chair-Departamento de Quimica Fisica, Facultad de Ciencias del Mar y Ambientales, Universidad de Cadiz, Poligono rio San Pedro s/n, 11510 Puerto Real, Cadiz (Spain); Costa, M. Helena [IMAR-Instituto do Mar, Departamento de Ciencias e Engenharia do Ambiente, Faculdade de Ciencias e Tecnologia da Universidade Nova de Lisboa, 2829-516 Caparica (Portugal)

    2009-05-05

    Young juvenile Solea senegalensis were exposed to three sediments with distinct contamination profiles collected from a Portuguese estuary subjected to anthropogenic sources of contamination (the Sado estuary, western Portugal). Sediments were surveyed for metals (cadmium, chromium, copper, nickel, lead and zinc), a metalloid (arsenic) and organic contaminants (polycyclic aromatic hydrocarbons, polychlorinated biphenyls and a pesticide, dichloro-diphenyl-trichloroethane plus its metabolites), as well as total organic matter, redox potential and particle fine fraction. The fish were exposed to freshly collected sediments in a 28-day laboratorial assay and collected for histological analyses at days 0 (T{sub 0}), 14 (T{sub 14}) and 28 (T{sub 28}). Individual weighted histopathological indices were obtained, based on presence/absence data of eight and nine liver and gill pathologies, respectively, and on their biological significance. Although livers sustained more severe lesions, the sediments essentially contaminated by organic substances caused more damage to both organs than the sediments contaminated by both metallic and organic contaminants, suggesting a possible synergistic effect. Correlation analyses showed that some alterations are linked, forming distinctive histopathological patterns that are in accordance with the severity of lesions and sediment characteristics. The presence of large eosinophilic bodies in liver and degeneration of mucous cells in gills (a first-time described alteration) were some of the most noticeable alterations observed and were related to sediment organic contaminants. Body size has been found to be negatively correlated with histopathological damage in livers following longer term exposures. It is concluded that histopathological indices provide reliable and discriminatory data even when biomonitoring as complex media as natural sediments. It is also concluded that the effects of contamination may result not only from toxicant

  17. Avoidance of polycyclic aromatic hydrocarbon-contaminated sediments by the freshwater invertebrates Gammarus pulex and Asellus aquaticus

    NARCIS (Netherlands)

    Lange, de H.J.; Sperber, V.; Peeters, E.T.H.M.

    2006-01-01

    Contamination of sediments is a serious problem in most industrialized areas. Sediments are often contaminated with trace metals and organic contaminants like polycyclic aromatic hydrocarbons (PAHs) and polychlorinated biphenyls (PCBs). Bioassays are often used to determine the effect of contaminant

  18. An Evaluation of Bera Lake (Malaysia Sediment Contamination Using Sediment Quality Guidelines

    Directory of Open Access Journals (Sweden)

    Mohammadreza Gharibreza

    2013-01-01

    Full Text Available Bera Lake is known as the first RAMSAR site and is the largest natural lake in Malaysia. Sediment quality guidelines (SQGs and Geoaccumulation index were used to evaluate Bera Lake sediment contamination. Five undisturbed cores were collected from Bera Lake sediment. Major and trace levels of elements were determined for 132 subsamples using an inductively coupled plasma mass spectrometry (ICP-MS. The results marked two major groups of metallic elements bonded to the terrestrial and organic-rich sediments. Terrestrial sediments were strongly associated with accumulation of Li, Al, Pb, Cu, Cr, Na, Mg, Sr, and K during main fluxes of metals. However, a strong positive correlation was obtained between Fe, Mn, As, Zn, Cu, Ni, Ca, and Cd elements and TOC and TN. The Mn/Fe ratio revealed a long-term redox and acidic condition at Bera Lake. Geoaccumulation index for all individual metals has classified Bera Lake sediment as low to moderately polluted. However, elemental values when compared with thresholds limits of SQG indicated that Bera Lake sediments were contaminated by arsenic and iron. Results prove that deforestation during the five phases of land developments since 1972 has significantly contributed to the existence of metals fluxes into the area.

  19. Assessment of the genotoxic potential of contaminated estuarine sediments in fish peripheral blood: Laboratory versus in situ studies

    Energy Technology Data Exchange (ETDEWEB)

    Costa, Pedro M., E-mail: pmcosta@fct.unl.pt [IMAR-Instituto do Mar, Departamento de Ciencias e Engenharia do Ambiente, Faculdade de Ciencias e Tecnologia da Universidade Nova de Lisboa, 2829-516 Caparica (Portugal); Neuparth, Teresa S. [CIIMAR-Centro Interdisciplinar de Investigacao Marinha e Ambiental, Laboratorio de Toxicologia Ambiental, Universidade do Porto, Rua dos Bragas 289, 4050-123 Porto (Portugal); Caeiro, Sandra [IMAR-Instituto do Mar, Departamento de Ciencias e Engenharia do Ambiente, Faculdade de Ciencias e Tecnologia da Universidade Nova de Lisboa, 2829-516 Caparica (Portugal); Departamento de Ciencias e Tecnologia, Universidade Aberta, Rua da Escola Politecnica, 141, 1269-001 Lisboa (Portugal); Lobo, Jorge [IMAR-Instituto do Mar, Departamento de Ciencias e Engenharia do Ambiente, Faculdade de Ciencias e Tecnologia da Universidade Nova de Lisboa, 2829-516 Caparica (Portugal); Martins, Marta; Ferreira, Ana M.; Caetano, Miguel; Vale, Carlos [IPIMAR-INRB, Instituto Nacional dos Recursos Biologicos, Avenida de Brasilia, 1449-006 Lisboa (Portugal); Angel DelValls, T. [UNESCO/UNITWIN/WiCop Chair-Departamento de Quimica Fisica, Facultad de Ciencias del Mar y Ambientales, Universidad de Cadiz, Poligono rio San Pedro s/n, 11510 Puerto Real, Cadiz (Spain); Costa, Maria H. [IMAR-Instituto do Mar, Departamento de Ciencias e Engenharia do Ambiente, Faculdade de Ciencias e Tecnologia da Universidade Nova de Lisboa, 2829-516 Caparica (Portugal)

    2011-01-15

    Juvenile Senegalese soles (Solea senegalensis) were exposed to estuarine sediments through 28-day laboratory and in situ (field) bioassays. The sediments, collected from three distinct sites (a reference plus two contaminated) of the Sado Estuary (W Portugal) were characterized for total organic matter, redox potential, fine fraction and for the levels of metals, polycyclic aromatic hydrocarbons (PAHs) and organochlorines, namely polychlorinated biphenyls (PCBs) and dichloro diphenyl tricholoethane plus its main metabolites (DDTs). Genotoxicity was determined in whole peripheral blood by the single-cell gel electrophoresis (SCGE or 'comet') assay and by scoring erythrocytic nuclear abnormalities (ENA). Analysis was complemented with the determination of lipid peroxidation in blood plasma by the thiobarbituric acid reactive substances (TBARS) protocol and cell type sorting. The results showed that exposure to contaminated sediments induced DNA fragmentation and clastogenesis. Still, laboratory exposure to the most contaminated sediment revealed a possible antagonistic effect between metallic and organic contaminants that might have been enhanced by increased bioavailability. The laboratory assay caused a more pronounced increase in ENA whereas a very significant increase in DNA fragmentation was observed in field-tested fish exposed to the reference sediment, which is likely linked to increased lipid peroxidation that probably occurred due to impaired access to food. Influence of natural pathogens was ruled out by unaltered leukocyte counts. The statistical integration of data correlated lipid peroxidation with biological variables such as fish length and weight, whereas the genotoxicity biomarkers were more correlated to sediment contamination. It was demonstrated that laboratory and field bioassays for the risk assessment of sediment contamination may yield different genotoxicity profiles although both provided results that are in overall accordance with

  20. Genotoxic damage in Solea senegalensis exposed to sediments from the Sado Estuary (Portugal): effects of metallic and organic contaminants.

    Science.gov (United States)

    Costa, Pedro M; Lobo, Jorge; Caeiro, Sandra; Martins, Marta; Ferreira, Ana M; Caetano, Miguel; Vale, Carlos; Delvalls, T Angel; Costa, Maria H

    2008-06-30

    Juvenile Solea senegalensis (Senegalese sole) were exposed to freshly collected sediments from three sites of the Sado Estuary (West-Portuguese coast) in 28-day laboratory assays in order to assess the ecological risk from sediment contaminants, by measuring two genotoxicity biomarkers in peripheral blood: the percentage of Erythrocyte Nuclear Abnormalities (ENA) by use of an adaptation of the micronucleus test, and the percentage of DNA strand-breakage (DNA-SB) with the Comet assay. Sediments were surveyed for metallic (Cr, Ni, Cu, Zn, As, Cd and Pb) and organic (PAHs (polycyclic aromatic hydrocarbons), PCBs (polychlorinated biphenyls) and DDTs (dichloro-diphenyl-trichloroethane)) contaminants. Sediments from site A (farthest from hotspots of contamination) were found to be the least contaminated and weaker inducers of genotoxic damage, whereas sediments from sites B (urban influence) and C (affected by industrial effluents and agricultural runoffs) were responsible for a very significant increase in both ENA and DNA-SB, site B being most contaminated with metals and site C mainly with organic pollutants, especially PAHs and PCBs . Analysis of genotoxic effects showed a strong correlation between the concentrations of PAHs and PCBs and both biomarkers at sampling times T(14) and T(28), while the amounts of Cu, As, Cd and Pb were less strongly correlated, and at T(28) only, with ENA and DNA-SB. These results show that organic contaminants in sediment are stronger and faster acting genotoxic stressors. The results also suggest that metals may have an inhibitory effect on genotoxicity when interacting with organic contaminants, at least during early exposure. ENA and DNA-SB do not show a linear relationship, but a strong correlation exists between the overall increase in genotoxicity caused by exposure to sediment, confirming that they are different, and possibly non-linked effects that respond similarly to exposure. Although the Comet assay showed enhanced

  1. Assessment of the genotoxic potential of contaminated estuarine sediments in fish peripheral blood: laboratory versus in situ studies.

    Science.gov (United States)

    Costa, Pedro M; Neuparth, Teresa S; Caeiro, Sandra; Lobo, Jorge; Martins, Marta; Ferreira, Ana M; Caetano, Miguel; Vale, Carlos; DelValls, T Angel; Costa, Maria H

    2011-01-01

    Juvenile Senegalese soles (Solea senegalensis) were exposed to estuarine sediments through 28-day laboratory and in situ (field) bioassays. The sediments, collected from three distinct sites (a reference plus two contaminated) of the Sado Estuary (W Portugal) were characterized for total organic matter, redox potential, fine fraction and for the levels of metals, polycyclic aromatic hydrocarbons (PAHs) and organochlorines, namely polychlorinated biphenyls (PCBs) and dichloro diphenyl tricholoethane plus its main metabolites (DDTs). Genotoxicity was determined in whole peripheral blood by the single-cell gel electrophoresis (SCGE or "comet") assay and by scoring erythrocytic nuclear abnormalities (ENA). Analysis was complemented with the determination of lipid peroxidation in blood plasma by the thiobarbituric acid reactive substances (TBARS) protocol and cell type sorting. The results showed that exposure to contaminated sediments induced DNA fragmentation and clastogenesis. Still, laboratory exposure to the most contaminated sediment revealed a possible antagonistic effect between metallic and organic contaminants that might have been enhanced by increased bioavailability. The laboratory assay caused a more pronounced increase in ENA whereas a very significant increase in DNA fragmentation was observed in field-tested fish exposed to the reference sediment, which is likely linked to increased lipid peroxidation that probably occurred due to impaired access to food. Influence of natural pathogens was ruled out by unaltered leukocyte counts. The statistical integration of data correlated lipid peroxidation with biological variables such as fish length and weight, whereas the genotoxicity biomarkers were more correlated to sediment contamination. It was demonstrated that laboratory and field bioassays for the risk assessment of sediment contamination may yield different genotoxicity profiles although both provided results that are in overall accordance with sediment

  2. Effects of lead-contaminated sediment on Rana sphenocephala tadpoles

    Science.gov (United States)

    Sparling, D.W.; Krest, S.K.; Ortiz-Santaliestra, M.

    2006-01-01

    We exposed larval southern leopard frogs (Rana sphenocephala) to lead-contaminated sediments to determine the lethal and sublethal effects of this metal. Tadpoles were laboratory-raised from early free-swimming stage through metamorphosis at lead concentrations of 45, 75, 180, 540, 2360, 3940, 5520, and 7580 mg/kg dry weight in sediment. Corresponding pore water lead concentrations were 123, 227, 589, 1833, 8121, 13,579, 19,038, and 24,427 ug/L. Tadpoles exposed to lead concentrations in sediment of 3940 mg/kg or higher died within 2 to 5 days of exposure. At lower concentrations, mortality through metamorphosis ranged from 3.5% at 45 mg/kg lead to 37% at 2360 mg/kg lead in sediment. The LC50 value for lead in sediment was 3728 mg/kg (95% CI=1315 to 72,847 mg/kg), which corresponded to 12,539 ug/L lead in pore water (95% CI= 4000 to 35,200 ug/L). Early growth and development were depressed at 2,360 mg/kg lead in sediment (8100 ug/L in pore water) but differences were not evident by the time of metamorphosis. The most obvious effect of lead was its pronounced influence on skeletal development. Whereas tadpoles at 45 mg/kg lead in sediment did not display permanent abnormalities, skeletal malformations increased in frequency and severity at all higher lead concentrations. By 2360 mg/kg, 100% of surviving metamorphs displayed severe spinal problems, reduced femur and humerus lengths, deformed digits, and other bone malformations. Lead concentrations in tissues correlated positively with sediment and pore water concentrations.

  3. Bioavailability of sediment-associated mercury to Hexagenia mayflies in a contaminated flood plain river

    Energy Technology Data Exchange (ETDEWEB)

    Naimo, T.J.; Wiener, J.G.; Cope, W.G. [U.S. Geological Survey, La Crosse, WI (United States). Biological Resources Division; Bloom, N.S. [Frontier Geosciences, Seattle, WA (United States)

    2000-05-01

    The bioavailability of mercury in sediments from the Sudbury River in Massachusetts was studied, as it related to the mayfly nymphs. The nymphs were exposed to contaminated and reference sediments (treatments) from reservoirs, flowing reaches, palustrine wetlands, and a riverine lake in four 21-day bioaccumulation tests. The mean final concentrations of methyl mercury (MeHg) in test water were greatest in treatments with contaminated wetland sediments. In the case of mayflies, the final mean concentrations of MeHg were highest in treatments with contaminated wetland sediments, intermediate in treatments with contaminated sediments from reservoirs, flowing reaches, and a riverine lake, and lowest in treatments with reference sediments. It was concluded that even though contaminated reservoirs had the most contaminated sediments, the potential entry of MeHg into the benthic food chain was greater in contaminated palustrine wetlands. 2 tabs., 5 figs., 42 refs.

  4. Assessing Organic Contaminant Fluxes from Contaminated Sediments Following Dam Removal in an Urbanized River

    Science.gov (United States)

    In this study, methods and approaches were developed and tested to assess changes in contaminant fluxes resulting from dam removal in a riverine system. Sediment traps and passive samplers were deployed to measure particulate and dissolved PAHs and PCBs in the water column prior...

  5. Capping of contaminated marine sediments : Redox reactions and trace metal mobility

    OpenAIRE

    Eide-Fredriksen, Jannicke

    2007-01-01

    The risk associated with exposure to contaminants, has drawn attention to the fate and transport of contaminants in marine sediments. Remediation of contaminated marine sediment has been necessary at several locations to reduce the risk of exposure. Capping is a widely used remediation strategy that aims to isolate the contaminants from the surrounding environment. Toxic trace metals are often found co-precipitated with iron sulphides in sediment. Interactions between oxic minerals in ca...

  6. Assessing sediment connectivity to understand dynamics of contaminated sediment within coastal catchments of Fukushima Prefecture (Japan)

    Science.gov (United States)

    Chartin, Caroline; Evrard, Olivier; Onda, Yuichi; Ottlé, Catherine; Brossoni, Camille; Lefèvre, Irène; Lepage, Hugo; Bonté, Philippe; Patin, Jeremy; Ayrault, Sophie

    2013-04-01

    The Fukushima Dai-ichi Nuclear Power Plant accident has led to the release of large radionuclide quantities (e.g., about 20 PBq of Cs-137 and 200 PBq of I-131) into the atmosphere. About 80% of the release was blown out and over the Pacific Ocean. The remaining 20% of emissions were deposited as wet and dry deposits on soils of Fukushima Prefecture, mainly between 15-16 March. As most radionuclides are strongly sorbed by fine particles, they are likely to be redistributed within the landscape in association with soil and sediment particles transported by runoff and erosion processes. A spatial analysis of Ag-110m:Cs-137 ratio in soils and river sediments provided a way to trace those transfers. This fingerprinting study showed that particles eroded from inland mountain ranges exposed to the highest initial radionuclide fallout were already dispersed along coastal rivers, most likely during summer typhoons and spring snowmelt. Those results suggest that hillslopes and rivers have become a perennial source of radioactive contaminants to the Pacific Ocean off Fukushima Prefecture. This study aims to specify the location and nature of the preferential sources supplying contaminated material to the main rivers draining the Fukushima contamination plume. To this end, important parameters controlling soil erosion and sediment transfers within catchments, i.e. landscape morphology and land use characteristics, were preliminary derived from DEM data and satellite images for the River Mano, Nitta and Ota catchments (ca. 525 km²) draining the most radioactive part of the contamination plume that formed across Fukushima Prefecture. Then, those data were used to compute indices assessing the potential sediment connectivity (i) between hillslopes and rivers and (ii) between hillslopes and catchment outlets. Finally, spatially-distributed values of connectivity indices were confronted to gamma-emitting radionuclide activities (Cs-134, Cs-137 and Ag-110m) measured in riverbed

  7. Mycodiversity in marine sediments contaminated by heavy metals: preliminary results

    Science.gov (United States)

    Zotti, Mirca; Carbone, Cristina; Cecchi, Grazia; Consani, Sirio; Cutroneo, Laura; Di Piazza, Simone; Gabutto, Giacomo; Greco, Giuseppe; Vagge, Greta; Capello, Marco

    2016-04-01

    Fungi represent the main decomposers of woody and herbaceous substrates in the marine ecosystems. To date there is a gap in the knowledge about the global diversity and distribution of fungi in marine habitats. On the basis of their biological diversity and their role in ecosystem processes, marine fungi may be considered one of the most attractive groups of organisms in modern biotechnology, e.g. ecotoxic metal bioaccumulation. Here we report the data about the first mycological survey in the metal contaminated coastal sediments of the Gromolo Bay. The latter is located in Ligurian Sea (Eastern Liguria, Italy) and is characterized by an enrichment of heavy metals due to pollution of Gromolo Torrent by acidic processes that interest Fe-Cu sulphide mine. 24 samples of marine sediments were collected along a linear plot in front of the shoreline in July 2015. Each sample was separated into three aliquot for mineralogical, chemical analyses and fungal characterization. The sediment samples are characterised by clay fractions (illite and chlorite), minerals of ophiolitic rocks (mainly serpentine, pyroxene and plagioclase) and quartz and are enriched some chemical elements of environmental importance (such as Cu, Zn, Pb, Cd, As). For fungal characterisation the sediment samples were inoculated in Petri dishes on different culture media (Malt Extract Agar and Rose Bengal) prepared with sea water and added with antibiotics. The inoculated dishes were incubated at 20°C in the dark for 28 days. Every week fungal growth was monitored counting the number of colonies. Later, the colonies were isolated in axenic culture for further molecular analysis. The mycodiversity evaluate on the basis of Colony Forming Units (CFU) and microfungal-morphotype characterised by macro-and micro-morphology. Until now on the 72 Petri dishes inoculated 112 CFU of filamentous fungi were counted, among these about 50 morphotypes were characterized. The quantitative results show a mean value of 4

  8. Developmental toxicity of lead-contaminated sediment to mallard ducklings

    Science.gov (United States)

    Hoffman, D.J.; Heinz, G.H.; Sileo, L.; Audet, D.J.; Campbell, J.K.; LeCaptain, L.J.

    2000-01-01

    Sediment ingestion has been identified as an important exposure route for toxicants in waterfowl. The toxicity of lead-contaminated sediment from the Coeur d'Alene River Basin (CDARB) in Idaho was examined on posthatching development of mallard (Anas platyrhynchos) ducklings for 6 weeks. Day-old ducklings received either untreated control diet, clean sediment (24%) supplemented control diet, CDARB sediment (3,449 ug/g lead) supplemented diets at 12% or 24%, or a positive control diet containing lead acetate equivalent to that found in 24% CDARB. The 12% CDARB diet resulted in a geometric mean blood lead concentration of 1.41 ppm (WW) with over 90% depression of red blood cell ALAD activity and over threefold elevation of free erythrocyte protoporphyrin concentration. The 24% CDARB diet resulted in blood lead of 2.56 ppm with over sixfold elevation of protoporphyrin and lower brain weight. In this group the liver lead concentration was 7.92 ppm (WW), and there was a 40% increase in hepatic reduced glutathione concentration. The kidney lead concentration in this group was 7.97 ppm, and acid-fast inclusion bodies were present in the kidneys of four of nine ducklings. The lead acetate positive control group was more adversely affected in most respects than the 24% CDARB group. With a less optimal diet (mixture of two thirds corn and one third standard diet), CDARB sediment was more toxic; blood lead levels were higher, body growth and liver biochemistry (TBARS) were more affected, and prevalence of acid-fast inclusion bodies increased. Lead from CDARB sediment accumulated more readily in duckling blood and liver than reported in goslings, but at given concentrations was generally less toxic to ducklings. Many of these effects are similar to ones reported in wild mallards and geese within the CDARB.

  9. Developmental toxicity of lead contaminated sediment to mallard ducks

    Science.gov (United States)

    Hoffman, D.J.; Heinz, G.H.; Sileo, L.; Audet, D.J.; Campbell, J.K.; LeCaptain, L.J.

    2000-01-01

    Sediment ingestion has been identified as an important exposure route for toxicants in waterfowl. The toxicity of lead-contaminated sediment from the Coeur d'Alene River Basin (CDARB) in Idaho was examined on posthatching development of mallard (Anas platyrhynchos) ducklings for 6 weeks. Day-old ducklings received either untreated control diet, clean sediment (24%) supplemented control diet, CDARB sediment (3,449 I?g/g lead) supplemented diets at 12% or 24%, or a positive control diet containing lead acetate equivalent to that found in 24% CDARB. The 12% CDARB diet resulted in a geometric mean blood lead concentration of 1.41 ppm (WW) with over 90% depression of red blood cell ALAD activity and over threefold elevation of free erythrocyte protoporphyrin concentration. The 24% CDARB diet resulted in blood lead of 2.56 ppm with over sixfold elevation of protoporphyrin and lower brain weight. In this group the liver lead concentration was 7.92 ppm (WW), and there was a 40% increase in hepatic reduced glutathione concentration. The kidney lead concentration in this group was 7.97 ppm, and acid-fast inclusion bodies were present in the kidneys of four of nine ducklings. The lead acetate positive control group was more adversely affected in most respects than the 24% CDARB group. With a less optimal diet (mixture of two thirds corn and one third standard diet), CDARB sediment was more toxic; blood lead levels were higher, body growth and liver biochemistry (TBARS) were more affected, and prevalence of acid-fast inclusion bodies increased. Lead from CDARB sediment accumulated more readily in duckling blood and liver than reported in goslings, but at given concentrations was generally less toxic to ducklings. Many of these effects are similar to ones reported in wild mallards and geese within the CDARB.

  10. ORGANIC CONTAMINANT DISTRIBUTION IN SEDIMENTS, POLYCHAETES (NEREIS VIRENS) AND THE AMERICAN LOBSTER, HOMARUS AMERICANUS IN A LABORATORY FOOD CHAIN EXPERIMENT

    Science.gov (United States)

    A laboratory experiment was conducted to investigate the transfer of organic contaminants from an environmentally contaminated marine sediment through a simple marine food chain. The infaunal polychaete, Nereis virens, was exposed to contaminated sediment collected from the Passa...

  11. Avoidance of polycyclic aromatic hydrocarbon-contaminated sediments by the freshwater invertebrates Gammarus pulex and Asellus aquaticus

    NARCIS (Netherlands)

    Lange, de H.J.; Sperber, V.; Peeters, E.T.H.M.

    2006-01-01

    Contamination of sediments is a serious problem in most industrialized areas. Sediments are often contaminated with trace metals and organic contaminants like polycyclic aromatic hydrocarbons (PAHs) and polychlorinated biphenyls (PCBs). Bioassays are often used to determine the effect of

  12. Metal contaminant fluxes across the sediment water interface.

    Science.gov (United States)

    Frogner-Kockum, Paul; Göransson, Peter; Åslund, Henrik; Ländell, Märta; Stevens, Rodney; Tengberg, Anders; Göransson, Gunnel; Ohlsson, Yvonne

    2016-10-15

    To date, most estimates of contaminant fluxes across the sediment/water interface in risk assessments have been done using diffusive flux models. However, the reliability of these is limited as the overall flux from the sediment may have contributions caused by advection and bioturbation. We found through a comparison of modelled fluxes versus measured fluxes, that the methods Benthic Flux Chamber and surface leaching tests in a risk assessment context showed similar magnitude while calculated fluxes deviated at least by a factor of 100 from measured fluxes. This may be explained by the flux contribution in connection with bioturbation. The chamber-measured fluxes of copper were low compared to those of zinc and cobalt, but this is consistent with leaching tests that indicated copper to be more strongly bound. Risk assessments based on total concentrations may be misleading.

  13. Plutonium contamination in soils and sediments at Mayak PA, Russia.

    Science.gov (United States)

    Skipperud, Lindis; Salbu, Brit; Oughton, Deborah H; Drozcho, Eugeny; Mokrov, Yuri; Strand, Per

    2005-09-01

    The Mayak Production Association (Mayak PA) was established in the late 1940's to produce plutonium for the Soviet Nuclear Weapons Programme. In total, seven reactors and two reprocessing plants have been in operation. Today, the area comprises both military and civilian reactors as well as reprocessing and metallurgical plants. Authorized and accidental releases of radioactive waste have caused severe contamination to the surrounding areas. In the present study, [alpha]-spectrometry and inductively coupled plasma-mass spectrometry (ICP-MS) have been used to determine plutonium activities and isotope ratios in soil and sediment samples collected from reservoirs of the Techa River at the Mayak area and downstream Techa River. The objective of the study was to determine the total inventory of plutonium in the reservoirs and to identify the different sources contributing to the plutonium contamination. Results based on [alpha]-spectrometry and ICP-MS measurements show the presence of different sources and confirmed recent reports of civilian reprocessing at Mayak. Determination of activity levels and isotope ratios in soil and sediment samples from the Techa River support the hypothesis that most of the plutonium, like other radionuclides in the Techa River, originated from the very early waste discharges to the Techa River between 1949 and 1951. Analysis of reservoir sediment samples suggest that about 75% of the plutonium isotopes could have been released to Reservoir 10 during the early weapons production operation of the plant, and that the majority of plutonium in Reservoir 10 originates from discharges from power production or reprocessing. Enhanced 240Pu/239Pu atom ratios in river sediment upper layers (0-2 cm) between 50 and 250 km downstream from the plant indicate a contribution from other, non-fallout sources.

  14. Effect of sediment size on bioleaching of heavy metals from contaminated sediments of Izmir Inner Bay

    Institute of Scientific and Technical Information of China (English)

    Duyusen E.Guven; Gorkem Akinci

    2013-01-01

    The effect of sediment size on metals bioleaching from bay sediments was investigated by using fine (< 45 μm),medium (45-300 μm),and coarse (300-2000μm) size fractions of a sediment sample contaminated with Cr,Cu,Pb,and Zn.Chemical speciation of the metals in bulk and size fractions of sediment were studied before and after bioleaching.Microbial activity was provided with mixed cultures of Acidithiobacillus thiooxidans and Acidithiobacillusferrooxidans.The bioleaching process was carried out in flask experiments for 48 days,by using 5% (W/V) of solid concentration in suspension.Bioleaching was found to be efficient for the removal of selected heavy metals from every size fraction of sediments,where the experiments with the smaller particles resulted in the highest solubilization ratios.At the end of the experimental period,Cr,Cu,Pb and Zn were solubilized to the ratios of 68%,88%,72%,and 91% from the fine sediment,respectively.Higher removal efficiencies can be explained by the larger surface area provided by the smaller particles.The changes in the chemical forms of metals were determined and most of the metal releases were observed from the reducible and organic fractions independent from grain size.Higher concentrations were monitored in the residual fraction after bioleaching period,suggesting they are trapped in this fraction,and cannot be solubilized under natural conditions.

  15. TXRF analysis of soils and sediments to assess environmental contamination.

    Science.gov (United States)

    Bilo, Fabjola; Borgese, Laura; Cazzago, Davide; Zacco, Annalisa; Bontempi, Elza; Guarneri, Rita; Bernardello, Marco; Attuati, Silvia; Lazo, Pranvera; Depero, Laura E

    2014-12-01

    Total reflection x-ray fluorescence spectroscopy (TXRF) is proposed for the elemental chemical analysis of crustal environmental samples, such as sediments and soils. A comparative study of TXRF with respect to flame atomic absorption spectroscopy and inductively coupled plasma optical emission spectroscopy was performed. Microwave acid digestion and suspension preparation methods are evaluated. A good agreement was found among the results obtained with different spectroscopic techniques and sample preparation methods for Cr, Mn, Fe, Ni, Cu, and Zn. We demonstrated that TXRF is suitable for the assessment of environmental contamination phenomena, even if the errors for Pb, As, V, and Ba are ingent.

  16. Numerical research on the mechanism of contaminant release through the porous sediment-overlying water interface

    Institute of Scientific and Technical Information of China (English)

    郑淑君; 曹洋; 郭加宏

    2014-01-01

    After the pollutant discharged into the river or lake has been reduced, the release of the contaminant from the sediment to the overlying water may cause the river and lake be contaminated again. On the condition that the overlying water flow does not lead to sediment suspension, numerical researches are carried out for the mechanism of contaminant release through the sediment-overlying water interface. The overlying water flow is calculated as turbulence. The sediment is regarded as isotropic homogeneous porous medium, therefore the seepage field in the porous sediment layer is obtained by solving Darcy’s equations. Coupled two dimensional steady flows of the overlying water and the pore water in the sediment are calculated. Based on the flow fields obtained, the unsteady contaminant solute transportation process in the pore water in the sediment and the overlying water is numerically simulated, as the shapes of the sediment-overlying water interface are flat or periodic triangular respectively. Numerical results show that the exchange of the pore water and the overlying water is an important factor which decides the release flux of the contaminant from the sediment to the overlying water. The pressure distribution produced by the overlying water flow along the sediment-overlying water interface, as it is not flat, may induce the seepage of the pore water in the sediment and through the sediment-overlying water interface, which may increase the release flux of the contaminant from the sediment to the overlying water.

  17. Geovisualization of Mercury Contamination in Lake St. Clair Sediments

    Directory of Open Access Journals (Sweden)

    K. Wayne Forsythe

    2016-03-01

    Full Text Available The Laurentian Great Lakes of North America contain approximately 20% of the earth’s fresh water. Smaller lakes, rivers and channels connect the lakes to the St. Lawrence Seaway, creating an interconnected freshwater and marine ecosystem. The largest delta system in the Great Lakes is located in the northeastern portion of Lake St. Clair. This article focuses on the geovisualization of total mercury pollution from sediment samples that were collected in 1970, 1974 and 2001. To assess contamination patterns, dot maps were created and compared with surfaces that were generated using the kriging spatial interpolation technique. Bathymetry data were utilized in geovisualization procedures to develop three-dimensional representations of the contaminant surfaces. Lake St. Clair generally has higher levels of contamination in deeper parts of the lake, in the dredged shipping route through the lake and in proximity to the main outflow channels through the St. Clair delta. Mercury pollution levels were well above the Probable Effect Level in large portions of the lake in both 1970 and 1974. Lower contaminant concentrations were observed in the 2001 data. Lake-wide spatial distributions are discernable using the kriging technique; however, they are much more apparent when they are geovisualized using bathymetry data.

  18. Changes in metal contamination levels in estuarine sediments around India – An assessment

    Digital Repository Service at National Institute of Oceanography (India)

    Chakraborty, P.; Ramteke, D.; Chakraborty, S.; Nath, B.N.

    range median analysis were used to evaluate the quality of the estuarine sediments (by using the available literature data). This study suggests that estuarine sediments from the east coast of India were comparatively less contaminated by metals than...

  19. Survey of contaminants in sediments and fish on the Minnesota Valley National Wildlife Refuge

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — In 1988, a survey of contaminants in sediments and/or fish from three waterbodies on the Minnesota Valley National Wildlife Refuge was undertaken. Sediment samples...

  20. Phytoremediation as a management option for contaminated sediments in tidal marshes, flood control areas and dredged sediment landfill sites.

    Science.gov (United States)

    Bert, Valérie; Seuntjens, Piet; Dejonghe, Winnie; Lacherez, Sophie; Thuy, Hoang Thi Thanh; Vandecasteele, Bart

    2009-11-01

    Polluted sediments in rivers may be transported by the river to the sea, spread over river banks and tidal marshes or managed, i.e. actively dredged and disposed of on land. Once sedimented on tidal marshes, alluvial areas or control flood areas, the polluted sediments enter semi-terrestrial ecosystems or agro-ecosystems and may pose a risk. Disposal of polluted dredged sediments on land may also lead to certain risks. Up to a few years ago, contaminated dredged sediments were placed in confined disposal facilities. The European policy encourages sediment valorisation and this will be a technological challenge for the near future. Currently, contaminated dredged sediments are often not valorisable due to their high content of contaminants and their consequent hazardous properties. In addition, it is generally admitted that treatment and re-use of heavily contaminated dredged sediments is not a cost-effective alternative to confined disposal. For contaminated sediments and associated disposal facilities used in the past, a realistic, low cost, safe, ecologically sound and sustainable management option is required. In this context, phytoremediation is proposed in the literature as a management option. The aim of this paper is to review the current knowledge on management, (phyto)remediation and associated risks in the particular case of sediments contaminated with organic and inorganic pollutants. This paper deals with the following features: (1) management and remediation of contaminated sediments and associated risk assessment; (2) management options for ecosystems on polluted sediments, based on phytoremediation of contaminated sediments with focus on phytoextraction, phytostabilisation and phytoremediation of organic pollutants and (3) microbial and mycorrhizal processes occurring in contaminated sediments during phytoremediation. In this review, an overview is given of phytoremediation as a management option for semi-terrestrial and terrestrial ecosystems

  1. LINKING WATERFOWL WITH CONTAMINANT SPECIATION IN RIPARIAN SOILS

    Science.gov (United States)

    This report summarizes the results of Mine Waste Technology Program (MWTP) Activity III, Project 38, Linking Waterfowl with Contaminant Speciation in Riparian Soils, implemented and funded by the U.S. Environmental Protection Agency (EPA) and jointly administered by EPA and the U...

  2. Interactions between eutrophication and contaminants - partitioning, bioaccumulation and effects on sediment-dwelling organisms

    Energy Technology Data Exchange (ETDEWEB)

    Hylland, Ketil; Schaanning, Morten; Skei, Jens; Berge, John Arthur; Eriksen, Dag Oe.; Skoeld, Mattias; Gunnarsson, Jonas

    1997-12-31

    This report describes an experiment on the interactions between eutrophication and contaminants in marine sediments. The experiment was performed in 24 continuously flushed glass aquaria within which three sediment-dwelling species were kept in a marine sediment. A filter-feeder, blue mussel, was kept in downstream aquaria. The experiment combined three environmental factors: oxygen availability, the presence or absence of contaminants, the addition of organic matter. The objectives were: (1) to quantify differences in the partitioning of contaminants between sediment, pore water and biota as a result of the treatment, (2) to quantify effects of treatments and interactions between treatments on sediment-dwelling organisms, (3) to identify differences, if any, in the release of contaminants from the sediment as the result of treatments. All three contaminants bio accumulated to higher levels in sediments with increased levels of organic material. Feeding directly or indirectly appeared to be the major route for bioaccumulation of benzo(a)pyrene and mercury. Cadmium was also controlled by the concentration in pore water. Sediment in enriched aquaria released more contaminants than sediment with low organic content. Organic enrichment strongly affected growth in the three sediment-dwelling organisms. Growth was less affected by decreased oxygen availability. The presence of contaminants had little effect on the three sediment-dwelling species at the concentrations used in the experiment. 103 refs., 14 figs., 12 tabs.

  3. Elevated nitrate enriches microbial functional genes for potential bioremediation of complexly contaminated sediments

    National Research Council Canada - National Science Library

    Xu, Meiying; Zhang, Qin; Xia, Chunyu; Zhong, Yuming; Sun, Guoping; Guo, Jun; Yuan, Tong; Zhou, Jizhong; He, Zhili

    2014-01-01

    .... However, few studies have been focused on the effect of nitrate addition on the functional diversity, composition, structure and dynamics of sediment microbial communities in contaminated aquatic eco...

  4. Passive sampling methods for contaminated sediments: Scientific rationale supporting use of freely dissolved concentrations

    DEFF Research Database (Denmark)

    Mayer, Philipp; Parkerton, Thomas F.; Adams, Rachel G.

    2014-01-01

    Passive sampling methods (PSMs) allow the quantification of the freely dissolved concentration (Cfree ) of an organic contaminant even in complex matrices such as sediments. Cfree is directly related to a contaminant's chemical activity, which drives spontaneous processes including diffusive uptake...

  5. Resuspended contaminated sediments cause sublethal stress to oysters: A biomarker differentiates total suspended solids and contaminant effects.

    Science.gov (United States)

    Edge, Katelyn J; Dafforn, Katherine A; Simpson, Stuart L; Ringwood, Amy H; Johnston, Emma L

    2015-06-01

    Resuspended contaminated sediments represent an important route of contaminant exposure for aquatic organisms. During resuspension events, filter-feeding organisms are exposed to contaminants, in both the dissolved form (at the gills) and the particulate form (in the digestive system). In addition, these organisms must manage the physical stress associated with an increase in total suspended solids (TSS). To date, few studies have experimentally compared the contributions to biological stress of contaminated and clean suspended solids. The authors mixed field-collected sediments (<63 μm) from clean and contaminated field sites to create 4 treatments of increasing metal concentrations. Sydney rock oysters were then exposed to sediment treatments at different TSS concentrations for 4 d, and cellular biomarkers (lysosomal membrane stability, lipid peroxidation, and glutathione) were measured to evaluate sublethal toxicity. Lysosomal membrane stability was the most sensitive biomarker for distinguishing effects from resuspended contaminated sediments, as increasing amounts of contaminated TSS increased lysosomal membrane destabilization. The authors' results illustrate the importance of considering contaminant exposures from resuspended sediments when assessing the toxicity of contaminants to aquatic organisms. © 2015 SETAC.

  6. A field study on phytoremediation of dredged sediment contaminated by heavy metals and nutrients: the impacts of sediment aeration.

    Science.gov (United States)

    Wu, Juan; Yang, Lihua; Zhong, Fei; Cheng, Shuiping

    2014-12-01

    Compared to traditional chemical or physical treatments, phytoremediation has proved to be a cost-effective and environmentally sound alternative for remediation of contaminated dredged sediment. A field study was conducted in a sediment disposal site predominantly colonized by Typha angustifolia under different sediment moisture conditions to estimate the phytoremediation effects of dredged sediment. The moisture content was 37.30 % and 48.27 % in aerated and waterlogged sediment, respectively. Total nitrogen (TN) content was higher in the waterlogged sediment than in the aerated sediment. The total Cd contents were lower in aerated sediment, which was mainly resulted from the lower exchangeable fraction of Cd. The bioaccumulation of P, Cu and Pb in T. angustifolia was promoted by waterlogging, and the belowground tissue concentrations and accumulation factors (AFs) of Cu were higher than that of other metals, which can be explained by that Cu is an essential micronutrient for plants. Consistent with many previous studies, T. angustifolia showed higher metal levels in roots than in above-ground tissues at both the sediment conditions. Due to the improved biomass produced in the aerated sediment, the removals of nutrients and the metals by plant harvest were higher from aerated sediment than from waterlogged sediment. It was indicated that maintaining the dredged sediment aerated can avoid release risk and plant uptake of metals, while the opposite management option can promote phytoextraction of these contaminants.

  7. A geomorphic-geochemical framework for quantifying the cycling of sediment-associated contaminants in fluvial systems

    Science.gov (United States)

    Byrne, Patrick; Lopez-Tarazon, Jose; Williams, Richard

    2016-04-01

    Recent high-profile contamination events linked to extreme floods have underlined the persistent environmental risk posed by legacy metals stored in fluvial systems worldwide. While we understand that the fate of sediment-associated metals is largely determined by the dynamics of the fluvial transport system, we still lack a process-based understanding of the spatial and temporal mechanisms that affect the physical and geochemical transfer of metals through catchments. This interdisciplinary project will exploit advances in geomorphic and geochemical analyses to develop a methodological approach and conceptual framework to answer key questions related to the dynamics and timescales of metal cycling in fluvial systems. The approach will be tested in two reaches of the mining-impacted Afon Twymyn, Wales. The main objectives are: (i) quantify the physical transport of sediment and metals over a range of river flows and model sediment pathways; (ii) establish the geochemical mobility and speciation of sediment-associated metals and how this is modified through the sediment pathways. To achieve these objectives a geomorphic-geochemical combined methodology will be applied. It includes: (i) Aerial imagery that will be acquired from UAV surveys pre- and post-high flows and transformed into high-resolution DEMs using Structure-from-Motion; (ii) suspended sediment flux will be estimated indirectly by field calibration with a logging turbidimeter; (iii) 2D hydraulic and sediment transport model (Delft3D) will be used to quantify the transport of sediment and associated metals and to map the source, pathway and sink of contaminated sediment; (iv) soil and sediment samples (including suspended sediment) will be collected pre- and post-high flows for geochemical (concentration, speciation) and mineralogical (XRD, SEM) analyses; (v) finally, a geochemical model (Geochemists Workbench) will be developed to generate hypotheses that explain observed geochemical change as a function

  8. Sediment contamination assessment in urban areas based on total suspended solids.

    Science.gov (United States)

    Rossi, Luca; Chèvre, Nathalie; Fankhauser, Rolf; Margot, Jonas; Curdy, Romuald; Babut, Marc; Barry, D Andrew

    2013-01-01

    Sediment represents an important compartment in surface waters. It constitutes a habitat or spawning site for many organisms and is an essential trophic resource for higher level organisms. It can be impacted by anthropogenic activities, particularly through urban wet-weather discharges like stormwater and combined sewer overflows. An approach was presented for assessing the risks caused by urban wet-weather discharges to the sediment compartment based on total suspended solids (TSS). TSS is routinely measured in field surveys and can be considered as a tracer for urban wet-weather contamination. Three assessment endpoints linked with TSS were proposed: a) siltation of the riverbed, b) oxygen demand due to organic matter degradation and c) accumulation of ecotoxic contaminants on the riverbed (heavy metals, PAHs). These criteria were translated in terms of the maximal TSS accumulation load and exposure time (percentage of time exceeding the accumulation criteria) to account for sediment accumulation dynamics and resuspension in streams impacted by urban wet-weather discharges. These assessment endpoints were implemented in a stochastic model that calculates TSS behavior in receiving waters and allows therefore an assessment of potential impacts. The approach was applied to three Swiss case studies. For each, good agreement was found between the risk predictions and the field measurements confirming the reliability of the approach. Copyright © 2012 Elsevier Ltd. All rights reserved.

  9. Sediment disturbance off the Tagus Estuary, Western Portugal: chronic contamination, sewage outfall operation and runoff events.

    Science.gov (United States)

    Silva, Susana; Ré, Ana; Pestana, Pilar; Rodrigues, Ana; Quintino, Victor

    2004-08-01

    Sediment disturbance patterns in the coastal area off the Tagus Estuary (Portugal) have been assessed using a set of combined techniques. The potential sources of disturbance in the area include chronic contamination of the fine sediments originating from the estuary, a local input from a long-sea sewage outfall and occasional high runoff episodes following torrential rain. The Sediment Quality Triad approach, combining environmental chemistry (namely organic contaminants), macrofaunal benthic communities and laboratory sediment toxicity assays, was performed on sediment samples from 20 sites. The samples were collected before the outfall commenced operation and four years after commissioning, in order to evaluate the relative magnitudes of the three potential sources of disturbance. The sediment contamination created by the estuary was identified as the most important cause of reduced sediment quality, as disturbance in all three components of the Sediment Quality Triad were only found in a site located near the estuary.

  10. EVALUATION OF THE STATE-OF-THE-ART CONTAMINATED SEDIMENT TRANSPORT AND FATE MODELING SYSTEM

    Science.gov (United States)

    Modeling approaches for evaluating the transport and fate of sediment and associated contaminants are briefly reviewed. The main emphasis is on: 1) the application of EFDC (Environmental Fluid Dynamics Code), the state-of-the-art contaminated sediment transport and fate public do...

  11. The value of information for managing contaminated sediments.

    Science.gov (United States)

    Bates, Matthew E; Sparrevik, Magnus; de Lichy, Nicolas; Linkov, Igor

    2014-08-19

    Effective management of contaminated sediments is important for long-term human and environmental health, but site-management decisions are often made under high uncertainty and without the help of structured decision support tools. Potential trade-offs between remedial costs, environmental effects, human health risks, and societal benefits, as well as fundamental differences in stakeholder priorities, complicate decision making. Formal decision-analytic tools such as multicriteria decision analysis (MCDA) move beyond ad hoc decision support to quantitatively and holistically rank management alternatives and add transparency and replicability to the evaluation process. However, even the best decisions made under uncertainty may be found suboptimal in hindsight, once additional scientific, social, economic, or other details become known. Value of information (VoI) analysis extends MCDA by systematically evaluating the impact of uncertainty on a decision. VoI prioritizes future research in terms of expected decision relevance by helping decision makers estimate the likelihood that additional information will improve decision confidence or change their selection of a management plan. In this study, VoI analysis evaluates uncertainty, estimates decision confidence, and prioritizes research to inform selection of a sediment capping strategy for the dibenzo-p-dioxin and -furan contaminated Grenland fjord system in southern Norway. The VoI model extends stochastic MCDA to model decisions with and without simulated new information and compares decision confidence across scenarios with different degrees of remaining uncertainty. Results highlight opportunities for decision makers to benefit from additional information by anticipating the improved decision confidence (or lack thereof) expected from reducing uncertainties for each criterion or combination of criteria. This case study demonstrates the usefulness of VoI analysis for environmental decisions by predicting when

  12. Metal availability in a highly contaminated, dredged-sediment disposal site: Field measurements and geochemical modeling

    Energy Technology Data Exchange (ETDEWEB)

    Lions, Julie, E-mail: j.lions@brgm.f [BRGM, 3 Avenue Claude Guillemin, 45060 Orleans Cedex 2 (France); Centre National de Recherche sur les Sites et Sols Pollues, BP 537, 59505 Douai cedex (France); Guerin, Valerie; Bataillard, Philippe [BRGM, 3 Avenue Claude Guillemin, 45060 Orleans Cedex 2 (France); Centre National de Recherche sur les Sites et Sols Pollues, BP 537, 59505 Douai cedex (France); Lee, Jan van der [Mines ParisTech, Centre de Geosciences, 77305 Fontainebleau Cedex (France); Laboudigue, Agnes [Univ Lille Nord de France, F-59000 Lille (France); EMDouai, MPE-GCE, F-59500 Douai (France); Centre National de Recherche sur les Sites et Sols Pollues, BP 537, 59505 Douai cedex (France)

    2010-09-15

    Two complementary approaches were used to characterize arsenic and metal mobilizations from a dredged-sediment disposal site: a detailed field study combined with hydrogeochemical modeling. Contaminants in sediments were found to be mainly present as sulfides subject to oxidation. Secondary phases (carbonates, sulfates, (hydr)oxides) were also observed. Oxidative processes occurred at different rates depending on physicochemical conditions and contaminant contents in the sediment. Two distinct areas were identified on the site, each corresponding to a specific contaminant mobility behavior. In a reducing area, Fe and As were highly soluble and illustrated anoxic behavior. In well-oxygenated material, groundwater was highly contaminated in Zn, Cd and Pb. A third zone in which sediments and groundwater were less contaminated was also characterized. This study enabled us to prioritize remediation work, which should aim to limit infiltration and long-term environmental impact. - A detailed case study of metal behavior in a dredged-sediment disposal site combined with geochemical modeling.

  13. Quantifying the dilution of the radiocesium contamination in Fukushima coastal river sediment (2011–2015)

    OpenAIRE

    Olivier Evrard; J. Patrick Laceby; Yuichi Onda; Yoshifumi Wakiyama; Hugo Jaegler; Irène Lefèvre

    2016-01-01

    Fallout from the Fukushima Dai-ichi nuclear power plant accident resulted in a 3000-km2 radioactive contamination plume. Here, we model the progressive dilution of the radiocesium contamination in 327 sediment samples from two neighboring catchments with different timing of soil decontamination. Overall, we demonstrate that there has been a ~90% decrease of the contribution of upstream contaminated soils to sediment transiting the coastal plains between 2012 (median – M – contribution of 73%,...

  14. Contaminants in surface water and sediments around the Tynagh Mine, Galway, Ireland.

    OpenAIRE

    O'Neill, A.; Phillips, D.H.; Bowen, J; Sen Gupta, B.

    2015-01-01

    A former silver mine in Tynagh, Co. Galway, Ireland is one of the most contaminated mine sites in Europe with maximum concentrations of Zn, As, Pb, Mn, Ni, Cu, and Cd far exceeding guideline values for water and sediment. The aims of this research were to 1) further assess the contamination, particularly metals, in surface water and sediment around the site, and 2) determine if the contamination has increased 10 years after the Environmental Protection Agency Ireland (EPAI) identified off-sit...

  15. Selection of an appropriate management strategy for contaminated sediment: A case study at a shallow contaminated harbour in Quebec, Canada.

    Science.gov (United States)

    Pourabadehei, Mehdi; Mulligan, Catherine N

    2016-12-01

    Harbours, as strategic places in tourism and transportation, are exposed to many sources of contamination. Assessing the quality of harbours sediment by guidelines and regulations does not reflect the actual level of contamination and the risk posed to aquatic ecosystems. Selection of an appropriate management technique for contaminated sediments in those strategic locations is crucial for the aquatic environment. The purpose of this study is to show that insufficient information, provided by sediment quality guidelines (SQGs) to identify the actual contaminants, could lead to a destructive or potentially ineffective decision for risk reduction in contaminated harbours. A comprehensive evaluation on physicochemical characteristics of sediment and water samples of a shallow harbour in St. Lawrence River was performed. Results of trace metal fractionation and risk assessment indicated that Cd and Pb were the contaminants that could pose a threat to aquatic ecosystem, although the SQG outcomes implied that Cu and Zn may cause an adverse effect on the benthic organisms. The results of multivariate statistical analysis demonstrated that the locations in the vicinity of the maintenance area contained the most contaminated sediment samples and require appropriate management. Antifouling paint particles and probably the runoff entering the harbour were the main sources of pollution. Among the diverse range of management strategies, the resuspension technique is suggested as a viable alternative in this specific case for shallow locations with contaminated sediments. A suitable management strategy could reduce the cost of remediation process by identifying the actual contaminated spots and also reduce the risk of remobilization of trace metals. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Modelling metallothionein induction in the liver of Sparus aurata exposed to metal-contaminated sediments.

    Science.gov (United States)

    Costa, P M; Repolho, T; Caeiro, S; Diniz, M E; Moura, I; Costa, M H

    2008-09-01

    Metallothionein (MT) in the liver of gilthead seabreams (Sparus aurata L., 1758) exposed to Sado estuary (Portugal) sediments was quantified to assess the MT induction potential as a biomarker of sediment-based contamination by copper (Cu), cadmium (Cd), lead (Pb) and arsenic (As). Sediments were collected from two control sites and four sites with different levels of contamination. Sediment Cu, Cd, Pb, As, total organic matter (TOM) and fine fraction (FF) levels were determined. Generalized linear models (GLM) allowed integration of sediment parameters with liver Cu, Cd, Pb, As and MT concentrations. Although sediment metal levels were lower than expected, we relate MT with liver Cd and also with interactions between liver and sediment Cu and between liver Cu and TOM. We suggest integrating biomarkers and environmental parameters using statistical models such as GLM as a more sensitive and reliable technique for sediment risk assessment than traditional isolated biomarker approaches.

  17. Linking bacterial diversity and geochemistry of uranium-contaminated groundwater.

    Science.gov (United States)

    Cho, Kelly; Zholi, Alma; Frabutt, Dylan; Flood, Matthew; Floyd, Dalton; Tiquia, Sonia M

    2012-01-01

    To understand the link between bacterial diversity and geochemistry in uranium-contaminated groundwater, microbial communities were assessed based on clone libraries of 16S rDNA genes from the USDOE Oak Ridge Field Research Centre (FRC) site. Four groundwater wells (GW835, GW836, FW113-47 and FW215-49) with a wide range of pH (3 to 7), nitrate (44 to 23,400 mg L(-1)), uranium (0.73 to 60.36 mg L(-1)) and other metal contamination, were investigated. Results indicated that bacterial diversity correlated with the geochemistry of the groundwater. Microbial diversity decreased in relation to the contamination levels of the wells. The highly contaminated well (FW113-47) had lower gene diversity than less contaminated wells (FW215-49, GW835 and GW836). The high concentrations of contaminants present in well FW113-47 stimulated the growth of organisms capable of reducing uranium (Shewanella and Pseudomonas), nitrate (Pseudomonas, Rhodanobacter and Xanthomonas) and iron (Stenotrophomonas), and which were unique to this well. The clone libraries consisted primarily of sequences closely related to the phylum Proteobacteria, with FW-113-47 almost exclusively containing this phylum. Metal-reducing bacteria were present in all four wells, which may suggest that there is potential for successful bioremediation of the groundwater at the Oak Ridge FRC. The microbial community information gained from this study and previous studies at the site can be used to develop predictive multivariate and geographical information system (GIS) based models for microbial populations at the Oak Ridge FRC. This will allow for a better understanding of what organisms are likely to occur where and when, based on geochemistry, and how these organisms relate to bioremediation processes at the site.

  18. Contamination of arctic Fjord sediments by Pb-Zn mining at Maarmorilik in central West Greenland

    DEFF Research Database (Denmark)

    Perner, Kerstin; Leipe, Thomas; Dellwig, O;

    2010-01-01

    This study focuses on heavy metal contamination of arctic sediments from a small Fjord system adjacent to the Pb-Zn "Black Angel" mine (West Greenland) to investigate the temporal and spatial development of contamination and to provide baseline levels before the mines re-opening in January 2009...... illustrate this transport and spatial distribution pattern of the contaminated material....

  19. Linking continental erosion to marine transport and sedimentation

    Science.gov (United States)

    Yuan, Xiaoping; Braun, Jean; Guerit, Laure

    2017-04-01

    Limited attention has been given to linking continental erosion to marine transport and sedimentation in large-scale landscape evolution models. Although either of the two environments has been thoroughly investigated, the details of how erosional events are recorded in the sedimentary and stratigraphic records have not been studied in a consistent quantitative manner. Here we present results obtained from a new numerical model for marine sediment transport and deposition that is directly coupled to FastScape, a landscape evolution model that solves the continental stream power law and hillslope diffusion equation using fully implicit and O(n) algorithms. The model of marine transport and sedimentation is simulated by a nonlinear 2D diffusion model where a source term represents mass flux arising from continental river erosion. It is based on the simplest representation of marine transport that assumes that flux is proportional to slope, which leads to a diffusion-type equation that we solve using an alternating direction implicit scheme. Multiple lithologies are implemented that vary by their transport coefficients. This method is also highly efficient (O(n) and implicit), which allows us to perform a large number of simulations to undertake a Bayesian inversion of stratigraphic data. Using our model we not only show the manner in which the stratigraphic record responds to tectonic and climate events but also how it is controlled by the coefficients for river erosion, hillslope diffusion, the transport coefficients in the ocean environment, and variations in sea level. The model is used to better constrain the nature and timing of erosional events on adjacent continents through an inversion of the stratigraphic record. In the longer term, we are looking at ways to improve the equations governing marine sediment transport especially, to better represent the deep part of that transport, i.e. in the abyssal plains or past the shelf and slope.

  20. Tracking riverborne sediment and contaminants in Commencement Bay, Washington, using geochemical signatures

    Science.gov (United States)

    Takesue, Renee K.; Conn, Kathleen E.; Dinicola, Richard S.

    2017-09-29

    Large rivers carry terrestrial sediment, contaminants, and other materials to the coastal zone where they can affect marine biogeochemical cycles and ecosystems. This U.S. Geological Survey study combined river and marine sediment geochemistry and organic contaminant analyses to identify riverborne sediment and associated contaminants at shoreline sites in Commencement Bay, Puget Sound, Washington, that could be used by adult forage fish and other marine organisms. Geochemical signatures distinguished the fine fraction (.063 millimeter, mm) of Puyallup River sediment—which originates from Mount Rainier, a Cascade volcano—from glacial fine sediment in lowland bluffs that supply sediment to beaches. In combination with activities of beryllium-7 (7Be), a short-lived radionuclide, geochemical signatures showed that winter 2013–14 sediment runoff from the Puyallup River was transported to and deposited along the north shore of Commencement Bay, then mixed downward into the sediment column. The three Commencement Bay sites at which organic contaminants were measured in surface sediment did not have measurable 7Be activities in that layer, so their contaminant assemblages were attributed to sources from previous years. Concentrations of organic contaminants (the most common of which were polycyclic aromatic hydrocarbons, polychlorinated biphenyls, and fecal sterols) were higher in the .063-mm fraction compared to the <2-mm fraction, in winter compared to summer, in river suspended sediment compared to river bar and bank sediment, and in marine sediment compared to river sediment. The geochemical property barium/aluminum (Ba/Al) showed that the median percentage of Puyallup River derived fine surface sediment along the shoreline of Commencement Bay was 77 percent. This finding, in combination with higher concentrations of organic contaminants in marine rather than river sediment, indicates that riverborne sediment-bound contaminants are retained in shallow marine

  1. Nereis diversicolor and copper contamination effect on the erosion of cohesive sediments: A flume experiment

    Science.gov (United States)

    Fernandes, S.; Sobral, P.; Alcântara, F.

    2009-04-01

    The effect of bioturbation on the erodability of natural and manipulated copper spiked sediments (3 μmol Cu g -1 dw) was investigated using sediments collected in the Tagus estuary and Nereis diversicolor (900 ind m -2). The input of particulate matter and Cu into the water column as a result of erosion was quantified in an annular flume at 7 shear velocities (1-13 cm s -1). The biogeochemical characteristics of the sediment were analysed in depth down to 8 cm. Cu contamination elicited lower levels of eroded matter and lower shear strength profiles. Eroded matter and sediment shear strength values were higher (up to 1.7 kg m -2) in the presence of N. diversicolor, whose effect was less pronounced under contamination. Sediment erodability was not only related to hydrodynamics but was highly affected by the biogeochemical characteristics and contamination of the sediments.

  2. Evaluation of the contamination of platinum in estuarine and coastal sediments (Tagus Estuary and Prodelta, Portugal).

    Science.gov (United States)

    Cobelo-García, Antonio; Neira, Patricia; Mil-Homens, Mario; Caetano, Miguel

    2011-03-01

    Platinum contamination in estuarine and coastal sediments has been evaluated in three cores collected from the Tagus Estuary and Prodelta shelf sediments. Elevated concentrations, up to 25-fold enrichment compared to background values, were found in the upper layers of the estuarine sediments. The degree of Pt enrichment in the estuarine sediments varied depending on the proximity to vehicular traffic sources, with a maximum concentration of 9.5 ng g(-1). A considerable decrease of Pt concentrations with depth indicated the absence of significant contamination before the introduction of catalytic converters in automobiles. Platinum distribution in the Tagus Prodelta shelf sediment core showed no surface enrichment; instead a sub-surface maximum at the base of the mixed layer suggested the possibility of post-depositional mobility, thereby blurring the traffic-borne contamination signature in coastal sediments. Copyright © 2011. Published by Elsevier Ltd.

  3. Evolution of radioactive dose rates in fresh sediment deposits along coastal rivers draining Fukushima contamination plume.

    Science.gov (United States)

    Evrard, Olivier; Chartin, Caroline; Onda, Yuichi; Patin, Jeremy; Lepage, Hugo; Lefèvre, Irène; Ayrault, Sophie; Ottlé, Catherine; Bonté, Philippe

    2013-10-29

    Measurement of radioactive dose rates in fine sediment that has recently deposited on channel bed-sand provides a solution to address the lack of continuous river monitoring in Fukushima Prefecture after Fukushima Dai-ichi nuclear power plant (FDNPP) accident. We show that coastal rivers of Eastern Fukushima Prefecture were rapidly supplied with sediment contaminated by radionuclides originating from inland mountain ranges, and that this contaminated material was partly exported by typhoons to the coastal plains as soon as by November 2011. This export was amplified during snowmelt and typhoons in 2012. In 2013, contamination levels measured in sediment found in the upper parts of the catchments were almost systematically lower than the ones measured in nearby soils, whereas their contamination was higher in the coastal plains. We thereby suggest that storage of contaminated sediment in reservoirs and in coastal sections of the river channels now represents the most crucial issue.

  4. Environmental impact of ongoing sources of metal contamination on remediated sediments

    Energy Technology Data Exchange (ETDEWEB)

    Knox, Anna Sophia, E-mail: anna.knox@srn.doe.gov [Savannah River National Laboratory, Aiken, SC 29808 (United States); Paller, Michael H., E-mail: michael.paller@srnl.doe.gov [Savannah River National Laboratory, Aiken, SC 29808 (United States); Milliken, Charles E., E-mail: charles.milliken@srnl.doe.gov [Savannah River National Laboratory, Aiken, SC 29808 (United States); Redder, Todd M., E-mail: tredder@limno.com [LimnoTech, Ann Arbor, Minnesota 48108 (United States); Wolfe, John R., E-mail: jwolfe@limno.com [LimnoTech, Ann Arbor, Minnesota 48108 (United States); Seaman, John, E-mail: seaman@srel.uga.edu [Savannah River Ecology Laboratory, University of Georgia, Aiken, SC 29802 (United States)

    2016-09-01

    A challenge to all remedial approaches for contaminated sediments is the continued influx of contaminants from uncontrolled sources following remediation. We investigated the effects of ongoing contamination in mesocosms employing sediments remediated by different types of active and passive caps and in-situ treatment. Our hypothesis was that the sequestering agents used in active caps and in situ treatment will bind elements (arsenic, chromium, cadmium, cobalt, copper, nickel, lead, selenium, and zinc) from ongoing sources thereby reducing their bioavailability and protecting underlying remediated sediments from recontamination. Most element concentrations in surface water remained significantly lower in mesocosms with apatite and mixed amendment caps than in mesocosms with passive caps (sand), uncapped sediment, and spike solution throughout the 2520 h experiment. Element concentrations were significantly higher in Lumbriculus variegatus from untreated sediment than in Lumbriculus from most active caps. Pearson correlations between element concentrations in Lumbriculus and metal concentrations in the top 2.5 cm of sediment or cap measured by diffusive gradient in thin films (DGT) sediment probes were generally strong (as high as 0.98) and significant (p < 0.05) for almost all tested elements. Metal concentrations in both Lumbriculus and sediment/cap were lowest in apatite, mixed amendment, and activated carbon treatments. These findings show that some active caps can protect remediated sediments by reducing the bioavailable pool of metals/metalloids in ongoing sources of contamination. - Graphical abstract: Conventional methods of remediating contaminated sediments may be inadequate for the protection of benthic organisms when ongoing sources of contamination are present. However, sediment caps with chemically active sequestering agents have the ability to reduce the bioavailable pool of metals in ongoing sources of contamination (red dots), reduce toxicity to

  5. Quantifying the dilution of the radiocesium contamination in Fukushima coastal river sediment (2011–2015)

    Science.gov (United States)

    Evrard, Olivier; Laceby, J. Patrick; Onda, Yuichi; Wakiyama, Yoshifumi; Jaegler, Hugo; Lefèvre, Irène

    2016-01-01

    Fallout from the Fukushima Dai-ichi nuclear power plant accident resulted in a 3000-km2 radioactive contamination plume. Here, we model the progressive dilution of the radiocesium contamination in 327 sediment samples from two neighboring catchments with different timing of soil decontamination. Overall, we demonstrate that there has been a ~90% decrease of the contribution of upstream contaminated soils to sediment transiting the coastal plains between 2012 (median – M – contribution of 73%, mean absolute deviation – MAD – of 27%) and 2015 (M 9%, MAD 6%). The occurrence of typhoons and the progress of decontamination in different tributaries of the Niida River resulted in temporary increases in local contamination. However, the much lower contribution of upstream contaminated soils to coastal plain sediment in November 2015 demonstrates that the source of the easily erodible, contaminated material has potentially been removed by decontamination, diluted by subsoils, or eroded and transported to the Pacific Ocean. PMID:27694832

  6. Quantifying the dilution of the radiocesium contamination in Fukushima coastal river sediment (2011–2015)

    Science.gov (United States)

    Evrard, Olivier; Laceby, J. Patrick; Onda, Yuichi; Wakiyama, Yoshifumi; Jaegler, Hugo; Lefèvre, Irène

    2016-10-01

    Fallout from the Fukushima Dai-ichi nuclear power plant accident resulted in a 3000-km2 radioactive contamination plume. Here, we model the progressive dilution of the radiocesium contamination in 327 sediment samples from two neighboring catchments with different timing of soil decontamination. Overall, we demonstrate that there has been a ~90% decrease of the contribution of upstream contaminated soils to sediment transiting the coastal plains between 2012 (median – M – contribution of 73%, mean absolute deviation – MAD – of 27%) and 2015 (M 9%, MAD 6%). The occurrence of typhoons and the progress of decontamination in different tributaries of the Niida River resulted in temporary increases in local contamination. However, the much lower contribution of upstream contaminated soils to coastal plain sediment in November 2015 demonstrates that the source of the easily erodible, contaminated material has potentially been removed by decontamination, diluted by subsoils, or eroded and transported to the Pacific Ocean.

  7. A simplified approach for monitoring hydrophobic organic contaminants associated with suspended sediment: Methodology and applications

    Science.gov (United States)

    Mahler, B.J.; Van Metre, P.C.

    2003-01-01

    Hydrophobic organic contaminants, although frequently detected in bed sediment and in aquatic biota, are rarely detected in whole-water samples, complicating determination of their occurrence, load, and source. A better approach for the investigation of hydrophobic organic contaminants is the direct analysis of sediment in suspension, but procedures for doing so are expensive and cumbersome. We describe a simple, inexpensive methodology for the dewatering of sediment and present the results of two case studies. Isolation of a sufficient mass of sediment for analyses of organochlorine compounds and PAHs is obtained by in-line filtration of large volumes of water. The sediment is removed from the filters and analyzed directly by standard laboratory methods. In the first case study, suspended-sediment sampling was used to determine occurrence, loads, and yields of contaminants in urban runoff affecting biota in Town Lake, Austin, TX. The second case study used suspended-sediment sampling to locate a point source of PCBs in the Donna Canal in south Texas, where fish are contaminated with PCBs. The case studies demonstrate that suspended-sediment sampling can be an effective tool for determining the occurrence, load, and source of hydrophobic organic contaminants in transport.

  8. A simplified approach for monitoring hydrophobic organic contaminants associated with suspended sediment: methodology and applications.

    Science.gov (United States)

    Mahler, B J; Van Metre, P C

    2003-04-01

    Hydrophobic organic contaminants, although frequently detected in bed sediment and in aquatic biota, are rarely detected in whole-water samples, complicating determination of their occurrence, load, and source. A better approach for the investigation of hydrophobic organic contaminants is the direct analysis of sediment in suspension, but procedures for doing so are expensive and cumbersome. We describe a simple, inexpensive methodology for the dewatering of sediment and present the results of two case studies. Isolation of a sufficient mass of sediment for analyses of organochlorine compounds and PAHs is obtained by in-line filtration of large volumes of water. The sediment is removed from the filters and analyzed directly by standard laboratory methods. In the first case study, suspended-sediment sampling was used to determine occurrence, loads, and yields of contaminants in urban runoff affecting biota in Town Lake, Austin, TX. The second case study used suspended-sediment sampling to locate a point source of PCBs in the Donna Canal in south Texas, where fish are contaminated with PCBs. The case studies demonstrate that suspended-sediment sampling can be an effective tool for determining the occurrence, load, and source of hydrophobic organic contaminants in transport.

  9. Relating groundwater and sediment chemistry to microbial characterization at a BTEX-contaminated site

    Energy Technology Data Exchange (ETDEWEB)

    Pfiffner, S.M.; Palumbo, A.V.; McCarthy, J.F. [Oak Ridge National Lab., TN (United States); Gibson, T. [General Motors Research and Development Center, Warren, MI (United States)] [and others

    1996-07-01

    The National Center for Manufacturing Science is investigating bioremediation of petroleum hydrocarbon at a site in Belleville, Michigan. As part of this study we examined the microbial communities to help elucidate biodegradative processes currently active at the site. We observed high densities of aerobic hydrocarbon degraders and denitrifiers in the less-contaminated sediments. Low densities of iron and sulfate reducers were measured in the same sediments. In contrast, the highly-contaminated sediments showed low densities of aerobic hydrocarbon degraders and denitrifiers and high densities of iron and sulfate reducers. Methanogens were also found in these highly-contaminated sediments. These contaminated sediments also showed a higher biomass, by phospholipid fatty acids, and greater ratios of phospholipid fatty acids which indicate stress within the microbial community. Aquifer chemistry analyses indicated that the more-contaminated area was more reduced and had lower sulfate than the less-contaminated area. These conditions suggest that the subsurface environment at the highly-contaminated area had progressed into sulfate reduction and methanogensis. The less-contaminated area, although less reduced, also appeared to be progressing into primarily iron- and sulfate-reducing microbial communities. The proposed treatment to stimulate bioremediation includes addition of oxygen and nitrate. Groundwater chemistry and microbial analyses revealed significant differences resulted from the injection of dissolved oxygen and nitrate in the subsurface. These differences included increases in pH and Eh and large decreases in BTEX, dissolved iron, and sulfate concentrations at the injection well.

  10. Equilibrium sampling for a thermodynamic assessment of contaminated sediments

    DEFF Research Database (Denmark)

    of the biota relative to the sediment. Furthermore, concentrations in lipid at thermodynamic equilibrium with sediment (Clip?Sed) can be calculated via lipid/silicone partition ratios CSil × KLip:Sil, which has been done in studies with limnic, river and marine sediments. The data can then be compared to lipid...

  11. A TOXICITY ASSESSMENT APPROACH FOR EVALUATION OF IN-SITU BIOREMEDIATION OF PAH CONTAMINATED SEDIMENTS

    Science.gov (United States)

    Polycyclic aromatic hydrocarbons (PAHs) represent a group of organic contaminants known for their prevalence and persistence in petroleum-impacted environment such as groundwater, soils and sediments. Many high molecular weight PAHs are suspected carcinogens and the existence of...

  12. STUDIES ON BIOREMEDIATION OF POLYCYCLIC AROMATIC HYDROCARBON-CONTAMINATED SEDIMENTS: BIOAVAILABILITY, BIODEGRADABILITY, AND TOXICITY ISSUES

    Science.gov (United States)

    The widespread contamination of aquatic sediments by polycyclic aromatic hydrocarbons (PAHs) has created a need for cost-effective bioremediation processes, on which the bioavailability and the toxicity of PAHs often have a significant impact. This research investigated the biode...

  13. Survey for contaminants in sediments and fish at selected sites on the Illinois River and tributaries

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — A basin-wide survey of contaminants in sediments and biota at several locations on the Illinois River and selected tributaries was conducted during the 1989 field...

  14. STUDIES ON BIOREMEDIATION OF POLYCYCLIC AROMATIC HYDROCARBON-CONTAMINATED SEDIMENTS: BIOAVAILABILITY, BIODEGRADABILITY, AND TOXICITY ISSUES

    Science.gov (United States)

    The widespread contamination of aquatic sediments by polycyclic aromatic hydrocarbons (PAHs) has created a need for cost-effective bioremediation processes, on which the bioavailability and the toxicity of PAHs often have a significant impact. This research investigated the biode...

  15. DEVELOPING TOOLS FOR MONITORED NATURAL RECOVERY OF PCB-CONTAMINATED SEDIMENTS AT LAKE HARTWELL, SC

    Science.gov (United States)

    Contaminated sediments pose a risk to human health and the environment . The management of this risk is currently limited practically to three technologies: dredging, capping, and natural recovery. Monitored natural recovery relies on the natural burial and removal mechanisms to...

  16. EVIDENCE FOR MICROBIAL ENHANCED ELECTRICAL CONDUCTIVITY IN HYDROCARBON-CONTAMINATED SEDIMENTS

    Science.gov (United States)

    Electrical conductivity of sediments during microbial mineralization of diesel was investigated in a mesoscale column experiment consisting of biotic contaminated and uncontaminated columns. Microbial population numbers increased with a clear pattern of depth zonation within the ...

  17. Source Evaluation and Trace Metal Contamination in Benthic Sediments from Equatorial Ecosystems Using Multivariate Statistical Techniques.

    Science.gov (United States)

    Benson, Nsikak U; Asuquo, Francis E; Williams, Akan B; Essien, Joseph P; Ekong, Cyril I; Akpabio, Otobong; Olajire, Abaas A

    2016-01-01

    Trace metals (Cd, Cr, Cu, Ni and Pb) concentrations in benthic sediments were analyzed through multi-step fractionation scheme to assess the levels and sources of contamination in estuarine, riverine and freshwater ecosystems in Niger Delta (Nigeria). The degree of contamination was assessed using the individual contamination factors (ICF) and global contamination factor (GCF). Multivariate statistical approaches including principal component analysis (PCA), cluster analysis and correlation test were employed to evaluate the interrelationships and associated sources of contamination. The spatial distribution of metal concentrations followed the pattern Pb>Cu>Cr>Cd>Ni. Ecological risk index by ICF showed significant potential mobility and bioavailability for Cu, Cu and Ni. The ICF contamination trend in the benthic sediments at all studied sites was Cu>Cr>Ni>Cd>Pb. The principal component and agglomerative clustering analyses indicate that trace metals contamination in the ecosystems was influenced by multiple pollution sources.

  18. Source Evaluation and Trace Metal Contamination in Benthic Sediments from Equatorial Ecosystems Using Multivariate Statistical Techniques.

    Directory of Open Access Journals (Sweden)

    Nsikak U Benson

    Full Text Available Trace metals (Cd, Cr, Cu, Ni and Pb concentrations in benthic sediments were analyzed through multi-step fractionation scheme to assess the levels and sources of contamination in estuarine, riverine and freshwater ecosystems in Niger Delta (Nigeria. The degree of contamination was assessed using the individual contamination factors (ICF and global contamination factor (GCF. Multivariate statistical approaches including principal component analysis (PCA, cluster analysis and correlation test were employed to evaluate the interrelationships and associated sources of contamination. The spatial distribution of metal concentrations followed the pattern Pb>Cu>Cr>Cd>Ni. Ecological risk index by ICF showed significant potential mobility and bioavailability for Cu, Cu and Ni. The ICF contamination trend in the benthic sediments at all studied sites was Cu>Cr>Ni>Cd>Pb. The principal component and agglomerative clustering analyses indicate that trace metals contamination in the ecosystems was influenced by multiple pollution sources.

  19. Source Evaluation and Trace Metal Contamination in Benthic Sediments from Equatorial Ecosystems Using Multivariate Statistical Techniques

    Science.gov (United States)

    Benson, Nsikak U.; Asuquo, Francis E.; Williams, Akan B.; Essien, Joseph P.; Ekong, Cyril I.; Akpabio, Otobong; Olajire, Abaas A.

    2016-01-01

    Trace metals (Cd, Cr, Cu, Ni and Pb) concentrations in benthic sediments were analyzed through multi-step fractionation scheme to assess the levels and sources of contamination in estuarine, riverine and freshwater ecosystems in Niger Delta (Nigeria). The degree of contamination was assessed using the individual contamination factors (ICF) and global contamination factor (GCF). Multivariate statistical approaches including principal component analysis (PCA), cluster analysis and correlation test were employed to evaluate the interrelationships and associated sources of contamination. The spatial distribution of metal concentrations followed the pattern Pb>Cu>Cr>Cd>Ni. Ecological risk index by ICF showed significant potential mobility and bioavailability for Cu, Cu and Ni. The ICF contamination trend in the benthic sediments at all studied sites was Cu>Cr>Ni>Cd>Pb. The principal component and agglomerative clustering analyses indicate that trace metals contamination in the ecosystems was influenced by multiple pollution sources. PMID:27257934

  20. Sediment rarefaction resuspension and contaminant release under tidal curren- ts

    Institute of Scientific and Technical Information of China (English)

    程鹏达; 朱红伟; 钟宝昌; 王道增

    2014-01-01

    Based on experiment in tidal flume, this paper analyzes the sediment rarefactive phenomenon and hydraulic characteristics of sediment resuspension with different physical properties under the effect of tidal current. According to this experiment, sediment resuspension is related to the hydraulic characteristics of overlying water and its own dry density, namely the moisture content of sediment and deposition time. Generally, river sediment can be classified into the upper layer of floating sludge and lower layer of deposit sediment. Incipient velocity goes higher as the sediment layer goes thicker. Based on the experiment, incipient velocity formula of sediment can be obtained. There is a cohesive force among natural fine sediment whose resuspension is almost irrelevant to their diameters. Therefore, the critical incipient velocity is determined by the cohesive force instead of particle diameter. The lower layer of deposit sediment is generally not so easy to start up. And it will be rarified and release into the overlying water when contacting with overlying water. However, this rarefaction release velocity is gentle and slow. Under the same flow condition, annual loss amount of lower layer deposited sediment is about one fifth of upper layer of floating sediment. Flow velocity of tidal river and variation of the water level are asymmetrical, both of which vary under different tidal cycles. During long tidal cycle, flow velocity and water level change in the same phase and amplitude with tide. During the whole ebb and flow, flow direction does not change as the water level goes under the influence of acceleration and deceleration. As the tide cycle increases, the incipient velocity of sediment goes higher. This means that the long period tide cycle plays buffer effect on the resuspension of sediment, which makes the sediment not so easy both to start up and to suspend.

  1. Accelerating progress at contaminated sediment sites: moving from guidance to practice.

    Science.gov (United States)

    Bridges, Todd S; Nadeau, Steven C; McCulloch, Megan C

    2012-04-01

    Contaminated sediments are a pervasive problem in the United States. Significant economic, ecological, and social issues are intertwined in addressing the nation's contaminated sediment problem. Managing contaminated sediments has become increasingly resource intensive, with some investigations costing tens of millions of dollars and the majority of remediation projects proceeding at a slow pace. At present, the approaches typically used to investigate, evaluate, and remediate contaminated sediment sites in the United States have largely fallen short of producing timely, risk-based, cost-effective, long-term solutions. With the purpose of identifying opportunities for accelerating progress at contaminated sediment sites, the US Army Corps of Engineers-Engineer Research and Development Center and the Sediment Management Work Group convened a workshop with experienced experts from government, industry, consulting, and academia. Workshop participants identified 5 actions that, if implemented, would accelerate the progress and increase the effectiveness of risk management at contaminated sediment sites. These actions included: 1) development of a detailed and explicit project vision and accompanying objectives, achievable short-term and long-term goals, and metrics of remedy success at the outset of a project, with refinement occurring as needed throughout the duration of the project; 2) strategic engagement of stakeholders in a more direct and meaningful process; 3) optimization of risk reduction, risk management processes, and remedy selection addressing 2 important elements: a) the deliberate use of early action remedies, where appropriate, to accelerate risk reduction; and b) the systematic and sequential development of a suite of actions applicable to the ultimate remedy, starting with monitored natural recovery and adding engineering actions as needed to satisfy the project's objectives; 4) an incentive process that encourages and rewards risk reduction; and 5

  2. Does bioleaching represent a biotechnological strategy for remediation of contaminated sediments?

    Energy Technology Data Exchange (ETDEWEB)

    Fonti, Viviana, E-mail: v.fonti@univpm.it; Dell' Anno, Antonio; Beolchini, Francesca

    2016-09-01

    Bioleaching is a consolidated biotechnology in the mining industry and in bio-hydrometallurgy, where microorganisms mediate the solubilisation of metals and semi-metals from mineral ores and concentrates. Bioleaching also has the potential for ex-situ/on-site remediation of aquatic sediments that are contaminated with metals, which represent a key environmental issue of global concern. By eliminating or reducing (semi-)metal contamination of aquatic sediments, bioleaching may represent an environmentally friendly and low-cost strategy for management of contaminated dredged sediments. Nevertheless, the efficiency of bioleaching in this context is greatly influenced by several abiotic and biotic factors. These factors need to be carefully taken into account before selecting bioleaching as a suitable remediation strategy. Here we review the application of bioleaching for sediment bioremediation, and provide a critical view of the main factors that affect its performance. We also discuss future research needs to improve bioleaching strategies for contaminated aquatic sediments, in view of large-scale applications. - Highlights: • Bioleaching may represent a sustainable strategy for contaminated dredged sediments • The performance is greatly influenced by several abiotic and biotic factors • Geochemical characteristics and metal partitioning have a key role • Sulphide minerals in the sediment are a favorable element • Microorganisms other than Fe/S oxidisers may open new perspectives.

  3. Capabilities of Seven Species of Aquatic Macrophytes for Phytoremediation of Pentachlorophenol Contaminated Sediment

    Science.gov (United States)

    Zhao, Liangyuan; Guo, Weijie; Li, Qingyun; Li, Huan; Zhao, Weihua; Cao, Xiaohuan

    2017-01-01

    Sediments are regarded as the ultimate sink of pentachlorophenol(PCP) in aquatic environment, and capabilities of seven species of aquatic macrophytes for remediating PCP contaminated sediment were investigated. Seven species of aquatic macrophytes could significantly accelerate the degradation of PCP in sediments. Among all, canna indica L., Acorus calamus L. and Iris tectorum Maxim. can be used as efficient alternative plants for remediation of PCP contaminated sediment, which attained 98%, 92% and 88% of PCP removal in sediments, respectively. PCP was detected only in root tissues and the uptake was closely related to the root lipid contents of seven plants. The presence of seven aquatic macrophytes significantly increased microbial populations and the activities of dehydrogenase compared with control sediments, indicating that rhizosphere microorganism played important role in the remediation process. In conclusion, seven species of aquatic macrophytes may act as promising tools for the PCP phytoremediation in aquatic environment, especially Canna indica L., Acorus calamus L. and Iris tectorum Maxim.

  4. Chemical and biological risk assessment of chronic exposure to PAH contaminated sediments

    Energy Technology Data Exchange (ETDEWEB)

    Means, J.; McMillin, D.; Kondapi, N. [Louisiana State Univ., Baton Rouge, LA (United States)

    1995-12-31

    Chronically contaminated sediments represent a long-term source of mixtures of contaminants, exposing aquatic ecosystems to PAH through desorption and bioaccumulation. Chronic toxicity assessments must address potential of these bond contaminants. Environmental impacts and ecological health hazards of sediment-bound normal, alkylated and heterocyclic aromatic hydrocarbons are functions of their entry into aquatic food webs and are controlled by both abiotic and biotic factors. Laboratory and field microcosm exposures of fish and invertebrates were conducted followed by assessments of effects using chemical analysis and biomarkers of potential genotoxic effects. Chemical analysis of accumulated residues of 62 individual PAH were conducted in oysters, Crassostrea virginica exposed to PAH contaminated sediments in the field. The rates and equilibrium bioaccumulation constants for each were determined. Fish were exposed to the same contaminated sediments in laboratory and field exposures. Measurements of ethoxy-resorufin-o-deethylase activity induction as well as alterations in the expression of the p53 tumor suppressor gene were performed on exposed fish liver samples. EROD activities were increased significantly relative to unexposed and laboratory/field control sediment-exposed fish, however, the responses of individuals were highly variable. Fundulus grandis or Gambusia affinis, exposed to contaminated sediments in the laboratory, revealed changes in the expression of the p53 tumor suppressor gene. The degree to which mutations within the gene occurred was assessed using PCR followed by measurement of single stranded DNA polymorphisms using gel electrophoresis chromatography.

  5. Catchment-scale environmental controls of sediment-associated contaminant dispersal

    Science.gov (United States)

    Macklin, Mark

    2010-05-01

    Globally river sediment associated contaminants, most notably heavy metals, radionuclides, Polychlorinated Biphenyls (PCBs), Organochlorine pesticides (OCs) and phosphorous, constitute one the most significant long-term risks to ecosystems and human health. These can impact both urban and rural areas and, because of their prolonged environmental residence times, are major sources of secondary pollution if contaminated soil and sediment are disturbed by human activity or by natural processes such as water or wind erosion. River catchments are also the primary source of sediment-associated contaminants to the coastal zone, and to the ocean, and an understanding of the factors that control contaminated sediment fluxes and delivery in river systems is essential for effective environmental management and protection. In this paper the catchment-scale controls of sediment-associated contaminant dispersal are reviewed, including climate-related variations in flooding regime, land-use change, channel engineering, restoration and flood defence. Drawing on case studies from metal mining impacted catchments in Bolivia (Río Pilcomayo), Spain (Río Guadiamar), Romania (River Tisa) and the UK (River Swale) some improved methodologies for identifying, tracing, modelling and managing contaminated river sediments are proposed that could have more general application in similarly affected river systems worldwide.

  6. Weathering and toxicity of marine sediments contaminated with oils and polycyclic aromatic hydrocarbons

    NARCIS (Netherlands)

    Jonker, M.T.O.; Sinke, A.; Brils, J.M.; Murk, A.J.; Koelmans, A.A.

    2006-01-01

    Many sediments are contaminated with mixtures of oil residues and polycyclic aromatic hydrocarbons (PAHs), but little is known about the toxicity of such mixtures to sediment-dwelling organisms and the change in toxicity on weathering. In the present study, we investigated the effects of a seminatur

  7. Weathering and toxicity of marine sediments contaminated with oils and polycyclic aromatic hydrocarbons

    NARCIS (Netherlands)

    Jonker, M.T.O.; Sinke, A.; Brils, J.M.; Murk, A.J.; Koelmans, A.A.

    2006-01-01

    Many sediments are contaminated with mixtures of oil residues and polycyclic aromatic hydrocarbons (PAHs), but little is known about the toxicity of such mixtures to sediment-dwelling organisms and the change in toxicity on weathering. In the present study, we investigated the effects of a

  8. Design of a solvent extraction process for PAH-contaminated sediments : The WAU-acetone process

    NARCIS (Netherlands)

    Rulkens, W.H.; Bruning, H.; Hasselt, H.J. van; Rienks, J.; Veen, H.J. van; Terlingen, J.P.M.

    1998-01-01

    Solvent extraction is one of the possibilities to clean-up polluted sediments. It is especially attractive when the sediment mainly consists of clay particles polluted with contaminants which are not, or not easily, biodegradable. Using acetone as extracting agent the extraction process has been inv

  9. Design of a solvent extraction process for PAH-contaminated sediments : The WAU-acetone process

    NARCIS (Netherlands)

    Rulkens, W.H.; Bruning, H.; Hasselt, H.J. van; Rienks, J.; Veen, H.J. van; Terlingen, J.P.M.

    1998-01-01

    Solvent extraction is one of the possibilities to clean-up polluted sediments. It is especially attractive when the sediment mainly consists of clay particles polluted with contaminants which are not, or not easily, biodegradable. Using acetone as extracting agent the extraction process has been

  10. A catchment-integrated approach to determine the importance of secondary sources of contaminated sediment

    Science.gov (United States)

    Andres Lopez-Tarazon, Jose; Byrne, Patrick; Mullan, Donal; Smith, Hugh

    2015-04-01

    Water pollution has been identified as one of the most important environmental challenges of the early 21st Century. The Water Framework Directive (WFD) (2008/105/EC) explicitly recognises the risk to water resources posed by sediment-associated contaminants in European river basins. The potential impacts on water supply and the biodiversity of aquatic ecosystems from sediment and associated contaminants may be further exacerbated by climate change pressures on water resources, as highlighted in the 2009 EU White Paper "Adapting to climate change: Towards a European framework for action" (SEC(2009) 386, 387, 388). Despite these concerns, the role of floodplains and other storage areas as secondary sources of contaminated sediment (i.e. metals) in river basins affected by historic industrial or mining pollution has been largely overlooked. Thereby, besides the sediment which is transported by the river, secondary sources of contaminants represent a credible threat to achieving EU water quality targets set by the WFD. This project addresses this issue by developing a catchment-based approach looking at metal geochemistry from source to sink (i.e., from sediment generation at slopes, passing through sediment transported by the river system, to sediment deposition at the storage areas to the outlet) and develop a geochemical model to predict the chemical aspects of metals transport and transformation. This approach will allow us to quantify (i) the sediment fluxes and associated contaminants flowing through the river, (ii) the storage areas contributions to downstream contaminated sediment fluxes, (ii) the timescales for the storage and removal of contaminated sediment in the sinks, and (iv) the transformation and bioavailability of the pollutants (i.e. metals) along the basin. Both physical and chemical aspects of metal transport will be considered by looking at metal geochemistry, mobility and bioavailability, hence producing information on chemical metal transport

  11. Sediment contamination and associates laboratory-measured bioaccumulation in New York/New Jersey waterways

    Energy Technology Data Exchange (ETDEWEB)

    Rosman, L.B. [Army Corps of Engineers, New York, NY (United States); Barrows, E.S. [Battelle/Marine Sciences Lab., Sequim, WA (United States)

    1995-12-31

    Sediments from 10 New York/New Jersey waterways within the Hudson-Raritan Estuary and Long Island Sound were collected to depths representative of dredging activity. Composited core sediments representing each waterway were analyzed for metals, PAHs, PCBs, and pesticides. To assess bioaccumulation, sand worms (Nereis virens) and blunt-nose clams (Macoma nasuta) were exposed for 28 days to sediment composites and to New York Bight sediment. Tissues were analyzed for the same constituents as the sediment samples. The results highlight the range and magnitude of sediment contamination in NY/NJ waterways. Concentrations of some metals in sediments, compared with NY Bight sediment, were at least 10 times higher. Total PAHs reached 30,000 {micro}g/kg (dry weight). The sum of DDT, DDD, and DDE, the dominant pesticides, exceeded 3,000{micro}g/kg (dry weight). Total PCBs approached 3,000 {micro}g/kg (dry weight). Tissues exposed to sediments from several waterways bioaccumulated organic compounds at concentrations 10 times greater than those exposed to New York Bight sediments. Metals were bioaccumulated to a lesser degree. The presence and extent of bioaccumulated contaminants, along with sediment chemistry and benthic toxicity, create a profile characterizing each waterway.

  12. Linking soil and sediment properties for research on biogeochemical cycles

    Science.gov (United States)

    Kuhn, Nikolaus J.

    2013-04-01

    Conventional perspectives on soil erosion include the on-site damage to soil and reductions in crop yield, as well as the resulting off-site effects on water quality, runoff and sediment loads in rivers. Our evolving understanding of the Earth System has added a new dimension to the role of soil erosion within the global geochemical cycles. First, the relevance of soil as a nutrient and Carbon (C) pool was recognized. Initially, the role of soils in the global C cycle was largely considered to be limited to a vertical exchange of greenhouse house gases (GHG) between vegetation, soil and atmosphere and thus mostly studied by soil scientists, plant ecologists and climatologists. Even Critical Zone research focused mostly on weathering and regolith properties and ignored lateral fluxes of dissolved or particulate organic matter. Since the late 1990s, a wider role of soils in biogeochemical cycles has emerged. Recent estimates place the lateral movement of C between soil and sediment pools in terrestrial ecosystems (including rivers and lakes) at approximately 0.6 to 1.5 Gt per year. Some of the eroded C is replaced by photosynthesis from the atmosphere, but at a cost of additional emissions, for example due to fertilizer production. The long-term fate of the eroded and deposited soil organic matter is subject to an open debate and suffers from a lack of reliable spatial information on lateral C fluxes and its subsequent fate in terrestrial ecosystems. The connection between soil C pool, GHG emissions and erosion illustrates the relevance of surface processes for the C fluxes between Earth's spheres. Accordingly, soil is now considered as mobile system to make accurate predictions about the consequences of global change for terrestrial biogeochemical cycles and climate feedbacks. This expanded perspective on soils as dynamic pool of weathering regolith, sediment, nutrients and C at the interface between the geospheres requires the analysis of relevant soil properties

  13. Earthworms as colonisers: Primary colonisation of contaminated land, and sediment and soil waste deposits

    NARCIS (Netherlands)

    Eijsackers, H.J.P.

    2010-01-01

    This paper reviews the role of earthworms in the early colonisation of contaminated soils as well as sediment and waste deposits, which are worm-free because of anthropogenic activities such as open-cast mining, soil sterilisation, consistent pollution or remediation of contaminated soil. Earthworms

  14. Contaminants in surface water and sediments near the Tynagh silver mine site, County Galway, Ireland

    Energy Technology Data Exchange (ETDEWEB)

    O' Neill, A. [School of Planning, Architecture and Civil Engineering, Queen' s University of Belfast, Belfast, Northern Ireland (United Kingdom); Phillips, D.H., E-mail: d.phillips@qub.ac.uk [School of Planning, Architecture and Civil Engineering, Queen' s University of Belfast, Belfast, Northern Ireland (United Kingdom); Bowen, J. [School of Planning, Architecture and Civil Engineering, Queen' s University of Belfast, Belfast, Northern Ireland (United Kingdom); Sen Gupta, B. [School of the Built Environment, Hariot-Watt University, Edinburgh, Scotland (United Kingdom)

    2015-04-15

    A former silver mine in Tynagh, Co. Galway, Ireland is one of the most contaminated mine sites in Europe with maximum concentrations of Zn, As, Pb, Mn, Ni, Cu, and Cd far exceeding guideline values for water and sediment. The aims of this research were to 1) further assess the contamination, particularly metals, in surface water and sediment around the site, and 2) determine if the contamination has increased 10 years after the Environmental Protection Agency Ireland (EPAI) identified off-site contamination. Site pH is alkaline to neutral because CaCO{sub 3}-rich sediment and rock material buffer the exposed acid generating sulphide-rich ore. When this study was compared to the previous EPAI study conducted 10 years earlier, it appeared that further weathering of exposed surface sediment had increased concentrations of As and other potentially toxic elements. Water samples from the tailings ponds and adjacent Barnacullia Stream had concentrations of Al, Cd, Mn, Zn and Pb above guideline values. Lead and Zn concentrations from the tailings pond sediment were 16 and 5 times higher, respectively, than concentrations reported 10 years earlier. Pb and Zn levels in most sediment samples exceeded the Expert Group (EGS) guidelines of 1000 and 5000 mg/kg, respectively. Arsenic concentrations were as high as 6238 mg/kg in the tailings ponds sediment, which is 62 and 862 times greater than the EGS and Canadian Soil Quality Guidelines (CSQG), respectively. Cadmium, Cu, Fe, Mn, Pb and Zn concentrations in water and sediment were above guideline values downstream of the site. Additionally, Fe, Mn and organic matter (OM) were strongly correlated and correlated to Zn, Pb, As, Cd, Cu and Ni in stream sediment. Therefore, the nearby Barnacullia Stream is also a significant pathway for contaminant transport to downstream areas. Further rehabilitation of the site may decrease the contamination around the area. - Highlights: • Tynagh silver mine in Co. Galway, Ireland is a source of

  15. Passive sampling methods for contaminated sediments: Scientific rationale supporting use of freely dissolved concentrations

    DEFF Research Database (Denmark)

    Mayer, Philipp; Parkerton, Thomas F.; Adams, Rachel G.

    2014-01-01

    Passive sampling methods (PSMs) allow the quantification of the freely dissolved concentration (Cfree ) of an organic contaminant even in complex matrices such as sediments. Cfree is directly related to a contaminant's chemical activity, which drives spontaneous processes including diffusive uptake...... point using passive samplers with different surface to volume ratios. Sampling in the kinetic regime is also possible and generally involves the application of performance reference compounds for the calibration. Based on previous research on hydrophobic organic contaminants, it is concluded that Cfree...

  16. Adsorption behavior of lead on aquatic sediments contaminated with cerium dioxide nanoparticles.

    Science.gov (United States)

    Wang, Chao; Fan, Xiulei; Wang, Peifang; Hou, Jun; Ao, Yanhui; Miao, Lingzhan

    2016-12-01

    Aquatic sediments serve as an important sink for engineered nanomaterials (ENMs), such as metal oxide nanoparticles (MeO NPs) and carbon nanotubes (CNTs). Owing to their remarkable properties, ENMs demonstrate significant potential to disturb the adsorption behavior of other contaminants in aquatic sediments, thereby altering the bioavailability and toxicity of these contaminants. Thus far, most studies have investigated the effect of CNTs on the adsorption of other contaminants on sediments. Cerium dioxide nanoparticles (CeO2 NPs), as one of the important MeO NPs, are also inevitably discharged into aquatic sediments because of their widespread use. In this study, we investigated the adsorption behavior of Pb(2+) on sediments spiked with CeO2 NPs at a weight ratio of 5.0%. The results showed that the adsorption rates at three stages occurring during adsorption clearly increase for sediments contaminated with CeO2 NPs. Moreover, the results obtained from the adsorption isotherms indicated that the Langmuir isotherm model best fits the isotherm data for both sediments and those contaminated with CeO2 NPs. After spiking the sediments with CeO2 NPs, the theoretical maximum monolayer adsorption capacity (Qmax) for Pb(2+) increased from 4.433 to 4.995 mg/g and the Langmuir isotherm coefficient (KL) decreased from 8.813 to 7.730 L/g. The effects of CeO2 NPs on the surface charge and pore surface properties of sediments were also studied as these properties affect the adsorption of several chemicals in sediments. The results showed that pHzpc, SBET, Sext, and average pore size of sediments clearly decrease for sediments contaminated with CeO2 NPs. Hence, the strong adsorption capacity of CeO2 NPs and the changes of sediment surface charge and pore surface properties caused by CeO2 NPs are important factors affecting the adsorption behavior of Pb(2+). The potential risk of Pb(2+) in aquatic environment may increase with CeO2 NPs buried in sediments.

  17. A Field Study of NMR Logging to Quantify Petroleum Contamination in Subsurface Sediments

    Science.gov (United States)

    Fay, E. L.; Knight, R. J.; Grunewald, E. D.

    2016-12-01

    Nuclear magnetic resonance (NMR) measurements are directly sensitive to hydrogen-bearing fluids including water and petroleum products. NMR logging tools can be used to detect and quantify petroleum hydrocarbon contamination in the sediments surrounding a well or borehole. An advantage of the NMR method is that data can be collected in both cased and uncased holes. In order to estimate the volume of in-situ hydrocarbon, there must be sufficient contrast between either the relaxation times (T2) or the diffusion coefficients (D) of water and the contaminant. In a field study conducted in Pine Ridge, South Dakota, NMR logging measurements were used to investigate an area of hydrocarbon contamination from leaking underground storage tanks. A contaminant sample recovered from a monitoring well at the site was found to be consistent with a mixture of gasoline and diesel fuel. NMR measurements were collected in two PVC-cased monitoring wells; D and T2 measurements were used together to detect and quantify contaminant in the sediments above and below the water table at both of the wells. While the contrast in D between the fluids was found to be inadequate for fluid typing, the T2 contrast between the contaminant and water in silt enabled the estimation of the water and contaminant volumes. This study shows that NMR logging can be used to detect and quantify in-situ contamination, but also highlights the importance of sediment and contaminant properties that lead to a sufficiently large contrast in T2 or D.

  18. Molecular tools to understand the bioremediation effect of plants and earthworms on contaminated marine sediments.

    Science.gov (United States)

    Moreno, Beatriz; Cañizares, Rosa; Macci, Cristina; Doni, Serena; Masciandaro, Grazia; Benitez, Emilio

    2015-12-30

    A meso-scale pilot plant was set up to test the efficiency of a bioremediation scheme applied to marine sediments contaminated by heavy metals and hydrocarbons. The experiment was implemented for three years in two stages using two remediation agents: plants (Paspalum vaginatum and Tamarix gallica) and earthworms (Eisenia fetida). DNA and RNA-based methodologies were applied to elucidate the dynamics of the bacterial population and were related to improving biological and chemical conditions of the sediments. Bioremediation strategies were successful in removing pollutants from the contaminated sediments and specialization within the bacterial community related to the type of contamination present was detected in the different stages of the process. The highest response of Gram-positive PAH-degraders to the contamination was detected at the beginning and after the first stage of the experiment, corresponding to the uppermost values of degradation.

  19. Empirical model for estimating vertical concentration profiles of re-suspended, sediment-associated contaminants

    Science.gov (United States)

    Zhu, H. W.; Cheng, P. D.; Li, W.; Chen, J. H.; Pang, Y.; Wang, D. Z.

    2017-03-01

    Vertical distribution processes of sediment contaminants in water were studied by flume experiments. Experimental results show that settling velocity of sediment particles and turbulence characteristics are the major hydrodynamic factors impacting distribution of pollutants, especially near the bottom where particle diameter is similar in size to vortex structure. Sediment distribution was uniform along the distance, while contaminant distribution slightly lagged behind the sediment. The smaller the initial sediment concentration was, the more time it took to achieve a uniform concentration distribution for suspended sediment. A contaminants transportation equation was established depending on mass conservation equations. Two mathematical estimation models of pollutant distribution in the overlying water considering adsorption and desorption were devised based on vertical distribution of suspended sediment: equilibrium partition model and dynamic micro-diffusion model. The ratio of time scale between the sediment movement and sorption can be used as the index of the models. When this ratio was large, the equilibrium assumption was reasonable, but when it was small, it might require dynamic micro-diffusion model.

  20. The Levels and Distribution of Polycyclic Aromatic Hydrocarbons (PAH Contamination in Bottom Sediments in Manila Bay

    Directory of Open Access Journals (Sweden)

    Evangeline Santiago

    1997-12-01

    Full Text Available The concentration levels of 18 PAH compounds extracted from 19 bottom sediments from the Limay Coast and 16 bottom sediments from the coast along Metro Manila and Cavitc Province of Manila Bay were determined by Gas Chromatography/Mass Spectrometry.The PAH contamination, the levels of other non-PAH petroleum hydrocarbon compounds. and total organic content in the sediments were assessed in relation to the location and depth of the sampling sites. The PAH concentrations and the levels of other petroleum hydrocarbons in the sediments showed that the spatial distribution of PAH and other hydrocarbon contamination in Manila Bay is largely dependent on the proximity of the sediment deposition site to known point sources of pollution. On the western side, the highest levels of PAH contamination normalized to % TOC (1.29 X 104 at Ll2, 1.28 x 104 at Ll6, 0.55 at Ll3, and 0.54 at Ll5 were obtained from sediments collected at deposition sites near the outfall of the Petron Oil Refinery. On the eastern side. sediments located at the effiuent zones of the Paranaque and Malabon Rivers showed excessively higher levels of PAH normalized to % TOC (3.32 x 104 and 2.87 x 104: respectively compared to those obtained from other sites in the area.The PAH contamination in the sediments from Manila Bay is dominated by alkylated naphthalenes and phenanthrenes which are associated with petrogenic sources. This indicates that the surface sediments in Manila Bay are ex-posed to chronic contamination of petroleum hydrocarbons introduced mainly by direct spillage on the western side and by urban run-off on the eastern side.

  1. Sources and contamination rate of port sediments: evidences from dimensional, mineralogical, and chemical investigations

    Science.gov (United States)

    Lucchetti, Gabriella; Cutroneo, Laura; Carbone, Cristina; Consani, Sirio; Vagge, Greta; Canepa, Giuseppe; Capello, Marco

    2017-04-01

    Ports are complex environments due to their complicated geometry (quays, channels, and piers), the presence of human activities (vessel traffic, yards, industries, and discharges), and natural factors (stream and torrent inputs, sea action, and currents). Due to the many activities that take place in a port, sediments and waters are often contaminated by different kinds of chemicals, such as hydrocarbons, dioxins, pesticides, nutrients, and metals. The contamination rate of a port basin is site specific and depends on the sources of contamination in the nearby urban system as well as the port system itself, such as city discharges and sewers, river intake, vessel traffic, factories (Taylor and Owens, 2009). Moreover, two important sources and vehicles of contaminants are: a) anthropogenic road deposited sediments derived from the runoff of the port and city area, and natural road deposited sediments derived from rivers and torrents, and b) airborne particulate matter and sediments (Taylor and Owens, 2009). The Port of Genoa is situated at the apex of the Ligurian Sea in the north western Mediterranean Sea and is characterised by the presence of several commercial activities that have contributed, over the years, and still contribute today, to the contaminant accumulation in both the water column and the bottom sediments. This port basin includes the mouth of several streams and the mouth of the Bisagno and the Polcevera Torrents, along the banks of which can be found several small towns, quarries, factories, and the suburbs of the city of Genoa, a ferry terminal, different container terminals, marinas, dry docks, the coal power plant of Genoa, and different wastewater treatment plant discharges. Starting from these considerations, we have examined the marine environment of a port from the point of view of the water mass circulation, hydrological characteristics, distribution of the sediment grain size, mineralogical characteristics, and metal concentrations of the

  2. Effects of enhanced bioturbation intensities on the toxicity assessment of legacy-contaminated sediments.

    Science.gov (United States)

    Remaili, Timothy M; Simpson, Stuart L; Jolley, Dianne F

    2017-07-01

    Many benthic communities within estuarine ecosystems are highly degraded due to the close proximity of urban and industrial contamination sources. The maintenance of recolonised, healthy ecosystems following remediation is a challenge, and better techniques are required for monitoring their progressive recovery. Rates of ecosystem recovery are influenced by the changes in the concentrations and forms of contaminants, the sensitivity of recolonising organisms to bioavailable contaminants, and a range of abiotic and biotic factors influencing the exposure of organisms to the contamination. Here we investigate the influence of bioturbation by an active amphipod (Victoriopisa australiensis) on the bioavailability of metals and hydrocarbons in highly contaminated sediments. Changes in contaminant bioavailability were evaluated by assessing sublethal effects to a smaller cohabiting amphipod (Melita plumulosa). For predominantly metal-contaminated sediments, the presence of V. australiensis generally increased survival and reproduction of M. plumulosa when compared to treatments with only M. plumulosa present (from 42 to 93% survival and 3-61% reproduction). The decrease in toxic effects to M. plumulosa corresponded with lower dissolved copper and zinc concentrations in the overlying waters (14-9 μg Cu L(-1), and 14 to 6 μg Zn L(-1) for absence to presence of V. australiensis). For sediments contaminated with both hydrocarbons and metals, the increased bioturbation intensity by V. australiensis resulted in decreased reproduction of M. plumulosa, despite lower dissolved metal exposure, and indicated increased bioavailability of the hydrocarbon contaminants. Thus, the presence of a secondary active bioturbator can enhance or suppress toxicity to co-inhabiting organisms, and may depend on the contaminant class and form. The results highlight the need to consider both abiotic and biotic interactions when using laboratory studies to evaluate the ability of organisms

  3. Pacific lamprey (Entosphenus tridentatus) ammocoetes exposed to contaminated Portland Harbor sediments: Method development and effects on survival, growth, and behavior

    Science.gov (United States)

    Unrein, Julia R.; Morris, Jeffrey M.; Chitwood, Rob S.; Lipton, Joshua; Peers, Jennifer; van de Wetering, Stan; Schreck, Carl B.

    2016-01-01

    Many anthropogenic disturbances have contributed to the decline of Pacific lampreys (Entosphenus tridentatus), but potential negative effects of contaminants on lampreys are unclear. Lamprey ammocoetes are the only detritivorous fish in the lower Willamette River, Oregon, USA, and have been observed in Portland Harbor sediments. Their long benthic larval stage places them at risk from the effects of contaminated sediment. The authors developed experimental methods to assess the effects of contaminated sediment on the growth and behavior of field-collected ammocoetes reared in a laboratory. Specifically, they developed methods to assess individual growth and burrowing behavior. Burrowing performance demonstrated high variability among contaminated sediments; however, ammocoetes presented with noncontaminated reference sediment initiated burrowing more rapidly and completed it faster. Ammocoete reemergence from contaminated sediments suggests avoidance of some chemical compounds. The authors conducted long-term exposure experiments on individually held ammocoetes using sediment collected from their native Siletz River, which included the following: contaminated sediments collected from 9 sites within Portland Harbor, 2 uncontaminated reference sediments collected upstream, 1 uncontaminated sediment with characteristics similar to Portland Harbor sediments, and clean sand. They determined that a 24-h depuration period was sufficient to evaluate weight changes and observed no mortality or growth effects in fish exposed to any of the contaminated sediments. However, the effect on burrowing behavior appeared to be a sensitive endpoint, with potentially significant implications for predator avoidance.

  4. Pacific lamprey (Entosphenus tridentatus) ammocoetes exposed to contaminated Portland Harbor sediments: Method development and effects on survival, growth, and behavior.

    Science.gov (United States)

    Unrein, Julia R; Morris, Jeffrey M; Chitwood, Rob S; Lipton, Joshua; Peers, Jennifer; van de Wetering, Stan; Schreck, Carl B

    2016-08-01

    Many anthropogenic disturbances have contributed to the decline of Pacific lampreys (Entosphenus tridentatus), but potential negative effects of contaminants on lampreys are unclear. Lamprey ammocoetes are the only detritivorous fish in the lower Willamette River, Oregon, USA, and have been observed in Portland Harbor sediments. Their long benthic larval stage places them at risk from the effects of contaminated sediment. The authors developed experimental methods to assess the effects of contaminated sediment on the growth and behavior of field-collected ammocoetes reared in a laboratory. Specifically, they developed methods to assess individual growth and burrowing behavior. Burrowing performance demonstrated high variability among contaminated sediments; however, ammocoetes presented with noncontaminated reference sediment initiated burrowing more rapidly and completed it faster. Ammocoete reemergence from contaminated sediments suggests avoidance of some chemical compounds. The authors conducted long-term exposure experiments on individually held ammocoetes using sediment collected from their native Siletz River, which included the following: contaminated sediments collected from 9 sites within Portland Harbor, 2 uncontaminated reference sediments collected upstream, 1 uncontaminated sediment with characteristics similar to Portland Harbor sediments, and clean sand. They determined that a 24-h depuration period was sufficient to evaluate weight changes and observed no mortality or growth effects in fish exposed to any of the contaminated sediments. However, the effect on burrowing behavior appeared to be a sensitive endpoint, with potentially significant implications for predator avoidance. Environ Toxicol Chem 2016;35:2092-2102. © 2016 SETAC.

  5. Biochemical endpoints on juvenile Solea senegalensis exposed to estuarine sediments: the effect of contaminant mixtures on metallothionein and CYP1A induction.

    Science.gov (United States)

    Costa, Pedro M; Caeiro, Sandra; Diniz, Mário S; Lobo, Jorge; Martins, Marta; Ferreira, Ana M; Caetano, Miguel; Vale, Carlos; DelValls, T Angel; Costa, Maria H

    2009-11-01

    Juvenile Solea senegalensis were exposed to fresh sediments from three stations of the Sado estuary (Portugal) in 28-day laboratory assays. Sediments revealed distinct levels of total organic matter, fine fraction, redox potential, trace elements (arsenic, cadmium, chromium, copper, nickel, lead and zinc) and organic contaminants (polycyclic aromatic hydrocarbons, polychlorinated biphenyls and a pesticide: dichloro diphenyl trichloroethane). Organisms were surveyed for contaminant bioaccumulation and induction of two hepatic biochemical biomarkers: metallothionein (MT) and cytochrome P450 (CYP1A), as potential indicators of exposure to metallic and organic contaminants, respectively. Using an integrative approach it was established that, although bioaccumulation is in general accordance with sediment contamination, lethality and biomarker responses are not linearly dependent of the cumulative concentrations of sediment contaminants but rather of their bioavailability and synergistic effects in organisms. It is concluded that metals and organic contaminants modulate both MT and CYP1A induction and it is suggested that reactive oxygen species may be the link between responses and effects of toxicity.

  6. Sediment contamination survey on St. Marks National Wildlife Refuge

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — A survey was conducted by the U.S. Fish and Wildlife Service to assess habitat quality on the St. Marks National Wildlife Refuge (NWR). Sediment samples were...

  7. Sediment contaminant assessment for Shoal Creek, Lawrence County, Tennessee

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — Sediment samples were collected from ten locations along Shoal Creek and analyzed for l9 metals and 20 organochlorine compounds. For the organic analyses,...

  8. Clinch River project: Sediment contaminants in the Lower Clinch River

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — Sediment samples from three mainstem and seven tributary sites in the Clinch River Basin were analyzed for 21 organochlorine compounds, 19 metals, total volatile...

  9. Contaminants Investigation Bulletin: Environmental contaminants in sediments from oilfield produced water discharge points

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — Trace element concentrations in sediment samples are shown in Table 2. Sediments from a wetland receiving oilfield produced water from the Arnell oil production site...

  10. Modelling suspended-sediment propagation and related heavy metal contamination in floodplains: a parameter sensitivity analysis

    Science.gov (United States)

    Hostache, R.; Hissler, C.; Matgen, P.; Guignard, C.; Bates, P.

    2014-09-01

    Fine sediments represent an important vector of pollutant diffusion in rivers. When deposited in floodplains and riverbeds, they can be responsible for soil pollution. In this context, this paper proposes a modelling exercise aimed at predicting transport and diffusion of fine sediments and dissolved pollutants. The model is based upon the Telemac hydro-informatic system (dynamical coupling Telemac-2D-Sysiphe). As empirical and semiempirical parameters need to be calibrated for such a modelling exercise, a sensitivity analysis is proposed. An innovative point in this study is the assessment of the usefulness of dissolved trace metal contamination information for model calibration. Moreover, for supporting the modelling exercise, an extensive database was set up during two flood events. It includes water surface elevation records, discharge measurements and geochemistry data such as time series of dissolved/particulate contaminants and suspended-sediment concentrations. The most sensitive parameters were found to be the hydraulic friction coefficients and the sediment particle settling velocity in water. It was also found that model calibration did not benefit from dissolved trace metal contamination information. Using the two monitored hydrological events as calibration and validation, it was found that the model is able to satisfyingly predict suspended sediment and dissolve pollutant transport in the river channel. In addition, a qualitative comparison between simulated sediment deposition in the floodplain and a soil contamination map shows that the preferential zones for deposition identified by the model are realistic.

  11. Effect of chemically contaminated marine sediment on naupliar production of the marine harpacticoid copepod, Tigriopus californicus

    Energy Technology Data Exchange (ETDEWEB)

    Misitano, D.A.; Schiewe, M.H. (National Oceanic and Atmospheric Administration, Seattle, WA (USA))

    1990-04-01

    There is a growing body of evidence indicating that chemically contaminated sediments in urban bays and estuaries pose a significant threat to the productivity of these important marine habitats. Particularly at risk are benthic species which live in direct contact with the sediment. However, nondemersal species are also at risk via the food chain and by direct contact with resuspended sediment particulates. There are substantial data on the lethal and sublethal effects of aqueous contaminants on a variety of aquatic species. In contrast, there is very limited information on the toxic effects of the generally water-insoluble sediment-associated contaminants. In the present communication the authors report a series of experiments in which the harpacticoid copepod, Tigriopus californicus, was exposed to sediments from urban and nonurban bays, and reproductive success was evaluated. This species was selected for study as it is widely distributed along the West Coast of North America, and as a group, copepods are an important component of the marine food chain. In addition, the relatively short reproductive life span of this species makes it particularly amenable for studies of reproductive success. Here, the authors report reduced and irregular naupliar production as a consequence of exposure to chemically contaminated sediments from urban waterways.

  12. Multiwall carbon nanotubes increase the microbial community in crude oil contaminated fresh water sediments.

    Science.gov (United States)

    Abbasian, Firouz; Lockington, Robin; Palanisami, Thavamani; Megharaj, Mallavarapu; Naidu, Ravi

    2016-01-01

    Since crude oil contamination is one of the biggest environmental concerns, its removal from contaminated sites is of interest for both researchers and industries. In situ bioremediation is a promising technique for decreasing or even eliminating crude oil and hydrocarbon contamination. However, since these compounds are potentially toxic for many microorganisms, high loads of contamination can inhibit the microbial community and therefore reduce the removal rate. Therefore, any strategy with the ability to increase the microbial population in such circumstances can be of promise in improving the remediation process. In this study, multiwall carbon nanotubes were employed to support microbial growth in sediments contaminated with crude oil. Following spiking of fresh water sediments with different concentrations of crude oil alone and in a mixture with carbon nanotubes for 30days, the microbial profiles in these sediments were obtained using FLX-pyrosequencing. Next, the ratios of each member of the microbial population in these sediments were compared with those values in the untreated control sediment. This study showed that combination of crude oil and carbon nanotubes can increase the diversity of the total microbial population. Furthermore, these treatments could increase the ratios of several microorganisms that are known to be effective in the degradation of hydrocarbons.

  13. Structure of bacterial communities along a hydrocarbon contamination gradient in a coastal sediment.

    Science.gov (United States)

    Paissé, Sandrine; Coulon, Frédéric; Goñi-Urriza, Marisol; Peperzak, Louis; McGenity, Terry J; Duran, Robert

    2008-11-01

    The bacterial diversity of a chronically oil-polluted retention basin sediment located in the Berre lagoon (Etang-de-Berre, France) was investigated. This study combines chemical and molecular approaches in order to define how the in situ petroleum hydrocarbon contamination level affects the bacterial community structure of a subsurface sediment. Hydrocarbon content analysis clearly revealed a gradient of hydrocarbon contamination in both the water and the sediment following the basin periphery from the pollution input to the lagoon water. The nC17 and pristane concentrations suggested alkane biodegradation in the sediments. These results, combined with those of terminal-restriction fragment length polymorphism analysis of the 16S rRNA genes, indicated that bacterial community structure was obviously associated with the gradient of oil contamination. The analysis of bacterial community composition revealed dominance of bacteria related to the Proteobacteria phylum (Gamma-, Delta-, Alpha-, Epsilon- and Betaproteobacteria), Bacteroidetes and Verrucomicrobium groups and Spirochaetes, Actinobacteria and Cyanobacteria phyla. The adaptation of the bacterial community to oil contamination was not characterized by dominance of known oil-degrading bacteria, because a predominance of populations associated to the sulphur cycle was observed. The input station presented particular bacterial community composition associated with a low oil concentration in the sediment, indicating the adaptation of this community to the oil contamination.

  14. Enhancing the bioremediation by harvesting electricity from the heavily contaminated sediments.

    Science.gov (United States)

    Yang, Yonggang; Lu, Zijiang; Lin, Xunke; Xia, Chunyu; Sun, Guoping; Lian, Yingli; Xu, Meiying

    2015-03-01

    To test the long-term applicability of scaled-up sediment microbial fuel cells (SMFCs) in simultaneous bioremediation of toxic-contaminated sediments and power-supply for electronic devices, a 100 L SMFC inoculate with heavily contaminated sediments has been assembled and operated for over 2 years without external electron donor addition. The total organic chemical (TOC) degradation efficiency was 22.1% in the electricity generating SMFCs, which is significantly higher than that in the open-circuited SMFC (3.8%). The organic matters including contaminants in the contaminated sediments were sufficient for the electricity generation of SMFCs, even up to 8.5 years by the present SMFC theoretically. By using a power management system (PMS), the SMFC electricity could be harvested into batteries and used by commercial electronic devices. The results indicated that the SMFC-PMS system could be applied as a long-term and effective tool to simultaneously stimulate the bioremediation of the contaminated sediments and supply power for commercial devices.

  15. Human impact on fluvial sediments: how to distinguish regional and local sources of heavy metals contamination

    Directory of Open Access Journals (Sweden)

    Novakova T.

    2013-04-01

    Full Text Available Regional contamination of southern Moravia (SE part of the Czech Republic by heavy metals and magnetic particles during the 20th century was quantified in fluvial sediments of the Morava River. The influence of local sources to the regional contamination of the river sediments and impact of sampling sites heterogeneity were studied in profiles with different sedimentology (facies and lithology. For this purpose, hundreds of samples were obtained from regulated channel banks and naturally inundated floodplains and proxy elementary analyses have been carried out by X-ray fluorescence spectroscopy (ED XRF, further calibrated by ICP MS. Magnetic susceptibility as a proxy of industrial contamination was determined and the age model has been obtained by 210Pb dating method. After establishing the lithological background from floodplain profiles, assessment of heavy metal contamination was done by using enrichment factors (EFs of heavy metals (Pb, Zn, Cu, Cr and magnetic susceptibility. Floodplain sedimentary profiles were found to be realiable for assessment of contamination and reconstruction of large scale, i.e. a really averaged regional contamination, while regulated channel banks are suitable for obtaining of more or less qualitative information of influence of local point sources in the area because sediments from regulated river banks qualitatively reflect the actual local contamination of the river system. It allowed us to distinguish the influence of local sources of contamination by comparing with more spatially averaged contamination signal from more distal floodplain profiles. The study area is rather weakly contaminated (EF ∼ 1-2, while individual sediment strata from regulated channel banks contains several times larger concentrations of heavy metals.

  16. Variability of sediment-contact tests in freshwater sediments with low-level anthropogenic contamination - Determination of toxicity thresholds

    Energy Technology Data Exchange (ETDEWEB)

    Hoess, S., E-mail: hoess@ecossa.d [Ecossa, Giselastr. 6, 82319 Starnberg (Germany); Institute of Biodiversity - Network (IBN), Dreikronengasse 2, 93047 Regensburg (Germany); Ahlf, W., E-mail: ahlf@tu-harburg.d [Institute of Environmental Technology and Energy Economics, Technical University Hamburg-Harburg, Eissendorfer Str. 40, 21071 Hamburg (Germany); Fahnenstich, C. [Institute of Environmental Technology and Energy Economics, Technical University Hamburg-Harburg, Eissendorfer Str. 40, 21071 Hamburg (Germany); Gilberg, D., E-mail: d-gilberg@ect.d [ECT Oekotoxikologie, Boettgerstr. 2-14, 65439 Floersheim (Germany); Hollert, H., E-mail: henner.hollert@bio5.rwth-aachen.d [Department of Ecosystem Analysis, Institute for Environmental Research (Biology 5), RWTH Aachen University, Worringerweg 1, 52074 Aachen (Germany); Melbye, K. [Dr. Fintelmann and Dr. Meyer, Mendelssohnstr. 15D, 22761 Hamburg (Germany); Meller, M., E-mail: m-meller@ecotox-consult.d [ECT Oekotoxikologie, Boettgerstr. 2-14, 65439 Floersheim (Germany); Hammers-Wirtz, M., E-mail: hammers-wirtz@gaiac.rwth-aachen.d [Research Institute for Ecosystem Analysis and Assessment (gaiac), RWTH Aachen University, Worringerweg 1, 52056 Aachen (Germany); Heininger, P., E-mail: heininger@bafg.d [Federal Institute of Hydrology (BfG), Am Mainzer Tor 1, 56070 Koblenz (Germany); Neumann-Hensel, H., E-mail: hensel@fintelmann-meyer.d [Dr. Fintelmann and Dr. Meyer, Mendelssohnstr. 15D, 22761 Hamburg (Germany); Ottermanns, R., E-mail: ottermanns@bio5.rwth-aachen.d [Chair for Environmental Biology and Chemodynamics, Institute for Environmental Research (Biology 5), RWTH Aachen University, Worringerweg 1, 52074 Aachen (Germany); Ratte, H.-T., E-mail: toni.ratte@bio5.rwth-aachen.d [Chair for Environmental Biology and Chemodynamics, Institute for Environmental Research (Biology 5), RWTH Aachen University, Worringerweg 1, 52074 Aachen (Germany)

    2010-09-15

    Freshwater sediments with low levels of anthropogenic contamination and a broad range of geochemical properties were investigated using various sediment-contact tests in order to study the natural variability and to define toxicity thresholds for the various toxicity endpoints. Tests were performed with bacteria (Arthrobacter globiformis), yeast (Saccharomyces cerevisiae), nematodes (Caenorhabditis elegans), oligochaetes (Lumbriculus variegatus), higher plants (Myriophyllum aquaticum), and the eggs of zebrafish (Danio rerio). The variability in the response of some of the contact tests could be explained by particle size distribution and organic content. Only for two native sediments could a pollution effect not be excluded. Based on the minimal detectable difference (MDD) and the maximal tolerable inhibition (MTI), toxicity thresholds (% inhibition compared to the control) were derived for each toxicity parameter: >20% for plant growth and fish-egg survival, >25% for nematode growth and oligochaete reproduction, >50% for nematode reproduction and >60% for bacterial enzyme activity. - Sediment-contact tests require toxicity thresholds based on their variability in native sediments with low-level contamination.

  17. Nickel, Lead and Zinc Contamination in the Surface Sediments of Agh Gel Wetland, Iran

    Directory of Open Access Journals (Sweden)

    Soheil Sobhan Ardakani

    2016-07-01

    Full Text Available Background & Aims of the Study: Due to the increased human activities around the Agh Gel wetland, this study aimed to measured accumulations of heavy metals (Ni, Pb and Zn in the surface sediment samples taken from this wetland. Materials & Methods: Samples were taken from 10 stations and exposed to bulk digestion and chemical partitioning. Finally, Ni, Pb and Zn concentrations were monitored with ICP-OES in the sediments. Also, geo-accumulation index, contamination factor and pollution load index were used to evaluate the magnitude of contaminants in the sediment profile. Results: The results showed, the average of metal concentration in samples (mg kg-1 wet weight were 34.20±3.58 for Ni, 25.37±2.52 for Pb and 127.20±15.21 for Zn, respectively. Therefore, the pattern of metal concentrations in sediment was determined as Zinc>Nickel >Lead. According to the mean I-geo values, sediments' qualities are classified as unpolluted category for Ni and Pb. Also, sediment's quality is classified as unpolluted to moderately polluted for Zn. The CF values for all elements are classified as moderate contamination. The PLI values indicated that metal pollution exists for all sampling stations. Conclusions: The obtained results indicated that the Agh Gel wetland has a potential to threaten by chemical pollutants such as agricultural effluent. So, in order to preserve the environment of the Agh Gel wetland from deterioration, monitoring of water and sediment qualities is recommended periodically.

  18. Application of fingerprint-based multivariate statistical analyses in source characterization and tracking of contaminated sediment migration in surface water.

    Science.gov (United States)

    Chen, Fei; Taylor, William D; Anderson, William B; Huck, Peter M

    2013-08-01

    This study investigates the suitability of multivariate techniques, including principal component analysis and discriminant function analysis, for analysing polycyclic aromatic hydrocarbon and heavy metal-contaminated aquatic sediment data. We show that multivariate "fingerprint" analysis of relative abundances of contaminants can characterize a contamination source and distinguish contaminated sediments of interest from background contamination. Thereafter, analysis of the unstandardized concentrations among samples contaminated from the same source can identify migration pathways within a study area that is hydraulically complex and has a long contamination history, without reliance on complex hydrodynamic data and modelling techniques. Together, these methods provide an effective tool for drinking water source monitoring and protection.

  19. Tracing peatland geomorphology: sediment and contaminant movements in eroding and restored systems

    Science.gov (United States)

    Shuttleworth, Emma; Evans, Martin; Hutchinson, Simon; Rothwell, James

    2015-04-01

    Peatlands are an important store of soil carbon, play a vital role in global carbon cycling, and can also act as sinks of atmospherically deposited heavy metals. However, large areas of blanket peat are significantly degraded and actively eroding as a direct result of anthropogenic pressures, which negatively impacts carbon and pollutant storage. The restoration of eroding UK peatlands is a major conservation concern, and over the last decade measures have been taken to control erosion and restore large areas of degraded peat. In severely eroded peatlands, topography is highly variable, and an appreciation of geomorphological form and process is key in understanding the controls on peatland function, and in mitigating the negative impacts of peatland erosion. The blanket peats of the Peak District, Southern Pennines, UK embody many problems and pressures faced by peatlands globally, and are amongst the most heavily eroded and contaminated in the world. The near-surface layer of the peat is contaminated by high concentrations of anthropogenically derived, atmospherically deposited heavy metals which are released into the fluvial system as a consequence of widespread erosion. Whilst not desirable, this legacy of lead pollution and its release offer a unique opportunity to trace peatland sediment movements and thus investigate the controls on sediment and contaminant mobility. A suite of established field, analytical and modelling techniques have been modified and adapted for use in peatland environments and these have been successfully employed in combination to address issues of sediment and contaminant release at a range of scales, including: (i) the development of field portable XRF to assess in situ lead concentrations in wet organic sediments; (ii) adaptation of time integrated mass flux samplers to explore spatial and temporal sediment dynamics in peatland streams; and (iii) the application of sediment source fingerprinting and numerical mixing models to

  20. Exploring the role of shelf sediments in the Arctic Ocean in determining the Arctic contamination potential of neutral organic contaminants.

    Science.gov (United States)

    Armitage, James M; Choi, Sung-Deuk; Meyer, Torsten; Brown, Trevor N; Wania, Frank

    2013-01-15

    The main objective of this study was to model the contribution of shelf sediments in the Arctic Ocean to the total mass of neutral organic contaminants accumulated in the Arctic environment using a standardized emission scenario for sets of hypothetical chemicals and realistic emission estimates (1930-2100) for polychlorinated biphenyl congener 153 (PCB-153). Shelf sediments in the Arctic Ocean are shown to be important reservoirs for neutral organic chemicals across a wide range of partitioning properties, increasing the total mass in the surface compartments of the Arctic environment by up to 3.5-fold compared to simulations excluding this compartment. The relative change in total mass for hydrophobic organic chemicals with log air-water partition coefficients ≥0 was greater than for chemicals with properties similar to typical POPs. The long-term simulation of PCB-153 generated modeled concentrations in shelf sediments in reasonable agreement with available monitoring data and illustrate that the relative importance of shelf sediments in the Arctic Ocean for influencing surface ocean concentrations (and therefore exposure via the pelagic food web) is most pronounced once primary emissions are exhausted and secondary sources dominate. Additional monitoring and modeling work to better characterize the role of shelf sediments for contaminant fate is recommended.

  1. Avoidance of contaminated sediments by an amphipod (Melita plumulosa), A harpacticoid copepod (Nitocra spinipes), and a snail (Phallomedusa solida).

    Science.gov (United States)

    Ward, Daniel J; Simpson, Stuart L; Jolley, Dianne F

    2013-03-01

    The distribution of contaminants is seldom homogeneous in aquatic systems. In the present study, the avoidance response of Melita plumulosa, Nitocra spinipes, and Phallomedusa solida when exposed to contaminated sediments was investigated. Test vessels were designed to allow the congruent placement of two sediments and assessment of the movement of organisms between the sediments. When exposed to reference sediment, each species dispersed evenly between test chambers regardless of differences in sediment particle size. In the presence of contaminated sediment, the magnitude and rate of avoidance varied. Avoidance assays showed that test species avoided contaminated sediment as early as 6, 6, and 24 h following exposure for N. spinipes, P. solida, and M. plumulosa, respectively. The 48-h avoidance response of M. plumulosa for nine contaminated sediments of varying toxicity showed that avoidance was generally greater for sediments which elicited greater 10-d lethality to this species. The study demonstrated that each of these species has the ability to respond to chemical cues in the environment to inhabit sediment that provides the best opportunity for survival. The avoidance response for each species indicates the potential for developing rapid screening methods to assess sediment quality. Evidence suggests that avoidance was related to sediment toxicity and that static 10-d toxicity methods are likely to overestimate toxicity for species, which would avoid contamination in heterogeneous field settings.

  2. Assessment of sediment/water contamination by in vivo transplantation of the cockles Cerastoderma glaucum from a non contaminated to a contaminated area by cadmium.

    Science.gov (United States)

    Machreki-Ajmi, M; Hamza-Chaffai, A

    2008-11-01

    In this study the cockle Cerastoderma glaucum, a filter-feeding bivalve living in the upper layer of sediment was used to investigate the cadmium contamination at a heavily urbanised and industrial area, with a view to using them as an indicator of water/sediment contamination. To this end, cockles collected from indigenous population in a relatively uncontaminated site (Ras Ungha) were in vivo transplanted into sediment and water removed from cadmium contaminated site (El Hofra) for 45 days. The manipulative experiment was undertaken in order to examine the trace metal bioavailability in the contaminated area and to establish an analytical framework between the bioaccumulation of cadmium in the tissues and their biological effect in transplanted cockles. For this purpose, a range of sublethal stress biomarkers were selected on the basis of their potential to provide relevant information. Cadmium concentrations were determined in the sediment and in the soft tissue of the cockles from the two studied stations at time 0. Compared to the reference site, cadmium concentrations in the contaminated site were 53 higher in the sediment and 15 higher in the whole soft tissues. The variation of cadmium concentrations and biomarkers responses in transplanted cockles were determined as a function of exposure time. After 45 days' experience, cadmium concentrations increased by a factor of 5 compared with time 0. No significant change could be detected in controls. In the digestive gland of exposed cockles cadmium was mainly associated with the cytosolic fraction. The significant increase of cadmium concentration in the soluble fraction was followed by a significant increase in the concentration of the Sulphydryl-Containing Heat Stable Compounds (SCHSC) including metallothionein like proteins by approximately 86%. This is led to investigation into possible existence of an induction of MT-like proteins in relation to cadmium accumulated by exposed cockles. Transplanted cockles

  3. DISTINGUISHING ANTHROPOGENIC AND GEOGENIC IMPACTS OF SEDIMENT CONTAMINATION

    Science.gov (United States)

    Environmental forensics is an area of scientific research that addresses contamination within the environmental media of air, water, soil and biota, and is subject to law court, arbitration, public debate, or formal argumentation. Environmental forensics involves scientific studi...

  4. DISTINGUISHING ANTHROPOGENIC AND GEOGENIC IMPACTS OF SEDIMENT CONTAMINATION

    Science.gov (United States)

    Environmental forensics is an area of scientific research that addresses contamination within the environmental media of air, water, soil and biota, and is subject to law court, arbitration, public debate, or formal argumentation. Environmental forensics involves scientific studi...

  5. ACTIVE CAPPING TECHNOLOGY - NEW APPROACHES FOR IN SITU REMEDIATION OF CONTAMINATED SEDIMENTS

    Energy Technology Data Exchange (ETDEWEB)

    Knox, A.; Paller, M.; Roberts, J.

    2012-02-13

    This study evaluated pilot-scale active caps composed of apatite, organoclay, biopolymers, and sand for the remediation of metal-contaminated sediments. The active caps were constructed in Steel Creek, at the Savannah River Site near Aiken, South Carolina. Monitoring was conducted for 12 months. Effectiveness of the caps was based on an evaluation of contaminant bioavailability, resistance to erosion, and impacts on benthic organisms. Active caps lowered metal bioavailability in the sediment during the one-year test period. Biopolymers reduced sediment suspension during cap construction, increased the pool of carbon, and lowered the release of metals. This field validation showed that active caps can effectively treat contaminants by changing their speciation, and that caps can be constructed to include more than one type of amendment to achieve multiple goals.

  6. Comparison of methods for developing contaminant-particle size distributions for suspended sediment

    Energy Technology Data Exchange (ETDEWEB)

    Moore, T.D.; Burgoa, B.B. [Univ. of Tennessee, Knoxville, TN (United States); Fontaine, T.A. [Oak Ridge National Lab., TN (United States)

    1994-10-01

    Relationships between contaminant concentration and particle size distribution are required for modeling the transport of contaminated sediment. Standard methods, including the pipette and bottom withdrawal techniques, are unsatisfactory because of the lack of homogeneous separations of each size fraction, which results in uncertainty in the contaminant-particle size relation. In addition, the size fractions produced with these techniques do not contain enough mass for accurate contaminant analyses. To avoid these problems, an alternative method using a settling column and withdrawal times based on Stokes Law has been developed. Tests have been conducted using sediment samples contaminated with Cs-137 from a waste area at Oak Ridge National Laboratory. The samples were separated into sand, coarse and fine silt, and clay-sized particles. The results for particle size distribution and associated contaminant concentrations were evaluated for the settling column, pipette, and bottom withdrawal methods. The settling column method provides homogeneous size fractions, larger aliquots of sediment for contaminant analysis, and is quicker in some cases and less complicated to perform than the other two methods.

  7. Fast assessment of bioaccessible metallic contamination in marine sediments.

    Science.gov (United States)

    Terán-Baamonde, J; Carlosena, A; Soto-Ferreiro, R M; Andrade, J M; Prada, D

    2017-09-07

    A fast (16min) procedure to assess the bioaccessible metallic fraction of Cd, Cr, Cu, Ni, Pb and Zn simultaneously extracted (SEM) from marine sediments plus an indirect approach to determine acid volatile sulfides (AVS) are presented. For the extraction process magnetic agitation was compared with ultrasonic stirring (using a bath and a probe), and several stirring times were assayed. The proposed SEM procedure uses an ultrasonic probe and 1mL of HCl. It dramatically minimizes the turnaround time and the residues. AVS were evaluated as the difference between the amounts of sulphur in the solid residue after the extraction and total sulphur in the original sample. These procedures are fast, easy to implement and cost-effective to assess the potential risk posed by metals in marine sediments. They were tested using several CRMs and applied to sediments from two Galician Rias (NW Spain); their SEM-AVS differences indicated no biological risk. Copyright © 2017. Published by Elsevier Ltd.

  8. Potential Ecological Effects of Contaminants in the Exposed Par Pond Sediments

    Energy Technology Data Exchange (ETDEWEB)

    Paller, M.H. [Westinghouse Savannah River Company, AIKEN, SC (United States); Wike, L.D.

    1996-08-01

    Sediment and small mammal samples were collected from the exposed sediments of Par Pond in early 1995, shortly before the reservoir was refilled after a 4-year drawdown. Sampling was confined to elevations between 58 and 61 meters (190 and 200 feet) above mean sea level, which includes the sediments likely to be exposed if the Par Pond water level is permitted to fluctuate naturally. Both soil and small mammal samples were analyzed for a number of radionuclides and metals. Some of the soil samples were also analyzed for organic contaminants. The objective of the study was to determine if contaminant levels in the Par Pond sediments were high enough to cause deleterious ecological effects.

  9. High bacterial biodiversity increases degradation performance of hydrocarbons during bioremediation of contaminated harbor marine sediments.

    Science.gov (United States)

    Dell'Anno, Antonio; Beolchini, Francesca; Rocchetti, Laura; Luna, Gian Marco; Danovaro, Roberto

    2012-08-01

    We investigated changes of bacterial abundance and biodiversity during bioremediation experiments carried out on oxic and anoxic marine harbor sediments contaminated with hydrocarbons. Oxic sediments, supplied with inorganic nutrients, were incubated in aerobic conditions at 20 °C and 35 °C for 30 days, whereas anoxic sediments, amended with organic substrates, were incubated in anaerobic conditions at the same temperatures for 60 days. Results reported here indicate that temperature exerted the main effect on bacterial abundance, diversity and assemblage composition. At higher temperature bacterial diversity and evenness increased significantly in aerobic conditions, whilst decreased in anaerobic conditions. In both aerobic and anaerobic conditions, biodegradation efficiencies of hydrocarbons were significantly and positively related with bacterial richness and evenness. Overall results presented here suggest that bioremediation strategies, which can sustain high levels of bacterial diversity rather than the selection of specific taxa, may significantly increase the efficiency of hydrocarbon degradation in contaminated marine sediments.

  10. Hydrodynamic effects on contaminants release due to rususpension and diffu-sion from sediments

    Institute of Scientific and Technical Information of China (English)

    朱红伟; 程鹏达; 钟宝昌; 王道增

    2013-01-01

    Hydrodynamic effects play a very important role in the contaminants release from sediments. Experiments were perfor-med to study contaminants releasing characteristics due to resuspension. The time-dependent variation of COD concentration and re-lative roles under static and dynamic state of the overlying water were analyzed. Experimental results showed that COD concen-tration in the water column got a striking increment on the dynamic conditions, mainly by reducing the thickness of concentration boundary layer near sediment-water interface and destructing the surface structure of sediment. Hydrodynamics increased contamina-nts release rates and flux in unit time. Before reaching an equilibrium stage, the dynamic release caused by the resuspension was more effective than static one due to molecular diffusion. The release rate of COD increased with flow velocity and decreased with water depth. But at a shallow water depth, wave effects would dominate the causing resuspension, resulting in contaminants release in large quantity. The intensity of pollutant release increased with time in a rather circuitous process. The diffusion of pollutant from internal sediment to the sediment-water interface would maintain the endogenous release effects.

  11. In situ remediation of contaminated sediments using carbonaceous materials

    NARCIS (Netherlands)

    Rakowska, M.I.; Kupryianchyk, D.; Harmsen, J.; Grotenhuis, J.T.C.; Koelmans, A.A.

    2012-01-01

    Carbonaceous materials (CM), such as activated carbons or biochars, have been shown to significantly reduce porewater concentrations and risks by binding hydrophobic organic compounds (HOCs) present in aquatic sediments. In the present study, the authors review the current state-of-the-art use of CM

  12. Trace metals in the surface sediments of the intertidal Jiaozhou Bay, China: Sources and contamination assessment.

    Science.gov (United States)

    Xu, Fangjian; Qiu, Longwei; Cao, Yingchang; Huang, Jingli; Liu, Zhaoqing; Tian, Xu; Li, Anchun; Yin, Xuebo

    2016-03-15

    The major (Al) and trace metal (Cu, Pb, Zn, Cr, Cd, and As) concentrations in 29 surface sediment samples from the intertidal Jiaozhou Bay (JZB) are evaluated to assess the contamination level. The results show that the overall sediment quality in the area has been obviously impacted by trace metal contamination. The geoaccumulation index and the enrichment factor values indicate that no Cr or Cu contamination has occurred on the whole, only a few stations have been polluted by As, and some areas have been polluted by Cd, Pb, and Zn. Principal component analysis suggests that the Cu, Pb, Zn, and Cd are derived from anthropogenic inputs and that Cr, As, Cu, and Zn are influenced by natural weathering processes. Cu and Zn may originate from both natural and anthropogenic sources. The contamination in the northeastern JZB is higher than that in other areas of the bay. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Simulated oil release from oil-contaminated marine sediment in the Bohai Sea, China.

    Science.gov (United States)

    Yuan, Lingling; Han, Longxi; Bo, Wenjie; Chen, Hua; Gao, Wenshen; Chen, Bo

    2017-02-17

    There is a high degree of heavy oil partitioning into marine sediments when an oil spill occurs. Contaminated sediment, as an endogenous pollution source, can re-pollute overlying water slowly. In this study, a static oil release process and its effects in marine sediment was investigated through a series of experiments with reproductive heavy oil-contaminated marine sediment. The oil release process was accurately simulated with a Lagergren first-order equation and reached equilibration after 48h. The fitted curve for equilibrium concentration (C0) and first-order rate constant (k1) for sediment pollution levels exhibited a first-order log relationship. The instantaneous release rate (dCtdt) was also calculated. The C0 increased with increases in temperature and dissolved organic matter (DOM), and decreasing salinity. The k1 increased with temperature, but was not affected by DOM and salinity. These results can be used to better understand the fate of heavy oil in contaminated sediments of the Bohai Sea.

  14. Three decades of TBT contamination in sediments around a large scale shipyard.

    Science.gov (United States)

    Kim, Nam Sook; Shim, Won Joon; Yim, Un Hyuk; Ha, Sung Yong; An, Joon Geon; Shin, Kyung Hoon

    2011-08-30

    Tributyltin (TBT) contamination in sediments was investigated in the vicinity of a large-scale shipyard in the years after the implementation of a total ban on the use of TBT based antifouling paints in Korea. Extremely high level of TBT (36,292ng Sn/g) in surface sediment was found at a station in front of a drydock and near surface runoff outfall of the shipyard. TBT concentration in surface sediments of Gohyeon Bay, where the shipyard is located, showed an apparent decreased TBT concentration gradient from the shipyard towards the outer bay. The vertical distribution of TBT contamination derived from a sediment core analysis demonstrated a significant positive correlation (r(2)=0.88; pTBT concentrations at six stations surveyed before (2003) and seven years after (2010) the total ban showed no significant differences (p>0.05). Despite the ban on the use of TBT, including ocean going vessels, surface sediments are still being heavily contaminated with TBT, and its levels well exceeded the sediment quality guideline or screening values.

  15. Computational modeling of 137Cs contaminant transfer associated with sediment transport in Abukuma River.

    Science.gov (United States)

    Iwasaki, T; Nabi, M; Shimizu, Y; Kimura, I

    2015-01-01

    A numerical model capable of simulating the transfer of (137)Cs in rivers associated with transport of fine sediment is presented. The accident at Fukushima Dai-ichi Nuclear Power Plant (FDNPP) released radionuclides into the atmosphere, and after fallout several radionuclides in them, such as radiocesium ((134)Cs, (137)Cs) and radioiodine ((131)I) were adsorbed on surface soil particles around FDNPP and transported by surface water. To understand the transport and deposition of the radioactive contaminant along with surface soil particles and its flux to the ocean, we modeled the transport of the (137)Cs contaminant by computing the water flow and the associated washload and suspended load transport. We have developed a two-dimensional model to simulate the plane flow structure, sediment transport and associated (137)Cs contaminant transport in rivers by combining a shallow water flow model and an advection-diffusion equation for the transport of sediment. The proposed model has been applied to the lower reach of Abukuma River, which is the main river in the highly contaminated area around FDNPP. The numerical results indicate that most (137)Cs supplied from the upstream river reach with washload would directly reach to Pacific Ocean. In contrast, washload-oriented (137)Cs supplied from the upstream river basin has a limited role in the radioactive contamination in the river. The results also suggest that the proposed framework of computational model can be a potential tool for understanding the sediment-oriented (137)Cs behavior in rivers.

  16. Contaminated Sediment Management in Dam Removals and River Restoration Efforts: Critical Need for Research and Policy Development

    Science.gov (United States)

    Evans, J. E.

    2015-12-01

    Over 1,000 U.S. dams have been removed (1975-2015) for reasons including obsolescence, liability concerns, water quality upgrades, fisheries, or ecosystem enhancements. Contaminated sediment can significantly complicate the approval process, cost, and timeline of a dam removal, or stop it entirely. In a dam removal, reservoir sediment changes from a sink to a source of contaminants. Recently, the Sierra Club sued to stop the removal of a large dam in Ohio because of the potential impact of phosphate releases on toxic algal blooms in Lake Erie. Heavy metals, PCBs, PAHs, pesticides, and petroleum hydrocarbons can be present in reservoir sediments. In a non-dam removal scenario, reservoir management tools range from "no action" to dredging, dewatering and removal, or sediment capping. But it is not clear how these reservoir management techniques apply to dam removals. Case studies show typically >80% of the reservoir sediment is eventually eroded, precluding sediment capping as a containment option. However, the released contaminants are diluted by mixing with "clean" sediment and are transported to different physio-chemical environments which may immobilize or biodegrade the contaminants. Poorly understood options include phased drawdown/reseeding the former reservoir to contain sediments, diking contaminant "hot spots," and addressing contaminant stratigraphy (where historical use created "hot layers" in the reservoir sediment). Research and policy development needs include: (1) assessment methods based on synergistic effects of multiple contaminants being present; (2) ways to translate the pre-removal contaminant concentrations to post-removal health risks downstream; (3) evaluation of management practices for contaminant "hot spots" and "hot layers;" (4) tools to forecast the presence of contaminated sediment using easily accessible information; and (5) ways to limit liability risk for organizations participating in dam removals involving contaminated sediment.

  17. Contaminated Coastal Sediments in the Northeastern United States: Changing Sources Over Time

    Science.gov (United States)

    Buchholtz ten Brink, M. R.; Bothner, M. H.; Mecray, E. L.

    2001-05-01

    Regional studies of coastal sediments in the northeastern United States, conducted by the U.S. Geological Survey, show that trace metal contamination from land-based activities has occurred near all major urban centers. Concentrations of metals, such as Cu, Pb, Zn, Hg, and Ag, are 2-5 times background levels in sediments of Boston Harbor, Long Island Sound (LIS), offshore of Gulf of Maine coastal cities, and in the New York Bight (NYB). Contaminant accumulations are strongly influenced by sediment lithology and sediment transport properties in local areas, in addition to proximity to pollutant sources. Inventories are greatest in muddy depo-centers of the NYB, western LIS, and Boston Harbor. Based on sediment cores, the onset of metal contamination in the northeast occurs in the mid-1800s, with inputs increasing in the mid-1900s and decreasing (20-50%) from the 1970s to present. The increases correlate with local population growth and abundance of a bacterial sewage indicator, Clostridium perfringens. Increases of N and Corg in cores also reflect population growth and changing wastewater treatment practices. Corg values reach a high of 6% in buried sediments near the NYB disposal sites. Cores from western LIS have increasing values of C, N, and P in the most recently deposited sediments, in contrast to metal concentrations that have decreased in recent years. Cessation of sludge disposal and reduction of chemical discharges have been effective at reducing inputs; however, contaminated sediment deposits remain in rivers (e.g., the Charles), floodplains (e.g., the Housatonic), and coastal sediments. In the future, high concentrations of metal contaminants stored in buried sediments of marine and fluvial systems are likely to be a lingering and significant source of pollution to coastal environments. Until more effective source-reduction occurs, land-use and industrial practices associated with population growth in the northeast will remain dominant factors for

  18. Phosphorus amendment reduces hematological effects of lead in mallards ingesting contaminated sediments

    Science.gov (United States)

    Hoffman, D.J.; Heinz, G.H.; Audet, D.J.

    2006-01-01

    Lead poisoning of waterfowl has been reported for decades in the Coeur d?Alene River Basin (CDARB) in Idaho as a result of the ingestion of lead-contaminated sediments. This study was conducted to determine whether the addition of phosphoric acid to sediments would reduce the bioavailability and toxicity of lead to mallards (Anas platyrhynchos) as related to adverse hematological effects and altered plasma chemistries. Mallards received diets containing 12% clean sediment (controls) or 12% sediment from three different CDARB sites containing 4520, 5390, or 6990 :g/g lead (dw) with or without phosphoric acid amendment. Blood lead concentrations were significantly higher in all CDARB treatment groups and ranged from geometric mean values of 5.0 ug/g for the first two sites to 6.2 ug/g for the third site. With amendments, all blood lead concentrations became 41% to 64% lower. Red blood cell ALAD activity was depressed by 90% or more with lead-contaminated sediment from all sites and did not differ with amended diets. Free erythrocyte protoporphyrin (FEP) concentrations were elevated by contaminated sediment from all sites. Amendment decreased the elevations in FEP by as much as 80%. Hematocrit values and hemoglobin concentrations were lower for all lead site sediments by as much as 30% for site 3. Plasma enzyme activities for ALT, CK, and LDH-L were elevated by as much as 2.2-fold, and plasma creatinine concentration was 1.7-fold higher for site 3 sediment. Amendments restored hematocrit, hemoglobin, and plasma enzyme activities so that they did not differ from controls. Although amendments of phosphorus substantially reduced the bioavailability of lead and alleviated many of the adverse hematological effects, lead concentrations in the blood of mallards fed the amended sediments were still above those believed to be harmful to waterfowl under the present conditions.

  19. Mercury-contaminated sediments in the North Bay: A legacy of the Gold Rush

    Science.gov (United States)

    Jaffe, Bruce E.

    2001-01-01

    A legacy of the Gold Rush is mercury-contaminated sediments in the Bay. Miners used mercury to extract gold from tailings during the gold rush. A large amount of this mercury (some estimates are as great as 10,000 tons) was lost during extraction to the watershed during the gold rush era. This mercury-contaminated hydraulic mining debris made its way to the Bay.

  20. Metal impacts on microbial biomass in the anoxic sediments of a contaminated lake

    Energy Technology Data Exchange (ETDEWEB)

    Gough, Heidi L.; Dahl, Amy L.; Nolan, Melissa A.; Gaillard, Jean-Francois; Stahl, David A.

    2008-04-26

    Little is known about the long-term impacts of metal contamination on the microbiota of anoxic lake sediments. In this study, we examined microbial biomass and metals (arsenic, cadmium, chromium, copper, iron, lead, manganese, and zinc) in the sediments of Lake DePue, a backwater lake located near a former zinc smelter. Sediment core samples were examined using two independent measures for microbial biomass (total microscopic counts and total phospholipid-phosphate concentrations), and for various fractions of each metal (pore water extracts, sequential extractions, and total extracts of all studied metals and zinc speciation by X-ray absorption fine structure (XAFS). Zinc concentrations were up to 1000 times higher than reported for sediments in the adjacent Illinois River, and ranged from 21,400 mg/kg near the source to 1,680 mg/kg near the river. However, solid metal fractions were not well correlated with pore water concentrations, and were not good predictors of biomass concentrations. Instead, biomass, which varied among sites by as much as two-times, was inversely correlated with concentrations of pore water zinc and arsenic as established by multiple linear regression. Monitoring of other parameters known to naturally influence biomass in sediments (e.g., organic carbon concentrations, nitrogen concentrations, pH, sediment texture, and macrophytes) revealed no differences that could explain observed biomass trends. This study provides strong support for control of microbial abundance by pore water metal concentrations in contaminated freshwater sediments.

  1. Impact of rapid urbanisation and industrialisation on river sediment metal contamination.

    Science.gov (United States)

    Hayzoun, H; Garnier, C; Durrieu, G; Lenoble, V; Bancon-Montigny, C; Ouammou, A; Mounier, S

    2014-05-01

    This study aimed at evidencing contaminant inputs from a rapidly growing population and the accompanying anthropogenic activities to river sediments. The Fez metropolitan area and its impacts on the Sebou's sediments (the main Moroccan river) were chosen as a case study. The Fez agglomeration is surrounded by the river Fez, receiving the wastewaters of this developing city and then flowing into the Sebou. The sediment cores from the Fez and Sebou Rivers were extracted and analysed for major elements, butyltins and toxic metals. Normalised enrichment factors and geoaccumulation index were calculated. Toxicity risk was assessed by two sets of sediment quality guideline (SQG) indices. A moderate level of contamination by butyltins was observed, with monobutyltin being the dominant species across all sites and depths. The lowest level of metal pollution was identified in the Sebou's sediments in upstream of Fez city, whilst the Fez' sediments were heavily polluted and exhibited bottom-up accumulation trends, which is a clear signature of recent inputs from the untreated wastewaters of Fez city. Consequently, the sediments of Fez and Sebou at the downstream of the confluence were found to be potentially toxic, according to the SQG levels. This finding is concerned with aquatic organisms, as well as to the riverside population, which is certainly exposed to these pollutants through the daily use of water. This study suggests that although Morocco has adopted environmental regulations aiming at restricting pollutant discharges into the natural ecosystems, such regulations are neither well respected by the main polluters nor efficiently enforced by the authorities.

  2. INTERACTIONS AMONG PHOSPHATE AMENDMENTS, MICROBES AND URANIUM MOBILITY IN CONTAMINATED SEDIMENTS

    Energy Technology Data Exchange (ETDEWEB)

    Knox, A

    2007-08-30

    The use of sequestering agents for the transformation of radionuclides in low concentrations in contaminated soils/sediments offers considerable potential for long-term environmental cleanup. This study evaluated the influence of four phosphate amendments and two microbial amendments on U availability. The synchrotron X-ray fluorescence mapping of the untreated U-contaminated sediment showed that U was closely associated with Mn. All tested phosphate amendments reduced aqueous U concentration more than 90%, likely due to formation of insoluble phosphate precipitates. The addition of A. piechaudii and P. putida alone were found to reduce U concentrations 63% and 31% respectively. Uranium sorption in phosphate treatments was significantly reduced in the presence of microbes. However, increased microbial activity in the treated sediment led to reduction of phosphate effectiveness. The average U concentration in 1 M MgCl{sub 2} extract from U amended sediment was 437 {micro}g/kg, but in the same sediment without microbes (autoclaved sediment), the extractable U concentration was only 103 {micro}g/kg. When the autoclaved amended sediment was treated with autoclaved biological apatite, U concentration in the 1 M MgCl{sub 2} extract was {approx}0 {micro}g/kg. Together these tests suggest that microbes may enhance U leaching and reduce phosphate amendment remedial effectiveness.

  3. Integrated monitoring approach to investigate the contamination, mobilization and risks of sediments

    Science.gov (United States)

    Bölscher, Jens; Schulte, Achim; Terytze, Konstantin

    2017-04-01

    The use of surface water bodies for manufacturing purposes has been common not only in Germany since the beginning of industrialization, and this has led to a high accumulation of different chemical contaminants in the sediments of aquatic ecosystems. In particular, water bodies with very low flow conditions like the "Rummelsburger See", an anabranch of the Spree River located in the centre of Berlin, have been highly affected. Given that, it has become necessary to obtain improved knowledge concerning the current sediment dynamics, the rate of sedimentation and the current level of contamination and toxicity compared to earlier conditions. Against this background, a survey was set up, consisting of an integrated monitoring approach that focuses on hydraulics, sediment dynamics and contamination, including boundary conditions, such as weather and motor-boat activities to find information, which would help design appropriate treatment in the future. To detect the spatial distribution of pollutants in the sediment, over 200 sediment samples were collected via drill cores at 16 locations. The upper 15 cm of each drill core was systematically divided into 5 layers (each of 3 cm) for separate examination. The investigation of sediment deposition and remobilisation rates was accomplished by installing 18 sediment traps. The presence of selected heavy metals and organic pollutants in the sediments was determined for every sampling location and layer of the drill cores, as well as for all sediment traps. Changes in boundary conditions which influence the spatial and temporal distribution of deposition and resuspension were monitored by placing devices within the water body and taking different mobile measurements (3-D flow conditions, oxygen, turbidity, chlorophyll-a, temperature). The analysis of sediment and suspended matter included the determination of the total content of inorganic (Hg, Cd, Cr, Pb, Ni, Cu, Zn) and organic compounds (polycyclic aromatic hydrocarbons

  4. Prediction of Petroleum Hydrocarbon Bioavailability in Contaminated Soils and Sediments

    NARCIS (Netherlands)

    Cuypers, M.P.; Clemens, R.; Grotenhuis, J.T.C.; Rulkens, W.H.

    2001-01-01

    Recently, several laboratory methods have been developed for the prediction of contaminant bioavailability. So far, none of these methods has been extensively tested for petroleum hydrocarbons. In the present study we investigated solid-phase extraction and persulfate oxidation for the prediction of

  5. Mercury contamination chronologies from Connecticut wetlands and Long Island Sound sediments

    Science.gov (United States)

    Varekamp, J.C.; Kreulen, B.; Buchholtz ten Brink, M. R.; Mecray, E.L.

    2003-01-01

    Sediment cores were used to investigate the mercury deposition histories of Connecticut and Long Island Sound. Most cores show background (pre-1800s) concentrations (50-100 ppb Hg) below 30-50 cm depth, strong enrichments up to 500 ppb Hg in the core tops with lower Hg concentrations in the surface sediments (200-300 ppb Hg). A sediment core from the Housatonic River has peak levels of 1,500 ppb Hg, indicating the presence of a Hg point source in this watershed. The Hg records were translated into Hg contamination chronologies through 210Pb dating. The onset of rig contamination occurred in ???1840-1850 in eastern Connecticut, whereas in the Housatonic River the onset is dated at around 1820. The mercury accumulation profiles show periods of peak contamination at around 1900 and at 1950-1970. Peak Hg* (Hg*= Hg measured minus Hg background) accumulation rates in the salt marshes vary, dependent on the sediment character, between 8 and 44 ng Hg/cm2 per year, whereas modern Hg* accumulation rates range from 4-17 ng Hg/cm2 per year; time-averaged Hg* accumulation rates are 15 ng Hg/cm2 per year. These Hg* accumulation rates in sediments are higher than the observed Hg atmospheric deposition rates (about 1-2 ng Hg/cm2 per year), indicating that contaminant Hg from the watershed is focused into the coastal zone. The Long Island Sound cores show similar Hg profiles as the marsh cores, but time-averaged Hg* accumulation rates are higher than in the marshes (26 ng Hg/cm2 a year) because of the different sediment characteristics. In-situ atmospheric deposition of Hg in the marshes and in Long Island Sound is only a minor component of the total Hg budget. The 1900 peak of Hg contamination is most likely related to climatic factors (the wet period of the early 1900s) and the 1950-1970 peak was caused by strong anthropogenic Hg emissions at that time. Spatial trends in total Hg burdens in cores are largely related to sedimentary parameters (amount of clay) except for the high

  6. Mechanisms of Metal Release From Contaminated Coastal Sediments

    Science.gov (United States)

    2005-09-01

    years so enjoyable - Mea, Heidi, Jeff, Kristy, Oscar, Charlie, Jessica, Carlos, Adam, Jim, Dirk, 5 Heather, Michael, Sarah , Patty, Boa, Susan, Gary...critical shear stress of 0.08 Nm- 2 in Buzzards Bay. In Baltimore Harbor Maa et al. [1998] 179 deployed the VIMS Sea Carousel at four sites and reported a...Bruland, J. Burton, and E. Goldberg, NATO, 1983. Maa , J.-Y., L. Sanford, and J. Halka, Sediment resuspension characteristics in Baltimore Harbor

  7. Sedimentation and contamination patterns of dike systems along the Rhône River (France)

    Science.gov (United States)

    Seignemartin, Gabrielle; Tena, Alvaro; Piégay, Hervé; Roux, Gwenaelle; Winiarski, Thierry

    2017-04-01

    Humans have historically modified the Rhône River, especially in the last centuries. In the 19th century, the river was systematically embanked for flood protection purposes, and works continued along the 20th century with dike system engineering work for navigation. The Rhône was canalised and its historical course by-passed by a series of hydroelectric dams. Besides, industrial activity polluted the river. For example, high levels of PCB's were attributed to the inputs of the heavily industrialized zone downstream from Lyon. During floods, these contaminants, associated with the suspended sediment, were trapped by the engineering works and the floodplain. Currently, a master plan to reactivate the river dynamics in the alluvial margins by removing the groyne-fields and dikes in the by-passed sections is being implemented. Within this context, this work aims to assess historical dynamics of sediment and associated contaminants in the floodplain (e.g. trace metal elements), notably in the dike system, in order to evaluate the contamination risk related to bank protection removal. With this objective, a transversal methodology has been applied coupling GIS diachronic analysis (old maps, bathymetric data, Orthophotos, LIDAR, etc.) to understand the historical floodplain evolution, sediment survey to obtain sediment thickness (metal rod and Ground Penetrating Radar), and sediment sampling (manual auger and core sampling) to obtain the metal element concentrations (X-Ray Fluorescence and Inductively Coupled Plasma Mass Spectrometry). By this way, metal element patterns were defined and used as contamination tracing indicators to apprehend the contamination history but also as geochemical background indicators to define the sediment source influence. We found that sediment temporal patterns are directly related with the by-pass construction year. Spatially, fine sediment deposition predominates in the dike systems, being lower in the floodplain already disconnected in

  8. Linking Terrigenous Sediment Delivery to Declines in Coral ...

    Science.gov (United States)

    Worldwide coral reef conditions continue to decline despite the valuable socioeconomic benefits of these ecosystems. There is growing recognition that quantifying reefs in terms reflecting what stakeholders value is vital for comparing inherent tradeoffs among coastal management decisions. Terrestrial sediment runoff ranks high as a stressor to coral reefs and is a key concern in Puerto Rico where reefs are among the most threatened in the Caribbean. This research aimed to identify the degree to which sediment runoff impacts production of coral reef ecosystem services and the potential for watershed management actions to improve these services. Ecosystem service production functions were applied to map and translate metrics of ecological reef condition into ecosystem service production under a gradient of increasing sediment delivery. We found that higher sediment delivery decreased provisioning of most ecosystem services, including ecosystem integrity, bioprospecting discovery, and reef-based recreational opportunities and fisheries production. However, shoreline protection and services with a strong contribution from non-reef habitats (e.g., mangroves, seagrasses) were higher in locations with high sediment delivery, although there was a strong inshore effect suggesting the influence of distance to shore, depth, and inshore habitats. Differences among services may indicate potential tradeoffs and the need to consider habitat connectivity, nursery habitat, acce

  9. A COMPENDIUM OF CHEMICAL, PHYSICAL AND BIOLOGICAL METHODS FOR ASSESSING AND MONITORING THE REMEDIATION OF CONTAMINATED SEDIMENT SITES

    Science.gov (United States)

    Considering the many organizations which have published methods for monitoring contaminated sediments and the large number of documents on this subject, it can be a formidable task for a superfund project manager to find methods appropriate for his or her contaminated sediment si...

  10. Using radiosilver and plutonium isotopes to trace the dispersion of contaminated sediment in Fukushima coastal catchments

    Science.gov (United States)

    Evrard, O.; Ayrault, S.; Pointurier, F.; Onda, Y.; Laceby, J. P.; Lepage, H.; Chartin, C.; Cirella, M.; Pottin, A. C.; Hubert, A.; Lefèvre, I.

    2015-12-01

    The Fukushima Dai-ichi nuclear power plant (FDNPP) accident in March 2011 resulted in a 3000-km² radioactive pollution plume consisting predominantly of radiocesium (137Cs and 134Cs). This plume is drained by several rivers to the Pacific Ocean after flowing through less contaminated, but densely inhabited coastal plains. As the redistribution of radionuclide contaminated sediment could expose the local population to higher radiation rates, novel fingerprinting methods were developed to trace the downstream dispersion of contaminated sediment. First, the heterogeneous deposition of metastable silver-110 (110mAg) across these coastal catchments was used to investigate sediment migration. In particular, the 110mAg/137Cs activity ratio was measured in soils and river sediment demonstrating the occurrence of a seasonal cycle of soil erosion during typhoons and spring snowmelt in 2011 and 2012. However, due to the rapid decay of 110mAg (half-life of 250 days), alternative methods were required to continue tracking sediment from 2013 onwards. One promising method includes the analyses of plutonium isotopes to further understand sediment migration in the Fukushima region. For example, 241Pu/239Pu atom ratios measured in sediment collected in Fukushima coastal rivers shortly after the accident were shown to be significantly higher (0.0017 - 0.0884) than corresponding values attributed to the global fallout (0.00113 ± 0.00008). Additional analyses were conducted on sediment sampled in 2013 and 2014 after the start of decontamination works. These analyses show that the 241Pu/239Pu atom ratios decreased towards the global fallout values in rivers draining decontaminated paddy fields, demonstrating the effectiveness of remediation works.

  11. Geochemical and Mineralogical Investigation of Uranium in Multi–element Contaminated, Organic–rich Subsurface Sediment

    Energy Technology Data Exchange (ETDEWEB)

    Qafoku, Nikolla; Gartman, Brandy N.; Kukkadapu, Ravi K.; Arey, Bruce W.; Williams, Kenneth H.; Mouser, Paula J.; Heald, Steve M.; Bargar, John R.; Janot, Noemie; Yabusaki, Steven B.; Long, Philip E.

    2014-03-02

    Alluvial sediments characterized by an abundance of refractory or lignitic organic carbon compounds and reduced Fe and S bearing mineral phases have been identified through drilling activities at the U.S. Department of Energy’s (DOE) Integrated Field Research Challenge (IFRC) site at Rifle, CO. Regions of the subsurface from which such sediments are derived are referred to as Naturally Reduced Zones (NRZ). We conducted a study with NRZ sediments with the objective to: i.) Characterize solid phase contamination of U and other co-contaminants; ii.) Document the occurrence of potential U host minerals; iii.) Determine U valence state and micron scale spatial association with co-contaminants. Macroscopic (wet chemical batch extractions and a column experiment), microscopic (SEM-EDS), and spectroscopic (Mössbauer, µ-XRF and XANES) techniques were employed. Results showed that sediments’ solid phase had significant concentrations of U, S, As, Zn, V, Cr, Cu and Se, and a remarkable assortment of potential U hosts (sorbents and/or electron donors), such as Fe oxides (hematite, magnetite, Al-substituted goethite), siderite, reduced Fe(II) bearing clays, sulfides of different types, Zn sulfide framboids and multi – element sulfides. Multi-contaminants, micron size (ca. 5 to 30 µm) areas of mainly U(IV) and some U(VI), and/or other electron scavengers or donors such as Se, As, Cr, and V were discovered in the sediments, suggesting complex micron-scale system responses to transient redox conditions, and different extent and rates of competing U redox reactions than those of single contaminant systems. Collectively, the results improve our understanding and ability to predict U and NRZ’s complex behavior and will delineate future research directions to further study both the natural attenuation and persistence of contaminant plumes and their contribution to groundwater contamination.

  12. Release of aged contaminants from weathered sediments: Effects of sorbate speciation on scaling of reactive transport

    Energy Technology Data Exchange (ETDEWEB)

    Chorover, Jon; Perdrial, Nico; Mueller, Karl; Strepka, Caleb; O’Day, Peggy; Rivera, Nelson; Um, Wooyong; Chang, Hyun-Shik; Steefel, Carl; Thompson, Aaron

    2012-11-05

    Hanford sediments impacted by hyperalkaline high level radioactive waste have undergone incongruent silicate mineral weathering concurrent with contaminant uptake. In this project, we studied the impact of background pore water (BPW) on strontium, cesium and iodine desorption and transport in Hanford sediments that were experimentally weathered by contact with simulated hyperalkaline tank waste leachate (STWL) solutions. Using those lab-weathered Hanford sediments (HS) and model precipitates formed during nucleation from homogeneous STWL solutions (HN), we (i) provided thorough characterization of reaction products over a matrix of field-relevant gradients in contaminant concentration, partial pressure of carbon dioxide, and reaction time; (ii) improved molecular-scale understanding of how sorbate speciation controls contaminant desorption from weathered sediments upon removal of caustic sources; and (iii) developed a mechanistic, predictive model of meso- to field-scale contaminant reactive transport under these conditions. In this final report, we provide detailed descriptions of our results from this three-year study, completed in 2012 following a one-year no cost extension.

  13. Release of Aged Contaminants from weathered sediments: Effects of sorbate speciation on scaling of reactive transport

    Energy Technology Data Exchange (ETDEWEB)

    Chorover, Jon [Univ. of Arizona, Tucson, AZ (United States); Perdrial, Nico [Univ. of Arizona, Tucson, AZ (United States); Mueller, Karl [Pennsylvania State Univ., University Park, PA (United States); Strepka, Caleb [Pennsylvania State Univ., University Park, PA (United States); O' Day, Peggy [Univ. of California, Merced, CA (United States); Rivera, Nelson [Univ. of California, Merced, CA (United States); Um, Wooyong [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Chang, Hyun-Shik [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Steefel, Carl [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Thompson, Aaron [Univ. of Georgia, Athens, GA (United States)

    2012-08-14

    Hanford sediments impacted by hyperalkaline high level radioactive waste have undergone incongruent silicate mineral weathering concurrent with contaminant uptake (Chorover et al., 2008). In this project, we studied the impact of background pore water (BPW) on strontium, cesium and iodine desorption and transport in Hanford sediments that were experimentally weathered by contact with simulated hyperalkaline tank waste leachate (STWL) solutions. Using those lab-weathered Hanford sediments (HS) and model precipitates formed during nucleation from homogeneous STWL solutions (HN), we (i) provided thorough characterization of reaction products over a matrix of field-relevant gradients in contaminant concentration, PCO2, and reaction time; (ii) improved molecular-scale understanding of how sorbate speciation controls contaminant desorption from weathered sediments upon removal of caustic sources; and (iii) developed a mechanistic, predictive model of meso- to field-scale contaminant reactive transport under these conditions. Below, we provide some detailed descriptions of our results from this three year study, recently completed following a one-year no cost extension.

  14. ASSESSING THE BIOAVAILABILITY OF PAHS IN FIELD-CONTAMINATED SEDIMENT USING XAD-2 ASSISTED DESORPTION

    Science.gov (United States)

    In the bioremediation of soils/sediments contaminated with polycyclic aromatic hydrocarbons (PAHs) it is imperative to determine the fraction of the PAHs that is amenable to remediation. For example, what fraction of the PAHs is available to the indigenous microorganisms, i.e. bi...

  15. Biological Processes Affecting Bioaccumulation, Transfer, and Toxicity of Metal Contaminants in Estuarine Sediments

    Science.gov (United States)

    2011-12-01

    concentrations of Hg than do benthic food webs in relatively uncontaminated systems ( Karimi et al., 2007). However, whether this is true of contaminated...sediment-bound metals to marine bivalve molluscs: An overview. Estuaries 27, 826-838. Karimi , R., Chen, C.Y., Pickhardt, P.C., Fisher, N.S., Folt, C.L

  16. Use of stochastic multi-criteria decision analysis to support sustainable management of contaminated sediments.

    Science.gov (United States)

    Sparrevik, Magnus; Barton, David N; Bates, Mathew E; Linkov, Igor

    2012-02-01

    Sustainable management of contaminated sediments requires careful prioritization of available resources and focuses on efforts to optimize decisions that consider environmental, economic, and societal aspects simultaneously. This may be achieved by combining different analytical approaches such as risk analysis (RA), life cycle analysis (LCA), multicriteria decision analysis (MCDA), and economic valuation methods. We propose the use of stochastic MCDA based on outranking algorithms to implement integrative sustainability strategies for sediment management. In this paper we use the method to select the best sediment management alternatives for the dibenzo-p-dioxin and -furan (PCDD/F) contaminated Grenland fjord in Norway. In the analysis, the benefits of health risk reductions and socio-economic benefits from removing seafood health advisories are evaluated against the detriments of remedial costs and life cycle environmental impacts. A value-plural based weighing of criteria is compared to criteria weights mimicking traditional cost-effectiveness (CEA) and cost-benefit (CBA) analyses. Capping highly contaminated areas in the inner or outer fjord is identified as the most preferable remediation alternative under all criteria schemes and the results are confirmed by a probabilistic sensitivity analysis. The proposed methodology can serve as a flexible framework for future decision support and can be a step toward more sustainable decision making for contaminated sediment management. It may be applicable to the broader field of ecosystem restoration for trade-off analysis between ecosystem services and restoration costs.

  17. Contaminant desorption during long-term leaching of hydroxide-weathered Hanford sediments

    Energy Technology Data Exchange (ETDEWEB)

    Thompson, A.; Steefel, C.I.; Perdrial, N.; Chorover, J.

    2009-11-01

    Considerable efforts have been made toward understanding the behavior of contaminants introduced into sediments surrounding high-level radioactive waste (HLRW) storage sites at several Department of Energy (DOE) facilities (Hanford Site, WA; Savannah River Site, SC; Oak Ridge Site, TN).

  18. Contaminant Assessment of Biota and Sediments in the Albermarle-Pamlico region

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — The U.S. Fish and Wildlife Service conducted a baseline contaminants study of the aquatic biota and sediments in the Albemarle-Pamlico region in 1987-88. Sites in...

  19. Bench-Scale Investigation Of Mercury Phytoremediation By Water Hyacinths (Eichhornia crassipes) In Heavily Contaminated Sediments

    Science.gov (United States)

    Phytoremediation has the potential to be implemented at mercury (Hg) and methylmercury (MeHg) contaminated sites. Water hyacinths (Eichhornia crassipes) were investigated for their ability to assimilate Hg and MeHg into plant biomass, in both aquatic and sediment-associat...

  20. Phytoremediation Of Mercury And Methylmercury Contaminated Sediments By Water Hyacinth (Eichhornia crassipes)

    Science.gov (United States)

    Phytoremediation has potential to be implemented at mercury (Hg) and methylmercury (MeHg) contaminated sites. Water hyacinths (Eichhornia crassipes) were investigated for their ability to assimilate Hg and MeHg into plant biomass, in both aquatic and sediment-associated f...

  1. Assessing diversity and phytoremediation potential of mangroves for copper contaminated sediments in Subic Bay, Philippines

    Science.gov (United States)

    Toxic metal pollution of water and soil is a major environmental problem and most conventional remediation approaches may not provide adequate solutions. An alternative way of reducing copper (Cu) concentration from contaminated sediments is through phytoremediation. Presently, there are few researc...

  2. Phytoremediation of Mercury- and Methyl Mercury-Contaminated Sediments by Water Hyacinth (Eichhornia crassipes)

    Science.gov (United States)

    Phytoremediation has the potential for implementation at Hg- (Hg) and methylHg (MeHg)-contaminated sites. Water hyacinths (Eichhornia crassipes) were investigated for their ability to assimilate Hg and MeHg into plant biomass, in both aquatic and sediment-associated forms...

  3. Phytoremediation Of Mercury And Methylmercury Contaminated Sediments By Water Hyacinth (Eichhornia crassipes)

    Science.gov (United States)

    Phytoremediation has potential to be implemented at mercury (Hg) and methylmercury (MeHg) contaminated sites. Water hyacinths (Eichhornia crassipes) were investigated for their ability to assimilate Hg and MeHg into plant biomass, in both aquatic and sediment-associated f...

  4. Bench-Scale Investigation Of Mercury Phytoremediation By Water Hyacinths (Eichhornia crassipes) In Heavily Contaminated Sediments

    Science.gov (United States)

    Phytoremediation has the potential to be implemented at mercury (Hg) and methylmercury (MeHg) contaminated sites. Water hyacinths (Eichhornia crassipes) were investigated for their ability to assimilate Hg and MeHg into plant biomass, in both aquatic and sediment-associat...

  5. Phytoremediation of Mercury- and Methyl Mercury-Contaminated Sediments by Water Hyacinth (Eichhornia crassipes)

    Science.gov (United States)

    Phytoremediation has the potential for implementation at Hg- (Hg) and methylHg (MeHg)-contaminated sites. Water hyacinths (Eichhornia crassipes) were investigated for their ability to assimilate Hg and MeHg into plant biomass, in both aquatic and sediment-associated forms...

  6. A novel integrated active capping technique for the remediation of nitrobenzene-contaminated sediment.

    Science.gov (United States)

    Sun, Hongwen; Xu, Xiaoyang; Gao, Guandao; Zhang, Zizhong; Yin, Peijie

    2010-10-15

    The objective of this study was to develop a novel integrated active capping system and to investigate its efficiency in the remediation of nitrobenzene-contaminated sediment. An integrated Fe(0)-sorbent-microorganism remediation system was proposed as an in situ active capping technique to remediate nitrobenzene-contaminated sediment. In this system, nitrobenzene was reduced to aniline by Fe(0), which has a much better biodegradability. The sorption capacity and structural properties of cinder was measured to examine its applicability as the sorbent and matrix for this integrated capping system. Indigenous microorganisms from Songhuajiang River sediment, which was contaminated by nitrobenzene and aniline in Chinese Petrochemical Explosion in Jilin, were acquired one month after the explosion and used in this active capping system to degrade nitrobenzene and its reduced product, aniline. A bench-scale remediation experiment was conducted on a mimicked nitrobenzene-contaminated sediment to investigate the efficiency of the integrated capping system and the synergistic effects of the combined components in the active capping system. The results show that this integrated active capping system can effectively block the release of target pollutants into the upper-layer water and remove the compounds from the environment.

  7. Heavy metal contamination in surface runoff sediments of the urban area of Vilnius, Lithuania

    Directory of Open Access Journals (Sweden)

    Gytautas Ignatavičius

    2017-02-01

    Full Text Available Surface runoff from urbanized territories carries a wide range of pollutants. Sediments in untreated runoff from direct discharge stormwater systems significantly contribute to urban waterway pollution. In this study, heavy metal (Pb, Zn, Cu, Cr, Ba, As and Fe contamination in surface runoff sediments of the urban area of the city of Vilnius was investigated. The surface runoff sediment samples were collected from seven dischargers with the highest volume rate of water flow and concentrations of suspended solids. The geospatial analysis of the distribution of heavy metals shows that there are several active pollution sources supplying the dischargers with contaminated sediments. Most of these areas are located in the central part of the city and in old town with intense traffic. Principal components analysis and t-test results clearly depicted the significantly different chemical compositions of winter and autumn surface sediment samples. The sampling approach and assessment of results provide a useful tool to examine the contamination that is generated in urban areas, distinguish pollution sources and give a better understanding of the importance of permeable surfaces and green areas.

  8. Microcosm study on fate of polybrominated diphenyl ethers (PBDEs) in contaminated mangrove sediment.

    Science.gov (United States)

    Zhu, Haowen; Wang, Ying; Tam, Nora F Y

    2014-01-30

    Polybrominated diphenyl ethers (PBDEs) are toxic and ubiquitous environmental contaminants, but their fate in aquatic environments is not clear. A mangrove microcosm study was employed to investigate the fate of two abundant congeners, BDE-47 and BDE-209, in contaminated sediment. After seven months, more than 90% of the spiked BDE-47 in the mangrove sediment was removed with the formation of lower brominated PBDEs, including BDE-28, -17, -15, -8, -7/4, suggesting that microbial debromination was the main contributor. Debromination of BDE-209 was also observed in the sediment but its dissipation rate was significantly lower than BDE-47. All these congeners were taken up, translocated and accumulated into the tissues of two typical mangrove plants, Kandelia obovata and Avicennia marina. PBDEs, even at very high contamination levels, in the sediment (5000ngg(-1)) and the debrominated congeners did not pose any adverse effect on the dry weight, augmentation and root/shoot ratio of either mangrove species. This is the first study to reveal that anaerobic microbial debromination and uptake by mangrove plants are the key processes controlling the fate of PBDEs in mangrove sediment.

  9. Contamination and risk assessment of heavy metals in bottom sediments from Lake Valencia, Venezuela

    Directory of Open Access Journals (Sweden)

    González A.

    2013-04-01

    Full Text Available The contamination and risk assessment of heavy metals in the bottom sediments of the Lake Valencia, Venezuela, was performed by determining the Enrichment Factor (EF, the Geoaccumulation Factor (Igeo, the availability of metals and the Risk Index Code (RAC. The sediments were anthropogenic ally enriched with Pb, Zn, Cu and Cr and classified as uncontaminated to moderately contaminated, with a medium risk of Zn, Co, Ni and Cr, and low risk of Cu, Pb and Cd. Analysis of correlations and PCA showed temporal variations in the concentration of metals in the sediments during the rainy season, and spatial variations, where the depth and anthropogenic inputs are the main variables. The contamination of sediments was located on the axis connecting the mouths of the river Guayos, which crosses the city of Valencia, and the river Güey which crosses the city of Maracay, both highly industrialized. Although the concentration of dissolved heavy metals into the waters was within the regulations, important concentrations of Pb and Hg and the bioaccumulation of Hg and Cr, determined by the Bioconcentration Factor (BCF, were found in the fish tissues which indicate that the metal enrichment of the lake sediments is affecting the biota.

  10. Bioremediation of contaminated marine sediments can enhance metal mobility due to changes of bacterial diversity.

    Science.gov (United States)

    Fonti, Viviana; Beolchini, Francesca; Rocchetti, Laura; Dell'Anno, Antonio

    2015-01-01

    Bioremediation strategies applied to contaminated marine sediments can induce important changes in the mobility and bioavailability of metals with potential detrimental consequences on ecosystem health. In this study we investigated changes of bacterial abundance and diversity (by a combination of molecular fingerprinting and next generation sequencing analyses) during biostimulation experiments carried out on anoxic marine sediments characterized by high metal content. We provide evidence that the addition of organic (lactose and/or acetate) and/or inorganic compounds to contaminated sediments determines a significant increase of bacterial growth coupled with changes in bacterial diversity and assemblage composition. Experimental systems supplied only with organic substrates were characterized by an increase of the relative importance of sulfate reducing bacteria belonging to the families Desulfobacteraceae and Desulfobulbaceae with a concomitant decrease of taxa affiliated with Flavobacteriaceae. An opposite effect was observed in the experimental treatments supplied also with inorganic nutrients. The increase of bacterial metabolism coupled with the increase of bacterial taxa affiliated with Flavobacteriaceae were reflected in a significant decrease of Cd and Zn associated with sedimentary organic matter and Pb and As associated with the residual fraction of the sediment. However, independently from the experimental conditions investigated no dissolution of metals occurred, suggesting a role of bacterial assemblages in controlling metal solubilization processes. Overall results of this study have allowed to identify key biogeochemical interactions influencing the metal behavior and provide new insights for a better understanding of the potential consequences of bio-treatments on the metal fate in contaminated marine sediments.

  11. The significance of sediment contamination in the Elbe River floodplain (Czech Republic)

    Science.gov (United States)

    Chalupová, Dagmar; Janský, Bohumír; Langhammer, Jakub; Šobr, Miroslav; Jiři, Medek; Král, Stanislav; Jiřinec, Petr; Kaiglova, Jana; Černý, Michal; Žáček, Miroslav; Leontovyčova, Drahomíra; Halířová, Jarmila

    2015-04-01

    The abstract brings the information about the research that was focused on anthropogenic pollution of river and lake sediments in the middle course of the Elbe River (Czech Republic). The main aim was to identify and to evaluate the significance of old polluted sediments in the river and its side structures (old meanders, cut lakes, oxbow lakes) between Hradec Králové and Mělník (confluence with the Moldau River) and to assess the risk coming from the remobilization of the contaminated matter. The Elbe River floodplain has been highly inhabited since the Middle Ages, and, especially in the 20th century, major industrial plants were founded here. Since that time, the anthropogenic load of the river and it`s floodplain has grown. Although the contaminants bound to the sediment particles are usually stable, the main risk is coming from the fact that under changes in hydrological regime and water quality (floods, changes in pH, redox-potential, presence of complex substances etc.), the pollution can be released and remobilized again. The most endangered areas are: the surroundings of Pardubice (chemical factory Synthesia, Inc.; refinery PARAMO), and Neratovice (chemical factory Spolana, Inc.). The chemical factories situated close to these towns represented the most problematic polluters of the Elbe River especially during 2nd half of 20th century. In the research, the main attention was aimed at subaquatic sediments of selected cut lakes situated in the vicinity of the above mentioned sources of pollution. To describe the outreach of contamination, several further fluvial lakes were taken into account too. Sediment sampling was carried out from boats on lakes and with the help of drilling rig in the floodplain. Gained sediment cores were divided into several parts which were analysed separately. Chemical analyses included substances identified by ICPER (International Commission for the Protection of the Elbe River) as well as chemicals considered as significant in

  12. Predicting the Fate and Effects of Resuspended Metal Contaminated Sediments

    Science.gov (United States)

    2015-12-23

    program code included as a Visual Basic for Applications ( VBA ) enabled macro. Model calculations for bedded sediment included acid-base chemistry and...included as a VBA embedded macro. In the model , FeS(s) is oxidized to Fe2+ and S8(s) following second- order kinetics where the FeS(s) oxidation rate is a...events, such as those caused by propeller wash, which prevail in harbors and navigation systems. Physical-chemical models were developed that predict

  13. Modelling of sediment transport: link in a chain

    NARCIS (Netherlands)

    De Vries, M.

    1977-01-01

    Rather than reporting on a specific topic of current research in the broad field of sediment transport and river morphology, the writer will give a general contemplation on the state of the art. This will not be a review in the usual sense. The alloted space would then be filled easily with referenc

  14. Modeling Trade-off between PAH Toxicity Reduction and Negative Effects of Sorbent Amendments to Contaminated Sediments

    NARCIS (Netherlands)

    Kupryianchyk, D.; Rakowska, M.I.; Grotenhuis, J.T.C.; Koelmans, A.A.

    2012-01-01

    Adding activated carbon (AC) to contaminated sediment has been suggested as an effective method for sediment remediation. AC binds chemicals such as polycyclic aromatic hydrocarbons (PAHs), thus reducing the toxicity of the sediment. Negative effects of AC on benthic organisms have also been reporte

  15. Contaminant variability in a sedimentation area of the river Rhine = Variabiliteit van verontreinigingen in een sedimentatiegebied van de Rijn

    NARCIS (Netherlands)

    Winkels, H.J.

    1997-01-01

    Aquatic sediments in sedimentation zones of major rivers are in general sinks for pollutants. The sedimentation zone Ketelmeer/IJsselmeer is an important sink for contaminants of the river Rhine (i.e. river IJssel). Recent and historical pollution interact here. Redistribution of suspended

  16. Tungsten- and cobalt-dominated heavy metal contamination of mangrove sediments in Shenzhen, China.

    Science.gov (United States)

    Xu, Songjun; Lin, Chuxia; Qiu, Penghua; Song, Yan; Yang, Wenhuai; Xu, Guanchang; Feng, Xiaodan; Yang, Qian; Yang, Xiu; Niu, Anyi

    2015-11-15

    A baseline investigation into heavy metal status in the mangrove sediments was conducted in Shenzhen, China where rapid urban development has caused severe environmental contamination. It is found that heavy metal contamination in this mangrove wetland is characterized by the dominant presence of tungsten and cobalt, which is markedly different from the neighboring Hong Kong and other parts of the world. The vertical variation pattern of these two metals along the sediment profile differed from other heavy metals, suggesting an increasing influx of tungsten and cobalt into the investigated mangrove habitat, as a result of uncontrolled discharge of industrial wastewater from factories that produce or use chemical compounds or alloys containing these two heavy metals. Laboratory simulation experiment indicated that seawater had a stronger capacity to mobilize sediment-borne tungsten and cobalt, as compared to deionized water, diluted acetic, sulfuric and nitric acids.

  17. Effects of lead-contaminated sediment and nutrition on mallard duckling behavior and growth

    Science.gov (United States)

    Douglas-Stroebel, E.; Brewer, G.L.; Hoffman, D.J.

    2005-01-01

    Sediment ingestion has become a recognized exposure route for toxicants in waterfowl. The effects of lead-contaminated sediment from the Coeur d?Alene River Basin (CDARB) in Idaho were evaluated on mallard (Anas platyryhnchos) duckling behavior and growth over a five-week period using time-activity budgets. Day-old ducklings received either a clean sediment (24%) supplemented control diet, CDARB sediment (3,449 ug/g lead) supplemented diets at 12% or 24%, or a positive control diet (24% clean sediment with equivalent lead acetate to the 24% CDARB diet). Ten different behaviors were monitored for time spent, including resting, standing, moving, drinking, dabbling, feeding, pecking, preening, bathing and swimming. Contaminated sediment (24% CDARB ) and lead acetate significantly decreased the proportion of time spent swimming. There were also problems with balance and mobility in the 24% CDARB and the lead acetate groups. With a less optimal diet (mixture of two thirds corn and one third standard diet) containing 24% clean sediment, nutrient level alone affected six different behaviors including feeding, pecking, swimming, preening, standing, and dabbling. Nutrient level also significantly decreased the growth rate and delayed the initial time of molt. When the corn diet contained CDARB sediment, the proportion of time spent bathing in the 24% CDARB group significantly decreased with marginal effects on resting and feeding. There were also instances of imbalance with 24% CDARB and corn diet, and duckling weights were significantly lower than in corn diet controls. The decreased time spent swimming or bathing, coupled with problems of balance and mobility, decreased growth, histopathological lesions and altered brain biochemistry (reported elsewhere) illustrate a potential threat to the survival of ducklings in the wild that are exposed to lead-containing sediments within the CDARB or elsewhere.

  18. Non-discriminating flash pyrolysis and thermochemolysis of heavily contaminated sediments from the Hamilton Harbor (Canada).

    Science.gov (United States)

    Poerschmann, J; Parsi, Z; Gorecki, T

    2008-04-04

    Analytical pyrolysis of sediments contaminated with pollutants of medium to high molecular weights (up to approximately 500 Da) is very challenging when using conventional pyrolysis systems due to discrimination of high molecular weight analytes. In the framework of this contribution, non-discriminating pyrolysis and thermochemolysis using rapid heating in a Silcosteel capillary were applied to study organic pollutants in heavily contaminated sediments taken from the Hamilton Harbor. The novel pyrolysis approach, requiring very small amounts of sample, turned out to be very useful as a rapid screening method, e.g. for risk assessment studies, proving superior to commonly used solvent extraction. Main pollutants in the sediments under study included aromatic hydrocarbons, chiefly originating from coal tar and petroleum. Polycyclic aromatic hydrocarbons (PAHs) beyond six-rings, including coronene and truxene, could be detected. Sequential tetramethyl ammonium hydroxide-induced thermochemolysis performed at 500 and 750 degrees C enabled the differentiation between organic pollutants sorbed onto the sediment matrix on the one hand, and structural moieties of the condensed polymeric humic sediment matrix along with bound residues on the other hand. Thermochemolysis at 500 degrees C removed sorbates quantitatively, leaving only bare polymeric humic matrix. Significant PAH source indicators provided evidence that the lipidic fraction sorbed onto the sediments originated from PAHs formed chiefly in coal combustion processes. The polymeric humic organic matter network of the less polluted sediment was mainly of petrogenic origin, whereas black carbon, kerogen, etc. contributed to the organic carbon of the heavily polluted sediment. Thermochemolysis at 500 degrees C was also used to study fatty acid profiles of the sediments. The fatty acid methyl ester patterns obtained for the two sites under study differed significantly, with strong indications that microbial attenuation

  19. PCB and PAH speciation among particle types in contaminated harbor sediments and effects on PAH bioavailability.

    Science.gov (United States)

    Ghosh, Upal; Zimmerman, John R; Luthy, Richard G

    2003-05-15

    This research provides particle-scale understanding of PCB and PAH distribution in sediments obtained from three urban locations in the United States: Hunters Point, CA; Milwaukee Harbor, WI; and Harbor Point, NY. The sediments comprised mineral grains (primarily sand, silt, and clays) and carbonaceous particles (primarily coal, coke, charcoal, pitch, cenospheres, and wood). The carbonaceous sediment fractions were separated from the mineral fractions based on their lower density and were identified by petrographic analysis. In all three sediments, carbonaceous particles contributed 5-7% of the total mass and 60-90% of the PCBs and PAHs. The production of carbonaceous particles is not known to be associated with PCB contamination, and it is very unlikely that these particles can be the source of PCBs in the environment Thus, it appears that carbonaceous particles preferentially accumulate PCBs acting as sorbents in the aqueous environment if PCBs are released directly to the sediment or if deposited as airborne soot particles. Aerobic bioslurry treatment resulted in negligible PAH loss from the carbonaceous coal-derived material in Milwaukee Harbor sediment but resulted in 80% of the PAHs being removed from carbonaceous particles in Harbor Point sediment. Microscale PAH extraction and analysis revealed that PAHs in Harbor Point sediment were associated mainly with coal tar pitch residue. PAHs present in semisolid coal tar pitch are more bioavailable than PAHs sorbed on carbonaceous particles such as coal, coke, charcoal, and cenosphere. Results of this study illustrate the importance of understanding particle-scale association of hydrophobic organic contaminants for explaining bioavailability differences among sediments.

  20. Mercury in sediments and vegetation in a moderately contaminated salt marsh (Tagus Estuary, Portugal).

    Science.gov (United States)

    Canário, João; Vale, Carlos; Poissant, Laurier; Nogueira, Marta; Pilote, Martin; Branco, Vasco

    2010-01-01

    Depth variations of total mercury (Hg) and methylmercury (MeHg) concentrations were studied in cores from non-colonized sediments, sediments colonized by Halimione portulacoides, Sarcocorniafruticosa and Spartina maritima and belowground biomass, in a moderately contaminated salt marsh (Tagus Estuary, Portugal). Concentrations in belowground biomass exceeded up to 3 (Hg) and 15 (MeHg) times the levels in sediments, and up to 198 (Hg) and 308 (MeHg) times those found in aboveground parts. Methylmercury in colonized sediments reached 3% of the total Hg, 50 times above the maximum values found in non-colonized sediments. The absence of correlations between total Hg concentrations in sediments and the corresponding MeHg levels suggested that methylation was only dependent on the environmental and microbiological factors. The analysis of belowground biomass at high-depth resolution (2 cm) provided evidence that Hg and MeHg were actively absorbed from sediments, with higher enrichment factors at layers where higher microbial activity was probably occurring. The results obtained in this study indicated that the biotransformation of Hg to the toxic MeHg could increase the toxicity of plant-colonized sediments.

  1. Geochemical Screening of Contaminated Marine and Estuarine Sediments

    Science.gov (United States)

    Kruge, M. A.

    2004-05-01

    Waterways near urban centers have been subject to pollution by human activities for centuries. This process greatly intensified with the advent of the Industrial Revolution and the attendant exponential population increase in coastal areas. The co-occurrence of port facilities for ocean-going vessels, large factories, major power generating stations, dense automotive transportation networks, and massive wastewater outfalls, all in compact geographical areas, has produced severe environmental stress. In recent decades, the growing awareness of the seriousness of coastal urban environmental degradation has inspired intensive efforts at pollution prevention and remediation. To better understand pollution dynamics over time in an aquatic urban setting, a program of intensive sampling and analysis leading to the creation of geographic information systems (GIS) would be desirable. Chemical evaluation of sediments for pollution remains a costly and time-consuming procedure, particularly for organic analysis. Pyrolysis-gas chromatography/mass spectrometry (Py-GC/MS) offers a practical alternative for rapid, inexpensive molecular organic analysis, simply employing milligram quantities of dry, whole sediment. The compounds detected comprise an information-rich mixture of thermally extractable components and the products of the thermal decomposition of (bio)polymers present in the sample. These include PAHs, petroleum-derived hopanes, organonitrogen compounds, and linear alkylbenzenes, as illustrated with examples from Long Island Sound and the Passaic River (USA) and Barcelona harbor (Spain).

  2. Development of autochthonous microbial consortia for enhanced phytoremediation of salt-marsh sediments contaminated with cadmium.

    Science.gov (United States)

    Teixeira, Catarina; Almeida, C Marisa R; Nunes da Silva, Marta; Bordalo, Adriano A; Mucha, Ana P

    2014-09-15

    Microbial assisted phytoremediation is a promising, though yet poorly explored, new remediation technique. The aim of this study was to develop autochthonous microbial consortia resistant to cadmium that could enhance phytoremediation of salt-marsh sediments contaminated with this metal. The microbial consortia were selectively enriched from rhizosediments colonized by Juncus maritimus and Phragmites australis. The obtained consortia presented similar microbial abundance but a fairly different community structure, showing that the microbial community was a function of the sediment from which the consortia were enriched. The effect of the bioaugmentation with the developed consortia on cadmium uptake, and the microbial community structure associated to the different sediments were assessed using a microcosm experiment. Our results showed that the addition of the cadmium resistant microbial consortia increased J. maritimus metal phytostabilization capacity. On the other hand, in P. australis, microbial consortia amendment promoted metal phytoextraction. The addition of the consortia did not alter the bacterial structure present in the sediments at the end of the experiments. This study provides new evidences that the development of autochthonous microbial consortia for enhanced phytoremediation of salt-marsh sediments contaminated with cadmium might be a simple, efficient, and environmental friendly remediation procedure. Development of autochthonous microbial consortia resistant to cadmium that enhanced phytoremediation by salt-marsh plants, without a long term effect on sediment bacterial diversity. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Interactions among phosphate amendments, microbes and uranium mobility in contaminated sediments

    Energy Technology Data Exchange (ETDEWEB)

    Knox, Anna Sophia [Savannah River National Laboratory, Aiken, SC 29808 (United States)], E-mail: anna.knox@srnl.doe.gov; Brigmon, R.L.; Kaplan, D.I.; Paller, M.H. [Savannah River National Laboratory, Aiken, SC 29808 (United States)

    2008-06-01

    The use of sequestering agents for the transformation of radionuclides in low concentrations in contaminated soils/sediments offers considerable potential for environmental cleanup. This study evaluated the influence of three types of phosphate (rock phosphate, biological phosphate, and calcium phytate) and two microbial amendments (Alcaligenes piechaudii and Pseudomonas putida) on U mobility. All tested phosphate amendments reduced aqueous U concentrations more than 90%, likely due to formation of insoluble phosphate precipitates. The addition of A. piechaudii and P. putida alone were found to reduce U concentrations 63% and 31%, respectively. Uranium removal in phosphate treatments was significantly reduced in the presence of the two microbes. Two sediments were evaluated in experiments on the effects of phosphate amendments on U mobility, one from a stream on the Department of Energy's Savannah River Site near Aiken, SC and the other from the Hanford Site, a Department of Energy facility in Washington state. Increased microbial activity in the treated sediment led to a reduction in phosphate effectiveness. The average U concentration in 1 M MgCl{sub 2} extract from U contaminated sediment was 437 {mu}g/kg, but in the same sediment without microbes (autoclaved), the extractable U concentration was only 103 {mu}g/kg. The U concentration in the 1 M MgCl{sub 2} extract was {approx} 0 {mu}g/kg in autoclaved amended sediment treated with autoclaved biological apatite. These results suggest that microbes may reduce phosphate amendment remedial effectiveness.

  4. Evaluation of bioaerosol components, generation factors, and airborne transport associated with lime treatment of contaminated sediment.

    Science.gov (United States)

    Barth, Edwin F; Reponen, Tiina; Succop, Paul

    2009-05-01

    Lime treatment has been used in contaminated sediment management activities for many purposes such as dewatering, improvement of physical properties, and reducing contaminant mobility. Exothermic volatilization of volatile organic compounds from lime-treated sediment is well known, but potential aerosolization of bioaerosol components has not been evaluated. A physical model of a contaminated sediment treatment and airborne transport process and an experimental protocol were developed to identify specific bioaerosol components (bacteria, fungi, cell structural components, and particles) that may be aerosolized and transported. Key reaction variables (amount of lime addition, rate of lime addition, mixing energy supplied) that may affect the aerosolization of bioaerosol components were evaluated. Lime treatment of a sediment contaminated with heavy metals, petroleum-based organics, and microorganisms increased the sediment pH and solids content. Lime treatment reduced the number of water-extractable bacteria and fungi in the sediment from approximately 10(6) colony-forming units (CFU) x mL(-1) to less than the detection limit of 10(3) CFU x mL(-1). This reduction was seen immediately for bacteria and within 21 days for fungi. Lime treatment immediately reduced the amount of endotoxin in the sediment, but the effects of lime treatment on beta-D-glucan could not be determined. The temperature of the treated sediment was linearly related to the amount of lime added within the range of 0-25%. Bacteria were aerosolized during the treatment trials, but there was no culturable evidence of aerosolization of fungi, most likely because of either their particular growth stage or relatively larger particle size that reduced their aerosolization potential and their collection into the impingers. Nonbiological particles, endotoxin, and beta-D-glucan were not detected in air samples during the treatment trials. The amount of lime added to the reaction beaker and the relative

  5. A tiered assessment framework to evaluate human health risk of contaminated sediment.

    Science.gov (United States)

    Greenfield, Ben K; Melwani, Aroon R; Bay, Steven M

    2015-07-01

    For sediment contaminated with bioaccumulative pollutants (e.g., PCBs and organochorine pesticides), human consumption of seafood that contain bioaccumulated sediment-derived contaminants is a well-established exposure pathway. Historically, regulation and management of this bioaccumulation pathway has focused on site-specific risk assessment. The state of California (United States) is supporting the development of a consistent and quantitative sediment assessment framework to aid in interpreting a narrative objective to protect human health. The conceptual basis of this framework focuses on 2 key questions: 1) do observed pollutant concentrations in seafood from a given site pose unacceptable health risks to human consumers? and 2) is sediment contamination at a site a significant contributor to seafood contamination? The first question is evaluated by interpreting seafood tissue concentrations at the site, based on health risk calculations. The second question is evaluated by interpreting site-specific sediment chemistry data using a food web bioaccumulation model. The assessment framework includes 3 tiers (screening assessment, site assessment, and refined site assessment), which enables the assessment to match variations in data availability, site complexity, and study objectives. The second and third tiers use a stochastic simulation approach, incorporating information on variability and uncertainty of key parameters, such as seafood contaminant concentration and consumption rate by humans. The framework incorporates site-specific values for sensitive parameters and statewide values for difficult to obtain or less sensitive parameters. The proposed approach advances risk assessment policy by incorporating local data into a consistent region-wide problem formulation, applying best available science in a streamlined fashion.

  6. Single versus combined exposure of Hyalella azteca to zinc contaminated sediment and food.

    Science.gov (United States)

    Nguyen, Lien T H; Muyssen, Brita T A; Janssen, Colin R

    2012-03-01

    The amphipod Hyalella azteca was exposed for 28 d to different combinations of Zn contaminated sediment and food. Sediment exposure (+clean food) resulted in increased Zn body burdens, increased mortality and decreased body mass when the molar concentrations of simultaneously extracted Zn were greater than the molar concentration of Acid Volatile Sulfide (SEM(Zn)-AVS>0), suggesting that dissolved Zn was a dominant route of exposure. No adverse effect was noted in the food exposure (+clean sediment), suggesting selective feeding or regulation. Combined exposure (sediment+food) significantly increased adverse effects in comparison with sediment exposure, indicating contribution of dietary Zn to toxicity and bioaccumulation. The observed enhanced toxicity also supports the assumption on the presence of an avoidance/selective feeding reaction of the amphipods in the single sediment or food exposures. During 14 d post-exposure in clean medium, the organisms from the same combined exposure history received two feeding regimes, i.e. clean food and Zn spiked food. Elevated Zn bioaccumulation and reduced reproduction were noted in amphipods that were offered Zn spiked food compared to the respective organisms that were fed clean food. This was explained by the failure of avoidance/selective feeding behavior in the absence of an alternative food source (sediment), forcing the amphipods to take up Zn while feeding. Increasing Zn body burdens rejected the assumption that Zn uptake from food was regulated by H. azteca. Our results show that the selective feeding behavior should be accounted for when assessing ecological effects of Zn or other contaminants, especially when contaminated food is a potential exposure route.

  7. Predicting the accumulation of mercury-contaminated sediment on riverbanks—An analytical approach

    Science.gov (United States)

    Pizzuto, Jim

    2012-07-01

    Mercury was introduced into the South River, Virginia, as a result of industrial use from 1929 to 1950. To guide remediation, an analytical model is developed to predict the mercury inventory resulting from deposition of mercury-contaminated sediment on subhorizontal surfaces adjacent to the river channel from 1930 to 2007. Sediment cores and geomorphic data were obtained from 27 sites. Mercury inventories range from 0.00019 to 0.573 kg m-2. High mercury inventories are associated with frequent inundation by floodwaters, forested riparian vegetation, and (at only four sites) unusually high sediment accumulation. Over the 10 km study reach, mercury inventories do not vary with downstream distance. The frequency of inundation at each coring site is determined from hydrologic data and a streamtube stage-discharge model. Water levels are exponentially distributed. A simple parameterization represents the enhanced ability of forested vegetation to trap mercury-contaminated sediments compared to nonforest vegetation. The calibrated model explains 62% of the observed variation in mercury inventories; 15 of the 27 predicted values are within a factor of 1.8 of the observed values. Calibration indicates a mercury deposition rate during inundation of 0.040 kg m-2 yr-1 (95% C.I. 0.032-0.048), that forested areas accumulate mercury-contaminated sediment 3.05 (95% C.I. 2.43-3.67) times faster than nonforested areas, and that floodwaters deeper than 0.98 (95% C.I. 0.45-1.53) m do not accumulate suspended sediment or mercury. At four sites, floodplain accumulation of 0.8-1.2 m occurred over a period of 39 (95% C.I. 22-56) years, while sedimentation is negligible (mean: 0.1 m, median: 0.03 m) at other sites.

  8. Microbiome Dynamics of a Polychlorobiphenyl (PCB) Historically Contaminated Marine Sediment under Conditions Promoting Reductive Dechlorination

    Science.gov (United States)

    Matturro, Bruna; Ubaldi, Carla; Rossetti, Simona

    2016-01-01

    The toxicity of polychlorinated biphenyls (PCB) can be efficiently reduced in contaminated marine sediments through the reductive dechlorination (RD) process lead by anaerobic organohalide bacteria. Although the process has been extensively investigated on PCB-spiked sediments, the knowledge on the identity and metabolic potential of PCB-dechlorinating microorganisms in real contaminated matrix is still limited. Aim of this study was to explore the composition and the dynamics of the microbial communities of the marine sediment collected from one of the largest Sites of National Interest (SIN) in Italy (Mar Piccolo, Taranto) under conditions promoting the PCBs RD. A long-term microcosm study revealed that autochthonous bacteria were able to sustain the PCB dechlorination at a high extent and the successive addition of an external fermentable organic substrate (lactate) caused the further depletion of the high-chlorinated PCBs (up to 70%). Next Generation Sequencing was used to describe the core microbiome of the marine sediment and to follow the changes caused by the treatments. OTUs affiliated to sulfur-oxidizing ε-proteobacteria, Sulfurovum, and Sulfurimonas, were predominant in the original sediment and increased up to 60% of total OTUs after lactate addition. Other OTUs detected in the sediment were affiliated to sulfate reducing (δ-proteobacteria) and to organohalide respiring bacteria within Chloroflexi phylum mainly belonging to Dehalococcoidia class. Among others, Dehalococcoides mccartyi was enriched during the treatments even though the screening of the specific reductive dehalogenase genes revealed the occurrence of undescribed strains, which deserve further investigations. Overall, this study highlighted the potential of members of Dehalococcoidia class in reducing the contamination level of the marine sediment from Mar Piccolo with relevant implications on the selection of sustainable bioremediation strategies to clean-up the site.

  9. Contaminant transport in fractured fine-grained glacigene sediments

    Energy Technology Data Exchange (ETDEWEB)

    Tsakiroglou, C.D. [Foundation for Research and Technology Hellas, Patras (Greece). Inst. of Chemical Engineering and High Temperature Chemical Processes; Klint, K.E.S.; Gravesen, P. [Geological Survey of Denmark and Greenland, Copenhagen (Denmark); Laroche, C.; Le Thiez, P. [Inst. Francaise du Petrole, Rueil-Malmaison (France)

    2003-07-01

    In this study, multi-scale geological information was collected during extensive fieldwork on a fractured clay-till site situated in Denmark (Ringe site). Meso-scale field data such as fracture spacing/connectivity and hydraulic ''in situ'' tests were combined with micro-scale laboratory studies of mechanical fracture apertures and pore network geometry of fractures and matrix so that a conceptual macro-pore model was established. At the small scale, pore network modeling approach was used to simulate the two-phase flow in single fractures and fracture networks, in the capillary dominated regime. Up-scaling from the pore to the fracture network allowed the estimation of average transport properties and their introduction into a macroscopic simulator of contaminant transport in dual porosity media (SIMUSCOPP). This macroscopic simulator is used for the long-term forecasting of the spatial and temporal evolution of the distribution of a typical LNAPL (creosote) over an extended area around the contaminated site.

  10. Biogeochemical factors influencing net mercury methylation in contaminated freshwater sediments from the St. Lawrence River in Cornwall, Ontario, Canada

    Energy Technology Data Exchange (ETDEWEB)

    Avramescu, Mary-Luyza; Yumvihoze, Emmanuel [Biology Department, University of Ottawa, 30 Marie Curie, Ottawa, ON, K1N 6N5 (Canada); Hintelmann, Holger [Chemistry Department, Trent University, 1600 West Bank Drive, Peterborough, ON, K9J 7B8 (Canada); Ridal, Jeff [St. Lawrence River Institute of Environmental Sciences, 2 Belmont Street, Cornwall, ON, K6H 4Z1 (Canada); Fortin, Danielle, E-mail: dfortin@uottawa.ca [Earth Science Department, University of Ottawa, 140 Louis Pasteur, Ottawa, ON, K1N 6N5 (Canada); Lean, David R.S. [Biology Department, University of Ottawa, 30 Marie Curie, Ottawa, ON, K1N 6N5 (Canada)

    2011-02-01

    The activity of various anaerobic microbes, including sulfate reducers (SRB), iron reducers (FeRP) and methanogens (MPA) has been linked to mercury methylation in aquatic systems, although the relative importance of each microbial group in the overall process is poorly understood in natural sediments. The present study focused on the biogeochemical factors (i.e. the relative importance of various groups of anaerobic microbes (FeRP, SRB, and MPA) that affect net monomethylmercury (MMHg) formation in contaminated sediments of the St. Lawrence River (SRL) near Cornwall (Zone 1), Ontario, Canada. Methylation and demethylation potentials were measured separately by using isotope-enriched mercury species ({sup 200}Hg{sup 2+} and MM{sup 199}Hg{sup +}) in sediment microcosms treated with specific microbial inhibitors. Sediments were sampled and incubated in the dark at room temperature in an anaerobic chamber for 96 h. The potential methylation rate constants (K{sub m}) and demethylation rates (K{sub d}) were found to differ significantly between microcosms. The MPA-inhibited microcosm had the highest potential methylation rate constant (0.016 d{sup -1}), whereas the two SRB-inhibited microcosms had comparable potential methylation rate constants (0.003 d{sup -1} and 0.002 d{sup -1}, respectively). The inhibition of methanogens stimulated net methylation by inhibiting demethylationand by stimulating methylation along with SRB activity. The inhibition of both methanogens and SRB was found to enhance the iron reduction rates but did not completely stop MMHg production. The strong positive correlation between K{sub m} and Sulfate Reduction Rates (SRR) and between K{sub d} and Methane Production Rates (MPR) supports the involvement of SRB in Hg methylation and MPA in MMHg demethylation in the sediments. In contrast, the strong negative correlation between K{sub d} and Iron Reduction Rates (FeRR) shows that the increase in FeRR corresponds to a decrease in demethylation

  11. BIODEGRADATION OF SEDIMENT-BOUND PAHS IN FIELD-CONTAMINATED SEDIMENT

    Science.gov (United States)

    The biodegradation of polycyclic aromatic hydrocarbons (PAHs) has been reported to occur under aerobic, sulfate reducing, and denitrifying conditions. PAHs present in contaminated sites, however, are known for their persistence. Most published studies were conducted in systems wh...

  12. Linking the historic 2011 Mississippi River flood to coastal wetland sedimentation

    Science.gov (United States)

    Falcini, Federico; Khan, Nicole S.; Macelloni, Leonardo; Horton, Benjamin P.; Lutken, Carol B.; McKee, Karen L.; Santoleri, Rosalia; Colella, Simone; Li, Chunyan; Volpe, Gianluca; D'Emidio, Marco; Salusti, Alessandro; Jerolmack, Douglas J.

    2012-11-01

    Wetlands in the Mississippi River deltaic plain are deteriorating in part because levees and control structures starve them of sediment. In spring 2011 a record-breaking flood brought discharge on the lower Mississippi River to dangerous levels, forcing managers to divert up to 3,500m3s-1 of water to the Atchafalaya River Basin. Here we use field-calibrated satellite data to quantify differences in inundation and sediment-plume patterns between the Mississippi and Atchafalaya River. We assess the impact of these extreme outflows on wetland sedimentation, and use in situ data collected during the historic flood to characterize the Mississippi plume's hydrodynamics and suspended sediment. We show that a focused, high-momentum jet emerged from the leveed Mississippi, and delivered sediment far offshore. In contrast, the plume from the Atchafalaya was more diffuse; diverted water inundated a large area, and sediment was trapped within the coastal current. The largest sedimentation, of up to several centimetres, occurred in the Atchafalaya Basin despite the larger sediment load carried by the Mississippi. Sediment accumulation was lowest along the shoreline between the two river sources. We conclude that river-mouth hydrodynamics and wetland sedimentation patterns are mechanistically linked, providing results that are relevant for plans to restore deltaic wetlands using artificial diversions.

  13. Source identification and assessment of sediment contamination of trace metals in Kogarah Bay, NSW, Australia.

    Science.gov (United States)

    Alyazichi, Yasir M; Jones, Brian G; McLean, Errol

    2015-02-01

    The distribution of trace metals (spatial and temporal) and sedimentary fractions were investigated to identify the concentrations and sources of trace metals within Kogarah Bay, NSW, Australia. A total of 59 surface sediments and six subsurface samples from core of the sediment were collected. The contamination factor and pollution load index indices used to evaluate environmental effects of trace metals. The study area was found to be uncontaminated with Cr and Ni, moderately contaminated with As and considerably contaminated with Cu, Zn and Pb. The concentrations of Cr and Ni were below both effect range low and effect range median, while As, Cu, Zn and Pb were slightly above effect range low. The highest concentrations of these trace metals such as Cu, Zn and Pb were found in the north, northwest and southeast of the bay, close to discharge points, stormwater outlets and around boatyards and watercrafts. The spatial distributions of metals were strongly related to muddy particles and organic matter. The temporal sediments of metals declined with increased sediment depth, which reflects accumulation of trace metals since European settlement in this area. Furthermore, the source of the trace metals was found to be stormwater outlets, gasoline fumes, boatyards and other human activities.

  14. Geochemical baseline level and function and contamination of phosphorus in Liao River Watershed sediments of China.

    Science.gov (United States)

    Liu, Shaoqing; Wang, Jing; Lin, Chunye; He, Mengchang; Liu, Xitao

    2013-10-15

    The quantitative assessment of P contamination in sediments is a challenge due to sediment heterogeneity and the lacking of geochemical background or baseline levels. In this study, a procedure was proposed to determine the average P background level and P geochemical baseline level (GBL) and develop P geochemical baseline functions (GBF) for riverbed sediments of the Liao River Watershed (LRW). The LRW has two river systems - the Liao River System (LRS) and the Daliao River System (DRS). Eighty-eight samples were collected and analyzed for P, Al, Fe, Ca, organic matter, pH, and texture. The results show that Fe can be used as a better particle-size proxy to construct the GBF of P (P (mg/kg) = 39.98 + 166.19 × Fe (%), R(2) = 0.835, n = 66). The GBL of P was 675 mg/kg, while the average background level of P was 355 mg/kg. Noting that many large cities are located in the DRS watershed, most of the contaminated sites were located within the DRS and the riverbed sediments were more contaminated by P in the DRS watershed than in the LRS watershed. The geochemical background and baseline information of P are of great importance in managing P levels within the LRW.

  15. Microbial diversity and anaerobic hydrocarbon degradation potential in an oil-contaminated mangrove sediment.

    Science.gov (United States)

    Andrade, Luiza L; Leite, Deborah C A; Ferreira, Edir M; Ferreira, Lívia Q; Paula, Geraldo R; Maguire, Michael J; Hubert, Casey R J; Peixoto, Raquel S; Domingues, Regina M C P; Rosado, Alexandre S

    2012-08-30

    Mangrove forests are coastal wetlands that provide vital ecosystem services and serve as barriers against natural disasters like tsunamis, hurricanes and tropical storms. Mangroves harbour a large diversity of organisms, including microorganisms with important roles in nutrient cycling and availability. Due to tidal influence, mangroves are sites where crude oil from spills farther away can accumulate. The relationship between mangrove bacterial diversity and oil degradation in mangrove sediments remains poorly understood. Mangrove sediment was sampled from 0-5, 15-20 and 35-40 cm depth intervals from the Suruí River mangrove (Rio de Janeiro, Brazil), which has a history of oil contamination. DGGE fingerprinting for bamA, dsr and 16S rRNA encoding fragment genes, and qPCR analysis using dsr and 16S rRNA gene fragment revealed differences with sediment depth. Analysis of bacterial 16S rRNA gene diversity revealed changes with depth. DGGE for bamA and dsr genes shows that the anaerobic hydrocarbon-degrading community profile also changed between 5 and 15 cm depth, and is similar in the two deeper sediments, indicating that below 15 cm the anaerobic hydrocarbon-degrading community appears to be well established and homogeneous in this mangrove sediment. qPCR analysis revealed differences with sediment depth, with general bacterial abundance in the top layer (0-5 cm) being greater than in both deeper sediment layers (15-20 and 35-40 cm), which were similar to each other.

  16. Integrated assessment of heavy metal contamination in sediments from a coastal industrial basin, NE China.

    Science.gov (United States)

    Li, Xiaoyu; Liu, Lijuan; Wang, Yugang; Luo, Geping; Chen, Xi; Yang, Xiaoliang; Gao, Bin; He, Xingyuan

    2012-01-01

    The purpose of this study is to investigate the current status of metal pollution of the sediments from urban-stream, estuary and Jinzhou Bay of the coastal industrial city, NE China. Forty surface sediment samples from river, estuary and bay and one sediment core from Jinzhou bay were collected and analyzed for heavy metal concentrations of Cu, Zn, Pb, Cd, Ni and Mn. The data reveals that there was a remarkable change in the contents of heavy metals among the sampling sediments, and all the mean values of heavy metal concentration were higher than the national guideline values of marine sediment quality of China (GB 18668-2002). This is one of the most polluted of the world's impacted coastal systems. Both the correlation analyses and geostatistical analyses showed that Cu, Zn, Pb and Cd have a very similar spatial pattern and come from the industrial activities, and the concentration of Mn mainly caused by natural factors. The estuary is the most polluted area with extremely high potential ecological risk; however the contamination decreased with distance seaward of the river estuary. This study clearly highlights the urgent need to make great efforts to control the industrial emission and the exceptionally severe heavy metal pollution in the coastal area, and the immediate measures should be carried out to minimize the rate of contamination, and extent of future pollution problems.

  17. Integrated assessment of heavy metal contamination in sediments from a coastal industrial basin, NE China.

    Directory of Open Access Journals (Sweden)

    Xiaoyu Li

    Full Text Available The purpose of this study is to investigate the current status of metal pollution of the sediments from urban-stream, estuary and Jinzhou Bay of the coastal industrial city, NE China. Forty surface sediment samples from river, estuary and bay and one sediment core from Jinzhou bay were collected and analyzed for heavy metal concentrations of Cu, Zn, Pb, Cd, Ni and Mn. The data reveals that there was a remarkable change in the contents of heavy metals among the sampling sediments, and all the mean values of heavy metal concentration were higher than the national guideline values of marine sediment quality of China (GB 18668-2002. This is one of the most polluted of the world's impacted coastal systems. Both the correlation analyses and geostatistical analyses showed that Cu, Zn, Pb and Cd have a very similar spatial pattern and come from the industrial activities, and the concentration of Mn mainly caused by natural factors. The estuary is the most polluted area with extremely high potential ecological risk; however the contamination decreased with distance seaward of the river estuary. This study clearly highlights the urgent need to make great efforts to control the industrial emission and the exceptionally severe heavy metal pollution in the coastal area, and the immediate measures should be carried out to minimize the rate of contamination, and extent of future pollution problems.

  18. Metal-contaminated sediments in a semi-closed basin: Implications for recovery

    Science.gov (United States)

    Monterroso, P.; Pato, P.; Pereira, M. E.; Millward, G. E.; Vale, C.; Duarte, A.

    2007-01-01

    Sediment cores, collected from a contaminated zone in the Ria de Aveiro (Portugal), were sectioned, under nitrogen, and centrifuged to remove the pore waters. The sediment characteristics, including acid volatile sulphide (AVS) concentrations, were determined, together with total and available metals (Fe, Mn, Cd, Cu, Pb, Zn) and the total dissolved metals in the pore waters. Peak concentrations in total metals of the sediments were observed at various depths in the core as a result of time-dependent, industrial discharges. The fraction of total metal released by a mixture of hydroxylamine hydrochloride and acetic acid (HAA) ranged from 24% for Cu to 74% for Zn and enzymatic digestion by proteinase K released <10% of total metal. The pore waters had elevated dissolved metal concentrations concomitant with the peaks in total and available metal and with a maximum in AVS concentration. Equilibrium calculations indicated that the major dissolved phase species was MHS 2-, with minor quantities of M(HS) 2. The diffusive fluxes for sediment-water exchange of the metals were insignificant, the mobility of the metals being hindered by sulphide formation. Thus, the metals are likely to remain trapped in these sediments, thereby delaying recovery from contamination.

  19. Trace element storage capacity of sediments in dead Posidonia oceanica mat from a chronically contaminated marine ecosystem.

    Science.gov (United States)

    Di Leonardo, Rossella; Mazzola, Antonio; Cundy, Andrew B; Tramati, Cecilia Doriana; Vizzini, Salvatrice

    2017-01-01

    Posidonia oceanica mat is considered a long-term bioindicator of contamination. Storage and sequestration of trace elements and organic carbon (Corg ) were assessed in dead P. oceanica mat and bare sediments from a highly polluted coastal marine area (Augusta Bay, central Mediterranean). Sediment elemental composition and sources of organic matter have been altered since the 1950s. Dead P. oceanica mat displayed a greater ability to bury and store trace elements and Corg than nearby bare sediments, acting as a long-term contaminant sink over the past 120 yr. Trace elements, probably associated with the mineral fraction, were stabilized and trapped despite die-off of the overlying P. oceanica meadow. Mat deposits registered historic contamination phases well, confirming their role as natural archives for recording trace element trends in marine coastal environments. This sediment typology is enriched with seagrass-derived refractory organic matter, which acts mainly as a diluent of trace elements. Bare sediments showed evidence of inwash of contaminated sediments via reworking; more rapid and irregular sediment accumulation; and, because of the high proportions of labile organic matter, a greater capacity to store trace elements. Through different processes, both sediment typologies represent a repository for chemicals and may pose a risk to the marine ecosystem as a secondary source of contaminants in the case of sediment dredging or erosion. Environ Toxicol Chem 2017;36:49-58. © 2016 SETAC. © 2016 SETAC.

  20. Induction of cytochrome p-450-ia1 in juvenile fish by creosote-contaminated sediment

    Energy Technology Data Exchange (ETDEWEB)

    Schoor, W.P.; Williams, D.E.; Takahashi, N.

    1991-01-01

    Intact sediment cores, including their surface layers, were used in simulated field exposure tests of juvenile guppies (Poecilia reticulata) to creosote-contaminated sediments. Mixed-function oxygenase activity was induced in the fish after 43 days of exposure to environmentally realistic, sublethal concentrations of creosote-related compounds. An average 50-fold induction in the cytochrome P-450-IA1 was found in the liver in the absence of any histopathological lesions. The possibility that a threshold level for proliferative liver changes was not reached is discussed in the light of the observed biochemical activation.

  1. Linking the historic 2011 Mississippi River flood to coastal wetland sedimentation

    Science.gov (United States)

    Falcini, Federico; Khan, Nicole S.; Macelloni, Leonardo; Horton, Benjamin P.; Lutken, Carol B.; McKee, Karen L.; Santoleri, Rosalia; Colella, Simone; Li, Chunyan; Volpe, Gianluca; D’Emidio, Marco; Salusti, Alessandro; Jerolmack, Douglas J.

    2012-01-01

    Wetlands in the Mississippi River deltaic plain are deteriorating in part because levees and control structures starve them of sediment. In Spring of 2011 a record-breaking flood brought discharge on the lower Mississippi River to dangerous levels, forcing managers to divert up to 3500 m3/s-1 of water to the Atchafalaya River Basin. Here we quantify differences between the Mississippi and Atchafalaya River inundation and sediment-plume patterns using field-calibrated satellite data, and assess the impact these outflows had on wetland sedimentation. We characterize hydrodynamics and suspended sediment patterns of the Mississippi River plume using in-situ data collected during the historic flood. We show that the focused, high-momentum jet from the leveed Mississippi delivered sediment far offshore. In contrast, the plume from the Atchafalaya was more diffuse; diverted water inundated a large area; and sediment was trapped within the coastal current. Maximum sedimentation (up to several centimetres) occurred in the Atchafalaya Basin despite the larger sediment load carried by the Mississippi. Minimum accumulation occurred along the shoreline between these river sources. Our findings provide a mechanistic link between river-mouth dynamics and wetland sedimentation patterns that is relevant for plans to restore deltaic wetlands using artificial diversions.

  2. Trace contaminant concentration affects mineral transformation and pollutant fate in hydroxide-weathered Hanford sediments

    Energy Technology Data Exchange (ETDEWEB)

    Perdrial, Nicolas, E-mail: perdrial@email.arizona.edu [Department of Soil, Water and Environmental Science, University of Arizona, 1177 E. Fourth St., Tucson, AZ 85721 (United States); Rivera, Nelson [School of Natural Sciences, University of California, Merced, CA 95343 (United States); Thompson, Aaron [Department of Crop and Soil Science, University of Georgia, Athens, GA 30602 (United States); O' Day, Peggy A. [School of Natural Sciences, University of California, Merced, CA 95343 (United States); Chorover, Jon [Department of Soil, Water and Environmental Science, University of Arizona, 1177 E. Fourth St., Tucson, AZ 85721 (United States)

    2011-12-15

    Highlights: Black-Right-Pointing-Pointer Fate of Sr, Cs and I tracked during hydroxide-weathering of sediments. Black-Right-Pointing-Pointer pCO{sub 2} and contaminant concentration affected mineral transformation. Black-Right-Pointing-Pointer Sodalite/cancrinite formed at {mu}M levels, chabazite at mM levels. Black-Right-Pointing-Pointer Absence of CO{sub 2} resulted in calcite dissolution and straetlingite formation. Black-Right-Pointing-Pointer Trace contaminant concentrations modified their own sequestration path. - Abstract: Prior work has shown that when silicaceous sediments are infused with caustic radioactive waste, contaminant fate is tightly coupled to ensuing mineral weathering reactions. However, the effects of local aqueous geochemical conditions on these reactions are poorly studied. Thus, we varied contaminant concentration and pCO{sub 2} during the weathering of previously uncontaminated Hanford sediments over 6 months and 1 year in a solution of caustic waste (pH 13, high ionic strength). Co-contaminants Sr, Cs and I were added at 'low' (Cs/Sr: 10{sup -5} m; I: 10{sup -7} m) and 'high' (Cs/Sr: 10{sup -3} m; I: 10{sup -5} m) concentrations, and headspace was held at atmospheric or undetectable (<10 ppmv) CO{sub 2} partial pressure. Solid phase characterization revealed the formation of the zeolite chabazite in 'high' samples, whereas feldspathoids, sodalite and cancrinite, were formed preferentially in 'low' samples. Sr, Cs and I were sequestered in all reacted sediments. Native calcite dissolution in the CO{sub 2}-free treatment drove the formation of straetlingite (Ca{sub 2}Al{sub 2}SiO{sub 7}{center_dot}8H{sub 2}O) and diminished availability of Si and Al for feldspathoid formation. Results indicate that pCO{sub 2} and contaminant concentrations strongly affect contaminant speciation in waste-weathered sediments, and are therefore likely to impact reaction product stability under any remediation scenario.

  3. Monitoring of organic contaminants in sediments using low field proton nuclear magnetic resonance

    Science.gov (United States)

    Zhang, Chi; Rupert, Yuri

    2016-04-01

    The effective monitoring of soils and groundwater contaminated with organic compounds is an important goal of many environmental restoration efforts. Recent geophysical methods such as electrical resistivity, complex conductivity, and ground penetrating radar have been successfully applied to characterize organic contaminants in the subsurface and to monitor remediation process both in laboratory and in field. Low field proton nuclear magnetic resonance (NMR) is a geophysical tool sensitive to the molecular-scale physical and chemical environment of hydrogen-bearing fluids in geological materials and shows promise as a novel method for monitoring contaminant remediation. This laboratory research focuses on measurements on synthetic samples to determine the sensitivity of NMR to the presence of organic contaminants and improve understanding of relationships between NMR observables, hydrological properties of the sediments, and amount and state of contaminants in porous media. Toluene, a light non-aqueous phase liquid (LNAPL) has been selected as a representative organic contaminant. Three types of porous media (pure silica sands, montmorillonite clay, and various sand-clay mixtures with different sand/clay ratios) were prepared as synthetic sediments. NMR relaxation time (T2) and diffusion-relaxation (D - T2) correlation measurements were performed in each sediment saturated with water and toluene mixed fluid at assorted concentrations (0% toluene and 100% water, 1% toluene and 99% water, 5% toluene and 95% water, 25% toluene and 75% water, and 100% toluene and 0% water) to 1) understand the effect of different porous media on the NMR responses in each fluid mixture, 2) investigate the role of clay content on T2 relaxation of each fluid, 3) quantify the amount hydrocarbons in the presence of water in each sediment, and 4) resolve hydrocarbons from water in D - T2 map. Relationships between the compositions of porous media, hydrocarbon concentration, and hydraulic

  4. Development of autochthonous microbial consortia for enhanced phytoremediation of salt-marsh sediments contaminated with cadmium

    Energy Technology Data Exchange (ETDEWEB)

    Teixeira, Catarina [Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR/CIMAR), Universidade do Porto, Rua dos Bragas, 289, 4050-123 Porto (Portugal); Laboratório de Hidrobiologia e Ecologia, Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, Rua Jorge Viterbo Ferreira, 228, 4050-313 Porto (Portugal); Almeida, C. Marisa R.; Nunes da Silva, Marta [Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR/CIMAR), Universidade do Porto, Rua dos Bragas, 289, 4050-123 Porto (Portugal); Bordalo, Adriano A. [Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR/CIMAR), Universidade do Porto, Rua dos Bragas, 289, 4050-123 Porto (Portugal); Laboratório de Hidrobiologia e Ecologia, Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, Rua Jorge Viterbo Ferreira, 228, 4050-313 Porto (Portugal); Mucha, Ana P., E-mail: amucha@ciimar.up.pt [Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR/CIMAR), Universidade do Porto, Rua dos Bragas, 289, 4050-123 Porto (Portugal)

    2014-09-15

    Microbial assisted phytoremediation is a promising, though yet poorly explored, new remediation technique. The aim of this study was to develop autochthonous microbial consortia resistant to cadmium that could enhance phytoremediation of salt-marsh sediments contaminated with this metal. The microbial consortia were selectively enriched from rhizosediments colonized by Juncus maritimus and Phragmites australis. The obtained consortia presented similar microbial abundance but a fairly different community structure, showing that the microbial community was a function of the sediment from which the consortia were enriched. The effect of the bioaugmentation with the developed consortia on cadmium uptake, and the microbial community structure associated to the different sediments were assessed using a microcosm experiment. Our results showed that the addition of the cadmium resistant microbial consortia increased J. maritimus metal phytostabilization capacity. On the other hand, in P. australis, microbial consortia amendment promoted metal phytoextraction. The addition of the consortia did not alter the bacterial structure present in the sediments at the end of the experiments. This study provides new evidences that the development of autochthonous microbial consortia for enhanced phytoremediation of salt-marsh sediments contaminated with cadmium might be a simple, efficient, and environmental friendly remediation procedure. Capsule abstract: Development of autochthonous microbial consortia resistant to cadmium that enhanced phytoremediation by salt-marsh plants, without a long term effect on sediment bacterial diversity. - Highlights: • Cd resistant microbial consortia were developed and applied to salt-marsh sediments. • In Phragmites australis the consortia amendment promoted metal phytoextraction. • The consortia addition increased Juncus maritimus phytostabilization capacity. • No long term changes on the rhizosediment bacterial structure were observed.

  5. Heavy metals contamination potential and distribution in sediments of the River Turia, Spain

    Science.gov (United States)

    Pascual-Aguilar, Juan Antonio; Maiquez Moya, Mónica; Gimeno-García, Eugenia; Andreu, Vicente; Picó, Yolanda

    2016-04-01

    Knowledge on the state of waters and sediments of the rivers in the European Union is compulsory. Identification and quantification and monitoring of contaminants is somewhat established in the Water Framework Directive, so it can be acquired a reliable knowledge of the quality for further application of corrective messures can be developed when required. Heavy metals is one of the groups of contaminants that appear in the list of priority substances and in the legislation, so it is essential to attend its study to provide knowledge on the existing loads in different environmental matrices, such as sediments. This work presents a procedure that determines the presence and degree of concentration of a group of seven heavy metals (Co, Cd, Cr, Cu, Ni, Pb, and Zn) in the sediments of the River Turia, a typical Mediterranean River, located in the East of the Iberian Peninsula. The methodology includes their identification in two years (2012, 22 sampling points, and 2013, 27 sampling points). Two pollution index, one individual (Geo-accumulation Igeo, Igeo) that estimated the potential contamination of each metal and a synthetic one (Potential ecorisk index range, PERI) which gets the potential contamination of all 7 grouped applied to each set of data. In addition, to establish possible spatial patterns it has been developed an analysis of the distribution of both indicators and on both dates with Geographic Information Systems, for that purpose it has been divided the River into three segments: upper part (represented by 10 points in 2012 and 13 in 2013), middle part (with 7 points in 2012 and 6 in 2013) and lower section (with 5 points in 2012 and 8 in 2013). Results show that lower concentrations of contaminants were given in 2012 than in 2013. In 2012 the Igeo index, which is distributed in a qualitative range of seven categories ranging from low pollution to very high pollution, are only meaningful for Zn, with "low to moderate" pollution in 13 places (6 points in

  6. Sensitivity of sediment contamination in the Elbe Estuary to climate change

    Science.gov (United States)

    Kleisinger, Carmen; Haase, Holger; Hentschke, Uwe; Schubert, Birgit

    2015-04-01

    As a result of the projected climate-induced changes of temperature and precipitation (IPCC, 2007), an increase of the frequency and intensity of extreme events such as floods, storm surges or of extended periods of low river discharge is to be expected. An increase of flood events would result in an additional input of contaminated sediments from the inland. Contaminated particles will be transported along the rivers to the estuaries and consequently, a deterioration of the quality of estuarine particulate matter may occur. In addition, a sea level rise is predicted to occur along with global warming. In case of sea level rise or more frequent low river discharge situations, the upstream transport of slightly contaminated sediments of marine origin may be intensified, and cause decreasing concentrations of contaminants in particulate matter. The contamination of particulate matter plays an important role for the ecological quality of water bodies and has accordingly to be taken into account in the sediment management of navigable waters. This study focuses on the assessment of potential climate-induced and other man-made changes of particle-bound contaminant concentrations in the estuary of the river Elbe and the resulting challenges for sediment management in this navigable waterway. The estimation of climate-induced changes of contaminant concentrations in estuarine particulate matter was based on results of projections on the fluvial particulate matter input into the Elbe estuary in the near (2021-2050) and far future (2071-2100) and on assumed extreme changes of such inputs. A mixing model using the concentrations of selected contaminants as indicators for marine and fluvial particulate matter was applied. Distinct changes of contaminant concentrations were found only for the far future and with the assumed extreme particulate matter inputs in the inner Elbe estuary. The worst-case scenario indicated that concentrations of some organochlorine contaminants in

  7. Heavy metal contamination of coastal lagoon sediments: Fongafale Islet, Funafuti Atoll, Tuvalu.

    Science.gov (United States)

    Fujita, Masafumi; Ide, Yoichi; Sato, Daisaku; Kench, Paul S; Kuwahara, Yuji; Yokoki, Hiromune; Kayanne, Hajime

    2014-01-01

    To evaluate contamination of coastal sediments along Fongafale Islet, Central Pacific, a field survey was conducted in densely populated, sparsely populated, open dumping and undisturbed natural areas. Current measurements in shallow water of the lagoon indicated that contaminants from the densely populated area would only be transported for a small proportion of a tidal cycle. Acid-volatile sulfides were detected in both the intertidal beach and nearshore zones of the densely populated area, whereas these were no detection in the other areas. This observation lends support to argument that the coastal pollution mechanism that during ebb tide, domestic wastewater leaking from poorly constructed sanitary facilities seeps into the coast. The total concentrations of Cr, Mn, Ni, Cu, Zn, Cd and Pb were relatively high in all of the areas except the undisturbed natural area. The indices of contamination factor, pollution load index and geoaccumulation index were indicative of heavy metal pollution in the three areas. The densely populated area has the most significant contamination; domestic wastewater led to significant contamination of coastal sediments with Cr, Zn, Cu, Pb and Cd. The open dumping area is noteworthy with respect to Mn and Ni, which can be derived from disposed batteries. Crown Copyright © 2013. Published by Elsevier Ltd. All rights reserved.

  8. Induced metal redistribution and bioavailability enhancement in contaminated river sediment during in situ biogeochemical remediation.

    Science.gov (United States)

    Liu, Tongzhou; Zhang, Zhen; Mao, Yanqing; Yan, Dickson Y S

    2016-04-01

    In situ sediment remediation using Ca(NO3)2 or CaO2 for odor mitigation and acid volatile sulfide (AVS) and organic pollutant (such as TPH and PAHs) removal was reported in many studies and fieldwork. Yet, the associated effects on metal mobilization and potential distortion in bioavailability were not well documented. In this study, contaminated river sediment was treated by Ca(NO3)2 and CaO2 in bench studies. Through the investigation of AVS removal, organic matter removal, the changes in sediment oxidation-reduction potential (ORP), microbial activity, and other indigenous parameters, the effects on metal bioavailability, bioaccessibility, and fraction redistribution in sediment were evaluated. The major mechanisms for sediment treated by Ca(NO3)2 and CaO2 are biostimulation with indigenous denitrifying bacteria and chemical oxidation, respectively. After applying Ca(NO3)2 and CaO2, the decreases of metal concentrations in the treated sediment were insignificant within a 35-day incubation period. However, the [SEMtot-AVS]/f OC increased near to the effective boundary of toxicity (100 μmol g(-1) organic carbon (OC)), indicating that both bioavailability and bioaccessibility of metals (Cu, Zn, and Ni) to benthic organisms are enhanced after remediation. Metals were found redistributed from relatively stable fractions (oxidizable and residual fractions) to weakly bound fractions (exchangeable and reducible fractions), and the results are in line with the enhanced metal bioavailability. Compared with Ca(NO3)2, CaO2 led to higher enhancement in metal bioavailability and bioaccessibility, and more significant metal redistribution, probably due to its stronger chemical reactive capacity to AVS and sediment organic matter. The reactions in CaO2-treated sediment would probably shift from physicochemical to biochemical heterotrophic oxidation for sediment organic matter degradation. Therefore, further investigation on the long-term metal redistribution and associated

  9. Mercury contamination of riverine sediments in the vicinity of a mercury cell chlor-alkali plant in Sagua River, Cuba.

    Science.gov (United States)

    Bolaños-Álvarez, Yoelvis; Alonso-Hernández, Carlos Manuel; Morabito, Roberto; Díaz-Asencio, Misael; Pinto, Valentina; Gómez-Batista, Miguel

    2016-06-01

    Sediment is a great indicator for assessing coastal mercury contamination. The objective of this study was to assess the magnitude of mercury pollution in the sediments of the Sagua River, Cuba, where a mercury-cell chlor-alkali plant has operated since the beginning of the 1980s. Surface sediments and a sediment core were collected in the Sagua River and analyzed for mercury using an Advanced Mercury Analyser (LECO AMA-254). Total mercury concentrations ranged from 0.165 to 97 μg g(-1) dry weight surface sediments. Enrichment Factor (EF), Index of Geoaccumulation (Igeo) and Sediment Quality Guidelines were applied to calculate the degrees of sediment contamination. The EF showed the significant role of anthropogenic mercury inputs in sediments of the Sagua River. The result also determined that in all stations downstream from the chlor-alkali plant effluents, the mercury concentrations in the sediments were higher than the Probable Effect Levels value, indicating a high potential for adverse biological effects. The Igeo index indicated that the sediments in the Sagua River are evaluated as heavily polluted to extremely contaminated and should be remediated as a hazardous material. This study could provide the latest benchmark of mercury pollution and prove beneficial to future pollution studies in relation to monitoring works in sediments from tropical rivers and estuaries.

  10. Baseline evaluation of sediment contamination in the shallow coastal areas of Saudi Arabian Red Sea

    KAUST Repository

    Ruiz-Compean, Pedro

    2017-09-12

    Despite the growing recognition of the importance of water and sediment quality there is still limited information on contamination levels in many regions globally including the Red Sea. This study provides a comprehensive assessment of three classes of contaminants (Polycyclic Aromatic Hydrocarbons - PAH; metals; plastics) in coastal sediments along the Saudi Arabian Red Sea mainly collected using grabs. Background concentrations are provided for metals in the region. Concentrations of metals and PAH were generally low in comparison to international guidelines. A clear relationship between the concentration of metals and anthropogenic sources was not always apparent and dust and vegetation may be relevant players in the region. Microplastic items (mainly polyethylene) were abundant (reaching up to 1gm−2 and 160piecesm−2) and in general associated with areas of high human activity. This study provides critical information for future monitoring and the development of national policies within the Red Sea region.

  11. Bioremediation of Contaminated Lake Sediments and Evaluation of Maturity Indicies as Indicators of Compost Stability

    Directory of Open Access Journals (Sweden)

    Y. Anjaneyulu

    2005-08-01

    Full Text Available Land contamination is one of the widely addressed problems, which is gaining importance in many developed and developing countries. International efforts are actively envisaged to remediate contaminated sites as a response to adverse health effects. Popular conventional methodologies only transfer the phase of the contaminant involving cost intensive liabilities besides handling risk of the hazardous waste. Physico-chemical methods are effective for specific wastes, but are technically complex and lack public acceptance for land remediation. “Bioremediation”, is one of the emerging low-cost technologies that offer the possibility to destroy various contaminants using natural biological activities. Resultant non -toxic end products due to the microbial activity and insitu applicability of this technology is gaining huge public acceptance. In the present study, composting is demonstrated as a bioremediation methodology for the stabilization of contaminated lake sediments of Hyderabad, A.P, India. Lake sediment contaminated with organics is collected from two stratums – upper (0.25 m and lower (0.5m to set up as Pile I (Upper and Pile II (Lower in the laboratory. Lime as a pretreatment to the lake sediments is carried out to ensure metal precipitation. The pretreated sediment is then mixed with organic and inorganic fertilizers like cow dung, poultry manure, urea and super phosphate as initial seeding amendments. Bulking agents like sawdust and other micronutrients are provided. Continuous monitoring of process control parameters like pH, moisture content, electrical conductivity, total volatile solids and various forms of nitrogen were carried out during the entire course of the study. The stability of the compost was evaluated by assessing maturity indices like C/N, Cw (water soluble carbon, CNw (Cw/Nw, nitrification index (NH4/NO-3, Cation Exchange Capacity (CEC, germination index, humification ratio, compost

  12. Arsenic mobility from anthropogenic impoundment sediments - Consequences of contamination to biota, water and sediments, Posa, Eastern Slovakia

    Energy Technology Data Exchange (ETDEWEB)

    Hiller, E.; Jurkovic, L.; Kordik, J.; Slaninka, I.; Jankular, M.; Majzlan, J.; Gottlicher, J.; Steininger, R. [Geological Survey of Slovak Republic, Bratislava (Slovakia). Dept. of Environmental Geochemistry

    2009-11-15

    An impoundment located near the village of Posa, Slovakia, is a significant source of contamination with As originating from the deposited coal fly-ash. Waters penetrating the impoundment are enriched in As and other potentially toxic elements. As a consequence of the contamination, the Kyjov Brook and the Ondava River have been extensively polluted. The mobility and solid-state partitioning of As in the impoundment material and stream sediments were investigated using column leaching and batch extraction tests, and a five-step sequential extraction procedure. Moreover, to investigate the bioavailability of As, two native plant species (Typha latifolia, or cattail, and Phragmites australis, or common reed) growing at the site were collected and analyzed. The As concentrations in representative sediment and water samples ranged from 36.3 to 3210 mg/kg and from 4.05 to 613 {mu} g/L, respectively, both being many times above the background levels. Although a part of As was present in a readily soluble form (6.6%), the majority of As was mainly associated with Fe and Mn oxides (37%) and residual phases (51%). Combined results of the column leaching, batch extraction, and sequential extraction tests, as well as mineralogical analysis, indicated that As mobilisation potential from the sediments is likely controlled by Fe, Al and Mn oxides, and by pH. There was no influence of various anions (PO{sub 4}{sup 3-}, SO{sub 4}{sup 2-}, NO{sup 3-}, Cl{sup -} and HCO{sub 3}{sup -}) on As mobility when present in aqueous solution at concentrations analogous to those in the water of the Kyjov Brook. Plants growing in the impoundment had As concentrations 10-100 times greater than did the same plants growing in a relatively non-polluted area.

  13. Remedial Investigation Report: White Phosphorus Contamination of Salt Marsh Sediments at Eagle River Flats, Alaska

    Science.gov (United States)

    1992-03-31

    shot (Friend 1987). WP particles ingested by waterfowl should be in the size range of other food items selected by dabbling ducks (Nudds and Bowlby ... Bowlby 1984) or gizzard mattial selected by ducks. The smallest particles isolated were around 0.25 mm in length. However, if the black specks observed...0.082 mm in diameter is smaller than food items usually selected (Nudds and Bowlby 1984). Contaminated sediments probably contain many small

  14. Methods for Estimating Adsorbed Uranium(VI) and Distribution Coefficients of Contaminated Sediments

    Science.gov (United States)

    Kohler, M.; Curtis, G.P.; Meece, D.E.; Davis, J.A.

    2004-01-01

    Assessing the quantity of U(VI) that participates in sorption/desorption processes in a contaminated aquifer is an important task when investigating U migration behavior. U-contaminated aquifer sediments were obtained from 16 different locations at a former U mill tailings site at Naturita, CO (U.S.A.) and were extracted with an artificial groundwater, a high pH sodium bicarbonate solution, hydroxylamine hydrochloride solution, and concentrated nitric acid. With an isotopic exchange method, both a KD value for the specific experimental conditions as well as the total exchangeable mass of U(VI) was determined. Except for one sample, KD values determined by isotopic exchange with U-contaminated sediments that were in equilibrium with atmospheric CO2 agreed within a factor of 2 with KD values predicted from a nonelectrostatic surface complexation model (NEM) developed from U(VI) adsorption experiments with uncontaminated sediments. The labile fraction of U(VI) and U extracted by the bicarbonate solution were highly correlated (r2 = 0.997), with a slope of 0.96 ?? 0.01. The proximity of the slope to one suggests that both methods likely access the same reservoir of U(VI) associated with the sediments. The results indicate that the bicarbonate extraction method is useful for estimating the mass of labile U(VI) in sediments that do not contain U(IV). In-situ KD values calculated from the measured labile U(VI) and the dissolved U(VI) in the Naturita alluvial aquifer agreed within a factor of 3 with in-situ K D values predicted with the NEM and groundwater chemistry at each well.

  15. Polycyclic aromatic hydrocarbons and trace metal contamination of coastal sediment and biota from Togo.

    Science.gov (United States)

    Gnandi, Kissao; Musa Bandowe, Benjamin A; Deheyn, Dimitri D; Porrachia, Magali; Kersten, Michael; Wilcke, Wolfgang

    2011-07-01

    The state of contamination of tropical environments, particularly in Africa, remains a relatively under explored subject. Here, we determined polycyclic aromatic hydrocarbon (PAH) and trace metal concentrations in coastal sediment and biota samples (fish and mussels) from Togo (West Africa). In the sediments, the ∑21 PAH concentrations ranged from EF) values relative to the Earth's crust show that the contamination is extremely severe for Cd (EF = 191), severe for Cr (EF = 18) and U (EF = 17.8), moderately severe for Zr (EF = 8.8), for Ni (EF = 6.8), Sr (EF = 5.9) and Ba (EF = 5.4), and moderate for V (EF = 3.6) and Zn (EF = 3.4). Sediments sampled in areas affected by the dumping of phosphorite mine tailings showed particularly high concentrations of trace metals. Overall, concentrations of both PAHs and trace metals in sediment tend to increase from the coastline to the open sea (2 km offshore). This is attributable to the increasingly finer texture of coastal sediment found offshore, which has a terrigenous origin and appears loaded with various contaminants through adsorption processes. Such high loads of trace metals were also found in the biota (fish and mussels). The ratio of measured trace metal concentrations in biota to threshold limits set by the World Health Organization herein defined as relative health factor (RHF) was high. Average RHF values in fish were highest for Se (470), As (250), Ag (97), Ni (78), Mn (63), Fe (53), Pb (36), Cd (10), and Cr (7) while lowest for Cu (0.08) and Zn (0.03). Cd and Al did not bioaccumulate in the analyzed fish species. In mussels, the RHF values were highest for Fe (9,108), As (295), Pb (276), Se (273), Mn (186), Ni (71), Ag (70), Cd (14), and Cu (4).

  16. Origins of sediment-associated contaminants to the Marais Vernier, the Seine Estuary, France

    Science.gov (United States)

    Van Metre, P.C.; Mesnage, V.; Laignel, B.; Motelay, A.; Deloffre, J.

    2008-01-01

    The Marais Vernier is the largest freshwater wetland in the Seine Estuary in northern France. It is in a heavily urbanized and industrialized region and could be affected by atmospheric deposition and by fluvial input of contaminants in water diverted from the Seine River. To evaluate contaminant histories in the wetland and the region, sediment cores were collected from two open-water ponds in the Marais Vernier: the Grand-Mare, which was connected to the Seine by a canal from 1950 to 1996, and the Petite Mare, which has a small rural watershed. Diversions from the Seine to the Grand-Mare increased sedimentation rates but mostly resulted in low contaminant concentrations and loading rates, indicating that the sediment from the Seine was predominantly brought upstream by tidal currents from the estuary and was not from the watershed. Atmospheric sources of metals dominate inputs to the Petite Mare; however, runoff of metals from vehicle-related sources in the watershed might contribute to the upward trends in concentrations of Cr, Cu, and Zn. Estimates of atmospheric deposition using the Petite Mare core are consistent with measured deposition in the region and are mixed (similar for Hg and Pb; larger for Cd, Cu, and Zn) compared with deposition estimated from sediment cores in the northeastern United States. A local source of PAHs in the watershed of the Petite Mare is indicated by higher concentrations, higher accumulation rates, and a different, more petrogenic, PAH assemblage than in the Grand-Mare. The study illustrates how diverse sources and transport pathways can affect wetlands in industrial regions and can be evaluated using sediment cores from the wetland ponds. ?? 2008 Springer Science+Business Media B.V.

  17. Wastewater canal Vojlovica, industrial complex Pančevo, Serbia – preliminary ecotoxicological assessment of contaminated sediment

    Directory of Open Access Journals (Sweden)

    IVANA PLANOJEVIĆ

    2011-03-01

    Full Text Available Effluents collected from the industrial complex of Pančevo, Serbia (oil refinery, petrochemical plant, and fertilizer factory, are discharged into a wastewater canal entering the Danube River. In this study, which was focused on sediment assessment, a complex triad approach consisting of chemical analysis, sediment toxicity tests and macrozoobenthos community analysis was applied. In toxicity tests on sediment elutriates, the following responses were registered – stimulatory effect in algal bioassay, no effect in acute test with Daphnia magna, and low to moderate toxicity in the conventional Vibrio fischeri test. Moderate to high toxicities were recorded in solid phase tests on Myriophyllum aquaticum and V. fischeri. High content of Hg, certain PAHs and non-characterised sediment contaminants accumulated over years contribute not only to the registered toxicity, but also to the complete absence of macrozoobenthos. The obtained results proved that regularly measured conventional and priority pollutants are hardly ever the only toxic contaminants present in sediments. Toxicity tests, in particular the contact test, might guide towards a better selection of parameters to be regularly or occasionally monitored. In addition, complete sediment toxicity tests proved to be an appropriate method for assessing the bioavailability of the chemically detected contaminants. The analysis of the macrozoobenthos composition and structure as inevitable part of sediment risk assessment procedures integrates the effects of multiple stressors and gives a realistic insight into not only sediment contamination by toxic pollutants, but also the sediment status in general.

  18. Spatial distribution of contaminants in sediments of two rivers crossing Tangier (northern Morocco).

    Science.gov (United States)

    Rodríguez-Barroso, M R; Benhamou, Y; Coello, D; El Moumni, B; García-Morales, J L

    2010-02-01

    The distribution and accumulation of heavy metals in the sediments of two rivers which cross various agglomerations of Tangier city, Morocco, were investigated. Surficial sediment samples were collected during 2005 and characterized for metal content (Zn, Pb, Cd, Cu, Cr and Ni), organic matter, total nitrogen, and n-hexane extractable material (HEM). The organic components (organic carbon, total nitrogen and HEM) show a slightly increasing enrichment from the upstream to the downstream of the emissary. An evaluation of the heavy metal pollution status of both tributaries was carried out using the metal pollution index (MPI). The results revealed the importance of anthropic pressure and the zones influenced by industrial discharges, which keep the metals Pb, Cr and Ni at high levels. Comparison with international regulatory guidelines for sediments revealed serious contamination of Cr, Zn and Ni.

  19. Oil residue contamination of continental shelf sediments of the Gulf of Mexico.

    Science.gov (United States)

    Harding, V; Camp, J; Morgan, L J; Gryko, J

    2016-12-15

    We have investigated the distribution of a heavy oil residue in the coastal sediments of the Gulf of Mexico. The amount of the contamination was determined by high-temperature pyrolysis coupled with the Gas Chromatography-Mass Spectrometry (GCMS) of air-dried sediments. The pyrolysis products contain straight-chain saturated and unsaturated hydrocarbons, such as dodecane and 1-dodecene, resulting in a very characteristic pattern of double peaks in the GCMS. Hydrocarbons containing 8 to 23 carbon atoms were detected in the pyrolysis products. Using thermal pyrolysis we have found that the sediment samples collected along Texas, Louisiana, and Mississippi shores contain no detectable traces of oil residue, but most of the samples collected along Alabama and Florida shores contain ~200ppm of heavy oil residue. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Bacterial community response to petroleum contamination and nutrient addition in sediments from a temperate salt marsh.

    Science.gov (United States)

    Ribeiro, Hugo; Mucha, Ana P; Almeida, C Marisa R; Bordalo, Adriano A

    2013-08-01

    Microbial communities play an important role in the biodegradation of organic pollutants in sediments, including hydrocarbons. The aim of this study was to evaluate the response of temperate salt marsh microbial communities to petroleum contamination, in terms of community structure, abundance and capacity to degrade hydrocarbons. Sediments un-colonized and colonized (rhizosediments) by Juncus maritimus, Phragmites australis and Triglochin striata were collected in a temperate estuary (Lima, NW Portugal), spiked with petroleum under variable nutritional conditions, and incubated for 15 days. Results showed that plant speciation emerged as the major factor for shaping the rhizosphere community structure, overriding the petroleum influence. Moreover, when exposed to petroleum contamination, the distinct salt marsh microbial communities responded similarly with (i) increased abundance, (ii) changes in structure, and (iii) decreased diversity. Communities, particularly those associated to J. maritimus and P. australis roots displayed a potential to degrade petroleum hydrocarbons, with degradation percentages between 15% and 41%, depending on sediment type and nutritional conditions. In conclusion, distinct salt marsh microbial communities responded similarly to petroleum contamination, but presented different pace, nutritional requirements, and potential for its biodegradation, which should be taken into account when developing bioremediation strategies.

  1. The microbial community structure in petroleum-contaminated sediments corresponds to geophysical signatures

    Science.gov (United States)

    Allen, J.P.; Atekwana, E.A.; Duris, J.W.; Werkema, D.D.; Rossbach, S.

    2007-01-01

    The interdependence between geoelectrical signatures at underground petroleum plumes and the structures of subsurface microbial communities was investigated. For sediments contaminated with light non-aqueousphase liquids, anomalous high conductivity values have been observed. Vertical changes in the geoelectrical properties of the sediments were concomitant with significant changes in the microbial community structures as determined by the construction and evaluation of 16S rRNA gene libraries. DNA sequencing of clones from four 16S rRNA gene libraries from different depths of a contaminated field site and two libraries from an uncontaminated background site revealed spatial heterogeneity in the microbial community structures. Correspondence analysis showed that the presence of distinct microbial populations, including the various hydrocarbon-degrading, syntrophic, sulfate-reducing, and dissimilatory-iron-reducing populations, was a contributing factor to the elevated geoelectrical measurements. Thus, through their growth and metabolic activities, microbial populations that have adapted to the use of petroleum as a carbon source can strongly influence their geophysical surroundings. Since changes in the geophysical properties of contaminated sediments parallel changes in the microbial community compositions, it is suggested that geoelectrical measurements can be a cost-efficient tool to guide microbiological sampling for microbial ecology studies during the monitoring of natural or engineered bioremediation processes. Copyright ?? 2007, American Society for Microbiology. All Rights Reserved.

  2. The Elbe flood in August 2002--organic contaminants in sediment samples taken after the flood event.

    Science.gov (United States)

    Stachel, Burkhard; Jantzen, Eckard; Knoth, Wilhelm; Krüger, Frank; Lepom, Peter; Oetken, Matthias; Reincke, Heinrich; Sawal, Georg; Schwartz, René; Uhlig, Steffen

    2005-01-01

    In the course of this study 37 sediment samples were analyzed. They were taken after the flooding in September 2002 along the Elbe and at the mouths of its major tributaries. The sampling program covered the entire river stretch that was affected by the floods, from Obristvi (Czech Republic) to the Elbe estuary (North Sea) on the German coast. Analyses were performed for dioxins, nonylphenols, nonylphenol ethoxylates, bisphenol A, DEHP, musk fragrances, polybrominated diphenylethers, chloroalkylphosphates, organochlorine compounds, PAH, and organotin compounds. The results show that only a few weeks after the flood, contaminant concentrations in solid matter were comparable to those prevailing beforehand. Significant sources of contaminant input proved to be the tributaries Vltava (Moldau), Bilina (both in the Czech Republic), and the Mulde (Germany), as well as industrial and municipal sewage treatment works (STW) located along the Elbe. Further point sources are to be found in still water zones such as harbors and abandoned channels. These sources are activated when erosive action stirs up older sediments. Statistical analyses of the congener distribution of the dioxins provided evidence on the sources of these contaminants and freight levels in different river sections. The chemical analyses were complemented by results of ecotoxicological investigations with two sediment organisms (Chironomus riparius and Potamopyrgus antipodarum).

  3. Desorption of organochlorine pesticides from historically contaminated sediments into water-biofuel mixtures

    Science.gov (United States)

    Otero-Diaz, M.; Demond, A. H.

    2014-12-01

    Gasoline spills in surface waters generally volatilize due to their low miscibility and high volatility. However, biofuel blends may contain ethanol, a compound completely miscible in water. As hazardous components of gasoline are more soluble in ethanol than in water, the presence of ethanol increases the solubilization of these components, such as benzene, toluene, ethylbenzene, and xylenes (BTEX), in surface water. Furthermore, many of these spills may occur in water bodies that have sediments that are historically contaminated with persistent organic contaminants such as organochlorine pesticides. High concentrations of ethanol in the water column, along with solubilized components of gasoline, may increase the desorption of organochlorine pesticides from the sediment. Thus spills of ethanol/gasoline fuel blends have the potential of increasing concentrations of hazardous compounds in rivers and lakes, resulting in increased risk for human and ecological exposure. Using UNIFAC to calculate activity coefficients, one can predict the enhancement of the solubility of pesticides in the aqueous phase as the ethanol fraction increases. Moreover, by predicting the solubility of pesticides in both the aqueous phase and an organic liquid phase, one can construct ternary phase diagrams that show the partitioning behavior of pesticides as a function of ethanol fraction. Such information is useful in estimating the amount of desorption from contaminated sediments that may occur in the presence of biofuel spills. In order to confirm the predicted values, experiments have been conducted to measure the impact of ethanol on the partitioning coefficients of pesticides.

  4. Contaminants, benthic communities, and bioturbation: potential for PAH mobilisation in Arctic sediments

    Energy Technology Data Exchange (ETDEWEB)

    Konovalov, D.; Renaud, P.E.; Berge, J.; Voronkov, A.Y.; Cochrane, S.K.J. [Polar Environmental Center, Tromso (Norway)

    2010-07-01

    Marine benthic fauna and biological mixing were studied in relation to sediment organic enrichment and polyaromatic hydrocarbons (PAHs) in bottom sediments of Svalbard. We investigated how organic enrichment may affect the fate and chemical composition of deposited contaminants by impacting biological reworking by faunal communities. Samples were collected near active coal mines at Barentsburg and at the mouth of Groenfjord. PAH sources in both areas were coal particles and pyrolytic compounds from coal-driven power stations. The results from a bioturbation experiment were consistent with the hypothesis that fauna enhance the vertical transport of PAHs within the sediment. Faunal community composition was similar at the two sites, with polychaete worms comprising 85% of the fauna. Abundances and taxon richness were eight and ten times higher in the organically enriched sediments near Barentsburg, and total PAH concentrations were up to three times higher in Barentsburg. Unlike expectations derived from models developed for temperate regions, organic enrichment in oligotrophic areas, such as this Arctic site, enhanced the biomass and bioturbation potential of benthic communities. Hence, new insights into the relationships among enrichment, benthic communities and the fate of contaminants must be considered in management and regulatory efforts in these areas.

  5. Study of the sediment contamination levels in a mangrove swamp polluted by a marine oil spill

    Energy Technology Data Exchange (ETDEWEB)

    Wong, T.W.Y.; Ke, L.; Wong, Y.S.; Tam, N.F.Y. [City University of Hong Kong, Hong Kong SAR (China)

    2002-07-01

    The pattern of oil retention in mangrove sediments was studied in an effort to determine the temporal changes of petroleum hydrocarbon concentrations and composition several months after oil spills occur. Mangroves are inter-tidal wetlands in tropical and subtropical coastlines. Due to the anoxic and water logging characteristics of mangrove sediments, oil residues linger much longer in these wetlands compared to other coastal habitats. In November 2000, an accidental oil spill occurred in the Pearl River Estuary in which approximately 230,000 litres of crude oil was leaked from an oil tanker. The spilled oil migrated to the YiO, a typical mangrove swamp in Hong Kong Special Administrative Region. The degree of oil contamination in the sediments depended on the sediment texture and topography of the mangrove. The total petroleum hydrocarbon (TPH) concentration of the sediments in the most affected area near a freshwater creek flowing into the sea was 130 times higher than normal, one month after the accident. The mean TPH concentration was 2862 ug/g of dry sediment while the mean carbon preference index was 1.22 compared to the background value of 3.97. The temporal changes of the petroleum hydrocarbon level in 5 defined areas were examined for 7 months after the spill. The most polluted area next to the creek was determined to have very high TPH levels in the muddy sediments even 7 months after the spill. Oil residues infiltrated as deep as 20 cm into the sediments, making it more difficult to degrade than surface pollution and posing long-term adverse effects on trees in the area. It was determined that with growing industrialization and increasing demands for fuel and energy supply, mangroves in South China should be ranked as top priority for protection from oil spills. 19 refs., 6 tabs., 6 figs.

  6. Environmental forensics evaluation of sources of sediment hydrocarbon contamination in Milford Haven Waterway.

    Science.gov (United States)

    Little, David I; Galperin, Yakov; Bullimore, Blaise; Camplin, Mike

    2015-02-01

    Current and historic petroleum-related activities in Milford Haven Waterway (MHW; Wales, UK) contribute to hydrocarbon contamination of surficial sediments. Three main hydrocarbon components of sediments were analyzed: (1) aliphatic hydrocarbons of predominantly biogenic origin, representing about 5-15% of total hydrocarbons (THC); (2) polycyclic aromatic hydrocarbons (PAHs) from recent petrogenic and mainly older pyrogenic sources, representing about 2-6% of THC; (3) unresolved complex mixture from spill-related and heavily-weathered petrogenic sources, representing as much as 70-85% of THC. Environmental forensics evaluation of the data demonstrate that although 72,000 tonnes (t) crude oil spilled from the Sea Empress in 1996, the Forties blend cargo was not identified in 2010. However, using biomarkers, heavy fuel oil (HFO) from Sea Empress' bunkers (480 t spilled) was detected further upstream and more widely than previously. Iranian crude (100 t) spilled by the El Omar in 1988 and fuel (130,000 t) lost during bombing in 1940 also were tentatively identified. The PAH source ratios demonstrate that the historic pyrogenic PAHs come mainly from biomass and coal combustion. The distribution pattern of PAHs appeared more pyrogenic in 2012 than in 1996, as if recovering from the more petrogenic signature, in places, of the Sea Empress. The heavier PAH distributions were pyrogenic at most stations, and similar to those in sediments from oil terminal berths up to 2006, when dredging operations peaked. Partly as a result of this, in 2007 the concentrations of PAHs peaked throughout the waterway. Apart from effluent, atmospheric and runoff inputs, most of the identified inputs to the surficial sediments are historic. Therefore, likely processes include disturbance by construction (e.g. pile-driving) and dredging of contaminants sequestered in sediments, followed by their wide redistribution via suspended sediment transport.

  7. Mineral-Water Interface Processes Affecting Uranium Fate in Contaminated Sediments

    Science.gov (United States)

    Catalano, J. G.

    2011-12-01

    Widespread uranium contamination of soil, sediments, and groundwater systems has resulted from mining activities, nuclear weapon production, and energy generation. The fate and transport of uranium in such systems is strongly affected by geochemical processes occurring at mineral-water interfaces. I will present a summary of the mineral-water interface processes found to affect uranium fate in example contaminated sediments at the U.S. Department of Energy's Hanford sites and in related model systems. Processes occurring under oxic conditions will be the primary focus of this talk as under these conditions uranium is most mobile and thus presents the greatest hazard. Three dominant solid-phase uranium species are observed in contaminated soil and sediments at the Hanford site: uranyl silicates, uranyl phosphates, and uranyl adsorbed to clays and iron oxides. In deep sediments, uranyl silicates are found in microfractures in feldspar grains, likely because slow diffusion in such fractures maintains a high silicate activity. Such silicates are also found in waste-impacted shallow sediments and soil; waste fluids or evaporative processes may have generated the silicate activity needed to produce such phases. Uranyl phosphates are less abundant, occurring primarily in shallow sediments exposed to P-bearing waste fluids. However, remediation approaches under consideration may produce substantial quantities of uranyl phosphates in the future. Adsorbed uranyl is dispersed throughout contaminated soils and shallow sediments and likely has the greatest potential for remobilization. Analogue studies show that precipitation of uranyl phosphates is rapid when such phases are supersaturated and that both homogeneous and heterogeneous nucleation may occur. Specific adsorption of uranyl to minerals is strongly affected by the presence of complexation anions. Carbonate suppresses uranyl adsorption but also forms uranyl-carbonate ternary surface complexes. At conditions below

  8. Final Project Report: Release of aged contaminants from weathered sediments: Effects of sorbate speciation on scaling of reactive transport

    Energy Technology Data Exchange (ETDEWEB)

    Jon Chorover, University of Arizona; Peggy O' €™Day, University of California, Merced; Karl Mueller, Penn State University; Wooyong Um, Pacific Northwest National Laboratory; Carl Steefel, Lawrence Berkeley National Laboratory

    2012-10-01

    Hanford sediments impacted by hyperalkaline high level radioactive waste have undergone incongruent silicate mineral weathering concurrent with contaminant uptake. In this project, we studied the impact of background pore water (BPW) on strontium, cesium and iodine desorption and transport in Hanford sediments that were experimentally weathered by contact with simulated hyperalkaline tank waste leachate (STWL) solutions. Using those lab-weathered Hanford sediments (HS) and model precipitates formed during nucleation from homogeneous STWL solutions (HN), we (i) provided detailed characterization of reaction products over a matrix of field-relevant gradients in contaminant concentration, PCO2, and reaction time; (ii) improved molecular-scale understanding of how sorbate speciation controls contaminant desorption from weathered sediments upon removal of caustic sources; and (iii) developed a mechanistic, predictive model of meso- to field-scale contaminant reactive transport under these conditions.

  9. Survey for Contaminants in Sediments at Selected Sites on the Upper Mississippi River including Mark Twain National Wildlife Refuge

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — A regional study of contaminants in sediments at selected locations on the Upper Mississippi River was conducted during the 1989 field season. The study focused...

  10. Copper and Other Contaminants in King's Bay and Crystal River (Florida) Sediments: Implications for Impact on the West Indian Manatee

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — Contaminant concentrations were measured in 25 sediment samples collected from King's Bay, the headwaters of the Crystal River, Florida. Total organic carbon content...

  11. Characterization of archaeal community in contaminated and uncontaminated surface stream sediments.

    Science.gov (United States)

    Porat, Iris; Vishnivetskaya, Tatiana A; Mosher, Jennifer J; Brandt, Craig C; Yang, Zamin K; Brooks, Scott C; Liang, Liyuan; Drake, Meghan M; Podar, Mircea; Brown, Steven D; Palumbo, Anthony V

    2010-11-01

    Archaeal communities from mercury and uranium-contaminated freshwater stream sediments were characterized and compared to archaeal communities present in an uncontaminated stream located in the vicinity of Oak Ridge, TN, USA. The distribution of the Archaea was determined by pyrosequencing analysis of the V4 region of 16S rRNA amplified from 12 streambed surface sediments. Crenarchaeota comprised 76% of the 1,670 archaeal sequences and the remaining 24% were from Euryarchaeota. Phylogenetic analysis further classified the Crenarchaeota as a Freshwater Group, Miscellaneous Crenarchaeota group, Group I3, Rice Cluster VI and IV, Marine Group I and Marine Benthic Group B; and the Euryarchaeota into Methanomicrobiales, Methanosarcinales, Methanobacteriales, Rice Cluster III, Marine Benthic Group D, Deep Sea Hydrothermal Vent Euryarchaeota 1 and Eury 5. All groups were previously described. Both hydrogen- and acetate-dependent methanogens were found in all samples. Most of the groups (with 60% of the sequences) described in this study were not similar to any cultivated isolates, making it difficult to discern their function in the freshwater microbial community. A significant decrease in the number of sequences, as well as in the diversity of archaeal communities was found in the contaminated sites. The Marine Group I, including the ammonia oxidizer Nitrosopumilus maritimus, was the dominant group in both mercury and uranium/nitrate-contaminated sites. The uranium-contaminated site also contained a high concentration of nitrate, thus Marine Group I may play a role in nitrogen cycle.

  12. In-situ Phytoremediation of PAH and PCB Contaminated Marine Sediments with Eelgrass (Zostera marina)

    Energy Technology Data Exchange (ETDEWEB)

    Huesemann, Michael H.; Hausmann, Tom S.; Fortman, Timothy J.; Thom, Ronald M.; Cullinan, Valerie I.

    2009-10-01

    In view of the fact that there are presently no cost-effective in-situ treatment technologies for contaminated sediments, a 60 week long phytoremediation feasibility study was conducted in seawater-supplied outdoor ponds to determine whether eelgrass (Zostera marina) is capable of removing polynuclear aromatic hydrocarbons (PAHs) and polychlorinated biphenyls (PCBs) from submerged marine sediments. It was determined that all PAHs and PCBs, independent of the number of aromatic rings and degree of chlorination, respectively, were removed to a much larger extent in planted sediments compared to unplanted controls. After 60 weeks of treatment, the concentration of total PAHs decreased by 73% in planted sediments but only 25% in unplanted controls. Similarly, total PCBs declined by 60% in the presence of plants while none were removed in the unplanted sediment. Overall, PAH and PCB biodegradation was greatest in the sediment layer that contained most of the eelgrass roots. Abiotic desorption tests conducted at week 32 confirmed that the phytoremediation process was not controlled by mass-transfer or bioavailability limitations since all PAHs and PCBs desorbed rapidly and to a large extent from the sediment. PAHs were detected in both roots and shoots, with root and shoot bioaccumulation factors for total PAHs amounting to approximately 3 and 1, respectively, after 60 weeks of phytoremediation treatment. Similarly, the root bioccumulation factor for total PCBs was around 4, while no PCBs were detected in the eelgrass leaves at the end of the experiment. The total mass fraction of PAHs and PCBs absorbed and translocated by plant biomass during the 60 week period was insignificant, amounting to less than 0.5% of the total mass of PAHs and PCBs which was initially present in the sediment. Finally, the number of total heterotrophic bacteria and hydrocarbon degraders was slightly but not statistically significantly greater in planted sediments than in unplanted controls

  13. Hazard identification of contaminated sites. Ranking potential toxicity of organic sediment extracts in crustacean and fish

    Energy Technology Data Exchange (ETDEWEB)

    Karlsson, J.; Sundberg, H.; Aakerman, G.; Grunder, K.; Eklund, B.; Breitholtz, M. [Dept. of Applied Environmental Science (ITM), Stockholm Univ. (Sweden)

    2008-09-15

    Background, aim, and scope: It is well known that contaminated sediments represent a potential long-term source of pollutants to the aquatic environment. To protect human and ecosystem health, it is becoming common to remediate contaminated sites. However, the great cost associated with, e.g., dredging in combination with the large numbers of contaminated sites makes it crucial to pinpoint those sites that are in greatest need of remediation. In most European countries, this prioritization process has almost exclusively been based on chemical analyses of known substances; only seldom toxicity data has been considered. The main objective of the current study was therefore to develop a tool for hazard identification of sediment by ranking potential toxicity of organic sediment extracts in a crustacean and a fish. A secondary objective was to investigate the difference in potential toxicity between compounds with different polarities. Materials and methods Early life stages of the crustacean Nitocra spinipes and the fish Oncorhynchus mykiss, which represent organisms from different trophic levels (primary and secondary consumer) and with different routes of exposure (i.e. ingestion through food, diffusive uptake, and maternal transfer), were exposed to hexane and acetone fractions (semi-polar compounds) of sediment from five locations, ranging from heavily to low contaminated. Preliminary tests showed that the extracts were non-bioavailable to the crustacean when exposed via water, and the extracts were therefore loaded on silica gel. Rainbow trout embryos were exposed using nano-injection technique. Results and discussion Clear concentration-response relationships of both mortality and larval development were observed in all tests with N. spinipes. Also for rainbow trout, the observed effects (e.g., abnormality, hemorrhage, asymmetric yolk sac) followed a dose-related pattern. Interestingly, our results indicate that some of the locations contained toxic semi

  14. Linking landslide susceptibility to sediment yield in the Romanian Carpathians

    Science.gov (United States)

    Broeckx, Jente; Vanmaercke, Matthias; Bǎlteanu, Dan; Chendeş, Viorel; Sima, Mihaela; Enciu, Petru; Poesen, Jean

    2016-04-01

    Recent studies revealed the importance of seismic activity in explaining regional patterns of catchment sediment yield (SY). This relation is often explained by the fact that seismic activity induces landslides that contribute to SY. Nevertheless, only a few studies focused on the effects of landslides on SY and even fewer studies have explored the potential of landslide susceptibility as a predictor for SY. The objective of this study is therefore to explore the potential of landslide susceptibility maps to explain the spatial variation of SY in the Romanian Carpathians, a region with moderate to high seismicity. 133 catchments, covering 63% of Romania, for which SY was measured during a period of at least 10 years and for which SY was not significantly affected by upstream reservoirs, were compiled and selected. 78 of these catchments were 'less disturbed', being covered for at least 50% by forest and semi-natural areas and confined to the Carpathian mountains. Landslide susceptibility in each catchment was assessed, using an earlier published state of the art landslide susceptibility map of Romania. Mean landslide susceptibility for each catchment shows a highly significant correlation with SY (r² = 0.44). This indicates that landslides are an important contributor to SY in Romania and suggests that regional and national landslide susceptibility maps can indeed be a useful tool to predict SY. Nevertheless, the susceptibility map did not explain much more of the observed variance in SY than some other individual catchment characteristics such as seismicity (r² = 0.40) and lithology (r² = 0.33). Also taking into account the spatial patterns of landslide susceptibility within the catchment did not significantly improve the observed correlations. Surprisingly, topography showed a nonsignificant correlation with SY, which can be attributed to the overwhelming effect of seismicity and lithology. Overall, our results suggest that seismicity is indeed a highly

  15. Toward understanding the impacts of sediment contamination on a native fish species: transcriptional effects, EROD activity, and biliary PAH metabolites

    OpenAIRE

    Koglin, Sven; Kammann, Ulrike; Eichbaum, Kathrin; Reininghaus, Mathias; Eisner, Bryanna; Wiseman, Steve; Hecker, Markus; Buchinger, Sebastian; Reifferscheid, Georg; Hollert, Henner; Brinkmann, Markus

    2016-01-01

    Background Both frequency and intensity of flood events are expected to increase as a result of global climate change in the upcoming decades, potentially resulting in increased re-suspension of sediments in fluvial systems. Contamination of these re-suspended sediments with legacy contaminants, including dioxins and dioxin-like compounds (DLCs), as well as polycyclic aromatic hydrocarbons (PAHs) is of great ecotoxicological concern. DLCs, and to some extent also PAHs, exhibit their toxicity ...

  16. Assessment of the caesium-137 flux adsorbed to suspended sediment in a reservoir in the contaminated Fukushima region in Japan.

    Science.gov (United States)

    Mouri, Goro; Golosov, Valentin; Shiiba, Michiharu; Hori, Tomoharu

    2014-04-01

    We estimated the flux of caesium-137 adsorbed to suspended sediment in the Kusaki Dam reservoir in the Fukushima region of eastern Japan, which was contaminated by the Fukushima Nuclear Power Plant accident. The amount and rate of reservoir sedimentation and the caesium-137 concentration were validated based on the mixed-particle distribution and a sediment transport equation. The caesium-137 and sediment flux data suggested that wash load, suspended load sediment, and caesium-137 were deposited and the discharge and transport processes generated acute pollution, especially during extreme rainfall-runoff events. Additionally, we qualitatively assessed future changes in caesium-137 and sediment fluxes in the reservoir. The higher deposition and discharge at the start of the projection compared to the 2090s are most likely explained by the radioactive decay of caesium-137 and the effects of reservoir sedimentation. Predictions of the impacts of future climate on sediment and caesium-137 fluxes are crucial for environmental planning and management.

  17. Utilization of bathymetry data to examine lead sediment contamination distributions in Lake Ontario

    Directory of Open Access Journals (Sweden)

    Chris H. Marvin

    2016-06-01

    Full Text Available Bathymetry data offer interesting opportunities for the analysis of contaminant distribution patterns. This research utilized lead surficial sediment sample data from Lake Ontario that were collected by the Canada Centre for Inland Waters in 1968 and 1998. Traditionally, two-dimensional analyses such as dot maps or proportional circle representation have been utilized to examine pollutant levels. Generating area estimates allows for expanded spatial analysis of contaminant distribution patterns. Lake-wide surfaces were derived using the ordinary kriging technique. These were then layered on bathymetry data to examine three-dimensional relationships between observed pollution patterns and lake-bottom features. Spatial variability was observed in both the 1968 and 1998 datasets. Contamination levels in 1998 dropped substantially, especially in areas that were previously the most heavily polluted and above the Probable Effect Level (4660.23 km2 or 26.72% of the common analysis area lake-bottom in 1998 versus 6189.07 km2 or 62.00% in 1968. Conversely, areas below the Threshold Effect Level increased from 922.09 km2 (5.29% in 1968 to 3484.22 km2 (19.98% in 1998. In both years, shallow and sill/ridge areas tended to have lower levels of contamination than deeper lake basins or contaminant inflow areas. The 1968 dataset likely provides a more detailed estimation surface as there were more points available for interpolation procedures. The kriging surfaces when combined with bathymetry, sedimentology information, and knowledge of physical processes provide a comprehensive illustration of the contaminant distributions whether they are high (1968 or when loadings are significantly reduced (1998. The results have implications for future sediment assessment programs and survey design on a lake-wide basis. The bathymetry data allowed for enhanced interpretation and an improved understanding of observed lead pollution patterns.

  18. Impact of dredged urban river sediment on a Saronikos Gulf dumping site (Eastern Mediterranean): sediment toxicity, contaminant levels, and biomarkers in caged mussels.

    Science.gov (United States)

    Tsangaris, Catherine; Strogyloudi, Evangelia; Hatzianestis, Ioannis; Catsiki, Vassiliki-Angelique; Panagiotopoulos, Ioannis; Kapsimalis, Vasilios

    2014-05-01

    Impacts of chemical contaminants associated with dumping of dredged urban river sediments at a coastal disposal area in Saronikos Gulf (Eastern Mediterranean) were investigated through a combined approach of sediment toxicity testing and active biomonitoring with caged mussels. Chemical analyses of aliphatic hydrocarbons (AHs), polycyclic aromatic hydrocarbons (PAHs), Cu, and Zn in combination with the solid phase Microtox® test were performed on sediments. Concentrations of PAHs, AHs, Cu, and Zn as well as multiple biomarkers of contaminant exposure and/or effects were measured in caged mussels. Sediments in the disposal and neighboring area showed elevated PAHs and AHs concentrations and were characterized as toxic by the solid-phase Microtox® test during and after dumping operations. Biomarker results in the caged mussels indicated sublethal effects mainly during dumping operations, concomitantly with high concentrations of PAHs and AHs in the caged mussel tissues. Cu and Zn concentrations in sediments and caged mussels were generally not elevated except for sediments at the site in the disposal area that received the major amount of dredges. High PAHs and AHs levels as well as sublethal effects in the caged mussels were not persistent after termination of operations. The combined bioassay-biomarker approach proved useful for detecting toxicological impacts of dredged river sediment disposal in sediments and the water column. Nevertheless, further research is needed to evaluate whether sediment toxicity will have long-term effects on benthic communities of the disposal area.

  19. Environmental Risk of Metal Mining Contaminated River Bank Sediment at Redox-Transitional Zones

    Directory of Open Access Journals (Sweden)

    Sarah F. L. Lynch

    2014-01-01

    Full Text Available Diffuse metal pollution from mining impacted sediment is widely recognised as a potential source of contamination to river systems and may significantly hinder the achievement of European Union Water Framework Directive objectives. Redox-transitional zones that form along metal contaminated river banks as a result of flood and drought cycles could cause biogeochemical changes that alter the behaviour of polyvalent metals iron and manganese and anions such as sulphur. Trace metals are often partitioned with iron, manganese and sulphur minerals in mining-contaminated sediment, therefore the dissolution and precipitation of these minerals may influence the mobility of potentially toxic trace metals. Research indicates that freshly precipitated metal oxides and sulphides may be more “reactive” (more adsorbent and prone to dissolution when conditions change than older crystalline forms. Fluctuations at the oxic-anoxic interface brought about through changes in the frequency and duration of flood and drought episodes may therefore influence the reactivity of secondary minerals that form in the sediment and the flux of dissolved trace metal release. UK climate change models predict longer dry periods for some regions, interspersed with higher magnitude flood events. If we are to fully comprehend the future environmental risk these climate change events pose to mining impacted river systems it is recommended that research efforts focus on identifying the primary controls on trace metal release at the oxic-anoxic interface for flood and drought cycles of different duration and frequency. This paper critically reviews the literature regarding biogeochemical processes that occur at different temporal scales during oxic, reducing and dry periods and focuses on how iron and sulphur based minerals may alter in form and reactivity and influence the mobility of trace metal contaminants. It is clear that changes in redox potential can alter the composition

  20. An integrated bioremediation process for petroleum hydrocarbons removal and odor mitigation from contaminated marine sediment.

    Science.gov (United States)

    Zhang, Zhen; Lo, Irene M C; Yan, Dickson Y S

    2015-10-15

    This study developed a novel integrated bioremediation process for the removal of petroleum hydrocarbons and the mitigation of odor induced by reduced sulfur from contaminated marine sediment. The bioremediation process consisted of two phases. In Phase I, acetate was dosed into the sediment as co-substrate to facilitate the sulfate reduction process. Meanwhile, akaganeite (β-FeOOH) was dosed in the surface layer of the sediment to prevent S(2-) release into the overlying seawater. In Phase II, NO3(-) was injected into the sediment as an electron acceptor to facilitate the denitrification process. After 20 weeks of treatment, the sequential integration of the sulfate reduction and denitrification processes led to effective biodegradation of total petroleum hydrocarbons (TPH), in which about 72% of TPH was removed. In Phase I, the release of S(2-) was effectively controlled by the addition of akaganeite. The oxidation of S(2-) by Fe(3+) and the precipitation of S(2-) by Fe(2+) were the main mechanisms for S(2-) removal. In Phase II, the injection of NO3(-) completely inhibited the sulfate reduction process. Most of residual AVS and S(0) were removed within 4 weeks after NO3(-) injection. The 16S rRNA clone library-based analysis revealed a distinct shift of bacterial community structure in the sediment over different treatment phases. The clones affiliated with Desulfobacterales and Desulfuromonadales were the most abundant in Phase I, while the clones related to Thioalkalivibrio sulfidophilus, Thiohalomonas nitratireducens and Sulfurimonas denitrificans predominated in Phase II.

  1. Investigation of the release of PAHs from artificially contaminated sediments using cyclolipopeptidic biosurfactants.

    Science.gov (United States)

    Portet-Koltalo, F; Ammami, M T; Benamar, A; Wang, H; Le Derf, F; Duclairoir-Poc, C

    2013-10-15

    Polycyclic aromatic hydrocarbons (PAHs) can be preponderant in contaminated sediments and understanding how they are sorbed in the different mineral and organic fractions of the sediment is critical for effective removal strategies. For this purpose, a mixture of seven PAHs was studied at the sediment/water interface and sorption isotherms were obtained. The influence of various factors on the sorption behavior of PAHs was evaluated, such as the nature of minerals, pH, ionic strength and amount of organic matter. Afterwards, the release of PAHs from the sediment by surfactants was investigated. The effectiveness of sodium dodecyl sulfate (SDS) was compared to natural biosurfactants, of cyclolipopeptidic type (amphisin and viscosin-like mixture), produced by two Pseudomonas fluorescens strains. The desorption of PAHs (from naphthalene to pyrene), from the highly retentive kaolinite fraction, could be favored by adding SDS or amphisin, but viscosin-like biosurfactants were only effective for 2-3 ring PAHs desorption (naphthalene to phenanthrene). Moreover, while SDS favors the release of all the target PAHs from a model sediment containing organic matter, the two biosurfactants tested were only effective to desorb the lowest molecular weight PAHs (naphthalene to fluorene).

  2. Redox oscillation affecting mercury mobility from highly contaminated coastal sediments: a mesocosm incubation experiment

    Directory of Open Access Journals (Sweden)

    Emili A.

    2013-04-01

    Full Text Available Mercury (Hg mobility at the sediment-water interface was investigated during a laboratory incubation experiment on highly contaminated sediments (up to 23 μg g−1 of the Gulf of Trieste. Undisturbed sediment was collected in front of the Isonzo River mouth, which inflows Hg-rich suspended material originating from the Idrija (NW Slovenia mining district. Since hypoxic and anoxic conditions at the bottom are frequently observed, a redox oscillation was simulated in the laboratory at in situ temperature, using a dark flux chamber. Temporal variations of several parameters were monitored simultaneously: dissolved Hg and methylmercury (MeHg, O2, NH4+, NO3−+NO2−, PO43−, H2S, dissolved Fe and Mn, dissolved inorganic and organic carbon (DIC and DOC. Benthic fluxes of Hg and MeHg were higher under anoxic conditions while re-oxygenation caused concentrations of MeHg and Hg to rapidly drop, probably due to re-adsorption onto Fe/Mn oxyhydroxides and enhanced demethylation. Hence, during anoxic events, sediments of the Gulf of Trieste may be considered as an important source of dissolved Hg species for the water column. However, re-oxygenation of the bottom compartment mitigates Hg and MeHg release from the sediment, thus acting as a natural “defence” from possible interaction between the metal and the aquatic organisms.

  3. Combining contamination indexes, sediment quality guidelines and multivariate data analysis for metal pollution assessment in marine sediments of Cienfuegos Bay, Cuba.

    Science.gov (United States)

    Peña-Icart, Mirella; Pereira-Filho, Edenir Rodrigues; Lopes Fialho, Lucimar; Nóbrega, Joaquim A; Alonso-Hernández, Carlos; Bolaños-Alvarez, Yoelvis; Pomares-Alfonso, Mario S

    2017-02-01

    The purpose of the present work was to combine several tools for assessing metal pollution in marine sediments from Cienfuegos Bay. Fourteen surface sediments collected in 2013 were evaluated. Concentrations of As, Cu, Ni, Zn and V decreased respect to those previous reported. The metal contamination was spatially distributed in the north and south parts of the bay. According to the contamination factor (CF) enrichment factor (EF) and index of geoaccumulation (Igeo), Cd and Cu were classified in that order as the most contaminated elements in most sediment. Comparison of the total metal concentrations with the threshold (TELs) and probable (PELs) effect levels in sediment quality guidelines suggested a more worrisome situation for Cu, of which concentrations were occasional associated with adverse biological effects in thirteen sediments, followed by Ni in nine sediments; while adverse effects were rarely associated with Cd. Probably, Cu could be considered as the most dangerous in the whole bay because it was classified in the high contamination levels by all indexes and, simultaneously, associated to occasional adverse effects in most samples. Despite the bioavailability was partially evaluated with the HCl method, the low extraction of Ni (<3% in all samples) and Cu (<55%, except sample 3) and the relative high extraction of Cd (50% or more, except sample 14) could be considered as an attenuating (Ni and Cu) or increasing (Cd) factor in the risk assessment of those element. Copyright © 2016. Published by Elsevier Ltd.

  4. Environmental Impact Of The Use Of Contaminated Sediments As Partial Replacement Of The Aggregate Used In Road Construction

    Science.gov (United States)

    The Indiana Harbor Canal (IHC) is a waterway extensively polluted with heavy metals and petroleum. Since there are limited disposal options for the petroleum-contaminated sediments (PCSs) of the canal, the environmental impact of IHC dewatered sediment when used as partial repla...

  5. Heavy metal contamination of coastal lagoon sediments by anthropogenic activities: the case of Nador (East Morocco)

    Science.gov (United States)

    Bloundi, M. K.; Duplay, J.; Quaranta, G.

    2009-01-01

    Nador lagoon sediments (East Morocco) are contaminated by industrial iron mine tailings, urban dumps and untreated wastewaters from surrounding cities. The lagoon is an ecosystem of biological, scientific and socio-economic interests but its balance is threatened by pollution already marked by biodiversity changes and a modification of foraminifera and ostracods shell structures. The aim of the study is to assess the heavy metal contamination level and mobility by identifying the trapping phases. The study includes analyses by ICP-AES and ICP-MS, of, respectively, major (Si, Al, Mg, Ca, Fe, Mn, Ti, Na, K, P) and trace elements (Sr, Ba, V, Ni, Co, Cr, Zn, Cu, As, Pb, Cd) in sediments and suspended matter, heavy metals enrichment factors calculations and sequential extractions. Results show that sediments contain Zn, Cu, Pb, V, Cr, Co, As, Ni with minimum and maximum concentrations, respectively, of 4-1190 μg/g, 4-466 μg/g, 11-297 μg/g, 11-194 μg/g, 9-139 μg/g, 1-120 μg/g, 4-76 μg/g, 2-62 μg/g. High concentrations in Zn are also present in suspended matter. The enrichment factors show contamination in Zn, Pb and As firstly induced by the mining industry and secondly by unauthorized dumps and untreated wastewaters. Cr and Ni are bound to clays, whereas V, Co, Cu and Zn are related to oxides. Thus, the risk in metal mobility is for the latter elements and lies in the oxidation-reduction-changing conditions of sediments.

  6. Potential risks of metal toxicity in contaminated sediments of Deule river in Northern France

    Energy Technology Data Exchange (ETDEWEB)

    Lourino-Cabana, Beatriz; Lesven, Ludovic; Charriau, Adeline [Equipe de Chimie Analytique et Marine, Universite de Lille 1, FRE CNRS Geosystemes 3298, Bat. C8, 59655 Villeneuve d' Ascq (France); Billon, Gabriel, E-mail: gabriel.billon@univ-lille1.fr [Equipe de Chimie Analytique et Marine, Universite de Lille 1, FRE CNRS Geosystemes 3298, Bat. C8, 59655 Villeneuve d' Ascq (France); Ouddane, Baghdad [Equipe de Chimie Analytique et Marine, Universite de Lille 1, FRE CNRS Geosystemes 3298, Bat. C8, 59655 Villeneuve d' Ascq (France); Boughriet, Abdel [Universite Lille Nord de France, Rue de l' Universite, P.O. Box 819, 62408 Bethune (France)

    2011-02-28

    Research highlights: {yields} A historical environmental pollution is evidenced with reference to background levels. {yields} Sedimentary trace metals partitioning is examined under undisturbed conditions. {yields} Anoxia and diagenetic processes induce geochemical and mineralogical variabilities. {yields} Do metals present in particles and pore waters exhibit a potential toxicity risk? {yields} Behaviour of binding fractions contributes to trace metals scavenging. - Abstract: The aim of this paper was to evaluate the potential sediment cumulative damage and toxicity due to metal contamination in a polluted zone of Deule river (in northern France) from nearby two smelters. Metal-enrichment factors and geoaccumulation indices measured with sediment depth revealed that - compared to background levels either in local reference soils or in world rivers sediments/suspended particulate matter - Cd contributed to the highest pollution levels, followed by Zn, Pb and to a much lesser extent Cu and Ni. A comparison of the vertical distribution of AVS (acid volatile sulfides), SEM (simultaneously extracted metals), TMC (total metal concentrations), TOC (total organic carbon) and interstitial water-metal concentrations in the sediment allowed us to highlight the extent of toxicity caused by Cd, Pb, Zn, Ni and Cu and to raise the possibility of their association with certain geochemical phases. To assess the actual environmental impacts of these metals in Deule river, numerical sediment quality guidelines were further used in the present work. Sedimentary Pb, Zn, and Cd contents largely exceeded PEC (probable effect concentration) values reported as consensus-based sediment quality guidelines for freshwater ecosystems. As for risks of toxicity from pore waters, metal concentrations reached their maxima at the surficial layers of the sediment (1-3 cm) and IWCTU (Interstitial Water Criteria Toxicity Unit) observed for Pb and to a lesser extent Cd, violated the corresponding water

  7. Microbial diversity and anaerobic hydrocarbon degradation potential in an oil-contaminated mangrove sediment

    Directory of Open Access Journals (Sweden)

    Andrade Luiza L

    2012-08-01

    Full Text Available Abstract Background Mangrove forests are coastal wetlands that provide vital ecosystem services and serve as barriers against natural disasters like tsunamis, hurricanes and tropical storms. Mangroves harbour a large diversity of organisms, including microorganisms with important roles in nutrient cycling and availability. Due to tidal influence, mangroves are sites where crude oil from spills farther away can accumulate. The relationship between mangrove bacterial diversity and oil degradation in mangrove sediments remains poorly understood. Results Mangrove sediment was sampled from 0–5, 15–20 and 35–40 cm depth intervals from the Suruí River mangrove (Rio de Janeiro, Brazil, which has a history of oil contamination. DGGE fingerprinting for bamA, dsr and 16S rRNA encoding fragment genes, and qPCR analysis using dsr and 16S rRNA gene fragment revealed differences with sediment depth. Conclusions Analysis of bacterial 16S rRNA gene diversity revealed changes with depth. DGGE for bamA and dsr genes shows that the anaerobic hydrocarbon-degrading community profile also changed between 5 and 15 cm depth, and is similar in the two deeper sediments, indicating that below 15 cm the anaerobic hydrocarbon-degrading community appears to be well established and homogeneous in this mangrove sediment. qPCR analysis revealed differences with sediment depth, with general bacterial abundance in the top layer (0–5 cm being greater than in both deeper sediment layers (15–20 and 35–40 cm, which were similar to each other.

  8. Assessment of sediment contamination in an impacted estuary: differential effects and adaptations of sentinel organisms and implications for biomonitoring

    OpenAIRE

    Costa, Pedro M.; Gonçalves, C; Martins, M.; Rodrigo, Ana; Carreira, S; Costa,Maria Helena; Caeiro, Sandra

    2013-01-01

    Conferência realizada em Lisboa, de 6-9 November de 2013 Estuarine pollution is reflected in the concentration of toxicants in sediments, depending on their geochemical properties, since sediments trap substances from the water column, either dissolved or bound to suspended matter. However, determining risk of sediment contaminants to biota has many constraints. For such reason, integrative approaches are keystone. Taking the Sado estuary (SW Portugal) as a case study, contrasted to a refe...

  9. On metal diagenesis in contaminated sediments of the Deule river (northern France)

    Energy Technology Data Exchange (ETDEWEB)

    Lesven, L. [Universite Lille 1 (USTL), FRE CNRS 3298 Geosystemes, Equipe de Chimie Analytique et Marine, 59655 Villeneuve d' Ascq cedex (France); Lourino-Cabana, B. [Universite Lille 1 (USTL), FRE CNRS 3298 Geosystemes, Equipe de Chimie Analytique et Marine, 59655 Villeneuve d' Ascq cedex (France)] [Faculty of Natural Sciences and Technology, Department of Chemistry, 7491 Trondheim (Norway); Billon, G.; Recourt, P. [Universite Lille 1 (USTL), FRE CNRS 3298 Geosystemes, Equipe de Chimie Analytique et Marine, 59655 Villeneuve d' Ascq cedex (France); Ouddane, B., E-mail: baghdad.ouddane@univ-lille1.fr [Universite Lille 1 (USTL), FRE CNRS 3298 Geosystemes, Equipe de Chimie Analytique et Marine, 59655 Villeneuve d' Ascq cedex (France); Mikkelsen, O. [Faculty of Natural Sciences and Technology, Department of Chemistry, 7491 Trondheim (Norway); Boughriet, A. [Universite d' Artois, I.U.T. de Bethune Departement de Chimie, Rue de l' Universite, B.P. 819, 62408 Bethune cedex (France)

    2010-09-15

    Research highlights: {yields} Behaviour and fate of metal contaminants in sediments (remobilisation, dredging ...). {yields} Implication of metal contaminations on biogeochemical processes in anoxic sediments. {yields} Impacts on the distribution of anthropogenic metal in sediments. - Abstract: The objective of the present work was to assess depth-related variations in the (bio)geochemical processes involved in anoxic sediments from the Deule river, and to examine particularly their impacts on the distribution of anthropogenically sourced metals. Anoxic sediment samples were sliced and analyzed to determine total concentrations vs. depth of elements and corresponding pore waters were analyzed to determine concentration profiles with depth of pH, Eh, alkalinity, O{sub 2}, dissolved organic carbon (DOC), and main inorganic anions and cations present in the medium. It was shown that rapid depletions of O{sub 2}, NO{sub 3}{sup -} and SO{sub 4}{sup 2-}, accompanied with HCO{sub 3}{sup -} generation and a sharp decrease in the redox potential occurred within the first centimeters of the surface sediment as a consequence of early diagenesis. Bacterial reductive dissolution of Mn(III and IV) and Fe(III) oxides/hydroxides to Mn(II) and Fe(II) accompanied by microbial degradation of organic matter took place as well, and resulted in trace metal increases in the pore water at levels that raised the possibility of mineral generation. Thermodynamic calculations predicted removal of metals from interstitial waters through combinations with carbonates and/or sulfides. These took place either by direct precipitation to form pure crystals, or by coprecipitation/sorption with/into calcite and with pyritic compounds. Chemical sequential extraction data were useful in this work to support, at least partially, some thermodynamic predictions concerning the existence of interactions between trace metals and carbonate and sulfide ions to generate (co)precipitates. Electron paramagnetic

  10. Historical profiles of PCB in dated sediment cores suggest recent lake contamination through the "halo effect".

    Science.gov (United States)

    Naffrechoux, Emmanuel; Cottin, Nathalie; Pignol, Cécile; Arnaud, Fabien; Jenny, Jean-Philippe; Perga, Marie-Elodie

    2015-02-03

    We investigated the major sources of polychlorinated biphenyls (PCB) and interpreted the environmental fate processes of these persistent organic pollutants in the past and current PCB contamination of three large, urbanized, French peri-alpine lakes. Dated sediment cores were analyzed in order to reconstruct and compare the historical contamination in all three lakes. Stratigraphic changes of PCB contents and fluxes were considered as revealing the temporal dynamics of PCB deposition to the lakes and the distribution of the seven indicator congeners (further referred to as PCBi) as an indicator of the main contamination origin and pathway. Although located within a single PCB industrial production region, concentration profiles for the three lakes differed in timing, peak concentration magnitudes, and in the PCBi congeners compositions. PCBi fluxes to the sediment and the magnitude of the temporal changes were generally much lower in Lake Annecy (0.05-2 ng·cm(-2)·yr(-1)) as compared to Lakes Geneva (0.05-5 ng·cm(-2)·yr(-1)) and Bourget (5-290 ng·cm(-2)·yr(-1)). For all three lakes, the paramount contamination occurred in the early 1970s. In Lakes Annecy and Bourget, PCB fluxes have declined and plateaued at 0.5 and 8 ng·cm(-2)·yr(-1), respectively, since the early 1990s. In Lake Geneva, PCB fluxes have further decreased by the end of the XX(th) century and are now very low. For the most contaminated lake (Lake Bourget), the high PCBi flux (5-290 ng·cm(-2)·yr(-1)) and the predominance of heavy congeners for most of the time period are consistent with a huge local input to the lake. This still high rate of Lake Bourget is explained by transport of suspended solids from one of its affluents, polluted by an industrial point source. Intermediate historical levels and PCBi distribution over time for Lake Geneva suggest a mixed contamination (urban point sources and distant atmospheric transport), while atmospheric deposition to Lake Annecy explains its lowest

  11. Are PAHS the Right Metric for Assessing Toxicity Related to Oils, Tars, Creosote and Similar Contaminants in Sediments?

    Science.gov (United States)

    Oils, tars, and other non-aqueous phase hydrocarbon liquids (NAPLs) are common sources of contamination in aquatic sediments, and the toxicity of such contamination has generally been attributed to component chemicals, particularly PAHs. While there is no doubt PAHs can be toxic ...

  12. Theory and application of landfarming to remediate polycyclic aromatic hydrocarbons and mineral oil-contaminated sediments: beneficial reuse

    NARCIS (Netherlands)

    Harmsen, J.; Rulkens, W.H.; Sims, R.C.; Rijtema, P.E.; Zweers, A.J.

    2007-01-01

    When applying landfarming for the remediation of contaminated soil and sediment, a fraction of the soil-bound contaminant is rapidly degraded; however, a residual concentration may remain, which slowly degrades. Degradation of polycyclic aromatic hydrocarbons (PAHs) and mineral oil can be described

  13. SERDP and ESTCP Expert Panel Workshop on Research and Development Needs for the In Situ Management of Contaminated Sediments

    Science.gov (United States)

    2004-10-01

    Rapid bioavailability screening- supercritical CO2 extraction High Lab Methods to measure the bioavailability of contaminants in a specific sediment...fossil fuels for transportation and electricity; various industrial processes; biomass burning; waste incineration; and oil, coal , and creosote spills...as coal , coke, charcoal, and soot that are known to Key Processes: Fate and Transport of Contaminants SERDP & ESTCP Expert Panel Workshop on

  14. Are PAHS the Right Metric for Assessing Toxicity Related to Oils, Tars, Creosote and Similar Contaminants in Sediments?

    Science.gov (United States)

    Oils, tars, and other non-aqueous phase hydrocarbon liquids (NAPLs) are common sources of contamination in aquatic sediments, and the toxicity of such contamination has generally been attributed to component chemicals, particularly PAHs. While there is no doubt PAHs can be toxic ...

  15. The relationship between unconfined compressive strength and leachate concentration of stabilised contaminated sediment

    Science.gov (United States)

    Kabir Aliyu, Mohammed; Tarmizi Abd Karim, Ahmad; -Ming Chan, Chee

    2016-11-01

    Solidification/Stabilization (S/S) treatment was used in this study to immobilise copper (Cu) in contaminated river sediment. The sediment was artificially contaminated by spiking the solution of Copper sulphate (CuSO4.5H2O) to so as to get an average of 1000 ppm target concentration. Portland composite cement and Rice husk ash (RHA) were used as S/S agents. The amount of cement added to the mixture was l0% and while rice husk ash at the rate of 5%, l0%, 15% and 20% to the total dry weight of the mixture and then was cured for 7, 14 and 28 days. The unconfined compressive strength test (UCS) and toxicity characteristic leaching procedure (TCLP) were used to evaluate the effectiveness of the S/S treatments. From the results obtained it indicates that the partial replacement of cement with RHA in the binder system has increased the strength and the leachate concentration of copper was less in the treated sediment samples if compared with the untreated ones.

  16. Metal removal from contaminated soil and sediments by the biosurfactant surfactin

    Energy Technology Data Exchange (ETDEWEB)

    Mulligan, C.N.; Yong, R.N.; Gibbs, B.F.; James, S.; Bennett, H.P.J.

    1999-11-01

    Batch soil washing experiments were performed to evaluate the feasibility of using surfactin from Bacillus subtilis, a lipopeptide biosurfactant, for the removal of heavy metals from a contaminated soil and sediments. The soil contained high levels of metals and hydrocarbons (890 mg/kg of zinc, 420 mg/kg of copper, and 12.6% oil and grease), and the sediments contained 110 mg/kg of copper and 3,300 mg/kg of zinc. The contaminated soil was spiked to increase the level of copper, zinc, and cadmium to 550, 1,200, and 2,000 mg/kg, respectively. Water alone removed minimal amounts of copper and zinc (less than 1%). Results showed that 0.25% surfactin/1% NaOH could remove 25% of the copper and 6% of the zinc from the soil and 15% of the copper and 6% of the zinc from the sediments. A series of five washings of the soil with 0.25% surfactin (1% NaOH) was able to remove 70% of the copper and 22% of the zinc. The technique of ultrafiltration and the measurement of octanol-water partitioning and {zeta}-potential were used to determine the mechanism of metal removal by surfactin. It was indicated that surfactin was able to remove the metals by sorption at the soil interphase and metal complexation, followed by desorption of the metal through interfacial tension lowering and fluid forces and finally complexation of the metal with the micelles.

  17. Transcriptional Response of Rhodococcus aetherivorans I24 to Polychlorinated Biphenyl-Contaminated Sediments

    KAUST Repository

    Puglisi, Edoardo

    2010-04-06

    We used a microarray targeting 3,524 genes to assess the transcriptional response of the actinomycete Rhodococcus aetherivorans I24 in minimal medium supplemented with various substrates (e. g., PCBs) and in both PCB-contaminated and non-contaminated sediment slurries. Relative to the reference condition (minimal medium supplemented with glucose), 408 genes were upregulated in the various treatments. In medium and in sediment, PCBs elicited the upregulation of a common set of 100 genes, including gene-encoding chaperones (groEL), a superoxide dismutase (sodA), alkyl hydroperoxide reductase protein C (ahpC), and a catalase/peroxidase (katG). Analysis of the R. aetherivorans I24 genome sequence identified orthologs of many of the genes in the canonical biphenyl pathway, but very few of these genes were upregulated in response to PCBs or biphenyl. This study is one of the first to use microarrays to assess the transcriptional response of a soil bacterium to a pollutant under conditions that more closely resemble the natural environment. Our results indicate that the transcriptional response of R. aetherivorans I24 to PCBs, in both medium and sediment, is primarily directed towards reducing oxidative stress, rather than catabolism. © 2010 Springer Science+Business Media, LLC.

  18. Assessment of metals contamination in Klang River surface sediments by using different indexes

    Directory of Open Access Journals (Sweden)

    Abolfazl Naji

    2011-01-01

    Full Text Available Surface sediments (0-5 cm from 21 stations throughout Klang River were sampled for metal concentration as well sediment's pH, total organic carbon (TOC and particles sizes to obtain an overall classification of metal contaminations in the area. The concentration of metals (µg∕g, Fe%, dw were as follows: 0.57- 2.19 Cd; 31.89-272.33 Zn; 5.96-24.47 Ni; 10.57- 52.87 Cu; 24.23-64.11 Pb and 1.56-3.03 Fe. The degree of sediment contaminations were computed using an enrichment factor (EF and geoaccumulation index (Igeo. The results suggested that enrichment factor and geoaccumulation values of Cd were greatest among the studied metals. Pearson's correlation indicated that effectiveness of TOC in controlling the distribution and enrichment of metals was a more important factor than that of the grain size (< 63µm. The study revealed that on the basis of computed indexes, Klang River is classified as moderately polluted river.

  19. Radionuclide contaminant analysis of small mammels, plants and sediments within Mortandad Canyon, 1994

    Energy Technology Data Exchange (ETDEWEB)

    Bennett, K.; Biggs, J.; Fresquez, P.

    1996-01-01

    Small mammals, plants and sediments were sampled at one upstream location (Site 1) and two downstream locations (Site 2 and Site 3) from the National Pollution Discharge Elimination System outfall {number_sign}051-051 in Mortandad Canyon, Los Alamos County, New Mexico. The purpose of the sampling was to identify radionuclides potentially present, to quantitatively estimate and compare the amount of radionuclide uptake at specific locations (Site 2 and Site 3) within Mortandad Canyon to an upstream site (Site 1), and to identify the primary mode (inhalation ingestion, or surface contact) of contamination to small mammals. Three composite samples of at least five animals per sample were collected at each site. Pelts and carcasses of each animal were separated and analyzed independently. In addition, three composite samples were also collected for plants and sediments at each site. Samples were analyzed for {sup 241}Am, {sup 90}Sr, {sup 238}Pu, {sup 239}Pu, and total U. With the exception of total U, all mean radionuclide concentrations in small mammal carcasses and sediments were significantly higher at Site 2 than Site 1 or Site 3. No differences were detected in the mean radionuclide concentration of plant samples between sites. However, some radionuclide concentrations found at all three sites were higher than regional background. No differences were found between mean carcass radionuclide concentrations and mean pelt radionuclide concentrations, indicating that the two primary modes of contamination may be equally occurring.

  20. Response of core microbial consortia to hydrocarbon contaminations in coastal sediment habitats

    Directory of Open Access Journals (Sweden)

    Mathilde Jeanbille

    2016-10-01

    Full Text Available Traditionally, microbial surveys investigating the effect of chronic anthropogenic pressure such as polyaromatic hydrocarbons (PAHs contaminations consider just the alpha and beta diversity and ignore the interactions among the different taxa forming the microbial community. Here, we investigated the ecological relationships between the three domains of life (i.e. Bacteria, Archaea and Eukarya using 454 pyrosequencing data of the 16S rRNA and 18S rRNA genes from chronically impacted and pristine sediments, along the coasts of the Mediterranean Sea (Gulf of Lion, Vermillion coast, Corsica, Bizerte lagoon and Lebanon and the French Atlantic Ocean (Bay of Biscay and English Channel. Our approach provided a robust ecological framework for the partition of the taxa abundance distribution into 859 core OTUs and 6629 satellite OTUs. OTUs forming the core microbial community showed the highest sensitivity to changes in environmental and contaminant variations, with salinity, latitude, temperature, particle size distribution, total organic carbon (TOC and PAH concentrations as main drivers of community assembly. The core communities were dominated by Gammaproteobacteria and Deltaproteobacteria for Bacteria, by Thaumarchaeota, Bathyarchaeota and Thermoplasmata for Archaea and Metazoa and Dinoflagellata for Eukarya. In order to find associations among microorganisms, we generated a co-occurrence network in which PAHs were found to impact significantly the potential predator – prey relationship in one microbial consortium composed of ciliates and Actinobacteria. Comparison of network topological properties between contaminated and non-contaminated samples showed substantial differences in the structure of the network and indicated a higher vulnerability to environmental perturbations in the contaminated sediments.

  1. Organotin persistence in contaminated marine sediments and porewaters: In situ degradation study using species-specific stable isotopic tracers

    Energy Technology Data Exchange (ETDEWEB)

    Furdek, Martina; Mikac, Nevenka [Division for Marine and Environmental Research, Rudjer Boskovic Institute, Bijenicka 54, Zagreb (Croatia); Bueno, Maite; Tessier, Emmanuel; Cavalheiro, Joana [Laboratoire de Chimie Analytique Bio-inorganique et Environnement, Institut Pluridisciplinaire de Recherche sur l’Environnement et les Matériaux, CNRS UMR 5254, Université de Pau et des Pays de l’Adour, Hélioparc Pau Pyrénées, 2, Av. P. Angot, 64053 Pau Cedex 9 (France); Monperrus, Mathilde, E-mail: mathilde.monperrus@univ-pau.fr [Laboratoire de Chimie Analytique Bio-inorganique et Environnement, Institut Pluridisciplinaire de Recherche sur l’Environnement et les Matériaux, CNRS UMR 5254, Université de Pau et des Pays de l’Adour, Hélioparc Pau Pyrénées, 2, Av. P. Angot, 64053 Pau Cedex 9 (France)

    2016-04-15

    Highlights: • Limiting step in OTC degradation in sediments is their desorption into porewater. • TBT persistence in contaminated sediments increases in sediments rich in organic matter. • DBT does not accumulate in sediments as degradation product of TBT. • TBT and DBT degradation in porewaters occurs with half-lives from 2.9 to 9.2 days. • PhTs degradation is slower than BuTs degradation in oxic porewaters. - Abstract: This paper provides a comprehensive study of the persistence of butyltins and phenyltins in contaminated marine sediments and presents the first data on their degradation potentials in porewaters. The study’s aim was to explain the different degradation efficiencies of organotin compounds (OTC) in contaminated sediments. The transformation processes of OTC in sediments and porewaters were investigated in a field experiment using species-specific, isotopically enriched organotin tracers. Sediment characteristics (organic carbon content and grain size) were determined to elucidate their influence on the degradation processes. The results of this study strongly suggest that a limiting step in OTC degradation in marine sediments is their desorption into porewaters because their degradation in porewaters occurs notably fast with half-lives of 9.2 days for tributyltin (TBT) in oxic porewaters and 2.9 ± 0.1 and 9.1 ± 0.9 days for dibutyltin (DBT) in oxic and anoxic porewaters, respectively. By controlling the desorption process, organic matter influences the TBT degradation efficiency and consequently defines its persistence in contaminated sediments, which thus increases in sediments rich in organic matter.

  2. Assessing the State of Contamination in a Historic Mining Town Using Sediment Chemistry.

    Science.gov (United States)

    Gutiérrez, Mélida; Wu, Shuo-Sheng; Rodriguez, Jameelah R; Jones, Ashton D; Lockwood, Benjamin E

    2016-05-01

    The United States town of Aurora, Missouri, USA, stockpiled lead (Pb) and zinc (Zn) mining wastes from the early to mid-1900s in the form of chat piles. Clean-up actions were undertaken at intervals in subsequent years including land leveling and removal of chat. This study assessed the current state of contamination by identifying areas where metals are present at toxic levels. For this purpose, stream sediment samples (N = 100) were collected over a 9 × 12 km area in and around Aurora. Their content of cadmium (Cd), Pb, and Zn were measured, and concentration maps were generated using ArcGIS to categorize affected areas. Metal concentrations varied over a wide range of values with the overall highest values observed in the north-northeast part of Aurora where abundant chat piles had been present. Comparison between observed concentrations and sediment-quality guidelines put the contaminated areas mentioned are above-toxic levels for Cd, Pb and Zn. In contrast, levels in rural areas and the southern part of Aurora were at background levels, thus posing no threat to aquatic habitats. The fact that contamination is constrained to a relatively small area can be advantageously used to implement further remediation and, by doing so, to help protect the underlying karst aquifer.

  3. Fate of cadmium in the rhizosphere of Arabidopsis halleri grown in a contaminated dredged sediment

    Energy Technology Data Exchange (ETDEWEB)

    Huguet, Séphanie, E-mail: huguet.st@gmail.com [ISTerre, Université Grenoble Alpes, CNRS, F-38041 Grenoble (France); Laboratoire de Chimie Analytique Bio-Inorganique et Environnement (LCABIE), Institut des sciences analytiques et de physico-chimie pour l' environnement et les matériaux (IPREM UMR 5254), Université de Pau et des Pays de l' Adour and CNRS, Hélioparc, 2 Av. Pierre Angot, 64053 Pau Cedex 9 (France); INERIS, Parc technologique Alata, 60550 Verneuil-en-Halatte (France); EMDouai, MPE-GCE, 930 Boulevard Lahure, 59500 Douai (France); Isaure, Marie-Pierre [Laboratoire de Chimie Analytique Bio-Inorganique et Environnement (LCABIE), Institut des sciences analytiques et de physico-chimie pour l' environnement et les matériaux (IPREM UMR 5254), Université de Pau et des Pays de l' Adour and CNRS, Hélioparc, 2 Av. Pierre Angot, 64053 Pau Cedex 9 (France); Bert, Valérie [INERIS, Parc technologique Alata, 60550 Verneuil-en-Halatte (France); Laboudigue, Agnès [EMDouai, MPE-GCE, 930 Boulevard Lahure, 59500 Douai (France); Proux, Olivier [OSUG, UMS832 CNRS/UJF, 414 rue de la piscine, 38400 Saint-Martin d' Hères (France); Flank, Anne-Marie; Vantelon, Delphine [Beamline LUCIA, SLS, Swiss Light Source, CH-5232 Villigen (Switzerland); Synchrotron SOLEIL, F-91192 Gif Sur Yvette (France); Sarret, Géraldine, E-mail: geraldine.sarret@ujf-grenoble.fr [ISTerre, Université Grenoble Alpes, CNRS, F-38041 Grenoble (France)

    2015-12-01

    In regions impacted by mining and smelting activities, dredged sediments are often contaminated with metals. Phytotechnologies could be used for their management, but more knowledge on the speciation of metals in the sediment and on their fate after colonization by plant roots is needed. This work was focused on a dredged sediment from the Scarpe river (North of France), contaminated with Zn and Cd. Zn, Cd hyperaccumulating plants Arabidopsis halleri from metallicolous and non-metallicolous origin were grown on the sediment for five months in a pot experiment. The nature and extent of the modifications in Cd speciation with or without plant were determined by electron microscopy, micro X-ray fluorescence and bulk and micro X-ray absorption spectroscopy. In addition, changes in Cd exchangeable and bioavailable pools were evaluated, and Cd content in leachates was measured. Finally, Cd plant uptake and plant growth parameters were monitored. In the original sediment, Cd was present as a mixed Zn, Cd, Fe sulfide. After five months, although pots still contained reduced sulfur, Cd-bearing sulfides were totally oxidized in vegetated pots, whereas a minor fraction (8%) was still present in non-vegetated ones. Secondary species included Cd bound to O-containing groups of organic matter and Cd phosphates. Cd exchangeability and bioavailability were relatively low and did not increase during changes in Cd speciation, suggesting that Cd released by sulfide oxidation was readily taken up with strong interactions with organic matter and phosphate ligands. Thus, the composition of the sediment, the oxic conditions and the rhizospheric activity (regardless of the plant origin) created favorable conditions for Cd stabilization. However, it should be kept in mind that returning to anoxic conditions may change Cd speciation, so the species formed cannot be considered as stable on the long term. - Highlights: • Cd was present as a mixed Zn, Cd, Fe sulfide in the sediment before

  4. Magnetic characteristics of sediment grains concurrently contaminated with TBT and metals near a shipyard in Busan, Korea.

    Science.gov (United States)

    Choi, Jin Young; Hong, Gi Hoon; Ra, Kongtae; Kim, Kyung-Tae; Kim, Kyoungrean

    2014-08-30

    Bottom sediments near shipyards are often susceptible to receiving accidental spills of TBT and metals or their degradation products from hull scraping of antifouling system paints applied prior to 2008, when the AFS Convention 2001 was not in force. We investigated TBT and metal contamination of sediments near the shipyards of a small marina located in Busan, Korea and found that they were highly contaminated with TBT, Cu, and Zn. To better understand the environmental impacts and to make an optimal remediation plan, we characterized individual antifouling fragments in terms of metal and TBT contents, magnetic properties, and grain-size. Coarse-sized individual antifouling fragments exhibited simultaneously high levels of TBT, metals and high magnetic susceptibility, and appeared to be a major source of pollution in the sediment. Therefore, magnetic separation in combination with size-separation appears to be a cost-effective remediation method to remove the TBT and metals from contaminated shipyard sediments.

  5. Monitoring of organic contaminants in sediments from the Korean coast: Spatial distribution and temporal trends (2001-2007).

    Science.gov (United States)

    Choi, Hee Gu; Moon, Hyo Bang; Choi, Minkyu; Yu, Jun

    2011-06-01

    Spatial and temporal trends of organic contaminants in sediments along the Korean coast were estimated through a nationwide environmental monitoring program from 2001 to 2007. The concentrations of organic contaminants in sediments along the Korean coast were relatively low or moderate compared with foreign studies. The mean detection frequencies of organic contaminants during the seven years were highest for PAHs and PCDD/Fs, followed by PCBs, DDTs, TBT and HCHs in decreasing order. Based on published sediment quality guidelines, the ecological risks of persistent organic pollutants in sediments along the Korean coast were low, despite exceedances of the ERL at 2-6 sites for DDTs, and the TEL at 9-18 sites for PCDD/Fs. Nonparametric tests to assess temporal trends revealed significant decreasing trends for PCBs and PCDD/Fs at four and three sites, respectively (pcontaminants.

  6. Influence of Chironomus riparius (Diptera, Chironomidae) and Tubifex tubifex (Annelida, Oligochaeta) on oxygen uptake by sediments. Consequences of uranium contamination

    Energy Technology Data Exchange (ETDEWEB)

    Lagauzere, S. [Laboratoire de Radioecologie et d' Ecotoxicologie, Institut de Radioprotection et de Surete Nucleaire (IRSN), DEI/SECRE/LRE, Cadarache 186, BP 3, F-13115 Cedex, Saint Paul Lez Durance (France)], E-mail: lagauzere@gmail.com; Pischedda, L.; Cuny, P. [Laboratoire de Microbiologie, Geochimie et Ecologie Marines, UMR 6117 CNRS/COM/Universite de la Mediterranee, Campus de Luminy, Case 901, F-13288 Cedex 09, Marseille (France); Gilbert, F. [EcoLab, Laboratoire d' Ecologie Fonctionnelle, UMR 5245 CNRS/INP/Universite Paul Sabatier, 29 Rue Jeanne Marvig, F-31055 Cedex 4, Toulouse (France); Stora, G. [Laboratoire de Microbiologie, Geochimie et Ecologie Marines, UMR 6117 CNRS/COM/Universite de la Mediterranee, Campus de Luminy, Case 901, F-13288 Cedex 09, Marseille (France); Bonzom, J.-M. [Laboratoire de Radioecologie et d' Ecotoxicologie, Institut de Radioprotection et de Surete Nucleaire (IRSN), DEI/SECRE/LRE, Cadarache 186, BP 3, F-13115 Cedex, Saint Paul Lez Durance (France)

    2009-04-15

    The diffusive oxygen uptake (DOU) of sediments inhabited by Chironomus riparius and Tubifex tubifex was investigated using a planar oxygen optode device, and complemented by measurements of bioturbation activity. Additional experiments were performed within contaminated sediments to assess the impact of uranium on these processes. After 72 h, the two invertebrate species significantly increased the DOU of sediments (13-14%), and no temporal variation occurred afterwards. Within contaminated sediments, it was already 24% higher before the introduction of the organisms, suggesting that uranium modified the sediment biogeochemistry. Although the two species firstly reacted by avoidance of contaminated sediment, they finally colonized it. Their bioturbation activity was reduced but, for T. tubifex, it remained sufficient to induce a release of uranium to the water column and an increase of the DOU (53%). These results highlight the necessity of further investigations to take into account the interactions between bioturbation, microbial metabolism and pollutants. - This study highlights the ecological importance of bioturbation in metal-contaminated sediments.

  7. Multicriteria decision analysis to assess options for managing contaminated sediments: Application to Southern Busan Harbor, South Korea.

    Science.gov (United States)

    Kim, Jongbum; Kim, Suk Hyun; Hong, Gi Hoon; Suedel, Burton C; Clarke, Joan

    2010-01-01

    Many years of untreated effluent discharge from residential areas, a shipyard, a marina, and a large fish market resulted in substantial contamination of bottom sediment in Southern Busan Harbor, South Korea. Contaminants in these sediments include heavy metals and organic compounds. Newly introduced regulations for ocean disposal of dredged material in South Korea pose significant challenges, because the previous practice of offshore disposal of contaminated dredged material was no longer possible after August 2008. The South Korean government has mandated that such sediments be assessed in a way that identifies the most appropriate dredged material management alternative, addressing environmental, social, and cost objectives. An approach using multicriteria decision analysis (MCDA) in combination with comparative risk assessment was used as a systematic and transparent framework for prioritizing several dredged sediment management alternatives. We illustrate how MCDA can recognize the multiple goals of contaminated sediment management. Values used in weighting decision criteria were derived from surveys of stakeholders who were sediment management professionals, business owners, or government decision makers. The results of the analysis showed that land reclamation was the preferred alternative among cement-lock, sediment washing, 3 contained aquatic disposal alternatives (one in combination with a hopper dredge), geotextile tubes, solidification, and land reclamation after solidification treatment. Land reclamation was the preferred alternative, which performed well across all MCDA objectives, because of the availability of a near-shore confined disposal facility within a reasonable distance from the dredging area.

  8. A comparison of the response of Simocephalus mixtus (Cladocera) and Daphnia magna to contaminated freshwater sediments.

    Science.gov (United States)

    Martínez-Jerónimo, Fernando; Cruz-Cisneros, Jade Lizette; García-Hernández, Leonardo

    2008-09-01

    The southeast region of Mexico is characterized by intensive oil industry activities carried out by the national public enterprise Petróleos Mexicanos (PEMEX). The freshwater lagoon "El Limón", located in the municipality of Macuspana, state of Tabasco, Mexico, has received over 40 years discharges of untreated waste waters from the Petrochemical Complex "Ciudad PEMEX", located on the border of the lagoon. To assess the toxicity of the sediments and, hence, to obtain information on the biological effects of these contaminating discharges, the cladoceran Simocephalus mixtus was used as a test organism in acute (48h) and chronic (12d) toxicity assays. For comparison purposes, bioassays were also conducted with the reference cladoceran Daphnia magna. The sediments of this lagoon contain important amounts of metals and hydrocarbons that have been accumulated over time; however, the acute tests only registered reduced lethal effects on the test organisms (maxima of 10% and 17% mortality for D. magna and S. mixtus, respectively). This may be due to low bioavailability of the pollutants present in the sediments. On the other hand, partial or total inhibition and delay in the start of reproduction, reduction in clutch sizes, reduced survival, as well as reduction in the size of adults and offspring were recorded in the chronic assays. The most evident chronic effects were found in S. mixtus; in this species, reproduction was inhibited up to 72%, whereas D. magna was only affected by 24%. We determined that S. mixtus is a more sensitive test organism than D. magna to assess whole-sediment toxicity in tropical environments, and that chronic exposure bioassays are required for an integrated sediment evaluation. The sediments from "El Limón" lagoon induced chronic intoxication responses and, therefore, remediation measures are urgently needed to recover environmental conditions suitable for the development of its aquatic biota.

  9. Experimental study on the effects of sediment size and porosity on contaminant adsorption/desorption and interfacial diffusion characteristics

    Institute of Scientific and Technical Information of China (English)

    FAN Jing-yu; HE Xiao-yan; WANG Dao-zeng

    2013-01-01

    The joint effects of the sediment size and porosity on the contaminant adsorption/desorption and interracial diffusion characteristics were experimentally investigated.The adsorption of Phosphorus (P) on the natural and artificial sediment suspensions was measured with respect to the P adsorption isotherms and kinetics in the experiment.The obtained adsorption isotherms for different grain-sized sediment suspensions fit well with the Langmuir equation,dependent on the initial aqueous concentration and sediment content.The P kinetic adsorption behaviors for cohesive fine-grained and non-cohesive coarse-grained sediment suspensions clearly show the size-dependent feature.On the other hand,the P kinetic release feature of a porous sediment layer is affected by not only the direct desorption of the uppermost sediments,but also the diffusivity in the pore-water within the underlying sediment layer,characterized by the sediment size and porosity,respectively.Furthermore,the temporal contaminant release from the permeable sediment layer into the overlying water colunm increases with the increasing flow velocity,while this enhancement in mediating the interfacial diffusion flux is somewhat insignificant in an immediate release stage,largely due to the resistance of the diffusive boundary layer on the hydrodynamic disturbance.

  10. Contamination of Omnivorous Freshwater Fish Species and Sediments by Chlorinated Hydrocarbons in Poland

    Directory of Open Access Journals (Sweden)

    Niewiadowska Alicja

    2014-10-01

    Full Text Available The occurrence and concentrations of organochlorine pesticides and polychlorinated biphenyls (PCBs were determined in 158 muscle samples of bream (Abramis brama and roach (Rutilus rutilus, and 84 samples of sediments collected from 10 river and lake sampling sites in 2011 and 2012. The concentrations of DDTs (p,p’-DDT, o,p’-DDT, p,p’-DDE, and p,p’-DDD, HCH isomers (a-, ß-, and y-HCH, HCB, and PCBs (six indicator PCB congeners 28, 52, 101, 138, 153 and 180 were determined using the capillary gas chromatography. The mean concentrations of DDTs in bream and roach were in the range of 11.2-654 and 4.5-121 ug/kg wet weight respectively, and PCBs were in the range of 1.3-75.9 and 1.1-112 ug/kg wet weight, respectively. Mean concentrations of DDTs and PCBs in sediments were 0.5-270 ug/kg dry weight and ⋋0.1-2.2 ug/kg dry weight respectively. The study showed clear spatial differences in the levels of organochlorine pesticides and PCBs in fish and sediments from different aquatic ecosystems. The highest levels of contaminants were detected in fish and sediments from the Vistula River in vicinity of Cracow. The possible risk to the fish meat consumers and ecological risk were evaluated.

  11. Phytoremediation of PAH-Contaminated Sediments by Potamogeton Crispus L. with Four Plant Densities

    Institute of Scientific and Technical Information of China (English)

    孟凡波; 迟杰

    2015-01-01

    In order to investigate the effect of plant density of Potamogeton crispus L. on the remediation of sedi-ments contaminated by polycyclic aromatic hydrocarbons, a 54-day experiment with four plant densities(642, 1,604, 2,567 and 3,530 plants/m2)was conducted. The results showed higher plant density with slower plant growth rate. Surface area per plant was the most sensitive root parameter to plant density. At the end of the 54-day experi-ment, planting P. crispus enhanced the dissipation ratios of phenanthrene and pyrene in sediments by 6.5%—26.2%and 0.95%—13.6%, respectively. The dissipation increment increased with increasing plant density. Plant uptake accounted for only a small portion of the dissipation increments. Furthermore, P. crispus could evidently improve sediment redox potentials, and strong positive correlations between root surface area and the redox potential as well as between the redox potentials and the dissipation ratios of phenanthrene and pyrene were obtained, indicating that the oxygen released by the roots of P. crispus might be the main mechanism by which P. crispus enhanced the dis-sipation of PAHs in sediments.

  12. Potential of phytoremediation for the removal of petroleum hydrocarbons in contaminated salt marsh sediments.

    Science.gov (United States)

    Ribeiro, Hugo; Mucha, Ana P; Almeida, C Marisa R; Bordalo, Adriano A

    2014-05-01

    Degradation of petroleum hydrocarbons in colonized and un-colonized sediments by salt marsh plants Juncus maritimus and Phragmites australis collected in a temperate estuary was investigated during a 5-month greenhouse experiment. The efficiency of two bioremediation treatments namely biostimulation (BS) by the addition of nutrients, and bioaugmentation (BA) by addition of indigenous microorganisms was tested in comparison with hydrocarbon natural attenuation in un-colonized and with rhizoremediation in colonized sediments. Hydrocarbon degrading microorganisms and root biomass were assessed as well as hydrocarbon degradation levels. During the study, hydrocarbon degradation in un-colonized sediments was negligible regardless of treatments. Rhizoremediation proved to be an effective strategy for hydrocarbon removal, yielding high rates in most experiments. However, BS treatments showed a negative effect on the J. maritimus potential for hydrocarbon degradation by decreasing the root system development that lead to lower degradation rates. Although both plants and their associated microorganisms presented a potential for rhizoremediation of petroleum hydrocarbons in contaminated salt marsh sediments, results highlighted that nutrient requirements may be distinct among plant species, which should be accounted for when designing cleanup strategies. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Comparing radiation dose rates in soils and riverine sediment to track the dispersion of radioactive contamination in Fukushima coastal rivers

    Science.gov (United States)

    Evrard, Olivier; Onda, Yuichi; Lepage, Hugo; Chartin, Caroline; Lefèvre, Irène; Cerdan, Olivier; Bonté, Philippe; Ayrault, Sophie

    2014-05-01

    The Fukushima Dai-ichi nuclear power plant (FDNPP) accident that occurred in March 2011 led to the formation of a 3000-km² radioactive pollution plume on soils located up to 70 km to the northwest of the damaged site. Forests and paddy fields are the dominant land uses in this mountainous region drained to the Pacific Ocean by several rivers that flow across densely inhabited coastal plains. It is then crucial to track the dispersion of radioactive material conveyed by those rivers to estimate the continental supply of radionuclides to the Ocean and to assess redistribution of radioactive sediment in those catchments. Radiations emitted by this contaminated material may indeed lead to an external exposure threat for local populations. As river discharge and sediment concentration data were not available during the first two years that followed the accident, alternative methods had to be developed to track this dispersion. We therefore organized field campaigns every six months and conducted local ground dose rate measurements to estimate whether fresh sediment drape deposits were more or less contaminated compared to local soils. Overall, our results showed that, in those regions exposed to violent typhoons and spring snowmelt, transfers of sediment are massive and episodic, and that they followed a seasonal cycle in 2011-2012. Then, in May 2013, contamination levels measured in sediment found in the upper parts of the catchments were almost systematically lower than the ones measured in nearby soils, whereas their contamination was higher in the coastal plains. This could have indicated a drying-up of the upstream sources of contamination. However, after the violent typhoons that occurred during summer in 2013, dose rates measured in fresh sediment deposits in November 2013 increased again systematically across the region. We thereby suggest that remobilization of contaminated sediment by typhoons and their storage in reservoirs and in coastal sections of the

  14. Bioanalytical effect-balance model to determine the bioavailability of organic contaminants in sediments affected by black and natural carbon.

    Science.gov (United States)

    Bräunig, Jennifer; Tang, Janet Y M; Warne, Michael St J; Escher, Beate I

    2016-08-01

    In sediments several binding phases dictate the fate and bioavailability of organic contaminants. Black carbon (BC) has a high sorptive capacity for organic contaminants and can limit their bioavailability, while the fraction bound to organic carbon (OC) is considered to be readily desorbable and bioavailable. We investigated the bioavailability and mixture toxicity of sediment-associated contaminants by combining different extraction techniques with in vitro bioanalytical tools. Sediments from a harbour with high fraction of BC, and sediments from remote, agricultural and urban areas with lower BC were treated with exhaustive solvent extraction, Tenax extraction and passive sampling to estimate total, bioaccessible and bioavailable fractions, respectively. The extracts were characterized with cell-based bioassays that measure dioxin-like activity (AhR-CAFLUX) and the adaptive stress response to oxidative stress (AREc32). Resulting bioanalytical equivalents, which are effect-scaled concentrations, were applied in an effect-balance model, consistent with a mass balance-partitioning model for single chemicals. Sediments containing BC had most of the bioactivity associated to the BC fraction, while the OC fraction played a role for sediments with lower BC. As effect-based sediment-water distribution ratios demonstrated, most of the bioactivity in the AhR-CAFLUX was attributable to hydrophobic chemicals while more hydrophilic chemicals activated AREc32, even though bioanalytical equivalents in the aqueous phase remained negligible. This approach can be used to understand the fate and effects of mixtures of diverse organic contaminants in sediments that would not be possible if single chemicals were targeted by chemical analysis; and make informed risk-based decisions concerning the management of contaminated sediments.

  15. Biological responses of juvenile European sea bass (Dicentrarchus labrax) exposed to contaminated sediments.

    Science.gov (United States)

    De Domenico, Elena; Mauceri, Angela; Giordano, Daniela; Maisano, Maria; Giannetto, Alessia; Parrino, Vincenzo; Natalotto, Antonino; D'Agata, Alessia; Cappello, Tiziana; Fasulo, Salvatore

    2013-11-01

    Multiple anthropogenic activities present along coastal environments may affect the health status of aquatic ecosystems. In this study, specimens of European sea bass (Dicentrarchus labrax) were exposed for 30 days to highly contaminated sediment collected from the industrial area between Augusta and Priolo (Syracuse, Italy), defined as the most mercury polluted site in the Mediterranean. The aim was to evaluate the responses of juvenile D. labrax to highly contaminated sediments, particularly enriched in Hg, in order to enhance the scarce knowledge on the potential compensatory mechanisms developed by organisms under severe stress conditions. Apoptotic and proliferative activities [cell turnover: Proliferating Cell Nuclear Antigen (PCNA) and FAS Ligand (FasL)], onset of hypoxic condition [hypoxia: Hypoxia Inducibile Factor-1α (HIF-1α)], and changes in the neuroendocrine control mechanisms [neurotransmission: Tyrosine Hydroxylase (TH), Choline Acetyltransferase (ChAT), Acetylcholinesterase (AChE), 5-Hydroxytryptamine (5-HT) and 5-Hydroxytryptamine receptor 3 (5-HT3)] were investigated in sea bass gill tissues. In the specimens exposed to the polluted sediment, the occurrence of altered cell turnover may result in impaired gas exchange that leads to a condition of "functional hypoxia". Changes in neurotransmission pathways were also observed, suggesting a remodeling process as an adaptive response to increase the O2-carrying capacity and restore the normal physiological conditions of the gills. Overall, these findings demonstrated that although chronic exposure to heavy metal polluted sediments alters the functioning of both the nervous and endocrine systems, as well as plasticity of the gill epithelium, fish are able to trigger a series of physiological adjustments or adaptations interfering with specific neuroendocrine control mechanisms that enable their long-term survival.

  16. The occurrence of microplastic contamination in littoral sediments of the Persian Gulf, Iran.

    Science.gov (United States)

    Naji, Abolfazl; Esmaili, Zinat; Mason, Sherri A; Dick Vethaak, A

    2017-07-14

    Microplastics (MPs; <5 mm) in aquatic environments are an emerging contaminant of concern due to their possible ecological and biological consequences. This study addresses that MP quantification and morphology to assess the abundance, distribution, and polymer types in littoral surface sediments of the Persian Gulf were performed. A two-step method, with precautions taken to avoid possible airborne contamination, was applied to extract MPs from sediments collected at five sites during low tide. MPs were found in 80% of the samples. Across all sites, fiber particles were the most dominate shape (88%), followed by films (11.2%) and fragments (0.8%). There were significant differences in MP particle concentration between sampling sites (p value <0.05). The sediments with the highest numbers of MPs were from sites in the vicinity of highly populated centers and municipal effluent discharges. FTIR analysis showed that polyethylene (PE), nylon, and polyethylene terephthalate (PET) were the most abundant polymer types. More than half of the observed MPs (56%) were in the size category of 1-4.7 mm length, with the remaining particles (44%) being in the size range of 10 μm to <1 mm. Compared to literature data from other regions, intertidal sediments in the Persian Gulf cannot be characterized as a hot spot for MP pollution. The present study could, however, provide useful background information for further investigations and management policies to understand the sources, transport, and potential effects on marine life in the Persian Gulf.

  17. Mining-related sediment and soil contamination in a large Superfund site: Characterization, habitat implications, and remediation

    Science.gov (United States)

    Juracek, Kyle E.; Drake, K. D.

    2016-01-01

    Historical mining activity (1850–1970) in the now inactive Tri-State Mining District provided an ongoing source of lead and zinc to the environment including the US Environmental Protection Agency Superfund site located in Cherokee County, southeast Kansas, USA. The resultant contamination adversely affected biota and caused human health problems and risks. Remediation in the Superfund site requires an understanding of the magnitude and extent of contamination. To provide some of the required information, a series of sediment and soil investigations were conducted in and near the Superfund site to characterize lead and zinc contamination in the aquatic and floodplain environments along the main-stem Spring River and its major tributaries. In the Superfund site, the most pronounced lead and zinc contamination, with concentrations that far exceed sediment quality guidelines associated with potential adverse biological effects, was measured for streambed sediments and floodplain soils located within or downstream from the most intensive mining-affected areas. Tributary streambeds and floodplains in affected areas are heavily contaminated with some sites having lead and zinc concentrations that are an order of magnitude (or more) greater than the sediment quality guidelines. For the main-stem Spring River, the streambed is contaminated but the floodplain is mostly uncontaminated. Measured lead and zinc concentrations in streambed sediments, lakebed sediments, and floodplain soils documented a persistence of the post-mining contamination on a decadal timescale. These results provide a basis for the prioritization, development, and implementation of plans to remediate contamination in the affected aquatic and floodplain environments within the Superfund site.

  18. Mining-Related Sediment and Soil Contamination in a Large Superfund Site: Characterization, Habitat Implications, and Remediation.

    Science.gov (United States)

    Juracek, K E; Drake, K D

    2016-10-01

    Historical mining activity (1850-1970) in the now inactive Tri-State Mining District provided an ongoing source of lead and zinc to the environment including the US Environmental Protection Agency Superfund site located in Cherokee County, southeast Kansas, USA. The resultant contamination adversely affected biota and caused human health problems and risks. Remediation in the Superfund site requires an understanding of the magnitude and extent of contamination. To provide some of the required information, a series of sediment and soil investigations were conducted in and near the Superfund site to characterize lead and zinc contamination in the aquatic and floodplain environments along the main-stem Spring River and its major tributaries. In the Superfund site, the most pronounced lead and zinc contamination, with concentrations that far exceed sediment quality guidelines associated with potential adverse biological effects, was measured for streambed sediments and floodplain soils located within or downstream from the most intensive mining-affected areas. Tributary streambeds and floodplains in affected areas are heavily contaminated with some sites having lead and zinc concentrations that are an order of magnitude (or more) greater than the sediment quality guidelines. For the main-stem Spring River, the streambed is contaminated but the floodplain is mostly uncontaminated. Measured lead and zinc concentrations in streambed sediments, lakebed sediments, and floodplain soils documented a persistence of the post-mining contamination on a decadal timescale. These results provide a basis for the prioritization, development, and implementation of plans to remediate contamination in the affected aquatic and floodplain environments within the Superfund site.

  19. Mining-Related Sediment and Soil Contamination in a Large Superfund Site: Characterization, Habitat Implications, and Remediation

    Science.gov (United States)

    Juracek, K. E.; Drake, K. D.

    2016-10-01

    Historical mining activity (1850-1970) in the now inactive Tri-State Mining District provided an ongoing source of lead and zinc to the environment including the US Environmental Protection Agency Superfund site located in Cherokee County, southeast Kansas, USA. The resultant contamination adversely affected biota and caused human health problems and risks. Remediation in the Superfund site requires an understanding of the magnitude and extent of contamination. To provide some of the required information, a series of sediment and soil investigations were conducted in and near the Superfund site to characterize lead and zinc contamination in the aquatic and floodplain environments along the main-stem Spring River and its major tributaries. In the Superfund site, the most pronounced lead and zinc contamination, with concentrations that far exceed sediment quality guidelines associated with potential adverse biological effects, was measured for streambed sediments and floodplain soils located within or downstream from the most intensive mining-affected areas. Tributary streambeds and floodplains in affected areas are heavily contaminated with some sites having lead and zinc concentrations that are an order of magnitude (or more) greater than the sediment quality guidelines. For the main-stem Spring River, the streambed is contaminated but the floodplain is mostly uncontaminated. Measured lead and zinc concentrations in streambed sediments, lakebed sediments, and floodplain soils documented a persistence of the post-mining contamination on a decadal timescale. These results provide a basis for the prioritization, development, and implementation of plans to remediate contamination in the affected aquatic and floodplain environments within the Superfund site.

  20. Burrowing and avoidance behaviour in marine organisms exposed to pesticide-contaminated sediment

    DEFF Research Database (Denmark)

    Møhlenberg, Flemming; Kiørboe, Thomas

    1983-01-01

    Behavioural effects of marine sediment contaminated with pesticides (6000 ppm parathion, 200 ppm methyl parathion, 200 ppm malathion) were studied in a number of marine organisms in laboratory tests and in situ. The burrowing behaviour in Macoma baltica, Cerastoderma edule, Abra alba, Nereis...... for Crangon crangon and Solea solea, but not for Carcinus meanas and Pomatoschistus minutus. The validity of both behavioural tests was supported by in situ observations and investigations on the distribution of the species. It is concluded that both tests are useful tools in the assessment of the impact...

  1. Estimation of hydrocarbon biodegradation rates in gasoline-contaminated sediment from measured respiration rates

    Science.gov (United States)

    Baker, R.J.; Baehr, A.L.; Lahvis, M.A.

    2000-01-01

    An open microcosm method for quantifying microbial respiration and estimating biodegradation rates of hydrocarbons in gasoline-contaminated sediment samples has been developed and validated. Stainless-steel bioreactors are filled with soil or sediment samples, and the vapor-phase composition (concentrations of oxygen (O2), nitrogen (N2), carbon dioxide (CO2), and selected hydrocarbons) is monitored over time. Replacement gas is added as the vapor sample is taken, and selection of the replacement gas composition facilitates real-time decision-making regarding environmental conditions within the bioreactor. This capability allows for maintenance of field conditions over time, which is not possible in closed microcosms. Reaction rates of CO2 and O2 are calculated from the vapor-phase composition time series. Rates of hydrocarbon biodegradation are either measured directly from the hydrocarbon mass balance, or estimated from CO2 and O2 reaction rates and assumed reaction stoichiometries. Open microcosm experiments using sediments spiked with toluene and p-xylene were conducted to validate the stoichiometric assumptions. Respiration rates calculated from O2 consumption and from CO2 production provide estimates of toluene and p- xylene degradation rates within about ??50% of measured values when complete mineralization stoichiometry is assumed. Measured values ranged from 851.1 to 965.1 g m-3 year-1 for toluene, and 407.2-942.3 g m-3 year-1 for p- xylene. Contaminated sediment samples from a gasoline-spill site were used in a second set of microcosm experiments. Here, reaction rates of O2 and CO2 were measured and used to estimate hydrocarbon respiration rates. Total hydrocarbon reaction rates ranged from 49.0 g m-3 year-1 in uncontaminated (background) to 1040.4 g m-3 year-1 for highly contaminated sediment, based on CO2 production data. These rate estimates were similar to those obtained independently from in situ CO2 vertical gradient and flux determinations at the

  2. Sewage contamination of sediments from two Portuguese Atlantic coastal systems, revealed by fecal sterols.

    Science.gov (United States)

    Rada, Jesica P A; Duarte, Armando C; Pato, Pedro; Cachada, Anabela; Carreira, Renato S

    2016-02-15

    Fecal sterols in sediments were used to assess the degree of sewage contamination in Ria de Aveiro lagoon and Mondego River estuary for the first time. Coprostanol, the major fecal sterol, averaged 1.82 ± 4.12 μg g(-1), with maxima of 16.6 μg g(-1). The northwestern sector of the Ria and a marina at Mondego estuary showed the highest level of sewage contamination. This scenario was confirmed by several diagnostic ratios based on fecal sterols and other phytosterols. Our data revealed that in spite of the improvements achieved in the last decades, there is still a need for control the organic inputs into the aquatic environment in the studied regions. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Magnetic Parameter Changes in Soil and Sediments in the Presence of Hydrocarbon Contamination

    Science.gov (United States)

    Appel, E.; Porsch, K.; Rijal, M. L.; Ameen, N. N.; Kappler, A.

    2014-12-01

    Magnetic proxies were successfully used for fast and non-destructive detection of fly ash related heavy metal pollution. Correlations of magnetic signals with organic contaminants in soils and sediments were also reported; however, their significance is unclear because of co-existing heavy metal pollution. At a hydrocarbon (HC) contaminated former military airbase (Hradcany, Czech Rep.), where heavy metal contents are insignificant, we detected clearly higher magnetic concentrations at the top of the groundwater fluctuation (GWF) zone. Frequent GWF by up to ca. one meter was caused through remediation by air sparging. In this study and all previous ones magnetite was identified as the dominant phase for higher magnetic concentrations. To determine the importance of microbial activity and soil parameters on changes in magnetic susceptibility (MS) laboratory batch experiments with different microbially active and sterile soils without carbon addition and with gasoline amendment were setup. MS of these microcosms was followed weekly. Depending on the soil MS either increased or decreased by up to ~7% and remained constant afterwards. The main findings were that MS changes were mainly microbially driven and influenced by the bioavailable Fe content, the initial MS and the organic carbon content of the soils. Moreover, we tested magnetic changes in laboratory columns, filled with sand from the field site Hradcany, by simulating water level changes. The observed changes were small and hardly statistically significant. Our laboratory studies revealed that different factors influence changes in magnetic properties of soil/sediments after HC contamination, with much smaller effects than expected from anomalies observed at field sites. With the present results, the ambitious goal of using magnetic monitoring for detecting HC contaminations by oil spills seem far from practical application.

  4. In situ groundwater and sediment bioremediation: barriers and perspectives at European contaminated sites.

    Science.gov (United States)

    Majone, Mauro; Verdini, Roberta; Aulenta, Federico; Rossetti, Simona; Tandoi, Valter; Kalogerakis, Nicolas; Agathos, Spiros; Puig, Sebastià; Zanaroli, Giulio; Fava, Fabio

    2015-01-25

    This paper contains a critical examination of the current application of environmental biotechnologies in the field of bioremediation of contaminated groundwater and sediments. Based on analysis of conventional technologies applied in several European Countries and in the US, scientific, technical and administrative barriers and constraints which still need to be overcome for an improved exploitation of bioremediation are discussed. From this general survey, it is evident that in situ bioremediation is a highly promising and cost-effective technology for remediation of contaminated soil, groundwater and sediments. The wide metabolic diversity of microorganisms makes it applicable to an ever-increasing number of contaminants and contamination scenarios. On the other hand, in situ bioremediation is highly knowledge-intensive and its application requires a thorough understanding of the geochemistry, hydrogeology, microbiology and ecology of contaminated soils, groundwater and sediments, under both natural and engineered conditions. Hence, its potential still remains partially unexploited, largely because of a lack of general consensus and public concerns regarding the lack of effectiveness and control, poor reliability, and possible occurrence of side effects, for example accumulation of toxic metabolites and pathogens. Basic, applied and pre-normative research are all needed to overcome these barriers and make in situ bioremediation more reliable, robust and acceptable to the public, as well as economically more competitive. Research efforts should not be restricted to a deeper understanding of relevant microbial reactions, but also include their interactions with the large array of other relevant phenomena, as a function of the truly variable site-specific conditions. There is a need for a further development and application of advanced biomolecular tools for site investigation, as well as of advanced metabolic and kinetic modelling tools. These would allow a

  5. Dissimilatory Sb(V) reduction by microorganisms isolated from Sb-contaminated sediment

    Science.gov (United States)

    Dovick, M. A.; Kulp, T. R.

    2013-12-01

    Mining and smelting are major sources of trace metal contamination in freshwater systems. Arsenic (As) is a common contaminant derived from certain mining operations and is a known toxic metalloid and carcinogen. Antimony (Sb) is listed as a pollutant of priority interest by the EPA and is presumed to share similar geochemical and toxicological properties with arsenic. Both elements can occur in four different oxidation states (V, III, 0, and -III) under naturally occurring conditions. In aqueous solutions As(V) and Sb(V) predominate in oxygenated surface waters whereas As(III) and Sb(III) are stable in anoxic settings. Numerous studies have examined microbiological redox pathways that utilize As(V) as a terminal electron acceptor for anaerobic respiration, however there have been few studies on microbial mechanisms that may affect the biogeochemical cycling of Sb in the environment. Here we report bacterial reduction of Sb(V) to Sb(III) in anoxic enrichment cultures and bacterial isolates grown from sediment collected from an Sb contaminated pond at a mine tailings site in Idaho (total pond water Sb concentration = 235.2 +/- 136.3 ug/L). Anaerobic sediment microcosms (40 mL) were established in artificial freshwater mineral salt medium, amended with millimolar concentrations of Sb(V), acetate or lactate, and incubated at 27°C for several days. Antimony(V), lactate, and acetate concentrations were monitored during incubation by High Performance Liquid Chromatography (HPLC) and Ion Chromatography (IC). Live sediment microcosms reduced millimolar amendments of Sb(V) to Sb(III) coupled to the oxidation of acetate and lactate, while no activity occurred in killed controls. Enrichment cultures were established by serially diluting Sb(V)-reducing microcosms in mineral salt medium with Sb(V) and acetate, and a Sb(V)-reducing bacterial strain was isolated by plating on anaerobic agar plates amended with millimolar Sb(V) and acetate. Direct cell counting demonstrated that

  6. Microbial community responses to organophosphate substrate additions in contaminated subsurface sediments.

    Directory of Open Access Journals (Sweden)

    Robert J Martinez

    Full Text Available BACKGROUND: Radionuclide- and heavy metal-contaminated subsurface sediments remain a legacy of Cold War nuclear weapons research and recent nuclear power plant failures. Within such contaminated sediments, remediation activities are necessary to mitigate groundwater contamination. A promising approach makes use of extant microbial communities capable of hydrolyzing organophosphate substrates to promote mineralization of soluble contaminants within deep subsurface environments. METHODOLOGY/PRINCIPAL FINDINGS: Uranium-contaminated sediments from the U.S. Department of Energy Oak Ridge Field Research Center (ORFRC Area 2 site were used in slurry experiments to identify microbial communities involved in hydrolysis of 10 mM organophosphate amendments [i.e., glycerol-2-phosphate (G2P or glycerol-3-phosphate (G3P] in synthetic groundwater at pH 5.5 and pH 6.8. Following 36 day (G2P and 20 day (G3P amended treatments, maximum phosphate (PO4(3- concentrations of 4.8 mM and 8.9 mM were measured, respectively. Use of the PhyloChip 16S rRNA microarray identified 2,120 archaeal and bacterial taxa representing 46 phyla, 66 classes, 110 orders, and 186 families among all treatments. Measures of archaeal and bacterial richness were lowest under G2P (pH 5.5 treatments and greatest with G3P (pH 6.8 treatments. Members of the phyla Crenarchaeota, Euryarchaeota, Bacteroidetes, and Proteobacteria demonstrated the greatest enrichment in response to organophosphate amendments and the OTUs that increased in relative abundance by 2-fold or greater accounted for 9%-50% and 3%-17% of total detected Archaea and Bacteria, respectively. CONCLUSIONS/SIGNIFICANCE: This work provided a characterization of the distinct ORFRC subsurface microbial communities that contributed to increased concentrations of extracellular phosphate via hydrolysis of organophosphate substrate amendments. Within subsurface environments that are not ideal for reductive precipitation of uranium

  7. Development and Characterization of PCE-to-Ethene Dechlorinating Microcosms with Contaminated River Sediment.

    Science.gov (United States)

    Lee, Jaejin; Lee, Tae Kwon

    2016-01-01

    An industrial complex in Wonju, contaminated with trichloroethene (TCE), was one of the most problematic sites in Korea. Despite repeated remedial trials for decades, chlorinated ethenes remained as sources of down-gradient groundwater contamination. Recent efforts were being made to remove the contaminants of the area, but knowledge of the indigenous microbial communities and their dechlorination abilities were unknown. Thus, the objectives of the present study were (i) to evaluate the dechlorination abilities of indigenous microbes at the contaminated site, (ii) to characterize which microbes and reductive dehalogenase genes were responsible for the dechlorination reactions, and (iii) to develop a PCE-to-ethene dechlorinating microbial consortium. An enrichment culture that dechlorinates PCE to ethene was obtained from Wonju stream, nearby a trichloroethene (TCE)-contaminated industrial complex. The community profiling revealed that known organohalide-respiring microbes, such as Geobacter, Desulfuromonas, and Dehalococcoides grew during the incubation with chlorinated ethenes. Although Chloroflexi populations (i.e., Longilinea and Bellilinea) were the most enriched in the sediment microcosms, those were not found in the transfer cultures. Based upon the results from pyrosequencing of 16S rRNA gene amplicons and qPCR using TaqMan chemistry, close relatives of Dehalococcoides mccartyi strains FL2 and GT seemed to be dominant and responsible for the complete detoxification of chlorinated ethenes in the transfer cultures. This study also demonstrated that the contaminated site harbors indigenous microbes that can convert PCE to ethene, and the developed consortium can be an important resource for future bioremediation efforts.

  8. NATURAL ARSENIC CONTAMINATION OF HOLOCENE ALLUVIAL AQUIFERS BY LINKED TECTONIC, WEATHERING, AND MICROBIAL PROCESSES

    Science.gov (United States)

    Linked tectonic, geochemical, and biologic processes lead to natural arsenic contamination of groundwater in Holocene alluvial aquifers, which are the main threat to human health around the world. These groundwaters are commonly found a long distance from their ultimate source of...

  9. Anthropogenic organic contaminants in water, sediments and benthic organisms of the mangrove-fringed Segara Anakan Lagoon, Java, Indonesia.

    Science.gov (United States)

    Dsikowitzky, Larissa; Nordhaus, Inga; Jennerjahn, Tim C; Khrycheva, Polina; Sivatharshan, Yoganathan; Yuwono, Edy; Schwarzbauer, Jan

    2011-04-01

    Segara Anakan, a mangrove-fringed coastal lagoon in Indonesia, has a high diversity of macrobenthic invertebrates and is increasingly affected by human activities. We found > 50 organic contaminants in water, sediment and macrobenthic invertebrates from the lagoon most of which were polycyclic aromatic compounds (PACs). Composition of PACs pointed to petrogenic contamination in the eastern lagoon. PACs mainly consisted of alkylated PAHs, which are more abundant in crude oil than parent PAHs. Highest total PAC concentration in sediment was above reported toxicity thresholds for aquatic invertebrates. Other identified compounds derived from municipal sewage and also included novel contaminants like triphenylphosphine oxide. Numbers of stored contaminants varied between species which is probably related to differences in microhabitat and feeding mode. Most contaminants were detected in Telescopium telescopium and Polymesoda erosa. Our findings suggest that more attention should be paid to the risk potential of alkylated PAHs, which has hardly been addressed previously.

  10. Linked basin sedimentation and orogenic uplift: The Neogene Barinas basin sediments derived from the Venezuelan Andes

    Science.gov (United States)

    Erikson, Johan P.; Kelley, Shari A.; Osmolovsky, Peter; Verosub, Kenneth L.

    2012-11-01

    The Venezuelan Andes are an asymmetric, doubly vergent orogen that is flanked on its southeastern side by the Barinas basin. Analyses of sedimentary facies, sandstone petrography, apatite fission-tracks, and magnetostratigraphy were completed on a 1750-m section of the syn-orogenic Neogene Parángula and Río Yuca formations in the Barinas side foothills of the Venezuelan Andes. Our sedimentary facies analyses record a progression of sedimentary environments from floodplain and floodplain channel deposits through the 560-m thick Parángula Formation transitioning to distal alluvial fan deposits in the lower Río Yuca Formation and finally to an alternation of distal alluvial fan and two, ˜100-m thick organic-rich lacustrine deposits in the upper third of the section. Major- and minor-mineral petrographic analysis reveals unroofing of the Venezuelan Andes, with quartz arenite composition low in the section succeeded by metamorphic and igneous clasts and potassium feldspar appearing near the base of the Río Yuca Formation. Apatite fission-track (AFT) analysis of sandstones and pebbles generated ages of 11.2 ± 1.3 - 13.8 ± 2.0 Ma over ˜1100 m of stratigraphic section. Thermal modeling of the detrital AFT and vitrinite data from the lower Río Yuca Formation indicates exhumation of the source area was occurring by 12-13 Ma, surface exposure at 10-9 Ma, maximum burial by 4-2 Ma and exhumation of the sedimentary package starting 3-2 Ma. Accumulation of the Río Yuca Formation is contemporaneous with a basinward migration of the deformation front. Regional considerations indicate that the Venezuelan Andes evolved from a primarily singly vergent orogen to its current double vergence over the interval of Neogene-Quaternary sedimentation.

  11. Assessment of bed sediment metal contamination in the Shadegan and Hawr Al Azim wetlands, Iran.

    Science.gov (United States)

    Nasirian, Hassan; Irvine, K N; Sadeghi, Sayyed Mohammad Taghi; Mahvi, Amir Hossein; Nazmara, Shahrokh

    2016-02-01

    The Shadegan and Hawr Al Azim wetlands are important natural resources in southwestern Iran, yet relatively little work has been done to assess ecosystem health of the wetlands. Bed sediment from both wetlands was sampled in individual months between October, 2011 and December, 2012 and analyzed for As, Cd, Co, Cr, Cu, Fe, Hg, Mn, Pb, and Zn using inductively coupled plasma optical emission spectrometry (ICP-OES). The metals data were evaluated using a combination of sediment quality guidelines from the Ontario Ministry of Energy and Environment (MOEE, Canada), enrichment factors (EFs), and a geo-accumulation index (Igeo) approach. The sediments exceeded MOEE Lowest Effect Levels (LELs) consistently for Cr and Cu and a small proportion of samples (5%) for Hg. Levels of As, Cd, Fe, Pb, and Zn did not exceed LELs and none of the samples exceeded the Severe Effect Levels (SELs). In addition to the sediment guidelines, both the EF and Igeo calculations suggested levels of Mn and Fe were severely enriched, while the EF indicated Cd was slightly enriched. Metal levels in the Shadegan wetland exhibited both spatial and seasonal trends. Metal levels were greater near input areas from agricultural, urban, and industrial discharges and runoff as compared to the more remote and quiescent central part of the wetland. Except for Fe, the metal levels were greater in the wet season as compared to the dry season, perhaps due to greater stormwater runoff and sediment loads. This study provides baseline data which can be used to support development of appropriate contaminant source management strategies to help ensure conservation of these valuable wetland resources.

  12. Developmental toxicity of lead-contaminated sediment in Canada geese (Branta canadensis)

    Science.gov (United States)

    Hoffman, David J.; Heinz, Gary H.; Sileo, Louis; Audet, Daniel J.; Campbell, Juile K.; Obrecht, Holly H.

    2000-01-01

    Sediment ingestion has recently been identified as an important exposure route for toxicants in waterfowl. The effects of lead-contaminated sediment from the Coeur d'Alene River Basin (CDARB) in Idaho on posthatching development of Canada geese (Branta canadensis) were examined for 6 wk. Day-old goslings received either untreated control diet, clean sediment (48%) supplemented control diet, or CDARB sediment (3449 mug/g lead) supplemented diets at 12%, 24%, or 48%. The 12% CDARB diet resulted in a geometric mean blood lead concentration of 0.68 ppm (ww), with over 90% depression of red blood cell ALAD activity and over fourfold elevation of free erythrocyte protoporphyrin concentration. The 24% CDARB diet resulted in blood lead of 1.61 ppm with decreased hematocrit, hemoglobin, and plasma protein in addition to the effects just described. The 48% CDARB diet resulted in blood lead of 2.52 ppm with 22% mortality, decreased growth, and elevated plasma lactate dehydrogenase-L (LDH-L) activity. In this group the liver lead concentration was 6.57 ppm (ww), with twofold increases in hepatic lipid peroxidation (thiobarbituric acid-reactive substances, TBARS) and in reduced glutathione concentration; associated effects included elevated glutathione reductase activity but lower protein-bound thiols concentration and glucose-6-phosphate dehydrogenase (G-6-PDH) activity. The kidney lead concentration in this group was 14.93 ppm with subacute renal tubular nephrosis in one of the surviving goslings. Three other geese in this treatment group exhibited calcified areas of marrow, and one of these displayed severe chronic fibrosing pancreatitis. Lead from CDARB sediment accumulated less readily in gosling blood and tissues than reported in ducklings but at given concentrations was generally more toxic to goslings. Many of these effects were similar to those reported in wild geese and mallards within the Coeur d'Alene River Basin.

  13. Microbial responses to polycyclic aromatic hydrocarbon contamination in temporary river sediments: Experimental insights.

    Science.gov (United States)

    Zoppini, Annamaria; Ademollo, Nicoletta; Amalfitano, Stefano; Capri, Silvio; Casella, Patrizia; Fazi, Stefano; Marxsen, Juergen; Patrolecco, Luisa

    2016-01-15

    Temporary rivers are characterized by dry-wet phases and represent an important water resource in semi-arid regions worldwide. The fate and effect of contaminants have not been firmly established in temporary rivers such as in other aquatic environments. In this study, we assessed the effects of sediment amendment with Polycyclic Aromatic Hydrocarbons (PAHs) on benthic microbial communities. Experimental microcosms containing natural (Control) and amended sediments (2 and 20 mg PAHs kg(-1) were incubated for 28 days. The PAH concentrations in sediments were monitored weekly together with microbial community structural (biomass and phylogenetic composition by TGGE and CARD-FISH) and functional parameters (ATP concentration, community respiration rate, bacterial carbon production rate, extracellular enzyme activities). The concentration of the PAH isomers did not change significantly with the exception of phenanthrene. No changes were observed in the TGGE profiles, whereas the occurrence of Alpha- and Beta-Proteobacteria was significantly affected by the treatments. In the amended sediments, the rates of carbon production were stimulated together with aminopeptidase enzyme activity. The community respiration rates showed values significantly lower than the Control after 1 day from the amendment then recovering the Control values during the incubation. A negative trend between the respiration rates and ATP concentration was observed only in the amended sediments. This result indicates a potential toxic effect on the oxidative phosphorylation processes. The impoverishment of the energetic resources that follows the PAH impact may act as a domino on the flux of energy from prokaryotes to the upper level of the trophic chain, with the potential to alter the temporary river functioning.

  14. Natural attenuation of contaminated marine sediments from an old floating dock Part II: changes of sediment microbial community structure and its relationship with environmental variables.

    Science.gov (United States)

    Wang, Ya-Fen; Tam, Nora Fung-Yee

    2012-04-15

    Changes of microbial community structure and its relationship with various environmental variables in surface marine sediments were examined for a one-year period after the removal of an old floating dock in Hong Kong SAR, South China. Temporal variations in the microbial community structure were clearly revealed by principal component analysis (PCA) of the microbial ester-linked fatty acid methyl ester (EL-FAME) profiles. The most obvious shift in microbial community structure was detected 6 months after the removal of the dock, although no significant decline in the levels of pollutants could be detected. As determined by EL-FAME profiles, the microbial diversity recovered and the predominance of gram-negative bacteria was gradually replaced by gram-positive bacteria and fungi in the impacted stations. With redundancy analysis (RDA), the concentration of total polycyclic aromatic hydrocarbons (PAHs) was found to be the second important determinant of microbial community structure, next to Time. The relative abundance of 18:1ω9c and hydroxyl fatty acids enriched in the PAH hot spots, whereas 16:1ω9 and 18:1ω9t were negatively correlated to total PAH concentration. The significant relationships observed between microbial EL-FAME profiles and pollutants, exampled by PAHs in the present study, suggested the potential of microbial community analysis in the assessment of the natural attenuation process in contaminated environments. Copyright © 2012 Elsevier B.V. All rights reserved.

  15. Contamination and fractionation of heavy metals in bedload sediments of the Siahrood River (Qaem-Shar area-Mazandaran Province

    Directory of Open Access Journals (Sweden)

    Shima Rostami

    2016-08-01

    Full Text Available The main objective of the present study is to evaluate variation, contamination and speciation of heavy metals in bed sediments of the Siahrood River in Mazandaran Province. For this purpose, fifteen sediment samples were collected along the main channel of the river. In addition to total content of heavy metals and selected physiochemical properties of the sediments, geochemical species of heavy metals were determined operationally using the modified BCR method. The obtained results generally showed that there is a wide variation in heavy metal concentrations in the sediments, probably due to anthropogenic inputs into the river and effect of physicochemical properties of the sediments (organic matter and clay content on the heavy metals variability. The calculated Igeo (Geo-accumulation index for each metal also revealed that sediments are moderately or strongly contaminated in terms of Pb and Cd whereas not or slightly contaminated with respect to other heavy metals, suggesting an anthropogenic source for Pb and Cd and a mostly geogenic origin for Ni, Zn, and Cr (Arsenic is probably of a mixed source. The results of BCR method indicated that Pb and Cd are predominately incorporated into the first fraction (F1, acid-soluble fraction while Zn and Ni are mainly associated with residual fraction (F4 confirming the concluded remarks on discrimination of heavy metals origins in the sediments.

  16. Assessment of contamination and origin of metals in mining affected river sediments: A case study of the Aries catchment, Romania

    Directory of Open Access Journals (Sweden)

    Levei Erika

    2014-01-01

    Full Text Available The study presents the current status of contamination with metals (Cu, Cr, Cd, Pb, Ni, Zn, As and their anthropogenic or natural origin in the sediments of the Aries river basin, Romania, affected by mining activities. The results indicated an enrichment of metals in sediments. Different contamination levels were identified on the Aries river and its tributaries. According to sediment quality guidelines and contamination indices, sediments from the Aries river were found to be highly contaminated with Cd, Cu, As, considerably with Zn and moderately with Pb and Ni. The right-bank tributaries were found to be more contaminated than the left-bank affluents, where only a contamination with As of geogenic origin was identified. The Principal Component Analysis allowed to identify five latent factors (86 % total variability reflecting the anthropogenic and natural origins of metals. Arsenic, Cd and partially Pb were found to have a common anthropogenic origin, different from that of Cu. The statistical approach indicated also the geogenic origin of Pb due to its association with Ca, K, Na, Sr. Chromium and Ni were attributed to natural source following their association with Mn, Fe, Al and Mg, respectively.

  17. Auto- and heterotrophic acidophilic bacteria enhance the bioremediation efficiency of sediments contaminated by heavy metals.

    Science.gov (United States)

    Beolchini, Francesca; Dell'Anno, Antonio; De Propris, Luciano; Ubaldini, Stefano; Cerrone, Federico; Danovaro, Roberto

    2009-03-01

    This study deals with bioremediation treatments of dredged sediments contaminated by heavy metals based on the bioaugmentation of different bacterial strains. The efficiency of the following bacterial consortia was compared: (i) acidophilic chemoautotrophic, Fe/S-oxidising bacteria, (ii) acidophilic heterotrophic bacteria able to reduce Fe/Mn fraction, co-respiring oxygen and ferric iron and (iii) the chemoautotrophic and heterotrophic bacteria reported above, pooled together, as it was hypothesised that the two strains could cooperate through a mutual substrate supply. The effect of the bioremediation treatment based on the bioaugmentation of Fe/S-oxidising strains alone was similar to the one based only on Fe-reducing bacteria, and resulted in heavy-metal extraction yields typically ranging from 40% to 50%. The efficiency of the process based only upon autotrophic bacteria was limited by sulphur availability. However, when the treatment was based on the addition of Fe-reducing bacteria and the Fe/S oxidizing bacteria together, their growth rates and efficiency in mobilising heavy metals increased significantly, reaching extraction yields >90% for Cu, Cd, Hg and Zn. The additional advantage of the new bioaugmentation approach proposed here is that it is independent from the availability of sulphur. These results open new perspectives for the bioremediation technology for the removal of heavy metals from highly contaminated sediments.

  18. Bioremediation of marine sediments contaminated by hydrocarbons: experimental analysis and kinetic modeling.

    Science.gov (United States)

    Beolchini, Francesca; Rocchetti, Laura; Regoli, Francesco; Dell'Anno, Antonio

    2010-10-15

    This work deals with bioremediation experiments on harbor sediments contaminated by aliphatic and polycyclic aromatic hydrocarbons (PAHs), investigating the effects of a continuous supply of inorganic nutrients and sand amendments on the kinetics of microbial growth and hydrocarbon degradation. Inorganic nutrients stimulated microbial growth and enhanced the biodegradation of low and high molecular weight hydrocarbons, whereas sand amendment increased only the removal of high molecular weight compounds. The simultaneous addition of inorganic nutrients and sand provided the highest biodegradation (>70% for aliphatic hydrocarbons and 40% for PAHs). A semi-empirical kinetic model was successfully fitted to experimental temporal changes of hydrocarbon residual concentrations and microbial abundances. The estimated values for parameters allowed to calculate a doubling time of 2.9 d and a yield coefficient biomass/hydrocarbons 0.39 g C biomass g-1C hydrocarbons, for the treatment with the highest hydrocarbon biodegradation yield. A comparison between the organic carbon demand and temporal profiles of hydrocarbons residual concentration allowed also to calculate the relative contribution of contaminants to carbon supply, in the range 5-32%. This suggests that C availability in the sediments, influencing prokaryotic metabolism, may have cascade effects on biodegradation rates of hydrocarbons. Even if these findings do not represent a general rule and site-specific studies are needed, the approach used here can be a relevant support tool when designing bioremediation strategies on site.

  19. Natural radioactivity and metal contamination of river sediments in the Calabria region, south of Italy

    Science.gov (United States)

    Caridi, F.; Marguccio, S.; D'Agostino, M.; Belvedere, A.; Belmusto, G.

    2016-05-01

    River sediments from eight different sites of the coast of Calabria, south of Italy, were sampled to determine natural radioactivity and metal concentrations, in order to assess any possible radiological hazard, the level of contamination and the possible anthropogenic impact in the area. Gamma and X-ray fluorescence (XRF) spectrometry were employed and results of this study show that the mean activity concentrations of radium (in secular equilibrium with uranium) ranged from 15.1Bq/kg to 26.7Bq/kg, that of thorium from 21.8Bq/kg to 48.3Bq/kg and that of potassium from 541.3Bq/kg to 1452.2Bq/kg. In terms of mean mass concentrations, XRF analysis revealed that uranium was lower than 1.5ppm (minimum detectable value), thorium ranged from 6.1ppm to 10.3ppm while potassium ranged from 2.5% to 4.4%. The degree of sediment contaminations were computed using an enrichment factor (EF) and geoaccumulation index ( I geo for some potential hazardous elements. Results suggested that enrichment factor and geoaccumulation values of Pb and Mn were greatest among the studied metals. The study revealed that on the basis of computed indexes, the eight investigated rivers can be classified as no polluted ones.

  20. Sustainability likelihood of remediation options for metal-contaminated soil/sediment.

    Science.gov (United States)

    Chen, Season S; Taylor, Jessica S; Baek, Kitae; Khan, Eakalak; Tsang, Daniel C W; Ok, Yong Sik

    2017-05-01

    Multi-criteria analysis and detailed impact analysis were carried out to assess the sustainability of four remedial alternatives for metal-contaminated soil/sediment at former timber treatment sites and harbour sediment with different scales. The sustainability was evaluated in the aspects of human health and safety, environment, stakeholder concern, and land use, under four different scenarios with varying weighting factors. The Monte Carlo simulation was performed to reveal the likelihood of accomplishing sustainable remediation with different treatment options at different sites. The results showed that in-situ remedial technologies were more sustainable than ex-situ ones, where in-situ containment demonstrated both the most sustainable result and the highest probability to achieve sustainability amongst the four remedial alternatives in this study, reflecting the lesser extent of off-site and on-site impacts. Concerns associated with ex-situ options were adverse impacts tied to all four aspects and caused by excavation, extraction, and off-site disposal. The results of this study suggested the importance of considering the uncertainties resulting from the remedial options (i.e., stochastic analysis) in addition to the overall sustainability scores (i.e., deterministic analysis). The developed framework and model simulation could serve as an assessment for the sustainability likelihood of remedial options to ensure sustainable remediation of contaminated sites. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Use of Sediment Quality Guidelines and pollution indicators for the assessment of heavy metal and PAH contamination in Greek surficial sea and lake sediments.

    Science.gov (United States)

    Hahladakis, John; Smaragdaki, Eleftheria; Vasilaki, Georgia; Gidarakos, Evangelos

    2013-03-01

    Eight different surface sediment samples (K1-K8) were collected from two separate areas of Lake Koumoundourou and two samples (E1 and E2) from one area of Elefsis Bay, Athens, Greece. The level of pollution attributed to heavy metals was evaluated using several pollution indicators. Degree of Contamination, Modified Contamination Degree and Geoaccumulation Indexes were applied in order to determine and assess the anthropogenic contribution of the selected six elements (Cr, Ni, Cu, Zn, As and Pb). Moreover, the adverse effects of the sediments to aquatic organisms, from both heavy metals and polycyclic aromatic hydrocarbons (PAHs), were determined by using Sediment Quality Guidelines. The results indicated that Lake Koumoundourou is contaminated with heavy metals in a moderate degree and almost 50 % of the sediments are associated with frequent observation of adverse effects, when it comes to Ni and occasional observation of adverse effects, when it comes to Cu, Zn and Pb. As far as PAHs are concerned, around 60 % of the samples can be occasionally associated to toxic biological effects according to the effect-range classification for phenanthrene, benzo(a)anthracene, chrysene and pyrene. Finally, samples taken from the north side of the lake are more contaminated with PAHs than the ones taken from the east side probably due to the existence of the water barrier which acts as a reservoir of PAHs.

  2. Contaminants in stream sediments from seven United States metropolitan areas: part II--sediment toxicity to the amphipod Hyalella azteca and the midge Chironomus dilutus.

    Science.gov (United States)

    Kemble, Nile E; Hardesty, Douglas K; Ingersoll, Christopher G; Kunz, James L; Sibley, Paul K; Calhoun, Daniel L; Gilliom, Robert J; Kuivila, Kathryn M; Nowell, Lisa H; Moran, Patrick W

    2013-01-01

    Relationships between sediment toxicity and sediment chemistry were evaluated for 98 samples collected from seven metropolitan study areas across the United States. Sediment-toxicity tests were conducted with the amphipod Hyalella azteca (28 day exposures) and with the midge Chironomus dilutus (10 day exposures). Overall, 33 % of the samples were toxic to amphipods and 12 % of the samples were toxic to midge based on comparisons with reference conditions within each study area. Significant correlations were observed between toxicity end points and sediment concentrations of trace elements, polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs), or organochlorine (OC) pesticides; however, these correlations were typically weak, and contaminant concentrations were usually below sediment-toxicity thresholds. Concentrations of the pyrethroid bifenthrin exceeded an estimated threshold of 0.49 ng/g (at 1 % total organic carbon) in 14 % of the samples. Of the samples that exceeded this bifenthrin toxicity threshold, 79 % were toxic to amphipods compared with 25 % toxicity for the samples below this threshold. Application of mean probable effect concentration quotients (PECQs) based on measures of groups of contaminants (trace elements, total PAHs, total PCBs, OC pesticides, and pyrethroid pesticides [bifenthrin in particular]) improved the correct classification of samples as toxic or not toxic to amphipods compared with measures of individual groups of contaminants.

  3. Mercury contamination in the vicinity of a derelict chlor-alkali plant. Part I: sediment and water contamination of Lake Balkyldak and the River Irtysh.

    Science.gov (United States)

    Ullrich, Susanne M; Ilyushchenko, Mikhail A; Kamberov, Irken M; Tanton, Trevor W

    2007-08-01

    A mercury-cell chlor-alkali plant operated in Pavlodar, Northern Kazakhstan, for 18 years and caused widespread contamination of the surrounding environment. Untreated wastewater from the plant was discharged to Lake Balkyldak, a shallow impounded lake without an outlet. The nearby River Irtysh was also suspected to be impacted by mercury (Hg) via the transport of contaminated groundwater. We took sediment and water samples from both aquatic systems, and also sampled soils along the shoreline of the lake and in the Irtysh flood plain. Sediments from Lake Balkyldak were found to be very heavily contaminated, with Hg concentrations in the surface layer reaching up to approximately 1500 mg kg(-1) near the wastewater outfall pipe. The contaminated lake sediments are prone to wind-driven resuspension and are acting as a strong source of Hg to the water column. Unfiltered lake water samples taken in shallow areas within 10-15 m from the shoreline contained from 0.11 microg Hg L(-1) in the less contaminated northern part of the lake to 1.39 microg L(-1) near the pollutant outfall in the south (up to 7.3 microg L(-1) on windy days). Sediments from the River Irtysh were only slightly impacted, with maximum Hg concentrations of 0.046 mg kg(-1) in the old river channel and 0.36 mg kg(-1) in floodplain oxbow lakes. In water samples from the River Irtysh, Hg was generally not detected, although trace concentrations (3 to 9 ng L(-1)) were found in some samples taken from oxbow lakes. We conclude that the river is not significantly impacted by Hg, but the highly contaminated Lake Balkyldak poses a threat and is in need of remediation. Potential remediation options for the lake are reviewed and are discussed in the context of experiences made at other Hg-contaminated sites.

  4. Rehabilitation of river sediments contaminated by heavy metals from tanning industries using the phytoextraction technique

    Science.gov (United States)

    Beltrá Castillo, Juan Carlos; García Orenes, Fuensanta; Mora Navarro, José; Murcia Navarro, Francisco Jose; Zornoza Belmonte, Raúl; Faz Cano, Ángel; Gómez-Garrido, Melisa

    2017-04-01

    Leather tanning is an industrial sector of great tradition in Spain that has progressively evolved until it has reached a high degree of technification in the present. However, in its early days, the leather tanning industry has always been considered a dirty and polluting activity, mainly due to the water spills that ended up in the river channels. The Guadalentin Valley between Lorca and Murcia (SE Spain) is characterised by intensive crop and pig production, and an extensive agroalimentary and leather tannery industry. These anthropogenic sources have released salts and metals such as copper (Cu), zinc (Zn) and chromium (Cr) into Guadalentin river. Up to 2003, wastewater was discharged directly to the dry river, immediately upstream of the urban nucleus of Lorca, without any previous treatment. It contained high concentrations of inorganic salts and heavy metals (Cu, Zn and Cr). Spills, in some events, had a flow of 10 000 m3 d-1, with concentration of Cr over 500 mg L-1. Phytoremediation is a sustainable alternative that allows the environmental rehabilitation of fluvial dry sediments through the transfer of heavy metals from the contaminated soils to the native vegetation present. Atriplex halimus, salsola oppositifolia, suaeda vera and tamarix africana were the most representative autochthonous phytoextractor species that were planted to study the degree of decontamination of dry river sediments before planting and 12 months after planting. The sediments characterization was done by a sampling grid of 40 000 m2 (500 m x 8 m) where samples were taken at 3 depths (0-20 cm, 20-50 cm and 5-100 cm) every 50 m. A vegetation study was carried out by random plots of 10 m x 10 m. The results indicated that after 12 months the vegetation cover increased between 35% and 70%. The degree of contamination of Cu, Zn and Cr of the river dry sediments decreased slightly, being the atriplex halimus the plant specie that presented the highest value of the bioaccumulation factor

  5. Contaminants in stream sediments from seven United States metropolitan areas: part II—sediment toxicity to the amphipod Hyalella azteca and the midge Chironomus dilutus

    Science.gov (United States)

    Kemble, Nile E.; Hardesty, Douglas K.; Ingersoll, Christopher G.; Kunz, James L.; Sibley, Paul K.; Calhoun, Daniel L.; Gilliom, Robert J.; Kuivila, Kathryn; Nowell, Lisa H.; Moran, Patrick W.

    2013-01-01

    Relationships between sediment toxicity and sediment chemistry were evaluated for 98 samples collected from seven metropolitan study areas across the United States. Sediment-toxicity tests were conducted with the amphipod Hyalella azteca (28 day exposures) and with the midge Chironomus dilutus (10 day exposures). Overall, 33 % of the samples were toxic to amphipods and 12 % of the samples were toxic to midge based on comparisons with reference conditions within each study area. Significant correlations were observed between toxicity end points and sediment concentrations of trace elements, polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs), or organochlorine (OC) pesticides; however, these correlations were typically weak, and contaminant concentrations were usually below sediment-toxicity thresholds. Concentrations of the pyrethroid bifenthrin exceeded an estimated threshold of 0.49 ng/g (at 1 % total organic carbon) in 14 % of the samples. Of the samples that exceeded this bifenthrin toxicity threshold, 79 % were toxic to amphipods compared with 25 % toxicity for the samples below this threshold. Application of mean probable effect concentration quotients (PECQs) based on measures of groups of contaminants (trace elements, total PAHs, total PCBs,OCpesticides, and pyrethroid pesticides [bifenthrin in particular]) improved the correct classification of samples as toxic or not toxic to amphipods compared with measures of individual groups of contaminants. Sediments are a repository for many contaminants released into surface waters. Because of this, organisms inhabiting sediments may be exposed to a wide range of contaminants (United States Environmental Protection Agency (USEPA) United States Environmental Protection Agency 2000; American Society for Testing and Materials [ASTM] American Society for Testing and Materials International 2012). Contaminants of potential concern in sediments typically include trace elements (metals

  6. The Lagoon of Ravenna (Italy). Characterisation of mercury-contaminated sediments

    Energy Technology Data Exchange (ETDEWEB)

    Fabbri, D.; Lombardo, M.; Trombini, C.; Vassura, I. [Laboratorio di Chimica Ambientale, Universita di Bologna, Ravenna (Italy); Felisatti, O. [Ambiente SpA, Ravenna (Italy)

    1998-05-06

    Between 1958 and 1973, the wetland called Pialassa Baiona near Ravenna (Italy) had been heavily polluted by industrial effluents, among which mercury represented the most hazardous contaminant. Three sediment cores representative of a channel and a pond in the southern area, close to the discharge point, were analysed. Up to 244 {mu}g/g (dry weight) of mercury were observed in the top 0-20 cm layer. Among various parameters under study, good correlation was found between mercury and redox properties of the sediment, sulphur and organic matter. Styrene/butadiene based polymers, produced by the same industrial area since 1958, were found to be an important component of organic matter. Despite the analogy with the Minamata case, mercury appears to be efficiently trapped by the sediment, probably in the form of sulphide and/or bound to the organic matter and so far it has not represented a hazard for public health as confirmed by the lack of epidemiological effects in Ravenna area due to exposure to mercury

  7. Influence of silver nanoparticles on heavy metals of pore water in contaminated river sediments.

    Science.gov (United States)

    Tao, Wei; Chen, Guiqiu; Zeng, Guangming; Yan, Ming; Chen, Anwei; Guo, Zhi; Huang, Zhenzhen; He, Kai; Hu, Liang; Wang, Lichao

    2016-11-01

    Despite the increasing knowledge on the discharge of silver nanoparticles (AgNPs) into the environment and their potential toxicity to microorganisms, the interaction of AgNPs with heavy metals remains poorly understood. This study focused on the effect of AgNPs on heavy metal concentration and form in sediment contaminated with heavy metals from the Xiangjiang River. The results showed that the concentration of Cu, Zn, Pb and Cd decreased and then increased with a change in form. The changes in form and concentrations of heavy metals in pore water suggested that Cu and Zn were more likely to be affected compared to Pb and Cd. The concentrations of Hg in sediment pore water in three AgNPs-dosed containers, increased greatly until they reached their peaks at 4.468 ± 0.133, 4.589 ± 0.235, and 5.083 ± 0.084 μg L(-1) in Bare AgNPs, Citrate AgNPs and Tween 80 AgNPs, respectively. The measurements of Hg concentrations in the sediment pore water, combined with SEM and EDX analysis, demonstrated that added AgNPs stabilized in pore water and formed an amalgam with Hg(0), which can affect Hg transportation over long distance. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Assessing Pb,Zn,Cd contamination in stream sediments of south east Tehran (Iran)

    Science.gov (United States)

    Shahdadi, S.; Fayazi, F.; Yaghoobpour, A.; Rahmani, F.; Moslempour, M.

    2009-04-01

    Assessing Pb,Zn,Cd contamination in stream sediments of south east Tehran (Iran) 31 sediment samples collected from south east of Tehran around cement plant (Bibi shahrbanoo mountain) were analyzed by ICP for Pb, Zn, Cd. The samples were also investigated for mineralogy using X-ray analysis.The clay mineral assemblage encountered in the analyzed samples is composed of vermiculite, dickite, montmorillonite and kaolinite.The non-clay minerals of the mud-sized fraction are composed mainly of quartz and calcite and dolomite as major minerals with albite, hematite, muscovite as minor minerals. The measured metals correlated positively with the determined physiochemical factors such as pH, clay content, organic matter content, and carbonate content. According to the index of geoaccumulation, the sediments of the study area are considered to be strongly to very strongly polluted with respect to Pb, strongly polluted with respect to Zn, and moderatly to strongly polluted with recpect to Cd.The calculation of enrichment factors shows that the source of Pb and Zn is from antropogenic activites such as cement plant and vehicle exhausts and Cd from natural source.

  9. Removal of Zn from Contaminated Sediment by FeCl3 in HCl Solution

    Directory of Open Access Journals (Sweden)

    Sang-hun Lee

    2015-10-01

    Full Text Available Harbor sediments contaminated with ZnS concentrate were treated by ferric chloride in HCl solution to remove Zn. The sediments were evaluated using Tessier’s sequential extraction method to determine the different metal phase associations of Zn. Leaching tests were performed to investigate the effects of experimental factors, such as agitation speed, ferric ion concentration, temperature, and pulp density, on the removal of Zn. The sequential extraction procedure revealed that about 17.7% of Zn in the sediment was associated with soluble carbonate and oxide phases. The results of the leaching tests indicated that higher ferric concentration and temperature increased the leaching efficiencies significantly, while the agitation speed has a negligible effect on the removal of Zn. The removal ratio increased to more than 99% within 120 min of treatment at 1 kmol·m−3 HCl solution with 1 kmol·m−3 Fe3+, 10% pulp density, and 400 rpm at 90 °C. The dissolution kinetics of Zn were discussed by comparing the two shrinking core models. It was determined that the kinetic data followed the diffusion controlled model well compared to the surface chemical reaction model. The activation energies were calculated to be 76.9 kJ/mol, 69.6 kJ/mol, and 58.5 kJ/mol for 0.25 kmol·m−3, 0.5 kmol·m−3, and 1 kmol·m−3 Fe3+, respectively.

  10. Ultrasound-assisted extraction method for the simultaneous determination of emerging contaminants in freshwater sediments.

    Science.gov (United States)

    de Sousa, Diana Nara Ribeiro; Grosseli, Guilherme Martins; Mozeto, Antonio Aparecido; Carneiro, Renato Lajarim; Fadini, Pedro Sergio

    2015-10-01

    Sediments are the fate of several emerging organic contaminants, such as pharmaceuticals, personal care products and hormones, and therefore an important subject in environmental monitoring studies. In the present work, a simple and sensitive method was developed, validated and applied for the simultaneous extraction of atenolol, caffeine, carbamazepine, diclofenac, ibuprofen, naproxen, propranolol, triclosan, estrone, 17-β-estradiol and 17-α-ethinylestradiol using ultrasound-assisted extraction from freshwater sediment samples followed by solid-phase extraction clean-up and liquid chromatography with tandem mass spectrometry detection. The solvent type and extraction pH were evaluated to obtain the highest recoveries of the compounds. The best method shows absolute recoveries between 54.0 and 94.4% at 50 ng/g concentration. The method exhibits good precision with relative standard deviation ranging from 1.0-16%. The detection and quantification limits ranged from 0.006-0.067 and 0.016-0.336 ng/g, respectively. The developed method was successfully applied to freshwater sediment samples collected from different sites in Jundiaí River basin of São Paulo State, Brazil. The compounds atenolol, caffeine, propranolol and triclosan were detected in all the sampling sites with concentrations of 13.8, 41.0, 28.5 and 176 ng/g, respectively.

  11. Effects of sulfur forms on heavy metals bioleaching from contaminated sediments.

    Science.gov (United States)

    Fang, D; Zhao, L; Zhou, L X; Shan, H X

    2009-06-01

    The use of recyclable forms of sulfur will exclude the risk of sediment reacidification and reduce the cost of bioleaching process. Three different forms of sulfur (namely sulfur powder, prills and pieces) were used to examine the utilization and recycle of sulfur, used as energy substrate for sulfur-oxidizing bacteria (SOB) in the bioleaching of heavy metal-contaminated sediments. The results showed that despite their relatively smaller surface areas, the efficiency of metal bioleaching with sulfur prills and pieces were comparable to that with sulfur powder. After 13 days of bioleaching, 71-74% of Zn, 58-62% of Cu, and 22-31% of Cr could be leached from the sediments, respectively. During bioleaching, most of the oxidizable and reducible forms of metals were transformed to acid soluble, posing a favorable condition for final metals removal. Sulfur recycling experiments showed that the recovered sulfur prills and pieces were as the same effective in pH reduction as fresh sulfur, revealing the feasibility of eventual reuse of the recycled sulfur in the bioleaching process. Further studies are required to testify the performance of these recyclable forms of sulfur in future large-scale bioleaching reactor.

  12. Exposure to contaminated sediments induces alterations in the gill epithelia in juvenile Solea senegalensis: a comparative in situ and ex situ study

    Directory of Open Access Journals (Sweden)

    Carla Martins

    2014-06-01

    contaminated sediments. Hypertrophied chloride cells are a consequence of a hindered osmotic regulation by the impairment of ionic active transport, leading to loss-of-function and excessive fluid retention in the cytoplasm. On its turn, a reduction in number and size of gill mucous cells likely reduced the protection provided by mucous to these delicate structures. In general, the alterations were more pronounced in the ex situ study than in situ bioassays, which is probably linked to differences in contaminant bioavailability between laboratory and field scenarios. This variation is likely related to, for instance, estuarine hydrodynamics and sediment steady-state parameters. Interestingly, the results suggest that time of exposure is a key factor, since fewer alterations were observed in animals sampled at the end of the assay (28 days compared to the mid-term (14 days, revealing adaptation to toxicological challenge. In conclusion, mixed sediment contamination can cause physiological alterations in fish gill epithelia that can be determined histologically. These subtle changes may affect the health status of animals by impairing key vital functions such as osmotic balance. As such, physiological alterations to fish gill epithelia may reflect, as in the present case, estuarine sediment contamination even when severe gill lesions are reduced or absent, which mandates caution when interpreting histopathological data in fish for the purpose of environmental risk assessment.

  13. Influences of Organic Carbon Supply Rate on Uranium Bioreduction in Initially Oxidizing, Contaminated Sediment

    Energy Technology Data Exchange (ETDEWEB)

    Tokunaga, Tetsu K.; Wan, Jiamin; Kim, Yongman; Daly, Rebecca A.; Brodie, Eoin L.; Hazen, Terry C.; Herman, Don; Firestone, Mary K.

    2008-06-10

    Remediation of uranium (U) contaminated sediments through in-situ stimulation of bioreduction to insoluble UO{sub 2} is a potential treatment strategy under active investigation. Previously, we found that newly reduced U(IV) can be reoxidized under reducing conditions sustained by a continuous supply of organic carbon (OC) because of residual reactive Fe(III) and enhanced U(VI) solubility through complexation with carbonate generated through OC oxidation. That finding motivated this investigation directed at identifying a range of OC supply rates that is optimal for establishing U bioreduction and immobilization in initially oxidizing sediments. The effects of OC supply rate, from 0 to 580 mmol OC (kg sediment){sup -1} year{sup -1}, and OC form (lactate and acetate) on U bioreduction were tested in flow-through columns containing U-contaminated sediments. An intermediate supply rate on the order of 150 mmol OC (kg sediment){sup -1} year{sup -1} was determined to be most effective at immobilizing U. At lower OC supply rates, U bioreduction was not achieved, and U(VI) solubility was enhanced by complexation with carbonate (from OC oxidation). At the highest OC supply rate, resulting highly carbonate-enriched solutions also supported elevated levels of U(VI), even though strongly reducing conditions were established. Lactate and acetate were found to have very similar geochemical impacts on effluent U concentrations (and other measured chemical species), when compared at equivalent OC supply rates. While the catalysts of U(VI) reduction to U(IV) are presumably bacteria, the composition of the bacterial community, the Fe reducing community, and the sulfate reducing community had no direct relationship with effluent U concentrations. The OC supply rate has competing effects of driving reduction of U(VI) to low solubility U(IV) solids, as well as causing formation of highly soluble U(VI)-carbonato complexes. These offsetting influences will require careful control of OC

  14. Metal release from contaminated estuarine sediment under pH changes in the marine environment.

    Science.gov (United States)

    Martín-Torre, M Camino; Payán, M Cruz; Verbinnen, Bram; Coz, Alberto; Ruiz, Gema; Vandecasteele, Carlo; Viguri, Javier R

    2015-04-01

    The contaminant release from estuarine sediment due to pH changes was investigated using a modified CEN/TS 14429 pH-dependence leaching test. The test is performed in the range of pH values of 0-14 using deionised water and seawater as leaching solutions. The experimental conditions mimic different circumstances of the marine environment due to the global acidification, carbon dioxide (CO2) leakages from carbon capture and sequestration technologies, and accidental chemical spills in seawater. Leaching test results using seawater as leaching solution show a better neutralisation capacity giving slightly lower metal leaching concentrations than when using deionised water. The contaminated sediment shows a low base-neutralisation capacity (BNCpH 12 = -0.44 eq/kg for deionised water and BNCpH 12 = -1.38 eq/kg for seawater) but a high acid-neutralisation capacity when using deionised water (ANCpH 4 = 3.58 eq/kg) and seawater (ANCpH 4 = 3.97 eq/kg). Experimental results are modelled with the Visual MINTEQ geochemical software to predict metal release from sediment using both leaching liquids. Surface adsorption to iron- and aluminium-(hydr)oxides was applied for all studied elements. The consideration of the metal-organic matter binding through the NICA-Donnan model and Stockholm Humic Model for lead and copper, respectively, improves the former metal release prediction. Modelled curves can be useful for the environmental impact assessment of seawater acidification due to its match with the experimental values.

  15. Signaling in a polluted world: oxidative stress as an overlooked mechanism linking contaminants to animal communication

    Directory of Open Access Journals (Sweden)

    Valeria Marasco

    2016-08-01

    Full Text Available The capacity to communicate effectively with other individuals plays a critical role in the daily life of an individual and can have important fitness consequences. Animals rely on a number of visual and non-visual signals, whose production brings costs to the individual. The theory of honest signaling states that these costs are higher for low than for high-quality individuals, which prevents cheating and makes signals, such as skin and plumage colouration, indicators of individual’s quality or condition. The condition-dependent nature of signals makes them ideally suited as indicators of environmental quality, implying that signal production might be affected by contaminants. In this mini-review article, we have made the point that oxidative stress (OS is one overlooked mechanism linking exposure to contaminants to signaling because (i many contaminants can influence the individual’s oxidative balance, and (ii generation of both visual and non-visual signals is sensitive to oxidative stress. To this end, we have provided the first comprehensive review on the way both non-organic (heavy metals, especially mercury and organic (persistent organic pollutants contaminants may influence either OS or sexual signaling. We have also paid special attention to emerging classes of pollutants like brominated flame-retardants and perfluoroalkoxy alkanes in order to stimulate research in this area. We have finally provided suggestions and warnings for future work on the links among OS, sexual signaling and contaminant exposure.

  16. Assessment of sediment contamination and sampling design in Savona Harbour, Italy.

    Science.gov (United States)

    Paladino, Ombretta; Massabò, Marco; Fissore, Francesca; Moranda, Arianna

    2015-02-15

    A method for assessing environmental contamination in harbour sediments and designing the forthcoming monitoring activities in enlarged coastal ecosystems is proposed herein. The method is based on coupling principal component analysis of previous sampling campaigns with a discrete optimisation of a value for money function. The objective function represents the utility derived for every sum of money spent in sampling and chemical analysis. The method was then used to assess actual contamination and found to be well suited for reducing the number of chemicals to be searched during extended monitoring activities and identifying the possible sources of contamination. Data collected in Savona Harbour (Porto Vado), Italy, where construction of a new terminal construction is planned, were used to illustrate the procedure. 23 chemicals were searched for within a total of 213 samples in 68 sampling points during three monitoring campaigns. These data were used to test the procedure. Subsequently, 28 chemicals were searched for within 14 samples in 10 sampling points and collected data were used to evaluate the experimental error and to validate the proposed procedure. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. May sediment contamination be xenoestrogenic to benthic fish? A case study with Solea senegalensis.

    Science.gov (United States)

    Gonçalves, Cátia; Martins, Marta; Diniz, Mário S; Costa, Maria H; Caeiro, Sandra; Costa, Pedro M

    2014-08-01

    Within an environmental risk assessment framework of a moderately contaminated estuary (the Sado, SW Portugal), the present work intended to detect endocrine disruption in a flatfish, Solea senegalensis Kaup, 1858, and its potential relationship to organic toxicants. Animals were collected from two distinct areas in the estuary (industrial and rural) and from an external reference area. Hepatic vitellogenin (VTG) levels, cytochrome P450 (CYP1A) induction, ethoxyresorufin-O-deethylase (EROD) activity plus gonad histology were analysed. Males and females were sexually immature and showed no significant evidence of degenerative pathologies. However, hepatic VTG concentrations in males from the industrial area were higher than Reference, even reaching levels comparable to females, indicating low but measurable oestrogenic effects caused by the complex contaminant mixture in estuarine sediments. These individuals also presented elevated CYP1A induction and EROD activity, which is consistent with contamination by organic toxicants such as PAHs and other aryl hydrocarbon receptor (Ahr) -mediated toxicants. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Phytoremediation of heavy metal-contaminated water and sediment by eleocharis acicularis

    Energy Technology Data Exchange (ETDEWEB)

    Sakakibara, Masayuki; Ha, Nguyen Thi Hoang [Graduate School of Science and Engineering, Ehime University, Matsuyama (Japan); Ohmori, Yuko [Graduate School of Science and Engineering, Ehime University, Matsuyama (Japan); Taisei Kiso Sekkei Co., Ltd., Tokyo (Japan); Sano, Sakae [Faculty of Education, Ehime University, Matsuyama (Japan); Sera, Koichiro [Cyclotron Center, Iwate Medical University, Takizawa-mura (Japan)

    2011-08-15

    Phytoremediation is an environmental remediation technique that takes advantage of plant physiology and metabolism. The unique property of heavy metal hyperaccumulation by the macrophyte Eleocharis acicularis is of great significance in the phytoremediation of water and sediments contaminated by heavy metals at mine sites. In this study, a field cultivation experiment was performed to examine the applicability of E. acicularis to the remediation of water contaminated by heavy metals. The highest concentrations of heavy metals in the shoots of E. acicularis were 20 200 mg Cu/kg, 14 200 mg Zn/kg, 1740 mg As/kg, 894 mg Pb/kg, and 239 mg Cd/kg. The concentrations of Cu, Zn, As, Cd, and Pb in the shoots correlate with their concentrations in the soil in a log-linear fashion. The bioconcentration factor for these elements decreases log-linearly with increasing concentration in the soil. The results indicate the ability of E. acicularis to hyperaccumulate Cu, Zn, As, and Cd under natural conditions, making it a good candidate species for the phytoremediation of water contaminated by heavy metals. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  19. Contamination by persistent toxic substances in surface sediment of urban rivers in Chaohu City, China

    Institute of Scientific and Technical Information of China (English)

    Feipeng Li; Haiping Zhang; Xiangzhou Meng; Ling Chen; Daqiang Yin

    2012-01-01

    The concentration and spatial distribution of persistent toxic substances (PTS) in the river sediment in Chaohu City,China were investigated.A total of nine surface sediments were collected and the selected PTS pollutants including six heavy metals and nineteen polybrorninated diphenyl ethers (PBDEs) were analyzed,The mean heavy metal concentrations (in mg/kg,dry weight) ranged within 0.18-1.53 (Hg),50.08-200.18 (Cu),118.70-313.65 (Zn),50.77-310.85 (Cr),37.12-92.72 (Pb) and 13.29-197.24 (As),and Cu,Zn and As have been regarded as the main metal pollutants.The levels of PBDEs (1.2-12.1 ng/g) and BDE-209 (2.4-30.5 ng/g) were at the middle level of the global range.BDE-209 was the predominant congener (67.0%-85.7%),which agrees with the fact that technical deca-BDE mixtures are the dominant PBDE formulation in China.The relative high level of PTS pollutants in the western part of the city is probably owing to the intensive agricultural activities and lack of sewerage system there.The ecological risk assessment with the sediment quality guidelines (SOGs) indicates that the urban river sediments in the city have been heavily contaminated by heavy metals with probable ecotoxicological impacts on freshwater organisms and the main toxic pollutants are Hg and As.The results of current study imply that the city,and perhaps many other small cities in China as well,requires immediate pollution control measures with emphasis on not only conventional organic pollutants but also on PTS such as heavy metals and PBDEs.

  20. Correlations Between Physical and Hydraulic Properties and Uranium Desorption in Contaminated, Intact Sediment Cores

    Science.gov (United States)

    Rockhold, M. L.; Oostrom, M.; Wietsma, T. W.; Zachara, J. M.

    2010-12-01

    An unlined disposal pond in the 300 Area of the Hanford Site received uranium-bearing liquid effluents associated with nuclear reactor fuel rod processing from 1943 to 1975. Contaminated sediments from the base and sides of the former pond were excavated and removed from the site in the early 1990s, but a uranium plume has persisted in the groundwater at concentrations exceeding the drinking water standard. The former process pond is located adjacent to the Columbia River and seasonal fluctuations in the river stage and water table provide a mechanism for resupplying residual uranium from the vadose zone to the groundwater when the lower vadose zone is periodically rewetted. Intact cores were collected from the site for measurements of physical, hydraulic, and geochemical properties. Multistep outflow experiments were also performed on the intact cores to determine permeability-saturation-capillary pressure relations. Pore water displaced during these experiments for two of the vadose zone cores was also analyzed for uranium. For a core containing finer-textured sediment classified as muddy sandy gravel, and a core containing coarser-textured sediment classified as gravel, the relative aqueous uranium concentrations increased by factors of 8.3 and 1.5, respectively, as the cores were desaturated and progressively smaller pore-size classes were drained. Aqueous concentrations of uranium in the extracted pore waters were up to 115 times higher than the current drinking water standard of 30 ppb. These results confirm that there is a continuing source of uranium in the vadose zone at the site, and are consistent with a hypothesis that the persistence of the groundwater uranium plume is also associated, in part, with rate-limited mass transfer from finer-textured sediments. The data from these and several other intact cores from the site are evaluated to explore relationships between physical and hydraulic properties and uranium desorption characteristics.

  1. An Assessment of Metals (Pb and Cu Contamination in Bottom Sediment from South China Sea Coastal Waters, Malaysia

    Directory of Open Access Journals (Sweden)

    M. C. Ong

    2009-01-01

    Full Text Available Problem statement: The accumulation of metal contaminants in sediments can pose serious environmental problems to the surrounding areas. Trace metal contamination in sediment could affect the water quality and the bio-assimilation and bioaccumulation of metals in aquatic organisms, resulting in potential long-term implications on human health and ecosystem. Approach: About 154 bottom sediment samples were collected using Smith McIntyre in a transect pattern from South China Sea East Coast coastal water (Terengganu, Pahang and Johor coastal area. The study focused on the levels of Pb and Cu in order to assess the extent of environment pollution and to discuss the origin of these contaminants in the sediment. Results: Results showed that the average concentration of Pb and Cu was 33.70 µg g-1 dry weights and 22.40 µg g-1 dry weights, respectively. Pb and Cu have relatively lower Enrichment Factors (EF value and geo-accumulation (Igeo indices in study area and these analysis validated that elevated heavy metals concentration in most sample are not due to artificial contamination. Conclusion: Overall, geochemistry of the samples showed the effect of both natural and anthropogenic inputs to the catchment, however, natural processes were more dominant than anthropogenic inputs in concentrating metals. Results obtained would help to develop strategies for pollution control and sediment remediation of coastal waters in the South China Sea.

  2. The use of Pb-210 to normalize fluxes and burdens of atmospheric contaminants in lake sediment cores

    Energy Technology Data Exchange (ETDEWEB)

    Brunskill, G.J.; Wilkinson, P.; Hunt, R.; Muir, D.; Billeck, B.; Lockhart, L. (Freshwater Inst., Winnipeg, Manitoba (Canada))

    1990-01-09

    It is possible to estimate the local annual atmospheric flux (Bq/m[sup 2] [sm bullet] yr) of Pb-210 to land and lake surfaces from measurements of the integral of excess Pb-210 in soil and peat profiles. If you compare this average Pb-210 flux to the soil surface, to the Pb-210 flux to deep lake sediments, you will usually find that the lake sediment flux is a factor of 2 to 6 greater. This is because most of the clay-sized and organic material added to the lake (and resuspended in the lake) each year is funneled into the deeper parts of the lake basin. The ratio of the deep lake Pb-210 sediment flux to the average terrestrial soil Pb-210 flux will be called the focusing factor, which can be used to crudely estimate whole lake sedimentation rates (g/m[sup 2] lake surface area [sm bullet] yr). Many industrial and agricultural contaminants are delivered to remote lakes by atmospheric deposition, and those contaminants that are strongly particle reactive will usually be resuspended and funneled into the deeper parts of the lake basin similar to Pb-210. Often a single sediment core history of deposition is used to estimate contaminant burdens and fluxes at the coring site in a lake basin. These deep basin contaminant burdens and fluxes can be divided by the focusing factor to estimate the burden per unit lake surface area and the atmospheric deposition rate to the lake surface area.

  3. Health risk assessment linked to filling coastal quarries with treated dredged seaport sediments

    Energy Technology Data Exchange (ETDEWEB)

    Perrodin, Yves, E-mail: yves.perrodin@entpe.fr [Université de Lyon, ENTPE, UMR CNRS 5023, Laboratoire LEHNA, 2 rue Maurice Audin, 69518 Vaulx-en-Velin (France); Donguy, Gilles [Université de Lyon, ENTPE, UMR CNRS 5023, Laboratoire LEHNA, 2 rue Maurice Audin, 69518 Vaulx-en-Velin (France); Emmanuel, Evens [Laboratoire de Qualité de l' Eau et de l' Environnement, Université Quisqueya, BP 796 Port-au-Prince (Haiti); Winiarski, Thierry [Université de Lyon, ENTPE, UMR CNRS 5023, Laboratoire LEHNA, 2 rue Maurice Audin, 69518 Vaulx-en-Velin (France)

    2014-07-01

    Dredged seaport sediments raise complex management problems since it is no longer possible to discharge them into the sea. Traditional waste treatments are poorly adapted for these materials in terms of absorbable volumes and cost. In this context, filling quarries with treated sediments appears interesting but its safety regarding human health must be demonstrated. To achieve this, a specific methodology for assessing health risks has been developed and tested on three seaport sediments. This methodology includes the development of a conceptual model of the global scenario studied and the definition of specific protocols for each of its major steps. The approach proposed includes in particular the use of metrological and experimental tools that are new in this context: (i) an experimental lysimeter for characterizing the deposit emissions, and (ii) a geological radar for identifying potential preferential pathways between the sediment deposit and the groundwater. The application of this approach on the three sediments tested for the scenario studied showed the absence of health risk associated with the consumption of groundwater for substances having a “threshold effect” (risk quotient < 1), and an acceptable risk for substances having a “non-threshold effect”, with the notable exception of arsenic (individual risk equal to 3.10{sup −6}). - Highlights: • The release of polluted dredged seaport sediments into the sea must be avoided. • Their use after treatment for the filling-up of quarries is proposed by managers. • An original health risk assessment methodology was created to validate this option. • It includes the use of a lysimeter and a georadar for the exposure assessment stage. • The example studied concludes to a health risk linked to arsenic in the groundwater.

  4. Transfer of chemical elements from a contaminated estuarine sediment to river water. A leaching assay

    Science.gov (United States)

    Abreu, Manuela; Peres, Sara; Magalhães, M. Clara F.

    2014-05-01

    Wastes of a former Portuguese steel industry were deposited during 40 years on the left bank of the Coina River, which flows into the estuary of the Tagus River near Lisbon. The aim of this study was to evaluate the release of the chemical elements from the contaminated sediment to the river water. A leaching experiment (four replicates) was performed using 1.6 kg/replicate of sediment from a landfill located in the Coina River bank, forming a lagoon subject to tidal influence. River water coming from this lagoon was collected during low tide. This water (200 mL) was added to the moist sediment, contained in cylindrical reactors, and was collected after 24 h of percolation. The leaching experiments were conducted for 77 days being leachates collected at time zero, after 28, 49 and 77 days with the sediment always moist. The sediment was characterized for: pH, electric conductivity (EC), total organic carbon (TOC), extractable phosphorus and potassium, mineral nitrogen, iron from iron oxides (crystalline and non-crystalline) and manganese oxides. Multi-elemental analysis was also made by ICP-INAA. Leachates and river water were analysed for pH, EC, hydrogencarbonate and sulfatetot by titrations, chloride by potentiometry, and multi-elemental composition by ICP-MS. The sediment presented pH=7.2, EC=18.5 dS/m, TOC=147.8 g/kg, high concentrations of extractable phosphorous (62.8 mg/kg) and potassium (1236.8 mg/kg), mineral nitrogen=11.3 mg/kg. The non-crystalline fraction of iron oxides corresponds to 99% (167.5 g Fe/kg) of the total iron oxides, and manganese from manganese oxides was low (52.7 mg/kg). Sediment is considered contaminated. It contained high concentrations (g/kg) of Zn (2.9), Pb (0.9), Cr (0.59), Cu (0.16), As (0.07), Cd (0.005), and Hg (0.001), which are above Canadian values for marine sediments quality guidelines for protection of aquatic life. River water had: pH=8.2, EC=28.6 dS/m, csulfate=1.23 g/L, and [Cl-]=251.6 mg/L. The concentrations of Cd (0

  5. Ecological Risk Assessment of Metals Contamination in the Sediments of Natural Urban Wetlands in Dry Tropical Climate.

    Science.gov (United States)

    Rana, Vivek; Maiti, Subodh Kumar; Jagadevan, Sheeja

    2016-09-01

    The pollution load due to metal contamination in the sediments of urban wetlands (Dhanbad, India) due to illegal release of domestic and industrial wastewater was studied by using various geochemical indices, such as contamination factor (Cf), degree of contamination (Cd), modified degree of contamination (mCd), pollution load index (PLI) and geoaccumulation index (Igeo) for Cu, Co, Cd, Cr and Mn. Cluster analysis (CA) and Principal component analysis (PCA) of metals present in wetland sediments were carried out to assess their origin and relationship with each other. The Cf values for different metals in the wetlands under investigation indicated low to very high level of pollution (Cf ranged between 0.02 and 14.15) with highest Cf (14.15) for Cd. The wetland receiving both domestic and industrial wastewater had the highest values of Cd, mCd and PLI as 17.48, 3.49 and 1.03 respectively.

  6. Metal release from contaminated coastal sediments under changing pH conditions: Implications for metal mobilization in acidified oceans.

    Science.gov (United States)

    Wang, Zaosheng; Wang, Yushao; Zhao, Peihong; Chen, Liuqin; Yan, Changzhou; Yan, Yijun; Chi, Qiaoqiao

    2015-12-30

    To investigate the impacts and processes of CO2-induced acidification on metal mobilization, laboratory-scale experiments were performed, simulating the scenarios where carbon dioxide was injected into sediment-seawater layers inside non-pressurized chambers. Coastal sediments were sampled from two sites with different contamination levels and subjected to pre-determined pH conditions. Sediment samples and overlying water were collected for metal analysis after 10-days. The results indicated that CO2-induced ocean acidification would provoke increased metal mobilization causing adverse side-effects on water quality. The mobility of metals from sediment to the overlying seawater was correlated with the reduction in pH. Results of sequential extractions of sediments illustrated that exchangeable metal forms were the dominant source of mobile metals. Collectively, our data revealed that high metal concentrations in overlying seawater released from contaminated sediments under acidic conditions may strengthen the existing contamination gradients in Maluan Bay and represent a potential risk to ecosystem health in coastal environments.

  7. Alteration of organic matter during infaunal polychaete gut passage and links to sediment organic geochemistry. Part I: Amino acids

    NARCIS (Netherlands)

    Woulds, C.; Middelburg, J.J.; Cowie, G.L.

    2012-01-01

    Of the factors which control the quantity and composition of organic matter (OM) buried in marine sediments, the links between infaunal ingestion and gut passage and sediment geochemistry have received relatively little attention. This study aimed to use feeding experiments and novel isotope tracing

  8. Chronic toxicity of contaminated sediments on reproduction and histopathology of the crustacean Gammarus fossarum and relationship with the chemical contamination and in vitro effects

    Energy Technology Data Exchange (ETDEWEB)

    Mazurova, Edita; Hilscherova, Klara; Sidlova-Stepankova, Tereza; Blaha, Ludek [Faculty of Science, RECETOX, Research Centre for Environmental Chemistry and Ecotoxicology, Masaryk Univ., Brno (Czech Republic); Koehler, Heinz R. [Animal Physiological Ecology, Univ. of Tuebingen (Germany); Triebskorn, Rita [Steinbeis-Transfer Center for Ecotoxicology and Ecophysiology, Rottenburg (Germany); Jungmann, Dirk [Inst. of Hydrobiology, Dresden Univ. of Tech. (Germany); Giesy, John P. [Dept. of Veterinary Biomedical Sciences and Toxicology Centre, Univ. of Saskatchewan, Saskatoon (Canada); Zoology Dept., National Food Safety and Toxicology Center, and Center for Integrative Toxicology Center, and Center for Integrative Toxicology, Michigan State Univ., East Lansing, MI (United States); Biology and Chemistry Dept., City Univ. of Hong Kong, Kowloon, Hong Kong (China); School of the Environment, Nanjing Univ. (China)

    2010-04-15

    The aim of the present study was to investigate possible relationships between the sediment contaminants and the occurrence of intersex in situ. Two of the studied sediments were from polluted sites with increased occurrence of intersex crustaceans (Lake Pilnok, black coal mining area in the Czech Republic, inhabited by the crayfish Pontastacus leptodactylus population with 18% of intersex; creek Lockwitzbach in Germany with Gammarus fossarum population with about 7% of intersex). Materials and methods Sediments were studied by a combined approach that included (1) determination of concentrations of metals and traditionally analyzed organic pollutants such as polychlorinated biphenyls, pesticides, and polycyclic aromatic hydrocarbons (PAHs); (2) examination of the in vitro potencies to activate aryl hydrocarbon (AhR), estrogen (ER), and androgen receptor-mediated responses; and (3) in vivo whole sediment exposures during a 12-week reproduction toxicity study with benthic amphipod G. fossarum. (orig.)

  9. Changes in Magnetic Mineralogy Through a Depth Sequence of Hydrocarbon Contaminated Sediments

    Science.gov (United States)

    Ameen, N. N.; Klüglein, N.; Appel, E.; Petrovsky, E.; Kappler, A.

    2013-12-01

    Sediments, soils and groundwater can act as a natural storage for many types of pollution. This study aims to investigate ferro(i)magnetic phase formation and transformation in the presence of organic contaminants (hydrocarbons) and its relation to bacterial activity, in particular in the zone of fluctuating water levels. The work extends previous studies conducted at the same site. The study area is a former military air base at Hradčany, Czech Republic (50°37'22.71"N, 14°45'2.24"E). Due to leaks in petroleum storage tanks and jet fuelling stations over years of active use the site was heavily contaminated with petroleum hydrocarbons, until the base was closed in 1991. This site is one of the most important sources of high quality groundwater in the Czech Republic. During remediation processes the groundwater level in the sediments fluctuated, driving the hydrocarbon contaminants to lower depth levels along with the groundwater and leading to magnetite formation (Rijal et al., Environ.Pollut., 158, 1756-1762, 2010). In our study we drilled triplicate cores at three locations which were studied earlier. Magnetic susceptibility (MS) profiles combined with other magnetic properties were analyzed to obtain the ferro(i)magnetic concentration distributions along the depth sections. Additionally the sediment properties, hydrocarbon content and bacterial activity were studied. The triplicate cores were used to statistically discriminate outliers and to recognize significant magnetic signatures with depth. The results show that the highest concentration of ferrimagnetic phases (interpreted as newly formed magnetite) exists at the probable top of the groundwater fluctuation (GWF) zone. For example at one of the sites this zone is found between 1.4-1.9 m depth (groundwater table at ~2.3 m depth). High S-ratio and the correlation of ARM with MS values confirm the contribution of magnetite for the ferro(i)magnetic enhancement in the GWF zone. In the previous studies the MS

  10. Transcriptomic analyses in a benthic fish exposed to contaminated estuarine sediments through laboratory and in situ bioassays.

    Science.gov (United States)

    Costa, Pedro M; Miguel, Célia; Caeiro, Sandra; Lobo, Jorge; Martins, Marta; Ferreira, Ana M; Caetano, Miguel; Vale, Carlos; DelValls, T A; Costa, Maria H

    2011-11-01

    The transcription of contaminant response-related genes was investigated in juvenile Senegalese soles exposed to sediments from three distinct sites (a reference plus two contaminated) of a Portuguese estuary (the Sado, W Portugal) through simultaneous 28-day laboratory and in situ bioassays. Transcription of cytochrome P450 1A (CYP1A), metallothionein 1 (MT1), glutathione peroxidase (GPx), catalase (CAT), caspase 3 (CASP3) and 90 kDa heat-shock protein alpha (HSP90AA) was surveyed in the liver by real-time PCR. CASP3 transcription analysis was complemented by surveying apoptosis through the TUNEL reaction. After 14 days of exposure, relative transcription was either reduced or decreased in fish exposed to the contaminated sediments, revealing a disturbance stress phase during which animals failed to respond to insult. After 28 days of exposure all genes' transcription responded to contamination but laboratory and in situ assays depicted distinct patterns of regulation. Although sediments revealed a combination of organic and inorganic toxicants, transcription of the CYP1A gene was consistently correlated to organic contaminants. Metallothionein regulation was found correlated to metallic and organic xenobiotic contamination in the laboratory and in situ, respectively. The transcription of oxidative stress-related genes can be a good indicator of general stress but caution is mandatory when interpreting the results since regulation may be influenced by multiple factors. As for MT1, HSP90 up-regulation has potential to be a good indicator for total contamination, as well as the CASP3 gene, even though hepatocyte apoptosis depicted values inconsistent with sediment contamination, showing that programmed cell death did not directly depend on caspase transcription alone.

  11. Development of a Passive Multisampling Method to Measure Dioxins/Furans and Other Contaminant Bioavailability in Aquatic Sediments

    Science.gov (United States)

    2016-11-01

    NJ), where PCDD/Fs and other organic contaminants, including PCBs, are of concern. The field-tested sampler developed and validated as part of this... organisms . Consequently, CW, diss provides a more relevant dose metric than total sediment concentration. Recent developments in passive sampling methods... organic contaminants, including PCBs, are of concern. The field-tested sampler developed and validated as part of this project can be used to determine

  12. Mineral transformation controls speciation and pore-fluid transmission of contaminants in waste-weathered Hanford sediments

    Science.gov (United States)

    Perdrial, Nicolas; Thompson, Aaron; O'Day, Peggy A.; Steefel, Carl I.; Chorover, Jon

    2014-09-01

    Portions of the Hanford Site (WA, USA) vadose zone were subjected to weathering by caustic solutions during documented releases of high level radioactive waste (containing Sr, Cs and I) from leaking underground storage tanks. Previous studies have shown that waste-sediment interactions can promote variable incorporation of contaminants into neo-formed mineral products (including feldspathoids and zeolites), but processes regulating the subsequent contaminant release from these phases into infiltrating background pore waters remain poorly known. In this paper, reactive transport experiments were conducted with Hanford sediments previously weathered for one year in simulated hyper-alkaline waste solutions containing high or low 88Sr, 127I, and 133Cs concentrations, with or without CO2(aq). These waste-weathered sediments were leached in flow-through column experiments with simulated background pore water (characteristic of meteoric recharge) to measure contaminant release from solids formed during waste-sediment interaction. Contaminant sorption-desorption kinetics and mineral transformation reactions were both monitored using continuous-flow and wet-dry cycling regimes for ca. 300 pore volumes. Less than 20% of contaminant 133Cs and 88Sr mass and less than 40% 127I mass were released over the course of the experiment. To elucidate molecular processes limiting contaminant release, reacted sediments were studied with micro- (TEM and XRD) and molecular- (Sr K-edge EXAFS) scale methods. Contaminant dynamics in column experiments were principally controlled by rapid dissolution of labile solids and competitive exchange reactions. In initially feldspathoidic systems, time-dependent changes in the local zeolitic bonding environment observed with X-ray diffraction and EXAFS are responsible for limiting contaminant release. Linear combination fits and shell-by-shell analysis of Sr K-edge EXAFS data revealed modification in Sr-Si/Al distances within the zeolite cage. Wet

  13. Evaluation of Soluble Phosphate Sources for Nickel and Uranium Immobilization in Contaminated Sediment

    Science.gov (United States)

    Majs, F.; Seaman, J. C.

    2006-12-01

    A batch equilibration study was conducted to compare the effectiveness of various forms of P on immobilizing two contaminants of interest (U and Ni; COIs) in exposed sediment. Four P amendments were evaluated at levels ranging from 0 to 10 g kg-1 of sediment: trisodium trimetaphosphate (TP3), reagent-grade dodecasodium phytate (Na-IP6), precipitated calcium phytate (Ca-IP6), and reagent-grade hydroxyapatite (HA). Samples were equilibrated in 0.001 M CaCl2 for seven days. Dissolved concentrations of the COIs, together with dissolved organic carbon (DOC) and pH of the supernatant, were measured. A preliminary kinetic study indicated that seven days was sufficient to achieve equilibrium even with the least soluble amendment, e.g. HA. Redistribution of the COIs after equilibration was determined using selective extraction procedures: the USEPA Toxicity Characteristic Leaching Procedure (TCLP) and sequential extraction (SE) method with eight operationally defined phases. The solubility of Ni decreased at the lowest addition level (2 g kg-1 sediment) for all amendments. However, a negative relationship between dissolved Ni concentrations and increasing amendment level was observed only for HA. Only HA and Ca-IP6 were effective in lowering dissolved U concentrations at all amendment levels, and again only HA exhibited a desired negative relationship in decreasing dissolved U concentration. The Na-IP6 amendment increased soil pH from 4.5 to nearly 7.5, whereas other amendments increased pH only moderately. The DOC for the sediment treated with Na-IP6 increased beyond what could be attributed to IP6 addition (i.e., 50×). In contrast, TP3, Ca-IP6, and HA treatments increased DOC by 8×, 6×, and 3×, respectively. The increase in DOC for Na-IP6 was attributed to the dispersion of soil organic matter. All amendments with the exception of Na-IP6 proved to be efficient in lowering TCLP leachability of COIs, even after correcting for COIs removed during the initial batch

  14. Environmental Whole-Genome Amplification to Access Microbial Diversity in Contaminated Sediments

    Energy Technology Data Exchange (ETDEWEB)

    Abulencia, C.B.; Wyborski, D.L.; Garcia, J.; Podar, M.; Chen, W.; Chang, S.H.; Chang, H.W.; Watson, D.; Brodie,E.I.; Hazen, T.C.; Keller, M.

    2005-12-10

    Low-biomass samples from nitrate and heavy metal contaminated soils yield DNA amounts that have limited use for direct, native analysis and screening. Multiple displacement amplification (MDA) using ?29 DNA polymerase was used to amplify whole genomes from environmental, contaminated, subsurface sediments. By first amplifying the genomic DNA (gDNA), biodiversity analysis and gDNA library construction of microbes found in contaminated soils were made possible. The MDA method was validated by analyzing amplified genome coverage from approximately five Escherichia coli cells, resulting in 99.2 percent genome coverage. The method was further validated by confirming overall representative species coverage and also an amplification bias when amplifying from a mix of eight known bacterial strains. We extracted DNA from samples with extremely low cell densities from a U.S. Department of Energy contaminated site. After amplification, small subunit rRNA analysis revealed relatively even distribution of species across several major phyla. Clone libraries were constructed from the amplified gDNA, and a small subset of clones was used for shotgun sequencing. BLAST analysis of the library clone sequences showed that 64.9 percent of the sequences had significant similarities to known proteins, and ''clusters of orthologous groups'' (COG) analysis revealed that more than half of the sequences from each library contained sequence similarity to known proteins. The libraries can be readily screened for native genes or any target of interest. Whole-genome amplification of metagenomic DNA from very minute microbial sources, while introducing an amplification bias, will allow access to genomic information that was not previously accessible.

  15. Hospital-acquired listeriosis linked to a persistently contaminated milkshake machine

    Science.gov (United States)

    Mazengia, E.; Kawakami, V.; Rietberg, K.; Kay, M.; Wyman, P.; Skilton, C.; Aberra, A.; Boonyaratanakornkit, J.; Limaye, A. P.; Pergam, S. A.; Whimbey, E.; Olsen, R.; Duchin, J. S.

    2017-01-01

    SUMMARY One case of hospital-acquired listeriosis linked to milkshakes produced in a commercial-grade shake freezer machine that remained contaminated following a previous outbreak of listeriosis associated with a pasteurized, dairy-based ice cream product at the same hospital despite repeated cleaning and sanitation. Healthcare facilities should be aware of the potential for prolonged Listeria contamination of food service equipment. In addition, healthcare providers should consider counseling persons who have an increased risk for Listeria infections regarding foods that have caused Listeria infections. The prevalence of persistent Listeria contamination of commercial-grade milkshake machines in healthcare facilities and the risk associated with serving dairy-based ice cream products to hospitalized patients at increased risk for invasive L. monocytogenes infections should be further evaluated. PMID:28065212

  16. Use of slow-release fertilizers and biopolymers for stimulating hydrocarbon biodegradation in oil-contaminated beach sediments

    Energy Technology Data Exchange (ETDEWEB)

    Ran Xu; Li Ching Yong; Yong Giak Lim; Obbard, J.P. [National University of Singapore (Singapore). Department of Chemical and Biomolecular Engineering

    2005-07-01

    Nutrient concentration and hydrocarbon bioavailability are key factors affecting biodegradation rates of oil in contaminated beach sediments. The effect of a slow-release fertilizer, Osmocote, as well as two biopolymers, chitin and chitosan, on the bioremediation of oil-spiked beach sediments was investigated using an open irrigation system over a 56-day period under laboratory conditions. Osmocote was effective in sustaining a high level of nutrients in leached sediments, as well as elevated levels of microbial activity and rates of hydrocarbon biodegradation. Chitin was more biodegradable than chitosan and gradually released nitrogen into the sediment. The addition of chitin or chitosan to the Osmocote amended sediments enhanced biodegradation rates of the alkanes relative to the presence of Osmocote alone, where chitosan was more effective than chitin due to its greater oil sorption capacity. Furthermore, chitosan significantly enhanced the biodegradation rates of all target polycyclic aromatic hydrocarbons. (author)

  17. Bioaccumulation of polychlorinated biphenyls and metals from contaminated sediment by freshwater prawns, Macrobrachium rosenbergii and clams, Corbicula fluminea

    Energy Technology Data Exchange (ETDEWEB)

    Tatem, H.E.

    1986-02-01

    Freshwater prawns, Macrobrachium rosenbergii, and clams, Corbicula Fluminea, were exposed for 48 or 50 days to three concentrations of a river sediment that contained environmental contaminants such as polychlorinated biphenyls (PCBs) and metals. The PCB sediment bioaccumulation factors (BAF) for prawns ranged from 0.11 to 0.90 for 1242 and 0.20 to 2.40 for 1254, and were highest for animals exposed to 10% sediment. Exposed clams also accumulated PCBs (1242 + 1254) from the sediment. Sediment BAFs for clams were 0.54 to 12.52 and were highest for animals exposed to 10% sediment. Analyses of clams for metals showed lead (Pb) in exposed animals at higher concentrations compared with controls. Bioaccumulation of Pb differed from PCB in that the Pb concentrations did not increase over time and concentrations were higher among animals exposed to 10% sediment compared to animals exposed to 100% sediment. Sediment 11-80 contained 99 mg/kg of Pb while exposed animals, at 48 days, contained approximately 2.2 mg/kg Pb. Analysis of clams for cadmium (Cd) showed exposed animals contained less Cd than controls.

  18. Improvement of Bioremediation Performance for the Degradation of Petroleum Hydrocarbons in Contaminated Sediments

    Directory of Open Access Journals (Sweden)

    Laura Rocchetti

    2011-01-01

    Full Text Available Microcosm bioremediation strategies were applied to sediments contaminated with hydrocarbons. Experiments were performed in aerobic conditions in a single-step treatment and in a two-step anaerobic-aerobic treatment. In aerobic conditions, either inorganic nutrients or composts were added to the microcosms, while, in the first anaerobic phase of the two-step experiment, acetate and/or allochthonous sulfate-reducing bacteria were used. After the treatment under anaerobic conditions, samples were exposed to aerobic conditions in the presence of compost. In the aerobic treatments, 81% hydrocarbon biodegradation was observed after 43 days in the presence of inorganic nutrients. In aerobic conditions in the presence of mature compost, hydrocarbon biodegradation was 51% after 43 days of treatment, whereas it was 47% after 21 days with fresh compost. The two-step experiment allowed us to obtain a hydrocarbon degradation of 91%, after a first anaerobic step with an inoculum of sulfate-reducing prokaryotes.

  19. Application of chemometrics methods for the estimation of heavy metals contamination in river sediments

    Institute of Scientific and Technical Information of China (English)

    WANG Ya-wei; YUAN Chun-gang; JIN Xing-long; JIANG Gui-bin

    2005-01-01

    The concentration and speciation of six heavy metals in sediments of eight sampling sites of Haihe River were investigated. The metals, namely Cd, Cu, Co, Ni, Mn and Pb were considered. By using sequential extraction(SE), the total metals were divided into five fractions: exchangeable, carbonate bound, iron/manganese oxide bound, sulfides and organic matter fraction and residual fraction. A multivariate statistical approach(principal component analysis, PCA) was used to evaluate the contamination of heavy metals by the total levels and chemical forms, respectively. The results showed that the total metals concentration(TMC) could not provide sufficient and accurate information because the mobility, bioavailability and toxicity of metals depend not only on their total concentration but also on the physicochemical form in which they occur.

  20. Assessment of heavy metal contamination in water and sediments of Trepça and Sitnica rivers, Kosovo, using pollution indicators and multivariate cluster analysis.

    Science.gov (United States)

    Ferati, Flora; Kerolli-Mustafa, Mihone; Kraja-Ylli, Arjana

    2015-06-01

    The concentrations of As, Cd, Cr, Co, Cu, Ni, Pb, and Zn in water and sediment samples from Trepça and Sitnica rivers were determined to assess the level of contamination. Six water and sediment samples were collected during the period from April to July 2014. Most of the water samples was found within the European and Kosovo permissible limits. The highest concentration of As, Cd, Pb, and Zn originates primarily from anthropogenic sources such discharge of industrial water from mining flotation and from the mine waste eroded from the river banks. Sediment contamination assessment was carried out using the pollution indicators such as contamination factor (CF), degree of contamination (Cd), modified degree of contamination (mCd), pollution load index (PLI), and geo-accumulation index (Igeo). The CF values for the investigated metals indicated a high contaminated nature of sediments, while the Cd values indicated a very high contamination degree of sediments. The mCd values indicate a high degree of contamination of Sitnica river sediment to ultrahigh degree of contamination of Trepça river sediment. The PLI values ranged from 1.89 to 14.1 which indicate that the heavy metal concentration levels in all investigated sites exceeded the background values and sediment quality guidelines. The average values of Igeo revealed the following ranking of intensity of heavy metal contamination of the Trepça and Sitnica river sediments: Cd > As > Pb > Zn > Cu > Co > Cr > Ni. Cluster analysis suggests that As, Cd, Cr, Co, Cu, Ni, Pb, and Zn are derived from anthropogenic sources, particularly discharges from mining flotation and erosion form waste from a zinc mine plant. In order to protect the sediments from further contamination, the designing of a monitoring network and reducing the anthropogenic discharges are suggested.

  1. The link between marine sediment records and changes in Holocene Saharan landscape: simulating the dust cycle

    Science.gov (United States)

    Egerer, Sabine; Claussen, Martin; Reick, Christian; Stanelle, Tanja

    2016-04-01

    Marine sediment records reveal an abrupt and strong increase in dust deposition in the North Atlantic at the end of the African Humid Period about 4.9 to 5.5 ka ago. The change in dust flux has been attributed to varying Saharan land surface cover. Alternatively, the enhanced dust accumulation is linked to enhanced surface winds and a consequent intensification of coastal upwelling. Here we demonstrate for the first time the direct link between dust accumulation in marine cores and changes in Saharan land surface. We simulate the mid-Holocene (6 ka BP) and pre-industrial (1850 AD) dust cycle as a function of Saharan land surface cover and atmosphere-ocean conditions using the coupled atmosphere-aerosol model ECHAM6.1-HAM2.1. Mid-Holocene surface characteristics, including vegetation cover and lake surface area, are derived from proxy data and simulations. In agreement with data from marine sediment cores, our simulations show that mid-Holocene dust deposition fluxes in the North Atlantic were two to three times lower compared with pre-industrial fluxes. We identify Saharan land surface characteristics to be the main control on dust transport from North Africa to the North Atlantic. We conclude that the increase in dust accumulation in marine cores is directly linked to a transition of the Saharan landscape during the Holocene and not due to changes in atmospheric or ocean conditions alone.

  2. Application of Biofilm Covered Activated Carbon Particles as a Microbial Inoculum Delivery System for Enhanced Bioaugmentation of PCBs in Contaminated Sediment

    Science.gov (United States)

    2013-09-01

    pollutants, polychlorinated biphenyls (PCBs), from contaminated aquatic sediments is a priority due to their ability to enter the food chain and their potent...pollutants, polychlorinated biphenyls (PCBs), from contaminated aquatic sediments is a priority due to their ability to enter the food chain and their...List of Acronyms PCBs Polychlorinated biphenyls A1248 Aroclor 1248 DHPLC Denaturing high performance liquid chromatography EPS

  3. State of the Science Review: Potential for Beneficial Use of Waste By-Products for In-situ Remediation of Metal-Contaminated Soil and Sediment

    Science.gov (United States)

    Metal and metalloid contamination of soil and sediment is a widespread problem both in urban and rural areas throughout the United States (U.S. EPA, 2014). Beneficial use of waste by-products as amendments to remediate metal-contaminated soils and sediments can provide major eco...

  4. Nitrogen fertilizer improves boron phytoextraction by Brassica juncea grown in contaminated sediments and alleviates plant stress.

    Science.gov (United States)

    Giansoldati, Virginia; Tassi, Eliana; Morelli, Elisabetta; Gabellieri, Edi; Pedron, Francesca; Barbafieri, Meri

    2012-06-01

    In this study we evaluated the effect of different fertilizer treatments on Brassica plants grown on boron-contaminated sediments. Experiments were conducted in the laboratory and on the lysimeter scale. At laboratory scale (microcosm), five different fertilizers were tested for a 35-d period. On the lysimeter scale, nitrogen fertilization was tested at three different doses and plants were allowed to grow until the end of the vegetative phase (70 d). Results showed that nitrogen application had effectively increased plant biomass production, while B uptake was not affected. Total B phytoextracted increased three-fold when the highest nitrogen dose was applied. Phytotoxicity on Brassica was evaluated by biochemical parameters. In plants grown in unfertilized B-contaminated sediments, the activity of antioxidant enzymes superoxide dismutase (SOD), ascorbate peroxidase (APX) and pyrogallol peroxidase (PPX) increased, whereas catalase (CAT) decreased with respect to control plants. Addition of N progressively mitigated the alteration of enzymatic activity, thus suggesting that N can aid in alleviating B-induced oxidative stress. SOD activity was restored to control levels just at the lowest N treatment, whereas the CAT inhibition was partially restored only at the highest one. N application also lowered the B-induced increase in APX and PPX activities. Increased glutathione reductase activity indicated the need to restore the oxidative balance of glutathione. Data also suggest a role of glutathione and phytochelatins in B defense mechanisms. Results suggest that the nitrogen fertilizer was effective in improving B phytoextraction by increasing Brassica biomass and by alleviating B-induced oxidative stress. Copyright © 2012 Elsevier Ltd. All rights reserved.

  5. Modeling PAH mass transfer in a slurry of contaminated soil or sediment amended with organic sorbents

    Energy Technology Data Exchange (ETDEWEB)

    Ahn, S.; Werner, D.; Luthy, R.G. [Stanford University, Stanford, CA (United States). Dept. for Civil & Environmental Engineering

    2008-06-15

    A three-compartment kinetic partitioning model was employed to assess contaminant mass transfer and intraparticle diffusion in systems comprising dense slurries of polluted soil or aquifer sediment with or without sorbent amendments to sequester polycyclic aromatic hydrocarbons (PAHs). The model was applied to simulate temporal changes in aqueous and particle-bound PAH concentrations comparing different pollution sources (heavy oil or tar sludge) and various sorbent amendments (polyoxymethylene (POM), coke breeze, and activated carbon). For the model evaluation, all the parameters needed were directly measured from a series of experiments, allowing full calibration and verification of model predictions without parameter fitting. The numerical model reproduced two separate laboratory-scale experiments reasonably: PAH uptake in POM beads and PAH uptake by semipermeable membrane devices. PAH mass transfer was then simulated for various scenarios, considering different sorbent doses and mass transfer rates as well as biodegradation. Such model predictions provide a quick assessment tool for identifying mass transfer limitations during washing, stabilization, or bioslurry treatments of polluted soil or sediment in mixed systems. It appears that PAHs would be readily released from materials contaminated by small oil droplets, but not tar decanter sludge. Released PAHs would be sequestered rapidly by activated carbon amendment but to a much lesser extent by coke breeze. If sorbing black carbon is present in the slurries, POM pellets would not be effective as a sequestration amendment. High first-order biodegradation rates in the free aqueous phase, e.g., in the order of 0.001 s{sup -1} for phenanthrene, would be required to compete effectively with adsorption and mass transfer for strong sorbents.

  6. Laboratory measurements of contaminant attenuation of uranium mill tailings leachates by sediments and clay liners

    Energy Technology Data Exchange (ETDEWEB)

    Serne, R.J.; Peterson, S.R.; Gee, G.W.

    1983-04-01

    We discuss FY82 progress on the development of laboratory tools to aid in the prediction of migration potential of contaminants present in acidic uranium mill tailings leachate. Further, empirical data on trace metal and radionuclide migration through a clay liner are presented. Acidic uranium mill tailings solution from a Wyoming mill was percolated through a composite sediment called Morton Ranch Clay liner. These laboratory columns and subsequent sediment extraction data show: (1) As, Cr, Pb, Ag, Th and V migrate very slowly; (2) U, Cd, Ni, Zn, Fe, Mn and similar transition metals are initially immobilized during acid neutralization but later are remobilized as the tailings solution exhausts the clay liner's acid buffering capacity. Such metals remain immobilized as long as the effluent pH remains above a pH value of 4 to 4.5, but they become mobile once the effluent pH drops below this range; and (3) fractions of the Se and Mo present in the influent tailings solution are very mobile. Possible controlling mechanisms for the pH-dependent immobilization-mobilization of the trace metals are discussed. More study is required to understand the controlling mechanisms for Se and Mo and Ra for which data were not successfully collected. Using several column lengths (from 4.5 to 65 cm) and pore volume residence times (from 0.8 to 40 days) we found no significant differences in contaminant migration rates or types and extent of controlling processes. Thus, we conclude that the laboratory results may be capable of extrapolation to actual disposal site conditions.

  7. Hydrophobic organic contaminants in surficial sediments of Baltimore Harbor: Inventories and sources

    Energy Technology Data Exchange (ETDEWEB)

    Ashley, J.T.F.; Baker, J.E. [Univ. System of Maryland, Solomons, MD (United States). Chesapeake Biological Lab.

    1999-05-01

    The heavily urbanized and industrialized Baltimore Harbor/Patapsco River/Back River system is one of the most highly contaminated regions of the Chesapeake Bay. In June 1996, surficial sediments were collected at 80 sites throughout the subestuarine system, including historically undersampled creek sand embayments. The samples were analyzed for a suite of hydrophobic organic contaminants (HOCs) consisting of 32 polycyclic aromatic hydrocarbons (PAHs) and 113 polychlorinated biphenyl (PCB) congeners. Total PAH and total PCB concentrations ranged from 90 to 46,200 and 8 to 2,150 ng/g dry weight, respectively. There was enormous spatial variability in the concentrations of HOCs, which was not well correlated to grain size or organic carbon content, suggesting nonequilibrium partitioning and/or proximity to sources as important factors explaining the observed spatial variability. High concentrations of both classes of HOCs were localized around major urban stormwater runoff discharges. Elevated PAH concentrations were also centered around the Sparrow`s Point Industrial Complex, most likely a result of the pyrolysis of coal during the production of steel. All but 1 of the 80 sites exceeded the effects range-low (ERL) for total PCBs and, of those sites, 40% exceeded the effects range-medium (ERM), suggesting toxicity to marine benthic organisms would frequently occur. Using principal component analysis, differences in PAH signatures were discerned. Higher molecular weight PAHs were enriched in signatures from sediments close to suspected sources (i.e., urban stormwater runoff and steel production complexes) compared to those patterns observed at sites further from outfalls or runoff. Due to varying solubilities and affinities for organic matter of the individual PAHs, partitioning of the heavier weight PAHs may enrich settling particles with high molecular weight PAHs. Lower molecular weight PAHs, having lower affinity for particles, may travel from the source to a

  8. The Link between Microbial Diversity and Nitrogen Cycling in Marine Sediments Is Modulated by Macrofaunal Bioturbation.

    Directory of Open Access Journals (Sweden)

    Maryam Yazdani Foshtomi

    Full Text Available The marine benthic nitrogen cycle is affected by both the presence and activity of macrofauna and the diversity of N-cycling microbes. However, integrated research simultaneously investigating macrofauna, microbes and N-cycling is lacking. We investigated spatio-temporal patterns in microbial community composition and diversity, macrofaunal abundance and their sediment reworking activity, and N-cycling in seven subtidal stations in the Southern North Sea.Our results indicated that bacteria (total and β-AOB showed more spatio-temporal variation than archaea (total and AOA as sedimentation of organic matter and the subsequent changes in the environment had a stronger impact on their community composition and diversity indices in our study area. However, spatio-temporal patterns of total bacterial and β-AOB communities were different and related to the availability of ammonium for the autotrophic β-AOB. Highest bacterial richness and diversity were observed in June at the timing of the phytoplankton bloom deposition, while richness of β-AOB as well as AOA peaked in September. Total archaeal community showed no temporal variation in diversity indices.Distance based linear models revealed that, independent from the effect of grain size and the quality and quantity of sediment organic matter, nitrification and N-mineralization were affected by respectively the diversity of metabolically active β-AOB and AOA, and the total bacteria, near the sediment-water interface. Separate models demonstrated a significant and independent effect of macrofaunal activities on community composition and richness of total bacteria, and diversity indices of metabolically active AOA. Diversity of β-AOB was significantly affected by macrofaunal abundance. Our results support the link between microbial biodiversity and ecosystem functioning in marine sediments, and provided broad correlative support for the hypothesis that this relationship is modulated by macrofaunal

  9. Environmental contamination of Gorganrood Water and Sediment in district of Gonbad-Kavoos City

    Directory of Open Access Journals (Sweden)

    Giti Forghani

    2014-11-01

    . Phosphate concentration in unpolluted waters typically ranges from 0.01-.0.1 mg/l. The mean phosphate content of the studied water samples (3.3 mg/l exceeds the standard phosphate concentration in unpolluted waters, which is due to the phosphatic fertilizers used in agricultural lands around the river. Compared with standard values in world rivers, the concentrations of potentially toxic elements especially As, Cd, Cr and Pb in Gorganrood water samples are high. Metal index values were calculated as follows: Ci in the above formulas is the concentration of the examined element in the water sample and C0 is the maximum allowable concentration of that element. On the base of MI values, the studied water samples are polluted with PTEs. The texture of samples based on size fractionation is sandy-mud, sandy-silt and mudy-silt. Sediment pH values ranged from 7.5 to 8. The organic matter content varied between 1.8 to 9.2 %. The carbonate contents varied from 14 to 24 %. The range of CEC varied from 2.2 to 5.1 meq in 100 g. Compared with world average sediment composition, the concentrations of PTEs in studied sediments (except for Cd are lower, perhaps due to the sandy texture of the sediments and/or high EC of river water. The geochemical indices (enrichment factor, contamination factor and pollution level index and correlation analysis between elements confirm the effect of anthropogenic activities on the increase of elemental content in sediments, especially within the city district. The results also show the effect of sediment properties, especially organic matter content, CEC, pH and carbonate content on adsorption of potentially toxic elements.

  10. Impacts of the Indian Rivers Inter-link Project on Sediment Transport to River Deltas

    Science.gov (United States)

    Higgins, S.; Overeem, I.; Syvitski, J. P.

    2015-12-01

    The Indian Rivers Inter-link project is a proposal by the Indian government to link several of India's major rivers via a network of reservoirs and canals. Variations of the IRI have been discussed since 1980, but the current plan has recently received increased support from the Indian government. Construction on three canals has controversially begun. If the Inter-link project moves forward, fourteen canals will divert water from tributaries of the Ganges and Brahmaputra rivers to areas in the west, where fresh water is needed for irrigation. Additional canals would transport Himalayan sediments 500 km south to the Mahanadi delta and more than 1000 km south to the Godavari and Krishna deltas. We investigate the impacts of the proposed diversions on sediment transport to the Mahanadi/Brahmani, Godavari, and Krishna deltas in India and the Ganges-Brahmaputra Delta in Bangladesh. We map the entire river network and the proposed new nodes and connections. Changing watersheds are delineated using the Terrain Analysis Using Digital Elevation Models (TauDEM) Suite. Climate data comes from interpolation between observed precipitation stations located in China, Nepal, India, Bhutan and Bangladesh. Changes in water discharge due to the proposed canals are simulated using HydroTrend, a climate-driven hydrological water balance and transport model that incorporates drainage area, discharge, relief, temperature, basin-average lithology, and anthropogenic influences. Simulated river discharge is validated against observations from gauging stations archived by the Global Runoff Data Center (GRDC). HydroTrend is then used to investigate sediment transport changes that may result from the proposed canals. We also quantify changes in contributing areas for the outlets of nine major Indian rivers, showing that more than 50% of the land in India will contribute a portion of its runoff to a new outlet should the entire canal system be constructed.

  11. Genotype and toxicity relationships among Hyalella azteca: II. Acute exposure to fluoranthene-contaminated sediment

    Energy Technology Data Exchange (ETDEWEB)

    Duan, Y.; Guttman, S.I.; Oris, J.T.; Huang, X.; Burton, G.A.

    2000-05-01

    This study examined the genotypic responses of Hyalella azteca to the toxicity of sediment contaminated by the polycyclic aromatic hydrocarbon (PAH) fluoranthene. The authors monitored the time to death for 696 H. azteca exposed to ultraviolet light and sediment spiked with fluoranthene. The survival distribution functions within the genotypes at each of these variable allozyme loci (acid phosphatase [ACP*], glucose-6-phosphate isomerase [GPI*], and phosphoglucomutase [PGM*]) were compared using a long-rank test. Results showed significant differences among SDFs at all three loci. No association of heterozygosity with time to death was observed. The homozygote ACP*-CC was associated with decreased survivorship compared with ACP*-AA, ACP*-BB, and ACP*-AB. However, GPI*-AA was associated with increased survivorship compared with GPI*-BB, GPI*-CC, and GPI*-BC. Significant differences in resistance also were observed for PGM*-BB versus either PGM*-AC or PGM*-BC. These results indicate that differential resistance to PAH phototoxicity was genetically related, producing significant alteration in the frequencies of several genotypes in the population.

  12. Anaerobic degradation of cyclohexane by sulfate-reducing bacteria from hydrocarbon-contaminated marine sediments

    Directory of Open Access Journals (Sweden)

    Ulrike eJaekel

    2015-02-01

    Full Text Available The fate of cyclohexane, often used as a model compound for the biodegradation of cyclic alkanes due to its abundance in crude oils, in anoxic marine sediments has been poorly investigated. In the present study, we obtained an enrichment culture of cyclohexane-degrading sulfate-reducing bacteria from hydrocarbon-contaminated intertidal marine sediments. Microscopic analyses showed an apparent dominance by oval cells of 1.5×0.8 m. Analysis of a 16S rRNA gene library, followed by whole-cell hybridization with group- and sequence-specific oligonucleotide probes showed that these cells belonged to a single phylotype, and were accounting for more than 80% of the total cell number. The dominant phylotype, affiliated with the Desulfosarcina-Desulfococcus cluster of the Deltaproteobacteria, is proposed to be responsible for the degradation of cyclohexane. Quantitative growth experiments showed that cyclohexane degradation was coupled with the stoichiometric reduction of sulfate to sulfide. Substrate response tests corroborated with hybridization with a sequence-specific oligonucleotide probe suggested that the dominant phylotype apparently was able to degrade other cyclic and n-alkanes, including the gaseous alkanes propane and n-butane. Based on GC-MS analyses of culture extracts cyclohexylsuccinate was identified as a metabolite, indicating an activation of cyclohexane by addition to fumarate. Other metabolites detected were 3-cyclohexylpropionate and cyclohexanecarboxylate providing evidence that the overall degradation pathway of cyclohexane under anoxic conditions is analogous to that of n-alkanes.

  13. Treatability assessment of polycyclic aromatic hydrocarbons contaminated marine sediments using permanganate, persulfate and Fenton oxidation processes.

    Science.gov (United States)

    Shih, Yu-Jen; Binh, Nguyen Thanh; Chen, Chiu-Wen; Chen, Chih-Feng; Dong, Cheng-Di

    2016-05-01

    Various chemical oxidation techniques, such as potassium permanganate (KMnO4), sodium persulfate (Na2S2O8), Fenton (H2O2/Fe(2+)), and the modified persulfate and Fenton reagents (activated by ferrous complexes), were carried out to treat marine sediments that were contaminated with polycyclic aromatic hydrocarbons (PAHs) and dredged from Kaohsiung Harbor in Taiwan. Experimental results revealed that KMnO4 was the most effective of the tested oxidants in PAH degradation. Owing to the high organic matter content in the sediment that reduced the efficiencies of Na2S2O8 and regular Fenton reactions, a large excess of oxidant was required. Nevertheless, KH2PO4, Na4P2O7 and four chelating agents (EDTA, sodium citrate, oxalic acid, and sodium oxalate) were utilized to stabilize Fe(II) in activating the Na2S2O8 and Fenton oxidations, while Fe(II)-citrate remarkably promoted the PAH degradation. Increasing the molecular weight and number of rings of PAH did not affect the overall removal efficiencies. The correlation between the effectiveness of the oxidation processes and the physicochemical properties of individual PAH was statistically analyzed. The data implied that the reactivity of PAH (electron affinity and ionization potential) affected its treatability more than did its hydrophobicity (Kow, Koc and Sw), particularly using experimental conditions under which PAHs could be effectively oxidized.

  14. Performance of electroremediation in real contaminated sediments using a big cell, periodic voltage and innovative surfactants.

    Science.gov (United States)

    Hahladakis, John N; Latsos, Antonis; Gidarakos, Evangelos

    2016-12-15

    The present work focused on evaluating the electrokinetic (EK) treatment of real contaminated sediments with toxic metals and polycyclic aromatic hydrocarbons (PAHs), using a big laboratory EK cell, periodic voltage and recently tested non-ionic surfactants. The results indicated that the "day on-night off" application mode of voltage, in conjunction with the selected solubilising agents, favoured the overall EK process. Arsenic, nickel and chromium exhibited the highest removal percentages, obtaining 83%, 67% and 63%, respectively, while zinc and lead attained 54% and 41% at the maximum. Furthermore, in the experiments where the non-ionic surfactants were introduced in the electrolyte chambers, there was a major uniformly removal of PAHs from the entire sediment across the EK cell, indicating the high solubilisation capacity of the enhancing agents. Essentially, transport and in some cases removal of PAHs (particularly from sections adjacent to the electrolyte compartments) also occurred in the unenhanced EK run, mainly due their negative charge, their potential weak bonds to the soil matrix and to the periodic application of voltage. Maximum removal was obtained by the use of Nonidet P40 where app. 1/3 (ca. 6498μg out of 20145μg) of the total initial amount of PAHs were removed from the cell.

  15. Prediction of aluminum, uranium, and co-contaminants precipitation and adsorption during titration of acidic sediments.

    Science.gov (United States)

    Tang, Guoping; Luo, Wensui; Watson, David B; Brooks, Scott C; Gu, Baohua

    2013-06-04

    Batch and column recirculation titration tests were performed with contaminated acidic sediments. A generic geochemical model was developed combining precipitation, cation exchange, and surface complexation reactions to describe the observed pH and metal ion concentrations in experiments with or without the presence of CO2. Experimental results showed a slow pH increase due to strong buffering by Al hydrolysis and precipitation and CO2 uptake. The cation concentrations generally decreased at higher pH than those observed in previous tests without CO2. Using amorphous Al(OH)3 and basaluminite precipitation reactions and a cation exchange selectivity coefficient K(Na\\Al) of 0.3, the model approximately described the observed (1) pH titration curve, (2) Ca, Mg, and Mn concentration by cation exchange, and (3) U concentrations by surface complexation with Fe hydroxides at pH precipitation at pH > 5. The model indicated that the formation of aqueous carbonate complexes and competition with carbonate for surface sites could inhibit U and Ni adsorption and precipitation. Our results suggested that the uncertainty in basaluminite solubility is an important source of prediction uncertainty and ignoring labile solid phase Al underestimates the base requirement in titration of acidic sediments.

  16. Mobilization of arsenic from contaminated sediment by anionic and nonionic surfactants.

    Science.gov (United States)

    Liang, Chuan; Peng, Xianjia

    2017-06-01

    The increasing manufacture of surfactants and their wide application in industry, agriculture and household detergents have resulted in large amounts of surfactant residuals being discharged into water and distributed into sediment. Surfactants have the potential to enhance arsenic mobility, leading to risks to the environment and even human beings. In this study, batch and column experiments were conducted to investigate arsenic mobilization from contaminated sediment by the commercial anionic surfactants sodium dodecylbenzenesulfonate (SDBS), sodium dodecyl sulfate (SDS), sodium laureth sulfate (AES) and nonionic surfactants phenyl-polyethylene glycol (Triton X-100) and polyethylene glycol sorbitan monooleate (Tween-80). The ability of surfactants to mobilize arsenic followed the order AES>SDBS>SDS≈Triton X-100>Tween 80. Arsenic mobilization by AES and Triton X-100 increased greatly with the increase of surfactant concentration and pH, while arsenic release by SDBS, SDS and Tween-80 slightly increased. The divalent ion Ca(2+) caused greater reduction of arsenic mobilization than Na(+). Sequential extraction experiments showed that the main fraction of arsenic mobilized was the specifically adsorbed fraction. Solid phase extraction showed that arsenate (As(V)) was the main species mobilized by surfactants, accounting for 65.05%-77.68% of the total mobilized arsenic. The mobilization of arsenic was positively correlated with the mobilization of iron species. The main fraction of mobilized arsenic was the dissolved fraction, accounting for 70% of total mobilized arsenic. Copyright © 2016. Published by Elsevier B.V.

  17. Effects of Oil-Contaminated Sediments on Submerged Vegetation: An Experimental Assessment of Ruppia maritima.

    Directory of Open Access Journals (Sweden)

    Charles W Martin

    Full Text Available Oil spills threaten the productivity of ecosystems through the degradation of coastal flora and the ecosystem services these plants provide. While lab and field investigations have quantified the response of numerous species of emergent vegetation to oil, the effects on submerged vegetation remain uncertain. Here, we discuss the implications of oil exposure for Ruppia maritima, one of the most common species of submerged vegetation found in the region affected by the recent Deepwater Horizon oil spill. We grew R. maritima in a range of manipulated sediment oil concentrations: 0, 0.26, 0.53, and 1.05 mL oil /L tank volume, and tracked changes in growth (wet weight and shoot density/length, reproductive activity (inflorescence and seed production, root characteristics (mass, length, diameter, and area, and uprooting force of plants. While no statistical differences were detected in growth, plants exhibited significant changes to reproductive output, root morphology, and uprooting force. We found significant reductions in inflorescences and fruiting bodies at higher oil concentrations. In addition, the roots growing in the high oil were shorter and wider. Plants in medium and high oil required less force to uproot. A second experiment was performed to separate the effects of root morphology and oiled sediment properties and indicated that there were also changes to sediment cohesion that contributed to a reduction in uprooting forces in medium and high oil. Given the importance of sexual reproduction for these plants, oil contamination may have substantial population-level effects. Moreover, areas containing buried oil may be more susceptible to high energy storm events due to the reduction in uprooting force of foundation species such as R. maritima.

  18. Laboratory, Field, and Analytical Procedures for Using Passive Sampling in the Evaluation of Contaminated Sediments: User's Manual

    Science.gov (United States)

    Regardless of the remedial technology invoked to address contaminated sediments in the environment, there is a critical need to have tools for assessing the effectiveness of the remedy. In the past, these tools have included chemical and biomonitoring of the water column and sedi...

  19. Acidobacteria Phylum Sequences in Uranium-Contaminated Subsurface Sediments Greatly Expand the Known Diversity within the Phylum▿ †

    Science.gov (United States)

    Barns, Susan M.; Cain, Elizabeth C.; Sommerville, Leslie; Kuske, Cheryl R.

    2007-01-01

    The abundance and composition of bacteria of the phylum Acidobacteria were surveyed in subsurface sediments from uranium-contaminated sites using amplification of 16S rRNA genes followed by clone/sequence analysis. Analysis of sequences from this study and public databases produced a revised and greatly expanded phylogeny of the Acidobacteria phylum consisting of 26 subgroups. PMID:17337544

  20. Getting caught up in the game: managing non-formal dynamics in the remediation of contaminated sediments in Oslo harbor

    NARCIS (Netherlands)

    Duijn, M.; Buuren, A. van; Sparrevik, M.; Slob, A.; Ellen, G.J.; Oen, A.

    2016-01-01

    This study aims at describing, analyzing and evaluating the relation between management styles and process dynamics of a complex planning process confronted with unexpected dynamics. The development of an aquatic disposal site for dredged contaminated sediments in Oslo was managed by a project manag

  1. A hydrophobic ammonia-oxidizing archaeon of the Nitrosocosmicus clade isolated from coal tar-contaminated sediment

    NARCIS (Netherlands)

    Jung, Man-Young; Kim, Jong-Geol; Sinninghe Damsté, Jaap S|info:eu-repo/dai/nl/07401370X; Rijpstra, W Irene C; Madsen, Eugene L; Kim, So-Jeong; Hong, Heeji; Si, Ok-Ja; Kerou, Melina; Schleper, Christa; Rhee, Sung-Keun

    2016-01-01

    A wide diversity of ammonia-oxidizing archaea (AOA) within the phylum Thaumarchaeota exists and plays a key role in the N cycle in a variety of habitats. In this study, we isolated and characterized an ammonia-oxidizing archaeon, strain MY3, from a coal tar-contaminated sediment. Phylogenetically,

  2. Getting caught up in the game: managing non-formal dynamics in the remediation of contaminated sediments in Oslo harbor

    NARCIS (Netherlands)

    Duijn, M.; Buuren, A. van; Sparrevik, M.; Slob, A.; Ellen, G.J.; Oen, A.

    2016-01-01

    This study aims at describing, analyzing and evaluating the relation between management styles and process dynamics of a complex planning process confronted with unexpected dynamics. The development of an aquatic disposal site for dredged contaminated sediments in Oslo was managed by a project

  3. Phytomediated Biostimulation of the Autochthonous Bacterial Community for the Acceleration of the Depletion of Polycyclic Aromatic Hydrocarbons in Contaminated Sediments

    Directory of Open Access Journals (Sweden)

    Simona Di Gregorio

    2014-01-01

    Full Text Available Polycyclic aromatic hydrocarbons (PAHs are a large group of organic contaminants causing hazards to organisms including humans. The objective of the study was to validate the vegetation of dredged sediments with Phragmites australis as an exploitable biostimulation approach to accelerate the depletion of PAHs in nitrogen spiked sediments. Vegetation with Phragmites australis resulted in being an efficient biostimulation approach for the depletion of an aged PAHs contamination (229.67±15.56 μg PAHs/g dry weight of sediment in dredged sediments. Phragmites australis accelerated the oxidation of the PAHs by rhizodegradation. The phytobased approach resulted in 58.47% of PAHs depletion. The effects of the treatment have been analyzed in terms of both contaminant depletion and changes in relative abundance of the metabolically active Gram positive and Gram negative PAHs degraders. The metabolically active degraders were quantified both in the sediments and in the root endospheric microbial community. Quantitative real-time PCR reactions have been performed on the retrotranscribed transcripts encoding the Gram positive and Gram negative large α subunit (RHDα of the aromatic ring hydroxylating dioxygenases. The Gram positive degraders resulted in being selectively favored by vegetation with Phragmites australis and mandatory for the depletion of the six ring condensed indeno[1,2,3-cd]pyrene and benzo[g,h,i]perylene.

  4. Assessing aquifer contamination risk using immunoassay: trace analysis of atrazine in unsaturated zone sediments

    Science.gov (United States)

    Juracek, K.E.; Thurman, E.M.

    1997-01-01

    The vulnerability of a shallow aquifer in south-central Kansas to contamination by atrazine (2-chloro-4-ethylamino-6-isopropylamines-triazine) was assessed by analyzing unsaturated zone soil and sediment samples from about 60 dryland and irrigated sites using an ultrasensitive immunoassay (detection level of 0.02 µg/kg) with verification by gas chromatography/mass spectrometry (GC/MS). Samples were collected at depths of 0 to 1.2 m (i.e., the root zone), 1.2 to 1.8 m, and 1.8 to 3.0 m during two time periods-prior to planting and after harvest of crops. About 75% of the samples contained detectable concentrations of parent atrazine. At the shallow sampling depth, atrazine concentrations ranged from 0.5 to approximately 12 µg/kg. Atrazine concentrations at the intermediate (1.2-1.8 m) depth generally were degradation of parent atrazine in the root zone. Likewise, atrazine concentrations front the deepest (1.8-3.0 m) depth ranged from atrazine use ranging from 1 to 5 or more years, there does not appear to he a significant buildup of parent compound below the root zone. Therefore, the unsaturated zone does not appear to be a major storage compartment of atrazine contamination for the underlying shallow aquifer.

  5. Lead poisoning of waterfowl by contaminated sediment in the Coeur d'Alene River.

    Science.gov (United States)

    Sileo, L; Creekmore, L H; Audet, D J; Snyder, M R; Meteyer, C U; Franson, J C; Locke, L N; Smith, M R; Finley, D L

    2001-10-01

    The Coeur d'Alene River basin in Idaho has been contaminated by mine tailings that have impaired the health of wildlife since the early 1900s. In other parts of the world, virtually all lead poisoning of waterfowl is caused by the ingestion of manmade lead artifacts, primarily spent lead shotshell pellets or, occasionally, fishing sinkers. However, in the Coeur d'Alene River basin in Idaho, nonartifactual lead poisoning was the ultimate cause of death of most of 219 (77%) of 285 waterfowl carcasses that had been found sick or dead from 1992 through 1997. The majority of these 219 waterfowl (172 tundra swans [Cygnus columbianus], 33 Canada geese [Branta canadensis], and 14 other species) were poisoned by ingesting river sediment that was contaminated with lead. The next most common cause of death (20 instances, 7%) was lead poisoning accompanied by ingested shotshell pellets. The remaining 46 waterfowl succumbed to trauma, infectious diseases (aspergillosis, avian cholera, tuberculosis), or miscellaneous problems, or the cause of death was not determined.

  6. Effect of multiple metal resistant bacteria from contaminated lake sediments on metal accumulation and plant growth.

    Science.gov (United States)

    Li, Kefeng; Ramakrishna, Wusirika

    2011-05-15

    Naturally occurring bacteria play an important role in bioremediation of heavy metal pollutants in soil and wastewater. This study identified high levels of resistance to zinc, cesium, lead, arsenate and mercury in eight copper resistant Pseudomonas strains previously isolated from Torch Lake sediment. These strains showed variable susceptibility to different antibiotics. Furthermore, these metal resistant strains were capable of bioaccumulation of multiple metals and solubilization of copper. Bacterial strains TLC 3-3.5-1 and TLC 6-6.5-1 showed high bioaccumulation ability of Zn (up to 15.9 mg/g dry cell) and Pb (80.7 mg/g dry cell), respectively. All the strains produced plant growth promoting indole-3-acetic acid (IAA), iron chelating siderophore and solubilized mineral phosphate and metals. The effect of bacterial inoculation on plant growth and copper uptake by maize (Zea mays) and sunflower (Helianthus annuus) was investigated using one of the isolates (Pseudomonas sp. TLC 6-6.5-4) with higher IAA production and phosphate and metal solubilization, which resulted in a significant increase in copper accumulation in maize and sunflower, and an increase in the total biomass of maize. The multiple metal-resistant bacterial isolates characterized in our study have potential applications for remediation of metal contaminated soils in combination with plants and metal contaminated water.

  7. Effect of multiple metal resistant bacteria from contaminated lake sediments on metal accumulation and plant growth

    Energy Technology Data Exchange (ETDEWEB)

    Li, Kefeng [Department of Biological Sciences, Michigan Technological University, 1400 Townsend Drive, Houghton, MI 49931 (United States); Ramakrishna, Wusirika, E-mail: wusirika@mtu.edu [Department of Biological Sciences, Michigan Technological University, 1400 Townsend Drive, Houghton, MI 49931 (United States)

    2011-05-15

    Naturally occurring bacteria play an important role in bioremediation of heavy metal pollutants in soil and wastewater. This study identified high levels of resistance to zinc, cesium, lead, arsenate and mercury in eight copper resistant Pseudomonas strains previously isolated from Torch Lake sediment. These strains showed variable susceptibility to different antibiotics. Furthermore, these metal resistant strains were capable of bioaccumulation of multiple metals and solubilization of copper. Bacterial strains TLC 3-3.5-1 and TLC 6-6.5-1 showed high bioaccumulation ability of Zn (up to 15.9 mg/g dry cell) and Pb (80.7 mg/g dry cell), respectively. All the strains produced plant growth promoting indole-3-acetic acid (IAA), iron chelating siderophore and solubilized mineral phosphate and metals. The effect of bacterial inoculation on plant growth and copper uptake by maize (Zea mays) and sunflower (Helianthus annuus) was investigated using one of the isolates (Pseudomonas sp. TLC 6-6.5-4) with higher IAA production and phosphate and metal soubilization, which resulted in a significant increase in copper accumulation in maize and sunflower, and an increase in the total biomass of maize. The multiple metal-resistant bacterial isolates characterized in our study have potential applications for remediation of metal contaminated soils in combination with plants and metal contaminated water.

  8. Understanding transport pathways in a river system - Monitoring sediments contaminated by an incident

    Science.gov (United States)

    Dietrich, S.; Kleisinger, C.; Hillebrand, G.; Claus, E.; Schwartz, R.; Carls, I.; Winterscheid, A.; Schubert, B.

    2016-12-01

    Experiments to trace transport of sediments and suspended particulate matter on a river scale are an expensive and difficult venture, since it causes a lot of official requirements. In spring 2015, polychlorinated biphenyls (PCB) were released during restoration works at a bridge in the upper part of the Elbe River, near the Czech-German border. In this study, the particle-bound PCB-transport is applied as a tracer for monitoring transport pathways of suspended solids (SS) along a whole river stretch over 700 km length. The incident was monitored by concentration measurements of seven indicator PCB congeners along the inland part of the Elbe River as well as in the Elbe estuary. Data from 15 monitoring stations (settling tanks) as well as from two longitudinal campaigns (grab samples) along the river in July and August 2015 are considered. The total PCB load is calculated for all stations on the basis of monthly contaminant concentrations and daily suspended sediment concentrations. Monte-Carlo simulations assess the uncertainties of the calculated load. 1D water levels and GIS analysis were used to locate temporal storage areas for the SS. It is shown that the ratio of high versus low chlorinated PCB congeners is a suitable tracer to distinguish the PCB load of the incident from the long-term background signal. Furthermore, the reduction of total PCB load within the upper Elbe indicates that roughly 24% of the SS were transported with the water by wash load. Approximately 600 km downstream of the incident site, the PCB-marked wash load was first identified in July 2015. PCB load transported intermittently in suspension was detected roughly 400 km downstream of the incident site by August 2015. In the Elbe Estuary, PCB-marked SS were only found upstream of the steep slope of water depth (approx. 4 to 15 m) within Hamburg harbor that acts as a major sediment sink. Here, SS from the inland Elbe are mixed with lowly contaminated marine material, which may mask the

  9. Contaminated sediments and bioassay responses of three macroinvertebrates, the midge larva Chironomus riparius, the water louse Asellus aquaticus and the mayfly nymph Ephoron virgo

    NARCIS (Netherlands)

    Lange, de H.J.; Haas, de E.M.; Maas, H.; Peeters, E.T.H.M.

    2005-01-01

    Bioassays are widely used to estimate ecological risks of contaminated sediments. We compared the results of three whole sediment bioassays, using the midge larva Chironomus riparius, the water louse Asellus aquaticus, and the mayfly nymph Ephoron virgo. We used sediments from sixteen locations in t

  10. Contaminated sediments and bioassay responses of three macroinvertebrates, the midge larva Chironomus riparius, the water louse Asellus aquaticus and the mayfly nymph Ephoron virgo

    NARCIS (Netherlands)

    Lange, de H.J.; Haas, de E.M.; Maas, H.; Peeters, E.T.H.M.

    2005-01-01

    Bioassays are widely used to estimate ecological risks of contaminated sediments. We compared the results of three whole sediment bioassays, using the midge larva Chironomus riparius, the water louse Asellus aquaticus, and the mayfly nymph Ephoron virgo. We used sediments from sixteen locations in

  11. Tracking the early dispersion (2011-2013) of radioactive sediment in coastal catchments draining Fukushima contamination plume

    Energy Technology Data Exchange (ETDEWEB)

    Evrard, O.; Lepage, H.; Chartin, C.; Lefevre, I.; Ayrault, S.; Ottle, C.; Bonte, P. [CEA/LSCE (France); Onda, Y. [CRIED Tsukuba University (Japan)

    2014-07-01

    The accident that occurred at Fukushima Dai-ichi nuclear power plant (FDNPP) in March 2011 led to the formation of a 3000-km{sup 2} radioactive pollution plume on soils located up to 70 km to the northwest of the damaged site. This mountainous region occupied by a dominance of forests and paddy fields is drained to the Pacific Ocean by several coastal rivers that flow across inhabited areas relatively spared by initial radioactive fallout. It is then crucial to track the dispersion of radioactive material conveyed by those rivers in order to estimate the continental supply of radionuclides to the Ocean and to assess the spatial and temporal patterns of radioactive sediment storage in those catchments as their radiations may lead to an external exposure threat for local populations. In addition, the transfer of contamination to plants and animals may affect human activities in the region. As river discharge and sediment concentration data have not been available during the first two years that followed the accident, alternative methods were developed to track the dispersion of contaminated sediment across coastal catchments. The first method relied on measurements of the {sup 110m}Ag:{sup 137}Cs ratio in both soils and river sediment. We thereby identified a partial export of contaminated sediment from inland mountain ranges - exposed initially to the highest radionuclide fallout - to the coastal plains as soon as in November 2011, after a series of violent typhoons. This export was then amplified by the spring snow melt in 2012. However, due to the relatively rapid decay of {sup 110m}Ag (half-life of 250 days), an alternative method was developed to continue tracking sediment. We therefore used local ground dose rate measurements to estimate whether fresh sediment drape deposits were more or less contaminated compared to local soils. We supported the interpretation of the dose rate measurements by running a simple connectivity model that evaluates the extent of

  12. Steroid markers to assess sewage and other sources of organic contaminants in surface sediments of Cienfuegos Bay, Cuba.

    Science.gov (United States)

    Tolosa, I; Mesa, M; Alonso-Hernandez, C M

    2014-09-15

    Analyses of faecal steroids in coastal sediments from Cienfuegos Bay Cuba indicate chronic sewage contamination at the main outfalls from the city, where concentrations of coprostanol up to 5400ngg(-)(1) (dry wt) were measured. In contrast, steroid concentrations and compositions from sites from the south part of the Bay are characteristic of uncontaminated sewage environments. The levels of coprostanol in the Cienfuegos sediments compares to the lower to mid-range of concentrations reported for coastal sediments on a world-wide basis, with sedimentary levels markedly below those previously reported for heavily impacted sites. This study delivers baseline data for further investigation of the effectiveness of the proposed sewerage plan promoted by the GEF project in Cienfuegos. Investigations on the correlations between faecal steroids and other organic contaminants confirmed that the major source of petroleum hydrocarbons within the bay was associated with the sewage effluents from the Cienfuegos city.

  13. Effects of prokaryotic diversity changes on hydrocarbon degradation rates and metal partitioning during bioremediation of contaminated anoxic marine sediments.

    Science.gov (United States)

    Rocchetti, Laura; Beolchini, Francesca; Hallberg, Kevin B; Johnson, D Barrie; Dell'Anno, Antonio

    2012-08-01

    We investigated changes of prokaryotic diversity during bioremediation experiments carried out on anoxic marine sediments characterized by high hydrocarbon and metal content. Microcosms containing contaminated sediments were amended with lactose and acetate and incubated in anaerobic conditions up to 60 d at 20 or 35 °C. Microcosms displaying higher degradation efficiency of hydrocarbons were characterized by the dominance of Alphaproteobacteria and Methanosarcinales and the lack of gene sequences belonging to known hydrocarbonoclastic bacteria. Multivariate analyses support the hypothesis that Alphaproteobacteria are important for hydrocarbon degradation and highlight a potential synergistic effect of archaea and bacteria in changes of metal partitioning. Overall, these results point out that the identification of changes in the prokaryotic diversity during bioremediation of contaminated marine sediments is not only important for the improvement of bio-treatment performance towards hydrocarbons, but also for a better comprehension of changes occurring in metal partitioning which affect their mobility and toxicity.

  14. Effectiveness of vegetation buffers surrounding playa wetlands at contaminant and sediment amelioration

    Science.gov (United States)

    Haukos, David A.; Johnson, Lacrecia A.; Smith, Loren M.; McMurry, Scott T.

    2016-01-01

    Playa wetlands, the dominant hydrological feature of the semi-arid U.S. High Plains providing critical ecosystem services, are being lost and degraded due to anthropogenic alterations of the short-grass prairie landscape. The primary process contributing to the loss of playas is filling of the wetland through accumulation of soil eroded and transported by precipitation from surrounding cultivated watersheds. We evaluated effectiveness of vegetative buffers surrounding playas in removing metals, nutrients, and dissolved/suspended sediments from precipitation runoff. Storm water runoff was collected at 10-m intervals in three buffer types (native grass, fallow cropland, and Conservation Reserve Program). Buffer type differed in plant composition, but not in maximum percent removal of contaminants. Within the initial 60 m from a cultivated field, vegetation buffers of all types removed >50% of all measured contaminants, including 83% of total suspended solids (TSS) and 58% of total dissolved solids (TDS). Buffers removed an average of 70% of P and 78% of N to reduce nutrients entering the playa. Mean maximum percent removal for metals ranged from 56% of Na to 87% of Cr. Maximum removal was typically at 50 m of buffer width. Measures of TSS were correlated with all measures of metals and nutrients except for N, which was correlated with TDS. Any buffer type with >80% vegetation cover and 30–60 m in width would maximize contaminant removal from precipitation runoff while ensuring that playas would continue to function hydrologically to provide ecosystem services. Watershed management to minimize erosion and creations of vegetation buffers could be economical and effective conservation tools for playa wetlands.

  15. Sediment transfer in coastal catchments exposed to typhoons: lessons learnt from catchments contaminated with Fukushima radioactive fallout

    Science.gov (United States)

    Evrard, Olivier; Laceby, J. Patrick; Onda, Yuichi; Lefèvre, Irène

    2016-04-01

    Several coastal catchments located in Northeastern Japan received significant radioactive fallout following the Fukushima nuclear accident in March 2011, with initial 137Cs activities exceeding 100 kBq m-2. Although radiocesium poses a considerable health risk for local populations, it also provides a relatively straightforward tracer to investigate sediment transfers in catchments exposed to spring floods and heavy typhoons in late summer and early fall. This study focused on two catchments (the Niida and Mano Rivers) covering a surface area of 450 km² that drain the main radioactive plume. A database of radiocesium activities measured in potential source samples (n=260) was used to model radiocesium dilution in 342 sediment deposit samples collected at 38 locations during 9 different sampling campaigns conducted every 6 months from Nov. 2011 to Nov. 2015. The dilution of the initial radiocesium contamination in sediment was individually calculated for each of the 342 samples using a distribution model. Results show that the proportion of heavily contaminated sediment increased from 27% to 39% after the occurrence of typhoons in 2013 (with rainfall amount exceeding 100 mm in 48 hours) and from 29% to 45% after the 2015 spring floods, illustrating the occurrence of soil erosion and resuspension of contaminated material stored in the river channel. In contrast, the occurrence of a very strong typhoon in September 2015 (up to 450 mm in 48h) led to the dilution and the flush of the contamination to the Pacific Ocean, with the proportion of heavily contaminated material decreasing from 45 to 21%. This case study in catchments impacted by the Fukushima accident illustrates their high reactivity to both human activities and rainfall. These results will improve our understanding of sediment transfers in similar coastal mountainous environments frequently exposed to heavy rainfall.

  16. Efficiency and mechanism of the phytoremediation of decabromodiphenyl ether-contaminated sediments by aquatic macrophyte Scirpus validus.

    Science.gov (United States)

    Zhao, Liangyuan; Jiang, Jinhui; Chen, Chuanhong; Zhan, Shuie; Yang, Jiaoyan; Yang, Shao

    2017-05-01

    Phytoremediation is an economic and promising technique for removing toxic pollutants from the environment. Freshwater sediments are regarded as the ultimate sink of the widely used PBDE congener decabromodiphenyl ether (BDE-209) in the environment. In the study, the aquatic macrophyte Scirpus validus was selected to remove BDE-209 from three types of sediments (silt, clay, and sand) at an environmentally relevant concentration. After 18 months of phytoremediation experiment, S. validus significantly enhanced the dissipation rates of BDE-209 in all the sediments compared to the controls. Average removal rates of BDE-209 in the three treatments of silt, clay, and sandy sediments with S. validus were respectively 92.84, 84.04, and 72.22%, which were 148, 197, and 233% higher than that in the control sediments without S. validus. In the phytoremediation process, the macrophyte-rhizosphere microbe combined degradation was the main pathway of BDE-209 removal. Sixteen lower brominated PBDE congeners (di- to nona-) were detected in the sediments and plant tissues, confirming metabolic debromination of BDE-209 in S. validus. A relatively higher proportion of penta- and di-BDE congeners among the metabolites in plant tissues than that in the sediments indicated further debromination of PBDEs within plants. The populations and activities of microorganisms in the sediments were greatly promoted by S. validus. Bacterial community structure in BDE-209-contaminated rhizosphere sediments was different from that in the control rhizosphere sediment, as indicated by the dominant proportions of β-proteobacteria, δ-proteobacteria, α-proteobacteria, Acidobacteria, and Chloroflexi in the microbial flora. All these results suggested that S. validus was effective in phytoremediation of BDE-209 by the macrophyte-rhizosphere microbe combined degradation in aquatic sediments.

  17. Standard operating procedures for collection of soil and sediment samples for the Sediment-bound Contaminant Resiliency and Response (SCoRR) strategy pilot study

    Science.gov (United States)

    Fisher, Shawn C.; Reilly, Timothy J.; Jones, Daniel K.; Benzel, William M.; Griffin, Dale W.; Loftin, Keith A.; Iwanowicz, Luke R.; Cohl, Jonathan A.

    2015-12-17

    An understanding of the effects on human and ecological health brought by major coastal storms or flooding events is typically limited because of a lack of regionally consistent baseline and trends data in locations proximal to potential contaminant sources and mitigation activities, sensitive ecosystems, and recreational facilities where exposures are probable. In an attempt to close this gap, the U.S. Geological Survey (USGS) has implemented the Sediment-bound Contaminant Resiliency and Response (SCoRR) strategy pilot study to collect regional sediment-quality data prior to and in response to future coastal storms. The standard operating procedure (SOP) detailed in this document serves as the sample-collection protocol for the SCoRR strategy by providing step-by-step instructions for site preparation, sample collection and processing, and shipping of soil and surficial sediment (for example, bed sediment, marsh sediment, or beach material). The objectives of the SCoRR strategy pilot study are (1) to create a baseline of soil-, sand-, marsh sediment-, and bed-sediment-quality data from sites located in the coastal counties from Maine to Virginia based on their potential risk of being contaminated in the event of a major coastal storm or flooding (defined as Resiliency mode); and (2) respond to major coastal storms and flooding by reoccupying select baseline sites and sampling within days of the event (defined as Response mode). For both modes, samples are collected in a consistent manner to minimize bias and maximize quality control by ensuring that all sampling personnel across the region collect, document, and process soil and sediment samples following the procedures outlined in this SOP. Samples are analyzed using four USGS-developed screening methods—inorganic geochemistry, organic geochemistry, pathogens, and biological assays—which are also outlined in this SOP. Because the SCoRR strategy employs a multi-metric approach for sample analyses, this

  18. Determining oxidative and non-oxidative genotoxic effects driven by estuarine sediment contaminants on a human hepatoma cell line.

    Science.gov (United States)

    Pinto, M; Costa, P M; Louro, H; Costa, M H; Lavinha, J; Caeiro, S; Silva, M J

    2014-04-15

    Estuarine sediments may be reservoirs of hydrophilic and hydrophobic pollutants, many of which are acknowledged genotoxicants, pro-mutagens and even potential carcinogens for humans. Still, studies aiming at narrowing the gap between ecological and human health risk of sediment-bound contaminant mixtures are scarce. Taking an impacted estuary as a case study (the Sado, SW Portugal), HepG2 (human hepatoma) cells were exposed in vitro for 48 h to extracts of sediments collected from two areas (urban/industrial and Triverine/agricultural), both contaminated by distinct mixtures of organic and inorganic toxicants, among which are found priority mutagens such as benzo[a]pyrene. Comparatively to a control test, extracts of sediments from both impacted areas produced deleterious effects in a dose-response manner. However, sediment extracts from the industrial area caused lower replication index plus higher cytotoxicity and genotoxicity (concerning total DNA strand breakage and clastogenesis), with emphasis on micronucleus induction. On the other hand, extracts from the rural area induced the highest oxidative damage to DNA, as revealed by the FPG (formamidopyrimidine-DNA glycosylase) enzyme in the Comet assay. Although the estuary, on its whole, has been classified as moderately contaminated, the results suggest that the sediments from the industrial area are significantly genotoxic and, furthermore, elicit permanent chromosome damage, thus potentially being more mutagenic than those from the rural area. The results are consistent with contamination by pro-mutagens like polycyclic aromatic hydrocarbons (PAHs), potentiated by metals. The sediments from the agriculture-influenced area likely owe their genotoxic effects to metals and other toxicants, probably pesticides and fertilizers, and able to induce reactive oxygen species without the formation of DNA strand breakage. The findings suggest that the mixtures of contaminants present in the assayed sediments are genotoxic

  19. Biomarkers of effects of hypoxia and oil-shale contaminated sediments in laboratory-exposed gibel carp (Carassius auratus gibelio).

    Science.gov (United States)

    Kreitsberg, Randel; Baršienė, Janina; Freiberg, Rene; Andreikėnaitė, Laura; Tammaru, Toomas; Rumvolt, Kateriina; Tuvikene, Arvo

    2013-12-01

    In North-East Estonia, considerable amounts of toxicants (e.g. polycyclic aromatic hydrocarbons (PAHs), phenols, heavy metals) leach into water bodies through discharges from the oil-shale industry. In addition, natural and anthropogenic hypoxic events in water bodies affect the health of aquatic organisms. Here we report a study on the combined effects of contaminated sediment and hypoxia on the physiology of gibel carp (Carssius auratus gibelio). We conducted a laboratory exposure study that involved exposure to polluted sediments from oil-shale industries (River Purtse) and sediments from a relatively clean environment (River Selja), together with sediments spiked with PAHs. The oxygen content (saturation vs. hypoxia (oil-shale industry on fish health parameters was clear under different oxygen levels. © 2013 Elsevier Inc. All rights reserved.

  20. Investigating uranium distribution in surface sediments and waters: a case study of contamination from the Juniper Uranium Mine, Stanislaus National Forest, CA.

    Science.gov (United States)

    Kayzar, Theresa M; Villa, Adam C; Lobaugh, Megan L; Gaffney, Amy M; Williams, Ross W

    2014-10-01

    The uranium concentrations and isotopic compositions of waters, sediment leachates and sediments from Red Rock Creek in the Stanislaus National Forest of California were measured to investigate the transport of uranium from a point source (the Juniper Uranium Mine) to a natural surface stream environment. The ((234)U)/((238)U) composition of Red Rock Creek is altered downstream of the Juniper Mine. As a result of mine-derived contamination, water ((234)U)/((238)U) ratios are 67% lower than in water upstream of the mine (1.114-1.127 ± 0.009 in the contaminated waters versus 1.676 in the clean branch of the stream), and sediment samples have activity ratios in equilibrium in the clean creek and out of equilibrium in the contaminated creek (1.041-1.102 ± 0.007). Uranium concentrations in water, sediment and sediment leachates are highest downstream of the mine, but decrease rapidly after mixing with the clean branch of the stream. Uranium content and compositions of the contaminated creek headwaters relative to the mine tailings of the Juniper Mine suggest that uranium has been weathered from the mine and deposited in the creek. The distribution of uranium between sediment surfaces (leachable fraction) and bulk sediment suggests that adsorption is a key element of transfer along the creek. In clean creek samples, uranium is concentrated in the sediment residues, whereas in the contaminated creek, uranium is concentrated on the sediment surfaces (∼70-80% of uranium in leachable fraction). Contamination only exceeds the EPA maximum contaminant level (MCL) for drinking water in the sample with the closest proximity to the mine. Isotopic characterization of the uranium in this system coupled with concentration measurements suggest that the current state of contamination in Red Rock Creek is best described by mixing between the clean creek and contaminated upper branch of Red Rock Creek rather than mixing directly with mine sediment.

  1. Chemical versus Enzymatic Digestion of Contaminated Estuarine Sediment: Relative Importance of Iron and Manganese Oxides in Controlling Trace Metal Bioavailability

    Science.gov (United States)

    Turner, A.; Olsen, Y. S.

    2000-12-01

    Chemical and enzymatic reagents have been employed to determine available concentrations of Fe, Mn, Cu and Zn in contaminated estuarine sediment. Gastric and intestinal enzymes (pepsin, pH 2, and trypsin, pH 7·6, respectively) removed significantly more metal than was water-soluble or exchangeable (by seawater or ammonium acetate), while gastro-intestinal fluid of the demersal teleost, Pleuronectes platessa L. (plaice), employed to operationally define a bioavailable fraction of contaminants, generally solubilized more metal than the model enzymes. Manganese was considerably more available than Fe under these conditions and it is suggested that the principal mechanism of contaminant release is via surface complexation and reductive solubilization of Mn oxides, a process which is enhanced under conditions of low pH. Of the chemical reagents tested, acetic acid best represents the fraction of Mn (as well as Cu and Zn) which is available under gastro-intestinal conditions, suggesting that the reducing tendency of acetate is similar to that of the ligands encountered in the natural digestive environment. Although the precise enzymatic and non-enzymatic composition of plaice gastro-intestinal fluid may be different to that encountered in more representative, filter-feeding or burrowing organisms, a general implication of this study is that contaminants associated with Mn oxides are significantly more bioavailable than those associated with Fe oxides, and that contaminant bioavailability may be largely dictated by the oxidic composition of contaminated sediment.

  2. The effects of phosphorus additions on the sedimentation of contaminants in a uranium mine pit-lake.

    Science.gov (United States)

    Dessouki, Tarik C E; Hudson, Jeff J; Neal, Brian R; Bogard, Matthew J

    2005-08-01

    We investigated the usefulness of phytoplankton for the removal of surface water contaminants. Nine large mesocosms (92.2m(3)) were suspended in the flooded DJX uranium pit at Cluff Lake (Saskatchewan, Canada), and filled with highly contaminated mine water. Each mesocosm was fertilized with a different amount of phosphorus throughout the 35 day experiment to stimulate phytoplankton growth, and to create a range in phosphorus load (g) to examine how contaminants may be affected by different nutrient regimes. Algal growth was rapid in fertilized mesocosms (as demonstrated by chlorophyll a profiles). As phosphorus loads increased there were significant declines (pRa-226, Mo, and Se showed no relationship to phosphorus load. Contaminant concentrations in sediment traps suspended at the bottom of each mesocosm generally showed the opposite trend to that observed in the surface water, with most contaminants (As, Co, Cu, Mn, Ni, Ra-226, U, and Zn) exhibiting a significant positive relationship (p<0.05) with phosphorus load. Selenium and Mo did not respond to nutrient treatments. Our results suggest that phytoremediation has the potential to lower many surface water contaminants through the sedimentation of phytoplankton. Based on our results, we estimate that the Saskatchewan Surface Water Quality Objectives (SSWQO) for DJX pit would be met in approximately 45 weeks for Co, 65 weeks for Ni, 15 weeks for U, and 5 weeks for Zn.

  3. Characterisation of the dilute HCl extraction method for the identification of metal contamination in Antarctic marine sediments.

    Science.gov (United States)

    Snape, I; Scouller, R C; Stark, S C; Stark, J; Riddle, M J; Gore, D B

    2004-11-01

    A regional survey of potential contaminants in marine or estuarine sediments is often one of the first steps in a post-disturbance environmental impact assessment. Of the many different chemical extraction or digestion procedures that have been proposed to quantify metal contamination, partial acid extractions are probably the best overall compromise between selectivity, sensitivity, precision, cost and expediency. The extent to which measured metal concentrations relate to the anthropogenic fraction that is bioavailable is contentious, but is one of the desired outcomes of an assessment or prediction of biological impact. As part of a regional survey of metal contamination associated with Australia's past waste management activities in Antarctica, we wanted to identify an acid type and extraction protocol that would allow a reasonable definition of the anthropogenic bioavailable fraction for a large number of samples. From a kinetic study of the 1 M HCl extraction of two Certified Reference Materials (MESS-2 and PACS-2) and two Antarctic marine sediments, we concluded that a 4 h extraction time allows the equilibrium dissolution of relatively labile metal contaminants, but does not favour the extraction of natural geogenic metals. In a regional survey of 88 marine samples from the Casey Station area of East Antarctica, the 4 h extraction procedure correlated best with biological data, and most clearly identified those sediments thought to be contaminated by runoff from abandoned waste disposal sites. Most importantly the 4 h extraction provided better definition of the low to moderately contaminated locations by picking up small differences in anthropogenic metal concentrations. For the purposes of inter-regional comparison, we recommend a 4 h 1 M HCl acid extraction as a standard method for assessing metal contamination in Antarctica.

  4. Fate and Transport of Organic Contaminants in Coastal Marsh Sediments Resulting from the 2010 Gulf Oil Spill

    Science.gov (United States)

    Natter, M.; Keevan, J.; Lee, M.; Keimowitz, A.; Savrda, C.; Son, A.; Okeke, B.; Wang, Y.

    2011-12-01

    The devastating explosion and subsequent sinking of the oil platform Deepwater Horizon at the British Petroleum Macondo-1 well in the Northern Gulf of Mexico on April 20, 2010, released approximately 4.9 million barrels of crude oil into the Gulf before the well was capped on July 15, 2010. Although most light compounds of oil may be easily degraded by natural microbes on the short term, saturated heavy oil (e.g., asphaltenes, resins, polycyclic aromatics, etc.) and those adsorbed by sediments could persist in the environment for decades. The long-term effects of high levels of persistent oil compounds on biogeochemical evolution and ecosystems of salt marshes remain unclear. This research investigates the spatial range and changes in levels of oil and their biogeochemical impacts. A total of ten marsh sampling sites that varied from pristine, non-effected marshes (e.g., Weeks Bay and Wolf Bay, Alabama) to heavily oiled wetlands (e.g., Bay Jimmy and Bayou Dulac, Louisiana) were utilized for this study. Sediment cores, bulk sediments, surface water samples, degraded oil, oiled dead marsh grass, and live marsh grass were collected from these sites in an attempt to study the source, distribution, and evolution of organic compounds and oil present in sediments and pore-waters. Geochemical analyses show alarmingly high organic carbon loads in pore-waters and sediments at heavily contaminated sites months after the influx of oil ceased. Very high levels (10-28%) of total organic carbon (TOC) within the heavily oiled sediments (down to 30 cm) are clearly distinguished from those found in pristine wetland sediments (generally oil dispersants. Furthermore, dissolved organic carbon (DOC) levels of pore-waters extracted from oiled sediments, ranging up to hundreds of mg/kg, are on the order of one to two magnitudes higher than those at pristine and slightly contaminated sites. These DOC levels also interestingly increase with depth, possibly indicating saltwater

  5. A description of chloride cell and kidney tubule alterations in the flatfish Solea senegalensis exposed to moderately contaminated sediments from the Sado estuary (Portugal)

    Science.gov (United States)

    Costa, Pedro M.; Caeiro, Sandra; Diniz, Mário S.; Lobo, Jorge; Martins, Marta; Ferreira, Ana M.; Caetano, Miguel; Vale, Carlos; DelValls, T. Ángel; Costa, M. Helena

    2010-11-01

    The effects of sediment-bound contaminants on kidney and gill chloride cells were surveyed in juvenile Solea senegalensis exposed to fresh sediments collected from three distinct sites of the Sado Estuary (Portugal) in a 28-day laboratorial assay. Sediments were analyzed for metallic contaminants, polycyclic aromatic hydrocarbons and organochlorines as well as for total organic matter, redox potential and fine fraction. The potential for causing adverse biological effects of each surveyed sediment was assessed by comparison of contaminant levels to available guidelines for coastal sediments, namely the Threshold Effects Level ( TEL) and the Probable Effects Level ( PEL). The Sediment Quality Guideline Quotient indices ( SQGQ) were calculated to compare the overall contamination levels of the three stations. A qualitative approach was employed to analyze the histo/cytopathological traits in gill chloride cells and body kidney of fish exposed to each tested sediment for 0, 14 and 28 days. The results showed that sediment contamination can be considered low to moderate and that the least contaminated sediment (from a reference site, with the lowest SQGQ) caused lesser changes in the surveyed organs. However, the most contaminated sediment (by both metallic and organic xenobiotics, with highest SQGQ) was neither responsible for the highest mortality nor for the most pronounced lesions. Exposure to the sediment presenting an intermediate SQGQ, essentially contaminated by organic compounds, caused the highest mortality (48%) and the most severe damage to kidneys, up to full renal necrosis. Chloride cell alterations were similar in fish exposed to the two most contaminated sediments and consisted of a pronounced cellular hypertrophy, likely involving fluid retention and loss of mitochondria. It can be concluded that sediment contamination considered to be low or moderate may be responsible for severe injury to cells and parenchyma involved in the maintenance of osmotic

  6. Toxic metal immobilization in contaminated sediment using bentonite- and kaolinite-supported nano zero-valent iron

    Science.gov (United States)

    Tomašević, D. D.; Kozma, G.; Kerkez, Dj. V.; Dalmacija, B. D.; Dalmacija, M. B.; Bečelić-Tomin, M. R.; Kukovecz, Á.; Kónya, Z.; Rončević, S.

    2014-08-01

    The objective of this study was to investigate the possibility of using supported nanoscale zero-valent iron with bentonite and kaolinite for immobilization of As, Pb and Zn in contaminated sediment from the Nadela river basin (Serbia). Assessment of the sediment quality based on the pseudo-total metal content (As, Pb and Zn) according to the corresponding Serbian standards shows its severe contamination, such that it requires disposal in special reservoirs and, if possible, remediation. A microwave-assisted sequential extraction procedure was employed to assess potential metal mobility and risk to the aquatic environment. According to these results, As showed lower risk to the environment than Pb and Zn, which both represent higher risk to the environment. The contaminated sediment, irrespective of the different speciation of the treated metals, was subjected to the same treatment. Semi-dynamic leaching test, based on leachability index and effective diffusion coefficients, was conducted for As-, Pb- and Zn-contaminated sediments in order to assess the long-term leaching behaviour. In order to simulate "worst case" leaching conditions, the test was modified using acetic and humic acid solution as leachants instead of deionized water. A diffusion-based model was used to elucidate the controlling leaching mechanisms; in the majority of samples, the controlling leaching mechanism appeared to be diffusion. Three different single-step leaching tests were applied to evaluate the extraction potential of examined metals. Generally, the test results indicated that the treated sediment is safe for disposal and could even be considered for "controlled utilization".

  7. Catchment Models and Management Tools for diffuse Contaminants (Sediment, Phosphorus and Pesticides): DIFFUSE Project

    Science.gov (United States)

    Mockler, Eva; Reaney, Simeon; Mellander, Per-Erik; Wade, Andrew; Collins, Adrian; Arheimer, Berit; Bruen, Michael

    2017-04-01

    The agricultural sector is the most common suspected source of nutrient pollution in Irish rivers. However, it is also often the most difficult source to characterise due to its predominantly diffuse nature. Particulate phosphorus in surface water and dissolved phosphorus in groundwater are of particular concern in Irish water bodies. Hence the further development of models and indices to assess diffuse sources of contaminants are required for use by the Irish Environmental Protection Agency (EPA) to provide support for river basin planning. Understanding connectivity in the landscape is a vital component of characterising the source-pathway-receptor relationships for water-borne contaminants, and hence is a priority in this research. The DIFFUSE Project will focus on connectivity modelling and incorporation of connectivity into sediment, nutrient and pesticide risk mapping. The Irish approach to understanding and managing natural water bodies has developed substantially in recent years assisted by outputs from multiple research projects, including modelling and analysis tools developed during the Pathways and CatchmentTools projects. These include the Pollution Impact Potential (PIP) maps, which are an example of research output that is used by the EPA to support catchment management. The PIP maps integrate an understanding of the pollution pressures and mobilisation pathways and, using the source-pathways-receptor model, provide a scientific basis for evaluation of mitigation measures. These maps indicate the potential risk posed by nitrate and phosphate from diffuse agricultural sources to surface and groundwater receptors and delineate critical source areas (CSAs) as a means of facilitating the targeting of mitigation measures. Building on this previous research, the DIFFUSE Project will develop revised and new catchment managements tools focused on connectivity, sediment, phosphorus and pesticides. The DIFFUSE project will strive to identify the state

  8. Distribution of inorganic and organic contaminants in sediments from Sydney Olympic Park and the surrounding Sydney metropolitan area.

    Science.gov (United States)

    Ying, Guang-Guo; Rawson, Christopher A; Kookana, Rai S; Warne, Michael St J; Peng, Ping-An; Li, Xiao-Ming; Laginestra, Edwina; Tremblay, Louis A; Chapman, John C; Lim, Richard P

    2009-09-01

    Organic and inorganic contamination was assessed for sediments from wetlands and water bodies within the Sydney Olympic Park (SOP, remediated sites) and its surroundings (unremediated sites) and urban reference sites in the Sydney Basin. Among the seven elements analysed (As, Cd, Cr, Cu, Pb, Ni and Zn), Zn concentrations were the highest, followed by Pb, Cu and Cr in the sediments of SOP. Significantly higher concentrations (p 0.05) in concentrations were found for polycyclic aromatic hydrocarbons (PAHs) and polychlorinated biphenyls (PCBs) as well as DDTs between sediments from SOP and the urban reference sites. Source indicators suggest that PAHs in the sediments originated from combustion processes. Two distinct groups of dioxin profiles were observed within SOP and its surroundings. Levels of dioxins were more than 100 pg WHO-TEQ/g dry weight of sediment at five sites adjacent to the SOP boundaries. Based on the findings of the chemical profiles of the contaminants, the remediated sites in SOP can be regarded as similar to the urban reference sites within the Sydney Basin, while the adjacent unremediated sites have higher concentrations, especially of dioxins, that could still affect organisms in the aquatic environment.

  9. Planting woody crops on dredged contaminated sediment provides both positive and negative effects in terms of remediation

    Energy Technology Data Exchange (ETDEWEB)

    Hartley, William, E-mail: w.hartley@salford.ac.uk [School of Computing, Science and Engineering, University of Salford, Cockcroft Building, Salford M5 4WT (United Kingdom); Riby, Philip [School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Byrom Street, Liverpool L3 3AF (United Kingdom); Dickinson, Nicholas M. [Department of Ecology, Lincoln University, Lincoln 7647, Canterbury (New Zealand); Shutes, Brian [Urban Pollution Research Centre, Department of Natural Sciences, Middlesex University, Hendon, London NW4 4BT (United Kingdom); Sparke, Shaun [School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Byrom Street, Liverpool L3 3AF (United Kingdom); Scholz, Miklas [School of Computing, Science and Engineering, University of Salford, Cockcroft Building, Salford M5 4WT (United Kingdom)

    2011-12-15

    There is currently a requirement for studies focusing on the long-term sustainability of phytoremediation technologies. Trace element uptake by Salix, Populus and Alnus species planted in dredged contaminated canal sediment and concentrations in sediment and pore waters were investigated, eight years after a phytoremediation trial was initiated in NW England. Soil biological activity was also measured using invertebrate and microbial assays to determine soil quality improvements. Zinc was the dominant trace metal in foliage and woody stems, and the most mobile trace element in sediment pore water ({approx}14 mg l{sup -1}). Biological activity had improved; earthworm numbers had increased from 5 to 24, and the QBS index (an index of microarthropod groups in soil) had increased from 70 to 88. It is concluded that biological conditions had improved and natural processes appear to be enhancing soil quality, but there remains a potential risk of trace element transfer to the wider environment. - Highlights: > Trees provide positive and negative effects for remediation of dredged sediment. > Biological conditions had improved and natural processes enhance soil quality. > Zinc was the dominant trace metal in foliage and sediment pore waters. > Metal contaminants remain a problem in relation to their wider environmental fate. > A sustainable environment appears to be forming as a result of natural attenuation. - Soil biological quality improves in a woody crop stand eight years after a phytoremediation trial.

  10. Isolation and Characterization of Four Gram-Positive Nickel-Tolerant Microorganisms from Contaminated Sediments

    Energy Technology Data Exchange (ETDEWEB)

    Van Nostrand, J. D.; Khijniak, T. V.; Gentry, T. J.; Novak, M. T.; Sowder, A. G.; Zhou, J. Z.; Bertsch, P. M.; Morris, P. J.

    2007-01-01

    Microbial communities from riparian sediments contaminated with high levels of Ni and U were examined for metal-tolerant microorganisms. Isolation of four aerobic Ni-tolerant, Gram-positive heterotrophic bacteria indicated selection pressure from Ni. These isolates were identified as Arthrobacter oxydans NR-1, Streptomyces galbus NR-2, Streptomyces aureofaciens NR-3, and Kitasatospora cystarginea NR-4 based on partial 16S rDNA sequences. A functional gene microarray containing gene probes for functions associated with biogeochemical cycling, metal homeostasis, and organic contaminant degradation showed little overlap among the four isolates. Fifteen of the genes were detected in all four isolates with only two of these related to metal resistance, specifically to tellurium. Each of the four isolates also displayed resistance to at least one of six antibiotics tested, with resistance to kanamycin, gentamycin, and ciprofloxacin observed in at least two of the isolates. Further characterization of S. aureofaciens NR-3 and K. cystarginea NR-4 demonstrated that both isolates expressed Ni tolerance constitutively. In addition, both were able to grow in higher concentrations of Ni at pH 6 as compared with pH 7 (42.6 and 8.5 mM Ni at pH 6 and 7, respectively). Tolerance to Cd, Co, and Zn was also examined in these two isolates; a similar pH-dependent metal tolerance was observed when grown with Co and Zn. Neither isolate was tolerant to Cd. These findings suggest that Ni is exerting a selection pressure at this site for metal-resistant actinomycetes.

  11. Effects of Sewage Sludges Contaminated with Chlorinated Aromatic Hydrocarbons on Sludge-Treated Areas (Soils and Sediments

    Directory of Open Access Journals (Sweden)

    Ethel Eljarrat

    2002-01-01

    Full Text Available The fate of PCDDs, PCDFs, and PCBs in sewage sludges after different management techniques — such as agricultural application, land restoration, and marine disposal — was studied. Changes observed in the concentrations, in the ratio between PCDD and PCDF levels, and in the isomeric distribution suggest the influence of the sewage sludge on the sludge-treated areas (soils and sediments. Whereas land application techniques seem to produce no serious environmental consequences, marine disposal practices produce considerable increases in the levels of contamination in marine sediments.

  12. Novel Application of Cyclolipopeptide Amphisin: Feasibility Study as Additive to Remediate Polycyclic Aromatic Hydrocarbon (PAH Contaminated Sediments

    Directory of Open Access Journals (Sweden)

    Anne Groboillot

    2011-03-01

    Full Text Available To decontaminate dredged harbor sediments by bioremediation or electromigration processes, adding biosurfactants could enhance the bioavailability or mobility of contaminants in an aqueous phase. Pure amphisin from Pseudomonas fluorescens DSS73 displays increased effectiveness in releasing polycyclic aromatic hydrocarbons (PAHs strongly adsorbed to sediments when compared to a synthetic anionic surfactant. Amphisin production by the bacteria in the natural environment was also considered. DSS73’s growth is weakened by three model PAHs above saturation, but amphisin is still produced. Estuarine water feeding the dredged material disposal site of a Norman harbor (France allows both P. fluorescens DSS73 growth and amphisin production.

  13. Toxicity of sediments potentially contaminated by coal mining and natural gas extraction to unionid mussels and commonly tested benthic invertebrates.

    Science.gov (United States)

    Wang, Ning; Ingersoll, Christopher G; Kunz, James L; Brumbaugh, William G; Kane, Cindy M; Evans, R Brian; Alexander, Steven; Walker, Craig; Bakaletz, Steve

    2013-01-01

    Sediment toxicity tests were conducted to assess potential effects of contaminants associated with coal mining or natural gas extraction activities in the upper Tennessee River basin and eastern Cumberland River basin in the United States. Test species included two unionid mussels (rainbow mussel, Villosa iris, and wavy-rayed lampmussel, Lampsilis fasciola, 28-d exposures), and the commonly tested amphipod, Hyalella azteca (28-d exposure) and midge, Chironomus dilutus (10-d exposure). Sediments were collected from seven test sites with mussel communities classified as impacted and in proximity to coal mining or gas extraction activities, and from five reference sites with mussel communities classified as not impacted and no or limited coal mining or gas extraction activities. Additional samples were collected from six test sites potentially with high concentrations of polycyclic aromatic hydrocarbons (PAHs) and from a test site contaminated by a coal ash spill. Mean survival, length, or biomass of one or more test species was reduced in 10 of 14 test samples (71%) from impacted areas relative to the response of organisms in the five reference samples. A higher proportion of samples was classified as toxic to mussels (63% for rainbow mussels, 50% for wavy-rayed lampmussels) compared with amphipods (38%) or midge (38%). Concentrations of total recoverable metals and total PAHs in sediments did not exceed effects-based probable effect concentrations (PECs). However, the survival, length, or biomasses of the mussels were reduced significantly with increasing PEC quotients for metals and for total PAHs, or with increasing sum equilibrium-partitioning sediment benchmark toxic units for PAHs. The growth of the rainbow mussel also significantly decreased with increasing concentrations of a major anion (chloride) and major cations (calcium and magnesium) in sediment pore water. Results of the present study indicated that (1) the findings from laboratory tests were generally

  14. Toxicity of sediments potentially contaminated by coal mining and natural gas extraction to unionid mussels and commonly tested benthic invertebrates

    Science.gov (United States)

    Wang, Ning; Ingersoll, Christopher G.; Kunz, James L.; Brumbaugh, William G.; Kane, Cindy M.; Evans, R. Brian; Alexander, Steven; Walker, Craig; Bakaletz, Steve

    2013-01-01

    Sediment toxicity tests were conducted to assess potential effects of contaminants associated with coal mining or natural gas extraction activities in the upper Tennessee River basin and eastern Cumberland River basin in the United States. Test species included two unionid mussels (rainbow mussel, Villosa iris, and wavy-rayed lampmussel, Lampsilis fasciola, 28-d exposures), and the commonly tested amphipod, Hyalella azteca (28-d exposure) and midge, Chironomus dilutus (10-d exposure). Sediments were collected from seven test sites with mussel communities classified as impacted and in proximity to coal mining or gas extraction activities, and from five reference sites with mussel communities classified as not impacted and no or limited coal mining or gas extraction activities. Additional samples were collected from six test sites potentially with high concentrations of polycyclic aromatic hydrocarbons (PAHs) and from a test site contaminated by a coal ash spill. Mean survival, length, or biomass of one or more test species was reduced in 10 of 14 test samples (71%) from impacted areas relative to the response of organisms in the five reference samples. A higher proportion of samples was classified as toxic to mussels (63% for rainbow mussels, 50% for wavy-rayed lampmussels) compared with amphipods (38%) or midge (38%). Concentrations of total recoverable metals and total PAHs in sediments did not exceed effects-based probable effect concentrations (PECs). However, the survival, length, or biomasses of the mussels were reduced significantly with increasing PEC quotients for metals and for total PAHs, or with increasing sum equilibrium-partitioning sediment benchmark toxic units for PAHs. The growth of the rainbow mussel also significantly decreased with increasing concentrations of a major anion (chloride) and major cations (calcium and magnesium) in sediment pore water. Results of the present study indicated that (1) the findings from laboratory tests were generally

  15. Biological responses of midge (Chironomus riparius) and lamprey (Lampetra fluviatilis) larvae in ecotoxicity assessment of PCDD/F-, PCB- and Hg-contaminated river sediments.

    Science.gov (United States)

    Salmelin, J; Karjalainen, A K; Hämäläinen, H; Leppänen, M T; Kiviranta, H; Kukkonen, J V K; Vuori, K M

    2016-09-01

    We evaluated the utility of chironomid and lamprey larval responses in ecotoxicity assessment of polychlorinated dibenzo-p-dioxins, dibenzofurans (PCDD/F)-, polychlorinated biphenyls (PCB)- and mercury (Hg)-contaminated river sediments. Sediment samples were collected from the River Kymijoki with a known industrial pollution gradient. Sediment for the controls and lamprey larvae were obtained from an uncontaminated river nearby. Contamination levels were verified with sediment and tissue PCDD/F, PCB and Hg analyses. Behaviour of sediment-exposed chironomid and lamprey larvae were measured with Multispecies Freshwater Biomonitor© utilizing quadrupole impedance conversion technique. In addition, mortality, growth and head capsule deformity incidence of chironomids were used as ecotoxicity indicators. WHOPCDD/F+PCB-TEQ in the R. Kymijoki sediments ranged from the highest upstream 22.36 ng g(-1) dw to the lowest 1.50 ng g(-1) near the river mouth. The sum of PCDD/Fs and PCBs correlated strongly with Hg sediment concentrations, which ranged from contaminated sediments and was negatively related to sediment ∑PCDD/Fs, WHOPCDD/F+PCB-TEQ and Hg. There were no significant differences in larval mortality or chironomid mentum deformity incidence between