WorldWideScience

Sample records for lines mcf-7 mda-mb-231

  1. Analysis of Protein–Protein Interactions in MCF-7 and MDA-MB-231 Cell Lines Using Phthalic Acid Chemical

    Shih-Shin Liang

    2014-11-01

    Full Text Available Phthalates are a class of plasticizers that have been characterized as endocrine disrupters, and are associated with genital diseases, cardiotoxicity, hepatotoxicity, and nephrotoxicity in the GeneOntology gene/protein database. In this study, we synthesized phthalic acid chemical probes and demonstrated differing protein–protein interactions between MCF-7 cells and MDA-MB-231 breast cancer cell lines. Phthalic acid chemical probes were synthesized using silicon dioxide particle carriers, which were modified using the silanized linker 3-aminopropyl triethoxyslane (APTES. Incubation with cell lysates from breast cancer cell lines revealed interactions between phthalic acid and cellular proteins in MCF-7 and MDA-MB-231 cells. Subsequent proteomics analyses indicated 22 phthalic acid-binding proteins in both cell types, including heat shock cognate 71-kDa protein, ATP synthase subunit beta, and heat shock protein HSP 90-beta. In addition, 21 MCF-7-specific and 32 MDA-MB-231 specific phthalic acid-binding proteins were identified, including related proteasome proteins, heat shock 70-kDa protein, and NADPH dehydrogenase and ribosomal correlated proteins, ras-related proteins, and members of the heat shock protein family, respectively.

  2. Anti-proliferative effect of biogenic gold nanoparticles against breast cancer cell lines (MDA-MB-231 & MCF-7)

    Uma Suganya, K.S.; Govindaraju, K.; Ganesh Kumar, V.; Prabhu, D.; Arulvasu, C.; Stalin Dhas, T.; Karthick, V.; Changmai, Niranjan

    2016-01-01

    Highlights: • Biosynthesis of stable and well dispersed predominantly spherical gold nanoparticles of size around ∼12.5 nm. • Anticancer assessment of gold nanoparticles on MDA-MB-231 and MCF-7 cell lines. • AuNPs were found non toxic to normal HMEC cells. • Flow cytometry results revealed significant arrest in cell proliferation in early G0/G1 to S phase. - Abstract: Breast cancer is a major complication in women and numerous approaches are being developed to overcome this problem. In conventional treatments such as chemotherapy and radiotherapy the post side effects cause an unsuitable effect in treatment of cancer. Hence, it is essential to develop a novel strategy for the treatment of this disease. In the present investigation, a possible route for green synthesis of gold nanoparticles (AuNPs) using leaf extract of Mimosa pudica and its anticancer efficacy in the treatment of breast cancer cell lines is studied. The synthesized nanoparticles were found to be effective in killing cancer cells (MDA-MB-231 & MCF-7) which were studied using various anticancer assays (MTT assay, cell morphology determination, cell cycle analysis, comet assay, Annexin V-FITC/PI staining and DAPI staining). Cell morphological analysis showed the changes occurred in cancer cells during the treatment with AuNPs. Cell cycle analysis revealed apoptosis in G_0/G_1 to S phase. Similarly in Comet assay, there was an increase in tail length in treated cells in comparison with the control. Annexin V-FITC/PI staining assay showed prompt fluorescence in treated cells indicating the translocation of phosphatidylserine from the inner membrane. PI and DAPI staining showed the DNA damage in treated cells.

  3. Anti-proliferative effect of biogenic gold nanoparticles against breast cancer cell lines (MDA-MB-231 & MCF-7)

    Uma Suganya, K.S. [Centre for Ocean Research, Sathyabama University, Chennai 600119 (India); Govindaraju, K., E-mail: govindtu@gmail.com [Centre for Ocean Research, Sathyabama University, Chennai 600119 (India); Ganesh Kumar, V. [Centre for Ocean Research, Sathyabama University, Chennai 600119 (India); Prabhu, D.; Arulvasu, C. [Department of Zoology, University of Madras, Guindy campus, Chennai 600 025 (India); Stalin Dhas, T.; Karthick, V.; Changmai, Niranjan [Centre for Ocean Research, Sathyabama University, Chennai 600119 (India)

    2016-05-15

    Highlights: • Biosynthesis of stable and well dispersed predominantly spherical gold nanoparticles of size around ∼12.5 nm. • Anticancer assessment of gold nanoparticles on MDA-MB-231 and MCF-7 cell lines. • AuNPs were found non toxic to normal HMEC cells. • Flow cytometry results revealed significant arrest in cell proliferation in early G0/G1 to S phase. - Abstract: Breast cancer is a major complication in women and numerous approaches are being developed to overcome this problem. In conventional treatments such as chemotherapy and radiotherapy the post side effects cause an unsuitable effect in treatment of cancer. Hence, it is essential to develop a novel strategy for the treatment of this disease. In the present investigation, a possible route for green synthesis of gold nanoparticles (AuNPs) using leaf extract of Mimosa pudica and its anticancer efficacy in the treatment of breast cancer cell lines is studied. The synthesized nanoparticles were found to be effective in killing cancer cells (MDA-MB-231 & MCF-7) which were studied using various anticancer assays (MTT assay, cell morphology determination, cell cycle analysis, comet assay, Annexin V-FITC/PI staining and DAPI staining). Cell morphological analysis showed the changes occurred in cancer cells during the treatment with AuNPs. Cell cycle analysis revealed apoptosis in G{sub 0}/G{sub 1} to S phase. Similarly in Comet assay, there was an increase in tail length in treated cells in comparison with the control. Annexin V-FITC/PI staining assay showed prompt fluorescence in treated cells indicating the translocation of phosphatidylserine from the inner membrane. PI and DAPI staining showed the DNA damage in treated cells.

  4. Anti-proliferative effect of biogenic gold nanoparticles against breast cancer cell lines (MDA-MB-231 & MCF-7)

    K. S., Uma Suganya; Govindaraju, K.; Ganesh Kumar, V.; Prabhu, D.; Arulvasu, C.; Stalin Dhas, T.; Karthick, V.; Changmai, Niranjan

    2016-05-01

    Breast cancer is a major complication in women and numerous approaches are being developed to overcome this problem. In conventional treatments such as chemotherapy and radiotherapy the post side effects cause an unsuitable effect in treatment of cancer. Hence, it is essential to develop a novel strategy for the treatment of this disease. In the present investigation, a possible route for green synthesis of gold nanoparticles (AuNPs) using leaf extract of Mimosa pudica and its anticancer efficacy in the treatment of breast cancer cell lines is studied. The synthesized nanoparticles were found to be effective in killing cancer cells (MDA-MB-231 & MCF-7) which were studied using various anticancer assays (MTT assay, cell morphology determination, cell cycle analysis, comet assay, Annexin V-FITC/PI staining and DAPI staining). Cell morphological analysis showed the changes occurred in cancer cells during the treatment with AuNPs. Cell cycle analysis revealed apoptosis in G0/G1 to S phase. Similarly in Comet assay, there was an increase in tail length in treated cells in comparison with the control. Annexin V-FITC/PI staining assay showed prompt fluorescence in treated cells indicating the translocation of phosphatidylserine from the inner membrane. PI and DAPI staining showed the DNA damage in treated cells.

  5. Comparing Apoptosis and Necrosis Effects of Arctium Lappa Root Extract and Doxorubicin on MCF7 and MDA-MB-231 Cell Lines

    Ghafari, Fereshteh; Rajabi, Mohammad Reza; Mazoochi, Tahereh; Taghizadeh, Mohsen; Nikzad, Hossein; Atlasi, Mohammad Ali; Taherian, Aliakbar

    2017-03-01

    Objective: Breast cancer is a heterogeneous disease and very common malignancy in women worldwide. The efficacy of chemotherapy as an important part of breast cancer treatment is limited due to its side effects. While pharmaceutical companies are looking for better chemicals, research on traditional medicines that generally have fewer side effects is quite interesting. In this study, apoptosis and necrosis effect of Arctium lappa and doxorubicin was compared in MCF7, and MDA-MB-231 cell lines. Materials and Methods: MCF7 and MDA-MB-231 cells were cultured in RPMI 1640 containing 10% FBS and 100 U/ml penicillin/streptomycin. MTT assay and an annexin V/propidium iodide (AV/PI) kit were used respectively to compare the survival rate and apoptotic effects of different concentrations of doxorubicin and Arctium lappa root extract on MDA-MB-231 and MCF7 cells. Results: Arctium lappa root extract was able to reduce cell viability of the two cell lines in a dose and time dependent manner similar to doxorubicin. Flow cytometry results showed that similar to doxorubicin, Arctium Lappa root extract had a dose and time dependent apoptosis effect on both cell lines. 10μg/mL of Arctium lappa root extract and 5 μM of doxorubicin showed the highest anti-proliferative and apoptosis effect in MCF7 and MDA231 cells. Conclusion: The MCF7 (ER/PR-) and MDA-MB-231 (ER/PR+) cell lines represent two major breast cancer subtypes. The similar anti-proliferative and apoptotic effects of Arctium lappa root extract and doxorubicin (which is a conventional chemotherapy drug) on two different breast cancer cell lines strongly suggests its anticancer effects and further studies. Creative Commons Attribution License

  6. Comparing Apoptosis and Necrosis Effects of Arctium Lappa Root Extract and Doxorubicin on MCF7 and MDA-MB-231 Cell Lines

    Ghafari, Fereshteh; Rajabi, Mohammad Reza; Mazoochi, Tahereh; Taghizadeh, Mohsen; Nikzad, Hossein; Atlasi, Mohammad Ali; Taherian, Aliakbar

    2017-01-01

    Objective: Breast cancer is a heterogeneous disease and very common malignancy in women worldwide. The efficacy of chemotherapy as an important part of breast cancer treatment is limited due to its side effects. While pharmaceutical companies are looking for better chemicals, research on traditional medicines that generally have fewer side effects is quite interesting. In this study, apoptosis and necrosis effect of Arctium lappa and doxorubicin was compared in MCF7, and MDA-MB-231 cell lines...

  7. Withaferin A Induces ROS-Mediated Paraptosis in Human Breast Cancer Cell-Lines MCF-7 and MDA-MB-231.

    Kamalini Ghosh

    Full Text Available Advancement in cancer therapy requires a better understanding of the detailed mechanisms that induce death in cancer cells. Besides apoptosis, themode of other types of cell death has been increasingly recognized in response to therapy. Paraptosis is a non-apoptotic alternative form of programmed cell death, morphologically distinct from apoptosis and autophagy. In the present study, Withaferin-A (WA induced hyperpolarization of mitochondrial membrane potential and formation of many cytoplasmic vesicles. This was due to progressive swelling and fusion of mitochondria and dilation of endoplasmic reticulum (ER, forming large vacuolar structures that eventually filled the cytoplasm in human breast cancer cell-lines MCF-7 and MDA-MB-231. The level of indigenous paraptosis inhibitor, Alix/AIP-1 (Actin Interacting Protein-1 was down-regulated by WA treatment. Additionally, prevention of WA-induced cell death and vacuolation on co-treatment with protein-synthesis inhibitor indicated requirement of de-novo protein synthesis. Co-treatment with apoptosis inhibitor resulted in significant augmentation of WA-induced death in MCF-7 cells, while partial inhibition in MDA-MB-231 cells; implyingthat apoptosis was not solely responsible for the process.WA-mediated cytoplasmic vacuolationcould not be prevented by autophagy inhibitor wortmanninas well, claiming this process to be a non-autophagic one. Early induction of ROS (Reactive Oxygen Speciesby WA in both the cell-lines was observed. ROS inhibitorabrogated the effect of WA on: cell-death, expression of proliferation-associated factor andER-stress related proteins,splicing of XBP-1 (X Box Binding Protein-1 mRNA and formation of paraptotic vacuoles.All these results conclusively indicate thatWA induces deathin bothMCF-7 and MDA-MB-231 cell lines byROS-mediated paraptosis.

  8. Cytotoxic effects of Mangifera indica L. kernel extract on human breast cancer (MCF-7 and MDA-MB-231 cell lines) and bioactive constituents in the crude extract.

    Abdullah, Al-Shwyeh Hussah; Mohammed, Abdulkarim Sabo; Abdullah, Rasedee; Mirghani, Mohamed Elwathig Saeed; Al-Qubaisi, Mothanna

    2014-06-25

    Waterlily Mango (Mangifera indica L.) is thought to be antioxidant-rich, conferred by its functional phytochemicals. The potential anticancer effects of the ethanolic kernel extract on breast cancer cells (MDA-MB-231 and MCF-7) using MTT, anti-proliferation, neutral red (NR) uptake and lactate dehydrogenase (LDH) release assays were evaluated. Cytological studies on the breast cancer cells were also conducted, and phytochemical analyses of the extract were carried out to determine the likely bioactive compounds responsible for such effects. Results showed the extract induced cytotoxicity in MDA-MB-231 cells and MCF-7 cells with IC50 values of 30 and 15 μg/mL, respectively. The extract showed significant toxicity towards both cell lines, with low toxicity to normal breast cells (MCF-10A). The cytotoxic effects on the cells were further confirmed by the NR uptake, antiproliferative and LDH release assays. Bioactive analyses revealed that many bioactives were present in the extract although butylated hydroxytoluene, a potent antioxidant, was the most abundant with 44.65%. M. indica extract appears to be more cytoxic to both estrogen positive and negative breast cancer cell lines than to normal breast cells. Synergistic effects of its antioxidant bioactives could have contributed to the cytotoxic effects of the extract. The extract of M. indica, therefore, has potential anticancer activity against breast cancer cells. This potential is worth studying further, and could have implications on future studies and eventually management of human breast cancers.

  9. Stromelysin-3 over-expression enhances tumourigenesis in MCF-7 and MDA-MB-231 breast cancer cell lines: involvement of the IGF-1 signalling pathway

    Mennerich Detlev

    2007-01-01

    Full Text Available Abstract Background Stromelysin-3 (ST-3 is over-expressed in the majority of human carcinomas including breast carcinoma. Due to its known effect in promoting tumour formation, but its impeding effect on metastasis, a dual role of ST-3 in tumour progression, depending on the cellular grade of dedifferentiation, was hypothesized. Methods The present study was designed to investigate the influence of ST-3 in vivo and in vitro on the oestrogen-dependent, non-invasive MCF-7 breast carcinoma cell line as well as on the oestrogen-independent, invasive MDA-MB-231 breast carcinoma cell line. Therefore an orthotopic human xenograft tumour model in nude mice, as well as a 3D matrigel cell culture system, were employed. Results Using both in vitro and in vivo techniques, we have demonstrated that over-expression of ST-3 in MCF-7 and MDA-MB-231 cells leads to both increased cell numbers and tumour volumes. This observation was dependent upon the presence of growth factors. In particular, the enhanced proliferative capacity was in MCF-7/ST-3 completely and in MDA-MB-231/ST-3 cells partially dependent on the IGF-1 signalling pathway. Microarray analysis of ST-3 over-expressing cells revealed that in addition to cell proliferation, further biological processes seemed to be affected, such as cell motility and stress response. The MAPK-pathway as well as the Wnt and PI3-kinase pathways, appear to also play a potential role. Furthermore, we have demonstrated that breast cancer cell lines of different differentiation status, as well as the non-tumourigenic cell line MCF-10A, have a comparable capability to induce endogenous ST-3 expression in fibroblasts. Conclusion These data reveal that ST-3 is capable of enhancing tumourigenesis in highly differentiated "early stage" breast cancer cell lines as well as in further progressed breast cancer cell lines that have already undergone epithelial-mesenchymal transition. We propose that ST-3 induction in tumour

  10. Stromelysin-3 over-expression enhances tumourigenesis in MCF-7 and MDA-MB-231 breast cancer cell lines: involvement of the IGF-1 signalling pathway

    Kasper, Grit; Lehmann, Kerstin E; Reule, Matthias; Tschirschmann, Miriam; Dankert, Niels; Stout-Weider, Karen; Lauster, Roland; Schrock, Evelin; Mennerich, Detlev; Duda, Georg N

    2007-01-01

    Stromelysin-3 (ST-3) is over-expressed in the majority of human carcinomas including breast carcinoma. Due to its known effect in promoting tumour formation, but its impeding effect on metastasis, a dual role of ST-3 in tumour progression, depending on the cellular grade of dedifferentiation, was hypothesized. The present study was designed to investigate the influence of ST-3 in vivo and in vitro on the oestrogen-dependent, non-invasive MCF-7 breast carcinoma cell line as well as on the oestrogen-independent, invasive MDA-MB-231 breast carcinoma cell line. Therefore an orthotopic human xenograft tumour model in nude mice, as well as a 3D matrigel cell culture system, were employed. Using both in vitro and in vivo techniques, we have demonstrated that over-expression of ST-3 in MCF-7 and MDA-MB-231 cells leads to both increased cell numbers and tumour volumes. This observation was dependent upon the presence of growth factors. In particular, the enhanced proliferative capacity was in MCF-7/ST-3 completely and in MDA-MB-231/ST-3 cells partially dependent on the IGF-1 signalling pathway. Microarray analysis of ST-3 over-expressing cells revealed that in addition to cell proliferation, further biological processes seemed to be affected, such as cell motility and stress response. The MAPK-pathway as well as the Wnt and PI3-kinase pathways, appear to also play a potential role. Furthermore, we have demonstrated that breast cancer cell lines of different differentiation status, as well as the non-tumourigenic cell line MCF-10A, have a comparable capability to induce endogenous ST-3 expression in fibroblasts. These data reveal that ST-3 is capable of enhancing tumourigenesis in highly differentiated 'early stage' breast cancer cell lines as well as in further progressed breast cancer cell lines that have already undergone epithelial-mesenchymal transition. We propose that ST-3 induction in tumour fibroblasts leads to the stimulation of the IGF-1R pathway in

  11. Design, Synthesis and Docking Studies of Flavokawain B Type Chalcones and Their Cytotoxic Effects on MCF-7 and MDA-MB-231 Cell Lines

    Addila Abu Bakar

    2018-03-01

    Full Text Available Flavokawain B (1 is a natural chalcone extracted from the roots of Piper methysticum, and has been proven to be a potential cytotoxic compound. Using the partial structure of flavokawain B (FKB, about 23 analogs have been synthesized. Among them, compounds 8, 13 and 23 were found in new FKB derivatives. All compounds were evaluated for their cytotoxic properties against two breast cancer cell lines, MCF-7 and MDA-MB-231, thus establishing the structure–activity relationship. The FKB derivatives 16 (IC50 = 6.50 ± 0.40 and 4.12 ± 0.20 μg/mL, 15 (IC50 = 5.50 ± 0.35 and 6.50 ± 1.40 μg/mL and 13 (IC50 = 7.12 ± 0.80 and 4.04 ± 0.30 μg/mL exhibited potential cytotoxic effects on the MCF-7 and MDA-MB-231 cell lines. However, the methoxy group substituted in position three and four in compound 2 (IC50 = 8.90 ± 0.60 and 6.80 ± 0.35 μg/mL and 22 (IC50 = 8.80 ± 0.35 and 14.16 ± 1.10 μg/mL exhibited good cytotoxicity. The lead compound FKB (1 showed potential cytotoxicity (IC50 = 7.70 ± 0.30 and 5.90 ± 0.30 μg/mL against two proposed breast cancer cell lines. It is evident that the FKB skeleton is unique for anticancer agents, additionally, the presence of halogens (Cl and F in position 2 and 3 also improved the cytotoxicity in FKB series. These findings could help to improve the future drug discovery process to treat breast cancer. A molecular dynamics study of active compounds revealed stable interactions within the active site of Janus kinase. The structures of all compounds were determined by 1H-NMR, EI-MS, IR and UV and X-ray crystallographic spectroscopy techniques.

  12. Assessment of Interactions between Cisplatin and Two Histone Deacetylase Inhibitors in MCF7, T47D and MDA-MB-231 Human Breast Cancer Cell Lines - An Isobolographic Analysis.

    Anna Wawruszak

    Full Text Available Histone deacetylase inhibitors (HDIs are promising anticancer drugs, which inhibit proliferation of a wide variety of cancer cells including breast carcinoma cells. In the present study, we investigated the influence of valproic acid (VPA and suberoylanilide hydroxamic acid (SAHA, vorinostat, alone or in combination with cisplatin (CDDP on proliferation, induction of apoptosis and cell cycle progression in MCF7, T47D and MDA-MB-231 human breast carcinoma cell lines. The type of interaction between HDIs and CDDP was determined by an isobolographic analysis. The isobolographic analysis is a very precise and rigorous pharmacodynamic method, to determine the presence of synergism, addition or antagonism between different drugs with using variety of fixed dose ratios. Our experiments show that the combinations of CDDP with SAHA or VPA at a fixed-ratio of 1:1 exerted additive interaction in the viability of MCF7 cells, while in T47D cells there was a tendency to synergy. In contrast, sub-additive (antagonistic interaction was observed for the combination of CDDP with VPA in MDA-MB-231 "triple-negative" (i.e. estrogen receptor negative, progesterone receptor negative, and HER-2 negative human breast cancer cells, whereas combination of CDDP with SAHA in the same MDA-MB-231 cell line yielded additive interaction. Additionally, combined HDIs/CDDP treatment resulted in increase in apoptosis and cell cycle arrest in all tested breast cancer cell lines in comparison with a single therapy. In conclusion, the additive interaction of CDDP with SAHA or VPA suggests that HDIs could be combined with CDDP in order to optimize treatment regimen in some human breast cancers.

  13. Differential Ratios of Omega Fatty Acids (AA/EPA+DHA Modulate Growth, Lipid Peroxidation and Expression of Tumor Regulatory MARBPs in Breast Cancer Cell Lines MCF7 and MDA-MB-231.

    Prakash P Mansara

    Full Text Available Omega 3 (n3 and Omega 6 (n6 polyunsaturated fatty acids (PUFAs have been reported to exhibit opposing roles in cancer progression. Our objective was to determine whether different ratios of n6/n3 (AA/EPA+DHA FAs could modulate the cell viability, lipid peroxidation, total cellular fatty acid composition and expression of tumor regulatory Matrix Attachment Region binding proteins (MARBPs in breast cancer cell lines and in non-cancerous, MCF10A cells. Low ratios of n6/n3 (1:2.5, 1:4, 1:5, 1:10 FA decreased the viability and growth of MDA-MB-231 and MCF7 significantly compared to the non-cancerous cells (MCF10A. Contrarily, higher n6/n3 FA (2.5:1, 4:1, 5:1, 10:1 decreased the survival of both the cancerous and non-cancerous cell types. Lower ratios of n6/n3 selectively induced LPO in the breast cancer cells whereas the higher ratios induced in both cancerous and non-cancerous cell types. Interestingly, compared to higher n6/n3 FA ratios, lower ratios increased the expression of tumor suppressor MARBP, SMAR1 and decreased the expression of tumor activator Cux/CDP in both breast cancer and non-cancerous, MCF10A cells. Low n6/n3 FAs significantly increased SMAR1 expression which resulted into activation of p21WAF1/CIP1 in MDA-MB-231 and MCF7, the increase being ratio dependent in MDA-MB-231. These results suggest that increased intake of n3 fatty acids in our diet could help both in the prevention as well as management of breast cancer.

  14. Cytotoxic effect of sanguiin H-6 on MCF-7 and MDA-MB-231 human breast carcinoma cells.

    Park, Eun-Ji; Lee, Dahae; Baek, Seon-Eun; Kim, Ki Hyun; Kang, Ki Sung; Jang, Tae Su; Lee, Hye Lim; Song, Ji Hoon; Yoo, Jeong-Eun

    2017-09-15

    Sanguiin H-6 is a dimer of casuarictin linked by a bond between the gallic acid residue and one of the hexahydroxydiphenic acid units. It is an effective compound extracted from Rubus coreanus. It has an anticancer effect against several human cancer cells; however, its effect on breast cancer cells has not been clearly demonstrated. Thus, we aimed to investigate the anticancer effect and mechanism of action of sanguiin H-6 against two human breast carcinoma cell lines (MCF-7 and MDA-MB-231). We found that sanguiin H-6 significantly reduced cell viability in a concentration-dependent manner. It also increased the rates at which MCF-7 and MDA-MB-231 cells underwent apoptosis. Furthermore, sanguiin H-6 induced the cleavage of caspase-8, caspase-3, and poly(ADP-ribose) polymerase, which resulted in apoptosis. However, cleavage of caspase-9 was only detectable in MCF-7 cells. In addition, sanguiin H-6 increased the ratio of Bax to Bcl-2 in both MCF-7 and MDA-MB-231 cells. These findings suggest that sanguiin H-6 is a potent therapeutic agent against breast cancer cells. In addition, it exerts its anticancer effect in an estrogen-receptor-independent manner. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Context dependent reversion of tumor phenotype by connexin-43 expression in MDA-MB231 cells and MCF-7 cells: Role of β-catenin/connexin43 association

    Talhouk, Rabih S.; Fares, Mohamed-Bilal; Rahme, Gilbert J.; Hariri, Hanaa H.; Rayess, Tina; Dbouk, Hashem A.; Bazzoun, Dana; Al-Labban, Dania; El-Sabban, Marwan E.

    2013-01-01

    Connexins (Cx), gap junction (GJ) proteins, are regarded as tumor suppressors, and Cx43 expression is often down regulated in breast tumors. We assessed the effect of Cx43 over-expression in 2D and 3D cultures of two breast adenocarcinoma cell lines: MCF-7 and MDA-MB-231. While Cx43 over-expression decreased proliferation of 2D and 3D cultures of MCF-7 by 56% and 80% respectively, MDA-MB-231 growth was not altered in 2D cultures, but exhibited 35% reduction in 3D cultures. C-terminus truncated Cx43 did not alter proliferation. Untransfected MCF-7 cells formed spherical aggregates in 3D cultures, and MDA-MB-231 cells formed stellar aggregates. However, MCF-7 cells over-expressing Cx43 formed smaller sized clusters and Cx43 expressing MDA-MB-231 cells lost their stellar morphology. Extravasation ability of both MCF-7 and MDA-MB-231 cells was reduced by 60% and 30% respectively. On the other hand, silencing Cx43 in MCF10A cells, nonneoplastic human mammary cell line, increased proliferation in both 2D and 3D cultures, and disrupted acinar morphology. Although Cx43 over-expression did not affect total levels of β-catenin, α-catenin and ZO-2, it decreased nuclear levels of β-catenin in 2D and 3D cultures of MCF-7 cells, and in 3D cultures of MDA-MB-231 cells. Cx43 associated at the membrane with α-catenin, β-catenin and ZO-2 in 2D and 3D cultures of MCF-7 cells, and only in 3D conditions in MDA-MB-231 cells. This study suggests that Cx43 exerts tumor suppressive effects in a context-dependent manner where GJ assembly with α-catenin, β-catenin and ZO-2 may be implicated in reducing growth rate, invasiveness, and, malignant phenotype of 2D and 3D cultures of MCF-7 cells, and 3D cultures of MDA-MB-231 cells, by sequestering β-catenin away from nucleus. - Highlights: • Cx43 over-expressing MCF-7 and MDA-MB-231 were grown in 2D and 3D cultures. • Proliferation and growth morphology were affected in a context dependent manner. • Extravasation ability of both MCF

  16. Context dependent reversion of tumor phenotype by connexin-43 expression in MDA-MB231 cells and MCF-7 cells: Role of β-catenin/connexin43 association

    Talhouk, Rabih S., E-mail: rtalhouk@aub.edu.lb [Department of Biology, Faculty of Arts and Sciences, American University of Beirut, P.O. Box 11-0236, Beirut (Lebanon); Fares, Mohamed-Bilal; Rahme, Gilbert J.; Hariri, Hanaa H.; Rayess, Tina; Dbouk, Hashem A.; Bazzoun, Dana; Al-Labban, Dania [Department of Biology, Faculty of Arts and Sciences, American University of Beirut, P.O. Box 11-0236, Beirut (Lebanon); El-Sabban, Marwan E., E-mail: me00@aub.edu.lb [Department of Anatomy, Cell Biology and Physiology, Faculty of Medicine, American University of Beirut, P.O. Box 11-0236, Beirut (Lebanon)

    2013-12-10

    Connexins (Cx), gap junction (GJ) proteins, are regarded as tumor suppressors, and Cx43 expression is often down regulated in breast tumors. We assessed the effect of Cx43 over-expression in 2D and 3D cultures of two breast adenocarcinoma cell lines: MCF-7 and MDA-MB-231. While Cx43 over-expression decreased proliferation of 2D and 3D cultures of MCF-7 by 56% and 80% respectively, MDA-MB-231 growth was not altered in 2D cultures, but exhibited 35% reduction in 3D cultures. C-terminus truncated Cx43 did not alter proliferation. Untransfected MCF-7 cells formed spherical aggregates in 3D cultures, and MDA-MB-231 cells formed stellar aggregates. However, MCF-7 cells over-expressing Cx43 formed smaller sized clusters and Cx43 expressing MDA-MB-231 cells lost their stellar morphology. Extravasation ability of both MCF-7 and MDA-MB-231 cells was reduced by 60% and 30% respectively. On the other hand, silencing Cx43 in MCF10A cells, nonneoplastic human mammary cell line, increased proliferation in both 2D and 3D cultures, and disrupted acinar morphology. Although Cx43 over-expression did not affect total levels of β-catenin, α-catenin and ZO-2, it decreased nuclear levels of β-catenin in 2D and 3D cultures of MCF-7 cells, and in 3D cultures of MDA-MB-231 cells. Cx43 associated at the membrane with α-catenin, β-catenin and ZO-2 in 2D and 3D cultures of MCF-7 cells, and only in 3D conditions in MDA-MB-231 cells. This study suggests that Cx43 exerts tumor suppressive effects in a context-dependent manner where GJ assembly with α-catenin, β-catenin and ZO-2 may be implicated in reducing growth rate, invasiveness, and, malignant phenotype of 2D and 3D cultures of MCF-7 cells, and 3D cultures of MDA-MB-231 cells, by sequestering β-catenin away from nucleus. - Highlights: • Cx43 over-expressing MCF-7 and MDA-MB-231 were grown in 2D and 3D cultures. • Proliferation and growth morphology were affected in a context dependent manner. • Extravasation ability of both MCF

  17. Flavokawain A induces apoptosis in MCF-7 and MDA-MB231 and inhibits the metastatic process in vitro.

    Nadiah Abu

    Full Text Available The kava-kava plant (Piper methsyticum is traditionally known as the pacific elixir by the pacific islanders for its role in a wide range of biological activities. The extract of the roots of this plant contains a variety of interesting molecules including Flavokawain A and this molecule is known to have anti-cancer properties. Breast cancer is still one of the leading diagnosed cancers in women today. The metastatic process is also very pertinent in the progression of tumorigenesis.MCF-7 and MDA-MB231 cells were treated with several concentrations of FKA. The apoptotic analysis was done through the MTT assay, BrdU assay, Annexin V analysis, cell cycle analysis, JC-1 mitochondrial dye, AO/PI dual staining, caspase 8/9 fluorometric assay, quantitative real time PCR and western blot. For the metastatic assays, the in vitro scratch assay, trans-well migration/invasion assay, HUVEC tube formation assay, ex vivo rat aortic ring assay, quantitative real time PCR and western blot were employed.We have investigated the effects of FKA on the apoptotic and metastatic process in two breast cancer cell lines. FKA induces apoptosis in both MCF-7 and MDA-MB231 in a dose dependent manner through the intrinsic mitochondrial pathway. Additionally, FKA selectively induces a G2/M arrest in the cell cycle machinery of MDA-MB231 and G1 arrest in MCF-7. This suggests that FKA's anti-cancer activity is dependent on the p53 status. Moreover, FKA also halted the migration and invasion process in MDA-MB231. The similar effects can be seen in the inhibition of the angiogenesis process as well.FKA managed to induce apoptosis and inhibit the metastatic process in two breast cancer cell lines, in vitro. Overall, FKA may serve as a promising candidate in the search of a new anti-cancer drug especially in halting the metastatic process but further in vivo evidence is needed.

  18. A comparative study of protein patterns of human estrogen receptor positive (MCF-7) and negative (MDA-MB-231) breast cancer cell lines

    Flodrová, Dana; Toporová, L.; Macejová, D.; Laštovičková, Markéta; Brtko, J.; Bobálová, Janette

    2016-01-01

    Roč. 35, č. 3 (2016), s. 387-392 ISSN 0231-5882 Grant - others:Akademie věd - GA AV ČR(CZ) SAV-15-01 Program:Bilaterální spolupráce Institutional support: RVO:68081715 Keywords : cell line * breast cancer * protein * mass spectrometry Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 1.170, year: 2016

  19. Effect of 3-bromopyruvate acid on the redox equilibrium in non-invasive MCF-7 and invasive MDA-MB-231 breast cancer cells.

    Kwiatkowska, Ewa; Wojtala, Martyna; Gajewska, Agnieszka; Soszyński, Mirosław; Bartosz, Grzegorz; Sadowska-Bartosz, Izabela

    2016-02-01

    Novel approaches to cancer chemotherapy employ metabolic differences between normal and tumor cells, including the high dependence of cancer cells on glycolysis ("Warburg effect"). 3-Bromopyruvate (3-BP), inhibitor of glycolysis, belongs to anticancer drugs basing on this principle. 3-BP was tested for its capacity to kill human non-invasive MCF-7 and invasive MDA-MB-231 breast cancer cells. We found that 3-BP was more toxic for MDA-MB-231 cells than for MCF-7 cells. In both cell lines, a statistically significant decrease of ATP and glutathione was observed in a time- and 3-BP concentration-dependent manner. Transient increases in the level of reactive oxygen species and reactive oxygen species was observed, more pronounced in MCF-7 cells, followed by a decreasing tendency. Activities of glutathione peroxidase, glutathione reductase (GR) and glutathione S-transferase (GST) decreased in 3-BP treated MDA-MB-231 cells. For MCF-7 cells decreases of GR and GST activities were noted only at the highest concentration of 3-BP.These results point to induction of oxidative stress by 3-BP via depletion of antioxidants and inactivation of antioxidant enzymes, more pronounced in MDA-MB-231 cells, more sensitive to 3-BP.

  20. PEA3 activates CXCR4 transcription in MDA-MB-231 and MCF7 breast cancer cells

    Shengmei Gu; Li Chen; Qi Hong; Tingting Yan; Zhigang Zhuang; Qiaoqiao wang; Wei Jin; Hua Zhu; Jiong Wu

    2011-01-01

    CXC chemokine receptor 4 (CXCR4) is a cell surface receptor that has been shown to mediate the metastasis of many solid tumors including lung,breast,kidney,and prostate tumors.In this study,we found that overexpression of ets variant gene 4 (PEA3) could elevate CXCR4 mRNA level and CXCR4 promoter activity in human MDA-MB-231 and MCF-7 breast cancer cells.PEA3 promoted CXCR4 expression and breast cancer metastasis.Chromatin immunoprecipitation assay demonstrated that PEA3 could bind to the CXCR4 promoter in the cells transfected with PEA3 expression vector.PEA3 siRNA attenuated CXCR4 promoter activity and the binding of PEA3 to the CXCR4 promoter in MDA-MB-231 and MCF-7 cells.These results indicated that PEA3 could activate CXCR4 promoter transcription and promote breast cancer metastasis.

  1. Antitumor Activity of Chinese Propolis in Human Breast Cancer MCF-7 and MDA-MB-231 Cells

    Hongzhuan Xuan

    2014-01-01

    Full Text Available Chinese propolis has been reported to possess various biological activities such as antitumor. In present study, anticancer activity of ethanol extract of Chinese propolis (EECP at 25, 50, 100, and 200 μg/mL was explored by testing the cytotoxicity in MCF-7 (human breast cancer ER(+ and MDA-MB-231 (human breast cancer ER(− cells. EECP revealed a dose- and time-dependent cytotoxic effect. Furthermore, annexin A7 (ANXA7, p53, nuclear factor-κB p65 (NF-κB p65, reactive oxygen species (ROS levels, and mitochondrial membrane potential were investigated. Our data indicated that treatment of EECP for 24 and 48 h induced both cells apoptosis obviously. Exposure to EECP significantly increased ANXA7 expression and ROS level, and NF-κB p65 level and mitochondrial membrane potential were depressed by EECP dramatically. The effects of EECP on p53 level were different in MCF-7 and MDA-MB-231 cells, which indicated that EECP exerted its antitumor effects in MCF-7 and MDA-MB-231 cells by inducing apoptosis, regulating the levels of ANXA7, p53, and NF-κB p65, upregulating intracellular ROS, and decreasing mitochondrial membrane potential. Interestingly, EECP had little or small cytotoxicity on normal human umbilical vein endothelial cells (HUVECs. These results suggest that EECP is a potential alternative agent on breast cancer treatment.

  2. Differentially expressed proteins in ER+ MCF7 and ER- MDA- MB-231 human breast cancer cells by RhoGDI-α silencing and overexpression.

    Hooshmand, Somayeh; Ghaderi, Abbas; Yusoff, Khatijah; Thilakavathy, Karuppiah; Rosli, Rozita; Mojtahedi, Zahra

    2014-01-01

    The consequence of Rho GDP dissociation inhibitor alpha (RhoGDIα) activity on migration and invasion of estrogen receptor positive (ER+) and negative (ER-) breast cancer cells has not been studied using the proteomic approach. Changes in expression of RhoGDIα and other proteins interacting directly or indirectly with RhoGDIα in MCF7 and MDA-MB-231, with different metastatic potentials is of particular interest. ER+ MCF7 and ER- MDA-MB-231 cell lines were subjected to two-dimensional electrophoresis (2-DE) and spots of interest were identified by matrix-assisted laser desorption/ionization time of- flight/time- of-flight (MALDI-TOF/TOF) mass spectrometry (MS) analysis after downregulation of RhoGDIα using short interfering RNA (siRNA) and upregulated using GFP-tagged ORF clone of RhoGDIα. The results showed a total of 35 proteins that were either up- or down-regulated in these cells. Here we identifed 9 and 15 proteins differentially expressed with silencing of RhoGDIα in MCF-7 and the MDA-MB-231 cells, respectively. In addition, 10 proteins were differentially expressed in the upregulation of RhoGDIα in MCF7, while only one protein was identified in the upregulation of RhoGDIα in MDA-MB-231. Based on the biological functions of these proteins, the results revealed that proteins involved in cell migration are more strongly altered with RhoGDI-α activity. Although several of these proteins have been previously indicated in tumorigenesis and invasiveness of breast cancer cells, some ohave not been previously reported to be involved in breast cancer migration. Hence, these proteins may serve as useful candidate biomarkers for tumorigenesis and invasiveness of breast cancer cells. Future studies are needed to determine the mechanisms by which these proteins regulate cell migration. The combination of RhoGDIα with other potential biomarkers may be a more promising approach in the inhibition of breast cancer cell migration.

  3. Mentha arvensis (Linn.-mediated green silver nanoparticles trigger caspase 9-dependent cell death in MCF7 and MDA-MB-231 cells

    Banerjee PP

    2017-04-01

    Full Text Available Prajna Paramita Banerjee,1 Arindam Bandyopadhyay,1 Singapura Nagesh Harsha,2 Rudragoud S Policegoudra,3 Shelley Bhattacharya,4 Niranjan Karak,2 Ansuman Chattopadhyay1 1Molecular Genetics Laboratory, Department of Zoology, Visva-Bharati, Santiniketan, West Bengal, 2Advanced Polymer and Nanomaterial Laboratory, Department of Chemical Sciences, Center for Polymer Science and Technology, Tezpur University, Napaam, 3Division of Pharmaceutical Technology, Defence Research Laboratory, Tezpur, Assam, 4Environmental Toxicology Laboratory, Department of Zoology, Visva-Bharati, Santiniketan, West Bengal, India Introduction: Leaf extract of Mentha arvensis or mint plant was used as reducing agent for the synthesis of green silver nanoparticles (GSNPs as a cost-effective, eco-friendly process compared to that of chemical synthesis. The existence of nanoparticles was characterized by ultraviolet–visible spectrophotometry, dynamic light scattering, Fourier transform infrared spectroscopy, X-ray diffraction, energy-dispersive X-ray analysis, atomic-force microscopy and transmission electron microscopy analyses, which ascertained the formation of spherical GSNPs with a size range of 3–9 nm. Anticancer activities against breast cancer cell lines (MCF7 and MDA-MB-231 were studied and compared with those of chemically synthesized (sodium borohydride [NaBH4]-mediated silver nanoparticles (CSNPs. Materials and methods: Cell survival of nanoparticle-treated and untreated cells was studied by 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide (MTT assay. Cell-cycle analyses were carried out using fluorescence-activated cell sorting. Cell morphology was observed by fluorescence microscopy. Expression patterns of PARP1, P53, P21, Bcl2, Bax and cleaved caspase 9 as well as caspase 3 proteins in treated and untreated MCF7 and MDA-MB-231 cells were studied by Western blot method. Results: MTT assay results showed that Mentha arvensis-mediated GSNPs

  4. Phenotypic and microRNA transcriptomic profiling of the MDA-MB-231 spheroid-enriched CSCs with comparison of MCF-7 microRNA profiling dataset

    Lily Boo

    2017-07-01

    Full Text Available Breast cancer spheroids have been widely used as in vitro models of cancer stem cells (CSCs, yet little is known about their phenotypic characteristics and microRNAs (miRNAs expression profiles. The objectives of this research were to evaluate the phenotypic characteristics of MDA-MB-231 spheroid-enriched cells for their CSCs properties and also to determine their miRNAs expression profile. Similar to our previously published MCF-7 spheroid, MDA-MB-231 spheroid also showed typical CSCs characteristics namely self-renewability, expression of putative CSCs-related surface markers and enhancement of drug resistance. From the miRNA profile, miR-15b, miR-34a, miR-148a, miR-628 and miR-196b were shown to be involved in CSCs-associated signalling pathways in both models of spheroids, which highlights the involvement of these miRNAs in maintaining the CSCs features. In addition, unique clusters of miRNAs namely miR-205, miR-181a and miR-204 were found in basal-like spheroid whereas miR-125, miR-760, miR-30c and miR-136 were identified in luminal-like spheroid. Our results highlight the roles of miRNAs as well as novel perspectives of the relevant pathways underlying spheroid-enriched CSCs in breast cancer.

  5. Decatropis bicolor (Zucc.) Radlk essential oil induces apoptosis of the MDA-MB-231 breast cancer cell line.

    Estanislao Gómez, C C; Aquino Carreño, A; Pérez Ishiwara, D G; San Martín Martínez, E; Morales López, J; Pérez Hernández, N; Gómez García, M C

    2016-08-05

    Decatropis bicolor (Zucc.)Radlk is a plant that has been traditionally used for the treatment of breast cancer in some communities of Mexico. So, the aim of this study was to determine the cytotoxic and apoptotic effect of the essential oil of Decatropis bicolor against breast cancer cell line, MDA-MB-231. The essential oil obtained from hydrodestillation of leaves of Decatropis bicolor was studied for its biological activity against breast cancer cells MDA-MB-231 by MTT assay, Hematoxylin-eosin stain, Annexin V-FITC, TUNEL and western blot assays and for its chemical composition by GC-MS. The results showed a relevant cytotoxic effect of the essential oil towards MDA-MB-231 cells in a dose- and time- dependent manner, with an IC50 of 53.81 ± 1.691 μg/ml but not in the epithelial mammary cell line MCF10A (207.51 ± 3.26 μg/ml). Morphological examination displayed apoptotic characteristics in the treated cells like cell size reduction, membrane blebbing and apoptotic bodies. In addition, the apoptotic rate significantly increased as well as DNA fragmentation and western blot analysis revealed that the essential oil induced apoptosis in the MDA-MB-231 cells via intrinsic pathways due to the activation of Bax, caspases 9 and 3. Phytochemical analysis of the Decatropis bicolor essential oil showed the presence of twenty-three compounds. Major components of the oil were 1,5-cyclooctadiene,3-(methyl-2)propenyl (18.38 %), β-terpineol (8.16 %) and 1-(3-methyl-cyclopent-2-enyl)-cyclohexene (6.12 %). This study suggests that essential oil of Decatropis bicolor has a potential cytotoxic and antitumoral effect against breast cancer cells, with the presence of potential bioactive compounds. Our results contribute to the validation of the anticancer activity of the plant in Mexican traditional medicine.

  6. Obtusifoliol related steroids from Euphorbia sogdiana with cell growth inhibitory activity and apoptotic effects on breast cancer cells (MCF-7 and MDA-MB231).

    Aghaei, Mahmoud; Yazdiniapour, Zeinab; Ghanadian, Mustafa; Zolfaghari, Behzad; Lanzotti, Virginia; Mirsafaee, Vahid

    2016-11-01

    From the aerial parts of Euphorbia sogdiana Popov, obtusifoliol (1) and two related steroids (2-3) have been isolated and characterized along with a known cycloartane derivative (4). The chemical structure of the obtusifoliol-related compounds, obtained by 1D and 2D NMR, and MS measurements, have been determined as: 3β,7α-dihydroxy-4α,14α-dimethyl-5α-ergosta-8,24(28)-diene-11-one (2) and 3β-hydroxy-4α,14α-dimethyl-5α-ergosta-8,24(28)-diene-1-one (3). Compound 2 has been previously isolated from Euphorbia chamaesyce while compound 3 was never reported before. The isolated compounds 1-4 were subjected to cytotoxic tests on the breast cancer cells, MCF-7 and MDA-MB231. Further pharmacological tests on the more active compounds 2 and 3 indicated their action to be related to cell growth inhibitory activity and apoptotic effects on the tested cells. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. Mechanism of metformin action in MCF-7 and MDA-MB-231 human breast cancer cells involves oxidative stress generation, DNA damage, and transforming growth factor β1 induction.

    Marinello, Poliana Camila; da Silva, Thamara Nishida Xavier; Panis, Carolina; Neves, Amanda Fouto; Machado, Kaliana Larissa; Borges, Fernando Henrique; Guarnier, Flávia Alessandra; Bernardes, Sara Santos; de-Freitas-Junior, Júlio Cesar Madureira; Morgado-Díaz, José Andrés; Luiz, Rodrigo Cabral; Cecchini, Rubens; Cecchini, Alessandra Lourenço

    2016-04-01

    The participation of oxidative stress in the mechanism of metformin action in breast cancer remains unclear. We investigated the effects of clinical (6 and 30 μM) and experimental concentrations of metformin (1000 and 5000 μM) in MCF-7 and in MDA-MB-231 cells, verifying cytotoxicity, oxidative stress, DNA damage, and intracellular pathways related to cell growth and survival after 24 h of drug exposure. Clinical concentrations of metformin decreased metabolic activity of MCF-7 cells in the MTT assay, which showed increased oxidative stress and DNA damage, although cell death and impairment in the proliferative capacity were observed only at higher concentrations. The reduction in metabolic activity and proliferation in MDA-MB-231 cells was present only at experimental concentrations after 24 h of drug exposition. Oxidative stress and DNA damage were induced in this cell line at experimental concentrations. The drug decreased cytoplasmic extracellular signal-regulated kinases 1 and 2 (ERK1/2) and AKT and increased nuclear p53 and cytoplasmic transforming growth factor β1 (TGF-β1) in both cell lines. These findings suggest that metformin reduces cell survival by increasing reactive oxygen species, which induce DNA damage and apoptosis. A relationship between the increase in TGF-β1 and p53 levels and the decrease in ERK1/2 and AKT was also observed. These findings suggest the mechanism of action of metformin in both breast cancer cell lineages, whereas cell line specific undergoes redox changes in the cells in which proliferation and survival signaling are modified. Taken together, these results highlight the potential clinical utility of metformin as an adjuvant during the treatment of luminal and triple-negative breast cancer.

  8. Characterization of inorganic phosphate transport in the triple-negative breast cancer cell line, MDA-MB-231.

    Russo-Abrahão, Thais; Lacerda-Abreu, Marco Antônio; Gomes, Tainá; Cosentino-Gomes, Daniela; Carvalho-de-Araújo, Ayra Diandra; Rodrigues, Mariana Figueiredo; Oliveira, Ana Carolina Leal de; Rumjanek, Franklin David; Monteiro, Robson de Queiroz; Meyer-Fernandes, José Roberto

    2018-01-01

    Recent studies demonstrate that interstitial inorganic phosphate is significantly elevated in the breast cancer microenvironment as compared to normal tissue. In addition it has been shown that breast cancer cells express high levels of the NaPi-IIb carrier (SLC34A2), suggesting that this carrier may play a role in breast cancer progression. However, the biochemical behavior of inorganic phosphate (Pi) transporter in this cancer type remains elusive. In this work, we characterize the kinetic parameters of Pi transport in the aggressive human breast cancer cell line, MDA-MB-231, and correlated Pi transport with cell migration and adhesion. We determined the influence of sodium concentration, pH, metabolic inhibitors, as well as the affinity for inorganic phosphate in Pi transport. We observed that the inorganic phosphate is dependent on sodium transport (K0,5 value = 21.98 mM for NaCl). Furthermore, the transport is modulated by different pH values and increasing concentrations of Pi, following the Michaelis-Menten kinetics (K0,5 = 0.08 mM Pi). PFA, monensin, furosemide and ouabain inhibited Pi transport, cell migration and adhesion. Taken together, these results showed that the uptake of Pi in MDA-MB-231 cells is modulated by sodium and by regulatory mechanisms of intracellular sodium gradient. General Significance: Pi transport might be regarded as a potential target for therapy against tumor progression.

  9. BETULINIC ACID WAS MORE CYTOTOXIC TOWARDS THE HUMAN BREAST CANCER CELL LINE MDA-MB-231 THAN THE HUMAN PROMYELOCYTIC LEUKAEMIA CELL LINE HL-60

    LATIFAH SAIFUL YAZAN

    2009-01-01

    Full Text Available Betulinic acid (BA is a pentacyclic triterpene found in several botanical sources that has been shown to cause apoptosis in a number of cell lines. This study was undertaken to determine the in vitro cytotoxic properties of BA towards the human mammary carcinoma cell line MDA-MB-231 and the human promyelocytic leukaemia cell line HL-60 and the mode of the induced cell death. The cytotoxicity and mode of cell death of BA were determined using the MTT assay and DNAfragmentation analysis, respectively. In our study, the compound was found to be cytotoxic to MDA-MB-231 and HL-60 cells with IC50 values of 58 μg/mL and 134 μg/mL, respectively. Cells treated with high concentrations of BA exhibited features characteristic of apoptosis such as blebbing, shrinking and a number of small cytoplasm body masses when viewed under an inverted light microscope after 24 h. The incidence of apoptosis in MDA-MB-231 was further confirmed bythe DNA fragmentation analysis, with the formation of DNA fragments of oligonucleosomal size (180-200 base pairs, giving a ladder-like pattern on agarose gel electrophoresis. BA was more cytotoxic towards MDA-MB-231 than HL-60 cells, and induced apoptosis in MDA-MB-231 cells.

  10. Overexpression of p65 attenuates celecoxib-induced cell death in MDA-MB-231 human breast cancer cell line

    Wang Ling

    2013-02-01

    Full Text Available Abstract Background Celecoxib is a selective cyclooxygenase (COX-2 inhibitor that has been reported to reduce the risk of breast cancer. In our previous study, celecoxib induced apoptosis and caused cell cycle arrest at the G0/G1 phase in the breast cancer cell line MDA-MB-231, and its effects were mediated by downregulation of NF-κB signaling. The NF-κB p65/RelA subunit may play a role in cell death through the activation of anti-apoptotic target genes including the inhibitor of apoptosis (IAP and Bcl-2 families, and inhibition of protein kinase B/Akt. The aim of the present study was to investigate p65 as the potential target of celecoxib treatment and determine whether p65 overexpression can override the inhibitory effect of celecoxib on NF-κB activity and affect cell survival. Methods The effects of p65 overexpression on celecoxib-inhibited NF-κB transcriptional activity were examined by western blotting, electrophoretic mobility shift assay (EMSA and luciferase reporter gene assay. Cell viability and cell death were evaluated by the 3-(4,5-dimethylthiazol-2-yl-2,5-diphenyltetrazoliumbromide (MTT assay, and the levels of cleaved poly(ADP-ribose polymerase (PARP and caspase. Anti-apoptotic NF-κB target genes and cell cycle regulators were examined by western blotting to screen for the expression of target genes under direct regulation by p65. Results Overexpression of p65 increased NF-κB transcriptional activity and interfered with celecoxib-mediated apoptosis as assessed by MTT assay and caspase-3, caspase-9, and PARP expressions. Exogenously overexpressed p65 upregulated NF-κB-responsive genes, including anti-apoptotic genes such as survivin and XIAP, and the cell cycle regulatory gene cyclin D1. However, p65 overexpression did not affect celecoxib-induced p-Akt inactivation, suggesting that celecoxib might have separate molecular mechanisms for regulating Akt signaling independently of its inhibition of NF-κB transcriptional

  11. A Breast Cell Atlas: Organelle analysis of the MDA-MB-231 cell line by density-gradient fractionation using isotopic marking and label-free analysis

    Marianne Sandin

    2015-09-01

    Full Text Available Protein translocation between organelles in the cell is an important process that regulates many cellular functions. However, organelles can rarely be isolated to purity so several methods have been developed to analyse the fractions obtained by density gradient centrifugation. We present an analysis of the distribution of proteins amongst organelles in the human breast cell line, MDA-MB-231 using two approaches: an isotopic labelling and a label-free approach.

  12. Gonadotropin-releasing hormone receptor activates GTPase RhoA and inhibits cell invasion in the breast cancer cell line MDA-MB-231

    Aguilar-Rojas, Arturo; Huerta-Reyes, Maira; Maya-Núñez, Guadalupe; Arechavaleta-Velásco, Fabián; Conn, P Michael; Ulloa-Aguirre, Alfredo; Valdés, Jesús

    2012-01-01

    Gonadotropin-releasing hormone (GnRH) and its receptor (GnRHR) are both expressed by a number of malignant tumors, including those of the breast. In the latter, both behave as potent inhibitors of invasion. Nevertheless, the signaling pathways whereby the activated GnRH/GnRHR system exerts this effect have not been clearly established. In this study, we provide experimental evidence that describes components of the mechanism(s) whereby GnRH inhibits breast cancer cell invasion. Actin polymerization and substrate adhesion was measured in the highly invasive cell line, MDA-MB-231 transiently expressing the wild-type or mutant DesK191 GnRHR by fluorometry, flow cytometric analysis, and confocal microscopy, in the absence or presence of GnRH agonist. The effect of RhoA-GTP on stress fiber formation and focal adhesion assembly was measured in MDA-MB-231 cells co-expressing the GnRHRs and the GAP domain of human p190Rho GAP-A or the dominant negative mutant GAP-Y1284D. Cell invasion was determined by the transwell migration assay. Agonist-stimulated activation of the wild-type GnRHR and the highly plasma membrane expressed mutant GnRHR-DesK191 transiently transfected to MDA-MB-231 cells, favored F-actin polymerization and substrate adhesion. Confocal imaging allowed detection of an association between F-actin levels and the increase in stress fibers promoted by exposure to GnRH. Pull-down assays showed that the effects observed on actin cytoskeleton resulted from GnRH-stimulated activation of RhoA GTPase. Activation of this small G protein favored the marked increase in both cell adhesion to Collagen-I and number of focal adhesion complexes leading to inhibition of the invasion capacity of MDA-MB-231 cells as disclosed by assays in Transwell Chambers. We here show that GnRH inhibits invasion of highly invasive breast cancer-derived MDA-MB-231 cells. This effect is mediated through an increase in substrate adhesion promoted by activation of RhoA GTPase and formation of

  13. Long Term Exposure to Polyphenols of Artichoke (Cynara scolymus L.) Exerts Induction of Senescence Driven Growth Arrest in the MDA-MB231 Human Breast Cancer Cell Line.

    Mileo, Anna Maria; Di Venere, Donato; Abbruzzese, Claudia; Miccadei, Stefania

    2015-01-01

    Polyphenolic extracts from the edible part of artichoke (Cynara scolymus L.) have been shown to be potential chemopreventive and anticancer dietary compounds. High doses of polyphenolic extracts (AEs) induce apoptosis and decrease the invasive potential of the human breast cancer cell line, MDA-MB231. However, the molecular mechanism underlying AEs antiproliferative effects is not completely understood. We demonstrate that chronic and low doses of AEs treatment at sublethal concentrations suppress human breast cancer cell growth via a caspases-independent mechanism. Furthermore, AEs exposure induces a significant increase of senescence-associated β-galactosidase (SA-β-gal) staining and upregulation of tumour suppressor genes, p16(INK4a) and p21(Cip1/Waf1) in MDA-MB231 cells. AEs treatment leads to epigenetic alterations in cancer cells, modulating DNA hypomethylation and lysine acetylation levels in total proteins. Cell growth arrest correlates with increased reactive oxygen species (ROS) production in AEs treated breast cancer cells. Inhibition of ROS generation by N-acetylcysteine (NAC) attenuates the antiproliferative effect. These findings demonstrate that chronic AEs treatment inhibits breast cancer cell growth via the induction of premature senescence through epigenetic and ROS-mediated mechanisms. Our results suggest that artichoke polyphenols could be a promising dietary tool either in cancer chemoprevention or/and in cancer treatment as a nonconventional, adjuvant therapy.

  14. Antibacterial Synthetic Peptides Derived from Bovine Lactoferricin Exhibit Cytotoxic Effect against MDA-MB-468 and MDA-MB-231 Breast Cancer Cell Lines

    Yerly Vargas Casanova

    2017-09-01

    Full Text Available Linear, dimeric, tetrameric, and cyclic peptides derived from lactoferricin B, containing the RRWQWR motif, were designed, synthesized, purified, and characterized using RP-HPLC chromatography and MALDI-TOF mass spectrometry. The antibacterial activity of the designed peptides against E. coli (ATCC 11775 and 25922 and their cytotoxic effect against MDA-MB-468 and MDA-MB-231 breast cancer cell lines were evaluated. Dimeric and tetrameric peptides showed higher antibacterial activity in both bacteria strains than linear peptides. The dimeric peptide (RRWQWR2K-Ahx exhibited the highest antibacterial activity against the tested bacterial strains. Furthermore, the peptides with high antibacterial activity exhibited significant cytotoxic effect against the tested breast cancer cell lines. This cytotoxic effect was fast and dependent on the peptide concentration. The tetrameric molecule containing RRWQWR motif has an optimal cytotoxic effect at a concentration of 22 µM. The evaluated dimeric and tetrameric peptides could be considered as candidates for developing new therapeutic agents against breast cancer. Polyvalence of linear sequences could be considered as a novel and versatile strategy for obtaining molecules with high anticancer activity.

  15. Antibacterial Synthetic Peptides Derived from Bovine Lactoferricin Exhibit Cytotoxic Effect against MDA-MB-468 and MDA-MB-231 Breast Cancer Cell Lines.

    Vargas Casanova, Yerly; Rodríguez Guerra, Jorge Antonio; Umaña Pérez, Yadi Adriana; Leal Castro, Aura Lucía; Almanzar Reina, Giovanni; García Castañeda, Javier Eduardo; Rivera Monroy, Zuly Jenny

    2017-09-29

    Linear, dimeric, tetrameric, and cyclic peptides derived from lactoferricin B, containing the RRWQWR motif, were designed, synthesized, purified, and characterized using RP-HPLC chromatography and MALDI-TOF mass spectrometry. The antibacterial activity of the designed peptides against E. coli (ATCC 11775 and 25922) and their cytotoxic effect against MDA-MB-468 and MDA-MB-231 breast cancer cell lines were evaluated. Dimeric and tetrameric peptides showed higher antibacterial activity in both bacteria strains than linear peptides. The dimeric peptide (RRWQWR)₂K-Ahx exhibited the highest antibacterial activity against the tested bacterial strains. Furthermore, the peptides with high antibacterial activity exhibited significant cytotoxic effect against the tested breast cancer cell lines. This cytotoxic effect was fast and dependent on the peptide concentration. The tetrameric molecule containing RRWQWR motif has an optimal cytotoxic effect at a concentration of 22 µM. The evaluated dimeric and tetrameric peptides could be considered as candidates for developing new therapeutic agents against breast cancer. Polyvalence of linear sequences could be considered as a novel and versatile strategy for obtaining molecules with high anticancer activity.

  16. Aqueous extract of Arbutus unedo inhibits STAT1 activation in human breast cancer cell line MDA-MB-231 and human fibroblasts through SHP2 activation.

    Mariotto, S; Ciampa, A R; de Prati, A Carcereri; Darra, E; Vincenzi, S; Sega, M; Cavalieri, E; Shoji, K; Suzuki, H

    2008-05-01

    Arbutus unedo L. has been for a long time employed in traditional and popular medicine as an astringent, diuretic, urinary anti-septic, and more recently, in the therapy of hypertension and diabetes. Signal transducer and activator of transcription 1 (STAT1) is a fascinating and complex protein with multiple yet contrasting transcriptional functions. Although activation of this nuclear factor is finely regulated in order to control the entire inflammatory process, its hyper-activation or time-spatially erroneous activation may lead to exacerbation of inflammation. The modulation of this nuclear factor, therefore, has recently been considered as a new strategy in the treatment of inflammatory diseases. In this study, we present data showing that the aqueous extract of Arbutus unedo's leaves exerts inhibitory action on interferon-gamma (IFN-gamma) elicited activation of STAT1, both in human breast cancer cell line MDA-MB-231 and in human fibroblasts. This down-regulation of STAT1 is shown to result from a reduced tyrosine phosphorylation of STAT1 protein. Evidence is also presented indicating that the inhibitory effect of this extract may be mediated through enhancement of tyrosine phosphorylation of SHP2 tyrosine phosphatase. The modulation of this nuclear factor turns out into the regulation of the expression of a number of genes involved in the inflammatory response such as inducible nitric oxide synthase (iNOS) and intercellular adhesion molecule-1 (ICAM-1). Taken together, our results suggest that the employment of the Arbutus unedo aqueous extract is promising, at least, as an auxiliary anti-inflammatory treatment of diseases in which STAT1 plays a critical role.

  17. Consequences of the natural retinoid/retinoid X receptor ligands action in human breast cancer MDA-MB-231 cell line: Focus on functional proteomics

    Flodrová, Dana; Toporová, L.; Laštovičková, Markéta; Macejová, D.; Hunaková, L.; Brtko, J.; Bobálová, Janette

    2017-01-01

    Roč. 281, NOV (2017), s. 26-34 ISSN 0378-4274 R&D Projects: GA ČR(CZ) GA15-15479S Grant - others:AV ČR(CZ) SAV-15-01 Program:Bilaterální spolupráce Institutional support: RVO:68081715 Keywords : breast cancer * MDA-MB-231 * biomarker * retinoids Subject RIV: CB - Analytical Chemistry, Separation OBOR OECD: Analytical chemistry Impact factor: 3.858, year: 2016

  18. Mutually exclusive expression of DLX2 and DLX5/6 is associated with the metastatic potential of the human breast cancer cell line MDA-MB-231

    Morini, Monica; Astigiano, Simonetta; Gitton, Yorick; Emionite, Laura; Mirisola, Valentina; Levi, Giovanni; Barbieri, Ottavia

    2010-01-01

    The DLX gene family encodes for homeobox transcription factors involved in the control of morphogenesis and tissue homeostasis. Their expression can be regulated by Endothelin1 (ET1), a peptide associated with breast cancer invasive phenotype. Deregulation of DLX gene expression was found in human solid tumors and hematologic malignancies. In particular, DLX4 overexpression represents a possible prognostic marker in ovarian cancer. We have investigated the role of DLX genes in human breast cancer progression. MDA-MB-231 human breast carcinoma cells were grown in vitro or injected in nude mice, either subcutaneously, to mimic primary tumor growth, or intravenously, to mimic metastatic spreading. Expression of DLX2, DLX5 and DLX6 was assessed in cultured cells, either treated or not with ET1, tumors and metastases by RT-PCR. In situ hybridization was used to confirm DLX gene expression in primary tumors and in lung and bone metastases. The expression of DLX2 and DLX5 was evaluated in 408 primary human breast cancers examining the GSE1456 and GSE3494 microarray datasets. Kaplan-Meier estimates for disease-free survival were calculated for the patients grouped on the basis of DLX2/DLX5 expression. Before injection, or after subcutaneous growth, MDA-MB-231 cells expressed DLX2 but neither DLX5 nor DLX6. Instead, in bone and lung metastases resulting from intravenous injection we detected expression of DLX5/6 but not of DLX2, suggesting that DLX5/6 are activated during metastasis formation, and that their expression is alternative to that of DLX2. The in vitro treatment of MDA-MB-231 cells with ET1, resulted in switch from DLX2 to DLX5 expression. By data mining in microarray datasets we found that expression of DLX2 occurred in 21.6% of patients, and was significantly correlated with prolonged disease-free survival and reduced incidence of relapse. Instead, DLX5 was expressed in a small subset of cases, 2.2% of total, displaying reduced disease-free survival and high

  19. Cytotoxicity and cell cycle arrest induced by andrographolide lead to programmed cell death of MDA-MB-231 breast cancer cell line.

    Banerjee, Malabika; Chattopadhyay, Subrata; Choudhuri, Tathagata; Bera, Rammohan; Kumar, Sanjay; Chakraborty, Biswajit; Mukherjee, Samir Kumar

    2016-04-16

    Breast cancer is considered as an increasing major life-threatening concern among the malignancies encountered globally in females. Traditional therapy is far from satisfactory due to drug resistance and various side effects, thus a search for complementary/alternative medicines from natural sources with lesser side effects is being emphasized. Andrographis paniculata, an oriental, traditional medicinal herb commonly available in Asian countries, has a long history of treating a variety of diseases, such as respiratory infection, fever, bacterial dysentery, diarrhea, inflammation etc. Extracts of this plant showed a wide spectrum of therapeutic effects, such as anti-bacterial, anti-malarial, anti-viral and anti-carcinogenic properties. Andrographolide, a diterpenoid lactone, is the major active component of this plant. This study reports on andrographolide induced apoptosis and its possible mechanism in highly proliferative, invasive breast cancer cells, MDA-MB-231 lacking a functional p53 and estrogen receptor (ER). Furthermore, the pharmacokinetic properties of andrographolide have also been studied in mice following intravenous and oral administration. Andrographolide showed a time- and concentration- dependent inhibitory effect on MDA-MB-231 breast cancer cell proliferation, but the treatment did not affect normal breast epithelial cells, MCF-10A (>80 %). The number of cells in S as well as G2/M phase was increased after 36 h of treatment. Elevated reactive oxygen species (ROS) production with concomitant decrease in Mitochondrial Membrane Potential (MMP) and externalization of phosphatidyl serine were observed. Flow cytometry with Annexin V revealed that the population of apoptotic cells increased with prolonged exposure to andrographolide. Activation of caspase-3 and caspase-9 were also noted. Bax and Apaf-1 expression were notably increased with decreased Bcl-2 and Bcl-xL expression in andrographolide-treated cells. Pharmacokinetic study with andrographolide

  20. 2-DE analysis of breast cancer cell lines 1833 and 4175 with distinct metastatic organ-specific potentials: Comparison with parental cell line MDA-MB-231

    Selicharová, Irena; Šanda, Miloslav; Mládková, Jana; Ohri, S. S.; Vashishta, A.; Fusek, M.; Jiráček, Jiří; Vetvicka, V.

    2008-01-01

    Roč. 19, č. 5 (2008), s. 1237-1244 ISSN 1021-335X R&D Projects: GA MZd NR8323 Grant - others:NIH(US) ROI CAA082159-03 Institutional research plan: CEZ:AV0Z40550506 Keywords : breast cancer * cell line * 2-DE * organ-specific metastases Subject RIV: CE - Biochemistry Impact factor: 1.524, year: 2008

  1. PIEZO channel protein naturally expressed in human breast cancer cell MDA-MB-231 as probed by atomic force microscopy

    Weng, Yuanqi; Yan, Fei; Chen, Runkang; Qian, Ming; Ou, Yun; Xie, Shuhong; Zheng, Hairong; Li, Jiangyu

    2018-05-01

    Mechanical stimuli drives many physiological processes through mechanically activated channels, and the recent discovery of PIEZO channel has generated great interests in its mechanotransduction. Many previous researches investigated PIEZO proteins by transcribing them in cells that originally have no response to mechanical stimulation, or by forming PIEZO-combined complexes in vitro, and few studied PIEZO protein's natural characteristics in cells. In this study we show that MDA-MB-231, a malignant cell in human breast cancer cell line, expresses the mechanosensitive behavior of PIEZO in nature without extra treatment, and we report its characteristics in response to localized mechanical stimulation under an atomic force microscope, wherein a correlation between the force magnitude applied and the channel opening probability is observed. The results on PIEZO of MDA-MB-231 can help establish a basis of preventing and controlling of human breast cancer cell via mechanical forces.

  2. Human Sulfatase 2 inhibits in vivo tumor growth of MDA-MB-231 human breast cancer xenografts

    Peterson, Sarah M; Concino, Michael F; Liaw, Lucy; Martini, Paolo GV; Iskenderian, Andrea; Cook, Lynette; Romashko, Alla; Tobin, Kristen; Jones, Michael; Norton, Angela; Gómez-Yafal, Alicia; Heartlein, Michael W

    2010-01-01

    Extracellular human sulfatases modulate growth factor signaling by alteration of the heparin/heparan sulfate proteoglycan (HSPG) 6-O-sulfation state. HSPGs bind to numerous growth factor ligands including fibroblast growth factors (FGF), epidermal growth factors (EGF), and vascular endothelial growth factors (VEGF), and are critically important in the context of cancer cell growth, invasion, and metastasis. We hypothesized that sulfatase activity in the tumor microenvironment would regulate tumor growth in vivo. We established a model of stable expression of sulfatases in the human breast cancer cell line MDA-MB-231 and purified recombinant human Sulfatase 2 (rhSulf2) for exogenous administration. In vitro studies were performed to measure effects on breast cancer cell invasion and proliferation, and groups were statistically compared using Student's t-test. The effects of hSulf2 on tumor progression were tested using in vivo xenografts with two methods. First, MDA-MB-231 cells stably expressing hSulf1, hSulf2, or both hSulf1/hSulf2 were grown as xenografts and the resulting tumor growth and vascularization was compared to controls. Secondly, wild type MDA-MB-231 xenografts were treated by short-term intratumoral injection with rhSulf2 or vehicle during tumor growth. Ultrasound analysis was also used to complement caliper measurement to monitor tumor growth. In vivo studies were statistically analyzed using Student's t test. In vitro, stable expression of hSulf2 or administration of rhSulf2 in breast cancer cells decreased cell proliferation and invasion, corresponding to an inhibition of ERK activation. Stable expression of the sulfatases in xenografts significantly suppressed tumor growth, with complete regression of tumors expressing both hSulf1 and hSulf2 and significantly smaller tumor volumes in groups expressing hSulf1 or hSulf2 compared to control xenografts. Despite significant suppression of tumor volume, sulfatases did not affect vascular

  3. Optimized Method for Untargeted Metabolomics Analysis of MDA-MB-231 Breast Cancer Cells

    Amanda L. Peterson

    2016-09-01

    Full Text Available Cancer cells often have dysregulated metabolism, which is largely characterized by the Warburg effect—an increase in glycolytic activity at the expense of oxidative phosphorylation—and increased glutamine utilization. Modern metabolomics tools offer an efficient means to investigate metabolism in cancer cells. Currently, a number of protocols have been described for harvesting adherent cells for metabolomics analysis, but the techniques vary greatly and they lack specificity to particular cancer cell lines with diverse metabolic and structural features. Here we present an optimized method for untargeted metabolomics characterization of MDA-MB-231 triple negative breast cancer cells, which are commonly used to study metastatic breast cancer. We found that an approach that extracted all metabolites in a single step within the culture dish optimally detected both polar and non-polar metabolite classes with higher relative abundance than methods that involved removal of cells from the dish. We show that this method is highly suited to diverse applications, including the characterization of central metabolic flux by stable isotope labelling and differential analysis of cells subjected to specific pharmacological interventions.

  4. Antioxidant Activity and ROS-Dependent Apoptotic Effect of Scurrula ferruginea (Jack Danser Methanol Extract in Human Breast Cancer Cell MDA-MB-231.

    Mohsen Marvibaigi

    Full Text Available Scurrula ferruginea (Jack Danser is one of the mistletoe species belonging to Loranthaceae family, which grows on the branches of many deciduous trees in tropical countries. This study evaluated the antioxidant activities of S. ferruginea extracts. The cytotoxic activity of the selected extracts, which showed potent antioxidant activities, and high phenolic and flavonoid contents, were investigated in human breast cancer cell line (MDA-MB-231 and non-cancer human skin fibroblast cells (HSF-1184. The activities and characteristics varied depending on the different parts of S. ferruginea, solvent polarity, and concentrations of extracts. The stem methanol extract showed the highest amount of both phenolic (273.51 ± 4.84 mg gallic acid/g extract and flavonoid contents (163.41 ± 4.62 mg catechin/g extract and strong DPPH• radical scavenging (IC50 = 27.81 μg/mL and metal chelation activity (IC50 = 80.20 μg/mL. The stem aqueous extract showed the highest ABTS•+ scavenging ability. The stem methanol and aqueous extracts exhibited dose-dependent cytotoxic activity against MDA-MB-231 cells with IC50 of 19.27 and 50.35 μg/mL, respectively. Furthermore, the extracts inhibited the migration and colony formation of MDA-MB-231 cells in a concentration-dependent manner. Morphological observations revealed hallmark properties of apoptosis in treated cells. The methanol extract induced an increase in ROS generation and mitochondrial depolarization in MDA-MB-231 cells, suggesting its potent apoptotic activity. The present study demonstrated that the S. ferruginea methanol extract mediated MDA-MB-231 cell growth inhibition via induction of apoptosis which was confirmed by Western blot analysis. It may be a potential anticancer agent; however, its in vivo anticancer activity needs to be investigated.

  5. KIAA0100 Modulates Cancer Cell Aggression Behavior of MDA-MB-231 through Microtubule and Heat Shock Proteins

    Zhenyu Zhong

    2018-06-01

    Full Text Available The KIAA0100 gene was identified in the human immature myeloid cell line cDNA library. Recent studies have shown that its expression is elevated in breast cancer and associated with more aggressive cancer types as well as poor outcomes. However, its cellular and molecular function is yet to be understood. Here we show that silencing KIAA0100 by siRNA in the breast cancer cell line MDA-MB-231 significantly reduced the cancer cells’ aggressive behavior, including cell aggregation, reattachment, cell metastasis and invasion. Most importantly, silencing the expression of KIAA0100 particularly sensitized the quiescent cancer cells in suspension culture to anoikis. Immunoprecipitation, mass spectrometry and immunofluorescence analysis revealed that KIAA0100 may play multiple roles in the cancer cells, including stabilizing microtubule structure as a microtubule binding protein, and contributing to MDA-MB-231 cells Anoikis resistance by the interaction with stress protein HSPA1A. Our study also implies that the interaction between KIAA0100 and HSPA1A may be targeted for new drug development to specifically induce anoikis cell death in the cancer cell.

  6. Broccoli and watercress suppress matrix metalloproteinase-9 activity and invasiveness of human MDA-MB-231 breast cancer cells

    Rose, Peter; Huang, Qing; Ong, Choon Nam; Whiteman, Matt

    2005-01-01

    A high dietary intake of cruciferous vegetables has been associated with a reduction in numerous human pathologies particularly cancer. In the current study, we examined the inhibitory effects of broccoli (Brassica oleracea var. italica) and watercress (Rorripa nasturtium aquaticum) extracts on 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced cancer cell invasion and matrix metalloproteinase-9 activity using human MDA-MB-231 breast cancer cells. Aberrant overexpression of matrix metalloproteinases, including metalloproteinase-9, is associated with increased invasive potential in cancer cell lines. Our results demonstrate that extracts of broccoli and Rorripa suppressed TPA-induced MMP-9 activity and invasiveness in a concentration dependant manner as determined by zymographic analysis. Furthermore, fractionation of individual extracts followed by liquid chromatography mass spectroscopy analysis (LC-MS) revealed that the inhibitory effects of each vegetable were associated with the presence of 4-methysulfinylbutyl (sulforaphane) and 7-methylsulphinylheptyl isothiocyanates. Taken together, our data indicate that isothiocyanates derived form broccoli and Rorripa inhibit metalloproteinase 9 activities and also suppress the invasive potential of human MDA-MB-231 breast cancer cells in vitro. The inhibitory effects observed in the current study may contribute to the suppression of carcinogenesis by diets high in cruciferous vegetables

  7. Phenolic Fractions from Muscadine Grape "Noble" Pomace can Inhibit Breast Cancer Cell MDA-MB-231 Better than those from European Grape "Cabernet Sauvignon" and Induce S-Phase Arrest and Apoptosis.

    Luo, Jianming; Wei, Zheng; Zhang, Shengyu; Peng, Xichun; Huang, Yu; Zhang, Yali; Lu, Jiang

    2017-05-01

    Tons of grape pomace which still contained a rich amount of plant polyphenols, is discarded after winemaking. Plant polyphenols have multi-functional activities for human body. In this study, polyphenols of pomaces from Muscadinia rotundifolia "Noble" and Vitis vinifera "Cabernet Sauvignon" were extracted and fractionated, and then they were analyzed with LC-MS and the inhibitory effects on breast cancer cells were compared. The inhibition on MDA-MB-231 cells of fractions from "Noble" was further evaluated. The results showed that polyphenols from 2 grape pomaces could be separated into 3 fractions, and ellagic acid and/or ellagitannins were only detected in fractions from "Noble" pomace. All 3 fractions from "Noble" pomace inhibited MDA-MB-231 better than MCF-7. But fraction 2 from "Cabernet Sauvignon" inhibited MCF-7 better while fraction 1 and fraction 3 inhibited both 2 cells similarly. Moreover, the fractions from "Noble" pomace rather than "Cabernet Sauvignon" can inhibit MDA-MB-231 better. Finally, fractions from "Noble" pomace can induce S-phase arrest and apoptosis on MDA-MB-231. These findings suggested the extracts from grape pomace especially those from "Noble," are potential to be utilized as health beneficial products or even anti-breast cancer agents. © 2017 Institute of Food Technologists®.

  8. CD24 cross-linking induces apoptosis in, and inhibits migration of, MCF-7 breast cancer cells

    Kim, Jong Bin; Bae, Ji-Yeon; Jee, Hyeon-Gun; Noh, Dong-Young; Ko, Eunyoung; Han, Wonshik; Lee, Jeong Eon; Lee, Kyung-Min; Shin, Incheol; Kim, Sangmin; Lee, Jong Won; Cho, Jihyoung

    2008-01-01

    The biological effects of CD24 (FL-80) cross-linking on breast cancer cells have not yet been established. We examined the impact of CD24 cross-linking on human breast cancer cell line MCF-7. MCF-7 and MDA-MB-231 cells were treated with anti-rabbit polyclonal IgG or anti-human CD24 rabbit polyclonal antibodies to induce cross-linking, and then growth was studied. Changes in cell characteristics such as cell cycle modulation, cell death, survival in three-dimensional cultures, adhesion, and migration ability were assayed after CD24 cross-linking in MCF-7. Expression of CD24 was analyzed by flow cytometry in MDA-MB-231 and MCF-7 cells where 2% and 66% expression frequencies were observed, respectively. CD24 cross-linking resulted in time-dependent proliferation reduction in MCF-7 cells, but no reduction in MDA-MB-231 cells. MCF-7 cell survival was reduced by 15% in three-dimensional culture after CD24 cross-linking. Increased MCF-7 cell apoptosis was observed after CD24 cross-linking, but no cell cycle arrest was observed in that condition. The migration capacity of MCF-7 cells was diminished by 30% after CD24 cross-linking. Our results showed that CD24 cross-linking induced apoptosis and inhibited migration in MCF-7 breast cancer cells. We conclude that CD24 may be considered as a novel therapeutic target for breast cancer

  9. Phenotyping breast cancer cell lines EM-G3, HCC1937, MCF7 and MDA-MB-231 using 2-D electrophoresis and affinity chromatography for glutathione-binding proteins

    Mládková, Jana; Šanda, Miloslav; Matoušková, E.; Selicharová, Irena

    2010-01-01

    Roč. 10, - (2010), 449/1-449/10 ISSN 1471-2407 R&D Projects: GA MŠk(CZ) LC06077 Institutional research plan: CEZ:AV0Z40550506 Keywords : 2-DE * breast cancer * glutathione Subject RIV: CC - Organic Chemistry Impact factor: 3.153, year: 2010 http://www.biomedcentral.com/1471-2407/10/449

  10. Effects of exosomes derived from MDA-MB-231 on proliferation of endothelial cells and the role of MAPK/ERK and PI3K/Akt pathways

    Shuang LONG

    2012-11-01

    Full Text Available Objective  To investigate the effects of exosomes derived from breast cancer cell line MDA-MB-231 on proliferation of human umbilical cord vein endothelial cells (HUVECs, and evaluate the role of MAPK/ERK and PI3K/Akt signal transduction pathway during the process. Methods  Exosomes were derived and purified from MDA-MB-231 by cryogenic ultracentrifugation and density gradient centrifugation. MTT assay was carried out for measurement of cell proliferation in HUVECs with exosome of 50, 100, 200 and 400μg/ml. The states of cell cycle of HUVECs co-cultured with 200μg/ml exosomes were detected by flow cytometry. The effects of 200μg/ml exosomes on the expression of ERK, Akt and phosphorylated ERK, Akt in HUVECs were detected with Western blotting. Results  Exosomes derived from MDA-MB-231 significantly promoted HUVECs proliferation in a classical time-and dose-dependent manner. Flow cytometry revealed that, co-cultured with 200μg/ml exosomes for 24h, S-phase cells in HUVECs increased, while G1/S phase cells in HUVECs decreased. Western blotting showed that, cocultured with 200μg/ml exosomes for 24h, 48h and 72h, the expressions of phosphorylated ERK and Akt were up-regulated in a time-dependent manner. Conclusion  Exosomes derived from breast cancer cell line MDA-MB-231 may promote HUVECs proliferation, the changes in cell cycle and the continuous activation of the MAPK/ERK and PI3K/Akt signal transduction pathways may be the underlying mechanism.

  11. Ziyuglycoside I Inhibits the Proliferation of MDA-MB-231 Breast Carcinoma Cells through Inducing p53-Mediated G2/M Cell Cycle Arrest and Intrinsic/Extrinsic Apoptosis.

    Zhu, Xue; Wang, Ke; Zhang, Kai; Zhang, Ting; Yin, Yongxiang; Xu, Fei

    2016-11-22

    Due to the aggressive clinical behavior, poor outcome, and lack of effective specific targeted therapies, triple-negative breast cancer (TNBC) has currently been recognized as one of the most malignant types of tumors. In the present study, we investigated the cytotoxic effect of ziyuglycoside I, one of the major components extracted from Chinese anti-tumor herbal Radix Sanguisorbae , on the TNBC cell line MDA-MB-231. The underlying molecular mechanism of the cytotoxic effect ziyuglycoside I on MDA-MB-231 cells was investigated with cell viability assay, flow cytometric analysis and Western blot. Compared to normal mammary gland Hs 578Bst cells, treatment of ziyuglycoside I resulted in a significant growth inhibitory effect on MDA-MB-231 cells. Ziyuglycoside I induced the G2/M phase arrest and apoptosis of MDA-MB-231 cells in a dose-dependent manner. These effects were found to be partially mediated through the up-regulation of p53 and p21 WAF1 , elevated Bax/Bcl-2 ratio, and the activation of both intrinsic (mitochondrial-initiated) and extrinsic (Fas/FasL-initiated) apoptotic pathways. Furthermore, the p53 specific siRNA attenuated these effects. Our study suggested that ziyuglycoside I-triggered MDA-MB-231 cell cycle arrest and apoptosis were probably mediated by p53. This suggests that ziyuglycoside I might be a potential drug candidate for treating TNBC.

  12. Study by Monte Carlo simulation of the absorbed dose in cells of breast cancer of the line MDA-MB231, due to sources of {sup 111}In, {sup 177}Lu and {sup 99m}Tc internalized in the nucleus. First results; Estudio por simulacion Monte Carlo de la dosis absorbida en celulas de cancer de seno de la linea MDA-MB231, debida a fuentes de {sup 11I}n, {sup 177}Lu y {sup 99m}Tc internalizadas en el nucleo. Primeros resultados

    Rojas C, E. L.; Perez A, M., E-mail: leticia.rojas@inin.gob.mx [ININ, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico)

    2011-11-15

    The necessity to design innovative treatments and to diagnose the cancer early, has taken to investigate therapies at cellular and molecular level. The design of appropriate radio-molecules to these therapies makes necessary to characterize in way exhaustive radionuclides that they are of accessible production in our country and to study as distributing the dose at cellular level with bio-molecules glued them. In this context, was realized the present work. Using Monte Carlo simulation, the energy deposited in a geometric model of cells of breast cancer was obtained, MDA-MB231, due to different radionuclides. The energy deposited in the nucleus was evaluated, in the cytoplasm and in the membrane of the cell, using the simulation code Monte Carlo Penelope 2008. A punctual source was simulated in the center of the cell nucleus. In each case all the emissions of each radionuclide majors to 400 eV were simulated. The energies deposited by disintegration in the nucleus, cytoplasm, membrane of the cell and in a sphere of 2 cm surrounding the source (in eV) were: 4.30E3, 4.85E2, 1.07E2 and 3.29E4, correspondingly, for the {sup 111}In; 4.46E3, 3.76E3, 1.26E3 and 1.33E5 for the {sup 177}Lu and; 2.12E3, 2.58E2, 9.33E1 and 1.88E4 for the {sup 99m}Tc. We can conclude that if the union of these radionuclides happens to a compound that was internalized to the cell nucleus, the best for therapy at this level is the conjugate with the {sup 177}Lu, followed by that with {sup 111}In and in third place that with {sup 99m}Tc. (Author)

  13. Quercetin Suppresses Twist to Induce Apoptosis in MCF-7 Breast Cancer Cells.

    Santhalakshmi Ranganathan

    Full Text Available Quercetin is a dietary flavonoid which exerts anti-oxidant, anti-inflammatory and anti-cancer properties. In this study, we investigated the anti-proliferative effect of quercetin in two breast cancer cell lines (MCF-7 and MDA-MB-231, which differed in hormone receptor. IC50 value (37μM of quercetin showed significant cytotoxicity in MCF-7 cells, which was not observed in MDA-MB-231 cells even at 100μM of quercetin treatment. To study the response of cancer cells to quercetin, with respect to different hormone receptors, both the cell lines were treated with a fixed concentration (40μM of quercetin. MCF-7 cells on quercetin treatment showed more apoptotic cells with G1 phase arrest. In addition, quercetin effectively suppressed the expression of CyclinD1, p21, Twist and phospho p38MAPK, which was not observed in MDA-MB-231 cells. To analyse the molecular mechanism of quercetin in exerting an apoptotic effect in MCF-7 cells, Twist was over-expressed and the molecular changes were observed after quercetin administration. Quercetin effectively regulated the expression of Twist, in turn p16 and p21 which induced apoptosis in MCF-7 cells. In conclusion, quercetin induces apoptosis in breast cancer cells through suppression of Twist via p38MAPK pathway.

  14. Hyperglycemia regulates thioredoxin-ROS activity through induction of thioredoxin-interacting protein (TXNIP) in metastatic breast cancer-derived cells MDA-MB-231

    Turturro, Francesco; Friday, Ellen; Welbourne, Tomas

    2007-01-01

    We studied the RNA expression of the genes in response to glucose from 5 mM (condition of normoglycemia) to 20 mM (condition of hyperglycemia/diabetes) by microarray analysis in breast cancer derived cell line MDA-MB-231. We identified the thioredoxin-interacting protein (TXNIP), whose RNA level increased as a gene product particularly sensitive to the variation of the level of glucose in culture media. We investigated the kinesis of the TXNIP RNA and protein in response to glucose and the relationship between this protein and the related thioredoxin (TRX) in regulating the level of reactive oxygen species (ROS) in MDA-MB-231 cells. MDA-MB-231 cells were grown either in 5 or 20 mM glucose chronically prior to plating. For glucose shift (5/20), cells were plated in 5 mM glucose and shifted to 20 mM at time 0. Cells were analyzed with Affymetrix Human U133A microarray chip and gene expression profile was obtained. Semi-quantitative RT-PCR and Western blot was used to validate the expression of TXNIP RNA and protein in response to glucose, respectively. ROS were detected by CM-H2DCFDA (5–6-chloromethyl-2',7'-dichlorodihydrofluorescein diacetate) and measured for mean fluorescence intensity with flow cytometry. TRX activity was assayed by the insulin disulfide reducing assay. We found that the regulation of TXNIP gene expression by glucose in MDA-MB-231 cells occurs rapidly within 6 h of its increased level (20 mM glucose) and persists through the duration of the conditions of hyperglycemia. The increased level of TXNIP RNA is followed by increased level of protein that is associated with increasing levels of ROS and reduced TRX activity. The inhibition of the glucose transporter GLUT1 by phloretin notably reduces TXNIP RNA level and the inhibition of the p38 MAP kinase activity by SB203580 reverses the effects of TXNIP on ROS-TRX activity. In this study we show that TXNIP is an oxidative stress responsive gene and its expression is exquisitely regulated by

  15. Hyperglycemia regulates thioredoxin-ROS activity through induction of thioredoxin-interacting protein (TXNIP in metastatic breast cancer-derived cells MDA-MB-231

    Friday Ellen

    2007-06-01

    Full Text Available Abstract Background We studied the RNA expression of the genes in response to glucose from 5 mM (condition of normoglycemia to 20 mM (condition of hyperglycemia/diabetes by microarray analysis in breast cancer derived cell line MDA-MB-231. We identified the thioredoxin-interacting protein (TXNIP, whose RNA level increased as a gene product particularly sensitive to the variation of the level of glucose in culture media. We investigated the kinesis of the TXNIP RNA and protein in response to glucose and the relationship between this protein and the related thioredoxin (TRX in regulating the level of reactive oxygen species (ROS in MDA-MB-231 cells. Methods MDA-MB-231 cells were grown either in 5 or 20 mM glucose chronically prior to plating. For glucose shift (5/20, cells were plated in 5 mM glucose and shifted to 20 mM at time 0. Cells were analyzed with Affymetrix Human U133A microarray chip and gene expression profile was obtained. Semi-quantitative RT-PCR and Western blot was used to validate the expression of TXNIP RNA and protein in response to glucose, respectively. ROS were detected by CM-H2DCFDA (5–6-chloromethyl-2',7'-dichlorodihydrofluorescein diacetate and measured for mean fluorescence intensity with flow cytometry. TRX activity was assayed by the insulin disulfide reducing assay. Results We found that the regulation of TXNIP gene expression by glucose in MDA-MB-231 cells occurs rapidly within 6 h of its increased level (20 mM glucose and persists through the duration of the conditions of hyperglycemia. The increased level of TXNIP RNA is followed by increased level of protein that is associated with increasing levels of ROS and reduced TRX activity. The inhibition of the glucose transporter GLUT1 by phloretin notably reduces TXNIP RNA level and the inhibition of the p38 MAP kinase activity by SB203580 reverses the effects of TXNIP on ROS-TRX activity. Conclusion In this study we show that TXNIP is an oxidative stress responsive

  16. Synergistic action of cisplatin and echistatin in MDA-MB-231 breast cancer cells.

    Czarnomysy, Robert; Surażyński, Arkadiusz; Popławska, Bożena; Rysiak, Edyta; Pawłowska, Natalia; Czajkowska, Anna; Bielawski, Krzysztof; Bielawska, Anna

    2017-03-01

    The aim of our study was to determine whether the use of cisplatin in the presence echistatin in MDA-MB-231 breast cancer cells leads to a reduction of toxic effects associated with the use of cisplatin. The expression of β 1 -integrin and insulin-like growth factor 1 receptor (IGF-IR), signaling pathway protein expression: protein kinase B (AKT), mitogen-activated protein kinases (ERK1/ERK2), nuclear factor kappa B (NFκB), and caspase-3 and -9 activity was measured after 24 h of incubation with tested compounds to explain detailed molecular mechanism of induction of apoptosis. The viability of MDA-MB-231 breast cancer cells was determined by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. Annexin V-FITC/propidium iodide staining assay was performed to detect the induction of apoptosis. Inhibition DNA biosynthesis was determined by [ 3 H]thymidine incorporation into DNA. The expression of of β 1 -integrin, IGF-IR, AKT, ERK1/ERK2, NFκB, caspase-3 and -9 was evaluated using Western blot. The results suggest that treatment of MDA-MB-231 breast cancer cells for 24 h cisplatin plus echistatin severely inhibits cell growth and activates apoptosis by upregulation of caspase-3 and -9 expressions. The effect was stronger than treatment cisplatin and echistatin alone. In this study, we have found that cisplatin plus echistatin treatment decreases collagen biosynthesis in MDA-MB-231 breast cancer cells stronger than the individual compounds. The inhibition was found to be dependent on the β 1 -integrin and IGF receptor activation. A significant reduction of ERK1/ERK2, AKT expression in cancer cells after cisplatin plus echistatin treatment was also found. The cancer cells treated by echistatin, cisplatin, and in particular the combination of both compounds drastically increased expression of NFκB transcription factor. Our results suggest that combined therapy cisplatin plus echistatin is a possible way to improve selectiveness of cisplatin. This

  17. Vasodilator-Stimulated Phosphoprotein (VASP) depletion from breast cancer MDA-MB-231 cells inhibits tumor spheroid invasion through downregulation of Migfilin, β-catenin and urokinase-plasminogen activator (uPA)

    Gkretsi, Vasiliki; Stylianou, Andreas; Stylianopoulos, Triantafyllos, E-mail: tstylian@ucy.ac.cy

    2017-03-15

    A hallmark of cancer cells is their ability to invade surrounding tissues and form metastases. Cell-extracellular matrix (ECM)-adhesion proteins are crucial in metastasis, connecting tumor ECM with actin cytoskeleton thus enabling cells to respond to mechanical cues. Vasodilator-stimulated phosphoprotein (VASP) is an actin-polymerization regulator which interacts with cell-ECM adhesion protein Migfilin, and regulates cell migration. We compared VASP expression in MCF-7 and MDA-MB-231 breast cancer (BC) cells and found that more invasive MDA-MB-231 cells overexpress VASP. We then utilized a 3-dimensional (3D) approach to study metastasis in MDA-MB-231 cells using a system that considers mechanical forces exerted by the ECM. We prepared 3D collagen I gels of increasing concentration, imaged them by atomic force microscopy, and used them to either embed cells or tumor spheroids, in the presence or absence of VASP. We show, for the first time, that VASP silencing downregulated Migfilin, β-catenin and urokinase plasminogen activator both in 2D and 3D, suggesting a matrix-independent mechanism. Tumor spheroids lacking VASP demonstrated impaired invasion, indicating VASP’s involvement in metastasis, which was corroborated by Kaplan-Meier plotter showing high VASP expression to be associated with poor remission-free survival in lymph node-positive BC patients. Hence, VASP may be a novel BC metastasis biomarker. - Highlights: • More invasive MDA-MB-231 overexpress VASP compared to MCF-7 breast cancer cells. • We prepared 3D collagen I gels of increasing concentration and characterized them. • VASP silencing downregulated Migfilin, β-catenin and uPA both in 2D and 3D culture. • Tumor spheroids lacking VASP demonstrated impaired invasion. • Kaplan-Meier plotter shows association of high VASP expression with poor survival.

  18. Metabolomic Dynamic Analysis of Hypoxia in MDA-MB-231 and the Comparison with Inferred Metabolites from Transcriptomics Data

    Yufeng Jane Tseng

    2013-05-01

    Full Text Available Hypoxia affects the tumor microenvironment and is considered important to metastasis progression and therapy resistance. Thus far, the majority of global analyses of tumor hypoxia responses have been limited to just a single omics level. Combining multiple omics data can broaden our understanding of tumor hypoxia. Here, we investigate the temporal change of the metabolite composition with gene expression data from literature to provide a more comprehensive insight into the system level in response to hypoxia. Nuclear magnetic resonance spectroscopy was used to perform metabolomic profiling on the MDA-MB-231 breast cancer cell line under hypoxic conditions. Multivariate statistical analysis revealed that the metabolic difference between hypoxia and normoxia was similar over 24 h, but became distinct over 48 h. Time dependent microarray data from the same cell line in the literature displayed different gene expressions under hypoxic and normoxic conditions mostly at 12 h or earlier. The direct metabolomic profiles show a large overlap with theoretical metabolic profiles deduced from previous transcriptomic studies. Consistent pathways are glycolysis/gluconeogenesis, pyruvate, purine and arginine and proline metabolism. Ten metabolic pathways revealed by metabolomics were not covered by the downstream of the known transcriptomic profiles, suggesting new metabolic phenotypes. These results confirm previous transcriptomics understanding and expand the knowledge from existing models on correlation and co-regulation between transcriptomic and metabolomics profiles, which demonstrates the power of integrated omics analysis.

  19. Metabolomic Dynamic Analysis of Hypoxia in MDA-MB-231 and the Comparison with Inferred Metabolites from Transcriptomics Data

    Tsai, I-Lin [Department of Pharmacy, National Taiwan University, No. 1, Jen-Ai Road, Section 1 Taipei 10051, Taiwan (China); The Metabolomics Group, National Taiwan University, Taipei 106, Taiwan (China); Center for Genomic Medicine, National Taiwan University, Taipei 10051, Taiwan (China); Kuo, Tien-Chueh [The Metabolomics Group, National Taiwan University, Taipei 106, Taiwan (China); Graduate Institute of Biomedical Electronic and Bioinformatics, National Taiwan University, Room 410 BL Building, No. 1, Roosevelt Road, Sec. 4, Taipei 106, Taiwan (China); Ho, Tsung-Jung [The Metabolomics Group, National Taiwan University, Taipei 106, Taiwan (China); Department of Computer Science and Information Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei 10617, Taiwan (China); Harn, Yeu-Chern [The Metabolomics Group, National Taiwan University, Taipei 106, Taiwan (China); Graduate Institute of Networking and Multimedia, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei 10617, Taiwan (China); Wang, San-Yuan [The Metabolomics Group, National Taiwan University, Taipei 106, Taiwan (China); Department of Computer Science and Information Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei 10617, Taiwan (China); Fu, Wen-Mei [Department of Pharmacology, National Taiwan University, 11 F No. 1 Sec. 1, Ren-ai Rd., Taipei 10051, Taiwan (China); Kuo, Ching-Hua, E-mail: kuoch@ntu.edu.tw [Department of Pharmacy, National Taiwan University, No. 1, Jen-Ai Road, Section 1 Taipei 10051, Taiwan (China); The Metabolomics Group, National Taiwan University, Taipei 106, Taiwan (China); Center for Genomic Medicine, National Taiwan University, Taipei 10051, Taiwan (China); Tseng, Yufeng Jane, E-mail: kuoch@ntu.edu.tw [Department of Pharmacy, National Taiwan University, No. 1, Jen-Ai Road, Section 1 Taipei 10051, Taiwan (China); The Metabolomics Group, National Taiwan University, Taipei 106, Taiwan (China); Center for Genomic Medicine, National Taiwan University, Taipei 10051, Taiwan (China); Graduate Institute of Biomedical Electronic and Bioinformatics, National Taiwan University, Room 410 BL Building, No. 1, Roosevelt Road, Sec. 4, Taipei 106, Taiwan (China); Department of Computer Science and Information Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei 10617, Taiwan (China)

    2013-05-03

    Hypoxia affects the tumor microenvironment and is considered important to metastasis progression and therapy resistance. Thus far, the majority of global analyses of tumor hypoxia responses have been limited to just a single omics level. Combining multiple omics data can broaden our understanding of tumor hypoxia. Here, we investigate the temporal change of the metabolite composition with gene expression data from literature to provide a more comprehensive insight into the system level in response to hypoxia. Nuclear magnetic resonance spectroscopy was used to perform metabolomic profiling on the MDA-MB-231 breast cancer cell line under hypoxic conditions. Multivariate statistical analysis revealed that the metabolic difference between hypoxia and normoxia was similar over 24 h, but became distinct over 48 h. Time dependent microarray data from the same cell line in the literature displayed different gene expressions under hypoxic and normoxic conditions mostly at 12 h or earlier. The direct metabolomic profiles show a large overlap with theoretical metabolic profiles deduced from previous transcriptomic studies. Consistent pathways are glycolysis/gluconeogenesis, pyruvate, purine and arginine and proline metabolism. Ten metabolic pathways revealed by metabolomics were not covered by the downstream of the known transcriptomic profiles, suggesting new metabolic phenotypes. These results confirm previous transcriptomics understanding and expand the knowledge from existing models on correlation and co-regulation between transcriptomic and metabolomics profiles, which demonstrates the power of integrated omics analysis.

  20. Metabolomic Dynamic Analysis of Hypoxia in MDA-MB-231 and the Comparison with Inferred Metabolites from Transcriptomics Data

    Tsai, I-Lin; Kuo, Tien-Chueh; Ho, Tsung-Jung; Harn, Yeu-Chern; Wang, San-Yuan; Fu, Wen-Mei; Kuo, Ching-Hua; Tseng, Yufeng Jane

    2013-01-01

    Hypoxia affects the tumor microenvironment and is considered important to metastasis progression and therapy resistance. Thus far, the majority of global analyses of tumor hypoxia responses have been limited to just a single omics level. Combining multiple omics data can broaden our understanding of tumor hypoxia. Here, we investigate the temporal change of the metabolite composition with gene expression data from literature to provide a more comprehensive insight into the system level in response to hypoxia. Nuclear magnetic resonance spectroscopy was used to perform metabolomic profiling on the MDA-MB-231 breast cancer cell line under hypoxic conditions. Multivariate statistical analysis revealed that the metabolic difference between hypoxia and normoxia was similar over 24 h, but became distinct over 48 h. Time dependent microarray data from the same cell line in the literature displayed different gene expressions under hypoxic and normoxic conditions mostly at 12 h or earlier. The direct metabolomic profiles show a large overlap with theoretical metabolic profiles deduced from previous transcriptomic studies. Consistent pathways are glycolysis/gluconeogenesis, pyruvate, purine and arginine and proline metabolism. Ten metabolic pathways revealed by metabolomics were not covered by the downstream of the known transcriptomic profiles, suggesting new metabolic phenotypes. These results confirm previous transcriptomics understanding and expand the knowledge from existing models on correlation and co-regulation between transcriptomic and metabolomics profiles, which demonstrates the power of integrated omics analysis

  1. Enhancement of viability of radiosensitive (PBMC and resistant (MDA-MB-231 clones in low-dose-rate cobalt-60 radiation therapy

    Patrícia Lima Falcão

    2015-06-01

    Full Text Available Abstract Objective: In the present study, the authors investigated the in vitro behavior of radio-resistant breast adenocarcinoma (MDA-MB-231 cells line and radiosensitive peripheral blood mononuclear cells (PBMC, as a function of different radiation doses, dose rates and postirradiation time kinetics, with a view to the interest of clinical radiotherapy. Materials and Methods: The cells were irradiated with Co-60, at 2 and 10 Gy and two different exposure rates, 339.56 cGy.min–1 and the other corresponding to one fourth of the standard dose rates, present over a 10-year period of cobalt therapy. Post-irradiation sampling was performed at pre-established kinetics of 24, 48 and 72 hours. The optical density response in viability assay was evaluated and a morphological analysis was performed. Results: Radiosensitive PBMC showed decrease in viability at 2 Gy, and a more significant decrease at 10 Gy for both dose rates. MDAMB- 231 cells presented viability decrease only at higher dose and dose rate. The results showed MDA-MB-231 clone expansion at low dose rate after 48–72 hours post-radiation. Conclusion: Low dose rate shows a possible potential clinical impact involving decrease in management of radio-resistant and radiosensitive tumor cell lines in cobalt therapy for breast cancer.

  2. [Knock-down of BCL11A expression in breast cancer cells promotes MDA-MB-231 cell apoptosis].

    Li, Hongli; Gui, Chen; Yan, Lijun

    2016-11-01

    Objective To detect the expression and pathological significance of B-cell CLL/lymphoma 11A (BCL11A) in breast cancer and investigate the effect of its silencing on the apoptosis of human MDA-MB-231 breast cancer cells. MethodsImmunohistochemistry was used to detect the expression of BCL11A in 62 cases of human breast cancer tissues and 8 cases of normal tissues. We synthesized siRNA targeting BCL11A, and then siRNA was transfected into MDA-MB-231 cells. Forty-eight hours later, the suppression effect of siRNA on BCL11A was determined by quantitative real-time PCR and Western blotting. The apoptosis of MDA-MB-231 cells was detected by flow cytometry. Results The BCL11A protein was mainly expressed in cytoplasm. The expression level of BCL11A in breast cancer tissues was higher than that in paracancerous tissues. The expression had correlations with tumor grade, tumor stage, while it had no correlations with the patients' age and tumor size. BCL11A-siRNA significantly suppressed the expression of BCL11A mRNA and protein as compared with the control group. MDA-MB-231 cells transfected with BCL11A-siRNA had higher apoptosis rate compared with the control group. Conclusion The BCL11A protein is highly expressed in breast cancer and knock-down of BCL11A promotes the apoptosis of MDA-MB-231 cells.

  3. (−)-Xanthatin Selectively Induces GADD45γ and Stimulates Caspase-Independent Cell Death in Human Breast Cancer MDA-MB-231 Cells

    Takeda, Shuso; Matsuo, Kazumasa; Yaji, Kentaro; Okajima-Miyazaki, Shunsuke; Harada, Mari; Miyoshi, Hiroko; Okamoto, Yoshiko; Amamoto, Toshiaki; Shindo, Mitsuru; Omiecinski, Curtis J.; Aramaki, Hironori

    2014-01-01

    exo-Methylene lactone group-containing compounds, such as (−)-xanthatin, are present in a large variety of biologically active natural products, including extracts of Xanthium strumarium (Cocklebur). These substances are reported to possess diverse functional activities, exhibiting anti-inflammatory, antimalarial, and anticancer potential. In this study, we synthesized six structurally related xanthanolides containing exo-methylene lactone moieties, including (−)-xanthatin and (+)-8-epi-xanthatin, and examined the effects of these chemically defined substances on the highly aggressive and farnesyltransferase inhibitor (FTI)-resistant MDA-MB-231 cancer cell line. The results obtained demonstrate that (−)-xanthatin was a highly effective inhibitor of MDA-MB-231 cell growth, inducing caspase-independent cell death, and that these effects were independent of FTase inhibition. Further, our results show that among the GADD45 isoforms, GADD45γ was selectively induced by (−)-xanthatin and that GADD45γ-primed JNK and p38 signaling pathways are, at least in part, involved in mediating the growth inhibition and potential anticancer activities of this agent. Given that GADD45γ is becoming increasingly recognized for its tumor suppressor function, the results presented here suggest the novel possibility that (−)-xanthatin may have therapeutic value as a selective inducer of GADD45γ in human cancer cells, in particular in FTI-resistant aggressive breast cancers. PMID:21568272

  4. Mitochondrial calcium uniporter silencing potentiates caspase-independent cell death in MDA-MB-231 breast cancer cells

    Curry, Merril C.; Peters, Amelia A. [School of Pharmacy, The University of Queensland, Brisbane, Queensland 4072 (Australia); Kenny, Paraic A. [Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, New York 10461 (United States); Roberts-Thomson, Sarah J. [School of Pharmacy, The University of Queensland, Brisbane, Queensland 4072 (Australia); Monteith, Gregory R., E-mail: gregm@uq.edu.au [School of Pharmacy, The University of Queensland, Brisbane, Queensland 4072 (Australia)

    2013-05-10

    Highlights: •Some clinical breast cancers are associated with MCU overexpression. •MCU silencing did not alter cell death initiated with the Bcl-2 inhibitor ABT-263. •MCU silencing potentiated caspase-independent cell death initiated by ionomycin. •MCU silencing promoted ionomycin-mediated cell death without changes in bulk Ca{sup 2+}. -- Abstract: The mitochondrial calcium uniporter (MCU) transports free ionic Ca{sup 2+} into the mitochondrial matrix. We assessed MCU expression in clinical breast cancer samples using microarray analysis and the consequences of MCU silencing in a breast cancer cell line. Our results indicate that estrogen receptor negative and basal-like breast cancers are characterized by elevated levels of MCU. Silencing of MCU expression in the basal-like MDA-MB-231 breast cancer cell line produced no change in proliferation or cell viability. However, distinct consequences of MCU silencing were seen on cell death pathways. Caspase-dependent cell death initiated by the Bcl-2 inhibitor ABT-263 was not altered by MCU silencing; whereas caspase-independent cell death induced by the calcium ionophore ionomycin was potentiated by MCU silencing. Measurement of cytosolic Ca{sup 2+} levels showed that the promotion of ionomycin-induced cell death by MCU silencing occurs independently of changes in bulk cytosolic Ca{sup 2+} levels. This study demonstrates that MCU overexpression is a feature of some breast cancers and that MCU overexpression may offer a survival advantage against some cell death pathways. MCU inhibitors may be a strategy to increase the effectiveness of therapies that act through the induction of caspase-independent cell death pathways in estrogen receptor negative and basal-like breast cancers.

  5. Tissue factor-factor VIIa-specific up-regulation of IL-8 expression in MDA-MB-231 cells is mediated by PAR-2 and results in increased cell migration

    Hjortoe, Gertrud M; Petersen, Lars C; Albrektsen, Tatjana

    2004-01-01

    Tissue factor (TF), the cellular receptor for factor VIIa (FVIIa), besides initiating blood coagulation, is believed to play an important role in tissue repair, inflammation, angiogenesis, and tumor metastasis. Like TF, the chemokine interleukin-8 (IL-8) is shown to play a critical role...... in these processes. To elucidate the potential mechanisms by which TF contributes to tumor invasion and metastasis, we investigated the effect of FVIIa on IL-8 expression and cell migration in a breast carcinoma cell line, MDA-MB-231, a cell line that constitutively expresses abundant TF. Expression of IL-8 m......RNA in MDA-MB-231 cells was markedly up-regulated by plasma concentrations of FVII or an equivalent concentration of FVIIa (10 nM). Neither thrombin nor other proteases involved in hemostasis were effective in stimulating IL-8 in these cells. Increased transcriptional activation of the IL-8 gene...

  6. Regulation of MDA-MB-231 cell proliferation by GSK-3β involves epigenetic modifications under high glucose conditions

    Gupta, Chanchal; Kaur, Jasmine; Tikoo, Kulbhushan

    2014-01-01

    Hyperglycemia is a critical risk factor for development and progression of breast cancer. We have recently reported that high glucose induces phosphorylation of histone H3 at Ser 10 as well as de-phosphorylation of GSK-3β at Ser 9 in MDA-MB-231 cells. Here, we elucidate the mechanism underlying hyperglycemia-induced proliferation in MDA-MB-231 breast cancer cells. We provide evidence that hyperglycemia led to increased DNA methylation and DNMT1 expression in MDA-MB-231 cells. High glucose condition led to significant increase in the expression of PCNA, cyclin D1 and decrease in the expression of PTPN 12, p21 and PTEN. It also induced hypermethylation of DNA at the promoter region of PTPN 12, whereas hypomethylation at Vimentin and Snail. Silencing of GSK-3β by siRNA prevented histone H3 phosphorylation and reduced DNMT1 expression. We show that chromatin obtained after immunoprecipitation with phospho-histone H3 was hypermethylated under high glucose condition, which indicates a cross-talk between DNA methylation and histone H3 phosphorylation. ChIP-qPCR analysis revealed up-regulation of DNMT1 and metastatic genes viz. Vimentin, Snail and MMP-7 by phospho-histone H3, which were down-regulated upon GSK-3β silencing. To the best of our knowledge, this is the first report which shows that interplay between GSK-3β activation, histone H3 phosphorylation and DNA methylation directs proliferation of breast cancer cells. - Highlights: • High glucose induces phosphorylation of histone H3 and dephosphorylation of GSK-3β. • Moreover, hyperglycemia also leads to increased DNA methylation in MDA-MB-231 cells. • Inhibition of GSK-3β prevented histone H3 phosphorylation and reduced DNMT1 levels. • Interplay exists between GSK-3β, histone H3 phosphorylation and DNA methylation

  7. Regulation of MDA-MB-231 cell proliferation by GSK-3β involves epigenetic modifications under high glucose conditions

    Gupta, Chanchal; Kaur, Jasmine; Tikoo, Kulbhushan, E-mail: tikoo.k@gmail.com

    2014-05-15

    Hyperglycemia is a critical risk factor for development and progression of breast cancer. We have recently reported that high glucose induces phosphorylation of histone H3 at Ser 10 as well as de-phosphorylation of GSK-3β at Ser 9 in MDA-MB-231 cells. Here, we elucidate the mechanism underlying hyperglycemia-induced proliferation in MDA-MB-231 breast cancer cells. We provide evidence that hyperglycemia led to increased DNA methylation and DNMT1 expression in MDA-MB-231 cells. High glucose condition led to significant increase in the expression of PCNA, cyclin D1 and decrease in the expression of PTPN 12, p21 and PTEN. It also induced hypermethylation of DNA at the promoter region of PTPN 12, whereas hypomethylation at Vimentin and Snail. Silencing of GSK-3β by siRNA prevented histone H3 phosphorylation and reduced DNMT1 expression. We show that chromatin obtained after immunoprecipitation with phospho-histone H3 was hypermethylated under high glucose condition, which indicates a cross-talk between DNA methylation and histone H3 phosphorylation. ChIP-qPCR analysis revealed up-regulation of DNMT1 and metastatic genes viz. Vimentin, Snail and MMP-7 by phospho-histone H3, which were down-regulated upon GSK-3β silencing. To the best of our knowledge, this is the first report which shows that interplay between GSK-3β activation, histone H3 phosphorylation and DNA methylation directs proliferation of breast cancer cells. - Highlights: • High glucose induces phosphorylation of histone H3 and dephosphorylation of GSK-3β. • Moreover, hyperglycemia also leads to increased DNA methylation in MDA-MB-231 cells. • Inhibition of GSK-3β prevented histone H3 phosphorylation and reduced DNMT1 levels. • Interplay exists between GSK-3β, histone H3 phosphorylation and DNA methylation.

  8. LPA, HGF, and EGF utilize distinct combinations of signaling pathways to promote migration and invasion of MDA-MB-231 breast carcinoma cells

    Harrison, Susan MW; Knifley, Teresa; Chen, Min; O’Connor, Kathleen L

    2013-01-01

    Various pathways impinge on the actin-myosin pathway to facilitate cell migration and invasion including members of the Rho family of small GTPases and MAPK. However, the signaling components that are considered important for these processes vary substantially within the literature with certain pathways being favored. These distinctions in signaling pathways utilized are often attributed to differences in cell type or physiological conditions; however, these attributes have not been systematically assessed. To address this question, we analyzed the migration and invasion of MDA-MB-231 breast carcinoma cell line in response to various stimuli including lysophosphatidic acid (LPA), hepatocyte growth factor (HGF) and epidermal growth factor (EGF) and determined the involvement of select signaling pathways that impact myosin light chain phosphorylation. LPA, a potent stimulator of the Rho-ROCK pathway, surprisingly did not require the Rho-ROCK pathway to stimulate migration but instead utilized Rac and MAPK. In contrast, LPA-stimulated invasion required Rho, Rac, and MAPK. Of these three major pathways, EGF-stimulated MDA-MB-231 migration and invasion required Rho; however, Rac was essential only for invasion and MAPK was dispensable for migration. HGF signaling, interestingly, utilized the same pathways for migration and invasion, requiring Rho but not Rac signaling. Notably, the dependency of HGF-stimulated migration and invasion as well as EGF-stimulated invasion on MAPK was subject to the inhibitors used. As expected, myosin light chain kinase (MLCK), a convergence point for MAPK and Rho family GTPase signaling, was required for all six conditions. These observations suggest that, while multiple signaling pathways contribute to cancer cell motility, not all pathways operate under all conditions. Thus, our study highlights the plasticity of cancer cells to adapt to multiple migratory cues

  9. Radio-sensitization by Piper longumine of human breast adenoma MDA-MB-231 cells in vitro.

    Yao, Jian-Xin; Yao, Zhi-Feng; Li, Zhan-Feng; Liu, Yong-Biao

    2014-01-01

    The current study investigated the effects of Piper longumine on radio-sensitization of human breast cancer MDA-MB-231 cells and underlying mechanisms. Human breast cancer MDA-MB-231 cells were cultured in vitro and those in logarithmic growth phase were selected for experiments divided into four groups: control, X-ray exposed, Piper longumine, and Piper longumine combined with X-rays. Conogenic assays were performed to determine the radio-sensitizing effects. Cell survival curves were fitted by single-hit multi-target model and then the survival fraction (SF), average lethal dose (D0), quasi-threshold dose (Dq) and sensitive enhancement ratio (SER) were calculated. Cell apoptosis was analyzed by flow cytometry (FCM).Western blot assays were employed for expression of apoptosis-related proteins (Bc1-2 and Bax) after treatment with Piper longumine and/or X-ray radiation. The intracellular reactive oxygen species (ROS) level was detected by FCM with a DCFH-DA probe. The cloning formation capacity was decreased in the group of piperlongumine plus radiation, which displayed the values of SF2, D0, Dq significantly lower than those of radiation alone group and the sensitive enhancement ratio (SER) of D0 was1.22 and 1.29, respectively. The cell apoptosis rate was increased by the combination treatment of Piper longumine and radiation. Piper longumine increased the radiation-induced intracellular levels of ROS. Compared with the control group and individual group, the combination group demonstrated significantly decreased expression of Bcl-2 with increased Bax. Piper longumine at a non-cytotoxic concentration can enhance the radio-sensitivity of MDA- MB-231cells, which may be related to its regulation of apoptosis-related protein expression and the increase of intracellular ROS level, thus increasing radiation-induced apoptosis.

  10. The Effect of Histone Hyperacetylation on Viability of Basal-Like Breast Cancer Cells MDA-MB-231

    Aliasghar Rahimian

    2017-06-01

    Full Text Available Background The Basal-Like breast cancer, is always known for lack of expression of estrogen receptor (ER, progesterone receptor (PR and as well, absence of epidermal growth factor receptor 2 (HER2 gene amplification. Improper expression pattern of ER, PR, and Her2, makes Basal-Like breast tumors resistant to the current hormonal and anti HER2 treatments. In recent decades, several studies have been conducted to investigate the regulatory role of chemical modifications of core histones in gene expression. Their results have shown that histone acetylation is involved in regulation of cell survival. Acetylation of core histones is regulated by the epigenetic-modifying enzymes named Histone Deacetylases (HDACs. As a new approach to control the viability of breast tumor cells resistant to the hormonal and anti-HER2 treatments, we have targeted the HDACs. Using Trichostatin A (TSA as a known HDACs inhibitor, we have tried to hyperacetylate the core histones of MDA-MB-231 cells as an in vitro model of Basal-Like breast tumors. Then we have investigated the effect of histone hyperacetylation on viability of MDA-MB-231 cells. Methods MDA-MB-231 cells were cultured in RPMI 1640 medium containing 10% fetal bovine serum (FBS and were incubated at 37°C, in a humidified incubator with 5% CO2 atmosphere. Then cells were treated with different concentrations of TSA including: 50, 100, 200, 400, 800 and 1000 nM or control (1% DMSO. After 24 and 48 hours, viability of cells was evaluated by MTT assay. Results After 24 and 48h exposure to different concentrations of TSA, MDA-MB-231 cells showed a maximum tolerable dose. At higher concentrations, TSA decreased the percentage of cell viability through a time-dose dependent manner. IC50 value for 48h treatment was 600 nM. Conclusions Our results indicate that HDACs inhibition and subsequently hyperacetylation of histones, leads to cytotoxic effects on breast tumor cells resistant to the current treatments. Following

  11. Different Expression of Extracellular Signal-Regulated Kinases (ERK) 1/2 and Phospho-Erk Proteins in MBA-MB-231 and MCF-7 Cells after Chemotherapy with Doxorubicin or Docetaxel.

    Taherian, Aliakbar; Mazoochi, Tahereh

    2012-01-01

    Curative treatment of breast cancer patients using chemotherapy often fails as a result of intrinsic or acquired resistance of the tumor to the drug. ERK is one of the main components of the Ras/Raf/MEK/ERK cascade, which mediates signal from cell surface receptors to transcription factors to regulate different gene expression. In this study, cytotoxicity and the expression of Erk1/2 and phospho-ERK was compared in MDA-MB-231 (ER-) and MCF-7 (ER+) cell lines after treatment with doxorubicin (DOX) or docetaxel (DOCT). Cell cytotoxicity of DOX or DOCT was calculated using MTT assay. Immonofluorescent technique was used to show MDR-1 protein in MDA-MB-231 and MCF-7 cells after treatment with DOX or DOCT. The expression of ERK1/2 and phpspho-ERK was assayed with immunoblotting. Comparing IC50 values showed that MDA-MB-231 cells are more sensitive than MCF-7 cells to DOX or DOCT. Immonofluorescent results confirmed the expression of MDR-1 in these two cell lines after DOX or DOCT treatment. In MDA-MB-231 cells the expression of ERK1/2 and phospho-ERK was decreased after DOX treatment in a dose-dependent manner. In contrast in MCF-7 cells the expression of ERK1/2 and phospho-ERK was increased after DOX treatment. DOCT treatment demonstrated the same result with less significant differences than DOX. The heterogeneity seen in cell lines actually reflects the heterogeneity of breast cancers. That is why, patients categorized in one group respond differently to a single treatment. These results emphasize the importance of a more accurate classification and a more specific treatment of breast cancer subtypes.

  12. Non-Muscle Myosin II Isoforms Have Different Functions in Matrix Rearrangement by MDA-MB-231 Cells.

    Bridget Hindman

    Full Text Available The role of a stiffening extra-cellular matrix (ECM in cancer progression is documented but poorly understood. Here we use a conditioning protocol to test the role of nonmuscle myosin II isoforms in cell mediated ECM arrangement using collagen constructs seeded with breast cancer cells expressing shRNA targeted to either the IIA or IIB heavy chain isoform. While there are several methods available to measure changes in the biophysical characteristics of the ECM, we wanted to use a method which allows for the measurement of global stiffness changes as well as a dynamic response from the sample over time. The conditioning protocol used allows the direct measurement of ECM stiffness. Using various treatments, it is possible to determine the contribution of various construct and cellular components to the overall construct stiffness. Using this assay, we show that both the IIA and IIB isoforms are necessary for efficient matrix remodeling by MDA-MB-231 breast cancer cells, as loss of either isoform changes the stiffness of the collagen constructs as measured using our conditioning protocol. Constructs containing only collagen had an elastic modulus of 0.40 Pascals (Pa, parental MDA-MB-231 constructs had an elastic modulus of 9.22 Pa, while IIA and IIB KD constructs had moduli of 3.42 and 7.20 Pa, respectively. We also calculated the cell and matrix contributions to the overall sample elastic modulus. Loss of either myosin isoform resulted in decreased cell stiffness, as well as a decrease in the stiffness of the cell-altered collagen matrices. While the total construct modulus for the IIB KD cells was lower than that of the parental cells, the IIB KD cell-altered matrices actually had a higher elastic modulus than the parental cell-altered matrices (4.73 versus 4.38 Pa. These results indicate that the IIA and IIB heavy chains play distinct and non-redundant roles in matrix remodeling.

  13. Herbal Extract SH003 Suppresses Tumor Growth and Metastasis of MDA-MB-231 Breast Cancer Cells by Inhibiting STAT3-IL-6 Signaling

    Youn Kyung Choi

    2014-01-01

    Full Text Available Cancer inflammation promotes cancer progression, resulting in a high risk of cancer. Here, we demonstrate that our new herbal extract, SH003, suppresses both tumor growth and metastasis of MDA-MB-231 breast cancer cells via inhibiting STAT3-IL-6 signaling path. Our new herbal formula, SH003, mixed extract from Astragalus membranaceus, Angelica gigas, and Trichosanthes kirilowii Maximowicz, suppressed MDA-MB-231 tumor growth and lung metastasis in vivo and reduced the viability and metastatic abilities of MDA-MB-231 cells in vitro. Furthermore, SH003 inhibited STAT3 activation, which resulted in a reduction of IL-6 production. Therefore, we conclude that SH003 suppresses highly metastatic breast cancer growth and metastasis by inhibiting STAT3-IL-6 signaling path.

  14. MicroRNA-101 inhibits cell proliferation, promotes cell apoptosis and increases sensitivity of breast cancer MDA-MB-231 cells to paclitaxel

    Qiu-Lin Ke

    2016-02-01

    Full Text Available Objective: To explore the effect that miR-101 inhibits breast cancer MDA-MB-231 cell proliferation and increases the chemosensitivity of paclitaxel to breast cancer MDA-MB-231 cells and its influence on protein expression level of target gene Bcl2. Methods: miR-101 was artificially synthesized, it used liposome 3000 to transfect MDA-MB-231 cells, and experiment was divided into three groups: blank control group, negative control group and miR-101 group. MTT assay was used to detect the effect of miR-101 on MDA-MB-231 cell proliferation and chemosensitivity of paclitaxel-mediated MDA-MB-231 cells; flow cytometer was used to detect cell apoptosis. Real-time PCR and Western bloting were used to detect the changes of mRNA and protein expression levels of Bcl2. Results: After miR-101 transfected MDA-MB- 231 cells, cell proliferation ability significantly decreased compared with negative control group, and differences had statistical significance (P<0.01; after paclitaxel was used to process cells, IC50 of miR-101-processing group decreased by 2.45 times compared with blank control group, differences had statistical significance (P<0.05 and differences between blank control group and negative control group had no statistical significance; detection results by flow cytometer showed that both early-stage and late-stage apoptosis rates of MDA-MB-231 cells of miR-101 group were significantly higher than those of negative control group (P<0.05, and early-stage apoptosis rate was more significant (P<0.01; after transfection of miR-101, mRNA and protein levels of Bcl2 of MDA-MB-231 cells significantly decreased, and differences had statistical significance (P<0.05. Conclusion: miR-101 can inhibit breast cancer MDAMB- 231 cell proliferation through targeting and downregulating Bcl2, thereby increasing the chemosensitivity of breast cancer cells to paclitaxel and promoting cell apoptosis.

  15. Efficient Use of Exogenous Isoprenols for Protein Isoprenylation by MDA-MB-231 Cells Is Regulated Independently of the Mevalonate Pathway*

    Onono, Fredrick; Subramanian, Thangaiah; Sunkara, Manjula; Subramanian, Karunai Leela; Spielmann, H. Peter; Morris, Andrew J.

    2013-01-01

    Mammalian cells can use exogenous isoprenols to generate isoprenoid diphosphate substrates for protein isoprenylation, but the mechanism, efficiency, and biological importance of this process are not known. We developed mass spectrometry-based methods using chemical probes and newly synthesized stable isotope-labeled tracers to quantitate incorporation of exogenously provided farnesol, geranylgeraniol, and unnatural analogs of these isoprenols containing an aniline group into isoprenoid diphosphates and protein isoprenylcysteines by cultured human cancer cell lines. We found that at exogenous isoprenol concentrations >10 μm, this process can generate as much as 50% of the cellular isoprenoid diphosphate pool used for protein isoprenylation. Mutational activation of p53 in MDA-MB-231 breast cancer cells up-regulates the mevalonate pathway to promote tumor invasiveness. p53 silencing or pharmacological inhibition of HMG-CoA reductase in these cells decreases protein isoprenylation from endogenously synthesized isoprenoids but enhances the use of exogenous isoprenols for this purpose, indicating that this latter process is regulated independently of the mevalonate pathway. Our observations suggest unique opportunities for design of cancer cell-directed therapies and may provide insights into mechanisms underlying pleiotropic therapeutic benefits and unwanted side effects of mevalonate pathway inhibition. PMID:23908355

  16. Curcumin Suppresses Proliferation and Migration of MDA-MB-231 Breast Cancer Cells through Autophagy-Dependent Akt Degradation

    Zhang, Yemin; Zhou, Yu; Li, Mingxin; Wang, Changhua

    2016-01-01

    Previous studies have evidenced that the anticancer potential of curcumin (diferuloylmethane), a main yellow bioactive compound from plant turmeric was mediated by interfering with PI3K/Akt signaling. However, the underlying molecular mechanism is still poorly understood. This study experimentally revealed that curcumin treatment reduced Akt protein expression in a dose- and time-dependent manner in MDA-MB-231 breast cancer cells, along with an activation of autophagy and suppression of ubiquitin-proteasome system (UPS) function. The curcumin-reduced Akt expression, cell proliferation, and migration were prevented by genetic and pharmacological inhibition of autophagy but not by UPS inhibition. Additionally, inactivation of AMPK by its specific inhibitor compound C or by target shRNA-mediated silencing attenuated curcumin-activated autophagy. Thus, these results indicate that curcumin-stimulated AMPK activity induces activation of the autophagy-lysosomal protein degradation pathway leading to Akt degradation and the subsequent suppression of proliferation and migration in breast cancer cell. PMID:26752181

  17. Fluvastatin mediated breast cancer cell death: a proteomic approach to identify differentially regulated proteins in MDA-MB-231 cells.

    Anantha Koteswararao Kanugula

    Full Text Available Statins are increasingly being recognized as anti-cancer agents against various cancers including breast cancer. To understand the molecular pathways targeted by fluvastatin and its differential sensitivity against metastatic breast cancer cells, we analyzed protein alterations in MDA-MB-231 cells treated with fluvastatin using 2-DE in combination with LC-MS/MS. Results revealed dys-regulation of 39 protein spots corresponding to 35 different proteins. To determine the relevance of altered protein profiles with breast cancer cell death, we mapped these proteins to major pathways involved in the regulation of cell-to-cell signaling and interaction, cell cycle, Rho GDI and proteasomal pathways using IPA analysis. Highly interconnected sub networks showed that vimentin and ERK1/2 proteins play a central role in controlling the expression of altered proteins. Fluvastatin treatment caused proteolysis of vimentin, a marker of epithelial to mesenchymal transition. This effect of fluvastatin was reversed in the presence of mevalonate, a downstream product of HMG-CoA and caspase-3 inhibitor. Interestingly, fluvastatin neither caused an appreciable cell death nor did modulate vimentin expression in normal mammary epithelial cells. In conclusion, fluvastatin alters levels of cytoskeletal proteins, primarily targeting vimentin through increased caspase-3- mediated proteolysis, thereby suggesting a role for vimentin in statin-induced breast cancer cell death.

  18. An in vitro evaluation of graphene oxide reduced by Ganoderma spp. in human breast cancer cells (MDA-MB-231).

    Gurunathan, Sangiliyandi; Han, Jaewoong; Park, Jung Hyun; Kim, Jin Hoi

    2014-01-01

    Recently, graphene and graphene-related materials have attracted much attention due their unique properties, such as their physical, chemical, and biocompatibility properties. This study aimed to determine the cytotoxic effects of graphene oxide (GO) that is reduced biologically using Ganoderma spp. mushroom extracts in MDA-MB-231 human breast cancer cells. Herein, we describe a facile and green method for the reduction of GO using extracts of Ganoderma spp. as a reducing agent. GO was reduced without any hazardous chemicals in an aqueous solution, and the reduced GO was characterized using a range of analytical procedures. The Ganoderma extract (GE)-reduced GO (GE-rGO) was characterized by ultraviolet-visible absorption spectroscopy, X-ray diffraction, Fourier-transform infrared spectroscopy, X-ray photoelectron spectroscopy, dynamic light scattering, scanning electron microscopy, Raman spectroscopy, and atomic force microscopy. Furthermore, the toxicity of GE-rGO was evaluated using a sequence of assays such as cell viability, lactate dehydrogenase leakage, and reactive oxygen species generation in human breast cancer cells (MDA-MB-231). The preliminary characterization of reduction of GO was confirmed by the red-shifting of the absorption peak for GE-rGO to 265 nm from 230 nm. The size of GO and GE-rGO was found to be 1,880 and 3,200 nm, respectively. X-ray diffraction results confirmed that reduction processes of GO and the processes of removing intercalated water molecules and the oxide groups. The surface functionalities and chemical natures of GO and GE-rGO were confirmed using Fourier-transform infrared spectroscopy and X-ray photoelectron spectroscopy. The surface morphologies of the synthesized graphene were analyzed using high-resolution scanning electron microscopy. Raman spectroscopy revealed single- and multilayer properties of GE-rGO. Atomic force microscopy images provided evidence for the formation of graphene. Furthermore, the effect of GO and GE

  19. An in vitro evaluation of graphene oxide reduced by Ganoderma spp. in human breast cancer cells (MDA-MB-231

    Gurunathan S

    2014-04-01

    Full Text Available Sangiliyandi Gurunathan,1,2 JaeWoong Han,1 Jung Hyun Park,1 Jin Hoi Kim1 1Department of Animal Biotechnology, Konkuk University, Seoul, South Korea; 2GS Institute of Bio and Nanotechnology, Coimbatore, Tamilnadu, India Background: Recently, graphene and graphene-related materials have attracted much attention due their unique properties, such as their physical, chemical, and biocompatibility properties. This study aimed to determine the cytotoxic effects of graphene oxide (GO that is reduced biologically using Ganoderma spp. mushroom extracts in MDA-MB-231 human breast cancer cells. Methods: Herein, we describe a facile and green method for the reduction of GO using extracts of Ganoderma spp. as a reducing agent. GO was reduced without any hazardous chemicals in an aqueous solution, and the reduced GO was characterized using a range of analytical procedures. The Ganoderma extract (GE-reduced GO (GE-rGO was characterized by ultraviolet-visible absorption spectroscopy, X-ray diffraction, Fourier-transform infrared spectroscopy, X-ray photoelectron spectroscopy, dynamic light scattering, scanning electron microscopy, Raman spectroscopy, and atomic force microscopy. Furthermore, the toxicity of GE-rGO was evaluated using a sequence of assays such as cell viability, lactate dehydrogenase leakage, and reactive oxygen species generation in human breast cancer cells (MDA-MB-231. Results: The preliminary characterization of reduction of GO was confirmed by the red-shifting of the absorption peak for GE-rGO to 265 nm from 230 nm. The size of GO and GE-rGO was found to be 1,880 and 3,200 nm, respectively. X-ray diffraction results confirmed that reduction processes of GO and the processes of removing intercalated water molecules and the oxide groups. The surface functionalities and chemical natures of GO and GE-rGO were confirmed using Fourier-transform infrared spectroscopy and X-ray photoelectron spectroscopy. The surface morphologies of the synthesized

  20. An in vitro evaluation of graphene oxide reduced by Ganoderma spp. in human breast cancer cells (MDA-MB-231)

    Gurunathan, Sangiliyandi; Han, JaeWoong; Park, Jung Hyun; Kim, Jin Hoi

    2014-01-01

    Background Recently, graphene and graphene-related materials have attracted much attention due their unique properties, such as their physical, chemical, and biocompatibility properties. This study aimed to determine the cytotoxic effects of graphene oxide (GO) that is reduced biologically using Ganoderma spp. mushroom extracts in MDA-MB-231 human breast cancer cells. Methods Herein, we describe a facile and green method for the reduction of GO using extracts of Ganoderma spp. as a reducing agent. GO was reduced without any hazardous chemicals in an aqueous solution, and the reduced GO was characterized using a range of analytical procedures. The Ganoderma extract (GE)-reduced GO (GE-rGO) was characterized by ultraviolet-visible absorption spectroscopy, X-ray diffraction, Fourier-transform infrared spectroscopy, X-ray photoelectron spectroscopy, dynamic light scattering, scanning electron microscopy, Raman spectroscopy, and atomic force microscopy. Furthermore, the toxicity of GE-rGO was evaluated using a sequence of assays such as cell viability, lactate dehydrogenase leakage, and reactive oxygen species generation in human breast cancer cells (MDA-MB-231). Results The preliminary characterization of reduction of GO was confirmed by the red-shifting of the absorption peak for GE-rGO to 265 nm from 230 nm. The size of GO and GE-rGO was found to be 1,880 and 3,200 nm, respectively. X-ray diffraction results confirmed that reduction processes of GO and the processes of removing intercalated water molecules and the oxide groups. The surface functionalities and chemical natures of GO and GE-rGO were confirmed using Fourier-transform infrared spectroscopy and X-ray photoelectron spectroscopy. The surface morphologies of the synthesized graphene were analyzed using high-resolution scanning electron microscopy. Raman spectroscopy revealed single- and multilayer properties of GE-rGO. Atomic force microscopy images provided evidence for the formation of graphene

  1. MDA-MB-231 breast cancer cell viability, motility and matrix adhesion are regulated by a complex interplay of heparan sulfate, chondroitin-/dermatan sulfate and hyaluronan biosynthesis.

    Viola, Manuela; Brüggemann, Kathrin; Karousou, Evgenia; Caon, Ilaria; Caravà, Elena; Vigetti, Davide; Greve, Burkhard; Stock, Christian; De Luca, Giancarlo; Passi, Alberto; Götte, Martin

    2017-06-01

    Proteoglycans and glycosaminoglycans modulate numerous cellular processes relevant to tumour progression, including cell proliferation, cell-matrix interactions, cell motility and invasive growth. Among the glycosaminoglycans with a well-documented role in tumour progression are heparan sulphate, chondroitin/dermatan sulphate and hyaluronic acid/hyaluronan. While the mode of biosynthesis differs for sulphated glycosaminoglycans, which are synthesised in the ER and Golgi compartments, and hyaluronan, which is synthesized at the plasma membrane, these polysaccharides partially compete for common substrates. In this study, we employed a siRNA knockdown approach for heparan sulphate (EXT1) and heparan/chondroitin/dermatan sulphate-biosynthetic enzymes (β4GalT7) in the aggressive human breast cancer cell line MDA-MB-231 to study the impact on cell behaviour and hyaluronan biosynthesis. Knockdown of β4GalT7 expression resulted in a decrease in cell viability, motility and adhesion to fibronectin, while these parameters were unchanged in EXT1-silenced cells. Importantly, these changes were associated with a decreased expression of syndecan-1, decreased signalling response to HGF and an increase in the synthesis of hyaluronan, due to an upregulation of the hyaluronan synthases HAS2 and HAS3. Interestingly, EXT1-depleted cells showed a downregulation of the UDP-sugar transporter SLC35D1, whereas SLC35D2 was downregulated in β4GalT7-depleted cells, indicating an intricate regulatory network that connects all glycosaminoglycans synthesis. The results of our in vitro study suggest that a modulation of breast cancer cell behaviour via interference with heparan sulphate biosynthesis may result in a compensatory upregulation of hyaluronan biosynthesis. These findings have important implications for the development of glycosaminoglycan-targeted therapeutic approaches for malignant diseases.

  2. Identification of Novel Human Breast Carcinoma (MDA-MB-231) Cell Growth Modulators from a Carbohydrate-Based Diversity Oriented Synthesis Library.

    Lenci, Elena; Innocenti, Riccardo; Biagioni, Alessio; Menchi, Gloria; Bianchini, Francesca; Trabocchi, Andrea

    2016-10-20

    The application of a cell-based growth inhibition on a library of skeletally different glycomimetics allowed for the selection of a hexahydro-2 H -furo[3,2- b ][1,4]oxazine compound as candidate inhibitors of MDA-MB-231 cell growth. Subsequent synthesis of analogue compounds and preliminary biological studies validated the selection of a valuable hit compound with a novel polyhydroxylated structure for the modulation of the breast carcinoma cell cycle mechanism.

  3. Identification of Novel Human Breast Carcinoma (MDA-MB-231 Cell Growth Modulators from a Carbohydrate-Based Diversity Oriented Synthesis Library

    Elena Lenci

    2016-10-01

    Full Text Available The application of a cell-based growth inhibition on a library of skeletally different glycomimetics allowed for the selection of a hexahydro-2H-furo[3,2-b][1,4]oxazine compound as candidate inhibitors of MDA-MB-231 cell growth. Subsequent synthesis of analogue compounds and preliminary biological studies validated the selection of a valuable hit compound with a novel polyhydroxylated structure for the modulation of the breast carcinoma cell cycle mechanism.

  4. Rapid dimerization of quercetin through an oxidative mechanism in the presence of serum albumin decreases its ability to induce cytotoxicity in MDA-MB-231 cells

    Pham, Anh; Bortolazzo, Anthony; White, J. Brandon

    2012-01-01

    Highlights: ► Quercetin cannot be detected intracellularly despite killing MDA-MB-231 cells. ► Quercetin forms a heterodimer through oxidation in media with serum. ► The quercetin heterodimer does not kill MDA-MB-231 cells. ► Ascorbic acid stabilizes quercetin increasing cell death in quercetin treated cells. ► Quercetin, and not a modified form, is responsible for apoptosis and cell death. -- Abstract: Quercetin is a member of the flavonoid family and has been previously shown to have a variety of anti-cancer activities. We and others have reported anti-proliferation, cell cycle arrest, and induction of apoptosis of cancer cells after treatment with quercetin. Quercetin has also been shown to undergo oxidation. However, it is unclear if quercetin or one of its oxidized forms is responsible for cell death. Here we report that quercetin rapidly oxidized in cell culture media to form a dimer. The quercetin dimer is identical to a dimer that is naturally produced by onions. The quercetin dimer and quercetin-3-O-glucopyranoside are unable to cross the cell membrane and do not kill MDA-MB-231 cells. Finally, supplementing the media with ascorbic acid increases quercetin’s ability to induce cell death probably by reduction oxidative dimerization. Our results suggest that an unmodified quercetin is the compound that elicits cell death.

  5. Rapid dimerization of quercetin through an oxidative mechanism in the presence of serum albumin decreases its ability to induce cytotoxicity in MDA-MB-231 cells

    Pham, Anh; Bortolazzo, Anthony [Department of Biological Sciences, San Jose State University, San Jose, CA 95192-0100 (United States); White, J. Brandon, E-mail: Brandon.White@sjsu.edu [Department of Biological Sciences, San Jose State University, San Jose, CA 95192-0100 (United States)

    2012-10-19

    Highlights: Black-Right-Pointing-Pointer Quercetin cannot be detected intracellularly despite killing MDA-MB-231 cells. Black-Right-Pointing-Pointer Quercetin forms a heterodimer through oxidation in media with serum. Black-Right-Pointing-Pointer The quercetin heterodimer does not kill MDA-MB-231 cells. Black-Right-Pointing-Pointer Ascorbic acid stabilizes quercetin increasing cell death in quercetin treated cells. Black-Right-Pointing-Pointer Quercetin, and not a modified form, is responsible for apoptosis and cell death. -- Abstract: Quercetin is a member of the flavonoid family and has been previously shown to have a variety of anti-cancer activities. We and others have reported anti-proliferation, cell cycle arrest, and induction of apoptosis of cancer cells after treatment with quercetin. Quercetin has also been shown to undergo oxidation. However, it is unclear if quercetin or one of its oxidized forms is responsible for cell death. Here we report that quercetin rapidly oxidized in cell culture media to form a dimer. The quercetin dimer is identical to a dimer that is naturally produced by onions. The quercetin dimer and quercetin-3-O-glucopyranoside are unable to cross the cell membrane and do not kill MDA-MB-231 cells. Finally, supplementing the media with ascorbic acid increases quercetin's ability to induce cell death probably by reduction oxidative dimerization. Our results suggest that an unmodified quercetin is the compound that elicits cell death.

  6. Proanthocyanidins from Uncaria rhynchophylla induced apoptosis in MDA-MB-231 breast cancer cells while enhancing cytotoxic effects of 5-fluorouracil.

    Chen, Xiao-Xin; Leung, George Pak-Heng; Zhang, Zhang-Jin; Xiao, Jian-Bo; Lao, Li-Xing; Feng, Feng; Mak, Judith Choi-Wo; Wang, Ying; Sze, Stephen Cho-Wing; Zhang, Kalin Yan-Bo

    2017-09-01

    Breast cancer is the most frequently diagnosed cancer and cause of cancer death in women worldwide. Current treatments often result in systematic toxicity and drug resistance. Combinational use of non-toxic phytochemicals with chemotherapeutic agents to enhance the efficacy and reduce toxicity would be one promising approach. In this study, bioactive proanthocyanidins from Uncaria rhynchophylla (UPAs) were isolated and their anti-breast cancer effects alone and in combination with 5- fluorouracil (5-FU) were investigated in MDA-MB-231 breast cancer cells. The results showed that UPAs significantly inhibited cell viability and migration ability in a dose-dependent manner. Moreover, UPAs induced apoptosis in a dose-dependent manner which was associated with increased cellular reactive oxygen species production, loss of mitochondrial membrane potential, increases of Bax/Bcl-2 ratio and levels of cleaved caspase 3. Treatments of the cells with UPAs resulted in an increase in G2/M cell cycle arrest. Cytotoxic effects of 5-FU against MDA-MB-231 cells were enhanced by UPAs. The combination treatment of UPAs and 5-FU for 48 h elicited a synergistic cytotoxic effect on MDA-MB-231 cells. Altogether, these data suggest that UPAs are potential therapeutic agents for breast cancer. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Steroid metabolism in the hormone dependent MCF-7 human breast carcinoma cell line and its two hormone resistant subpopulations MCF-7/LCC1 and MCF-7/LCC2

    Jørgensen, L; Brünner, N; Spang-Thomsen, M

    1998-01-01

    and 17beta-hydroxysteroid oxidoreductase were investigated isolating the following steroids: estriol (E3), estradiol (E2), estrone (E1), 3alpha/beta-androstanediol (A-diol), testosterone (T), dihydrotestosterone (DHT), androsterone (AND), androstenedion (4-AD) and androstanedione (A-dion). For all......, and preincubation with cortisol had no effect on the enzyme activity. With [14C]T as the substrate, the metabolized level of DHT was very similar in the three cell lines, though MCF-7/LCC1 and MCF-7/LCC2 utilized the substrate to a much lesser extent. The amount of DHT and 4-AD produced were comparable in the two...... to the parent MCF-7. However, since treatment with DHT and T inhibited cell growth equally well in all three tumor cell lines, it is unlikely that the found differences in steroid metabolism was involved in the acquisition of the endocrine resistance of the two MCF-7 sublines....

  8. Resveratrol modulates MED28 (Magicin/EG-1) expression and inhibits epidermal growth factor (EGF)-induced migration in MDA-MB-231 human breast cancer cells.

    Lee, Ming-Fen; Pan, Min-Hsiung; Chiou, Yi-Siou; Cheng, An-Chin; Huang, Han

    2011-11-09

    Resveratrol and pterostilbene exhibit diverse biological activities. MED28, a subunit of the mammalian Mediator complex for transcription, was also identified as magicin, an actin cytoskeleton Grb2-associated protein, and as endothelial-derived gene (EG-1). Several tumors exhibit aberrant MED28 expression, whereas the underlying mechanism is unclear. Triple-negative breast cancers, often expressing epidermal growth factor (EGF) receptor (EGFR), are associated with metastasis and poor survival. The objective of this study is to compare the effect of resveratrol and pterostilbene and to investigate the role of MED28 in EGFR-overexpressing MDA-MB-231 breast cancer cells. Pretreatment of resveratrol, but not pterostlbene, suppressed EGF-mediated migration and expression of MED28 and matrix metalloproteinase (MMP)-9 in MDA-MB-231 cells. Moreover, overexpression of MED28 increased migration, and the addition of EGF further enhanced migration. Our data indicate that resveratrol modulates the effect of MED28 on cellular migration, presumably through the EGFR/phosphatidylinositol 3-kinase (PI3K) signaling pathway, in breast cancer cells.

  9. Cytotoxicity against MCF-7 breast cancer cell line and interaction ...

    N6-furfuryladenine (kinetin) is a cytokinin growth factor with several biological effects observed in human cells and fruit flies. Kinetin exists naturally in the DNA of almost all organisms tested so far, including human cells and various plants. The cytotoxicity effect of kinetin on MCF-7 breast cancer cell lines was measured by ...

  10. Effects of Chinese medicinal herbs on expression of brain-derived Neurotrophic factor (BDNF) and its interaction with human breast cancer MDA-MB-231 cells and endothelial HUVECs.

    Chiu, Jen-Hwey; Chen, Fang-Pey; Tsai, Yi-Fang; Lin, Man-Ting; Tseng, Ling-Ming; Shyr, Yi-Ming

    2017-08-12

    Our previous study demonstrated that an up-regulation of the Brain-Derived Neurotrophic Factor (BDNF) signaling pathway is involved the mechanism causing the recurrence of triple negative breast cancer. The aim of this study is to investigate the effects of commonly used Chinese medicinal herbs on MDA-MB-231 and HUVEC cells and how they interact with BDNF. Human TNBC MDA-MB-231 cells and human endothelial HUVEC cells were used to explore the effect of commonly used Chinese herbal medicines on cancer cells alone, on endothelial cells alone and on cancer cell/endothelial cell interactions; this was done via functional studies, including migration and invasion assays. Furthermore, Western blot analysis and real-time PCR investigations were also used to investigate migration signal transduction, invasion signal transduction, and angiogenic signal transduction in these systems. Finally, the effect of the Chinese medicinal herbs on cancer cell/endothelial cell interactions was assessed using co-culture and ELISA. In terms of autoregulation, BDNF up-regulated TrkB gene expression in both MDA-MB-231 and HUVEC cells. Furthermore, BDNF enhanced migration by MDA-MB-231 cells via Rac, Cdc42 and MMP, while also increasing the migration of HUVEC cells via MMP and COX-2 expression. As measured by ELISA, the Chinese herbal medicinal herbs A. membranaceus, P. lactiflora, L. chuanxiong, P. suffruticosa and L. lucidum increased BDNF secretion by MDA-MB-231 cells. Similarly, using a co-culture system with MDA-MB-231 cells, A. membranaceus and L. lucidum modulated BDNF-TrkB signaling by HUVEC cells. We conclude that BDNF plays an important role in the metastatic interaction between MDA-MB-231 and HUVEC cells. Some Chinese medicinal herbs are able to enhance the BDNF-related metastatic potential of the interaction between cancer cells and endothelial cells. These findings provide important information that should help with the development of integrated medical therapies for breast

  11. Gallic acid indanone and mangiferin xanthone are strong determinants of immunosuppressive anti-tumour effects of Mangifera indica L. bark in MDA-MB231 breast cancer cells.

    García-Rivera, Dagmar; Delgado, René; Bougarne, Nadia; Haegeman, Guy; Berghe, Wim Vanden

    2011-06-01

    Vimang is a standardized extract derived from Mango bark (Mangifera Indica L.), commonly used as anti-inflammatory phytomedicine, which has recently been used to complement cancer therapies in cancer patients. We have further investigated potential anti-tumour effects of glucosylxanthone mangiferin and indanone gallic acid, which are both present in Vimang extract. We observed significant anti-tumour effects of both Vimang constituents in the highly aggressive and metastatic breast cancer cell type MDA-MB231. At the molecular level, mangiferin and gallic acid both inhibit classical NFκB activation by IKKα/β kinases, which results in impaired IκB degradation, NFκB translocation and NFκB/DNA binding. In contrast to the xanthone mangiferin, gallic acid further inhibits additional NFκB pathways involved in cancer cell survival and therapy resistance, such as MEK1, JNK1/2, MSK1, and p90RSK. This results in combinatorial inhibition of NFκB activity by gallic acid, which results in potent inhibition of NFκB target genes involved in inflammation, metastasis, anti-apoptosis and angiogenesis, such as IL-6, IL-8, COX2, CXCR4, XIAP, bcl2, VEGF. The cumulative NFκB inhibition by gallic acid, but not mangiferin, is also reflected at the level of cell survival, which reveals significant tumour cytotoxic effects in MDA-MB231 cells. Altogether, we identify gallic acid, besides mangiferin, as an essential anti-cancer component in Vimang extract, which demonstrates multifocal inhibition of NFκB activity in the cancer-inflammation network. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  12. Stable shRNA Silencing of Lactate Dehydrogenase A (LDHA) in Human MDA-MB-231 Breast Cancer Cells Fails to Alter Lactic Acid Production, Glycolytic Activity, ATP or Survival.

    Mack, Nzinga; Mazzio, Elizabeth A; Bauer, David; Flores-Rozas, Hernan; Soliman, Karam F A

    2017-03-01

    In the US, African Americans have a high death rate from triple-negative breast cancer (TNBC), characterized by lack of hormone receptors (ER, PR, HER2/ERRB2) which are otherwise valuable targets of chemotherapy. There is a need to identify novel targets that negatively impact TNBC tumorigenesis. TNBCs release an abundance of lactic acid, under normoxic, hypoxic and hyperoxic conditions; this referred to as the Warburg effect. Accumulated lactic acid sustains peri-cellular acidity which propels metastatic invasion and malignant aggressive transformation. The source of lactic acid is believed to be via conversion of pyruvate by lactate dehydrogenase (LDH) in the last step of glycolysis, with most studies focusing on the LDHA isoform. In this study, LDHA was silenced using long-term MISSION® shRNA lentivirus in human breast cancer MDA-MB-231 cells. Down-regulation of LDHA transcription and protein expression was confirmed by western blot, immunocytochemistry and qPCR. A number of parameters were measured in fully viable vector controls versus knock-down (KD) clones, including levels of lactic acid produced, glucose consumed, ATP and basic metabolic rates. The data show that lentivirus V-165 generated a knock-down clone most effective in reducing both gene and protein levels to less than 1% of vector controls. Stable KD showed absolutely no changes in cell viability, lactic acid production, ATP, glucose consumption or basic metabolic rate. Given the complete absence of impact on any observed parameter by LDH-A KD and this being somewhat contrary to findings in the literature, further analysis was required to determine why. Whole-transcriptome analytic profile on MDA-MB-231 for LDH subtypes using Agilent Human Genome 4×44k microarrays, where the data show the following component breakdown. Transcripts: 30.47 % LDHA, 69.36% LDHB, 0.12% LDHC and 0.05% LDHD. These findings underscore the importance of alternative isoforms of LDH in cancer cells to produce lactic acid

  13. Evaluation of Stem Cell Markers, CD44/CD24 in Breast Cancer Cell Lines

    Masoud Hashemi Arabi

    2014-05-01

    Four breast cancer cell lines, MCF-7 ، T47D ، MDA-MB231 and MDA-MB468 were purchased from National cell Bank of Iran based in Iran Pasture Institute and were cultured in high glucose DMEM supplemented with 10% FCS. Cells were stained with antiCD44-PE and antiCD24-FITC antibodies and Status of CD44 and CD24 as markers of breast cancer stem cells were evaluated using flow cytometer and fluorescent microscopy.Evaluation of CD44 and CD24 as markers of breast cancer stem cells showed that MDA-MB231 with 97±1.2% CD44+/CD24-/low cells is significantly different from the others that they were mainly CD44 and CD24 positive cells(p

  14. β3 integrin promotes chemoresistance to epirubicin in MDA-MB-231 through repression of the pro-apoptotic protein, BAD

    Nair, Madhumathy G.; Desai, Krisha; Prabhu, Jyothi S.; Hari, P.S.; Remacle, Jose; Sridhar, T.S., E-mail: tssridhar@sjri.res.in

    2016-08-01

    Resistance to anthracycline based chemotherapy is a major limitation in the treatment of breast cancer, particularly of the triple negative sub-type that lacks targeted therapies. Resistance that arises from tumor-stromal interaction facilitated by integrins provides the possibility of targeted disruption. In the present study, we demonstrate that integrin β3 signaling inhibits apoptosis induced by a DNA-damaging chemotherapeutic agent, epirubicin, in MDA-MB-231 breast cancer cells. Drug efflux based mechanisms do not contribute to this effect. We show that integrin β3 employs the PI3K-Akt and the MAPK pathway for enabling cell survival and proliferation. Further, our results indicate that integrin β3 helps inhibit epirubicin induced cytotoxicity by repression of the pro-apoptotic protein BAD, thus promoting an anti-apoptotic response. Myristoylated RGT peptide and a monoclonal antibody against integrin β3 brought about a reversal of this effect and chemosensitized the cells. These results identify β3 integrin signaling via repression of BAD as an important survival pathway used by breast cancer cells to evade chemotherapy induced stress. - Highlights: • Integrin β3 signaling promotes chemoresistance to epirubicin in breast cancer cells. • Integrin β3 promotes cell survival and proliferation in drug treated cells through the PI3K and MAPK pathways. • Integrin signaling helps evade drug induced cytotoxicity by repression of pro-apoptotic molecule; BAD.

  15. Resveratrol and Estradiol Exert Disparate Effects on Cell Migration, Cell Surface Actin Structures, and Focal Adhesion Assembly in MDA-MB-231 Human Breast Cancer Cells

    Nicolas G. Azios

    2005-02-01

    Full Text Available Resveratrol, a grape polyphenol, is thought to be a cancer preventive, yet its effects on metastatic breast cancer are relatively unknown. Since cancer cell invasion is dependent on cell migration, the chemotactic response of MDA-MB-231 metastatic human breast cancer cells to resveratrol, estradiol (E2, or epidermal growth factor (EGF was investigated. Resveratrol decreased while E2 and EGF increased directed cell migration. Resveratrol may inhibit cell migration by altering the cytoskeleton. Resveratrol induced a rapid global array of filopodia and decreased focal adhesions and focal adhesion kinase (FAK activity. E2 or EGF treatment did not affect filopodia extension but increased lamellipodia and associated focal adhesions that are integral for cell migration. Combined resveratrol and E2 treatment resulted in a filopodia and focal adhesion response similar to resveratrol alone. Combined resveratrol and EGF resulted in a lamellipodia and focal adhesion response similar to EGF alone. E2 and to a lesser extent resveratrol increased EGFR activity. The cytoskeletal changes and EGFR activity in response to E2 were blocked by EGFR1 inhibitor indicating that E2 may increase cell migration via crosstalk with EGFR signaling. These data suggest a promotional role for E2 in breast cancer cell migration but an antiestrogenic, preventative role for resveratrol.

  16. Probing early tumor response to radiation therapy using hyperpolarized [1-¹³C]pyruvate in MDA-MB-231 xenografts.

    Albert P Chen

    Full Text Available Following radiation therapy (RT, tumor morphology may remain unchanged for days and sometimes weeks, rendering anatomical imaging methods inadequate for early detection of therapeutic response. Changes in the hyperpolarized [1-¹³C]lactate signals observed in vivo following injection of pre-polarized [1-¹³C]pyruvate has recently been shown to be a marker for tumor progression or early treatment response. In this study, the feasibility of using ¹³C metabolic imaging with [1-¹³C]pyruvate to detect early radiation treatment response in a breast cancer xenograft model was demonstrated in vivo and in vitro. Significant decreases in hyperpolarized [1-¹³C]lactate relative to [1-¹³C]pyruvate were observed in MDA-MB-231 tumors 96 hrs following a single dose of ionizing radiation. Histopathologic data from the treated tumors showed higher cellular apoptosis and senescence; and changes in the expression of membrane monocarboxylate transporters and lactate dehydrogenase B were also observed. Hyperpolarized ¹³C metabolic imaging may be a promising new tool to develop novel and adaptive therapeutic regimens for patients undergoing RT.

  17. Ganoderiol A-enriched extract suppresses migration and adhesion of MDA-MB-231 cells by inhibiting FAK-SRC-paxillin cascade pathway.

    Guo-Sheng Wu

    Full Text Available Cell adhesion, migration and invasion are critical steps for carcinogenesis and cancer metastasis. Ganoderma lucidum, also called Lingzhi in China, is a traditional Chinese medicine, which exhibits anti-proliferation, anti-inflammation and anti-metastasis properties. Herein, GAEE, G. lucidum extract mainly contains ganoderiol A (GA, dihydrogenated GA and GA isomer, was shown to inhibit the abilities of adhesion and migration, while have a slight influence on that of invasion in highly metastatic breast cancer MDA-MB-231 cells at non-toxic doses. Further investigation revealed that GAEE decreased the active forms of focal adhesion kinase (FAK and disrupted the interaction between FAK and SRC, which lead to deactivating of paxillin. Moreover, GAEE treatment downregulated the expressions of RhoA, Rac1, and Cdc42, and decreased the interaction between neural Wiskott-Aldrich Syndrome protein (N-WASP and Cdc42, which impair cell migration and actin assembly. To our knowledge, this is the first report to show that G.lucidum triterpenoids could suppress cell migration and adhesion through FAK-SRC-paxillin signaling pathway. Our study also suggests that GAEE may be a potential agent for treatment of breast cancer.

  18. Apigenin inhibits TNFα/IL-1α-induced CCL2 release through IKBK-epsilon signaling in MDA-MB-231 human breast cancer cells.

    David Bauer

    Full Text Available Mortality associated with breast cancer is attributable to aggressive metastasis, to which TNFα plays a central orchestrating role. TNFα acts on breast tumor TNF receptors evoking the release of chemotactic proteins (e.g. MCP-1/CCL2. These proteins direct inward infiltration/migration of tumor-associated macrophages (TAMs, tumor-associated neutrophils (TANs, myeloid-derived suppressor cells (MDSCs, T-regulatory cells (Tregs, T helper IL-17-producing cells (Th17s, metastasis-associated macrophages (MAMs and cancer-associated fibroblasts (CAFs. Tumor embedded infiltrates collectively enable immune evasion, tumor growth, angiogenesis, and metastasis. In the current study, we investigate the potential of apigenin, a known anti-inflammatory constituent of parsley, to downregulate TNFα mediated release of chemokines from human triple-negative cells (MDA-MB-231 cells. The results show that TNFα stimulation leads to large rise of CCL2, granulocyte macrophage colony-stimulating factor (GMCSF, IL-1α and IL-6, all suppressed by apigenin. While many aspects of the transcriptome for NFkB signaling were evaluated, the data show signaling patterns associated with CCL2 were blocked by apigenin and mediated through suppressed mRNA and protein synthesis of IKBKe. Moreover, the data show that the attenuation of CCL2 by apigenin in the presence TNFα paralleled the suppression of phosphorylated extracellular signal-regulated kinase 1 (ERK 1/ 2. In summary, the obtained findings suggest that there exists a TNFα evoked release of CCL2 and other LSP recruiting cytokines from human breast cancer cells, which can be attenuated by apigenin.

  19. Lithium chloride attenuates mitomycin C induced necrotic cell death in MDA-MB-231 breast cancer cells via HMGB1 and Bax signaling.

    Razmi, Mahdieh; Rabbani-Chadegani, Azra; Hashemi-Niasari, Fatemeh; Ghadam, Parinaz

    2018-07-01

    The clinical use of potent anticancer drug mitomycin C (MMC) has limited due to side effects and resistance of cancer cells. The aim of this study was to investigate whether lithium chloride (LiCl), as a mood stabilizer, can affect the sensitivity of MDA-MB-231 breast cancer cells to mitomycin C. The cells were exposed to various concentrations of mitomycin C alone and combined with LiCl and the viability determined by trypan blue and MTT assays. Proteins were analyzed by western blot and mRNA expression of HMGB1 MMP9 and Bcl-2 were analyzed by RT-PCR. Flow cytometry was used to determine the cell cycle arrest and percent of apoptotic and necrotic cells. Concentration of Bax assessed by ELISA. Exposure of the cells to mitomycin C revealed IC 50 value of 20 μM, whereas pretreatment of the cells with LiCl induced synergistic cytotoxicity and IC 50 value declined to 5 μM. LiCl combined with mitomycin C significantly down-regulated HMGB1, MMP9 and Bcl-2 gene expression but significantly increased the level of Bax protein. In addition, the content of HMGB1 in the nuclei decreased and pretreatment with LiCl reduced the content of HMGB1 release induced by MMC. LiCl increased mitomycin C-induced cell shrinkage and PARP fragmentation suggesting induction of apoptosis in these cells. LiCl prevented mitomycin C-induced necrosis and changed the cell death arrest at G2/M-phase. Taking all together, it is suggested that LiCl efficiently enhances mitomycin C-induced apoptosis and HMGB1, Bax and Bcl-2 expression may play a major role in this process, the findings that provide a new therapeutic strategy for LiCl in combination with mitomycin C. Copyright © 2018 Elsevier GmbH. All rights reserved.

  20. Profilin-1 overexpression in MDA-MB-231 breast cancer cells is associated with alterations in proteomics biomarkers of cell proliferation, survival, and motility as revealed by global proteomics analyses.

    Coumans, Joëlle V F; Gau, David; Poljak, Anne; Wasinger, Valerie; Roy, Partha; Moens, Pierre D J

    2014-12-01

    Despite early screening programs and new therapeutic strategies, metastatic breast cancer is still the leading cause of cancer death in women in industrialized countries and regions. There is a need for novel biomarkers of susceptibility, progression, and therapeutic response. Global analyses or systems science approaches with omics technologies offer concrete ways forward in biomarker discovery for breast cancer. Previous studies have shown that expression of profilin-1 (PFN1), a ubiquitously expressed actin-binding protein, is downregulated in invasive and metastatic breast cancer. It has also been reported that PFN1 overexpression can suppress tumorigenic ability and motility/invasiveness of breast cancer cells. To obtain insights into the underlying molecular mechanisms of how elevating PFN1 level induces these phenotypic changes in breast cancer cells, we investigated the alteration in global protein expression profiles of breast cancer cells upon stable overexpression of PFN1 by a combination of three different proteome analysis methods (2-DE, iTRAQ, label-free). Using MDA-MB-231 as a model breast cancer cell line, we provide evidence that PFN1 overexpression is associated with alterations in the expression of proteins that have been functionally linked to cell proliferation (FKPB1A, HDGF, MIF, PRDX1, TXNRD1, LGALS1, STMN1, LASP1, S100A11, S100A6), survival (HSPE1, HSPB1, HSPD1, HSPA5 and PPIA, YWHAZ, CFL1, NME1) and motility (CFL1, CORO1B, PFN2, PLS3, FLNA, FLNB, NME2, ARHGDIB). In view of the pleotropic effects of PFN1 overexpression in breast cancer cells as suggested by these new findings, we propose that PFN1-induced phenotypic changes in cancer cells involve multiple mechanisms. Our data reported here might also offer innovative strategies for identification and validation of novel therapeutic targets and companion diagnostics for persons with, or susceptibility to, breast cancer.

  1. Polymeric Nano-Encapsulation of Curcumin Enhances its Anti-Cancer Activity in Breast (MDA-MB231) and Lung (A549) Cancer Cells Through Reduction in Expression of HIF-1α and Nuclear p65 (Rel A).

    Khan, Mohammed N; Haggag, Yusuf A; Lane, Majella E; McCarron, Paul A; Tambuwala, Murtaza M

    2018-02-14

    The anti-cancer potential of curcumin, a natural NFκβ inhibitor, has been reported extensively in breast, lung and other cancers. In vitro and in vivo studies indicate that the therapeutic efficacy of curcumin is enhanced when formulated in a nanoparticulate carrier. However, the mechanism of action of curcumin at the molecular level in the hypoxic tumour micro-environment is not fully understood. Hence, the aim of our study was to investigate the mechanism of action of curcumin formulated as nanoparticles in in vitro models of breast and lung cancer under an hypoxic microenvironment. Biodegradable poly(lactic-co-glycolic acid) PLGA nanoparticles (NP), loaded with curcumin (cur-PLGA-NP), were fabricated using a solvent evaporation technique to overcome solubility issues and to facilitate intracellular curcumin delivery. Cytotoxicity of free curcumin and cur-PLGA-NP was evaluated in MDA-MB-231 and A549 cell lines using migration, invasion and colony formation assays. All treatments were performed under an hypoxic micro-environment and whole cell lysates from controls and test groups were used to determine the expression of HIF-1α and p65 levels using ELISA assays. A ten-fold increase in solubility, three-fold increase in anti-cancer activity and a significant reduction in the levels of cellular HIF-1α and nuclear p65 (Rel A) were observed for cur-PLGA-NP, when compared to free curcumin. Our findings indicate that curcumin can effectively lower the elevated levels of HIF-1α and nuclear p65 (Rel A) in breast and lung cancer cells under an hypoxic tumour micro-environment when delivered in nanoparticulate form. This applied means of colloidal delivery could explain the improved anti-cancer efficacy of curcumin and has further potential applications in enhancing the activity of anti-cancer agents of low solubility. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  2. A synthetic chalcone derivative, 2-hydroxy-3',5,5'-trimethoxychalcone (DK-139), suppresses the TNFα-induced invasive capability of MDA-MB-231 human breast cancer cells by inhibiting NF-κB-mediated GROα expression.

    Lee, Da Young; Lee, Da Hyun; Jung, Jung You; Koh, Dongsoo; Kim, Geum-Soog; Ahn, Young-Sup; Lee, Young Han; Lim, Yoongho; Shin, Soon Young

    2016-01-01

    2-Hydroxy-3',5,5'-trimenthoxyochalcone (DK-139) is a synthetic chalcone-derived compound. This study evaluated the biological activity of DK-139 on the inhibition of tumor metastasis. Growth-regulated oncogene-alpha (GROα) plays an important role in the progression of tumor development by stimulating angiogenesis and metastasis. In this study, DK-139 inhibited tumor necrosis factor alpha (TNFα)-induced GROα gene promoter activity by inhibiting of IκB kinase (IKK) in MDA-MB231 cells. In addition, DK-139 prevented the TNFα-induced cell migration, F-actin formation, and invasive capability of MDA-MB-231 cells. These findings suggest that DK-139 is a potential drug candidate for the inhibition of tumor cell locomotion and invasion via the suppression of NF-κB-mediated GROα expression. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Evidence for the Existence of Triple-Negative Variants in the MCF-7 Breast Cancer Cell Population

    Euphemia Leung

    2014-01-01

    Full Text Available The MCF-7 line, derived in 1973 from a malignant pleural effusion, is one of the most commonly used culture models for human breast cancer. Despite its long history, MCF-7 is a surprisingly heterogeneous line. We previously showed that if MCF-7 cells were cultured for a prolonged period either in the absence of estrogen or in the presence of the antiestrogen tamoxifen, sub-lines were selected that differed from the parental line in ploidy, mean cell volume, signaling pathway usage, and drug sensitivity. This suggests a process of selection of preexisting variants rather than of adaptation of the parental line. All the sublines were estrogen receptor (ER positive, raising the question of whether MCF-7 also contains ER negative variants. Here, we have looked for such variants by culturing for a prolonged period in the presence of fulvestrant, an estrogen antagonist that has no estrogen agonist activity. Three sublines were developed, each of which was ER negative, progesterone receptor (PR negative and expressed only a low level of HER2. Each of the variants differed from the original MCF-7 line in ploidy, modal cell volume, and signaling pathway usage. Control experiments in which cells were cultured for a prolonged period in the absence of estrogen selected for variants that were ER and PR positive. The properties of the triple-negative MCF-7 were compared with those of an existing triple-negative cell line, MDA-MB-231, and human epidermal growth factor receptor 2 (HER2+ SKBr3, as well as from those of the “immortalized” breast epithelial line MCF10A. The results suggest that new variants or phenotypes of MCF-7 might be generated continuously in culture, and by implication this might apply to breast cancer development and even normal breast epithelial development in vivo.

  4. Arctigenin, a lignan from Arctium lappa L., inhibits metastasis of human breast cancer cells through the downregulation of MMP-2/-9 and heparanase in MDA-MB-231 cells.

    Lou, Chenghua; Zhu, Zhihui; Zhao, Yaping; Zhu, Rui; Zhao, Huajun

    2017-01-01

    Arctigenin is a bioactive lignan isolated from the seeds of Arctium lappa L. which has been widely used as a diuretic and a diaphoretic in Traditional Chinese Medicine. In the present study, the authors investigated the effects of arctigenin on tumor migration and invasion in aggressive human breast cancer cells. The MTT assay results showed that arctigenin did not show a significant cytotoxic effect on the cell viability of MDA-MB-231 cells. However, wound healing migration and Boyden chamber invasion assays demonstrated that arctigenin significantly inhibited in vitro migration and invasion of the MDA-MB-231 cells. Furthermore, gelatin zymography results showed that arctigenin reduced the activity of MMP-2 and MMP-9. Western blot analysis results demonstrated that the expression of MMP-2, MMP-9 and heparanase proteins was significantly downregulated following the treatment of arctigenin. Finally, the antiangiogenic activity of arctigenin was also examined by the chick embryo chorioallantoic membrane (CAM) assay. Arctigenin treatment significantly inhibited angiogenesis in the CAM. In conclusion, the results revealed that arctigenin significantly inhibited the migration and invasion of MDA-MB-231 cells by downregulating MMP-2, MMP-9 and heparanase expression. However, further studies are still necessary to investigate the exact mechanisms involved and to explore signal transduction pathways to better understand the biological mechanisms.

  5. Targeting ceramide metabolic pathway induces apoptosis in human breast cancer cell lines

    Vethakanraj, Helen Shiphrah; Babu, Thabraz Ahmed; Sudarsanan, Ganesh Babu; Duraisamy, Prabhu Kumar; Ashok Kumar, Sekar, E-mail: sekarashok@gmail.com

    2015-08-28

    The sphingolipid ceramide is a pro apoptotic molecule of ceramide metabolic pathway and is hydrolyzed to proliferative metabolite, sphingosine 1 phosphate by the action of acid ceramidase. Being upregulated in the tumors of breast, acid ceramidase acts as a potential target for breast cancer therapy. We aimed at targeting this enzyme with a small molecule acid ceramidase inhibitor, Ceranib 2 in human breast cancer cell lines MCF 7 and MDA MB 231. Ceranib 2 effectively inhibited the growth of both the cell lines in dose and time dependant manner. Morphological apoptotic hallmarks such as chromatin condensation, fragmented chromatin were observed in AO/EtBr staining. Moreover, ladder pattern of fragmented DNA observed in DNA gel electrophoresis proved the apoptotic activity of Ceranib 2 in breast cancer cell lines. The apoptotic events were associated with significant increase in the expression of pro-apoptotic genes (Bad, Bax and Bid) and down regulation of anti-apoptotic gene (Bcl 2). Interestingly, increase in sub G1 population of cell cycle phase analysis and elevated Annexin V positive cells after Ceranib 2 treatment substantiated its apoptotic activity in MCF 7 and MDA MB 231 cell lines. Thus, we report Ceranib 2 as a potent therapeutic agent against both ER{sup +} and ER{sup −} breast cancer cell lines. - Highlights: • Acid Ceramidase inhibitor, Ceranib 2 induced apoptosis in Breast cancer cell lines (MCF 7 and MDA MB 231 cell lines). • Apoptosis is mediated by DNA fragmentation and cell cycle arrest. • Ceranib 2 upregulated the expression of pro-apoptotic genes and down regulated anti-apoptotic gene expression. • More potent compared to the standard drug Tamoxifen.

  6. Targeting ceramide metabolic pathway induces apoptosis in human breast cancer cell lines

    Vethakanraj, Helen Shiphrah; Babu, Thabraz Ahmed; Sudarsanan, Ganesh Babu; Duraisamy, Prabhu Kumar; Ashok Kumar, Sekar

    2015-01-01

    The sphingolipid ceramide is a pro apoptotic molecule of ceramide metabolic pathway and is hydrolyzed to proliferative metabolite, sphingosine 1 phosphate by the action of acid ceramidase. Being upregulated in the tumors of breast, acid ceramidase acts as a potential target for breast cancer therapy. We aimed at targeting this enzyme with a small molecule acid ceramidase inhibitor, Ceranib 2 in human breast cancer cell lines MCF 7 and MDA MB 231. Ceranib 2 effectively inhibited the growth of both the cell lines in dose and time dependant manner. Morphological apoptotic hallmarks such as chromatin condensation, fragmented chromatin were observed in AO/EtBr staining. Moreover, ladder pattern of fragmented DNA observed in DNA gel electrophoresis proved the apoptotic activity of Ceranib 2 in breast cancer cell lines. The apoptotic events were associated with significant increase in the expression of pro-apoptotic genes (Bad, Bax and Bid) and down regulation of anti-apoptotic gene (Bcl 2). Interestingly, increase in sub G1 population of cell cycle phase analysis and elevated Annexin V positive cells after Ceranib 2 treatment substantiated its apoptotic activity in MCF 7 and MDA MB 231 cell lines. Thus, we report Ceranib 2 as a potent therapeutic agent against both ER + and ER − breast cancer cell lines. - Highlights: • Acid Ceramidase inhibitor, Ceranib 2 induced apoptosis in Breast cancer cell lines (MCF 7 and MDA MB 231 cell lines). • Apoptosis is mediated by DNA fragmentation and cell cycle arrest. • Ceranib 2 upregulated the expression of pro-apoptotic genes and down regulated anti-apoptotic gene expression. • More potent compared to the standard drug Tamoxifen

  7. Association of ABCB1, β tubulin I, and III with multidrug resistance of MCF7/DOC subline from breast cancer cell line MCF7.

    Li, Wentao; Zhai, Baoping; Zhi, Hui; Li, Yuhong; Jia, Linjiao; Ding, Chao; Zhang, Bin; You, Wei

    2014-09-01

    Docetaxel is a first-line chemotherapeutic agent for treating advanced breast cancer. The development of chemoresistance or multidrug resistance (MDR), however, results in breast cancer chemotherapy failure. This study aims to explore the molecular mechanisms underlying docetaxel-resistance in treatment of breast cancer. The docetaxel-resistant subline MCF7/DOC, derived from the parental sensitive breast cancer cell line MCF7, was established by intermittent exposure to moderate concentrations of docetaxel, followed by examination of its phenotypes. The MCF7/DOC subline showed cross resistance against paclitaxel, doxorubicin, methotrexate, and 5-Fu. Compared to the parental MCF7, MCF7/DOC cells were enlarged with heterogeneous sizes and a cobblestone and polygonal appearance. They were arrested at G2/M phase and proliferated slowly. The colony formation potential of MCF7/DOC in soft agar was significantly increased. MCF7/DOC cells showed reduced intracellular accumulation and increased efflux of rhodamine 123. The mRNA expression level of adenosine triphosphate binding cassette (ABC) transporter family, i.e., ABCB1, ABCC1, ABCC2, ABCG2, and β tubulin isotypes were characterized by quantitative PCR. High-level expression of ABCB1, βI, and βIII tubulin mRNA in MCF7/DOC was detected. Downregulation of ABCB1, βI, and βIII tubulin mediated by three combined siRNAs resulted in stronger growth inhibition of MCF7/DOC than inhibition of the expression of individual genes. ABCB1, βI, and βIII tubulin might contribute to the MDR of MCF7/DOC and be potential therapeutic targets for overcoming MDR of breast cancer.

  8. Δ(9)-THC modulation of fatty acid 2-hydroxylase (FA2H) gene expression: possible involvement of induced levels of PPARα in MDA-MB-231 breast cancer cells.

    Takeda, Shuso; Ikeda, Eriko; Su, Shengzhong; Harada, Mari; Okazaki, Hiroyuki; Yoshioka, Yasushi; Nishimura, Hajime; Ishii, Hiroyuki; Kakizoe, Kazuhiro; Taniguchi, Aya; Tokuyasu, Miki; Himeno, Taichi; Watanabe, Kazuhito; Omiecinski, Curtis J; Aramaki, Hironori

    2014-12-04

    We recently reported that Δ(9)-tetrahydrocannabinol (Δ(9)-THC), a major cannabinoid component in Cannabis Sativa (marijuana), significantly stimulated the expression of fatty acid 2-hydroxylase (FA2H) in human breast cancer MDA-MB-231 cells. Peroxisome proliferator-activated receptor α (PPARα) was previously implicated in this induction. However, the mechanisms mediating this induction have not been elucidated in detail. We performed a DNA microarray analysis of Δ(9)-THC-treated samples and showed the selective up-regulation of the PPARα isoform coupled with the induction of FA2H over the other isoforms (β and γ). Δ(9)-THC itself had no binding/activation potential to/on PPARα, and palmitic acid (PA), a PPARα ligand, exhibited no stimulatory effects on FA2H in MDA-MB-231 cells; thus, we hypothesized that the levels of PPARα induced were involved in the Δ(9)-THC-mediated increase in FA2H. In support of this hypothesis, we herein demonstrated that; (i) Δ(9)-THC activated the basal transcriptional activity of PPARα in a concentration-dependent manner, (ii) the concomitant up-regulation of PPARα/FA2H was caused by Δ(9)-THC, (iii) PA could activate PPARα after the PPARα expression plasmid was introduced, and (iv) the Δ(9)-THC-induced up-regulation of FA2H was further stimulated by the co-treatment with L-663,536 (a known PPARα inducer). Taken together, these results support the concept that the induced levels of PPARα may be involved in the Δ(9)-THC up-regulation of FA2H in MDA-MB-231 cells. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  9. Δ{sup 9}-THC modulation of fatty acid 2-hydroxylase (FA2H) gene expression: Possible involvement of induced levels of PPARα in MDA-MB-231 breast cancer cells

    Takeda, Shuso [Department of Molecular Biology, Daiichi University of Pharmacy, 22-1 Tamagawa-cho, Minami-ku, Fukuoka 815-8511 (Japan); Laboratory of Xenobiotic Metabolism and Environmental Toxicology, Faculty of Pharmaceutical Sciences, Hiroshima International University (HIU), 5-1-1 Hiro-koshingai, Kure, Hiroshima 737-0112 (Japan); Ikeda, Eriko [Department of Molecular Biology, Daiichi University of Pharmacy, 22-1 Tamagawa-cho, Minami-ku, Fukuoka 815-8511 (Japan); Su, Shengzhong [Center for Molecular Toxicology and Carcinogenesis, 101 Life Sciences Building, Pennsylvania State University, University Park, PA 16802 (United States); Harada, Mari [Department of Molecular Biology, Daiichi University of Pharmacy, 22-1 Tamagawa-cho, Minami-ku, Fukuoka 815-8511 (Japan); Okazaki, Hiroyuki [Drug Innovation Research Center, Daiichi University of Pharmacy, 22-1 Tamagawa-cho, Minami-ku, Fukuoka 815-8511 (Japan); Yoshioka, Yasushi; Nishimura, Hajime; Ishii, Hiroyuki; Kakizoe, Kazuhiro; Taniguchi, Aya; Tokuyasu, Miki; Himeno, Taichi [Department of Molecular Biology, Daiichi University of Pharmacy, 22-1 Tamagawa-cho, Minami-ku, Fukuoka 815-8511 (Japan); Watanabe, Kazuhito [Department of Hygienic Chemistry, Faculty of Pharmaceutical Sciences, Hokuriku University, Ho-3 Kanagawa-machi, Kanazawa 920-1181 (Japan); Omiecinski, Curtis J. [Center for Molecular Toxicology and Carcinogenesis, 101 Life Sciences Building, Pennsylvania State University, University Park, PA 16802 (United States); Aramaki, Hironori [Department of Molecular Biology, Daiichi University of Pharmacy, 22-1 Tamagawa-cho, Minami-ku, Fukuoka 815-8511 (Japan); Drug Innovation Research Center, Daiichi University of Pharmacy, 22-1 Tamagawa-cho, Minami-ku, Fukuoka 815-8511 (Japan)

    2014-12-04

    We recently reported that Δ{sup 9}-tetrahydrocannabinol (Δ{sup 9}-THC), a major cannabinoid component in Cannabis Sativa (marijuana), significantly stimulated the expression of fatty acid 2-hydroxylase (FA2H) in human breast cancer MDA-MB-231 cells. Peroxisome proliferator-activated receptor α (PPARα) was previously implicated in this induction. However, the mechanisms mediating this induction have not been elucidated in detail. We performed a DNA microarray analysis of Δ{sup 9}-THC-treated samples and showed the selective up-regulation of the PPARα isoform coupled with the induction of FA2H over the other isoforms (β and γ). Δ{sup 9}-THC itself had no binding/activation potential to/on PPARα, and palmitic acid (PA), a PPARα ligand, exhibited no stimulatory effects on FA2H in MDA-MB-231 cells; thus, we hypothesized that the levels of PPARα induced were involved in the Δ{sup 9}-THC-mediated increase in FA2H. In support of this hypothesis, we herein demonstrated that; (i) Δ{sup 9}-THC activated the basal transcriptional activity of PPARα in a concentration-dependent manner, (ii) the concomitant up-regulation of PPARα/FA2H was caused by Δ{sup 9}-THC, (iii) PA could activate PPARα after the PPARα expression plasmid was introduced, and (iv) the Δ{sup 9}-THC-induced up-regulation of FA2H was further stimulated by the co-treatment with L-663,536 (a known PPARα inducer). Taken together, these results support the concept that the induced levels of PPARα may be involved in the Δ{sup 9}-THC up-regulation of FA2H in MDA-MB-231 cells.

  10. Δ9-THC modulation of fatty acid 2-hydroxylase (FA2H) gene expression: Possible involvement of induced levels of PPARα in MDA-MB-231 breast cancer cells

    Takeda, Shuso; Ikeda, Eriko; Su, Shengzhong; Harada, Mari; Okazaki, Hiroyuki; Yoshioka, Yasushi; Nishimura, Hajime; Ishii, Hiroyuki; Kakizoe, Kazuhiro; Taniguchi, Aya; Tokuyasu, Miki; Himeno, Taichi; Watanabe, Kazuhito; Omiecinski, Curtis J.; Aramaki, Hironori

    2014-01-01

    We recently reported that Δ 9 -tetrahydrocannabinol (Δ 9 -THC), a major cannabinoid component in Cannabis Sativa (marijuana), significantly stimulated the expression of fatty acid 2-hydroxylase (FA2H) in human breast cancer MDA-MB-231 cells. Peroxisome proliferator-activated receptor α (PPARα) was previously implicated in this induction. However, the mechanisms mediating this induction have not been elucidated in detail. We performed a DNA microarray analysis of Δ 9 -THC-treated samples and showed the selective up-regulation of the PPARα isoform coupled with the induction of FA2H over the other isoforms (β and γ). Δ 9 -THC itself had no binding/activation potential to/on PPARα, and palmitic acid (PA), a PPARα ligand, exhibited no stimulatory effects on FA2H in MDA-MB-231 cells; thus, we hypothesized that the levels of PPARα induced were involved in the Δ 9 -THC-mediated increase in FA2H. In support of this hypothesis, we herein demonstrated that; (i) Δ 9 -THC activated the basal transcriptional activity of PPARα in a concentration-dependent manner, (ii) the concomitant up-regulation of PPARα/FA2H was caused by Δ 9 -THC, (iii) PA could activate PPARα after the PPARα expression plasmid was introduced, and (iv) the Δ 9 -THC-induced up-regulation of FA2H was further stimulated by the co-treatment with L-663,536 (a known PPARα inducer). Taken together, these results support the concept that the induced levels of PPARα may be involved in the Δ 9 -THC up-regulation of FA2H in MDA-MB-231 cells

  11. In vitro antioxidant and anticancer activity of young Zingiber officinale against human breast carcinoma cell lines

    Iqbal Asif

    2011-09-01

    Full Text Available Abstract Background Ginger is one of the most important spice crops and traditionally has been used as medicinal plant in Bangladesh. The present work is aimed to find out antioxidant and anticancer activities of two Bangladeshi ginger varieties (Fulbaria and Syedpuri at young age grown under ambient (400 μmol/mol and elevated (800 μmol/mol CO2 concentrations against two human breast cancer cell lines (MCF-7 and MDA-MB-231. Methods The effects of ginger on MCF-7 and MDA-MB-231 cell lines were determined using TBA (thiobarbituric acid and MTT [3-(4,5-dimethylthiazolyl-2,5-diphenyl-tetrazolium bromide] assays. Reversed-phase HPLC was used to assay flavonoids composition among Fulbaria and Syedpuri ginger varieties grown under increasing CO2 concentration from 400 to 800 μmol/mol. Results Antioxidant activities in both varieties found increased significantly (P ≤ 0.05 with increasing CO2 concentration from 400 to 800 μmol/mol. High antioxidant activities were observed in the rhizomes of Syedpuri grown under elevated CO2 concentration. The results showed that enriched ginger extract (rhizomes exhibited the highest anticancer activity on MCF-7 cancer cells with IC50 values of 34.8 and 25.7 μg/ml for Fulbaria and Syedpuri respectively. IC50 values for MDA-MB-231 exhibition were 32.53 and 30.20 μg/ml for rhizomes extract of Fulbaria and Syedpuri accordingly. Conclusions Fulbaria and Syedpuri possess antioxidant and anticancer properties especially when grown under elevated CO2 concentration. The use of ginger grown under elevated CO2 concentration may have potential in the treatment and prevention of cancer.

  12. Flavokawain derivative FLS induced G2/M arrest and apoptosis on breast cancer MCF-7 cell line

    Ali NM

    2016-06-01

    Full Text Available Norlaily Mohd Ali,1 M Nadeem Akhtar,2 Huynh Ky,3 Kian Lam Lim,1 Nadiah Abu,4 Seema Zareen,2 Wan Yong Ho,5 Han Kiat Alan-Ong,1 Sheau Wei Tan,6 Noorjahan Banu Alitheen,4 Jamil bin Ismail,2 Swee Keong Yeap,6 Tunku Kamarul7 1Faculty of Medicine and Health Sciences, Universiti Tunku Abdul Rahman, Selangor, 2Department of Industrial Biotechnology, Faculty of Industrial Sciences & Technology, Universiti Malaysia Pahang, Pahang, Malaysia; 3Department of Agriculture Genetics and Breeding, College of Agriculture and Applied Biology, Cantho University, CanTho City, Vietnam; 4Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 5School of Biomedical Sciences, The University of Nottingham Malaysia Campus, 6Institute of Bioscience, Universiti Putra Malaysia, Selangor, 7Tissue Engineering Group, National Orthopaedic Centre of Excellence for Research and Learning, Department of Orthopaedic Surgery, Faculty of Medicine, University Malaya, Kuala Lumpur, Malaysia Abstract: Known as naturally occurring biologically active compounds, flavokawain A and B are the leading chalcones that possess anticancer properties. Another flavokawain derivative, (E-1-(2'-Hydroxy-4',6'-dimethoxyphenyl-3-(4-methylthiophenylprop-2-ene-1-one (FLS was characterized with 1H-nuclear magnetic resonance, electron-impact mas spectrometry, infrared spectroscopy, and ultraviolet (1H NMR, EI-MS, IR, and UV spectroscopic techniques. FLS cytotoxic efficacy against human cancer cells (MCF-7, MDA-MB-231, and MCF-10A resulted in the reduction of IC50 values in a time- and dose-dependent mode with high specificity on MCF-7 (IC50 of 36 µM at 48 hours against normal breast cell MCF-10A (no IC50 detected up to 180 µM at 72 hours. Light, scanning electron, and fluorescent microscopic analysis of MCF-7 cell treated with 36 µM of FLS displayed cell shrinkage, apoptotic body, and DNA fragmentation. Additionally, induction of G2/M cell

  13. Apigenin inhibits HGF-promoted invasive growth and metastasis involving blocking PI3K/Akt pathway and β4 integrin function in MDA-MB-231 breast cancer cells

    Lee, W.-J.; Chen, W.-K.; Wang, C.-J.; Lin, W.-L.; Tseng, T.-H.

    2008-01-01

    Hepatocyte growth factor (HGF) and its receptor, Met, known to control invasive growth program have recently been shown to play crucial roles in the survival of breast cancer patients. The diet-derived flavonoids have been reported to possess anti-invasion properties; however, knowledge on the pharmacological and molecular mechanisms in suppressing HGF/Met-mediated tumor invasion and metastasis is poorly understood. In our preliminary study, we use HGF as an invasive inducer to investigate the effect of flavonoids including apigenin, naringenin, genistein and kaempferol on HGF-dependent invasive growth of MDA-MB-231 human breast cancer cells. Results show that apigenin presents the most potent anti-migration and anti-invasion properties by Boyden chamber assay. Furthermore, apigenin represses the HGF-induced cell motility and scattering and inhibits the HGF-promoted cell migration and invasion in a dose-dependent manner. The effect of apigenin on HGF-induced signaling activation involving invasive growth was evaluated by immunoblotting analysis, it shows that apigenin blocks the HGF-induced Akt phosphorylation but not Met, ERK, and JNK phosphorylation. In addition to MDA-MB-231 cells, apigenin exhibits inhibitory effect on HGF-induced Akt phosphorylation in hepatoma SK-Hep1 cells and lung carcinoma A549 cells. By indirect immunofluorescence microscopy assay, apigenin inhibits the HGF-induced clustering of β4 integrin at actin-rich adhesive site and lamellipodia through PI3K-dependent manner. Treatment of apigenin inhibited HGF-stimulated integrin β4 function including cell-matrix adhesion and cell-endothelial cells adhesion in MDA-MB-231 cells. By Akt-siRNA transfection analysis, it confirmed that apigenin inhibited HGF-promoted invasive growth involving blocking PI3K/Akt pathway. Finally, we evaluated the effect of apigenin on HGF-promoted metastasis by lung colonization of tumor cells in nude mice and organ metastasis of tumor cells in chick embryo. By

  14. Tartrate-resistant acid phosphatase (TRAP/ACP5) promotes metastasis-related properties via TGFβ2/TβR and CD44 in MDA-MB-231 breast cancer cells.

    Reithmeier, Anja; Panizza, Elena; Krumpel, Michael; Orre, Lukas M; Branca, Rui M M; Lehtiö, Janne; Ek-Rylander, Barbro; Andersson, Göran

    2017-09-15

    Tartrate-resistant acid phosphatase (TRAP/ACP5), a metalloenzyme that is characteristic for its expression in activated osteoclasts and in macrophages, has recently gained considerable focus as a driver of metastasis and was associated with clinically relevant parameters of cancer progression and cancer aggressiveness. MDA-MB-231 breast cancer cells with different TRAP expression levels (overexpression and knockdown) were generated and characterized for protein expression and activity levels. Functional cell experiments, such as proliferation, migration and invasion assays were performed as well as global phosphoproteomic and proteomic analysis was conducted to connect molecular perturbations to the phenotypic changes. We identified an association between metastasis-related properties of TRAP-overexpressing MDA-MB-231 breast cancer cells and a TRAP-dependent regulation of Transforming growth factor (TGFβ) pathway proteins and Cluster of differentiation 44 (CD44). Overexpression of TRAP increased anchorage-independent and anchorage-dependent cell growth and proliferation, induced a more elongated cellular morphology and promoted cell migration and invasion. Migration was increased in the presence of the extracellular matrix (ECM) proteins osteopontin and fibronectin and the basement membrane proteins collagen IV and laminin I. TRAP-induced properties were reverted upon shRNA-mediated knockdown of TRAP or treatment with the small molecule TRAP inhibitor 5-PNA. Global phosphoproteomics and proteomics analyses identified possible substrates of TRAP phosphatase activity or signaling intermediates and outlined a TRAP-dependent regulation of proteins involved in cell adhesion and ECM organization. Upregulation of TGFβ isoform 2 (TGFβ2), TGFβ receptor type 1 (TβR1) and Mothers against decapentaplegic homolog 2 (SMAD2), as well as increased intracellular phosphorylation of CD44 were identified upon TRAP perturbation. Functional antibody-mediated blocking and chemical

  15. The anticancer potential of steroidal saponin, dioscin, isolated from wild yam (Dioscorea villosa) root extract in invasive human breast cancer cell line MDA-MB-231 in vitro

    Previously, we observed that wild yam (Dioscorea villosa) root extract (WYRE) was able to activate GATA3 in human breast cancer cells targeting epigenome. This study aimed to 'nd out if dioscin (DS), a bioactive compound of WYRE, can modulate GATA3 functions and cellular invasion in human breast can...

  16. Inhibition of breast cancer metastasis by using miR-31-mimic in cancer stem cell rich MDA-MB231 cell line

    Samila Farokhimanesh

    2015-04-01

    Conclusion: Metastasis associated miRNA have been represented a promising candi-dates in the field of anti-metastatic therapy and miR-31 as a powerful member of this family can function very effectively in order to inhibit the metastasis and introduce the new possibility of metastasis inhibition.

  17. Bauhinia forficata lectin (BfL) induces cell death and inhibits integrin-mediated adhesion on MCF7 human breast cancer cells.

    Silva, Mariana C C; de Paula, Cláudia A A; Ferreira, Joana G; Paredes-Gamero, Edgar J; Vaz, Angela M S F; Sampaio, Misako U; Correia, Maria Tereza S; Oliva, Maria Luiza V

    2014-07-01

    Plant lectins have attracted great interest in cancer studies due to their antitumor activities. These proteins or glycoproteins specifically and reversibly bind to different types of carbohydrates or glycoproteins. Breast cancer, which presents altered glycosylation of cell surface glycoproteins, is one of the most frequent malignant diseases in women. In this work, we describe the effect of the lectin Bauhinia forficata lectin (BfL), which was purified from B. forficata Link subsp. forficata seeds, on the MCF7 human breast cancer cellular line, investigating the mechanisms involved in its antiproliferative activity. MCF7 cells were treated with BfL. Viability and adhesion alterations were evaluated using flow cytometry and western blotting. BfL inhibited the viability of the MCF7 cell line but was ineffective on MDA-MB-231 and MCF 10A cells. It inhibits MCF7 adhesion on laminin, collagen I and fibronectin, decreases α1, α6 and β1 integrin subunit expression, and increases α5 subunit expression. BfL triggers necrosis and secondary necrosis, with caspase-9 inhibition. It also causes deoxyribonucleic acid (DNA) fragmentation, which leads to cell cycle arrest in the G2/M phase and a decrease in the expression of the regulatory proteins pRb and p21. BfL shows selective cytotoxic effect and adhesion inhibition on MCF7 breast cancer cells. Cell death induction and inhibition of cell adhesion may contribute to understanding the action of lectins in breast cancer. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. Methotrexate diethyl ester-loaded lipid-core nanocapsules in aqueous solution increased antineoplastic effects in resistant breast cancer cell line.

    Yurgel, Virginia C; Oliveira, Catiuscia P; Begnini, Karine R; Schultze, Eduarda; Thurow, Helena S; Leon, Priscila M M; Dellagostin, Odir A; Campos, Vinicius F; Beck, Ruy C R; Guterres, Silvia S; Collares, Tiago; Pohlmann, Adriana R; Seixas, Fabiana K

    2014-01-01

    Breast cancer is the most frequent cancer affecting women. Methotrexate (MTX) is an antimetabolic drug that remains important in the treatment of breast cancer. Its efficacy is compromised by resistance in cancer cells that occurs through a variety of mechanisms. This study evaluated apoptotic cell death and cell cycle arrest induced by an MTX derivative (MTX diethyl ester [MTX(OEt)2]) and MTX(OEt)2-loaded lipid-core nanocapsules in two MTX-resistant breast adenocarcinoma cell lines, MCF-7 and MDA-MB-231. The formulations prepared presented adequate granulometric profile. The treatment responses were evaluated through flow cytometry. Relying on the mechanism of resistance, we observed different responses between cell lines. For MCF-7 cells, MTX(OEt)2 solution and MTX(OEt)2-loaded lipid-core nanocapsules presented significantly higher apoptotic rates than untreated cells and cells incubated with unloaded lipid-core nanocapsules. For MDA-MB-231 cells, MTX(OEt)2-loaded lipid-core nanocapsules were significantly more efficient in inducing apoptosis than the solution of the free drug. S-phase cell cycle arrest was induced only by MTX(OEt)2 solution. The drug nanoencapsulation improved apoptosis induction for the cell line that presents MTX resistance by lack of transport receptors.

  19. Gallic acid-capped gold nanoparticles inhibit EGF-induced MMP-9 expression through suppression of p300 stabilization and NFκB/c-Jun activation in breast cancer MDA-MB-231 cells

    Chen, Ying-Jung; Lee, Yuan-Chin; Huang, Chia-Hui; Chang, Long-Sen

    2016-01-01

    Triple-negative breast cancers (TNBCs) are highly invasive and have a higher rate of distant metastasis. Matrix metalloproteinase-9 (MMP-9) plays a crucial role in EGF/EGFR-mediated malignant progression and metastasis of TNBCs. Various studies have revealed that treatment with gallic acid down-regulates MMP-9 expression in cancer cells, and that conjugation of phytochemical compounds with gold nanoparticles (AuNPs) increases the anti-tumor activity of the phytochemical compounds. Thus, the effect of gallic acid-capped AuNPs (GA-AuNPs) on MMP-9 expression in EGF-treated TNBC MDA-MB-231 cells was analyzed in the present study. The so-called green synthesis of AuNPs by means of gallic acid was performed at pH 10, and the resulting GA-AuNPs had spherical shape with an average diameter of approximately 50 nm. GA-AuNPs notably suppressed migration and invasion of EGF-treated cells, and inhibited EGF-induced MMP-9 up-regulation. GA-AuNPs abrogated EGF-induced Akt/p65 and ERK/c-Jun phosphorylation, leading to down-regulation of MMP-9 mRNA and protein expression in EGF-treated cells. Meanwhile, EGF-induced p300 stabilization was found to be involved in MMP-9 expression, whereas GA-AuNPs inhibited the EGF-promoted stability of the p300 protein. Although GA-AuNPs and gallic acid suppressed EGF-induced MMP-9 up-regulation via the same signaling pathway, the effective concentration of gallic acid was approximately 100-fold higher than that of GA-AuNPs for inhibition of MMP-9 expression in EGF-treated cells to a similar extent. Collectively, our data indicate that, in comparison with gallic acid, GA-AuNPs have a superior ability to inhibit EGF/EGFR-mediated MMP-9 expression in TNBC MDA-MB-231 cells. Our findings also point to a way to improve the anti-tumor activity of gallic acid. - Highlights: • Gallic acid-capped gold nanoparticles inhibit EGF-induced MMP-9 expression. • EGF-induced MMP-9 expression via p300 stabilization and NFκB/c-Jun activation. • Gallic acid

  20. Gallic acid-capped gold nanoparticles inhibit EGF-induced MMP-9 expression through suppression of p300 stabilization and NFκB/c-Jun activation in breast cancer MDA-MB-231 cells.

    Chen, Ying-Jung; Lee, Yuan-Chin; Huang, Chia-Hui; Chang, Long-Sen

    2016-11-01

    Triple-negative breast cancers (TNBCs) are highly invasive and have a higher rate of distant metastasis. Matrix metalloproteinase-9 (MMP-9) plays a crucial role in EGF/EGFR-mediated malignant progression and metastasis of TNBCs. Various studies have revealed that treatment with gallic acid down-regulates MMP-9 expression in cancer cells, and that conjugation of phytochemical compounds with gold nanoparticles (AuNPs) increases the anti-tumor activity of the phytochemical compounds. Thus, the effect of gallic acid-capped AuNPs (GA-AuNPs) on MMP-9 expression in EGF-treated TNBC MDA-MB-231 cells was analyzed in the present study. The so-called green synthesis of AuNPs by means of gallic acid was performed at pH10, and the resulting GA-AuNPs had spherical shape with an average diameter of approximately 50nm. GA-AuNPs notably suppressed migration and invasion of EGF-treated cells, and inhibited EGF-induced MMP-9 up-regulation. GA-AuNPs abrogated EGF-induced Akt/p65 and ERK/c-Jun phosphorylation, leading to down-regulation of MMP-9 mRNA and protein expression in EGF-treated cells. Meanwhile, EGF-induced p300 stabilization was found to be involved in MMP-9 expression, whereas GA-AuNPs inhibited the EGF-promoted stability of the p300 protein. Although GA-AuNPs and gallic acid suppressed EGF-induced MMP-9 up-regulation via the same signaling pathway, the effective concentration of gallic acid was approximately 100-fold higher than that of GA-AuNPs for inhibition of MMP-9 expression in EGF-treated cells to a similar extent. Collectively, our data indicate that, in comparison with gallic acid, GA-AuNPs have a superior ability to inhibit EGF/EGFR-mediated MMP-9 expression in TNBC MDA-MB-231 cells. Our findings also point to a way to improve the anti-tumor activity of gallic acid. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. Gallic acid-capped gold nanoparticles inhibit EGF-induced MMP-9 expression through suppression of p300 stabilization and NFκB/c-Jun activation in breast cancer MDA-MB-231 cells

    Chen, Ying-Jung; Lee, Yuan-Chin; Huang, Chia-Hui [Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung 804, Taiwan (China); Chang, Long-Sen, E-mail: lschang@mail.nsysu.edu.tw [Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung 804, Taiwan (China); Department of Biotechnology, Kaohsiung Medical University, Kaohsiung 807, Taiwan (China)

    2016-11-01

    Triple-negative breast cancers (TNBCs) are highly invasive and have a higher rate of distant metastasis. Matrix metalloproteinase-9 (MMP-9) plays a crucial role in EGF/EGFR-mediated malignant progression and metastasis of TNBCs. Various studies have revealed that treatment with gallic acid down-regulates MMP-9 expression in cancer cells, and that conjugation of phytochemical compounds with gold nanoparticles (AuNPs) increases the anti-tumor activity of the phytochemical compounds. Thus, the effect of gallic acid-capped AuNPs (GA-AuNPs) on MMP-9 expression in EGF-treated TNBC MDA-MB-231 cells was analyzed in the present study. The so-called green synthesis of AuNPs by means of gallic acid was performed at pH 10, and the resulting GA-AuNPs had spherical shape with an average diameter of approximately 50 nm. GA-AuNPs notably suppressed migration and invasion of EGF-treated cells, and inhibited EGF-induced MMP-9 up-regulation. GA-AuNPs abrogated EGF-induced Akt/p65 and ERK/c-Jun phosphorylation, leading to down-regulation of MMP-9 mRNA and protein expression in EGF-treated cells. Meanwhile, EGF-induced p300 stabilization was found to be involved in MMP-9 expression, whereas GA-AuNPs inhibited the EGF-promoted stability of the p300 protein. Although GA-AuNPs and gallic acid suppressed EGF-induced MMP-9 up-regulation via the same signaling pathway, the effective concentration of gallic acid was approximately 100-fold higher than that of GA-AuNPs for inhibition of MMP-9 expression in EGF-treated cells to a similar extent. Collectively, our data indicate that, in comparison with gallic acid, GA-AuNPs have a superior ability to inhibit EGF/EGFR-mediated MMP-9 expression in TNBC MDA-MB-231 cells. Our findings also point to a way to improve the anti-tumor activity of gallic acid. - Highlights: • Gallic acid-capped gold nanoparticles inhibit EGF-induced MMP-9 expression. • EGF-induced MMP-9 expression via p300 stabilization and NFκB/c-Jun activation. • Gallic acid

  2. MicroRNA-3646 Contributes to Docetaxel Resistance in Human Breast Cancer Cells by GSK-3?/?-Catenin Signaling Pathway

    Zhang, Xiaohui; Zhong, Shanliang; Xu, Yong; Yu, Dandan; Ma, Tengfei; Chen, Lin; Zhao, Yang; Chen, Xiu; Yang, Sujin; Wu, Yueqin; Tang, Jinhai; Zhao, Jianhua

    2016-01-01

    Acquisition of resistance to docetaxel (Doc) is one of the most important problems in treatment of breast cancer patients, but the underlying mechanisms are still not fully understood. In present study, Doc-resistant MDA-MB-231 and MCF-7 breast cancer cell lines (MDA-MB-231/Doc and MCF-7/Doc) were successfully established in vitro by gradually increasing Doc concentration on the basis of parental MDA-MB-231 and MCF-7 cell lines (MDA-MB-231/S and MCF-7/S). The potential miRNAs relevant to the ...

  3. In vitro and in vivo MMP gene expression localisation by In Situ-RT-PCR in cell culture and paraffin embedded human breast cancer cell line xenografts

    Haupt, Larisa M; Thompson, Erik W; Trezise, Ann EO; Irving, Rachel E; Irving, Michael G; Griffiths, Lyn R

    2006-01-01

    Members of the matrix metalloproteinase (MMP) family of proteases are required for the degradation of the basement membrane and extracellular matrix in both normal and pathological conditions. In vitro, MT1-MMP (MMP-14, membrane type-1-MMP) expression is higher in more invasive human breast cancer (HBC) cell lines, whilst in vivo its expression has been associated with the stroma surrounding breast tumours. MMP-1 (interstitial collagenase) has been associated with MDA-MB-231 invasion in vitro, while MMP-3 (stromelysin-1) has been localised around invasive cells of breast tumours in vivo. As MMPs are not stored intracellularly, the ability to localise their expression to their cells of origin is difficult. We utilised the unique in situ-reverse transcription-polymerase chain reaction (IS-RT-PCR) methodology to localise the in vitro and in vivo gene expression of MT1-MMP, MMP-1 and MMP-3 in human breast cancer. In vitro, MMP induction was examined in the MDA-MB-231 and MCF-7 HBC cell lines following exposure to Concanavalin A (Con A). In vivo, we examined their expression in archival paraffin embedded xenografts derived from a range of HBC cell lines of varied invasive and metastatic potential. Mouse xenografts are heterogenous, containing neoplastic human parenchyma with mouse stroma and vasculature and provide a reproducible in vivo model system correlated to the human disease state. In vitro, exposure to Con A increased MT1-MMP gene expression in MDA-MB-231 cells and decreased MT1-MMP gene expression in MCF-7 cells. MMP-1 and MMP-3 gene expression remained unchanged in both cell lines. In vivo, stromal cells recruited into each xenograft demonstrated differences in localised levels of MMP gene expression. Specifically, MDA-MB-231, MDA-MB-435 and Hs578T HBC cell lines are able to influence MMP gene expression in the surrounding stroma. We have demonstrated the applicability and sensitivity of IS-RT-PCR for the examination of MMP gene expression both in vitro and in

  4. Potential Anti-Inflammatory Effects of the Hydrophilic Fraction of Pomegranate (Punica granatum L. Seed Oil on Breast Cancer Cell Lines

    Susan Costantini

    2014-06-01

    Full Text Available In this work, we characterized conjugated linolenic acids (e.g., punicic acid as the major components of the hydrophilic fraction (80% aqueous methanol extract from pomegranate (Punica granatum L. seed oil (PSO and evaluated their anti-inflammatory potential on some human colon (HT29 and HCT116, liver (HepG2 and Huh7, breast (MCF-7 and MDA-MB-231 and prostate (DU145 cancer lines. Our results demonstrated that punicic acid and its congeners induce a significant decrease of cell viability for two breast cell lines with a related increase of the cell cycle G0/G1 phase respect to untreated cells. Moreover, the evaluation of a great panel of cytokines expressed by MCF-7 and MDA-MB-231 cells showed that the levels of VEGF and nine pro-inflammatory cytokines (IL-2, IL-6, IL-12, IL-17, IP-10, MIP-1α, MIP-1β, MCP-1 and TNF-α decreased in a dose dependent way with increasing amounts of the hydrophilic extracts of PSO, supporting the evidence of an anti-inflammatory effect. Taken together, the data herein suggest a potential synergistic cytotoxic, anti-inflammatory and anti-oxidant role of the polar compounds from PSO.

  5. Cytotoxic effects of dillapiole on MDA-MB-231 cells involve the induction of apoptosis through the mitochondrial pathway by inducing an oxidative stress while altering the cytoskeleton network.

    Ferreira, Adilson Kleber; de-Sá-Júnior, Paulo Luiz; Pasqualoto, Kerly Fernanda Mesquita; de Azevedo, Ricardo Alexandre; Câmara, Diana Aparecida Dias; Costa, André Santos; Figueiredo, Carlos Rogério; Matsuo, Alisson Leonardo; Massaoka, Mariana Hiromi; Auada, Aline Vivian Vatti; Lebrun, Ivo; Damião, Mariana Celestina Frojuello Costa Bernstorff; Tavares, Maurício Temotheo; Magri, Fátima Maria Motter; Kerkis, Irina; Parise Filho, Roberto

    2014-04-01

    Breast cancer is the world's leading cause of death among women. This situation imposes an urgent development of more selective and less toxic agents. The use of natural molecular fingerprints as sources for new bioactive chemical entities has proven to be a quite promising and efficient method. Here, we have demonstrated for the first time that dillapiole has broad cytotoxic effects against a variety tumor cells. For instance, we found that it can act as a pro-oxidant compound through the induction of reactive oxygen species (ROS) release in MDA-MB-231 cells. We also demonstrated that dillapiole exhibits anti-proliferative properties, arresting cells at the G0/G1 phase and its antimigration effects can be associated with the disruption of actin filaments, which in turn can prevent tumor cell proliferation. Molecular modeling studies corroborated the biological findings and suggested that dillapiole may present a good pharmacokinetic profile, mainly because its hydrophobic character, which can facilitate its diffusion through tumor cell membranes. All these findings support the fact that dillapiole is a promising anticancer agent. Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  6. Peptides Derived from Type IV Collagen, CXC Chemokines, and Thrombospondin-1 Domain-Containing Proteins Inhibit Neovascularization and Suppress Tumor Growth in MDA-MB-231 Breast Cancer Xenografts

    Jacob E. Koskimaki

    2009-12-01

    Full Text Available Angiogenesis or neovascularization, the process of new blood vessel formation from preexisting microvasculature, involves interactions among several cell types including parenchymal, endothelial cells, and immune cells. The formation of new vessels is tightly regulated by a balance between endogenous proangiogenic and antiangiogenic factors to maintain homeostasis in tissue; tumor progression and metastasis in breast cancer have been shown to be angiogenesis-dependent. We previously introduced a systematic methodology to identify putative endogenous antiangiogenic peptides and validated these predictions in vitro in human umbilical vein endothelial cell proliferation and migration assays. These peptides are derived from several protein families including type IV collagen, CXC chemokines, and thrombospondin-1 domain-containing proteins. On the basis of the results from the in vitro screening, we have evaluated the ability of one peptide selected from each family named pentastatin-1, chemokinostatin-1, and properdistatin, respectively, to suppress angiogenesis in an MDA-MB-231 human breast cancer orthotopic xenograft model in severe combined immunodeficient mice. Peptides were administered intraperitoneally once per day. We have demonstrated significant suppression of tumor growth in vivo and subsequent reductions in microvascular density, indicating the potential of these peptides as therapeutic agents for breast cancer.

  7. Cytotoxicity and Proapoptotic Effects of Allium atroviolaceum Flower Extract by Modulating Cell Cycle Arrest and Caspase-Dependent and p53-Independent Pathway in Breast Cancer Cell Lines

    Somayeh Khazaei

    2017-01-01

    Full Text Available Breast cancer is the second leading cause of cancer death among women and despite significant advances in therapy, it remains a critical health problem worldwide. Allium atroviolaceum is an herbaceous plant, with limited information about the therapeutic capability. We aimed to study the anticancer effect of flower extract and the mechanisms of action in MCF-7 and MDA-MB-231. The extract inhibits the proliferation of the cells in a time- and dose-dependent manner. The underlying mechanism involved the stimulation of S and G2/M phase arrest in MCF-7 and S phase arrest in MDA-MB-231 associated with decreased level of Cdk1, in a p53-independent pathway. Furthermore, the extract induces apoptosis in both cell lines, as indicated by the percentage of sub-G0 population, the morphological changes observed by phase contrast and fluorescent microscopy, and increase in Annexin-V-positive cells. The apoptosis induction was related to downregulation of Bcl-2 and also likely to be caspase-dependent. Moreover, the combination of the extract and tamoxifen exhibits synergistic effect, suggesting that it can complement current chemotherapy. LC-MS analysis displayed 17 major compounds in the extract which might be responsible for the observed effects. Overall, this study demonstrates the potential applications of Allium atroviolaceum extract as an anticancer drug for breast cancer treatment.

  8. Biologic role of activated leukocyte cell adhesion molecule overexpression in breast cancer cell lines and clinical tumor tissue.

    Hein, Sibyll; Müller, Volkmar; Köhler, Nadine; Wikman, Harriet; Krenkel, Sylke; Streichert, Thomas; Schweizer, Michaela; Riethdorf, Sabine; Assmann, Volker; Ihnen, Maike; Beck, Katrin; Issa, Rana; Jänicke, Fritz; Pantel, Klaus; Milde-Langosch, Karin

    2011-09-01

    The activated leukocyte cell adhesion molecule (ALCAM) is overexpressed in many mammary tumors, but controversial results about its role and prognostic impact in breast cancer have been reported. Therefore, we evaluated the biologic effects of ALCAM expression in two breast cancer cell lines and a larger cohort of mammary carcinomas. By stable transfections, MCF7 cells with ALCAM overexpression and MDA-MB231 cells with reduced ALCAM levels were generated and analyzed in functional assays and cDNA microarrays. In addition, an immunohistochemical study on 347 patients with breast cancer with long-term follow-up and analysis of disseminated tumor cells (DTCs) was performed. In both cell lines, high ALCAM expression was associated with reduced cell motility. In addition, ALCAM silencing in MDA-MB231 cells resulted in lower invasive potential, whereas high ALCAM expression was associated with increased apoptosis in both cell lines. Among genes which were differentially expressed in clones with altered ALCAM expression, there was an overlap of 15 genes between both cell lines, among them cathepsin D, keratin 7, gelsolin, and ets2 whose deregulation was validated by western blot analysis. In MDA-MB231 cells, we observed a correlation with VEGF expression which was validated by enzyme-linked immuno sorbent assay (ELISA). Our IHC results on primary breast carcinomas showed that ALCAM expression was associated with an estrogen receptor-positive phenotype. In addition, strong ALCAM immunostaining correlated with nodal involvement and the presence of tumor cells in bone marrow. By Kaplan-Meier analysis, strong ALCAM expression in ductal carcinomas correlated with shorter recurrence-free intervals (P=0.048) and overall survival (OAS, P=0.003). Our results indicate that the biologic role of ALCAM in breast cancer is complex, but overexpression might be relevant for outcome in ductal carcinomas.

  9. SU-F-T-678: Clotrimazole Sensitizes MCF-7 Breast Cancer Cell Line to Radiation

    Garcia, L; Tambasco, M [San Diego State University, San Diego, CA (United States)

    2016-06-15

    Purpose: To study the effects of Clotrimazole (CLT) on radiosensitivity of MCF-7 Cells in correlation to detachment of Hexokinase II from the Voltage Dependent Anion Channel on the outer membrane of the mitochondria. Apoptotic fractions were also analyzed in relation to the detachment of Hexokinase. Methods: This study focused on the mammary adenocarcinoma cell line, MCF-7. Colony forming assays were used to analyze radiosensitization by CLT. Flow cytometry methods were used to analyze apoptotic vs necrotic fractions after treatment with CLT. Spectrophotometery was used to analyze the mitochondrial bound and soluble fraction of Hexokinase by means of relative enzymatic activity. Results: Our preliminary data have shown that CLT sensitizes MCF-7 cells to radiation in a dose and incubation time dependent manner up. We have also demonstrated that there are two radiosensitizing periods in MCF-7 cells with the first corresponding to the cycle arrest after 24 hours observed in other cell lines. The second radiosensitizing period occurs with incubation in CLT after irradiation which reaches maximum effect around 24 hours of incubation time. Preliminary data from our Hexokinase detachment assay show a factor of two increase in the ratio of unbound to bound Hexokinase when comparing incubation for 24 hours in media containing 0 and 20 µM CLT. Conclusion: This study and others indicate CLT as a possible radiosensitizing agent in cancer therapies. While CLT itself shows toxicity to the liver in high doses, this study further demonstrates that disruption of the Warburg Effect and unbinding of mitochondrial bound Hexokinase as a possible pathway for cancer treatment.

  10. SU-F-T-678: Clotrimazole Sensitizes MCF-7 Breast Cancer Cell Line to Radiation

    Garcia, L; Tambasco, M

    2016-01-01

    Purpose: To study the effects of Clotrimazole (CLT) on radiosensitivity of MCF-7 Cells in correlation to detachment of Hexokinase II from the Voltage Dependent Anion Channel on the outer membrane of the mitochondria. Apoptotic fractions were also analyzed in relation to the detachment of Hexokinase. Methods: This study focused on the mammary adenocarcinoma cell line, MCF-7. Colony forming assays were used to analyze radiosensitization by CLT. Flow cytometry methods were used to analyze apoptotic vs necrotic fractions after treatment with CLT. Spectrophotometery was used to analyze the mitochondrial bound and soluble fraction of Hexokinase by means of relative enzymatic activity. Results: Our preliminary data have shown that CLT sensitizes MCF-7 cells to radiation in a dose and incubation time dependent manner up. We have also demonstrated that there are two radiosensitizing periods in MCF-7 cells with the first corresponding to the cycle arrest after 24 hours observed in other cell lines. The second radiosensitizing period occurs with incubation in CLT after irradiation which reaches maximum effect around 24 hours of incubation time. Preliminary data from our Hexokinase detachment assay show a factor of two increase in the ratio of unbound to bound Hexokinase when comparing incubation for 24 hours in media containing 0 and 20 µM CLT. Conclusion: This study and others indicate CLT as a possible radiosensitizing agent in cancer therapies. While CLT itself shows toxicity to the liver in high doses, this study further demonstrates that disruption of the Warburg Effect and unbinding of mitochondrial bound Hexokinase as a possible pathway for cancer treatment.

  11. The Activity of Sirtuin 1 in MCF-7 Breast Cancer Cell Line: The Effects of Visfatin

    kiarash behrouzfar

    2015-11-01

    Full Text Available Background & Objectives: Breast cancer is the most common cancer and the second leading cause of cancer deaths among women. Obesity, hormones, and growth factors are the risk factors for this kind of cancer. One of the changes observed in patients suffering from breast cancer is the elevated Visfatin or nicotinamide phosphoribosyl transferase (NAMPT in their tumor tissues and blood. The increased activity of Visfatin and SIRT1 (Sirtuin 1 in breast cancer and many other cancers has been determined, and its value is correlated with cancer prognosis. The aim of the present study is to investigate the effects of Visfatin on SIRT1 activity in MCF-7 breast cancer cell line. Materials & Methods: In this study, in order to investigate the effects of Visfatin on SIRT1 activity in MCF-7 cells, cells were treated after cell culture by Visfatin for 12, 24, and 48 hours. Subsequently, the cells were lysed by nuclear extraction kit, and their total protein concentrations were measured by Bradford assay. Finally, we estimated the general activity of SIRT1 by measuring the SIRT1 activity with the assay kit via spectrofluorometric device. Results: The findings of this research show that SIRT1 activity is not significantly changed following Visfatin treatments for 12 and 24 hours. However, after 48 hour, Visfatin increases SIRT1 activity about 2 times more than control group. Conclusion: The antiapoptotic effects of Visfatin are exerted by increasing SIRT1 activity in MCF-7 cells, and these effects happen after 24 hours. 

  12. Comparative assessment of the apoptotic potential of silver nanoparticles synthesized by Bacillus tequilensis and Calocybe indica in MDA-MB-231 human breast cancer cells: targeting p53 for anticancer therapy

    Gurunathan S

    2015-06-01

    -231 breast cancer cells. Western blot analyses revealed that AgNPs induce cellular apoptosis via activation of p53, p-Erk1/2, and caspase-3 signaling, and downregulation of Bcl-2. Cells pretreated with pifithrin-alpha were protected from p53-mediated AgNPs-induced toxicity.Conclusion: We have demonstrated a simple approach for the synthesis of AgNPs using the novel strains B. tequilensis and C. indica, as well as their mechanism of cell death in a p53-dependent manner in MDA-MB-231 human breast cancer cells. The present findings could provide insight for the future development of a suitable anticancer drug, which may lead to the development of novel nanotherapeutic molecules for the treatment of cancers.Keywords: apoptosis, UV-vis spectroscopy, X-ray diffraction, ROS generation

  13. Enhancement of radiation cytotoxicity by gold nanoparticles in MCF-7 breast cancer cell lines

    Rosli, Nur Shafawati binti; Rahman, Azhar Abdul [School of Physics, Universiti Sains Malaysia, 11800, Pulau Pinang (Malaysia); Aziz, Azlan Abdul [School of Physics, Universiti Sains Malaysia, 11800, Pulau Pinang (Malaysia); Nano-Biotechnology Research and Innovation (NanoBRI), Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, 11800, Pulau Pinang (Malaysia); Shamsuddin, Shaharum [Nano-Biotechnology Research and Innovation (NanoBRI), Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, 11800, Pulau Pinang (Malaysia); School of Health Sciences, Health Campus, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan (Malaysia)

    2015-04-24

    Therapy combined with metallic nanoparticles is a new way to treat cancer, in which gold nanoparticles (AuNPs) are injected through intravenous administration and bound to tumor sites. Radiotherapy aims to deliver a high therapeutic dose of ionizing radiation to the tumor without exceeding normal tissue tolerance. The use of AuNPs which is a high-atomic-number (Z) material in radiotherapy will provide a high probability for photon interaction by photoelectric effect. These provide advantages in terms of radiation dose enhancement. The high linear energy transfer and short range of photoelectric interaction products (photoelectrons, characteristic x-rays, Auger electrons) produce localized dose enhancement of the tumor. In this work, breast cancer cell lines (MCF-7) are seeded in the 96-well plate and were treated with 13 nm AuNPs before they were irradiated with 6 MV and 10 MV photon beam from a medical linear accelerator at various radiation doses. To validate the enhanced killing effect, both with and without AuNPs MCF-7 cells is irradiated simultaneously. By comparison, the results show that AuNPs significantly enhance cancer killing.

  14. Cytotoxic effect of achatinin(H) (lectin) from Achatina fulica against a human mammary carcinoma cell line (MCF7).

    Dharmu, Indra; Ramamurty, N; Kannan, Ramalingam; Babu, Mary

    2007-01-01

    The hemolymph-derived achatinin(H) (lectin) from Achatina fulica showed a marked cytotoxic effect on MCF7, a human mammary carcinoma cell line. IC(50) values as measured by the 3-(4,5-dimethylthiazol-2yl)-2,5-diphenyltetrazolium bromide assay for achatinin(H) ranged from 6 to 10 microg/ml in the MCF7 cells. MCF7 cells showed significant morphological changes leading to cell death. The above cell death was observed after 48 h of treatment with 8 microg/ml when compared to untreated cells. Alterations in the tumor marker enzymes, as well as in antioxidant enzymes, were observed after achatinin(H) treatment. The specificity and purity of the achatinin(H) was confirmed by the Western blot assay. Achatinin(H) binding to MCF7 cells was detected by anti-achatinin(H), and visualization of the achatinin(H) binding sites on confluent MCF7 cells was confirmed by flourescein isothiocyanate conjugated secondary antibody. MCF7-treated cells fluoresced, indicating the presence of achatinin(H) binding sites. Fluorescence-activated cell sorting analysis of the cell cycle showed a significant increase in S-phase in MCF7 cells after 48 h of achatinin(H) treatment. The cells were arrested in G(2)/M phase of the cell cycle after 48 h with significant changes in cell viability. Cellular damage was confirmed by agarose gel electrophoresis with the characteristic appearance of a DNA streak in treated MCF7 cells indicating the ongoing apoptosis.

  15. Apoptotic potential of two Caryophyllaceae species in MCF-7 and MDA-MB-468 cell lines

    M. Mosaddegh

    2018-01-01

    Full Text Available Background and objectives: Plants have been used to treat diseases like cancer for many years and today the trend towards their use is increasing. One of the most effective mechanisms of plants against cancer is inducing apoptosis. Apoptosis is a programmed cell death which acts opposite to cell division. It starts in response to some stimuli. Despite the effectiveness of apoptosis inducing agents, their use has been limited due to side effects and resistance to these treatments; so, applying medicinal herbs due to their lower cost and toxicity has drawn attentions. Recent research at the Traditional Medicine and Materia Medica Research Center, Shahid Beheshti University of Medical Sciences on two medicinal plants Acanthophyllum bracteatum and A. microcephalum has shown cytotoxic effects of these two species, but the mechanism of their toxicity has remained unknown; thus, the present study was designed to evaluate the apoptotic potential of Acanthophyllum bracteatum and A. microcephalum. Methods: In the present study, the cytotoxic effects of the methanol extract of Acanthophyllum bracteatum and A. microcephalum was evaluated against MCF-7 and MDA-MB-468 cells by MTT assay; furthermore, their apoptosis potential has been evaluated by annexin-V/propidium iodide assay and Hoechst 33258 staining in the same cell lines. Results: The methanol extract of A. microcephalum and A. bracteatum showed cytotoxic effects against MCF-7 and MDA-MB-468 cell lines with IC50 values of 64, 159 and 102, 250 μg/mL, respectively. The results of the apoptosis assays confirmed the potential of the two plants extracts to induce apoptosis in both cell lines while A. microcephalum demonstrated more considerable results. Conclusion: A. microcephalum could be a suitable choice for further breast cancer studies.

  16. Toxicity of trastuzumab labeled {sup 177}Lu on MCF7 and SKBr3 cell lines

    Rasaneh, Samira [Department of Medical Physics, Faculty of Medical Sciences, Tarbiat Modares University, P.O. Box 14115-331, Tehran (Iran, Islamic Republic of); Rajabi, Hossein, E-mail: hrajabi@modares.ac.i [Department of Medical Physics, Faculty of Medical Sciences, Tarbiat Modares University, P.O. Box 14115-331, Tehran (Iran, Islamic Republic of); Hossein Babaei, Mohammad; Johari Daha, Fariba [Department of Radioisotope, Nuclear Science and Technology Research Institute, Tehran (Iran, Islamic Republic of)

    2010-10-15

    In this study, we labeled trastuzumab with {sup 177}Lu to synthesize a new radiopharmaceutical for therapy of breast cancer and at the first stage investigated its therapeutic effects on SKBr3 and MCF7 breast cancer cell lines. Trastuzumab-{sup 177}Lu showed very good in-vitro characteristics such as high radiochemical purity (91{+-}0.9%), good stability in PBS buffer (86{+-}2.3%) and blood serum (81{+-}2.7%) up to 96 h, appropriate immunoreactivity (85.4{+-}1.1%) and high cytotoxicity in HER2 expression cells. 5 fold increase in toxicity of trastuzumab-{sup 177}Lu was observed when compared with unlabeled trastuzumab on SKBr3 cells.

  17. A new MCF-7 breast cancer cell line resistant to the arzoxifene metabolite desmethylarzoxifene

    Freddie, Cecilie T; Christensen, Gitte Lund; Lykkesfeldt, Anne E

    2004-01-01

    products increased towards parental MCF-7 level upon withdrawal from ARZm, concomitant with an increase in the sensitivity of MCF-7/ARZm(R)-1 cells to ARZm treatment. These data show that ARZm resistant cells remain sensitive to treatment with both tamoxifen and to ICI 182,780. Furthermore, the partial...

  18. Ethanolic Extract Cytotoxic Effect of Zingiber Afficinale in Breast Cancer (MCF7 Cell Line

    J Tavakkol Afshari

    2010-07-01

    Full Text Available Introduction & Objective: Biological activities of Zingiber afficieale plants have been reported as possessing anticancer, antibacterial, anti ulcer, antifungal, and insecticidal properties. However, its antitumor effects haven't been studied in cancer cell lines. The aim of this study was to investigate the antitumor effect of zingiber afficieale on breast cancer cell lines. Materials & Methods: This experimental study was conducted in 2010 at Mashhad University of medical Sciences. Breast cancer cell line (MCF7 and normal connective tissue cell line (L929 were cultured in DMEM medium. Ethanolic extract of Zingiber afficinale was prepared and cell lines were treated with different concentration of extract (5000 to 78 µg. Cell viability was measured by MTT assay after 24, 48, and 72 hours. The collected data were statistically analyzed by SPSS software. Results: The effects of Zingiber afficinale on cell viability were observed after 48 hours on cell lines. Ginger doses in 2500 µg concentration inhibited 50% of cell growth (IC50 in cell lines after 48 hours. Conclusion: Our study revealed that fresh ginger extract has cytotoxic effects on tumor cells, but it doesn’t have any cytotoxic effect on normal cells. It seems that ginger could be considered as a promising chemotherapeutic agent in cancer treatment.

  19. Estrogenic activity of lambda-cyhalothrin in the MCF-7 human breast carcinoma cell line.

    Zhao, Meirong; Zhang, Ying; Liu, Weiping; Xu, Chao; Wang, Lumei; Gan, Jianying

    2008-05-01

    Synthetic pyrethroids are widely used in both agricultural and urban environments for insect control. Lambda-cyhalothrin (LCT) is one of the most common pyrethroids and is used mainly for controlling mosquitoes, fleas, cockroaches, flies, and ants around households. Previous studies have addressed the environmental behaviors and acute toxicities of LCT, but little is known about its chronic toxicity, such as estrogen-like activity. In the present study, the estrogenic potential of LCT was evaluated using the MCF-7 human breast carcinoma cell line. The in vitro E-screen assay showed that 10(-7) M LCT could significantly promote MCF-7 cell proliferation, with a relative proliferative effect ratio of 45%. The cell proliferation induced by LCT could be blocked completely, however, by the addition of 10(-9) M of the estrogen receptor (ER)-antagonist ICI 182,780. The semiquantitative reverse transcription-polymerase chain reaction (RT-PCR) results showed that the Trefoil factor 1 (pS2) and progesterone receptor gene expression were up-regulated by 10(-7) M LCT for 2- and 1.5-fold, respectively. On the other hand, RT-PCR, Western blot analysis, and immunofluorescent assay demonstrated that LCT significantly repressed the mRNA and protein expression levels of ERalpha and ERbeta. These observations indicate that LCT possesses estrogenic properties and may function as a xenoestrogen, likely via a mechanism similar to that of 17beta-estradiol. The endocrine-disruption potential of LCT should be considered when assessing the safety of this compound in sensitive environmental compartments.

  20. Surface TRAIL decoy receptor-4 expression is correlated with TRAIL resistance in MCF7 breast cancer cells

    Sanlioglu, Ahter D; Dirice, Ercument; Aydin, Cigdem; Erin, Nuray; Koksoy, Sadi; Sanlioglu, Salih

    2005-01-01

    Tumor Necrosis Factor (TNF)-Related Apoptosis-Inducing Ligand (TRAIL) selectively induces apoptosis in cancer cells but not in normal cells. Despite this promising feature, TRAIL resistance observed in cancer cells seriously challenged the use of TRAIL as a death ligand in gene therapy. The current dispute concerns whether or not TRAIL receptor expression pattern is the primary determinant of TRAIL sensitivity in cancer cells. This study investigates TRAIL receptor expression pattern and its connection to TRAIL resistance in breast cancer cells. In addition, a DcR2 siRNA approach and a complementary gene therapy modality involving IKK inhibition (AdIKKβKA) were also tested to verify if these approaches could sensitize MCF7 breast cancer cells to adenovirus delivery of TRAIL (Ad5hTRAIL). TRAIL sensitivity assays were conducted using Molecular Probe's Live/Dead Cellular Viability/Cytotoxicity Kit following the infection of breast cancer cells with Ad5hTRAIL. The molecular mechanism of TRAIL induced cell death under the setting of IKK inhibition was revealed by Annexin V binding. Novel quantitative Real Time RT-PCR and flow cytometry analysis were performed to disclose TRAIL receptor composition in breast cancer cells. MCF7 but not MDA-MB-231 breast cancer cells displayed strong resistance to adenovirus delivery of TRAIL. Only the combinatorial use of Ad5hTRAIL and AdIKKβKA infection sensitized MCF7 breast cancer cells to TRAIL induced cell death. Moreover, novel quantitative Real Time RT-PCR assays suggested that while the level of TRAIL Decoy Receptor-4 (TRAIL-R4) expression was the highest in MCF7 cells, it was the lowest TRAIL receptor expressed in MDA-MB-231 cells. In addition, conventional flow cytometry analysis demonstrated that TRAIL resistant MCF7 cells exhibited substantial levels of TRAIL-R4 expression but not TRAIL decoy receptor-3 (TRAIL-R3) on surface. On the contrary, TRAIL sensitive MDA-MB-231 cells displayed very low levels of surface TRAIL-R4

  1. Involvement of NF-ΚB and HSP70 signaling pathways in the apoptosis of MDA-MB-231 cells induced by a prenylated xanthone compound, α-mangostin, from Cratoxylum arborescens

    Ibrahim MY

    2014-11-01

    the role of the central apoptosis-related proteins, a protein array followed by immunoblot analysis was conducted. Moreover, the involvement of nuclear factor-kappa B (NF-ΚB was also analyzed. Results: Apoptosis was confirmed by the apoptotic cells stained with annexin V and increase in chromatin condensation in nucleus. Treatment of cells with AM promoted cell death-transducing signals that reduced MMP by downregulation of Bcl-2 and upregulation of Bax, triggering cytochrome c release from the mitochondria to the cytosol. The released cytochrome c triggered the activation of caspase-9 followed by the executioner caspase-3/7 and then cleaved the PARP protein. Increase of caspase-8 showed the involvement of extrinsic pathway. AM treatment significantly arrested the cells at the S phase (P<0.05 concomitant with an increase in reactive oxygen species. The protein array and Western blotting demonstrated the expression of HSP70. Moreover, AM significantly blocked the induced translocation of NF-ΚB from cytoplasm to nucleus. Conclusion: Together, the results demonstrate that the AM isolated from C. arborescens inhibited the proliferation of MDA-MB-231 cells, leading to cell cycle arrest and programmed cell death, which was suggested to occur through both the extrinsic and intrinsic apoptosis pathways with involvement of the NF-ΚB and HSP70 signaling pathways. Keywords: mitochondria, protein array, caspase-3/7

  2. Evaluation of Antiproliferative Activity of Red Sorghum Bran Anthocyanin on a Human Breast Cancer Cell Line (MCF-7)

    Devi, P.S.; Kumar, M.S.; Das, A.S.M.

    2011-01-01

    Breast cancer is a leading cause of death in women worldwide both in the developed and developing countries. Thus effective treatment of breast cancer with potential antitumour drugs is important. In this paper, human breast cancer cell line MCF-7 has been employed to evaluate the antiproliferative activity of red sorghum bran anthocyanin. The present investigation showed that red sorghum bran anthocyanin induced growth inhibition of MCF-7 cells at significant level. The growth inhibition is dose dependent and irreversible in nature. When MCF-7 cells were treated with red sorghum bran anthocyanins due to activity of anthocyanin morphological changes were observed. The morphological changes were identified through the formation of apoptopic bodies. The fragmentation by these anthocyanins on DNA to oligonuleosomal-sized fragments, is a characteristic of apoptosis, and it was observed as concentration-dependent. Thus, this paper clearly demonstrates that human breast cancer cell MCF-7 is highly responsive by red sorghum bran anthocyanins result from the induction of apoptosis in MCF-7 cells.

  3. The Acetone Extract of Sclerocarya birrea (Anacardiaceae) Possesses Antiproliferative and Apoptotic Potential against Human Breast Cancer Cell Lines (MCF-7)

    Tanih, Nicoline Fri; Ndip, Roland Ndip

    2013-01-01

    Interesting antimicrobial data from the stem bark of Sclerocarya birrea, which support its use in traditional medicine for the treatment of many diseases, have been delineated. The current study was aimed to further study some pharmacological and toxicological properties of the plant to scientifically justify its use. Anticancer activity of water and acetone extracts of S. birrea was evaluated on three different cell lines, HT-29, HeLa, and MCF-7 using the cell titre blue viability assay in 96-well plates. Apoptosis was evaluated using the acridine orange and propidium iodide staining method, while morphological structure of treated cells was examined using SEM. The acetone extract exhibited remarkable antiproliferative activities on MCF-7 cell lines at dose- and time-dependent manners (24 h and 48 h of incubation). The extract also exerted apoptotic programmed cell death in MCF-7 cells with significant effect on the DNA. Morphological examination also displayed apoptotic characteristics in the treated cells, including clumping, condensation, and culminating to budding of the cells to produce membrane-bound fragmentation, as well as formation of apoptotic bodies. The acetone extract of S. birrea possesses antiproliferative and apoptotic potential against MCF-7-treated cells and could be further exploited as a potential lead in anticancer therapy. PMID:23576913

  4. Gadolinium-Hematoporphyrin: new potential MRI contrast agent for detection of breast cancer cell line (MCF-7

    D Shahbazi Gahrouei

    2005-09-01

    Full Text Available Background: Gadolinium-porphyrins have been synthesized and are currently being investigated as magnetic resonance imaging (MRI contrast agents. This study aimed to synthesize Gd-hematoporphyrin and applicate it for in vitro detection of breast cancer cell line (MCF-7. Methods: The naturally occurring porphyrin (hematoporphyrin was inserted with gadolinium (III nitrate hexahydrate to yield Gd-H. T1 relaxation times and signal enhancement of the contrast agents were presented, and the results were compared. UV spectrophotometer measured the attachment of Gd to the cell membrane of MCF-7. Results: Most of gadolinium chloride (GdCl3 was found in the washing solution, indicate that it didn`t fixed to the breast cell membranes during incubation. Gd-DTPA showed some uptake into the MCF-7 cell membranes with incubation, however, its uptake was significantly lower than Gd-H. Conclusion: Good cell memberan uptake of Gd-porphyrin is comparable to controls, indicating selective delivery it to the breast cell line and considerable potency in diagnostic MR imaging for detection of breast cancer. Key Words: Porphyrin, Contrast agent, MRI, Hematoporphyrin, Breast cancer cell (MCF-7

  5. Cytotoxic effects of Pinus eldarica essential oil and extracts on HeLa and MCF-7 cell lines

    Najmeh Sarvmeili; Abbas Jafarian-Dehkordi; Behzad Zolfaghari

    2016-01-01

    Several attempts have so far been made in the search of new anticancer agents of plant origin. Some studies have reported that different species of Pine genus possess cytotoxic activities against various cancer cell lines. In the present study, we evaluated the cytotoxic effects of Pinus eldarica bark and leaf extracts or leaf essential oil on HeLa and MCF-7 tumor cell lines. Hydroalcoholic and phenolic extracts and the essential oil of plant were prepared. Total phenolic contents of the extr...

  6. Phenotype-dependent effects of EpCAM expression on growth and invasion of human breast cancer cell lines

    Martowicz, Agnieszka; Spizzo, Gilbert; Gastl, Guenther; Untergasser, Gerold

    2012-01-01

    The epithelial cell adhesion molecule (EpCAM) has been shown to be overexpressed in breast cancer and stem cells and has emerged as an attractive target for immunotherapy of breast cancer patients. This study analyzes the effects of EpCAM on breast cancer cell lines with epithelial or mesenchymal phenotype. For this purpose, shRNA-mediated knockdown of EpCAM gene expression was performed in EpCAM high breast cancer cell lines with epithelial phenotype (MCF-7, T47D and SkBR3). Moreover, EpCAM low breast carcinoma cell lines with mesenchymal phenotype (MDA-MB-231, Hs578t) and inducible overexpression of EpCAM were used to study effects on proliferation, migration and in vivo growth. In comparison to non-specific silencing controls (n/s-crtl) knockdown of EpCAM (E#2) in EpCAM high cell lines resulted in reduced cell proliferation under serum-reduced culture conditions. Moreover, DNA synthesis under 3D culture conditions in collagen was significantly reduced. Xenografts of MCF-7 and T47D cells with knockdown of EpCAM formed smaller tumors that were less invasive. EpCAM low cell lines with tetracycline-inducible overexpression of EpCAM showed no increased cell proliferation or migration under serum-reduced growth conditions. MDA-MB-231 xenografts with EpCAM overexpression showed reduced invasion into host tissue and more infiltrates of chicken granulocytes. The role of EpCAM in breast cancer strongly depends on the epithelial or mesenchymal phenotype of tumor cells. Cancer cells with epithelial phenotype need EpCAM as a growth- and invasion-promoting factor, whereas tumor cells with a mesenchymal phenotype are independent of EpCAM in invasion processes and tumor progression. These findings might have clinical implications for EpCAM-based targeting strategies in patients with invasive breast cancer

  7. Selective apoptosis induction in MCF-7 cell line by truncated minimal functional region of Apoptin

    Shen Ni, Lim; Allaudin, Zeenathul Nazariah bt; Mohd Lila, Mohd Azmi b; Othman, Abas Mazni b; Othman, Fauziah bt

    2013-01-01

    Chicken Anemia Virus (CAV) VP3 protein (also known as Apoptin), a basic and proline-rich protein has a unique capability in inducing apoptosis in cancer cells but not in normal cells. Five truncated Apoptin proteins were analyzed to determine their selective ability to migrate into the nucleus of human breast adenocarcinoma MCF-7 cells for inducing apoptosis. For identification of the minimal selective domain for apoptosis, the wild-type Apoptin gene had been reconstructed by PCR to generate segmental deletions at the N’ terminal and linked with nuclear localization sites (NLS1 and NLS2). All the constructs were fused with maltose-binding protein gene and individually expressed by in vitro Rapid Translation System. Standardized dose of proteins were delivered into human breast adenocarcinoma MCF-7 cells and control human liver Chang cells by cytoplasmic microinjection, and subsequently observed for selective apoptosis effect. Three of the truncated Apoptin proteins with N-terminal deletions spanning amino acid 32–83 retained the cancer selective nature of wild-type Apoptin. The proteins were successfully translocated to the nucleus of MCF-7 cells initiating apoptosis, whereas non-toxic cytoplasmic retention was observed in normal Chang cells. Whilst these truncated proteins retained the tumour-specific death effector ability, the specificity for MCF-7 cells was lost in two other truncated proteins that harbor deletions at amino acid 1–31. The detection of apoptosing normal Chang cells and MCF-7 cells upon cytoplasmic microinjection of these proteins implicated a loss in Apoptin’s signature targeting activity. Therefore, the critical stretch spanning amino acid 1–31 at the upstream of a known hydrophobic leucine-rich stretch (LRS) was strongly suggested as one of the prerequisite region in Apoptin for cancer targeting. Identification of this selective domain provides a platform for developing small targets to facilitating carrier-mediated-transport across

  8. Effect of tumor necrosis factor related apoptosis-inducing ligand (TRAIL) combined with ionizing radiation on proliferation and apoptosis of breast cancer MCF-7 cell lines

    Zhang Yusong; Fu Jinxiang; Zhou Jianying; Zhou Liying; Guo Xiaokui; Zhuang Zhixiang

    2007-01-01

    Objective: To investigate the effect of Tumor necrosis factor related apoptosis-inducing ligand (TRAIL) on breast cancer MCF-7 cell lines and the possibility of TRAIL combined with radiotherapy. Methods: 1 x 10 4 /ml MCF-7 cell suspension were added to each well of 96-well plates, MCF cell were treated with radiotherapy(RT), TRAIL at different concentration or RT combined with TRAIL. MTT working solution was added and calculated the inhibitory rates of MCF-7 cells. MCF-7 cell suspension was added to 6-well plates then treated with TRAIL(1 μg/ml), 8 Gy RT or TRAIL combined with 8 Gy RT. The rates of apoptosis were detected by flow cytometry after incubated 48 h. RT-PCR methods were employed to analyze the expression of apoptosis related gene in different treatment group. Results: MCF-7 cell lines were resistant to TRAIL, but the inhibitory rate was upregulated when MCF-7 cell was treated with TRAIL combined with RT, which had a significant difference compared with RT or TRAIL alone. The expression of Bcl-2 and Bcl-Xl gene were down-regulated when MCF-7 cell lines was treated with 8 Gy RT combined with TRAIL. Conclusions: In vitro, MCF-7 cell lines are resistant to TRAIL, but TRAIL combined with radiotherapy increased the cytotoxic effect. TRAIL has a promising prospect in clinical use. (authors)

  9. IN VITRO CYTOTOXICITY STUDY OF AGAVE AMERICANA, STRYCHNOS NUX-VOMICA AND ARECA CATECHU EXTRACTS USING MCF-7 CELL LINE

    Anajwala Chetan C.

    2010-06-01

    Full Text Available Research is focusing on the search for new types of natural chemotherapeutic agent that is plant based medicines which are proving to be excellent sources of new compounds. In present research study, an attempt was made to prove cytotoxicity activity of various parts of medicinal plants such as Agave americana, Strychnos nux-vomica and Areca catechu using MCF-7 and Vero cell line. Various parts of the medicinal plants were extracted by soxhlet apparatus using solvents likes methanol and water. By trypan blue dye exclusion method, Viability of MCF-7 and Vero cell lines were 85.50 and 81.13%, respectively. IC50 value of methanol extract of Agave americana leaves and aqueous extract of Areca catechu fruits were found to be 545.9 & 826.1 µg/ml by SRB assay and 775.1 & 1461µg/ml by MTT assay, respectively, against MCF-7 cell line. From cytotoxicity study data by SRB and MTT assay, it revealed that methanol extract of Agave americana and aqueous extract of Areca catechu are potent cytotoxic.

  10. TTFields alone and in combination with chemotherapeutic agents effectively reduce the viability of MDR cell sub-lines that over-express ABC transporters

    Schneiderman, Rosa S; Shmueli, Esther; Kirson, Eilon D; Palti, Yoram

    2010-01-01

    Exposure of cancer cells to chemotherapeutic agents may result in reduced sensitivity to structurally unrelated agents, a phenomenon known as multidrug resistance, MDR. The purpose of this study is to investigate cell growth inhibition of wild type and the corresponding MDR cells by Tumor Treating Fields - TTFields, a new cancer treatment modality that is free of systemic toxicity. The TTFields were applied alone and in combination with paclitaxel and doxorubicin. Three pairs of wild type/MDR cell lines, having resistivity resulting from over-expression of ABC transporters, were studied: a clonal derivative (C11) of parental Chinese hamster ovary AA8 cells and their emetine-resistant sub-line Emt R1 ; human breast cancer cells MCF-7 and their mitoxantrone-resistant sub lines MCF-7/Mx and human breast cancer cells MDA-MB-231 and their doxorubicin resistant MDA-MB-231/Dox cells. TTFields were applied for 72 hours with and without the chemotherapeutic agents. The numbers of viable cells in the treated cultures and the untreated control groups were determined using the XTT assay. Student t-test was applied to asses the significance of the differences between results obtained for each of the three cell pairs. TTFields caused a similar reduction in the number of viable cells of wild type and MDR cells. Treatments by TTFields/drug combinations resulted in a similar increased reduction in cell survival of wild type and MDR cells. TTFields had no effect on intracellular doxorubicin accumulation in both wild type and MDR cells. The results indicate that TTFields alone and in combination with paclitaxel and doxorubicin effectively reduce the viability of both wild type and MDR cell sub-lines and thus can potentially be used as an effective treatment of drug resistant tumors

  11. Synthesis, characterization and apoptotic activity of quinazolinone Schiff base derivatives toward MCF-7 cells via intrinsic and extrinsic apoptosis pathways

    Zahedifard, Maryam; Lafta Faraj, Fadhil; Paydar, Mohammadjavad; Yeng Looi, Chung; Hajrezaei, Maryam; Hasanpourghadi, Mohadeseh; Kamalidehghan, Behnam; Abdul Majid, Nazia; Mohd Ali, Hapipah; Ameen Abdulla, Mahmood

    2015-01-01

    The current study investigated the cytotoxic effect of 3-(5-chloro-2-hydroxybenzylideneamino)-2-(5-chloro-2-hydroxyphenyl)-2,3-dihydroquinazolin-41(H)-one (A) and 3-(5-nitro-2-hydroxybenzylideneamino)-2-(5-nitro-2-hydroxyphenyl)-2,3-dihydroquinazolin-4(1H)-one (B) on MCF-7, MDA-MB-231, MCF-10A and WRL-68 cells. The mechanism involved in apoptosis was assessed to evaluate the possible pathways induced by compound A and B. MTT assay results using A and B showed significant inhibition of MCF-7 cell viability, with IC50 values of 3. 27 ± 0.171 and 4.36 ± 0.219 μg/mL, respectively, after a 72 hour treatment period. Compound A and B did not demonstrate significant cytotoxic effects towards MDA-MB-231, WRL-68 and MCF-10A cells. Acute toxicity tests also revealed an absence of toxic effects on mice. Fluorescent microscopic studies confirmed distinct morphological changes (membrane blebbing and chromosome condensation) corresponding to typical apoptotic features in treated MCF-7 cells. Using Cellomics High Content Screening (HCS), we found that compound A and B could trigger the release of cytochrome c from mitochondria to the cytosol. The release of cytochrome c activated the expression of caspases-9 and then stimulated downstream executioner caspase-3/7. In addition, caspase-8 showed remarkable activity, followed by inhibition of NF-κB activation in A-and B-treated MCF-7 cells. The results indicated that A and B could induce apoptosis via a mechanism that involves either extrinsic or intrinsic pathways. PMID:26108872

  12. Synthesis and secretion of platelet-derived growth factor by human breast cancer cell lines

    Bronzert, D.A.; Pantazis, P.; Antoniades, H.N.; Kasid, A.; Davidson, N.; Dickson, R.B.; Lippman, M.E.

    1987-01-01

    The authors report that human breast cancer cells secrete a growth factor that is biologically and immunologically similar to platelet-derived growth factor (PDGF). Serum-free medium conditioned by estrogen-independent MDA-MB-231 or estrogen-dependent MCF-7 cells contains a mitogenic or competence activity that is capable of inducing incorporation of [ 3 H] thymidine into quiescent Swiss 3T3 cells in the presence of platelet-poor plasma. Like authentic PDGF, the PDGF-like activity produced by breast cancer cells is stable after acid and heat treatment (95 0 C) and inhibited by reducing agents. The mitogenic activity comigrates with a material of ≅30 kDa on NaDodSO 4 /polyacrylamide gels. Immunoprecipitation with PDGF antiserum of proteins from metabolically labeled cell lysates and conditioned medium followed by analysis on nonreducing NaDodSO 4 /polyacrylamide gels identified proteins of 30 and 34 kDa. Upon reduction, the 30- and 34-kDa bands were converted to 15- and 16-kDa bands suggesting that the immunoprecipitated proteins were made up of two disulfide-linked polypeptides similar to PDGF. Hybridization studies with cDNA probes for the A chain PDGF and the B chain of PDGF/SIS identified transcripts for both PDGF chains in the MCF-7 and MDA-MB-231 cells. The data summarized above provide conclusive evidence for the synthesis and hormonally regulated secretion of a PDGF-like mitogen by breast carcinoma cells. Production of a PDGF-like growth factor by breast cancer cell lines may be important in mediating paracrine stimulation of tumor growth

  13. Ctotoxic and apoptogenic effects of Perovskia abrotanoides flower extract on MCF-7 and HeLa cell lines

    Mohamad Ali Geryani

    2016-06-01

    Full Text Available Objective: Perovskia abrotanoides Karel, belongs to the family Lamiaceae and grows wild alongside the mountainous roads inarid and cold climate of Northern Iran. The anti-tumor activity of P. abrotanoides root extract has been shown previously. This study was designed to examine in vitro anti-proliferative and pro-apoptotic effects of flower extract of P. abrotanoides on MCF-7 and Hela cell lines. Materials and Methods: Cells were cultured in DMEM medium with 10% fetal bovine serum, 100 units/ml penicillin and 100 µg/ml streptomycin and incubated with different concentrations of plant extracts. Cell viability was quantified by MTT assay. Apoptotic cells were determined using propidium iodide (PI staining of DNA fragmentation by flow cytometry (sub-G1 peak. Results: P. abrotanoides extract inhibited the growth of malignant cells in a time and dose-dependent manner and 1000 µg/ml of extract following 48h of incubation was the most cytotoxic dose against Hela cell in comparison with other doses; however, in MCF-7 cells,1000 and 500 µg/ml PA induced toxicity at all time points but with different features.. Analysis of flowcytometry histogram of treated cells compared with control cells indicated that the cytotoxic effect is partly due toapoptosis induction. Conclusion: Hydro-alcoholic extract of P. abrotanoides flowers inhibits the growth of MCF-7 and HeLa cell lines, partly via inducing apoptosis. Their inhibitory effect was increased in a time and dose-dependent manner, especially in MCF7 cells. However, further studies are needed to reveal the mechanisms of P. abrotanoides extract-induced cell death.

  14. Synthesis and in vitro anti-proliferative effects of 3-(hetero)aryl substituted 3-[(prop-2-ynyloxy)(thiophen-2-yl)methyl]pyridine derivatives on various cancer cell lines.

    Reddy Chamakura, Upendar; Sailaja, E; Dulla, Balakrishna; Kalle, Arunasree M; Bhavani, S; Rambabu, D; Kapavarapu, Ravikumar; Rao, M V Basaveswara; Pal, Manojit

    2014-03-01

    A series of 3-(hetero)aryl substituted 3-[(prop-2-ynyloxy)(thiophen-2-yl)methyl]pyridine derivatives were designed as potential anticancer agents. These compounds were conveniently prepared by using Pd/C-Cu mediated Sonogashira type coupling as a key step. Many of these compounds were found to be promising when tested for their in vitro anti-proliferative properties against six cancer cell lines. All these compounds were found to be selective towards the growth inhibition of cancer cells with IC50 values in the range of 0.9-1.7 μM (against MDA-MB 231 and MCF7 cells), comparable to the known anticancer drug doxorubicin. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Rapid bioreduction of trivalent aurum using banana stem powder and its cytotoxicity against MCF-7 and HEK-293 cell lines

    Arunkumar, Pichaimani [Bharathidasan University, Cancer Genetics and Nanomedicine Laboratory, Department of Biomedical Science, School of Basic Medical Sciences (India); Vedagiri, Hemamalini [Bharathidasan University, Department of Biotechnology (India); Premkumar, Kumpati, E-mail: pkumpati@hotmail.com [Bharathidasan University, Cancer Genetics and Nanomedicine Laboratory, Department of Biomedical Science, School of Basic Medical Sciences (India)

    2013-03-15

    Bioreduction of metal ions for the synthesis of nanoparticles of well-defined shape and size has been a great challenge in the field of nanotechnology. In this study, we explored the reduction potential of banana stem powder (BSP) for the synthesis of gold nanoparticles (GNP). The kinetics of GNP synthesis was monitored using UV-Vis spectroscopy. The synthesized GNP was characterized using dynamic light scattering (DLS), transmission electron microscopy, and fourier transform infrared spectroscopy. In addition, the cytotoxic potential of the synthesized GNP was investigated using human breast cancer (MCF-7) and normal human embryonic kidney (HEK-293) cell lines, as evaluated by changes in cell morphology, cell viability (MTT), and metabolic activity. BSP exhibited a strong reduction of Au(III) to Au (0) at room temperature within 5 min of reaction time. The synthesized GNP was found to be spherical with an average diameter of 30 nm by DLS analysis. The cytotoxicity analysis reveals a direct dose-response relationship, indicating that the cytotoxicity increases with increasing concentrations of the GNP. Significant cytotoxicity was observed in cancer cells (MCF-7) compared to normal cells (HEK-293). Also the cellular uptake of GNP was more pronounced in MCF-7 cells than HEK-293 cells as evidenced by zeta potential, implicating the possible reason for differential cytotoxicity. Thus the present study demonstrates the importance of these unique, less time-consuming, and stable BSP-mediated GNP as potential drug delivery vehicles in the application of anticancer therapy.

  16. Cellular uptake mechanism and comparative evaluation of antineoplastic effects of paclitaxel–cholesterol lipid emulsion on triple-negative and non-triple-negative breast cancer cell lines

    Ye J

    2016-08-01

    Full Text Available Jun Ye,1,2 Xuejun Xia,1,2 Wujun Dong,1,2 Huazhen Hao,1,2 Luhua Meng,1,2 Yanfang Yang,1,2 Renyun Wang,1,2 Yuanfeng Lyu,3 Yuling Liu1,2 1State Key Laboratory of Bioactive Substance and Function of Natural Medicines, 2Beijing Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 3School of Pharmacy, China Pharmaceutical University, Nanjing, People’s Republic of China Abstract: There is no effective clinical therapy for triple-negative breast cancers (TNBCs, which have high low-density lipoprotein (LDL requirements and express relatively high levels of LDL receptors (LDLRs on their membranes. In our previous study, a novel lipid emulsion based on a paclitaxel–cholesterol complex (PTX-CH Emul was developed, which exhibited improved safety and efficacy for the treatment of TNBC. To date, however, the cellular uptake mechanism and intracellular trafficking of PTX-CH Emul have not been investigated. In order to offer powerful proof for the therapeutic effects of PTX-CH Emul, we systematically studied the cellular uptake mechanism and intracellular trafficking of PTX-CH Emul and made a comparative evaluation of antineoplastic effects on TNBC (MDA-MB-231 and non-TNBC (MCF7 cell lines through in vitro and in vivo experiments. The in vitro antineoplastic effects and in vivo tumor-targeting efficiency of PTX-CH Emul were significantly more enhanced in MDA-MB-231-based models than those in MCF7-based models, which was associated with the more abundant expression profile of LDLR in MDA-MB-231 cells. The results of the cellular uptake mechanism indicated that PTX-CH Emul was internalized into breast cancer cells through the LDLR-mediated internalization pathway via clathrin-coated pits, localized in lysosomes, and then released into the cytoplasm, which was consistent with the internalization pathway and intracellular trafficking of native

  17. The anti-metastatic effects of the phytoestrogen arctigenin on human breast cancer cell lines regardless of the status of ER expression.

    Maxwell, Thressi; Chun, So-Young; Lee, Kyu-Shik; Kim, Soyoung; Nam, Kyung-Soo

    2017-02-01

    Arctigenin is a plant lignan extracted from Arctium lappa that has been shown to have estrogenic properties. In spite of the health benefits of phytoestrogens reducing the risk of osteoporosis, heart disease, and menopausal symptoms, its benefits against the risk of breast cancer have not been fully elucidated. Thus, we investigated the effects of arctigenin on metastasis of breast cancer using both estrogen receptor (ER)-positive MCF-7 and ER-negative MDA-MB-231 human breast cancer cell lines to see if the effects are dependent on the status of ER expression. In ER-positive MCF-7 cells, arctigenin efficiently inhibited 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced cell migration and invasion. The activity of crucial metastatic protease matrix metalloprotease (MMP)-9 in gelatin zymography was also efficiently decreased by arctigenin, as well as its mRNA expression. Notably, arctigenin exhibited similar anti-metastatic effects even in ER-negative MDA-MB-231 cells, suggesting that the anti-metastatic effects of arctigenin were not exerted via the ER. The upstream signaling pathways involved in the regulation of MMP-9 and urokinase plasminogen activator (uPA) were analyzed using western blotting. The activation of Akt, NF-κB and MAPK (ERK 1/2 and JNK 1/2) was found to be inhibited. Taken together, these data suggest that arctigenin confers anti-metastatic effects by inhibiting MMP-9 and uPA via the Akt, NF-κB and MAPK signaling pathways on breast cancer, regardless of ER expression. Therefore, we propose that the intake of arctigenin could be an effective supplement for breast cancer patients.

  18. Cytotoxic effects of Pinus eldarica essential oil and extracts on HeLa and MCF-7 cell lines.

    Sarvmeili, Najmeh; Jafarian-Dehkordi, Abbas; Zolfaghari, Behzad

    2016-12-01

    Several attempts have so far been made in the search of new anticancer agents of plant origin. Some studies have reported that different species of Pine genus possess cytotoxic activities against various cancer cell lines. In the present study, we evaluated the cytotoxic effects of Pinus eldarica bark and leaf extracts or leaf essential oil on HeLa and MCF-7 tumor cell lines. Hydroalcoholic and phenolic extracts and the essential oil of plant were prepared. Total phenolic contents of the extracts were measured using Folin-Ciocalteu reagent. Essential oil components were determined by gas chromatography-mass spectroscopy (GC-MS). Cytotoxic activity of the extracts and essential oil against HeLa and MCF-7 tumor cell lines were assessed by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay. The polyphenolic content of hydroalcoholic and phenolic extracts of the bark and hydroalcoholic extract of the leaf were 48.31%, 47.2%, and 8.47%, respectively. According to the GC-MS analysis, the major components of the leaf oil of P. eldarica were: β -caryophyllene (14.8%), germacrene D (12.9%), α-terpinenyl acetate (8.15%), α -pinene (5.7%), and -α humulene (5.9%). Bark extracts and leaf essential oil of P. eldarica significantly reduced the viability of both HeLa and MCF-7 cells in a concentration dependent manner. However, leaf extract showed less inhibitory effects against both cell lines. The essential oil of P. eldarica was more cytotoxic than its hydroalcoholic and phenolic extracts. The terpenes and phenolic compounds were probably responsible for cytotoxicity of P. eldarica . Therefore, P. eldarica might have a good potential for active anticancer agents.

  19. Metabolic signature of breast cancer cell line MCF-7: profiling of modified nucleosides via LC-IT MS coupling

    Gleiter Christoph H

    2007-11-01

    Full Text Available Abstract Background Cancer, like other diseases accompanied by strong metabolic disorders, shows characteristic effects on cell turnover rate, activity of modifying enzymes and DNA/RNA modifications, resulting also in elevated amounts of excreted modified nucleosides. For a better understanding of the impaired RNA metabolism in breast cancer cells, we screened these metabolites in the cell culture supernatants of the breast cancer cell line MCF-7 and compared it to the human mammary epithelial cells MCF-10A. The nucleosides were isolated and analyzed via 2D-chromatographic techniques: In the first dimension by cis-diol specific boronate affinity extraction and subsequently by reversed phase chromatography coupled to an ion trap mass spectrometer. Results Besides the determination of ribonucleosides, additional compounds with cis-diol structure, deriving from cross-linked biochemical pathways, like purine-, histidine- and polyamine metabolism were detected. In total, 36 metabolites were identified by comparison of fragmentation patterns and retention time. Relation to the internal standard isoguanosine yielded normalized area ratios for each identified compound and enabled a semi-quantitative metabolic signature of both analyzed cell lines. 13 of the identified 26 modified ribonucleosides were elevated in the cell culture supernatants of MCF-7 cells, with 5-methyluridine, N2,N2,7-trimethylguanosine, N6-methyl-N6-threonylcarbamoyladenosine and 3-(3-aminocarboxypropyl-uridine showing the most significant differences. 1-ribosylimidazole-4-acetic acid, a histamine metabolite, was solely found in the supernatants of MCF-10A cells, whereas 1-ribosyl-4-carboxamido-5-aminoimidazole and S-adenosylmethionine occurred only in supernatants of MCF-7 cells. Conclusion The obtained results are discussed against the background of pathological changes in cell metabolism, resulting in new perspectives for modified nucleosides and related metabolites as possible

  20. Synthesis of an anthraquinone derivative (DHAQC) and its effect on induction of G2/M arrest and apoptosis in breast cancer MCF-7 cell line.

    Yeap, SweeKeong; Akhtar, Muhammad Nadeem; Lim, Kian Lam; Abu, Nadiah; Ho, Wan Yong; Zareen, Seema; Roohani, Kiarash; Ky, Huynh; Tan, Sheau Wei; Lajis, Nordin; Alitheen, Noorjahan Banu

    2015-01-01

    Anthraquinones are an important class of naturally occurring biologically active compounds. In this study, anthraquinone derivative 1,3-dihydroxy-9,10-anthraquinone-2- carboxylic acid (DHAQC) (2) was synthesized with 32% yield through the Friedel-Crafts condensation reaction. The mechanisms of cytotoxicity of DHAQC (2) in human breast cancer MCF-7 cells were further investigated. Results from the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay showed that DHAQC (2) exhibited potential cytotoxicity and selectivity in the MCF-7 cell line, comparable with the naturally occurring anthraquinone damnacanthal. DHAQC (2) showed a slightly higher IC50 (inhibitory concentration with 50% cell viability) value in the MCF-7 cell line compared to damnacanthal, but it is more selective in terms of the ratio of IC50 on MCF-7 cells and normal MCF-10A cells. (selective index for DHAQC (2) was 2.3 and 1.7 for damnacanthal). The flow cytometry cell cycle analysis on the MCF-7 cell line treated with the IC50 dose of DHAQC (2) for 48 hours showed that DHAQC (2) arrested MCF-7 cell line at the G2/M phase in association with an inhibited expression of PLK1 genes. Western blot analysis also indicated that the DHAQC (2) increased BAX, p53, and cytochrome c levels in MCF-7 cells, which subsequently activated apoptosis as observed in annexin V/propidium iodide and cell cycle analyses. These results indicate that DHAQC (2) is a synthetic, cytotoxic, and selective anthraquinone, which is less toxic than the natural product damnacanthal, and which demonstrates potential in the induction of apoptosis in the breast cancer MCF-7 cell line.

  1. The anti-cancer effect of octagon and spherical silver nanoparticles on MCF-7 breast cancer cell line

    Mehrdad Khatami

    2017-04-01

    Full Text Available Background: The modern science of nanotechnology is an interdisciplinary science that has contributed to advances in cancer treatment. This study was performed to evaluate the therapeutic effects of biosynthesized silver nanoparticles on breast cancer cell of line MCF-7 in vitro. Methods: This analytical study was performed in Kerman and Bam University of Medical Sciences, Bam City, Kerman Province, Iran from March 2015 to March 2016. Silver nanoparticles suspension was synthesized using palm kernel extract. The resulting silver nanoparticles were studied and characterized. The ultraviolet-visible spectroscopy and transmission electron microscopy used for screening of physicochemical properties. The average particle size of the biosynthesized silver nanoparticles was determined by transmission electron microscopy. The properties of different concentrations of synthesized silver nanoparticles (1 to 3 μg/ml and palm kernel extract (containing the same concentration of the extract was used for the synthesis of silver nanoparticles against MCF-7 human breast cancer cells were determined by MTT assay. MTT is used to assess cell viability as a function of redox potential. Actively respiring cells convert the water-soluble MTT to an insoluble purple formazan. Results: The ultraviolet-visible spectroscopy showed strong absorption peak at 429 nm. The X-ray diffraction (XRD and transmission electron microscopy (TEM images revealed the formation of silver nanoparticles with spherical and octagon shape and sizes in the range between 1-40 nm, with an average size approximately 17 nm. The anti-cancer effect of silver nanoparticles on cell viability was strongly depends on the concentration of silver nanoparticles and greatly decrease with increasing the concentration of silver nanoparticles. The IC50 amount of silver nanoparticle was 2 μg/ml. Conclusion: The biosynthesized silver nanoparticles showed a dose-dependent toxicity against MCF-7 human breast

  2. [Analysis on clone in vitro and tumorigenic capacity in vivo of different subsets cells from the MCF-7 human breast cancer cell line].

    Li, Zhi; Liu, Chun-ping; He, Yan-li; Tian, Yuan; Huang, Tao

    2008-07-01

    To investigate whether there are cancer stem cells in the MCF-7 human breast cancer cell line. Flow cytometry was applied to separate different subpopulation cells from MCF-7 cells, and their ability of clone in vitro and reconstruction tumor in vivo were determined. The ability of clone in vitro and reconstruction tumor in vivo were observed in some MCF-7 cells. Contrast with CD44+ CD24+ cells, the proportion of tumorigenic cancer cells in CD44+ CD24- cells is higher. Breast cancer stem cell exists in MCF-7 and it mainly locates the subpopulation of CD44+ CD24- cells, CD44+ CD24+ cell possibly is breast cancer progenitor cell.

  3. The role of a new CD44st in increasing the invasion capability of the human breast cancer cell line MCF-7

    Fang, Xin Jian; Jiang, Hua; Zhao, Xv Peng; Jiang, Wei Mei

    2011-01-01

    CD44, a hyaluronan (HA) receptor, is a multistructural and multifunctional cell surface molecule involved in cell proliferation, cell differentiation, cell migration, angiogenesis, presentation of cytokines, chemokines and growth factors to the corresponding receptors, and docking of proteases at the cell membrane, as well as in signaling for cell survival. The CD44 gene contains 20 exons that are alternatively spliced, giving rise to many CD44 isoforms, perhaps including tumor-specific sequences. Reverse transcriptase polymerase chain reaction (RT-PCR) and Western blotting were used to detect CD44st mRNA and CD44 protein in sensitive MCF-7, Lovo, K562 and HL-60 cell lines as well as their parental counterparts, respectively. The full length cDNA encoding CD44st was obtained from the total RNA isolated from MCF-7/Adr cells by RT-PCR, and subcloned into the pMD19-T vector. The CD44st gene sequence and open reading frame were confirmed by restriction enzyme analysis and nucleotide sequencing, and then inserted into the eukaryotic expression vector pcDNA3.1. The pcDNA3.1-CD44st was transfected into MCF-7 cells using Lipofectamine. After transfection, the positive clones were obtained by G418 screening. The changes of the MMP-2 and MMP-9 genes and protein levels were detected by RT-PCR and gelatin zymography, respectively. The number of the cells penetrating through the artificial matrix membrane in each group (MCF-7, MCF-7+HA, MCF-7/neo, MCF-7/neo+HA, MCF-7/CD44st, MCF-7/CD44st+HA and MCF-7/CD44st+Anti-CD44+HA) was counted to compare the change of the invasion capability regulated by the CD44st. Erk and P-Erk were investigated by Western blotting to approach the molecular mechanisms of MMP-2 and MMP-9 expression regulated by the CD44st. Sensitive MCF-7, Lovo, K562 and HL-60 cells did not contain CD44st mRNA and CD44 protein. In contrast, the multidrug resistance MCF-7/Adr, Lovo/Adr, K562/Adr and HL-60/Adr cells expressed CD44st mRNA and CD44 protein. The CD44st m

  4. Exogenous coenzyme Q10 modulates MMP-2 activity in MCF-7 cell line as a breast cancer cellular model

    Mirmiranpour Hossein

    2010-11-01

    Full Text Available Abstract Background/Aims Matrix Metalloproteinases 2 is a key molecule in cellular invasion and metastasis. Mitochondrial ROS has been established as a mediator of MMP activity. Coenzyme Q10 contributes to intracellular ROS regulation. Coenzyme Q10 beneficial effects on cancer are still in controversy but there are indications of Coenzyme Q10 complementing effect on tamoxifen receiving breast cancer patients. Methods In this study we aimed to investigate the correlation of the effects of co-incubation of coenzyme Q10 and N-acetyl-L-cysteine (NAC on intracellular H2O2 content and Matrix Metalloproteinase 2 (MMP-2 activity in MCF-7 cell line. Results and Discussion Our experiment was designed to assess the effect in a time and dose related manner. Gelatin zymography and Flowcytometric measurement of H2O2 by 2'7',-dichlorofluorescin-diacetate probe were employed. The results showed that both coenzyme Q10 and N-acetyl-L-cysteine reduce MMP-2 activity along with the pro-oxidant capacity of the MCF-7 cell in a dose proportionate manner. Conclusions Collectively, the present study highlights the significance of Coenzyme Q10 effect on the cell invasion/metastasis effecter molecules.

  5. [Effect of Evn-50 on cell growth and apoptosis in tamoxifen-resistance human breast cancer cell line MCF-7/TAM-R].

    Hu, Hui-yong; Zhou, Jun; Wan, Fang; Dong, Li-feng; Zhang, Feng; Wang, Yi-ke; Chen, Fang-fang; Chen, Yi-ding

    2012-09-01

    To investigate the effect of Evn-50 extracted from Vitex negundo on human breast cancer cell line MCF-7 and MCF-7/TAM-R cells in vitro. MCF-7 and tamoxifen-resistant MCF-7/TAM-R cells were treated with Evn-50,tamoxifen or combination of Evn-50 and tamoxifen. Cell proliferation inhibition rates were determined by MTT assay. The apoptosis rate and the change of cell cycle were detected by PI staining flow cytometry. Protein expression of phospho-MAPK 44/42 (Thr202/Tyr204),MAPK P44/42, phospho-AKT (Ser473) and AKT were detected with Western blotting. The viability of MCF-7 cells was decreased in combination group [(28.65 ±11.43)%] and Evn-50 group [(53.02 ±15.14)%] compared with TAM group (PTAM-R in combination group [(42.11 ±14.30)%] was significantly lower than that in TAM group [(92.18 ±13.16)%] (PTAM-R cells,the expression of phosphorylation of AKT and MAPK44/42 protein was not changed in Evn-50 or TAM alone group,but significantly inhibited in the combination group at 72 h. Evn-50 can inhibit cell growth and induce apoptosis in MCF-7 and MCF-7/TAM-R cells,it can reverse tamoxifen-resistance of MCF-7/TAM-R cells.The mechanisms may be related to the down-regulation of phosphorylated ERK1/2 in MAPK signal pathway and phosphorylated AKT in AKT signal pathway.

  6. Cytotoxic activity of isolated constituents from leaves of Premna serratifolia on MCF-7 and HT-29 cell lines

    Mahesh Biradi

    2015-03-01

    Full Text Available Premna serratifolia (Syn: Premna integrifolia is an important medicinal herb known as “Agnimantha” in Ayurveda and traditionally used for anticancer activity. The objective of present study was to isolate the cytotoxic phytoconstituents from the n-hexane soluble fraction of P. serratifolia leaf extract. Unsaponifiable portion of n-hexane soluble fraction was subjected to silica based column chromatography. The major constituents present in all the sub-fractions were identified by TLC and phytochemical tests. Two constituents were isolated and they were purified. Sub-fractions with isolates were tested for cytotoxic effect by BSL bioassay. Two isolates were found to be active and which were tested on cancer cell lines MCF-7 and HT-29 for their cytotoxicity. Among two isolates, one compound has shown significant cytotoxicity. From the results we conclude that the plant isolates showed cytotoxicity against selected human cancer cell lines.

  7. GnRH receptor activation competes at a low level with growth signaling in stably transfected human breast cell lines

    Morgan, Kevin; Meyer, Colette; Miller, Nicola; Sims, Andrew H; Cagnan, Ilgin; Faratian, Dana; Harrison, David J; Millar, Robert P; Langdon, Simon P

    2011-01-01

    Gonadotrophin releasing hormone (GnRH) analogs lower estrogen levels in pre-menopausal breast cancer patients. GnRH receptor (GnRH-R) activation also directly inhibits the growth of certain cells. The applicability of GnRH anti-proliferation to breast cancer was therefore analyzed. GnRH-R expression in 298 primary breast cancer samples was measured by quantitative immunofluorescence. Levels of functional GnRH-R in breast-derived cell lines were assessed using 125 I-ligand binding and stimulation of 3 H-inositol phosphate production. Elevated levels of GnRH-R were stably expressed in cells by transfection. Effects of receptor activation on in vitro cell growth were investigated in comparison with IGF-I and EGF receptor inhibition, and correlated with intracellular signaling using western blotting. GnRH-R immunoscoring was highest in hormone receptor (triple) negative and grade 3 breast tumors. However prior to transfection, functional endogenous GnRH-R were undetectable in four commonly studied breast cancer cell lines (MCF-7, ZR-75-1, T47D and MDA-MB-231). After transfection with GnRH-R, high levels of cell surface GnRH-R were detected in SVCT and MDA-MB-231 clones while low-moderate levels of GnRH-R occurred in MCF-7 clones and ZR-75-1 clones. MCF-7 sub-clones with high levels of GnRH-R were isolated following hygromycin phosphotransferase transfection. High level cell surface GnRH-R enabled induction of high levels of 3 H-inositol phosphate and modest growth-inhibition in SVCT cells. In contrast, growth of MCF-7, ZR-75-1 or MDA-MB-231 clones was unaffected by GnRH-R activation. Cell growth was inhibited by IGF-I or EGF receptor inhibitors. IGF-I receptor inhibitor lowered levels of p-ERK1/2 in MCF-7 clones. Washout of IGF-I receptor inhibitor resulted in transient hyper-elevation of p-ERK1/2, but co-addition of GnRH-R agonist did not alter the dynamics of ERK1/2 re-phosphorylation. Breast cancers exhibit a range of GnRH-R immunostaining, with higher levels of

  8. Antioxidant and apoptotic effects of an aqueous extract of Urtica dioica on the MCF-7 human breast cancer cell line.

    Fattahi, Sadegh; Ardekani, Ali Motevalizadeh; Zabihi, Ebrahim; Abedian, Zeinab; Mostafazadeh, Amrollah; Pourbagher, Roghayeh; Akhavan-Niaki, Haleh

    2013-01-01

    Breast cancer is the most prevalent cancer and one of the leading causes of death among women in the world. Plants and herbs may play an important role in complementary or alternative treatment. The aim of this study was to evaluate the antioxidant and anti-proliferative potential of Urtica dioica. The anti oxidant activity of an aqueous extract of Urtica dioica leaf was measured by MTT assay and the FRAP method while its anti-proliferative activity on the human breast cancer cell line (MCF-7) and fibroblasts isolated from foreskin tissue was evaluated using MTT assay. Mechanisms leading to apoptosis were also investigated at the molecular level by measuring the amount of anti and pro-apoptotic proteins and at the cellular level by studying DNA fragmentation and annexin V staining by flow cytometry. The aqueous extract of Urtica dioica showed antioxidant effects with a correlation coefficient of r(2)=0.997. Dose-dependent and anti-proliferative effects of the extract were observed only on MCF-7 cells after 72 hrs with an IC50 value of 2 mg/ml. This anti proliferative activity was associated with an increase of apoptosis as demonstrated by DNA fragmentation, the appearance of apoptotic cells in flow cytometry analysis and an increase of the amount of calpain 1, calpastatin, caspase 3, caspase 9, Bax and Bcl-2, all proteins involved in the apoptotic pathway. This is the first time such in vitro antiproliferative effect of aqueous extract of Urtica dioica leaf has been described for a breast cancer cell line. Our findings warrant further research on Urtica dioica as a potential chemotherapeutic agent for breast cancer.

  9. Antioxidant and Cytotoxic Effect of Barringtonia racemosa and Hibiscus sabdariffa Fruit Extracts in MCF-7 Human Breast Cancer Cell Line.

    Amran, Norliyana; Rani, Anis Najwa Abdul; Mahmud, Roziahanim; Yin, Khoo Boon

    2016-01-01

    The fruits of Barringtonia racemosa and Hibiscus sabdariffa have been used in the treatment of abscess, ulcer, cough, asthma, and diarrhea as traditional remedy. This study aims to evaluate cytotoxic effect of B. racemosa and H. sabdariffa methanol fruit extracts toward human breast cancer cell lines (MCF-7) and its antioxidant activities. Total antioxidant activities of extracts were assayed using 2,2'-diphenyl-1-picrylhydrazyl radical (DPPH) and β-carotene bleaching assay. Content of phytochemicals, total flavonoid content (TFC), and total phenolic content (TPC) were determined using aluminum chloride colorimetric method and Folin-Ciocalteu's reagent, respectively. Cytotoxic activity in vitro was investigated through 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyl tetrazolium bromide (MTT) assay. B. racemosa extract exhibited high antioxidant activities compared to H. sabdariffa methanol fruit extracts in DPPH radical scavenging assay (inhibitory concentration [IC50] 15.26 ± 1.25 μg/mL) and ί-carotene bleaching assay (I% 98.13 ± 1.83%). B. racemosa also showed higher TPC (14.70 ± 1.05 mg gallic acid equivalents [GAE]/g) and TFC (130 ± 1.18 mg quercetin equivalents [QE]/g) compared to H. sabdariffa (3.80 ± 2.13 mg GAE/g and 40.75 ± 1.15 mg QE/g, respectively). In MTT assay, B. racemosa extract also showed a higher cytotoxic activity (IC50 57.61 ± 2.24 μg/mL) compared to H. sabdariffa. The present study indicated that phenolic and flavonoid compounds known for oxidizing activities indicated an important role among the contents of these plants extract. B. racemosa methanol extract have shown potent cytotoxic activity toward MCF-7. Following these promising results, further fractionation of the plant extract is underway to identify important phytochemical bioactives for the development of potential nutraceutical and pharmaceutical use. The phenolic and flavonoid compounds were present in B. racemosa and H. sabdariffa methanol extractsB. racemosa methanol

  10. 1-Amino-4-hydroxy-9,10-anthraquinone - An analogue of anthracycline anticancer drugs, interacts with DNA and induces apoptosis in human MDA-MB-231 breast adinocarcinoma cells: Evaluation of structure-activity relationship using computational, spectroscopic and biochemical studies.

    Mondal, Palash; Roy, Sanjay; Loganathan, Gayathri; Mandal, Bitapi; Dharumadurai, Dhanasekaran; Akbarsha, Mohammad A; Sengupta, Partha Sarathi; Chattopadhyay, Shouvik; Guin, Partha Sarathi

    2015-12-01

    The X-ray diffraction and spectroscopic properties of 1-amino-4-hydroxy-9,10-anthraquinone (1-AHAQ), a simple analogue of anthracycline chemotherapeutic drugs were studied by adopting experimental and computational methods. The optimized geometrical parameters obtained from computational methods were compared with the results of X-ray diffraction analysis and the two were found to be in reasonably good agreement. X-ray diffraction study, Density Functional Theory (DFT) and natural bond orbital (NBO) analysis indicated two types of hydrogen bonds in the molecule. The IR spectra of 1-AHAQ were studied by Vibrational Energy Distribution Analysis (VEDA) using potential energy distribution (PED) analysis. The electronic spectra were studied by TDDFT computation and compared with the experimental results. Experimental and theoretical results corroborated each other to a fair extent. To understand the biological efficacy of 1-AHAQ, it was allowed to interact with calf thymus DNA and human breast adino-carcinoma cell MDA-MB-231. It was found that the molecule induces apoptosis in this adinocarcinoma cell, with little, if any, cytotoxic effect in HBL-100 normal breast epithelial cell.

  11. Protopine Inhibits Heterotypic Celladhesion In Mda-Mb-231 Cells ...

    Background: A Chinese herb Corydalis yanhusuo W.T. Wang that showed anticancer and anti-angiogenesis effects in our previous studies was presented for further studies. In the present study, we studied the anticancer proliferation and adhesion effects of five alkaloids which were isolated from Corydalis yanhusuo.

  12. Synthesis and Characterization of Silver Nanoparticles Using Cannonball Leaves and Their Cytotoxic Activity against MCF-7 Cell Line

    Devaraj, P.; Kumari, P.; Aarti, Ch.; Renganathan, A.

    2013-01-01

    Cannonball (Couroupita guianensis) is a tree belonging to the family Lecythidaceae. Various parts of the tree have been reported to contain oils, keto steroids, glycosides, couroupitine, indirubin, isatin, and phenolic substances. We report here the synthesis of silver nanoparticles (AgNPs) using cannonball leaves. Green synthesized nanoparticles have been characterized by UV-Vis spectroscopy, SEM, TEM, and FTIR. Cannonball leaf broth as a reducing agent converts silver ions to AgNPs in a rapid and eco friendly manner. The UV-Vis spectra gave surface plasmon resonance peak at 434 nm. TEM image shows well-dispersed silver nanoparticles with an average particle size of 28.4 nm. FTIR showed the structure and respective bands of the synthesized nanoparticles and the stretch of bonds. Green synthesized silver nanoparticles by cannonball leaf extract show cytotoxicity to human breast cancer cell line (MCF-7). Overall, this environmentally friendly method of biological silver nanoparticles production provides rates of synthesis faster than or comparable to those of chemical methods and can potentially be used in various human contacting areas such as cosmetics, foods, and medical applications.

  13. In vitro evaluation of anticancer potentials of lupeol isolated from Elephantopus scaber L. on MCF-7 cell line

    Daisy Pitchai

    2014-01-01

    Full Text Available Lupeol is a triterpenoid, present in most of the medicinally effective plants and possess a wide range of biological activity against human diseases. The present study aims at evaluating the anticancer potentials of lupeol, isolated from the leaves of Elephantopus scaber L. and thereby explores its action on key cancer marker, Bcl-2. The effect of lupeol on the cell viability of MCF-7 was determined by MTT and lactate dehydrogenase assays at different concentrations. The efficacy of the compound to induce cell death was analyzed using AO/EtBr staining. Phase contrast microscopic analysis provided the changes in cell morphology of the compound treated normal breast cells (MCF-10A and MCF-7 cells. The expression of Bcl-2 and Bcl-xL proteins in the normal, cancer and lupeol treated cancer cell was analyzed by western blotting. Lupeol induced an effective change in the cell viability of MCF-7 cells with IC 50 concentration as 80 μM. Induction of cell death, change in cell morphology and population of the cancer cells was observed in the lupeol treated cells, but the normal cells were not affected. The compound effectively downregulated Bcl-2 and Bcl-xL protein expressions, which directly contribute for the induction of MCF-7 cell apoptosis. Conclusion: Thus, lupeol acts as an anticancer agent against MCF-7 cells and is a potent phytodrug to be explored further for its cytotoxic mechanism.

  14. The defensin from avocado (Persea americana var. drymifolia) PaDef induces apoptosis in the human breast cancer cell line MCF-7.

    Guzmán-Rodríguez, Jaquelina Julia; López-Gómez, Rodolfo; Salgado-Garciglia, Rafael; Ochoa-Zarzosa, Alejandra; López-Meza, Joel E

    2016-08-01

    Antimicrobial peptides (AMPs) are cytotoxic to cancer cells; however, mainly the effects of AMPs from animals have been evaluated. In this work, we assessed the cytotoxicity of PaDef defensin from avocado (Persea americana var. drymifolia) on the MCF-7 cancer cell line (a breast cancer cell line) and evaluated its mechanism of action. PaDef inhibited the viability of MCF-7 cells in a concentration-dependent manner, with an IC50=141.62μg/ml. The viability of normal peripheral blood mononuclear cells was unaffected by this AMP. Additionally, PaDef induced apoptosis in MCF-7 cells in a time-dependent manner, but did not affect the membrane potential or calcium flow. In addition, PaDef IC50 induced the expression of cytochrome c, Apaf-1, and the caspase 7 and 9 genes. Likewise, this defensin induced the loss of mitochondrial Δψm and increased the phosphorylation of MAPK p38, which may lead to MCF-7 apoptosis by the intrinsic pathway. This is the first report of an avocado defensin inducing intrinsic apoptosis in cancer cells, which suggests that it could be a potential therapeutic molecule in the treatment of cancer. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  15. Antiproliferative activity of flower hexane extract obtained from Mentha spicata associated with Mentha rotundifolia against the MCF7, KB, and NIH/3T3 cell lines.

    Nedel, Fernanda; Begnini, Karine; Carvalho, Pedro Henrique de Azambuja; Lund, Rafael Guerra; Beira, Fátima T A; Del Pino, Francisco Augusto B

    2012-11-01

    This study assessed the antiproliferative effect in vitro of the flower hexane extract obtained from Mentha spicata associated with Mentha rotundifolia against the human breast adenocarcinoma (MCF-7), human mouth epidermal carcinoma (KB), and mouse embryonic fibroblast (NIH 3T3) cell lines, using sulforhodamine B (SRB) assay. A cell density of 2×10(4)/well was seeded in 96-well plates, and samples at different concentrations ranging from 10 to 500 mg/mL were tested. The optical density was determined in an ELISA multiplate reader (Thermo Plate TP-Reader). Results demonstrated that the hexane extract presented antiproliferative activity against both the tumor cell lines KB and MCF-7, presenting a GI(50) (MCF-7=13.09 mg/mL), TGI (KB=37.76 mg/mL), and IL(50) (KB=291.07 mg/mL). Also, the hexane extract presented antiproliferative activity toward NIH 3T3 cells GI(50) (183.65 mg/mL), TGI (280.54 mg/mL), and IL(50) (384.59 mg/mL). The results indicate that the flower hexane extract obtained from M. spicata associated with M. rotundifolia presents an antineoplastic activity against KB and MCF-7, although an antiproliferative effect at a high concentration of the extract was observed toward NIH 3T3.

  16. The combination effect of sodium butyrate and 5-Aza-2'-deoxycytidine on radiosensitivity in RKO colorectal cancer and MCF-7 breast cancer cell lines

    Oh Seong

    2009-05-01

    Full Text Available Abstract Background The overall level of chromatin compaction is an important mechanism of radiosensitivity, and modification of DNA methylation and histone deacetylation may increase radiosensitivity by altering chromatin compaction. In this study, we investigated the effect of a demethylating agent, a histone deacetylase(HDAC inhibitor, and the two agents combined on radiosensitivity in human colon and breast cancer cell lines. Methods In this study, we used RKO colorectal cancer cell line and MCF-7 breast cancer cell lines and normal colon cell lines. On each of the cell lines, we used three different agents: the HDAC inhibitor sodium butyrate(SB, the demethylating agent 5-Aza-2'-deoxycytidine(5-aza-DC, and radiation. We then estimated the percentage of the cell survival using the XTT method and experimented to determine if there was an augmentation in the therapeutic effect by using different combinations of the two or three of the treatment methods. Results After treatment of each cell lines with 5-aza-DC, SB and 6 grays of radiation, we observed that the survival fraction was lower after the treatment with 5-aza-DC or SB than with radiation alone in RKO and MCF-7 cell lines(p Conclusion In conclusion, 5-aza-DC and SB can enhance radiosensitivity in both MCF-7 and RKO cell lines. The combination effect of a demethylating agent and an HDAC inhibitor is more effective than that of single agent treatment in both breast and colon cancer cell lines.

  17. Screening to Identify Commonly Used Chinese Herbs That Affect ERBB2 and ESR1 Gene Expression Using the Human Breast Cancer MCF-7 Cell Line

    Jen-Hwey Chiu

    2014-01-01

    Full Text Available Aim. Our aim the was to screen the commonly used Chinese herbs in order to detect changes in ERBB2 and ESR1 gene expression using MCF-7 cells. Methods. Using the MCF-7 human breast cancer cell line, cell cytotoxicity and proliferation were evaluated by MTT and trypan blue exclusion assays, respectively. A luciferase reporter assay was established by transient transfecting MCF-7 cells with plasmids containing either the ERBB2 or the ESR1 promoter region linked to the luciferase gene. Chinese herbal extracts were used to treat the cells at 24 h after transfection, followed by measurement of their luciferase activity. The screening results were verified by Western blotting to measure HER2 and ERα protein expression. Results. At concentrations that induced little cytotoxicity, thirteen single herbal extracts and five compound recipes were found to increase either ERBB2 or ESR1 luciferase activity. By Western blotting, Si-Wu-Tang, Kuan-Shin-Yin, and Suan-Tsao-Ren-Tang were found to increase either HER2 or ERα protein expression. In addition, Ligusticum chuanxiong was shown to have a great effect on ERBB2 gene expression and synergistically with estrogen to stimulate MCF-7 cell growth. Conclusion. Our results provide important information that should affect clinical treatment strategies among breast cancer patients who are receiving hormonal or targeted therapies.

  18. The effect of CTB on P53 protein acetylation and consequence apoptosis on MCF-7 and MRC-5 cell lines

    Mehdi Nikbakht Dastjerdi

    2013-01-01

    Conclusion: CTB could induce acetylation of P53 protein through increasing expression of P300 and consequently induce the significant cell death in MCF-7 but it could be well tolerated in MRC-5. Therefore, CTB could be used as an anti-cancer agent.

  19. FMSP-Nanoparticles Induced Cell Death on Human Breast Adenocarcinoma Cell Line (MCF-7 Cells: Morphometric Analysis

    Firdos Alam Khan

    2018-05-01

    Full Text Available Currently, breast cancer treatment mostly revolves around radiation therapy and surgical interventions, but often these treatments do not provide satisfactory relief to the patients and cause unmanageable side-effects. Nanomaterials show promising results in treating cancer cells and have many advantages such as high biocompatibility, bioavailability and effective therapeutic capabilities. Interestingly, fluorescent magnetic nanoparticles have been used in many biological and diagnostic applications, but there is no report of use of fluorescent magnetic submicronic polymer nanoparticles (FMSP-nanoparticles in the treatment of human breast cancer cells. In the present study, we tested the effect of FMSP-nanoparticles on human breast cancer cells (MCF-7. We tested different concentrations (1.25, 12.5 and 50 µg/mL of FMSP-nanoparticles in MCF-7 cells and evaluated the nanoparticles response morphometrically. Our results revealed that FMSP-nanoparticles produced a concentration dependent effect on the cancer cells, a dose of 1.25 µg/mL produced no significant effect on the cancer cell morphology and cell death, whereas dosages of 12.5 and 50 µg/mL resulted in significant nuclear augmentation, disintegration, chromatic condensation followed by dose dependent cell death. Our results demonstrate that FMSP-nanoparticles induce cell death in MCF-7 cells and may be a potential anti-cancer agent for breast cancer treatment.

  20. Self-assembled monolayers with different chemical group substrates for the study of MCF-7 breast cancer cell line behavior

    Yan, Hongji; Yin, Yanbin; Li, Yu; Tian, Weiming; Zhang, Song; Nie, Yongzhan; He, Jin; Wang, Xiumei; Cui, Fuzhai; Chen, Xiongbiao

    2013-01-01

    The interactions between cancer cells and the extracellular matrix (ECM) are important with respect to a number of cell behavoirs, yet remain unclear. In this study, self-assembled monolayers with different terminal chemical groups (hydroxyl (-OH), carboxyl (-COOH), animo (-NH 2 ), mercapto (-SH), and methyl (-CH 3 )) were employed as substrates for the culture of MCF-7 cells to examine effects on cell behavior. Cell spreading was investigated by scanning electron microscopy, tallin expression by immunofluorescence, proliferation rate by counting cell numbers, cell cycle by flow cytometry, metabolism by high-performance liquid chromatography and cell migration by live cell imaging. Annexin V-FITC (fluorescein isothiocyanate) and JC-1 assays were performed to determine cell apoptosis and mitochondrial membrane potential, respectively. Our results demonstrate the varied behaviors of MCF-7 cells in response to different chemical groups. Specifically, NH 2 and COOH terminal functional groups promote proliferation, the production of lactic acid and mobility of MCF-7 cells; SH and OH terminal groups enhance the expression and distribution of tallin but result in weak cell proliferation, metabolism, spreading and mobility. These results are meaningful for uncovering the interactions between the ECM and cancer cells; they are potentially useful for designing novel cancer treatment strategies. (paper)

  1. Polyethylenimine-modified curcumin-loaded mesoporus silica nanoparticle (MCM-41) induces cell death in MCF-7 cell line.

    Harini, Lakshminarasimhan; Karthikeyan, Bose; Srivastava, Sweta; Suresh, Srinag Bangalore; Ross, Cecil; Gnanakumar, Georgepeter; Rajagopal, Srinivasan; Sundar, Krishnan; Kathiresan, Thandavarayan

    2017-02-01

    Breast cancer accounts for the first highest mortality rate in India and second in world. Though current treatment strategies are effectively killing cancer cells, they also end in causing severe side effects and drug resistance. Curcumin is a nutraceutical with multipotent activity but its insolubility in water limits its therapeutic potential as an anti-cancer drug. The hydrophilicity of curcumin could be increased by nanoformulation or changing its functional groups. In this study, curcumin is loaded on mesoporous silica nanoparticle and its anti-cancer activity is elucidated with MCF-7 cell death. Structural characteristics of Mobil Composition of Matter - 41(MCM-41) as determined by high-resolution transmission electron microscopy (HR-TEM) shows that MCM-41 size ranges from 100 to 200 nm diameters with pore size 2-10 nm for drug adsorption. The authors found 80-90% of curcumin is loaded on MCM-41 and curcumin is released efficiently at pH 3.0. The 50 µM curcumin-loaded MCM-41 induced 50% mortality of MCF-7 cells. Altogether, their results suggested that increased curcumin loading and sustained release from MCM-41 effectively decreased cell survival of MCF-7 cells in vitro.

  2. Camel Milk Triggers Apoptotic Signaling Pathways in Human Hepatoma HepG2 and Breast Cancer MCF7 Cell Lines through Transcriptional Mechanism

    Hesham M. Korashy

    2012-01-01

    Full Text Available Few published studies have reported the use of crude camel milk in the treatment of stomach infections, tuberculosis and cancer. Yet, little research was conducted on the effect of camel milk on the apoptosis and oxidative stress associated with human cancer. The present study investigated the effect and the underlying mechanisms of camel milk on the proliferation of human cancer cells using an in vitro model of human hepatoma (HepG2 and human breast (MCF7 cancer cells. Our results showed that camel milk, but not bovine milk, significantly inhibited HepG2 and MCF7 cells proliferation through the activation of caspase-3 mRNA and activity levels, and the induction of death receptors in both cell lines. In addition, Camel milk enhanced the expression of oxidative stress markers, heme oxygenase-1 and reactive oxygen species production in both cells. Mechanistically, the increase in caspase-3 mRNA levels by camel milk was completely blocked by the transcriptional inhibitor, actinomycin D; implying that camel milk increased de novo RNA synthesis. Furthermore, Inhibition of the mitogen activated protein kinases differentially modulated the camel milk-induced caspase-3 mRNA levels. Taken together, camel milk inhibited HepG2 and MCF7 cells survival and proliferation through the activation of both the extrinsic and intrinsic apoptotic pathways.

  3. In vitro study of tumor seeking radiopharmaceutical uptake by human breast cancer cell line MCF-7 after paclitaxel treatment

    Choi, Joon Young; Choi, Yong; Choe, Yearn Seong; Lee, Kyung Han; Kim, Byung Tae

    2007-01-01

    This study was designed to investigate the cellular uptake of various tumor imaging radiopharmaceuticals in human breast cancer cells before and after paclitaxel exposure considering viable cell number. F-18-fluorodeoxyglucose, C-11-methionine. TI-201, Tc-99m-MIBI, and Tc-99m-tetrofosmin were used to evaluate the cellular uptake in MCF-7 cells. MCF-7 cells were cultured in multi-well plates. Wells were divided into DMSO exposure control group, and paclitaxel exposure group. The exposure durations of paclitaxel with 10 nM or 100 nM were 2 h, 6 h, 12 h, 24 h, and 48 h. Viable cell fraction was reduced as the concentration and exposure time of paclitaxel increased. After 10 nM paclitaxel exposure, the cellular uptake of all 5 radiopharmaceuticals was not reduced significantly, irrespective of exposure time and viable cell fraction. After 100 nM paclitaxel exposure, the cellular uptake of all 5 radiopharmaceuticals was enhanced significantly irrespective of viable cell fraction. The peak uptake was observed in experimental groups with paclitaxel exposure for 6 to 48 h according the type of radiopharmaceutical. When the cellular uptake was adjusted for the viable cell fraction and cell count, the peak cellular uptake was observed in experimental groups with paclitaxel exposure for 48 h, irrespective of the type of radiopharmaceutical. The cellular uptake of F-18-fluorodeoxyglucose, C-11-methionine, TI-201, Tc-99m-MIBI, and Tc-99m-tetrofosmin did not reflect viable cell number in MCF-7 cells after paclitaxel exposure for up to 48 h

  4. Activity of Saponins from Medicago species Against HeLa and MCF-7 Cell Lines and their Capacity to Potentiate Cisplatin Effect.

    Avato, Pinarosa; Migoni, Danilo; Argentieri, Mariapia; Fanizzi, Francesco P; Tava, Aldo

    2017-11-24

    Saponins from Medicago species display several biological activities, among them apoptotic effects against plant cells have been evidenced. In contrast, their cytotoxic and antitumor activity against animal cells have not been studied in great details. To explore the cytotoxic properties of saponin from Medicago species against animal cells and their effect in combination with the antitumoral drug cisplatin. Cytotoxic activity of saponin mixtures from M. arabica (tops and roots), M. arborea (tops) and M. sativa (tops, roots and seeds) and related prosapogenins from M. arborea and M. sativa (tops) against HeLa and MCF-7 cell lines is described. In addition, cytotoxicity of soyasaponin I and purified saponins (1-8) of hederagenin, medicagenic and zanhic acid is also presented. Combination experiments with cisplatin have been also conducted. Saponins from M. arabica tops and roots (mainly monodesmosides of hederagenin and bayogenin) were the most effective to reduce proliferation of HeLa and MCF-7 cell lines. Among the purified saponins, the most cytotoxic was saponin 1, 3-O-ß-D-glucopyranosyl(1→2)-α-L-arabinopyranosyl hederagenin. When saponins, derived prosapogenins and pure saponins were used in combination with cisplatin, they all, to different extent, were able to potentiate cisplatin activity against HeLa cells but not against MCF-7 cell lines. Moreover uptake of cisplatin in these cell lines was significantly reduced. Overall results showed that specific molecular types of saponins (hederagenin glycosides) have potential as anti-cancer agents or as leads for anti-cancer agents. Moreover saponins from Medicago species have evidenced interesting properties to mediate cisplatin effects in tumor cell lines. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  5. Gold nanoparticles tethered cinnamic acid: preparation, characterization, and cytotoxic effects on MCF-7 breast cancer cell lines

    Subramanian, Karthika; Ponnuchamy, Kumar

    2018-04-01

    The main objective of the study is to tether citrate-stabilized gold nanoparticles (CS©GNPs) with cinnamic acid (CA) and evaluating them against MCF-7 breast cancer cells. To achieve CA CS©GNPs, CS©GNPs prepared were blended with CA under controlled experimental conditions followed by high-throughput characterization. The result from the study demonstrates that positively charged hydrogen moiety present in O-H group of CA provides an opportunity for binding of CS©GNPs via hydrogen bonding evidenced by color change (ruby to light purple) and spectroscopic analysis (UV-visible and FT-IR spectroscopy). The size and shape of CA CS©GNPs were not the same as CS©GNPs substantiated by transmission electron microscopy (TEM) and dynamic light scattering (DLS) measurements. At the end, cytotoxic and morphological assessment against MCF-7 breast cancer cells shows effective suppression of tumor cells and thereby promoting them as promising nanoscale drug delivery system in near future.

  6. Deciphering the Correlation between Breast Tumor Samples and Cell Lines by Integrating Copy Number Changes and Gene Expression Profiles

    Yi Sun

    2015-01-01

    Full Text Available Breast cancer is one of the most common cancers with high incident rate and high mortality rate worldwide. Although different breast cancer cell lines were widely used in laboratory investigations, accumulated evidences have indicated that genomic differences exist between cancer cell lines and tissue samples in the past decades. The abundant molecular profiles of cancer cell lines and tumor samples deposited in the Cancer Cell Line Encyclopedia and The Cancer Genome Atlas now allow a systematical comparison of the breast cancer cell lines with breast tumors. We depicted the genomic characteristics of breast primary tumors based on the copy number variation and gene expression profiles and the breast cancer cell lines were compared to different subgroups of breast tumors. We identified that some of the breast cancer cell lines show high correlation with the tumor group that agrees with previous knowledge, while a big part of them do not, including the most used MCF7, MDA-MB-231, and T-47D. We presented a computational framework to identify cell lines that mostly resemble a certain tumor group for the breast tumor study. Our investigation presents a useful guide to bridge the gap between cell lines and tumors and helps to select the most suitable cell line models for personalized cancer studies.

  7. Methotrexate diethyl ester-loaded lipid-core nanocapsules in aqueous solution increased antineoplastic effects in resistant breast cancer cell line

    Yurgel VC

    2014-03-01

    Full Text Available Virginia C Yurgel,1,* Catiuscia P Oliveira,2,* Karine R Begnini,1 Eduarda Schultze,1 Helena S Thurow,1 Priscila MM Leon,1 Odir A Dellagostin,1 Vinicius F Campos,1 Ruy CR Beck,2 Silvia S Guterres,2 Tiago Collares,1 Adriana R Pohlmann,2–4 Fabiana K Seixas11Programa de Pós-Graduação em Biotecnologia (PPGB, Grupo de Pesquisa em Oncologia Celular e Molecular, Laboratório de Genômica Funcional, Biotecnologia/Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas, Rio Grande do Sul, Brazil; 2Programa de Pós-Graduação em Ciências Farmacêuticas, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil; 3Departamento de Química Orgânica, Instituto de Química, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil; 4Centro de Nanociência e Nanotecnologia, CNANO-UFRGS, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil*These authors contributed equally to this workAbstract: Breast cancer is the most frequent cancer affecting women. Methotrexate (MTX is an antimetabolic drug that remains important in the treatment of breast cancer. Its efficacy is compromised by resistance in cancer cells that occurs through a variety of mechanisms. This study evaluated apoptotic cell death and cell cycle arrest induced by an MTX derivative (MTX diethyl ester [MTX(OEt2] and MTX(OEt2-loaded lipid-core nanocapsules in two MTX-resistant breast adenocarcinoma cell lines, MCF-7 and MDA-MB-231. The formulations prepared presented adequate granulometric profile. The treatment responses were evaluated through flow cytometry. Relying on the mechanism of resistance, we observed different responses between cell lines. For MCF-7 cells, MTX(OEt2 solution and MTX(OEt2-loaded lipid-core nanocapsules presented significantly higher apoptotic rates than untreated cells and cells incubated with unloaded lipid-core nanocapsules. For MDA-MB-231

  8. Leptin induces CYP1B1 expression in MCF-7 cells through ligand-independent activation of the ERα pathway

    Khanal, Tilak; Kim, Hyung Gyun; Do, Minh Truong; Choi, Jae Ho; Won, Seong Su [Department of Toxicology, College of Pharmacy, Chungnam National University, Daejeon (Korea, Republic of); Kang, Wonku [College of Pharmacy, Yeungnam University, Gyeongsan (Korea, Republic of); Chung, Young Chul [Department of Food Science and Culinary, International University of Korea, Jinju (Korea, Republic of); Jeong, Tae Cheon, E-mail: taecheon@ynu.ac.kr [College of Pharmacy, Yeungnam University, Gyeongsan (Korea, Republic of); Jeong, Hye Gwang, E-mail: hgjeong@cnu.ac.kr [Department of Toxicology, College of Pharmacy, Chungnam National University, Daejeon (Korea, Republic of)

    2014-05-15

    Leptin, a hormone with multiple biological actions, is produced predominantly by adipose tissue. Among its functions, leptin can stimulate tumour cell growth. Oestrogen receptor α (ERα), which plays an essential role in breast cancer development, can be transcriptionally activated in a ligand-independent manner. In this study, we investigated the effect of leptin on CYP1B1 expression and its mechanism in breast cancer cells. Leptin induced CYP1B1 protein, messenger RNA expression and promoter activity in ERα-positive MCF-7 cells but not in ERα-negative MDA-MB-231 cells. Additionally, leptin increased 4-hydroxyoestradiol in MCF-7 cells. Also, ERα knockdown by siRNA significantly blocked the induction of CYP1B1 expression by leptin, indicating that leptin induced CYP1B1 expression via an ERα-dependent mechanism. Transient transfection with CYP1B1 deletion promoter constructs revealed that the oestrogen response element (ERE) plays important role in the up-regulation of CYP1B1 by leptin. Furthermore, leptin stimulated phosphorylation of ERα at serine residues 118 and 167 and increased ERE-luciferase activity, indicating that leptin induced CYP1B1 expression by ERα activation. Finally, we found that leptin activated ERK and Akt signalling pathways, which are upstream kinases related to ERα phosphorylation induced by leptin. Taken together, our results indicate that leptin-induced CYP1B1 expression is mediated by ligand-independent activation of the ERα pathway as a result of the activation of ERK and Akt in MCF-7 cells. - Highlights: • Leptin increased 4-hydroxyoestradiol in MCF-7 breast cancer cells. • Leptin activated ERK and Akt kinases related to ERα phosphorylation. • Leptin induces phosphorylation of ERα at serine residues 118 and 167. • Leptin induces ERE-luciferase activity.

  9. Parallel evolution under chemotherapy pressure in 29 breast cancer cell lines results in dissimilar mechanisms of resistance.

    Bálint Tegze

    Full Text Available BACKGROUND: Developing chemotherapy resistant cell lines can help to identify markers of resistance. Instead of using a panel of highly heterogeneous cell lines, we assumed that truly robust and convergent pattern of resistance can be identified in multiple parallel engineered derivatives of only a few parental cell lines. METHODS: Parallel cell populations were initiated for two breast cancer cell lines (MDA-MB-231 and MCF-7 and these were treated independently for 18 months with doxorubicin or paclitaxel. IC50 values against 4 chemotherapy agents were determined to measure cross-resistance. Chromosomal instability and karyotypic changes were determined by cytogenetics. TaqMan RT-PCR measurements were performed for resistance-candidate genes. Pgp activity was measured by FACS. RESULTS: All together 16 doxorubicin- and 13 paclitaxel-treated cell lines were developed showing 2-46 fold and 3-28 fold increase in resistance, respectively. The RT-PCR and FACS analyses confirmed changes in tubulin isofom composition, TOP2A and MVP expression and activity of transport pumps (ABCB1, ABCG2. Cytogenetics showed less chromosomes but more structural aberrations in the resistant cells. CONCLUSION: We surpassed previous studies by parallel developing a massive number of cell lines to investigate chemoresistance. While the heterogeneity caused evolution of multiple resistant clones with different resistance characteristics, the activation of only a few mechanisms were sufficient in one cell line to achieve resistance.

  10. Overexpression of KCNJ3 gene splice variants affects vital parameters of the malignant breast cancer cell line MCF-7 in an opposing manner.

    Rezania, S; Kammerer, S; Li, C; Steinecker-Frohnwieser, B; Gorischek, A; DeVaney, T T J; Verheyen, S; Passegger, C A; Tabrizi-Wizsy, N Ghaffari; Hackl, H; Platzer, D; Zarnani, A H; Malle, E; Jahn, S W; Bauernhofer, T; Schreibmayer, W

    2016-08-12

    Overexpression the KCNJ3, a gene that encodes subunit 1 of G-protein activated inwardly rectifying K(+) channel (GIRK1) in the primary tumor has been found to be associated with reduced survival times and increased lymph node metastasis in breast cancer patients. In order to survey possible tumorigenic properties of GIRK1 overexpression, a range of malignant mammary epithelial cells, based on the MCF-7 cell line that permanently overexpress different splice variants of the KCNJ3 gene (GIRK1a, GIRK1c, GIRK1d and as a control, eYFP) were produced. Subsequently, selected cardinal neoplasia associated cellular parameters were assessed and compared. Adhesion to fibronectin coated surface as well as cell proliferation remained unaffected. Other vital parameters intimately linked to malignancy, i.e. wound healing, chemoinvasion, cellular velocities / motilities and angiogenesis were massively affected by GIRK1 overexpression. Overexpression of different GIRK1 splice variants exerted differential actions. While GIRK1a and GIRK1c overexpression reinforced the affected parameters towards malignancy, overexpression of GIRK1d resulted in the opposite. Single channel recording using the patch clamp technique revealed functional GIRK channels in the plasma membrane of MCF-7 cells albeit at very low frequency. We conclude that GIRK1d acts as a dominant negative constituent of functional GIRK complexes present in the plasma membrane of MCF-7 cells, while overexpression of GIRK1a and GIRK1c augmented their activity. The core component responsible for the cancerogenic action of GIRK1 is apparently presented by a segment comprising aminoacids 235-402, that is present exclusively in GIRK1a and GIRK1c, but not GIRK1d (positions according to GIRK1a primary structure). The current study provides insight into the cellular and molecular consequences of KCNJ3 overexpression in breast cancer cells and the mechanism upon clinical outcome in patients suffering from breast cancer.

  11. Antileukemic Effect of Tualang Honey on Acute and Chronic Leukemia Cell Lines

    Nik Muhd Khuzaimi Nik Man

    2015-01-01

    Full Text Available Complementary medicine using natural product as antitumor is on the rise. Much research has been performed on Tualang Honey and it was shown to have therapeutic potential in wound healing, and antimicrobial activity and be antiproliferative against several cancer models such as human osteosarcoma (HOS, human breast (MCF-7 and MDA-MB-231, and cervical (HeLa cancer cell lines. To date, there was limited study on antileukemic properties of Tualang (Koompassia excelsa Honey. The aim of this study was to evaluate the antileukemic effect of Tualang Honey on acute and chronic leukemia cell lines. Leukemia cell lines (K562 and MV4-11 and human mononuclear cell isolated from peripheral blood were grown in RPM1 1640 culture medium. The cells were incubated with increasing concentrations of Tualang Honey. After incubation, the evaluation of viability and apoptosis was performed. The morphological changes of leukemia cells were the presence of cytoplasmic blebs followed by apoptotic bodies and round shape of cells. IC50 against K562 and MV4-11 was determined. Tualang Honey gave 53.9% and 50.6% apoptosis activity on K562 and MV4-11, respectively, while on human mononuclear cell it was 37.4%. Tualang Honey has the apoptosis-inducing ability for acute and chronic myeloid leukemia (K562 and MV4-11 cell lines.

  12. Sulfamic and succinic acid derivatives of 25-OH-PPD and their activities to MCF-7, A-549, HCT-116, and BGC-823 cell lines.

    Zhou, Wu-Xi; Cao, Jia-Qing; Wang, Xu-De; Guo, Jun-Hui; Zhao, Yu-Qing

    2017-02-15

    In the search for new anti-tumor agents with higher potency than our previously identified compound 1 (25-OH-PPD, 25-hydroxyprotopanaxadiol), 12 novel sulfamic and succinic acid derivatives that could improve water solubility and contribute to good drug potency and pharmacokinetic profiles were designed and synthesized. Their in vitro anti-tumor activities in MCF-7, A-549, HCT-116, and BGC-823 cell lines and one normal cell line were tested by standard MTT assay. Results showed that compared with compound 1, compounds 2, 3, and 7 exhibited higher cytotoxic activity on A-549 and BGC-823 cell lines, together with lower toxicity in the normal cell. In particular, compound 2 exhibited the best anti-tumor activity in the in vitro assays, which may provide valuable data for the research and development of new anti-tumor agents. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Hormone resistance in two MCF-7 breast cancer cell lines is associated with reduced mTOR signaling, decreased glycolysis and increased sensitivity to cytotoxic drugs

    Euphemia Yee Leung

    2014-09-01

    Full Text Available The mTOR pathway is a key regulator of multiple cellular signaling pathways and is a potential target for therapy. We have previously developed two hormone-resistant sub-lines of the MCF-7 human breast cancer line, designated TamC3 and TamR3, which were characterized by reduced mTOR signaling, reduced cell volume and resistance to mTOR inhibition. Here we show that these lines exhibit increased sensitivity to carboplatin, oxaliplatin, 5-fluorouracil, camptothecin, doxorubicin, paclitaxel, docetaxel and hydrogen peroxide. The mechanisms underlying these changes have not yet been characterized but may include a shift from glycolysis to mitochondrial respiration. If this phenotype is found in clinical hormone-resistant breast cancers, conventional cytotoxic therapy may be a preferred option for treatment.

  14. Synthesis of Hydroxyapatite/Ag/TiO2 Nanotubes and Evaluation of Their Anticancer Activity on Breast Cancer Cell Line MCF-7

    Sara Rahimnejad

    2016-06-01

    Full Text Available In this research, TiO2 nanotubes were synthesized by anodized oxidation method and were covered with a hydroxyapatite-silver nanoparticles using photodeposition and dip coating for loading silver nanoparticles and coated hydroxyapatite (HA. The morphological texture of TiO2 nanotube and Ag-HA nanoparticles on TiO2 nanotubes surface were studied by field emission scanning electron microscopy (FESEM, energy dispersive X-ray spectroscopy (EDAX analysis and X-ray diffraction (XRD. The MCF-7 cell lines were treated with concentrations 1, 10 and 100 µg/ml of TiO2 nanotubes and HA/Ag/TiO2 nanotube for 24 and 48h. Finally, the cell viability and IC50% were evaluated using MTT assay. The results show that the HA/Ag/TiO2 has more positive effect on enhancing the cell death compare to TiO2 nanotubes and also exerts a time and concentration-dependent inhibition effect on viability of MCF-7 cells

  15. Interaction of estradiol and high density lipoproteins on proliferation of the human breast cancer cell line MCF-7 adapted to grow in serum free conditions

    Jozan, S.; Faye, J.C.; Tournier, J.F.; Tauber, J.P.; David, J.F.; Bayard, F.

    1985-01-01

    The responsiveness of the human mammary carcinoma cell line MCF-7 to estradiol and tamoxifen treatment has been studied in different culture conditions. Cells from exponentially growing cultures were compared with cells in their initial cycles after replating from confluent cultures (''confluent-log'' cells). It has been observed that estradiol stimulation of tritiated thymidine incorporation decreases with cell density and that ''confluent-log'' cells are estrogen unresponsive for a period of four cell cycles in serum-free medium conditions. On the other hand, growth of cells replated from exponentially growing, as well as from confluent cultures, can be inhibited by tamoxifen or a combined treatment with tamoxifen and the progestin levonorgestrel. This growth inhibitory effect can be rescued by estradiol when cells are replated from exponentially growing cultures. The growth inhibitory effect cannot be rescued by estradiol alone (10(-10) to 10(-8) M) when cells are replated from confluent cultures. In this condition, the addition of steroid depleted serum is necessary to reverse the state of estradiol unresponsiveness. Serum can be replaced by high density lipoproteins but not by low density lipoproteins or lipoprotein deficient serum. The present data show that estradiol and HDL interact in the control of MCF-7 cell proliferation

  16. Radiation Response of Cancer Stem-Like Cells From Established Human Cell Lines After Sorting for Surface Markers

    Al-Assar, Osama; Muschel, Ruth J.; Mantoni, Tine S.; McKenna, W. Gillies; Brunner, Thomas B.

    2009-01-01

    Purpose: A subpopulation of cancer stem-like cells (CSLC) is hypothesized to exist in different cancer cell lines and to mediate radioresistance in solid tumors. Methods and Materials: Cells were stained for CSLC markers and sorted (fluorescence-activated cell sorter/magnetic beads) to compare foci and radiosensitivity of phosphorylated histone H2AX at Ser 139 (γ-H2AX) in sorted vs. unsorted populations in eight cell lines from different organs. CSLC properties were examined using anchorage-independent growth and levels of activated Notch1. Validation consisted of testing tumorigenicity and postirradiation enrichment of CSLC in xenograft tumors. Results: The quantity of CSLC was generally in good agreement with primary tumors. CSLC from MDA-MB-231 (breast) and Panc-1 and PSN-1 (both pancreatic) cells had fewer residual γ-H2AX foci than unsorted cells, pointing to radioresistance of CSLC. However, only MDA-MB-231 CSLC were more radioresistant than unsorted cells. Furthermore, MDA-MB-231 CSLC showed enhanced anchorage-independent growth and overexpression of activated Notch1 protein. The expression of cancer stem cell surface markers in the MDA-MB-231 xenograft model was increased after exposure to fractionated radiation. In contrast to PSN-1 cells, a growth advantage for MDA-MB-231 CSLC xenograft tumors was found compared to tumors arising from unsorted cells. Conclusions: CSLC subpopulations showed no general radioresistant phenotype, despite the quantities of CSLC subpopulations shown to correspond relatively well in other reports. Likewise, CSLC characteristics were found in some but not all of the tested cell lines. The reported problems in testing for CSLC in cell lines may be overcome by additional techniques, beyond sorting for markers.

  17. Peroxisome proliferator-activated receptor-β/δ (PPARβ/δ) ligands inhibit growth of UACC903 and MCF7 human cancer cell lines

    Girroir, Elizabeth E.; Hollingshead, Holly E.; Billin, Andrew N.; Willson, Timothy M.; Robertson, Gavin P.; Sharma, Arun K.; Amin, Shantu; Gonzalez, Frank J.; Peters, Jeffrey M.

    2008-01-01

    The development of peroxisome proliferator-activated receptor-β/δ (PPARβ/δ) ligands for the treatment of diseases including metabolic syndrome, diabetes and obesity has been hampered due to contradictory findings on their potential safety. For example, while some reports show that ligand activation of PPARβ/δ promotes the induction of terminal differentiation and inhibition of cell growth, other reports suggest that PPARβ/δ ligands potentiate tumorigenesis by increasing cell proliferation. Some of the contradictory findings could be due in part to differences in the ligand examined, the presence or absence of serum in cell cultures, differences in cell lines or differences in the method used to quantify cell growth. For these reasons, this study examined the effect of ligand activation of PPARβ/δ on cell growth of two human cancer cell lines, MCF7 (breast cancer) and UACC903 (melanoma) in the presence or absence of serum using two highly specific PPARβ/δ ligands, GW0742 or GW501516. Culturing cells in the presence of either GW0742 or GW501516 caused upregulation of the known PPARβ/δ target gene angiopoietin-like protein 4 (ANGPTL4). Inhibition of cell growth was observed in both cell lines cultured in the presence of either GW0742 or GW501516, and the presence or absence of serum had little influence on this inhibition. Results from the present studies demonstrate that ligand activation of PPARβ/δ inhibits the growth of both MCF7 and UACC903 cell lines and provide further evidence that PPARβ/δ ligands are not mitogenic in human cancer cell lines

  18. Urtica dioica inhibits cell growth and induces apoptosis by targeting Ornithine decarboxylase and Adenosine deaminase as key regulatory enzymes in adenosine and polyamines homeostasis in human breast cancer cell lines.

    Fattahi, Sadegh; Ghadami, Elham; Asouri, Mohsen; Motevalizadeh Ardekanid, Ali; Akhavan-Niaki, Haleh

    2018-02-28

    Breast cancer is a heterogeneous and multifactorial disease with variable disease progression risk, and treatment response. Urtica dioica is a traditional herb used as an adjuvant therapeutic agent in cancer. In the present study, we have evaluated the effects of the aqueous extract of Urtica dioica on Adenosine deaminase (ADA) and Ornithine decarboxylase (ODC1) gene expression in MCF-7, MDA-MB-231, two breast cancer cell lines being estrogen receptor positive and estrogen receptor negative, respectively.  Cell lines were cultured in suitable media. After 24 h, different concentrations of the extract were added and after 72 h, ADA and ODC1 gene expression as well as BCL2 and BAX apoptotic genes were assessed by Taqman real time PCR assay. Cells viability was assessed by MTT assay, and apoptosis was also evaluated at cellular level. The intra and extracellular levels of ODC1 and ADA enzymes were evaluated by ELISA. Results showed differential expression of ADA and ODC1 genes in cancer cell lines. In MCF-7 cell line, the expression level of ADA was upregulated in a dose-dependent manner but its expression did not change in MDA-MB cell line. ODC1 expression was increased in both examined cell lines. Also, increased level of the apoptotic BAX/BCL-2 ratio was detected in MCF-7 cells. These results demonstrated that Urtica dioica induces apoptosis in breast cancer cells by influencing ODC1 and ADA genes expression, and estrogen receptors. The different responses observed with these cell lines could be due to the interaction of Urtica dioica as a phytoestrogen with the estrogen receptor.

  19. H19 lncRNA mediates 17β-estradiol-induced cell proliferation in MCF-7 breast cancer cells.

    Sun, Hong; Wang, Guo; Peng, Yan; Zeng, Ying; Zhu, Qiong-Ni; Li, Tai-Lin; Cai, Jia-Qin; Zhou, Hong-Hao; Zhu, Yuan-Shan

    2015-06-01

    Estrogen plays a critical role in breast cancer development and progression. However, the mechanism involved in the promotion of breast cancer development and progression by estrogen remains unclear although it has been intensively studied. In the present study, we investigated the estrogen inducibility and functional significance of H19 lncRNA in breast cancer cells and tumor tissues. The screening of 83 disease-related long non-coding RNAs (lncRNAs) revealed that H19 lncRNA was much higher in estrogen receptor (ER)-positive MCF-7 breast cancer cells than in ER-negative MDA-MB-231 cells. 17β-estradiol produced a dose- and time-dependent induction of H19 expression in MCF-7 cells, which was mediated via ERα as evident by the blockade of this 17β-estradiol effect with ICI 182780, a specific ER antagonist and knockdown of ERα using specific RNAi. Moreover, knockdown of H19 lncRNA decreased cell survival and blocked estrogen-induced cell growth while overexpression of H19 lncRNA stimulated cell proliferation. Quantitation of H19 lncRNA in human breast cancer tissues showed that the level of H19 lncRNA was >10-fold higher in ER-positive than in ER-negative tumor tissues. These results suggest that H19 is an estrogen-inducible gene and plays a key role in cell survival and in estrogen-induced cell proliferation in MCF-7 cells, indicating that H19 lncRNA may serve as a biomarker for breast cancer diagnosis and progression, and as a valuable target for breast cancer therapy.

  20. In vitro study of combined cilengitide and radiation treatment in breast cancer cell lines

    Lautenschlaeger, Tim; Perry, James; Peereboom, David; Li, Bin; Ibrahim, Ahmed; Huebner, Alexander; Meng, Wei; White, Julia; Chakravarti, Arnab

    2013-01-01

    Brain metastasis from breast cancer poses a major clinical challenge. Integrins play a role in regulating adhesion, growth, motility, and survival, and have been shown to be critical for metastatic growth in the brain in preclinical models. Cilengitide, an αvβ3/αvβ5 integrin inhibitor, has previously been studied as an anti-cancer drug in various tumor types. Previous studies have shown additive effects of cilengitide and radiation in lung cancer and glioblastoma cell lines. The ability of cilengitide to enhance the effects of radiation was examined preclinically in the setting of breast cancer to assess its possible efficacy in the setting of brain metastasis from breast cancer. Our panel of breast cells was composed of four cell lines: T-47D (ER/PR+, Her2-, luminal A), MCF-7 (ER/PR+, Her2-, luminal A), MDA-MB-231 (TNBC, basal B), MDA-MB-468 (TNBC, basal A). The presence of cilengitide targets, β3 and β5 integrin, was first determined. Cell detachment was determined by cell counting, cell proliferation was determined by MTS proliferation assay, and apoptosis was measured by Annexin V staining and flow cytometry. The efficacy of cilengitide treatment alone was analyzed, followed by assessment of combined cilengitide and radiation treatment. Integrin β3 knockdown was performed, followed by cilengitide and radiation treatment to test for incomplete target inhibition by cilengitide, in high β3 expressing cells. We observed that all cell lines examined expressed both β3 and β5 integrin and that cilengitide was able to induce cell detachment and reduced proliferation in our panel. Annexin V assays revealed that a portion of these effects was due to cilengitide-induced apoptosis. Combined treatment with cilengitide and radiation served to further reduce proliferation compared to either treatment alone. Following β3 integrin knockdown, radiosensitization in combination with cilengitide was observed in a previously non-responsive cell line (MDA-MB-231

  1. ROS mediates interferon gamma induced phosphorylation of Src, through the Raf/ERK pathway, in MCF-7 human breast cancer cell line.

    Zibara, Kazem; Zeidan, Asad; Bjeije, Hassan; Kassem, Nouhad; Badran, Bassam; El-Zein, Nabil

    2017-03-01

    Interferon gamma (IFN-ɣ) is a pleiotropic cytokine which plays dual contrasting roles in cancer. Although IFN-ɣ has been clinically used to treat various malignancies, it was recently shown to have protumorigenic activities. Reactive oxygen species (ROS) are overproduced in cancer cells, mainly due to NADPH oxidase activity, which results into several changes in signaling pathways. In this study, we examined IFN-ɣ effect on the phosphorylation levels of key signaling proteins, through ROS production, in the human breast cancer cell line MCF-7. After treatment by IFN-ɣ, results showed a significant increase in the phosphorylation of STAT1, Src, raf, AKT, ERK1/2 and p38 signaling molecules, in a time specific manner. Src and Raf were found to be involved in early stages of IFN-ɣ signaling since their phosphorylation increased very rapidly. Selective inhibition of Src-family kinases resulted in an immediate significant decrease in the phosphorylation status of Raf and ERK1/2, but not p38 and AKT. On the other hand, IFN-ɣ resulted in ROS generation, through H 2 O 2 production, whereas pre-treatment with the ROS inhibitor NAC caused ROS inhibition and a significant decrease in the phosphorylation levels of AKT, ERK1/2, p38 and STAT1. Moreover, pretreatment with a selective NOX1 inhibitor resulted in a significant decrease of AKT phosphorylation. Finally, no direct relationship was found between ROS production and calcium mobilization. In summary, IFN-ɣ signaling in MCF-7 cell line is ROS-dependent and follows the Src/Raf/ERK pathway whereas its signaling through the AKT pathway is highly dependent on NOX1.

  2. Novel hydroxyamides and amides containing D-glucopyranose or D-fructose units: Biological assays in MCF-7 and MDST8 cell lines.

    Carreiro, Elisabete P; Costa, Ana R; Cordeiro, Maria M; Martins, Rute; Pires, Tiago O; Saraiva, Mafalda; Antunes, Célia M; Burke, Anthony J

    2016-02-01

    A novel library of 15 compounds, hydroxyamides and amides containing a β-D-glucopyranose (D-Gluc) or a β-D-fructose (D-Fruc) units was designed and synthesized for antiproliferative assays in breast (MCF-7) and colon (MDST8) cancer cell lines. Twelve of them were hydroxyamides and were successfully synthesized from β-D-glucuronic acid (D-GluA). Six of these hydroxyamides which were acetylated hydroxy-β-D-glucopyranuronamide 2a-2f (1st Family) and the other six were their respective isomers, that is, hydroxy-β-D-fructuronamide 3a-3f (2nd Family), obtained by acid-base catalyzed isomerization. These compounds have the general structure, D-Gluc-C=ONH-CHR-(CH2)n-OH and D-Fruc-C=ONH-CHR-(CH2)n-OH, where R=an aromatic, alkyl or a hydrogen substituent, with n=0 or 1. Eight of these contained a chiral aminoalcohol group. Three compounds were amides containing a D-glucopyranose unit (3rd Family). SAR studies were conducted with these compounds. Antiproliferative studies showed that compound 4a, the bromo-amide containing the β-D-glucopyranose ring, potently inhibits the proliferation of the MDST8 cells. Five compounds (2e, 2f, 3d, 3e, and 3f) were shown to potently selectively inhibit the proliferation of the MCF-7 cells. Compound 4b was the only one showing inhibition in both cell lines. In general, the more active compounds were the amides and hydroxyamides containing the β-D-fructose moiety, and containing an alkyl group or hydrogen. Half-inhibitory concentrations (IC50) of between 0.01 and 10 μM, were observed. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Overexpression of KCNJ3 gene splice variants affects vital parameters of the malignant breast cancer cell line MCF-7 in an opposing manner

    Rezania, S.; Kammerer, S.; Li, C.; Steinecker-Frohnwieser, B.; Gorischek, A.; DeVaney, T. T. J.; Verheyen, S.; Passegger, C. A.; Tabrizi-Wizsy, N. Ghaffari; Hackl, H.; Platzer, D.; Zarnani, A. H.; Malle, E.; Jahn, S. W.; Bauernhofer, T.; Schreibmayer, W.

    2016-01-01

    Overexpression the KCNJ3, a gene that encodes subunit 1 of G-protein activated inwardly rectifying K + channel (GIRK1) in the primary tumor has been found to be associated with reduced survival times and increased lymph node metastasis in breast cancer patients. In order to survey possible tumorigenic properties of GIRK1 overexpression, a range of malignant mammary epithelial cells, based on the MCF-7 cell line that permanently overexpress different splice variants of the KCNJ3 gene (GIRK1a, GIRK1c, GIRK1d and as a control, eYFP) were produced. Subsequently, selected cardinal neoplasia associated cellular parameters were assessed and compared. Adhesion to fibronectin coated surface as well as cell proliferation remained unaffected. Other vital parameters intimately linked to malignancy, i.e. wound healing, chemoinvasion, cellular velocities / motilities and angiogenesis were massively affected by GIRK1 overexpression. Overexpression of different GIRK1 splice variants exerted differential actions. While GIRK1a and GIRK1c overexpression reinforced the affected parameters towards malignancy, overexpression of GIRK1d resulted in the opposite. Single channel recording using the patch clamp technique revealed functional GIRK channels in the plasma membrane of MCF-7 cells albeit at very low frequency. We conclude that GIRK1d acts as a dominant negative constituent of functional GIRK complexes present in the plasma membrane of MCF-7 cells, while overexpression of GIRK1a and GIRK1c augmented their activity. The core component responsible for the cancerogenic action of GIRK1 is apparently presented by a segment comprising aminoacids 235–402, that is present exclusively in GIRK1a and GIRK1c, but not GIRK1d (positions according to GIRK1a primary structure). The current study provides insight into the cellular and molecular consequences of KCNJ3 overexpression in breast cancer cells and the mechanism upon clinical outcome in patients suffering from breast cancer. The online

  4. FLI1 Expression in Breast Cancer Cell Lines and Primary Breast Carcinomas is Correlated with ER, PR and HER2

    Inam Jasim Lafta

    2017-12-01

    Full Text Available FLI1 is a member of ETS family of transcription factors that regulate a variety of normal biologic activities including cell proliferation, differentiation, and apoptosis. The expression of FLI1 and its correlation with well-known breast cancer prognostic markers (ER, PR and HER2 was determined in primary breast tumors as well as four breast cancer lines including: MCF-7, T47D, MDA-MB-231 and MDA-MB-468 using RT-qPCR with either 18S rRNA or ACTB (β-actin for normalization of data. FLI1 mRNA level was decreased in the breast cancer cell lines under study compared to the normal breast tissue; however, Jurkat cells, which were used as a positive control, showed overexpression compared to the normal breast. Regarding primary breast carcinomas, FLI1 is significantly under expressed in all of the stages of breast cancer upon using 18S as an internal control. This FLI1 expression was correlated with ER, PR and HER2 status. In conclusion FLI1 can be exploited as a preliminary marker that can predict the status of ER, PR and HER2 in primary breast tumors.

  5. Differential nuclear shape dynamics of invasive andnon-invasive breast cancer cells are associated with actin cytoskeleton organization and stability.

    Chiotaki, Rena; Polioudaki, Hara; Theodoropoulos, Panayiotis A

    2014-08-01

    Cancer cells often exhibit characteristic aberrations in their nuclear architecture, which are indicative of their malignant potential. In this study, we have examined the nuclear and cytoskeletal composition, attachment configuration dynamics, and osmotic or drug treatment response of invasive (Hs578T and MDA-MB-231) and non-invasive (MCF-10A and MCF-7) breast cancer cell lines. Unlike MCF-10A and MCF-7, Hs578T and MDA-MB-231 cells showed extensive nuclear elasticity and deformability and displayed distinct kinetic profiles during substrate attachment. The nuclear shape of MCF-10A and MCF-7 cells remained almost unaffected upon detachment, hyperosmotic shock, or cytoskeleton depolymerization, while Hs578T and MDA-MB-231 revealed dramatic nuclear contour malformations following actin reorganization.

  6. Agarose hydrogel induced MCF-7 and BMG-1 cell line progressive 3D and 3D revert cultures.

    Subramaniyan, Aishwarya; Ravi, Maddaly

    2018-04-01

    3D culture systems have enhanced the utility of cancer cell lines as they are considered closer to the in vivo systems. A variety of changes are induced in cells cultured in 3D systems; an apparent and striking feature being the spontaneous acquisition of distinct morphological entities. 3D reverts (3DRs) can be obtained by introducing 3D aggregates in scaffold/matrix-free culture units. It could be seen that the two cell lines used in this study exhibited differences in 3DR structures, though both were cultured on agarose hydrogels. Also, differences in 3DR formation, growth and survival were different. While 3D aggregates of several cell lines have been reported for a variety of studies, there are no studies that describe or utilize 3DRs. 3DRs can provide insights into complex events that can occur in cancer cells; especially as material to study metastasis, migration, and invasion. © 2017 Wiley Periodicals, Inc.

  7. In vitro study comparing the efficacy of the water-soluble HSP90 inhibitors, 17-AEPGA and 17-DMAG, with that of the non‑water-soluble HSP90 inhibitor, 17-AAG, in breast cancer cell lines.

    Ghadban, Tarik; Jessen, André; Reeh, Matthias; Dibbern, Judith L; Mahner, Sven; Mueller, Volkmar; Wellner, Ulrich F; Güngör, Cenap; Izbicki, Jakob R; Vashist, Yogesh K

    2016-10-01

    Heat shock protein (HSP)90 has emerged as an important target in cancer therapeutics. Diverse HSP90 inhibitors are under evaluation. The aim of the present study was to investigate the growth inhibitory effects of the newly developed water-soluble HSP90 inhibitors, 17-[2-(Pyrrolidin-1-yl)ethyl]amino-17-demethoxygeldanamycin (17-AEPGA) and 17-dimethylaminoethylamino-17-demethoxygeldanamycin (17-DMAG), compared to that of the non-water-soluble HSP90 inhibitor, 17-allylamino-17-demethoxygeldanamycin (17-AAG). The anti-proliferative effects of the 3 drugs on the human breast cancer cell lines, MCF-7, SKBR-3 and MDA-MB-231, were examined in vitro. In addition, tumor progression factors, including human epidermal growth factor receptor 2 (HER2), epidermal growth factor receptor 1 (EGFR1) and insulin-like growth factor type 1 receptor (IGF1R), as well as apoptotic markers were analysed. We found a time- and dose-dependent effect in all the tested cell lines. The effects of 17-AEPGA and 17-DMAG were equal or superior to those of 17-AAG. The 50% growth inhibition concentration was AAG.

  8. Evaluation of Synergetic Anticancer Activity of Berberine and Curcumin on Different Models of A549, Hep-G2, MCF-7, Jurkat, and K562 Cell Lines

    Acharya Balakrishna

    2015-01-01

    Full Text Available Ayurvedic system of medicine is using Berberis aristata and Curcuma longa herbs to treat different diseases including cancer. The study was performed to evaluate the synergetic anticancer activity of Berberine and Curcumin by estimating the inhibition of the cell proliferation by cytotoxicity assay using MTT method on specified human cell lines (A549, Hep-G2, MCF-7, Jurkat, and K562. All the cells were harvested from the culture and seeded in the 96-well assay plates at seeding density of 2.0 × 104 cells/well and were incubated for 24 hours. Test items Berberine with Curcumin (1 : 1, Curcumin 95% pure, and Berberine 95% pure were exposed at the concentrations of 1.25, 0.001, and 0.5 mg/mL, respectively, and incubated for a period of 48 hours followed by dispensing MTT solution (5 mg/mL. The cells were incubated at 37 ± 1°C for 4 hours followed by addition of DMSO for dissolving the formazan crystals and absorbance was read at 570 nm. Separate wells were prepared for positive control, controls (only medium with cells, and blank (only medium. The results had proven the synergetic anticancer activity of Berberine with Curcumin inducing cell death greater percentage of >77% when compared to pure curcumin with <54% and pure Berberine with <45% on average on all cell line models.

  9. Evaluation of the radioinduced damage, repair capacity and cell death on human tumorigenic (T-47D and MCF-7) and nontumorigenic (MCF-10) cell lines of breast

    Valdoge, Flavia Gomes Silva

    2008-01-01

    Breast cancer is one of the most common malignancies that account women, representing about one in three of all female neoplasm. Approximately, 90% of cases are considered sporadic, attributed to somatic events and about 10% have a family history and this only 4 - 5 % is due to hereditary factors. In the clinic, ionizing radiation is a major tool utilized in the control of tumour growth, besides surgery and chemotherapy. There is, however, little information concerning cellular response to the action of ionizing radiation in the target cells, i.e., cell lines originating from breast cancer. The present study proposed to analyze the radiosensitivity of the human tumorigenic (T-47D and MCF-7) and non tumorigenic (MCF-10) cell lines, originating from breast and submitted to various doses (0.5 to 30 Gy) of 60 Co rays (0.72 - 1.50 Gy/min). For this purpose, DNA radioinduced damage, repair capacity and cell death were utilized as parameters of radiosensitivity by micronucleus, single cell gel electrophoresis (Comet assay) and cell viability techniques. The data obtained showed that tumorigenic cell lines were more radiosensitive than non tumorigenic breast cells in all assays here utilized. The T-47D cell line was presenting the highest amount of radioinduced damage, a more accelerated proliferation rate and a higher rate of cell death. The three cell lines presented a relatively efficient repair capacity, since one hour after the irradiation all of them showed a considerable reduction of radioinduced damage. The techniques employed showed to be secure, sensitive and reproducible, allowing to quantify and evaluate DNA damage, repair capacity and cell death in the three human breast cell lines. (author)

  10. Anti-cancer Effect of Xao Tam Phan Paramignya trimera Methanol Root Extract on Human Breast Cancer Cell Line MCF-7 in 3D Model.

    Nguyen-Thi, Lam-Huyen; Nguyen, Sinh Truong; Tran, Thao Phuong; Phan-Lu, Chinh-Nhan; The Van, Trung; Van Pham, Phuc

    2018-04-24

    Cancer is one of the leading causes of death in the world. A great deal of effort has been made to discover new agents for cancer treatment. Xao tam phan (Paramignya trimera) is a traditional medicine of Vietnam used in cancer treatment for a long time, yet there is not much scientific evidence proving its anticancer potency. The study aimed to evaluate the toxicity of Paramignya trimera extract (PTE) on multicellular tumor spheres (MCTS) of MCF-7 cells using hanging drop technique. Firstly, MCF-7 cells were seeded on hanging drop plates, spheroid size was tracked, and growth curve was measured by MTT assay and AlamarBlue ® assay. The necrotic core of MCTS was evaluated by propidium iodide (PI) staining. Toxicity of doxorubicin (DOX) and tirapazamine (TPZ) was then tested on 3D model compared to 2D culture condition. The results showed that the IC50 of DOX on 3D MCF-7 cells was nearly 50 times greater than monolayer MCF-7 cells. In contrast, TPZ (an agent which is specifically toxic under hypoxic conditions) had significantly lower IC50 in 3D condition than in 2D. The toxicity tests for PTE showed that PTE strongly inhibited MCF-7 cells in both 2D and 3D conditions. Interestingly, the IC50 of PTE in 3D model was remarkably lower than in 2D (IC50 value was 168.9 ± 11.65 μg/ml compared to 260.8 ± 16.54 μg/ml, respectively). The invasion assay showed that PTE completely inhibited invasion of MCF-7 cells at 250 μg/mL concentration. Also, flow cytometry results indicated that PTE effectively induced apoptosis in MCF-7 spheroids in 3D condition at 250 μg/mL concentration. The results from this study emphasize the promise of PTE in cancer therapy.

  11. The synergistic effect between vanillin and doxorubicin in ehrlich ascites carcinoma solid tumor and MCF-7 human breast cancer cell line.

    Elsherbiny, Nehal M; Younis, Nahla N; Shaheen, Mohamed A; Elseweidy, Mohamed M

    2016-09-01

    Despite the remarkable anti-tumor activity of doxorubicin (DOX), its clinical application is limited due to multiple organ toxicities. Products with less side effects are therefore highly requested. The current study investigated the anti-cancer activities of vanillin against breast cancer and possible synergistic potentiation of DOX chemotherapeutic effects by vanillin. Vanillin (100mg/kg), DOX (2mg/kg) and their combination were administered i.p. to solid Ehrlich tumor-bearing mice for 21days. MCF-7 human breast cancer cell line was treated with vanillin (1 and 2mM), DOX (100μM) or their combination. Protection against DOX-induced nephrotoxicity was studied in rats that received vanillin (100mg/kg, ip) for 10days with a single dose of DOX (15mg/kg) on day 6. Vanillin exerted anticancer effects comparable to DOX and synergesticlly potentiated DOX anticancer effects both in-vivo and in-vitro. The anticancer potency of vanillin in-vivo was mediated via apoptosis and antioxidant capacity. It also offered an in-vitro growth inhibitory effect and cytotoxicity mediated by apoptosis (increased caspase-9 and Bax:Bcl-2 ratio) along with anti-metasasis effect. Vanillin protected against DOX-induced nephrotoxicity in rats. In conclusion, vanillin can be a potential lead molecule for the development of non-toxic agents for the treatment of breast cancer either alone or combined with DOX. Copyright © 2016. Published by Elsevier GmbH.

  12. Screening of antiproliferative effect of aqueous extracts of plant foods consumed in México on the breast cancer cell line MCF-7.

    García-Solís, Pablo; Yahia, Elhadi M; Morales-Tlalpan, Verónica; Díaz-Muñoz, Mauricio

    2009-01-01

    We evaluated the antiproliferative effect of aqueous extracts of 14 plant foods consumed in Mexico on the breast cancer cell line MCF-7. The plant foods used were avocado, black sapote, guava, mango, prickly pear cactus stems (called nopal in Mexico, cooked and raw), papaya, pineapple, four different cultivars of prickly pear fruit, grapes and tomato. β-Carotene, total phenolics and gallic acid contents and the antioxidant capacity, measured by the ferric reducing/antioxidant power and the 2,2-diphenyl-1,1-picrylhydrazyl radical scavenging assays, were analyzed in each aqueous extract. Only the papaya extract had a significant antiproliferative effect measured with the methylthiazolydiphenyl-tetrazolium bromide assay. We did not notice a relationship between the total phenolic content and the antioxidant capacity with antiproliferative effect. It is suggested that each extract of plant food has a unique combination of the quantity and quality of phytochemicals that could determine its biological activity. Besides, papaya represents a very interesting fruit to explore its antineoplastic activities.

  13. An Îto stochastic differential equations model for the dynamics of the MCF-7 breast cancer cell line treated by radiotherapy.

    Oroji, Amin; Omar, Mohd; Yarahmadian, Shantia

    2016-10-21

    In this paper, a new mathematical model is proposed for studying the population dynamics of breast cancer cells treated by radiotherapy by using a system of stochastic differential equations. The novelty of the model is essentially in capturing the concept of the cell cycle in the modeling to be able to evaluate the tumor lifespan. According to the cell cycle, each cell belongs to one of three subpopulations G, S, or M, representing gap, synthesis and mitosis subpopulations. Cells in the M subpopulation are highly radio-sensitive, whereas cells in the S subpopulation are highly radio-resistant. Therefore, in the process of radiotherapy, cell death rates of different subpopulations are not equal. In addition, since flow cytometry is unable to detect apoptotic cells accurately, the small changes in cell death rate in each subpopulation during treatment are considered. Subsequently, the proposed model is calibrated using experimental data from previous experiments involving the MCF-7 breast cancer cell line. Consequently, the proposed model is able to predict tumor lifespan based on the number of initial carcinoma cells. The results show the effectiveness of the radiation under the condition of stability, which describes the decreasing trend of the tumor cells population. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Beta-elemene blocks epithelial-mesenchymal transition in human breast cancer cell line MCF-7 through Smad3-mediated down-regulation of nuclear transcription factors.

    Xian Zhang

    Full Text Available Epithelial-mesenchymal transition (EMT is the first step required for breast cancer to initiate metastasis. However, the potential of drugs to block and reverse the EMT process are not well explored. In the present study, we investigated the inhibitory effect of beta-elemene (ELE, an active component of a natural plant-derived anti-neoplastic agent in an established EMT model mediated by transforming growth factor-beta1 (TGF-β1. We found that ELE (40 µg/ml blocked the TGF-β1-induced phenotypic transition in the human breast cancer cell line MCF-7. ELE was able to inhibit TGF-β1-mediated upregulation of mRNA and protein expression of nuclear transcription factors (SNAI1, SNAI2, TWIST and SIP1, potentially through decreasing the expression and phosphorylation of Smad3, a central protein mediating the TGF-β1 signalling pathway. These findings suggest a potential therapeutic benefit of ELE in treating basal-like breast cancer.

  15. Critical role of p53 upregulated modulator of apoptosis in benzyl isothiocyanate-induced apoptotic cell death.

    Marie Lue Antony

    Full Text Available Benzyl isothiocyanate (BITC, a constituent of edible cruciferous vegetables, decreases viability of cancer cells by causing apoptosis but the mechanism of cell death is not fully understood. The present study was undertaken to determine the role of Bcl-2 family proteins in BITC-induced apoptosis using MDA-MB-231 (breast, MCF-7 (breast, and HCT-116 (colon human cancer cells. The B-cell lymphoma 2 interacting mediator of cell death (Bim protein was dispensable for proapoptotic response to BITC in MCF-7 and MDA-MB-231 cells as judged by RNA interference studies. Instead, the BITC-treated MCF-7 and MDA-MB-231 cells exhibited upregulation of p53 upregulated modulator of apoptosis (PUMA protein. The BITC-mediated induction of PUMA was relatively more pronounced in MCF-7 cells due to the presence of wild-type p53 compared with MDA-MB-231 with mutant p53. The BITC-induced apoptosis was partially but significantly attenuated by RNA interference of PUMA in MCF-7 cells. The PUMA knockout variant of HCT-116 cells exhibited significant resistance towards BITC-induced apoptosis compared with wild-type HCT-116 cells. Attenuation of BITC-induced apoptosis in PUMA knockout HCT-116 cells was accompanied by enhanced G2/M phase cell cycle arrest due to induction of p21 and down regulation of cyclin-dependent kinase 1 protein. The BITC treatment caused a decrease in protein levels of Bcl-xL (MCF-7 and MDA-MB-231 cells and Bcl-2 (MCF-7 cells. Ectopic expression of Bcl-xL in MCF-7 and MDA-MB-231 cells and that of Bcl-2 in MCF-7 cells conferred protection against proapoptotic response to BITC. Interestingly, the BITC-treated MDA-MB-231 cells exhibited induction of Bcl-2 protein expression, and RNA interference of Bcl-2 in this cell line resulted in augmentation of BITC-induced apoptosis. The BITC-mediated inhibition of MDA-MB-231 xenograft growth in vivo was associated with the induction of PUMA protein in the tumor. In conclusion, the results of the present study

  16. Synthesis and Anticancer Activities of Glycyrrhetinic Acid Derivatives

    Yang Li

    2016-02-01

    Full Text Available A total of forty novel glycyrrhetinic acid (GA derivatives were designed and synthesized. The cytotoxic activity of the novel compounds was tested against two human breast cancer cell lines (MCF-7, MDA-MB-231 in vitro by the MTT method. The evaluation results revealed that, in comparison with GA, compound 42 shows the most promising anticancer activity (IC50 1.88 ± 0.20 and 1.37 ± 0.18 µM for MCF-7 and MDA-MB-231, respectively and merits further exploration as a new anticancer agent.

  17. Fucoidan extract induces apoptosis in MCF-7 cells via a mechanism involving the ROS-dependent JNK activation and mitochondria-mediated pathways.

    Zhongyuan Zhang

    Full Text Available BACKGROUND: Fucoidan extract (FE, an enzymatically digested compound with a low molecular weight, is extracted from brown seaweed. As a natural compound with various actions, FE is attractive, especially in Asian countries, for improving the therapeutic efficacy and safety of cancer treatment. The present study was carried out to investigate the anti-tumor properties of FE in human carcinoma cells and further examine the underlying mechanisms of its activities. METHODOLOGY/PRINCIPAL FINDING: FE inhibits the growth of MCF-7, MDA-MB-231, HeLa, and HT1080 cells. FE-mediated apoptosis in MCF-7 cancer cells is accompanied by DNA fragmentation, nuclear condensation, and phosphatidylserine exposure. FE induces mitochondrial membrane permeabilization (MMP through loss of mitochondrial membrane potential (ΔΨm and regulation of the expression of Bcl-2 family members. Release of apoptosis-inducing factor (AIF and cytochrome c precedes MMP. AIF release causes DNA fragmentation, the final stage of apoptosis, via a caspase-independent mitochondrial pathway. Additionally, FE was found to induce phosphorylation of c-Jun N-terminal kinase (JNK, p38, and extracellular signal-regulated kinase (ERK 1/2, and apoptosis was found to be attenuated by inhibition of JNK. Furthermore, FE-mediated apoptosis was found to involve the generation of reactive oxygen species (ROS, which are responsible for the decrease of ΔΨm and phosphorylation of JNK, p38, and ERK1/2 kinases. CONCLUSIONS/SIGNIFICANCE: These data suggest that FE activates a caspase-independent apoptotic pathway in MCF-7 cancer cells through activation of ROS-mediated MAP kinases and regulation of the Bcl-2 family protein-mediated mitochondrial pathway. They also provide evidence that FE deserves further investigation as a natural anticancer and cancer preventive agent.

  18. Trans- and cis-2-phenylindole platinum(II) complexes as cytotoxic agents against human breast adenocarcinoma cell lines

    Tomé, Maria; López, Concepción; González, Asensio; Ozay, Bahadir; Quirante, Josefina; Font-Bardía, Mercè; Calvet, Teresa; Calvis, Carme; Messeguer, Ramon; Baldomá, Laura; Badía, Josefa

    2013-09-01

    The synthesis and characterization of the new 2-phenylindole derivative: C8H3N-2-C6H5-3NOMe-5OMe (3c) and the trans- and cis-isomers of [Pt(3c)Cl2(DMSO)] complexes (4c and 5c, respectively) are described. The crystal structures of 4c·CH2Cl2 and 5c confirm: (a) the existence of a Pt-Nindole bond, (b) the relative arrangement of the Cl- ligands [trans- (in 4c) or cis- (in 5c)] and (c) the anti-(E) configuration of the oxime. The cytotoxic assessment of C8H3N-2-(C6H4-4‧R1)-3NOMe-5R2 [with R1 = R2 = H (3a); R1 = Cl, R2 = H (3b) and R1 = H, R2 = OMe (3c)] and the geometrical isomers of [Pt(L)Cl2(DMSO)] with L = 3a-3c [trans- (4a-4c) and cis- (5a-5c), respectively] against human breast adenocarcinoma cell lines (MDA-MB231 and MCF-7) is also reported and reveals that all the platinum(II) complexes (except 4a) are more cytotoxic than cisplatin in front of the MCF7 cell line. Electrophoretic DNA migration studies of the synthesized compounds in the absence and in the presence of topoisomerase-I have been performed, in order to get further insights into their mechanism of action.

  19. Design and synthesis of thienopyrimidine urea derivatives with potential cytotoxic and pro-apoptotic activity against breast cancer cell line MCF-7.

    Abdelhaleem, Eman F; Abdelhameid, Mohammed K; Kassab, Asmaa E; Kandeel, Manal M

    2018-01-01

    A series of novel tetrahydrobenzothieno[2,3-d]pyrimidine urea derivatives was synthesized according to fragment-based design strategy. They were evaluated for their anticancer activity against MCF-7 cell line. Three compounds 9c, 9d and 11b showed 1.5-1.03 folds more potent anticancer activity than doxorubicin. In this study, a promising multi-sited enzyme small molecule inhibitor 9c, which showed the most potent anti-proliferative activity, was identified. The anti-proliferative activity of this compound appears to correlate well with its ability to inhibit topoisomerase II (IC 50  = 9.29 μM). Moreover, compound 9c showed excellent VEGFR-2 inhibitory activity, at the sub-micromolar level with IC 50 value 0.2 μM, which is 2.1 folds more potent than sorafenib. Moreover, activation of damage response pathway of the DNA leads to cell cycle arrest at G2/M phase, accumulation of cells in pre-G1 phase and annexin-V and propidium iodide staining, indicating that cell death proceeds through an apoptotic mechanism. Compound 9c showed potent pro-apoptotic effect through induction of the intrinsic mitochondrial pathway of apoptosis. This mechanistic pathway was confirmed by a significant increase in the expression of the tumor suppressor gene p53, elevation in Bax/BCL-2 ratio and a significant increase in the level of active caspase-3. Quantitative structure-activity relationship (QSAR) studies delivered equations of five 3D descriptors with R 2  = 0.814. This QSAR model provides an effective technique for understanding the observed antitumor properties and thus could be adopted for developing effective lead structures. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  20. Lipid raft-mediated miR-3908 inhibition of migration of breast cancer cell line MCF-7 by regulating the interactions between AdipoR1 and Flotillin-1.

    Li, Yuan; Shan, Fei; Chen, Jinglong

    2017-03-21

    The mechanisms of lipid raft regulation by microRNAs in breast cancer are not fully understood. This work focused on the evaluation and identification of miR-3908, which may be a potential biomarker related to the migration of breast cancer cells, and elucidates lipid-raft-regulating cell migration in breast cancer. To confirm the prediction that miR-3908 is matched with AdipoR1, we used 3'-UTR luciferase activity of AdipoR1 to assess this. Then, human breast cancer cell line MCF-7 was cultured in the absence or presence of the mimics or inhibitors of miR-3908, after which the biological functions of MCF-7 cells were analyzed. The protein expression of AdipoR1, AMPK, and SIRT-1 were examined. The interaction between AdipoR1 and Flotillin-1, or its effects on lipid rafts on regulating cell migration of MCF-7, was also investigated. AdipoR1 is a direct target of miR-3908. miR-3908 suppresses the expression of AdipoR1 and its downstream pathway genes, including AMPK, p-AMPK, and SIRT-1. miR-3908 enhances the process of breast cancer cell clonogenicity. miR-3908 exerts its effects on the proliferation and migration of MCF-7 cells, which are mediated by lipid rafts regulating AdipoR1's ability to bind Flotillin-1. miR-3908 is a crucial mediator of the migration process in breast cancer cells. Lipid rafts regulate the interactions between AdipoR1 and Flotillin-1 and then the migration process associated with miR-3908 in MCF-7 cells. Our findings suggest that targeting miR-3908 and the lipid raft, may be a promising strategy for the treatment and prevention of breast cancer.

  1. Eco-Friendly Formulated Zinc Oxide Nanoparticles: Induction of Cell Cycle Arrest and Apoptosis in the MCF-7 Cancer Cell Line.

    Boroumand Moghaddam, Amin; Moniri, Mona; Azizi, Susan; Abdul Rahim, Raha; Bin Ariff, Arbakariya; Navaderi, Mohammad; Mohamad, Rosfarizan

    2017-10-20

    Green products have strong potential in the discovery and development of unique drugs. Zinc oxide nanoparticles (ZnO NPs) have been observed to have powerful cytotoxicity against cells that cause breast cancer. The present study aims to examine the cell cycle profile, status of cell death, and pathways of apoptosis in breast cancer cells (MCF-7) treated with biosynthesized ZnO NPs. The anti-proliferative activity of ZnO NPs was determined using MTT assay. Cell cycle analysis and the mode of cell death were evaluated using a flow cytometry instrument. Quantitative real-time-PCR (qRT-PCR) was employed to investigate the expression of apoptosis in MCF-7 cells. ZnO NPs were cytotoxic to the MCF-7 cells in a dose-dependent manner. The 50% growth inhibition concentration (IC 50 ) of ZnO NPs at 24 h was 121 µg/mL. Cell cycle analysis revealed that ZnO NPs induced sub-G₁ phase (apoptosis), with values of 1.87% at 0 μg/mL (control), 71.49% at IC 25 , 98.91% at IC 50 , and 99.44% at IC 75 . Annexin V/propidium iodide (PI) flow cytometry analysis confirmed that ZnO NPs induce apoptosis in MCF-7 cells. The pro-apoptotic genes p53 , p21 , Bax , and JNK were upregulated, whereas anti-apoptotic genes Bcl-2 , AKT1 , and ERK1/2 were downregulated in a dose-dependent manner. The arrest and apoptosis of MCF-7 cells were induced by ZnO NPs through several signalling pathways.

  2. Transcriptional activation of rat creatine kinase B by 17beta-estradiol in MCF-7 cells involves an estrogen responsive element and GC-rich sites.

    Wang, F; Samudio, I; Safe, S

    2001-01-01

    The rat creatine kinase B (CKB) gene is induced by estrogen in the uterus, and constructs containing rat CKB gene promoter inserts are highly estrogen-responsive in cell culture. Analysis of the upstream -568 to -523 region of the promoter in HeLa cells has identified an imperfect palindromic estrogen response element (ERE) that is required for hormone inducibility. Analysis of the CKB gene promoter in MCF-7 breast cancer cells confirmed that pCKB7 (containing the -568 to -523 promoter insert) was estrogen-responsive in transient transfection studies. However, mutation and deletion analysis of this region of the promoter showed that two GC-rich sites and the concensus ERE were functional cis-elements that bound estrogen receptor alpha (ERalpha)/Sp1 and ERalpha proteins, respectively. The role of these elements was confirmed in gel mobility shift and chromatin immunoprecipitation assays and transfection studies in MDA-MB-231 and Schneider Drosophila SL-2 cells. These results show that transcriptional activation of CKB by estrogen is dependent, in part, on ERalpha/Sp1 action which is cell context-dependent. Copyright 2001 Wiley-Liss, Inc.

  3. Short-term effects of ultrahigh concentration cationic silica nanoparticles on cell internalization, cytotoxicity, and cell integrity with human breast cancer cell line (MCF-7)

    Seog, Ji Hyun [Korea Advanced Institute of Science and Technology, Graduate School of Nanoscience and Technology (Korea, Republic of); Kong, Bokyung [Corning Precision Materials (Korea, Republic of); Kim, Dongheun [Korea Advanced Institute of Science and Technology, Graduate School of Nanoscience and Technology (Korea, Republic of); Graham, Lauren M. [University of Maryland, Department of Chemistry and Biochemistry (United States); Choi, Joon Sig [Chungnam National University, Department of Biochemistry (Korea, Republic of); Lee, Sang Bok, E-mail: slee@umd.edu [Korea Advanced Institute of Science and Technology, Graduate School of Nanoscience and Technology (Korea, Republic of)

    2015-01-15

    High concentrations of cationic colloidal silica nanoparticles (CCS-NPs) have been widely used for the enrichment of plasma membrane proteins. However, the interaction between the CCS-NPs and cells under the required concentration for the isolation of plasma membrane are rarely investigated. We evaluated the internalization and toxicity of the 15 nm CCS-NPs which were exposed at high concentrations with short time in human breast cancer cells (MCF-7) with transmission electron microscopy, energy dispersive X-ray spectroscopy, inductively coupled plasma atomic emission spectroscopy, and colorimetric assays. The NPs were observed throughout the cells, particularly in the cytoplasm and the nucleus, after short incubation periods. Additionally, the NPs significantly influenced the membrane integrity of the MCF-7 cells.

  4. An antioxidant extract of tropical lichen, Parmotrema reticulatum, induces cell cycle arrest and apoptosis in breast carcinoma cell line MCF-7.

    Nikhil Baban Ghate

    Full Text Available This report highlights the phytochemical analysis, antioxidant potential and anticancer activity against breast carcinoma of 70% methanolic extract of lichen, Parmotrema reticulatum (PRME. Phytochemical analysis of PRME confirms the presence of various phytoconstituents like alkaloids, carbohydrates, flavonoids, glycosides, phenols, saponins, tannins, anthraquinones, and ascorbic acid; among which alkaloids, phenols and flavonoids are found in abundant amount. High performance liquid chromatography (HPLC analysis of PRME revealed the presence of catechin, purpurin, tannic acid and reserpine. Antioxidant activity was evaluated by nine separate methods. PRME showed excellent hydroxyl and hypochlorous radical scavenging as well as moderate DPPH, superoxide, singlet oxygen, nitric oxide and peroxynitrite scavenging activity. Cytotoxicity of PRME was tested against breast carcinoma (MCF-7, lung carcinoma (A549 and normal lung fibroblast (WI-38 using WST-1 method. PRME was found cytotoxic against MCF-7 cells with an IC50 value 130.03 ± 3.11 µg/ml while negligible cytotoxicity was observed on A549 and WI-38 cells. Further flow cytometric study showed that PRME halted the MCF-7 cells in S and G2/M phases and induces apoptosis in dose as well as time dependent manner. Cell cycle arrest was associated with downregulation of cyclin B1, Cdk-2 and Cdc25C as well as slight decrease in the expression of Cdk-1 and cyclin A1 with subsequent upregulation of p53 and p21. Moreover PRME induced Bax and inhibited Bcl-2 expression, which results in increasing Bax/Bcl-2 ratio and activation of caspase cascade. This ultimately leads to PARP degradation and induces apoptosis in MCF-7 cells. It can be hypothesised from the current study that the antioxidant and anticancer potential of the PRME may reside in the phytoconstitutents present in it and therefore, PRME may be used as a possible source of natural antioxidant that may be developed to an anticancer agent.

  5. 20(S-Protopanaxadiol-Induced Apoptosis in MCF-7 Breast Cancer Cell Line through the Inhibition of PI3K/AKT/mTOR Signaling Pathway

    Hong Zhang

    2018-04-01

    Full Text Available 20(S-Protopanaxadiol (PPD is one of the major active metabolites of ginseng. It has been reported that 20(S-PPD shows a broad spectrum of antitumor effects. Our research study aims were to investigate whether apoptosis of human breast cancer MCF-7 cells could be induced by 20(S-PPD by targeting the Phosphatidylinositol 3-kinase/Protein kinase B/Mammalian target of rapamycin (PI3K/AKT/mTOR signal pathway in vitro and in vivo. Cell cycle analysis was performed by Propidium Iodide (PI staining. To overexpress and knock down the expression of mTOR, pcDNA3.1-mTOR and mTOR small interfering RNA (siRNA transient transfection assays were used, respectively. Cell viability and apoptosis were evaluated by 3-(4,5-dimethylthiazol-2-yl-2,5-diphenyltetrazolium bromide (MTT-test and Annexin V /PI double-staining after transfection. The antitumor effect in vivo was determined by the nude mice xenograft assay. After 24 h of incubation, treatment with 20(S-PPD could upregulate phosphorylated-Phosphatase and tensin homologue deleted on chromosome 10 (p-PTEN expression and downregulate PI3K/AKT/mTOR-pathway protein expression. Moreover, G0/G1 cell cycle arrest in MCF-7 cells could be induced by 20(S-PPD treatment at high concentrations. Furthermore, overexpression or knockdown of mTOR could inhibit or promote the apoptotic effects of 20(S-PPD. In addition, tumor volumes were partially reduced by 20(S-PPD at 100 mg/kg in a MCF-7 xenograft model. Immunohistochemical staining indicated a close relationship between the inhibition of tumor growth and the PI3K/AKT/mTOR signal pathway. PI3K/AKT/mTOR pathway-mediated apoptosis may be one of the potential mechanisms of 20(S-PPD treatment.

  6. Radiation dose rate affects the radiosensitization of MCF-7 and HeLa cell lines to X-rays induced by dextran-coated iron oxide nanoparticles.

    Khoshgard, Karim; Kiani, Parvaneh; Haghparast, Abbas; Hosseinzadeh, Leila; Eivazi, Mohammad Taghi

    2017-08-01

    The aim of radiotherapy is to deliver lethal damage to cancerous tissue while preserving adjacent normal tissues. Radiation absorbed dose of the tumoral cells can increase when high atomic nanoparticles are present in them during irradiation. Also, the dose rate is an important aspect in radiation effects that determines the biological results of a given dose. This in vitro study investigated the dose-rate effect on the induced radiosensitivity by dextran-coated iron oxide in cancer cells. HeLa and MCF-7 cells were cultured in vitro and incubated with different concentrations of dextran-coated iron oxide nanoparticles. They were then irradiated with 6 MV photons at dose rates of 43, 185 and 370 cGy/min. The MTT test was used to obtain the cells' survival after 48 h of irradiations. Incubating the cells with the nanoparticles at concentrations of 10, 40 and 80 μg/ml showed no significant cytotoxicity effect. Dextran-coated iron oxide nanoparticles showed more radiosensitivity effect by increasing the dose rate and nanoparticles concentration. Radiosensitization enhancement factors of MCF-7 and HeLa cells at a dose-rate of 370 cGy/min and nanoparticles' concentration of 80 μg/ml were 1.21 ± 0.06 and 1.19 ± 0.04, respectively. Increasing the dose rate of 6 MV photons irradiation in MCF-7 and HeLa cells increases the radiosensitization induced by the dextran-coated iron nanoparticles in these cells.

  7. Influence of polyphenol extract from evening primrose (Oenothera paradoxa seeds on human prostate and breast cancer cell lines

    Urszula Lewandowska

    2014-02-01

    Full Text Available There is growing interest in plant polyphenols which exhibit pleiotropic biological activities, including anti-inflammatory, antioxidant, and anticancer effects. The objective of our study was to evaluate the influence of an evening primrose extract (EPE from defatted seeds on viability and invasiveness of three human cell lines: PNT1A (normal prostate cells, DU145 (prostate cancer cells and MDA-MB-231 (breast cancer cells. The results revealed that after 72 h of incubation the tested extract reduced the viability of DU 145 and MDA-MB-231 with IC50 equal to 14.5 μg/mL for both cell lines. In contrast, EPE did not inhibit the viability of normal prostate cells. Furthermore, EPE reduced PNT1A and MDA-MB-231 cell invasiveness; at the concentration of 21.75 μg/mL the suppression of invasion reached 92% and 47%, respectively (versus control. Additionally, zymographic analysis revealed that after 48 h of incubation EPE inhibited metalloproteinase-2 (MMP-2 and metalloproteinase-9 (MMP-9 activities in a dose-dependent manner. For PNT1A the activities of MMP-2 and MMP-9 decreased 4- and 2-fold, respectively, at EPE concentration of 29 μg/mL. In the case of MDA-MB-231 and DU 145 the decrease in MMP-9 activity at EPE concentration of 29 μg/mL was 5.5-fold and almost 1.9-fold, respectively. In conclusion, this study suggests that EPE may exhibit antimigratory, anti-invasive and antimetastatic potential towards prostate and breast cancer cell lines.

  8. Influence of polyphenol extract from evening primrose (Oenothera paradoxa) seeds on human prostate and breast cancer cell lines.

    Lewandowska, Urszula; Owczarek, Katarzyna; Szewczyk, Karolina; Podsędek, Anna; Koziołkiewicz, Maria; Hrabec, Elżbieta

    2014-02-03

    There is growing interest in plant polyphenols which exhibit pleiotropic biological activities, including anti-inflammatory, antioxidant, and anticancer effects. The objective of our study was to evaluate the influence of an evening primrose extract (EPE) from defatted seeds on viability and invasiveness of three human cell lines: PNT1A (normal prostate cells), DU145 (prostate cancer cells) and MDA-MB-231 (breast cancer cells). The results revealed that after 72 h of incubation the tested extract reduced the viability of DU 145 and MDA-MB-231 with IC50 equal to 14.5 μg/mL for both cell lines. In contrast, EPE did not inhibit the viability of normal prostate cells. Furthermore, EPE reduced PNT1A and MDA-MB-231 cell invasiveness; at the concentration of 21.75 μg/mL the suppression of invasion reached 92% and 47%, respectively (versus control). Additionally, zymographic analysis revealed that after 48 h of incubation EPE inhibited metalloproteinase-2 (MMP-2) and metalloproteinase-9 (MMP-9) activities in a dose-dependent manner. For PNT1A the activities of MMP-2 and MMP-9 decreased 4- and 2-fold, respectively, at EPE concentration of 29 μg/mL. In the case of MDA-MB-231 and DU 145 the decrease in MMP-9 activity at EPE concentration of 29 μg/mL was 5.5-fold and almost 1.9-fold, respectively. In conclusion, this study suggests that EPE may exhibit antimigratory, anti-invasive and antimetastatic potential towards prostate and breast cancer cell lines.

  9. Entrainment of Breast Cell Lines Results in Rhythmic Fluctuations of MicroRNAs

    Rafael Chacolla-Huaringa

    2017-07-01

    Full Text Available Circadian rhythms are essential for temporal (~24 h regulation of molecular processes in diverse species. Dysregulation of circadian gene expression has been implicated in the pathogenesis of various disorders, including hypertension, diabetes, depression, and cancer. Recently, microRNAs (miRNAs have been identified as critical modulators of gene expression post-transcriptionally, and perhaps involved in circadian clock architecture or their output functions. The aim of the present study is to explore the temporal expression of miRNAs among entrained breast cell lines. For this purpose, we evaluated the temporal (28 h expression of 2006 miRNAs in MCF-10A, MCF-7, and MDA-MB-231 cells using microarrays after serum shock entrainment. We noted hundreds of miRNAs that exhibit rhythmic fluctuations in each breast cell line, and some of them across two or three cell lines. Afterwards, we validated the rhythmic profiles exhibited by miR-141-5p, miR-1225-5p, miR-17-5p, miR-222-5p, miR-769-3p, and miR-548ay-3p in the above cell lines, as well as in ZR-7530 and HCC-1954 using RT-qPCR. Our results show that serum shock entrainment in breast cells lines induces rhythmic fluctuations of distinct sets of miRNAs, which have the potential to be related to endogenous circadian clock, but extensive investigation is required to elucidate that connection.

  10. The diverse roles of glutathione-associated cell resistance against hypericin photodynamic therapy

    Theodossis A. Theodossiou

    2017-08-01

    Full Text Available The diverse responses of different cancers to treatments such as photodynamic therapy of cancer (PDT have fueled a growing need for reliable predictive markers for treatment outcome. In the present work we have studied the differential response of two phenotypically and genotypically different breast adenocarcinoma cell lines, MCF7 and MDA-MB-231, to hypericin PDT (HYP-PDT. MDA-MB-231 cells were 70% more sensitive to HYP PDT than MCF7 cells at LD50. MCF7 were found to express a substantially higher level of glutathione peroxidase (GPX4 than MDA-MB-231, while MDA-MB-231 differentially expressed glutathione-S-transferase (GSTP1, mainly used for xenobiotic detoxification. Eighty % reduction of intracellular glutathione (GSH by buthionine sulfoximine (BSO, largely enhanced the sensitivity of the GSTP1 expressing MDA-MB-231 cells to HYP-PDT, but not in MCF7 cells. Further inhibition of the GSH reduction however by carmustine (BCNU resulted in an enhanced sensitivity of MCF7 to HYP-PDT. HYP loading studies suggested that HYP can be a substrate of GSTP for GSH conjugation as BSO enhanced the cellular HYP accumulation by 20% in MDA-MB-231 cells, but not in MCF7 cells. Studies in solutions showed that L-cysteine can bind the GSTP substrate CDNB in the absence of GSTP. This means that the GSTP-lacking MCF7 may use L-cysteine for xenobiotic detoxification, especially during GSH synthesis inhibition, which leads to L-cysteine build-up. This was confirmed by the lowered accumulation of HYP in both cell lines in the presence of BSO and the L-cysteine source NAC. NAC reduced the sensitivity of MCF7, but not MDA-MB-231, cells to HYP PDT which is in accordance with the antioxidant effects of L-cysteine and its potential as a GSTP substrate. As a conclusion we have herein shown that the different GSH based cell defense mechanisms can be utilized as predictive markers for the outcome of PDT and as a guide for selecting optimal combination strategies. Keywords

  11. Caffeic Acid Phenethyl Ester and Ethanol Extract of Propolis Induce the Complementary Cytotoxic Effect on Triple-Negative Breast Cancer Cell Lines

    Anna Rzepecka-Stojko

    2015-05-01

    Full Text Available Chemotherapy of breast cancer could be improved by bioactive natural substances, which may potentially sensitize the carcinoma cells’ susceptibility to drugs. Numerous phytochemicals, including propolis, have been reported to interfere with the viability of carcinoma cells. We evaluated the in vitro cytotoxic activity of ethanol extract of propolis (EEP and its derivative caffeic acid phenethyl ester (CAPE towards two triple-negative breast cancer (TNBC cell lines, MDA-MB-231 and Hs578T, by implementation of the MTT and lactate dehydrogenase (LDH assays. The morphological changes of breast carcinoma cells were observed following exposure to EEP and CAPE. The IC50 of EEP was 48.35 µg∙mL−1 for MDA-MB-23 cells and 33.68 µg∙mL−1 for Hs578T cells, whereas the CAPE IC50 was 14.08 µM and 8.01 µM for the MDA-MB-231 and Hs578T cell line, respectively. Here, we report that propolis and CAPE inhibited the growth of the MDA-MB-231 and Hs578T lines in a dose-dependent and exposure time-dependent manner. EEP showed less cytotoxic activity against both types of TNBC cells. EEP and, particularly, CAPE may markedly affect the viability of breast cancer cells, suggesting the potential role of bioactive compounds in chemoprevention/chemotherapy by potentiating the action of standard anti-cancer drugs.

  12. ERK/CANP rapid signaling mediates 17β-estradiol-induced proliferation of human breast cancer cell line MCF-7 cells.

    Wang, Guo-Sheng; Huang, Yan-Gang; Li, Huan; Bi, Shi-Jie; Zhao, Jin-Long

    2014-01-01

    17β-estradiol (E2) exerts its functions through both genomic and non-genomic signaling pathways. Because E2 is important in breast cancer development, we investigated whether its actions in promoting breast cancer cell proliferation occur through the non-genomic signaling pathway via extracellular signal-regulated kinase 1/2 (ERK1/2)/calcium-activated neutral protease (CANP). MCF-7 breast cancer cells were treated with ERKl/2 inhibitor (PD98059) or CANP inhibitor (calpeptin) before exposure to 1×10(-8) M E2. MTT colorimetry and flow cytometry were used to analyze effects on cell proliferation and cell cycle progression, respectively. Expression of phosphorylated-ERK (p-ERK), total ERK, and Capn4 proteins were assessed by Western blotting. Cell proliferation increased in cells treated with E2 for 24 h (P<0.05), and the proportion of cells in G0/G1 was decreased, accompanied by accelerated G1/S. Calpeptin pre-treatment significantly inhibited the E2-induced proliferation of MCF-7 cells (P<0.05), while also ameliorating the effects of E2 on cell cycle progression. Further, expression of p-ERK was rapidly up-regulated (after 10 min) by E2 (P<0.05), an effect that persisted 16 h after E2 exposure but which was significantly inhibited by PD98059 (P<0.05). Finally, expression of Capn4 protein was rapidly up-regulated in E2-exposed cells (P<0.05), but this change was significantly inhibited by PD98059 or calpeptin (P<0.05) pre-treatment. Thus, the rapid, non-genomic ERK/CANP signaling pathway mediates E2-induced proliferation of human breast cancer cells.

  13. The chemopreventive effect of the dietary compound kaempferol on the MCF-7 human breast cancer cell line is dependent on inhibition of glucose cellular uptake.

    Azevedo, Cláudia; Correia-Branco, Ana; Araújo, João R; Guimarães, João T; Keating, Elisa; Martel, Fátima

    2015-01-01

    Our aim was to investigate the effect of several dietary polyphenols on glucose uptake by breast cancer cells. Uptake of (3)H-deoxy-D-glucose ((3)H-DG) by MCF-7 cells was time-dependent, saturable, and inhibited by cytochalasin B plus phloridzin. In the short-term (26 min), myricetin, chrysin, genistein, resveratrol, kaempferol, and xanthohumol (10-100 µM) inhibited (3)H-DG uptake. Kaempferol was found to be the most potent inhibitor of (3)H-DG uptake [IC50 of 4 µM (1.6-9.8)], behaving as a mixed-type inhibitor. In the long-term (24 h), kaempferol (30 µM) was also able to inhibit (3)H-DG uptake, associated with a 40% decrease in GLUT1 mRNA levels. Interestingly enough, kaempferol (100 µM) revealed antiproliferative (sulforhodamine B and (3)H-thymidine incorporation assays) and cytotoxic (extracellular lactate dehydrogenase activity determination) properties, which were mimicked by low extracellular (1 mM) glucose conditions and reversed by high extracellular (20 mM) glucose conditions. Finally, exposure of cells to kaempferol (30 µM) induced an increase in extracellular lactate levels over time (to 731 ± 32% of control after a 24 h exposure), due to inhibition of MCT1-mediated lactate cellular uptake. In conclusion, kaempferol potently inhibits glucose uptake by MCF-7 cells, apparently by decreasing GLUT1-mediated glucose uptake. The antiproliferative and cytotoxic effect of kaempferol in these cells appears to be dependent on this effect.

  14. N-ω-chloroacetyl-L-ornithine has in-vitro activity against cancer cell lines and in-vivo activity against ascitic and solid tumors.

    Vargas-Ramírez, Alba L; Medina-Enríquez, Miriam M; Cordero-Rodríguez, Neira I; Ruiz-Cuello, Tatiana; Aguilar-Faisal, Leopoldo; Trujillo-Ferrara, José G; Alcántara-Farfán, Verónica; Rodríguez-Páez, Lorena

    2016-07-01

    N-ω-chloroacetyl-L-ornithine (NCAO) is an ornithine decarboxylase (ODC) inhibitor that is known to exert cytotoxic and antiproliferative effects on three neoplastic human cancer cell lines (HeLa, MCF-7, and HepG2). Here, we show that NCAO has antiproliferative activity in 13 cancer cell lines, of diverse tissue origin from human and mice, and in a mouse cancer model in vivo. All cell lines were sensitive to NCAO after 72 h of treatment (the EC50 ranged from 1 to 50.6 µmol/l). The Ca Ski cell line was the most sensitive (EC50=1.18±0.07 µmol/l) and MDA-MB-231 was the least sensitive (EC50=50.6±0.3 µmol/l). This ODC inhibitor showed selectivity for cancer cells, exerting almost no cytotoxic effect on the normal Vero cell line (EC50>1000 µmol/l). NCAO induced apoptosis and inhibited tumor cell migration in vitro. Furthermore, in vivo, this compound (at 50 and 100 mg/kg, daily intraperitoneal injection for 7 days) exerted potent antitumor activity against both solid and ascitic tumors in a mouse model using the myeloma (Ag8) cell line. At these same two doses, the toxicological evaluation showed that NCAO has no obvious systemic toxicity. The current results suggest that the antitumor activity is exerted by apoptosis related not only to a local but also a systemic cytotoxic effect exerted by NCAO on tumor cells. The applications for NCAO as an antitumor agent may be extensive; however, further studies are needed to ascertain the antitumor activity on other types of tumor in vivo and to determine the precise molecular mechanism of its activity.

  15. Cdx2 Polymorphism Affects the Activities of Vitamin D Receptor in Human Breast Cancer Cell Lines and Human Breast Carcinomas

    Di Benedetto, Anna; Korita, Etleva; Goeman, Frauke; Sacconi, Andrea; Biagioni, Francesca; Blandino, Giovanni; Strano, Sabrina; Muti, Paola; Mottolese, Marcella; Falvo, Elisabetta

    2015-01-01

    Vitamin D plays a role in cancer development and acts through the vitamin D receptor (VDR). It regulates the action of hormone responsive genes and is involved in cell cycle regulation, differentiation and apoptosis. VDR is a critical component of the vitamin D pathway and different common single nucleotide polymorphisms have been identified. Cdx2 VDR polymorphism can play an important role in breast cancer, modulating the activity of VDR. The objective of this study is to assess the relationship between the Cdx2 VDR polymorphism and the activities of VDR in human breast cancer cell lines and carcinomas breast patients. Cdx2 VDR polymorphism and antiproliferative effects of vitamin D treatment were investigated in a panel of estrogen receptor-positive (MCF7 and T-47D) and estrogen receptor-negative (MDA-MB-231, SUM 159PT, SK-BR-3, BT549, MDA-MB-468, HCC1143, BT20 and HCC1954) human breast cancer cell lines. Furthermore, the potential relationship among Cdx2 VDR polymorphism and a number of biomarkers used in clinical management of breast cancer was assessed in an ad hoc set of breast cancer cases. Vitamin D treatment efficacy was found to be strongly dependent on the Cdx2 VDR status in ER-negative breast cancer cell lines tested. In our series of breast cancer cases, the results indicated that patients with variant homozygote AA were associated with bio-pathological characteristics typical of more aggressive tumours, such as ER negative, HER2 positive and G3. Our results may suggest a potential effect of Cdx2 VDR polymorphism on the efficacy of vitamin D treatment in aggressive breast cancer cells (estrogen receptor negative). These results suggest that Cdx2 polymorphism may be a potential biomarker for vitamin D treatment in breast cancer, independently of the VDR receptor expression. PMID:25849303

  16. Cdx2 polymorphism affects the activities of vitamin D receptor in human breast cancer cell lines and human breast carcinomas.

    Claudio Pulito

    Full Text Available Vitamin D plays a role in cancer development and acts through the vitamin D receptor (VDR. It regulates the action of hormone responsive genes and is involved in cell cycle regulation, differentiation and apoptosis. VDR is a critical component of the vitamin D pathway and different common single nucleotide polymorphisms have been identified. Cdx2 VDR polymorphism can play an important role in breast cancer, modulating the activity of VDR. The objective of this study is to assess the relationship between the Cdx2 VDR polymorphism and the activities of VDR in human breast cancer cell lines and carcinomas breast patients. Cdx2 VDR polymorphism and antiproliferative effects of vitamin D treatment were investigated in a panel of estrogen receptor-positive (MCF7 and T-47D and estrogen receptor-negative (MDA-MB-231, SUM 159PT, SK-BR-3, BT549, MDA-MB-468, HCC1143, BT20 and HCC1954 human breast cancer cell lines. Furthermore, the potential relationship among Cdx2 VDR polymorphism and a number of biomarkers used in clinical management of breast cancer was assessed in an ad hoc set of breast cancer cases. Vitamin D treatment efficacy was found to be strongly dependent on the Cdx2 VDR status in ER-negative breast cancer cell lines tested. In our series of breast cancer cases, the results indicated that patients with variant homozygote AA were associated with bio-pathological characteristics typical of more aggressive tumours, such as ER negative, HER2 positive and G3. Our results may suggest a potential effect of Cdx2 VDR polymorphism on the efficacy of vitamin D treatment in aggressive breast cancer cells (estrogen receptor negative. These results suggest that Cdx2 polymorphism may be a potential biomarker for vitamin D treatment in breast cancer, independently of the VDR receptor expression.

  17. MiRNA Transcriptome Profiling of Spheroid-Enriched Cells with Cancer Stem Cell Properties in Human Breast MCF-7 Cell Line

    Boo, Lily; Ho, Wan Yong; Ali, Norlaily Mohd; Yeap, Swee Keong; Ky, Huynh; Chan, Kok Gan; Yin, Wai Fong; Satharasinghe, Dilan Amila; Liew, Woan Charn; Tan, Sheau Wei; Ong, Han Kiat; Cheong, Soon Keng

    2016-01-01

    Breast cancer is the second leading cause of cancer-related mortality worldwide as most patients often suffer cancer relapse. The reason is often attributed to the presence of cancer stem cells (CSCs). Recent studies revealed that dysregulation of microRNA (miRNA) are closely linked to breast cancer recurrence and metastasis. However, no specific study has comprehensively characterised the CSC characteristic and miRNA transcriptome in spheroid-enriched breast cells. This study described the generation of spheroid MCF-7 cell in serum-free condition and the comprehensive characterisation for their CSC properties. Subsequently, miRNA expression differences between the spheroid-enriched CSC cells and their parental cells were evaluated using next generation sequencing (NGS). Our results showed that the MCF-7 spheroid cells were enriched with CSCs properties, indicated by the ability to self-renew, increased expression of CSCs markers, and increased resistance to chemotherapeutic drugs. Additionally, spheroid-enriched CSCs possessed greater cell proliferation, migration, invasion, and wound healing ability. A total of 134 significantly (p<0.05) differentially expressed miRNAs were identified between spheroids and parental cells using miRNA-NGS. MiRNA-NGS analysis revealed 25 up-regulated and 109 down-regulated miRNAs which includes some miRNAs previously reported in the regulation of breast CSCs. A number of miRNAs (miR-4492, miR-4532, miR-381, miR-4508, miR-4448, miR-1296, and miR-365a) which have not been previously reported in breast cancer were found to show potential association with breast cancer chemoresistance and self-renewal capability. The gene ontology (GO) analysis showed that the predicted genes were enriched in the regulation of metabolic processes, gene expression, DNA binding, and hormone receptor binding. The corresponding pathway analyses inferred from the GO results were closely related to the function of signalling pathway, self

  18. Specific expression of the human voltage-gated proton channel Hv1 in highly metastatic breast cancer cells, promotes tumor progression and metastasis

    Wang, Yifan; Li, Shu Jie; Pan, Juncheng; Che, Yongzhe; Yin, Jian; Zhao, Qing

    2011-01-01

    Highlights: → Hv1 is specifically expressed in highly metastatic human breast tumor tissues. → Hv1 regulates breast cancer cytosolic pH. → Hv1 acidifies extracellular milieu. → Hv1 exacerbates the migratory ability of metastatic cells. -- Abstract: The newly discovered human voltage-gated proton channel Hv1 is essential for proton transfer, which contains a voltage sensor domain (VSD) without a pore domain. We report here for the first time that Hv1 is specifically expressed in the highly metastatic human breast tumor tissues, but not in poorly metastatic breast cancer tissues, detected by immunohistochemistry. Meanwhile, real-time RT-PCR and immunocytochemistry showed that the expression levels of Hv1 have significant differences among breast cancer cell lines, MCF-7, MDA-MB-231, MDA-MB-468, MDA-MB-453, T-47D and SK-BR-3, in which Hv1 is expressed at a high level in highly metastatic human breast cancer cell line MDA-MB-231, but at a very low level in poorly metastatic human breast cancer cell line MCF-7. Inhibition of Hv1 expression in the highly metastatic MDA-MB-231 cells by small interfering RNA (siRNA) significantly decreases the invasion and migration of the cells. The intracellular pH of MDA-MB-231 cells down-regulated Hv1 expression by siRNA is obviously decreased compared with MDA-MB-231 with the scrambled siRNA. The expression of matrix metalloproteinase-2 and gelatinase activity in MDA-MB-231 cells suppressed Hv1 by siRNA were reduced. Our results strongly suggest that Hv1 regulates breast cancer intracellular pH and exacerbates the migratory ability of metastatic cells.

  19. Hansen solubility parameters (HSP) for prescreening formulation of solid lipid nanoparticles (SLN): in vitro testing of curcumin-loaded SLN in MCF-7 and BT-474 cell lines.

    Doktorovova, Slavomira; Souto, Eliana B; Silva, Amélia M

    2018-01-01

    Curcumin, a phenolic compound from turmeric rhizome (Curcuma longa), has many interesting pharmacological effects, but shows very low aqueous solubility. Consequently, several drug delivery systems based on polymeric and lipid raw materials have been proposed to increase its bioavailability. Solid lipid nanoparticles (SLN), consisting of solid lipid matrix and a surfactant layer can load poorly water-soluble drugs, such as curcumin, deliver them at defined rates and enhance their intracellular uptake. In the present work, we demonstrate that, despite the drug's affinity to lipids frequently used in SLN production, the curcumin amount loaded in most SLN formulations may be too low to exhibit anticancer properties. The predictive curcumin solubility in solid lipids has been thoroughly analyzed by Hansen solubility parameters, in parallel with the lipid-screening solubility tests for a range of selected lipids. We identified the most suitable lipid materials for curcumin-loaded SLN, producing physicochemically stable particles with high encapsulation efficiency (>90%). Loading capacity of curcumin in SLN allowed preventing the cellular damage caused by cationic SLN on MCF-7 and BT-474 cells but was not sufficient to exhibit drug's anticancer properties. But curcumin-loaded SLN exhibited antioxidant properties, substantiating the conclusions that curcumin's effect in cancer cells is highly dose dependent.

  20. Berberine Regulated Lipid Metabolism in the Presence of C75, Compound C, and TOFA in Breast Cancer Cell Line MCF-7.

    Tan, Wen; Zhong, Zhangfeng; Wang, Shengpeng; Suo, Zhanwei; Yang, Xian; Hu, Xiaodong; Wang, Yitao

    2015-01-01

    Berberine interfering with cancer reprogramming metabolism was confirmed in our previous study. Lipid metabolism and mitochondrial function were also the core parts in reprogramming metabolism. In the presence of some energy-related inhibitors, including C75, compound C, and TOFA, the discrete roles of berberine in lipid metabolism and mitochondrial function were elucidated. An altered lipid metabolism induced by berberine was observed under the inhibition of FASN, AMPK, and ACC in breast cancer cell MCF-7. And the reversion of berberine-induced lipid suppression indicated that ACC inhibition might be involved in that process instead of FASN inhibition. A robust apoptosis induced by berberine even under the inhibition of AMPK and lipid synthesis was also indicated. Finally, mitochondrial function regulation under the inhibition of AMPK and ACC might be in an ACL-independent manner. Undoubtedly, the detailed mechanisms of berberine interfering with lipid metabolism and mitochondrial function combined with energy-related inhibitors need further investigation, including the potential compensatory mechanisms for ATP production and the upregulation of ACL.

  1. Berberine Regulated Lipid Metabolism in the Presence of C75, Compound C, and TOFA in Breast Cancer Cell Line MCF-7

    Wen Tan

    2015-01-01

    Full Text Available Berberine interfering with cancer reprogramming metabolism was confirmed in our previous study. Lipid metabolism and mitochondrial function were also the core parts in reprogramming metabolism. In the presence of some energy-related inhibitors, including C75, compound C, and TOFA, the discrete roles of berberine in lipid metabolism and mitochondrial function were elucidated. An altered lipid metabolism induced by berberine was observed under the inhibition of FASN, AMPK, and ACC in breast cancer cell MCF-7. And the reversion of berberine-induced lipid suppression indicated that ACC inhibition might be involved in that process instead of FASN inhibition. A robust apoptosis induced by berberine even under the inhibition of AMPK and lipid synthesis was also indicated. Finally, mitochondrial function regulation under the inhibition of AMPK and ACC might be in an ACL-independent manner. Undoubtedly, the detailed mechanisms of berberine interfering with lipid metabolism and mitochondrial function combined with energy-related inhibitors need further investigation, including the potential compensatory mechanisms for ATP production and the upregulation of ACL.

  2. Proapoptotic and Antiproliferative Effects of Thymus caramanicus on Human Breast Cancer Cell Line (MCF-7 and Its Interaction with Anticancer Drug Vincristine

    Saeed Esmaeili-Mahani

    2014-01-01

    Full Text Available Thymus caramanicus Jalas is one of the species of thymus that grows in the wild in different regions of Iran. Traditionally, leaves of this plant are used in the treatment of diabetes, arthritis, and cancerous situation. Therefore, the present study was designed to investigate the selective cytotoxic and antiproliferative properties of Thymus caramanicus extract (TCE. MCF-7 human breast cancer cells were used in this study. Cytotoxicity of the extract was determined using MTT and neutral red assays. Biochemical markers of apoptosis (caspase 3, Bax, and Bcl-2 and cell proliferation (cyclin D1 were evaluated by immunoblotting. Vincristine was used as anticancer control drug in extract combination therapy. The data showed that incubation of cells with TCE (200 and 250 μg/mL significantly increased cell damage, activated caspase 3 and Bax/Bcl2 ratio. In addition, cyclin D1 was significantly decreased in TCE-treated cells. Furthermore, concomitant treatment of cells with extract and anticancer drug produced a significant cytotoxic effect as compared to extract or drugs alone. In conclusion, thymus extract has a potential proapoptotic/antiproliferative property against human breast cancer cells and its combination with chemotherapeutic agent vincristine may induce cell death effectively and be a potent modality to treat this type of cancer.

  3. Lithium-Acetate-Mediated Biginelli One-Pot Multicomponent Synthesis under Solvent-Free Conditions and Cytotoxic Activity against the Human Lung Cancer Cell Line A549 and Breast Cancer Cell Line MCF7

    Harshita Sachdeva

    2012-01-01

    Full Text Available Various Biginelli compounds (dihydropyrimidinones have been synthesized efficiently and in high yields under mild, solvent-free, and eco-friendly conditions in a one-pot reaction of 1,3-dicarbonyl compounds, aldehydes, and urea/thiourea/acetyl thiourea using lithium-acetate as a novel catalyst without the addition of any proton source. Comparative catalytic efficiency of lithium-acetate and polyphosphoric acid to catalyze Biginelli condensation is also studied under neat conditions. The reaction is carried out in the absence of any solvent and represents an improvement of the classical Biginelli protocol and an advantage in comparison with FeCl3·6H2O, NiCl2·6H2O and CoCl2·6H2O that were used with HCl as a cocatalyst. Compared to classical Biginelli reaction conditions, the present method has advantages of good yields, short reaction times, and experimental simplicity. The obtained products have been identified by spectral (1H NMR and IR data and their melting points. The prepared compounds are evaluated for anticancer activity against two human cancer cell lines (lung cancer cell line A549 and breast cancer cell line MCF7.

  4. A comparison of the effects of tributyltin chloride and triphenyltin chloride on cell proliferation, proapoptotic p53, Bax, and antiapoptotic Bcl-2 protein levels in human breast cancer MCF-7 cell line.

    Fickova, Maria; Macho, Ladislav; Brtko, Julius

    2015-06-01

    In recent years it was disclosed, that numerous organotin(IV) derivatives have remarkable cytotoxicity against several types of cancer cells. The property to inhibit cell growth makes these compounds promising for antitumor therapy, as the clinical effectiveness of cisplatin is limited by drug resistance and significant side effects. Tributyltin and triphenyltin are known as endocrine disruptors. Moreover, the compounds exert their toxicity in mammals predominantly through nuclear receptor signaling. Here we present the effects of tributyltin chloride (TBT-Cl) and triphenyltin chloride (TPT-Cl) on cell proliferation, expression of proapoptotic p53, Bax, and antiapoptotic Bcl-2 proteins in human breast cancer MCF-7 cell line. Dose and time dependent (24, 48 and 72 h) cell expositions have demonstrated TBT-Cl as more effective in inhibiting MCF-7 cell proliferation than TPT-Cl. Short time treatment with TBT-Cl displayed marked stimulation of p53 protein expression when compared to TPT-Cl. Both organotin compounds displayed similar mild enhancement of Bax protein expression. The 24h exposition of TPT-Cl induced substantial diminution of Bcl-2 protein expression in comparison with both, untreated cells and TBT-Cl treated cells. Our observations indicate that TBT-Cl and TPT-Cl have different antiproliferative potency and distinct impact on expression of apoptosis marker proteins. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Real time monitoring and quantification of reactive oxygen species in breast cancer cell line MCF-7 by 2',7'-dichlorofluorescin diacetate (DCFDA) assay.

    Figueroa, Daniela; Asaduzzaman, Mohammad; Young, Fiona

    2018-04-07

    The detection of reactive oxygen species (ROS) using 2',7'-dichlorofluorescin diacetate (DCFDA) is commonly performed by a single measurement of fluorescence but this fails to capture a profile of ROS generation over time. This study aimed to develop a real-time monitoring method to increase the utility of the assay, to incorporate cytotoxicity screening and to describe the combined effects of DCFDA and the ROS generator, Ter-butyl hydrogen peroxide (TBHP). Breast cancer MCF-7 cells were loaded with DCFDA (0-50 μM) for 45 min, and then exposed to TBHP (0-50 μM). Fluorescence was recorded according to three different schedules: every hour for 6 h, or once after 6 h or 24 h. Viability was assessed in a crystal violet assay and cell morphology was examined by microscopy. TBHP caused a time and dose-dependent increase in ROS and the magnitude of the fluorescent signal was affected by the loading concentration of DCFDA. Reading the fluorescence every hour for 6 h did not diminish the emission signal. The most sensitive and reliable combination for this ROS assay was 10 μM DCFDA with 25 μM TBHP; since higher concentrations of DCFDA compromised cell viability. In conclusion we adapted a single point ROS assay to enable production of a profile of ROS generation over an extended 6 h period, and related this to cell viability and morphology. Published by Elsevier Inc.

  6. Kinetin (N -furfuryladenine): Cytotoxicity against MCF-7 breast ...

    Jane

    2011-07-06

    Jul 6, 2011 ... The cytotoxicity effect of kinetin on MCF-7 breast cancer cell lines was ... Medium (DMEM) containing 10% FBS, 2 mM glutamine, 100 units/ml ..... apoptosis of human myeloid leukemia cells by cytokinins and cytokinin ...

  7. Insights into significant pathways and gene interaction networks underlying breast cancer cell line MCF-7 treated with 17β-estradiol (E2).

    Huan, Jinliang; Wang, Lishan; Xing, Li; Qin, Xianju; Feng, Lingbin; Pan, Xiaofeng; Zhu, Ling

    2014-01-01

    Estrogens are known to regulate the proliferation of breast cancer cells and to alter their cytoarchitectural and phenotypic properties, but the gene networks and pathways by which estrogenic hormones regulate these events are only partially understood. We used global gene expression profiling by Affymetrix GeneChip microarray analysis, with KEGG pathway enrichment, PPI network construction, module analysis and text mining methods to identify patterns and time courses of genes that are either stimulated or inhibited by estradiol (E2) in estrogen receptor (ER)-positive MCF-7 human breast cancer cells. Of the genes queried on the Affymetrix Human Genome U133 plus 2.0 microarray, we identified 628 (12h), 852 (24h) and 880 (48 h) differentially expressed genes (DEGs) that showed a robust pattern of regulation by E2. From pathway enrichment analysis, we found out the changes of metabolic pathways of E2 treated samples at each time point. At 12h time point, the changes of metabolic pathways were mainly focused on pathways in cancer, focal adhesion, and chemokine signaling pathway. At 24h time point, the changes were mainly enriched in neuroactive ligand-receptor interaction, cytokine-cytokine receptor interaction and calcium signaling pathway. At 48 h time point, the significant pathways were pathways in cancer, regulation of actin cytoskeleton, cell adhesion molecules (CAMs), axon guidance and ErbB signaling pathway. Of interest, our PPI network analysis and module analysis found that E2 treatment induced enhancement of PRSS23 at the three time points and PRSS23 was in the central position of each module. Text mining results showed that the important genes of DEGs have relationship with signal pathways, such as ERbB pathway (AREG), Wnt pathway (NDP), MAPK pathway (NTRK3, TH), IP3 pathway (TRA@) and some transcript factors (TCF4, MAF). Our studies highlight the diverse gene networks and metabolic and cell regulatory pathways through which E2 operates to achieve its

  8. Gene-silencing effects of anti-survivin siRNA delivered by RGDV-functionalized nanodiamond carrier in the breast carcinoma cell line MCF-7.

    Bi, Yanzhao; Zhang, Yifan; Cui, Chunying; Ren, Lulu; Jiang, Xueyun

    Nanodiamond (ND) is a renowned material in nonviral small interfering RNA (siRNA) carrier field due to its unique physical, chemical, and biological properties. In our previous work, it was proven that ND could deliver siRNA into cells efficiently and downregulate the expression of desired protein. However, synthesizing a high-efficient tumor-targeting carrier using ND is still a challenge. In this study, a novel carrier, NDCONH(CH 2 ) 2 NH-VDGR, was synthesized for siRNA delivery, and its properties were characterized with methods including Fourier transform infrared spectrometry, transmission electron microscopy, scanning electron microscopy, gel retardation assay, differential scanning calorimetry, confocal microscopy, releasing test, real-time polymerase chain reaction (PCR) assay, enzyme-linked immunosorbent assay (ELISA), flow cytometry, cytotoxicity assay, and gene-silencing efficacy assay in vitro and in vivo. The mechanism of NDCONH(CH 2 ) 2 NH-VDGR/survivin-siRNA-induced tumor apoptosis was evaluated via flow cytometer assay using Annexin V-fluorescein isothiocyanate/propidium iodide staining method. The NDCONH(CH 2 ) 2 NH-VDGR/survivin-siRNA nanoparticle with 60-110 nm diameter and 35.65±3.90 mV zeta potential was prepared. For real-time PCR assay, the results showed that the expression of survivin mRNA was reduced to 46.77%±6.3%. The expression of survivin protein was downregulated to 48.49%±2.25%, as evaluated by ELISA assay. MTT assay showed that NDCONH(CH 2 ) 2 NH-VDGR/survivin-siRNA had an inhibitory effect on MCF-7 cell proliferation. According to these results, the survivin-siRNA could be delivered, transported, and released stably, which benefits in increasing the gene-silencing effect. Therefore, as an siRNA carrier, NDCONH(CH 2 ) 2 NH-VDGR was suggested to be used in siRNA delivery system and in cancer treatments.

  9. Gene-silencing effects of anti-survivin siRNA delivered by RGDV-functionalized nanodiamond carrier in the breast carcinoma cell line MCF-7

    Bi YZ

    2016-11-01

    Full Text Available Yanzhao Bi, Yifan Zhang, Chunying Cui, Lulu Ren, Xueyun Jiang School of Chemical Biology and Pharmaceutical Sciences, Capital Medical University, Beijing, People’s Republic of China Abstract: Nanodiamond (ND is a renowned material in nonviral small interfering RNA (siRNA carrier field due to its unique physical, chemical, and biological properties. In our previous work, it was proven that ND could deliver siRNA into cells efficiently and downregulate the expression of desired protein. However, synthesizing a high-efficient tumor-targeting carrier using ND is still a challenge. In this study, a novel carrier, NDCONH(CH22NH-VDGR, was synthesized for siRNA delivery, and its properties were characterized with methods including Fourier transform infrared spectrometry, transmission electron microscopy, scanning electron microscopy, gel retardation assay, differential scanning calorimetry, confocal microscopy, releasing test, real-time polymerase chain reaction (PCR assay, enzyme-linked immunosorbent assay (ELISA, flow cytometry, cytotoxicity assay, and gene-silencing efficacy assay in vitro and in vivo. The mechanism of NDCONH(CH22NH-VDGR/survivin-siRNA-induced tumor apoptosis was evaluated via flow cytometer assay using Annexin V–fluorescein isothiocyanate/propidium iodide staining method. The NDCONH(CH22NH-VDGR/survivin-siRNA nanoparticle with 60–110 nm diameter and 35.65±3.90 mV zeta potential was prepared. For real-time PCR assay, the results showed that the expression of survivin mRNA was reduced to 46.77%±6.3%. The expression of survivin protein was downregulated to 48.49%±2.25%, as evaluated by ELISA assay. MTT assay showed that NDCONH(CH22NH-VDGR/survivin-siRNA had an inhibitory effect on MCF-7 cell proliferation. According to these results, the survivin-siRNA could be delivered, transported, and released stably, which benefits in increasing the gene-silencing effect. Therefore, as an siRNA carrier, NDCONH(CH22NH-VDGR was suggested

  10. Estrogen receptor alpha and nuclear factor Y coordinately regulate the transcription of the SUMO-conjugating UBC9 gene in MCF-7 breast cancer cells.

    Shibo Ying

    Full Text Available UBC9 encodes a protein that conjugates small ubiquitin-related modifier (SUMO to target proteins thereby changing their functions. Recently, it was noted that UBC9 expression and activity play a role in breast tumorigenesis and response to anticancer drugs. However, the underlying mechanism is poorly understood. To investigate the transcriptional regulation of the UBC9 gene, we identified and characterized its promoter and cis-elements. Promoter activity was tested using luciferase reporter assays. The binding of transcription factors to the promoter was detected by chromatin immunoprecipitation (ChIP, and their functional role was confirmed by siRNA knockdown. UBC9 mRNA and protein levels were measured by quantitative reverse transcription PCR and Western blot analysis, respectively. An increased expression of UBC9 mRNA and protein was found in MCF-7 breast cancer cells treated with 17β-estradiol (E2. Analysis of various deletion mutants revealed a 137 bp fragment upstream of the transcription initiation site to be sufficient for reporter gene transcription. Mutations of putative estrogen receptor α (ER-α (one imperfect estrogen response element, ERE and/or nuclear factor Y (NF-Y binding sites (two CCAAT boxes markedly reduced promoter activity. Similar results were obtained in ER-negative MDA-MB-231 cells except that the ERE mutation did not affect promoter activity. Additionally, promoter activity was stimulated upon E2 treatment and overexpression of ER-α or NF-YA in MCF-7 cells. ChIP confirmed direct binding of both transcription factors to the UBC9 promoter in vivo. Furthermore, UBC9 expression was diminished by ER-α and NF-Y siRNAs on the mRNA and protein levels. In conclusion, we identified the proximal UBC9 promoter and provided evidence that ER-α and NF-Y regulate UBC9 expression on the transcriptional level in response to E2 in MCF-7 cells. These findings may contribute to a better understanding of the regulation of UBC9 in ER

  11. Estrogen receptor alpha and nuclear factor Y coordinately regulate the transcription of the SUMO-conjugating UBC9 gene in MCF-7 breast cancer cells.

    Ying, Shibo; Dünnebier, Thomas; Si, Jing; Hamann, Ute

    2013-01-01

    UBC9 encodes a protein that conjugates small ubiquitin-related modifier (SUMO) to target proteins thereby changing their functions. Recently, it was noted that UBC9 expression and activity play a role in breast tumorigenesis and response to anticancer drugs. However, the underlying mechanism is poorly understood. To investigate the transcriptional regulation of the UBC9 gene, we identified and characterized its promoter and cis-elements. Promoter activity was tested using luciferase reporter assays. The binding of transcription factors to the promoter was detected by chromatin immunoprecipitation (ChIP), and their functional role was confirmed by siRNA knockdown. UBC9 mRNA and protein levels were measured by quantitative reverse transcription PCR and Western blot analysis, respectively. An increased expression of UBC9 mRNA and protein was found in MCF-7 breast cancer cells treated with 17β-estradiol (E2). Analysis of various deletion mutants revealed a 137 bp fragment upstream of the transcription initiation site to be sufficient for reporter gene transcription. Mutations of putative estrogen receptor α (ER-α) (one imperfect estrogen response element, ERE) and/or nuclear factor Y (NF-Y) binding sites (two CCAAT boxes) markedly reduced promoter activity. Similar results were obtained in ER-negative MDA-MB-231 cells except that the ERE mutation did not affect promoter activity. Additionally, promoter activity was stimulated upon E2 treatment and overexpression of ER-α or NF-YA in MCF-7 cells. ChIP confirmed direct binding of both transcription factors to the UBC9 promoter in vivo. Furthermore, UBC9 expression was diminished by ER-α and NF-Y siRNAs on the mRNA and protein levels. In conclusion, we identified the proximal UBC9 promoter and provided evidence that ER-α and NF-Y regulate UBC9 expression on the transcriptional level in response to E2 in MCF-7 cells. These findings may contribute to a better understanding of the regulation of UBC9 in ER

  12. Evaluation of cytotoxic effect of methanolic extracts isolated from endemic plants of Chaharmahal va Bakhtiari province on PC-3, MCF-7, Hep G2, CHO and B16-F10 cell lines

    Z. Tayarani-Najaran

    2017-11-01

    Full Text Available Background and objectives: To date, thousands of secondary metabolites have been isolated from plants and microorganisms and there is an unprecedented attention towards potential biomedical applications of natural compounds. In this study, cytotoxic properties of methanol extracts of Stachys obtusicrena, Aristolochia olivieri, Linum album, Dionysia sawyeri, Ajuga chamaecistus, Achillea kellalensis, Nepeta glomerulosa, Phlomis aucheria, Tanacetum dumosum, Dianthus orientalis, Scutellaria multicaulis, Cicer oxyodon and Picris oligocephalum which are widely grown in Iran, were investigated on PC-3 (prostat cancer, MCF-7 (breast cancer, Hep-G2 (liver cancer, CHO (ovarian cancer and B16-F10 (melanoma cell lines. Methods: The cancer cells were cultured in RPMI-1640 and incubated with different concentrations of the plant extracts. Cell viability was quantitated by Alamar blue® assay. The apoptotic cells were determined by PI coloring and Flow Cytometry (Sub-G1 peak. Results: The methanol extracts of D. sawyeri, S. obtusicrena, and C. oxyodon significantly decreased the viability of CHO cells. The Methanol extract of D. sawyer and L. album had cytotoxic effects on B16-F10 cells, whereas no toxicity was observed in MCF-7, Hep-G2 and PC-3 cell lines after incubation of the cancer cells with the plant extracts. The PI staining results showed that D. sawyeri, S. obtusicrena, and C. oxyodon in CHO cancer cells could induce apoptosis in a concentration-dependent manner. Conclusion: Screening plants to find the most cytotoxic extract showed D. sawyeri, S. obtusicrena, C. oxyodon and L. album had the potential for further analysis toward finding active phytochemicals with cytotoxic activity.

  13. Quercetin and epigallocatechin gallate inhibit glucose uptake and metabolism by breast cancer cells by an estrogen receptor-independent mechanism

    Moreira, Liliana, E-mail: lilianam87@gmail.com [Department of Biochemistry (U38-FCT), Faculty of Medicine of University of Porto, Alameda Prof. Hernâni Monteiro, 4200-319 Porto (Portugal); Araújo, Isabel, E-mail: isa.araujo013@gmail.com [Department of Biochemistry (U38-FCT), Faculty of Medicine of University of Porto, Alameda Prof. Hernâni Monteiro, 4200-319 Porto (Portugal); Costa, Tito, E-mail: tito.fmup16@gmail.com [Department of Biochemistry (U38-FCT), Faculty of Medicine of University of Porto, Alameda Prof. Hernâni Monteiro, 4200-319 Porto (Portugal); Correia-Branco, Ana, E-mail: ana.clmc.branco@gmail.com [Department of Biochemistry (U38-FCT), Faculty of Medicine of University of Porto, Alameda Prof. Hernâni Monteiro, 4200-319 Porto (Portugal); Faria, Ana, E-mail: anafaria@med.up.pt [Department of Biochemistry (U38-FCT), Faculty of Medicine of University of Porto, Alameda Prof. Hernâni Monteiro, 4200-319 Porto (Portugal); Chemistry Investigation Centre (CIQ), Faculty of Sciences of University of Porto, Rua Campo Alegre, 4169-007 Porto (Portugal); Faculty of Nutrition and Food Sciences of University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto (Portugal); Martel, Fátima, E-mail: fmartel@med.up.pt [Department of Biochemistry (U38-FCT), Faculty of Medicine of University of Porto, Alameda Prof. Hernâni Monteiro, 4200-319 Porto (Portugal); Keating, Elisa, E-mail: keating@med.up.pt [Department of Biochemistry (U38-FCT), Faculty of Medicine of University of Porto, Alameda Prof. Hernâni Monteiro, 4200-319 Porto (Portugal)

    2013-07-15

    In this study we characterized {sup 3}H-2-deoxy-D-glucose ({sup 3}H -DG) uptake by the estrogen receptor (ER)-positive MCF7 and the ER-negative MDA-MB-231 human breast cancer cell lines and investigated the effect of quercetin (QUE) and epigallocatechin gallate (EGCG) upon {sup 3}H-DG uptake, glucose metabolism and cell viability and proliferation. In both MCF7 and MDA-MB-231 cells {sup 3}H-DG uptake was (a) time-dependent, (b) saturable with similar capacity (V{sub max}) and affinity (K{sub m}), (c) potently inhibited by cytochalasin B, an inhibitor of the facilitative glucose transporters (GLUT), (d) sodium-independent and (e) slightly insulin-stimulated. This suggests that {sup 3}H-DG uptake by both cell types is mediated by members of the GLUT family, including the insulin-responsive GLUT4 or GLUT12, while being independent of the sodium-dependent glucose transporter (SGLT1). QUE and EGCG markedly and concentration-dependently inhibited {sup 3}H-DG uptake by MCF7 and by MDA-MB-231 cells, and both compounds blocked lactate production by MCF7 cells. Additionally, a 4 h-treatment with QUE or EGCG decreased MCF7 cell viability and proliferation, an effect that was more potent when glucose was available in the extracellular medium. Our results implicate QUE and EGCG as metabolic antagonists in breast cancer cells, independently of estrogen signalling, and suggest that these flavonoids could serve as therapeutic agents/adjuvants even for ER-negative breast tumors. -- Highlights: • Glucose uptake by MCF7 and MDA-MB-231 cells is mainly mediated by GLUT1. • QUE and EGCG inhibit cellular glucose uptake thus abolishing the Warburg effect. • This process induces cytotoxicity and proliferation arrest in MCF7 cells. • The flavonoids’ effects are independent of estrogen receptor signalling.

  14. Quercetin and epigallocatechin gallate inhibit glucose uptake and metabolism by breast cancer cells by an estrogen receptor-independent mechanism

    Moreira, Liliana; Araújo, Isabel; Costa, Tito; Correia-Branco, Ana; Faria, Ana; Martel, Fátima; Keating, Elisa

    2013-01-01

    In this study we characterized 3 H-2-deoxy-D-glucose ( 3 H -DG) uptake by the estrogen receptor (ER)-positive MCF7 and the ER-negative MDA-MB-231 human breast cancer cell lines and investigated the effect of quercetin (QUE) and epigallocatechin gallate (EGCG) upon 3 H-DG uptake, glucose metabolism and cell viability and proliferation. In both MCF7 and MDA-MB-231 cells 3 H-DG uptake was (a) time-dependent, (b) saturable with similar capacity (V max ) and affinity (K m ), (c) potently inhibited by cytochalasin B, an inhibitor of the facilitative glucose transporters (GLUT), (d) sodium-independent and (e) slightly insulin-stimulated. This suggests that 3 H-DG uptake by both cell types is mediated by members of the GLUT family, including the insulin-responsive GLUT4 or GLUT12, while being independent of the sodium-dependent glucose transporter (SGLT1). QUE and EGCG markedly and concentration-dependently inhibited 3 H-DG uptake by MCF7 and by MDA-MB-231 cells, and both compounds blocked lactate production by MCF7 cells. Additionally, a 4 h-treatment with QUE or EGCG decreased MCF7 cell viability and proliferation, an effect that was more potent when glucose was available in the extracellular medium. Our results implicate QUE and EGCG as metabolic antagonists in breast cancer cells, independently of estrogen signalling, and suggest that these flavonoids could serve as therapeutic agents/adjuvants even for ER-negative breast tumors. -- Highlights: • Glucose uptake by MCF7 and MDA-MB-231 cells is mainly mediated by GLUT1. • QUE and EGCG inhibit cellular glucose uptake thus abolishing the Warburg effect. • This process induces cytotoxicity and proliferation arrest in MCF7 cells. • The flavonoids’ effects are independent of estrogen receptor signalling

  15. The stepwise evolution of the exome during acquisition of docetaxel resistance in breast cancer cells

    Hansen, Stine Ninel; Ehlers, Natasja Spring; Zhu, Shida

    2016-01-01

    Background: Resistance to taxane-based therapy in breast cancer patients is a major clinical problem that may be addressed through insight of the genomic alterations leading to taxane resistance in breast cancer cells. In the current study we used whole exome sequencing to discover somatic genomic...... alterations, evolving across evolutionary stages during the acquisition of docetaxel resistance in breast cancer cell lines. Results: Two human breast cancer in vitro models (MCF-7 and MDA-MB-231) of the step-wise acquisition of docetaxel resistance were developed by exposing cells to 18 gradually increasing...... resistance relevant genomic variation appeared to arise midway towards fully resistant cells corresponding to passage 31 (5 nM docetaxel) for MDA-MB-231 and passage 16 (1.2 nM docetaxel) for MCF-7, and where the cells also exhibited a period of reduced growth rate or arrest, respectively. MCF-7 cell acquired...

  16. Genetic variability in MCF-7 sublines: evidence of rapid genomic and RNA expression profile modifications

    Nugoli, Mélanie; Theillet, Charles; Chuchana, Paul; Vendrell, Julie; Orsetti, Béatrice; Ursule, Lisa; Nguyen, Catherine; Birnbaum, Daniel; Douzery, Emmanuel JP; Cohen, Pascale

    2003-01-01

    Both phenotypic and cytogenetic variability have been reported for clones of breast carcinoma cell lines but have not been comprehensively studied. Despite this, cell lines such as MCF-7 cells are extensively used as model systems. In this work we documented, using CGH and RNA expression profiles, the genetic variability at the genomic and RNA expression levels of MCF-7 cells of different origins. Eight MCF-7 sublines collected from different sources were studied as well as 3 subclones isolated from one of the sublines by limit dilution. MCF-7 sublines showed important differences in copy number alteration (CNA) profiles. Overall numbers of events ranged from 28 to 41. Involved chromosomal regions varied greatly from a subline to another. A total of 62 chromosomal regions were affected by either gains or losses in the 11 sublines studied. We performed a phylogenetic analysis of CGH profiles using maximum parsimony in order to reconstruct the putative filiation of the 11 MCF-7 sublines. The phylogenetic tree obtained showed that the MCF-7 clade was characterized by a restricted set of 8 CNAs and that the most divergent subline occupied the position closest to the common ancestor. Expression profiles of 8 MCF-7 sublines were analyzed along with those of 19 unrelated breast cancer cell lines using home made cDNA arrays comprising 720 genes. Hierarchical clustering analysis of the expression data showed that 7/8 MCF-7 sublines were grouped forming a cluster while the remaining subline clustered with unrelated breast cancer cell lines. These data thus showed that MCF-7 sublines differed at both the genomic and phenotypic levels. The analysis of CGH profiles of the parent subline and its three subclones supported the heteroclonal nature of MCF-7 cells. This strongly suggested that the genetic plasticity of MCF-7 cells was related to their intrinsic capacity to generate clonal heterogeneity. We propose that MCF-7, and possibly the breast tumor it was derived from, evolved

  17. The impact of anticancer activity upon Beta vulgaris extract mediated biosynthesized silver nanoparticles (ag-NPs) against human breast (MCF-7), lung (A549) and pharynx (Hep-2) cancer cell lines.

    Venugopal, K; Ahmad, H; Manikandan, E; Thanigai Arul, K; Kavitha, K; Moodley, M K; Rajagopal, K; Balabhaskar, R; Bhaskar, M

    2017-08-01

    The present study tried for a phyto-synthetic method of producing silver nanoparticles (Ag-NPs) with size controlled as and eco-friendly route that can lead to their advanced production with decorative tranquil morphology. By inducing temperature fluctuation of the reaction mixture from 25 to 80°C the plasmon resonance band raised slowly which had an ultimate effect on size and shape of Ag-NPs as shown by UV-visible spectroscopy and TEM results. The biosynthesized nanoparticles showed good cytotoxic impact against MCF-7, A549 and Hep2 cells compared to normal cell lines. Compared to control plates, the percentage of cell growth inhibition was found to be high with as concentrations of Ag-NPs becomes more as determined by MTT assay. The AO/EtBr staining observations demonstrated that the mechanism of cell death induced by Ag-NPs was due to apoptosis in cancer cells. These present results propose that the silver nanoparticles (Ag-NPs) may be utilized as anticancer agents for the treatment of various cancer types. However, there is a need for study of in vivo examination of these nanoparticles to find their role and mechanism inside human body. Further, studies we plan to do biomarker fabrication from the green synthesized plant extract nanoparticles like silver, gold and copper nanoparticles with optimized shape and sizes and their enhancement of these noble nanoparticles. Copyright © 2017. Published by Elsevier B.V.

  18. Cellular effect of styrene substituted biscoumarin caused cellular apoptosis and cell cycle arrest in human breast cancer cells.

    Perumalsamy, Haribalan; Sankarapandian, Karuppasamy; Kandaswamy, Narendran; Balusamy, Sri Renukadevi; Periyathambi, Dhaiveegan; Raveendiran, Nanthini

    2017-11-01

    Coumarins occurs naturally across plant kingdoms exhibits significant pharmacological properties and pharmacokinetic activity. The conventional, therapeutic agents are often associated with poor stability, absorption and increased side effects. Therefore, identification of a drug that has little or no-side effect on humans is consequential. Here, we investigated the antiproliferative activity of styrene substituted biscoumarin against various human breast cancer cell lines, such as MCF-7, (ER-) MDA-MB-231 and (AR+) MDA-MB-453. Styrene substituted biscoumarin induced cell death by apoptosis in MDA-MB-231 cell line was analyzed. Antiproliferative activity of Styrene substituted biscoumarin was performed by using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay. Styrene substituted biscoumarin induced apoptosis was assessed by Hoechst staining, Annexin V-fluorescein isothiocyanate/propidium iodide (Annexin V-FITC/PI) staining and flow cytometric analysis. Migratory and proliferating characteristic of breast cancer cell line MDA-MB-231 was also analyzed by wound healing and colony formation assay. Furthermore, mRNA expression of BAX and BCL-2 were quantified using qRT-PCR and protein expression level analyzed by Western blot. The inhibition concentration (IC 50 ) of styrene substituted biscoumarin was assayed against three breast cancer cell lines. The inhibition concentration (IC 50 ) value of styrene substituted biscoumarin toward MDA-MB-231, MDA-MB-453 and MCF-7 cell lines was 5.63, 7.30 and 10.84μg/ml respectively. Styrene substituted biscoumarin induced apoptosis was detected by Hoechst staining, DAPI/PI analysis and flow-cytometric analysis. The migration and proliferative efficiency of MDA-MB-231 cells were completely arrested upon styrene substituted biscoumarin treatment. Also, mRNA gene expression and protein expression of pro-apoptotic (BAX) and anti-apoptotic (BCL-2) genes were analyzed by qRT-PCR and western blot analysis upon

  19. Investigating the effect of cell substrate on cancer cell stiffness by optical tweezers.

    Yousafzai, Muhammad Sulaiman; Coceano, Giovanna; Bonin, Serena; Niemela, Joseph; Scoles, Giacinto; Cojoc, Dan

    2017-07-26

    The mechanical properties of cells are influenced by their microenvironment. Here we report cell stiffness alteration by changing the cell substrate stiffness for isolated cells and cells in contact with other cells. Polydimethylsiloxane (PDMS) is used to prepare soft substrates with three different stiffness values (173, 88 and 17kPa respectively). Breast cancer cells lines, namely HBL-100, MCF-7 and MDA-MB-231 with different level of aggressiveness are cultured on these substrates and their local elasticity is investigated by vertical indentation of the cell membrane. Our preliminary results show an unforeseen behavior of the MDA-MB-231 cells. When cultured on glass substrate as isolated cells, they are less stiff than the other two types of cells, in agreement with the general statement that more aggressive and metastatic cells are softer. However, when connected to other cells the stiffness of MDA-MB-231 cells becomes similar to the other two cell lines. Moreover, the stiffness of MDA-MB-231 cells cultured on soft PDMS substrates is significantly higher than the stiffness of the other cell types, demonstrating thus the strong influence of the environmental conditions on the mechanical properties of the cells. Copyright © 2017. Published by Elsevier Ltd.

  20. Evaluation of In Vitro Anticancer Activity of Ocimum Basilicum, Alhagi Maurorum, Calendula Officinalis and Their Parasite Cuscuta Campestris

    Behbahani, Mandana

    2014-01-01

    The present investigation was carried out to study the relationship between presence of cytotoxic compounds in Ocimum basilicum, Alhagi maurorum, Calendula officinalis and their parasite Cuscuta campestris. The cytotoxic activity of the pure compounds was performed by MTT assay against breast cancer cell lines (MCF-7 and MDA-MB-231) and normal breast cell line (MCF 10A). The induction of apoptosis was measured by the expression levels of p53, bcl-2, bax and caspase-3 genes using quantitative ...

  1. Synthesis and anticancer activity of N-substituted 2-arylquinazolinones bearing trans-stilbene scaffold.

    Mahdavi, Mohammad; Pedrood, Keyvan; Safavi, Maliheh; Saeedi, Mina; Pordeli, Mahboobeh; Ardestani, Sussan Kabudanian; Emami, Saeed; Adib, Mehdi; Foroumadi, Alireza; Shafiee, Abbas

    2015-05-05

    A novel series of 2-arylquinazolinones 7a-o bearing trans-stilbene moiety were designed, synthesized, and evaluated against human breast cancer cell lines including human breast adenocarcinoma (MCF-7 and MDA-MB-231) and human ductal breast epithelial tumor (T-47D). Among the tested compounds, the sec-butyl derivative 7h showed the best profile of activity (IC50 < 5 μM) against all cell lines, being 2-fold more potent than standard drug, etoposide. Our investigation revealed that the cytotoxic activity was significantly affected by N3-alkyl substituents. Furthermore, the morphological analysis by acridine orange/ethidium bromide double staining test and flow cytometry analysis indicated that the prototype compound 7h can induce apoptosis in MCF-7 and MDA-MB-231 cells. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  2. Synthesis and biological evaluation of 2-(phenyl-3H-benzo[d]imidazole-5-carboxylic acids and its methyl esters as potent anti-breast cancer agents

    Chandrabose Karthikeyan

    2017-05-01

    Full Text Available A series of novel substituted 2-(phenyl-3H-benzo[d]imidazole-5-carboxylic acids (1a–1j and its methyl esters (2a–2f were synthesized and examined for their antiproliferative effects against three breast cancer cell lines (MDA-MB231, MDA-MB468 and MCF7 in vitro. Most of the compounds exhibited comparable or greater antiproliferative effects than the reference compound cisplatin. Compound 2e bearing 5-fluoro-2-hydroxyphenyl substituent was found to be the most active derivative of the series with GI50 values of 6.23, 4.09 and 0.18 μM against MDA-MB468, MDA-MB231 and MCF7 breast cancer cell lines, respectively. Our findings described here exemplify the usefulness of the title compounds as a lead for the development of more effective cancer therapeutics for the treatment of breast cancer.

  3. Ficus umbellata Vahl. (Moraceae Stem Bark Extracts Exert Antitumor Activities In Vitro and In Vivo

    Kevine Kamga Silihe

    2017-05-01

    Full Text Available A Ficus umbellata is used to treat cancer. The present work was therefore designed to assess antitumor potentials of F. umbellata extracts in nine different cell lines. Cell cycle, apoptosis, cell migration/invasion, levels of reactive oxygen species (ROS, mitochondrial membrane potential (MMP, caspases activities as well as Bcl-2 and Bcl-xL protein content were assessed in MDA-MB-231 cells. The 7,12-dimethylbenz(aanthracene (DMBA-induced carcinogenesis in rats were also used to investigate antitumor potential of F. umbellata extracts. The F. umbellata methanol extract exhibited a CC50 of 180 μg/mL in MDA-MB-231 cells after 24 h. It induced apoptosis in MCF-7 and MDA-MB-231 cells, while it did not alter their cell cycle phases. Further, it induced a decrease in MMP, an increase in ROS levels and caspases activities as well as a downregulation in Bcl-2 and Bcl-xL protein contents in MDA-MB-231 cells. In vivo, F. umbellata aqueous (200 mg/kg and methanol (50 mg/kg extracts significantly (p < 0.001 reduced ovarian tumor incidence (10%, total tumor burden (58% and 46%, respectively, average tumor weight (57.8% and 45.6%, respectively as compared to DMBA control group. These results suggest antitumor potential of F. umbellata constituents possibly due to apoptosis induction mediated through ROS-dependent mitochondrial pathway.

  4. The pyrethroid metabolites 3-phenoxybenzoic acid and 3-phenoxybenzyl alcohol do not exhibit estrogenic activity in the MCF-7 human breast carcinoma cell line or Sprague-Dawley rats

    Laffin, Brian; Chavez, Marco; Pine, Michelle

    2010-01-01

    Synthetic pyrethroids are one of the most frequently and widely used class of insecticides, primarily because they have a higher insect to mammalian toxicity ratio than organochlorines or organophosphates. The basic structure of pyrethroids can be characterized as an acid joined to an alcohol by an ester bond. Pyrethroid degradation occurs through either oxidation at one or more sites located in the alcohol or acid moieties or hydrolysis at the central ester bond, the latter reaction being important for mammalian metabolism of most pyrethroids. The primary alcohol liberated from the ester cleavage is hydroxylated to 3-phenoxybenzyl alcohol, which for most pyrethroids is then oxidized to 3-phenoxybenzoic acid. These products may then be conjugated with amino acids, sulfates, sugars, or sugar acids. In vitro studies have suggested that some of the pyrethroids may have estrogenic activity. Interestingly, the chemical structure of specific pyrethroid metabolites indicates that they may be more likely to interact with the estrogen receptor than the parent compounds. Two of the pyrethroid metabolites, 3-phenoxybenzoic acid (3PBA) and 3-phenoxybenzyl alcohol (3PBalc) have been reported to have endocrine activity using a yeast based assay. 3PBAlc exhibited estrogenic activity with reported EC 50 s of 6.67 x 10 -6 and 2 x 10 -5 while 3PBAcid exhibited anti-estrogenic activity with a calculated IC 50 of 6.5 x 10 -5 . To determine if the metabolites were able to cause the same effects in a mammalian system, the estrogen-dependent cell line, MCF-7, was utilized. Cells were treated with 1.0, 10.0 or 100.0 μM concentrations of each metabolite and cytotoxicity was assessed. The two lowest concentrations of both metabolites did not induce cell death and even appeared to increase proliferation over that of the control cells. However, when cellular proliferation was measured using a Coulter counter neither metabolite stimulated proliferation (1.0 nM, 10.0 nM, or 10.0 μM) or

  5. IK channel activation increases tumor growth and induces differential behavioral responses in two breast epithelial cell lines.

    Thurber, Amy E; Nelson, Michaela; Frost, Crystal L; Levin, Michael; Brackenbury, William J; Kaplan, David L

    2017-06-27

    Many potassium channel families are over-expressed in cancer, but their mechanistic role in disease progression is poorly understood. Potassium channels modulate membrane potential (Vmem) and thereby influence calcium ion dynamics and other voltage-sensitive signaling mechanisms, potentially acting as transcriptional regulators. This study investigated the differential response to over-expression and activation of a cancer-associated potassium channel, the intermediate conductance calcium-activated potassium channel (IK), on aggressive behaviors in mammary epithelial and breast cancer cell lines. IK was over-expressed in the highly metastatic breast cancer cell line MDA-MB-231 and the spontaneously immortalized breast epithelial cell line MCF-10A, and the effect on cancer-associated behaviors was assessed. IK over-expression increased primary tumor growth and metastasis of MDA-MB-231 in orthotopic xenografts, demonstrating for the first time in any cancer type that increased IK is sufficient to promote cancer aggression. The primary tumors had similar vascularization as determined by CD31 staining and similar histological characteristics. Interestingly, despite the increased in vivo growth and metastasis, neither IK over-expression nor activation with agonist had a significant effect on MDA-MB-231 proliferation, invasion, or migration in vitro. In contrast, IK decreased MCF-10A proliferation and invasion through Matrigel but had no effect on migration in a scratch-wound assay. We conclude that IK activity is sufficient to promote cell aggression in vivo. Our data provide novel evidence supporting IK and downstream signaling networks as potential targets for cancer therapies.

  6. The Endocannabinoid System as a Target for Treatment of Breast Cancer

    2011-08-01

    cannabinoids with radiation in MCF-7, MDA-MB-231, and 4T1 breast tumor cell lines. Interestingly, the high efficacy synthetic cannabinoid agonist...tumorgenesis in FAAH (-/-) mice vs. wild type mice; and 2) the synthetic cannabinoid receptor agonist WIN55,212-2 in combination with radiation or adriamycin...THC (the primary active psychoactive constituent present in marijuana ), cannabidiol (CBD: a marijuana -derived cannabinoid that lacks psychomimetic

  7. Agarofuran sesquiterpenes from Schaefferia argentinensis.

    García, Manuela E; Motrich, Rubén D; Caputto, Beatriz L; Sánchez, Marianela; Palermo, Jorge A; Estévez-Braun, Ana; Ravelo, Angel G; Nicotra, Viviana E

    2013-10-01

    Sixteen dihydro-β-agarofuran sesquiterpenes were isolated from the aerial parts of Schaefferia argentinensis Speg. Their structures were determined by a combination of 1D and 2D NMR and MS techniques. The in vitro antiproliferative activity of the major sesquiterpenes was examined in T47D, MCF7, and MDA-MB231 human cancer cell lines, but was found to be marginal. Copyright © 2013 Elsevier Ltd. All rights reserved.

  8. Molecular Modification of Metadherin/MTDH Impacts the Sensitivity of Breast Cancer to Doxorubicin.

    Zhenchuan Song

    Full Text Available Breast cancer is a leading cause of death in women and with an increasing worldwide incidence. Doxorubicin, as a first-line anthracycline-based drug is conventional used on breast cancer clinical chemotherapy. However, the drug resistances limited the curative effect of the doxorubicin therapy in breast cancer patients, but the molecular mechanism determinants of breast cancer resistance to doxorubicin chemotherapy are not fully understood. In order to explore the association between metadherin (MTDH and doxorubicin sensitivity, the differential expressions of MTDH in breast cancer cell lines and the sensitivity to doxorubicin of breast cancer cell lines were investigated.The mRNA and protein expression of MTDH were determined by real-time PCR and Western blot in breast cancer cells such as MDA-MB-231, MCF-7, MDA-MB-435S, MCF-7/ADR cells. Once MTDH gene was knocked down by siRNA in MCF-7/ADR cells and overexpressed by MTDH plasmid transfection in MDA-MB-231 cells, the cell growth and therapeutic sensitivity of doxorubicin were evaluated using MTT and the Cell cycle assay and apoptosis rate was determined by flow cytometry.MCF-7/ADR cells revealed highly expressed MTDH and MDA-MB-231 cells had the lowest expression of MTDH. After MTDH gene was knocked down, the cell proliferation was inhibited, and the inhibitory rate of cell growth and apoptosis rate were enhanced, and the cell cycle arrest during the G0/G1 phase in the presence of doxorubicin treatment. On the other hand, the opposite results were observed in MDA-MB-231 cells with overexpressed MTDH gene.MTDH gene plays a promoting role in the proliferation of breast cancer cells and its high expression may be associated with doxorubicin sensitivity of breast cancer.

  9. Establishment and Identification of Chinese Hamster Ovary Cell Lines with Stable Expression of Soluble CD40 Ligands

    JIANG Hua-wei

    2014-09-01

    Full Text Available Objective: To establish the Chinese Hamster Ovary (CHO cell lines with stable expression of soluble CD40 ligands (sCD40L. Methods: Recombinant plasmid pIRES2-EGFP-sCD40L, enzyme digestion and sequencing identification were obtained by cloning sCD40L coding sequences into eukaryotic expression vector pIRES2-EGFP from carrier pDC316-sCD40 containing sCD40L. CHO cells were transfected by electroporation, followed by screening of resistant clones with G418, after which monoclones were obtained by limited dilution assay and multiply cultured. Flow cytometer and reverted fluorescence microscope were applied to observe the expression of green fluorescent protein, while sCD40L expression was detected by polymerase chain reaction (PCR, reverse transcription-polymerase chain reaction (RT-PCR and enzyme-linked immunosorbent assay (ELISA from aspects of deoxyribose nucleic acid (DNA, messenger ribonucleic acid (mRNA and protein, respectively. CHO-sCD40L was cultured together with MDA-MB-231 cells to compare the expression changes of surface molecule fatty acid synthase (Fas by flow cytometer and observe the apoptosis of MDA-MB-231 cells after Fas activated antibodies (CH-11 were added 24 h later. Results: Plasmid pIRES2-EGFP-sCD40L was successfully established, and cell lines with stable expression of sCD40L were obtained with cloned culture after CHO cell transfection, which was named as B11. Flow cytometer and reverted fluorescence microscope showed >90% expression of green fluorescent protein, while PCR, RT-PCR and ELISA suggested integration of sCD40L genes into cell genome DNA, transcription of sCD40L mRNA and sCD40L protein expression being (4.5±2.1 ng/mL in the supernatant of cell culture, respectively. After co-culture of B11 and MDA-MB-231 cells, the surface Fas expression of MDA-MB-231 cells was increased from (3±1.02 % to (34.8±8.75%, while the apoptosis rate 24 h after addition of CH11 from (5.4±1.32% to (20.7±5.24%, and the differences

  10. Subchronic toxicity, immunoregulation and anti-breast tumor effect of Nordamnacantal, an anthraquinone extracted from the stems of Morinda citrifolia L.

    Abu, Nadiah; Zamberi, Nur Rizi; Yeap, Swee Keong; Nordin, Noraini; Mohamad, Nurul Elyani; Romli, Muhammad Firdaus; Rasol, Nurulfazlina Edayah; Subramani, Tamilselvan; Ismail, Nor Hadiani; Alitheen, Noorjahan Banu

    2018-01-27

    Morinda citrifolia L. that was reported with immunomodulating and cytotoxic effects has been traditionally used to treat multiple illnesses including cancer. An anthraquinone derived from fruits of Morinda citrifolia L., nordamnacanthal, is a promising agent possessing several in vitro biological activities. However, the in vivo anti-tumor effects and the safety profile of nordamnacanthal are yet to be evaluated. In vitro cytotoxicity of nordamnacanthal was tested using MTT, cell cycle and Annexin V/PI assays on human MCF-7 and MDA-MB231 breast cancer cells. Mice were orally fed with nordamnacanthal daily for 28 days for oral subchronic toxicity study. Then, the in vivo anti-tumor effect was evaluated on 4T1 murine cancer cells-challenged mice. Changes of tumor size and immune parameters were evaluated on the untreated and nordamnacanthal treated mice. Nordamnacanthal was found to possess cytotoxic effects on MDA-MB231, MCF-7 and 4T1 cells in vitro. Moreover, based on the cell cycle and Annexin V results, nordamnacanthal managed to induce cell death in both MDA-MB231 and MCF-7 cells. Additionally, no mortality, signs of toxicity and changes of serum liver profile were observed in nordamnacanthal treated mice in the subchronic toxicity study. Furthermore, 50 mg/kg body weight of nordamncanthal successfully delayed the progression of 4T1 tumors in Balb/C mice after 28 days of treatment. Treatment with nordamnacanthal was also able to increase tumor immunity as evidenced by the immunophenotyping of the spleen and YAC-1 cytotoxicity assays. Nordamnacanthal managed to inhibit the growth and induce cell death in MDA-MB231 and MCF-7 cell lines in vitro and cease the tumor progression of 4T1 cells in vivo. Overall, nordamnacanthal holds interesting anti-cancer properties that can be further explored.

  11. Cordycepin-induced apoptosis and autophagy in breast cancer cells are independent of the estrogen receptor

    Choi, Sunga [Department of Physiology, School of Medicine, Chungnam National University, Daejeon, 301747 (Korea, Republic of); Lim, Mi-Hee [Department of Biochemistry, Kangwon National University, Gangwon-do, 200701 (Korea, Republic of); Kim, Ki Mo [Diabetic Complications Research Center, Division of Traditional Korean Medicine (TKM) Integrated Research, Korea Institute of Oriental Medicine (KIOM), 305811, Daejeon (Korea, Republic of); Jeon, Byeong Hwa [Department of Physiology, School of Medicine, Chungnam National University, Daejeon, 301747 (Korea, Republic of); Song, Won O. [Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI 48824 (United States); Kim, Tae Woong, E-mail: tawkim@kangwon.ac.kr [Department of Biochemistry, Kangwon National University, Gangwon-do, 200701 (Korea, Republic of)

    2011-12-15

    Cordycepin (3-deoxyadenosine), found in Cordyceps spp., has been known to have many therapeutic effects including immunomodulatory, anti-inflammatory, antimicrobial, and anti-aging effects. Moreover, anti-tumor and anti-metastatic effects of cordycepin have been reported, but the mechanism causing cancer cell death is poorly characterized. The present study was designed to investigate whether the mechanisms of cordycepin-induced cell death were associated with estrogen receptor in breast cancer cells. Exposure of both MDA-MB-231 and MCF-7 human breast cancer cells to cordycepin resulted in dose-responsive inhibition of cell growth and reduction in cell viability. The cordycepin-induced cell death in MDA-MB-231 cells was associated with several specific features of the mitochondria-mediated apoptotic pathway, which was confirmed by DNA fragmentation, TUNEL, and biochemical assays. Cordycepin also caused a dose-dependent increase in mitochondrial translocation of Bax, triggering cytosolic release of cytochrome c and activation of caspases-9 and -3. Interestingly, MCF-7 cells showed autophagy-associated cell death, as observed by the detection of an autophagosome-specific protein and large membranous vacuole ultrastructure morphology in the cytoplasm. Cordycepin-induced autophagic cell death has applications in treating MCF-7 cells with apoptotic defects, irrespective of the ER response. Although autophagy has a survival function in tumorigenesis of some cancer cells, autophagy may be important for cordycepin-induced MCF-7 cell death. In conclusion, the results of our study demonstrate that cordycepin effectively kills MDA-MB-231 and MCF-7 human breast cancer cell lines in culture. Hence, further studies should be conducted to determine whether cordycepin will be a clinically useful, ER-independent, chemotherapeutic agent for human breast cancer. -- Highlights: Black-Right-Pointing-Pointer We studied the mechanism which cordycepin-induced cell death association with

  12. Cordycepin-induced apoptosis and autophagy in breast cancer cells are independent of the estrogen receptor

    Choi, Sunga; Lim, Mi-Hee; Kim, Ki Mo; Jeon, Byeong Hwa; Song, Won O.; Kim, Tae Woong

    2011-01-01

    Cordycepin (3-deoxyadenosine), found in Cordyceps spp., has been known to have many therapeutic effects including immunomodulatory, anti-inflammatory, antimicrobial, and anti-aging effects. Moreover, anti-tumor and anti-metastatic effects of cordycepin have been reported, but the mechanism causing cancer cell death is poorly characterized. The present study was designed to investigate whether the mechanisms of cordycepin-induced cell death were associated with estrogen receptor in breast cancer cells. Exposure of both MDA-MB-231 and MCF-7 human breast cancer cells to cordycepin resulted in dose-responsive inhibition of cell growth and reduction in cell viability. The cordycepin-induced cell death in MDA-MB-231 cells was associated with several specific features of the mitochondria-mediated apoptotic pathway, which was confirmed by DNA fragmentation, TUNEL, and biochemical assays. Cordycepin also caused a dose-dependent increase in mitochondrial translocation of Bax, triggering cytosolic release of cytochrome c and activation of caspases-9 and -3. Interestingly, MCF-7 cells showed autophagy-associated cell death, as observed by the detection of an autophagosome-specific protein and large membranous vacuole ultrastructure morphology in the cytoplasm. Cordycepin-induced autophagic cell death has applications in treating MCF-7 cells with apoptotic defects, irrespective of the ER response. Although autophagy has a survival function in tumorigenesis of some cancer cells, autophagy may be important for cordycepin-induced MCF-7 cell death. In conclusion, the results of our study demonstrate that cordycepin effectively kills MDA-MB-231 and MCF-7 human breast cancer cell lines in culture. Hence, further studies should be conducted to determine whether cordycepin will be a clinically useful, ER-independent, chemotherapeutic agent for human breast cancer. -- Highlights: ► We studied the mechanism which cordycepin-induced cell death association with estrogen receptor (ER) in

  13. Bioluminescent human breast cancer cell lines that permit rapid and sensitive in vivo detection of mammary tumors and multiple metastases in immune deficient mice

    Jenkins, Darlene E; Hornig, Yvette S; Oei, Yoko; Dusich, Joan; Purchio, Tony

    2005-01-01

    Our goal was to generate xenograft mouse models of human breast cancer based on luciferase-expressing MDA-MB-231 tumor cells that would provide rapid mammary tumor growth; produce metastasis to clinically relevant tissues such as lymph nodes, lung, and bone; and permit sensitive in vivo detection of both primary and secondary tumor sites by bioluminescent imaging. Two clonal cell sublines of human MDA-MB-231 cells that stably expressed firefly luciferase were isolated following transfection of the parental cells with luciferase cDNA. Each subline was passaged once or twice in vivo to enhance primary tumor growth and to increase metastasis. The resulting luciferase-expressing D3H1 and D3H2LN cells were analyzed for long-term bioluminescent stability, primary tumor growth, and distal metastasis to lymph nodes, lungs, bone and soft tissues by bioluminescent imaging. Cells were injected into the mammary fat pad of nude and nude-beige mice or were delivered systemically via intracardiac injection. Metastasis was also evaluated by ex vivo imaging and histologic analysis postmortem. The D3H1 and D3H2LN cell lines exhibited long-term stable luciferase expression for up to 4–6 months of accumulative tumor growth time in vivo. Bioluminescent imaging quantified primary mammary fat pad tumor development and detected early spontaneous lymph node metastasis in vivo. Increased frequency of spontaneous lymph node metastasis was observed with D3H2LN tumors as compared with D3H1 tumors. With postmortem ex vivo imaging, we detected additional lung micrometastasis in mice with D3H2LN mammary tumors. Subsequent histologic evaluation of tissue sections from lymph nodes and lung lobes confirmed spontaneous tumor metastasis at these sites. Following intracardiac injection of the MDA-MB-231-luc tumor cells, early metastasis to skeletal tissues, lymph nodes, brain and various visceral organs was detected. Weekly in vivo imaging data permitted longitudinal analysis of metastasis at

  14. Up-regulation of METCAM/MUC18 promotes motility, invasion, and tumorigenesis of human breast cancer cells

    Zeng, Guo-fang; Cai, Shao-xi; Wu, Guang-Jer

    2011-01-01

    Conflicting research has identified METCAM/MUC18, an integral membrane cell adhesion molecule (CAM) in the Ig-like gene super-family, as both a tumor promoter and a tumor suppressor in the development of breast cancer. To resolve this, we have re-investigated the role of this CAM in the progression of human breast cancer cells. Three breast cancer cell lines were used for the tests: one luminal-like breast cancer cell line, MCF7, which did not express any METCAM/MUC18, and two basal-like breast cancer cell lines, MDA-MB-231 and MDA-MB-468, which expressed moderate levels of the protein. MCF7 cells were transfected with the human METCAM/MUC18 cDNA to obtain G418-resistant clones which expressed the protein and were used for testing effects of human METCAM/MUC18 expression on in vitro motility and invasiveness, and in vitro and in vivo tumorigenesis. Both MDA-MB-231 and MDA-MB-468 cells already expressed METCAM/MUC18. They were directly used for in vitro tests in the presence and absence of an anti-METCAM/MUC18 antibody. In MCF7 cells, enforced METCAM/MUC18 expression increased in vitro motility, invasiveness, anchorage-independent colony formation (in vitro tumorigenesis), and in vivo tumorigenesis. In both MDA-MB-231 and MDA-MB-468 cells, the anti-METCAM/MUC18 antibody inhibited both motility and invasiveness. Though both MDA-MB-231 and MDA-MB-468 cells established a disorganized growth in 3D basement membrane culture assay, the introduction of the anti-METCAM/MUC18 antibody completely destroyed their growth in the 3D culture. These findings support the notion that human METCAM/MUC18 expression promotes the progression of human breast cancer cells by increasing their motility, invasiveness and tumorigenesis

  15. Up-regulation of METCAM/MUC18 promotes motility, invasion, and tumorigenesis of human breast cancer cells

    Cai Shao-xi

    2011-03-01

    Full Text Available Abstract Background Conflicting research has identified METCAM/MUC18, an integral membrane cell adhesion molecule (CAM in the Ig-like gene super-family, as both a tumor promoter and a tumor suppressor in the development of breast cancer. To resolve this, we have re-investigated the role of this CAM in the progression of human breast cancer cells. Methods Three breast cancer cell lines were used for the tests: one luminal-like breast cancer cell line, MCF7, which did not express any METCAM/MUC18, and two basal-like breast cancer cell lines, MDA-MB-231 and MDA-MB-468, which expressed moderate levels of the protein. MCF7 cells were transfected with the human METCAM/MUC18 cDNA to obtain G418-resistant clones which expressed the protein and were used for testing effects of human METCAM/MUC18 expression on in vitro motility and invasiveness, and in vitro and in vivo tumorigenesis. Both MDA-MB-231 and MDA-MB-468 cells already expressed METCAM/MUC18. They were directly used for in vitro tests in the presence and absence of an anti-METCAM/MUC18 antibody. Results In MCF7 cells, enforced METCAM/MUC18 expression increased in vitro motility, invasiveness, anchorage-independent colony formation (in vitro tumorigenesis, and in vivo tumorigenesis. In both MDA-MB-231 and MDA-MB-468 cells, the anti-METCAM/MUC18 antibody inhibited both motility and invasiveness. Though both MDA-MB-231 and MDA-MB-468 cells established a disorganized growth in 3D basement membrane culture assay, the introduction of the anti-METCAM/MUC18 antibody completely destroyed their growth in the 3D culture. Conclusion These findings support the notion that human METCAM/MUC18 expression promotes the progression of human breast cancer cells by increasing their motility, invasiveness and tumorigenesis.

  16. Antiproliferative Evaluation of Isofuranodiene on Breast and Prostate Cancer Cell Lines

    Michela Buccioni

    2014-01-01

    Full Text Available The anticancer activity of isofuranodiene, extracted from Smyrnium olusatrum, was evaluated in human breast adenocarcinomas MDA-MB 231 and BT 474, and Caucasian prostate adenocarcinoma PC 3 cell lines by MTS assay. MTS assay showed a dose-dependent growth inhibition in the tumor cell lines after isofuranodiene treatment. The best antiproliferative activity of the isofuranodiene was found on PC 3 cells with an IC50 value of 29 μM, which was slightly less than the inhibition against the two breast adenocarcinoma cell lines with IC50 values of 59 and 55 μM on MDA-MB 231 and BT 474, respectively. Hoechst 33258 assay was performed in order to study the growth inhibition mechanism in prostate cancer cell line; the results indicate that isofuranodiene induces apoptosis. Overall, the understudy compound has a good anticancer activity especially towards the PC 3. On the contrary, it is less active on Chinese hamster ovary cells (CHO and human embryonic kidney (HEK 293 appearing as a good candidate as a potential natural anticancer drug with low side effects.

  17. RNA disruption is associated with response to multiple classes of chemotherapy drugs in tumor cell lines

    Narendrula, Rashmi; Mispel-Beyer, Kyle; Guo, Baoqing; Parissenti, Amadeo M.; Pritzker, Laura B.; Pritzker, Ken; Masilamani, Twinkle; Wang, Xiaohui; Lannér, Carita

    2016-01-01

    Cellular stressors and apoptosis-inducing agents have been shown to induce ribosomal RNA (rRNA) degradation in eukaryotic cells. Recently, RNA degradation in vivo was observed in patients with locally advanced breast cancer, where mid-treatment tumor RNA degradation was associated with complete tumor destruction and enhanced patient survival. However, it is not clear how widespread chemotherapy induced “RNA disruption” is, the extent to which it is associated with drug response or what the underlying mechanisms are. Ovarian (A2780, CaOV3) and breast (MDA-MB-231, MCF-7, BT474, SKBR3) cancer cell lines were treated with several cytotoxic chemotherapy drugs and total RNA was isolated. RNA was also prepared from docetaxel resistant A2780DXL and carboplatin resistant A2780CBN cells following drug exposure. Disruption of RNA was analyzed by capillary electrophoresis. Northern blotting was performed using probes complementary to the 28S and 18S rRNA to determine the origins of degradation bands. Apoptosis activation was assessed by flow cytometric monitoring of annexin-V and propidium iodide (PI) binding to cells and by measuring caspase-3 activation. The link between apoptosis and RNA degradation (disruption) was investigated using a caspase-3 inhibitor. All chemotherapy drugs tested were capable of inducing similar RNA disruption patterns. Docetaxel treatment of the resistant A2780DXL cells and carboplatin treatment of the A2780CBN cells did not result in RNA disruption. Northern blotting indicated that two RNA disruption bands were derived from the 3’-end of the 28S rRNA. Annexin-V and PI staining of docetaxel treated cells, along with assessment of caspase-3 activation, showed concurrent initiation of apoptosis and RNA disruption, while inhibition of caspase-3 activity significantly reduced RNA disruption. Supporting the in vivo evidence, our results demonstrate that RNA disruption is induced by multiple chemotherapy agents in cell lines from different tissues

  18. RNA disruption is associated with response to multiple classes of chemotherapy drugs in tumor cell lines.

    Narendrula, Rashmi; Mispel-Beyer, Kyle; Guo, Baoqing; Parissenti, Amadeo M; Pritzker, Laura B; Pritzker, Ken; Masilamani, Twinkle; Wang, Xiaohui; Lannér, Carita

    2016-02-24

    Cellular stressors and apoptosis-inducing agents have been shown to induce ribosomal RNA (rRNA) degradation in eukaryotic cells. Recently, RNA degradation in vivo was observed in patients with locally advanced breast cancer, where mid-treatment tumor RNA degradation was associated with complete tumor destruction and enhanced patient survival. However, it is not clear how widespread chemotherapy induced "RNA disruption" is, the extent to which it is associated with drug response or what the underlying mechanisms are. Ovarian (A2780, CaOV3) and breast (MDA-MB-231, MCF-7, BT474, SKBR3) cancer cell lines were treated with several cytotoxic chemotherapy drugs and total RNA was isolated. RNA was also prepared from docetaxel resistant A2780DXL and carboplatin resistant A2780CBN cells following drug exposure. Disruption of RNA was analyzed by capillary electrophoresis. Northern blotting was performed using probes complementary to the 28S and 18S rRNA to determine the origins of degradation bands. Apoptosis activation was assessed by flow cytometric monitoring of annexin-V and propidium iodide (PI) binding to cells and by measuring caspase-3 activation. The link between apoptosis and RNA degradation (disruption) was investigated using a caspase-3 inhibitor. All chemotherapy drugs tested were capable of inducing similar RNA disruption patterns. Docetaxel treatment of the resistant A2780DXL cells and carboplatin treatment of the A2780CBN cells did not result in RNA disruption. Northern blotting indicated that two RNA disruption bands were derived from the 3'-end of the 28S rRNA. Annexin-V and PI staining of docetaxel treated cells, along with assessment of caspase-3 activation, showed concurrent initiation of apoptosis and RNA disruption, while inhibition of caspase-3 activity significantly reduced RNA disruption. Supporting the in vivo evidence, our results demonstrate that RNA disruption is induced by multiple chemotherapy agents in cell lines from different tissues and is

  19. Potential effect of Olea europea leaves, Sonchus oleraceus leaves and Mangifera indica peel extracts on aromatase activity in human placental microsomes and CYP19A1 expression in MCF-7 cell line: Comparative study.

    Shaban, N Z; Hegazy, W A; Abdel-Rahman, S M; Awed, O M; Khalil, S A

    2016-08-29

    Aromatase inhibitors (AIs) provide novel approaches to the adjuvant therapy for postmenopausal women with estrogen-receptor-positive (ER+) breast cancers. In this study, different plant extracts from Olea europaea leaves (OLE), Sonchus oleraceus L. (SOE) and Mangifera indica peels (MPE) were prepared to identify phytoconstituents and measure antioxidant capacities. The effects of these three extracts on aromatase activity in human placental microsomes were evaluated. Additionally, the effects of these extracts on tissue-specific promoter expression of CYP19A1 gene in cell culture model (MCF-7) were assessed using qRT-PCR. Results showed a concentration-dependent decrease in aromatase activity after treatment with OLE and MPE, whereas, SOE showed a biphasic effect. The differential effects of OLE, SOE and MPE on aromatase expression showed that OLE seems to be the most potent suppressor followed by SOE and then MPE. These findings indicate that OLE has effective inhibitory action on aromatase at both the enzymatic and expression levels, in addition to its cytotoxic effect against MCF-7 cells. Also, MPE may be has the potential to be used as a tissue-specific aromatase inhibitor (selective aromatase inhibitor) and it may be promising to develop a new therapeutic agent against ER+ breast cancer.

  20. The PIKfyve–ArPIKfyve–Sac3 triad in human breast cancer: Functional link between elevated Sac3 phosphatase and enhanced proliferation of triple negative cell lines

    Ikonomov, Ognian C.; Filios, Catherine; Sbrissa, Diego; Chen, Xuequn; Shisheva, Assia

    2013-01-01

    Highlights: •We assess PAS complex proteins and phosphoinositide levels in breast cancer cells. •Sac3 and ArPIKfyve are markedly elevated in triple-negative breast cancer cells. •Sac3 silencing inhibits proliferation in triple-negative breast cancer cell lines. •Phosphoinositide profiles are altered in breast cancer cells. •This is the first evidence linking high Sac3 with breast cancer cell proliferation. -- Abstract: The phosphoinositide 5-kinase PIKfyve and 5-phosphatase Sac3 are scaffolded by ArPIKfyve in the PIKfyve–ArPIKfyve–Sac3 (PAS) regulatory complex to trigger a unique loop of PtdIns3P–PtdIns(3,5)P 2 synthesis and turnover. Whereas the metabolizing enzymes of the other 3-phosphoinositides have already been implicated in breast cancer, the role of the PAS proteins and the PtdIns3P–PtdIns(3,5)P 2 conversion is unknown. To begin elucidating their roles, in this study we monitored the endogenous levels of the PAS complex proteins in cell lines derived from hormone-receptor positive (MCF7 and T47D) or triple-negative breast cancers (TNBC) (BT20, BT549 and MDA-MB-231) as well as in MCF10A cells derived from non-tumorigenic mastectomy. We report profound upregulation of Sac3 and ArPIKfyve in the triple negative vs. hormone-sensitive breast cancer or non-tumorigenic cells, with BT cell lines showing the highest levels. siRNA-mediated knockdown of Sac3, but not that of PIKfyve, significantly inhibited proliferation of BT20 and BT549 cells. In these cells, knockdown of ArPIKfyve had only a minor effect, consistent with a primary role for Sac3 in TNBC cell proliferation. Intriguingly, steady-state levels of PtdIns(3,5)P 2 in BT20 and T47D cells were similar despite the 6-fold difference in Sac3 levels between these cell lines. However, steady-state levels of PtdIns3P and PtdIns5P, both regulated by the PAS complex, were significantly reduced in BT20 vs. T47D or MCF10A cell lines, consistent with elevated Sac3 affecting directly or indirectly the

  1. Benzimidazoles diminish ERE transcriptional activity and cell growth in breast cancer cells

    Payton-Stewart, Florastina [Department of Chemistry, College of Arts and Sciences, Xavier University of Louisiana, New Orleans, LA (United States); Tilghman, Syreeta L. [Division of Basic Pharmaceutical Sciences, College of Pharmacy, Xavier University of Louisiana, New Orleans, LA (United States); Williams, LaKeisha G. [Division of Clinical and Administrative Sciences, College of Pharmacy Xavier University of Louisiana, New Orleans, LA (United States); Winfield, Leyte L., E-mail: lwinfield@spelman.edu [Department of Chemistry, Spelman College, Atlanta, GA (United States)

    2014-08-08

    Highlights: • The methyl-substituted benzimidazole was more effective at inhibiting growth in MDA-MB 231 cells. • The naphthyl-substituted benzimidazole was more effective at inhibiting growth in MCF-7 cells than ICI. • The benzimidazole molecules demonstrated a dose-dependent reduction in ERE transcriptional activity. • The benzimidazole molecules had binding mode in ERα and ERβ comparable to that of the co-crystallized ligand. - Abstract: Estrogen receptors (ERα and ERβ) are members of the nuclear receptor superfamily. They regulate the transcription of estrogen-responsive genes and mediate numerous estrogen related diseases (i.e., fertility, osteoporosis, cancer, etc.). As such, ERs are potentially useful targets for developing therapies and diagnostic tools for hormonally responsive human breast cancers. In this work, two benzimidazole-based sulfonamides originally designed to reduce proliferation in prostate cancer, have been evaluated for their ability to modulate growth in estrogen dependent and independent cell lines (MCF-7 and MDA-MB 231) using cell viability assays. The molecules reduced growth in MCF-7 cells, but differed in their impact on the growth of MDA-MB 231 cells. Although both molecules reduced estrogen response element (ERE) transcriptional activity in a dose dependent manner, the contrasting activity in the MDA-MB-231 cells seems to suggest that the molecules may act through alternate ER-mediated pathways. Further, the methyl analog showed modest selectivity for the ERβ receptor in an ER gene expression array panel, while the naphthyl analog did not significantly alter gene expression. The molecules were docked in the ligand binding domains of the ERα-antagonist and ERβ-agonist crystal structures to evaluate the potential of the molecules to interact with the receptors. The computational analysis complimented the results obtained in the assay of transcriptional activity and gene expression suggesting that the molecules

  2. Benzimidazoles diminish ERE transcriptional activity and cell growth in breast cancer cells

    Payton-Stewart, Florastina; Tilghman, Syreeta L.; Williams, LaKeisha G.; Winfield, Leyte L.

    2014-01-01

    Highlights: • The methyl-substituted benzimidazole was more effective at inhibiting growth in MDA-MB 231 cells. • The naphthyl-substituted benzimidazole was more effective at inhibiting growth in MCF-7 cells than ICI. • The benzimidazole molecules demonstrated a dose-dependent reduction in ERE transcriptional activity. • The benzimidazole molecules had binding mode in ERα and ERβ comparable to that of the co-crystallized ligand. - Abstract: Estrogen receptors (ERα and ERβ) are members of the nuclear receptor superfamily. They regulate the transcription of estrogen-responsive genes and mediate numerous estrogen related diseases (i.e., fertility, osteoporosis, cancer, etc.). As such, ERs are potentially useful targets for developing therapies and diagnostic tools for hormonally responsive human breast cancers. In this work, two benzimidazole-based sulfonamides originally designed to reduce proliferation in prostate cancer, have been evaluated for their ability to modulate growth in estrogen dependent and independent cell lines (MCF-7 and MDA-MB 231) using cell viability assays. The molecules reduced growth in MCF-7 cells, but differed in their impact on the growth of MDA-MB 231 cells. Although both molecules reduced estrogen response element (ERE) transcriptional activity in a dose dependent manner, the contrasting activity in the MDA-MB-231 cells seems to suggest that the molecules may act through alternate ER-mediated pathways. Further, the methyl analog showed modest selectivity for the ERβ receptor in an ER gene expression array panel, while the naphthyl analog did not significantly alter gene expression. The molecules were docked in the ligand binding domains of the ERα-antagonist and ERβ-agonist crystal structures to evaluate the potential of the molecules to interact with the receptors. The computational analysis complimented the results obtained in the assay of transcriptional activity and gene expression suggesting that the molecules

  3. Synthesis, characterization, and anticancer activity of new quinazoline derivatives against MCF-7 cells.

    Faraj, Fadhil Lafta; Zahedifard, Maryam; Paydar, Mohammadjavad; Looi, Chung Yeng; Abdul Majid, Nazia; Ali, Hapipah Mohd; Ahmad, Noraini; Gwaram, Nura Suleiman; Abdulla, Mahmood Ameen

    2014-01-01

    Two new synthesized and characterized quinazoline Schiff bases 1 and 2 were investigated for anticancer activity against MCF-7 human breast cancer cell line. Compounds 1 and 2 demonstrated a remarkable antiproliferative effect, with an IC50 value of 6.246×10(-6) mol/L and 5.910×10(-6) mol/L, respectively, after 72 hours of treatment. Most apoptosis morphological features in treated MCF-7 cells were observed by AO/PI staining. The results of cell cycle analysis indicate that compounds did not induce S and M phase arrest in cell after 24 hours of treatment. Furthermore, MCF-7 cells treated with 1 and 2 subjected to apoptosis death, as exhibited by perturbation of mitochondrial membrane potential and cytochrome c release as well as increase in ROS formation. We also found activation of caspases-3/7, -8, and -9 in compounds 1 and 2. Moreover, inhibition of NF-κB translocation in MCF-7 cells treated by compound 1 significantly exhibited the association of extrinsic apoptosis pathway. Acute toxicity results demonstrated the nontoxic nature of the compounds in mice. Our results showed significant activity towards MCF-7 cells via either intrinsic or extrinsic mitochondrial pathway and are potential candidate for further in vivo and clinical breast cancer studies.

  4. Preliminary Investigation of Myo-Inositol Phosphates Produced by ASUIA279 Phytase on MCF-7 Cancer Cells

    N. Mohd. Yusoff

    2011-12-01

    Full Text Available Phytate or myo-inositol hexakisphosphates (IP6 is widely distributed in plants like rice brans. The production of myo-inositol phosphate intermediates has received much attention due to the remarkable potential health benefits offered by the compounds. In this study, the cytotoxicity of the partially purified myo-inositol phosphate fractions and commercial IP1 and IP6 were investigated against MCF-7 breast cancer cell lines. The study showed that the commercial standard IP1 and IP6 showed good inhibition towards the MCF-7 cell line. The MCF-7 cells growth was inhibited in minimum concentration of myo-inositol phosphates (<1000 µg/ml. However, no inhibition observed on the MCF-7 cell line by the myo-inositol phosphates fractions partially purified from rice bran at concentration <1000 ?g/ml. The inhibition of MCF-7 was only observed at concentration more than 30 mg/ml with more than 40% cells were inhibited. This indicates that the partially purified rice bran myo-inositol phosphates degraded by ASUIA279 phytase on MCF-7 breast cancer cells exhibit positive results towards the inhibition of cancer cells growth at relatively high concentration..KEYWORDS: myo-inositol phosphates, phytase, MCF-7,  cancerABSTRAK: Fitat atau myo-inositol hexakisphosphate (IP6 dikenali umum teragih di dalam tumbuhan seperti dedak padi. Penghasilan perantaraan fosfat myo-inositol mendapat perhatian memandangkan ia berpotensi tinggi dalam kesihatan. Dalam kajian ini, kesitotoksikan sebahagian daripada fosfat myo-inositol separa tulen, IP1 komersil dan IP6 komersil dikaji terhadap produk yang berupa sel kekal (cell lines kanser payu dara MCF-7. Tumbesaran sel MCF-7 direncatkan dalam pekatan minima fosfat myo-inositol (<1000 μg/ml. Tetapi, tidak ada perencatan dilihat terhadap sel kekal MCF-7 oleh sebahagian fosfat myo-inositol separa tulen daripada dedak padi pada kepekatan <1000 mg/ml. Perencatan MCF-7 hanya dilihat pada kepekatan lebih daripada 30 mg/ml dengan lebih

  5. The comparison of radiation responses in MCF-7 and HeLa cells

    Kang, Mi Young; Jang, Eun Yeong; Ryu, Tae Ho; Chung, Dong-Min; Kim, Jin Hong; Kim, Jin Kyu [Advanced Radiation Technology Institute, Jeongeup (Korea, Republic of)

    2014-11-15

    Activation of this pathway temporarily arrests cells at the G1 or G2 checkpoints of cell cycle, or terminates DNA replication and cell division. The present study was carried out to identify the fate of cells to cope with DNA damage stress. Cellular responses following IR treatment were different depending on the characteristics (origin, organism and genes expressed etc.) of cell line used and extent of genomic injury. p53 expression level was increased in a dose-dependent manner in both cells. IR induced a drastic increase in expression of p21 in MCF-7 compared to that in HeLa cells. Cell cycle analysis using flow cytometry showed a significant accumulation in G2/M phase after treatment of MCF-7 with IR. This study identified that IR-induced cell fates were determined through p53-dependent activation of p21, which resulted in senescence of MCF-7 cells and autophagy of HeLa cells.

  6. Aqueous extract from pecan nut [Carya illinoinensis (Wangenh) C. Koch] shell show activity against breast cancer cell line MCF-7 and Ehrlich ascites tumor in Balb-C mice.

    Hilbig, Josiane; Policarpi, Priscila de Britto; Grinevicius, Valdelúcia Maria Alves de Souza; Mota, Nádia Sandrine Ramos Santos; Toaldo, Isabela Maia; Luiz, Marilde Terezinha Bordignon; Pedrosa, Rozangela Curi; Block, Jane Mara

    2018-01-30

    In Brazil many health disorders are treated with the consumption of different varieties of tea. Shell extracts of pecan nut (Carya illinoinensis), which have significant amounts of phenolic compounds in their composition, are popularly taken as tea to prevent diverse pathologies. Phenolic compounds from pecan nut shell extract have been associated with diverse biological effects but the effect on tumor cells has not been reported yet. The aim of the current work was to evaluate the relationship between DNA fragmentation, cell cycle arrest and apoptosis induced by pecan nut shell extract and its antitumor activity. Cytotoxicity, proliferation, cell death and cell cycle were evaluated in MCF-7 cells by MTT, colony assay, differential coloring and flow cytometry assays, respectively. DNA damage effects were evaluated through intercalation into CT-DNA and plasmid DNA cleavage. Tumor growth inhibition, survival time increase, apoptosis and cell cycle arrest were assessed in Ehrlich ascites tumor in Balb/C mice. The cytotoxic effect of pecan nut shell extracts, the induction of cell death by apoptosis and also the cell cycle arrest in MCF-7 cells have been demonstrated. The survival time in mice with Ehrlich ascites tumor increased by 67%. DNA damage was observed in the CT-DNA, plasmid DNA and comet assays. The mechanism involved in the antitumor effect of pecan nut shell extracts may be related to the activation of key proteins involved in apoptosis cell death (Bcl-XL, Bax and p53) and on the cell cycle regulation (cyclin A, cyclin B and CDK2). These results were attributed to the phenolic profile of the extract, which presented compounds such as gallic, 4-hydroxybenzoic, chlorogenic, vanillic, caffeic and ellagic acid, and catechin, epicatechin, epigallocatechin and epicatechin gallate. The results indicated that pecan nut shell extracts are effective against tumor cells growth and may be considered as an alternative to the treatment of cancer. Copyright © 2017

  7. TASK-3 Downregulation Triggers Cellular Senescence and Growth Inhibition in Breast Cancer Cell Lines

    Rafael Zúñiga

    2018-03-01

    Full Text Available TASK-3 potassium channels are believed to promote proliferation and survival of cancer cells, in part, by augmenting their resistance to both hypoxia and serum deprivation. While overexpression of TASK-3 is frequently observed in cancers, the understanding of its role and regulation during tumorigenesis remains incomplete. Here, we evaluated the effect of reducing the expression of TASK-3 in MDA-MB-231 and MCF-10F human mammary epithelial cell lines through small hairpin RNA (shRNA-mediated knockdown. Our results show that knocking down TASK-3 in fully transformed MDA-MB-231 cells reduces proliferation, which was accompanied by an induction of cellular senescence and cell cycle arrest, with an upregulation of cyclin-dependent kinase (CDK inhibitors p21 and p27. In non-tumorigenic MCF-10F cells, however, TASK-3 downregulation did not lead to senescence induction, although cell proliferation was impaired and an upregulation of CDK inhibitors was also evident. Our observations implicate TASK-3 as a critical factor in cell cycle progression and corroborate its potential as a therapeutic target in breast cancer treatment.

  8. Studies on inhibitory effect of Baicalein on MCF-7 Cells and its mechanism of action

    Gandhi, N.M.

    2013-01-01

    Acute toxicity to the normal cells from the conventional chemotherapeutic drugs has been one of the stumbling blocks for effective therapy. Further, increased acidity and hypoxia in solid tumour decreases the therapeutic effectiveness of radiotherapy and chemotherapy. The transcriptional response to cellular hypoxia is primarily mediated by the transcription factor hypoxia-inducible factor-1 (HIF-1). Thus, controlling HIF-1 could be an attractive target for cancer therapy. In view of the above considerations studies were undertaken to identify the phytoceutical which can be effective for cancer therapy. One of the phytoceutical being studied is Saicalein (BA), a compound extracted from the root of Scutellaria boicalensis, which is an active flavonoid extensively used in traditional Chinese medicine. In the present study the effects of BA on toxicity to the MCF-7 line was tested. MCF-7 cells when treated with BA exhibited concentration dependent toxicity. MCF-7 cells when treated with BA at the concentration of 50 μM, 50% cells lost viability. Further, it was shown that BA radio-sensitize the MCF-7 cells in vitro, as tested by LDH leakage assay. Radiation (4 Gy) alone did not show marked LDH leakage, however post radiation exposure treatment with BA (50 μM) of MCF-7 cells resulted in increased LDH leakage. In vitro wound healing assay was performed - which is the test for cell migration and cell proliferation. BA inhibited the wound closure by 97%. Overall the results demonstrate the anticancer potential of BA. In order to determine the effect of BA on transcription activation by HIF-1, a cell-based reporter assay for HIF-1 functional antagonist in MCF-7 cells was established. A luciferase reporter gene under the control of HRE from the erythropoietin gene (pTK-HRE3-luc) was employed to monitor HIF-1 activity. MCF-7 cells were transiently transfected with aforementioned plasmid followed by growing them in the presence of CoCl 2 , (hypoxia mimetic agent) and under

  9. Pleiotropic effects of cancer cells' secreted factors on human stromal (mesenchymal) stem cells

    Al-toub, Mashael; Almusa, Abdulaziz; Almajed, Mohammed

    2013-01-01

    cells' secreted factors as represented by a panel of human cancer cell lines (breast (MCF7 and MDA-MB-231); prostate (PC-3); lung (NCI-H522); colon (HT-29) and head & neck (FaDu)) on the biological characteristics of MSCs. METHODS: Morphological changes were assessed using fluorescence microscopy......, but not from MCF7 and HT-29, developed an elongated, spindle-shaped morphology with bipolar processes. In association with phenotypic changes, genome-wide gene expression and bioinformatics analysis revealed an enhanced pro-inflammatory response of those MSCs. Pharmacological inhibitions of FAK and MAPKK...

  10. Development and characterization of MCF7 mammary carcinoma ...

    Tropical Journal of Pharmaceutical Research October 2016; 15 (10): 2085-2091 ... tissues from the thoracic region showed evidence of MCF7 cellular proliferation in both groups B and C. ... Fungizone (PSF) and fetal calf serum (FCS).

  11. Induction of apoptosis in human breast adenocarcinoma MCF-7 ...

    Induction of apoptosis in human breast adenocarcinoma MCF-7 cells by tannic acid and resveratrol. Ahu Soyocak, Didem Turgut Cosan, Ayse Basaran, Hasan Veysi Gunes, Irfan Degirmenci, Fezan Sahin Mutlu ...

  12. Mechanisms underlying differential expression of interleukin-8 in breast cancer cells

    Freund, Ariane; Jolivel, Valérie; Durand, Sébastien; Kersual, Nathalie; Chalbos, Dany; Chavey, Carine; Vignon, Françoise; Lazennec, Gwendal

    2004-01-01

    We have recently reported that Interleukin-8 (IL-8) expression was inversely correlated to estrogen-receptor (ER)-status and was overexpressed in invasive breast cancer cells. In the present study, we show that IL-8 overexpression in breast cancer cells involves a higher transcriptional activity of IL-8 gene promoter. Cloning of IL-8 promoter from MDA-MB-231 and MCF-7 cells expressing high and low levels of IL-8, respectively, shows the integrity of the promoter in both cell lines. Deletion and site-directed mutagenesis of the promoter demonstrate that NF-κB and AP-1 and to a lesser extent C/EBP binding sites play a crucial role in the control of IL-8 promoter activity in MDA-MB-231 cells. Knock-down of NF-κB and AP-1 activities by adenovirus-mediated expression of a NF-κB super-repressor and RNA interference, respectively, decreased IL-8 expression in MDA-MB-231 cells. On the contrary, restoration of Fra-1, Fra-2, c-Jun, p50, p65, C/EBPα and C/EBPβ expression levels in MCF-7 cells led to a promoter activity comparable to that observed in MDA-MB-231 cells. Our data constitute the first extensive study of IL-8 gene overexpression in breast cancer cells and suggest that the high expression of IL-8 in invasive cancer cells requires a complex cooperation between NF-κB, AP-1 and C/EBP transcription factors. PMID:15208657

  13. Molecular Tracking of Proteolysis During Breast Cancer Cell Extravasation: Blockage by Therapeutic Inhibitors

    Khokha, Rama

    2004-01-01

    ... (metastatic MDA- MB231 and non-metastatic MCF-7) transendothelial migration (TEM). Modulation of individual molecules demonstrates the functional cooperation of furin, cell surface adhesion molecules (alpha(sub v)Beta(sub3), CD44...

  14. Bioactivation of the citrus flavonoid nobiletin by CYP1 enzymes in MCF7 breast adenocarcinoma cells.

    Surichan, Somchaiya; Androutsopoulos, Vasilis P; Sifakis, Stavros; Koutala, Eleni; Tsatsakis, Aristidis; Arroo, Randolph R J; Boarder, Michael R

    2012-09-01

    Recent studies have demonstrated cytochrome P450 CYP1-mediated metabolism and CYP1-enzyme induction by naturally occurring flavonoids in cancer cell line models. The arising metabolites often exhibit higher activity than the parent compound. In the present study we investigated the CYP1-mediated metabolism of the citrus polymethoxyflavone nobiletin by recombinant CYP1 enzymes and MCF7 breast adenocarcinoma cells. Incubation of nobiletin in MCF7 cells produced one main metabolite (NM1) resulting from O-demethylation in either A or B rings of the flavone moiety. Among the three CYP1 isoforms, CYP1A1 exhibited the highest rate of metabolism of nobiletin in recombinant CYP microsomal enzymes. The intracellular CYP1-mediated bioconversion of the flavone was reduced in the presence of the CYP1A1 and CYP1B1-selective inhibitors α-napthoflavone and acacetin. In addition nobiletin induced CYP1 enzyme activity, CYP1A1 protein and CYP1B1 mRNA levels in MCF7 cells at a concentration dependent manner. MTT assays in MCF7 cells further revealed that nobiletin exhibited significantly lower IC50 (44 μM) compared to cells treated with nobiletin and CYP1A1 inhibitor (69 μM). FACS analysis demonstrated cell a cycle block at G1 phase that was attenuated in the presence of CYP1A1 inhibitor. Taken together the data suggests that the dietary flavonoid nobiletin induces its own metabolism and in turn enhances its cytostatic effect in MCF7 breast adenocarcinoma cells, via CYP1A1 and CYP1B1 upregulation. Copyright © 2012 Elsevier Ltd. All rights reserved.

  15. Benzyl isothiocyanate causes FoxO1-mediated autophagic death in human breast cancer cells.

    Dong Xiao

    Full Text Available Benzyl isothiocyanate (BITC, a constituent of edible cruciferous vegetables, inhibits growth of breast cancer cells but the mechanisms underlying growth inhibitory effect of BITC are not fully understood. Here, we demonstrate that BITC treatment causes FoxO1-mediated autophagic death in cultured human breast cancer cells. The BITC-treated breast cancer cells (MDA-MB-231, MCF-7, MDA-MB-468, BT-474, and BRI-JM04 and MDA-MB-231 xenografts from BITC-treated mice exhibited several features characteristic of autophagy, including appearance of double-membrane vacuoles (transmission electron microscopy and acidic vesicular organelles (acridine orange staining, cleavage of microtubule-associated protein 1 light chain 3 (LC3, and/or suppression of p62 (p62/SQSTM1 or sequestosome 1 expression. On the other hand, a normal human mammary epithelial cell line (MCF-10A was resistant to BITC-induced autophagy. BITC-mediated inhibition of MDA-MB-231 and MCF-7 cell viability was partially but statistically significantly attenuated in the presence of autophagy inhibitors 3-methyl adenine and bafilomycin A1. Stable overexpression of Mn-superoxide dismutase, which was fully protective against apoptosis, conferred only partial protection against BITC-induced autophagy. BITC treatment decreased phosphorylation of mTOR and its downstream targets (P70s6k and 4E-BP1 in cultured MDA-MB-231 and MCF-7 cells and MDA-MB-231 xenografts, but activation of mTOR by transient overexpression of its positive regulator Rheb failed to confer protection against BITC-induced autophagy. Autophagy induction by BITC was associated with increased expression and acetylation of FoxO1. Furthermore, autophagy induction and cell growth inhibition resulting from BITC exposure were significantly attenuated by small interfering RNA knockdown of FoxO1. In conclusion, the present study provides novel insights into the molecular circuitry of BITC-induced cell death involving FoxO1-mediated autophagy.

  16. Estrogen receptor β inhibits estradiol-induced proliferation and migration of MCF-7 cells through regulation of mitofusin 2.

    Ma, Li; Liu, Yueping; Geng, Cuizhi; Qi, Xiaowei; Jiang, Jun

    2013-06-01

    In the present study, we investigated whether estrogen receptor (ER) β affected the proliferation and migration of the human breast cancer cell line MCF-7 through regulation of mitofusin 2 (mfn2). A previous study reported that mfn2 may be regulated by ER through a non-classical pathway; in this pathway, the ER modulates the activities of other transcription factors by stabilizing their binding to DNA and/or recruiting coactivators to the complex. However, the previous study, unlike the study presented here, did not directly explore the interactions between ER and mfn2. Here, RT-PCR and western blot analysis were used to test the expression of mfn2 in MCF-7 cells after exposure to different doses of estradiol (E2). The ability of cells to proliferate and migrate was determined by MTT assay and a monolayer-wounding protocol, respectively. Finally, changes in MCF-7 cell biology after transfection with ERβ or mfn2 expression vectors were investigated, and the role of ERβ in mfn2 expression was also explored. Our results showed that E2 attenuated mfn2 expression in a dose-dependent manner, concomitant with the activation of proliferation and migration of MCF-7 cells. The mfn2 expression vector effectively suppressed E2-induced upregulation of PCNA and migration in MCF-7 cells. ERβ inhibited the E2-induced mfn2 downregulation that accompanied the inhibition of proliferation and migration in MCF-7 cells. Briefly, ERβ may inhibit E2-induced proliferation and migration of MCF-7 cells through regulation of mfn2.

  17. Dual-Color Fluorescence Imaging of EpCAM and EGFR in Breast Cancer Cells with a Bull's Eye-Type Plasmonic Chip.

    Izumi, Shota; Yamamura, Shohei; Hayashi, Naoko; Toma, Mana; Tawa, Keiko

    2017-12-19

    Surface plasmon field-enhanced fluorescence microscopic observation of a live breast cancer cell was performed with a plasmonic chip. Two cell lines, MDA-MB-231 and Michigan Cancer Foundation-7 (MCF-7), were selected as breast cancer cells, with two kinds of membrane protein, epithelial cell adhesion molecule (EpCAM) and epidermal growth factor receptor (EGFR), observed in both cells. The membrane proteins are surface markers used to differentiate and classify breast cancer cells. EGFR and EpCAM were detected with Alexa Fluor ® 488-labeled anti-EGFR antibody (488-EGFR) and allophycocyanin (APC)-labeled anti-EpCAM antibody (APC-EpCAM), respectively. In MDA-MB231 cells, three-fold plus or minus one and seven-fold plus or minus two brighter fluorescence of 488-EGFR were observed on the 480-nm pitch and the 400-nm pitch compared with that on a glass slide. Results show the 400-nm pitch is useful. Dual-color fluorescence of 488-EGFR and APC-EpCAM in MDA-MB231 was clearly observed with seven-fold plus or minus two and nine-fold plus or minus three, respectively, on the 400-nm pitch pattern of a plasmonic chip. Therefore, the 400-nm pitch contributed to the dual-color fluorescence enhancement for these wavelengths. An optimal grating pitch of a plasmonic chip improved a fluorescence image of membrane proteins with the help of the surface plasmon-enhanced field.

  18. Zirconium phosphate nanoplatelets: a biocompatible nanomaterial for drug delivery to cancer

    Saxena, Vipin; Diaz, Agustin; Clearfield, Abraham; Batteas, James D.; Hussain, Muhammad Delwar

    2013-02-01

    The objective of this study was to evaluate the biocompatibility of zirconium phosphate (ZrP) nanoplatelets (NPs), and their use in drug delivery. ZrP and doxorubicin-intercalated ZrP (DOX:ZrP) NPs were characterized by using X-Ray Powder Diffraction (XRPD), Thermogravimetric Analysis (TGA), Transmission Electron Micrography (TEM), Scanning Electron Microscopy (SEM) and Atomic Force Microscopy (AFM). Biocompatibility of ZrP NPs was evaluated in human embryonic kidney (HEK-293), breast cancer (MCF-7), metastatic breast cancer (MDA-MB-231), ovarian cancer (OVCAR-3), resistant cancer (NCI-RES/ADR) cells and mouse macrophage (RAW 264.7) cell lines. Hemocompatibility of ZrP NPs was evaluated with human red blood cells. Simulated body fluid (SBF) of pH 7.4 was used to determine the in vitro release of doxorubicin from DOX:ZrP NPs. Cellular uptake and in vitro cytotoxicity studies of DOX:ZrP NPs were determined in MDA-MB-231. The ZrP nanomaterial can be prepared in the 100-200 nm size range with a platelet-like shape. The ZrP NPs themselves are biocompatible, hemocompatible and showed no toxicity to the macrophage cells. ZrP NPs can intercalate high loads (35% w/w) of doxorubicin between their layers. The release of DOX was sustained for about 2 weeks. DOX:ZrP NPs showed higher cellular uptake and increased cytotoxicity than free DOX in MDA-MB-231 cells. ZrP NPs are highly biocompatible, can intercalate large amounts of drugs and sustain the release of drugs. ZrP NPs improved the cellular uptake and cytotoxicity of DOX to MDA-MB-231 cells. ZrP NPs are promising nanocarriers for drug delivery in cancer therapy.The objective of this study was to evaluate the biocompatibility of zirconium phosphate (ZrP) nanoplatelets (NPs), and their use in drug delivery. ZrP and doxorubicin-intercalated ZrP (DOX:ZrP) NPs were characterized by using X-Ray Powder Diffraction (XRPD), Thermogravimetric Analysis (TGA), Transmission Electron Micrography (TEM), Scanning Electron Microscopy (SEM

  19. Estrogen receptor positive breast tumors resist chemotherapy by the overexpression of P53 in Cancer Stem Cells

    Fatma Ashour

    2018-06-01

    Full Text Available Background and Objectives: Breast cancer (BC is classified according to estrogen receptor (ER status into ER+ and ER− tumors. ER+ tumors have a worse response to chemotherapy compared to ER− tumors. BCL-2, TP53, BAX and NF-ΚB are involved in drug resistance in the ER+ tumors. Recently it was shown that Cancer Stem Cells (CSCs play an important role in drug resistance. In this study we tested the hypothesis that CSCs of the ER+ tumors resist drug through the overexpression of BCL-2, TP53, BAX and NF-ΚB. Methods: CSCs were isolated by anoikis resistance assay from MCF7 (ER+ and MDA-MB-231 (ER− cell lines. Isolated CSCs were treated with doxorubicin (DOX and the mRNA expression levels of BCL-2, TP53, BAX and NFKB were investigated by quantitative real time PCR (qPCR with and without treatment. Results: BCL-2, BAX and NF-ΚB showed decreased expression in MCF7 bulk cancer cells after DOX treatment whereas only BCL-2 and BAX showed decreased expression in MDA-MB-231 bulk cancer cells. Interestingly TP53 was the only gene showed a considerable increase in its expression in CSCs of the ER+ MCF7 cell line compared to bulk cancer cells. Moreover, TP53 was the only gene showing exceptionally higher level of expression in MCF7-CSCs compared to MDA-MB-231-CSCs. Conclusion: Our results suggest that CSCs in the ER+ cells escape the effect of DOX treatment by the elevation of p53 expression. Keywords: Breast cancer, Cancer Stem Cells, Drug resistance, Estrogen receptors

  20. Neuroligin 4X overexpression in human breast cancer is associated with poor relapse-free survival.

    Henry J Henderson

    Full Text Available The molecular mechanisms involved in breast cancer progression and metastasis still remain unclear to date. It is a heterogeneous disease featuring several different phenotypes with consistently different biological characteristics. Neuroligins are neural cell adhesion molecules that have been implicated in heterotopic cell adhesion. In humans, alterations in neuroligin genes are implicated in autism and other cognitive diseases. Until recently, neuroligins have been shown to be abundantly expressed in blood vessels and also play a role implicated in the growth of glioma cells. Here we report increased expression of neuroligin 4X (NLGN4X in breast cancer. We found NLGN4X was abundantly expressed in breast cancer tissues. NLGN4X expression data for all breast cancer cell lines in the Cancer Cell Line Encyclopedia (CCLE was analyzed. Correlation between NLGN4X levels and clinicopathologic parameters were analyzed within Oncomine datasets. Evaluation of these bioinfomatic datasets results revealed that NLGN4X expression was higher in triple negative breast cancer cells, particularly the basal subtype and tissues versus non-triple-negative sets. Its level was also observed to be higher in metastatic tissues. RT-PCR, flow cytometry and immunofluorescence study of MDA-MB-231 and MCF-7 breast cancer cells validated that NLGN4X was increased in MDA-MB-231. Knockdown of NLGN4X expression by siRNA decreased cell proliferation and migration significantly in MDA-MB-231 breast cancer cells. NLGN4X knockdown in MDA-MB-231 cells resulted in induction of apoptosis as determined by annexin staining, elevated caspase 3/7 and cleaved PARP by flow cytometry. High NLGN4X expression highly correlated with decrease in relapse free-survival in TNBC. NLGN4X might represent novel biomarkers and therapeutic targets for breast cancer. Inhibition of NLGN4X may be a new target for the prevention and treatment of breast cancer.

  1. Antiproliferative effect on breast cancer (MCF7) of Moringa oleifera ...

    Background: Moringa oleifera belongs to plant family, Moringaceae and popularly called ―wonderful tree‖, for it is used traditionally to cure many diseases including cancer in Africa and Asia, however, there is limited knowledge on cytotoxic activity of Moringa oleifera seeds on MCF7 breast cancer cell. The present study ...

  2. Sensitivity of docetaxel-resistant MCF-7 breast cancer cells to microtubule-destabilizing agents including vinca alkaloids and colchicine-site binding agents.

    Richard C Wang

    Full Text Available One of the main reasons for disease recurrence in the curative breast cancer treatment setting is the development of drug resistance. Microtubule targeted agents (MTAs are among the most commonly used drugs for the treatment of breaset cancer and therefore overcoming taxane resistance is of primary clinical importance. Our group has previously demonstrated that the microtubule dynamics of docetaxel-resistant MCF-7TXT cells are insensitivity to docetaxel due to the distinct expression profiles of β-tubulin isotypes in addition to the high expression of p-glycoprotein (ABCB1. In the present investigation we examined whether taxane-resistant breast cancer cells are more sensitive to microtubule destabilizing agents including vinca alkaloids and colchicine-site binding agents (CSBAs than the non-resistant cells.Two isogenic MCF-7 breast cancer cell lines were selected for resistance to docetaxel (MCF-7TXT and the wild type parental cell line (MCF-7CC to examine if taxane-resistant breast cancer cells are sensitive to microtubule-destabilizing agents including vinca alkaloids and CSBAs. Cytotoxicity assays, immunoblotting, indirect immunofluorescence and live imaging were used to study drug resistance, apoptosis, mitotic arrest, microtubule formation, and microtubule dynamics.MCF-7TXT cells were demonstrated to be cross resistant to vinca alkaloids, but were more sensitive to treatment with colchicine compared to parental non-resistant MCF-7CC cells. Cytotoxicity assays indicated that the IC50 of MCF-7TXT cell to vinorelbine and vinblastine was more than 6 and 3 times higher, respectively, than that of MCF-7CC cells. By contrast, the IC50 of MCF-7TXT cell for colchincine was 4 times lower than that of MCF-7CC cells. Indirect immunofluorescence showed that all MTAs induced the disorganization of microtubules and the chromatin morphology and interestingly each with a unique pattern. In terms of microtubule and chromain morphology, MCF-7TXT cells were

  3. Xanthohumol, a Prenylated Chalcone from Hops, Inhibits the Viability and Stemness of Doxorubicin-Resistant MCF-7/ADR Cells

    Ming Liu

    2016-12-01

    Full Text Available Xanthohumol is a unique prenylated flavonoid in hops (Humulus lupulus L. and beer. Xanthohumol has been shown to possess a variety of pharmacological activities. There is little research on its effect on doxorubicin-resistant breast cancer cells (MCF-7/ADR and the cancer stem-like cells exiting in this cell line. In the present study, we investigate the effect of xanthohumol on the viability and stemness of MCF-7/ADR cells. Xanthohumol inhibits viability, induces apoptosis, and arrests the cell cycle of MCF-7/ADR cells in a dose-dependent manner; in addition, xanthohumol sensitizes the inhibition effect of doxorubicin on MCF-7/ADR cells. Interestingly, we also find that xanthohumol can reduce the stemness of MCF-7/ADR cells evidenced by the xanthohumol-induced decrease in the colony formation, the migration, the percentage of side population cells, the sphere formation, and the down-regulation of stemness-related biomarkers. These results demonstrate that xanthohumol is a promising compound targeting the doxorubicin resistant breast cancer cells and regulating their stemness, which, therefore, will be applied as a potential candidate for the development of a doxorubicin-resistant breast cancer agent and combination therapy of breast cancer.

  4. Involvement of miR-30c in resistance to doxorubicin by regulating YWHAZ in breast cancer cells

    Fang, Y. [Department of Central Laboratory, The First Affiliated People’s Hospital, Jiangsu University, Zhenjiang, Jiangsu (China); Shen, H. [Department of Oncology, The First Affiliated People’s Hospital, Jiangsu University, Zhenjiang, Jiangsu (China); Cao, Y. [Department of Central Laboratory, The First Affiliated People’s Hospital, Jiangsu University, Zhenjiang, Jiangsu (China); Li, H. [Department of Central Laboratory, The Fourth Affiliated People’s Hospital, Jiangsu University, Zhenjiang, Jiangsu (China); Qin, R. [Department of Oncology, The First Affiliated People’s Hospital, Jiangsu University, Zhenjiang, Jiangsu (China); Chen, Q. [Department of Central Laboratory, The First Affiliated People’s Hospital, Jiangsu University, Zhenjiang, Jiangsu (China); Long, L. [Department of Oncology, The First Affiliated People’s Hospital, Jiangsu University, Zhenjiang, Jiangsu (China); Zhu, X.L. [Department of Central Laboratory, The Fourth Affiliated People’s Hospital, Jiangsu University, Zhenjiang, Jiangsu (China); Xie, C.J. [Department of Central Laboratory, The First Affiliated People’s Hospital, Jiangsu University, Zhenjiang, Jiangsu (China); Xu, W.L. [Department of Central Laboratory, The Fourth Affiliated People’s Hospital, Jiangsu University, Zhenjiang, Jiangsu (China)

    2014-01-10

    MicroRNAs (miRNAs) are small RNA molecules that modulate gene expression implicated in cancer, which play crucial roles in diverse biological processes, such as development, differentiation, apoptosis, and proliferation. The aim of this study was to investigate whether miR-30c mediated the resistance of breast cancer cells to the chemotherapeutic agent doxorubicin (ADR) by targeting tyrosine 3-monooxygenase/tryptophan 5-monooxygenase activation protein zeta (YWHAZ). miR-30c was downregulated in the doxorubicin-resistant human breast cancer cell lines MCF-7/ADR and MDA-MB-231/ADR compared with their parental MCF-7 and MDA-MB-231 cell lines, respectively. Furthermore, we observed that transfection of an miR-30c mimic significantly suppressed the ability of MCF-7/ADR to resist doxorubicin. Moreover, the anti-apoptotic gene YWHAZ was confirmed as a target of miR-30c by luciferase reporter assay, and further studies indicated that the mechanism for miR-30c on the sensitivity of breast cancer cells involved YWHAZ and its downstream p38 mitogen-activated protein kinase (p38MAPK) pathway. Together, our findings provided evidence that miR-30c was one of the important miRNAs in doxorubicin resistance by regulating YWHAZ in the breast cancer cell line MCF-7/ADR.

  5. Exogenous and Endogeneous Disialosyl Ganglioside GD1b Induces Apoptosis of MCF-7 Human Breast Cancer Cells

    Sun-Hyung Ha

    2016-04-01

    Full Text Available Gangliosides have been known to play a role in the regulation of apoptosis in cancer cells. This study has employed disialyl-ganglioside GD1b to apoptosis in human breast cancer MCF-7 cells using exogenous treatment of the cells with GD1b and endogenous expression of GD1b in MCF-7 cells. First, apoptosis in MCF-7 cells was observed after treatment of GD1b. Treatment of MCF-7 cells with GD1b reduced cell growth rates in a dose and time dependent manner during GD1b treatment, as determined by XTT assay. Among the various gangliosides, GD1b specifically induced apoptosis of the MCF-7 cells. Flow cytometry and immunofluorescence assays showed that GD1b specifically induces apoptosis in the MCF-7 cells with Annexin V binding for apoptotic actions in early stage and propidium iodide (PI staining the nucleus of the MCF-7 cells. Treatment of MCF-7 cells with GD1b activated apoptotic molecules such as processed forms of caspase-8, -7 and PARP (Poly(ADP-ribose polymerase, without any change in the expression of mitochondria-mediated apoptosis molecules such as Bax and Bcl-2. Second, to investigate the effect of endogenously produced GD1b on the regulation of cell function, UDP-gal: β1,3-galactosyltransferase-2 (GD1b synthase, Gal-T2 gene has been transfected into the MCF-7 cells. Using the GD1b synthase-transfectants, apoptosis-related signal proteins linked to phenotype changes were examined. Similar to the exogenous GD1b treatment, the cell growth of the GD1b synthase gene-transfectants was significantly suppressed compared with the vector-transfectant cell lines and transfection activated the apoptotic molecules such as processed forms of caspase-8, -7 and PARP, but not the levels of expression of Bax and Bcl-2. GD1b-induced apoptosis was blocked by caspase inhibitor, Z-VAD. Therefore, taken together, it was concluded that GD1b could play an important role in the regulation of breast cancer apoptosis.

  6. Nuclear thioredoxin-1 is required to suppress cisplatin-mediated apoptosis of MCF-7 cells

    Chen, Xiao-Ping; Liu, Shou; Tang, Wen-Xin; Chen, Zheng-Wang

    2007-01-01

    Different cell line with increased thioredoxin-1 (Trx-1) showed a decreased or increased sensitivity to cell killing by cisplatin. Recently, several studies found that the subcellular localization of Trx-1 is closely associated with its functions. In this study, we explored the association of the nuclear Trx-1 with the cisplatin-mediated apoptosis of breast cancer cells MCF-7. Firstly, we found that higher total Trx-1 accompanied by no change of nuclear Trx-1 can not influence apoptosis induced by cisplatin in MCF-7 cells transferred with Trx-1 cDNA. Secondly, higher nuclear Trx-1 accompanied by no change of total Trx-1 can protect cells from apoptosis induced by cisplatin. Thirdly, high nuclear Trx-1 involves in the cisplatin-resistance in cisplatin-resistive cells. Meanwhile, we found that the mRNA level of p53 is closely correlated with the level of nuclear Trx-1. In summary, we concluded that the nuclear Trx-1 is required to resist apoptosis of MCF-7 cells induced by cisplatin, probably through up-regulating the anti-apoptotic gene, p53

  7. Luminal and basal-like breast cancer cells show increased migration induced by hypoxia, mediated by an autocrine mechanism

    Voss, Melanie J; Möller, Mischa F; Powe, Desmond G; Niggemann, Bernd; Zänker, Kurt S; Entschladen, Frank

    2011-01-01

    Some breast cancer patients receiving anti-angiogenic treatment show increased metastases, possibly as a result of induced hypoxia. The effect of hypoxia on tumor cell migration was assessed in selected luminal, post-EMT and basal-like breast carcinoma cell lines. Migration was assessed in luminal (MCF-7), post-EMT (MDA-MB-231, MDA-MB-435S), and basal-like (MDA-MB-468) human breast carcinoma cell lines under normal and oxygen-deprived conditions, using a collagen-based assay. Cell proliferation was determined, secreted cytokine and chemokine levels were measured using flow-cytometry and a bead-based immunoassay, and the hypoxic genes HIF-1α and CA IX were assessed using PCR. The functional effect of tumor-cell conditioned medium on the migration of neutrophil granulocytes (NG) was tested. Hypoxia caused increased migratory activity but not proliferation in all tumor cell lines, involving the release and autocrine action of soluble mediators. Conditioned medium (CM) from hypoxic cells induced migration in normoxic cells. Hypoxia changed the profile of released inflammatory mediators according to cell type. Interleukin-8 was produced only by post-EMT and basal-like cell lines, regardless of hypoxia. MCP-1 was produced by MDA-MB-435 and -468 cells, whereas IL-6 was present only in MDA-MB-231. IL-2, TNF-α, and NGF production was stimulated by hypoxia in MCF-7 cells. CM from normoxic and hypoxic MDA-MB-231 and MDA-MB-435S cells and hypoxic MCF-7 cells, but not MDA-MB-468, induced NG migration. Hypoxia increases migration by the autocrine action of released signal substances in selected luminal and basal-like breast carcinoma cell lines which might explain why anti-angiogenic treatment can worsen clinical outcome in some patients

  8. Targeting property and toxicity of a novel ultrasound contrast agent microbubble carrying the targeting and drug-loaded complex FA-CNTs-PTX on MCF7 cells.

    Zhang, Jie; Zhang, Yu; Liu, Junxi; Li, Guozhong; Wen, Zhaohui; Zhao, Yue; Zhang, Xiangyu; Liu, Fenghua

    2017-10-01

    The application of ultrasound contrast agents not only is confined to the enhancement of ultrasound imaging but also has started to be used as a drug system for diagnosis and treatment. In this paper, Span60 and PEG1500 were used as membrane materials, and a new targeting and drug-loading multifunctional ultrasound contrast agent microbubble enveloping the FA-CNTs-PTX complex was successfully prepared by acoustic cavitation. With the breast cancer cell line MCF7 as the research target, the effects of the microbubble with FA-CNTs-PTX on the proliferation and toxicity of MCF7 cells were studied using a CCK-8 and AO/EB double-staining method. The influences of the microbubbles with FA-CNTs-PTX on the cellular morphology and apoptosis period of the MCF7 cells were detected using an inverted fluorescence microscope. The apoptosis of MCF7 cells induced by the microbubbles with FA-CNTs-PTX was investigated with flow cytometry and an annexin and PI double staining fluorescence quantitative analysis. The results indicated that the ultrasound contrast agent microbubble with FA-CNTs-PTX remarkably inhibited the proliferation of MCF7 cells, which was mainly controlled by the drug loading rate and the nanometer size of the microbubbles. Moreover, the proliferative inhibition rate of the microbubbles with FA-CNTs-PTX was related to the cell apoptosis period of MCF7 cells. Its inhibition degree on the proliferation of MCF7 cells was higher than that of the hepatoma HepG2 cells. The apoptosis rate of MCF7 cells induced by the microbubbles with FA-CNTs-PTX was higher than that of normal human umbilical vein endothelial cells (HUVECs), and the microbubbles with FA-CNTs-PTX could target the MCF7 cells. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Analysis of secretome of breast cancer cell line with an optimized semi-shotgun method

    Tang Xiaorong; Yao Ling; Chen Keying; Hu Xiaofang; Xu Lisa; Fan Chunhai

    2009-01-01

    Secretome, the totality of secreted proteins, is viewed as a promising pool of candidate cancer biomarkers. Simple and reliable methods for identifying secreted proteins are highly desired. We used an optimized semi-shotgun liquid chromatography followed by tandem mass spectrometry (LC-MS/MS) method to analyze the secretome of breast cancer cell line MDA-MB-231. A total of 464 proteins were identified. About 63% of the proteins were classified as secreted proteins, including many promising breast cancer biomarkers, which were thought to be correlated with tumorigenesis, tumor development and metastasis. These results suggest that the optimized method may be a powerful strategy for cell line secretome profiling, and can be used to find potential cancer biomarkers with great clinical significance. (authors)

  10. Sulphamoylated 2-methoxyestradiol analogues induce apoptosis in adenocarcinoma cell lines.

    Michelle Visagie

    Full Text Available 2-Methoxyestradiol (2ME2 is a naturally occurring estradiol metabolite which possesses antiproliferative, antiangiogenic and antitumor properties. However, due to its limited biological accessibility, synthetic analogues have been synthesized and tested in attempt to develop drugs with improved oral bioavailability and efficacy. The aim of this study was to evaluate the antiproliferative effects of three novel in silico-designed sulphamoylated 2ME2 analogues on the HeLa cervical adenocarcinoma cell line and estrogen receptor-negative breast adenocarcinoma MDA-MB-231 cells. A dose-dependent study (0.1-25 μM was conducted with an exposure time of 24 hours. Results obtained from crystal violet staining indicated that 0.5 μM of all 3 compounds reduced the number of cells to 50%. Lactate dehydrogenase assay was used to assess cytotoxicity, while the mitotracker mitochondrial assay and caspase-6 and -8 activity assays were used to investigate the possible occurrence of apoptosis. Tubulin polymerization assays were conducted to evaluate the influence of these sulphamoylated 2ME2 analogues on tubulin dynamics. Double immunofluorescence microscopy using labeled antibodies specific to tyrosinate and detyrosinated tubulin was conducted to assess the effect of the 2ME2 analogues on tubulin dynamics. An insignificant increase in the level of lactate dehydrogenase release was observed in the compounds-treated cells. These sulphamoylated compounds caused a reduction in mitochondrial membrane potential, cytochrome c release and caspase 3 activation indicating apoptosis induction by means of the intrinsic pathway in HeLa and MDA-MB-231 cells. Microtubule depolymerization was observed after exposure to these three sulphamoylated analogues.

  11. New castanospermine glycoside analogues inhibit breast cancer cell proliferation and induce apoptosis without affecting normal cells.

    Ghada Allan

    Full Text Available sp²-Iminosugar-type castanospermine analogues have been shown to exhibit anti-tumor activity. However, their effects on cell proliferation and apoptosis and the molecular mechanism at play are not fully understood. Here, we investigated the effect of two representatives, namely the pseudo-S- and C-octyl glycoside 2-oxa-3-oxocastanospermine derivatives SO-OCS and CO-OCS, on MCF-7 and MDA-MB-231 breast cancer and MCF-10A mammary normal cell lines. We found that SO-OCS and CO-OCS inhibited breast cancer cell viability in a concentration- and time-dependent manner. This effect is specific to breast cancer cells as both molecules had no impact on normal MCF-10A cell proliferation. Both drugs induced a cell cycle arrest. CO-OCS arrested cell cycle at G1 and G2/M in MCF-7 and MDA-MB-231 cells respectively. In MCF-7 cells, the G1 arrest is associated with a reduction of CDK4 (cyclin-dependent kinase 4, cyclin D1 and cyclin E expression, pRb phosphorylation, and an overexpression of p21(Waf1/Cip1. In MDA-MB-231 cells, CO-OCS reduced CDK1 but not cyclin B1 expression. SO-OCS accumulated cells in G2/M in both cell lines and this blockade was accompanied by a decrease of CDK1, but not cyclin B1 expression. Furthermore, both drugs induced apoptosis as demonstrated by the increased percentage of annexin V positive cells and Bax/Bcl-2 ratio. Interestingly, in normal MCF-10A cells the two drugs failed to modify cell proliferation, cell cycle progression, cyclins, or CDKs expression. These results demonstrate that the effect of CO-OCS and SO-OCS is triggered by both cell cycle arrest and apoptosis, suggesting that these castanospermine analogues may constitute potential anti-cancer agents against breast cancer.

  12. In vitro anti-proliferative and anti-inflammatory activity of leaf and fruit extracts from Vaccinium bracteatum Thunb

    Landa, P. (Přemysl); Skálová, L.; Boušová, I.; Kutil, Z. (Zsófia); Langhansová, L. (Lenka); Lou, J.D.; Vaněk, T. (Tomáš)

    2014-01-01

    The aim of this study was to evaluate in vitro anti-proliferative (tested on MCF-7, MDA-MB-231, and MCF-10A cell lines) and anti-inflammatory (evaluated as inhibition of prostaglandin E2 synthesis catalyzed by cyclooxygenase-2) effect of various extracts from Vaccinium bracteatum leaves and fruits. The highest anti-proliferative effect possessed leaf dichloromethane extract with IC50 values ranging from 93 to 198 mug/mL. In the case of cyclooxygenase-2 inhibition, n-hexane, dichloromethane, a...

  13. Modification of the estrogenic properties of diphenols by the incorporation of ferrocene. Generation of antiproliferative effects in vitro.

    Vessières, Anne; Top, Siden; Pigeon, Pascal; Hillard, Elizabeth; Boubeker, Leila; Spera, Daniela; Jaouen, Gérard

    2005-06-16

    We report here the synthesis and the strong and unexpected antiproliferative effect of the organometallic diphenolic compound 1,1-bis(4'-hydroxyphenyl)-2-ferrocenyl-but-1-ene (4) on both hormone-dependent (MCF7) and -independent (MDA-MB231) breast cancer cells (IC(50) = 0.7 and 0.6 microM). Surprisingly, 6 [1,2-bis(4'-hydroxyphenyl)-2-ferrocenyl-but-1-ene], the regioisomer of 4, shows only a modest effect on these cell lines. This pertinent organometallic modification seems to trigger an intracellular oxidation of the structurally favorable compound 4, leading to the generation of a potent cytotoxic compound.

  14. Punica granatum fabricated platinum nanoparticles: A therapeutic pill for breast cancer

    Jha, Babita; Rao, Mugdha; Chattopadhyay, A.; Bandyopadhyay, A.; Prasad, K.; Jha, Anal K.

    2018-05-01

    The current research highlights the fabrication of biocompatible platinum nanoparticles (Pt NPs) in first hand from arils of Punica granatum by using green chemistry approach. Formation of Pt NPs was determined by UV-visible, X-ray diffraction, and FTIR techniques. The anti-cancer potential of fabricated Pt NPs was evaluated by MTT assay on MCF7 and MDA-MB-231 breast cancer cell lines. This work is foreshadowing the prospect of Pt NPs application as a therapeutic drug for cancer treatment.

  15. ABL tyrosine kinase inhibition variable effects on the invasive properties of different triple negative breast cancer cell lines.

    Clément Chevalier

    Full Text Available The non-receptor tyrosine kinase ABL drives myeloid progenitor expansion in human chronic myeloid leukemia. ABL inhibition by the tyrosine kinase inhibitor nilotinib is a first-line treatment for this disease. Recently, ABL has also been implicated in the transforming properties of solid tumors, including triple negative (TN breast cancer. TN breast cancers are highly metastatic and several cell lines derived from these tumors display high invasive activity in vitro. This feature is associated with the activation of actin-rich membrane structures called invadopodia that promote extracellular matrix degradation. Here, we investigated nilotinib effect on the invasive and migratory properties of different TN breast cancer cell lines. Nilotinib decreased both matrix degradation and invasion in the TN breast cancer cell lines MDA-MB 231 and MDA-MB 468. However, and unexpectedly, nilotinib increased by two-fold the invasive properties of the TN breast cancer cell line BT-549 and of Src-transformed fibroblasts. Both display much higher levels of ABL kinase activity compared to MDA-MB 231. Similar effects were obtained by siRNA-mediated down-regulation of ABL expression, confirming ABL central role in this process. ABL anti-tumor effect in BT-549 cells and Src-transformed fibroblasts was not dependent on EGF secretion, as recently reported in neck and squamous carcinoma cells. Rather, we identified the TRIO-RAC1 axis as an important downstream element of ABL activity in these cancer cells. In conclusion, the observation that TN breast cancer cell lines respond differently to ABL inhibitors could have implications for future therapies.

  16. Effect of NCAM-transfection on growth and invasion of a human cancer cell line

    Edvardsen, K; Bock, E; Jirus, S

    1997-01-01

    of modulating NCAM expression in vivo. In nude mice, NCAM-transfected cells developed tumors with longer latency periods and slower growth rates than tumors induced by NCAM-negative control cells, implying that NCAM may be involved not only in adhesive and motile behavior of tumor cells but also in their growth......-transfected cells. The fact that NCAM expression influences growth regulation attributes a pivotal role to this cell adhesion molecule during ontogenesis and tumor development.......A cDNA encoding the human transmembrane 140 kDa isoform of the neural cell adhesion molecule (NCAM) was transfected into the highly invasive MDA-MB-231 human breast cancer cell line. Transfectants with a homogeneous expression of NCAM showed a restricted capacity for penetration of an artificial...

  17. File list: Oth.Brs.50.AllAg.MCF-7-LTED [Chip-atlas[Archive

    Full Text Available Oth.Brs.50.AllAg.MCF-7-LTED hg19 TFs and others Breast MCF-7-LTED SRX180167,SRX0423...42 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Oth.Brs.50.AllAg.MCF-7-LTED.bed ...

  18. File list: Oth.Brs.05.AllAg.MCF-7-LTED [Chip-atlas[Archive

    Full Text Available Oth.Brs.05.AllAg.MCF-7-LTED hg19 TFs and others Breast MCF-7-LTED SRX180167,SRX0423...42 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Oth.Brs.05.AllAg.MCF-7-LTED.bed ...

  19. File list: Unc.Brs.10.AllAg.MCF-7-LTED [Chip-atlas[Archive

    Full Text Available Unc.Brs.10.AllAg.MCF-7-LTED hg19 Unclassified Breast MCF-7-LTED SRX145566,SRX145565...,SRX145567 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Unc.Brs.10.AllAg.MCF-7-LTED.bed ...

  20. File list: ALL.Brs.20.AllAg.MCF-7-LTED [Chip-atlas[Archive

    Full Text Available ALL.Brs.20.AllAg.MCF-7-LTED hg19 All antigens Breast MCF-7-LTED SRX145566,SRX145565...,SRX142963,SRX180167,SRX145567,SRX142964,SRX142962,SRX042342 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/ALL.Brs.20.AllAg.MCF-7-LTED.bed ...

  1. File list: Unc.Brs.50.AllAg.MCF-7-LTED [Chip-atlas[Archive

    Full Text Available Unc.Brs.50.AllAg.MCF-7-LTED hg19 Unclassified Breast MCF-7-LTED SRX145565,SRX145566...,SRX145567 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Unc.Brs.50.AllAg.MCF-7-LTED.bed ...

  2. File list: ALL.Brs.50.AllAg.MCF-7-LTED [Chip-atlas[Archive

    Full Text Available ALL.Brs.50.AllAg.MCF-7-LTED hg19 All antigens Breast MCF-7-LTED SRX145565,SRX180167...,SRX142963,SRX145566,SRX145567,SRX142964,SRX142962,SRX042342 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/ALL.Brs.50.AllAg.MCF-7-LTED.bed ...

  3. File list: ALL.Brs.10.AllAg.MCF-7-LTED [Chip-atlas[Archive

    Full Text Available ALL.Brs.10.AllAg.MCF-7-LTED hg19 All antigens Breast MCF-7-LTED SRX145566,SRX145565...,SRX180167,SRX042342,SRX142963,SRX145567,SRX142964,SRX142962 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/ALL.Brs.10.AllAg.MCF-7-LTED.bed ...

  4. File list: Unc.Brs.05.AllAg.MCF-7-LTED [Chip-atlas[Archive

    Full Text Available Unc.Brs.05.AllAg.MCF-7-LTED hg19 Unclassified Breast MCF-7-LTED SRX145566,SRX145565...,SRX145567 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Unc.Brs.05.AllAg.MCF-7-LTED.bed ...

  5. File list: Unc.Brs.20.AllAg.MCF-7-LTED [Chip-atlas[Archive

    Full Text Available Unc.Brs.20.AllAg.MCF-7-LTED hg19 Unclassified Breast MCF-7-LTED SRX145566,SRX145565...,SRX145567 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Unc.Brs.20.AllAg.MCF-7-LTED.bed ...

  6. File list: Oth.Brs.20.AllAg.MCF-7-LTED [Chip-atlas[Archive

    Full Text Available Oth.Brs.20.AllAg.MCF-7-LTED hg19 TFs and others Breast MCF-7-LTED SRX180167,SRX0423...42 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Oth.Brs.20.AllAg.MCF-7-LTED.bed ...

  7. File list: ALL.Brs.05.AllAg.MCF-7-LTED [Chip-atlas[Archive

    Full Text Available ALL.Brs.05.AllAg.MCF-7-LTED hg19 All antigens Breast MCF-7-LTED SRX145566,SRX180167...,SRX145565,SRX042342,SRX142963,SRX142962,SRX145567,SRX142964 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/ALL.Brs.05.AllAg.MCF-7-LTED.bed ...

  8. File list: Oth.Brs.10.AllAg.MCF-7-LTED [Chip-atlas[Archive

    Full Text Available Oth.Brs.10.AllAg.MCF-7-LTED hg19 TFs and others Breast MCF-7-LTED SRX180167,SRX0423...42 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Oth.Brs.10.AllAg.MCF-7-LTED.bed ...

  9. Impacts of berberine on the growth, migration and radiosensitivity of breast cancer cells

    Zhao Chaoqian; Xu Jiaying; Jiao Yang; Hu Xudong; Che Jun; Fan Saijun

    2012-01-01

    Objective: To study the impacts of berberine on the growth, migration and radiosensitivity in human breast cancer cells. Methods: MTT assay was used to evaluate cell growth.In vitro scratch migration assay was used to determine cell migration. Annexin V assay was used to detect cell apoptosis. The distribution of cell cycle was evaluated by flow cytometry assay. Colony formation assay was used to detect the influence of berberine on cell radiosensitivity. Western blot assay was employed to measure protein expression. Results: Berberine inhibited cell growth and migration in two human breast cancer cell lines, MCF-7 and MDA-MB-231, in a dose-and time-dependent manner. Furthermore, berberine resulted in a cell cycle G 0 /G 1 arrest. Compared with control, the early apoptosis in MDA-MB-231 and MCF-7 cells treated with 40 pμmol/L of berberine was as high as 86.6% and 66.6% (t=8.79, 10.32, P<0.01), respectively. Berberine caused a dose-dependent increase in Bax and Caspase-3 protein expressions, but did not change Cyclin D1 protein expression, while suppressed the expressions of Cyclin B1 and Bcl-2 protein. As analyzed with multi-target click model fitting curves, the SER D0 of berberine-treated cells were 1.12 and 1.22 for MDA-MB-231 and MCF-7 cells respectively at the dose D 0 of X-rays. Conclusions: The berberine inhibited the growth and migration of breast cancer cells via apoptosis induction and cell cycle arrest. Moreover, berberine increases cell sensitivity to X-ray irradiation. (authors)

  10. Eugenia jambolana Lam. Berry Extract Inhibits Growth and Induces Apoptosis of Human Breast Cancer but not Non-Tumorigenic Breast Cells

    Li, Liya; Adams, Lynn S.; Chen, Shiuan; Killian, Caroline; Ahmed, Aftab; Seeram, Navindra P.

    2009-01-01

    The ripe purple berries of the native Indian plant, Eugenia jambolana Lam., known as Jamun, are popularly consumed and available in the United States in Florida and Hawaii. Despite the growing body of data on the chemopreventive potential of edible berry extracts, there is paucity of such data for Jamun fruit. Therefore our laboratory initiated the current study with the following objectives:1) to prepare a standardized Jamun fruit extract (JFE) for biological studies and, 2) to investigate the anti-proliferative and pro-apoptotic effects of JFE in estrogen dependent/aromatase positive (MCF-7aro), and estrogen independent (MDA-MB-231) breast cancer cells, and in a normal/non-tumorigenic (MCF-10A) breast cell line. JFE was standardized to anthocyanin content using the pH differential method, and individual anthocyanins were identified by high performance liquid chromatography with ultraviolet (HPLC-UV) and tandem mass spectrometry (LC-MS/MS) methods. JFE contained 3.5% anthocyanins (as cyanidin-3-glucoside equivalents) which occur as diglucosides of five anthocyanidins/aglycons: delphinidin, cyanidin, petunidin, peonidin and malvidin. In the proliferation assay, JFE was most effective against MCF-7aro (IC50=27 µg/mL), followed by MDA-MB-231 (IC50=40 µg/mL) breast cancer cells. Importantly, JFE exhibited only mild antiproliferative effects against the normal MCF-10A (IC50>100 µg/mL) breast cells. Similarly, JFE (at 200 µg/mL) exhibited pro-apoptotic effects against the MCF-7aro (p≤0.05) and the MDA-MB-231 (p≤0.01) breast cancer cells, but not towards the normal MCF-10A breast cells. These studies suggest that JFE may have potential beneficial effects against breast cancer. PMID:19166352

  11. IL-1β produced by aggressive breast cancer cells is one of the factors that dictate their interactions with mesenchymal stem cells through chemokine production

    Serret, Julien; Bièche, Ivan; Brigitte, Madly; Caicedo, Andres; Sanchez, Elodie; Vacher, Sophie; Vignais, Marie-Luce; Bourin, Philippe; Geneviève, David; Molina, Franck; Jorgensen, Christian; Lazennec, Gwendal

    2015-01-01

    The aim of this work was to understand whether the nature of breast cancer cells could modify the nature of the dialog of mesenchymal stem cells (MSCs) with cancer cells. By treating MSCs with the conditioned medium of metastatic Estrogen-receptor (ER)-negative MDA-MB-231, or non-metastatic ER-positive MCF-7 breast cancer cells, we observed that a number of chemokines were produced at higher levels by MSCs treated with MDA-MB-231 conditioned medium (CM). MDA-MB-231 cells were able to induce NF-κB signaling in MSC cells. This was shown by the use of a NF-kB chemical inhibitor or an IκB dominant negative mutant, nuclear translocation of p65 and induction of NF-κB signature. Our results suggest that MDA-MB-231 cells exert their effects on MSCs through the secretion of IL-1β, that activates MSCs and induces the same chemokines as the MDA-MB-231CM. In addition, inhibition of IL-1β secretion in the MDA-MB-231 cells reduces the induced production of a panel of chemokines by MSCs, as well the motility of MDA-MB-231 cells. Our data suggest that aggressive breast cancer cells secrete IL-1β, which increases the production of chemokines by MSCs. PMID:26362269

  12. Effects of low dose treatment of tributyltin on the regulation of estrogen receptor functions in MCF-7 cells.

    Sharan, Shruti; Nikhil, Kumar; Roy, Partha

    2013-06-01

    Endocrine disrupting chemicals are the natural/synthetic compounds which mimic or inhibit the actions of endogenous hormones. Organotin compounds, such as tributyltin (TBT) are typical environmental contaminants and suspected endocrine-disrupting chemical. The present study evaluates the estrogenic potential of this compound in vitro in ER (+) breast adenocarcinoma, MCF-7 cell line. Our data showed that tributyltin chloride (TBTCl) had agonistic activities for estrogen receptor-α (ER-α). Its estrogenic potential was checked using cell proliferation assay, aromatase assay, transactivation assay, and protein expression analysis. Low dose treatment of TBTCl had a proliferative effect on MCF-7 cells and resulted in up-regulation of aromatase enzyme activity and enhanced estradiol production in MCF-7 cells. Immunofluorescence staining showed translocation of ER-α from cytoplasm to nucleus and increased expression of ER-α, 3β-HSD and aromatase on treatment with increasing doses of TBTCl. Further, to decipher the probable signaling pathways involved in its action, the MCF-7 cells were transfected with different pathway dependent luciferase reporter plasmids (CRE, SRE, NF-κB and AP1). A significant increase in CRE and SRE and decrease in NF-κB regulated pathway were observed (ptributyltin genomically and non-genomically augmented estrogen dependent signaling by targeting various pathways. Copyright © 2013 Elsevier Inc. All rights reserved.

  13. Effect of calcium electroporation in combination with metformin in vivo and correlation between viability and intracellular ATP level after calcium electroporation in vitro

    Frandsen, Stine Krog; Gehl, Julie

    2017-01-01

    cancer cell lines: Breast (MDA-MB231) and colon (HT29), and in normal human fibroblasts (HDF-n), as well as investigating viability in human bladder cancer cells (SW780) and human small cell lung cancer cells (H69) where we have previously published intracellular ATP levels. RESULTS: Calcium...... with calcium alone (pHDF-n, and MDA-MB231; p

  14. Experiment list: SRX891827 [Chip-atlas[Archive

    Full Text Available d, replicate 2; Homo sapiens; ChIP-Seq source_name=MDA-MB-231 || cell line=MDA-MB-231 || cell type=triple negative breast adenocarcin...oma || chip antibody=H3K9ac, Millipore #07-352, Lot 2388

  15. Experiment list: SRX891837 [Chip-atlas[Archive

    Full Text Available denocarcinoma || chip antibody=none (input) http://dbarc...ut, treated, replicate 2; Homo sapiens; ChIP-Seq source_name=MDA-MB-231 || cell line=MDA-MB-231 || cell type=triple negative breast a

  16. Experiment list: SRX185912 [Chip-atlas[Archive

    Full Text Available MB-231 foxm1 Thiostrepton 1; Homo sapiens; ChIP-Seq source_name=MDA-MB-231 breast adenocarcinoma cells, thio...strepton, FOXM1 ChIP || cell_line=MDA-MB-231 || cell_type=ER-negative breast adenocarcinoma

  17. Experiment list: SRX185911 [Chip-atlas[Archive

    Full Text Available B-231 foxm1 DMSO 1; Homo sapiens; ChIP-Seq source_name=MDA-MB-231 breast adenocarcinoma cells, control, FOXM...1 ChIP || cell_line=MDA-MB-231 || cell_type=ER-negative breast adenocarcinoma cel

  18. Experiment list: SRX185914 [Chip-atlas[Archive

    Full Text Available B-231 foxm1 Thiostrepton 2; Homo sapiens; ChIP-Seq source_name=MDA-MB-231 breast adenocarcinoma cells, thios...trepton, FOXM1 ChIP || cell_line=MDA-MB-231 || cell_type=ER-negative breast adenocarcinoma

  19. Experiment list: SRX185913 [Chip-atlas[Archive

    Full Text Available MB-231 foxm1 DMSO 2; Homo sapiens; ChIP-Seq source_name=MDA-MB-231 breast adenocarcinoma cells, control, FOX...M1 ChIP || cell_line=MDA-MB-231 || cell_type=ER-negative breast adenocarcinoma ce

  20. Experiment list: SRX891826 [Chip-atlas[Archive

    Full Text Available ed, replicate 1; Homo sapiens; ChIP-Seq source_name=MDA-MB-231 || cell line=MDA-MB-231 || cell type=triple negative breast adenocarci...noma || chip antibody=H3K9ac, Millipore #07-352, Lot 238

  1. Effects of low dose treatment of tributyltin on the regulation of estrogen receptor functions in MCF-7 cells

    Sharan, Shruti; Nikhil, Kumar; Roy, Partha

    2013-01-01

    Endocrine disrupting chemicals are the natural/synthetic compounds which mimic or inhibit the actions of endogenous hormones. Organotin compounds, such as tributyltin (TBT) are typical environmental contaminants and suspected endocrine-disrupting chemical. The present study evaluates the estrogenic potential of this compound in vitro in ER (+) breast adenocarcinoma, MCF-7 cell line. Our data showed that tributyltin chloride (TBTCl) had agonistic activities for estrogen receptor-α (ER-α). Its estrogenic potential was checked using cell proliferation assay, aromatase assay, transactivation assay, and protein expression analysis. Low dose treatment of TBTCl had a proliferative effect on MCF-7 cells and resulted in up-regulation of aromatase enzyme activity and enhanced estradiol production in MCF-7 cells. Immunofluorescence staining showed translocation of ER-α from cytoplasm to nucleus and increased expression of ER-α, 3β-HSD and aromatase on treatment with increasing doses of TBTCl. Further, to decipher the probable signaling pathways involved in its action, the MCF-7 cells were transfected with different pathway dependent luciferase reporter plasmids (CRE, SRE, NF-κB and AP1). A significant increase in CRE and SRE and decrease in NF-κB regulated pathway were observed (p < 0.05). Our results thus showed that the activation of SRE by TBTCl may be due to ligand dependent ER-α activation of the MAPK pathway and increased phosphorylation of ERK. In summary, the present data suggests that low dose of tributyltin genomically and non-genomically augmented estrogen dependent signaling by targeting various pathways. - Highlights: • Tributyltin chloride is agonistic to ER-α in MCF-7 cell line at low doses. • Tributyltin chloride up regulated aromatase activity and estradiol production. • Tributyltin chloride also activates MAPK pathway inducing ERK activation

  2. Effects of low dose treatment of tributyltin on the regulation of estrogen receptor functions in MCF-7 cells

    Sharan, Shruti; Nikhil, Kumar; Roy, Partha, E-mail: paroyfbs@iitr.ernet.in

    2013-06-01

    Endocrine disrupting chemicals are the natural/synthetic compounds which mimic or inhibit the actions of endogenous hormones. Organotin compounds, such as tributyltin (TBT) are typical environmental contaminants and suspected endocrine-disrupting chemical. The present study evaluates the estrogenic potential of this compound in vitro in ER (+) breast adenocarcinoma, MCF-7 cell line. Our data showed that tributyltin chloride (TBTCl) had agonistic activities for estrogen receptor-α (ER-α). Its estrogenic potential was checked using cell proliferation assay, aromatase assay, transactivation assay, and protein expression analysis. Low dose treatment of TBTCl had a proliferative effect on MCF-7 cells and resulted in up-regulation of aromatase enzyme activity and enhanced estradiol production in MCF-7 cells. Immunofluorescence staining showed translocation of ER-α from cytoplasm to nucleus and increased expression of ER-α, 3β-HSD and aromatase on treatment with increasing doses of TBTCl. Further, to decipher the probable signaling pathways involved in its action, the MCF-7 cells were transfected with different pathway dependent luciferase reporter plasmids (CRE, SRE, NF-κB and AP1). A significant increase in CRE and SRE and decrease in NF-κB regulated pathway were observed (p < 0.05). Our results thus showed that the activation of SRE by TBTCl may be due to ligand dependent ER-α activation of the MAPK pathway and increased phosphorylation of ERK. In summary, the present data suggests that low dose of tributyltin genomically and non-genomically augmented estrogen dependent signaling by targeting various pathways. - Highlights: • Tributyltin chloride is agonistic to ER-α in MCF-7 cell line at low doses. • Tributyltin chloride up regulated aromatase activity and estradiol production. • Tributyltin chloride also activates MAPK pathway inducing ERK activation.

  3. Epithelial-Mesenchymal Transitions and the Expression of Twist in MCF-7/ADR,Human Multidrug-Resistant Breast Cancer Cells

    Fei Zhang; Yurong Shi; Lin Zhang; Bin Zhang; Xiyin Wei; Yi Yang; RUi Wang; Ruifang Niu

    2007-01-01

    OBJECTIVE To study the expression levels of Twist and epithelialmesenchymal transitions in multidrug-resistant MCF-7/ADR breast cancer cells,and to study the relationship between multidrug resistance (MDR) and metastatic potential of the cells.METHODS RT-PCR,immunohislochemical and Western blotting methods were used to examine the changes of expression levels of the transcription factor Twist.E-cadherin and N-cadherin in the MCF-7 breast cancer cell line and its multidrug-resistant variant.MCF-7/ADR.RESULTS In MCF-7 cells,the expression of E-cadherin can be detected,but there is no expression of Twisl or N-cadherin.In MCF-7/ADR cells,E-cadherin expression is lost.bul the expression of two other genes was significantly positive.CONCLUSION Epithelial-mesenchymal transitions induced by Twist,may have a relationship with enhanced invasion and metastatic potential during the development of multidrug-resistant MCF-7/ADR breast cancer cells.

  4. THE THIOREDOXIN SYSTEM IN REGULATING MCF-7 CELL PROLIFERATION UNDER REDOX STATUS MODULATION

    E. A. Stepovaya

    2016-01-01

    Full Text Available Introduction. Despite the available data on tumor cell functioning under the conditions of free radical-mediated oxidation, the mechanisms of redox regulation, cell proliferation management and apoptosis avoidance remain understudied.The objective of the study was to identify the role of the thioredoxin system in regulating MCF-7 breast cancer cell proliferation under redox status modulation with 1.4-dithioerythritol.Material and methods. The studies were conducted on the MCF-7 breast cancer cell line, grown in adherent cell culture. Cell redox status was modulated with5 mM N-ethylmaleimide – an SH group and peptide inhibitor and5 mM 1.4-dithioerythritol – a thiol group protector. The cell cycle was evaluated by flow cytometry, the same technique was used to measure the reactive oxygen species concentration. The levels of reduced and oxidized glutathione and the activity of thioredoxin reductase were identified by spectrophotometry. The intracellular concentrations of thioredoxin, cyclin E and cyclin-dependent kinase 2 were determined by Western blot analysis.Results and discussion. The essential role of the thioredoxin system in regulating MCF-7 breast cancer cell proliferation was exhibited. S-phase arrest under the effect of N-ethylmaleimide and G0/G1-phase arrest under the effect of 1.4-dithioerythritol are associated with the changes in the activity of redox-sensitive protein complexes (cyclins and cyclin-dependent kinases that regulate cell proliferation.Conclusion. Redoxdependent modulation of proliferation regulating intracellular protein activity occurs due to the thioredoxin system. This is a promising research area for seeking molecular targets of breast cell malignization. 

  5. Reduced expression of p27 is a novel mechanism of docetaxel resistance in breast cancer cells

    Brown, Iain; Shalli, Kawan; McDonald, Sarah L; Moir, Susan E; Hutcheon, Andrew W; Heys, Steven D; Schofield, Andrew C

    2004-01-01

    Docetaxel is one of the most effective chemotherapeutic agents in the treatment of breast cancer. Breast cancers can have an inherent or acquired resistance to docetaxel but the causes of this resistance remain unclear. However, apoptosis and cell cycle regulation are key mechanisms by which most chemotherapeutic agents exert their cytotoxic effects. We created two docetaxel-resistant human breast cancer cell lines (MCF-7 and MDA-MB-231) and performed cDNA microarray analysis to identify candidate genes associated with docetaxel resistance. Gene expression changes were validated at the RNA and protein levels by reverse transcription PCR and western analysis, respectively. Gene expression cDNA microarray analysis demonstrated reduced p27 expression in docetaxel-resistant breast cancer cells. Although p27 mRNA expression was found to be reduced only in MCF-7 docetaxel-resistant sublines (2.47-fold), reduced expression of p27 protein was noted in both MCF-7 and MDA-MB-231 docetaxel-resistant breast cancer cells (2.83-fold and 3.80-fold, respectively). This study demonstrates that reduced expression of p27 is associated with acquired resistance to docetaxel in breast cancer cells. An understanding of the genes that are involved in resistance to chemotherapy may allow further development in modulating drug resistance, and may permit selection of those patients who are most likely to benefit from such therapies

  6. 99mTc-HYNIC-(tricine/EDDA)-FROP peptide for MCF-7 breast tumor targeting and imaging.

    Ahmadpour, Sajjad; Noaparast, Zohreh; Abedi, Seyed Mohammad; Hosseinimehr, Seyed Jalal

    2018-02-19

    Breast cancer is the most common malignancy among women in the world. Development of novel tumor-specific radiopharmaceuticals for early breast tumor diagnosis is highly desirable. In this study we developed 99m Tc-HYNIC-(tricine/EDDA)-Lys-FROP peptide with the ability of specific binding to MCF-7 breast tumor. The FROP-1 peptide was conjugated with the bifunctional chelator hydrazinonicotinamide (HYNIC) and labeled with 99m Tc using tricine/EDDA co-ligand. The cellular specific binding of 99m Tc-HYNIC-FROP was evaluated on different cell lines as well as with blocking experiment on MCF-7 (human breast adenocarcinoma). The tumor targeting and imaging of this labeled peptide were performed on MCF-7 tumor bearing mice. Radiochemical purity for 99m Tc-HYNIC-(tricine/EDDA)-FROP was 99% which was determined with ITLC method. This radiolabeled peptide showed high stability in normal saline and serum about 98% which was monitored with HPLC method. In saturation binding experiments, the binding constant (K d ) to MCF-7 cells was determined to be 158 nM. Biodistribution results revealed that the 99m Tc-HYNIC-FROP was mainly exerted from urinary route. The maximum tumor uptake was found after 30 min post injection (p.i.); however maximum tumor/muscle ratio was seen at 15 min p.i. The tumor uptake of this labeled peptide was specific and blocked by co-injection of excess FROP. According to the planar gamma imaging result, tumor was clearly visible due to the tumor uptake of 99m Tc-HYNIC-(tricine/EDDA)-FROP in mouse after 15 min p.i. The 99m Tc-HYNIC-(tricine/EDDA)-FROP is considered a promising probe with high specific binding to MCF-7 breast cancer cells.

  7. Oridonin Loaded Solid Lipid Nanoparticles Enhanced Antitumor Activity in MCF-7 Cells

    Lu Wang

    2014-01-01

    Full Text Available Oridonin (ORI, a famous diterpenoid from Chinese herbal medicine, has drawn rising attention for its remarkable apoptosis and autophagy-inducing activity in human cancer therapy, while clinical application of ORI is limited by its strong hydrophobicity and rapid plasma clearance. The purpose of this study was to evaluate whether the antitumor activity of ORI could be enhanced by loading into solid lipid nanoparticles (SLNs. ORI-loaded SLNs were prepared by hot high pressure homogenization with narrow size distribution and good entrapment efficacy. MTT assay indicated that ORI-loaded SLNs enhanced the inhibition of proliferation against several human cancer cell lines including breast cancer MCF-7 cells, hepatocellular carcinoma HepG 2 cells, and lung carcinoma A549 cells compared with free ORI, while no significant enhancement of toxicity to human mammary epithelial MCF-10A cells was shown. Meanwhile, flow cytometric analysis demonstrated that ORI-SLNs induced more significant cell cycle arrest at S and decreased cell cycle arrest at G1/G0 phase in MCF-7 cells than bulk ORI solution. Hoechst 33342 staining and Annexin V/PI assay indicated that apoptotic rates of cells treated with ORI-loaded SLNs were higher compared with free ORI. In summary, our data indicated that SLNs may be a potential carrier for enhancing the antitumor effect of hydrophobic drug ORI.

  8. Enterolactone: A novel radiosensitizer for human breast cancer cell lines through impaired DNA repair and increased apoptosis

    Bigdeli, Bahareh; Goliaei, Bahram; Masoudi-Khoram, Nastaran; Jooyan, Najmeh; Nikoofar, Alireza; Rouhani, Maryam; Haghparast, Abbas; Mamashli, Fatemeh

    2016-01-01

    Introduction: Radiotherapy is a potent treatment against breast cancer, which is the most commonly diagnosed cancer among women. However, the emergence of radioresistance due to increased DNA repair leads to radiotherapeutic failure. Applying polyphenols combined with radiation is a more promising method leading to better survival. Enterolactone, a phytoestrogenic polyphenol, has been reported to inhibit an important radioresistance signaling pathway, therefore we conjectured that enterolactone could enhance radiosensitivity in breast cancer. To assess this hypothesis, radiation response of enterolactone treated MDA-MB-231 and T47D cell lines and corresponding cellular mechanisms were investigated. Methods: Cytotoxicity of enterolactone was measured via MTT assay. Cells were treated with enterolactone before X-irradiation, and clonogenic assay was used to evaluate radiosensitivity. Cell cycle distribution and apoptosis were measured by flow cytometric analysis. In addition, DNA damages and corresponding repair, chromosomal damages, and aberrations were assessed by comet, micronucleus, and cytogenetic assays, respectively. Results: Enterolactone decreased the viability of cells in a concentration- and time dependent manner. Enterolactone significantly enhanced radiosensitivity of cells by abrogating G2/M arrest, impairing DNA repair, and increasing radiation-induced apoptosis. Furthermore, increased chromosomal damages and aberrations were detected in cells treated with enterolactone combined with X-rays than X-ray alone. These effects were more prominent in T47D than MDA-MB-231 cells. Discussion: To our knowledge, this is the first report that enterolactone is a novel radiosensitizer for breast cancer irrespective of estrogen receptor status. Authors propose enterolactone as a candidate for combined therapy to decrease the radiation dose delivered to patients and subsequent side effects. - Highlights: • Enterolactone is proposed to be a novel radiosensitizer for

  9. Enterolactone: A novel radiosensitizer for human breast cancer cell lines through impaired DNA repair and increased apoptosis

    Bigdeli, Bahareh, E-mail: bhr.bigdeli@ut.ac.ir [Department of Biophysics, Institute of Biochemistry and Biophysics, University of Tehran, 16th Azar St., Enghelab Sq., Tehran (Iran, Islamic Republic of); Goliaei, Bahram, E-mail: goliaei@ut.ac.ir [Department of Biophysics, Institute of Biochemistry and Biophysics, University of Tehran, 16th Azar St., Enghelab Sq., Tehran (Iran, Islamic Republic of); Masoudi-Khoram, Nastaran, E-mail: n.masoudi@alumni.ut.ac.ir [Department of Biophysics, Institute of Biochemistry and Biophysics, University of Tehran, 16th Azar St., Enghelab Sq., Tehran (Iran, Islamic Republic of); Jooyan, Najmeh, E-mail: n.jooyan@ut.ac.ir [Department of Biophysics, Institute of Biochemistry and Biophysics, University of Tehran, 16th Azar St., Enghelab Sq., Tehran (Iran, Islamic Republic of); Nikoofar, Alireza, E-mail: nikoofar@iums.ac.ir [Department of Radiotherapy, Iran University of Medical Sciences (IUMS), Shahid Hemmat Highway, Tehran (Iran, Islamic Republic of); Rouhani, Maryam, E-mail: rouhani@iasbs.ac.ir [Department of Biological Sciences, Institute for Advanced Studies in Basic Sciences (IASBS), Prof. Yousef Sobouti Blvd., Gava Zang, Zanjan (Iran, Islamic Republic of); Haghparast, Abbas, E-mail: Haghparast@sbmu.ac.ir [Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Daneshjo St., Evin, Tehran (Iran, Islamic Republic of); Mamashli, Fatemeh, E-mail: mamashli@ut.ac.ir [Department of Biophysics, Institute of Biochemistry and Biophysics, University of Tehran, 16th Azar St., Enghelab Sq., Tehran (Iran, Islamic Republic of)

    2016-12-15

    Introduction: Radiotherapy is a potent treatment against breast cancer, which is the most commonly diagnosed cancer among women. However, the emergence of radioresistance due to increased DNA repair leads to radiotherapeutic failure. Applying polyphenols combined with radiation is a more promising method leading to better survival. Enterolactone, a phytoestrogenic polyphenol, has been reported to inhibit an important radioresistance signaling pathway, therefore we conjectured that enterolactone could enhance radiosensitivity in breast cancer. To assess this hypothesis, radiation response of enterolactone treated MDA-MB-231 and T47D cell lines and corresponding cellular mechanisms were investigated. Methods: Cytotoxicity of enterolactone was measured via MTT assay. Cells were treated with enterolactone before X-irradiation, and clonogenic assay was used to evaluate radiosensitivity. Cell cycle distribution and apoptosis were measured by flow cytometric analysis. In addition, DNA damages and corresponding repair, chromosomal damages, and aberrations were assessed by comet, micronucleus, and cytogenetic assays, respectively. Results: Enterolactone decreased the viability of cells in a concentration- and time dependent manner. Enterolactone significantly enhanced radiosensitivity of cells by abrogating G2/M arrest, impairing DNA repair, and increasing radiation-induced apoptosis. Furthermore, increased chromosomal damages and aberrations were detected in cells treated with enterolactone combined with X-rays than X-ray alone. These effects were more prominent in T47D than MDA-MB-231 cells. Discussion: To our knowledge, this is the first report that enterolactone is a novel radiosensitizer for breast cancer irrespective of estrogen receptor status. Authors propose enterolactone as a candidate for combined therapy to decrease the radiation dose delivered to patients and subsequent side effects. - Highlights: • Enterolactone is proposed to be a novel radiosensitizer for

  10. The lipid content of cisplatin- and doxorubicin-resistant MCF-7 human breast cancer cells.

    Todor, I N; Lukyanova, N Yu; Chekhun, V F

    2012-07-01

    To perform the comparative study both of qualitative and quantitative content of lipids in parental and drug resistant breast cancer cells. Parental (MCF-7/S) and resistant to cisplatin (MCF-7/CP) and doxorubicin (MCF-7/Dox) human breast cancer cells were used in the study. Cholesterol, total lipids and phospholipids content were determined by means of thin-layer chromatography. It was found that cholesterol as well as cholesterol ethers content are significantly higher but diacylglycerols, triacyl-glycerols content are significantly lower in resistant cell strains than in parental (sensitive) cells. Moreover the analysis of individual phospholipids showed the increase of sphingomyelin, phosphatidylserine, cardiolipin, phosphatidic acid and the decrease of phosphatidy-lethanolamine, phosphatidylcholine in MCF-7/CP and MCF-7/Dox cells. Obtained results allow to suggest that the lipid profile changes can mediate the modulation of membrane fluidity in drug resistant MCF-7 breast cancer cells.

  11. Synergistic effect of pyrazoles derivatives and doxorubicin in claudin-low breast cancer subtype.

    Saueressig, Silvia; Tessmann, Josiane; Mastelari, Rosiane; da Silva, Liziane Pereira; Buss, Julieti; Segatto, Natalia Vieira; Begnini, Karine Rech; Pacheco, Bruna; de Pereira, Cláudio Martin Pereira; Collares, Tiago; Seixas, Fabiana Kömmling

    2018-02-01

    Breast cancer is a global public health problem. For some subtypes, such as Claudin-low, the prognosis is poorer and the treatment is still a challenge. Pyrazoles are an important class of heterocyclic compounds and are promising anticancer agents based on their chemical properties. The present study was aimed not only at testing pyrazoles previously prepared by our research group in two breast cancer cell lines characterized by intermediated response to conventional chemotherapy but also at analyzing the possible synergistic effect of these pyrazoles associated with doxorubicin. Four 1-thiocarbamoyl-3,5-diaryl-4,5-dihydro-1H pyrazoles were tested for the first time in MCF-7 and MDA-MB-231 culture cells. The pyrazoles with best results in cytotoxicity were used in combination with doxorubicin and compared with this drug alone as standard. The synergic effect was analyzed using Combination Index method. In addition, cell death and apoptosis assays were carried out. Two pyrazoles with cytotoxic effect in MCF-7 and especially in MDA-MB-231 were identified. This activity was markedly higher in pyrazoles containing bromine and chlorine substituents. The combination of these pyrazoles with doxorubicin had a significant synergic effect in both cells tested and mainly in MDA-MB-231. These data were confirmed with apoptosis and cell death analysis. The synergic effect observed with combination of these pyrazoles and doxorubicin deserves special attention in Claudin-low breast cancer subtype. This should be explored in order to improve treatment results and minimize side effects. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  12. Delta(9)-tetrahydrocannabinol inhibits 17beta-estradiol-induced proliferation and fails to activate androgen and estrogen receptors in MCF7 human breast cancer cells.

    von Bueren, A O; Schlumpf, M; Lichtensteiger, W

    2008-01-01

    Delta(9)-tetrahydrocannabinol (THC) exerts palliative effects in cancer patients, but produces adverse effects on the endocrine and reproductive systems. Experimental evidence concerning such effects is controversial. Whether THC exhibits estrogenic or androgenic activity in vitro was investigated. Estrogenic effects of THC were analyzed in vitro by measuring the proliferation of estrogen-sensitive MCF7 cells. Androgenic activity was investigated by the A-Screen assay that measures androgen-dependent inhibition of proliferation of the androgen receptor (AR)-positive human mammary carcinoma cell line, MCF7-AR1. In contrast to 17beta-estradiol, included as positive control with an EC50 value (concentration required for 50% of maximal 17beta-estradiol-induced proliferation) of 1.00 x 10(-12) M, THC failed to induce cell proliferation in the MCF7 cell line at concentrations between 10(-13) and 10(-4) M. THC inhibited 17beta-estradiol-induced proliferation in wild-type MCF7 and MCF7-AR1 cells, with an IC50 value of 2.6 x 10(-5) M and 9 x 10(-6) M, respectively. THC failed to act as an estrogen, but antagonized 17beta-estradiol-induced proliferation. This effect was independent of the AR expression level.

  13. MCF-7 human mammary adenocarcinoma cells exhibit augmented responses to human insulin on a collagen IV surface

    Listov-Saabye, Nicolai; Jensen, Marianne Blirup; Kiehr, Benedicte

    2009-01-01

    Human mammary cell lines are extensively used for preclinical safety assessment of insulin analogs. However, it is essentially unknown how mitogenic responses can be optimized in mammary cell-based systems. We developed an insulin mitogenicity assay in MCF-7 human mammary adenocarcinoma cells......, under low serum (0.1% FCS) and phenol red-free conditions, with 3H thymidine incorporation as endpoint. Based on EC50 values determined from 10-fold dilution series, beta-estradiol was the most potent mitogen, followed by human IGF-1, human AspB10 insulin and native human insulin. AspB10 insulin...... was significantly more mitogenic than native insulin, validating the ability of the assay to identify hypermitogenic human insulin analogs. With MCF-7 cells on a collagen IV surface, the ranking of mitogens was maintained, but fold mitogenic responses and dynamic range and steepness of dose-response curves were...

  14. Mass spectrometric detection of 27-hydroxycholesterol in breast cancer exosomes.

    Roberg-Larsen, Hanne; Lund, Kaja; Seterdal, Kristina Erikstad; Solheim, Stian; Vehus, Tore; Solberg, Nina; Krauss, Stefan; Lundanes, Elsa; Wilson, Steven Ray

    2017-05-01

    Exosomes from cancer cells are rich sources of biomarkers and may contain elevated levels of lipids of diagnostic value. 27-Hydroxycholesterol (27-OHC) is associated with proliferation and metastasis in estrogen receptor positive (ER+) breast cancer. In this study, we investigated the levels of 27-OHC, and other sidechain-hydroxylated oxysterols in exosomes. To study both cytoplasmic and exosomal oxysterol samples of limited size, we have developed a capillary liquid chromatography-mass spectrometry platform that outperforms our previously published systems regarding chromatographic resolution, analysis time and sensitivity. In the analyzed samples, the quantified level of cytoplasmic 27-OHC using this platform fitted with mRNA levels of 27-OHC's corresponding enzyme, CYP27A1. We find clearly increased levels of 27-OHC in exosomes (i.e., enrichment) from an ER+ breast cancer cell line (MCF-7) compared to exosomes derived from an estrogen receptor (ER-) breast cancer cell line (MDA-MB-231) and other control exosomes (non-cancerous cell line (HEK293) and human pooled serum). The exosomal oxysterol profile did not reflect cytoplasmic oxysterol profiles in the cells of origin; cytoplasmic 27-OHC was low in ER+ MCF-7 cells while high in MDA-MB-231 cells. Other control cancer cells showed varied cytoplasmic oxysterol levels. Hence, exosome profiling in cancer cells might provide complementary information with the possibility of diagnostic value. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Development of a Patient-Derived Xenograft (PDX of Breast Cancer Bone Metastasis in a Zebrafish Model

    Laura Mercatali

    2016-08-01

    Full Text Available Bone metastasis is a complex process that needs to be better understood in order to help clinicians prevent and treat it. Xenografts using patient-derived material (PDX rather than cancer cell lines are a novel approach that guarantees more clinically realistic results. A primary culture of bone metastasis derived from a 67-year-old patient with breast cancer was cultured and then injected into zebrafish (ZF embryos to study its metastatic potential. In vivo behavior and results of gene expression analyses of the primary culture were compared with those of cancer cell lines with different metastatic potential (MCF7 and MDA-MB-231. The MCF7 cell line, which has the same hormonal receptor status as the bone metastasis primary culture, did not survive in the in vivo model. Conversely, MDA-MB-231 disseminated and colonized different parts of the ZF, including caudal hematopoietic tissues (CHT, revealing a migratory phenotype. Primary culture cells disseminated and in later stages extravasated from the vessels, engrafting into ZF tissues and reaching the CHT. Primary cell behavior reflected the clinical course of the patient’s medical history. Our results underline the potential for using PDX models in bone metastasis research and outline new methods for the clinical application of this in vivo model.

  16. Hydroxytyrosol Protects against Oxidative DNA Damage in Human Breast Cells

    José J. Gaforio

    2011-10-01

    Full Text Available Over recent years, several studies have related olive oil ingestion to a low incidence of several diseases, including breast cancer. Hydroxytyrosol and tyrosol are two of the major phenols present in virgin olive oils. Despite the fact that they have been linked to cancer prevention, there is no evidence that clarifies their effect in human breast tumor and non-tumor cells. In the present work, we present hydroxytyrosol and tyrosol’s effects in human breast cell lines. Our results show that hydroxytyrosol acts as a more efficient free radical scavenger than tyrosol, but both fail to affect cell proliferation rates, cell cycle profile or cell apoptosis in human mammary epithelial cells (MCF10A or breast cancer cells (MDA-MB-231 and MCF7. We found that hydroxytyrosol decreases the intracellular reactive oxygen species (ROS level in MCF10A cells but not in MCF7 or MDA-MB-231 cells while very high amounts of tyrosol is needed to decrease the ROS level in MCF10A cells. Interestingly, hydroxytyrosol prevents oxidative DNA damage in the three breast cell lines. Therefore, our data suggest that simple phenol hydroxytyrosol could contribute to a lower incidence of breast cancer in populations that consume virgin olive oil due to its antioxidant activity and its protection against oxidative DNA damage in mammary cells.

  17. Differential Control of Growth, Apoptotic Activity, and Gene Expression in Human Breast Cancer Cells by Extracts Derived from Medicinal Herbs Zingiber officinale

    Ayman I. Elkady

    2012-01-01

    Full Text Available The present study aimed to examine the antiproliferative potentiality of an extract derived from the medicinal plant ginger (Zingiber officinale on growth of breast cancer cells. Ginger treatment suppressed the proliferation and colony formation in breast cancer cell lines, MCF-7 and MDA-MB-231. Meanwhile, it did not significantly affect viability of nontumorigenic normal mammary epithelial cell line (MCF-10A. Treatment of MCF-7 and MDA-MB-231 with ginger resulted in sequences of events marked by apoptosis, accompanied by loss of cell viability, chromatin condensation, DNA fragmentation, activation of caspase 3, and cleavage of poly(ADP-ribose polymerase. At the molecular level, the apoptotic cell death mediated by ginger could be attributed in part to upregulation of Bax and downregulation of Bcl-2 proteins. Ginger treatment downregulated expression of prosurvival genes, such as NF-κB, Bcl-X, Mcl-1, and Survivin, and cell cycle-regulating proteins, including cyclin D1 and cyclin-dependent kinase-4 (CDK-4. On the other hand, it increased expression of CDK inhibitor, p21. It also inhibited the expression of the two prominent molecular targets of cancer, c-Myc and the human telomerase reverse transcriptase (hTERT. These findings suggested that the ginger may be a promising candidate for the treatment of breast carcinomas.

  18. Antiproliferative Activities of Bouea Macrophylla Seed Extracts

    Arapoc, D.J.; Mohamed Zaffar Ali Mohamed Amiroudine; Zainah Adam; Rosniza Razali; Shafii Khamis

    2016-01-01

    Bouea macrophylla or commonly known as kundang fruit in Malaysia is a tropical fruit tree native to Southeast Asia. This plant belongs to the family Anacardiaceae which are cultivated for their edible fruits, seeds and medicinal compounds. The present study was conducted to evaluate the anti proliferation activities of aqueous, methanolic, chloroform and hexane extracts from the seed of B. macrophylla. The extracts were screened on human squamous cell carcinoma (HTB-43), breast cancer (MCF7) and (MDA-MB-231) cell lines by using 3-(4,5-dimethylthiazole-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay. Most effective concentration were screened for apoptosis induction in cells using Hoechst stain. Our present study has shown that aqueous, methanolic, chloroform dan hexane extracts exhibited promising inhibition activity against HTB43 cell lines with the IC50 values were 29.32±5.80, 18.65±2.94, 21.14±6.97 and 34.36±16.50 μg/ mL, respectively. Meanwhile, only hexane extract showed inhibition against MCF7 (59.07±5.76) and MDA-MB-231(123.35±28.65). Besides that, the results also indicate that promising anticancer activity and causes loss in cancer cell viability by activating the apoptotic process. These findings suggest that B. macrophylla may have novel therapeutic applications for the treatment of different cancer types. (author)

  19. Apoptotic effect of chalcone derivatives of 2-acetylthiophene in human breast cancer cells.

    Fogaça, Tatiana B; Martins, Rosiane M; Begnini, Karine R; Carapina, Caroline; Ritter, Marina; de Pereira, Claudio M P; Seixas, Fabiana K; Collares, Tiago

    2017-02-01

    A variety of chalcones have demonstrated cytotoxic activity toward several cancer cell lines. This study aimed to investigate the cytotoxicity of four chalcones derivatives of 2-acetylthiophene in human breast cancer cell lines. MCF-7 and MDA-MB-231 cells were treated with synthesized chalcones and the cytotoxicity was evaluated by tetrazolium dye (MTT), live/dead, and DAPI assays. Chalcones significantly decreased MCF-7 and MDA-MB-231 cells viability in vitro in a dose dependent manner. After 48h treatment, the IC 50 values ranging from 5.52 to 34.23μM. Chalcone 3c displayed the highest cytotoxic activity from all the tested compounds. Cytotoxic effects of compounds were confirmed in the live/dead assay. In addition, DAPI staining revealed that these compounds induce death by apoptosis. The data speculate that chalcone derivatives of 2-acetylthiophene may represent a source of therapeutic agents for human breast cancer. Copyright © 2016 Institute of Pharmacology, Polish Academy of Sciences. Published by Elsevier Urban & Partner Sp. z o.o. All rights reserved.

  20. Selection of a MCF-7 Breast Cancer Cell Subpopulation with High Sensitivity to IL-1β: Characterization of and Correlation between Morphological and Molecular Changes Leading to Increased Invasiveness

    Eloy Andres Pérez-Yépez

    2012-01-01

    Full Text Available Cancer and inflammation are closely related in tumor malignancy prognosis. Breast cancer MCF-7 cells have a poor invasive phenotype, although, under IL-1β stimulus, acquire invasive features. Cell response heterogeneity has precluded precise evaluation of the malignant transition. MCF-7A3 cells were selected for high sensitivity to IL-1β stimulus, uniform expression of CXCR4, and stability of IL1-RI. Structural changes, colony formation ability, proliferation rate, chemotaxis, Matrigel invasion, E-cadherin mRNA expression and protein localization were determined in these cells and in MCF-7 parental cells under the stimulus of IL-1β. Selected MCF-7A3 cells showed a uniform response to IL-1β stimulation increasing features of invasive cells such as scattering, colony formation, proliferation, chemokinesis and invasion. Basal expression of E-cadherin mRNA was higher, and IL-1β stimulus had no further effect at early times of cytokine exposure. Total E-cadherin levels remained unchanged in parental cells, whereas levels decreased, as MCF-7A3 cells became fibroblastoid or scattered. Triton X-100 soluble/insoluble E-cadherin ratios were highly increased in these cells, while, in MCF-7pl cells, ratios could not be correlated with morphology changes. MCF-7A3 cells uniform response to IL-1β allowed characterization of changes induced by the cytokine that had not been assessed when using heterogeneous cell lines.

  1. A novel protoapigenone analog RY10-4 induces breast cancer MCF-7 cell death through autophagy via the Akt/mTOR pathway

    Zhang, Xuenong; Wei, Han; Liu, Ziwei; Yuan, Qianying [Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation of Hubei Province, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030 (China); Wei, Anhua [Department of Pharmacy, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030 (China); Shi, Du; Yang, Xian [Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation of Hubei Province, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030 (China); Ruan, Jinlan, E-mail: jinlan8152@163.com [Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation of Hubei Province, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030 (China)

    2013-07-15

    Protoapigenone is a unique flavonoid and enriched in many ferns, showing potent antitumor activity against a broad spectrum of human cancer cell lines. RY10-4, a modified version of protoapigenone, manifested better anti-proliferation activity in human breast cancer cell line MCF-7. The cytotoxicity of RY10-4 against MCF-7 cells is exhibited in both time- and concentration-dependent manners. Here we investigated a novel effect of RY10-4 mediated autophagy in autophagy defect MCF-7 cells. Employing immunofluorescence assay for microtubule-associated protein light-chain 3 (LC3), monodansylcadaverine staining, Western blotting analyses for LC3 and p62 as well as ultrastructural analysis by transmission electron microscopy, we showed that RY10-4 induced autophagy in MCF-7 cells but protoapigenone did not. Meanwhile, inhibition of autophagy by pharmacological and genetic approaches significantly increased the viability of RY10-4 treated cells, suggesting that the autophagy induced by RY10-4 played as a promotion mechanism for cell death. Further studies revealed that RY10-4 suppressed the activation of mTOR and p70S6K via the Akt/mTOR pathway. Our results provided new insights for the mechanism of RY10-4 induced cell death and the cause of RY10-4 showing better antitumor activity than protoapigenone, and supported further evidences for RY10-4 as a lead to design a promising antitumor agent. - Highlights: • We showed that RY10-4 induced autophagy in MCF-7 cells but protoapigenone did not. • Autophagy induced by RY10-4 played as a promotion mechanism for cell death. • RY10-4 induced autophagy in MCF-7 cell through the Akt/mTOR pathway. • We provided new insights for the mechanism of RY10-4 induced cell death.

  2. Knockdown of dual specificity phosphatase 4 enhances the chemosensitivity of MCF-7 and MCF-7/ADR breast cancer cells to doxorubicin

    Liu, Yu; Du, Feiya; Chen, Wei; Yao, Minya; Lv, Kezhen; Fu, Peifen

    2013-01-01

    Background: Breast cancer is the major cause of cancer-related deaths in females world-wide. Doxorubicin-based therapy has limited efficacy in breast cancer due to drug resistance, which has been shown to be associated with the epithelial-to-mesenchymal transition (EMT). However, the molecular mechanisms linking the EMT and drug resistance in breast cancer cells remain unclear. Dual specificity phosphatase 4 (DUSP4), a member of the dual specificity phosphatase family, is associated with cellular proliferation and differentiation; however, its role in breast cancer progression is controversial. Methods: We used cell viability assays, Western blotting and immunofluorescent staining, combined with siRNA interference, to evaluate chemoresistance and the EMT in MCF-7 and adriamycin-resistant MCF-7/ADR breast cancer cells, and investigate the underlying mechanisms. Results: Knockdown of DUSP4 significantly increased the chemosensitivity of MCF-7 and MCF-7/ADR breast cancer cells to doxorubicin, and MCF-7/ADR cells which expressed high levels of DUSP4 had a mesenchymal phenotype. Furthermore, knockdown of DUSP4 reversed the EMT in MCF-7/ADR cells, as demonstrated by upregulation of epithelial biomarkers and downregulation of mesenchymal biomarkers, and also increased the chemosensitivity of MCF-7/ADR cells to doxorubicin. Conclusions: DUSP4 might represent a potential drug target for inhibiting drug resistance and regulating the process of the EMT during the treatment of breast cancer. - Highlights: • We used different technologies to prove our conclusion. • DUSP4 knockdown increased doxorubicin chemosensitivity in breast cancer cells. • DUSP4 is a potential target for combating drug resistance in breast cancer. • DUSP4 is a potential target for regulating the EMT in breast cancer

  3. [Mechanism research on the lupeol treatment on MCF-7 breast cancer cells based on cell metabonomics].

    Shi, Dongdong; Kuang, Yuanyuan; Wang, Guiming; Peng, Zhangxiao; Wang, Yan; Yan, Chao

    2014-03-01

    The objective of this research is to investigate the suppressive effects of lupeol on MCF-7 breast cancer cells, and explore its mechanism on inhibiting the proliferation of MCF-7 cells based on cell metabonomics and cell cycle. Gas chromatography-mass spectrometry (GC-MS) was used in the cell metabonomics assay to identify metabolites of MCF-7 cells and MCF-7 cells treated with lupeol. Then, orthogonal partial least squares discriminant analysis (OPLS-DA) was used to process the metabolic data and model parameters of OPLS-DA were as follows: R2Ycum = 0.988, Q2Ycum = 0.964, which indicated that these two groups could be distinguished clearly. The metabolites (VIP (variable importance in the projection) > 1) were analyzed by t-test, and finally, metabolites (t metabonomics.

  4. Cytotoxicity and anti-tumor effects of new ruthenium complexes on triple negative breast cancer cells.

    Cecília P Popolin

    Full Text Available Triple-negative breast cancer (TNBC is a highly aggressive breast cancer subtype. The high rate of metastasis associated to the fact that these cells frequently display multidrug resistance, make the treatment of metastatic disease difficult. Development of antitumor metal-based drugs was started with the discovery of cisplatin, however, the severe side effects represent a limitation for its clinical use. Ruthenium (Ru complexes with different ligands have been successfully studied as prospective antitumor drugs. In this work, we demonstrated the activity of a series of biphosphine bipyridine Ru complexes (1 [Ru(SO4(dppb(bipy], (2 [Ru(CO3(dppb(bipy], (3 [Ru(C2O4(dppb(bipy] and (4 [Ru(CH3CO2(dppb(bipy]PF6 [where dppb = 1,4-bis(diphenylphosphinobutane and bipy = 2,2'-bipyridine], on proliferation of TNBC (MDA-MB-231, estrogen-dependent breast tumor cells (MCF-7 and a non-tumor breast cell line (MCF-10A. Complex (4 was most effective among the complexes and was selected to be further investigated on effects on tumor cell adhesion, migration, invasion and in apoptosis. Moreover, DNA and HSA binding properties of this complex were also investigated. Results show that complex (4 was more efficient inhibiting proliferation of MDA-MB-231 cells over non-tumor cells. In addition, complex (4 was able to inhibit MDA-MB231 cells adhesion, migration and invasion and to induce apoptosis and inhibit MMP-9 secretion in TNBC cells. Complex (4 should be further investigated in vivo in order to stablish its potential to improve breast cancer treatment.

  5. Proline oxidase silencing induces proline-dependent pro-survival pathways in MCF-7 cells

    Zareba, Ilona; Celinska-Janowicz, Katarzyna; Surazynski, Arkadiusz; Miltyk, Wojciech; Palka, Jerzy

    2018-01-01

    Proline degradation by proline dehydrogenase/proline oxidase (PRODH/POX) contributes to apoptosis or autophagy. The identification of specific pathway of apoptosis/survival regulation is the aim of this study. We generated knocked-down PRODH/POX MCF-7 breast cancer cells (MCF-7shPRODH/POX). PRODH/POX silencing did not affect cell viability. However, it contributed to decrease in DNA and collagen biosynthesis, increase in prolidase activity and intracellular proline concentration as well as increase in the expression of iNOS, NF-κB, mTOR, HIF-1α, COX-2, AMPK, Atg7 and Beclin-1 in MCF-7shPRODH/POX cells. In these cells, glycyl-proline (GlyPro, substrate for prolidase) further inhibited DNA and collagen biosynthesis, maintained high prolidase activity, intracellular concentration of proline and up-regulated HIF-1α, AMPK, Atg7 and Beclin-1, compared to GlyPro-treated MCF-7 cells. In MCF-7 cells, GlyPro increased collagen biosynthesis, concentration of proline and expression of caspase-3, cleaved caspases -3 and -9, iNOS, NF-κB, COX-2 and AMPKβ. PRODH/POX knock-down contributed to pro-survival autophagy pathways in MCF-7 cells and GlyPro-derived proline augmented this process. However, GlyPro induced apoptosis in PRODH/POX-expressing MCF-7 cells as detected by up-regulation of active caspases -3 and -9. The data suggest that PRODH/POX silencing induces autophagy in MCF-7 cells and GlyPro-derived proline supports this process. PMID:29568391

  6. ANTIPROLIFERATIVE EFFECT ON BREAST CANCER (MCF7) OF MORINGA OLEIFERA SEED EXTRACTS.

    Adebayo, Ismail Abiola; Arsad, Hasni; Samian, Mohd Razip

    2017-01-01

    Moringa oleifera belongs to plant family, Moringaceae and popularly called "wonderful tree", for it is used traditionally to cure many diseases including cancer in Africa and Asia, however, there is limited knowledge on cytotoxic activity of Moringa oleifera seeds on MCF7 breast cancer cell. The present study evaluated antiproliferative effect on MCF7 of the seed. Seeds of Moringa oleifera were grinded to powder and its phytochemicals were extracted using water and 80% ethanol solvents, part of the ethanolic extract were sequentially partitioned to fractions with four solvents (hexane, dichloromethane, chloroform, and n-butanol). Antiproliferative effects on MCF7 of the samples were determined. Finally, potent samples that significantly inhibited MCF7 growth were tested on MCF 10A. Crude water extract, hexane and dichloromethane fractions of the seeds inhibited the proliferation of MCF7 with the following IC 50 values 280 μg/ml, 130 μg/ml and 26 μg/ml respectively, however, of the 3 samples, only hexane fraction had minimal cytotoxic effect on MCF 10A (IC 50 > 400μg/ml). Moringa oleifera seed has antiproliferative effect on MCF7.

  7. Growth suppression of MCF-7 cancer cell-derived xenografts in nude mice by caveolin-1

    Wu Ping; Wang Xiaohui; Li Fei; Qi Baoju; Zhu Hua; Liu Shuang; Cui Yeqing; Chen Jianwen

    2008-01-01

    Caveolin-1 is an essential structural constituent of caveolae membrane domains that has been implicated in mitogenic signaling and oncogenesis. However, the exact functional role of caveolin-1 still remains controversial. In this report, utilizing MCF-7 human breast adenocarcinoma cells stably transfected with caveolin-1 (MCF-7/cav-1 cells), we demonstrate that caveolin-1 expression dramatically inhibits invasion and migration of these cells. Importantly, in vivo experiments employing xenograft tumor models demonstrated that expression of caveolin-1 results in significant growth inhibition of breast tumors. Moreover, a dramatic delay in tumor progression was observed in MCF-7/cav-1 cells as compared with MCF-7 cells. Histological analysis of tumor sections demonstrated a marked decrease in the percentage of proliferating tumor cells (Ki-67 assay) along with an increase in apoptotic tumor cells (TUNEL assay) in MCF-7/cav-1-treated animals. Our current findings provide for the first time in vivo evidence that caveolin-1 can indeed function as a tumor suppressor in human breast adenocarcinoma derived from MCF-7 cells rather than as a tumor promoter

  8. Escin Ia suppresses the metastasis of triple-negative breast cancer by inhibiting epithelial-mesenchymal transition via down-regulating LOXL2 expression.

    Wang, Yuhui; Xu, Xiaotian; Zhao, Peng; Tong, Bei; Wei, Zhifeng; Dai, Yue

    2016-04-26

    The saponin fraction of Aesculus chinensis Bunge fruits (SFAC) could inhibit the invasion and migration of MDA-MB-231 cells. Among which, escin Ia showed more potent inhibition of the invasion than other five main saponin constituents. It selectively reduced the expression of LOXL2 mRNA and promoted the expression of E-cadherin mRNA, and prevented the EMT process of MDA-MB-231 cells and TNF-α/TGF-β-stimulated MCF-7 cells. Moreover, it reduced the LOXL2 level in MDA-MB-231 cells but not in MCF-7 cells. When MCF-7 cells were stimulated with TNF-α/TGF-β, transfected with LOXL2 or treated with hypoxia, escin Ia down-regulated the level of LOXL2 in MCF-7 cells. Meanwhile, escin Ia suppressed the EMT process in LOXL2-transfected or hypoxia-treated MCF-7 cells. Of interest, escin Ia did not alter the level of HIF-1α in hypoxia-induced MCF-7 cells. In TNBC xenograft mice, the metastasis and EMT of MDA-MB-231 cells were suppressed by escin Ia. In conclusion, escin Ia was the main active ingredient of SFAC for the anti-TNBC metastasis activity, and its action mechanisms involved inhibition of EMT process by down-regulating LOXL2 expression.

  9. 3-bromopyruvate enhanced daunorubicin-induced cytotoxicity involved in monocarboxylate transporter 1 in breast cancer cells.

    Liu, Zhe; Sun, Yiming; Hong, Haiyu; Zhao, Surong; Zou, Xue; Ma, Renqiang; Jiang, Chenchen; Wang, Zhiwei; Li, Huabin; Liu, Hao

    2015-01-01

    Increasing evidence demonstrates that the hexokinase inhibitor 3-bromopyruvate (3-BrPA) induces the cell apoptotic death by inhibiting ATP generation in human cancer cells. Interestingly, some tumor cell lines are less sensitive to 3-BrPA-induced apoptosis than others. Moreover, the molecular mechanism of 3-BrPA-trigged apoptosis is unclear. In the present study, we examined the effects of 3-BrPA on the viability of the breast cancer cell lines MDA-MB-231 and MCF-7. We further investigated the potential roles of monocarboxylate transporter 1 (MCT1) in drug accumulation and efflux of breast cancer cells. Finally, we explored whether 3-BrPA enhanced daunorubicin (DNR)-induced cytotoxicity through regulation of MCT1 in breast cancer cells. MTT and colony formation assays were used to measure cell viability. Western blot analysis, flow cytometric analysis and fluorescent microscopy were used to determine the molecular mechanism of actions of MCT1 in different breast cancer cell lines. Whole-body bioluminescence imaging was used to investigate the effect of 3-BrPA in vivo. We found that 3-BrPA significantly inhibited cell growth and induced apoptosis in MCF-7 cell line, but not in MDA-MB-231 cells. Moreover, we observed that 3-BrPA efficiently enhanced DNR-induced cytotoxicity in MCF-7 cells by inhibiting the activity of ATP-dependent efflux pumps. We also found that MCT1 overexpression increased the efficacy of 3-BrPA in MDA-MB-231 cells. 3-BrPA markedly suppressed subcutaneous tumor growth in combination with DNR in nude mice implanted with MCF-7 cells. Lastly, our whole-body bioluminescence imaging data indicated that 3-BrPA promoted DNR accumulation in tumors. These findings collectively suggest that 3-BrPA enhanced DNR antitumor activity in breast cancer cells involved MCT-1, suggesting that inhibition of glycolysis could be an effective therapeutic approach for breast cancer treatment.

  10. Cell Matrix Remodeling Ability Shown by Image Spatial Correlation

    Chiu, Chi-Li; Digman, Michelle A.; Gratton, Enrico

    2013-01-01

    Extracellular matrix (ECM) remodeling is a critical step of many biological and pathological processes. However, most of the studies to date lack a quantitative method to measure ECM remodeling at a scale comparable to cell size. Here, we applied image spatial correlation to collagen second harmonic generation (SHG) images to quantitatively evaluate the degree of collagen remodeling by cells. We propose a simple statistical method based on spatial correlation functions to determine the size of high collagen density area around cells. We applied our method to measure collagen remodeling by two breast cancer cell lines (MDA-MB-231 and MCF-7), which display different degrees of invasiveness, and a fibroblast cell line (NIH/3T3). We found distinct collagen compaction levels of these three cell lines by applying the spatial correlation method, indicating different collagen remodeling ability. Furthermore, we quantitatively measured the effect of Latrunculin B and Marimastat on MDA-MB-231 cell line collagen remodeling ability and showed that significant collagen compaction level decreases with these treatments. PMID:23935614

  11. Can vitamin A modify the activity of docetaxel in MCF-7 breast cancer cells?

    Dorota Lemancewicz

    2008-04-01

    Full Text Available Docetaxel is one of the most effective chemotherapeutic agents in the treatment of breast cancer. On the other hand, the vitamin A family compounds play the essential roles in many biological processes in mammary gland. The aim of our study was to investigate the effect of all-trans retinol, carotenoids (beta-carotene, lycopene and retinoids (9-cis, 13-cis and all-trans retinoic acid on the activity of docetaxel and to compare these effects with the estradiol and tamoxifen actions on human ER(+ MCF-7 breast cancer cell line. The evaluation was based on [3H] thymidine incorporation and the proliferative activity of PCNA and Ki 67 positive cells. In our study, the incorporation of [3H] thymidine into cancer cells was inhibited to 50% by 0.2, 0.5 and 1 microM of docetaxel in the 24-hour culture and addition of estradiol (0.001 microM didn't influence the results. However, addition of tamoxifen caused a statistically significant decrease of the percentage of the proliferating cells in the culture medium with 0.2 and 0.5 microM of docetaxel (38.99 +/- 2.84%, p<0.01 and 40.67 +/- 5.62%, p<0.01 in comparison to the docetaxel only group. The above-mentioned observations were also confirmed with the use of the immunohistochemical investigations. Among the examined vitamin A family compounds, the simultaneous application of beta-carotene (0.1 microM and docetaxel (0.2 microM resulted in a statistically significant reduction in the percentage of proliferating cells (40.25 +/- 14.62%, p<0.01. Lycopene (0.1 microM, which stimulates the growth of breast cancer cells in a 24-hour culture, had an inhibitory effect (42.97 +/- 9.58%, p<0.01 when combined with docetaxel (0.2 microM. Although, beta-carotene and lycopene belong to the different chemical groups, they surprisingly had a similar inhibitory influence on both growth and proliferation of MCF-7 breast cancer cells when combined with docetaxel. The application of docetaxel either with beta-carotene or

  12. Synthesis of novel chromeno-annulated cis-fused pyrano[3,4-c]benzopyran and naphtho pyran derivatives via domino aldol-type/hetero Diels-Alder reaction and their cytotoxicity evaluation.

    Madda, Jyothi; Venkatesham, Akkaladevi; Naveen Kumar, Bejjanki; Nagaiah, Kommu; Sujitha, Pombala; Ganesh Kumar, C; Rao, Tadikamalla Prabhakar; Jagadeesh Babu, Nanubolu

    2014-09-15

    New chromeno-annulated cis-fused pyrano[3,4-c]benzopyran and naphtho pyran derivatives have been synthesized by domino aldol-type reaction/hetero Diels-Alder reaction generated from o-quinone methide in situ from 7-O-prenyl derivatives of 8-formyl-2,3-disubstituted chromenones with resorcinols/naphthols in the presence of 20 mol% ethylenediamine diacetate (EDDA), triethylamine (2 mL) as co-catalyst in CH3CN under reflux conditions in good yields. The structures were established based on spectroscopic data, and further confirmed by X-ray diffraction analysis. The results showed that compounds 4h and 4j exhibited very potent cytotoxicity against human cervical cancer cell line (HeLa). Compound 4h displayed good inhibitory activity against both breast cancer cell lines, MDA-MB-231 and MCF-7. Further, the compound 4i exhibited good cytotoxicity against only MDA-MB-231, and compound 4j showed promising activity against human lung cancer cell line, A549 with IC50 value of 2.53±0.07 μM, which was comparable to the standard doxorubicin (IC50=1.21±0.1 μM). Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Coumarin-gold nanoparticle bioconjugates: preparation, antioxidant, and cytotoxic effects against MCF-7 breast cancer cells

    Mahendran, Gokila; Ponnuchamy, Kumar

    2018-05-01

    In recent, the conjugation of gold nanoparticles (AuNPs) with biomolecules has shown great potential especially in disease diagnostics and treatment. Taking this in account, we report the methodology involved in the conjugation of coumarin onto the surface of citrate-capped AuNPs by a simple in situ method. Herein, we systematically performed UV-Vis spectroscopy, transmission electron microscopy, dynamic light scattering, and zeta potential measurements to characterize citrate-capped AuNPs and bioconjugates. Our results demonstrate in-depth surface chemistry of bioconjugates with improved surface plasmon resonance (529 nm), morphology (near spherical shape), hydrodynamic diameter (25.3 nm) as well as surface charge (- 35 mV). Furthermore, the bioconjugates displayed dose-dependent response in scavenging free radicals and exhibited cytotoxicity against MCF-7 breast cancer cell lines. In addition, phase-contrast microscopic analysis revealed that bioconjugates promote apoptosis in cancer cells in a time-dependent manner. Overall, we ascertain the fact that this kind of bioconjugation of AuNPs with coumarin further enhances the efficacy of inorganic nanomaterials and thus make them a better bio-therapeutic candidate.

  14. Piper betle shows antioxidant activities, inhibits MCF-7 cell proliferation and increases activities of catalase and superoxide dismutase

    Abrahim Noor

    2012-11-01

    Full Text Available Abstract Background Breast cancer is the most common form of cancer and the focus on finding chemotherapeutic agents have recently shifted to natural products. Piper betle is a medicinal plant with various biological activities. However, not much data is available on the anti-cancer effects of P. betle on breast cancer. Due to the current interest in the potential effects of antioxidants from natural products in breast cancer treatment, we investigated the antioxidant activities of the leaves of P. betle and its inhibitory effect on the proliferation of the breast cancer cell line, MCF-7. Methods The leaves of P. betle were extracted with solvents of varying polarities (water, methanol, ethyl acetate and hexane and their phenolic and flavonoid content were determined using colorimetric assays. Phenolic composition was characterized using HPLC. Antioxidant activities were measured using FRAP, DPPH, superoxide anion, nitric oxide and hyroxyl radical scavenging assays. Biological activities of the extracts were analysed using MTT assay and antioxidant enzyme (catalase, superoxide dismutase, glutathione peroxidase assays in MCF-7 cells. Results Overall, the ethyl acetate extract showed the highest ferric reducing activity and radical scavenging activities against DPPH, superoxide anion and nitric oxide radicals. This extract also contained the highest phenolic content implying the potential contribution of phenolics towards the antioxidant activities. HPLC analyses revealed the presence of catechin, morin and quercetin in the leaves. The ethyl acetate extract also showed the highest inhibitory effect against the proliferation of MCF-7 cells (IC50=65 μg/ml. Treatment of MCF-7 cells with the plant extract increased activities of catalase and superoxide dismutase. Conclusions Ethyl acetate is the optimal solvent for the extraction of compounds with antioxidant and anti-proliferative activities. The increased activities of catalase and superoxide

  15. Piper betle shows antioxidant activities, inhibits MCF-7 cell proliferation and increases activities of catalase and superoxide dismutase.

    Abrahim, Noor Nazirahanie; Kanthimathi, M S; Abdul-Aziz, Azlina

    2012-11-15

    Breast cancer is the most common form of cancer and the focus on finding chemotherapeutic agents have recently shifted to natural products. Piper betle is a medicinal plant with various biological activities. However, not much data is available on the anti-cancer effects of P. betle on breast cancer. Due to the current interest in the potential effects of antioxidants from natural products in breast cancer treatment, we investigated the antioxidant activities of the leaves of P. betle and its inhibitory effect on the proliferation of the breast cancer cell line, MCF-7. The leaves of P. betle were extracted with solvents of varying polarities (water, methanol, ethyl acetate and hexane) and their phenolic and flavonoid content were determined using colorimetric assays. Phenolic composition was characterized using HPLC. Antioxidant activities were measured using FRAP, DPPH, superoxide anion, nitric oxide and hyroxyl radical scavenging assays. Biological activities of the extracts were analysed using MTT assay and antioxidant enzyme (catalase, superoxide dismutase, glutathione peroxidase) assays in MCF-7 cells. Overall, the ethyl acetate extract showed the highest ferric reducing activity and radical scavenging activities against DPPH, superoxide anion and nitric oxide radicals. This extract also contained the highest phenolic content implying the potential contribution of phenolics towards the antioxidant activities. HPLC analyses revealed the presence of catechin, morin and quercetin in the leaves. The ethyl acetate extract also showed the highest inhibitory effect against the proliferation of MCF-7 cells (IC50=65 μg/ml). Treatment of MCF-7 cells with the plant extract increased activities of catalase and superoxide dismutase. Ethyl acetate is the optimal solvent for the extraction of compounds with antioxidant and anti-proliferative activities. The increased activities of catalase and superoxide dismutase in the treated cells could alter the antioxidant defense

  16. Design, synthesis and molecular modeling of new 4-phenylcoumarin derivatives as tubulin polymerization inhibitors targeting MCF-7 breast cancer cells.

    Batran, Rasha Z; Kassem, Asmaa F; Abbas, Eman M H; Elseginy, Samia A; Mounier, Marwa M

    2018-07-23

    A new set of 4-phenylcoumarin derivatives was designed and synthesized aiming to introduce new tubulin polymerization inhibitors as anti-breast cancer candidates. All the target compounds were evaluated for their cytotoxic effects against MCF-7 cell line, where compounds 2f, 3a, 3b, 3f, 7a and 7b, showed higher cytotoxic effect (IC 50  = 4.3-21.2 μg/mL) than the reference drug doxorubicin (IC 50  = 26.1 μg/mL), additionally, compounds 1 and 6b exhibited the same potency as doxorubicin (IC 50  = 25.2 and 28.0 μg/mL, respectively). The thiazolidinone derivatives 3a, 3b and 3f with potent and selective anticancer effects towards MCF-7 cells (IC 50  = 11.1, 16.7 and 21.2 μg/mL) were further assessed for tubulin polymerization inhibition effects which showed that the three compounds were potent tubulin polymerization suppressors with IC 50 values of 9.37, 2.89 and 6.13 μM, respectively, compared to the reference drug colchicine (IC 50  = 6.93 μM). The mechanistic effects on cell cycle progression and induction of apoptosis in MCF-7 cells were determined for compound 3a due to its potent and selective cytotoxic effects in addition to its promising tubulin polymerization inhibition potency. The results revealed that compound 3a induced cell cycle cessation at G2/M phase and accumulation of cells in pre-G1 phase and prevented its mitotic cycle, in addition to its activation of caspase-7 mediating apoptosis of MCF-7 cells. Molecular modeling studies for compounds 3a, 3b and 3f were carried out on tubulin crystallography, the results indicated that the compounds showed binding mode similar to the co-crystalized ligand; colchicine. Moreover, pharmacophore constructed models and docking studies revealed that thiazolidinone, acetamide and coumarin moieties are crucial for the activity. Molecular dynamics (MD) studies were carried out for the three compounds over 100 ps. MD results of compound 3a showed that it reached the stable state

  17. Suberoyl bis-hydroxamic acid induces p53-dependent apoptosis of MCF-7 breast cancer cells

    Zhi-gang ZHUANG; Fei FEI; Ying CHEN; Wei JIN

    2008-01-01

    Aim: To study the effects of suberoyl bis-hydroxamic acid (SBHA), an inhibitor of histone deacetylases, on the apoptosis of MCF-7 breast cancer cells. Meth-ods: Apoptosis in MCF-7 cells induced by SBHA was demonstrated by flow cytometric analysis, morphological observation, and DNA ladder. Mitochondrial membrane potential (△ψm) was measured using the fluorescent probe JC-1. The expressions of p53, p21, Bax, and PUMA were determined using RT-PCR or Western blotting analysis after the MCF-7 cells were treated with SBHA or p53 siRNA. Results: SBHA induced apoptosis in MCF-7 cells. The expressions of p53, p21, Bax, and PUMA were induced, and △ψm collapsed after treatment with SBHA. p53 siRNA abrogated the SBHA-induced apoptosis and the expressions of p53, p21, Bax, and PUMA. Conclusion: The activation of the p53 pathway is involved in SBHA-induced apoptosis in MCF-7 cells.

  18. Δ9-Tetrahydrocannabinol enhances MCF-7 cell proliferation via cannabinoid receptor-independent signaling

    Takeda, Shuso; Yamaori, Satoshi; Motoya, Erina; Matsunaga, Tamihide; Kimura, Toshiyuki; Yamamoto, Ikuo; Watanabe, Kazuhito

    2008-01-01

    We recently reported that Δ 9 -tetrahydrocannabinol (Δ 9 -THC) has the ability to stimulate the proliferation of human breast carcinoma MCF-7 cells. However, the mechanism of action remains to be clarified. The present study focused on the relationship between receptor expression and the effects of Δ 9 -THC on cell proliferation. RT-PCR analysis demonstrated that there was no detectable expression of CB receptors in MCF-7 cells. In accordance with this, no effects of cannabinoid 1/2 (CB1/2) receptor antagonists and pertussis toxin on cell proliferation were observed. Although MCF-7 cell proliferation is suggested to be suppressed by Δ 9 -THC in the presence of CB receptors, it was revealed that Δ 9 -THC could exert upregulation of living cells in the absence of the receptors. Interestingly, Δ 9 -THC upregulated human epithelial growth factor receptor type 2 (HER2) expression, which is known to be a predictive factor of human breast cancer and is able to stimulate cancer cells as well as MCF-7 cells. Actinomycin D-treatment interfered with the upregulation of HER2 and cell proliferation by cannabinoid. Taken together, these studies suggest that, in the absence of CB receptors, Δ 9 -THC can stimulate the proliferation of MCF-7 cells by modulating, at least in part, HER2 transcription

  19. Metastatic triple-negative breast cancer is dependent on SphKs/S1P signaling for growth and survival.

    Maiti, Aparna; Takabe, Kazuaki; Hait, Nitai C

    2017-04-01

    About 40,000 American women die from metastatic breast cancer each year despite advancements in treatment. Approximately, 15% of breast cancers are triple-negative for estrogen receptor, progesterone receptor, and HER2. Triple-negative cancer is characterized by more aggressive, harder to treat with conventional approaches and having a greater possibility of recurrence. Sphingosine-1-phosphate (S1P) is a bioactive sphingolipid signaling mediator has emerged as a key regulatory molecule in breast cancer progression. Therefore, we investigated whether cytosolic sphingosine kinase type 1 (SphK1) and nuclear sphingosine kinase type 2 (SphK2), the enzymes that make S1P are critical for growth and PI3K/AKT, ERK-MAP kinase mediated survival signaling of lung metastatic variant LM2-4 breast cancer cells, generated from the parental triple-negative MDA-MB-231 human breast cancer cell line. Similar with previous report, SphKs/S1P signaling is critical for the growth and survival of estrogen receptor positive MCF-7 human breast cancer cells, was used as our study control. MDA-MB-231 did not show a significant effect of SphKs/S1P signaling on AKT, ERK, and p38 pathways. In contrast, LM2-4 cells that gained lung metastatic phenotype from primary MDA-MB-231 cells show a significant effect of SphKs/S1P signaling requirement on cell growth, survival, and cell motility. PF-543, a selective potent inhibitor of SphK1, attenuated epidermal growth factor (EGF)-mediated cell growth and survival signaling through inhibition of AKT, ERK, and p38 MAP kinase pathways mainly in LM2-4 cells but not in parental MDA-MB-231 human breast cancer cells. Moreover, K-145, a selective inhibitor of SphK2, markedly attenuated EGF-mediated cell growth and survival of LM2-4 cells. We believe this study highlights the importance of SphKs/S1P signaling in metastatic triple-negative breast cancers and targeted therapies. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Modulation of curcumin-induced Akt phosphorylation and apoptosis by PI3K inhibitor in MCF-7 cells

    Kizhakkayil, Jaleel; Thayyullathil, Faisal; Chathoth, Shahanas; Hago, Abdulkader; Patel, Mahendra; Galadari, Sehamuddin

    2010-01-01

    Curcumin has been shown to induce apoptosis in various malignant cancer cell lines. One mechanism of curcumin-induced apoptosis is through the PI3K/Akt signaling pathway. Akt, also known as protein kinase B (PKB), is a member of the family of phosphatidylinositol 3-OH-kinase regulated Ser/Thr kinases. The active Akt regulates cell survival and proliferation; and inhibits apoptosis. In this study we found that curcumin induces apoptotic cell death in MCF-7 cells, as assessed by MTT assay, DNA ladder formation, PARP cleavage, p53 and Bax induction. At apoptotic inducing concentration, curcumin induces a dramatic Akt phosphorylation, accompanied by an increased phosphorylation of glycogen synthase kinase 3β (GSK3β), which has been considered to be a pro-growth signaling molecule. Combining curcumin with PI3K inhibitor, LY290042, synergizes the apoptotic effect of curcumin. The inhibitor LY290042 was capable of attenuating curcumin-induced Akt phosphorylation and activation of GSK3β. All together, our data suggest that blocking the PI3K/Akt survival pathway sensitizes the curcumin-induced apoptosis in MCF-7 cells.

  1. Modulation of curcumin-induced Akt phosphorylation and apoptosis by PI3K inhibitor in MCF-7 cells

    Kizhakkayil, Jaleel; Thayyullathil, Faisal; Chathoth, Shahanas; Hago, Abdulkader; Patel, Mahendra [Cell Signaling Laboratory, Department of Biochemistry, Faculty of Medicine and Health Sciences, UAE University, P.O. Box 17666, Al Ain (United Arab Emirates); Galadari, Sehamuddin, E-mail: sehamuddin@uaeu.ac.ae [Cell Signaling Laboratory, Department of Biochemistry, Faculty of Medicine and Health Sciences, UAE University, P.O. Box 17666, Al Ain (United Arab Emirates)

    2010-04-09

    Curcumin has been shown to induce apoptosis in various malignant cancer cell lines. One mechanism of curcumin-induced apoptosis is through the PI3K/Akt signaling pathway. Akt, also known as protein kinase B (PKB), is a member of the family of phosphatidylinositol 3-OH-kinase regulated Ser/Thr kinases. The active Akt regulates cell survival and proliferation; and inhibits apoptosis. In this study we found that curcumin induces apoptotic cell death in MCF-7 cells, as assessed by MTT assay, DNA ladder formation, PARP cleavage, p53 and Bax induction. At apoptotic inducing concentration, curcumin induces a dramatic Akt phosphorylation, accompanied by an increased phosphorylation of glycogen synthase kinase 3{beta} (GSK3{beta}), which has been considered to be a pro-growth signaling molecule. Combining curcumin with PI3K inhibitor, LY290042, synergizes the apoptotic effect of curcumin. The inhibitor LY290042 was capable of attenuating curcumin-induced Akt phosphorylation and activation of GSK3{beta}. All together, our data suggest that blocking the PI3K/Akt survival pathway sensitizes the curcumin-induced apoptosis in MCF-7 cells.

  2. CCL5 promotes proliferation of MCF-7 cells through mTOR-dependent mRNA translation

    Murooka, Thomas T.; Rahbar, Ramtin; Fish, Eleanor N.

    2009-01-01

    The proliferative capacity of cancer cells is regulated by factors intrinsic to cancer cells and by secreted factors in the microenvironment. Here, we investigated the proto-oncogenic potential of the chemokine receptor, CCR5, in MCF-7 breast cancer cell lines. At physiological levels, CCL5, a ligand for CCR5, enhanced MCF-7.CCR5 proliferation. Treatment with the mTOR inhibitor, rapamycin, inhibited this CCL5-inducible proliferation. Because mTOR directly modulates mRNA translation, we investigated whether CCL5 activation of CCR5 leads to increased translation. CCL5 induced the formation of the eIF4F translation initiation complex through an mTOR-dependent process. Indeed, CCL5 initiated mRNA translation, shown by an increase in high-molecular-weight polysomes. Specifically, we show that CCL5 mediated a rapid up-regulation of protein expression for cyclin D1, c-Myc and Dad-1, without affecting their mRNA levels. Taken together, we describe a mechanism by which CCL5 influences translation of rapamycin-sensitive mRNAs, thereby providing CCR5-positive breast cancer cells with a proliferative advantage.

  3. FDG uptake in cold and heat treated MCF-7 cells, comparison with cell viability, apoptosis, and tumor marker changes

    Zhang, C.; Sun, X.; Huang, G.; Liu, J.

    2007-01-01

    Full text: Objectives-To investigate the FDG uptake changes in cold and hyperthermia therapy and its correlation with cell viability, apoptosis and tumor marker changes. Methods: An in vitro cultured breast adenocarcinoma cell line, MCF- 7, was divided into 5 groups. Hyperthermia group: cell was treated in 43 degree centigrade 30 min. Hypothermia group: cell was treated in 0 degree centigrade 30 min. Hypo- and hyperthermia group: cell was treated in 0 degree centigrade 30 min and 43 degree centigrade 30 min. chemotherapy group: cell was treated with 21 microgram Cisplatin for 6 hours. And Control group: cell was untreated. The levels 18F-labelled FDG uptake, a 3-(4, 5-dimethylthiazol-2-yl)- 2, 5-diphenyltetrazoliumbromide viability assay, flow cytometry assay and tumor markers (CA153, CA125) were detected at 24 hour and 48 hour. Results: The change of 18F- FDG uptake (which came out at the 24h) is early than tumor marker (which came out at the 48h) under our study conditions. In treated MCF-7 cells, the levels of 18F-labelled FDG uptake were significantly lower than control group. The levels of 18F-FDG uptake depression were well correlated with cell viability and apoptosis data. Conclusion: FDG uptake is sensitive and well correlated with cell viability and apoptosis assay, and can be used for early response monitoring in hypo- and hyperthermia therapy. (author)

  4. Cytotoxicity and apoptosis induced by a plumbagin derivative in estrogen positive MCF-7 breast cancer cells

    Sagar, Sunil

    2014-01-31

    Plumbagin [5-hydroxy- 2-methyl-1, 4-naphthaquinone] is a well-known plant derived anticancer lead compound. Several efforts have been made to synthesize its analogs and derivatives in order to increase its anticancer potential. In the present study, plumbagin and its five derivatives have been evaluated for their antiproliferative potential in one normal and four human cancer cell lines. Treatment with derivatives resulted in dose- and time-dependent inhibition of growth of various cancer cell lines. Prescreening of compounds led us to focus our further investigations on acetyl plumbagin, which showed remarkably low toxicity towards normal BJ cells and HepG2 cells. The mechanisms of apoptosis induction were determined by APOPercentage staining, caspase-3/7 activation, reactive oxygen species production and cell cycle analysis. The modulation of apoptotic genes (p53, Mdm2, NF-kB, Bad, Bax, Bcl-2 and Casp-7) was also measured using real time PCR. The positive staining using APOPercentage dye, increased caspase-3/7 activity, increased ROS production and enhanced mRNA expression of proapoptotic genes suggested that acetyl plumbagin exhibits anticancer effects on MCF-7 cells through its apoptosis-inducing property. A key highlighting point of the study is low toxicity of acetyl plumbagin towards normal BJ cells and negligible hepatotoxicity (data based on HepG2 cell line). Overall results showed that acetyl plumbagin with reduced toxicity might have the potential to be a new lead molecule for testing against estrogen positive breast cancer. 2014 Bentham Science Publishers.

  5. Cytotoxicity and apoptosis induced by a plumbagin derivative in estrogen positive MCF-7 breast cancer cells

    Sagar, Sunil; Esau, Luke; Moosa, Basem; Khashab, Niveen M.; Bajic, Vladimir B.; Kaur, Mandeep

    2014-01-01

    Plumbagin [5-hydroxy- 2-methyl-1, 4-naphthaquinone] is a well-known plant derived anticancer lead compound. Several efforts have been made to synthesize its analogs and derivatives in order to increase its anticancer potential. In the present study, plumbagin and its five derivatives have been evaluated for their antiproliferative potential in one normal and four human cancer cell lines. Treatment with derivatives resulted in dose- and time-dependent inhibition of growth of various cancer cell lines. Prescreening of compounds led us to focus our further investigations on acetyl plumbagin, which showed remarkably low toxicity towards normal BJ cells and HepG2 cells. The mechanisms of apoptosis induction were determined by APOPercentage staining, caspase-3/7 activation, reactive oxygen species production and cell cycle analysis. The modulation of apoptotic genes (p53, Mdm2, NF-kB, Bad, Bax, Bcl-2 and Casp-7) was also measured using real time PCR. The positive staining using APOPercentage dye, increased caspase-3/7 activity, increased ROS production and enhanced mRNA expression of proapoptotic genes suggested that acetyl plumbagin exhibits anticancer effects on MCF-7 cells through its apoptosis-inducing property. A key highlighting point of the study is low toxicity of acetyl plumbagin towards normal BJ cells and negligible hepatotoxicity (data based on HepG2 cell line). Overall results showed that acetyl plumbagin with reduced toxicity might have the potential to be a new lead molecule for testing against estrogen positive breast cancer. 2014 Bentham Science Publishers.

  6. Huaier Extract Induces Autophagic Cell Death by Inhibiting the mTOR/S6K Pathway in Breast Cancer Cells.

    Xiaolong Wang

    Full Text Available Huaier extract is attracting increased attention due to its biological activities, including antitumor, anti-parasite and immunomodulatory effects. Here, we investigated the role of autophagy in Huaier-induced cytotoxicity in MDA-MB-231, MDA-MB-468 and MCF7 breast cancer cells. Huaier treatment inhibited cell viability in all three cell lines and induced various large membranous vacuoles in the cytoplasm. In addition, electron microscopy, MDC staining, accumulated expression of autophagy markers and flow cytometry revealed that Huaier extract triggered autophagy. Inhibition of autophagy attenuated Huaier-induced cell death. Furthermore, Huaier extract inhibited the mammalian target of the rapamycin (mTOR/S6K pathway in breast cancer cells. After implanting MDA-MB-231 cells subcutaneously into the right flank of BALB/c nu/nu mice, Huaier extract induced autophagy and effectively inhibited xenograft tumor growth. This study is the first to show that Huaier-induced cytotoxicity is partially mediated through autophagic cell death in breast cancer cells through suppression of the mTOR/S6K pathway.

  7. Hepcidin as a possible marker in determination of malignancy degree and sensitivity of breast cancer cells to cytostatic drugs.

    Yalovenko, T M; Todor, I M; Lukianova, N Y; Chekhun, V F

    2016-06-01

    To investigate the role of hepcidin (Hepc) in the formation of cells malignant phenotype in vitro and its expression in the dyna-mics of growth of Walker-256 carcinosarcoma with different sensitivity to doxorubicin (Dox). The cell lines used in the analysis included T47D, MCF-7, MDA-MB-231, MDA-MB-468, MCF/CP, and MCF/Dox. Hepc expression was studied by immunocytochemical method. "Free" iron content was determined by EPR spectroscopy. Determination of Hepc expression in homogenates of tumor tissue and in blood serum of rats with Dox-sensitive and -resistant Walker-256 carcinosarcoma was performed. It was found that Hepc levels in breast cancer (BC) cells with high degree of malignancy (MDA-MB-231, MDA-MB-468) and drug-resistant phenotype (MCF/CP, MCF/Dox) were by 1.5-2 times higher (p < 0.05) in comparison with sensitive and less malignant BC cells. The development of drug-resistant phenotype in Walker-256 carcinosarcoma cells was accompanied by increasing of Hepc and "free" iron content (by 2.4 and 1.2 times, respectively). The data of in vitro and in vivo research evidenced on involvement of Hepc in formation of BC cells malignant phenotype and their resistance to Dox.

  8. Evaluation of in vitro anti-proliferative and immunomodulatory activities of compounds isolated from Curcuma longa

    Yue, Grace G. L.; Chan, Ben C. L.; Hon, Po-Ming; Lee, Mavis Y. H.; Fung, Kwok-Pui; Leung, Ping-Chung; Lau, Clara B. S.

    2010-01-01

    The rhizome of Curcuma longa (CL) has been commonly used in Asia as a potential candidate for the treatment of different diseases, including inflammatory disorders and cancers. The present study evaluated the anti-proliferative activities of the isolated compounds (3 curcuminoids and 2 turmerones) from CL, using human cancer cell lines HepG2, MCF-7 and MDA-MB-231. The immunomodulatory activities of turmerones (α and aromatic) isolated from CL were also examined using human peripheral blood mononuclear cells (PBMC). Our results showed that the curcuminoids (curcumin, demethoxycurcumin and bisdemethoxycurcumin) and α-turmerone significantly inhibited proliferation of cancer cells in dose-dependent manner. The IC50 values of these compounds in cancer cells ranged from 11.0–41.8 μg/ml. Alpha-turmerone induced MDA-MB-231 cells to undergo apoptosis, which was confirmed by annexin-V & propidium iodide staining, and DNA fragmentation assay. The caspase cascade was activated as shown by a significant decrease of procaspases-3, -8 and -9 in α-turmerone treated cells. Both α-turmerone and aromatic-turmerone showed stimulatory effects on PBMC proliferation and cytokine production. The anti-proliferative effect of α-turmerone and immunomodulatory activities of ar-turmerone were shown for the first time. The findings revealed the potential use of CL crude extract (containing curcuminoids and volatile oil including turmerones) as chemopreventive agent. PMID:20438793

  9. Intratumoral Heterogeneity of Breast Cancer Xenograft Models: Texture Analysis of Diffusion-Weighted MR Imaging

    Yun, Bo La; Cho, Nariya; Li, Mulun; Song, In Chan; Moon, Woo Kyung [Dept. of Radiology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul (Korea, Republic of); Jang, Min Hye; Park, So Yeon; Kim, Bo Young [Seoul National University Bundang Hospital, Seongnam (Korea, Republic of); Kang, Ho Chul [Dept. of Computer Science and Engineering, Seoul National University, Seoul (Korea, Republic of)

    2014-10-15

    To investigate whether there is a relationship between texture analysis parameters of apparent diffusion coefficient (ADC) maps and histopathologic features of MCF-7 and MDA-MB-231 xenograft models. MCF-7 estradiol (+), MCF-7 estradiol (-), and MDA-MB-231 xenograft models were made with approval of the animal care committee. Twelve tumors of MCF-7 estradiol (+), 9 tumors of MCF-7 estradiol (-), and 6 tumors in MDA-MB-231 were included. Diffusion-weighted MR images were obtained on a 9.4-T system. An analysis of the first and second order texture analysis of ADC maps was performed. The texture analysis parameters and histopathologic features were compared among these groups by the analysis of variance test. Correlations between texture parameters and histopathologic features were analyzed. We also evaluated the intraobserver agreement in assessing the texture parameters. MCF-7 estradiol (+) showed a higher standard deviation, maximum, skewness, and kurtosis of ADC values than MCF-7 estradiol (-) and MDA-MB-231 (p < 0.01 for all). The contrast of the MCF-7 groups was higher than that of the MDA-MB-231 (p 0.004). The correlation (COR) of the texture analysis of MCF-7 groups was lower than that of MDA-MB-231 (p < 0.001). The histopathologic analysis showed that Ki-67mean and Ki-67diff of MCF-7 estradiol (+) were higher than that of MCF-7 estradiol (-) or MDA-MB-231 (p < 0.05). The microvessel density (MVD)mean and MVDdiff of MDA-MB-231 were higher than those of MCF-7 groups (p < 0.001). A diffuse-multifocal necrosis was more frequently found in MDA-MB-231 (p < 0.001). The proportion of necrosis moderately correlated with the contrast (r = -0.438, p = 0.022) and strongly with COR (r = 0.540, p 0.004). Standard deviation (r = 0.622, r = 0.437), skewness (r = 0.404, r 0.484), and kurtosis (r = 0.408, r = 0.452) correlated with Ki-67 mean and Ki-67diff (p < 0.05 for all). COR moderately correlated with Ki-67diff (r -0.388, p = 0.045). Skewness (r = -0.643, r = -0

  10. Prediction of anticancer peptides against MCF-7 breast cancer cells from the peptidomes of Achatina fulica mucus fractions

    Teerasak E-kobon

    2016-01-01

    Full Text Available Several reports have shown antimicrobial and anticancer activities of mucous glycoproteins extracted from the giant African snail Achatina fulica. Anticancer properties of the snail mucous peptides remain incompletely revealed. The aim of this study was to predict anticancer peptides from A. fulica mucus. Two of HPLC-separated mucous fractions (F2 and F5 showed in vitro cytotoxicity against the breast cancer cell line (MCF-7 and normal epithelium cell line (Vero. According to the mass spectrometric analysis, 404 and 424 peptides from the F2 and F5 fractions were identified. Our comprehensive bioinformatics workflow predicted 16 putative cationic and amphipathic anticancer peptides with diverse structures from these two peptidome data. These peptides would be promising molecules for new anti-breast cancer drug development.

  11. Prediction of anticancer peptides against MCF-7 breast cancer cells from the peptidomes of Achatina fulica mucus fractions.

    E-Kobon, Teerasak; Thongararm, Pennapa; Roytrakul, Sittiruk; Meesuk, Ladda; Chumnanpuen, Pramote

    2016-01-01

    Several reports have shown antimicrobial and anticancer activities of mucous glycoproteins extracted from the giant African snail Achatina fulica. Anticancer properties of the snail mucous peptides remain incompletely revealed. The aim of this study was to predict anticancer peptides from A. fulica mucus. Two of HPLC-separated mucous fractions (F2 and F5) showed in vitro cytotoxicity against the breast cancer cell line (MCF-7) and normal epithelium cell line (Vero). According to the mass spectrometric analysis, 404 and 424 peptides from the F2 and F5 fractions were identified. Our comprehensive bioinformatics workflow predicted 16 putative cationic and amphipathic anticancer peptides with diverse structures from these two peptidome data. These peptides would be promising molecules for new anti-breast cancer drug development.

  12. Graphene as a nanocarrier for tamoxifen induces apoptosis in transformed cancer cell lines of different origins.

    Misra, Santosh K; Kondaiah, Paturu; Bhattacharya, Santanu; Rao, C N R

    2012-01-09

    A cationic amphiphile, cholest-5en-3β-oxyethyl pyridinium bromide (PY(+) -Chol), is able to efficiently disperse exfoliated graphene (GR) in water by the physical adsorption of PY(+) -Chol on the surface of GR to form stable, dark aqueous suspensions at room temperature. The GR-PY(+) -Chol suspension can then be used to solubilize Tamoxifen Citrate (TmC), a breast cancer drug, in water. The resulting TmC-GR-PY(+) -Chol is stable for a long time without any precipitation. Fluorescence emission and UV absorption spectra indicate the existence of noncovalent interactions between TmC, GR, and PY(+) -Chol in these suspensions. Electron microscopy shows the existence of segregated GR sheets and TmC 'ribbons' in the composite suspensions. Atomic force microscopy indicates the presence of 'extended' structures of GR-PY(+) -Chol, which grows wider in the presence of TmC. The slow time-dependent release of TmC is noticed in a reconstituted cell culture medium, a property useful as a drug carrier. TmC-GR-PY(+) -Chol selectively enhanced the cell death (apoptosis) of the transformed cancer cells compared to normal cells. This potency is found to be true for a wide range of transformed cancer cells viz. HeLa, A549, ras oncogene-transformed NIH3T3, HepG2, MDA-MB231, MCF-7, and HEK293T compared to the normal cell HEK293 in vitro. Confocal microscopy confirmed the high efficiency of TmC-GR-PY(+) -Chol in delivering the drug to the cells, compared to the suspensions devoid of GR. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Protein kinase D1 stimulates proliferation and enhances tumorigenesis of MCF-7 human breast cancer cells through a MEK/ERK-dependent signaling pathway

    Karam, Manale; Legay, Christine; Auclair, Christian; Ricort, Jean-Marc

    2012-01-01

    Protein kinase D1, PKD1, is a novel serine/threonine kinase whose altered expression and dysregulation in many tumors as well as its activation by several mitogens suggest that this protein could regulate proliferation and tumorigenesis. Nevertheless, the precise signaling pathways used are still unclear and the potential direct role of PKD1 in tumor development and progression has not been yet investigated. In order to clarify the role of PKD1 in cell proliferation and tumorigenesis, we studied the effects of PKD1 overexpression in a human adenocarcinoma breast cancer cell line, MCF-7 cells. We demonstrated that overexpression of PKD1 specifically promotes MCF-7 cell proliferation through accelerating G0/G1 to S phase transition of the cell cycle. Moreover, inhibition of endogenous PKD1 significantly reduced cell proliferation. Taken together, these results clearly strengthen the regulatory role of PKD1 in cell growth. We also demonstrated that overexpression of PKD1 specifically diminished serum- and anchorage-dependence for proliferation and survival in vitro and allowed MCF-7 cells to form tumors in vivo. Thus, all these data highlight the central role of PKD1 in biological processes which are hallmarks of malignant transformation. Analysis of two major signaling pathways implicated in MCF-7 cell proliferation showed that PKD1 overexpression significantly increased ERK1/2 phosphorylation state without affecting Akt phosphorylation. Moreover, PKD1 overexpression-stimulated cell proliferation and anchorage-independent growth were totally impaired by inhibition of the MEK/ERK kinase cascade. However, neither of these effects was affected by blocking the PI 3-kinase/Akt signaling pathway. Thus, the MEK/ERK signaling appears to be a determining pathway mediating the biological effects of PKD1 in MCF-7 cells. Taken together, all these data demonstrate that PKD1 overexpression increases the aggressiveness of MCF-7 breast cancer cells through enhancing their oncogenic

  14. Synthesis and Biological Activity of Diastereomeric and Geometric Analogs of Calcipotriol, PRI-2202 and PRI-2205, Against Human HL-60 Leukemia and MCF-7 Breast Cancer Cells

    Andrzej Kutner

    2013-10-01

    Full Text Available Diastereomeric and geometric analogs of calcipotriol, PRI-2202 and PRI-2205, were synthesized as advanced intermediates from vitamin D C-22 benzothiazoyl sulfones and side-chain aldehydes using our convergent strategy. Calcitriol, calcipotriol (PRI-2201 and tacalcitol (PRI-2191 were used as the reference compounds. Among a series of tested analogs the diastereomeric analog PRI-2202 showed the strongest antiproliferative activity on the human breast cancer cell line MCF-7, whereas the geometric analog PRI-2205 was the weakest. Both analogs were less potent in antiproliferative activity against HL-60 cells compared to the reference compounds. The ability to potentiate antiproliferative effect of cisplatin or doxorubicin against HL-60 cells or that of tamoxifen against the MCF-7 cell line was observed at higher doses of PRI-2202 or PRI-2205 than those of the reference compounds. The proapoptotic activity of tamoxifen, expressed as the diminished mitochondrial membrane potential, as well as the increased phosphatidylserine expression, was partially attenuated by calcitriol, PRI-2191, PRI-2201 and PRI-2205. The treatment of the MCF-7 cells with tamoxifen alone resulted in an increase in VDR expression. Moreover, a further increase in VDR expression was observed when the analogs PRI-2201 or PRI-2205, but not PRI-2191, were used in combination with tamoxifen. This observation could partially explain the potentiation of the antiproliferative effect of tamoxifen by vitamin D analogs.

  15. Synthesis and Biological Activity of Diastereomeric and Geometric Analogs of Calcipotriol, PRI-2202 and PRI-2205, Against Human HL-60 Leukemia and MCF-7 Breast Cancer Cells.

    Milczarek, Magdalena; Chodyński, Michał; Filip-Psurska, Beata; Martowicz, Agnieszka; Krupa, Małgorzata; Krajewski, Krzysztof; Kutner, Andrzej; Wietrzyk, Joanna

    2013-10-31

    Diastereomeric and geometric analogs of calcipotriol, PRI-2202 and PRI-2205, were synthesized as advanced intermediates from vitamin D C-22 benzothiazoyl sulfones and side-chain aldehydes using our convergent strategy. Calcitriol, calcipotriol (PRI-2201) and tacalcitol (PRI-2191) were used as the reference compounds. Among a series of tested analogs the diastereomeric analog PRI-2202 showed the strongest antiproliferative activity on the human breast cancer cell line MCF-7, whereas the geometric analog PRI-2205 was the weakest. Both analogs were less potent in antiproliferative activity against HL-60 cells compared to the reference compounds. The ability to potentiate antiproliferative effect of cisplatin or doxorubicin against HL-60 cells or that of tamoxifen against the MCF-7 cell line was observed at higher doses of PRI-2202 or PRI-2205 than those of the reference compounds. The proapoptotic activity of tamoxifen, expressed as the diminished mitochondrial membrane potential, as well as the increased phosphatidylserine expression, was partially attenuated by calcitriol, PRI-2191, PRI-2201 and PRI-2205. The treatment of the MCF-7 cells with tamoxifen alone resulted in an increase in VDR expression. Moreover, a further increase in VDR expression was observed when the analogs PRI-2201 or PRI-2205, but not PRI-2191, were used in combination with tamoxifen. This observation could partially explain the potentiation of the antiproliferative effect of tamoxifen by vitamin D analogs.

  16. Relationship between autophagy and apoptosis of MCF-7 cells induced by ionizing radiation

    Qi Yali; Zhang Zhenyu; Wang Hongyan; Li Jinhua; Gong Shouliang

    2009-01-01

    Objective: To detect the inhibitory effects of ionizing radiation combined with autophagy and apoptosis inhibitors and inducers on the proliferation of human breast cancer cell line. Methods: MTT and flow cytometry (FCM) were used to detect the surviving and proliferation of MCF-7 cells, which were under 0, 2, 4, 8 and 10 Gy X-ray radiation and different dealing methods 4 Gy, 4 Gy + 3-MA, 4 Gy + rapamycin, 4 Gy + z-VAD-fmk, and the relationship of dose-effects and time-effects was analyzed. Results: With the increase of irradiation doses (4, 8 and 10 Gy) and the elongation of irradiation time (48 and 72 h), the inhibitory rates of the proliferation of breast cancer cells were increased, there were significant differences between various groups (P<0.05 or P<0.01). The inhibitory rates of the proliferation of breast cancer cells in 4 Gy+3-MA or 4 Gy+ z-VAD-fmk groups were significantly different from those in 4Gy+rapamycin group (P<0.05 or P<0.01), and there were significant differences after treated for 24, 48 and 72 h between various groups (P<0.05 or P<0.01). Conclusion: Ionizing radiation in combination with autophagy inducer could induced the autophagy in human breast cancer cells and promote the apoptosis; the ionizing radiation in combination with autophagy inhibitor or apoptosis inhibitor could inhibit the apoptosis. Thus, ionizing radiation can induce the autophagy in human breast cancer cells, and promote the apoptosis. (authors)

  17. The Signaling Cascades of Ginkgolide B-Induced Apoptosis in MCF-7 Breast Cancer Cells

    Wen-Hsiung Chan

    2007-11-01

    Full Text Available Ginkgolide B, the major active component of Ginkgo biloba extracts, can bothstimulate and inhibit apoptotic signaling. Here, we demonstrate that ginkgolide B caninduce the production of reactive oxygen species in MCF-7 breast cancer cells, leading toan increase in the intracellular concentrations of cytoplasmic free Ca2+ and nitric oxide(NO, loss of mitochondrial membrane potential (MMP, activation of caspase-9 and -3,and increase the mRNA expression levels of p53 and p21, which are known to be involvedin apoptotic signaling. In addition, prevention of ROS generation by pretreatment withN-acetyl cysteine (NAC could effectively block intracellular Ca2+ concentrationsincreases and apoptosis in ginkgolide B-treated MCF-7 cells. Moreover, pretreatment withnitric oxide (NO scavengers could inhibit ginkgolide B-induced MMP change andsequent apoptotic processes. Overall, our results signify that both ROS and NO playedimportant roles in ginkgolide B-induced apoptosis of MCF-7 cells. Based on these studyresults, we propose a model for ginkgolide B-induced cell apoptosis signaling cascades inMCF-7 cells.

  18. Inhibitory effects and molecular mechanisms of tetrahydrocurcumin against human breast cancer MCF-7 cells

    Xiao Han

    2016-02-01

    Full Text Available Background: Tetrahydrocurcumin (THC, an active metabolite of curcumin, has been reported to have similar biological effects to curcumin, but the mechanism of the antitumor activity of THC is still unclear. Methods: The present study was to investigate the antitumor effects and mechanism of THC in human breast cancer MCF-7 cells using the methods of MTT assay, LDH assay, flow cytometry analysis, and western blot assay. Results: THC was found to have markedly cytotoxic effect and antiproliferative activity against MCF-7 cells in a dose-dependent manner with the IC50 for 24 h of 107.8 μM. Flow cytometry analysis revealed that THC mediated the cell-cycle arrest at G0/G1 phase, and 32.8% of MCF-7 cells entered the early phase of apoptosis at 100 μM for 24 h. THC also dose-dependently led to apoptosis in MCF-7 cells via the mitochondrial pathway, as evidenced by the activation of caspase-3 and caspase-9, the elevation of intracellular ROS, a decrease in Bcl-2 and PARP expression, and an increase in Bax expression. Meanwhile, cytochrome C was released to cytosol and the loss of mitochondria membrane potential (Δψm was observed after THC treatment. Conclusion: THC is an excellent source of chemopreventive agents in the treatment of breast cancer and has excellent potential to be explored as antitumor precursor compound.

  19. Rapid activation of ERK1/2 and AKT in human breast cancer cells by cadmium

    Liu Zhiwei; Yu Xinyuan; Shaikh, Zahir A.

    2008-01-01

    Cadmium (Cd), an endocrine disruptor, can induce a variety of signaling events including the activation of ERK1/2 and AKT. In this study, the involvement of estrogen receptors (ER) in these events was evaluated in three human breast caner cell lines, MCF-7, MDA-MB-231, and SK-BR-3. The Cd-induced signal activation patterns in the three cell lines mimicked those exhibited in response to 17β-estradiol. Specifically, treatment of MCF-7 cells, that express ERα, ERβ and GPR30, to 0.5-10 μM Cd for only 2.5 min resulted in transient phosphorylation of ERK1/2. Cd also triggered a gradual increase and sustained activation of AKT during the 60 min treatment period. In SK-BR-3 cells, that express only GPR30, Cd also caused a transient activation of ERK1/2, but not of AKT. In contrast, in MDA-MB-231 cells, that express only ERβ, Cd was unable to cause rapid activation of either ERK1/2 or AKT. A transient phosphorylation of ERα was also observed within 2.5 min of Cd exposure in the MCF-7 cells. While the estrogen receptor antagonist, ICI 182,780, did not prevent the effect of Cd on these signals, specific siRNA against hERα significantly reduced Cd-induced activation of ERK1/2 and completely blocked the activation of AKT. It is concluded that Cd, like estradiol, can cause rapid activation of ERK1/2 and AKT and that these signaling events are mediated by possible interaction with membrane ERα and GPR30, but not ERβ

  20. Dietary administration of the licorice flavonoid isoliquiritigenin deters the growth of MCF-7 cells overexpressing aromatase.

    Ye, Lan; Gho, Wai M; Chan, Franky L; Chen, Shiuan; Leung, Lai K

    2009-03-01

    Licorice is the sweet-tasting rhizomes of a bean plant and is quite commonly used in Western countries for culinary purposes, while it is a medicinal herb in China. Many flavonoids have been isolated from licorice, and their pharmacological properties may be applicable in preventive medicine. Overexposure to estrogen has been implicated in the etiology of breast cancer, and cytochrome P450 (CYP) 19 enzyme, or aromatase, catalyzes the rate-limiting reaction. Phytocompounds that are able to inhibit this enzyme may potentially suppress breast cancer development. In the present study the licorice flavonoid isoliquiritigenin (ILN) was shown to be an aromatase inhibitor in recombinant protein and MCF-7 cells stably transfected with CYP19 (MCF-7aro). ILN displayed a K(i) value of around 3 muM, and it also blocked the MCF-7aro cell growth pertaining to the enzyme activity in vitro. Subsequently, the compound administered in diet was given to ovariectomized athymic mice transplanted with MCF-7aro cells. This mouse model is widely accepted for studying postmenopausal breast cancer. The phytochemical significantly deterred the xenograft growth without affecting the body weight. Subsequently, the flavonoid's effect on CYP19 transcriptional control in vitro was also investigated. At the mRNA level, ILN could also suppress the expression in wild-type MCF-7 cells. Reporter gene assay and real-time PCR verified that the transactivity of CYP19 driven by promoters I.3 and II was suppressed in these cells. Deactivation of C/EBP could be the underlying molecular mechanism. Our study demonstrated that ILN was an inhibitor of aromatase and a potential chemopreventive agent against breast cancer.

  1. Triptolide induces lysosomal-mediated programmed cell death in MCF-7 breast cancer cells

    Owa C

    2013-09-01

    Full Text Available Chie Owa, Michael E Messina Jr, Reginald HalabyDepartment of Biology, Montclair State University, Montclair, NJ, USABackground: Breast cancer is a major cause of death; in fact, it is the most common type, in order of the number of global deaths, of cancer in women worldwide. This research seeks to investigate how triptolide, an extract from the Chinese herb Tripterygium wilfordii Hook F, induces apoptosis in MCF-7 human breast cancer cells. Accumulating evidence suggests a role for lysosomal proteases in the activation of apoptosis. However, there is also some controversy regarding the direct participation of lysosomal proteases in activation of key apoptosis-related caspases and release of mitochondrial cytochrome c. In the present study, we demonstrate that triptolide induces an atypical, lysosomal-mediated apoptotic cell death in MCF-7 cells because they lack caspase-3.Methods: MCF-7 cell death was characterized via cellular morphology, chromatin condensation, 3-(4,5-dimethylthiazol-2-yl-2,5-diphenyltetrazolium bromide colorimetric cell growth inhibition assay and the expression levels of proapoptotic proteins. Acridine orange and LysoTracker® staining were performed to visualize lysosomes. Lysosomal enzymatic activity was monitored using an acid phosphatase assay and western blotting of cathepsin B protein levels in the cytosolic fraction, which showed increased enzymatic activity in drug-treated cells.Results: These experiments suggest that triptolide-treated MCF-7 cells undergo atypical apoptosis and that, during the early stages, lysosomal enzymes leak into the cytosol, indicating lysosomal membrane permeability.Conclusion: Our results suggest that further studies are warranted to investigate triptolide's potential as an anticancer therapeutic agent.Keywords: triptolide, MCF-7 breast cancer cells, apoptosis, lysosomes, lysosomal membrane permeabilization (LMP

  2. The Study of Apoptotic Effect of p-Coumaric Acid on Breast Cancer Cells MCF-7

    M Kolahi

    2016-06-01

    Full Text Available Introduction: Polyphenolic compounds have anti proliferative and induced apoptotic features on cancer cells. p-Coumaric acid can be abundantly found in fruits, vegetables, plant production and honey. .  Breast cancer is the most frequently diagnosed cancer among women in the world. This study aimed to investigate the effect and mechanism of p- coumaric acid on apoptosis of MCF-7 breast cancer cells. Methods: In order to study appoptic effect of p- coumaric acid, MCF-7 breast cancer cells were treated with different concentrations of p- coumaric acid (10, 37, 70, 150 and 300 mM for 24 h. Cell viability was determined using MTT assay. Apoptosis markers including phosphatidylserine exposure at the outer leaflet of the plasma membrane were measured using flow cytometery for Annexin V affinity. Results: Cell viability of MCF-7 cells was decreased with increasing of p- coumaric acid concentration. Maximal effect of p- coumaric acid was observed in cells that treated with 300 mM for 24h (p< 0.05. Viability assay showed that the IC50 of p- coumaric acid in MCF-7 cells was about 40 mM. p- coumaric acid at dose of 300 mM significantly increased the late apoptotic cells with Annexin V+ and propium iodide (PI+ features after 24 h treatment. Conclusion: The results of this study showed that p- coumaric acid had effective appoptic activity against MCF-7 cells. The results can be helpful in understanding the anticancer mechanism of p- coumaric acid and using it was suggested as an alternative or complementary drug in cancer chemotherapy.

  3. Biocompatibility of magnetic Fe3O4 nanoparticles and their cytotoxic effect on MCF-7 cells

    Chen DZ

    2012-09-01

    in mouse fibroblast (L-929 cell lines was between Grade 0 to Grade 1, and that the material lacked hemolysis activity. The acute toxicity (LD50 was 8.39 g/kg. Micronucleus testing showed no genotoxic effects. Pathomorphology and blood biochemistry testing demonstrated that the Fe3O4 nanoparticles had no effect on the main organs and blood biochemistry in a rabbit model. MTT and flow cytometry assays revealed that Fe3O4 nano magnetofluid thermotherapy inhibited MCF-7 cell proliferation, and its inhibitory effect was dose-dependent according to the Fe3O4 nano magnetofluid concentration.Conclusion: The Fe3O4 nanoparticles prepared in this study have good biocompatibility and are suitable for further application in tumor hyperthermia.Keywords: characterization, biocompatibility, Fe3O4, magnetic nanoparticles, hyperthermia

  4. Up-regulation of PI3K/Akt signaling by 17β-estradiol through activation of estrogen receptor-α, but not estrogen receptor-β, and stimulates cell growth in breast cancer cells

    Lee, Young-Rae; Park, Jinny; Yu, Hong-Nu; Kim, Jong-Suk; Youn, Hyun Jo; Jung, Sung Hoo

    2005-01-01

    Estrogen stimulates cell proliferation in breast cancer. The biological effects of estrogen are mediated through two intracellular receptors, estrogen receptor-α (ERα) and estrogen receptor-β (ERβ). However, the role of ERs in the proliferative action of estrogen is not well established. Recently, it has been known that ER activates phosphatidylinositol-3-OH kinase (PI3K) through binding with the p85 regulatory subunit of PI3K. Therefore, possible mechanisms may include ER-mediated phosphoinositide metabolism with subsequent formation of phosphatidylinositol-3,4,5-trisphosphate (PIP 3 ), which is generated from phosphatidylinositol 4,5-bisphosphate via PI3K activation. The present study demonstrates that 17β-estradiol (E2) up-regulates PI3K in an ERα-dependent manner, but not ERβ, and stimulates cell growth in breast cancer cells. In order to study this phenomenon, we have treated ERα-positive MCF-7 cells and ERα-negative MDA-MB-231 cells with 10 nM E2. Treatment of MCF-7 cells with E2 resulted in a marked increase in PI3K (p85) expression, which paralleled an increase in phospho-Akt (Ser-473) and PIP 3 level. These observations also correlated with an increased activity to E2-induced cell proliferation. However, these effects of E2 on breast cancer cells were not observed in the MDA-MB-231 cell line, indicating that the E2-mediated up-regulation of PI3K/Akt pathway is ERα-dependent. These results suggest that estrogen activates PI3K/Akt signaling through ERα-dependent mechanism in MCF-7 cells

  5. Breast carcinoma cells modulate the chemoattractive activity of human bone marrow-derived mesenchymal stromal cells by interfering with CXCL12.

    Wobus, Manja; List, Catrin; Dittrich, Tobias; Dhawan, Abhishek; Duryagina, Regina; Arabanian, Laleh S; Kast, Karin; Wimberger, Pauline; Stiehler, Maik; Hofbauer, Lorenz C; Jakob, Franz; Ehninger, Gerhard; Anastassiadis, Konstantinos; Bornhäuser, Martin

    2015-01-01

    We investigated whether breast tumor cells can modulate the function of mesenchymal stromal cells (MSCs) with a special emphasis on their chemoattractive activity towards hematopoietic stem and progenitor cells (HSPCs). Primary MSCs as well as a MSC line (SCP-1) were cocultured with primary breast cancer cells, MCF-7, MDA-MB231 breast carcinoma or MCF-10A non-malignant breast epithelial cells or their conditioned medium. In addition, the frequency of circulating clonogenic hematopoietic progenitors was determined in 78 patients with breast cancer and compared with healthy controls. Gene expression analysis of SCP-1 cells cultured with MCF-7 medium revealed CXCL12 (SDF-1) as one of the most significantly downregulated genes. Supernatant from both MCF-7 and MDA-MB231 reduced the CXCL12 promoter activity in SCP-1 cells to 77% and 47%, respectively. Moreover, the CXCL12 mRNA and protein levels were significantly reduced. As functional consequence of lower CXCL12 levels, we detected a decreased trans-well migration of HSPCs towards MSC/tumor cell cocultures or conditioned medium. The specificity of this effect was confirmed by blocking studies with the CXCR4 antagonist AMD3100. Downregulation of SP1 and increased miR-23a levels in MSCs after contact with tumor cell medium as well as enhanced TGFβ1 expression were identified as potential molecular regulators of CXCL12 activity in MSCs. Moreover, we observed a significantly higher frequency of circulating colony-forming hematopoietic progenitors in patients with breast cancer compared with healthy controls. Our in vitro results propose a potential new mechanism by which disseminated tumor cells in the bone marrow may interfere with hematopoiesis by modulating CXCL12 in protected niches. © 2014 UICC.

  6. Damaged DNA binding protein 2 plays a role in breast cancer cell growth.

    Zilal Kattan

    Full Text Available The Damaged DNA binding protein 2 (DDB2, is involved in nucleotide excision repair as well as in other biological processes in normal cells, including transcription and cell cycle regulation. Loss of DDB2 function may be related to tumor susceptibility. However, hypothesis of this study was that DDB2 could play a role in breast cancer cell growth, resulting in its well known interaction with the proliferative marker E2F1 in breast neoplasia. DDB2 gene was overexpressed in estrogen receptor (ER-positive (MCF-7 and T47D, but not in ER-negative breast cancer (MDA-MB231 and SKBR3 or normal mammary epithelial cell lines. In addition, DDB2 expression was significantly (3.0-fold higher in ER-positive than in ER-negative tumor samples (P = 0.0208 from 16 patients with breast carcinoma. Knockdown of DDB2 by small interfering RNA in MCF-7 cells caused a decrease in cancer cell growth and colony formation. Inversely, introduction of the DDB2 gene into MDA-MB231 cells stimulated growth and colony formation. Cell cycle distribution and 5 Bromodeoxyuridine incorporation by flow cytometry analysis showed that the growth-inhibiting effect of DDB2 knockdown was the consequence of a delayed G1/S transition and a slowed progression through the S phase of MCF-7 cells. These results were supported by a strong decrease in the expression of S phase markers (Proliferating Cell Nuclear Antigen, cyclin E and dihydrofolate reductase. These findings demonstrate for the first time that DDB2 can play a role as oncogene and may become a promising candidate as a predictive marker in breast cancer.

  7. Comprehensive Analysis of the Chemical Composition and In Vitro Cytotoxic Mechanisms of Pallines Spinosa Flower and Leaf Essential Oils Against Breast Cancer Cells

    Ayman M Saleh

    2017-08-01

    Full Text Available Background/Aims: In our quest for new natural anticancer agents, we studied the cytotoxicity of the essential oils extracted from flowers and leaves of Pallines spinosa. Methods: The essential oils were extracted by hydrodistillation and solid phase microextraction (SPME from flowers and leaves of the plant and their composition was determined by GC/GC-MS. The cytotoxicity of the oils was evaluated against MCF-7 and MDA-MB-231 breast adenocarcinomas, and the non-cancerous MCF-10-2A cells, using a flow cytometry-based assay Apoptosis was evaluated by flow cytometry, nuclear staining, caspases activation, and Western blotting techniques, and cell cycle by measuring DNA contents. Results: The hydrodistilled flower oil contained mainly sesquiterpenes (96.39%, while the leaf sample was dominated by oxygenated-sesquiterpenes (51.60% and sesquiterpene-hydrocarbons (34.06%. In contrast, the SPME oil contained mainly monoterpene-hydrocarbons (44.09% and sesquiterpene-hydrocarbons (34.15% in the flower and leaf samples, respectively. The cytotoxicity of the flower oil against MCF-7 (IC50 0.25 ± 0.03 µg/mL and MDA-MB-231 (IC50 0.21 ± 0.03 µg/mL was much stronger than the leaf oil (IC50 2.4 ± 0.5 µg/mL and 1.5 ± 0.1 µg/mL, respectively. The toxicity of the flower oil was ∼5 to 8-times less in normal MCF-10-2A (IC50 1.3 ± 0.2 µg/mL and blood mononuclear cells (2.80 ± 0.45 µg/mL as compared to breast and hematological cancer cells, respectively. Both oils induced a caspase-dependent and -independent apoptosis in MCF-7 and MDA-MB-231 cells, and altered the levels of Bcl-2 and Bax proteins. In addition, the oils arrested cell cycle in both cancer cell lines at G0/G1 phase by modulating the expression of cyclin D1, CDK4 and p21 proteins. Conclusion: The cytotoxicity of P. spinosa oils were mediated by apoptosis and cell cycle arrest, suggesting the potential use of their bioactive compounds as natural anticancer compounds.

  8. LncRNA Taurine-Upregulated Gene 1 Promotes Cell Proliferation by Inhibiting MicroRNA-9 in MCF-7 Cells.

    Zhao, Xiao-Bo; Ren, Guo-Sheng

    2016-12-01

    This study was designed to investigate the role of taurine-upregulated gene 1 ( TUG1 ) in MCF-7 breast cancer cells and the molecular mechanism involved in the regulation of microRNA-9 (miR-9). The expression of TUG1 in breast cancer tissues and cells was evaluated using quantitative reverse transcription polymerase chain reaction. Cell viability was examined using a 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide (MTT) assay; cell cycle progression and apoptosis were analyzed using flow cytometry. A dual luciferase reporter assay was used to detect the relationship between TUG1 and miR-9. The expression of methylenetetrahydrofolate dehydrogenase 2 (MTHFD2) was measured by western blot. Higher expression of TUG1 was observed in breast cancer tissues and cell lines than in the corresponding controls. TUG1 knockdown reduced proliferation, suppressed cell cycle progression, and promoted apoptosis of MCF-7 cells. The dual luciferase reporter assay showed that TUG1 could negatively regulate the expression of miR-9. MiR-9 inhibition abrogated the effect of TUG1 knockdown on the proliferation, cell cycle progression, and apoptosis of MCF-7 cells. TUG1 positively regulated the expression of MTHFD2 in breast cancer cells. TUG1 knockdown was significantly associated with decreased cell proliferation and it promoted apoptosis of breast cancer cells through the regulation of miR-9.

  9. Effect on growth and cell cycle kinetics of estradiol and tamoxifen on MCF-7 human breast cancer cells grown in vitro and in nude mice

    Brünner, N; Bronzert, D; Vindeløv, L L

    1989-01-01

    The effects of estradiol and tamoxifen (TAM) on the estrogen-dependent human breast cancer cell line MCF-7 grown in vitro and in nude mice were compared. The effect on growth was determined by cell number in vitro and by tumor growth curves in nude mice. The effects on the cell cycle kinetics were...... determined by repeated flow cytometric DNA analyses in vitro and in vivo and by the technique of labeled mitosis in nude mouse-grown tumors. Under in vitro conditions, estradiol induced a pronounced increase in S-phase fraction and cell number. TAM inhibited growth of MCF-7 cells with a concomitant increase...... in the G1 phase from 60% to 75%. In nude mice, MCF-7 only formed tumors in estradiol-supplemented mice. No differences were observed in growth and cell kinetics between 0.1 and 1.0 mg of estradiol. Daily i.p. injections of TAM resulted in tumor growth inhibition with shrinkage of tumors. The flow...

  10. Effects of OK-432 (picibanil) on the estrogen receptors of MCF-7 cells and potentiation of antiproliferative effects of tamoxifen in combination with OK-432.

    Aoyagi, H; Iino, Y; Takeo, T; Horii, Y; Morishita, Y; Horiuchi, R

    1997-01-01

    OK-432 (picibanil), a streptococcal preparation, has a strong biological response modifier (BRM) function and is expected to produce clinical improvement and prolongation of survival in treated cancer patients in Japan. We were interested in whether OK-432 augments estrogen receptor (ER) levels in breast cancer. To investigate the effect of the BRMs on cellular growth and the characteristics of ER and progesterone receptors (PgR) in the human breast cancer cell line MCF-7, we used OK-432, Krestin (PSK), a protein-bound polysaccharide extracted from Coriolus versicolor, and lentinan, a fungal branched (1...3)-beta-D-glycan. OK432 and PSK dose dependently inhibited DNA synthesis of MCF-7 cells, and the 50% inhibitory concentrations of OK-432 and PSK were 1.2 KE (klinische Einheit, clinical unit)/ml and 200 micrograms/ml, respectively. Lentinan showed no direct anticancer effect in vitro. We found that OK-432 induced a 2-fold increase in ER levels in MCF-7 cells at 0.005 KE/ml, but not in PgR. Lentinan and low-dose PSK did not change ER or PgR levels, but high-dose PSK decreased ER and PgR. We also studied the combined effect of OK-432 and antiestrogens, tamoxifen (TAM) and DP-TAT-59. The combined treatment with OK-432 and TAM showed an additive inhibitory effect on MCF-7 cells. These results suggest that OK-432 may augment the therapeutic effect of TAM in breast cancer.

  11. PEA3activates CXCL12transcription in MCF-7breast cancer cells%PEA3 activates CXCL12 transcription in MCF-7 breast cancer cells

    CHEN Li; CHEN Bo-bin; LI Jun-jie; JIN Wei; SHAO Zhi-min

    2011-01-01

    Objective To explore the activity of PEA3 ( polyomavirus enhancer activator 3 ) on CXCL12 (Chemokine CXC motif ligand 12) transcription and to reveal the role of PEA3 involved in CXCL12-mediated metastasis and angiogenesis in breast cancer. Methods Methods such as cell transfection, ChIP assay (chromatin immunoprecipitation ), and siRNA (small interfering RNA) were applied to demonstrate and confirm the interaction between PEA3 and CXCL12. Results Over-expression of PEA3 could increase the CXCL12 mRNA level and the CXCL12 promoter activity in human MCF-7 breast cancer cells. ChIP assay demonstrated that PEA3 could bind to the CXCL12 promoter in the cells transfected with PEA3 expression vector. PEA3 siRNA decreased CXCL12 promoter activity and the binding of PEA3 to the CXCL12 promoter in MCF-7 cells. Conclusions PEA3 could activate CXCL12 promoter transcription. It may be a potential mechanism of tumor angiogenesis and metastasis regarding of PEA3 and CXCL12.

  12. Dendrobium candidum inhibits MCF-7 cells proliferation by inducing cell cycle arrest at G2/M phase and regulating key biomarkers

    Sun J

    2015-12-01

    Full Text Available Jing Sun,1 Yidi Guo,1 Xueqi Fu,1–3 Yongsen Wang,1 Ye Liu,1 Bo Huo,1 Jun Sheng,4 Xin Hu1–3 1School of Life Sciences, 2Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, 3National Engineering Laboratory of AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, 4Yunnan Research Centre for Advance Tea Processing, Yunnan Agricultural University, Kunming, People’s Republic of China Background: Breast cancer is one of the most frequently occurring cancers in women. In recent years, Dendrobium candidum has played a part in antihyperthyroidism and anticancer drugs. This study aims to examine the antitumor effect of D. candidum on breast cancer. Methods: Human breast cancer cell line MCF-7 and normal breast epithelial cell line MCF10A were used to observe the effects of D. candidum treatment on human breast cancer. 3-(4,5-dimethylthiazol-2-yl-2,5-diphenyltetrazolium bromide (MTT assay was employed to examine the cell proliferation of the MCF-7 and MCF10A cells. Western blot analysis and reverse transcription polymerase chain reaction were used to detect the key molecules and biomarkers in breast cancer pathology. Cell cycle was analyzed by using Becton Dickinson FACScan cytofluorometer. Results: The results indicated that D. candidum significantly decreased cell viability at different concentrations compared to the control group (P<0.05. D. candidum-treated MCF-7 cells in the G2/M phase was significantly increased compared to the control group (P<0.05. The messenger RNA levels of estrogen receptor alpha, IGFBP2, IGFBP4, and GATA3 were significantly decreased, and the messenger RNA and protein levels of ELF5, p53, p21, p18, CDH1, CDH2, and p12 were significantly increased, compared to the control group (P<0.05. The protein levels of estrogen receptor alpha, PGR, GATA3, and Ki67 were significantly decreased and the protein levels of p53 and ELF5 were significantly increased compared to the control group (P

  13. THE CYTOTOXIC EFFECTS OF LOW INTENSITY VISIBLE AND INFRARED LIGHT ON HUMAN BREAST CANCER (MCF7 CELLS

    P Peidaee

    2013-03-01

    Full Text Available A concept of using low intensity light therapy (LILT as an alternative approach to cancer treatment is at early stages of development; while the therapeutic effects of LILT as a non-invasive treatment modality for localized joint and soft tissue wound healing are widely corroborated. The LEDs-based exposure system was designed and constructed to irradiate the selected cancer and normal cells and evaluate the biological effects induced by light exposures in visible and infrared light range. In this study, human breast cancer (MCF7 cells and human epidermal melanocytes (HEM cells (control were exposed to selected far infrared light (3400nm, 3600nm, 3800nm, 3900nm, 4100nm and 4300nm and visible and near infrared wavelengths (466nm, 585nm, 626nm, 810nm, 850nm and 950nm. The optical intensities of LEDs used for exposures were in the range of 15µW to 30µW. Cellular morphological changes of exposed and sham-exposed cells were evaluated using light microscopy. The cytotoxic effects of these low intensity light exposures on human cancer and normal cell lines were quantitatively determined by Lactate dehydrogenase (LDH cytotoxic activity and PrestoBlueTM cell viability assays. Findings reveal that far-infrared exposures were able to reduce cell viability of MCF7 cells as measured by increased LDH release activity and PrestoBlueTM assays. Further investigation of the effects of light irradiation on different types of cancer cells, study of possible signaling pathways affected by electromagnetic radiation (EMR and in vivo experimentation are required in order to draw a firm conclusion about the efficacy of low intensity light as an alternative non-invasive cancer treatment.

  14. Enhanced Metastatic Recurrence Via Lymphatic Trafficking of a High-Metastatic Variant of Human Triple-Negative Breast Cancer After Surgical Resection in Orthotopic Nude Mouse Models.

    Yano, Shuya; Takehara, Kiyoto; Tazawa, Hiroshi; Kishimoto, Hiroyuki; Kagawa, Shunsuke; Bouvet, Michael; Fujiwara, Toshiyoshi; Hoffman, Robert M

    2017-03-01

    We previously developed and characterized a highly invasive and metastatic triple-negative breast cancer (TNBC) variant by serial orthotopic implantation of MDA-MB-231 human breast cancer cells in nude mice. Eventually, a highly invasive and metastatic variant of human TNBC was isolated after lymph node metastases was harvested and orthotopically re-implanted into the mammary gland of nude mice for two cycles. The variant thereby isolated is highly invasive in the mammary gland and metastasized to lymph nodes in 10 of 12 mice compared to 2 of 12 of the parental cell line. In the present report, we observed that high-metastatic MDA-MB-231H-RFP cells produced significantly larger subcutaneous tumors compared with parental MDA-MB-231 cells in nude mice. Extensive lymphatic trafficking by high-metastatic MDA-MB-231 cells was also observed. High-metastatic MDA-MB-231 developed larger recurrent tumors 2 weeks after tumor resection compared with tumors that were not resected in orthotopic models. Surgical resection of the MDA-MB-231 high-metastatic variant primary tumor in orthotopic models also resulted in rapid and enhanced lymphatic trafficking of residual cancer cells and extensive lymph node and lung metastasis that did not occur in the non-surgical mice. These results suggest that surgical resection of high metastatic TNBC can greatly increase the malignancy of residual cancer. J. Cell. Biochem. 118: 559-569, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  15. Localization of thymosin ß10 in breast cancer cells

    Mælan, A.ase Elisabeth; Rasmussen, Trine Kring; Larsson, Lars-Inge

    2007-01-01

    as in cell motility and spreading. We have studied the distribution of endogenously expressed thymosin ß10 in cultured human breast cancer cell lines. Both unperturbed monolayer cultures and wound-healing models were examined using double-staining for thymosin ß10 and polymerized (F-) actin. Our findings...... show that thymosin ß10 is expressed in all three-cancer cell lines (SK-BR-3, MCF-7 and MDA-MB-231) studied. No or little staining was detected in confluent cells, whereas strong staining occurred in semiconfluent cells and in cells populating monolayer wounds. Importantly, the distribution of staining...... for thymosin ß10 was inverse of staining for F-actin. These data support a physiological role for thymosin ß10 in sequestration of G-actin as well as in cancer cell motility....

  16. Tumour-Derived Interleukin-1 Beta Induces Pro-inflammatory Response in Human Mesenchymal Stem Cells

    Alajez, Nehad M; Al-toub, Mashael; Almusa, Abdulaziz

    ’ secreted factors as represented by a panel of human cancer cell lines (breast (MCF7 and MDA-MB-231); prostate (PC-3); lung (NCI-H522); colon (HT-29) and head & neck (FaDu)) on the biological characteristics of MSCs. Background Over the past several years, significant amount of research has emerged......, the goal of this study was to assess the cellular and molecular changes in MSCs in response to secreted factors present in conditioned media (CM) from a panel of human tumor cell lines covering a spectrum of human cancers (Breast, Prostate, Lung, colon, and head and neck). Research Morphological changes...... with bipolar processes. In association with phenotypic changes, genome-wide gene expression and bioinformatics analysis revealed an enhanced pro-inflammatory response of those MSCs. Pharmacological inhibitions of FAK and MAPKK severely impaired the pro-inflammatory response of MSCs to tumor CM (~80-99%, and 55...

  17. Growth inhibition of human breast cancer cells and down-regulation of ODC1 and ADA genes by Nepeta binaloudensis

    Akbar Safipour Afshar

    Full Text Available ABSTRACT Nepeta binaloudensis Jamzad, Lamiaceae, is a rare medicinal plant endemic to Iran. In spite of many studies about the chemical constituents and antibacterial effects of this species, no report has been provided about its cytotoxic and anticancer activities. In this study we have evaluated the effects of EtOH 70%, hexane and aqueous extracts of N. binaloudensis on the cell proliferation and n-hexane extract on the expression of adenosine deaminase and ornithine decarboxylase 1 genes in breast cancer cell lines (MCF-7, MDA-MB-231 compared to non-cancer line (MCF-10A. The cell lines were subjected to increasing doses of the extracts ranging from 10 to 320 µg/ml. Cell viability was quantified by MTS assay. Expression of adenosine deaminase and ornithine decarboxylase 1 genes was analyzed by real time PCR. N. binaloudensis inhibited the growth of malignant cells in a time and dose-dependent manner. Among extracts of N. binaloudensis, the hexane extract was found to be more toxic compared to other extracts. Results showed a marked decrease in the expression of ornithine decarboxylase 1 and adenosine deaminase genes in cancer cell lines. At 60 µg/ml concentration of N. binaloudensis hexane extract ornithine decarboxylase 1 and adenosine deaminase mRNA expression were reduced 4.9 fold and 3.5 fold in MCF-7 cell line and 3.6 fold and 2.6 fold in MDA-MB-231 cell line compared to control, respectively. The result of our study highlights the potential influences of N. binaloudensis hexane extract on ornithine decarboxylase 1 and adenosine deaminase genes expression in breast cancer cells and its relation to inhibition of cancer cell growth.

  18. Breast cancer cell behaviors on staged tumorigenesis-mimicking matrices derived from tumor cells at various malignant stages

    Hoshiba, Takashi [Graduate School of Science and Engineering, Yamagata University, 4-3-16 Jonan, Yonezawa, Yamagata 992-8510 (Japan); International Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044 (Japan); Tanaka, Masaru, E-mail: tanaka@yz.yamagata-u.ac.jp [Graduate School of Science and Engineering, Yamagata University, 4-3-16 Jonan, Yonezawa, Yamagata 992-8510 (Japan)

    2013-09-20

    Highlights: •Models mimicking ECM in tumor with different malignancy were prepared. •Cancer cell proliferation was suppressed on benign tumor ECM. •Benign tumor cell proliferation was suppressed on cancerous ECM. •Chemoresistance of cancer cell was enhanced on cancerous ECM. -- Abstract: Extracellular matrix (ECM) has been focused to understand tumor progression in addition to the genetic mutation of cancer cells. Here, we prepared “staged tumorigenesis-mimicking matrices” which mimic in vivo ECM in tumor tissue at each malignant stage to understand the roles of ECM in tumor progression. Breast tumor cells, MDA-MB-231 (invasive), MCF-7 (non-invasive), and MCF-10A (benign) cells, were cultured to form their own ECM beneath the cells and formed ECM was prepared as staged tumorigenesis-mimicking matrices by decellularization treatment. Cells showed weak attachment on the matrices derived from MDA-MB-231 cancer cells. The proliferations of MDA-MB-231 and MCF-7 was promoted on the matrices derived from MDA-MB-231 cancer cells whereas MCF-10A cell proliferation was not promoted. MCF-10A cell proliferation was promoted on the matrices derived from MCF-10A cells. Chemoresistance of MDA-MB-231 cells against 5-fluorouracil increased on only matrices derived from MDA-MB-231 cells. Our results showed that the cells showed different behaviors on staged tumorigenesis-mimicking matrices according to the malignancy of cell sources for ECM preparation. Therefore, staged tumorigenesis-mimicking matrices might be a useful in vitro ECM models to investigate the roles of ECM in tumor progression.

  19. Breast cancer cell behaviors on staged tumorigenesis-mimicking matrices derived from tumor cells at various malignant stages

    Hoshiba, Takashi; Tanaka, Masaru

    2013-01-01

    Highlights: •Models mimicking ECM in tumor with different malignancy were prepared. •Cancer cell proliferation was suppressed on benign tumor ECM. •Benign tumor cell proliferation was suppressed on cancerous ECM. •Chemoresistance of cancer cell was enhanced on cancerous ECM. -- Abstract: Extracellular matrix (ECM) has been focused to understand tumor progression in addition to the genetic mutation of cancer cells. Here, we prepared “staged tumorigenesis-mimicking matrices” which mimic in vivo ECM in tumor tissue at each malignant stage to understand the roles of ECM in tumor progression. Breast tumor cells, MDA-MB-231 (invasive), MCF-7 (non-invasive), and MCF-10A (benign) cells, were cultured to form their own ECM beneath the cells and formed ECM was prepared as staged tumorigenesis-mimicking matrices by decellularization treatment. Cells showed weak attachment on the matrices derived from MDA-MB-231 cancer cells. The proliferations of MDA-MB-231 and MCF-7 was promoted on the matrices derived from MDA-MB-231 cancer cells whereas MCF-10A cell proliferation was not promoted. MCF-10A cell proliferation was promoted on the matrices derived from MCF-10A cells. Chemoresistance of MDA-MB-231 cells against 5-fluorouracil increased on only matrices derived from MDA-MB-231 cells. Our results showed that the cells showed different behaviors on staged tumorigenesis-mimicking matrices according to the malignancy of cell sources for ECM preparation. Therefore, staged tumorigenesis-mimicking matrices might be a useful in vitro ECM models to investigate the roles of ECM in tumor progression

  20. Effects of hydroxyapatite nanoparticles on proliferation and apoptosis of human breast cancer cells (MCF-7)

    Meena, Ramovatar; Kesari, Kavindra Kumar; Rani, Madhu; Paulraj, R.

    2012-01-01

    The study aimed to correlate cell proliferation inhibition with oxidative stress and p53 protein expression in cancerous cells. Hydroxyapatite (HAP) (Ca 10 (PO 4 ) 6 (OH) 2 ) is the essential component of inorganic composition in human bone. It has been found to have obvious inhibitory function on growth of many kinds of tumor cells and its nanoparticle has stronger anti-cancerous effect than macromolecule microparticles. Human breast cancer cells (MCF-7) were cultured and treated with HAP nanoparticles at various concentrations. Cells viability was detected with MTT colorimetric assay. The morphology of the cancerous cells was performed by transmission electron microscopy and the expression of a cell apoptosis related gene (p53) was determined by ELISA assay and flow cytometry (FCM). The intracellular reactive oxygen species (ROS) level in HAP exposed cells was measured by H 2 DCFDA staining. DNA damage was measured by single-cell gel electrophoresis assay. The statistical analysis was done by one way ANOVA. The cellular proliferation inhibition rate was significantly (p < 0.05) increasing in a dose-dependent manner of HAP nanoparticles. Cell apoptotic characters were observed after MCF-7 cells were treated by HAP nanoparticles for 48 h. Moreover, ELISA assay and FCM shows a dose-dependent activation of p53 in MCF-7 cells treated with nanoHAP. These causative factors of the above results may be justified by an overproduction of ROS. In this study, a significant (p < 0.05) increase in the level of intracellular ROS in HAP-treated cells was observed. This study shows that HAP inhibits the growth of human breast cancer MCF-7 cells as well as induces cell apoptosis. This study shows that HAP NPs Induce the production of intracellular reactive oxygen species and activate p53, which may be responsible for DNA damage and cell apoptosis.

  1. Nanotoxicity of cobalt induced by oxidant generation and glutathione depletion in MCF-7 cells.

    Akhtar, Mohd Javed; Ahamed, Maqusood; Alhadlaq, Hisham A; Alshamsan, Aws

    2017-04-01

    There are very few studies regarding the biological activity of cobalt-based nanoparticles (NPs) and, therefore, the possible mechanism behind the biological response of cobalt NPs has not been fully explored. The present study was designed to explore the potential mechanisms of the cytotoxicity of cobalt NPs in human breast cancer (MCF-7) cells. The shape and size of cobalt NPs were characterized by scanning and transmission electron microscopy (SEM and TEM). The crystallinity of NPs was determined by X-ray diffraction (XRD). The dissolution of NPs was measured in phosphate-buffered saline (PBS) and culture media by atomic absorption spectroscopy (AAS). Cytotoxicity parameters, such as [3-(4,5-dimethyl thiazol-2-yl)-2,5-diphenyl tetrazolium bromide] (MTT), neutral red uptake (NRU), and lactate dehydrogenase (LDH) release suggested that cobalt NPs were toxic to MCF-7 cells in a dose-dependent manner (50-200μg/ml). Cobalt NPs also significantly induced reactive oxygen species (ROS) generation, lipid peroxidation (LPO), mitochondrial outer membrane potential loss (MOMP), and activity of caspase-3 enzymes in MCF-7 cells. Moreover, cobalt NPs decreased intracellular antioxidant glutathione (GSH) molecules. The exogenous supply of antioxidant N-acetyl cysteine in cobalt NP-treated cells restored the cellular GSH level and prevented cytotoxicity that was also confirmed by microscopy. Similarly, the addition of buthionine-[S, R]-sulfoximine, which interferes with GSH biosynthesis, potentiated cobalt NP-mediated toxicity. Our data suggested that low solubility cobalt NPs could exert toxicity in MCF-7 cells mainly through cobalt NP dissolution to Co 2+ . Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Assessing oestrogenic effects of brominated flame retardants Hexabromocyclododecane and Tetrabromobisphenol A on MCF-7 cells

    Dorosh, Andriy; Děd, Lukáš; Elzeinová, Fatima; Pěknicová, Jana

    2010-01-01

    Roč. 56, - (2010), s. 35-39 ISSN 0015-5500 R&D Projects: GA MŠk(CZ) 1M06011; GA MŠk(CZ) 2B06151 Institutional research plan: CEZ:AV0Z50520701 Keywords : endocrine disruptors * BRF - brominated flame retardant * MCF-7 cells * TFF1 - trefoil factor Subject RIV: DN - Health Impact of the Environment Quality Impact factor: 0.729, year: 2010

  3. 27-hydroxycholesterol and the expression of three estrogen-sensitive proteins in MCF7 cells.

    Cruz, Pamela; Epuñán, María José; Ramírez, María Eugenia; Torres, Cristian G; Valladares, Luis E; Sierralta, Walter D

    2012-09-01

    The principal aim of this study was to analyze in estrogen receptor-positive MCF7 cells the response of three estrogen-dependent proteins to 27-hydroxycholesterol (27OHC), a major circulating cholesterol metabolite. Immunofluorescence, immunoblotting and immunogold labelling analyses of MCF7 cells exposed for up to 72 h to 2 nM estradiol (E2) or to 2 µM 27OHC demonstrated similar responses in the expression of MnSOD and ERβ compared to the non-stimulated cells. Thus, the results confirm 27OHC's function as a novel selective estrogen receptor modulator (SERM). The epithelial to mesenchymal transition (EMT), observed in MCF7 cells stimulated for longer than 48 h with 2 µM 27OHC, was accompanied by lower immunoreactive levels of nuclear FOXM1 in comparison to E2-treated cells. The results presented in this study are discussed taking into consideration the relationship of hypercholesterolemia, 27OHC production, ROS synthesis and macrophage infiltration, potentially occurring in obese patients with ERα-positive, infiltrated mammary tumors.

  4. Modulation of Tamoxifen Cytotoxicity by Caffeic Acid Phenethyl Ester in MCF-7 Breast Cancer Cells

    Tarek K. Motawi

    2016-01-01

    Full Text Available Although Tamoxifen (TAM is one of the most widely used drugs in managing breast cancer, many women still relapse after long-term therapy. Caffeic acid phenethyl ester (CAPE is a polyphenolic compound present in many medicinal plants and in propolis. The present study examined the effect of CAPE on TAM cytotoxicity in MCF-7 cells. MCF-7 cells were treated with different concentrations of TAM and/or CAPE for 48 h. This novel combination exerted synergistic cytotoxic effects against MCF-7 cells via induction of apoptotic machinery with activation of caspases and DNA fragmentation, along with downregulation of Bcl-2 and Beclin 1 expression levels. However, the mammalian microtubule-associated protein light chain LC 3-II level was unchanged. Vascular endothelial growth factor level was also decreased, whereas levels of glutathione and nitric oxide were increased. In conclusion, CAPE augmented TAM cytotoxicity via multiple mechanisms, providing a novel therapeutic approach for breast cancer treatment that can overcome resistance and lower toxicity. This effect provides a rationale for further investigation of this combination.

  5. Design, synthesis and antibreast cancer MCF-7 cells biological evaluation of heterocyclic analogs of resveratrol.

    Du, Cheng; Dong, Ming-Hui; Ren, Yu-Jie; Jin, Lu; Xu, Cheng

    2017-09-01

    A new series of resveratrol heterocyclic analogs (4a-m) were designed and synthesized, and their inhibitiory effects on MCF-7 cells were evaluated to investigate structure-activity relationship. The effects of these analogs on human breast cancer MCF-7 cells were also determined. Results showed that MCF-7 cells could be inhibited more potently by these analogs than by resveratrol (IC 50  = 80.0 μM). Among the analogs, compounds 4c, 4e, and 4k showed a significantly higher activity (IC 50  = 42.7, 48.1, and 43.4 μM) than resveratrol. Furthermore, the derivatives without additional heterocyclic structure in the 4'-OH position exhibited a more potent activity than that with addition heterocyclic structure. In addition, docking simulation was performed to adequately position compound 4c in a human F 1 -ATPase active site to determine a probable binding model. These heterocyclic analogs could be effective candidates for the chemoprevention of human breast cancer.

  6. Surface enhanced Raman spectroscopy measurements of MCF7 cells adhesion in confined micro-environments

    De Vitis, Stefania

    2015-05-01

    Undoubtedly cells can perceive the external environment, not only from a biochemical point of view with the related signalling pathways, but also from a physical and topographical perspective. In this sense controlled three dimensional micro-structures as well as patterns at the nano-scale can affect and guide the cell evolution and proliferation, due to the fact that the surrounding environment is no longer isotropic (like the flat surfaces of standard cell culturing) but possesses well defined symmetries and anisotropies. In this work regular arrays of silicon micro-pillars with hexagonal arrangement are used as culturing substrates for MCF-7 breast cancer cells. The characteristic size and spacing of the pillars are tens of microns, comparable with MCF-7 cell dimensions and then well suited to induce acceptable external stimuli. It is shown that these cells strongly modify their morphology for adapting themselves to the micro-structured landscape, by means of protrusions from the main body of the cell. Scanning electron microscopy along with both Raman micro-spectroscopy and surface enhanced Raman spectroscopy are used for topographical and biochemical studies of the new cell arrangement. We have revealed that single MCF-7 cells exploit their capability to produce invadopodia, usually generated to invade the neighboring tissue in metastatic activity, for spanning and growing across separate pillars. © 2015 Elsevier Ltd.

  7. Antitumor activity of colloidal silver on MCF-7 human breast cancer cells

    Franco-Molina Moisés A

    2010-11-01

    Full Text Available Abstract Background Colloidal silver has been used as an antimicrobial and disinfectant agent. However, there is scarce information on its antitumor potential. The aim of this study was to determine if colloidal silver had cytotoxic effects on MCF-7 breast cancer cells and its mechanism of cell death. Methods MCF-7 breast cancer cells were treated with colloidal silver (ranged from 1.75 to 17.5 ng/mL for 5 h at 37°C and 5% CO2 atmosphere. Cell Viability was evaluated by trypan blue exclusion method and the mechanism of cell death through detection of mono-oligonucleosomes using an ELISA kit and TUNEL assay. The production of NO, LDH, and Gpx, SOD, CAT, and Total antioxidant activities were evaluated by colorimetric assays. Results Colloidal silver had dose-dependent cytotoxic effect in MCF-7 breast cancer cells through induction of apoptosis, shown an LD50 (3.5 ng/mL and LD100 (14 ng/mL (*P Conclusions The present results showed that colloidal silver might be a potential alternative agent for human breast cancer therapy.

  8. Antitumor activity of colloidal silver on MCF-7 human breast cancer cells.

    Franco-Molina, Moisés A; Mendoza-Gamboa, Edgar; Sierra-Rivera, Crystel A; Gómez-Flores, Ricardo A; Zapata-Benavides, Pablo; Castillo-Tello, Paloma; Alcocer-González, Juan Manuel; Miranda-Hernández, Diana F; Tamez-Guerra, Reyes S; Rodríguez-Padilla, Cristina

    2010-11-16

    Colloidal silver has been used as an antimicrobial and disinfectant agent. However, there is scarce information on its antitumor potential. The aim of this study was to determine if colloidal silver had cytotoxic effects on MCF-7 breast cancer cells and its mechanism of cell death. MCF-7 breast cancer cells were treated with colloidal silver (ranged from 1.75 to 17.5 ng/mL) for 5 h at 37°C and 5% CO2 atmosphere. Cell Viability was evaluated by trypan blue exclusion method and the mechanism of cell death through detection of mono-oligonucleosomes using an ELISA kit and TUNEL assay. The production of NO, LDH, and Gpx, SOD, CAT, and Total antioxidant activities were evaluated by colorimetric assays. Colloidal silver had dose-dependent cytotoxic effect in MCF-7 breast cancer cells through induction of apoptosis, shown an LD50 (3.5 ng/mL) and LD100 (14 ng/mL) (*P colloidal silver. The present results showed that colloidal silver might be a potential alternative agent for human breast cancer therapy.

  9. Gambogic Acid Lysinate Induces Apoptosis in Breast Cancer MCF-7 Cells by Increasing Reactive Oxygen Species

    Yong-Zhan Zhen

    2015-01-01

    Full Text Available Gambogic acid (GA inhibits the proliferation of various human cancer cells. However, because of its water insolubility, the antitumor efficacy of GA is limited. Objectives. To investigate the antitumor activity of gambogic acid lysinate (GAL and its mechanism. Methods. Inhibition of cell proliferation was determined by MTT assay; intracellular ROS level was detected by staining cells with DCFH-DA; cell apoptosis was determined by flow cytometer and the mechanism of GAL was investigated by Western blot. Results. GAL inhibited the proliferation of MCF-7 cells with IC50 values 1.46 μmol/L comparable with GA (IC50, 1.16 μmol/L. GAL promoted the production of ROS; however NAC could remove ROS and block the effect of GAL. GAL inhibited the expression of SIRT1 but increased the phosphorylation of FOXO3a and the expression of p27Kip1. At knockdown of FOXO3a, cell apoptosis induced by GAL can be partly blocked. In addition it also enhanced the cleavage of caspase-3. Conclusions. GAL inhibited MCF-7 cell proliferation and induced MCF-7 cell apoptosis by increasing ROS level which could induce cell apoptosis by both SIRT1/FOXO3a/p27Kip1 and caspase-3 signal pathway. These results suggested that GAL might be useful as a modulation agent in cancer chemotherapy.

  10. Anti-cancer potential of a mix of natural extracts of turmeric, ginger and garlic: A cell-based study

    Satish Kumar Vemuri

    2017-12-01

    Full Text Available Cancer related morbidity and mortality is a major health care concern. Developing potent anti-cancer therapies which are non-toxic, sustainable and affordable is of alternative medicine. This study was designed to investigate the aqueous natural extracts mixture (NE mix prepared from common spices turmeric, ginger and garlic for its free radical scavenging potential and anti-cancer property against human breast cancer cell lines (MCF-7, ZR-75 and MDA-MB 231. Qualitative analysis of their bioactive constituents from turmeric, ginger and garlic were done using liquid chromatography-ESI- mass spectrometry (LC-ESI-MS/MS. To the best of our knowledge, NE mix with and without Tamoxifen has not been tested for its anti-cancer potential. We observed that the NE mix induced apoptosis in all the breast cancer cell lines, but it was more prominent in MCF-7 and ZR-75 cell lines in comparison to MDA-MB 231 cell line. The extent of apoptosis due to combined treatment with NE mix-Tamoxifen was higher than Tamoxifen alone, indicating a potential role of the NE mix in sensitizing the ER-positive breast cancer cells towards Tamoxifen. In support to MTT assay, cell cycle analysis, our RT-PCR results also prove that the NE mix 10 μg, Tam 20 μg and combination of NE mix 10 μg-Tam 20 μg altered the expression of apoptotic markers (p53 and Caspase 9 leading to apoptosis in all three cell lines. Our data strongly indicate that our NE mixture is a potential alternative therapeutic approach in certain types of cancer. Keywords: Breast cancer, Antagonists, Natural extracts, Tamoxifen, Turmeric, Ginger, Garlic, LC-ESI-MS/MS

  11. Effects of Calophyllum inophyllum fruit extract on the proliferation and morphological characteristics of human breast cancer cells MCF-7

    Shanmugapriya

    2016-04-01

    Full Text Available Objective: To evaluate the antiproliferative activity of Calophyllum inophyllum (C. inophyllum fruit extract against human breast cancer cells MCF-7. Methods: The cytotoxic effect of C. inophyllum fruit extract against MCF-7 cancer cells was evaluated through MTT and CyQuant assays for 24 h and the morphological investigation of treated MCF-7 cells was observed under optical microscope using Giemsa staining. Results: The cytotoxic effect of C. inophyllum fruit extract against MCF-7 cancer cells was evaluated through MTT and CyQuant assays simultaneously for 24 h after treatment, which demonstrated the inhibition of cell viability with the IC50 values of 19.63 µg/mL and 27.54 µg/mL, respectively. The preliminary time-based morphological investigation of MCF-7 cells