WorldWideScience

Sample records for linearly elastic-plastic strain-hardening-fracture

  1. Plastic limit analysis with non linear kinematic strain hardening for metalworking processes applications

    International Nuclear Information System (INIS)

    Chaaba, Ali; Aboussaleh, Mohamed; Bousshine, Lahbib; Boudaia, El Hassan

    2011-01-01

    Limit analysis approaches are widely used to deal with metalworking processes analysis; however, they are applied only for perfectly plastic materials and recently for isotropic hardening ones excluding any kind of kinematic hardening. In the present work, using Implicit Standard Materials concept, sequential limit analysis approach and the finite element method, our objective consists in extending the limit analysis application for including linear and non linear kinematic strain hardenings. Because this plastic flow rule is non associative, the Implicit Standard Materials concept is adopted as a framework of non standard plasticity modeling. The sequential limit analysis procedure which considers the plastic behavior with non linear kinematic strain hardening as a succession of perfectly plastic behavior with yielding surfaces updated after each sequence of limit analysis and geometry updating is applied. Standard kinematic finite element method together with a regularization approach is used for performing two large compression cases (cold forging) in plane strain and axisymmetric conditions

  2. Simplified method for elastic plastic analysis of material presenting bilinear kinematic hardening

    International Nuclear Information System (INIS)

    Roche, R.

    1983-12-01

    A simplified method for elastic plastic analysis is presented. Material behavior is assumed to be elastic plastic with bilinear kinematic hardening. The proposed method give a strain-stress field fullfilling material constitutive equations, equations of equilibrium and continuity conditions. This strain-stress is obtained through two linear computations. The first one is the conventional elastic analysis of the body submitted to the applied load. The second one use tangent matrix (tangent Young's modulus and Poisson's ratio) for the determination of an additional stress due to imposed initial strain. Such a method suits finite elements computer codes, the most useful result being plastic strains resulting from the applied loading (load control or deformation control). Obviously, there is not unique solution, for stress-strain field is not depending only of the applied load, but of the load history. Therefore, less pessimistic solutions can be got by one or two additional linear computations [fr

  3. An Elastic Plastic Contact Model with Strain Hardening for the LAMMPS Granular Package

    Energy Technology Data Exchange (ETDEWEB)

    Kuhr, Bryan [Virginia Polytechnic Inst. and State Univ. (Virginia Tech), Blacksburg, VA (United States); Brake, Matthew Robert [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Component Science and Mechanics; Lechman, Jeremy B. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Nanoscale and Reactive Processes

    2015-03-01

    The following details the implementation of an analytical elastic plastic contact model with strain hardening for normal im pacts into the LAMMPS granular package. The model assumes that, upon impact, the co llision has a period of elastic loading followed by a period of mixed elastic plas tic loading, with contributions to each mechanism estimated by a hyperbolic seca nt weight function. This function is implemented in the LAMMPS source code as the pair style gran/ep/history. Preliminary tests, simulating the pouring of pure nickel spheres, showed the elastic/plastic model took 1.66x as long as similar runs using gran/hertz/history.

  4. Calculation of elastic-plastic strain ranges for fatigue analysis based on linear elastic stresses

    International Nuclear Information System (INIS)

    Sauer, G.

    1998-01-01

    Fatigue analysis requires that the maximum strain ranges be known. These strain ranges are generally computed from linear elastic analysis. The elastic strain ranges are enhanced by a factor K e to obtain the total elastic-plastic strain range. The reliability of the fatigue analysis depends on the quality of this factor. Formulae for calculating the K e factor are proposed. A beam is introduced as a computational model for determining the elastic-plastic strains. The beam is loaded by the elastic stresses of the real structure. The elastic-plastic strains of the beam are compared with the beam's elastic strains. This comparison furnishes explicit expressions for the K e factor. The K e factor is tested by means of seven examples. (orig.)

  5. Strain hardening and plastic instability properties of austenitic stainless steels after proton and neutron irradiation

    International Nuclear Information System (INIS)

    Byun, T.S.; Farrell, K.; Lee, E.H.; Hunn, J.D.; Mansur, L.K.

    2001-01-01

    Strain hardening and plastic instability properties were analyzed for EC316LN, HTUPS316, and AL6XN austenitic stainless steels after combined 800 MeV proton and spallation neutron irradiation to doses up to 10.7 dpa. The steels retained good strain-hardening rates after irradiation, which resulted in significant uniform strains. It was found that the instability stress, the stress at the onset of necking, had little dependence on the irradiation dose. Tensile fracture stress and strain were calculated from the stress-strain curve data and were used to estimate fracture toughness using an existing model. The doses to plastic instability and fracture, the accumulated doses at which the yield stress reaches instability stress or fracture stress, were predicted by extrapolation of the yield stress, instability stress, and fracture stress to higher dose. The EC316LN alloy required the highest doses for plastic instability and fracture. Plastic deformation mechanisms are discussed in relation to the strain-hardening properties of the austenitic stainless steels

  6. Elastic plastic fracture mechanics

    International Nuclear Information System (INIS)

    Simpson, L.A.

    1978-07-01

    The application of linear elastic fracture mechanics (LEFM) to crack stability in brittle structures is now well understood and widely applied. However, in many structural materials, crack propagation is accompanied by considerable crack-tip plasticity which invalidates the use of LEFM. Thus, present day research in fracture mechanics is aimed at developing parameters for predicting crack propagation under elastic-plastic conditions. These include critical crack-opening-displacement methods, the J integral and R-curve techniques. This report provides an introduction to these concepts and gives some examples of their applications. (author)

  7. Relationship between side necking and plastic zone size at fracture

    International Nuclear Information System (INIS)

    Kim, Do Hyung; Kang, Ki Ju; Kim, Dong Hak

    2004-01-01

    Generally, fracture of a material is influenced by plastic zone size developed near the crack tip. Hence, according to the relative size of plastic zone in the material, the mechanics as a tool for analyzing the fracture process are classified into three kinds, that is, Linear Elastic Fracture Mechanics, Elastic Plastic Fracture Mechanics, Large Deformation Fracture Mechanics. Even though the plastic zone size is such an important parameter, the practical measurement techniques are very limited and the one for in-situ measurement is not virtually available. Therefore, elastic-plastic FEA has been performed to estimate the plastic zone size. In this study, it is noticed that side necking at the surface is a consequence of plastic deformation and lateral contraction and the relation between the plastic zone and side necking is investigated. FEA for modified boundary layer models with finite thickness, various mode mixes 0 .deg., 30 deg., 60 deg., 90 .deg. and strain hardening exponent n=3, 10 are performed. The results are presented and the implication regarding to application to experiment is discussed

  8. A work-hardening rule for finite elastic-plastic deformation of metals at elevated temperatures

    International Nuclear Information System (INIS)

    Lee, L.H.N.; Horng, J.T.

    1975-01-01

    The paper is concerned with an extension of Prager-Ziegler's kinematic work-hardening rule for infinitesimal elastic-plastic deformation to a work-hardening rule for finite elastic-plastic deformation of a polycrystalline metal. It is shown that the finite work-hardening rule, which accounts for the Bauschinger and temperature effects within certain pressure and temperature ranges, satisfies certain invariant, continuity and thermodynamic requirements. A description of the kinematics of an elastic-plastic body is employed with reference to three separate configurations: initial, current and an intermediate configuration. The intermediate configuration is a conceptual, local configuration obtained by removing the stress and temperature changes in the neighborhood of an element. A rigid body rotation of the intermediate configuration is allowed. Piola-Kirchhoff stresses and Green deformation tensors referred to the initial and intermediate configurations are employed as stress and strain measures. The plastic deformation has been associated with the motion and production of dislocations. It has been observed that the motion of mobile dislocations usually occur in the narrow slip bands in each grain, leaving the basic lattice structure practically intact, so that the macroscopic elastic properties of the material are essentially independent of plastic deformation. Employing this fact and the thermodynamic laws, a simplified elastic stress-strain relationship of the plastically deformed material, which agrees with the results of Naghdi and Trapp, is obtained

  9. Study of the evolution of the boundary of the elastic field with strain hardening, and elastic-plastic behaviour relationships of cubic metals

    International Nuclear Information System (INIS)

    Bui, Huy Duong

    1969-01-01

    In this research thesis on metal strain hardening, the author first discusses the issue of passing from microscopic values to corresponding macroscopic values. If there is generally a correspondence between them, it is not the case for plastic strain. Thus, the author studies the general properties of the boundary of the macroscopic plastic field with respect to single-crystal elastic boundaries. In the second part, the author reports an experimental study of the evolution of the elastic field boundary. In the third part, he develops elastic-plastic behaviour laws for an aggregate of cubic crystals. The objectives are to report experimental results in a more satisfying way than previous studies, and to obtain acceptable physical laws while keeping some properties of conventional laws in order to ensure the solution uniqueness, and to establish minimum principles similar to those of Nodge-Prager and of Greenberg. In order to do so, he introduces a new hypothesis: there is a statistic scattering in initial thresholds of crystals

  10. Nonlinear Subincremental Method for Determination of Elastic-Plastic-Creep Behaviour

    DEFF Research Database (Denmark)

    Ottosen, N. Saabye; Gunneskov, O.

    1985-01-01

    to general elastic-plastic-creep behaviour including problems with a highly nonlinear total strain path caused by the occurrence of creep hardening. This nonlinear method degenerates to the linear approach for elastic-plastic behaviour and when secondary creep is present. It is also linear during step......The frequently used subincremental method has so far been used on a linear interpolation of the total strain path within each main step. This method has proven successful when elastic-plastic behaviour and secondary creep is involved. The authors propose a nonlinear subincremental method applicable...

  11. Simplified Theory of Plastic Zones for cyclic loading and multilinear hardening

    International Nuclear Information System (INIS)

    Hübel, Hartwig

    2015-01-01

    The Simplified Theory of Plastic Zones (STPZ) is a direct method based on Zarka's method, primarily developed to estimate post-shakedown quantities of structures under cyclic loading, avoiding incremental analyses through a load histogram. In a different paper the STPZ has previously been shown to provide excellent estimates of the elastic–plastic strain ranges in the state of plastic shakedown as required for fatigue analyses. In the present paper, it is described how the STPZ can be used to predict the strains accumulated through a number of loading cycles due to a ratcheting mechanism, until either elastic or plastic shakedown is achieved, so that strain limits can be satisfied. Thus, a consistent means of estimating both, strain ranges and accumulated strains is provided for structural integrity assessment as required by pressure vessel codes. The computational costs involved typically consist of few linear elastic analyses and some local calculations. Multilinear kinematic hardening and temperature dependent yield stresses are accounted for. The quality of the results and the computational burden involved are demonstrated through four examples. - Highlights: • A method is provided to estimate accumulated elastic–plastic strains. • A consistent method is provided to estimate elastic–plastic strain ranges. • Effect of multilinear kinematic hardening is captured. • Temperature dependent material properties are accounted for. • Few linear elastic analyses required

  12. Finite element implementation of strain-hardening Drucker–Prager plasticity model with application to tunnel excavation

    Directory of Open Access Journals (Sweden)

    K. Liu

    2017-09-01

    Full Text Available This paper presents a finite element implementation of a strain-hardening Drucker–Prager model and its application to tunnel excavation. The computational model was constructed based on the return mapping scheme, in which an elastic trial step was first executed, followed by plastic correction involving the Newton–Raphson method to return the predicted state of stresses to the supposed yield surface. By combining the plastic shear hardening rule and stress correction equations, the loading index for the strain-hardening Drucker–Prager model was solved. It is therefore possible to update the stresses, elastic and plastic strains, and slope of the yield locus at the end of each incremental step. As an illustrative example, an integration algorithm was incorporated into ABAQUS through the user subroutine UMAT to solve the tunnel excavation problem in strain-hardening Drucker–Prager rock formations. The obtained numerical results were found to be in excellent agreement with the available analytical solutions, thus indicating the validity and accuracy of the proposed UMAT code, as well as the finite element model.

  13. On fracture in finite strain gradient plasticity

    DEFF Research Database (Denmark)

    Martínez Pañeda, Emilio; Niordson, Christian Frithiof

    2016-01-01

    In this work a general framework for damage and fracture assessment including the effect of strain gradients is provided. Both mechanism-based and phenomenological strain gradient plasticity (SGP) theories are implemented numerically using finite deformation theory and crack tip fields are invest......In this work a general framework for damage and fracture assessment including the effect of strain gradients is provided. Both mechanism-based and phenomenological strain gradient plasticity (SGP) theories are implemented numerically using finite deformation theory and crack tip fields...... are investigated. Differences and similarities between the two approaches within continuum SGP modeling are highlighted and discussed. Local strain hardening promoted by geometrically necessary dislocations (GNDs) in the vicinity of the crack leads to much higher stresses, relative to classical plasticity...... in the multiple parameter version of the phenomenological SGP theory. Since this also dominates the mechanics of indentation testing, results suggest that length parameters characteristic of mode I fracture should be inferred from nanoindentation....

  14. Semi-exact solution of non-uniform thickness and density rotating disks. Part II: Elastic strain hardening solution

    International Nuclear Information System (INIS)

    Hojjati, M.H.; Jafari, S.

    2009-01-01

    Analytical solutions for the elastic-plastic stress distribution in rotating annular disks with uniform and variable thicknesses and densities are obtained under plane stress assumption. The solution employs a technique called the homotopy perturbation method. A numerical solution of the governing differential equation is also presented based on the Runge-Kutta's method for both elastic and plastic regimes. The analysis is based on Tresca's yield criterion, its associated flow rule and linear strain hardening. The results of the two methods are compared and generally show good agreement. It is shown that, depending on the boundary conditions used, the plastic core may contain one, two or three different plastic regions governed by different mathematical forms of the yield criterion. Four different stages of elastic-plastic deformation occur. The expansion of these plastic regions with increasing angular velocity is obtained together with the distributions of stress and displacement

  15. Effect of plastic strain on elastic-plastic fracture toughness of SM490 carbon steel. Assessment by stress-based criterion for ductile crack initiation

    International Nuclear Information System (INIS)

    Kamaya, Masayuki

    2012-01-01

    Although the plastic strain induced in materials increases the mechanical strength, it may reduce the fracture toughness. In this study, the change in fracture toughness of SM490 carbon steel due to pre-straining was investigated using a stress-based criterion for ductile crack initiation. The specimens with blunt notch of various radiuses were used in addition to those with conventional fatigue pre-cracking. The degree of applied plastic strain was 5%, 10% or 20%. The fracture toughness was largest when the induced plastic strain was 5%, although it decreased for the plastic strains of 10% and 20%. The stress and strain distributions near the crack tip of fracture toughness test specimens was investigated by elastic-plastic finite element analyses using a well-correlated stress-strain curve for large strain. It was shown that the critical condition at the onset of the ductile crack was better correlated with the equivalent stress than the plastic strain at the crack tip. By using the stress-based criterion, which was represented by the equivalent stress and stress triaxiality, the change in the fracture toughness due to pre-straining could be reasonably explained. Based on these results, it was concluded that the stress-based criterion should be used for predicting the ductile crack initiation. (author)

  16. Elastic-plastic fracture mechanics study of thermal shock cracking

    International Nuclear Information System (INIS)

    Hirano, K.; Kobayashi, H.; Nakazawa, H.

    1980-01-01

    This paper describes thermal shock experiments conducted on a nuclear pressure vessel steel (A533 Grade B Class 1), an AISI304 steel and a tool steel (JIS SKD62) using both a new thermal shock test facility and method. Analysis of their quasi-static thermal stress intensity factors is performed on the basis of linear-elastic fracture mechanics; and a thermal shock fracture toughness value, Ksub(tsc) is evaluated. Then elastic-plastic fracture toughness tests are carried out in the same high temperature range of the thermal shock experiment, and a relation between the stretched zone width, SZW, formed as a result of the fatigue precrack tip plastic blunting and the J-integral is clarified. An elastic-plastic thermal shock fracture toughness value, Jsub(tsc), is evaluated from a critical value of the stretched zone width, SZWsub(tsc), at the initiation of the thermal shock cracking by using the relation between SZW and J. The Jsub(tsc) value is compared with an elastic-plastic fracture toughness value, Jsub(Ic), and the difference between these Jsub(tsc) and Jsub(Ic) values is discussed on the basis of fractography. (author)

  17. A non-linear kinematic hardening function

    International Nuclear Information System (INIS)

    Ottosen, N.S.

    1977-05-01

    Based on the classical theory of plasticity, and accepting the von Mises criterion as the initial yield criterion, a non-linear kinematic hardening function applicable both to Melan-Prager's and to Ziegler's hardening rule is proposed. This non-linear hardening function is determined by means of the uniaxial stress-strain curve, and any such curve is applicable. The proposed hardening function considers the problem of general reversed loading, and a smooth change in the behaviour from one plastic state to another nearlying plastic state is obtained. A review of both the kinematic hardening theory and the corresponding non-linear hardening assumptions is given, and it is shown that material behaviour is identical whether Melan-Prager's or Ziegler's hardening rule is applied, provided that the von Mises yield criterion is adopted. (author)

  18. On the use of elastic-plastic material characteristics for linear-elastic component assessments

    International Nuclear Information System (INIS)

    Kussmaul, K.; Silcher, H.; Eisele, U.

    1995-01-01

    In this paper the procedure of safety assessment of components by fracture mechanics analysis as recommended in TECDOC 717 is applied to two standard specimens of ductile cast iron. It is shown that the use of a pseudo-elastic K IJ -value in linear elastic safety analysis may lead to non-conservative results, when elastic-plastic material behaviour can be expected. (author)

  19. A calculational round robin in elastic-plastic fracture mechanics

    International Nuclear Information System (INIS)

    Larsson, L.H.

    1983-01-01

    Eighteen organisations participated in this elastic-plastic fracture mechanics (EPFM) numerical analysis round robin which treated the same three-point bend problem as a similar round robin conducted by ASTM four years earlier. The work involved the calculation of overall deformation, J, CTOD and crack profile using plane strain elastic-plastic finite element analysis for a monotonically increasing load up to a maximum deformation which was far beyond the elastic regime. It was found that all of the elastic solutions were accurate to within a few per cent. In the elastic-plastic regime, however, there was a large scatter of the results, increasing with increasing plastic deformation and roughly of the same order as in the ASTM round robin which contained ten solutions. No significant progress has taken place in the state of the art of numerical EPFM analysis over the four-year interval. The reasons for this scatter and tentative conclusions on the most suitable numerical analysis methods in EPFM are discussed. (author)

  20. Determination of dynamic fracture initiation toughness of elastic-plastic materials at intermediate strain rates

    International Nuclear Information System (INIS)

    Fernandez-Saez, J.; Luna de, S.; Rubio, L.; Perez-Castellanos, J. L.; Navarro, C.

    2001-01-01

    An earlier paper dealt with the experimental techniques used to determine the dynamic fracture properties of linear elastic materials. Here we describe those most commonly used as elastoplastic materials, limiting the study to the initiation fracture toughness at the intermediate strain rate (of around 10''2 s''-1). In this case the inertial forces are negligible and it is possible to apply the static solutions. With this stipulation, the analysis can be based on the methods of testing in static conditions. The dynamic case differs basically, from the static one, in the influence of the strain rate on the properties of the material. (Author) 57 refs

  1. New constitutive equations to describe infinitesimal elastic-plastic deformations

    International Nuclear Information System (INIS)

    Boecke, B.; Link, F.; Schneider, G.; Bruhns, O.T.

    1983-01-01

    A set of constitutive equations is presented to describe infinitesimal elastic-plastic deformations of austenitic steel in the range up to 600 deg C. This model can describe the hardening behaviour in the case of mechanical loading and hardening, and softening behaviour in the case of thermal loading. The loading path can be either monotonic or cyclic. For this purpose, the well-known isotropic hardening model is continually transferred into the kinematic model according to Prager, whereby suitable internal variables are chosen. The occurring process-dependent material functions are to be determined by uniaxial experiments. The hardening function g and the translation function c are determined by means of a linearized stress-strain behaviour in the plastic range, whereby a coupling condition must be taken into account. As a linear hardening process is considered to be too unrealistic, nonlinearity is achieved by introducing a small function w, the determination procedure of which is given. (author)

  2. Elastic-plastic code in the static regime for two-dimensional structures

    International Nuclear Information System (INIS)

    Giuliani, S.

    1976-07-01

    The finite-element computer code STEP-2D, which was conceived as a numerical tool for basic research in fracture mechanics presently under way in the Materials Division of JRC Ispra is described. The code employs 8-node isoparametric elements for calculating elastic-plastic stress and strain distributions in 2-D geometries. The von Mises yield criterion is used. Material strain hardening is described by means of either the isotropic or the so-called 'overlay' model. An incremental solution is employed in the plastic range. The program has been written in Fortran IV and compiled on an IBM 370-165

  3. Three-dimensional elastic--plastic stress and strain analyses for fracture mechanics: complex geometries

    International Nuclear Information System (INIS)

    Bellucci, H.J.

    1975-11-01

    The report describes the continuation of research into capability for three-dimensional elastic-plastic stress and strain analysis for fracture mechanics. A computer program, MARC-3D, has been completed and was used to analyze a cylindrical pressure vessel with a nozzle insert. A method for generating crack tip elements was developed and a model was created for a cylindrical pressure vessel with a nozzle and an imbedded flaw at the inside nozzle corner. The MARC-3D program was again used to analyze this flawed model. Documentation for the use of the MARC-3D computer program has been included as an appendix

  4. Elastic-plastic fracture mechanics of compact bone

    Science.gov (United States)

    Yan, Jiahau

    Bone is a composite composed mainly of organics, minerals and water. Most studies on the fracture toughness of bone have been conducted at room temperature. Considering that the body temperature of animals is higher than room temperature, and that bone has a high volumetric percentage of organics (generally, 35--50%), the effect of temperature on fracture toughness of bone should be studied. Single-edged V-shaped notched (SEVN) specimens were prepared to measure the fracture toughness of bovine femur and manatee rib in water at 0, 10, 23, 37 and 50°C. The fracture toughness of bovine femur and manatee rib were found to decrease from 7.0 to 4.3 MPa·m1/2 and from 5.5 to 4.1 MPa·m1/2, respectively, over a temperature range of 50°C. The decreases were attributed to inability of the organics to sustain greater stresses at higher temperatures. We studied the effects of water and organics on fracture toughness of bone using water-free and organics-free SEVN specimens at 23°C. Water-free and organics-free specimens were obtained by placing fresh bone specimen in a furnace at different temperatures. Water and organics significantly affected the fracture toughness of bone. Fracture toughness of the water-free specimens was 44.7% (bovine femur) and 32.4% (manatee rib) less than that of fresh-bone specimens. Fracture toughness of the organics-free specimens was 92.7% (bovine femur) and 91.5% (manatee rib) less than that of fresh bone specimens. Linear Elastic Fracture Mechanics (LEFM) is widely used to study bone. However, bone often has small to moderate scale yielding during testing. We used J integral, an elastic-plastic fracture-mechanics parameter, to study the fracture process of bone. The J integral of bovine femur increased from 6.3 KJ/mm2 at 23°C to 6.7 KJ/mm2 at 37°C. Although the fracture toughness of bovine bone decreases as the temperature increases, the J integral results show a contrary trend. The energy spent in advancing the crack beyond the linear-elastic

  5. Effects of the Strain Rate Sensitivity and Strain Hardening on the Saturated Impulse of Plates

    Directory of Open Access Journals (Sweden)

    Ling Zhu

    Full Text Available Abstract This paper studies the stiffening effects of the material strain rate sensitivity and strain hardening on the saturated impulse of elastic, perfectly plastic plates. Finite element (FE code ABAQUS is employed to simulate the elastoplastic response of square plates under rectangular pressure pulse. Rigid-plastic analyses for saturated impulse, which consider strain rate sensitivity and strain hardening, are conducted. Satisfactory agreement between the finite element models (FEM and predictions of the rigid-plastic analysis is obtained, which verifies that the proposed rigid-plastic methods are effective to solve the problem including strain rate sensitivity and strain hardening. The quantitative results for the scale effect of the strain rate sensitivity are given. The results for the stiffening effects suggest that two general stiffening factors n 1 and n 2, which characterizes the strain rate sensitivity and strain hardening effect, respectively can be defined. The saturated displacement is inversely proportional to the stiffening factors (i.e. n 1 and n 2 and saturated impulse is inversely proportional to the square roots of the stiffening factors (i.e. n 1 and n 2. Formulae for displacement and saturated impulse are proposed based on the empirical analysis.

  6. Steady State Crack Propagation in Layered Material Systems Displaying Visco-plastic Behaviour

    DEFF Research Database (Denmark)

    Nielsen, Kim Lau

    2012-01-01

    The steady state fracture toughness of elastic visco-plastic materials is studied numerically, using both a conventional and a higher order model. Focus is on the combined effect of strain hardening, strain gradient hardening and strain rate hardening on cracking in layered material systems...

  7. A general shakedown theorem for elastic/plastic bodies with work hardening

    International Nuclear Information System (INIS)

    Ponter, A.R.S.

    1975-01-01

    In recent years the design of metallic structures under variable loading has been assisted by the application of Melan's lower bound theorem for the shakedown on an elastic/perfectly plastic structure. The design codes for both portal frames and pressure vessels have taken account of such calculations. The theory of shakedown suffers from two defects, geometry changes are ignored and the material behaviour is described by a perfectly plastic constitutive relationship which includes neither work hardening nor the Bauschinger effect. This paper is concerned with the latter problem. A very general lower bound shakedown theorem is derived for an arbitrary time-independent material in terms of functional properties of the constitutive relationship. The theorem is then applied to perfect, isotropic and kinematic hardening plasticity. (Auth.)

  8. The behavior of intermetallic compounds at large plastic strains

    International Nuclear Information System (INIS)

    Gray, G.T.; Embury, J.D.

    1993-01-01

    This paper contains a summary of a broad study of intermetallics which includes the following materials, Ni 3 Al, Ti-48Al-1V, Ti-24Al-11Nb, Ti-48Al-2Cr-2Nb, and Ti-24.5 Al-10.5Nb-1.5Mo. Much effort has been devoted to the study of ordered materials at modes plastic strains and the problem of premature failure. However by utilizing stress states other than simple tension it is possible to study the deformation of intermetallic compounds up to large plastic strains and to consider the behavior of these materials in the regime where stresses approach the theoretical stress. The current work outlines studies of the work hardening rate of a number of titanium and nickel-based intermetallic compounds deformed in compression. Attention is given to the structural basis of the sustained work hardening. The large strain plasticity of these materials is summarized in a series of diagrams. Fracture in these materials in compression occurs via catastrophic shear at stresses of the order of E/80 (where E is the elastic modulus)

  9. On higher-order boundary conditions at elastic-plastic boundaries in strain-gradient plasticity

    DEFF Research Database (Denmark)

    Niordson, Christian Frithiof

    2008-01-01

    are suppressed by using a very high artificial hardening modulus. Through numerical studies of pure bending under plane strain conditions, it is shown that this method predicts the build-up of higher order stresses in the pseudo-elastic regime. This has the effect of delaying the onset of incipient yield......, as well as extending the plastic zone further toward the neutral axis of the beam, when compared to conventional models. Arguments supporting the present method are presented that rest on both mathematical and physical grounds. The results obtained are compared with other methods for dealing with higher...

  10. The role of strain localization in the fracture of irradiated pressure tube material

    International Nuclear Information System (INIS)

    Dutton, R.

    1989-04-01

    This report reviews those phenomena that lead to strain localization in zirconium alloys, with particular reference to the role played by the formation of shear bands in fracture processes. The important influence of plastic deformation, in general, on fracture mechanisms is emphasized. This is to be expected when elastic-plastic fracture mechanics is the chosen analytical technique. Intensely inhomogeneous characteristics of strain localization cause an abrupt bifurcation in the evolution of deformation strain and lead to plastic instability linked with intrinsic material behaviour (e.g., work softening) or of geometric origin (e.g., localized necking). Both of these effects are discussed in relation to measurable deformation parameters, such as the work hardening rate and strain rate sensitivity, which determine the degree of resistance to plastic instability. The modifying effect of irradiation on these quantities is given specific attention, the appropriate literature pertaining to Zircaloy and Zr-2.5% Nb being reviewed. Recommendations are made for a combined experimental and theoretical program to characterize strain localization and reduced ductility in irradiated cold-worked Zr-2.5% Nb pressure tube material. The relationship between the deformation properties and the fracture behaviour is discussed

  11. Microstructure-property relationships and constitutive response of plastically graded case hardened steels

    Science.gov (United States)

    Klecka, Michael A.

    Case hardened materials, popularly used in many demanding engineering applications such as bearings, gears, and wear/impact surfaces, have high surface hardness and a gradient in material properties (hardness, yield strength, etc.) as a function of depth; therefore, they behave as plastically graded materials. In the current study, two different commercially available case carburized steels along with two through hardened steels are characterized to obtain relationships among the volume fraction of subsurface carbides, indentation hardness, elastic modulus, and yield strength as a function of depth. A variety of methods including microindentation, nanoindentation, ultrasonic measurements, compression testing, rule of mixtures, and upper and lower bound models are used to determine the relationships for elastic modulus and compare the experimental results with model predictions. In addition, the morphology, composition, and properties of the carbide particles are also determined. The gradient in hardness with depth in graded materials is commonly determined using microindentation on the cross-section of the material which contains the gradation in microstructure or composition. In the current study, a novel method is proposed to predict the hardness gradient profile using solely surface indentations at a range of loads. The method does not require the graded material to be sectioned, and has practical utility in the surface heat-treatment industry. For a material with a decreasing gradient in hardness, higher indent loads result in a lower measured hardness due to the influence of the softer subsurface layers. A power-law model is presented which relates the measured surface indentation hardness under increasing load to the subsurface gradient in hardness. A coordinated experimental and numerical study is presented to extract the constitutive response of graded materials, utilizing relationships between hardness, plastic deformation, and strain hardening response

  12. Elastic-Plastic Constitutive Equation of WC-Co Cemented Carbides with Anisotropic Damage

    International Nuclear Information System (INIS)

    Hayakawa, Kunio; Nakamura, Tamotsu; Tanaka, Shigekazu

    2007-01-01

    Elastic-plastic constitutive equation of WC-Co cemented carbides with anisotropic damage is proposed to predict a precise service life of cold forging tools. A 2nd rank symmetric tensor damage tensor is introduced in order to express the stress unilaterality; a salient difference in uniaxial behavior between tension and compression. The conventional framework of irreversible thermodynamics is used to derive the constitutive equation. The Gibbs potential is formulated as a function of stress, damage tensor, isotropic hardening variable and kinematic hardening variable. The elastic-damage constitutive equation, conjugate forces of damage, isotropic hardening and kinematic hardening variable is derived from the potential. For the kinematic hardening variable, the superposition of three kinematic hardening laws is employed in order to improve the cyclic behavior of the material. For the evolution equation of the damage tensor, the damage is assumed to progress by fracture of the Co matrix - WC particle interface and by the mechanism of fatigue, i.e. the accumulation of microscopic plastic strain in matrix and particles. By using the constitutive equations, calculation of uniaxial tensile and compressive test is performed and the results are compared with the experimental ones in the literature. Furthermore, finite element analysis on cold forward extrusion was carried out, in which the proposed constitutive equation was employed as die insert material

  13. Indentation of elastically soft and plastically compressible solids

    DEFF Research Database (Denmark)

    Needleman, A.; Tvergaard, Viggo; Van der Giessen, E.

    2015-01-01

    rapidly for small deviations from plastic incompressibility and then decreases rather slowly for values of the plastic Poisson's ratio less than 0.25. For both soft elasticity and plastic compressibility, the main reason for the lower values of indentation hardness is related to the reduction......The effect of soft elasticity, i.e., a relatively small value of the ratio of Young's modulus to yield strength and plastic compressibility on the indentation of isotropically hardening elastic-viscoplastic solids is investigated. Calculations are carried out for indentation of a perfectly sticking...... rigid sharp indenter into a cylinder modeling indentation of a half space. The material is characterized by a finite strain elastic-viscoplastic constitutive relation that allows for plastic as well as elastic compressibility. Both soft elasticity and plastic compressibility significantly reduce...

  14. Standard test method for linear-elastic plane-strain fracture toughness KIc of metallic materials

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2009-01-01

    1.1 This test method covers the determination of fracture toughness (KIc) of metallic materials under predominantly linear-elastic, plane-strain conditions using fatigue precracked specimens having a thickness of 1.6 mm (0.063 in.) or greater subjected to slowly, or in special (elective) cases rapidly, increasing crack-displacement force. Details of test apparatus, specimen configuration, and experimental procedure are given in the Annexes. Note 1—Plane-strain fracture toughness tests of thinner materials that are sufficiently brittle (see 7.1) can be made using other types of specimens (1). There is no standard test method for such thin materials. 1.2 This test method is divided into two parts. The first part gives general recommendations and requirements for KIc testing. The second part consists of Annexes that give specific information on displacement gage and loading fixture design, special requirements for individual specimen configurations, and detailed procedures for fatigue precracking. Additional a...

  15. Progress in elastic-plastic fracture mechanics and its applications

    International Nuclear Information System (INIS)

    Paris, P.C.; Zahalak, G.I.

    1980-01-01

    This paper surveys recent developments in the application of J-Integral methods to problems of elastic-plastic fracture. The analytical and experimental development of the J-Integral concept over the last ten years is reviewed briefly. Tearing instability theory is presented in general terms, and specific applications of the theory are discussed. Principles of fracture-proof design are shown to follow naturally from the tearing instability theory. These principles are illustrated first for simple structures, and then generalized to more complex configurations and loading conditions. Examples include multiple member tension structures, beams, frames, nuclear reactor pressure vessel nozzles and piping, and beams on elastic foundations. It is concluded that J-integral based methods offer the best immediate opportunity for the development of sound analytical techniques for treating important practical problems of elastic-plastic fracture

  16. Elastic, plastic, fracture analysis of masonry arches: A multi-span bridge case study

    Science.gov (United States)

    Lacidogna, Giuseppe; Accornero, Federico

    2018-01-01

    In this work a comparison is presented between elastic, plastic, and fracture analysis of the monumental arch bridge of Porta Napoli, Taranto (Italy). By means of a FEM model and applying the Mery's Method, the behavior of the curved structure under service loads is verified, while considering the Safe Theorem approach byHeyman, the ultimate carrying capacity of the structure is investigated. Moreover, by using Fracture Mechanics concepts, the damage process which takes place when the conditions assessed through linear elastic analysis are no longer valid, and before the set-in of the conditions established by means of the plastic limit analysis, is numerically analyzed. The study of these transitions returns an accurate and effective whole service life assessment of the Porta Napoli masonry arch bridge.

  17. Effect of plastic strain on fracture strength of cracked components

    International Nuclear Information System (INIS)

    Kamaya, Masayuki

    2009-01-01

    Nuclear power plant components are occasionally subjected to large load by earthquake and may suffer plastic strain. Although the plastic strain induced in materials increases the strength, it may reduce the fracture toughness due to a crack in the components. In this study, the effect of the plastic strain on strength of cracked components was investigated. Firstly, the change in the tensile properties and fracture toughness due to plastic strain were examined for Type 316 stainless steel and carbon steel (SM490). The degree of nominal plastic strain was 5%, 10%, 20% and 40% (only for stainless steel). Secondly, the J-integral values of surface crack on a pipe were evaluated by finite element analyses. Finally, the critical load for fracture of the cracked pipe was evaluated for various pipe and crack geometries using the J-integral values and the fracture toughness obtained. It was concluded that the plastic strain enhances the fracture strength of the cracked components when the induced plastic strain is less than 10%, although the extremely large plastic strain could reduce the strength. (author)

  18. Effect of plastic strain on fracture strength of cracked components

    International Nuclear Information System (INIS)

    Kamaya, Masayuki

    2010-01-01

    Nuclear power plant components are occasionally subjected to excessive load by earthquake and may suffer plastic strain. Although the plastic strain introduced in materials increases the strength, it may reduce the fracture toughness. In this study, the effect of the plastic strain on strength of cracked components was investigated. Firstly, the change in the tensile properties and fracture toughness due to plastic strain were examined for Type 316 stainless steel and carbon steel (SM 490). The degree of nominal plastic strain was 5%, 10%, 20% and 40% (only for stainless steel). Secondly, the J-integral values of surface crack on a pipe were evaluated by finite element analyses. Finally, the critical load for fracture of the cracked pipe was evaluated for various pipe and crack geometries using the J-integral values and the fracture toughness obtained. It was concluded that the plastic strain enhances the fracture strength of the cracked components when the induced plastic strain is less than 10%, although the extremely large plastic strain could reduce the strength. (author)

  19. Cyclic Strain Resistance, Stress Response, Fatigue Life, and Fracture Behavior of High Strength Low Alloy Steel 300 M

    Science.gov (United States)

    Manigandan, K.; Srivatsan, T. S.; Tammana, Deepthi; Poorgangi, Behrang; Vasudevan, Vijay K.

    2014-05-01

    The focus of this technical manuscript is a record of the specific role of microstructure and test specimen orientation on cyclic stress response, cyclic strain resistance, and cyclic stress versus strain response, deformation and fracture behavior of alloy steel 300 M. The cyclic strain amplitude-controlled fatigue properties of this ultra-high strength alloy steel revealed a linear trend for the variation of log elastic strain amplitude with log reversals-to-failure, and log plastic strain amplitude with log reversals-to-failure for both longitudinal and transverse orientations. Test specimens of the longitudinal orientation showed only a marginal improvement over the transverse orientation at equivalent values of plastic strain amplitude. Cyclic stress response revealed a combination of initial hardening for the first few cycles followed by gradual softening for a large portion of fatigue life before culminating in rapid softening prior to catastrophic failure by fracture. Fracture characteristics of test specimens of this alloy steel were different at both the macroscopic and fine microscopic levels over the entire range of cyclic strain amplitudes examined. Both macroscopic and fine microscopic observations revealed fracture to be a combination of both brittle and ductile mechanisms. The underlying mechanisms governing stress response, deformation characteristics, fatigue life, and final fracture behavior are presented and discussed in light of the competing and mutually interactive influences of test specimen orientation, intrinsic microstructural effects, deformation characteristics of the microstructural constituents, cyclic strain amplitude, and response stress.

  20. Elastic Plastic Fracture Analysis of an Aluminum COPV Liner

    Science.gov (United States)

    Forth, Scott; Gregg, Bradley; Bailey, Nathaniel

    2012-01-01

    Onboard any space-launch vehicle, composite over-wrapped pressure vessels (COPVs) may be utilized by propulsion or environmental control systems. The failure of a COPV has the potential to be catastrophic, resulting in the loss of vehicle, crew or mission. The latest COPV designs have reduced the wall-thickness of the metallic liner to the point where the material strains plastically during operation. At this time, the only method to determine the damage tolerance lifetime (safe-life) of a plastically responding metallic liner is through full-scale COPV testing. Conducting tests costs substantially more and can be far more time consuming than performing an analysis. As a result of this cost, there is a need to establish a qualifying process through the use of a crack growth analysis tool. This paper will discuss fracture analyses of plastically responding metallic liners in COPVs. Uni-axial strain tests have been completed on laboratory specimens to collect elastic-plastic crack growth data. This data has been modeled with the crack growth analysis tool, NASGRO 6.20 to predict the response of laboratory specimens and subsequently the complexity of a COPV.

  1. Elastic limit at macroscopic deformation of icosahedral Al-Pd-Mn single quasicrystals

    International Nuclear Information System (INIS)

    Ledig, L.; Bartsch, M.; Messerschmidt, U.

    2006-01-01

    Al 70.5 Pd 21 Mn 8.5 single quasicrystals were plastically deformed between 482 and 821 deg. C. The strain rate sensitivity of the flow stress was measured by stress relaxation tests. At several temperatures, the dislocation structures were imaged by diffraction contrast in a high-voltage electron microscope for determining the dislocation densities. At all temperatures, the plastic deformation starts with a range of very high work-hardening. The transition point between almost elastic and elastic-plastic deformation is called the elastic limit. At low temperatures, the deformation was stopped at about 1.5 GPa to prevent fracture. Above about 580 deg. C, the stress-strain curves bend down and show a yield point effect followed by a range of almost steady state deformation. At low temperatures, the elastic limit is much lower than the steady state flow stress or the maximum stresses reached without fracture. The activation parameters are different for the elastic limit, the range of high work-hardening and steady state deformation. The flow stresses are interpreted by the stress necessary to move individual dislocations and the athermal component due to the elastic interaction between dislocations. At low temperatures, a further component is necessary to explain the very high flow stresses reached by work-hardening

  2. Elastic-plastic fracture analysis of carbon steel piping using the latest CEGB R6 approach

    International Nuclear Information System (INIS)

    Kanno, S.; Hasegawa, K.; Shimizu, T.; Kobayashi, H.

    1991-01-01

    The elastic-plastic fracture of carbon steel piping having various pipe diameters and circumferential crack angles and subjected to a bending moment is analyzed using the latest United Kingdom Central Electricity Generating Board R6 approach. The elastic-plastic fracture criterion must be applied instead of the plastic collapse criterion with increase of the pipe diameter and the crack angle. A simplified elastic-plastic fracture analysis procedure based on the R6 approach is proposed. (author)

  3. A study of microindentation hardness tests by mechanism-based strain gradient plasticity

    International Nuclear Information System (INIS)

    Huang, Y.; Xue, Z.; Gao, H.; Nix, W. D.; Xia, Z. C.

    2000-01-01

    We recently proposed a theory of mechanism-based strain gradient (MSG) plasticity to account for the size dependence of plastic deformation at micron- and submicron-length scales. The MSG plasticity theory connects micron-scale plasticity to dislocation theories via a multiscale, hierarchical framework linking Taylor's dislocation hardening model to strain gradient plasticity. Here we show that the theory of MSG plasticity, when used to study micro-indentation, indeed reproduces the linear dependence observed in experiments, thus providing an important self-consistent check of the theory. The effects of pileup, sink-in, and the radius of indenter tip have been taken into account in the indentation model. In accomplishing this objective, we have generalized the MSG plasticity theory to include the elastic deformation in the hierarchical framework. (c) 2000 Materials Research Society

  4. comparison of elastic-plastic FE method and engineering method for RPV fracture mechanics analysis

    International Nuclear Information System (INIS)

    Sun Yingxue; Zheng Bin; Zhang Fenggang

    2009-01-01

    This paper described the FE analysis of elastic-plastic fracture mechanics for a crack in RPV belt line using ABAQUS code. It calculated and evaluated the stress intensity factor and J integral of crack under PTS transients. The result is also compared with that by engineering analysis method. It shows that the results using engineering analysis method is a little larger than the results using FE analysis of 3D elastic-plastic fracture mechanics, thus the engineering analysis method is conservative than the elastic-plastic fracture mechanics method. (authors)

  5. Micro-mechanical modelling of ductile failure in 6005A aluminium using a physics based strain hardening larw including stage IV

    DEFF Research Database (Denmark)

    Simar, Aude; Nielsen, Kim Lau; de Meester, Bruno

    2010-01-01

    The strain hardening and damage behaviour of isothermally heat treated 6005A aluminium is investigated in order to link the thermal treatment conditions, microstructure and fracture strain. The need for a plastic flow rule involving a stage IV hardening at large strain was found essential to gene...

  6. Energetic model of metal hardening

    Directory of Open Access Journals (Sweden)

    Ignatova O.N.

    2011-01-01

    Full Text Available Based on Bailey hypothesis on the link between strain hardening and elastic lattice defect energy this paper suggests a shear strength energetic model that takes into consideration plastic strain intensity and rate as well as softening related to temperature annealing and dislocation annihilation. Metal strain hardening was demonstrated to be determined only by elastic strain energy related to the energy of accumulated defects. It is anticipated that accumulation of the elastic energy of defects is governed by plastic work. The suggested model has a reasonable agreement with the available experimental data for copper up to P = 70 GPa , for aluminum up to P = 10 GPa and for tantalum up to P = 20 GPa.

  7. Numerical estimate of fracture parameters under elastic and elastic-plastic conditions

    International Nuclear Information System (INIS)

    Soba, Alejandro; Denis, Alicia C.

    2003-01-01

    The importance of the stress intensity factor K in the elastic fracture analysis is well known. In this work three methods are developed to estimate the parameter K I , corresponding to the normal loading mode, employing the finite elements method. The elastic-plastic condition is also analyzed, where the line integral J is the relevant parameter. Two cases of interest are studied: sample with a crack in its center and tubes with internal pressure. (author)

  8. Instability analysis of a fully plastic center-cracked strip of a power hardening material

    International Nuclear Information System (INIS)

    Zahoor, A.; Paris, P.C.

    1978-01-01

    An approach for predicting unstable crack growth in a power hardening material is discussed. A fully plastic center-cracked strip of finite width under plane strain conditions, which involves J-controlled crack growth, is analyzed. The conditions for unstable crack growth are identified in terms of a non-dimensional parameter, the Tearing Modulus, T, which incorporates the effect of elastic system compliance on the cracked structure as well as the influence of hardening. Numerical results also illustrate the strong influences on stability of both the strain hardening characteristics of the material and certain geometrical proportions which greatly influence the system compliance. (author)

  9. The use of the J* integral for non-linear fracture mechanics

    International Nuclear Information System (INIS)

    Hellen, T.K.

    1976-09-01

    The Griffith energy balance criterion, first postulated over 50 years ago, is still the basis of linear elastic fracture mechanics. From this, accurate numerical methods for establishing stress intensity factors and energy release rates have been developed. One such method involves path independent contour integrals about the crack tip. An improved contour integral, designated J* is discussed, and shown to have distinct advantages over others in non-linear strain situations. A number of examples are shown including fractures in thermo-plastic and creep situations. (author)

  10. Generalized linear elastic fracture mechanics: an application to a crack touching the bimaterial interface

    Czech Academy of Sciences Publication Activity Database

    Náhlík, Luboš; Šestáková, L.; Hutař, Pavel; Knésl, Zdeněk

    2011-01-01

    Roč. 452-453, - (2011), s. 445-448 ISSN 1013-9826 R&D Projects: GA AV ČR(CZ) KJB200410803; GA ČR GA101/09/1821 Institutional research plan: CEZ:AV0Z20410507 Keywords : generalized stress intensity factor * bimaterial interface * composite materials * strain energy density factor * fracture criterion * generalized linear elastic fracture mechanics Subject RIV: JL - Materials Fatigue, Friction Mechanics

  11. Strain localization and elastic-plastic coupling during deformation of porous sandstone

    Energy Technology Data Exchange (ETDEWEB)

    Dewers, Thomas A. [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States). Geomechanics Dept.; Issen, Kathleen A. [Clarkson Univ., Potsdam, NY (United States). Mechanical and Aeronautical Engineering; Holcomb, David J. [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States). Geomechanics Dept.; Olsson, William A. [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States). Geomechanics Dept.; Ingraham, Mathew D. [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States). Geomechanics Dept.

    2017-09-12

    Results of axisymmetric compression tests on weak, porous Castlegate Sandstone (Cretaceous, Utah, USA), covering a range of dilational and compactional behaviors, are examined for localization behavior. Assuming isotropy, bulk and shear moduli evolve as increasing functions of mean stress and Mises equivalent shear stress respectively, and as decreasing functions of work-conjugate plastic strains. Acoustic emissions events located during testing show onset of localization and permit calculation of observed shear and low-angle compaction localization zones, or bands, as localization commences. Total strain measured experimentally partitions into: A) elastic strain with constant moduli, B) elastic strain due to stress dependence of moduli, C) elastic strain due to moduli degradation with increasing plastic strain, and D) plastic strain. The third term is the elastic-plastic coupling strain, and though often ignored, contributes significantly to pre-failure total strain for brittle and transitional tests. Constitutive parameters and localization predictions derived from experiments are compared to theoretical predictions. In the brittle regime, predictions of band angles (angle between band normal and maximum compression) demonstrate good agreement with observed shear band angles. Compaction localization was observed in the transitional regime in between shear localization and spatially pervasive compaction, over a small range of mean stresses. In contrast with predictions however, detailed acoustic emissions analyses in this regime show low angle, compaction-dominated but shear-enhanced, localization.

  12. An improved Armstrong-Frederick-Type Plasticity Model for Stable Cyclic Stress-Strain Responses Considering Nonproportional Hardening

    Science.gov (United States)

    Li, Jing; Zhang, Zhong-ping; Li, Chun-wang

    2018-03-01

    This paper modified an Armstrong-Frederick-type plasticity model for investigating the stable cyclic deformation behavior of metallic materials with different sensitivity to nonproportional loadings. In the modified model, the nonproportionality factor and nonproportional cyclic hardening coefficient coupled with the Jiang-Sehitoglu incremental plasticity model were used to estimate the stable stress-strain responses of the two materials (1045HR steel and 304 stainless steel) under various tension-torsion strain paths. A new equation was proposed to calculate the nonproportionality factor on the basis of the minimum normal strain range. Procedures to determine the minimum normal strain range were presented for general multiaxial loadings. Then, the modified model requires only the cyclic strain hardening exponent and cyclic strength coefficient to determine the material constants. It is convenient for predicting the stable stress-strain responses of materials in engineering application. Comparisons showed that the modified model can reflect the effect of nonproportional cyclic hardening well.

  13. True strain-temperature diagram and structural aspects of molybdenum fracture

    International Nuclear Information System (INIS)

    Vasil'ev, A.D.; Gornaya, I.D.; Moiseev, V.F.; Pechkovskij, Eh.P.; Ponomarev, S.S.; Trefilov, V.I.

    1982-01-01

    For the purpose of studying the regularities of tough fracture of polycrystal molybdenum and explaining characteristic types of uniaxial tensile fractures in the 100-1000 deq C temperature range it is suggested for the first time to use the true strain-temperature (TST) diagram which combines a diagram of structural states and temperature dependence of a number of critical strains reflecting the dynamics of emergence and development of micro-non continuities in a tension specimen. It is shown that in the polycrystal molybdenum the basic parameters controlling the course and the magnitude of separate strain stages as well as the transition to fracture are the strain hardening coefficient and the elasticity limit relation to the strain hardening coefficient at the first stage (homoo.eneous dislocations distribution stage). The TST diagram permits also to explain the following phenomena: the nature of cold brittleness upper temperature, the observed change of fracture mechanisms with the temperature increase, the fracture surface origin

  14. Work hardening and plastic equation of state of tantalum

    International Nuclear Information System (INIS)

    Gypen, L.A.; Aernoudt, E.; Deruyttere, A.

    1983-01-01

    The influence of cold deformation on the thermal and athermal components of the flow stress of tantalum was investigated. Up to high deformation levels the strain hardening is due only to the development of internal stress fields; the effective stress remains almost constant. The athermal strain hardening of tantalum is parabolic at low deformation levels (epsilon < 0.5) and linear at high deformation levels, as for other bcc metals. Hart's plastic equation of state is shown to be valid for tantalum at room temperature in the whole deformation range investigated (from epsilon = 0.005 to epsilon = 2.8). (author)

  15. Crack tip stress and strain

    International Nuclear Information System (INIS)

    Francois, D.

    1975-01-01

    The study of potential energy variations in a loaded elastic solid containing a crack leads to determination of the crack driving force G. Generalization of this concept to cases other than linear elasticity leads to definition of the integral J. In a linear solid, the crack tip stress field is characterized by a single parameter: the stress-intensity factor K. When the crack tip plastic zone size is confined to the elastic singularity J=G, it is possible to establish relationship between these parameters and plastic strain (and in particular the crack tip opening displacement delta). The stress increases because of the triaxiality effect. This overload rises with increasing strain hardening. When the plastic zone size expands, using certain hypotheses, delta can be calculated. The plastic strain intensity is exclusively dependent on parameter J [fr

  16. A general shakedown theorem for elastic/plastic bodies with work hardening

    International Nuclear Information System (INIS)

    Ponter, A.R.S.

    1975-01-01

    In recent years the design of metallic structures under variable loading has been assisted by the application of Melan's lower bound theorem for the shakedown of an elastic/perfectly plastic structure. The design codes for both portal frames and pressure vessels have taken account of such calculations. The theory of shakedown suffers from two defects, geometry changes are ignored and the material behavior is described by a perfectly plastic constitutive relationship which includes neither work hardening nor the Bauschinger effect. This paper is concerned with the latter problem. A very general lower bound shakedown theorem for an arbitrary time-independent material in terms of functional properties of the constitutive relationship is derived. The theorem is then applied to perfect, isotropic and kinematic hardening plasticity. It is shown that the result for all three constitutive relationships may be related to each other through certain extremal stress histories. As well as providing a sufficient condition for shakedown, the theory also provides bounds of the deflection of the structure in the process of reaching the shakedown state. The bounds are discussed and derived for two simple beam problems. Both static and dynamic problems are considered. The theory derived in this paper demonstrates that shakedown analysis may be extended to a wide range of material behavior without increasing the complexity of the resulting calculation

  17. A non-linear elastic constitutive framework for replicating plastic deformation in solids.

    Energy Technology Data Exchange (ETDEWEB)

    Roberts, Scott Alan; Schunk, Peter Randall

    2014-02-01

    Ductile metals and other materials typically deform plastically under large applied loads; a behavior most often modeled using plastic deformation constitutive models. However, it is possible to capture some of the key behaviors of plastic deformation using only the framework for nonlinear elastic mechanics. In this paper, we develop a phenomenological, hysteretic, nonlinear elastic constitutive model that captures many of the features expected of a plastic deformation model. This model is based on calculating a secant modulus directly from a materials stress-strain curve. Scalar stress and strain values are obtained in three dimensions by using the von Mises invariants. Hysteresis is incorporated by tracking an additional history variable and assuming an elastic unloading response. This model is demonstrated in both single- and multi-element simulations under varying strain conditions.

  18. Fracture toughness evaluation of elastic-plastic J-integral for high temperature components of gas turbine in power plants

    International Nuclear Information System (INIS)

    Chung, Nam Yong; Kim, Moon Young; Kim, Jong Woo

    1999-01-01

    In the study, the analysis of elastic-plastic J-integral was performed in high temperature components for gas turbine based on elastic-plastic fracture mechanics. It had been operated on the range of about 700 deg C and degraded by high temperature. It was tested for material properties of used component because of material properties changing at high temperature condition. The elastic-plastic fracture mechanics parameter, J is obtained with finite element method. A method is suggested which determines J Ic applying analysis of elastic-plastic finite element method and results of experimental load-displacements with CT specimen. It is also investigated that J-integral is applied for the elastic-plastic analysis in high temperature components. The elastic-plastic fracture toughness. J Ic determined by finite element was obtained with high accuracy using the experimental method.=20

  19. Elastic-plastic Fracture Mechanics Assessment of nozzle corners submitted to thermal shock loading

    International Nuclear Information System (INIS)

    Chapuliot, S.; Marie, S.

    2016-01-01

    This paper focuses on the development of a simplified analytical scheme for the elastic-plastic Fracture Mechanics Assessment of large nozzle corners. Within that frame, following the specific numerical effort performed for the definition of a Stress Intensity Factor compendium, complementary elastic-plastic developments are proposed here for the consideration of the thermal shock loading in the elastic-plastic domain: this type of loading is a major loading for massive structures such as nozzle corners of large components. Thus, an important numerical was performed in order to extend the applicability domain of existing analytical schemes to those complex geometries. The final formulation is a simple one, applicable to a large variety of materials and geometrical configurations as long as the structure is large and the defect remains small in comparison to the internal radius of the nozzle. - Highlights: • Fracture Mechanics Assessment of large nozzle corners. • Elastic-plastic Stress Intensity Factor determination under thermal shock loading. • Semi-analytical schemes for J calculation.

  20. Strain gradient effects on cyclic plasticity

    DEFF Research Database (Denmark)

    Niordson, Christian Frithiof; Legarth, Brian Nyvang

    2010-01-01

    Size effects on the cyclic shear response are studied numerically using a recent higher order strain gradient visco-plasticity theory accounting for both dissipative and energetic gradient hardening. Numerical investigations of the response under cyclic pure shear and shear of a finite slab between...... rigid platens have been carried out, using the finite element method. It is shown for elastic–perfectly plastic solids how dissipative gradient effects lead to increased yield strength, whereas energetic gradient contributions lead to increased hardening as well as a Bauschinger effect. For linearly...... hardening materials it is quantified how dissipative and energetic gradient effects promote hardening above that of conventional predictions. Usually, increased hardening is attributed to energetic gradient effects, but here it is found that also dissipative gradient effects lead to additional hardening...

  1. Energy based methods for determining elastic plastic fracture

    International Nuclear Information System (INIS)

    Witt, F.J.

    1979-01-01

    Several methods are currently in use or under study for calculating various conditions of fracturing for varying degrees of plasticity. Among these are innovations on the J-integral concept, crack opening displacement or angle, the two parameter concept and the equivalent energy method. Methods involving crack arrest and ductile tearing also fall in this category. Each of these methods have many salient points and some efforts are underway to establish the underlying relationship between them. In this paper, the current research directions of J-integral and equivalent energy methodologies are reviewed with a broader discussion presented for the equivalent energy methodology. The fundamental basis of equivalent energy methodology rests with the volumetric energy ratio. For fractures governed by linear elastic fracture mechanics, the volumetric energy ratio is independent of flaw size and geometry and depends only on the scale factor between model and prototype and temperature. The behavioral aspects of the volumetric energy ratios have been investigated throughout the temperature range from brittle fracture to fully ductile fracture. For five different specimen and structural configurations it has been shown experimentally that the volumetric energy ratio retains its basic properties. That is, the volumetric energy ratio while changing in actual value, maintains its independence of geometry and flaw size while retaining a unique dependence on scale factor and temperature. This property interpreted in terms of fracture mechanics leads to the equivalent energy method. (orig.)

  2. Dislocation-mediated strain hardening in tungsten: Thermo-mechanical plasticity theory and experimental validation

    Science.gov (United States)

    Terentyev, Dmitry; Xiao, Xiazi; Dubinko, A.; Bakaeva, A.; Duan, Huiling

    2015-12-01

    A self-consistent thermo-mechanical model to study the strain-hardening behavior of polycrystalline tungsten was developed and validated by a dedicated experimental route. Dislocation-dislocation multiplication and storage, as well dislocation-grain boundary (GB) pinning were the major mechanisms underlying the evolution of plastic deformation, thus providing a link between the strain hardening behavior and material's microstructure. The microstructure of the polycrystalline tungsten samples has been thoroughly investigated by scanning and electron microscopy. The model was applied to compute stress-strain loading curves of commercial tungsten grades, in the as-received and as-annealed states, in the temperature range of 500-1000 °C. Fitting the model to the independent experimental results obtained using a single crystal and as-received polycrystalline tungsten, the model demonstrated its capability to predict the deformation behavior of as-annealed samples in a wide temperature range and applied strain. The relevance of the dislocation-mediated plasticity mechanisms used in the model have been validated using transmission electron microscopy examination of the samples deformed up to different amounts of strain. On the basis of the experimental validation, the limitations of the model are determined and discussed.

  3. Investigation on crack growth parameters in the elastic plastic region (interim report)

    International Nuclear Information System (INIS)

    Prij, J.

    1982-03-01

    Some theoretical as well as numerical results are presented with respect to the 2D and 3D application of linear elastic fracture mechanics. The application of the finite element method to calculate the stress and strain field in cracked bodies has been discussed with special attention to: singularity representation, parameter extraction and mesh refinement. Detailed 3D stress analyses of fracture mechanics test specimen are presented showing that: the stress intensity concept cannot be extended simply into a 3D concept, the energy release concept is more promising within this aspect and the plastic region along the crackfront will not have a dogbone shape. The 3D elastic fracture mechanics concept is applied to evaluate the consequences of the thermal stresses due to γ-heating in an in-pile crack growth experiment

  4. A calculational round robin in elastic-plastic fracture mechanics

    International Nuclear Information System (INIS)

    Larsson, L.H.

    Eighteen organizations participated in this round robin which treated the same three-point bend problem as an ASTM round robin four years earlier. Overall deformation, J, CTOD and crack profile were the main results required using plane strain elastic-plastic finite element analysis for a monotonically increasing load up to a maximum deformation which was far beyond the elastic regime. All elastic solutions were accurate to within a few percent. In the elastic-plastic regime, however, there was a large scatter of the results, increasing with increasing plastic deformation and roughly of the same order as in the ASTM round robin which contained ten solutions. Apparently no significant progress has taken place in the state of the art of numerical EPFM analysis in four years time. The paper discusses the reasons for this scatter and draws tentative conclusions on the most suitable numerical analysis methods in EPFM. (Auth.)

  5. Aspects related to fracture toughness of mismatch welds

    International Nuclear Information System (INIS)

    Kumar, Suranjit; Khan, I.A.; Bhasin, V.; Vaze, K.K.

    2011-01-01

    In this work effect of weld strength mismatch and weld slenderness on plastic η factor was systematically examined. Solutions presented here are based on extensive two-dimensional finite element analysis. Results of FE analysis has shown that for homogeneous specimens plastic η -factor does not vary significantly with material strain hardening index. Plastic η -factors for non-hardening material models were in better agreement with ASTM solutions than for hardening material models. For mismatch welded specimens analyses were performed on Compact tension (CT) and three points bend (TPB) specimens. Studies were performed for both hardening as well as elastic-perfectly plastic (non-hardening) material models. Results of finite element analysis have shown that unlike homogeneous specimens there is an influence of material strain hardening on plastic η -factor. For over match welds plastic η -factor evaluated for non-hardening material model are lower while for under match welds use of non-hardening material model gives higher value as compare to that of hardening material model. However, it was observed that for over match welds use of ASTM based plastic η -factors (valid for homogeneous specimens) gives the higher values than actual plastic η -factors (evaluated for both hardening as well as non-hardening material model) of mismatch welded specimens. This in turn would lead to un-conservative estimate of fracture toughness and vice versa is true for under-matched welds. (author)

  6. Ductile fracture evaluation of ductile cast iron and forged steel by nonlinear-fracture-mechanics. Pt. 1. Tensile test by large scaled test pieces with surface crack

    International Nuclear Information System (INIS)

    Kosaki, Akio; Ajima, Tatsuro; Inohara, Yasuto

    1999-01-01

    The ductile fracture tests of Ductile Cast Iron and Forged Steel under a tensile stress condition were conducted using large-scaled flat test specimens with a surface crack and were evaluated by the J-integral values, in order to propose an evaluation method of initiation of ductile fracture of a cask body with crack by nonlinear-fracture-mechanics. Following results were obtained. 1) 1 -strain relations of Ductile Cast Iron and Forged Steel under the tensile stress condition were obtained, which is necessary for the development of J-integral design curves for evaluating the initiation of ductile fracture of the cask body. 2) In case of Ductile Cast Iron, the experimental J-integral values obtained from strain-gauges showed a good agreement with the linear-elastic-theory by Raju and Newman at room temperature, in both elastic and plastic regions. But, at 70degC in plastic region, the experimental i-integral values showed middle values between those predicted by the linear-elastic-theory and by the non- linear-elastic- theory (based on the fully plastic solution by Yagawa et al.). 3) In case of Forged Steel at both -25degC and room temperature, the experimental i-integral values obtained from strain-gauges showed a good agreement with those predicted by the linear-elastic-theory by Raju and Newman, in the elastic region. In the plastic region, however, the experimental i-integral values fell apart from the curve predicted by the linear-elastic-theory by Raju and Newman, and also approached to those by the non-linear-elastic-theory with increasing strain.(author)

  7. Modeling fracture in the context of a strain-limiting theory of elasticity: a single anti-plane shear crack

    KAUST Repository

    Rajagopal, K. R.

    2011-01-06

    This paper is the first part of an extended program to develop a theory of fracture in the context of strain-limiting theories of elasticity. This program exploits a novel approach to modeling the mechanical response of elastic, that is non-dissipative, materials through implicit constitutive relations. The particular class of models studied here can also be viewed as arising from an explicit theory in which the displacement gradient is specified to be a nonlinear function of stress. This modeling construct generalizes the classical Cauchy and Green theories of elasticity which are included as special cases. It was conjectured that special forms of these implicit theories that limit strains to physically realistic maximum levels even for arbitrarily large stresses would be ideal for modeling fracture by offering a modeling paradigm that avoids the crack-tip strain singularities characteristic of classical fracture theories. The simplest fracture setting in which to explore this conjecture is anti-plane shear. It is demonstrated herein that for a specific choice of strain-limiting elasticity theory, crack-tip strains do indeed remain bounded. Moreover, the theory predicts a bounded stress field in the neighborhood of a crack-tip and a cusp-shaped opening displacement. The results confirm the conjecture that use of a strain limiting explicit theory in which the displacement gradient is given as a function of stress for modeling the bulk constitutive behavior obviates the necessity of introducing ad hoc modeling constructs such as crack-tip cohesive or process zones in order to correct the unphysical stress and strain singularities predicted by classical linear elastic fracture mechanics. © 2011 Springer Science+Business Media B.V.

  8. ANISOTROPIC STRAIN-HARDENING IN POLYCRYSTALLINE COPPER AND ALUMINUM

    NARCIS (Netherlands)

    HESS, F

    1993-01-01

    A new viscoplastic model for the plastic stress-strain behaviour of f.c.c. metals is presented. In this model the strain hardening results from increasing dislocation densities. The observed stagnation of strain hardening after strain reversals is explained by a lowering of the increase in

  9. Study on elastic-plastic deformation analysis using a cyclic stress-strain curve

    International Nuclear Information System (INIS)

    Igari, Toshihide; Setoguchi, Katsuya; Yamauchi, Masafumi

    1983-01-01

    This paper presents the results of the elastic-plastic deformation analysis using a cyclic stress-strain curve with an intention to apply this method for predicting the low-cycle fatigue life. Uniaxial plastic cycling tests were performed on 2 1/4Cr-1Mo steel to investigate the correspondence between the cyclic stress-strain curve and the hysteresis loop, and also to determine what mathematical model should be used for analysis of deformation at stress reversal. Furthermore, a cyclic in-plane bending test was performed on a flat plate to clarify the validity of the cyclic stress-strain curve-based theoretical analysis. The results obtained are as follows: (1) The cyclic stress-strain curve corresponds nearly to the ascending curve of hysteresis loop scaled by a factor of 1/2 for both stress and strain. Therefore, the cyclic stress-strain curve can be determined from the shape of hysteresis loop, for simplicity. (2) To perform the elastic-plastic deformation analysis using the cyclic stress-strain curve is both practical and effective for predicting the cyclic elastic-plastic deformation of structures at the stage of advanced cycles. And Masing model can serve as a suitable mathematical model for such a deformation analysis. (author)

  10. Finite element historical deformation analysis in piecewise linear plasticity by mathematical programming

    International Nuclear Information System (INIS)

    De Donato, O.; Parisi, M.A.

    1977-01-01

    When loads increase proportionally beyond the elastic limit in the presence of elastic-plastic piecewise-linear constitutive laws, the problem of finding the whole evolution of the plastic strain and displacements of structures was recently shown to be amenable to a parametric linear complementary problem (PLCP) in which the parameter is represented by the load factor, the matrix is symmetric positive definite or at least semi-definite (for perfect plasticity) and the variables with a direct mechanical meaning are the plastic multipliers. With reference to plane trusses and frames with elastic-plastic linear work-hardening material behaviour numerical solutions were also fairly efficiently obtained using a recent mathematical programming algorithm (due to R.W. Cottle) which is able to provide the whole deformation history of the structure and, at the same time to rule out local unloadings along the given proportional loading process by means of 'a priori' checks carried out before each pivotal step of the procedure. Hence it becomes possible to use the holonomic (reversible, path-independent) constitutive laws in finite terms and to benefit by all the relevant numerical and computational advantages despite the non-holonomic nature of plastic behaviour. In the present paper the method of solution is re-examined in view to overcome an important drawback of the algorithm deriving from the size of PLCP fully populated matrix when structural problems with large number of variables are considered and, consequently, the updating, the storing or, generally, the handling of the current tableau may become prohibitive. (Auth.)

  11. Study on elastic-plastic fracture toughness test in high temperature water

    International Nuclear Information System (INIS)

    Miura, Yasufumi

    2016-01-01

    Structural integrity of internal components in light water reactors is important for the safety of operation and service lifetime. Fracture toughness is important parameter for structural integrity assessment of nuclear power plant. In general, fracture toughness of materials which compose the components in light water reactor is obtained with fracture toughness tests in air although some components are subjected to high temperature water because of the difficulty of fracture toughness test in high temperature water. However, the effects of high temperature water and hydrogen on fracture behavior of the structural materials in nuclear power plant such as low alloy steel, cast austenitic stainless steel, and Ni base alloy are concerned recently. In this study, elastic-plastic fracture toughness test of low alloy steel in simulated BWR water environment was studied. Fracture toughness test in high temperature water with original clip gage and normalization data reduction technique was established. The difference of fracture toughness J_Q tested in air between using elastic unload compliance method and normalization data reduction technique was also discussed. As a result, obtained value with normalization data reduction technique tended to be higher than the value with elastic unload compliance. (author)

  12. Strain hardening behavior and microstructural evolution during plastic deformation of dual phase, non-grain oriented electrical and AISI 304 steels

    Energy Technology Data Exchange (ETDEWEB)

    Soares, Guilherme Corrêa; Gonzalez, Berenice Mendonça; Arruda Santos, Leandro de, E-mail: leandro.arruda@demet.ufmg.br

    2017-01-27

    Strain hardening behavior and microstructural evolution of non-grain oriented electrical, dual phase, and AISI 304 steels, subjected to uniaxial tensile tests, were investigated in this study. Tensile tests were performed at room temperature and the strain hardening behavior of the steels was characterized by three different parameters: modified Crussard–Jaoul stages, strain hardening rate and instantaneous strain hardening exponent. Optical microscopic analysis, X-ray diffraction measurements, phase quantification by Rietveld refinement and hardness tests were also carried out in order to correlate the microstructural and mechanical responses to plastic deformation. Distinct strain hardening stages were observed in the steels in terms of the instantaneous strain hardening exponent and the strain hardening rate. The dual phase and non-grain oriented steels exhibited a two-stage strain hardening behavior while the AISI 304 steel displayed multiple stages, resulting in a more complex strain hardening behavior. The dual phase steels showed a high work hardening capacity in stage 1, which was gradually reduced in stage 2. On the other hand, the AISI 304 steel showed high strain hardening capacity, which continued to increase up to the tensile strength. This is a consequence of its additional strain hardening mechanism, based on a strain-induced martensitic transformation, as shown by the X-ray diffraction and optical microscopic analyses.

  13. Dynamic elastic-plastic response of a 2-DOF mass-spring system.

    Energy Technology Data Exchange (ETDEWEB)

    Corona, Edmundo [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2018-02-01

    The objective of the work presented here arose from abnormal, drop scenarios and specifically the question of how the accelerations and accumulation of plastic strains of internal components could be a ected by the material properties of the external structure. In some scenarios, the impact loads can induce cyclic motion of the internal components. Therefore, a second objective was to explore di erences that could be expected when simulations are conducted using isotropic hardening vs. kinematic hardening plasticity models. The simplest model that can be used to investigate the objectives above is a two-degree-offreedom mass/spring model where the springs exhibit elastic-plastic behavior. The purpose of this memo is to develop such model and present a few results that address the objectives.

  14. Extracting material response from simple mechanical tests on hardening-softening-hardening viscoplastic solids

    Science.gov (United States)

    Mohan, Nisha

    Compliant foams are usually characterized by a wide range of desirable mechanical properties. These properties include viscoelasticity at different temperatures, energy absorption, recoverability under cyclic loading, impact resistance, and thermal, electrical, acoustic and radiation-resistance. Some foams contain nano-sized features and are used in small-scale devices. This implies that the characteristic dimensions of foams span multiple length scales, rendering modeling their mechanical properties difficult. Continuum mechanics-based models capture some salient experimental features like the linear elastic regime, followed by non-linear plateau stress regime. However, they lack mesostructural physical details. This makes them incapable of accurately predicting local peaks in stress and strain distributions, which significantly affect the deformation paths. Atomistic methods are capable of capturing the physical origins of deformation at smaller scales, but suffer from impractical computational intensity. Capturing deformation at the so-called meso-scale, which is capable of describing the phenomenon at a continuum level, but with some physical insights, requires developing new theoretical approaches. A fundamental question that motivates the modeling of foams is `how to extract the intrinsic material response from simple mechanical test data, such as stress vs. strain response?' A 3D model was developed to simulate the mechanical response of foam-type materials. The novelty of this model includes unique features such as the hardening-softening-hardening material response, strain rate-dependence, and plastically compressible solids with plastic non-normality. Suggestive links from atomistic simulations of foams were borrowed to formulate a physically informed hardening material input function. Motivated by a model that qualitatively captured the response of foam-type vertically aligned carbon nanotube (VACNT) pillars under uniaxial compression [2011,"Analysis of

  15. Evaluation of combined hardening parameters for type 304LN stainless steel under strain-controlled cyclic loading

    International Nuclear Information System (INIS)

    Kumar, Abhishek; Vishnuvardhan, S.; Raghava, G.

    2016-01-01

    Low cycle fatigue (LCF) is the primary degradation mechanism affecting coolant piping of pressurized water reactor (PWR) caused by combination of pressure and transient mechanical or thermal loads. In the case of LCF, stresses are high enough for plastic deformation to occur and the fatigue life is correlated with the cyclic plastic strain. Modelling cyclic plastic deformation of a material requires hardening parameters, which have to be obtained from LCF test results. It is customary in low cycle fatigue tests that the strain ranges are kept constant and the stresses are allowed to vary which typically leads to a hysteresis loop that consists of linear and nonlinear parts. In this paper, numerical studies on mechanical behaviour of Type 304LN stainless steel under fully reversed strain-controlled cyclic loading have been carried out. A linear combination of the two hardening types, isotropic and kinematic, governed by a scalar parameter, β (0 ≤β ≤ 1) is used. A value of β=1 indicates a pure isotropic hardening while a value of β=0 indicates pure kinematic hardening. The details of the combined isotropic-kinematic hardening model are also presented. Constitutive relations for the classical von Mises theory along with a bilinear hardening theory have been used. The model is implemented in finite element software ABAQUS using a user subroutine written in FORTRAN, UMAT. An iterative method is adopted to arrive at the model's hardening parameters and the value of β. (author)

  16. Plane strain analytical solutions for a functionally graded elastic-plastic pressurized tube

    International Nuclear Information System (INIS)

    Eraslan, Ahmet N.; Akis, Tolga

    2006-01-01

    Plane strain analytical solutions to functionally graded elastic and elastic-plastic pressurized tube problems are obtained in the framework of small deformation theory. The modulus of elasticity and the uniaxial yield limit of the tube material are assumed to vary radially according to two parametric parabolic forms. The analytical plastic model is based on Tresca's yield criterion, its associated flow rule and ideally plastic material behaviour. Elastic, partially plastic and fully plastic stress states are investigated. It is shown that the elastoplastic response of the functionally graded pressurized tube is affected significantly by the material nonhomogeneity. Different modes of plasticization may take place unlike the homogeneous case. It is also shown mathematically that the nonhomogeneous elastoplastic solution presented here reduces to that of a homogeneous one by appropriate choice of the material parameters

  17. Elastic-plastic fracture mechanics for nuclear pressure vessels: a preliminary appraisal

    International Nuclear Information System (INIS)

    Hahn, G.T.; Broek, D.; Marschall, C.W.; Rosenfield, A.R.; Rybicki, E.F.; Schmueser, D.W.; Stonesifer, R.B.; Kanninen, M.F.

    1978-01-01

    A research program directed at assessing the margin of safety of flawed nuclear pressure vessels near and beyond general yielding is described. The program has the general objective of developing an elastic-plastic fracture mechanics methodology. The approach is based on the use of finite element models together with experimental results to identify criteria appropriate for the onset of crack extension and for stable crack growth. A number of criteria beyond the conventional LEFM R curve are being evaluated. These include the critical values of the J-integral, its derivative, the crack tip opening angle, the average crack opening angle, a generalized energy release rate, its components and a crack tip force. The optimum fracture criterion for nuclear vessels is being determined by systematic measurements of load extension curves, strain distribution, crack opening displacement, stable crack growth and instability on 'toughness scaled' model materials. Computations have been performed for center cracked panels of a model material (2219-T87 aluminium) for full shear failure. (author)

  18. Investigation of the local fracture toughness and the elastic-plastic fracture behavior of NiAl and tungsten by means of micro-cantilever tests

    International Nuclear Information System (INIS)

    Ast, Johannes

    2016-01-01

    is linked to the thermally activated dislocation mobility which is more constrained in those samples. Investigations on plastically predeformed samples were performed in order to study the influence of the dislocation density on the fracture behavior. It was found that the fracture toughness was again not affected but that the predeformed samples failed at an earlier stage at lower J-integrals. This is due to the lower mobility of the dislocations emitted from the crack tip in consequence of the high amount of strain hardening and the higher flow stress in those samples. Experiments in ultrafine-grained tungsten revealed a fracture behavior which was more brittle than expected. A single grain at the crack front with its crystallographic orientation being prone to cleavage failure can decisively influence the fracture behavior at the micro scale. [de

  19. A new constitutive equation for strain hardening and softening of fcc metals during severe plastic deformation

    International Nuclear Information System (INIS)

    Wei, W.; Wei, K.X.; Fan, G.J.

    2008-01-01

    The stress-strain relationship for strain hardening and softening of high-purity aluminum and copper, which were deformed by equal channel angular pressing (ECAP) at ambient temperature, was analyzed by combining the Estrin and Mecking (EM) model and an Avrami-type equation with experimental data during severe plastic deformation. The initial strain hardening can be described by the EM model, while the flow stress arrives at the peak stress after it was saturated. However, strain softening similar to plastic deformation at high temperatures is observed after the peak stress. Moreover, the peak strain at the maximum flow stress is ∼4 for copper and ∼2 for aluminum. A new constitutive equation was developed to describe strain softening at high strain levels, which was supported well by tensile, compression and microhardness tests at room temperature and low strain rate. It was observed that dynamic recovery and recrystallization occurs in copper, and recrystallized grains and their growth in aluminum. The results indicate that dynamic recovery and recrystallization was the dominant softening mechanism, which was confirmed by scanning electron microscopy-electron channeling contrast observations and the abnormal relationship between the imposed strain during ECAP and subsequent recrystallization temperature after ECAP

  20. Elastic-plastic analysis of high speed rotors with no plane of symmetry

    International Nuclear Information System (INIS)

    Anantha Ramu, S.

    1981-01-01

    A general method of analysis of elastic plastic shells has been developed. The material of the shell is assumed to obey von Mises yield condition and a stress strain law on the basis of deformation theory of plasticity. The method permits an easy iterative solution of the complete set of coupled nonlinear differential equations. The iterative procedure is essentially the solution of the elastic problem several times with different sets of loads. The solution finally yields among other things, the location of the elastic-plastic boundary in the shell wall. The second approach suggested is a three-dimensional hexahedral isoparametric solid element. The computer program developed is capable of modelling perfectly plastic, bilinear as well as nonlinear strain hardening behaviour of materials. As an example, a radial impeller is analysed by both the approaches by idealizing it as a rotating conical shell. The complete history of plastification of the shell wall as the speed increases is determined. The results of both approaches are found to be in good agreement with each other. (orig./HP)

  1. Development of a formalism of movable cellular automaton method for numerical modeling of fracture of heterogeneous elastic-plastic materials

    Directory of Open Access Journals (Sweden)

    S. Psakhie

    2013-04-01

    Full Text Available A general approach to realization of models of elasticity, plasticity and fracture of heterogeneous materials within the framework of particle-based numerical methods is proposed in the paper. It is based on building many-body forces of particle interaction, which provide response of particle ensemble correctly conforming to the response (including elastic-plastic behavior and fracture of simulated solids. Implementation of proposed approach within particle-based methods is demonstrated by the example of the movable cellular automaton (MCA method, which integrates the possibilities of particle-based discrete element method (DEM and cellular automaton methods. Emergent advantages of the developed approach to formulation of many-body interaction are discussed. Main of them are its applicability to various realizations of the concept of discrete elements and a possibility to realize various rheological models (including elastic-plastic or visco-elastic-plastic and models of fracture to study deformation and fracture of solid-phase materials and media. Capabilities of particle-based modeling of heterogeneous solids are demonstrated by the problem of simulation of deformation and fracture of particle-reinforced metal-ceramic composites.

  2. Elastic-plastic analysis of fracture mechanics test specimens. Part 2

    International Nuclear Information System (INIS)

    Talja, H.; Wallin, K.

    1984-12-01

    This is second part of the report of the research program 'Comparisons between computational and experimental elastic-plastic results' started at the Technical Research Centre of Finland in 1981. The first part of the research program was reported earlier and contained a two dimensional linear elastic finite element analysis of four specimen geometries (CT, RCT, ASTM-3P and Charpy-V) and testing and elastic-plastic analysis of the specimen (EGF71; 1TCT, material A 542). In this report the second part of the program containing the testing and 2-D elastic-plastic analyses of five specimens is described. The four specimen geometries mentioned above and two different materials (stainless steel AISI 304 and ferrite pressure vessel steel A533B) are considered. The following comparisons are presented in the report: load vs. load displacement curves, J-integral, crack opening displacement (COD), J vs. COD and the size of the plastic zone. The agreement between the computational and experimental results is quite good. Complete agreement can be achieved only with 3-dimensional calculation models. (author)

  3. Fracture of anisotropic materials with plastic strain-gradient effects

    DEFF Research Database (Denmark)

    Legarth, Brian Nyvang

    2013-01-01

    A unit cell is adopted to numerically analyze the effect of plastic anisotropy on frac-ture evolution in a micro-reinforced fiber-composite. The matrix material exhibit size-effects and an anisotropic strain-gradient plasticity model accounting for such size-effects through a mate-rial length scale...

  4. Elastic-plastic fracture assessment using a J-R curve by direct method

    International Nuclear Information System (INIS)

    Asta, E.P.

    1996-01-01

    In the elastic-plastic evaluation methods, based on J integral and tearing modulus procedures, an essential input is the material fracture resistance (J-R) curve. In order to simplify J-R determination direct, a method from load-load point displacement records of the single specimen tests may be employed. This procedure has advantages such as avoiding accuracy problems of the crack growth measuring devices and reducing testing time. This paper presents a structural integrity assessment approach, for ductile fracture, using the J-R obtained by a direct method from small single specimen fracture tests. The J-R direct method was carried out by means of a developed computational program based on theoretical elastic-plastic expressions. A comparative evaluation between the direct method J resistance curves and those obtained by the standard testing methodology on typical pressure vessel steels has been made. The J-R curves estimated from the direct method give an acceptable agreement with the approach proposed in this study which is reliable to use for engineering determinations. (orig.)

  5. Evaluation of elastic-plastic fracture of toughness and fracture resistance of carbon steel STS42

    International Nuclear Information System (INIS)

    Kobayashi, Hideo; Nakamura, Haruo; Kashiwagi, Kohmei

    1987-01-01

    The elastic-plastic fracture toughness (J Ic ) and fracture resistance (J-R curve) of a carbon steel, STS42, used for piping in a nuclear reactor were evaluated according to the several evaluating methods recommended or proposed so far, to discuss their applicability and utility. The results obtained are as follows: (1) In evaluating J Ic , the multiple specimen method recommended by the Japan Society for Mechanical Engineers (JSME standard S001) gives the most reliable results by using smaller sized specimens. (2) The single-specimen methods by using the compliance technique, adopted in the ASTM standards (E813, E813 modified, Tentative test procedure for determining the plain strain J-R curve), do not give an accurate J-R curve or J Ic , due to an error in the calculated crack length. (3) In evaluating the J-R curve, it is necessary to account for crack extension in calculating the J-integral. (4) According to the above results, a new standard method for determining the J-R curve including the J Ic test method should be poprosed. (author)

  6. Correlation of microstructure and strain hardening behavior in the ultrafine-grained Nb-bearing dual phase steels

    Energy Technology Data Exchange (ETDEWEB)

    Ghatei Kalashami, A. [Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111 (Iran, Islamic Republic of); Kermanpur, A., E-mail: ahmad_k@cc.iut.ac.ir [Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111 (Iran, Islamic Republic of); Ghassemali, E. [Jönköping University, School of Engineering, Department of Materials and Manufacturing, P.O. Box 1026, SE-551 11 Jönköping (Sweden); Najafizadeh, A. [Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111 (Iran, Islamic Republic of); Mazaheri, Y. [Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111 (Iran, Islamic Republic of); Department of Materials Engineering, Bu-Ali Sina University, Hamedan 65178-38695 (Iran, Islamic Republic of)

    2016-12-15

    Ultrafine-grained dual phase (DP) steels with different Nb contents (0.00, 0.06 and 0.12 wt%) were produced by cold-rolling followed by intercritical annealing of ferrite/martensite starting microstructure at 770 °C for different holding times. Scanning electron microscopy, equipped with electron backscattered diffraction (EBSD) detector, nanoindentation and tensile testing were used to characterize microstructural evolutions and their correlations to the strain hardening and fracture behavior. EBSD results confirmed the retardation effect of Nb on recrystallization. It was found that the strains stored in the grains and density of geometrically necessary dislocations (GNDs) were increased with the addition of Nb. Strain hardening analysis showed that plastic deformation of the DP steels occurred in three distinct stages, which based on the EBSD results, nanoindentation and fracture analysis, were controlled by microstructural features such martensite volume fraction and size, density of GNDs and individual ferrite and martensite tensile properties.

  7. Numerical and experimental comparison of plastic work-hardening rules

    International Nuclear Information System (INIS)

    Haisler, W.E.

    1977-01-01

    The purpose of this paper is to describe recent numerical and experimental correlation studies of several plastic work-hardening rules. The mechanical sublayer model and the combined kinematic-isotropic hardening rules are examined and the numerical results for several structural geometries are compared to experimental results. Both monotonic and cyclic loads are considered. The governing incremental plasticity relations are developed for both work-hardening models. The combined kinematic-isotropic hardening model is developed in terms of a ratio γ which controls the relative contribution of kinematic hardening (yield surface translation) and isotropic hardening (yield surface expansion). In addition to making use of a uniaxial stress-strain curve as input data, the model allows for the input of a yield surface size vs. uniaxial plastic strain curve obtained from a cyclic uniaxial reverse loading test. The mechanical sublayer model is developed in general form and a new method for determining the sublayer parameters (stress weighting factors and yield stresses) is presented. It is demonstrated that former procedures used to obtain the sublayer parameters are inconsistent for multiaxial loading. Numerical and experimental results are presented for a cylinder, circular plate with punch, and a steel pressure vessel. The numerical results are obtained with the computer program AGGIE I. The comparison study indicates that reasonable agreement is obtained with both hardening models; the choice depending upon whether the loading is monotonic or cyclic

  8. Elastic-plastic analysis of part-through crack propagation in piping and pressure vessels

    International Nuclear Information System (INIS)

    Souza, L.A. de; Ebecken, N.F.F.

    1986-01-01

    The shell structures, often used in the construction of reservoirs, pipings, pressure vessels, nuclear power plants, etc, with part-through crack along its thickness, are analysed, using a computer system developed by the finite element method. The surface is discretized with three-dimensional quadratic elements, degenerated in its mid-surface, such the fracture is simulated by scalar elements (non linear springs). The results are analysed by the stress intensity factor K Sub(I) and the strain energy release rate, which is known as J-integral. The analysis is performed in the elastic and elastic-plastic regime. The basic hipothesis and the formulation adopted in the derivation of the scalar elements are also shown. (Author) [pt

  9. Simplified computational methods for elastic and elastic-plastic fracture problems

    Science.gov (United States)

    Atluri, Satya N.

    1992-01-01

    An overview is given of some of the recent (1984-1991) developments in computational/analytical methods in the mechanics of fractures. Topics covered include analytical solutions for elliptical or circular cracks embedded in isotropic or transversely isotropic solids, with crack faces being subjected to arbitrary tractions; finite element or boundary element alternating methods for two or three dimensional crack problems; a 'direct stiffness' method for stiffened panels with flexible fasteners and with multiple cracks; multiple site damage near a row of fastener holes; an analysis of cracks with bonded repair patches; methods for the generation of weight functions for two and three dimensional crack problems; and domain-integral methods for elastic-plastic or inelastic crack mechanics.

  10. Determination of the strain hardening rate of metals and alloys by X ray diffraction

    International Nuclear Information System (INIS)

    Cadalbert, Robert

    1977-01-01

    This report for engineering graduation is based on the study of X ray diffraction line profile which varies with the plastic strain rate of the metal. After some generalities of strain hardening (consequence of a plastic deformation on the structure of a polycrystalline metal, means to study a strain hardened structure, use of X ray diffraction to analyse the strain hardened crystalline structure), the author reports the strain hardening rate measurement by using X ray diffraction. Several aspects are addressed: principles, experimental technique, apparatus, automation and programming of the measurement cycle, method sensitivity and precision. In the next part, the author reports applications: measurement of the strain hardening rate in different materials (tubes with hexagonal profile, cylindrical tubes in austenitic steel), and study of the evolution of strain hardening with temperature [fr

  11. Self-consistent modelling of lattice strains during the in-situ tensile loading of twinning induced plasticity steel

    International Nuclear Information System (INIS)

    Saleh, Ahmed A.; Pereloma, Elena V.; Clausen, Bjørn; Brown, Donald W.; Tomé, Carlos N.; Gazder, Azdiar A.

    2014-01-01

    The evolution of lattice strains in a fully recrystallised Fe–24Mn–3Al–2Si–1Ni–0.06C TWinning Induced Plasticity (TWIP) steel subjected to uniaxial tensile loading up to a true strain of ∼35% was investigated via in-situ neutron diffraction. Typical of fcc elastic and plastic anisotropy, the {111} and {200} grain families record the lowest and highest lattice strains, respectively. Using modelling cases with and without latent hardening, the recently extended Elasto-Plastic Self-Consistent model successfully predicted the macroscopic stress–strain response, the evolution of lattice strains and the development of crystallographic texture. Compared to the isotropic hardening case, latent hardening did not have a significant effect on lattice strains and returned a relatively faster development of a stronger 〈111〉 and a weaker 〈100〉 double fibre parallel to the tensile axis. Close correspondence between the experimental lattice strains and those predicted using particular orientations embedded within a random aggregate was obtained. The result suggests that the exact orientations of the surrounding aggregate have a weak influence on the lattice strain evolution

  12. Development of stress-modified fracture strain criterion for ductile fracture of API X65 steel

    International Nuclear Information System (INIS)

    Oh, Chang Kyun; Kim, Yun Jae; Park, Jin Moo; Kim, Woo Sik; Baek, Jong Hyun

    2005-01-01

    This paper presents a stress-modified fracture strain for API X65 steel used for gas pipeline, as a function of stress triaxiality. To determine the stress-modified fracture strain, tension test of bars with four different notch radii, made of API X65 steel, is firstly performed, from which true fracture strains are determined as a function of notch radius. Then detailed elastic-plastic, large strain Finite Element (FE) analyses are performed to estimate variations of stress triaxiality in the notched bars with load. Combining experimental with FE results provides the true fracture strain as a function of stress triaxiality, which is regarded as a criterion of ductile fracture. Application of the developed stress-modified fracture strain to failure prediction of gas pipes made of API X65 steel with various types of defects is discussed

  13. Indentation of elastically soft and plastically compressible solids

    NARCIS (Netherlands)

    Needleman, A.; Tvergaard, V.; Van der Giessen, E.

    The effect of soft elasticity, i.e., a relatively small value of the ratio of Young's modulus to yield strength and plastic compressibility on the indentation of isotropically hardening elastic-viscoplastic solids is investigated. Calculations are carried out for indentation of a perfectly sticking

  14. Computational Modelling of Fracture Propagation in Rocks Using a Coupled Elastic-Plasticity-Damage Model

    Directory of Open Access Journals (Sweden)

    Isa Kolo

    2016-01-01

    Full Text Available A coupled elastic-plasticity-damage constitutive model, AK Model, is applied to predict fracture propagation in rocks. The quasi-brittle material model captures anisotropic effects and the distinct behavior of rocks in tension and compression. Calibration of the constitutive model is realized using experimental data for Carrara marble. Through the Weibull distribution function, heterogeneity effect is captured by spatially varying the elastic properties of the rock. Favorable comparison between model predictions and experiments for single-flawed specimens reveal that the AK Model is reliable and accurate for modelling fracture propagation in rocks.

  15. Plastic deformation and fracture behavior of zircaloy-2 fuel cladding tubes under biaxial stress

    International Nuclear Information System (INIS)

    Maki, Hideo; Ooyama, Masatosi

    1975-01-01

    Various combinations of biaxial stress were applied on five batches of recrystallized zircaloy-2 fuel cladding tubes with different textures; elongation in both axial and circumferential directions of the specimen was measured continuously up to 5% plastic deformation. The anisotropic theory of plasticity proposed by Hill was applied to the resulting data, and anisotropy constants were obtained through the two media of plastic strain loci and plastic strain ratios. Comparison of the results obtained with the two methods proved that the plastic strain loci provide data that are more effective in predicting quantitatively the plastic deformation behavior of the zircaloy-2 tubes. The anisotropy constants change their value with progress of plastic deformation, and judicious application of the effective stress and effective strain obtained on anisotropic materials will permit the relationship between stress and strain under various biaxialities of stresses to be approximated by the work hardening law. The test specimens used in the plastic deformation experiments were then stressed to fracture under the same combination of biaxial stress as in the proceeding experiments, and the deformation in the fractured part was measured. The result proved that the tilt angle of the c-axis which serves as the index of texture is related to fracture ductility under biaxial stress. Based on this relationship, it was concluded that material with a tilt angle ranging from 10 0 to 15 0 is the most suitable for fuel cladding tubes, from the viewpoint of fracture ductility, at least in the case of unirradiated material. (auth.)

  16. Mixed-mode elastic-plastic fracture of 2024-T351 aluminium alloy

    International Nuclear Information System (INIS)

    Sakata, Masaru; Aoki, Shigeru; Kishimoto, Kikuo; Chikugo, Hiroshi; Takizawa, Masakazu.

    1985-01-01

    In order to evaluate accurately the strength and structural soundness of the structures made of high toughness materials, it is necessary to clarify the fracture behavior under the loading condition of mixed mode such as oblique cracks as well as the elasto-plastic fracture behavior of the materials in the case of single opening displacement type mode. About the fracture condition in the state of mixed mode, various theories based on the linear fracture mechanics have been proposed. In this study, the elasto-plastic fracture toughness test of mixed mode was carried out by using an aluminum alloy as the subject, and the behavior of dulling and development of cracks was observed with a scanning electron microscope. Moreover, the state of deformation of the test pieces was analyzed by elasto-plastic finite element method, thus the parameters controlling the elasto-plastic fracture of mixed mode were examined. In the range of this study, the limiting stretch zone width in the case of loading of mixed mode was 12 μm similarly to the case of single mode. Also in the case of mixed mode, there was distinct difference between the inclination of a dulling straight line and an R-curve, and the limit value of J intergral was determined by their intersection. (Kako, I.)

  17. Nanoparticle amount, and not size, determines chain alignment and nonlinear hardening in polymer nanocomposites

    Science.gov (United States)

    Varol, H. Samet; Meng, Fanlong; Hosseinkhani, Babak; Malm, Christian; Bonn, Daniel; Bonn, Mischa; Zaccone, Alessio

    2017-01-01

    Polymer nanocomposites—materials in which a polymer matrix is blended with nanoparticles (or fillers)—strengthen under sufficiently large strains. Such strain hardening is critical to their function, especially for materials that bear large cyclic loads such as car tires or bearing sealants. Although the reinforcement (i.e., the increase in the linear elasticity) by the addition of filler particles is phenomenologically understood, considerably less is known about strain hardening (the nonlinear elasticity). Here, we elucidate the molecular origin of strain hardening using uniaxial tensile loading, microspectroscopy of polymer chain alignment, and theory. The strain-hardening behavior and chain alignment are found to depend on the volume fraction, but not on the size of nanofillers. This contrasts with reinforcement, which depends on both volume fraction and size of nanofillers, potentially allowing linear and nonlinear elasticity of nanocomposites to be tuned independently. PMID:28377517

  18. Strain gradient plasticity modeling of hydrogen diffusion to the crack tip

    DEFF Research Database (Denmark)

    Martínez Pañeda, Emilio; del Busto, S.; Niordson, Christian Frithiof

    2016-01-01

    to characterize the gradient-enhanced stress elevation and subsequent diffusion of hydrogen towards the crack tip. Results reveal that GNDs, absent in conventional plasticity predictions, play a fundamental role on hydrogen transport ahead of a crack. SGP estimations provide a good agreement with experimental......In this work hydrogen diffusion towards the fracture process zone is examined accounting for local hardening due to geometrically necessary dislocations (GNDs) by means of strain gradient plasticity (SGP). Finite element computations are performed within the finite deformation theory...

  19. Physical fundamentals of mesomechanics of plastic deformation and fracture of solids

    International Nuclear Information System (INIS)

    Panin, V.E.

    2001-01-01

    The conventional description of the relationships governing the plastic deformation and fracture of solids is carried out using two approaches: 1) Continuum mechanics 2) Dislocation theory. The continuum mechanics describes the behaviour of material under load using integral characteristics of the medium. In this approach, the internal structure of the material is not taken into account, stress and strain tensors are symmetric and plastic deformation is carried out only by the translational movement of defects under the effect of stresses. The plastic yielding curve is described by calculating strain hardening above the yield point of the material. The phenomenological approach of the continuum mechanics is physically and mathematically completely correct, but it may be used only for describing the integral properties of a macrohomogeneous medium

  20. Two Back Stress Hardening Models in Rate Independent Rigid Plastic Deformation

    Science.gov (United States)

    Yun, Su-Jin

    In the present work, the constitutive relations based on the combination of two back stresses are developed using the Armstrong-Frederick, Phillips and Ziegler’s type hardening rules. Various evolutions of the kinematic hardening parameter can be obtained by means of a simple combination of back stress rate using the rule of mixtures. Thus, a wide range of plastic deformation behavior can be depicted depending on the dominant back stress evolution. The ultimate back stress is also determined for the present combined kinematic hardening models. Since a kinematic hardening rule is assumed in the finite deformation regime, the stress rate is co-rotated with respect to the spin of substructure obtained by incorporating the plastic spin concept. A comparison of the various co-rotational rates is also included. Assuming rigid plasticity, the continuum body consists of the elastic deformation zone and the plastic deformation zone to form a hybrid finite element formulation. Then, the plastic deformation behavior is investigated under various loading conditions with an assumption of the J2 deformation theory. The plastic deformation localization turns out to be strongly dependent on the description of back stress evolution and its associated hardening parameters. The analysis for the shear deformation with fixed boundaries is carried out to examine the deformation localization behavior and the evolution of state variables.

  1. A unified approach to elastic-plastic fracture mechanics

    International Nuclear Information System (INIS)

    Neale, B.K.; Townley, C.H.A.

    1976-01-01

    To assess the integrity of a cracked structure, using materials data obtained from simple laboratory tests, it is essential to define materials properties which are independent of the shape and the size of the specimen and of the loading system applied to it. In those situations where either the specimen or the structure fails after significant yielding has taken place, there is considerable speculation about the materials parameters which are relevant. By extending the Griffith equation for the stability of a perfectly elastic cracked body, the authors derive a fracture criterion which is applicable in the post yield regime. Comparisons are made with procedures based on the J-contour integral, equivalent energy, and crack opening displacements and with the post yield fracture mechanics of Heald, Spink and Worthington, and Dowling and Townley. For certain materials, it is shown that the factor controlling crack initiation is the fracture toughness Ksub(1c), irrespective of the amount of prior plastic damage, and hence independent of the shape and size of the specimen tested. Load carrying capacity in the post yield regime cannot, however, be derived directly from a knowledge of fracture toughness; the ultimate tensile strength of the material is also relevant

  2. Elastic-plastic analysis of local and integral straining behaviour in a cracked plate

    International Nuclear Information System (INIS)

    Grueter, L.; Ruettenauer, B.

    1982-01-01

    For components of the primary coolant system of the German LMFBR prototype reactor SNR-300, integrity against anticipated accidents (Bethe-Tait) has to be shown for a cracked structure. Within this programme a number of tests with cracked wide plate specimens yielding overall limit strains of approximately 15% have been run; finite element calculations have been infinated for the wide plate geometry. The paper discusses the straining behaviour of a cracked plate by considering the numerical simulation of structures strained up to such high levels. The stress-strain diagram of the weldment of the austenitic stainless steel X6 CrNi 18 at 450 0 C has been used. Plane strain and stress conditions have been prescribed. The original plate dimensions (t = thickness = 40 mm; h = height = 400 mm) have been used as well as a similar, but smaller plate of t = 8.8 mm width. The crack length is defined as 0.1 t. The results show that for a cracked plate under high plastic strain the near-crack-tip-field values still govern the structural mechanical behaviour. Concerning the absolute dimensions the effects known for elasticity retain their influence in the plastic regime; however, the crack location becomes more unimportant with increasing strain, i.e. the appropriate pure geometry factor tends to unity in the plastic regime. The center-crack, defined as 2a = 0.1 t, corresponds to an equivalent edge crack of depth a = 0.05 t in the elastic case. It can be shown that for high plastic strains this correspondence remains fully valid. (orig.)

  3. Influence of Cyclic Straining on Fatigue, Deformation, and Fracture Behavior of High-Strength Alloy Steel

    Science.gov (United States)

    Manigandan, K.; Srivatsan, T. S.; Vasudevan, V. K.; Tammana, D.; Poorganji, B.

    2016-01-01

    In this paper, the results of a study on microstructural influences on mechanical behavior of the high-strength alloy steel Tenax™ 310 are presented and discussed. Under the influence of fully reversed strain cycling, the stress response of this alloy steel revealed softening from the onset of deformation. Cyclic strain resistance exhibited a linear trend for the variation of both elastic strain amplitude with reversals-to-failure, and plastic strain amplitude with reversals-to-failure. Fracture morphology was essentially the same at the macroscopic level over the entire range of cyclic strain amplitudes examined. However, at the fine microscopic level, this high-strength alloy steel revealed fracture to be mixed-mode with features reminiscent of "locally" ductile and brittle mechanisms. The macroscopic mechanisms governing stress response at the fine microscopic level, resultant fatigue life, and final fracture behavior are presented and discussed in light of the mutually interactive influences of intrinsic microstructural effects, deformation characteristics of the microstructural constituents during fully reversed strain cycling, cyclic strain amplitude, and resultant response stress.

  4. Code conforming determination of cumulative usage factors for general elastic-plastic finite element analyses

    International Nuclear Information System (INIS)

    Rudolph, Juergen; Goetz, Andreas; Hilpert, Roland

    2012-01-01

    The procedures of fatigue analyses of several relevant nuclear and conventional design codes (ASME, KTA, EN, AD) for power plant components differentiate between an elastic, simplified elastic-plastic and elastic-plastic fatigue check. As a rule, operational load levels will exclude the purely elastic fatigue check. The application of the code procedure of the simplified elastic-plastic fatigue check is common practice. Nevertheless, resulting cumulative usage factors may be overly conservative mainly due to high code based plastification penalty factors Ke. As a consequence, the more complex and still code conforming general elastic-plastic fatigue analysis methodology based on non-linear finite element analysis (FEA) is applied for fatigue design as an alternative. The requirements of the FEA and the material law to be applied have to be clarified in a first step. Current design codes only give rough guidelines on these relevant items. While the procedure for the simplified elastic-plastic fatigue analysis and the associated code passages are based on stress related cycle counting and the determination of pseudo elastic equivalent stress ranges, an adaptation to elastic-plastic strains and strain ranges is required for the elastic-plastic fatigue check. The associated requirements are explained in detail in the paper. If the established and implemented evaluation mechanism (cycle counting according to the peak and valley respectively the rainflow method, calculation of stress ranges from arbitrary load-time histories and determination of cumulative usage factors based on all load events) is to be retained, a conversion of elastic-plastic strains and strain ranges into pseudo elastic stress ranges is required. The algorithm to be applied is described in the paper. It has to be implemented in the sense of an extended post processing operation of FEA e.g. by APDL scripts in ANSYS registered . Variations of principal stress (strain) directions during the loading

  5. Comparison of Thermal Creep Strain Calculation Results Using Time Hardening and Strain Hardening Rules

    International Nuclear Information System (INIS)

    Kim, Junehyung; Cheon, Jinsik; Lee, Byoungoon; Lee, Chanbock

    2014-01-01

    One of the design criteria for the fuel rod in PGSFR is the thermal creep strain of the cladding, because the cladding is exposed to a high temperature for a long time during reactor operation period. In general, there are two kind of calculation scheme for thermal creep strain: time hardening and strain hardening rules. In this work, thermal creep strain calculation results for HT9 cladding by using time hardening and strain hardening rules are compared by employing KAERI's current metallic fuel performance analysis code, MACSIS. Also, thermal creep strain calculation results by using ANL's metallic fuel performance analysis code, LIFE-METAL which adopts strain hardening rule are compared with those by using MACSIS. Thermal creep strain calculation results for HT9 cladding by using time hardening and strain hardening rules were compared by employing KAERI's current metallic fuel performance analysis code, MACSIS. Also, thermal creep strain calculation results by using ANL's metallic fuel performance analysis code, LIFE-METAL which adopts strain hardening rule were compared with those by using MACSIS. Tertiary creep started earlier in time hardening rule than in strain hardening rule. Also, calculation results by MACSIS with strain hardening and those obtained by using LIFE-METAL were almost identical to each other

  6. Clay behaviour under thermal gradients elastic and plastic strains

    International Nuclear Information System (INIS)

    Pintado, Xavier; Autio, Jorma; Punkkinen, Olli

    2010-01-01

    Document available in extended abstract form only. The nuclear waste repositories will generate strong temperature gradients at the clay barrier. The heat and water transport generate volume change in the clay. An experimental work is proposed here. The clay reference is the MX-80. The test device imposes a fixed heat flow in one side of the sample and maintains constant the temperature on the other side. Two samples are tested for symmetry. The samples are unconfined and the total mass of water remains constant. This situation creates a strong thermal gradient in the samples. The final radial strains in some places of the sample, the total vertical strain and the water content distribution will be measured just at the end of the test and some weeks later in order to distinguish the elastic strains from the plastic strains. The test period mustn't be longer than two weeks because a large quantity of water loses through the rubber membrane and the heads of the sample. The maximum temperature reached in the cooper is 90 degrees because with higher temperature, the rubber membrane is damaged. This test is already simulated by a numerical code. Thermal, thermo-hydraulic and thermo-hydro-mechanical analyses are being done. These analyses allow studying the different fluxes inside the sample and its quantification. Water content distribution is compared with the water content calculated from the reference parameters in the clay. The water distribution and the change of diameter after the test will also be studied. This experimental work will allow to know what is the percentage of the strains elastic or plastic and check the mechanical model. The experimental diameter change is compared with the diameter change calculated from the reference parameters of the clay. (authors)

  7. Constitutive relations in plasticity, damage and fracture mechanics based on a work property

    International Nuclear Information System (INIS)

    Marigo, J.J.

    1989-01-01

    This paper is devoted to restrictions imposed by a work property of Drucker-Iliushin's type on the general class of mechanical systems with an elastic range which contains plastic, damaged and cracked media. The analysis is purely mechanical and quasi-static. Starting from very weak assumptions relative to this constitutive class, we obtain a fundamental inequality which generalizes Hill's maximal work principle. So we can justify, for instance: the convexity of the elastic domain and the normality rule of the plastic strain rate in stress space for the infinitesimal and some finite plasticity theories, Griffith's criterion in brittle fracture mechanics, and we obtain some original results for elastic and elastic plastic damaged materials. It must be noted that the procedure is purely deductive, the assumptions are explicit and the results are implications

  8. Disorientations and work-hardening behaviour during severe plastic deformation

    DEFF Research Database (Denmark)

    Pantleon, Wolfgang

    2012-01-01

    Orientation differences develop during plastic deformation even in grains of originally uniform orientation. The evolution of these disorientations is modelled by dislocation dynamics taking into account different storage mechanisms. The predicted average disorientation angles across different ty...... pressure torsion, but also rationalizes the work-hardening behaviour at large plastic strains as well as a saturation of the flow stress....

  9. Some comment on the use of J criterion in elastic plastic fracture mechanics

    International Nuclear Information System (INIS)

    Roche, R.L.

    1978-01-01

    In Post Yield Fracture Mechanics, several criteria have been proposed for the onset of crack propagation, one of the most popular being the J 1 integral criterion. This is only well established for elastic materials, where it can be shown that J 1 is not path dependent, and that J 1 is equal to the variation of potential energy with crack length. Extension is easy for material exhibiting deformation type plasticity, but there is no proof of path independence for flow-type plastic material. Experimental results are often given as a proof of J 1 criterion validity, but a critical analysis shows that important assumptions are made in the use of the test results. The main assumption is that the received work, known as strain energy, is not dependent on the loading history and is only dependent on the mechanical state. The study of the J 1 path dependence is the main point of the J 1 criteria validation. A general method to assess path dependence can be founded on the 'defect vector' (or driving force) concept. The space-density of defect is given by j = grad W - σ grad (W = strain-energy, σ stress tensor, epsilon strain tensor). It is shown that the virtual translation delta a of the defect vectors inside a volume, lead to a virtual work variation given by J 1 delta a and that J 1 is the resultant of all the defect vectors included in the volume surrounded by the integration surface. Using these results the path independence conditions are examined. Some numerical results are given for incremental processes such as plasticity or creep, and where the loading path is radial (proportional) and monotonic, no appreciable path variations found. Finally the results of direct applications of J 1 criterion to real structures are examined. (author)

  10. Relating Cohesive Zone Model to Linear Elastic Fracture Mechanics

    Science.gov (United States)

    Wang, John T.

    2010-01-01

    The conditions required for a cohesive zone model (CZM) to predict a failure load of a cracked structure similar to that obtained by a linear elastic fracture mechanics (LEFM) analysis are investigated in this paper. This study clarifies why many different phenomenological cohesive laws can produce similar fracture predictions. Analytical results for five cohesive zone models are obtained, using five different cohesive laws that have the same cohesive work rate (CWR-area under the traction-separation curve) but different maximum tractions. The effect of the maximum traction on the predicted cohesive zone length and the remote applied load at fracture is presented. Similar to the small scale yielding condition for an LEFM analysis to be valid. the cohesive zone length also needs to be much smaller than the crack length. This is a necessary condition for a CZM to obtain a fracture prediction equivalent to an LEFM result.

  11. Phase-field modelling of ductile fracture: a variational gradient-extended plasticity-damage theory and its micromorphic regularization.

    Science.gov (United States)

    Miehe, C; Teichtmeister, S; Aldakheel, F

    2016-04-28

    This work outlines a novel variational-based theory for the phase-field modelling of ductile fracture in elastic-plastic solids undergoing large strains. The phase-field approach regularizes sharp crack surfaces within a pure continuum setting by a specific gradient damage modelling. It is linked to a formulation of gradient plasticity at finite strains. The framework includes two independent length scales which regularize both the plastic response as well as the crack discontinuities. This ensures that the damage zones of ductile fracture are inside of plastic zones, and guarantees on the computational side a mesh objectivity in post-critical ranges. © 2016 The Author(s).

  12. Microcracking and Healing in Semibrittle Salt-Rock: Elastic and Plastic Behavior

    Science.gov (United States)

    Ding, J.; Chester, F. M.; Chester, J. S.; Shen, X.; Arson, C. F.

    2017-12-01

    Microcracking and healing during semibrittle deformation are important processes that affect physical properties such as elastic moduli and permeability. We study these processes through triaxial compression tests involving cyclic differential loading and isostatic-holds on synthetic salt-rock at room temperature and low confining pressure (Pc, 1 to 4 MPa). The salt samples are produced by uniaxial pressing of granular (300 µm dia.) halite to 75 MPa at 150˚C for 10^3 s, to create low-porosity ( 5%) aggregates of nearly equant, work-hardened grains. Alternating large- and small-load cycles are performed to track the evolution of plastic and elastic properties, respecitively, with progressive strain to 8% axial shortening. 24-hour holds are carried out at about 4% axial shortening followed by renewed cyclic loading to investigate healing. During large load cycles samples yield and exhibit distributed flow with dilatancy and small work hardening. Young's Modulus (YM) decreases and then tends to stabilize, while Poisson's Ratio (PR) increases at a reducing rate, with progressive strain. Microstructures at sequential stages show that opening-mode grain-boundary cracking, grain-boundary sliding, and some intracrystalline plasticity are the dominant deformation processes. Opening and shear occur preferentially on boundaries that are parallel and inclined to the shortening axis, respectively, leading to progressive redistribution of porosity. Opening-mode grain-boundary cracks increase in number and aperature with strain, and are linked by sliding grain-boundaries to form en echelon arrays. After a 24-hour hold, samples show yielding and flow behavior consistent with that prior to the hold, whereas YM and PR are reset to the same values documented at zero strain and subsequently evolve with additional strain similar to that documented at smaller strains prior to the hold. Open grain-boundary cracks are not closed or healed during the hold. Observations suggest that

  13. In-situ measurement of texture and elastic strains with HIPPO-CRATES

    International Nuclear Information System (INIS)

    Hartig, Ch.; Vogel, S.C.; Mecking, H.

    2006-01-01

    In this paper, the micromechanical interaction between constituents of a metallic material during elastic and plastic deformation are analyzed by comparing experimental results with modeling predictions. This comparison aims at determining the locally acting internal stresses, the spatial distribution of strains and the rules allowing deriving the macroscopic behavior of the material from the behavior of its microscopic constituents. We report the application of a new deformation apparatus CRATES, which allows measuring texture and crystal lattice spacings, and from these crystal lattice strains, using neutron diffraction. From the in-situ measured elastic lattice strains ε hkl the corresponding local stresses can be derived. The deformation apparatus allows uni-axial tensile or compressive deformation up to 100 kN and is specifically designed for use in the HIPPO neutron time-of-flight diffractometer. In this paper, we report initial results on an iron-copper model system (Fe100, Fe33Cu67, Fe67Cu33, vol.%) and commercial magnesium alloys (Mg-AZ31 and Mg-AZ80). Finite element calculations using a crystal-plastic constitutive law, allowing for shear and hardening of crystallographic slip-systems, were used for the interpretation of the measurements

  14. Recovery of strain-hardening rate in Ni-Si alloys

    Science.gov (United States)

    Yang, C. L.; Zhang, Z. J.; Cai, T.; Zhang, P.; Zhang, Z. F.

    2015-10-01

    In this study, the recovery of strain-hardening rate (RSHR) was discovered for the first time in polycrystalline materials (Ni-Si alloys) that have only dislocation activities during tensile test. Detailed microstructure characterizations show that the activation of dislocations in the secondary slip systems during tensile deformation is the major reason for this RSHR. By taking into account other metals that also exhibit RSHR during tension, a more general mechanism for the RSHR was proposed, i.e. the occurrence of a sharp decrease of dislocation mean free path (Λ) during plastic deformation, caused by either planar defects or linear defects.

  15. On the Specific Role of Microstructure in Governing Cyclic Fatigue, Deformation, and Fracture Behavior of a High-Strength Alloy Steel

    Science.gov (United States)

    Manigandan, K.; Srivatsan, T. S.

    2015-06-01

    In this paper, the results of an experimental study that focused on evaluating the conjoint influence of microstructure and test specimen orientation on fully reversed strain-controlled fatigue behavior of the high alloy steel X2M are presented and discussed. The cyclic stress response of this high-strength alloy steel revealed initial hardening during the first few cycles followed by gradual softening for most of fatigue life. Cyclic strain resistance exhibited a linear trend for the variation of elastic strain amplitude with reversals to failure, and plastic strain amplitude with reversals to failure. Fracture morphology was the same at the macroscopic level over the entire range of cyclic strain amplitudes examined. However, at the fine microscopic level, the alloy steel revealed fracture to be essentially ductile with features reminiscent of predominantly "locally" ductile and isolated brittle mechanisms. The mechanisms governing stress response at the fine microscopic level, fatigue life, and final fracture behavior are presented and discussed in light of the mutually interactive influences of intrinsic microstructural effects, deformation characteristics of the microstructural constituents during fully reversed strain cycling, cyclic strain amplitude, and resultant response stress.

  16. Multiphase-field model of small strain elasto-plasticity according to the mechanical jump conditions

    Science.gov (United States)

    Herrmann, Christoph; Schoof, Ephraim; Schneider, Daniel; Schwab, Felix; Reiter, Andreas; Selzer, Michael; Nestler, Britta

    2018-04-01

    We introduce a small strain elasto-plastic multiphase-field model according to the mechanical jump conditions. A rate-independent J_2 -plasticity model with linear isotropic hardening and without kinematic hardening is applied exemplary. Generally, any physically nonlinear mechanical model is compatible with the subsequently presented procedure. In contrast to models with interpolated material parameters, the proposed model is able to apply different nonlinear mechanical constitutive equations for each phase separately. The Hadamard compatibility condition and the static force balance are employed as homogenization approaches to calculate the phase-inherent stresses and strains. Several verification cases are discussed. The applicability of the proposed model is demonstrated by simulations of the martensitic transformation and quantitative parameters.

  17. An incremental flow theory for crystal plasticity incorporating strain gradient effects

    DEFF Research Database (Denmark)

    Nellemann, Christopher; Niordson, Christian Frithiof; Nielsen, Kim Lau

    2017-01-01

    The present work investigates a new approach to formulating a rate-independent strain gradient theory for crystal plasticity. The approach takes as offset recent discussions published in the literature for isotropic plasticity, and a key ingredient of the present work is the manner in which...... a gradient enhanced effective slip measure governs hardening evolution. The effect of both plastic strains and plastic strain gradients are combined into this scalar effective slip quantity, the energy associated with plastic strain is dissipative (unrecoverable), while the energy from plastic strain...... gradients is recoverable (free). The framework developed forms the basis of a finite element implementation and is demonstrated on benchmark problems designed to bring out effects such as strengthening and hardening. Monotonic loading and plane strain deformation is assumed throughout, but despite this, non...

  18. Studying the effect of elastic-plastic strain and hydrogen sulphide on the magnetic behaviour of pipe steels as applied to their testing

    Directory of Open Access Journals (Sweden)

    Povolotskaya Anna

    2018-01-01

    Full Text Available The paper reports results of magnetic measurements made on samples of the 12GB pipe steel (strength group X42SS designed for producing pipes to be used in media with high hydrogen sulphide content, both in the initial state and after exposure to hydrogen sulphide, for 96, 192 and 384 hours under uniaxial elastic-plastic tension. At the stage of elastic deformation there is a unique correlation between the coercive force measured on a minor hysteresis loop in weak fields and tensile stress, which enables this parameter to be used for the evaluation of elastic stresses in pipes made of the 12 GB pipe steel under different conditions, including a hydrogen sulphide containing medium. The effect of the value of preliminary plastic strain, viewed as the initial stress-strain state, on the magnetic behaviour of X70 pipe steels under elastic tension and compression is studied. Plastic strain history affects the magnetic behaviour of the material during subsequent elastic deformation since plastic strain induces various residual stresses, and this necessitates taking into account the initial stress-strain state of products when developing magnetic techniques for the determination of their stress-strain parameters during operation.

  19. Hydrogen-plasticity interactions in nickel and nickel base alloys

    International Nuclear Information System (INIS)

    Girardin, G.

    2004-03-01

    We evaluate the different contributions of the hydrogen-dislocation interactions to the plasticity of fcc materials in order to feed predictive models of stress corrosion cracking. Static strain ageing experiments are used to quantify the hardening contribution of solute drag by dislocations to the flow stress. We demonstrate the role of hydrogen transport by dislocations on the fracture mechanism. We model the influence of the screening of the elastic field of dislocations by hydrogen on elementary plasticity mechanisms and we conclude that the decrease of the cross slip ability arises from the combined action of elastic and core effects. The testing of single crystals shows that the major effect is on the cross slip mechanism. Tensile tests on polycrystals enlighten the diversity of macroscopic responses observed in alloys. (author)

  20. Classical and sequential limit analysis revisited

    Science.gov (United States)

    Leblond, Jean-Baptiste; Kondo, Djimédo; Morin, Léo; Remmal, Almahdi

    2018-04-01

    Classical limit analysis applies to ideal plastic materials, and within a linearized geometrical framework implying small displacements and strains. Sequential limit analysis was proposed as a heuristic extension to materials exhibiting strain hardening, and within a fully general geometrical framework involving large displacements and strains. The purpose of this paper is to study and clearly state the precise conditions permitting such an extension. This is done by comparing the evolution equations of the full elastic-plastic problem, the equations of classical limit analysis, and those of sequential limit analysis. The main conclusion is that, whereas classical limit analysis applies to materials exhibiting elasticity - in the absence of hardening and within a linearized geometrical framework -, sequential limit analysis, to be applicable, strictly prohibits the presence of elasticity - although it tolerates strain hardening and large displacements and strains. For a given mechanical situation, the relevance of sequential limit analysis therefore essentially depends upon the importance of the elastic-plastic coupling in the specific case considered.

  1. Conditions for pseudo strain-hardening in fiber reinforced brittle matrix composites

    International Nuclear Information System (INIS)

    Li, V.C.; Wu, H.W.

    1992-01-01

    Apart from imparting increased fracture toughness, one of the useful purposes of reinforcing brittle matrices with fibers is to create enhanced composite strain capacity. This paper reviews the conditions underwhich such a composite will exhibit the pseudo strain-hardening phenomenon. The presentation is given in a unified manner for both continuous aligned and discontinuous random fiber composites. It is demonstrated that pseudo strain hardening can be practically designed for both gills of composites by proper tailoring of material structures. 18 refs., 8 figs., 2 tabs

  2. Sensitivity of polycrystal plasticity to slip system kinematic hardening laws for Al 7075-T6

    International Nuclear Information System (INIS)

    Hennessey, Conor; Castelluccio, Gustavo M.; McDowell, David L.

    2017-01-01

    The prediction of formation and early growth of microstructurally small fatigue cracks requires use of constitutive models that accurately estimate local states of stress, strain, and cyclic plastic strain. However, few research efforts have attempted to systematically consider the sensitivity of overall cyclic stress-strain hysteresis and higher order mean stress relaxation and plastic strain ratcheting responses introduced by the slip system back-stress formulation in crystal plasticity, even for face centered cubic (FCC) crystal systems. This paper explores the performance of two slip system level kinematic hardening models using a finite element crystal plasticity implementation as a User Material Subroutine (UMAT) within ABAQUS, with fully implicit numerical integration. The two kinematic hardening formulations aim to reproduce the cyclic deformation of polycrystalline Al 7075-T6 in terms of both macroscopic cyclic stress-strain hysteresis loop shape, as well as ratcheting and mean stress relaxation under strain- or stress-controlled loading with mean strain or stress, respectively. The first formulation is an Armstrong-Frederick type hardening-dynamic recovery law for evolution of the back stress. This approach is capable of reproducing observed deformation under completely reversed uniaxial loading conditions, but overpredicts the rate of cyclic ratcheting and associated mean stress relaxation. The second formulation corresponds to a multiple back stress Ohno-Wang type hardening law with nonlinear dynamic recovery. The adoption of this back stress evolution law greatly improves the capability to model experimental results for polycrystalline specimens subjected to cycling with mean stress or strain. As a result, the relation of such nonlinear dynamic recovery effects are related to slip system interactions with dislocation substructures.

  3. Elastic-Plastic J-Integral Solutions or Surface Cracks in Tension Using an Interpolation Methodology

    Science.gov (United States)

    Allen, P. A.; Wells, D. N.

    2013-01-01

    No closed form solutions exist for the elastic-plastic J-integral for surface cracks due to the nonlinear, three-dimensional nature of the problem. Traditionally, each surface crack must be analyzed with a unique and time-consuming nonlinear finite element analysis. To overcome this shortcoming, the authors have developed and analyzed an array of 600 3D nonlinear finite element models for surface cracks in flat plates under tension loading. The solution space covers a wide range of crack shapes and depths (shape: 0.2 less than or equal to a/c less than or equal to 1, depth: 0.2 less than or equal to a/B less than or equal to 0.8) and material flow properties (elastic modulus-to-yield ratio: 100 less than or equal to E/ys less than or equal to 1,000, and hardening: 3 less than or equal to n less than or equal to 20). The authors have developed a methodology for interpolating between the goemetric and material property variables that allows the user to reliably evaluate the full elastic-plastic J-integral and force versus crack mouth opening displacement solution; thus, a solution can be obtained very rapidly by users without elastic-plastic fracture mechanics modeling experience. Complete solutions for the 600 models and 25 additional benchmark models are provided in tabular format.

  4. Effect of strain rate and temperature on strain hardening behavior of a dissimilar joint between Ti–6Al–4V and Ti17 alloys

    International Nuclear Information System (INIS)

    Wang, S.Q.; Liu, J.H.; Chen, D.L.

    2014-01-01

    Highlights: • Only stage III hardening occurs after yielding in Ti–6Al–4V/Ti17 dissimilar joints. • Voce stress and strength of the joints increase with increasing strain rate. • With increasing strain rate, hardening capacity and strain hardening exponent decrease. • With increasing temperature, hardening capacity and strain hardening exponent increase. • Strain rate sensitivity of the joints decreases as the true strain increases. - Abstract: The aim of this study was to evaluate the influence of strain rate and temperature on the tensile properties, strain hardening behavior, strain rate sensitivity, and fracture characteristics of electron beam welded (EBWed) dissimilar joints between Ti–6Al–4V and Ti17 (Ti–5Al–4Mo–4Cr–2Sn–2Zr) titanium alloys. The welding led to significant microstructural changes across the joint, with hexagonal close-packed martensite (α′) and orthorhombic martensite (α″) in the fusion zone (FZ), α′ in the heat-affected zone (HAZ) on the Ti–6Al–4V side, and coarse β in the HAZ on the Ti17 side. A distinctive asymmetrical hardness profile across the dissimilar joint was observed with the highest hardness in the FZ and a lower hardness on the Ti–6Al–4V side than on the Ti17 side, where a soft zone was present. Despite a slight reduction in ductility, the yield strength (YS) and ultimate tensile strength (UTS) of the joints lay in-between the two base metals (BMs) of Ti–6Al–4V and Ti17, with the Ti17 alloy having a higher strength. While the YS, UTS, and Voce stress of the joints increased, both hardening capacity and strain hardening exponent decreased with increasing strain rate or decreasing temperature. Stage III hardening occurred in the joints after yielding. The hardening rate was strongly dependent on the strain rate and temperature. As the strain rate increased or temperature decreased, the strain hardening rate increased at a given true stress. The strain rate sensitivity evaluated via

  5. Linking strain anisotropy and plasticity in copper metallization

    International Nuclear Information System (INIS)

    Murray, Conal E.; Jordan-Sweet, Jean; Priyadarshini, Deepika; Nguyen, Son

    2015-01-01

    The elastic anisotropy of copper leads to significant variation in the x-ray elastic constants (XEC), which link diffraction-based strain measurements to stress. An accurate depiction of the mechanical response in copper thin films requires a determination of an appropriate grain interaction model that lies between Voigt and Reuss limits. It is shown that the associated XEC weighting fraction, x*, between these limits provides a metric by which strain anisotropy can be quantified. Experimental values of x*, as determined by a linear regression scheme of diffraction data collected from multiple reflections, reveal the degree of strain anisotropy and its dependence on plastic deformation induced during in-situ and ex-situ thermal treatments

  6. Elastic-plastic-creep response of structures under composite time history of loadings

    International Nuclear Information System (INIS)

    Zudans, Z.

    1975-01-01

    The purpose of this work is to derive the theory, to develop efficient numerical techniques accounting for plasticity, creep and overall equilibrium, to describe the overall structure of the resulting computer program, and to demonstrate the capability of this analysis on a real structure. Classical plasticity theory is used to develop a novel method based on the concept of 'plastic stress' for consideration of inelastic behavior. It is shown that materials stres-strain curves can be followed to any desired degree of accuracy both for isotropic and kinematic hardening. It is further shown that for kinematic hardening it is necessary to base the incremental change on the state corresponding to the mean of the initial and the final states in order to satisfy the yield condition at the final state. The equation of state and strain hardening is used to describe the creep behavior. A novel numerical technique to describe a complex load history is developed by using time as a parameter, history breakpoint determination by scanning of various load vectors and by linear interpolation between any two breakpoints in the load history. The 'plastic stress' load vector concept is utilized with iteration and extrapolation to converge to the equilibrium states with simultaneous satisfaction of the stress-strain relations for each of the iterated states. The essential features of the computer program DYPLAS-FSH, based on the theory and techniques described above, and a postprocessor program POR-FSH, based on RDT F9-5T for ratcheting and fatigue evaluation, are identified and discussed. These computer programs are used to analyse the ellipsoidal pressure vessel head of the intermediate heat exchanger of EBR-II, penetrated by two closely spaced non-radial nozzles, subjected to four consecutive composite cycles of complex mechanical and thermal loads

  7. Finite Difference Solution of Elastic-Plastic Thin Rotating Annular Disk with Exponentially Variable Thickness and Exponentially Variable Density

    Directory of Open Access Journals (Sweden)

    Sanjeev Sharma

    2013-01-01

    Full Text Available Elastic-plastic stresses, strains, and displacements have been obtained for a thin rotating annular disk with exponentially variable thickness and exponentially variable density with nonlinear strain hardening material by finite difference method using Von-Mises' yield criterion. Results have been computed numerically and depicted graphically. From the numerical results, it can be concluded that disk whose thickness decreases radially and density increases radially is on the safer side of design as compared to the disk with exponentially varying thickness and exponentially varying density as well as to flat disk.

  8. Correction of the post -- necking true stress -- strain data using instrumented nanoindentation

    Science.gov (United States)

    Romero Fonseca, Ivan Dario

    The study of large plastic deformations has been the focus of numerous studies particularly in the metal forming processes and fracture mechanics fields. A good understanding of the plastic flow properties of metallic alloys and the true stresses and true strains induced during plastic deformation is crucial to optimize the aforementioned processes, and to predict ductile failure in fracture mechanics analyzes. Knowledge of stresses and strains is extracted from the true stress-strain curve of the material from the uniaxial tensile test. In addition, stress triaxiality is manifested by the neck developed during the last stage of a tensile test performed on a ductile material. This necking phenomenon is the factor responsible for deviating from uniaxial state into a triaxial one, then, providing an inaccurate description of the material's behavior after the onset of necking. The research of this dissertation is aimed at the development of a correction method for the nonuniform plastic deformation (post-necking) portion of the true stress-strain curve. The correction proposed is based on the well-known relationship between hardness and flow (yield) stress, except that instrumented nanoindentation hardness is utilized rather than conventional macro or micro hardness. Three metals with different combinations of strain hardening behavior and crystal structure were subjected to quasi-static tensile tests: power-law strain hardening low carbon G10180 steel (BCC) and electrolytic tough pitch copper C11000 (FCC), and linear strain hardening austenitic stainless steel S30400 (FCC). Nanoindentation hardness values, measured on the broken tensile specimen, were converted into flow stress values by means of the constraint factor C from Tabor's, the representative plastic strainepsilonr and the post-test true plastic strains measured. Micro Vickers hardness testing was carried out on the sample as well. The constraint factors were 5.5, 4.5 and 4.5 and the representative plastic

  9. Method of determining elastic and plastic mechanical properties of ceramic materials using spherical indenters

    Science.gov (United States)

    Adler, Thomas A.

    1996-01-01

    The invention pertains a method of determining elastic and plastic mechanical properties of ceramics, intermetallics, metals, plastics and other hard, brittle materials which fracture prior to plastically deforming when loads are applied. Elastic and plastic mechanical properties of ceramic materials are determined using spherical indenters. The method is most useful for measuring and calculating the plastic and elastic deformation of hard, brittle materials with low values of elastic modulus to hardness.

  10. Numerical predicting of the structure and stresses state in hardened element made of tool steel

    Directory of Open Access Journals (Sweden)

    A. Bokota

    2008-03-01

    Full Text Available The paper presents numerical model of thcrmal phcnomcna, phasc transformation and mcchanical phcnomcna associated with hardeningof carbon tool steel. Model for evaluation or fractions OF phases and their kinetics bascd on continuous heating diagram (CHT andcontinuous cooling diagram (CCT. The stresses generated during hardening were assumed to rcsult from ~hermal load. stntcturaI plasticdeformations and transformation plasricity. Thc hardened material was assumed to be elastic-plastic, and in ordcr to mark plastic strains the non-isothermal plastic law of flow with the isotropic hardening and condition plasticity of Huber-Misses were used. TherrnophysicaI values of mechanical phenomena dependent on bo~hth e phase composition and temperature. In the numerical example thc simulated estimation of the phasc Fraction and strcss distributions in the hardened axisimmetrical elemcnt was performed.

  11. Comparison of experiment and theory for elastic-plastic plane strain crack growth

    International Nuclear Information System (INIS)

    Hermann, L.; Rice, J.R.

    1980-02-01

    Recent theoretical results on elastic-plastic plane strain crack growth, and experimental results for crack growth in a 4140 steel in terms of the theoretical concepts are reviewed. The theory is based on a recent asymptotic analysis of crack surface opening and strain distributions at a quasi-statically advancing crack tip in an ideally-plastic solid. The analysis is incomplete in that some of the parameters which appear in it are known only approximately, especially at large scale yielding. Nevertheless, it suffices to derive a relation between the imposed loading and amount of crack growth, prior to general yielding, based on the assumption that a geometrically similar near-tip crack profile is maintained during growth. The resulting predictions for the variation of J with crack growth are found to fit well to the experimental results obtained on deeply cracked compact specimens

  12. Quasi-static incremental behavior of granular materials: Elastic-plastic coupling and micro-scale dissipation

    Science.gov (United States)

    Kuhn, Matthew R.; Daouadji, Ali

    2018-05-01

    The paper addresses a common assumption of elastoplastic modeling: that the recoverable, elastic strain increment is unaffected by alterations of the elastic moduli that accompany loading. This assumption is found to be false for a granular material, and discrete element (DEM) simulations demonstrate that granular materials are coupled materials at both micro- and macro-scales. Elasto-plastic coupling at the macro-scale is placed in the context of thermomechanics framework of Tomasz Hueckel and Hans Ziegler, in which the elastic moduli are altered by irreversible processes during loading. This complex behavior is explored for multi-directional loading probes that follow an initial monotonic loading. An advanced DEM model is used in the study, with non-convex non-spherical particles and two different contact models: a conventional linear-frictional model and an exact implementation of the Hertz-like Cattaneo-Mindlin model. Orthotropic true-triaxial probes were used in the study (i.e., no direct shear strain), with tiny strain increments of 2 ×10-6 . At the micro-scale, contact movements were monitored during small increments of loading and load-reversal, and results show that these movements are not reversed by a reversal of strain direction, and some contacts that were sliding during a loading increment continue to slide during reversal. The probes show that the coupled part of a strain increment, the difference between the recoverable (elastic) increment and its reversible part, must be considered when partitioning strain increments into elastic and plastic parts. Small increments of irreversible (and plastic) strain and contact slipping and frictional dissipation occur for all directions of loading, and an elastic domain, if it exists at all, is smaller than the strain increment used in the simulations.

  13. Effect of plastic deformation and strain history on X-ray elastic constants

    International Nuclear Information System (INIS)

    Iadicola, Mark A.; Foecke, Tim

    2005-01-01

    The use of X-ray diffraction to measure residual stress in a crystalline material is well known. This method is currently being reapplied to the surface measurement of in situ stresses during biaxial straining of sheet metal specimens. This leads to questions of precision and calibration of the method through plastic deformation. Little is known of the change, with plastic work, in the X-ray elastic constants (XECs) that are required by the technique for stress measurement. Experiments to determine the formability of various materials using this stress measurement technique in conjunction with a typical Marciniak test (with the Raghavan variation of specimen shapes) have been performed assuming a constant value for XECs. New results of calibration experiments are presented which admit the possibility of variation of the XECs with plastic strain history and initial texture of the material. Adjustment of the data from the previously performed formability experiments is shown. Additionally, various phenomena are captured including initial yielding, change of XECs with plastic strain level (both with uniaxial and biaxial strain histories), and some of the effects of texture on the technique. This technique has potential application in verification of the assumptions made during other standard testing methods (in-plane biaxial specimen geometries and bulge testing), verifying stress predictions from finite element analyses (i.e. benchmarking experiments such as BM3), analysis of stress states in localized deformation (yield point effects), and tracking of the effect of prestraining on material formability through the process of multistage forming

  14. Elastic and plastic strains and the stress corrosion cracking of austenitic stainless steels. Final report

    International Nuclear Information System (INIS)

    Vaccaro, F.P.; Hehemann, R.F.; Troiano, A.R.

    1979-08-01

    The influence of elastic (stress) and plastic (cold work) strains on the stress corrosion cracking of a transformable austenitic stainless steel was studied in several aqueous chloride environments. Initial polarization behavior was active for all deformation conditions as well as for the annealed state. Visual observation, potential-time, and current-time curves indicated the development of a pseudo-passive (flawed) film leading to localized corrosion, occluded cells and SCC. SCC did not initiate during active corrosion regardless of the state of strain unless severe low temperature deformation produced a high percentage of martensite. Both elastic and plastic deformation increased the sensitivity to SCC when examined on the basis of percent yield strength. The corrosion potential, the critical cracking potential, and the potential at which the current changes from anodic to cathodic were essentially unaffected by deformation. It is apparent that the basic electrochemical parameters are independent of the bulk properties of the alloy and totally controlled by surface phenomena

  15. The secondary hardening phenomenon in strain-hardened MP35N alloy

    International Nuclear Information System (INIS)

    Asgari, S.; El-Danaf, E.; Shaji, E.; Kalidindi, S.R.; Doherty, R.D.

    1998-01-01

    Mechanical testing and microscopy techniques were used to investigate the influence of aging on the structure and strengthening of MP35N alloy. It was confirmed that aging the deformed material at 600 C for 4 h provided additional strengthening, here referred to as secondary hardening, in addition to the primary strain hardening. The secondary hardening phenomenon was shown to be distinctly different from typical age hardening processes in that it only occurred in material deformed beyond a certain cold work level. At moderate strains, aging caused a shift in the entire stress-strain curve of the annealed material to higher stresses while at high strains, it produced shear localization and limited work softening. The secondary hardening increment was also found to be grain size dependent. The magnitude of the secondary hardening appeared to be controlled by the flow stress in the strain hardened material. A model is proposed to explain the observations and is supported by direct experimental evidence. The model is based on formation of h.c.p. nuclei through the Suzuki mechanism, that is segregation of solute atoms to stacking faults, on aging the strain hardened material. The h.c.p. precipitates appear to thicken only in the presence of high dislocation density produced by prior cold work

  16. Limitations of Hollomon and Ludwigson stress-strain relations in assessing the strain hardening parameters

    International Nuclear Information System (INIS)

    Samuel, K G

    2006-01-01

    It is shown that the deviation from the ideal Hollomon relation in describing the stress-strain behaviour is characteristic of all materials at low strains. The Ludwigson relation describing the deviation from the Hollomon relation at low strains is critically analysed and it is shown that the deviation at low strains is a consequence of some unknown 'plastic strain equivalent' present in the material. Stress strain curves obeying an ideal Hollomon relation as well as that of a structurally modified (prior cold worked) material were simulated and compared. The results show that the yield strength and the flow strength of a material at constant strain rate and temperature are dictated by the magnitude of the 'plastic strain equivalent' term. It is shown that this component need not necessarily mean a prior plastic strain present in the material due to prior cold work alone and that prior cold work strain will add to this. If this component is identified, the stress-strain behaviour can be adequately described by the Swift relation. It is shown that in both formalisms, the strain hardening index is a function of the yield strength of the material

  17. Elastic-plastic analysis using an efficient formulation of the finite element method

    International Nuclear Information System (INIS)

    Aamodt, B.; Mo, O.

    1975-01-01

    Based on the flow theory of plasticity, the von Mises or the Tresca yield criterion and the isotropic hardening law, an incremental stiffness relationship can be established for a finite element model of the elasto-plastic structure. However, instead of including all degrees of freedom and all finite elements of the total model in a nonlinear solution process, a separation of elastic and plastic parts of the structure can be carried out. Such a separation can be obtained by identifying elastic parts of the structure as 'elastic' superelements and elasto-plastic parts of the structure as 'elasto-plastic' superelements. Also, it may be of advantage to use several levels of superelements in modelling the elastic parts of the structure. For the 'elasto-plastic' superelements the specific plastic computations such as updating of the incremental stiffness matrix and subsequent reduction (i.e. static condensation of all degrees of freedom being local to the superelements) have to be carried out repeatedly during the nonlinear solution process. The solution of the nonlinear equations is performed utilizing a combination of load incrementation and equilibrium interations. The present method of analysis is demonstrated for two larger examples of elasto-plastic analysis. (Auth.)

  18. The microstructural origin of strain hardening in two-dimensional open-cell metal foams

    NARCIS (Netherlands)

    Mangipudi, K. R.; van Buuren, S. W.; Onck, P. R.

    2010-01-01

    This paper aims at elucidating the microstructural origin of strain hardening in open-cell metal foams. We have developed a multiscale model that allows to study the development of plasticity at two length scales: (i) the development of plastic zones inside individual struts (microscopic scale) and

  19. A strain gradient plasticity theory with application to wire torsion

    KAUST Repository

    Liu, J. X.

    2014-06-05

    Based on the framework of the existing strain gradient plasticity theories, we have examined three kinds of relations for the plastic strain dependence of the material intrinsic length scale, and thus developed updated strain gradient plasticity versions with deformation-dependent characteristic length scales. Wire torsion test is taken as an example to assess existing and newly built constitutive equations. For torsion tests, with increasing plastic strain, a constant intrinsic length predicts too high a torque, while a decreasing intrinsic length scale can produce better predictions instead of the increasing one, different from some published observations. If the Taylor dislocation rule is written in the Nix-Gao form, the derived constitutive equations become singular when the hardening exponent gets close to zero, which seems questionable and calls for further experimental clarifications on the exact coupling of hardening due to statistically stored dislocations and geometrically necessary dislocations. Particularly, when comparing the present model with the mechanism-based strain gradient plasticity, the present model satisfies the reciprocity relation naturally and gives different predictions even under the same parameter setting. © The Author(s) 2014 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.

  20. Linking Scales in Plastic Deformation and Fracture

    DEFF Research Database (Denmark)

    Martinez-Paneda, Emilio; Niordson, Christian Frithiof; S. Deshpande, Vikram

    2017-01-01

    We investigate crack growth initiation and subsequent resistance in metallic materials by means of an implicit multi-scale approach. Strain gradient plasticity is employed to model the mechanical response of the solid so as to incorporate the role of geometrically necessary dislocations (GNDs......) and accurately capture plasticity at the small scales involved in crack tip deformation. The response ahead of the crack is described by means of a traction-separation law, which is characterized by the cohesive strength and the fracture energy. Results reveal that large gradients of plastic strain accumulatein...... the vicinity of the crack, elevating the dislocation density and the local stress. This stress elevation enhances crack propagation and significantly lowers the steady state fracture toughness with respect to conventional plasticity. Important insight is gained into fracture phenomena that cannot be explained...

  1. Elasto-plastic model for transversely isotropic Tournemire shale based on microstructure approach

    International Nuclear Information System (INIS)

    Abdi, H.; Evgin, E.; Fall, M.; Nguyen, T.S.; Labrie, D.; Barnichon, J.D.; Su, G.; Simon, R.

    2012-01-01

    Document available in extended abstract form only. Argillaceous formations being considered as potential host rocks for the geological disposal of nuclear wastes are usually characterized by the presence of bedding planes, resulting in anisotropy of their strength and deformation properties. A laboratory program of uniaxial tests, triaxial tests, cyclic tests, and Brazilian tests with concurrent monitoring of acoustic emission was performed in order to determine the above properties. The experimental results and their interpretation are presented in detail in a companion paper (Abdi et al., 2012, in these proceedings). Typical results from triaxial tests indicate the following behaviour: 1. There is a strong dependence of the stress-strain behaviour with the loading orientation with respect to the bedding planes. 2. There are four distinct zones of the stress strain curve: a crack and/or bedding closure zone; an elastic zone, a plastic zone with strain hardening, and a collapse zone after the peak that leads abruptly to a residual strength value. 3. There is damage, especially after the peak, resulting in the degradation of the stiffness as shown by unloading-reloading cycles. In order to reproduce the above behaviour, we adopted a classical elasto-plastic framework. In the elastic range, the transversely isotropic nature of the material is taken into account by the adoption of an elastic stiffness matrix that requires five independent elastic constants. These elastic constants show degradation with the accumulated damage. Using the deviatoric plastic strain as a measure of damage, we expressed functional relationships for these constants, using the results of cyclic triaxial tests. For the plastic behaviour, we used a Mohr-Coulomb yield criterion which takes into account the relative orientation of the applied stress and the bedding planes, and also strain hardening and softening. In this work we used the deviatoric plastic strain as the hardening parameter in

  2. A plastic damage model with stress triaxiality-dependent hardening

    International Nuclear Information System (INIS)

    Shen Xinpu; Shen Guoxiao; Zhou Lin

    2005-01-01

    Emphases of this study were placed on the modelling of plastic damage behaviour of prestressed structural concrete, with special attention being paid to the stress-triaxiality dependent plastic hardening law and the corresponding damage evolution law. A definition of stress triaxiality was proposed and introduced in the model presented here. Drucker-Prager -type plasticity was adopted in the formulation of the plastic damage constitutive equations. Numerical validations were performed for the proposed plasticity-based damage model with a driver subroutine developed in this study. The predicted stress-strain behaviour seems reasonably accurate for the uniaxial tension and uniaxial compression compared with the experimental data reported in references. Numerical calculations of compressions under various hydrostatic stress confinements were carried out in order to validate the stress triaxiality dependent properties of the model. (authors)

  3. On crack interaction effects of in-plane surface cracks using elastic and elastic-plastic finite element analyses

    International Nuclear Information System (INIS)

    Kim, Jong Min; Huh, Nam Su

    2010-01-01

    The crack-tip stress fields and fracture mechanics assessment parameters for a surface crack, such as the elastic stress intensity factor or the elastic-plastic J-integral, can be affected significantly by the adjacent cracks. Such a crack interaction effect due to multiple cracks can alter the fracture mechanics assessment parameters significantly. There are many factors to be considered, for instance the relative distance between adjacent cracks, the crack shape, and the loading condition, to quantify the crack interaction effect on the fracture mechanics assessment parameters. Thus, the current assessment codes on crack interaction effects (crack combination rules), including ASME Sec. XI, BS7910, British Energy R6 and API 579-1/ASME FFS-1, provide different rules for combining multiple surface cracks into a single surface crack. The present paper investigates crack interaction effects by evaluating the elastic stress intensity factor and the elastic-plastic J-integral of adjacent in-plane surface cracks in a plate through detailed 3-dimensional elastic and elastic-plastic finite element analyses. The effects on the fracture mechanics assessment parameters of the geometric parameters, the relative distance between two cracks, and the crack shape are investigated systematically. As for the loading condition, an axial tension is considered. Based on the finite element results, the acceptability of the crack combination rules provided in the existing guidance was investigated, and the relevant recommendations on a crack interaction for in-plane surface cracks are discussed. The present results can be used to develop more concrete guidance on crack interaction effects for crack shape characterization to evaluate the integrity of defective components

  4. Diffraction measurements for evaluating plastic strain in A533B ferritic steel-a feasibility study

    International Nuclear Information System (INIS)

    Lewis, S J; Truman, C E

    2010-01-01

    It is known that the physical properties of many engineering materials may be strongly affected by previous loading, in particular prior plastic deformation. Most obviously, work hardening will alter subsequent yielding behaviour. Plastic deformation may also preferentially align the material microstructure, resulting in anisotropy of subsequent behaviour and a change in material fracture resistance. When physical characterization is undertaken by experimental testing it is, therefore, important to have some knowledge of the current state of the material. As a result, it is desirable to have methods of quantitatively evaluating the level of plastic deformation which specimen material may have experienced prior to testing. This paper presents the results of a feasibility study, using a ferritic reactor pressure vessel steel, into the use of diffractive methods for plastic strain evaluation. Using neutron diffraction, changes in diffraction peak width and anisotropy of peak response were correlated with plastic deformation in a tensile test. The relationships produced were then used to evaluate permanent deformation levels in large samples, representative of standard fracture toughness test specimens.

  5. Analytical modeling of tube-to-tubesheet joints subjected to plasticity and creep

    International Nuclear Information System (INIS)

    Bouzid, A.-H.; Laghzale, N-E.

    2009-01-01

    The mechanism of failure of heat exchanger and steam generator tube-to-tubesheet joints is related to the level of residual stresses produced in the tube expansion and transition zones during the expansion process and their variation during operation. The accurate prediction of these stresses based of the plastic and creep properties of the joint materials involved can help to design for better leak tightness and strength. Existing design calculations are based on an elastic perfectly plastic behavior of the expansion joint materials and do not account for creep. The proposed model is based on a linear strain hardening material behavior and considers the joint contact pressure relaxation with time. The interaction of the tube and the tubesheet is simulated during the process of the application of the expansion pressure and operation. The effects of the gap, material strain hardening and creep properties are to be emphasized. The developed model results are validated and confronted against the more accurate numerical FEA models. (author)

  6. Accurate hardening modeling as basis for the realistic simulation of sheet forming processes with complex strain-path changes

    International Nuclear Information System (INIS)

    Levkovitch, Vladislav; Svendsen, Bob

    2007-01-01

    Sheet metal forming involves large strains and severe strain-path changes. Large plastic strains lead in many metals to the development of persistent dislocation structures resulting in strong flow anisotropy. This induced anisotropic behavior manifests itself in the case of a strain path change through very different stress-strain responses depending on the type of the strain-path change. While many metals exhibit a drop of the yield stress (Bauschinger effect) after a load reversal, some metals show an increase of the yield stress after an orthogonal strain-path change (so-called cross hardening). To model the Bauschinger effect, kinematic hardening has been successfully used for years. However, the usage of the kinematic hardening leads automatically to a drop of the yield stress after an orthogonal strain-path change contradicting tests exhibiting the cross hardening effect. Another effect, not accounted for in the classical elasto-plasticity, is the difference between the tensile and compressive strength, exhibited e.g. by some steel materials. In this work we present a phenomenological material model whose structure is motivated by polycrystalline modeling that takes into account the evolution of polarized dislocation structures on the grain level - the main cause of the induced flow anisotropy on the macroscopic level. The model considers besides the movement of the yield surface and its proportional expansion, as it is the case in conventional plasticity, also the changes of the yield surface shape (distortional hardening) and accounts for the pressure dependence of the flow stress. All these additional attributes turn out to be essential to model the stress-strain response of dual phase high strength steels subjected to non-proportional loading

  7. Accurate Hardening Modeling As Basis For The Realistic Simulation Of Sheet Forming Processes With Complex Strain-Path Changes

    International Nuclear Information System (INIS)

    Levkovitch, Vladislav; Svendsen, Bob

    2007-01-01

    Sheet metal forming involves large strains and severe strain-path changes. Large plastic strains lead in many metals to the development of persistent dislocation structures resulting in strong flow anisotropy. This induced anisotropic behavior manifests itself in the case of a strain path change through very different stress-strain responses depending on the type of the strain-path change. While many metals exhibit a drop of the yield stress (Bauschinger effect) after a load reversal, some metals show an increase of the yield stress after an orthogonal strain-path change (so-called cross hardening). To model the Bauschinger effect, kinematic hardening has been successfully used for years. However, the usage of the kinematic hardening leads automatically to a drop of the yield stress after an orthogonal strain-path change contradicting tests exhibiting the cross hardening effect. Another effect, not accounted for in the classical elasto-plasticity, is the difference between the tensile and compressive strength, exhibited e.g. by some steel materials. In this work we present a phenomenological material model whose structure is motivated by polycrystalline modeling that takes into account the evolution of polarized dislocation structures on the grain level - the main cause of the induced flow anisotropy on the macroscopic level. The model considers besides the movement of the yield surface and its proportional expansion, as it is the case in conventional plasticity, also the changes of the yield surface shape (distortional hardening) and accounts for the pressure dependence of the flow stress. All these additional attributes turn out to be essential to model the stress-strain response of dual phase high strength steels subjected to non-proportional loading

  8. δ-hydride habit plane determination in α-zirconium by strain energy minimization technique at 25 and 300 deg C

    International Nuclear Information System (INIS)

    Singh, R.N.; Stahle, P.; Sairam, K.; Ristmana, Matti; Banerjee, S.

    2008-01-01

    The objective of the present investigation is to predict the habit plane of δ-hydride precipitating in α-Zr at 25 and 300 deg C using strain energy minimization technique. The δ-hydride phase is modeled to undergo isotropic elastic and plastic deformation. The α-Zr phase was modeled to undergo transverse isotropic elastic deformation. Both isotropic plastic and transverse isotropic plastic deformations of α-Zr were considered. Further, both perfect and linear work-hardening plastic behaviors of zirconium and its hydride were considered. Accommodation strain energy of δ-hydrides forming in α-Zr crystal was computed using initial strain method as a function of hydride nuclei orientation. Hydride was modeled as disk with circular edge. The simulation was carried out using materials properties reported at 25 and 300 deg C. Contrary to several habit planes reported in literature for δ-hydrides precipitating in α-Zr crystal the total accommodation energy minima suggests only basal plane i.e. (0001) as the habit plane. (author)

  9. Strain gradient crystal plasticity analysis of a single crystal containing a cylindrical void

    DEFF Research Database (Denmark)

    Borg, Ulrik; Kysar, J.W.

    2007-01-01

    to one another. Finite element simulations are performed using a strain gradient crystal plasticity formulation with an intrinsic length scale parameter in a non-local strain gradient constitutive framework. For a vanishing length scale parameter the non-local formulation reduces to a local crystal...... plasticity formulation. The stress and deformation fields obtained with a local non-hardening constitutive formulation are compared to those obtained from a local hardening formulation and to those from a non-local formulation. Compared to the case of the non-hardening local constitutive formulation......, it is shown that a local theory with hardening has only minor effects on the deformation field around the void, whereas a significant difference is obtained with the non-local constitutive relation. Finally, it is shown that the applied stress state required to activate plastic deformation at the void is up...

  10. Variation of the Young's modulus with plastic strain applying to elastoplastic software

    International Nuclear Information System (INIS)

    Morestin, F.; Boivin, M.

    1993-01-01

    Work hardening of steel involves modifications of the elastic properties of the material, for instance, an increase of its yield stress. It may be also the cause of an appreciable decrease of the Young's modulus. This property decreases as plastic strain increases. Experiments with a microcomputer controlled tensile test machine indicated that diminution could reach more than 10% of the initial value, after only 5% of plastic strain. In spite of this fact, lots of elastoplastic softwares don't combine the decrease of the Young's modulus with plastification though it may involve obvious differences among results. As an application we have developed a software which computes the deformation of steel sheet in press forming, after springback. This software takes into account the decrease of the Young's modulus and its results are very close to experimental values. Quite arbitrarily, we noticed a recovery of the Young's modulus of plastified specimens after few days but not for all steels tested. (author)

  11. Identification of non-linear kinematic hardening with bending and unbending tests in anisotropic sheet-metals

    International Nuclear Information System (INIS)

    Brunet, M.; Morestin, F.; Godereaux, S.

    2000-01-01

    An inverse identification technique is proposed based on bending-unbending experiments on anisotropic sheet-metal strips. The initial anisotropy theory of plasticity is extended to include the concept of combined isotropic and non-linear kinematic hardening. This theory is adopted to characterise the anisotropic hardening due to loading-unloading which occurs in sheet-metal forming processes. To this end, a specific bending-unbending apparatus has been built to provide experimental moment-curvature curves. The constant bending moment applied over the length of the specimen to determine numerically the strain-stress behaviour but without Finite Element Analysis. Four constitutive parameters have to be identified by an inverse approach. Our identification results show that bending-unbending tests are suitable to model quite accurately the constitutive behaviour of sheet metals under complex loading paths. (author)

  12. A structural strain method for low-cycle fatigue evaluation of welded components

    International Nuclear Information System (INIS)

    Dong, P.; Pei, X.; Xing, S.; Kim, M.H.

    2014-01-01

    In this paper, a new structural strain method is presented to extend the early structural stress based master S–N curve method to low cycle fatigue regime in which plastic deformation can be significant while an elastic core is still present. The method is formulated by taking advantage of elastically calculated mesh-insensitive structural stresses based on nodal forces available from finite element solutions. The structural strain definition is consistent with classical plate and shell theory in which a linear through-thickness deformation field is assumed a priori in both elastic or elastic–plastic regimes. With considerations of both yield and equilibrium conditions, the resulting structural strains are analytically solved if assuming elastic and perfectly plastic material behavior. The formulation can be readily extended to strain-hardening materials for which structural strains can be numerically calculated with ease. The method is shown effective in correlating low-cycle fatigue test data of various sources documented in the literature into a single narrow scatter band which is remarkable consistent with the scatter band of the existing master S–N curve adopted ASME B and PV Code since 2007. With this new method, some of the inconsistencies of the pseudo-elastic structural stress procedure in 2007 ASME Div 2 Code can now be eliminated, such as its use of Neuber's rule in approximating structural strain beyond yield. More importantly, both low cycle and high cycle fatigue behaviors can now be treated in a unified manner. The earlier mesh-insensitive structural stress based master S–N curve method can now be viewed as an application of the structural strain method in high cycle regime, in which structural strains are linearly related to traction-based structural stresses according to Hooke's law. In low-cycle regime, the structural strain method characterizes fatigue damage directly in terms of structural strains that satisfy linear through

  13. Prediction of elastic-plastic response of structural elements subjected to cyclic loading

    International Nuclear Information System (INIS)

    El Haddad, M.H.; Samaan, S.

    1985-01-01

    A simplified elastic-plastic analysis is developed to predict stress strain and force deformation response of structural metallic elements subjected to irregular cyclic loadings. In this analysis a simple elastic-plastic method for predicting the skeleton force deformation curve is developed. In this method, elastic and fully plastic solutions are first obtained for unknown quantities, such as deflection or local strains. Elastic and fully plastic contributions are then combined to obtain an elastic-plastic solution. The skeleton curve is doubled to establish the shape of the hysteresis loop. The complete force deformation response can therefore be simulated through reversal by reversal in accordance with hysteresis looping and material memory. Several examples of structural elements with various cross sections made from various materials and subjected to irregular cyclic loadings, are analysed. A close agreement is obtained between experimental results found in the literature and present predictions. (orig.)

  14. Boundary value problems of the circular cylinders in the strain-gradient theory of linear elasticity

    International Nuclear Information System (INIS)

    Kao, B.G.

    1979-11-01

    Three boundary value problems in the strain-gradient theory of linear elasticity are solved for circular cylinders. They are the twisting of circular cylinder, uniformly pressuring of concentric circular cylinder, and pure-bending of simply connected cylinder. The comparisons of these solutions with the solutions in classical elasticity and in couple-stress theory reveal the differences in the stress fields as well as the apparent stress fields due to the influences of the strain-gradient. These aspects of the strain-gradient theory could be important in modeling the failure behavior of structural materials

  15. Continuum mechanics elasticity, plasticity, viscoelasticity

    CERN Document Server

    Dill, Ellis H

    2006-01-01

    FUNDAMENTALS OF CONTINUUM MECHANICSMaterial ModelsClassical Space-TimeMaterial BodiesStrainRate of StrainCurvilinear Coordinate SystemsConservation of MassBalance of MomentumBalance of EnergyConstitutive EquationsThermodynamic DissipationObjectivity: Invariance for Rigid MotionsColeman-Mizel ModelFluid MechanicsProblems for Chapter 1BibliographyNONLINEAR ELASTICITYThermoelasticityMaterial SymmetriesIsotropic MaterialsIncompressible MaterialsConjugate Measures of Stress and StrainSome Symmetry GroupsRate Formulations for Elastic MaterialsEnergy PrinciplesGeometry of Small DeformationsLinear ElasticitySpecial Constitutive Models for Isotropic MaterialsMechanical Restrictions on the Constitutive RelationsProblems for Chapter 2BibliographyLINEAR ELASTICITYBasic EquationsPlane StrainPlane StressProperties of SolutionsPotential EnergySpecial Matrix NotationThe Finite Element Method of SolutionGeneral Equations for an Assembly of ElementsFinite Element Analysis for Large DeformationsProblems for Chapter 3Bibliograph...

  16. A critical review on the application of elastic-plastic fracture mechanics to nuclear pressure vessel and piping systems

    International Nuclear Information System (INIS)

    Scarth, D.A.; Kim, Y.J.; Vanderglas, M.L.

    1985-10-01

    A comprehensive literature survey on the application of Elastic-Plastic Fracture Mechanics to the assessment of the structural integrity of nuclear pressure vessels and piping is presented. In particular, the J-integral/Tearing Modulus (J/T) approach and the Failure Assessment Diagram (FAD) are covered in detail because of their general suitability for use in Ontario Hydro. (25 refs.)

  17. Methodology for plastic fracture - a progress report

    International Nuclear Information System (INIS)

    Wilkinson, J.P.D.; Smith, R.E.E.

    1977-01-01

    This paper describes the progress of a study to develop a methodology for plastic fracture. Such a fracture mechanics methodology, having application in the plastic region, is required to assess the margin of safety inherent in nuclear reactor pressure vessels. The initiation and growth of flaws in pressure vessels under overload conditions is distinguished by a number of unique features, such as large scale yielding, three-dimensional structural and flaw configurations, and failure instabilities that may be controlled by either toughness or plastic flow. In order to develop a broadly applicable methodology of plastic fracture, these features require the following analytical and experimental studies: development of criteria for crack initiation and growth under large scale yielding; the use of the finite element method to describe elastic-plastic behaviour of both the structure and the crack tip region; and extensive experimental studies on laboratory scale and large scale specimens, which attempt to reproduce the pertinent plastic flow and crack growth phenomena. This discussion centers on progress to date on the selection, through analysis and laboratory experiments, of viable criteria for crack initiation and growth during plastic fracture. (Auth.)

  18. Elastic-plastic analysis of AS4/PEEK composite laminate using a one-parameter plasticity model

    Science.gov (United States)

    Sun, C. T.; Yoon, K. J.

    1992-01-01

    A one-parameter plasticity model was shown to adequately describe the plastic deformation of AS4/PEEK (APC-2) unidirectional thermoplastic composite. This model was verified further for unidirectional and laminated composite panels with and without a hole. The elastic-plastic stress-strain relations of coupon specimens were measured and compared with those predicted by the finite element analysis using the one-parameter plasticity model. The results show that the one-parameter plasticity model is suitable for the analysis of elastic-plastic deformation of AS4/PEEK composite laminates.

  19. Constitutive modelling and identification of parameters of the plastic strain-induced martensitic transformation in 316L stainless steel at cryogenic temperatures

    CERN Document Server

    Garion, C; Sgobba, Stefano

    2006-01-01

    The present paper is focused on constitutive modelling and identification of parameters of the relevant model of plastic strain- induced martensitic transformation in austenitic stainless steels at low temperatures. The model used to describe the FCCrightward arrow BCC phase transformation in austenitic stainless steels is based on the assumption of linearization of the most intensive part of the transformation curve. The kinetics of phase transformation is described by three parameters: transformation threshold (p/sub xi/), slope (A) and saturation level (xi/sub L/). It is assumed that the phase transformation is driven by the accumulated plastic strain p. In addition, the intensity of plastic deformation is strongly coupled to the phase transformation via the description of mixed kinematic /isotropic linear plastic hardening based on the Mori-Tanaka homogenization. The theory of small strains is applied. Small strain fields, corresponding to phase transformation, are decomposed into the volumic and the shea...

  20. Strain hardening by dynamic slip band refinement in a high-Mn lightweight steel

    International Nuclear Information System (INIS)

    Welsch, E.; Ponge, D.; Hafez Haghighat, S.M.; Sandlöbes, S.; Choi, P.; Herbig, M.; Zaefferer, S.; Raabe, D.

    2016-01-01

    The strain hardening mechanism of a high-Mn lightweight steel (Fe-30.4Mn-8Al-1.2C (wt%)) is investigated by electron channeling contrast imaging (ECCI) and transmission electron microscopy (TEM). The alloy is characterized by a constant high strain hardening rate accompanied by high strength and high ductility (ultimate tensile strength: 900 MPa, elongation to fracture: 68%). Deformation microstructures at different strain levels are studied in order to reveal and quantify the governing structural parameters at micro- and nanometer scales. As the material deforms mainly by planar dislocation slip causing the formation of slip bands, we quantitatively study the evolution of the slip band spacing during straining. The flow stress is calculated from the slip band spacing on the basis of the passing stress. The good agreement between the calculated values and the tensile test data shows dynamic slip band refinement as the main strain hardening mechanism, enabling the excellent mechanical properties. This novel strain hardening mechanism is based on the passing stress acting between co-planar slip bands in contrast to earlier attempts to explain the strain hardening in high-Mn lightweight steels that are based on grain subdivision by microbands. We discuss in detail the formation of the finely distributed slip bands and the gradual reduction of the spacing between them, leading to constantly high strain hardening. TEM investigations of the precipitation state in the as-quenched state show finely dispersed atomically ordered clusters (size < 2 nm). The influence of these zones on planar slip is discussed.

  1. Method for determining the work hardening function to describe plasticity of metals

    International Nuclear Information System (INIS)

    Wilkins, M.L.

    1978-01-01

    A method for obtaining a constitutive relation that relates the flow stress to the equivalent plastic strain is developed. The method uses simple tension test data to suggest a functional form. This form is then used as a constitutive model in a computer program that simulates the tension test. The calculated results are compared with the experimental results and the functional form is refined until agreement is obtained between calculations and experiments. The importance of knowing the relationship between the flow stress and the plastic strain is discussed. A work hardening function is calibrated for 6061 T6 aluminum

  2. Assessment of stress-strain data suitable for finite-element elastic--plastic analysis of shipping containers

    International Nuclear Information System (INIS)

    Rack, H.J.; Knorovsky, G.A.

    1978-09-01

    Stress-strain data which describes the influence of strain rate and temperature on the mechanical response of materials presently being used for light water reactor fuel shipping containers have been assembled. Selection of data has been limited to that which is suitable for use in finite-element elastic--plastic analysis of shipping containers (e.g., they must include complete material history profiles). Based on this information, recommendations have been made for further work which is required to complete the necessary data base

  3. A detailed investigation of the strain hardening response of aluminum alloyed Hadfield steel

    Science.gov (United States)

    Canadinc, Demircan

    The unusual strain hardening response exhibited by Hadfield steel single and polycrystals under tensile loading was investigated. Hadfield steel, which deforms plastically through the competing mechanisms slip and twinning, was alloyed with aluminum in order to suppress twinning and study the role of slip only. To avoid complications due to a grained structure, only single crystals of the aluminum alloyed Hadfield steel were considered at the initial stage of the current study. As a result of alloying with aluminum, twinning was suppressed; however a significant increase in the strain hardening response was also present. A detailed microstructural analysis showed the presence of high-density dislocation walls that evolve in volume fraction due to plastic deformation and interaction with slip systems. The very high strain hardening rates exhibited by the aluminum alloyed Hadfield steel single crystals was attributed to the blockage of glide dislocations by the high-density dislocation walls. A crystal plasticity model was proposed, that accounts for the volume fraction evolution and rotation of the dense dislocation walls, as well as their interaction with the active slip systems. The novelty of the model lies in the simplicity of the constitutive equations that define the strain hardening, and the fact that it is based on experimental data regarding the microstructure. The success of the model was tested by its application to different crystallographic orientations, and finally the polycrystals of the aluminum alloyed Hadfield steel. Meanwhile, the capability of the model to predict texture was also observed through the rotation of the loading axis in single crystals. The ability of the model to capture the polycrystalline deformation response provides a venue for its utilization in other alloys that exhibit dislocation sheet structures.

  4. Influence of Plastic Deformation on Low Temperature Surface Hardening of Austenitic Stainless Steel by Gaseous Nitriding

    DEFF Research Database (Denmark)

    Bottoli, Federico; Winther, Grethe; Christiansen, Thomas Lundin

    2015-01-01

    This article addresses an investigation of the influence of plastic deformation on low temperature surface hardening by gaseous nitriding of two commercial austenitic stainless steels: AISI 304 and EN 1.4369. The materials were plastically deformed to different equivalent strains by uniaxial...... demonstrate that a case of expanded austenite develops and that, in particular, strain-induced martensite has a large influence on the nitrided zone....

  5. Effect of temperature on the elastic-plastic fracture toughness behavior of Inconel X-750

    International Nuclear Information System (INIS)

    Mills, W.J.

    1977-09-01

    The elastic-plastic J/sub Ic/ fracture toughness response of precipitation heat treated Inconel X-750 has been evaluated by the multi-specimen resistance curve (R-curve) technique at room temperature, 800 0 F (427 0 C), and 1000 0 F (538 0 C). The value of J/sub Ic/ for this nickel-base superalloy was found to be relatively independent of temperature over the test temperature range. On the other hand, the slopes of the fracture toughness R-curves were steeper at 800 and 1000 0 F (427 and 538 0 C) than at 75 0 F (24 0 C), thereby indicating that the resistance to crack extension was considerably greater at elevated temperatures, Metallographic and electron fractographic examination of the Inconel X-750 fracture surfaces revealed that this slope change phenomenon was associated with an intergranular to transgranular fracture mechanism transition. Under room temperature conditions, crack extension occurred primarily by an intergranular dimple rupture mechanism attributed to microvoid coalescence along a grain boundary denuded region. In the 800 to 1000 0 F (427 to 538 0 C) regime, the fracture surface was dominated by a faceted transgranular morphology

  6. Hardening and strengthening behavior in rate-independent strain gradient crystal plasticity

    DEFF Research Database (Denmark)

    Nellemann, C.; Niordson, C. F.; Nielsen, K.L.

    2018-01-01

    Two rate-independent strain gradient crystal plasticity models, one new and one previously published, are compared and a numerical framework that encompasses both is developed. The model previously published is briefly outlined, while an in-depth description is given for the new, yet somewhat...... related,model. The difference between the two models is found in the definitions of the plastic work expended in the material and their relation to spatial gradients of plastic strains. The model predictions are highly relevant to the ongoing discussion in the literature, concerning 1) what governs...... the increase in the apparent yield stress due to strain gradients (also referred to as strengthening)? And 2), what is the implication of such strengthening in relation to crystalline material behavior at the micron scale? The present work characterizes material behavior, and the corresponding plastic slip...

  7. Plastic deformation and fracture behaviors of nitrogen-alloyed austenitic stainless steels

    International Nuclear Information System (INIS)

    Wang Songtao; Yang Ke; Shan Yiyin; Li Laifeng

    2008-01-01

    The plastic deformation and fracture behaviors of two nitrogen-alloyed austenitic stainless steels, 316LN and a high nitrogen steel (Fe-Cr-Mn-0.66% N), were investigated by tensile test and Charpy impact test in a temperature range from 77 to 293 K. The Fe-Cr-Mn-N steel showed ductile-to-brittle transition (DBT) behavior, but not for the 316LN steel. X-ray diffraction (XRD) confirmed that the strain-induced martensite occurred in the 316LN steel, but no such transformation in the Fe-Cr-Mn-N steel. Tensile tests showed that the temperature dependences of the yield strength for the two steels were almost the same. The ultimate tensile strength of the Fe-Cr-Mn-N steel displayed less significant temperature dependence than that of the 316LN steel. The strain-hardening exponent increased for the 316LN steel, but decreased for the Fe-Cr-Mn-N steel, with decreasing temperature. Based on the experimental results and the analyses, a modified scheme was proposed to explain the fracture behaviors of austenitic stainless steels

  8. Elastic limit and microplastic response of hardened steels

    Energy Technology Data Exchange (ETDEWEB)

    Zaccone, M.A. (McDonnell Douglas Aerospace Co., St. Louis, MO (United States)); Krauss, G. (Colorado School of Mines, Golden, CO (United States). Dept. of Metallurgical and Materials Engineering)

    1993-10-01

    Tempered martensite-retained austenite microstructures were produced by direct quenching a series of 41XX medium carbon steels, direct quenching and reheating a series of five 0.8C-Cr-Ni-Mo steels and intercritically austenitizing at various temperatures, and quenching a SAE 52100 steel. All specimens were tempered either at 150 C or at 200 C. Specimens were subjected to compression and tension testing in the microstrain regime to determine the elastic limits and microplastic response of the microstructures. The retained austenite and matrix carbon content of the intercritically austenized specimens were measured by X-ray diffraction and Mossbauer spectroscopy. The elastic limit of the microstructures decreases with increasing amounts of retained austenite. Refining of the austenite distribution increases the elastic limit. Low elastic limits are mainly due to low flow stresses in the austenite and not internal stresses. The elastic limit correlates with the largest austenite free-mean path by a Hall-Petch type equation. The elastic limit increases with decreasing intercritical austenitizing temperature in the SAE 52100 due to a lower carbon content in the matrix reducing the retained austenite levels and retained carbides that refine grain size and, therefore, the austenite distribution in quenched specimens. In the microplastic region, the strain is accommodated by successively smaller austenite regions until the flow strength matches that of the martensite. Reheating and quenching refines the microstructure and renders the austenite unstable in the microplastic regime, causing transformation of the austenite to martensite by a strain-induced mechanism. The transformation of austenite to martensite occurs by a stress-assisted mechanism in medium carbon steels. The low elastic limits in medium carbon steels were due to the inability of the strain from the stress-assisted transformation to balance the plastic strain accumulated in the austenite.

  9. Elastic-plastic behaviour of thick-walled containers considering plastic compressibility

    International Nuclear Information System (INIS)

    Betten, J.; Frosch, H.G.

    1983-01-01

    In this paper the elastic-plastic behaviour of thick-walled pressure vessels with internal and external pressure is studied. To describe the mechanical behaviour of isotropic, plastic compressible materials we use a plastic potential which is a single-valued function of the principle stresses. For cylinders and spheres an analytic expression for the computation of stresses and residual stresses is specified. Afterwards the strains are calculated by using the finite difference method. Some examples will high-light the influence of the plastic compressibility on the behaviour of pressure vessels. (orig.) [de

  10. Change and anisotropy of elastic modulus in sheet metals due to plastic deformation

    Science.gov (United States)

    Ishitsuka, Yuki; Arikawa, Shuichi; Yoneyama, Satoru

    2015-03-01

    In this study, the effect of the plastic deformation on the microscopic structure and the anisotropy of the elastic modulus in the cold-rolled steel sheet (SPCC) is investigated. Various uniaxial plastic strains (0%, 2.5%, 5%, 7.5%, and 10%) are applied to the annealed SPCC plates, then, the specimens for the tensile tests are cut out from them. The elastic moduli in the longitudinal direction and the transverse direction to the direction that are pre-strained are measured by the tensile tests. Cyclic tests are performed to investigate the effects of the internal friction caused by the movable dislocations in the elastic deformation. Also, the movable dislocations are quantified by the boundary tracking for TEM micrographs. In addition, the behaviors of the change of the elastic modulus in the solutionized and thermal aged aluminum alloy (A5052) are measured to investigate the effect on the movable dislocations with the amount of the depositions. As a result in SPCC, the elastic moduli of the 0° and 90° directions decrease more than 10% as 10% prestrain applied. On the other hand, the elastic modulus shows the recovery behavior after the strain aging and the annealing. The movable dislocation and the internal friction show a tendency to increase as the plastic strain increases. The marked anisotropy is not observed in the elastic modulus and the internal friction. The elastic modulus in A5052 with many and few depositions decreases similarly by the plastic deformation. From the above, the movable dislocations affect the elastic modulus strongly without depending on the deposition amount. Moreover, the elastic modulus recovers after the plastic deformation by reducing the effects of them with the strain aging and the heat treatment.

  11. Prediction of fretting fatigue behavior under elastic-plastic conditions

    International Nuclear Information System (INIS)

    Shin, Ki Su

    2009-01-01

    Fretting fatigue generally leads to the degradation of the fatigue strength of a material due to cyclic micro-slip between two contacting materials. Fretting fatigue is regarded as an important issue in designing aerospace structures. While many studies have evaluated fretting fatigue behavior under elastic deformation conditions, few have focused on fretting fatigue behavior under elastic-plastic deformation conditions, especially the crack orientation and fatigue life prediction for Ti-6Al-4V. The primary goal of this study was to characterize the fretting fatigue crack initiation behavior in the presence of plasticity. Experimental tests were performed using pad configurations involving elastic-plastic deformations. To calculate stress distributions under elastic-plastic fretting fatigue conditions, FEA was also performed. Several parametric approaches were used to predict fretting fatigue life along with stress distribution resulting from FEA. However, those parameters using surface stresses were unable to establish an equivalence between elastic fretting fatigue data and elastic-plastic fretting fatigue data. Based on this observation, the critical distance methods, which are commonly used in notch analysis, were applied to the fretting fatigue problem. In conclusion, the effective strain range method when used in conjunction with the SMSSR parameter showed a good correlation of data points between the pad configurations involving elastic and elastic plastic deformations

  12. Inelastic analysis of piping systems. A beam-type method for creep and plasticity

    International Nuclear Information System (INIS)

    Roche, R.L.; Hoffmann, A.; Millard, A.

    1979-01-01

    Since many years, piping systems are designed and calculated under elasticity assumptions, using a beam-type method. Thus, the analysis of large systems may be performed at a relatively low cost, using a finite element program. However such a method can not account for inelastic phenomena like plastic deformations or creep. The application of refined three-dimensional shell type method is possible for local components such as curved sections but leads to prohibitive costs for complete piping systems. Therefore simplified methods have been developed, based on a 'global plasticity or creep model'. Following the conventional elastic approach, the pipe element is characterized by variables associated with the center line in the following way: generalized stresses are obtained by integration of local stresses giving way to hoop and tension stresses and to bending and torsional moments; the conjugated strains are identified with uniform hoop and longitudinal strains and variations in neutral axis curvatuves. For plasticity problems, the yield surface is defined by a diagonal quadratic function in terms of the generalized stresses and work hardening parameters. By addition of the Hill's principle and a hardening rule, the formulation is similar to the one commonly used in finite element method. Geometric non linearity due to important deformations of the cross section (often termed 'ovalization') may be treated simultaneously with material non linearity. For this purpose the displacement normal to the pipe surface is represented by trigonometric series expansion, the coefficients of which are determined by minimizing the strain energy over the cross section. The method presented is believed to be a simple economical and accurate tool, for dimensioning computations of large piping systems

  13. Dynamics of pre-strained bi-material elastic systems linearized three-dimensional approach

    CERN Document Server

    Akbarov, Surkay D

    2015-01-01

    This book deals with dynamics of pre-stressed or pre-strained bi-material elastic systems consisting of stack of pre-stressed layers, stack of pre-stressed layers and pre-stressed half space (or half plane), stack of pre-stressed layers as well as absolute rigid foundation, pre-stressed compound solid and hollow cylinders and pre-stressed sandwich hollow cylinders. The problems considered in the book relate to the dynamics of a moving and oscillating moving load, forced vibration caused by linearly located or point located time-harmonic forces acting to the foregoing systems. Moreover, a considerable part of the book relate to the problems regarding the near surface, torsional and axisymmetric longitudinal waves propagation and dispersion in the noted above bi-material elastic systems. The book carries out the investigations within the framework of the piecewise homogeneous body model with the use of the Three-Dimensional Linearized Theory of Elastic Waves in Initially Stressed Bodies.

  14. A mesomechanical analysis of the deformation and fracture in polycrystalline materials with ceramic porous coatings

    Science.gov (United States)

    Balokhonov, R. R.; Zinoviev, A. V.; Romanova, V. A.; Batukhtina, E. E.

    2015-10-01

    The special features inherent in the mesoscale mechanical behavior of a porous ceramic coating-steel substrate composite are investigated. Microstructure of the coated material is accounted for explicitly as initial conditions of a plane strain dynamic boundary-value problem solved by the finite difference method. Using a mechanical analogy method, a procedure for generating a uniform curvilinear finite difference computational mesh is developed to provide a more accurate description of the complex grain boundary geometry. A modified algorithm for generation of polycrystalline microstructure of the substrate is designed on the basis of the cellular automata method. The constitutive equations for a steel matrix incorporate an elastic-plastic model for a material subjected to isotropic hardening. The Hall-Petch relation is used to account for the effect of the grain size on the yield stress and strain hardening history. A brittle fracture model for a ceramic coating relying on the Huber criterion is employed. The model allows for crack nucleation in the regions of triaxial tension. The complex inhomogeneous stress and plastic strain patterns are shown to be due to the presence of interfaces of three types: coating-substrate interface, grain boundaries, and pore surfaces.

  15. Deformation patterning driven by rate dependent non-convex strain gradient plasticity

    NARCIS (Netherlands)

    Yalcinkaya, T.; Brekelmans, W.A.M.; Geers, M.G.D.

    2011-01-01

    A rate dependent strain gradient plasticity framework for the description of plastic slip patterning in a system with non-convex energetic hardening is presented. Both the displacement and the plastic slip fields are considered as primary variables. These fields are determined on a global level by

  16. The application of linear elastic fracture mechanics to thermally stressed welded components

    International Nuclear Information System (INIS)

    Green, D.

    1981-01-01

    Linear Elastic Fracture Mechanics techniques are applied to components constructed from brittle materials and operating at low or ambient temperatures. It is argued that these techniques can justifiably be applied to components at high temperature provided that stresses are thermally induced, self-equilibrating and cyclic. Such loading conditions occur for example in an LMFBR and a simple welded detail containing a crevice is taken as an example. Theoretical and experimental estimates of crack growth in this component are compared and good agreement is shown. (author)

  17. Plastic Behavior and Fracture of Aluminum and Copper in Torsion Tests

    International Nuclear Information System (INIS)

    Bressan, Jose Divo

    2007-01-01

    Present work investigates the plastic behavior, work hardening and the beginning of plastic instabilities, of cylindrical specimens deformed by high speed cold plastic torsion tests and at low speed tensile test. The tests were carried out in a laboratory torsion test equipment and an universal tensile test machine. The tensile tests were performed at room temperature in an universal testing machine at low strain rate of 0.034/s. Experimental torsion tests were carried out at constant angular speed that imposed a constant shear strain rate to the specimen. In the tests, the rotation speed were set to 62 rpm and 200 rpm which imposed high strain rates of about 2/s and 6.5/s respectively. The torsion tests performed at room temperature on annealed commercial pure copper and aluminum. Two types of torsion specimen for aluminum were used: solid and tubular. The solid aluminum specimen curves presented various points of maximum torque. The tubular copper specimens showed two points of maximum. Shear bands or shear strain localization at specimen were possibly the mechanism of maximum torque points formation. The work hardening coefficient n and the strain rate sensitivity parameter m were evaluated from the equivalent stress versus strain curve from tensile and torsion tests. The n-value remained constant whereas the m-value increased ten folds for aluminum specimens: from tensile test m= 0.027 and torsion test m= 0.27. However, the hardening curves were sigmoidal

  18. Solution hardening and strain hardening at elevated temperatures

    International Nuclear Information System (INIS)

    Kocks, U.F.

    1982-10-01

    Solutes can significantly increase the rate of strain hardening; as a consequence, the saturation stress, at which strain hardening tends to cease for a given temperature and strain rate, is increased more than the yield stress: this is the major effect of solutes on strength at elevated temperatures, especially in the regime where dynamic strain-aging occurs. It is shown that local solute mobility can affect both the rate of dynamic recovery and the dislocation/dislocation interaction strength. The latter effect leads to multiplicative solution strengthening. It is explained by a new model based on repeated dislocation unlocking, in a high-temperature limit, which also rationalizes the stress dependence of static and dynamic strain-aging, and may help explain the plateau of the yield stress at elevated temperatures. 15 figures

  19. Low temperature uniform plastic deformation of metallic glasses during elastic iteration

    International Nuclear Information System (INIS)

    Fujita, Takeshi; Wang Zheng; Liu Yanhui; Sheng, Howard; Wang Weihua; Chen Mingwei

    2012-01-01

    Molecular dynamics simulations and dynamic mechanical analysis experiments were employed to investigate the mechanical behavior of metallic glasses subjected to iteration deformation in a nominally elastic region. It was found that cyclic deformation leads to the formation of irreversible shear transformation zones (STZs) and a permanent uniform strain. The initiation of STZs is directly correlated with the atomic heterogeneity of the metallic glass and the accumulated permanent strain has a linear relation with the number of STZs. This study reveals a new deformation mode and offers insights into the atomic mechanisms of STZ formation and low temperature uniform plastic deformation of metallic glasses.

  20. Conversion of fracture toughness testing values from small scale three point bending test specimens to small scale yielding state (SSY) by elastic-plastic stress analysis

    International Nuclear Information System (INIS)

    Ikonen, K.

    1993-07-01

    The report describes the work performed for achieving readiness to calculate fracture toughness dependence on dimension effects and loading conditions in fracture test specimens and real structures. In the report two- and three-dimensional computer codes developed and calculational methods applied are described. One of the main goals is to converse fracture toughness from small scale three point bending test specimens to case of a depth crack in plane strain i.e. to small scale yielding state (SSY) by numerical elastic-plastic stress analysis. Thickness effect of a test specimens and effect of a crack depth are separately investigated. Tests of three point bending specimens with and without sidegrooves and curved crack front are numerically simulated and experimental and computed results are compared. J-integral is calculated along crack front and also from force-deflection dependence of the beam. For the analyses the computing system was thoroughly automatized. Measuring capacity of three point bending test specimens was tried to evaluate. (orig.) (7 refs., 54 figs.)

  1. A comparison of time-history elastic plastic piping analysis with measurement

    International Nuclear Information System (INIS)

    Scavuzzo, R.J.; Sansalone, K.H.

    1992-01-01

    The GE/ETEC Green piping system was subjected to high seismic inputs from hydraulic sleds at each pipe foundation. These inputs were high enough to force bending stresses into the plastic regime. Strain gages recorded the pipe response at various positions within the system. The ABAQUS finite element code was used to model this piping system and the dynamic input. Problems associated with the dynamic input are discussed. Various types of finite elements were evaluated for accurancy. Both an elastic time-history analysis and an elastic-plastic time-history analysis of the system were conducted. Results of these analyses are compared to each other and the experimental data. These comparisons indicated that elastic analysis of dynamic strains are conservative at all points of comparison and that there is good agreement between the nonlinear elastic-plastic analysis and experimental data. (orig.)

  2. Elastic-plastic transition: A universal law

    Directory of Open Access Journals (Sweden)

    Chen Zhong

    2016-01-01

    Full Text Available Although the initial stress-strain behavior in a tensile test is often characterized as linear elastic up to a yield stress and nonlinear plastic thereafter, the pre-yield transition region is known to exhibit significant curvature and hysteresis. Hundreds of high-precision loading-unloading-loading tensile tests were performed using 26 commercial sheet alloys exhibiting a wide range of strength, ductility and crystal structure. Analysis of the results reveals the following: 1.There is no significant linear elastic region; the proportional limit is ~0 MPa when measured with sufficient sensitivity. 2.Each of the hundreds of measured transitional stress-strain curves can be characterized by a single parameter, here called the “modulus reduction rate.”The corresponding equation captures ~80% of the observed variation, a factor of 3 to 6 better than a one-parameter linear approximation. 3.Most interestingly, the transitional behavior for all alloys follows a “Universal Law” requiring no fit parameters. The law depends only upon the strength of the material and its Young’s modulus, both of which are can be measured by independent tests or adopted from handbooks. The Universal Law captures ~90% of the variation represented by the one-parameter representation and eliminates the need for mechanical testing to implement and apply. The practical and theoretical implications of these results are discussed. The results provide a simple path to significantly improving applied constitutive models in the transitional regime. The consistency of the effect for such a wide range of metals and suggests that the origin of the behavior lies in the pile-up and relaxation of dislocation arrays.

  3. Influence of cold rolling and strain rate on plastic response of powder metallurgy and chemical vapor deposition rhenium

    International Nuclear Information System (INIS)

    Koeppel, B.J.; Subhash, G.

    1999-01-01

    The plastic response of two kinds of rhenium processed via powder metallurgy (PM) and chemical vapor deposition (CVD) were investigated under uniaxial compression over a range of strain rates. The PM rhenium, further cold rolled to 50 and 80 pct of the original thickness, was also investigated to assess the influence of cold work on the plastic behavior. A strong basal texture was detected in all the preceding materials as a result of processing and cold work. Both CVD and PM rhenium exhibited an increase in yield strength and flow stress with increasing strain rate. In PM rhenium, cold work resulted in an increase in hardness and yield strength and a decrease in the work hardening rate. The deformed microstructures revealed extensive twinning in CVD rhenium. At large strains, inhomogeneous deformation mode in the form of classical cup and cone fracture was noticed

  4. Influence of Plastic Deformation on Low-Temperature Surface Hardening of Austenitic Stainless Steel by Gaseous Nitriding

    DEFF Research Database (Denmark)

    Bottoli, Federico; Winther, Grethe; Christiansen, Thomas Lundin

    2015-01-01

    This article addresses an investigation of the influence of plastic deformation on low-temperature surface hardening by gaseous nitriding of two commercial stainless steels: EN 1.4369 and AISI 304. The materials were plastically deformed to several levels of equivalent strain by conventional......, reflected-light microscopy, and microhardness testing. The results demonstrate that a case of expanded austenite develops and that the presence of plastic deformation has a significant influence on the morphology of the nitrided case. The presence of strain-induced martensite favors the formation of Cr...

  5. The strain path dependence of plastic deformation response of AA5754: Experiment and modeling

    International Nuclear Information System (INIS)

    Pham, Minh-Son; Hu, Lin; Iadicola, Mark; Creuziger, Adam; Rollett, Anthony D.

    2013-01-01

    This work presents modeling of experiments on a balanced biaxial (BB) pre-strained AA5754 alloy, subsequently reloaded uniaxially along the rolling direction and transverse direction. The material exhibits a complex plastic deformation response during the change in strain path due to 1) crystallographic texture, 2) aging (interactions between dislocations and Mg atoms) and 3) recovery (annihilation and re-arrangement of dislocations). With a BB prestrain of about 5 %, the aging process is dominant, and the yield strength for uniaxially deformed samples is observed to be higher than the flow stress during BB straining. The strain hardening rate after changing path is, however, lower than that for pre-straining. Higher degrees of pre-straining make the dynamic recovery more active. The dynamic recovery at higher strain levels compensates for the aging effect, and results in: 1) a reduction of the yield strength, and 2) an increase in the hardening rate of re-strained specimens along other directions. The yield strength of deformed samples is further reduced if these samples are left at room temperature to let static recovery occur. The synergistic influences of texture condition, aging and recovery processes on the material response make the modeling of strain path dependence of mechanical behavior of AA5754 challenging. In this study, the influence of crystallographic texture is taken into account by incorporating the latent hardening into a visco-plastic self-consistent model. Different strengths of dislocation glide interaction models in 24 slip systems are used to represent the latent hardening. Moreover, the aging and recovery effects are also included into the latent hardening model by considering strong interactions between dislocations and dissolved atom Mg and the microstructural evolution. These microstructural considerations provide a powerful capability to successfully describe the strain path dependence of plastic deformation behavior of AA5754

  6. Strain path and work-hardening behavior of brass

    International Nuclear Information System (INIS)

    Sakharova, N.A.; Fernandes, J.V.; Vieira, M.F.

    2009-01-01

    Plastic straining in metal forming usually includes changes of strain path, which are frequently not taken into account in the analysis of forming processes. Moreover, strain path change can significantly affect the mechanical behavior and microstructural evolution of the material. For this reason, a combination of several simple loading test sequences is an effective way to investigate the dislocation microstructure of sheet metals under such forming conditions. Pure tension and rolling strain paths and rolling-tension strain path sequences were performed on brass sheets. A study of mechanical behavior and microstructural evolution during the simple and the complex strain paths was carried out, within a wide range of strain values. The appearance and development of deformation twinning was evident. It was shown that strain path change promotes the onset of premature twinning. The work-hardening behavior is discussed in terms of the twinning and dislocation microstructure evolution, as revealed by transmission electron microscopy

  7. Latent hardening size effect in small-scale plasticity

    Science.gov (United States)

    Bardella, Lorenzo; Segurado, Javier; Panteghini, Andrea; Llorca, Javier

    2013-07-01

    We aim at understanding the multislip behaviour of metals subject to irreversible deformations at small-scales. By focusing on the simple shear of a constrained single-crystal strip, we show that discrete Dislocation Dynamics (DD) simulations predict a strong latent hardening size effect, with smaller being stronger in the range [1.5 µm, 6 µm] for the strip height. We attempt to represent the DD pseudo-experimental results by developing a flow theory of Strain Gradient Crystal Plasticity (SGCP), involving both energetic and dissipative higher-order terms and, as a main novelty, a strain gradient extension of the conventional latent hardening. In order to discuss the capability of the SGCP theory proposed, we implement it into a Finite Element (FE) code and set its material parameters on the basis of the DD results. The SGCP FE code is specifically developed for the boundary value problem under study so that we can implement a fully implicit (Backward Euler) consistent algorithm. Special emphasis is placed on the discussion of the role of the material length scales involved in the SGCP model, from both the mechanical and numerical points of view.

  8. Latent hardening size effect in small-scale plasticity

    International Nuclear Information System (INIS)

    Bardella, Lorenzo; Panteghini, Andrea; Segurado, Javier; Llorca, Javier

    2013-01-01

    We aim at understanding the multislip behaviour of metals subject to irreversible deformations at small-scales. By focusing on the simple shear of a constrained single-crystal strip, we show that discrete Dislocation Dynamics (DD) simulations predict a strong latent hardening size effect, with smaller being stronger in the range [1.5 µm, 6 µm] for the strip height. We attempt to represent the DD pseudo-experimental results by developing a flow theory of Strain Gradient Crystal Plasticity (SGCP), involving both energetic and dissipative higher-order terms and, as a main novelty, a strain gradient extension of the conventional latent hardening. In order to discuss the capability of the SGCP theory proposed, we implement it into a Finite Element (FE) code and set its material parameters on the basis of the DD results. The SGCP FE code is specifically developed for the boundary value problem under study so that we can implement a fully implicit (Backward Euler) consistent algorithm. Special emphasis is placed on the discussion of the role of the material length scales involved in the SGCP model, from both the mechanical and numerical points of view. (paper)

  9. Hardening behavior and texture evolution of TWIP steel during strain path change

    International Nuclear Information System (INIS)

    Wen, W; Borodachenkova, M; Pereira, A; Barlat, F; Gracio, J

    2015-01-01

    Polycrystal materials exhibit large changes in the flow stress and hardening behavior during the strain path change. Such changes are related with the crystallographic texture anisotropy and the rearrangement of dislocation structure during the pre-loading. These effects have been captured by a dislocation hardening model embedded in the visco-plastic selfconsistent (VPSC) model. In this work, the texture evolution and mechanical behavior of TWIP steel during the strain path change are investigated. The experimental studies are carried out on rolled TWIP steel sheet. The mechanical responses are obtained under tensile tests along rolling direction, followed by tension along the directions with 0° and 90° from the pre-loading direction. The simulated results of strain-stress curves and the texture evolution are in good agreement with the experimental data. (paper)

  10. J-integral elastic plastic fracture mechanics evaluation of the stability of cracks in nuclear reactor pressure vessels

    International Nuclear Information System (INIS)

    Gomez, M.P.; McMeeking, R.M.; Parks, D.M.

    1980-06-01

    Contributions were made toward developing a new methodology to assess the stability of cracks in pressure vessels made from materials that exhibit a significant increase in toughness during the early increments of crack growth. It has a wide range of validity from linear elastic to fully plastic behavior

  11. Why ductile fracture mechanics

    International Nuclear Information System (INIS)

    Ritchie, R.O.

    1983-01-01

    Until recently, the engineering application of fracture mechanics has been specific to a description of macroscopic fracture behavior in components and structural parts which remain nominally elastic under loading. While this approach, termed linear elastic fracture mechanics, has been found to be invaluable for the continuum analysis of crack growth in brittle and high strength materials, it is clearly inappropriate for characterizing failure in lower strength ductile alloys where extensive inelastic deformation precedes and accompanies crack initiation and subsequent propagation. Accordingly, much effort has been devoted in recent years toward the development of nonlinear or ductile fracture mechanics methodology to characterize fracture behavior under elastic/plastic conditions; an effort which has been principally motivated by problems in nuclear industry. In this paper, the concepts of ductile (elastic/plastic) fracture mechanics are introduced and applied to the problem of both stationary and nonstationary cracks. Specifically, the limitations inherent in this approach are defined, together with a description of the microstructural considerations and applications relevant to the failure of ductile materials by fracture, fatigue, and creep

  12. Incorporating plastic collapse into the linear elastic fracture mechanics methodology in determining crack propagation lifetimes

    International Nuclear Information System (INIS)

    Glasgow, B.B.; Wolfer, W.G.

    1986-01-01

    Crack growth can result in a breech of a pressure boundary causing coolant loss or in total structural failure. This paper discusses brittle and plastic failure in terms of a unified structural model called the Two Criteria model. The model takes into account the flow stress of the material as well as the fracture toughness. Our results indicate that for fusion reactor first wall structures, ferritic steel is better able to resist crack propagation and subsequent structural failure than 316 stainless steel under the same wall loadings and geometry

  13. Devising Strain Hardening Models Using Kocks–Mecking Plots—A Comparison of Model Development for Titanium Aluminides and Case Hardening Steel

    Directory of Open Access Journals (Sweden)

    Markus Bambach

    2016-08-01

    Full Text Available The present study focuses on the development of strain hardening models taking into account the peculiarities of titanium aluminides. In comparison to steels, whose behavior has been studied extensively in the past, titanium aluminides possess a much larger initial work hardening rate, a sharp peak stress and pronounced softening. The work hardening behavior of a TNB-V4 (Ti–44.5Al–6.25Nb–0.8Mo–0.1B alloy is studied using isothermal hot compression tests conducted on a Gleeble 3500 simulator, and compared to the typical case hardening steel 25MoCrS4. The behavior is analyzed with the help of the Kocks-Mecking plots. In contrast to steel the TNB-V4 alloy shows a non-linear course of θ (i.e., no stage-III hardening initially and exhibits neither a plateau (stage IV hardening nor an inflection point at all deformation conditions. The present paper describes the development and application of a methodology for the design of strain hardening models for the TNB-V4 alloy and the 25CrMoS4 steel by taking the course of the Kocks-Mecking plots into account. Both models use different approaches for the hardening and softening mechanisms and accurately predict the flow stress over a wide range of deformation conditions. The methodology may hence assist in further developments of more sophisticated physically-based strain hardening models for TiAl-alloys.

  14. Plastic limit pressure of spherical vessels with combined hardening involving large deformation

    International Nuclear Information System (INIS)

    Leu, S.-Y.; Liao, K.-C.; Lin, Y.-C.

    2014-01-01

    The paper aims to investigate plastic limit pressure of spherical vessels of nonlinear combined isotropic/kinematic hardening materials. The Armstrong-Frederick kinematic hardening model is adopted and the Voce hardening law is incorporated for isotropic hardening behavior. Analytically, we extend sequential limit analysis to deal with combined isotropic/kinematic hardening materials. Further, exact solutions of plastic limit pressure were developed analytically by conducting both static and kinematic limit analysis. The onset of instability was also derived and solved iteratively by Newton's method. Numerically, elastic–plastic analysis is also performed by the commercial finite-element code ABAQUS incorporated with the user subroutine UMAT implemented with user materials of combined hardening. Finally, the problem formulation and the solution derivations presented here are validated by a very good agreement between the numerical results of exact solutions and the results of elastic–plastic finite-element analysis by ABAQUS. -- Highlights: • Sequential limit analysis is extended to consider combined hardening. • Exact solutions of plastic limit pressure are developed. • The onset of instability of a spherical vessel is derived and solved numerically

  15. Comparative study of sea ice dynamics simulations with a Maxwell elasto-brittle rheology and the elastic-viscous-plastic rheology in NEMO-LIM3

    Science.gov (United States)

    Raulier, Jonathan; Dansereau, Véronique; Fichefet, Thierry; Legat, Vincent; Weiss, Jérôme

    2017-04-01

    Sea ice is a highly dynamical environment characterized by a dense mesh of fractures or leads, constantly opening and closing over short time scales. This characteristic geomorphology is linked to the existence of linear kinematic features, which consist of quasi-linear patterns emerging from the observed strain rate field of sea ice. Standard rheologies used in most state-of-the-art sea ice models, like the well-known elastic-viscous-plastic rheology, are thought to misrepresent those linear kinematic features and the observed statistical distribution of deformation rates. Dedicated rheologies built to catch the processes known to be at the origin of the formation of leads are developed but still need evaluations on the global scale. One of them, based on a Maxwell elasto-brittle formulation, is being integrated in the NEMO-LIM3 global ocean-sea ice model (www.nemo-ocean.eu; www.elic.ucl.ac.be/lim). In the present study, we compare the results of the sea ice model LIM3 obtained with two different rheologies: the elastic-viscous-plastic rheology commonly used in LIM3 and a Maxwell elasto-brittle rheology. This comparison is focused on the statistical characteristics of the simulated deformation rate and on the ability of the model to reproduce the existence of leads within the ice pack. The impact of the lead representation on fluxes between ice, atmosphere and ocean is also assessed.

  16. Elastic characteristics and fracture behaviour of materials in the system Al2O3+TiC at elevated temperatures

    International Nuclear Information System (INIS)

    Grellner, W.

    1978-01-01

    In the region between room temperature and 1400 0 C the elastic constants, fracture values and flow-stress values of different compositions of the Al 2 O 3 +TiC system were determined. It was found that: 1. The elasticity modulus and shear modulus increase linearly with the TiC content. 2. Up to approximately 1050 0 C the elastic constants decrease linearly with increasing temperature. 3. Additions of dispersed TiC lead to a uniform grain size distribution. 4. In the low temperature region the faults leading to cracks are about 50 times as large as the average grain size; this suggests the effect of thermal stresses on the occurrence of microcracks. 5. At temperatures above 900 0 C TiC deforms macroscopically. In the case of a high proportion of the 2nd phase the latter contributes, as a plastic substance, to stress reduction and thus to an increase of fracture stress in comparison to the single-phase material. (orig.) [de

  17. Comparison of theory and experiment for elastic-plastic plane-strain crack growth. [AISI 4140 steel

    Energy Technology Data Exchange (ETDEWEB)

    Hermann, L.; Rice, J.R.

    1980-08-01

    Recent theoretical results on elastic-plastic plane-strain crack growth are reviewed and experimental results for crack growth in a 4140 steel are discussed in terms of the theoretical concepts. The theory is based on a recent asymptotic analysis of crack surface opening and strain distributions at a quasistatically advancing crack tip in an ideally plastic solid. The analysis is incomplete in that some of the parameters which appear in it are known only approximately, especially at large-scale yielding. Nevertheless, it is sufficient for the derivation of a relation between the imposed loading and amount of crack growth prior to general yielding, based on the assumption that a geometrically similar near-tip crack profile is maintained during growth. The resulting predictions for the variation of J with crack growth are found to fit well to the experimental results obtained on deeply cracked compact specimens.

  18. Introduction to linear elasticity

    CERN Document Server

    Gould, Phillip L

    2013-01-01

    Introduction to Linear Elasticity, 3rd Edition, provides an applications-oriented grounding in the tensor-based theory of elasticity for students in mechanical, civil, aeronautical, and biomedical engineering, as well as materials and earth science. The book is distinct from the traditional text aimed at graduate students in solid mechanics by introducing the subject at a level appropriate for advanced undergraduate and beginning graduate students. The author's presentation allows students to apply the basic notions of stress analysis and move on to advanced work in continuum mechanics, plasticity, plate and shell theory, composite materials, viscoelasticity and finite method analysis. This book also:  Emphasizes tensor-based approach while still distilling down to explicit notation Provides introduction to theory of plates, theory of shells, wave propagation, viscoelasticity and plasticity accessible to advanced undergraduate students Appropriate for courses following emerging trend of teaching solid mechan...

  19. The characterization of Vicker's microhardness indentations and pile-up profiles as a strain-hardening microprobe

    International Nuclear Information System (INIS)

    Santos, C. Jr.

    1998-04-01

    Microhardness measurements have long been used to examine strength properties and changes in strength properties in metals, for example, as induced by irradiation. Microhardness affords a relatively simple test that can be applied to very small volumes of material. Microhardness is nominally related to the flow stress of the material at a fixed level of plastic strain. Further, the geometry of the pile-up of material around the indentation is related to the strain-hardening behavior of a material; steeper pile-ups correspond to smaller strain-hardening rates. In this study the relationship between pile-up profiles and strain hardening is examined using both experimental and analytical methods. Vickers microhardness tests have been performed on a variety of metal alloys including low alloy, high Cr and austenitic stainless steels. The pile-up topology around the indentations has been quantified using confocal microscopy techniques. In addition, the indentation and pile-up geometry has been simulated using finite element method techniques. These results have been used to develop an improved quantification of the relationship between the pile-up geometry and the strain-hardening constitutive behavior of the test material

  20. Elastic-Brittle-Plastic Behaviour of Shale Reservoirs and Its Implications on Fracture Permeability Variation: An Analytical Approach

    Science.gov (United States)

    Masoudian, Mohsen S.; Hashemi, Mir Amid; Tasalloti, Ali; Marshall, Alec M.

    2018-05-01

    Shale gas has recently gained significant attention as one of the most important unconventional gas resources. Shales are fine-grained rocks formed from the compaction of silt- and clay-sized particles and are characterised by their fissured texture and very low permeability. Gas exists in an adsorbed state on the surface of the organic content of the rock and is freely available within the primary and secondary porosity. Geomechanical studies have indicated that, depending on the clay content of the rock, shales can exhibit a brittle failure mechanism. Brittle failure leads to the reduced strength of the plastic zone around a wellbore, which can potentially result in wellbore instability problems. Desorption of gas during production can cause shrinkage of the organic content of the rock. This becomes more important when considering the use of shales for CO2 sequestration purposes, where CO2 adsorption-induced swelling can play an important role. These phenomena lead to changes in the stress state within the rock mass, which then influence the permeability of the reservoir. Thus, rigorous simulation of material failure within coupled hydro-mechanical analyses is needed to achieve a more systematic and accurate representation of the wellbore. Despite numerous modelling efforts related to permeability, an adequate representation of the geomechanical behaviour of shale and its impact on permeability and gas production has not been achieved. In order to achieve this aim, novel coupled poro-elastoplastic analytical solutions are developed in this paper which take into account the sorption-induced swelling and the brittle failure mechanism. These models employ linear elasticity and a Mohr-Coulomb failure criterion in a plane-strain condition with boundary conditions corresponding to both open-hole and cased-hole completions. The post-failure brittle behaviour of the rock is defined using residual strength parameters and a non-associated flow rule. Swelling and shrinkage

  1. Numerical Modeling and Experimental Study of Elastic-Plastic Behavior of Carbon Nanotubes Reinforced Nanocompsites of PA6/NBR Using a Microfinite Element Model

    Directory of Open Access Journals (Sweden)

    Mir Hamid Reza Ghoreishy

    2014-12-01

    Full Text Available A theoretical and experimental study was conducted on the mechanical behavior of nanocomposites based on PA6/NBR thermoplastic elastomer reinforced by single wall carbon nanotubes (SWNTs. The selected samples include 60 and 40% NBR with 0.5, 1.0 and 1.5% SWNT. The modeling methodology was based on the use of two-dimensional "representative volume elements" (RVE. The Abaqus/standard code was employed to carry out the non-linear finite element calculations. Plane stress elements were selected for discretization of the domain. Linear elastic and isotropic hardening elastic-plastic models were utilized to describe the mechanical behaviors of the carbon nanotubes and polymer matrix, respectively. The samples were simultaneously prepared using melt mixing method in a laboratory internal mixer. Different orientations including regular in both longitudinal and transverse directions and random were selected for the nanotubes in the matrix. Also, two structural forms including hollow and solid for the carbon nanotubes were chosen. The highest and lowest predicted moduli were obtained from models with regular orientation in longitudinal and transverse directions, respectively. On the other hand, comparison between the predicted elastic modulus and elastic-plastic behaviors of the samples with their corresponding experimental data revealed that the random orientation in conjunction with hollow structural form gives the best results. Moreover, the selected material model for the thermoplastic elastomer i.e., isotropic hardening can precisely describe the mechanical behavior in both tension and compression modes. It is also concluded that the main source of error in this modeling methodology can be attributed to the effects of interface between polymer and nanotubes and orientation in perpendicular directions.

  2. Work-hardening stages and deformation mechanism maps during tensile deformation of commercially pure titanium

    DEFF Research Database (Denmark)

    Becker, Hanka; Pantleon, Wolfgang

    2013-01-01

    Commercially pure titanium was tensile tested at different strain rates between 2.2×10−4s−1 and 6.7×10−1s−1 to characterize the strain rate dependence of plastic deformation and the dominating deformation mechanisms. From true stress-true plastic strain curves, three distinct work-hardening stages...... are identified. The work-hardening rate decreases linearly with increasing flow stress for all three stages and the work-hardening rate is the controlling factor for the transition between the different stages and mechanisms. During the initial stage (at lowest stresses) plastic deformation is carried mainly...... by dislocation slip, in the following stage (for moderate stresses), an abundance of 64.6∘〈1¯010〉 twin boundaries form indicating the dominance of {112¯2}〈1¯1¯23〉 compression twinning. During the last stage before the onset of necking, additional 84.8∘〈112¯0〉 twin boundaries are detected caused by {101...

  3. Elastic-plastic creep response of structures under composite time history

    Energy Technology Data Exchange (ETDEWEB)

    Zudans, Z [Franklin Inst. Research Labs., Philadelphia, Pa. (USA)

    1975-12-01

    High temperature nuclear reactor components are subject to a complex history of thermal and mechanical loading cycles. To evaluate the adequacy of such components, detailed information on the accumulated inelastic strains and strain cycling is required. This paper presents the theory, describes efficient numerical techniques accounting for plasticity, creep and overall equilibrium, describes the overall structure of the resulting computer program, and demonstrates the capability of the analysis method on a real three-dimensional structure. The new results of this work are the efficient handling of an arbitrary load history, introduction of the 'plastic stress' concept for inelastic computation, novel implementation of classical plasticity with recognition of incrementation conditions for the kinematic hardening, use of the load incrementation algorithm based on the 'plastic stress' concept, and development of a computer code capable of solving practical three-dimensional problems.

  4. Elastic-plastic creep response of structures under composite time history

    International Nuclear Information System (INIS)

    Zudans, Z.

    1975-01-01

    High temperature nuclear reactor components are subject to a complex history of thermal and mechanical loading cycles. To evaluate the adequacy of such components, detailed information on the accumulated inelastic strains and strain cycling is required. This paper presents the theory, describes efficient numerical techniques accounting for plasticity, creep and overall equilibrium, describes the overall structure of the resulting computer program, and demonstrates the capability of the analysis method on a real three-dimensional structure. The new results of this work are the efficient handling of an arbitrary load history, introduction of the 'plastic stress' concept for inelastic computation, novel implementation of classical plasticity with recognition of incrementation conditions for the kinematic hardening, use of the load incrementation algorithm based on the 'plastic stress' concept, and development of a computer code capable of solving practical three-dimensional problems. (Auth.)

  5. ELASTIC-PLASTIC AND RESIDUAL STRESS ANALYSIS OF AN ALUMINUM DISC UNDER INTERNAL PRESSURES

    Directory of Open Access Journals (Sweden)

    Numan Behlül BEKTAŞ

    2004-02-01

    Full Text Available This paper deals with elastic-plastic stress analysis of a thin aluminum disc under internal pressures. An analytical solution is performed for satisfying elastic-plastic stress-strain relations and boundary conditions for small plastic deformations. The Von-Mises Criterion is used as a yield criterion, and elastic perfectly plastic material is assumed. Elastic-plastic and residual stress distributions are obtained from inner radius to outer radius, and they are presented in tables and figures. All radial stress components, ?r, are compressive, and they are highest at the inner radius. All tangential stress components, ??, are tensile, and they are highest where the plastic deformation begins. Magnitude of the tangential residual stresses is higher than those the radial residual stresses.

  6. The use of a path independent integral in non-linear fracture mechanics

    International Nuclear Information System (INIS)

    Hellen, T.K.

    1977-01-01

    A computer program for calculating the J and J* integrals has been developed as an extension to the BERSAFE finite element system. A full analysis of the cracked structure including plasticity, creep and thermal strains is conducted and the results are stored on a permanent data set. The integral values may then be calculated using the post-processor program for any number of contours and load or time steps, without recourse to further expensive computations. Numerical examples are presented comparing the J and J* integrals for a number of cracked plates under thermal, plastic and creep environments. To demonstrate the accuracy for a simple thermo-elastic case, a centre cracked plate subject to a symmetric quadratic gradient is included. Here, the J integral is shown to be path dependent whereas good independence is seen for the J* integral. The case of an elastic-plastic plate is invetigated to demonstrate path independence for both integrals in non-linear elasticity, and the effects of unloading are discussed. An alternative method for obtaining the change of potential energy over a small crack extension is briefly mentioned and compared to the J and J* results in this case. An axisymmetric bar with an internal penny-shaped crack subjected to tension is discussed under elastic-plastic materials behavior

  7. Plasticity dependent damage evolution in composites with strain-gradient effects

    DEFF Research Database (Denmark)

    Legarth, Brian Nyvang

    2015-01-01

    . (2013). In this study the reinforcement is assumed perfectly stiff and consequently only one new cohesive material parameter is introduced. Results are shown for both conventional isotropy as well as plastic anisotropy with higher-order material behavior. Due to fiber-matrix decohesion a sudden stress......A unit cell approach is adopted to numerically analyze the effect of reinforcement size on fracture evolution in metal matrix composites. The matrix material shows plastic size-effects and is modeled by an anisotropic version of the single parameter strain-gradient (higher-order) plasticity model...... by Fleck and Hutchinson (2001). The fracture process along the fiber-matrix interface is modeled using a recently proposed cohesive law extension, where plasticity affects the fracture process as both the average as well as the jump in plastic strain across the interface are accounted for Tvergaard et al...

  8. Kinematic Hardening: Characterization, Modeling and Impact on Springback Prediction

    International Nuclear Information System (INIS)

    Alves, J. L.; Bouvier, S.; Jomaa, M.; Billardon, R.; Oliveira, M. C.; Menezes, L. F.

    2007-01-01

    The constitutive modeling of the materials' mechanical behavior, usually carried out using a phenomenological constitutive model, i.e., a yield criterion associated to the isotropic and kinematic hardening laws, is of paramount importance in the FEM simulation of the sheet metal forming processes, as well as in the springback prediction. Among others, the kinematic behavior of the yield surface plays an essential role, since it is indispensable to describe the Bauschinger effect, i.e., the materials' answer to the multiple tension-compression cycles to which material points are submitted during the forming process. Several laws are usually used to model and describe the kinematic hardening, namely: a) the Prager's law, which describes a linear evolution of the kinematic hardening with the plastic strain rate tensor b) the Frederick-Armstrong non-linear kinematic hardening, basically a non-linear law with saturation; and c) a more advanced physically-based law, similar to the previous one but sensitive to the strain path changes. In the present paper a mixed kinematic hardening law (linear + non-linear behavior) is proposed and its implementation into a static fully-implicit FE code is described. The material parameters identification for sheet metals using different strategies, and the classical Bauschinger loading tests (i.e. in-plane forward and reverse monotonic loading), are addressed, and their impact on springback prediction evaluated. Some numerical results concerning the springback prediction of the Numisheet'05 Benchmark no. 3 are briefly presented to emphasize the importance of a correct modeling and identification of the kinematic hardening behavior

  9. Development of a plastic fracture methodology. Final report

    International Nuclear Information System (INIS)

    Kanninen, M.F.; Hahn, G.T.; Broek, D.; Stonesifer, R.B.; Marschall, C.W.; Abou-Sayed, I.S.; Zahoor, A.

    1981-03-01

    A number of candidate fracture criteria were investigated to determine the basis for plastic fracture mechanics assessments of nuclear pressure vessels and other components exhibiting fully ductile behavior. The research was comprised of an integrated combination of stable crack growth experiments and elastic-plastic finite element analyses. The results demonstrated that many different fracture criteria can be used as the basis of a resistance curve approach to predicting stable crack growth and fracture instability. All have some disadvantages and none is completely unacceptable. On balance, the best criteria were found to be the J-integral for initiation and limited amounts of stable crack growth and the local crack tip opening angle for extended amounts of stable growth. A combination of the two, which may preserve the advantages of each while reducing their disadvantages, was also suggested by these results

  10. Development of a plastic fracture methodology. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Kanninen, M.F.; Hahn, G.T.; Broek, D.; Stonesifer, R.B.; Marschall, C.W.; Abou-Sayed, I.S.; Zahoor, A.

    1981-03-01

    A number of candidate fracture criteria were investigated to determine the basis for plastic fracture mechanics assessments of nuclear pressure vessels and other components exhibiting fully ductile behavior. The research was comprised of an integrated combination of stable crack growth experiments and elastic-plastic finite element analyses. The results demonstrated that many different fracture criteria can be used as the basis of a resistance curve approach to predicting stable crack growth and fracture instability. All have some disadvantages and none is completely unacceptable. On balance, the best criteria were found to be the J-integral for initiation and limited amounts of stable crack growth and the local crack tip opening angle for extended amounts of stable growth. A combination of the two, which may preserve the advantages of each while reducing their disadvantages, was also suggested by these results.

  11. Substructure based modeling of nickel single crystals cycled at low plastic strain amplitudes

    Science.gov (United States)

    Zhou, Dong

    In this dissertation a meso-scale, substructure-based, composite single crystal model is fully developed from the simple uniaxial model to the 3-D finite element method (FEM) model with explicit substructures and further with substructure evolution parameters, to simulate the completely reversed, strain controlled, low plastic strain amplitude cyclic deformation of nickel single crystals. Rate-dependent viscoplasticity and Armstrong-Frederick type kinematic hardening rules are applied to substructures on slip systems in the model to describe the kinematic hardening behavior of crystals. Three explicit substructure components are assumed in the composite single crystal model, namely "loop patches" and "channels" which are aligned in parallel in a "vein matrix," and persistent slip bands (PSBs) connected in series with the vein matrix. A magnetic domain rotation model is presented to describe the reverse magnetostriction of single crystal nickel. Kinematic hardening parameters are obtained by fitting responses to experimental data in the uniaxial model, and the validity of uniaxial assumption is verified in the 3-D FEM model with explicit substructures. With information gathered from experiments, all control parameters in the model including hardening parameters, volume fraction of loop patches and PSBs, and variation of Young's modulus etc. are correlated to cumulative plastic strain and/or plastic strain amplitude; and the whole cyclic deformation history of single crystal nickel at low plastic strain amplitudes is simulated in the uniaxial model. Then these parameters are implanted in the 3-D FEM model to simulate the formation of PSB bands. A resolved shear stress criterion is set to trigger the formation of PSBs, and stress perturbation in the specimen is obtained by several elements assigned with PSB material properties a priori. Displacement increment, plastic strain amplitude control and overall stress-strain monitor and output are carried out in the user

  12. Numerical simulation of elasto-plastic deformation of composites: evolution of stress microfields and implications for homogenization models

    Science.gov (United States)

    González, C.; Segurado, J.; LLorca, J.

    2004-07-01

    The deformation of a composite made up of a random and homogeneous dispersion of elastic spheres in an elasto-plastic matrix was simulated by the finite element analysis of three-dimensional multiparticle cubic cells with periodic boundary conditions. "Exact" results (to a few percent) in tension and shear were determined by averaging 12 stress-strain curves obtained from cells containing 30 spheres, and they were compared with the predictions of secant homogenization models. In addition, the numerical simulations supplied detailed information of the stress microfields, which was used to ascertain the accuracy and the limitations of the homogenization models to include the nonlinear deformation of the matrix. It was found that secant approximations based on the volume-averaged second-order moment of the matrix stress tensor, combined with a highly accurate linear homogenization model, provided excellent predictions of the composite response when the matrix strain hardening rate was high. This was not the case, however, in composites which exhibited marked plastic strain localization in the matrix. The analysis of the evolution of the matrix stresses revealed that better predictions of the composite behavior can be obtained with new homogenization models which capture the essential differences in the stress carried by the elastic and plastic regions in the matrix at the onset of plastic deformation.

  13. Strain rate dependent tensile behavior of advanced high strength steels: Experiment and constitutive modeling

    International Nuclear Information System (INIS)

    Kim, Ji-Hoon; Kim, Daeyong; Han, Heung Nam; Barlat, F.; Lee, Myoung-Gyu

    2013-01-01

    High strain rate tensile tests were conducted for three advanced high strength steels: DP780, DP980 and TRIP780. A high strain rate tensile test machine was used for applying the strain rate ranging from 0.1/s to 500/s. Details of the measured stress–strain responses were comparatively analyzed for the DP780 and TRIP780 steels which show similar microstructural feature and ultimate tensile strength, but different strengthening mechanisms. The experimental observations included: usual strain rate dependent plastic flow stress behavior in terms of the yield stress (YS), the ultimate tensile strength (UTS), the uniform elongation (UE) and the total elongation (TE) which were observed for the three materials. But, higher strain hardening rate at early plastic strain under quasi-static condition than that of some increased strain rates was featured for TRIP780 steel, which might result from more active transformation during deformation with lower velocity. The uniform elongation that explains the onset of instability and the total elongation were larger in case of TRIP steel than the DP steel for the whole strain rate range, but interestingly the fracture strain measured by the reduction of area (RA) method showed that the TRIP steel has lower values than DP steel. The fractographs using scanning electron microscopy (SEM) at the fractured surfaces were analyzed to relate measured fracture strain and the microstructural difference of the two materials during the process of fracture under various strain rates. Finally, constitutive modeling for the plastic flow stresses under various strain rates was provided in this study. The proposed constitutive law could represent both Hollomon-like and Voce-like hardening laws and the ratio between the two hardening types was efficiently controlled as a function of strain rate. The new strength model was validated successfully under various strain rates for several grades of steels such as mild steels, DP780, TRIP780, DP980 steels.

  14. A three-dimensional analysis of fracture mechanics test pieces of different geometries part 2 - Constraint and material variations

    Energy Technology Data Exchange (ETDEWEB)

    Tkach, Y., E-mail: Yuri.Tkach@WGIM.com [Department of Civil and Structural Engineering, School of MACE, UMIST/University of Manchester, PO Box 88, Manchester M60 1QD (United Kingdom); Burdekin, F.M., E-mail: mburdekin@aol.com [Department of Civil and Structural Engineering, School of MACE, UMIST/University of Manchester, PO Box 88, Manchester M60 1QD (United Kingdom)

    2012-05-15

    This paper reports the second stage of an extensive series of detailed three-dimensional elastic-plastic finite element analyses on the influence of fracture mechanics test specimen geometry and different material properties on constraint and triaxiality in the near crack tip region. The specimens studied were pre-cracked plain-sided and side-grooved Charpy sized specimens, plain-sided and side-grooved compact tension specimens of thickness B = 25 mm and plain-sided compact tension specimens of thickness B = 100 mm all with the ratio of the crack length to the specimen width a/W = 0.5. Stress-strain curves of materials of different yield strength and strain hardening behaviour spanning the range of practical interest for typical structural steels were implemented into the finite element models. The level of constraint in the specimens modelled has been characterised in terms of both the Q-stress parameter and the ratio of hydrostatic to the equivalent stress components. It has been established that in-plane constraint in the fracture toughness test pieces is significantly affected by the absolute ligament size of the specimen. It has also been shown that the strain hardening behaviour is one of the major material parameters defining constraint level in the fracture toughness specimen. - Highlights: Black-Right-Pointing-Pointer 3D FE analyses on plain and side-grooved Charpy sized and CT specimens of two sizes. Black-Right-Pointing-Pointer Crack tip constraint analysed for Q-stress and hydrostatic/equivalent stress ratio. Black-Right-Pointing-Pointer In-plane constraint is significantly affected by the absolute ligament size. Black-Right-Pointing-Pointer Constraint level is significantly affected by material strain hardening behaviour.

  15. A three-dimensional analysis of fracture mechanics test pieces of different geometries part 2 - Constraint and material variations

    International Nuclear Information System (INIS)

    Tkach, Y.; Burdekin, F.M.

    2012-01-01

    This paper reports the second stage of an extensive series of detailed three-dimensional elastic-plastic finite element analyses on the influence of fracture mechanics test specimen geometry and different material properties on constraint and triaxiality in the near crack tip region. The specimens studied were pre-cracked plain-sided and side-grooved Charpy sized specimens, plain-sided and side-grooved compact tension specimens of thickness B = 25 mm and plain-sided compact tension specimens of thickness B = 100 mm all with the ratio of the crack length to the specimen width a/W = 0.5. Stress–strain curves of materials of different yield strength and strain hardening behaviour spanning the range of practical interest for typical structural steels were implemented into the finite element models. The level of constraint in the specimens modelled has been characterised in terms of both the Q-stress parameter and the ratio of hydrostatic to the equivalent stress components. It has been established that in-plane constraint in the fracture toughness test pieces is significantly affected by the absolute ligament size of the specimen. It has also been shown that the strain hardening behaviour is one of the major material parameters defining constraint level in the fracture toughness specimen. - Highlights: ► 3D FE analyses on plain and side-grooved Charpy sized and CT specimens of two sizes. ► Crack tip constraint analysed for Q-stress and hydrostatic/equivalent stress ratio. ► In-plane constraint is significantly affected by the absolute ligament size. ► Constraint level is significantly affected by material strain hardening behaviour.

  16. Instabilities in power law gradient hardening materials

    DEFF Research Database (Denmark)

    Niordson, Christian Frithiof; Tvergaard, Viggo

    2005-01-01

    Tension and compression instabilities are investigated for specimens with dimensions in the micron range. A finite strain generalization of a higher order strain gradient plasticity theory is implemented in a finite element scheme capable of modeling power law hardening materials. Effects...... of gradient hardening are found to delay the onset of localization under plane strain tension, and significantly reduce strain gradients in the localized zone. For plane strain compression gradient hardening is found to increase the load-carrying capacity significantly....

  17. Sensitivity of using blunt and sharp crack models in elastic-plastic fracture mechanics

    International Nuclear Information System (INIS)

    Pan, Y.C.; Kennedy, J.M.; Marchertas, A.H.

    1985-01-01

    J-integral values are calculated for both the blunt (smeared) crack and the sharp (discrete) crack models in elastic-plastic fracture mechanics problems involving metallic materials. A sensitivity study is performed to show the relative strengths and weaknesses of the two cracking models. It is concluded that the blunt crack model is less dependent on the orientation of the mesh. For the mesh which is in line with the crack direction, however, the sharp crack model is less sensitive to the mesh size. Both models yield reasonable results for a properly discretized finite-element mesh. A subcycling technique is used in this study in the explicit integration scheme so that large time steps can be used for the coarse elements away from the crack tip. The savings of computation time by this technique are reported. 6 refs., 9 figs

  18. Methodology for plastic fracture. A progress report

    International Nuclear Information System (INIS)

    Wilkinson, J.P.D.; Hahn, G.T.; Smith, R.E.E.

    1977-01-01

    The initiation and growth of flaws in pressure vessels under overload conditions is distinguished by a number of unique features, such as large scale yielding, three-dimensional structural and flaw configurations, and failure instabilities that may be controlled by either toughness or plastic flow. In order to develop a broadly applicable methodology of plastic fracture, these features require the following analytical and experimental studies: development of criteria for crack initiation and growth under large scale yielding; the use of the finite element method to describe elastic-plastic behavior of both the structure and the crack tip region; and extensive experimental studies on laboratory scale and large scale specimens, which attempt to reproduce the pertinent plastic flow and crack growth phenomena. A variety of candidate criteria for crack initiation and growth are examined. For the case of crack initiation, these criteria include the J-integral, crack opening displacement, and strain amplitude. In the case of crack growth, the criteria examined include in addition the strain amplitude at the crack tip, work done in a crack tip process zone, and a generalized energy release-rate approach. Each test specimen configuration is analyzed through the finite element method in order to predict its experimental behavior. Specimens include the compact tension specimen and center cracked panels. The basic materials used in the program are a single heat of reactor grade A533 Grade B Class 1 steel, purchased in the form of a plate of size 4.5 m (178 in.) square and 0.2 m (8 in.) thick, and two alloys with yield strength-to-roughness ratios about five times

  19. Influence of Plastic Deformation on Low Temperature Surface Hardening of Austenitic and Precipitation Hardening Stainless Steels by Gaseous Nitriding

    DEFF Research Database (Denmark)

    Bottoli, Federico; Winther, Grethe; Christiansen, Thomas Lundin

    2015-01-01

    This article addresses an investigation of the influence of plastic deformation on low temperature surface hardening by gaseous nitriding of three commercial austenitic stainless steels: AISI 304, EN 1.4369 and Sandvik Nanoflex® with various degrees of austenite stability. The materials were...... case included X-ray diffraction analysis, reflected light microscopy and microhardness. The results demonstrate that a case of expanded austenite develops and that, in particular, strain-induced martensite has a large influence on the nitrided zone....

  20. Multiaxial probabilistic elastic-plastic constitutive simulations of soils

    Science.gov (United States)

    Sadrinezhad, Arezoo

    Fokker-Planck-Kolmogorov (FPK) equation approach has recently been developed to simulate elastic-plastic constitutive behaviors of materials with uncertain material properties. The FPK equation approach transforms the stochastic constitutive rate equation, which is a stochastic, nonlinear, ordinary differential equation (ODE) in the stress-pseudo time space into a second-order accurate, deterministic, linear FPK partial differential equation (PDE) in the probability density of stress-pseudo time space. This approach does not suffer from the drawbacks of the traditional approaches such as the Monte Carlo approach and the perturbation approach for solving nonlinear ODEs with random coefficients. In this study, the existing one dimensional FPK framework for probabilistic constitutive modeling of soils is extended to multi--dimension. However, the multivariate FPK PDEs cannot be solved using the traditional mathematical techniques such as finite difference techniques due to their high computational cost. Therefore, computationally efficient algorithms based on the Fourier spectral approach are developed for solving a class of FPK PDEs that arises in probabilistic elasto-plasticity. This class includes linear FPK PDEs in (stress) space and (pseudo) time - having space-independent but time-dependent, and both space- and time-dependent coefficients - with impulse initial conditions and reflecting boundary conditions. The solution algorithms, rely on first mapping the stress space of the governing PDE between 0 and 2pi using the change of coordinates rule, followed by approximating the solution of the PDE in the 2pi-periodic domain by a finite Fourier series in the stress space and unknown time-dependent solution coefficients. Finally, the time-dependent solution coefficients are obtained from the initial condition. The accuracy and efficiency of the developed algorithms are tested. The developed algorithms are used to simulate uniaxial and multiaxial, monotonic and cyclic

  1. Structural heredity influence upon principles of strain wave hardening

    Science.gov (United States)

    Kiricheck, A. V.; Barinov, S. V.; Yashin, A. V.

    2017-02-01

    It was established experimentally that by penetration of a strain wave through material hardened not only the technological modes of processing, but also a technological heredity - the direction of the fibers of the original macrostructure have an influence upon the diagram of microhardness. By penetration of the strain wave along fibers, the degree of hardening the material is less, however, a product is hardened throughout its entire section mainly along fibers. In the direction of the strain waves across fibers of the original structure of material, the degree of material hardening is much higher, the depth of the hardened layer with the degree of hardening not less than 50% makes at least 3 mm. It was found that under certain conditions the strain wave can completely change the original structure of the material. Thus, a heterogeneously hardened structure characterized by the interchange of harder and more viscous areas is formed, which is beneficial for assurance of high operational properties of material.

  2. Non normal and non quadratic anisotropic plasticity coupled with ductile damage in sheet metal forming: Application to the hydro bulging test

    International Nuclear Information System (INIS)

    Badreddine, Houssem; Saanouni, Khemaies; Dogui, Abdelwaheb

    2007-01-01

    In this work an improved material model is proposed that shows good agreement with experimental data for both hardening curves and plastic strain ratios in uniaxial and equibiaxial proportional loading paths for steel metal until the final fracture. This model is based on non associative and non normal flow rule using two different orthotropic equivalent stresses in both yield criterion and plastic potential functions. For the plastic potential the classical Hill 1948 quadratic equivalent stress is considered while for the yield criterion the Karafillis and Boyce 1993 non quadratic equivalent stress is used taking into account the non linear mixed (kinematic and isotropic) hardening. Applications are made to hydro bulging tests using both circular and elliptical dies. The results obtained with different particular cases of the model such as the normal quadratic and the non normal non quadratic cases are compared and discussed with respect to the experimental results

  3. Elastic-plastic FEM-analysis of a nozzle corner crack and discussion of the results by some fracture mechanics concepts

    International Nuclear Information System (INIS)

    Aurich, D.; Brocks, W.; Noack, D.; Veith, H.

    1981-01-01

    From a three-dimensional elastic-plastic stress-distortion analysis according to the finite element method (FEM) for a straight inner edge crack at room temperature in a nozzle of the intermediate vessel ZB 2 made of 22 NiMoCr 37 steel, the results obtained for stresses and strains in the ligament before the crack front, the crack opening profile, and the propagation of the plastic zone as a function of internal pressure until through-plastifying of the ligament are shown and explained. (orig.) [de

  4. Nonlinear Fracture Mechanics and Plasticity of the Split Cylinder Test

    DEFF Research Database (Denmark)

    Olesen, John Forbes; Østergaard, Lennart; Stang, Henrik

    2006-01-01

    properties. This implies that the linear elastic interpretation of the ultimate splitting force in term of the uniaxial tensile strength of the material is only valid for special situations, e.g. for very large cylinders. Furthermore, the numerical analysis suggests that the split cylinder test is not well...... models are presented, a simple semi-analytical model based on analytical solutions for the crack propagation in a rectangular prismatic body, and a finite element model including plasticity in bulk material as well as crack propagation in interface elements. A numerical study applying these models...... demonstrates the influence of varying geometry or constitutive properties. For a split cylinder test in load control it is shown how the ultimate load is either plasticity dominated or fracture mechanics dominated. The transition between the two modes is related to changes in geometry or constitutive...

  5. Inverse strain rate effect on cyclic stress response in annealed Zircaloy-2

    Energy Technology Data Exchange (ETDEWEB)

    Sudhakar Rao, G.; Verma, Preeti [Center of Advanced Study, Department of Metallurgical Engineering, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005 (India); Chakravartty, J.K. [Mechanical Metallurgy Group, Bhabha Atomic Research Center, Trombay 400 085, Mumbai (India); Nudurupati, Saibaba [Nuclear Fuel Complex, Hyderabad 500 062 (India); Mahobia, G.S.; Santhi Srinivas, N.C. [Center of Advanced Study, Department of Metallurgical Engineering, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005 (India); Singh, Vakil, E-mail: vsingh.met@itbhu.ac.in [Center of Advanced Study, Department of Metallurgical Engineering, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005 (India)

    2015-02-15

    Low cycle fatigue behavior of annealed Zircaloy-2 was investigated at 300 and 400 °C at different strain amplitudes and strain rates of 10{sup −2}, 10{sup −3}, and 10{sup −4} s{sup −1}. Cyclic stress response showed initial hardening with decreasing rate of hardening, followed by linear cyclic hardening and finally secondary hardening with increasing rate of hardening for low strain amplitudes at both the temperatures. The rate as well the degree of linear hardening and secondary hardening decreased with decrease in strain rate at 300 °C, however, there was inverse effect of strain rate on cyclic stress response at 400 °C and cyclic stress was increased with decrease in strain rate. The fatigue life decreased with decrease in strain rate at both the temperatures. The occurrence of linear cyclic hardening, inverse effect of strain rate on cyclic stress response and deterioration in fatigue life with decrease in strain rate may be attributed to dynamic strain aging phenomena resulting from enhanced interaction of dislocations with solutes. Fracture surfaces revealed distinct striations, secondary cracking, and oxidation with decrease in strain rate. Deformation substructure showed parallel dislocation lines and dislocation band structure at 300 °C. Persistent slip band wall structure and development of fine Corduroy structure was observed at 400 °C.

  6. Inverse strain rate effect on cyclic stress response in annealed Zircaloy-2

    International Nuclear Information System (INIS)

    Sudhakar Rao, G.; Verma, Preeti; Chakravartty, J.K.; Nudurupati, Saibaba; Mahobia, G.S.; Santhi Srinivas, N.C.; Singh, Vakil

    2015-01-01

    Low cycle fatigue behavior of annealed Zircaloy-2 was investigated at 300 and 400 °C at different strain amplitudes and strain rates of 10 −2 , 10 −3 , and 10 −4 s −1 . Cyclic stress response showed initial hardening with decreasing rate of hardening, followed by linear cyclic hardening and finally secondary hardening with increasing rate of hardening for low strain amplitudes at both the temperatures. The rate as well the degree of linear hardening and secondary hardening decreased with decrease in strain rate at 300 °C, however, there was inverse effect of strain rate on cyclic stress response at 400 °C and cyclic stress was increased with decrease in strain rate. The fatigue life decreased with decrease in strain rate at both the temperatures. The occurrence of linear cyclic hardening, inverse effect of strain rate on cyclic stress response and deterioration in fatigue life with decrease in strain rate may be attributed to dynamic strain aging phenomena resulting from enhanced interaction of dislocations with solutes. Fracture surfaces revealed distinct striations, secondary cracking, and oxidation with decrease in strain rate. Deformation substructure showed parallel dislocation lines and dislocation band structure at 300 °C. Persistent slip band wall structure and development of fine Corduroy structure was observed at 400 °C

  7. Tensile properties and strain-hardening behavior of double-sided arc welded and friction stir welded AZ31B magnesium alloy

    International Nuclear Information System (INIS)

    Chowdhury, S.M.; Chen, D.L.; Bhole, S.D.; Cao, X.; Powidajko, E.; Weckman, D.C.; Zhou, Y.

    2010-01-01

    Microstructures, tensile properties and work hardening behavior of double-sided arc welded (DSAWed) and friction stir welded (FSWed) AZ31B-H24 magnesium alloy sheet were studied at different strain rates. While the yield strength was higher, both the ultimate tensile strength and ductility were lower in the FSWed samples than in the DSAWed samples due to welding defects present at the bottom surface in the FSWed samples. Strain-hardening exponents were evaluated using the Hollomon relationship, the Ludwik equation and a modified equation. After welding, the strain-hardening exponents were nearly twice that of the base metal. The DSAWed samples exhibited stronger strain-hardening capacity due to the larger grain size coupled with the divorced eutectic structure containing β-Mg 17 Al 12 particles in the fusion zone, compared to the FSWed samples and base metal. Kocks-Mecking type plots were used to show strain-hardening stages. Stage III hardening occurred after yielding in both the base metal and the welded samples. At lower strains a higher strain-hardening rate was observed in the base metal, but it decreased rapidly with increasing net flow stress. At higher strains the strain-hardening rate of the welded samples became higher, because the recrystallized grains in the FSWed and the larger re-solidified grains coupled with β particles in the DSAWed provided more space to accommodate dislocation multiplication during plastic deformation. The strain-rate sensitivity evaluated via Lindholm's approach was observed to be higher in the base metal than in the welded samples.

  8. Dynamic strain aging of twinning-induced plasticity (TWIP) steel in tensile testing and deep drawing

    International Nuclear Information System (INIS)

    Kim, J.G.; Hong, S.; Anjabin, N.; Park, B.H.; Kim, S.K.; Chin, K.-G.; Lee, S.; Kim, H.S.

    2015-01-01

    The dynamic strain aging (DSA) of metallic materials due to solute atom diffusion to mobile dislocations induce deformation instability with load fluctuations and deformation localizations, hence reducing their sheet formability. In this paper, DSA behaviors of twinning induced plasticity (TWIP) steel with and without Al during tensile testing and deep drawing are investigated in terms of strain localization and the Portevin-Le Chatelier (PLC) band. A theoretical DSA model with internal variables of dislocation density and twin volume fraction is presented for an estimation of strain localization and strain hardening behavior of TWIP steels. The simulation results of the load history and PLC bands during tensile testing and deep drawing are in good agreement with the experimental values. A serration behavior is observed in high-Mn TWIP steels and its tensile residual stress is higher than that in the Al-added TWIP steels, which results in a deformation crack or delayed fracture of deep drawn specimens

  9. Study of Wood Plastic Composites elastic behaviour using full field measurements

    Science.gov (United States)

    Ben Mbarek, T.; Robert, L.; Hugot, F.; Orteu, J. J.; Sammouda, H.; Graciaa, A.; Charrier, B.

    2010-06-01

    In this study, the mechanical properties and microstructure of HDPE/wood fibre composites are investigated. The four-point bending and tensile behaviour of Wood Plastic Composite (WPC) with or without additive are studied by using full-field strain measurements by 3-D Digital Image Correlation (3-D DIC). A non-linear behaviour is shown. The modulus of elasticity (MOE) is calculated as the tangent at zero strain of a Maxwell-Bingham model fitted onto experimental data. Four-point bending tests are analyzed thanks to the spatial standard deviation of the longitudinal strain field to determine the degree of heterogeneity. Cyclic tensile tests have been performed in order to analyze the damage of the material. Moreover, Scanning Electron Microscope (SEM) is used to characterize the morphology of the wood fibre/HDPE matrix interface for specimens with maleic anhydride modified polyethylene additive (MAPE).

  10. X-ray measurement of plastic strain by means of Eshelby/Mori-Tanaka model and its application

    International Nuclear Information System (INIS)

    Sasaki, Toshihiko; Lin, Zheng; Hirose, Yukio

    1997-01-01

    A new method is proposed in this paper for determining plastic strains in composite materials using the X-ray diffraction method. The present method was derived by using both Eshelby's approach and the Mori-Tanaka theory to express the stress state in composite materials instead of the elasticity in single-phase materials which is used in the conventional method of X-ray stress measurement. It was found that the plastic strain can be determined from the slope of the linear relation between lattice strains measured by the X-ray diffraction technique and sin 2 ψ using almost the same procedure as that for determining stresses by the conventional X-ray method. The results on ferritic and austenitic dual-phase stainless steel are shown. We discuss the effects of a uniaxial tensile load in a range of plastic deformation on the field of plastic strain as well as on residual macro-, micro- and phase stresses built up in the sample. (author)

  11. Analytical solution for stress, strain and plastic instability of pressurized pipes with volumetric flaws

    International Nuclear Information System (INIS)

    Cunha, Sérgio B.; Netto, Theodoro A.

    2012-01-01

    The mechanical behavior of internally pressurized pipes with volumetric flaws is analyzed. The two possible modes of circumferentially straining the pipe wall are identified and associated to hypothesized geometries. The radial deformation that takes place by bending the pipe wall is studied by means of axisymmetric flaws and the membrane strain developed by unequal hoop deformation is analyzed with the help of narrow axial flaws. Linear elastic shell solutions for stress and strain are developed, the plastic behavior is studied and the maximum hoop stress at the flaw is related to the undamaged pipe hoop stress by means of stress concentration factors. The stress concentration factors are employed to obtain equations predicting the pressure at which the pipe fails by plastic instability for both types of flaw. These analytical solutions are validated by comparison with burst tests on 3″ diameter pipes and finite element simulations. Forty-one burst tests were carried out and two materials with very dissimilar plastic behavior, carbon steel and austenitic stainless steel, were used in the experiments. Both the analytical and the numerical predictions showed good correlation with the experimentally observed burst pressures. - Highlights: ► An analytical model for the burst of a pipe with a volumetric flaw is developed. ► Deformation, strain and stress are modeled in the elastic and plastic domains. ► The model is comprehensively validated by experiments and numerical simulations. ► The burst pressure model’s accuracy is equivalent to finite element simulations.

  12. Fracture toughness in metal matrix composites

    Directory of Open Access Journals (Sweden)

    Perez Ipiña J.E.

    2000-01-01

    Full Text Available Evaluations of the fracture toughness in metal matrix composites (Duralcan reinforced with 15% of Al(20(3 and SiC are presented in this work. The application of Elastic Plastic Fracture Mechanics is discussed and the obtained values are compared with the ones obtained by means of Linear Elastic Fracture Mechanics. Results show that J IC derived K JC values are higher than the corresponding values obtained by direct application of the linear elastic methodology. The effect of a heat treatment on the material fracture toughness was also evaluated in which the analyzed approaches showed, not only different toughness values, but also opposite tendencies. A second comparison of the J IC and K JC values obtained in this work with toughness values reported in the literature is presented and discussed.

  13. In-plane anisotropic strain of elastically and plastically deformed III-nitrides on lithium gallate

    Energy Technology Data Exchange (ETDEWEB)

    Namkoong, Gon, E-mail: gnamkoon@odu.ed [Old Dominion University, Electrical and Computer Engineering, Applied Research Center, 12050 Jefferson Avenue, Newport News, VA 23606 (United States); Huang, Sa; Moseley, Michael; Doolittle, W. Alan [Georgia Institute of Technology, School of Electrical and Computer Engineering, 777 Atlantic Dr., Atlanta, GA 30332 (United States)

    2009-10-30

    We have investigated both elastically and plastically deformed GaN films on lithium gallate, LiGaO{sub 2}, by molecular beam epitaxy. The in-plane lattice parameters were determined from high resolution X-ray diffraction and indicated two different groups of in-plane lattice parameters, influenced by the a- and b-axis of LiGaO{sub 2}. The measured in-plane lattice parameters indicate that there exist both compressive and tensile strains of in-plane GaN along the a- and b-axis of LiGaO{sub 2}, respectively. This anisotropic strain in GaN films forms a slight distortion of the basal-plane hexagonal structure of GaN films, leading to a different critical thickness of 4.0 {+-} 0.17 and 7.8 {+-} 0.7 nm along the a- and b-axis of LiGaO{sub 2}, respectively.

  14. In-plane anisotropic strain of elastically and plastically deformed III-nitrides on lithium gallate

    International Nuclear Information System (INIS)

    Namkoong, Gon; Huang, Sa; Moseley, Michael; Doolittle, W. Alan

    2009-01-01

    We have investigated both elastically and plastically deformed GaN films on lithium gallate, LiGaO 2 , by molecular beam epitaxy. The in-plane lattice parameters were determined from high resolution X-ray diffraction and indicated two different groups of in-plane lattice parameters, influenced by the a- and b-axis of LiGaO 2 . The measured in-plane lattice parameters indicate that there exist both compressive and tensile strains of in-plane GaN along the a- and b-axis of LiGaO 2 , respectively. This anisotropic strain in GaN films forms a slight distortion of the basal-plane hexagonal structure of GaN films, leading to a different critical thickness of 4.0 ± 0.17 and 7.8 ± 0.7 nm along the a- and b-axis of LiGaO 2 , respectively.

  15. Plastic strain accumulation during asymmetric cyclic loading of Zircaloy-2 at room temperature

    International Nuclear Information System (INIS)

    Rajpurohit, R.S.; Santhi Srinivas, N.C.; Singh, Vakil

    2016-01-01

    Asymmetric cyclic loading leads to accumulation of cyclic plastic strain and reduces the fatigue life of components. This phenomenon is known as ratcheting fatigue. Zircaloy-2 is a important structural material in nuclear reactors and used as pressure tubes and fuel cladding in pressurized light and heavy water nuclear reactors. Due to power fluctuations, these components experience plastic strain cycles in the reactor and their life is reduced due to strain cycles. Power fluctuations also cause asymmetric straining of the material and leads to accumulation of plastic strain. The present investigation deals with the effect of the magnitude of mean stress, stress amplitude and stress rate on hardening/softening behavior of Zircaloy-2 under asymmetric cyclic loading, at room temperature. It was observed that plastic strain accumulation increased with mean stress and stress amplitude; however, it decreased with stress rate. (author)

  16. Analysis of elastic-plastic dynamic response of reinforced concrete frame structure

    International Nuclear Information System (INIS)

    Li Zhongcheng

    2009-01-01

    Based on a set of data from seismic response test on an R/C frame, a force-based R/C beam fibre model with non-linear material properties and bond-slip effects are presented firstly in this paper, and then the applications to the tested R/C frame are presented to illustrate the model characteristics and to show the accuracy of seismic analysis including consideration of non-linear factors. It can be concluded that the elastic-plastic analysis is a potential step toward the accurate modelling for the dynamic analyses of R/C structures. Especially for the seismic safety re-evaluation of the existing NPPs, the elastic-plastic methodology with consideration of different non-linearities should be involved. (author)

  17. A Generalized Version of a Low Velocity Impact between a Rigid Sphere and a Transversely Isotropic Strain-Hardening Plate Supported by a Rigid Substrate Using the Concept of Noninteger Derivatives

    Directory of Open Access Journals (Sweden)

    Abdon Atangana

    2013-01-01

    Full Text Available A low velocity impact between a rigid sphere and transversely isotropic strain-hardening plate supported by a rigid substrate is generalized to the concept of noninteger derivatives order. A brief history of fractional derivatives order is presented. The fractional derivatives order adopted is in Caputo sense. The new equation is solved via the analytical technique, the Homotopy decomposition method (HDM. The technique is described and the numerical simulations are presented. Since it is very important to accurately predict the contact force and its time history, the three stages of the indentation process, including (1 the elastic indentation, (2 the plastic indentation, and (3 the elastic unloading stages, are investigated.

  18. A finite difference method for off-fault plasticity throughout the earthquake cycle

    Science.gov (United States)

    Erickson, Brittany A.; Dunham, Eric M.; Khosravifar, Arash

    2017-12-01

    We have developed an efficient computational framework for simulating multiple earthquake cycles with off-fault plasticity. The method is developed for the classical antiplane problem of a vertical strike-slip fault governed by rate-and-state friction, with inertial effects captured through the radiation-damping approximation. Both rate-independent plasticity and viscoplasticity are considered, where stresses are constrained by a Drucker-Prager yield condition. The off-fault volume is discretized using finite differences and tectonic loading is imposed by displacing the remote side boundaries at a constant rate. Time-stepping combines an adaptive Runge-Kutta method with an incremental solution process which makes use of an elastoplastic tangent stiffness tensor and the return-mapping algorithm. Solutions are verified by convergence tests and comparison to a finite element solution. We quantify how viscosity, isotropic hardening, and cohesion affect the magnitude and off-fault extent of plastic strain that develops over many ruptures. If hardening is included, plastic strain saturates after the first event and the response during subsequent ruptures is effectively elastic. For viscoplasticity without hardening, however, successive ruptures continue to generate additional plastic strain. In all cases, coseismic slip in the shallow sub-surface is diminished compared to slip accumulated at depth during interseismic loading. The evolution of this slip deficit with each subsequent event, however, is dictated by the plasticity model. Integration of the off-fault plastic strain from the viscoplastic model reveals that a significant amount of tectonic offset is accommodated by inelastic deformation ( ∼ 0.1 m per rupture, or ∼ 10% of the tectonic deformation budget).

  19. Comparison of linear-elastic-plastic, and fully plastic failure models in the assessment of piping integrity

    International Nuclear Information System (INIS)

    Streit, R.D.

    1981-01-01

    The failure evaluation of Pressurized Water Reactor (PWR) primary coolant loop pipe is often based on a plastic limit load criterion; i.e., failure occurs when the stress on the pipe section exceeds the material flow stress. However, in addition the piping system must be safe against crack propagation at stresses less than those leading to plastic instability. In this paper, elastic, elastic-plastic, and fully-plastic failure models are evaluated, and the requirements for piping integrity based on these models are compared. The model yielding the 'more' critical criteria for the given geometry and loading conditions defines the appropriate failure criterion. The pipe geometry and loading used in this study was choosen based on an evaluation of a guillotine break in a PWR primary coolant loop. It is assumed that the piping may contain cracks. Since a deep circumferential crack, can lead to a guillotine pipe break without prior leaking and thus without warning it is the focus of the failure model comparison study. The hot leg pipe, a 29 in. I.D. by 2.5 in. wall thickness stainless pipe, was modeled in this investigation. Cracks up to 90% through the wall were considered. The loads considered in this evaluation result from the internal pressure, dead weight, and seismic stresses. For the case considered, the internal pressure contributes the most to the failure loading. The maximum moment stress due to the dead weight and seismic moments are simply added to the pressure stress. Thus, with the circumferential crack geometry and uniform pressure stress, the problem is axisymmetric. It is analyzed using NIKE2D--an implicit, finite deformation, finite element code for analyzing two-dimensional elastic-plastic problems. (orig./GL)

  20. Compressive rib fracture: peri-mortem and post-mortem trauma patterns in a pig model.

    Science.gov (United States)

    Kieser, Jules A; Weller, Sarah; Swain, Michael V; Neil Waddell, J; Das, Raj

    2013-07-01

    Despite numerous studies on high impact fractures of ribs, little is known about compressive rib injuries. We studied rib fractures from a biomechanical and morphological perspective using 15, 5th ribs of domestic pigs Sus scrofa, divided into two groups, desiccated (representing post-mortem trauma) and fresh ribs with intact periosteum (representing peri-mortem trauma). Ribs were axially compressed and subjected to four-point bending in an Instron 3339 fitted with custom jigs. Morphoscopic analysis of resultant fractures consisted of standard optical methods, micro-CT (μCT) and scanning electron microscopy (SEM). During axial compression, fresh ribs had slightly higher strength because of energy absorption capabilities of their soft and fluidic components. In flexure tests, dry ribs showed typical elastic-brittle behaviour with long linear load-extension curves, followed by relatively short non-linear elastic (hyperelastic) behaviour and brittle fracture. Fresh ribs showed initial linear-elastic behaviour, followed by strain softening, visco-plastic responses. During the course of loading, dry bone showed minimal observable damage prior to the onset of unstable fracture. In contrast, fresh bone showed buckling-like damage features on the compressive surface and cracking parallel to the axis of the bone. Morphologically, all dry ribs fractured precipitously, whereas all but one of the fresh ribs showed incomplete fracture. The mode of fracture, however, was remarkably similar for both groups, with butterfly fractures predominating (7/15, 46.6% dry and wet). Our study highlights the fact that under controlled loading, despite seemingly similar butterfly fracture morphology, fresh ribs (representing perimortem trauma) show a non-catastrophic response. While extensive strain softening observed for the fresh bone does show some additional micro-cracking damage, it appears that the periosteum may play a key role in imparting the observed pseudo-ductility to the ribs

  1. On the temperature independence of statistical model parameters for cleavage fracture in ferritic steels

    Science.gov (United States)

    Qian, Guian; Lei, Wei-Sheng; Niffenegger, M.; González-Albuixech, V. F.

    2018-04-01

    The work relates to the effect of temperature on the model parameters in local approaches (LAs) to cleavage fracture. According to a recently developed LA model, the physical consensus of plastic deformation being a prerequisite to cleavage fracture enforces any LA model of cleavage fracture to observe initial yielding of a volume element as its threshold stress state to incur cleavage fracture in addition to the conventional practice of confining the fracture process zone within the plastic deformation zone. The physical consistency of the new LA model to the basic LA methodology and the differences between the new LA model and other existing models are interpreted. Then this new LA model is adopted to investigate the temperature dependence of LA model parameters using circumferentially notched round tensile specimens. With the published strength data as input, finite element (FE) calculation is conducted for elastic-perfectly plastic deformation and the realistic elastic-plastic hardening, respectively, to provide stress distributions for model calibration. The calibration results in temperature independent model parameters. This leads to the establishment of a 'master curve' characteristic to synchronise the correlation between the nominal strength and the corresponding cleavage fracture probability at different temperatures. This 'master curve' behaviour is verified by strength data from three different steels, providing a new path to calculate cleavage fracture probability with significantly reduced FE efforts.

  2. Study of Wood Plastic Composites elastic behaviour using full field measurements

    Directory of Open Access Journals (Sweden)

    Graciaa A.

    2010-06-01

    Full Text Available In this study, the mechanical properties and microstructure of HDPE/wood fibre composites are investigated. The four-point bending and tensile behaviour of Wood Plastic Composite (WPC with or without additive are studied by using full-field strain measurements by 3-D Digital Image Correlation (3-D DIC. A non-linear behaviour is shown. The modulus of elasticity (MOE is calculated as the tangent at zero strain of a Maxwell-Bingham model fitted onto experimental data. Four-point bending tests are analyzed thanks to the spatial standard deviation of the longitudinal strain field to determine the degree of heterogeneity. Cyclic tensile tests have been performed in order to analyze the damage of the material. Moreover, Scanning Electron Microscope (SEM is used to characterize the morphology of the wood fibre/HDPE matrix interface for specimens with maleic anhydride modified polyethylene additive (MAPE.

  3. Mathematical modeling of the crack growth in linear elastic isotropic materials by conventional fracture mechanics approaches and by molecular dynamics method: crack propagation direction angle under mixed mode loading

    Science.gov (United States)

    Stepanova, Larisa; Bronnikov, Sergej

    2018-03-01

    The crack growth directional angles in the isotropic linear elastic plane with the central crack under mixed-mode loading conditions for the full range of the mixity parameter are found. Two fracture criteria of traditional linear fracture mechanics (maximum tangential stress and minimum strain energy density criteria) are used. Atomistic simulations of the central crack growth process in an infinite plane medium under mixed-mode loading using Large-scale Molecular Massively Parallel Simulator (LAMMPS), a classical molecular dynamics code, are performed. The inter-atomic potential used in this investigation is Embedded Atom Method (EAM) potential. The plane specimens with initial central crack were subjected to Mixed-Mode loadings. The simulation cell contains 400000 atoms. The crack propagation direction angles under different values of the mixity parameter in a wide range of values from pure tensile loading to pure shear loading in a wide diapason of temperatures (from 0.1 К to 800 К) are obtained and analyzed. It is shown that the crack propagation direction angles obtained by molecular dynamics method coincide with the crack propagation direction angles given by the multi-parameter fracture criteria based on the strain energy density and the multi-parameter description of the crack-tip fields.

  4. The elasto plastic fracture mechanics in ductile metal sheets

    International Nuclear Information System (INIS)

    Khan, M.A.; Malik, M.N.; Naeem, A.; Haq, A.U.; Atkins, A.G.

    1999-01-01

    The crack initiation of propagation in ductile metal sheets are caused by various micro and macro changes taking place due to material properties, applied loads, shape of the indenter (tool geometry) and the environmental conditions. These microstructural failures are directly related to the atomic bonding, crystal lattices, grain boundary status, material flaws in matrix, inhomogeneities and anisotropy in the metal sheets. The Elasto-Plastic related energy based equations are applied to these Rigid Plastic materials to determine the onset of fracture in metal forming. The combined stress and strain criterion of a critical plastic work per unit volume is no more considered as a universal ductile fracture criterion, rather a critical plastic work per unit volume dependence on all sort of stresses (hydrostatic) are the required features for the sheet metal failure (fracture). In this present study, crack initiation and propagation are related empirically with fracture toughness and the application of the theory in industry to save energy. (author)

  5. Intensely irradiated steel components: Plastic and fracture properties, and a new concept of structural design criteria for assuring the structural integrity

    International Nuclear Information System (INIS)

    Suzuki, Kazuhiko; Jitsukawa, Shiro; Okubo, Nariaki; Takada, Fumiki

    2010-01-01

    In order to develop a systematic and reasonable concept assuring the structural integrity of components under intense neutron irradiation, two basic tensile properties, true stress-true strain (TS-TS) curves and fracture strain, were investigated on an austenitic stainless steel and martensitic steel. Application of Swift equation is confirmed to a large plastic strain range of TS-TS curves. Fracture strain ε f data were well correlated as ε f + ε 0 = const. where ε 0 is the pre-strain representing the irradiation hardening. Based on those formulations and available experimental information, several critical issues to be dealt with in developing the concept were identified possible reduction in ductility, significant change in mechanical properties, remarkable cyclic softening and other unique cyclic properties observed during a high-cycle fatigue testing, and the redundancy of the plastic collapse concept to bending. Existing structural codes are all based on the assumption that there will be no significant changes in mechanical properties during operation, and of high ductility. Therefore, a new concept for assuring structural integrity is required for application not only to components with high ductility but also components with reduced ductility. First, potential failure modes were identified, and a new and systematic concept was proposed for preventing these modes of failure, introducing a new concept of categorizing the loadings by stability of deformation process to fracture (as type F and M loadings). Based on the basic concept, a detailed concept of how to protect against ductile fracture was given, and loading type-dependent limiting parameters were set. Finally, application of the detailed concept was presented, especially on determination of loading type (in numerical approach, the formulation of TS-TS curves and fracture strain derived above are needed), and on how to determine the limiting parameters as allowable limits. Experiments were done to

  6. Intensely irradiated steel components: Plastic and fracture properties, and a new concept of structural design criteria for assuring the structural integrity

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, Kazuhiko, E-mail: suzuki.kazuhiko@jaea.go.j [Japan Atomic Energy Agency, Nuclear Science and Engineering Directorate, 2-4 Shirane, Shirakata, Tokai-mura, Naka-gun, Ibaraki-ken 319-1195 (Japan); Jitsukawa, Shiro; Okubo, Nariaki [Japan Atomic Energy Agency, Nuclear Science and Engineering Directorate, 2-4 Shirane, Shirakata, Tokai-mura, Naka-gun, Ibaraki-ken 319-1195 (Japan); Takada, Fumiki [Japan Atomic Energy Agency, Department of JMTR Operation, Narita-cho, Oarai-machi, Higashi-ibaraki-gun, Ibaraki-ken 311-1393 (Japan)

    2010-06-15

    In order to develop a systematic and reasonable concept assuring the structural integrity of components under intense neutron irradiation, two basic tensile properties, true stress-true strain (TS-TS) curves and fracture strain, were investigated on an austenitic stainless steel and martensitic steel. Application of Swift equation is confirmed to a large plastic strain range of TS-TS curves. Fracture strain epsilon{sub f} data were well correlated as epsilon{sub f} + epsilon{sub 0} = const. where epsilon{sub 0} is the pre-strain representing the irradiation hardening. Based on those formulations and available experimental information, several critical issues to be dealt with in developing the concept were identified possible reduction in ductility, significant change in mechanical properties, remarkable cyclic softening and other unique cyclic properties observed during a high-cycle fatigue testing, and the redundancy of the plastic collapse concept to bending. Existing structural codes are all based on the assumption that there will be no significant changes in mechanical properties during operation, and of high ductility. Therefore, a new concept for assuring structural integrity is required for application not only to components with high ductility but also components with reduced ductility. First, potential failure modes were identified, and a new and systematic concept was proposed for preventing these modes of failure, introducing a new concept of categorizing the loadings by stability of deformation process to fracture (as type F and M loadings). Based on the basic concept, a detailed concept of how to protect against ductile fracture was given, and loading type-dependent limiting parameters were set. Finally, application of the detailed concept was presented, especially on determination of loading type (in numerical approach, the formulation of TS-TS curves and fracture strain derived above are needed), and on how to determine the limiting parameters as

  7. A method of solution of the elastic-plastic thermal stress problem

    International Nuclear Information System (INIS)

    Rafalski, P.

    1975-01-01

    The purpose of the work is an improvement of the numerical technique for calculating the thermal stress distribution in an elastic-plastic structural element. The work consists of two parts. In the first a new method of solution of the thermal stress problem for the elastic-plastic body is presented. In the second a particular numerical technique, based on the above method, for calculating the stress and strain fields is proposed. A new mathematical approach consists in treating the stress and strain fields as mathematical objects defined in the space-time domain. The methods commonly applied use the stress and strain fields defined in the space domain and establish the relations between them at a given instant t. They reduce the problem to the system of ordinary differential equations with respect to time, which are usually solved with a step-by-step technique. The new method reduces the problem to the system of nonlinear algebraic equations. In the work the Hilbert space of admissible tensor fields is constructed. This space is the orthogonal sum of two subspaces: of statically admissible and kinematically admissible fields. Two alternative orthogonality conditions, which correspond to the equilibrium and compatibility equations with the appropriate boundary conditions, are derived. The results of the work are to be used for construction of the computer program for calculation the stress and strain fields in the elastic-plastic body with a prescribed temperature field in the interior and appropriate displacement and force conditions on the boundary

  8. Analytical solution for stress, strain and plastic instability of pressurized pipes with volumetric flaws

    Energy Technology Data Exchange (ETDEWEB)

    Cunha, Sergio B., E-mail: sbcunha@petrobras.com.br [PETROBRAS/TRANSPETRO, Av. Pres. Vargas 328 - 7th floor, Rio de Janeiro, RJ 20091-060 (Brazil); Netto, Theodoro A., E-mail: tanetto@lts.coppe.ufrj.br [COPPE, Federal University ot Rio de Janeiro, Ocean Engineering Department, PO BOX 68508, Rio de Janeiro - RJ (Brazil)

    2012-01-15

    The mechanical behavior of internally pressurized pipes with volumetric flaws is analyzed. The two possible modes of circumferentially straining the pipe wall are identified and associated to hypothesized geometries. The radial deformation that takes place by bending the pipe wall is studied by means of axisymmetric flaws and the membrane strain developed by unequal hoop deformation is analyzed with the help of narrow axial flaws. Linear elastic shell solutions for stress and strain are developed, the plastic behavior is studied and the maximum hoop stress at the flaw is related to the undamaged pipe hoop stress by means of stress concentration factors. The stress concentration factors are employed to obtain equations predicting the pressure at which the pipe fails by plastic instability for both types of flaw. These analytical solutions are validated by comparison with burst tests on 3 Double-Prime diameter pipes and finite element simulations. Forty-one burst tests were carried out and two materials with very dissimilar plastic behavior, carbon steel and austenitic stainless steel, were used in the experiments. Both the analytical and the numerical predictions showed good correlation with the experimentally observed burst pressures. - Highlights: Black-Right-Pointing-Pointer An analytical model for the burst of a pipe with a volumetric flaw is developed. Black-Right-Pointing-Pointer Deformation, strain and stress are modeled in the elastic and plastic domains. Black-Right-Pointing-Pointer The model is comprehensively validated by experiments and numerical simulations. Black-Right-Pointing-Pointer The burst pressure model's accuracy is equivalent to finite element simulations.

  9. Probabilistic analysis of structures involving random stress-strain behavior

    Science.gov (United States)

    Millwater, H. R.; Thacker, B. H.; Harren, S. V.

    1991-01-01

    The present methodology for analysis of structures with random stress strain behavior characterizes the uniaxial stress-strain curve in terms of (1) elastic modulus, (2) engineering stress at initial yield, (3) initial plastic-hardening slope, (4) engineering stress at point of ultimate load, and (5) engineering strain at point of ultimate load. The methodology is incorporated into the Numerical Evaluation of Stochastic Structures Under Stress code for probabilistic structural analysis. The illustrative problem of a thick cylinder under internal pressure, where both the internal pressure and the stress-strain curve are random, is addressed by means of the code. The response value is the cumulative distribution function of the equivalent plastic strain at the inner radius.

  10. Fracture mechanics. With an introduction to micromechanics

    International Nuclear Information System (INIS)

    Gross, D.

    2006-01-01

    Concerned with the fundamental concepts and methods of fracture mechanics and micromechanics, Fracture Mechanics primarily focuses on the mechanical description of the fracture process; however, material specific aspects are also discussed. The presentation of continuum mechanical and phenomenological foundations is followed by an introduction into classical failure hypotheses. A major part of the book is devoted to linear elastic and elastic-plastic fracture mechanics. Further subjects are creep fracture, dynamic fracture mechanics, damage mechanics, probabilistic fracture mechanics, failure of thin films and fracture of piezoelectric materials. The book also contains an extensive introduction into micromechanics. Self-contained and well-illustrated, this text serves as a graduate-level text and reference

  11. Micromechanics of deformation of metallic-glass-matrix composites from in situ synchrotron strain measurements and finite element modeling

    International Nuclear Information System (INIS)

    Ott, R.T.; Sansoz, F.; Molinari, J.F.; Almer, J.; Ramesh, K.T.; Hufunagel, T.C.

    2005-01-01

    In situ X-ray scattering and finite element modeling (FEM) were used to examine the micromechanics of deformation of in situ formed metallic-glass-matrix composites consisting of Ta-rich particles dispersed in an amorphous matrix. The strain measurements show that under uniaxial compression the second-phase particles yield at an applied stress of approx. 325 MPa. After yielding, the particles do not strain harden significantly; we show that this is due to an increasingly hydrostatic stress state arising from the lateral constraint on deformation of the particles imposed by the elastic matrix. Shear band initiation in the matrix is not due to the difference in elastic properties between the matrix and the particles. Rather, the development of a plastic misfit strain causes stress concentrations around the particles, resulting in localized yielding of the matrix by shear band formation at an applied stress of approx. 1450 MPa, considerably lower than the macroscopic yield stress of the composite (approx. 1725 MPa). Shear bands do not propagate at the lower stress because the yield criterion of the matrix is only satisfied in the region immediately around the particles. At the higher stresses, the yield criterion is satisfied in large regions of the matrix, allowing extensive shear band propagation and significant macroscopic plastic deformation. However, the presence of the particles makes the stress state highly inhomogeneous, which may partially explain why fracture is suppressed in the composite, allowing the development of large plastic strains

  12. Simplified theory of plastic zones based on Zarka's method

    CERN Document Server

    Hübel, Hartwig

    2017-01-01

    The present book provides a new method to estimate elastic-plastic strains via a series of linear elastic analyses. For a life prediction of structures subjected to variable loads, frequently encountered in mechanical and civil engineering, the cyclically accumulated deformation and the elastic plastic strain ranges are required. The Simplified Theory of Plastic Zones (STPZ) is a direct method which provides the estimates of these and all other mechanical quantities in the state of elastic and plastic shakedown. The STPZ is described in detail, with emphasis on the fact that not only scientists but engineers working in applied fields and advanced students are able to get an idea of the possibilities and limitations of the STPZ. Numerous illustrations and examples are provided to support the reader's understanding.

  13. Strain hardening rate sensitivity and strain rate sensitivity in TWIP steels

    Energy Technology Data Exchange (ETDEWEB)

    Bintu, Alexandra [TEMA, Department of Mechanical Engineering, University of Aveiro, Campus Universitário de Santiago, 3810-193 (Portugal); Vincze, Gabriela, E-mail: gvincze@ua.pt [TEMA, Department of Mechanical Engineering, University of Aveiro, Campus Universitário de Santiago, 3810-193 (Portugal); Picu, Catalin R. [Department of Mechanical, Aerospace and Nuclear Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180 (United States); Lopes, Augusto B. [CICECO, Department of Materials and Ceramic Engineering, University of Aveiro, Campus Universitário de Santiago, 3810-193 (Portugal); Grácio, Jose J. [TEMA, Department of Mechanical Engineering, University of Aveiro, Campus Universitário de Santiago, 3810-193 (Portugal); Barlat, Frederic [Materials Mechanics Laboratory, Graduate Institute of Ferrous Technology, Pohang University of Science and Technology, Pohang 790-784 (Korea, Republic of)

    2015-04-01

    TWIP steels are materials with very high strength and exceptional strain hardening capability, parameters leading to large energy absorption before failure. However, TWIP steels also exhibit reduced (often negative) strain rate sensitivity (SRS) which limits the post-necking deformation. In this study we demonstrate for an austenitic TWIP steel with 18% Mn a strong dependence of the twinning rate on the strain rate, which results in negative strain hardening rate sensitivity (SHRS). The instantaneous component of SHRS is large and negative, while its transient is close to zero. The SRS is observed to decrease with strain, becoming negative for larger strains. Direct observations of the strain rate dependence of the twinning rate are made using electron microscopy and electron backscatter diffraction, which substantiate the proposed mechanism for the observed negative SHRS.

  14. Strain hardening rate sensitivity and strain rate sensitivity in TWIP steels

    International Nuclear Information System (INIS)

    Bintu, Alexandra; Vincze, Gabriela; Picu, Catalin R.; Lopes, Augusto B.; Grácio, Jose J.; Barlat, Frederic

    2015-01-01

    TWIP steels are materials with very high strength and exceptional strain hardening capability, parameters leading to large energy absorption before failure. However, TWIP steels also exhibit reduced (often negative) strain rate sensitivity (SRS) which limits the post-necking deformation. In this study we demonstrate for an austenitic TWIP steel with 18% Mn a strong dependence of the twinning rate on the strain rate, which results in negative strain hardening rate sensitivity (SHRS). The instantaneous component of SHRS is large and negative, while its transient is close to zero. The SRS is observed to decrease with strain, becoming negative for larger strains. Direct observations of the strain rate dependence of the twinning rate are made using electron microscopy and electron backscatter diffraction, which substantiate the proposed mechanism for the observed negative SHRS

  15. Strain concentration at structural discontinuities and its quantification by elastic follow-up parameter

    International Nuclear Information System (INIS)

    Kasahara, Naoto; Takasho, Hideki

    1998-12-01

    Elevated temperature structural design codes pay attention to strain concentration at structural discontinuities due to creep and plasticity, since it causes to enlarge creep-fatigue damage of material. One of the difficulties to predict strain concentration is its dependency on loading, constitutive equations, and relaxation time. This study investigated fundamental mechanism of strain concentration and its main factors. It was clarified that strain concentration was caused from strain redistribution between elastic and inelastic regions, which can be quantified by the elastic follow-up parameter. As a function of inelastic strain, the elastic follow-up parameter can describe variation of strain concentration during incremental loading and relaxation process, caused by transition of strain distribution from peak strain concentration to secondary stress redistribution. Structures have their own elastic follow-up characteristics as a function of inelastic strain, which is insensitive to constitutive equations. It means that application of inelastic analysis is not difficult to obtain elastic follow-up characteristics. (author)

  16. Combined macroscopic and microscopic approach to the fracture of metals. Technical progress report, July 1976--June 1977

    International Nuclear Information System (INIS)

    Gurland, J.; Rice, J.R.; Asaro, R.J.; Needleman, A.

    1977-07-01

    The work includes the completion of a comprehensive study of the contributions of dislocation substructures and local stresses at particle interfaces to the strain hardening of dispersion hardened steels, and the presentation of a model of segregant induced embrittlement of grain interfaces. Work was continued on crack initiation at inclusions and on the theory of plastic flow localization. These microscopic effects are discussed in relation to the mechanisms of brittle fracture and ductile rupture of metals and alloys. On a more macroscopic scale, the state of stress and strain associated with the large plastic deformation at a crack tip was further defined based on finite element and slip line calculations, and some preliminary results were obtained by finite element methods for stable crack growth under plane strain conditions. A new finite element method has been developed for fully plastic flow under plane strain conditions

  17. Elastic and elastic-plastic behaviour of a piping system during blowdown - Comparison of measurement and calculation

    International Nuclear Information System (INIS)

    Petruschke, W.; Strunk, G.

    1987-01-01

    The investigations according to the system identification show that the piping model using beam theory and flexibility factors according to the Karman theory are adequate for evaluating natural frequencies, mode shapes, static displacements and stresses. The same accuracy can be seen by comparing the piping response due to blowdown within the elastic range. The simplified elastic-plastic analysis in general overestimates the maximum amplitudes while the frequency content is not simulated very well. For practical purposes, it can be an adequate tool in many cases. The elastic-plastic analysis is the most expensive procedure but gives also the best results. The use of beam elements with multilinear moment-curvature relationships results in a good approximation for the global behaviour (displacements). The strains according to this theory only include the beam deformation modes

  18. Effect of tensile properties on time-dependent C(t) and J(t) integrals in elastic-plastic-creep FE analysis

    International Nuclear Information System (INIS)

    Lee, So-Dam; Lee, Han-Sang; Kim, Yun-Jae; Ainsworth, Robert A.; Dean, David W.

    2016-01-01

    This technical note presents the effect of elastic-plastic properties on calculated time-dependent C(t) and J(t) values. This is investigated via systematic elastic-plastic-creep finite element (FE) analysis. Three different stress-strain curves are used, having essentially the same plastic properties at large strains but different tensile data near the 0.2% proof (yield) strength. It is found that the plastic property in stress-strain curve affects the FE C(t) values only at short times (within approximately 20% of the redistribution time). The plastic property affects the initial J values at time t = 0 but not the rate of change of J(t) with time. - Highlights: • The effect of elastic-plastic properties on calculated time-dependent C(t) and J(t) values is presented via FE analysis. • The plastic property affects the FE C(t) values only at short times up to ∼20% of the redistribution time. • The plastic property affects the initial J values at time t = 0 but not the rate of change of J(t) with time.

  19. Dislocation Starvation and Exhaustion Hardening in Mo-alloy Nanofibers

    Energy Technology Data Exchange (ETDEWEB)

    Chisholm, Claire [University of California, Berkeley & LBNL; Bei, Hongbin [ORNL; Lowry, M. B. [University of California, Berkeley; Oh, Jason [Hysitron, Inc., MN; Asif, S.A. Syed [Hysitron, Inc., MN; Warren, O. [Hysitron, Inc., MN; Shan, Zhiwei [Xi' an Jiaotong University, China & Hysitron, Inc., MN; George, Easo P [ORNL; Minor, Andrew [University of California, Berkeley & LBNL

    2012-01-01

    The evolution of defects in Mo alloy nanofibers with initial dislocation densities ranging from 0 to 1.6 1014 m2 were studied using an in situ push-to-pull device in conjunction with a nanoindenter in a transmission electron microscope. Digital image correlation was used to determine stress and strain in local areas of deformation. When they had no initial dislocations the Mo alloy nanofibers suffered sudden catastrophic elongation following elastic deformation to ultrahigh stresses. At the other extreme fibers with a high dislocation density underwent sustained homogeneous deformation after yielding at much lower stresses. Between these two extremes nanofibers with intermediate dislocation densities demonstrated a clear exhaustion hardening behavior, where the progressive exhaustion of dislocations and dislocation sources increases the stress required to drive plasticity. This is consistent with the idea that mechanical size effects ( smaller is stronger ) are due to the fact that nanostructures usually have fewer defects that can operate at lower stresses. By monitoring the evolution of stress locally we find that exhaustion hardening causes the stress in the nanofibers to surpass the critical stress predicted for self-multiplication, supporting a plasticity mechanism that has been hypothesized to account for the rapid strain softening observed in nanoscale bcc materials at high stresses.

  20. A Constitutive Model for Strain-Controlled Strength Degradation of Rockmasses (SDR)

    Science.gov (United States)

    Kalos, A.; Kavvadas, M.

    2017-11-01

    The paper describes a continuum, rate-independent, incremental plasticity constitutive model applicable in weak rocks and heavily fractured rockmasses, where mechanical behaviour is controlled by rockmass strength rather than structural features (discontinuities). The model describes rockmass structure by a generalised Hoek-Brown Structure Envelope (SE) in the stress space. Stress paths inside the SE are nonlinear and irreversible to better simulate behaviour at strains up to peak strength and under stress reversals. Stress paths on the SE have user-controlled volume dilatancy (gradually reducing to zero at large shear strains) and can model post-peak strain softening of brittle rockmasses via a structure degradation (damage) mechanism triggered by accumulated plastic shear strains. As the SE may strain harden with plastic strains, ductile behaviour can also be modelled. The model was implemented in the Finite Element Code Simulia ABAQUS and was applied in plane strain (2D) excavation of a cylindrical cavity (tunnel) to predict convergence-confinement curves. It is shown that small-strain nonlinearity, variable volume dilatancy and post-peak hardening/softening strongly affect the predicted curves, resulting in corresponding differences of lining pressures in real tunnel excavations.

  1. Elastic-plastic analysis of the SS-3 tensile specimen

    International Nuclear Information System (INIS)

    Majumdar, S.

    1998-01-01

    Tensile tests of most irradiated specimens of vanadium alloys are conducted using the miniature SS-3 specimen which is not ASTM approved. Detailed elastic-plastic finite element analysis of the specimen was conducted to show that, as long as the ultimate to yield strength ratio is less than or equal to 1.25 (which is satisfied by many irradiated materials), the stress-plastic strain curve obtained by using such a specimen is representative of the true material behavior

  2. Tensile stress-strain and work hardening behaviour of P9 steel for wrapper application in sodium cooled fast reactors

    Science.gov (United States)

    Christopher, J.; Choudhary, B. K.; Isaac Samuel, E.; Mathew, M. D.; Jayakumar, T.

    2012-01-01

    Tensile flow behaviour of P9 steel with different silicon content has been examined in the framework of Hollomon, Ludwik, Swift, Ludwigson and Voce relationships for a wide temperature range (300-873 K) at a strain rate of 1.3 × 10 -3 s -1. Ludwigson equation described true stress ( σ)-true plastic strain ( ɛ) data most accurately in the range 300-723 K. At high temperatures (773-873 K), Ludwigson equation reduces to Hollomon equation. The variations of instantaneous work hardening rate ( θ = dσ/ dɛ) and θσ with stress indicated two-stage work hardening behaviour. True stress-true plastic strain, flow parameters, θ vs. σ and θσ vs. σ with respect to temperature exhibited three distinct temperature regimes and displayed anomalous behaviour due to dynamic strain ageing at intermediate temperatures. Rapid decrease in flow stress and flow parameters, and rapid shift in θ- σ and θσ- σ towards lower stresses with increase in temperature indicated dominance of dynamic recovery at high temperatures.

  3. Modelling of cyclic plasticity for austenitic stainless steels 304L, 316L, 316L(N)-IG

    Energy Technology Data Exchange (ETDEWEB)

    Dalla Palma, Mauro, E-mail: mauro.dallapalma@igi.cnr.it

    2016-11-01

    Highlights: • Stress-strain amplitudes of cyclic stress strain curves defined by design codes are provided as reference data. • A macroinstruction simulating cyclic plasticity and producing hardening parameters of constitutive models is developed. • Hardening parameters of the nonlinear Chaboche model are provided for stainless steels 316l-N, 316L, 304L at different temperatures. • Ratcheting is simulated by using the produced hardening parameters. - Abstract: The integrity assessment of structures subjected to cyclic loading must be verified with regard to cyclic type damage including time-independent fatigue and progressive deformation or ratcheting. Cyclic damage is verified simulating the material elastic-plastic loop and looking at the accumulated net plastic strain during each cycle at all points of the structure subjected to the complete time history of loadings. This work deals with the development of a numerical model producing the Chaboche hardening parameters starting from stress-strain data produced by testing of materials. Then, the total plastic strain can be simulated using the Chaboche inelastic constitutive model requested for finite element analyses. This is particularly demanding for pressure vessels, pressurised piping, boilers, and mechanical components of nuclear installations made of stainless steels. A design optimisation by iterative analyses is developed to approach the stress-strain test data with the Chaboche model. The parameters treated as design variables are the Chaboche parameters and the objective function to be minimised is a combination of the deviations from test data. The optimiser calls a macroinstruction simulating cyclic loading of a sample for different material temperatures. The numerical model can be used to produce hardening parameters of materials for inelastic finite element verifications of structures with complex joints like elbows subjected to a combination of steady sustained and cyclic loads.

  4. Numerical Implementation of the Hoek-Brown Material Model with Strain Hardening

    DEFF Research Database (Denmark)

    Sørensen, Emil Smed; Clausen, Johan; Damkilde, Lars

    2013-01-01

    A numerical implementation of the Hoek-Brown criterion is presented, which is capable of modeling important aspects of the different post-failure behaviors observed in jointed rock mass. This is done by varying the material parameters based on the accumulated plastic strains. The implementation i....... The constitutive model is demonstrated on a simulation of a tunnel excavation and the results are compared with an analytical solution for a tunnel excavation in elastic-brittle rock material.......A numerical implementation of the Hoek-Brown criterion is presented, which is capable of modeling important aspects of the different post-failure behaviors observed in jointed rock mass. This is done by varying the material parameters based on the accumulated plastic strains. The implementation...

  5. Strain Limits within the Scope of the Integrity Assessment of Piping Systems

    International Nuclear Information System (INIS)

    Mutz, Alexander

    2008-01-01

    Allowable stresses in nuclear power plant piping resulting from loading conditions to be considered in Germany are determined on the basis of the German Safety Standards of the Nuclear Safety Standards Commission, KTA. The limitation of the different stress categories within the analysis of the mechanical behaviour is based on a linear elastic material behaviour. Because of the ductile material used in high energy nuclear piping, a more realistic assessment can be performed on the basis of allowable strains using elastic plastic material behaviour. In the present work comparison between the analysis of piping systems considering the elastic material model and the actual elastic plastic material behaviour is performed. The possibilities of allocating plastic strains to calculated elastic stresses is discussed. A parametric study on straight pipes with the actual elastic plastic material model under pure bending is the basis of deriving the elastic plastic strains for the calculated elastic stresses. Strain limits are suggested which correspond to the different stress categories. The aim is to utilize the deformation possibilities of ductile materials used in German nuclear piping and the allocation of maximum strains to different load categories. Keywords: strain limit, ductile material, stress category. (author)

  6. Strain Limits within the Scope of the Integrity Assessment of Piping Systems

    Energy Technology Data Exchange (ETDEWEB)

    Mutz, Alexander [EnBW, Durlacher Allee 93, Karlsruhe 76131 (Germany)

    2008-07-01

    Allowable stresses in nuclear power plant piping resulting from loading conditions to be considered in Germany are determined on the basis of the German Safety Standards of the Nuclear Safety Standards Commission, KTA. The limitation of the different stress categories within the analysis of the mechanical behaviour is based on a linear elastic material behaviour. Because of the ductile material used in high energy nuclear piping, a more realistic assessment can be performed on the basis of allowable strains using elastic plastic material behaviour. In the present work comparison between the analysis of piping systems considering the elastic material model and the actual elastic plastic material behaviour is performed. The possibilities of allocating plastic strains to calculated elastic stresses is discussed. A parametric study on straight pipes with the actual elastic plastic material model under pure bending is the basis of deriving the elastic plastic strains for the calculated elastic stresses. Strain limits are suggested which correspond to the different stress categories. The aim is to utilize the deformation possibilities of ductile materials used in German nuclear piping and the allocation of maximum strains to different load categories. Keywords: strain limit, ductile material, stress category. (author)

  7. Elastic-Plastic Behavior of U6Nb under Ramp Wave Loading

    International Nuclear Information System (INIS)

    Hayes, D. B.; Gray, G. T. III; Hixson, R. S.; Hall, C. A.

    2006-01-01

    When uranium-niobium (6 wt.%) alloy is shock loaded, the expected elastic precursor is absent. A prior model attributed this absence to shear-induced twinning and the concomitant shear stress reduction that prevented the shocked material from reaching the plastic yield point. In the present study, carefully prepared U6Nb was subjected to shock loading to verify the adequacy of the prior model. Other samples were loaded with a ramp pressure pulse with strain rate large enough so that significant twinning would not occur during the experiment. Backward integration analyses of these latter experiments' back surface motion give stress-strain loading paths in U6Nb that suggest ordinary elastic-plastic flow. Some of the U6Nb was pre-strained by cold rolling in an effort to further ensure that twinning did not affect wave propagation. Shock and ramp loadings yielded similar results to the baseline material except, as expected, they are consistent with a higher yield stress and twinning shear stress threshold

  8. General Friction Model Extended by the Effect of Strain Hardening

    DEFF Research Database (Denmark)

    Nielsen, Chris V.; Martins, Paulo A.F.; Bay, Niels

    2016-01-01

    An extension to the general friction model proposed by Wanheim and Bay [1] to include the effect of strain hardening is proposed. The friction model relates the friction stress to the fraction of real contact area by a friction factor under steady state sliding. The original model for the real...... contact area as function of the normalized contact pressure is based on slip-line analysis and hence on the assumption of rigid-ideally plastic material behavior. In the present work, a general finite element model is established to, firstly, reproduce the original model under the assumption of rigid...

  9. Wireless measurement of elastic and plastic deformation by a metamaterial-based sensor.

    Science.gov (United States)

    Ozbey, Burak; Demir, Hilmi Volkan; Kurc, Ozgur; Erturk, Vakur B; Altintas, Ayhan

    2014-10-20

    We report remote strain and displacement measurement during elastic and plastic deformation using a metamaterial-based wireless and passive sensor. The sensor is made of a comb-like nested split ring resonator (NSRR) probe operating in the near-field of an antenna, which functions as both the transmitter and the receiver. The NSRR probe is fixed on a standard steel reinforcing bar (rebar), and its frequency response is monitored telemetrically by a network analyzer connected to the antenna across the whole stress-strain curve. This wireless measurement includes both the elastic and plastic region deformation together for the first time, where wired technologies, like strain gauges, typically fail to capture. The experiments are further repeated in the presence of a concrete block between the antenna and the probe, and it is shown that the sensing system is capable of functioning through the concrete. The comparison of the wireless sensor measurement with those undertaken using strain gauges and extensometers reveals that the sensor is able to measure both the average strain and the relative displacement on the rebar as a result of the applied force in a considerably accurate way. The performance of the sensor is tested for different types of misalignments that can possibly occur due to the acting force. These results indicate that the metamaterial-based sensor holds great promise for its accurate, robust and wireless measurement of the elastic and plastic deformation of a rebar, providing beneficial information for remote structural health monitoring and post-earthquake damage assessment.

  10. Development of a plastic fracture methodology for nuclear systems

    International Nuclear Information System (INIS)

    Marston, T.U.; Jones, R.L.; Kanninen, M.F.; Mowbray, D.F.

    1981-01-01

    This paper describes research conducted to develop a fundamental basis for flaw tolerance assessment procedures suitable for components exhibiting ductile behavior. The research was composed of an integrated combination of stable crack growth experiments and elastic-plastic analyses. A number of candidate fracture criteria were assembled and investigated to determine the proper basis for plastic fracture mechanics assessments. The results demonstrate that many different fracture criteria can be used as the basis of a resistance curve approach to predicting stable crack growth and fracture instability. While all have some disadvantages, none is completely unacceptable. On balance, the best criteria were found to be the J-integral for initiation and limited amounts of stable crack growth and the local crack-tip opening angle for extended amounts of stable growth. A combination of the two, which may preserve the advantages of each while reducing their disadvantages, also was suggested by these results. The influence of biaxial and mixed flat/shear fracture behavior was investigated and found to not alter the basic results. Further work in the development of simplified ductile fracture analyses for routine engineering assessments of nuclear pressure vessels and piping evolving from this research is also described

  11. Tensile stress–strain and work hardening behaviour of P9 steel for wrapper application in sodium cooled fast reactors

    International Nuclear Information System (INIS)

    Christopher, J.; Choudhary, B.K.; Isaac Samuel, E.; Mathew, M.D.; Jayakumar, T.

    2012-01-01

    Highlights: ► σ–ε behaviour has been adequately described by Ludwigson and Hollomon equations. ► Instantaneous work hardening rate (θ) exhibited two-stage behaviour. ► σ–ε, flow parameters, θ and θσ vs.σ exhibited three distinct temperature regimes. ► Influence of dynamic strain ageing at intermediate temperatures has been identified. ► Dominance of dynamic recovery at high temperatures was demonstrated. - Abstract: Tensile flow behaviour of P9 steel with different silicon content has been examined in the framework of Hollomon, Ludwik, Swift, Ludwigson and Voce relationships for a wide temperature range (300–873 K) at a strain rate of 1.3 × 10 −3 s −1 . Ludwigson equation described true stress (σ)–true plastic strain (ε) data most accurately in the range 300–723 K. At high temperatures (773–873 K), Ludwigson equation reduces to Hollomon equation. The variations of instantaneous work hardening rate (θ = dσ/dε) and θσ with stress indicated two-stage work hardening behaviour. True stress–true plastic strain, flow parameters, θ vs. σ and θσ vs. σ with respect to temperature exhibited three distinct temperature regimes and displayed anomalous behaviour due to dynamic strain ageing at intermediate temperatures. Rapid decrease in flow stress and flow parameters, and rapid shift in θ–σ and θσ–σ towards lower stresses with increase in temperature indicated dominance of dynamic recovery at high temperatures.

  12. Fabrication of mandible fracture plate by indirect additive manufacturing

    Science.gov (United States)

    Aizat, M.; Khan, S. F.

    2017-10-01

    Bone fracture is a serious skeletal injury due to accidents and fragility of the bones at a certain age. In order to accelerate fracture healing process, fracture bone plate is use to hold the fracture segment for more stability. The purpose of this study is to fabricate mandibular fracture plate by using indirect additive manufacturing methods in order to reduce time taken during bending and shaping the fracture fixation plate that conform to the anatomy of the fractured bone site. The design and analysis of the plates are performed using CATIA and ANSYS software. The 3D-CAD data were sent to an additive manufacturing machine (fused filament fabricated) to generate master pattern using PLA and the mould were fabricated using Plaster of Paris. A melt ZAMAK 3 was poured directly into the moulds, and left it until completely harden. 3point bending test was performed on the prototype plate using universal testing machine. Stress-strain curve shows the graph exhibited a linear relationship of stress-strain up to a strain value of 0.001. Specimens give a maximum yielding stress and then break before the conventional deflection. Since the maximum flexural stress and the breaking stress are far apart with a plateau stating at strain value of 0.003mm/mm in most specimens, the specimen’s failure types are considered plastic failure mode. The average thickness and width are 1.65mm and 2.18mm respectively. The flexural modulus and flexural strength are 189.5GPa and 518.1MPa, respectively.

  13. Stability of surface plastic flow in large strain deformation of metals

    Science.gov (United States)

    Viswanathan, Koushik; Udapa, Anirduh; Sagapuram, Dinakar; Mann, James; Chandrasekar, Srinivasan

    We examine large-strain unconstrained simple shear deformation in metals using a model two-dimensional cutting system and high-speed in situ imaging. The nature of the deformation mode is shown to be a function of the initial microstructure state of the metal and the deformation geometry. For annealed metals, which exhibit large ductility and strain hardening capacity, the commonly assumed laminar flow mode is inherently unstable. Instead, the imposed shear is accommodated by a highly rotational flow-sinuous flow-with vortex-like components and large-amplitude folding on the mesoscale. Sinuous flow is triggered by a plastic instability on the material surface ahead of the primary region of shear. On the other hand, when the material is extensively strain-hardened prior to shear, laminar flow again becomes unstable giving way to shear banding. The existence of these flow modes is established by stability analysis of laminar flow. The role of the initial microstructure state in determining the change in stability from laminar to sinuous / shear-banded flows in metals is elucidated. The implications for cutting, forming and wear processes for metals, and to surface plasticity phenomena such as mechanochemical Rehbinder effects are discussed.

  14. Work hardening and mechanical equation of state in some metals in monotonic loading

    International Nuclear Information System (INIS)

    Wire, G.L.; Ellis, F.V.; Li, C.Y.

    The work hardening coefficients of Type 316 stainless steel, niobium, and 1100 aluminum alloy are measured in tensile tests. It is demonstrated experimentally that in the measured stress, plastic strain rate, and temperature range the work hardening coefficient depends only on stress and plastic strain rate. The significance of the experimental results is discussed in terms of the concept of the mechanical equation of state for plastic deformation. 13 figures

  15. Growth Kinematics of Opening-Mode Fractures

    Science.gov (United States)

    Eichhubl, P.; Alzayer, Y.; Laubach, S.; Fall, A.

    2014-12-01

    Fracture aperture is a primary control on flow in fractured reservoirs of low matrix permeability including unconventional oil and gas reservoirs and most geothermal systems. Guided by principles of linear elastic fracture mechanics, fracture aperture is generally assumed to be a linear function of fracture length and elastic material properties. Natural opening-mode fractures with significant preserved aperture are observed in core and outcrop indicative of fracture opening strain accommodated by permanent solution-precipitation creep. Fracture opening may thus be decoupled from length growth if the material effectively weakens after initial elastic fracture growth by either non-elastic deformation processes or changes in elastic properties. To investigate the kinematics of fracture length and aperture growth, we reconstructed the opening history of three opening-mode fractures that are bridged by crack-seal quartz cement in Travis Peak Sandstone of the SFOT-1 well, East Texas. Similar crack-seal cement bridges had been interpreted to form by repeated incremental fracture opening and subsequent precipitation of quartz cement. We imaged crack-seal cement textures for bridges sampled at varying distance from the tips using scanning electron microscope cathodoluminescence, and determined the number and thickness of crack-seal cement increments as a function of position along the fracture length and height. Observed trends in increment number and thickness are consistent with an initial stage of fast fracture propagation relative to aperture growth, followed by a stage of slow propagation and pronounced aperture growth. Consistent with fluid inclusion observations indicative of fracture opening and propagation occurring over 30-40 m.y., we interpret the second phase of pronounced aperture growth to result from fracture opening strain accommodated by solution-precipitation creep and concurrent slow, possibly subcritical, fracture propagation. Similar deformation

  16. Significant contribution of stacking faults to the strain hardening behavior of Cu-15%Al alloy with different grain sizes.

    Science.gov (United States)

    Tian, Y Z; Zhao, L J; Chen, S; Shibata, A; Zhang, Z F; Tsuji, N

    2015-11-19

    It is commonly accepted that twinning can induce an increase of strain-hardening rate during the tensile process of face-centered cubic (FCC) metals and alloys with low stacking fault energy (SFE). In this study, we explored the grain size effect on the strain-hardening behavior of a Cu-15 at.%Al alloy with low SFE. Instead of twinning, we detected a significant contribution of stacking faults (SFs) irrespective of the grain size even in the initial stage of tensile process. In contrast, twinning was more sensitive to the grain size, and the onset of deformation twins might be postponed to a higher strain with increasing the grain size. In the Cu-15 at.%Al alloy with a mean grain size of 47 μm, there was a stage where the strain-hardening rate increases with strain, and this was mainly induced by the SFs instead of twinning. Thus in parallel with the TWIP effect, we proposed that SFs also contribute significantly to the plasticity of FCC alloys with low SFE.

  17. Elastic-Plastic J-Integral Solutions or Surface Cracks in Tension Using an Interpolation Methodology. Appendix C -- Finite Element Models Solution Database File, Appendix D -- Benchmark Finite Element Models Solution Database File

    Science.gov (United States)

    Allen, Phillip A.; Wells, Douglas N.

    2013-01-01

    No closed form solutions exist for the elastic-plastic J-integral for surface cracks due to the nonlinear, three-dimensional nature of the problem. Traditionally, each surface crack must be analyzed with a unique and time-consuming nonlinear finite element analysis. To overcome this shortcoming, the authors have developed and analyzed an array of 600 3D nonlinear finite element models for surface cracks in flat plates under tension loading. The solution space covers a wide range of crack shapes and depths (shape: 0.2 less than or equal to a/c less than or equal to 1, depth: 0.2 less than or equal to a/B less than or equal to 0.8) and material flow properties (elastic modulus-to-yield ratio: 100 less than or equal to E/ys less than or equal to 1,000, and hardening: 3 less than or equal to n less than or equal to 20). The authors have developed a methodology for interpolating between the goemetric and material property variables that allows the user to reliably evaluate the full elastic-plastic J-integral and force versus crack mouth opening displacement solution; thus, a solution can be obtained very rapidly by users without elastic-plastic fracture mechanics modeling experience. Complete solutions for the 600 models and 25 additional benchmark models are provided in tabular format.

  18. Strain evolution after fiber failure in a single-fiber metal matrix composite under cyclic loading

    Energy Technology Data Exchange (ETDEWEB)

    Hanan, Jay C. [Department of Materials Science, California Institute of Technology, Pasadena, CA 91125 (United States)]. E-mail: jay.hanan@okstate.edu; Mahesh, Sivasambu [Materials Science and Technology Division, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Uestuendag, Ersan [Department of Materials Science, California Institute of Technology, Pasadena, CA 91125 (United States)]. E-mail: ersan@caltech.edu; Beyerlein, Irene J. [Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Swift, Geoffrey A. [Department of Materials Science, California Institute of Technology, Pasadena, CA 91125 (United States); Clausen, Bjorn [Department of Materials Science, California Institute of Technology, Pasadena, CA 91125 (United States); Brown, Donald W. [Materials Science and Technology Division, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Bourke, Mark A.M. [Materials Science and Technology Division, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States)

    2005-06-15

    The evolution of in situ elastic strain with cyclic tensile loading in each phase of a single Al{sub 2}O{sub 3}-fiber/aluminum-matrix composite was studied using neutron diffraction (ND). An analytical model appropriate for metal matrix composites (MMCs) was developed to connect the measured axial strain evolution in each phase with the possible micromechanical events that could occur during loading at room temperature: fiber fracture, interfacial slipping, and matrix plastic deformation. Model interpretation showed that the elastic strain evolution in the fiber and matrix was governed by fiber fracture and interface slipping and not by plastic deformation of the matrix, whereas the macroscopic stress-strain response of the composite was influenced by all three. The combined single-fiber composite model and ND experiment introduces a new and quick engineering approach for qualifying the micromechanical response in MMCs due to cyclic loading and fiber fracture.

  19. Strain evolution after fiber failure in a single-fiber metal matrix composite under cyclic loading

    International Nuclear Information System (INIS)

    Hanan, Jay C.; Mahesh, Sivasambu; Uestuendag, Ersan; Beyerlein, Irene J.; Swift, Geoffrey A.; Clausen, Bjorn; Brown, Donald W.; Bourke, Mark A.M.

    2005-01-01

    The evolution of in situ elastic strain with cyclic tensile loading in each phase of a single Al 2 O 3 -fiber/aluminum-matrix composite was studied using neutron diffraction (ND). An analytical model appropriate for metal matrix composites (MMCs) was developed to connect the measured axial strain evolution in each phase with the possible micromechanical events that could occur during loading at room temperature: fiber fracture, interfacial slipping, and matrix plastic deformation. Model interpretation showed that the elastic strain evolution in the fiber and matrix was governed by fiber fracture and interface slipping and not by plastic deformation of the matrix, whereas the macroscopic stress-strain response of the composite was influenced by all three. The combined single-fiber composite model and ND experiment introduces a new and quick engineering approach for qualifying the micromechanical response in MMCs due to cyclic loading and fiber fracture

  20. Development of Bake Hardening Effect by Plastic Deformation and Annealing Conditions

    Directory of Open Access Journals (Sweden)

    Kvačkaj, T.

    2006-01-01

    Full Text Available The paper deals with the classification of steel sheets for automotives industry on the basis of strength and structural characteristics. Experimental works were aimed to obtain the best possible strengthening parameters as well as work hardening and solid solution ferrite hardening, which are the result of thermal activation of interstitial carbon atoms during paint-baking of auto body. Hardening process coming from interstitial atoms is realized as two-step process. The first step is BH (bake hardening effect achieved by interaction of interstitial atoms with dislocations. The Cottrels atmosphere is obtained. The second step of BH effect is to produced the hardening from precipitation of the carbon atoms in e-carbides, or formation of Fe32C4 carbides. WH (work hardening effect is obtained as dislocation hardening from plastic deformations during sheet deep drawing. Experimental works were aimed at as to achieve such plastic material properties after cold rolling, annealing and skin-pass rolling, which would be able to classify the material ZStE220BH into the drawing categories at the level of DQ – DDQ. As resulting from the experimental results, the optimal treatment conditions for the maximal sum (WH+BH = 86 MPa are as follows: total cold rolling deformation ecold = 65 %, annealing temperature Tanneal. = 700 °C.

  1. Acquirement of true stress-strain curve using true fracture strain obtained by tensile test and FE analysis

    International Nuclear Information System (INIS)

    Lee, Kyoung Yoon; Kim, Tae Hyung; Lee, Hyung Yil

    2009-01-01

    In this work, we predict a true fracture strain using load-displacement curves from tensile test and Finite Element Analysis (FEA), and suggest a method for acquiring true Stress-Strain (SS) curves by predicted fracture strain. We first derived the true SS curve up to necking point from load-displacement curve. As the beginning, the posterior necking part of true SS curve is linearly extrapolated with the slope at necking point. The whole SS curve is then adopted for FE simulation of tensile test. The Bridgman factor or suitable plate correction factors are applied to pre and post FEA. In the load-true strain curve from FEA, the true fracture strain is determined as the matching point to test fracture load. The determined true strain is validated by comparing with test fracture strain. Finally, we complete the true SS curve by combining the prior necking part and linear part, the latter of which connects necking and predicted fracture points.

  2. Acquirement of true stress-strain curve using true fracture strain obtained by tensile test and FE analysis

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Kyoung Yoon; Kim, Tae Hyung; Lee, Hyung Yil [Sogang University, Seoul (Korea, Republic of)

    2009-07-01

    In this work, we predict a true fracture strain using load-displacement curves from tensile test and Finite Element Analysis (FEA), and suggest a method for acquiring true Stress-Strain (SS) curves by predicted fracture strain. We first derived the true SS curve up to necking point from load-displacement curve. As the beginning, the posterior necking part of true SS curve is linearly extrapolated with the slope at necking point. The whole SS curve is then adopted for FE simulation of tensile test. The Bridgman factor or suitable plate correction factors are applied to pre and post FEA. In the load-true strain curve from FEA, the true fracture strain is determined as the matching point to test fracture load. The determined true strain is validated by comparing with test fracture strain. Finally, we complete the true SS curve by combining the prior necking part and linear part, the latter of which connects necking and predicted fracture points.

  3. Acquirement of True Stress-strain Curve Using True Fracture Strain Obtained by Tensile Test and FE Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Kyoung Yoon; Lee, Hyung Yil [Sogang University, Seoul (Korea, Republic of); Kim, Tae Hyung [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2009-10-15

    In this work, we predict a true fracture strain using load-displacement curves from tensile test and finite element analysis (FEA), and suggest a method for acquiring true stress-strain (SS) curves by predicted fracture strain. We first derived the true SS curve up to necking point from load-displacement curve. As the beginning, the posterior necking part of true SS curve is linearly extrapolated with the slope at necking point. The whole SS curve is then adopted for FE simulation of tensile test. The Bridgman factor or suitable plate correction factors are applied to pre and post FEA. In the load-true strain curve from FEA, the true fracture strain is determined as the matching point to test fracture load. The determined true strain is validated by comparing with test fracture strain. Finally, we complete the true SS curve by combining the prior necking part and linear part, the latter of which connects necking and predicted fracture points.

  4. A three-dimensional cell-based smoothed finite element method for elasto-plasticity

    International Nuclear Information System (INIS)

    Lee, Kye Hyung; Im, Se Yong; Lim, Jae Hyuk; Sohn, Dong Woo

    2015-01-01

    This work is concerned with a three-dimensional cell-based smoothed finite element method for application to elastic-plastic analysis. The formulation of smoothed finite elements is extended to cover elastic-plastic deformations beyond the classical linear theory of elasticity, which has been the major application domain of smoothed finite elements. The finite strain deformations are treated with the aid of the formulation based on the hyperelastic constitutive equation. The volumetric locking originating from the nearly incompressible behavior of elastic-plastic deformations is remedied by relaxing the volumetric strain through the mean value. The comparison with the conventional finite elements demonstrates the effectiveness and accuracy of the present approach.

  5. A three-dimensional cell-based smoothed finite element method for elasto-plasticity

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Kye Hyung; Im, Se Yong [KAIST, Daejeon (Korea, Republic of); Lim, Jae Hyuk [KARI, Daejeon (Korea, Republic of); Sohn, Dong Woo [Korea Maritime and Ocean University, Busan (Korea, Republic of)

    2015-02-15

    This work is concerned with a three-dimensional cell-based smoothed finite element method for application to elastic-plastic analysis. The formulation of smoothed finite elements is extended to cover elastic-plastic deformations beyond the classical linear theory of elasticity, which has been the major application domain of smoothed finite elements. The finite strain deformations are treated with the aid of the formulation based on the hyperelastic constitutive equation. The volumetric locking originating from the nearly incompressible behavior of elastic-plastic deformations is remedied by relaxing the volumetric strain through the mean value. The comparison with the conventional finite elements demonstrates the effectiveness and accuracy of the present approach.

  6. Elastic-Plastic Endochronic Constitutive Model of 0Crl7Ni4Cu4Nb Stainless Steels

    Directory of Open Access Journals (Sweden)

    Jinquan Guo

    2016-01-01

    Full Text Available We presented an elastic-plastic endochronic constitutive model of 0Crl7Ni4Cu4Nb stainless steel based on the plastic endochronic theory (which does not need the yield surface and experimental stress-strain curves. The key feature of the model is that it can precisely describe the relation of stress and strain under various loading histories, including uniaxial tension, cyclic loading-unloading, cyclic asymmetric-stress axial tension and compression, and cyclic asymmetric-stress axial tension and compression. The effects of both mean stress and amplitude of stress on hysteresis loop based on the elastic-plastic endochronic constitutive model were investigated. Compared with the experimental and calculated results, it is demonstrated that there was a good agreement between the model and the experiments. Therefore, the elastic-plastic endochronic constitutive model provides a method for the accurate prediction of mechanical behaviors of 0Crl7Ni4Cu4Nb stainless steel subjected to various loadings.

  7. Microscopic deformation and strain hardening analysis of ferrite–bainite dual-phase steels using micro-grid method

    International Nuclear Information System (INIS)

    Ishikawa, Nobuyuki; Yasuda, Kyono; Sueyoshi, Hitoshi; Endo, Shigeru; Ikeda, Hiroshi; Morikawa, Tatsuya; Higashida, Kenji

    2015-01-01

    The local strain measurement method using nanometer-scaled micro grids printed on the surface of a specimen by an electron lithography technique (the micro-grid method) has been established. Microscopic deformation behavior of the ferrite–bainite steels with different bainite volume fraction, 16% and 40% of bainite, was evaluated. Strain localization in the ferrite phase adjacent to the ferrite/bainite boundary was clearly observed and visualized. Highly strained regions expanded toward the inner region of the ferrite phase and connected each other with an increase of macroscopic strain. The existence of hard bainite phase plays an important role for inducing strain localization in the ferrite phase by plastic constraint in the boundary parallel to the tensile direction. In order to obtain further understanding of microscopic deformation behavior, finite element analysis using the representative volume element, which is expressed by the axisymmetric unit cell containing a hard phase surrounded by a soft phase matrix, was conducted. It was found that the macroscopic stress–strain behavior of ferrite–bainite steels was well simulated by the unit cell models. Strain concentration in the ferrite phase was highly enhanced for the ferrite-40% bainite steel, and this imposed higher internal stress in the bainite phase, resulting in higher strain hardening rate in the early stage of the deformation. However, smaller ferrite volume fraction of ferrite-40% bainite steel induced bainite plastic deformation in order to fulfill the macroscopic strain of the steel. Accordingly, strain hardening capacity of the ferrite-40% bainite steel was reduced to a significant degree, resulting in a smaller uniform elongation than the ferrite-16% bainite steel

  8. Elastic-plastic collapse of super-elastic shock waves in face-centered-cubic solids

    International Nuclear Information System (INIS)

    Zhakhovsky, Vasily V; Demaske, Brian J; Oleynik, Ivan I; Inogamov, Nail A; White, Carter T

    2014-01-01

    Shock waves in the [110] and [111] directions of single-crystal Al samples were studied using molecular dynamics (MD) simulations. Piston-driven simulations were performed to investigate the split shock-wave regime. At low piston velocities, the material is compressed initially to a metastable over-compressed elastic state leading to a super-elastic single shock wave. This metastable elastic state later collapses to a plastic state resulting in the formation of a two-wave structure consisting of an elastic precursor followed by a slower plastic wave. The single two-zone elastic-plastic shock-wave regime appearing at higher piston velocities was studied using moving window MD. The plastic wave attains the same average speed as the elastic precursor to form a single two-zone shock wave. In this case, repeated collapse of the highly over-compressed elastic state near the plastic shock front produces ultrashort triangle pulses that provide the pressure support for the leading elastic precursor.

  9. Effective X-ray elastic constant measurement for in situ stress measurement of biaxially strained AA5754-O

    International Nuclear Information System (INIS)

    Iadicola, Mark A.; Gnäupel-Herold, Thomas H.

    2012-01-01

    Accurate measurement of stresses by X-ray diffraction requires accurate X-ray elastic constants. Calibration experiments are one method to determine these for a specific material in a specific condition. In this paper, uniaxial tension experiments are used to investigate the variation of these constants after uniaxial and equal-biaxial plastic deformation for an aluminum alloy (AA5754-O) of interest to the automotive industry. These data are critical for accurate measurement of the biaxial mechanical properties of the material using a recent experimental method combining specialized sheet metal forming equipment with portable X-ray diffraction equipment. The measured effective X-ray elastic constants show some minor variation with increased plastic deformation, and this behavior was found to be consistent for both uniaxially and equal-biaxially strained samples. The use of two average values for effective X-ray elastic constants, one in the rolling direction and one transverse to the rolling direction of the sheet material, is shown to be of sufficient accuracy for the combined tests of interest. Comparison of uniaxial data measured using X-ray diffraction and standard methods show good agreement, and biaxial stress–strain results show good repeatability. Additionally, the calibration data show some non-linear behavior, which is analyzed in regards to crystallographic texture and intergranular stress effects. The non-linear behavior is found to be the result of intergranular stresses based on comparison with additional measurements using other X-ray diffraction equipment and neutron diffraction.

  10. Investigation of translaminar fracture in fibrereinforced composite laminates---applicability of linear elastic fracture mechanics and cohesive-zone model

    Science.gov (United States)

    Hou, Fang

    With the extensive application of fiber-reinforced composite laminates in industry, research on the fracture mechanisms of this type of materials have drawn more and more attentions. A variety of fracture theories and models have been developed. Among them, the linear elastic fracture mechanics (LEFM) and cohesive-zone model (CZM) are two widely-accepted fracture models, which have already shown applicability in the fracture analysis of fiber-reinforced composite laminates. However, there remain challenges which prevent further applications of the two fracture models, such as the experimental measurement of fracture resistance. This dissertation primarily focused on the study of the applicability of LEFM and CZM for the fracture analysis of translaminar fracture in fibre-reinforced composite laminates. The research for each fracture model consisted of two sections: the analytical characterization of crack-tip fields and the experimental measurement of fracture resistance parameters. In the study of LEFM, an experimental investigation based on full-field crack-tip displacement measurements was carried out as a way to characterize the subcritical and steady-state crack advances in translaminar fracture of fiber-reinforced composite laminates. Here, the fiber-reinforced composite laminates were approximated as anisotropic solids. The experimental investigation relied on the LEFM theory with a modification with respect to the material anisotropy. Firstly, the full-field crack-tip displacement fields were measured by Digital Image Correlation (DIC). Then two methods, separately based on the stress intensity approach and the energy approach, were developed to measure the crack-tip field parameters from crack-tip displacement fields. The studied crack-tip field parameters included the stress intensity factor, energy release rate and effective crack length. Moreover, the crack-growth resistance curves (R-curves) were constructed with the measured crack-tip field parameters

  11. Elastic-plastic-creep analysis of brazed carbon-carbon/OFHC divertor tile concepts for TPX

    International Nuclear Information System (INIS)

    Chin, E.; Reis, E.E.

    1995-01-01

    The 7.5 MW/m 2 heat flux requirements for the TPX divertor necessitate the use of high conductivity carbon-carbon (C-C) tiles that are brazed to annealed copper (OFHC) coolant tubes. Significant residual stresses are developed in the C-C tiles during the braze process due to large differences in the thermal expansion coefficients between these materials. Analyses which account for only the elastic-plastic strains developed in the OFHC tube may not accurately characterize the behavior of the tube during brazing. The elevated temperature creep behavior of the copper coolant tubes intuitively should reduce the calculated residual stresses in the C-C tiles. Two divertor tile concepts, the monoblock and the archblock, were analyzed for residual stress using 2-D finite element analysis for elastic-plastic-creep behavior of the OFHC tube during an assumed braze cooldown cycle. The results show that the inclusion of elevated temperature creep effects decrease the calculated residual stresses by only about 10% when compared to those analyses in which only elastic-plastic behavior of the OFHC is accounted for. The primary reason that creep effects at higher temperatures are not more significant is due to the low yield stress and nearly flat-top stress-strain curve of annealed OFHC. Since high temperature creep plays less of a role in the residual stress levels than previously thought, future scoping studies can be done in an elastic-plastic analysis with confidence that the stresses will be within approximately 10% of an elastic-plastic-creep analysis

  12. A Combined Precipitation, Yield Stress, and Work Hardening Model for Al-Mg-Si Alloys Incorporating the Effects of Strain Rate and Temperature

    Science.gov (United States)

    Myhr, Ole Runar; Hopperstad, Odd Sture; Børvik, Tore

    2018-05-01

    In this study, a combined precipitation, yield strength, and work hardening model for Al-Mg-Si alloys known as NaMo has been further developed to include the effects of strain rate and temperature on the resulting stress-strain behavior. The extension of the model is based on a comprehensive experimental database, where thermomechanical data for three different Al-Mg-Si alloys are available. In the tests, the temperature was varied between 20 °C and 350 °C with strain rates ranging from 10-6 to 750 s-1 using ordinary tension tests for low strain rates and a split-Hopkinson tension bar system for high strain rates, respectively. This large span in temperatures and strain rates covers a broad range of industrial relevant problems from creep to impact loading. Based on the experimental data, a procedure for calibrating the different physical parameters of the model has been developed, starting with the simplest case of a stable precipitate structure and small plastic strains, from which basic kinetic data for obstacle limited dislocation glide were extracted. For larger strains, when work hardening becomes significant, the dynamic recovery was linked to the Zener-Hollomon parameter, again using a stable precipitate structure as a basis for calibration. Finally, the complex situation of concurrent work hardening and dynamic evolution of the precipitate structure was analyzed using a stepwise numerical solution algorithm where parameters representing the instantaneous state of the structure were used to calculate the corresponding instantaneous yield strength and work hardening rate. The model was demonstrated to exhibit a high degree of predictive power as documented by a good agreement between predictions and measurements, and it is deemed well suited for simulations of thermomechanical processing of Al-Mg-Si alloys where plastic deformation is carried out at various strain rates and temperatures.

  13. A plastic stress intensity factor approach to turbine disk structural integrity assessment

    Directory of Open Access Journals (Sweden)

    V. Shlyannikov

    2016-07-01

    Full Text Available This study based on a new fracture mechanics parameter is concerned with assessing the integrity of cracked steam turbine disk which operate under startup-shutdown cyclic loading conditions. Damage accumulation and growth in service have occurred on the inner surface of slot fillet of key. In order to determine elastic-plastic fracture mechanics parameters full-size stress-strain state analysis of turbine disk was performed for a quote-elliptical part-through cracks under considering loading conditions. As a result distributions of elastic and plastic stress intensity factors along crack front in slot fillet of key of turbine disk depending on surface crack form are defined. An engineering approach to the prediction of carrying capacity of cracked turbine disk which is sensitive to the loading history at maintenance is proposed. The predictions of the rate of crack growth and residual lifetime of steam turbine disk are compared for elastic and elastic-plastic solutions. It is shown that the previously proposed elastic crack growth models provide overestimate the lifetime with respect to the present one. An advantage to use the plastic stress intensity factor to characterize the fracture resistance as the self-dependent unified parameter for a variety of turbine disk configurations rather than the magnitude of the elastic stress intensity factors alone is discussed.

  14. Effect of plastic deformation on the niobium thermal expansion

    International Nuclear Information System (INIS)

    Savitskij, E.M.; Bychkova, M.I.; Kanikovskij, V.B.

    1978-01-01

    Using dilatometric method the effect of plastic deformation on change of thermal expansion coefficient (TEC) of niobium of different purity was studied. It was shown that deformation affected the TEC in different ways. At first the deformation degree rising causes linear decrease of the TEC and then linear increase. Carbon intensifies the TEC decrease of deformed niobium. The linear correlation was established between the TEC and the value of macroscopic stresses in plastic deformed niobium. The expression indicating the metal TEC change under loading was defined for case of strain hardening

  15. Techniques developed to evaluate the fracture toughness offast breeder reactor duct

    International Nuclear Information System (INIS)

    Huang, F.H.; Wire, G.L.

    1979-01-01

    Large changes in strength and ductility of metals after irradiation are known to occur. The fracture toughness of irradiated metals, which is related to the combined strength and ductility of a material, may be significantly reduced and the potential for unstable crack extension increased. Therefore, the resistance of cladding and duct materials to fracture after exposure to fast neutron environments is of concern. Existing Type 316 stainless steel irradiated ducts are relatively thin and since this material retains substantial ductility, even after irradiation, the fracture behavior of the duct material cannot be analyzed by linear elastic fracture mechanics techniques. Instead, the multispecimen R-curve method and J-integral analysis were used to develop an experimental approach to evaluate the fracture toughness of thin breeder reactor duct materials irradiated at elevated temperatures. Alloy A-286 was chosen for these experiments because the alloy exhibits elastic/plastic behavior and the fracture toughness data of thicker (12 mm) specimens were available for comparison. Technical problems associated with specimen buckling and remote handling were treated in this work. The results are discussed in terms of thickness criterion for plane strain

  16. Strain rate sensitivity and evolution of dislocations and twins in a twinning-induced plasticity steel

    International Nuclear Information System (INIS)

    Liang, Z.Y.; Wang, X.; Huang, W.; Huang, M.X.

    2015-01-01

    The present work investigated the effect of strain rates (10 −3 to 10 3 s −1 ) on the deformation behaviour of a twinning-induced plasticity (TWIP) steel. The strain rate sensitivity was studied in terms of instantaneous strain rate sensitivity (ISRS) and strain rate sensitivity of work-hardening (SRSW). While ISRS concerns the instantaneous flow stress change upon strain rate jump, SRSW deals with the subsequent modification in microstructure evolution, i.e. change of work-hardening rate. The present TWIP steel demonstrates a positive ISRS which remains stable during deformation and a negative SRSW, i.e. lower work-hardening rate at higher strain rate. Synchrotron X-ray diffraction experiments indicate that the negative SRSW should be attributed to the suppression of dislocations and deformation twins at high strain rate. This unexpected finding is different to conventional face-centred cubic (fcc) metals which generally show enhanced work-hardening rate at higher strain rate. A constitutive model which is strain rate- and temperature-dependent is developed to explain the stable ISRS and the negative SRSW. The modelling results reveal that the stable ISRS should be attributed to the thermally-activated dislocation motion dominated by interstitial carbon atoms and the negative SRSW should be due to the suppression of the dislocations and deformation twins caused by the adiabatic heating associated with high strain rate deformation

  17. Elastic-plastic transition on rotating spherical shells in dependence of compressibility

    Directory of Open Access Journals (Sweden)

    Thakur Pankaj

    2017-01-01

    Full Text Available The purpose of this paper is to establish the mathematical model on the elastic-plastic transitions occurring in the rotating spherical shells based on compressibility of materials. The paper investigates the elastic-plastic stresses and angular speed required to start yielding in rotating shells for compressible and incompressible materials. The paper is based on the non-linear transition theory of elastic-plastic shells given by B.R. Seth. The elastic-plastic transition obtained is treated as an asymptotic phenomenon at critical points & the solution obtained at these points generates stresses. The solution obtained does not require the use of semi-empirical yield condition like Tresca or Von Mises or other certain laws. Results are obtained numerically and depicted graphically. It has been observed that Rotating shells made of the incompressible material are on the safer side of the design as compared to rotating shells made of compressible material. The effect of density variation has been discussed numerically on the stresses. With the effect of density variation parameter, rotating spherical shells start yielding at the internal surface with the lower values of the angular speed for incompressible/compressible materials.

  18. Two phase modeling of the influence of plastic strain on the magnetic and magnetostrictive behaviors of ferromagnetic materials

    International Nuclear Information System (INIS)

    Hubert, Olivier; Lazreg, Said

    2017-01-01

    A growing interest of automotive industry in the use of high performance steels is observed. These materials are obtained thanks to complex manufacturing processes whose parameters fluctuations lead to strong variations of microstructure and mechanical properties. The on-line magnetic non-destructive monitoring is a relevant response to this problem but it requires fast models sensitive to different parameters of the forming process. The plastic deformation is one of these important parameters. Indeed, ferromagnetic materials are known to be sensitive to stress application and especially to plastic strains. In this paper, a macroscopic approach using the kinematic hardening is proposed to model this behavior, considering a plastic strained material as a two phase system. Relationship between kinematic hardening and residual stress is defined in this framework. Since stress fields are multiaxial, an uniaxial equivalent stress is calculated and introduced inside the so-called magneto-mechanical multidomain modeling to represent the effect of plastic strain. The modeling approach is complemented by many experiments involving magnetic and magnetostrictive measurements. They are carried out with or without applied stress, using a dual-phase steel deformed at different levels. The main interest of this material is that the mechanically hard phase, soft phase and the kinematic hardening can be clearly identified thanks to simple experiments. It is shown how this model can be extended to single phase materials.

  19. Two phase modeling of the influence of plastic strain on the magnetic and magnetostrictive behaviors of ferromagnetic materials

    Energy Technology Data Exchange (ETDEWEB)

    Hubert, Olivier, E-mail: olivier.hubert@lmt.ens-cachan.fr; Lazreg, Said

    2017-02-15

    A growing interest of automotive industry in the use of high performance steels is observed. These materials are obtained thanks to complex manufacturing processes whose parameters fluctuations lead to strong variations of microstructure and mechanical properties. The on-line magnetic non-destructive monitoring is a relevant response to this problem but it requires fast models sensitive to different parameters of the forming process. The plastic deformation is one of these important parameters. Indeed, ferromagnetic materials are known to be sensitive to stress application and especially to plastic strains. In this paper, a macroscopic approach using the kinematic hardening is proposed to model this behavior, considering a plastic strained material as a two phase system. Relationship between kinematic hardening and residual stress is defined in this framework. Since stress fields are multiaxial, an uniaxial equivalent stress is calculated and introduced inside the so-called magneto-mechanical multidomain modeling to represent the effect of plastic strain. The modeling approach is complemented by many experiments involving magnetic and magnetostrictive measurements. They are carried out with or without applied stress, using a dual-phase steel deformed at different levels. The main interest of this material is that the mechanically hard phase, soft phase and the kinematic hardening can be clearly identified thanks to simple experiments. It is shown how this model can be extended to single phase materials.

  20. Deformation and Fracture Properties in Neutron Irradiated Pure Mo and Mo Alloys

    International Nuclear Information System (INIS)

    Byun, T.S.; Snead, L.; Li, M.; Cockeram, B.V.

    2007-01-01

    Full text of publication follows: The evolution in microstructural and mechanical properties was investigated for molybdenum and molybdenum alloys after high temperature neutron irradiation. Test materials include oxide dispersion-strengthened (ODS) molybdenum alloy, molybdenum- 0.5% titanium-0.1% zirconium (TZM) alloy, and low carbon arc-cast (LCAC) molybdenum. Tensile specimens were irradiated in high flux isotope reactor (HFIR) at temperatures in the range ∼300 - 1000 deg. C to neutron fluences of 2.28 - 24.7 x 10 25 n/m 2 (E>0.1 MeV) or 1.2-13.1 dpa. Tensile tests were performed at temperatures ranging from -150 deg. C to 1000 deg. C. To evaluate irradiation effects, true stress parameters (yield stress, plastic instability stress, and true fracture stress) and ductility parameters (uniform strain, fracture strain, and reduction area) were compared for both irradiated and non-irradiated materials. Fracture toughness was also evaluated from the fracture stress and fracture strain data using a fracture strain model. The fracture strain was used to determine the ductile-to-brittle transition temperature (DBTT). Results indicate that irradiation in the temperature range of 600 - 800 deg. C hardened the materials by up to 70%, while the irradiation hardening outside this temperature range was much lower (<40%). The plastic instability stress was strongly dependent on test temperature; however, it was nearly independent of irradiation dose and temperature. It was also found that the true fracture stress was dependent on test temperature. The true fracture stress was not significantly influenced by irradiation at elevated and high test temperatures; however, it was decreased significantly at sub-zero temperatures after irradiation due to material embrittlement. The DBTT for 600 deg. C irradiated ODS molybdenum alloy was found to be about room temperature or lower, and among the test materials the ODS alloy showed the highest resistance to irradiation embrittlement

  1. On the formulation of higher gradient single and polycrystal plasticity

    International Nuclear Information System (INIS)

    Menzel, A.; Steinmann, P.

    1998-01-01

    This contribution aims in a geometrically linear formulation of higher gradient plasticity of single and polycrystalline material based on the continuum theory of dislocations and incompatibilities. Thereby, general continuum dislocation densities and incompatibilities are introduced from the viewpoint of continuum mechanics by considering the spatial closure failure of arbitrary line integrals of the displacement differential. Then these findings are translated to the plastic parts of the displacement gradient, the so called plastic distortion, and the plastic strain, respectively, within an elasto-plastic solid thus defining tensor fields of plastic dislocation densities and plastic incompatibilities. Next, in the case of single crystalline material the plastic dislocation density and in the case of polycrystalline material the plastic incompatibility are considered within the exploitation of the thermodynamical principle of positive dissipation. As a result, a phenomenological but physically motivated description of hardening is obtained, which incorporates for single crystals second spatial derivatives of the plastic deformation gradient and for polycrystals fourth spatial derivatives of the plastic strains into the yield condition. Moreover, these modifications mimic the characteristic structure of kinematic hardening, whereby the backstress obeys a nonlocal evolution law. (orig.)

  2. Mechanisms of strain accommodation in plastically-deformed zircon under simple shear deformation conditions during amphibolite-facies metamorphism

    Science.gov (United States)

    Kovaleva, Elizaveta; Klötzli, Urs; Wheeler, John; Habler, Gerlinde

    2018-02-01

    This study documents the strain accommodation mechanisms in zircon under amphibolite-facies metamorphic conditions in simple shear. Microstructural data from undeformed, fractured and crystal-plastically deformed zircon crystals are described in the context of the host shear zone, and evaluated in the light of zircon elastic anisotropy. Our work challenges the existing model of zircon evolution and shows previously undescribed rheological characteristics for this important accessory mineral. Crystal-plastically deformed zircon grains have axis oriented parallel to the foliation plane, with the majority of deformed grains having axis parallel to the lineation. Zircon accommodates strain by a network of stepped low-angle boundaries, formed by switching between tilt dislocations with the slip systems {010} and {110} and rotation axis [001], twist dislocations with the rotation axis [001], and tilt dislocations with the slip system {001} and rotation axis [010]. The slip system {110} is newly described for zircon. Most misorientation axes in plastically-deformed zircon grains are parallel to the XY plane of the sample and have [001] crystallographic direction. Such behaviour of strained zircon lattice is caused by elastic anisotropy that has a direct geometric control on the rheology, deformation mechanisms and dominant slip systems in zircon. Young's modulus and P wave velocity have highest values parallel to zircon [001] axis, indicating that zircon is elastically strong along this direction. Poisson ratio and Shear modulus demonstrate that zircon is also most resistant to shearing along [001]. Thus, [001] axis is the most common rotation axis in zircon. The described zircon behaviour is important to take into account during structural and geochronological investigations of (poly)metamorphic terrains. Geometry of dislocations in zircon may help reconstructing the geometry of the host shear zone(s), large-scale stresses in the crust, and, possibly, the timing of

  3. The application of post yield fracture methodology to the evaluation of large structures

    International Nuclear Information System (INIS)

    Landes, J.D.

    1979-01-01

    The objective of this work is to determine how to use small specimens test results to measure fracture toughness values for application to the evaluation of large structural components. Linear elastic fracture mechanics concepts based on the crack tip stress intensity factor, K, have been extended into the post yield regime by the use of elastic-plastic characterizing parameters such as J integral and COD. One of the primary applications of this technology is the determination of fracture toughness values from small specimens tests taken primarily in the post yield regime which can be used to evaluate structures operating in an essentially linear elastic regime. The fracture toughness values may be either conservative or unconservative depending on the fracture mode; extreme care must be taken in interpretting these results. (orig.)

  4. Plastic damage induced fracture behaviors of dental ceramic layer structures subjected to monotonic load.

    Science.gov (United States)

    Wang, Raorao; Lu, Chenglin; Arola, Dwayne; Zhang, Dongsheng

    2013-08-01

    The aim of this study was to compare failure modes and fracture strength of ceramic structures using a combination of experimental and numerical methods. Twelve specimens with flat layer structures were fabricated from two types of ceramic systems (IPS e.max ceram/e.max press-CP and Vita VM9/Lava zirconia-VZ) and subjected to monotonic load to fracture with a tungsten carbide sphere. Digital image correlation (DIC) and fractography technology were used to analyze fracture behaviors of specimens. Numerical simulation was also applied to analyze the stress distribution in these two types of dental ceramics. Quasi-plastic damage occurred beneath the indenter in porcelain in all cases. In general, the fracture strength of VZ specimens was greater than that of CP specimens. The crack initiation loads of VZ and CP were determined as 958 ± 50 N and 724 ± 36 N, respectively. Cracks were induced by plastic damage and were subsequently driven by tensile stress at the elastic/plastic boundary and extended downward toward to the veneer/core interface from the observation of DIC at the specimen surface. Cracks penetrated into e.max press core, which led to a serious bulk fracture in CP crowns, while in VZ specimens, cracks were deflected and extended along the porcelain/zirconia core interface without penetration into the zirconia core. The rupture loads for VZ and CP ceramics were determined as 1150 ± 170 N and 857 ± 66 N, respectively. Quasi-plastic deformation (damage) is responsible for crack initiation within porcelain in both types of crowns. Due to the intrinsic mechanical properties, the fracture behaviors of these two types of ceramics are different. The zirconia core with high strength and high elastic modulus has better resistance to fracture than the e.max core. © 2013 by the American College of Prosthodontists.

  5. The effects of plastic waves on the numerical convergence of the viscous-plastic and elastic-viscous-plastic sea-ice models

    Science.gov (United States)

    Williams, James; Tremblay, L. Bruno; Lemieux, Jean-François

    2017-07-01

    The plastic wave speed is derived from the linearized 1-D version of the widely used viscous-plastic (VP) and elastic-viscous-plastic (EVP) sea-ice models. Courant-Friedrichs-Lewy (CFL) conditions are derived using the propagation speed of the wave. 1-D numerical experiments of the VP, EVP and EVP* models successfully recreate a reference solution when the CFL conditions are satisfied, in agreement with the theory presented. The IMplicit-EXplicit (IMEX) method is shown to effectively alleviate the plastic wave CFL constraint on the timestep in the implicitly solved VP model in both 1-D and 2-D. In 2-D, the EVP and EVP* models show first order error in the simulated velocity field when the plastic wave is not resolved. EVP simulations are performed with various advective timestep, number of subcycles, and elastic-wave damping timescales. It is found that increasing the number of subcycles beyond that needed to resolve the elastic wave does not improve the quality of the solution. It is found that reducing the elastic wave damping timescale reduces the spatial extent of first order errors cause by the unresolved plastic wave. Reducing the advective timestep so that the plastic wave is resolved also reduces the velocity error in terms of magnitude and spatial extent. However, the parameter set required for convergence to within the error bars of satellite (RGPS) deformation fields is impractical for use in climate model simulations. The behavior of the EVP* method is analogous to that of the EVP method except that it is not possible to reduce the damping timescale with α = β.

  6. Special Features of Strain Localization and Nanodipoles of Partial Disclinations in the Region of Elastic Distortions

    Science.gov (United States)

    Tyumentsev, A. N.; Ditenberg, I. A.; Sukhanov, I. I.

    2018-02-01

    In the zones of strain localization in the region of elastic distortions and nanodipoles of partial disclinations representing the defects of elastically deformed medium, a theoretical analysis of the elastically stressed state and the energy of these defects, including the cases of their transformation into more complex ensembles of interrelated disclinations, is performed. Using the analytical results, the mechanisms of strain localization are discussed in the stages of nucleation and propagation of the bands of elastic and plastic strain localization formed in these zones (including the cases of nanocrystalline structure formation).

  7. Influence of flow stress choice on the plastic collapse estimation of axially cracked steam generator tubes

    International Nuclear Information System (INIS)

    Tonkovic, Zdenko; Skozrit, Ivica; Alfirevic, Ivo

    2008-01-01

    The influence of the choice of flow stress on the plastic collapse estimation of axially cracked steam generator (SG) tubes is considered. The plastic limit and collapse loads of thick-walled tubes with external axial semi-elliptical surface cracks are investigated by three-dimensional non-linear finite element (FE) analyses. The limit pressure solution as a function of the crack depth, length and tube geometry has been developed on the basis of extensive FE limit load analyses employing the elastic-perfectly plastic material behaviour and small strain theory. Unlike the existing solutions, the newly developed analytical approximation of the plastic limit pressure for thick-walled tubes is applicable to a wide range of crack dimensions. Further, the plastic collapse analysis with a real strain-hardening material model and a large deformation theory is performed and an analytical approximation for the estimation of the flow stress is proposed. Numerical results show that the flow stress, defined by some failure assessment diagram (FAD) methods, depends not only on the tube material, but also on the crack geometry. It is shown that the plastic collapse pressure results, in the case of deeper cracks obtained by using the flow stress as the average of the yield stress and the ultimate tensile strength, can become unsafe

  8. Elastic-plastic dynamic analysis of a reactor building

    International Nuclear Information System (INIS)

    Umemura, Hajime; Tanaka, Hiroshi.

    1976-01-01

    The basic characteristics of the dynamic response of a reactor building to severe earthquake ground motion are very important for the evaluation of the safety of nuclear plant systems. A computer program for elastic-plastic dynamic analysis of reactor buildings using lumped mass models is developed. The box and cylindrical walls of boiling water reactor buildings are treated as vertical beams. The nonlinear moment-rotation and shear force-shear deformation relationships of walls are based in part upon the experiments of prototype structures. The geometrical non-linearity of the soil rocking spring due to foundation separation is also considered. The nonlinear equation of motion is expressed in incremental form using tangent stiffness matrices, following the algorithm developed by E.L. Wilson et al. The damping matrix in the equation is formulated as the combination of the energy evaluation method and Penzien-Wilson's approach to accomodate the different characteristics of soil and building damping. The analysis examples and the comparison of elastic and elastic-plastic analysis results are presented. (auth.)

  9. Analysis of Elastic-Plastic J Integrals for 3-Dimensional Cracks Using Finite Element Alternating Method

    International Nuclear Information System (INIS)

    Park, Jai Hak

    2009-01-01

    SGBEM(Symmetric Galerkin Boundary Element Method)-FEM alternating method has been proposed by Nikishkov, Park and Atluri. In the proposed method, arbitrarily shaped three-dimensional crack problems can be solved by alternating between the crack solution in an infinite body and the finite element solution without a crack. In the previous study, the SGBEM-FEM alternating method was extended further in order to solve elastic-plastic crack problems and to obtain elastic-plastic stress fields. For the elastic-plastic analysis the algorithm developed by Nikishkov et al. is used after modification. In the algorithm, the initial stress method is used to obtain elastic-plastic stress and strain fields. In this paper, elastic-plastic J integrals for three-dimensional cracks are obtained using the method. For that purpose, accurate values of displacement gradients and stresses are necessary on an integration path. In order to improve the accuracy of stress near crack surfaces, coordinate transformation and partitioning of integration domain are used. The coordinate transformation produces a transformation Jacobian, which cancels the singularity of the integrand. Using the developed program, simple three-dimensional crack problems are solved and elastic and elastic-plastic J integrals are obtained. The obtained J integrals are compared with the values obtained using a handbook solution. It is noted that J integrals obtained from the alternating method are close to the values from the handbook

  10. Analysis of thermal ratchetting of a cylinder subjected to axially moving temperature front. Effect of kinematic hardening rule

    International Nuclear Information System (INIS)

    Ohno, Nobutada; Yari, Takashi; Kobayashi, Mineo

    1995-01-01

    When a cylinder is subjected to a temperature front moving cyclically in the axial direction, the circumferential plastic strain may accumulate with the increase of the number of cycles. This is a thermal ratchetting problem induced by a liquid surface moving in a cylinder, and it is important especially in designing fast breeder reactors. In the present paper, the effect of kinematic hardening rule on the thermal ratchetting analysis is discussed by implementing the following four kinds of kinematic hardening rules in a finite element analysis; the perfectly plastic model (PP), the linear kinematic hardening rule (LKH), the classical nonlinear kinematic hardening rule of Armstrong and Frederick (AF), and the rule proposed recently by Ohno and Wang (OW). It is shown that disregard of transient hardening after yielding leads to overestimating the thermal ratchetting, that a rule predicting larger mechanical ratchetting under uniaxial cyclic loading makes the thermal ratchetting more serious, and that the Ohno and Wang rule can render the analysis most realistic among them. (author)

  11. A strain-hardening bi-power law for the nonlinear behaviour of biological soft tissues.

    Science.gov (United States)

    Nicolle, S; Vezin, P; Palierne, J-F

    2010-03-22

    Biological soft tissues exhibit a strongly nonlinear viscoelastic behaviour. Among parenchymous tissues, kidney and liver remain less studied than brain, and a first goal of this study is to report additional material properties of kidney and liver tissues in oscillatory shear and constant shear rate tests. Results show that the liver tissue is more compliant but more strain hardening than kidney. A wealth of multi-parameter mathematical models has been proposed for describing the mechanical behaviour of soft tissues. A second purpose of this work is to develop a new constitutive law capable of predicting our experimental data in the both linear and nonlinear viscoelastic regime with as few parameters as possible. We propose a nonlinear strain-hardening fractional derivative model in which six parameters allow fitting the viscoelastic behaviour of kidney and liver tissues for strains ranging from 0.01 to 1 and strain rates from 0.0151 s(-1) to 0.7s(-1). Copyright (c) 2009 Elsevier Ltd. All rights reserved.

  12. Approximate techniques for predicting size effects on cleavage fracture toughness (Jc)

    International Nuclear Information System (INIS)

    Kirk, M.T.; Dodds, R.H. Jr.

    1993-07-01

    This investigation examines the ability of an elastic T-stress analysis coupled with modified boundary layer (MBL) solution to predict stresses ahead of a crack tip in a variety of planar geometries. The approximate stresses are used as input to estimate the effective driving force for cleavage fracture (J 0 ) using the micromechanically based approach introduced by Dodds and Anderson. Finite element analyses for a wide variety of planar cracked geometries are conducted which have elastic biaxiality parameters (β) ranging from -0.99 (very low constraint) to +2.96 (very high constraint). The magnitude and sign of β indicate the rate at which crack-tip constraint changes with increasing applied load. All results pertain to a moderately strain hardening material (strain hardening exponent (η) of 10). These analyses suggest that β is an effective indicator of both the accuracy of T-MBL estimates of J 0 and of applicability limits on evolving fracture analysis methodologies (i.e. T-MBL, J-Q, and J/J 0 ). Specifically, when 1β1>0.4 these analyses show that the T-MBL approximation of J 0 is accurate to within 20% of a detailed finite-element analysis. As ''structural type'' configurations, i.e. shallow cracks in tension, generally have 1β1>0.4, it appears that only an elastic analysis may be needed to determine reasonably accurate J 0 values for structural conditions

  13. Recycling polyethylene terephthalate wastes as short fibers in Strain-Hardening Cementitious Composites (SHCC).

    Science.gov (United States)

    Lin, Xiuyi; Yu, Jing; Li, Hedong; Lam, Jeffery Y K; Shih, Kaimin; Sham, Ivan M L; Leung, Christopher K Y

    2018-05-26

    As an important portion of the total plastic waste bulk but lack of reuse and recycling, the enormous amounts of polyethylene terephthalate (PET) solid wastes have led to serious environmental issues. This study explores the feasibility of recycling PET solid wastes as short fibers in Strain-Hardening Cementitious Composites (SHCCs), which exhibit strain-hardening and multiple cracking under tension, and therefore have clear advantages over conventional concrete for many construction applications. Based on micromechanical modeling, fiber dispersion and alkali resistance, the size of recycled PET fibers was first determined. Then the hydrophobic PET surface was treated with NaOH solution followed by a silane coupling agent to achieve the dual purpose of improving the fiber/matrix interfacial frictional bond (from 0.64 MPa to 0.80 MPa) and enhancing the alkali resistance for applications in alkaline cementitious environment. With surface treatment, recycling PET wastes as fibers in SHCCs is a promising approach to significantly reduce the material cost of SHCCs while disposing hazardous PET wastes in construction industry. Copyright © 2018 Elsevier B.V. All rights reserved.

  14. Influence of time-dependent elastic-plastic material behaviour on the load-carrying capacity of shells of revolution

    International Nuclear Information System (INIS)

    Schnabel, F.

    1987-01-01

    The present report deals with the influence of time-dependent material behavior on the load-carrying capacity of thin-walled shells of revolution. In the first part various creep-hardening hypotheses as well as the spatial and temporal discretization procedures employed are described. The adaptation of a well-tested finite element method based on ring elements to the treatment of creep problems and several time-integration procedures, in particular the iterative treatment of the coupling between creep and elastic-plastic strains as well as the important aspect of time-step-control are discussed in detail. In the second part several typical shell configurations are analyzed and a comparison with available theoretical and experimental results is made. Finally, the time-dependent load-carrying behavior of torispherical pressure vessel ends subjected to internal and external pressure is investigated and design aids for the determination of creep collapse times are proposed. (orig.) [de

  15. Fracture mechanics model of fragmentation

    International Nuclear Information System (INIS)

    Glenn, L.A.; Gommerstadt, B.Y.; Chudnovsky, A.

    1986-01-01

    A model of the fragmentation process is developed, based on the theory of linear elastic fracture mechanics, which predicts the average fragment size as a function of strain rate and material properties. This approach permits a unification of previous results, yielding Griffith's solution in the low-strain-rate limit and Grady's solution at high strain rates

  16. Review of Acceleration Methods for Seismic Analysis of Through-Wall Cracked Piping from the Viewpoint of Linear Elastic Fracture Mechanics

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jong Sung; Kim, Yong Woo [Sunchon National University, Suncheon (Korea, Republic of)

    2014-10-15

    Two acceleration methods, an effective force method (or inertia method) and a large mass method, have been applied for performing time history seismic analysis. The acceleration methods for uncracked structures have been verified via previous studies. However, no study has identified the validity of these acceleration methods for cracked piping. In this study, the validity of the acceleration methods for through-wall cracked piping is assessed via time history implicit dynamic elastic seismic analysis from the viewpoint of linear elastic fracture mechanics. As a result, it is identified that both acceleration methods show the same results for cracked piping if a large mass magnitude and maximum time increment are adequately selected.

  17. Review of Acceleration Methods for Seismic Analysis of Through-Wall Cracked Piping from the Viewpoint of Linear Elastic Fracture Mechanics

    International Nuclear Information System (INIS)

    Kim, Jong Sung; Kim, Yong Woo

    2014-01-01

    Two acceleration methods, an effective force method (or inertia method) and a large mass method, have been applied for performing time history seismic analysis. The acceleration methods for uncracked structures have been verified via previous studies. However, no study has identified the validity of these acceleration methods for cracked piping. In this study, the validity of the acceleration methods for through-wall cracked piping is assessed via time history implicit dynamic elastic seismic analysis from the viewpoint of linear elastic fracture mechanics. As a result, it is identified that both acceleration methods show the same results for cracked piping if a large mass magnitude and maximum time increment are adequately selected

  18. Mechanical behaviour of nanoparticles: Elasticity and plastic ...

    Indian Academy of Sciences (India)

    2015-06-03

    Jun 3, 2015 ... Mechanical behaviour of nanoparticles: Elasticity and plastic deformation mechanisms ... The main results in terms of elasticity and plastic deformation mechanisms are then reported ... Pramana – Journal of Physics | News.

  19. Mesoscopic approach to modeling elastic-plastic polycrystalline material behaviour

    International Nuclear Information System (INIS)

    Kovac, M.; Cizelj, L.

    2001-01-01

    Extreme loadings during severe accident conditions might cause failure or rupture of the pressure boundary of a reactor coolant system. Reliable estimation of the extreme deformations can be crucial to determine the consequences of such an accident. One of important drawbacks of classical continuum mechanics is idealization of inhomogenous microstructure of materials. This paper discusses the mesoscopic approach to modeling the elastic-plastic behavior of a polycrystalline material. The main idea is to divide the continuum (e.g., polycrystalline aggregate) into a set of sub-continua (grains). The overall properties of the polycrystalline aggregate are therefore determined by the number of grains in the aggregate and properties of randomly shaped and oriented grains. The random grain structure is modeled with Voronoi tessellation and random orientations of crystal lattices are assumed. The elastic behavior of monocrystal grains is assumed to be anisotropic. Crystal plasticity is used to describe plastic response of monocrystal grains. Finite element method is used to obtain numerical solutions of strain and stress fields. The analysis is limited to two-dimensional models.(author)

  20. Modeling Pseudo-elastic Behavior of Springback

    International Nuclear Information System (INIS)

    Xia, Z. Cedric

    2005-01-01

    constant. In the context of this investigation we refer psuedoelastic behavior in the most general sense as any deviation from linearity in the unloading curve. The non-linearity leads to a hysteresis loop upon reloading. The approach is based on the non-conventional theory with a vanishing elastic region as advanced by Dafalias and Popov. The treatment is purely phenomenological where we don't distinguish between macroscopic plasticity and micro-plasticity. The macroscopic uniaxial stress-strain curve is used to define effective plastic response in the same manner as classical plasticity theory except that the nonlinearity during unloading and reloading are incorporated into plasticity. It is shown that such models can be easily formulated within the context of elastoplasticity without violating any physical mechanisms of deformation. Springback for a plane strain bending model is used to demonstrate the potential effect if such a model is applied

  1. Influence of plastic deformation on low temperature surface hardening of stainless steel by gaseous nitriding

    DEFF Research Database (Denmark)

    Bottoli, Federico; Winther, Grethe; Christiansen, Thomas Lundin

    2015-01-01

    This article addresses an investigation of the influence of plastic deformation on low temperature surface hardening by gaseous nitriding of three commercial austenitic stainless steels: AISI 304, EN 1.4369 and Sandvik Nanoflex® with various degrees of austenite stability. The materials were...... analysis, reflected light microscopy and microhardness indentation. The results demonstrate that a case of expanded austenite develops and that, in particular, the presence of strain-induced martensite in the initial (deformed) microstructure has a large influence on the nitrided zone....

  2. The use of a path independent integral in non-linear fracture mechanics

    International Nuclear Information System (INIS)

    Hellen, T.K.

    1977-01-01

    The use of the Rice J-intergral to assess conditions at a crack tip in an elastic or non-linear elastic body is well known. The integral equals the energy release rate and is path independent for any contour surrounding the crack tip provided no other singularities are encompassed. The path independence propertiy breaks down, however, in more general situations such as in three dimensional stress systems, plasticity unloading, thermal or creep states. Hence the required crack tip characteristics represented by the value of the integral round a contour whose radius about the tip tends to zero, is not reproduced along contours away from the tip. Consequently, an alternative integral, designated J*, has been proposed which equals J for elastic cases and in the other cases cited above remains path independent. A computer program for calculating the J and J* integrals has been developed as an extension to the BERSAFE finite element system. A full analysis of the cracked structure including plasticity, creep and thermal strains is conducted and the results are stored on a permanent data set. The integral values may then be calculated using the post-processor program for any number of contours and load or time steps, without recourse to further expensive computations. (Auth. )

  3. Some aspects of plasticity in hardened face-centred cubic metals

    International Nuclear Information System (INIS)

    Jackson, P.J.; Nathanson, P.D.K.

    1978-01-01

    The plasticity of crystals of f.c.c. metals hardened by solute atoms, neutron irradiation, quenching and by dislocation distributions not characteristic of the active mode of testing is reviewed, with emphasis being placed on the simiularity of slip after various hardening treatments. Normal work hardening is not treated. The reasons for this exclusion are discussed. It is concluded that correlated slip is a normal aspect of deformation, and that diffuse uncorrelated slip occurs only when secondary dislocation multiplication is promoted, e.g. by obstacles introduced by prior slip, or by the presence of hard impenetrable obstacles of another material or phase [af

  4. Elasto-plastic frame under horizontal and vertical Gaussian excitation

    DEFF Research Database (Denmark)

    Ditlevsen, Ove Dalager; Tarp-Johansen, Niels Jacob; Randrup-Thomsen, S.

    1999-01-01

    Taking geometric non-linearity into account anoscillator of the form as aportal frame with a rigid traverse and with ideal-elastic ideal-plasticclamped-in columns behaves under horizontalexcitation as an ideal-elastic hardening / softening-plastic oscilator given that the columns carry atension....../compression axial force. Assuming that the horizontal excitationof the traverse is Gaussian white noise, statistics related to the plastic displacement response are determinedby use of simulation based on the Slepian modelprocess method combined with envelope excursion properties. Besidesgiving physical insight...... the method givesgood approximations to results obtained by slow direct simulation of thetotal response. Moreover, the influence of a randomly varying axial column force isinvestigated by direct response simulation. This case corresponds to parametric excitation as generated by the vertical acceleration...

  5. Molecular dynamics investigation of the elastic and fracture properties of the R-graphyne under uniaxial tension

    Energy Technology Data Exchange (ETDEWEB)

    Rouhi, Saeed, E-mail: s_rouhi@iaul.ac.ir

    2017-05-15

    In this paper, the mechanical properties of the R-graphynes are investigated by using molecular dynamics simulations. For this purpose, the uniaxial strain is applied on the nanosheets. The effects of R-graphyne chirality and dimension on their fracture and elastic properties are investigated. It is shown that the fracture properties of the armchair R-graphyne are approximately independent from the nanosheet sizes. However, a clear dependence is observed in the fracture properties of the zigzag R-graphyne on the nanosheet dimensions. Comparing the elastic modulus of the armchair and zigzag R-graphynes, it is shown that for the same sizes, the elastic modulus of armchair R-graphyne is approximately equal to 2.5 times of the elastic modulus of the zigzag ones. Pursuing the fracture process of R-graphynes with different chiralities, it is represented that the fracture propagates in the zigzag nanosheet with a higher velocity than the armchair ones.

  6. Non-local plasticity effects on the tensile properties of a metal matrix composite

    DEFF Research Database (Denmark)

    Niordson, Christian Frithiof; Tvergaard, Viggo

    2001-01-01

    For a metal reinforced by aligned short fibres the effect of a material length scale characterising the inelastic deformations of the metal is studied. The elastic-plastic constitutive relations used here to represent the nonlocal effects are formulated so that the instantaneous hardening moduli...... depend on the gradient of the effective plastic strain. Numerical cell-model analyses are used to obtain a parametric understanding of the influence of different combinations of the main material parameters. The analyses show a strong dependence on the fibre diameter for given values of all other...

  7. A linear model of ductile plastic damage

    International Nuclear Information System (INIS)

    Lemaitre, J.

    1983-01-01

    A three-dimensional model of isotropic ductile plastic damage based on a continuum damage variable on the effective stress concept and on thermodynamics is derived. As shown by experiments on several metals and alloys, the model, integrated in the case of proportional loading, is linear with respect to the accumulated plastic strain and shows a large influence of stress triaxiality [fr

  8. An elasto-plastic self-consistent model with hardening based on dislocation density, twinning and de-twinning: Application to strain path changes in HCP metals

    International Nuclear Information System (INIS)

    Zecevic, Milovan; Knezevic, Marko; Beyerlein, Irene J.; Tomé, Carlos N.

    2015-01-01

    In this work, we develop a polycrystal mean-field constitutive model based on an elastic–plastic self-consistent (EPSC) framework. In this model, we incorporate recently developed subgrain models for dislocation density evolution with thermally activated slip, twin activation via statistical stress fluctuations, reoriented twin domains within the grain and associated stress relaxation, twin boundary hardening, and de-twinning. The model is applied to a systematic set of strain path change tests on pure beryllium (Be). Under the applied deformation conditions, Be deforms by multiple slip modes and deformation twinning and thereby provides a challenging test for model validation. With a single set of material parameters, determined using the flow-stress vs. strain responses during monotonic testing, the model predicts well the evolution of texture, lattice strains, and twinning. With further analysis, we demonstrate the significant influence of internal residual stresses on (1) the flow stress drop when reloading from one path to another, (2) deformation twin activation, (3) de-twinning during a reversal strain path change, and (4) the formation of additional twin variants during a cross-loading sequence. The model presented here can, in principle, be applied to other metals, deforming by multiple slip and twinning modes under a wide range of temperature, strain rate, and strain path conditions

  9. Crack formation mechanisms during micro and macro indentation of diamond-like carbon coatings on elastic-plastic substrates

    DEFF Research Database (Denmark)

    Thomsen, N.B.; Fischer-Cripps, A.C.; Swain, M.V.

    1998-01-01

    of cracking and the fracture mechanisms taking place. In the study various diamond-like carbon (DLC) coatings deposited onto stainless steel and tool steel were investigated. Results primarily for one DLC system will be presented here. (C) 1998 Published by Elsevier Science S.A. All rights reserved.......In the present study crack formation is investigated on both micro and macro scale using spherical indenter tips. in particular, systems consisting of elastic coatings that are well adhered to elastic-plastic substrates are studied. Depth sensing indentation is used on the micro scale and Rockwell...... indentation on the macro scale. The predominant driving force for coating failure and crack formation during indentation is plastic deformation of the underlying substrate. The aim is to relate the mechanisms creating both delamination and cohesive cracking on both scales with fracture mechanical models...

  10. The finite element part of the LAMCAL program. Elastic-plastic fracture mechanics applications

    International Nuclear Information System (INIS)

    Lamain, L.G.; Blanckenburg, J.F.G.

    1982-01-01

    The elastic-plastic FEM code described in this report is the third part of the Lamcal program of which the two other parts for mesh generating and plotting were presented previously. Also this part uses the dynamic core storage. All variables and problem defining data are stored in one common array-SPACE. If all three parts are used together, the same common-SPACE is reused in each part. The lay-out of the complete program is given. J-integral evaluation and plotting can be done immediately in the FE run or afterwards in a post processing run. Post processing is done within the FEM part with a reduced core space. Originally developed as a general code, the use of the present version is mainly focussed on research in the field of the fracture mechanics. Several J-integral routines are available as well as crack growth modelling by node release or stiffness reduction, energy calculations, crack tip elements, etc. In this report the theory is discussed and some sample problems are given. The theory is presented in two parts, the general FEM and the more specific EPFM theory. For the sample problems, a choice has been made to show the accuracy of the program under more or less severe loading conditions

  11. Necking of anisotropic micro-films with strain-gradient effects

    DEFF Research Database (Denmark)

    Legarth, Brian Nyvang

    2008-01-01

    Necking of stubby micro-films of aluminum is investigated numerically by considering tension of a specimen with an initial imperfection used to onset localisation. Plastic anisotropy is represented by two different yield criteria and strain-gradient effects are accounted for using the visco......-plastic finite strain model. Furthermore, the model is extended to isotropic anisotropic hardening (evolving anisotropy). For isotropic hardening plastic anisotropy affects the predicted overall nominal stress level, while the peak stress remains at an overall logarithmic strain corresponding to the hardening...... exponent. This holds true for both local and nonlocal materials. Anisotropic hardening delays the point of maximum overall nominal stress....

  12. Finite element elastic-plastic analysis of LMFBR components

    International Nuclear Information System (INIS)

    Levy, A.; Pifko, A.; Armen, H. Jr.

    1978-01-01

    The present effort involves the development of computationally efficient finite element methods for accurately predicting the isothermal elastic-plastic three-dimensional response of thick and thin shell structures subjected to mechanical and thermal loads. This work will be used as the basis for further development of analytical tools to be used to verify the structural integrity of liquid metal fast breeder reactor (LMFBR) components. The methods presented here have been implemented into the three-dimensional solid element module (HEX) of the Grumman PLANS finite element program. These methods include the use of optimal stress points as well as a variable number of stress points within an element. This allows monitoring the stress history at many points within an element and hence provides an accurate representation of the elastic-plastic boundary using a minimum number of degrees of freedom. Also included is an improved thermal stress analysis capability in which the temperature variation and corresponding thermal strain variation are represented by the same functional form as the displacement variation. Various problems are used to demonstrate these improved capabilities. (Auth.)

  13. Effect of strengthening mechanisms on cold workability and instantaneous strain hardening behavior during grain refinement of AA 6061-10 wt.% TiO2 composite prepared by mechanical alloying

    International Nuclear Information System (INIS)

    Sivasankaran, S.; Sivaprasad, K.; Narayanasamy, R.; Iyer, Vijay Kumar

    2010-01-01

    Research highlights: → Various strengthening mechanisms such as solid solution, grain size, precipitate, dislocation and dispersion strengthening promoted yield strength of the composites → The 5 h sintered composite yielded a large plastic strain (23%) at ambient temperature. → The domination of interparticle friction effects, grain size and dislocation strengthening diminished the deformation capacity of the composites greater than 5 h of milling. → Ultra-fine grained composite (40 h) yielded a high strength (>1000 MPa). → The proposed instantaneous new Poisson's ratio and the instantaneous strain hardening index used to study the extent of plastic zone and strain levels of the composite. - Abstract: The mechanical alloying (MA) of AA 6061 alloy reinforced with 10 wt.% fine anatase-titania composites powder milled with different timings (1, 5, 10, 20, 30, and 40 h) was cold consolidated and sintered. The main purpose of this study is to investigate the effect of microstructure and the various strengthening mechanisms such as solid solution, grain size, precipitate, dislocation and dispersion strengthening during grain refinement of AA 6061-10 wt.% TiO 2 composite via MA on cold working and strain hardening behavior. The sintered composite preforms were characterized by X-ray diffraction, scanning electron microscope, and transmission electron microscope. The strengthening mechanisms were estimated by using simplified models available in the literatures. The evaluation of cold deformation behavior under triaxial stress condition through room temperature cold-upsetting tests (incremental loads) was studied by correlating the strengthening mechanisms. Among the developed strengthening mechanisms the grain size and dislocation strengthening mechanisms diminished the deformation capacity of the composites. The strain hardening behavior was also examined by proposing instantaneous strain hardening index (n i ). The value of maximum instantaneous strain

  14. Simulation of Anisotropic Rock Damage for Geologic Fracturing

    Science.gov (United States)

    Busetti, S.; Xu, H.; Arson, C. F.

    2014-12-01

    A continuum damage model for differential stress-induced anisotropic crack formation and stiffness degradation is used to study geologic fracturing in rocks. The finite element-based model solves for deformation in the quasi-linear elastic domain and determines the six component damage tensor at each deformation increment. The model permits an isotropic or anisotropic intact or pre-damaged reference state, and the elasticity tensor evolves depending on the stress path. The damage variable, similar to Oda's fabric tensor, grows when the surface energy dissipated by three-dimensional opened cracks exceeds a threshold defined at the appropriate scale of the representative elementary volume (REV). At the laboratory or wellbore scale (1000m) scales the damaged REV reflects early natural fracturing (background or tectonic fracturing) or shear strain localization (fault process zone, fault-tip damage, etc.). The numerical model was recently benchmarked against triaxial stress-strain data from laboratory rock mechanics tests. However, the utility of the model to predict geologic fabric such as natural fracturing in hydrocarbon reservoirs was not fully explored. To test the ability of the model to predict geological fracturing, finite element simulations (Abaqus) of common geologic scenarios with known fracture patterns (borehole pressurization, folding, faulting) are simulated and the modeled damage tensor is compared against physical fracture observations. Simulated damage anisotropy is similar to that derived using fractured rock-mass upscaling techniques for pre-determined fracture patterns. This suggests that if model parameters are constrained with local data (e.g., lab, wellbore, or reservoir domain), forward modeling could be used to predict mechanical fabric at the relevant REV scale. This reference fabric also can be used as the starting material property to pre-condition subsequent deformation or fluid flow. Continuing efforts are to expand the present damage

  15. Fracture mechanics analysis of reactor pressure vessel under pressurized thermal shock - The effect of elastic-plastic behavior and stainless steel cladding -

    International Nuclear Information System (INIS)

    Joo, Jae Hwang; Kang, Ki Ju; Jhung, Myung Jo

    2002-01-01

    Performed here is an assessment study for deterministic fracture mechanics analysis of a pressurized thermal shock (PTS). The PTS event means an event or transient in pressurized water reactors (PWRs) causing severe overcooling (thermal shock) concurrent with or followed by significant pressure in the reactor vessel. The problems consisting of two transients and 10 cracks are solved and maximum stress intensity factors and maximum allowable nil-ductility reference temperatures are calculated. Their results are compared each other to address the general characteristics between transients, crack types and analysis methods. The effects of elastic-plastic material behavior and clad coating on the inner surface are explored

  16. Branching structure and strain hardening of branched metallocene polyethylenes

    International Nuclear Information System (INIS)

    Torres, Enrique; Li, Si-Wan; Costeux, Stéphane; Dealy, John M.

    2015-01-01

    There have been a number of studies of a series of branched metallocene polyethylenes (BMPs) made in a solution, continuous stirred tank reactor (CSTR) polymerization. The materials studied vary in branching level in a systematic way, and the most highly branched members of the series exhibit mild strain hardening. An outstanding question is which types of branched molecules are responsible for strain hardening in extension. This question is explored here by use of polymerization and rheological models along with new data on the extensional flow behavior of the most highly branched members of the set. After reviewing all that is known about the effects of various branching structures in homogeneous polymers and comparing this with the structures predicted to be present in BMPs, it is concluded that in spite of their very low concentration, treelike molecules with branch-on-branch structure provide a large number of deeply buried inner segments that are essential for strain hardening in these polymers

  17. Branching structure and strain hardening of branched metallocene polyethylenes

    Energy Technology Data Exchange (ETDEWEB)

    Torres, Enrique; Li, Si-Wan; Costeux, Stéphane; Dealy, John M., E-mail: john.dealy@mcgill.ca [Department of Chemical Engineering, McGill University, Montreal, Quebec H3A 0C4 (Canada)

    2015-09-15

    There have been a number of studies of a series of branched metallocene polyethylenes (BMPs) made in a solution, continuous stirred tank reactor (CSTR) polymerization. The materials studied vary in branching level in a systematic way, and the most highly branched members of the series exhibit mild strain hardening. An outstanding question is which types of branched molecules are responsible for strain hardening in extension. This question is explored here by use of polymerization and rheological models along with new data on the extensional flow behavior of the most highly branched members of the set. After reviewing all that is known about the effects of various branching structures in homogeneous polymers and comparing this with the structures predicted to be present in BMPs, it is concluded that in spite of their very low concentration, treelike molecules with branch-on-branch structure provide a large number of deeply buried inner segments that are essential for strain hardening in these polymers.

  18. Elastic-plastic analysis of an axi-symmetric problem by a finite element method

    International Nuclear Information System (INIS)

    Isozaki, Toshikuni

    1984-06-01

    Generally speaking, many structures are designed and fabricated on the basis of an axi-symmetric structure. Finite Element Method is the capable method to solve these axi-symmetric problems beyond the elastic limit. As the first step to solve these problems, the computer program for the elastic-plastic analysis of the axi-symmetric problem is composed. The basic program is based upon that described in Zienkiewicz's text book to solve the elastic plane stress problem, taking the plastic stress matrix by Yamada's method into consideration and it is converted to solve the axi-symmetric problem. For the verification of the program, the plane strain problem of a cylindrical tube under internal pressure was solved. The computed results were compared with those shown in ADINA's user's manual. They showed close agreement. (author)

  19. Strain-rate dependent plasticity in thermo-mechanical transient analysis

    International Nuclear Information System (INIS)

    Rashid, Y.R.; Sharabi, M.N.

    1980-01-01

    The thermo-mechanical transient behavior of fuel element cladding and other reactor components is generally governed by the strain-rate properties of the material. Relevant constitutive modeling requires extensive material data in the form of strain-rate response as function of true-stress, temperature, time and environmental conditions, which can then be fitted within a theoretical framework of an inelastic constitutive model. In this paper, we present a constitutive formulation that deals continuously with the entire strain-rate range and has the desirable advantage of utilizing existing material data. The derivation makes use of strain-rate sensitive stress-strain curve and strain-rate dependent yield surface. By postulating a strain-rate dependent on Mises yield function and a strain-rate dependent kinematic hardening rule, we are able to derive incremental stress-strain relations that describe the strain-rate behavior in the entire deformation range spanning high strain-rate plasticity and creep. The model is sufficiently general as to apply to any materials and loading histories for which data is available. (orig.)

  20. Hydrogen embrittlement susceptibility of laser-hardened 4140 steel

    Energy Technology Data Exchange (ETDEWEB)

    Tsay, L.W.; Lin, Z.W. [Nat. Taiwan Ocean Univ., Keelung (Taiwan). Inst. of Mater. Eng.; Shiue, R.K. [Institute of Materials Sciences and Engineering, National Dong Hwa University, Hualien, Taiwan (Taiwan); Chen, C. [Institute of Materials Sciences and Engineering, National Taiwan University, Taipei, Taiwan (Taiwan)

    2000-10-15

    Slow strain rate tensile (SSRT) tests were performed to investigate the susceptibility to hydrogen embrittlement of laser-hardened AISI 4140 specimens in air, gaseous hydrogen and saturated H{sub 2}S solution. Experimental results indicated that round bar specimens with two parallel hardened bands on opposite sides along the loading axis (i.e. the PH specimens), exhibited a huge reduction in tensile ductility for all test environments. While circular-hardened (CH) specimens with 1 mm hardened depth and 6 mm wide within the gauge length were resistant to gaseous hydrogen embrittlement. However, fully hardened CH specimens became susceptible to hydrogen embrittlement for testing in air at a lower strain rate. The strength of CH specimens increased with decreasing the depth of hardened zones in a saturated H{sub 2}S solution. The premature failure of hardened zones in a susceptible environment caused the formation of brittle intergranular fracture and the decrease in tensile ductility. (orig.)

  1. Accelerated age hardening by plastic deformation in Al-Cu with minor additions of Si and Ge

    International Nuclear Information System (INIS)

    Victoria Castro Riglos, M.; Taquire de la Cruz, M.; Tolley, Alfredo

    2011-01-01

    An extremely fast hardening response with no reduction in peak hardness was obtained in Al-Cu with minor additions of Si and Ge by 8% plastic deformation before artificial aging. The mechanism for the accelerated hardening was determined by detailed characterization with transmission electron microscopy. Plastic deformation was found to enhance the nucleation rate of Si-Ge precipitates, resulting in a higher volume density. Such precipitates catalyzed the formation of θ' precipitates that are responsible for hardening.

  2. A modified Gurson-type plasticity model at finite strains: formulation, numerical analysis and phase-field coupling

    Science.gov (United States)

    Aldakheel, Fadi; Wriggers, Peter; Miehe, Christian

    2017-12-01

    The modeling of failure in ductile materials must account for complex phenomena at the micro-scale, such as nucleation, growth and coalescence of micro-voids, as well as the final rupture at the macro-scale, as rooted in the work of Gurson (J Eng Mater Technol 99:2-15, 1977). Within a top-down viewpoint, this can be achieved by the combination of a micro-structure-informed elastic-plastic model for a porous medium with a concept for the modeling of macroscopic crack discontinuities. The modeling of macroscopic cracks can be achieved in a convenient way by recently developed continuum phase field approaches to fracture, which are based on the regularization of sharp crack discontinuities, see Miehe et al. (Comput Methods Appl Mech Eng 294:486-522, 2015). This avoids the use of complex discretization methods for crack discontinuities, and can account for complex crack patterns. In this work, we develop a new theoretical and computational framework for the phase field modeling of ductile fracture in conventional elastic-plastic solids under finite strain deformation. It combines modified structures of Gurson-Tvergaard-Needelman GTN-type plasticity model outlined in Tvergaard and Needleman (Acta Metall 32:157-169, 1984) and Nahshon and Hutchinson (Eur J Mech A Solids 27:1-17, 2008) with a new evolution equation for the crack phase field. An important aspect of this work is the development of a robust Explicit-Implicit numerical integration scheme for the highly nonlinear rate equations of the enhanced GTN model, resulting with a low computational cost strategy. The performance of the formulation is underlined by means of some representative examples, including the development of the experimentally observed cup-cone failure mechanism.

  3. Use of notched beams to establish fracture criteria for beryllium

    International Nuclear Information System (INIS)

    Mayville, R.A.

    1980-01-01

    The fracture of an improved form of pure beryllium was studied under triaxial tensile stresses. This state of stress was produced by testing notched beams, which were thick enough to be in a state of plane strain at the center. A plane strain, elastic-incremental plasticity finite element program was then used to determine the stress and strain distributions at fracture. A four-point bend fixture was used to load the specimens. It was carefully designed and manufactured to eliminate virtually all of the shear stresses at the reduced section of the notched beams. The unixial properties were obtained

  4. Investigation of the local fracture toughness and the elastic-plastic fracture behavior of NiAl and tungsten by means of micro-cantilever tests; Untersuchung der lokalen Bruchzaehigkeit und des elastisch-plastischen Bruchverhaltens von NiAl und Wolfram mittels Mikrobiegebalkenversuchen

    Energy Technology Data Exchange (ETDEWEB)

    Ast, Johannes

    2016-07-01

    . This is linked to the thermally activated dislocation mobility which is more constrained in those samples. Investigations on plastically predeformed samples were performed in order to study the influence of the dislocation density on the fracture behavior. It was found that the fracture toughness was again not affected but that the predeformed samples failed at an earlier stage at lower J-integrals. This is due to the lower mobility of the dislocations emitted from the crack tip in consequence of the high amount of strain hardening and the higher flow stress in those samples. Experiments in ultrafine-grained tungsten revealed a fracture behavior which was more brittle than expected. A single grain at the crack front with its crystallographic orientation being prone to cleavage failure can decisively influence the fracture behavior at the micro scale. [German] Das Ziel dieser Arbeit war es, ein verbessertes Verstaendnis fuer die Groessenabhaengigkeit der Bruchzaehigkeit zu gewinnen. Hierfuer wurden mittels fokussierter Ionenstrahlen gekerbte Mikrobiegebalken in verschiedenen Groessen vom Submikrometerbereich bis hin zu einigen 10 μm in B2-NiAl und Wolfram praepariert. Diese beiden Materialien besitzen charakteristische Sproed-Duktil-Uebergange, die oberhalb der Raumtemperatur liegen. Dies erlaubte es, Bruchvorgaenge, welche von begrenzter plastischer Verformung um die Rissspitze begleitet werden, auf der Mikroskala zu untersuchen. Neue Methoden zur Beschreibung und Bestimmung des lokalen elastisch-plastischen Bruchverhaltens bzw. der Bruchzaehigkeit wurden hierfuer erarbeitet. Im Speziellen wurde das J-Integral-Konzept zur Ermittlung von Rissfortschritt ueber Steifigkeitsmessungen auf die Mikroskala uebertragen. Dies ermoeglichte eine praezise Analyse des fuer die Bruchzaehigkeit charakteristischen Uebergangs von Rissabstumpfung zu stabilem Rissfortschritt. Die Versuche an einkristallinem NiAl fuer die beiden untersuchten Risssysteme der harten und weichen Orientierung

  5. The effect of martensite plasticity on the cyclic deformation of super-elastic NiTi shape memory alloy

    International Nuclear Information System (INIS)

    Song, Di; Kang, Guozheng; Kan, Qianhua; Yu, Chao; Zhang, Chuanzeng

    2014-01-01

    Based on stress-controlled cyclic tension–unloading experiments with different peak stresses, the effect of martensite plasticity on the cyclic deformation of super-elastic NiTi shape memory alloy micro-tubes is investigated and discussed. The experimental results show that the reverse transformation from the induced martensite phase to the austenite phase is gradually restricted by the plastic deformation of the induced martensite phase caused by an applied peak stress that is sufficiently high (higher than 900 MPa), and the extent of such restriction increases with further increasing the peak stress. The residual and peak strains of super-elastic NiTi shape memory alloy accumulate progressively, i.e., transformation ratchetting occurs during the cyclic tension–unloading with peak stresses from 600 to 900 MPa, and the transformation ratchetting strain increases with the increase of the peak stress. When the peak stress is higher than 900 MPa, the peak strain becomes almost unchanged, but the residual strain accumulates and the dissipation energy per cycle decreases very quickly with the increasing number of cycles due to the restricted reverse transformation by the martensite plasticity. Furthermore, a quantitative relationship between the applied stress and the stabilized residual strain is obtained to reasonably predict the evolution of the peak strain and the residual strain. (paper)

  6. Grain-resolved elastic strains in deformed copper measured by three-dimensional X-ray diffraction

    DEFF Research Database (Denmark)

    Oddershede, Jette; Schmidt, Søren; Poulsen, Henning Friis

    2011-01-01

    This X-ray diffraction study reports the grain-resolved elastic strains in about 1000 randomly oriented grains embedded in a polycrystalline copper sample. Diffraction data were collected in situ in the undeformed state and at a plastic strain of 1.5% while the sample was under tensile load...

  7. Elastic-plastic failure analysis of pressure burst tests of thin toroidal shells

    International Nuclear Information System (INIS)

    Jones, D.P.; Holliday, J.E.; Larson, L.D.

    1998-07-01

    This paper provides a comparison between test and analysis results for bursting of thin toroidal shells. Testing was done by pressurizing two toroidal shells until failure by bursting. An analytical criterion for bursting is developed based on good agreement between structural instability predicted by large strain-large displacement elastic-plastic finite element analysis and observed burst pressure obtained from test. The failures were characterized by loss of local stability of the membrane section of the shells consistent with the predictions from the finite element analysis. Good agreement between measured and predicted burst pressure suggests that incipient structural instability as calculated by an elastic-plastic finite element analysis is a reasonable way to calculate the bursting pressure of thin membrane structures

  8. Microstructural evolution and strain hardening behavior of the cold-drawn austenitic stainless steels

    International Nuclear Information System (INIS)

    Choi, Jeom Yong; Jin, Won

    1998-01-01

    The strain induced α ' -martensite formation and the strain hardening behavior of metastable austenitic stainless steel during cold drawing have been investigated. The strain induced α ' -martensite nucleates mainly at the intersection of the mechanical twins rather than ε-martensite. It could be explained by the increase of stacking fault energy which arises from the heat generated during high speed drawing and, for AISI 304/Cu, the additional effect of Cu additions. The strain hardening behavior of austenitic stainless steel is strongly related to the microstructural evolution accompanied by strain induced α ' -martensite. The work hardening rates of cold-drawn 304 increased with increasing interstitial element(C,N) contents which affect the strength of the strain induced α ' -martensite

  9. Two-zone elastic-plastic single shock waves in solids.

    Science.gov (United States)

    Zhakhovsky, Vasily V; Budzevich, Mikalai M; Inogamov, Nail A; Oleynik, Ivan I; White, Carter T

    2011-09-23

    By decoupling time and length scales in moving window molecular dynamics shock-wave simulations, a new regime of shock-wave propagation is uncovered characterized by a two-zone elastic-plastic shock-wave structure consisting of a leading elastic front followed by a plastic front, both moving with the same average speed and having a fixed net thickness that can extend to microns. The material in the elastic zone is in a metastable state that supports a pressure that can substantially exceed the critical pressure characteristic of the onset of the well-known split-elastic-plastic, two-wave propagation. The two-zone elastic-plastic wave is a general phenomenon observed in simulations of a broad class of crystalline materials and is within the reach of current experimental techniques.

  10. Strain hardening of aluminium alloy 3004 in the deep drawing and ironing processes

    International Nuclear Information System (INIS)

    Courbon, J.; Duval, J.L.

    1993-01-01

    The evolution of material hardening resulting from the canmaking operations on aluminium beverage cans has been investigated. Tensile tests in cup walls revealed that deep drawing induced softening in the hoop direction and hardening in the meridian direction. This anisotropy is retained in the ironing operation. Changes in strain path on a heavily cold-rolled material probably cause such a complex behaviour. To determine hardening laws for deep drawing, simple shear tests were thus performed because of the strain path similarity. They allowed to determine hardening laws over larger strains than tension could reach and revealed a saturation of stress. Altogether they proved adapted to the understanding of deep drawing. (orig.)

  11. Microscopic fracture of filaments and its relation to the critical current under bending deformation in (Bi,Pb)2Sr2Ca2Cu3O10 composite superconducting tapes

    International Nuclear Information System (INIS)

    Hojo, Masaki; Nakamura, Mitsuhiro; Matsuoka, Tomoe; Tanaka, Mototsugu; Ochiai, Shojiro; Sugano, Michinaka; Osamura, Kozo

    2003-01-01

    The strain dependence of the critical current, I c , of (Bi,Pb) 2 Sr 2 Ca 2 Cu 3 O 10 (Bi2223)/Ag/Ag-Mg composite superconducting tapes has been studied both experimentally and analytically under bending deformation. Tests have been carried out for one type of tape used in the VAMAS bending round-robin programme. The complex stress-strain behaviour of each component was first analysed in tension. This was done by comparing the stress-strain curves of composite tapes with those of Ag and Ag-Mg alloy tapes. Here, the plastic deformation (work hardening) of Ag and Ag-Mg alloy, and the thermal residual strain due to the manufacturing process were taken into account. The fracture strain of Bi2223 filaments was inversely determined as 0.08% to meet the global tensile stress-strain curve of the composite tape. The calculated stress-strain curves finally agreed well with the experimental results when the as-supplied bending strain was taken into account. Then, the analysis was modified to fit the bending deformation. Here, the movement of the neutral axis due to the non-symmetric and elastic-plastic stress-strain curves of the components and their Bauschinger effect were taken into account. The relative decrease of I c with the increase in the Bi2223 tape curvature was calculated from the volume fraction of the broken filaments. The calculated I c agreed well with the experimental results when the movement of the neutral axis and the Bauschinger effect were taken into account. Microscopic observation of the spatial distribution of the filament fracture indicated that the damage occurred at the outermost layer on the tensile side when the curvature was small, and then the damage front shifted to the inside layers. The observed fracture behaviour of the Bi2223 filament agreed well with the estimated location based on the above analysis

  12. Microstructural changes and strain hardening effects in abrasive contacts at different relative velocities and temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Rojacz, H., E-mail: rojacz@ac2t.at [AC2T research GmbH, Viktor-Kaplan-Straße 2C, 2700 Wiener Neustadt (Austria); Mozdzen, G. [Aerospace & Advanced Composites GmbH, Viktor-Kaplan-Straße 2F, 2700 Wiener Neustadt (Austria); Weigel, F.; Varga, M. [AC2T research GmbH, Viktor-Kaplan-Straße 2C, 2700 Wiener Neustadt (Austria)

    2016-08-15

    Strain hardening is commonly used to reach the full potential of materials and can be beneficial in tribological contacts. 2-body abrasive wear was simulated in a scratch test, aimed at strain hardening effects in various steels. Different working conditions were examined at various temperatures and velocities. Strain hardening effects and microstructural changes were analysed with high resolution scanning electron microscopy (HRSEM), electron backscatter diffraction (EBSD), micro hardness measurements and nanoindentation. Statistical analysing was performed quantifying the influence of different parameters on microstructures. Results show a crucial influence of temperature and velocity on the strain hardening in tribological contacts. Increased velocity leads to higher deformed microstructures and higher increased surface hardness at a lower depth of the deformed zones at all materials investigated. An optimised surface hardness can be achieved knowing the influence of velocity (strain rate) and temperature for a “tailor-made” surface hardening in tribological systems aimed at increased wear resistance. - Highlights: •Hardening mechanisms and their intensity in tribological contacts are dependent on relative velocity and temperature. •Beneficial surface hardened zones are formed at certain running-in conditions; the scientific background is presented here. •Ferritic-pearlitic steels strain hardens via grain size reduction and decreasing interlamellar distances in pearlite. •Austenitic steels show excellent surface hardening (120% hardness increase) by twinning and martensitic transformation. •Ferritic steels with hard phases harden in the ferrite phase as per Hall-Petch equation and degree of deformation.

  13. Microstructural changes and strain hardening effects in abrasive contacts at different relative velocities and temperatures

    International Nuclear Information System (INIS)

    Rojacz, H.; Mozdzen, G.; Weigel, F.; Varga, M.

    2016-01-01

    Strain hardening is commonly used to reach the full potential of materials and can be beneficial in tribological contacts. 2-body abrasive wear was simulated in a scratch test, aimed at strain hardening effects in various steels. Different working conditions were examined at various temperatures and velocities. Strain hardening effects and microstructural changes were analysed with high resolution scanning electron microscopy (HRSEM), electron backscatter diffraction (EBSD), micro hardness measurements and nanoindentation. Statistical analysing was performed quantifying the influence of different parameters on microstructures. Results show a crucial influence of temperature and velocity on the strain hardening in tribological contacts. Increased velocity leads to higher deformed microstructures and higher increased surface hardness at a lower depth of the deformed zones at all materials investigated. An optimised surface hardness can be achieved knowing the influence of velocity (strain rate) and temperature for a “tailor-made” surface hardening in tribological systems aimed at increased wear resistance. - Highlights: •Hardening mechanisms and their intensity in tribological contacts are dependent on relative velocity and temperature. •Beneficial surface hardened zones are formed at certain running-in conditions; the scientific background is presented here. •Ferritic-pearlitic steels strain hardens via grain size reduction and decreasing interlamellar distances in pearlite. •Austenitic steels show excellent surface hardening (120% hardness increase) by twinning and martensitic transformation. •Ferritic steels with hard phases harden in the ferrite phase as per Hall-Petch equation and degree of deformation.

  14. Dynamic elastic-plastic behaviour of a frame including coupled bending and torsion

    International Nuclear Information System (INIS)

    Messmer, S.; Sayir, M.

    1989-01-01

    The full time response of a space frame under impact loading perpendicular to the frame plane is discussed. Theoretical solutions and experimental results are presented and compared. A space frame clamped at its two ends is loaded by a 0.22 lead bullet that hits a mass in the middle of the transversal beam of the frame. The loading time is about 40 to 60 μs and the resulting linear momentum of the impact in the experiment is 0.5 to 1 N s. The time response of this frame can be divided in four phases where different physical effects are dominant: (a) The loading phase where elastic wave motion dominates the time response. Because of the high impact forces, plastic deformation occurs in the vicinity of the mass and must be included in a theoretical model. The influence of reflections at the corners on the time response is shown in theory and experiment. (b) The evolution phase. Within this phase, a plastic collapse mechanism develops. Most of this phase is dominated by elastic deformation but local plastic deformations beside the mass are also present. Because many reflections at corners, clamps and the mass occur within this phase, a modal analysis method is used to predict time histories. (c) The plastic phase with plastic zones at the clamps. The phase sets in after the bending wave reaches the clamps. It is characterized by plastic deformation near the clamps and elastic deformation of the other parts of the frame. We used a modal analysis including plastic 'modes' to get accurate results. (d) The elastic vibration phase

  15. Elastic-plastic and creep analyses by assumed stress finite elements

    International Nuclear Information System (INIS)

    Pian, T.H.H.; Spilker, R.L.; Lee, S.W.

    1975-01-01

    A formulation is presented of incremental finite element solutions for both initial stress and initial strain problems based on modified complementary energy principle with relaxed inter-element continuity requirement. The corresponding finite element model is the assumed stress hybrid model which has stress parameters in the interior of each element and displacements at the individual nodes as unknowns. The formulation includes an important consideration that the states of stress and strain and the beginning of each increment may not satisfy the equilibrium and compatibility equations. These imbalance and mismatch conditions all lead to correction terms for the equivalent nodal forces of the matrix equations. The initial stress method is applied to elastic-plastic analysis of structures. In this case the stress parameters for the individual elements can be eliminated resulting to a system of equations with only nodal displacements as unknowns. Two different complementary energy principles can be formulated, in one of which the equilibrium of the final state of stress is maintained while in the other the equilibrium of the stress increments is maintained. Each of these two different formulations can be combined with different iterative schemes to be used at each incremental steps of the elastic-plastic analysis. It is also indicated clearly that for the initial stress method the state of stress at the beginning of each increments is in general, not in equilibrium and an imbalance correction is needed. Results of a comprehensive evaluation of various solution procedures by the initial stress method using the assumed stress hybrid elements are presented. The example used is the static response of a thick wall cylinder of elastic-perfectly plastic material under internal pressure. Solid of revolution elements with rectangular cross sections are used

  16. Mode I and mixed mode crack-tip fields in strain gradient plasticity

    DEFF Research Database (Denmark)

    Goutianos, Stergios

    2011-01-01

    Strain gradients develop near the crack-tip of Mode I or mixed mode cracks. A finite strain version of the phenomenological strain gradient plasticity theory of Fleck–Hutchinson (2001) is used here to quantify the effect of the material length scales on the crack-tip stress field for a sharp...... stationary crack under Mode I and mixed mode loading. It is found that for material length scales much smaller than the scale of the deformation gradients, the predictions converge to conventional elastic–plastic solutions. For length scales sufficiently large, the predictions converge to elastic solutions....... Thus, the range of length scales over which a strain gradient plasticity model is necessary is identified. The role of each of the three material length scales, incorporated in the multiple length scale theory, in altering the near-tip stress field is systematically studied in order to quantify...

  17. Elastic-Plastic Fracture Mechanics Analyses for Circumferential Part-Through Surface Cracks at the Interface Between elbows and Pipes

    International Nuclear Information System (INIS)

    Song, Tae Kwang; Oh, Chang Kyun; Kim, Yun Jae; Kim, Jong Sung; Jin, Tae Eun

    2007-01-01

    This paper presents plastic limit loads and approximate J-integral estimates for circumferential part-through surface crack at the interface between elbows and pipes. Based on finite element limit analyses using elastic-perfectly plastic materials, plastic limit moments under in-plane bending are obtained and it is found that they are similar those for circumferential part-through surface cracks in the center of elbow. Based on present FE results, closed-form limit load solutions are proposed. Welds are not explicitly considered and all materials are assumed to be homogeneous. And the method to estimate the elastic-plastic J-integral for circumferential part-through surface cracks at the interface between elbows and straight pipes is proposed based on the reference stress approach, which was compared with corresponding solutions for straight pipes

  18. Elastic-Plastic Fracture Mechanics Analyses For circumferential Part-through Surface Cracks At The Interface Between Elbows and Pipes

    International Nuclear Information System (INIS)

    Song, Tae Kwang; Kim, Yun Jae; Oh, Chang Kyun; Kim, Jong Sung; Jin, Tae Eun

    2007-01-01

    This paper presents plastic limit loads and approximate J-integral estimates for circumferential part-through surface crack at the interface between elbows and pipes. Based on finite element limit analyses using elastic-perfectly plastic materials, plastic limit moments under in-plane bending are obtained and it is found that they are similar those for circumferential part-through surface cracks in the center of elbow. Based on present FE results, closed-form limit load solutions are proposed. Welds are not explicitly considered and all materials are assumed to be homogeneous. And the method to estimate the elastic-plastic J-integral for circumferential part-through surface cracks at the interface between elbows and straight pipes is proposed based on the reference stress approach, which was compared with corresponding solutions for straight pipes

  19. Process design of press hardening with gradient material property influence

    International Nuclear Information System (INIS)

    Neugebauer, R.; Schieck, F.; Rautenstrauch, A.

    2011-01-01

    Press hardening is currently used in the production of automotive structures that require very high strength and controlled deformation during crash tests. Press hardening can achieve significant reductions of sheet thickness at constant strength and is therefore a promising technology for the production of lightweight and energy-efficient automobiles. The manganese-boron steel 22MnB5 have been implemented in sheet press hardening owing to their excellent hot formability, high hardenability, and good temperability even at low cooling rates. However, press-hardened components have shown poor ductility and cracking at relatively small strains. A possible solution to this problem is a selective increase of steel sheet ductility by press hardening process design in areas where the component is required to deform plastically during crash tests. To this end, process designers require information about microstructure and mechanical properties as a function of the wide spectrum of cooling rates and sequences and austenitizing treatment conditions that can be encountered in production environments. In the present work, a Continuous Cooling Transformation (CCT) diagram with corresponding material properties of sheet steel 22MnB5 was determined for a wide spectrum of cooling rates. Heating and cooling programs were conducted in a quenching dilatometer. Motivated by the importance of residual elasticity in crash test performance, this property was measured using a micro-bending test and the results were integrated into the CCT diagrams to complement the hardness testing results. This information is essential for the process design of press hardening of sheet components with gradient material properties.

  20. Parameter Identification of Piecewise Linear Plasticity Metal Models Used in Numerical Modeling of Structures Under Plastic Deformation and Failure

    Directory of Open Access Journals (Sweden)

    A. V. Shmeliov

    2016-01-01

    Full Text Available The article describes the models of metallic materials used in the calculation of deformation and destruction of engineering structures. The reliability of material models can adequately assess the strength characteristics of the designs of new technology in its designing and certification.The article deals with contingencies and true mechanical properties of materials and presents equations of their relationship. It notes that in the software systems mechanical characteristics of materials are given in the true sense.The paper considers the linear and exponential models of materials, their characteristics, and methods to implement them. It considers the models of Johnson-Cook Steinberg-Guinan, Zerilli-Armstrong, Cowper-Symonds, Gurson-Tvergaard that take into account the strain rate and temperature of the material. Describes their applications, advantages and disadvantages. Considers single- and multi-parameter criteria of materials fracture, the prospects for their use. Gives a rational justification for using a piecewise linear plasticity material model *MAT_PIECEWISE_LINEAR_PLASTICITY (024, LS-DYNA software package for the engineering industry, and presents its main parameters.A technique to identify parameters of piecewise linear plasticity metal material models has been developed. The technique consists of the stages, based on the equations of transition from the conventional stress and strain values to the true ones. Taking into consideration the stressstrain state in the neck of the sample is a distinctive feature of the technique.Tensile tests of the round material samples have been conducted. To test the developed technique in the software package ANSYS LS-DYNA PC have been made tensile sample modeling and results comparison to show high convergence.Further improvement of the technique can be achieved through the development of a statistical approach to the analysis of the results of a series of tests. This will allow a kind of

  1. Prediction of Ductile Fracture Surface Roughness Scaling

    DEFF Research Database (Denmark)

    Needleman, Alan; Tvergaard, Viggo; Bouchaud, Elisabeth

    2012-01-01

    . Ductile crack growth in a thin strip under mode I, overall plane strain, small scale yielding conditions is analyzed. Although overall plane strain loading conditions are prescribed, full 3D analyses are carried out to permit modeling of the three dimensional material microstructure and of the resulting......Experimental observations have shown that the roughness of fracture surfaces exhibit certain characteristic scaling properties. Here, calculations are carried out to explore the extent to which a ductile damage/fracture constitutive relation can be used to model fracture surface roughness scaling...... three dimensional stress and deformation states that develop in the fracture process region. An elastic-viscoplastic constitutive relation for a progressively cavitating plastic solid is used to model the material. Two populations of second phase particles are represented: large inclusions with low...

  2. Modeling and Analysis of Size-Dependent Structural Problems by Using Low- Order Finite Elements with Strain Gradient Plasticity

    International Nuclear Information System (INIS)

    Park, Moon Shik; Suh, Yeong Sung; Song, Seung

    2011-01-01

    An elasto-plastic finite element method using the theory of strain gradient plasticity is proposed to evaluate the size dependency of structural plasticity that occurs when the configuration size decreases to micron scale. For this method, we suggest a low-order plane and three-dimensional displacement-based elements, eliminating the need for a high order, many degrees of freedom, a mixed element, or super elements, which have been considered necessary in previous researches. The proposed method can be performed in the framework of nonlinear incremental analysis in which plastic strains are calculated and averaged at nodes. These strains are then interpolated and differentiated for gradient calculation. We adopted a strain-gradient-hardening constitutive equation from the Taylor dislocation model, which requires the plastic strain gradient. The developed finite elements are tested numerically on the basis of typical size-effect problems such as micro-bending, micro-torsion, and micro-voids. With respect to the strain gradient plasticity, i.e., the size effects, the results obtained by using the proposed method, which are simple in their calculation, are in good agreement with the experimental results cited in previously published papers

  3. NUMERICAL MODELLING OF THE SOIL BEHAVIOUR BY USING NEWLY DEVELOPED ADVANCED MATERIAL MODEL

    Directory of Open Access Journals (Sweden)

    Jan Veselý

    2017-02-01

    Full Text Available This paper describes a theoretical background, implementation and validation of the newly developed Jardine plastic hardening-softening model (JPHS model, which can be used for numerical modelling of the soils behaviour. Although the JPHS model is based on the elasto-plastic theory, like the Mohr-Coulomb model that is widely used in geotechnics, it contains some improvements, which removes the main disadvantages of the MC model. The presented model is coupled with an isotopically hardening and softening law, non-linear elastic stress-strain law, non-associated elasto-plastic material description and a cap yield surface. The validation of the model is done by comparing the numerical results with real measured data from the laboratory tests and by testing of the model on the real project of the tunnel excavation. The 3D numerical analysis is performed and the comparison between the JPHS, Mohr-Coulomb, Modified Cam-Clay, Hardening small strain model and monitoring in-situ data is done.

  4. An analysis of hypercritical states in elastic and inelastic systems

    Science.gov (United States)

    Kowalczk, Maciej

    The author raises a wide range of problems whose common characteristic is an analysis of hypercritical states in elastic and inelastic systems. the article consists of two basic parts. The first part primarily discusses problems of modelling hypercritical states, while the second analyzes numerical methods (so-called continuation methods) used to solve non-linear problems. The original approaches for modelling hypercritical states found in this article include the combination of plasticity theory and an energy condition for cracking, accounting for the variability and cyclical nature of the forms of fracture of a brittle material under a die, and the combination of plasticity theory and a simplified description of the phenomenon of localization along a discontinuity line. The author presents analytical solutions of three non-linear problems for systems made of elastic/brittle/plastic and elastic/ideally plastic materials. The author proceeds to discuss the analytical basics of continuation methods and analyzes the significance of the parameterization of non-linear problems, provides a method for selecting control parameters based on an analysis of the rank of a rectangular matrix of a uniform system of increment equations, and also provides a new method for selecting an equilibrium path originating from a bifurcation point. The author provides a general outline of continuation methods based on an analysis of the rank of a matrix of a corrective system of equations. The author supplements his theoretical solutions with numerical solutions of non-linear problems for rod systems and problems of the plastic disintegration of a notched rectangular plastic plate.

  5. Demonstration of finite element simulations in MOOSE using crystallographic models of irradiation hardening and plastic deformation

    Energy Technology Data Exchange (ETDEWEB)

    Patra, Anirban [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Wen, Wei [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Martinez Saez, Enrique [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Tome, Carlos [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-05-31

    This report describes the implementation of a crystal plasticity framework (VPSC) for irradiation hardening and plastic deformation in the finite element code, MOOSE. Constitutive models for irradiation hardening and the crystal plasticity framework are described in a previous report [1]. Here we describe these models briefly and then describe an algorithm for interfacing VPSC with finite elements. Example applications of tensile deformation of a dog bone specimen and a 3D pre-irradiated bar specimen performed using MOOSE are demonstrated.

  6. Evolution of damage and fracture in two families of Ni–Cu–Mo sinter-hardened steels with various initial porosities

    Energy Technology Data Exchange (ETDEWEB)

    Gilmas, Margaux [Laboratoire de Cristallographie et Sciences des Matériaux, ENSICAEN, Université de Caen, CNRS, 6 Bd Maréchal Juin, 14050 Caen (France); Chottin, Jerôme [FAURECIA, ZI de Brieres les Scelles, Etampes F-91150 (France); Dougan, Mark J. [AMES SA, Ctra. Nac. 340 Km. 1.242 Pol. Ind “Les Fallulles”, 08620 Saint Vicenc dels Horts, Barcelona (Spain); Hug, Eric, E-mail: eric.hug@ensicaen.fr [Laboratoire de Cristallographie et Sciences des Matériaux, ENSICAEN, Université de Caen, CNRS, 6 Bd Maréchal Juin, 14050 Caen (France)

    2016-01-27

    The damage evolution of two families of industrial sinter-hardened low alloy steels with different density levels was studied by means of mechanical tests coupled with microstructural observations. Several differences between the families were highlighted through the characterization of their microstructure, hardness and porosity. The presence of nickel rich austenite was revealed in the first family and larger pores were found in the latter. This work shows that those metallurgical characteristics markedly influence the behavior in tension and the damage evolution during mechanical loading. The ultimate tensile strength and the elongation at fracture are up to twice as high for the first family than for the second one which points out the beneficial role of the austenite as well as the detrimental role of larger pores to the mechanical properties. A fractography analysis showing mixed fracture modes supports these results. Two stages in the evolution of damage were highlighted by the evolution of the Young's modulus during loading–unloading tests up to fracture of specimens. As plastic deformation increases, a competition takes place between the damage growth in the neighborhood of the pores and plasticity mechanisms inside the metallic matrix. The evolution law linking a scalar damage parameter to the deformation was finally identified considering only plasticity mechanisms thanks to a previous continuum damage mechanics model developed within the framework of thermodynamics.

  7. Evolution of damage and fracture in two families of Ni–Cu–Mo sinter-hardened steels with various initial porosities

    International Nuclear Information System (INIS)

    Gilmas, Margaux; Chottin, Jerôme; Dougan, Mark J.; Hug, Eric

    2016-01-01

    The damage evolution of two families of industrial sinter-hardened low alloy steels with different density levels was studied by means of mechanical tests coupled with microstructural observations. Several differences between the families were highlighted through the characterization of their microstructure, hardness and porosity. The presence of nickel rich austenite was revealed in the first family and larger pores were found in the latter. This work shows that those metallurgical characteristics markedly influence the behavior in tension and the damage evolution during mechanical loading. The ultimate tensile strength and the elongation at fracture are up to twice as high for the first family than for the second one which points out the beneficial role of the austenite as well as the detrimental role of larger pores to the mechanical properties. A fractography analysis showing mixed fracture modes supports these results. Two stages in the evolution of damage were highlighted by the evolution of the Young's modulus during loading–unloading tests up to fracture of specimens. As plastic deformation increases, a competition takes place between the damage growth in the neighborhood of the pores and plasticity mechanisms inside the metallic matrix. The evolution law linking a scalar damage parameter to the deformation was finally identified considering only plasticity mechanisms thanks to a previous continuum damage mechanics model developed within the framework of thermodynamics.

  8. Basic Strain Gradient Plasticity Theories with Application to Constrained Film Deformation

    DEFF Research Database (Denmark)

    Niordson, Christian Frithiof; Hutchinson, John W.

    2011-01-01

    films: the compression or extension of a finite layer joining rigid platens. Full elastic-plastic solutions are obtained for the same problem based on a finite element method devised for the new class of flow theories. Potential difficulties and open issues associated with the new class of flow theories......A family of basic rate-independent strain gradient plasticity theories is considered that generalize conventional J(2) deformation and flow theories of plasticity to include a dependence on strain gradients in a simple way. The theory builds on three recent developments: the work of Gudmundson (J....... Mech. Phys. Solids 52 (2004), 1379-1406) and Gurtin and Anand (J. Mech. Phys. Solids 57 (2009), 405-421), proposing constitutive relations for flow theories consistent with requirements of positive plastic dissipation; the work of Fleck and Willis (J. Mech. Phys. Solids 57 (2009), 161-177 and 1045...

  9. Orowan strengthening and forest hardening superposition examined by dislocation dynamics simulations

    International Nuclear Information System (INIS)

    Queyreau, Sylvain; Monnet, Ghiath; Devincre, Benoit

    2010-01-01

    Rule of mixtures are an essential feature of the modeling of plastic deformation in complex materials in which more than one strain-hardening mechanism is involved. In this work, use is made of dislocation dynamics simulations to characterize the individual and the superposed contributions of two major mechanisms of crystal plasticity, i.e. Orowan strengthening and forest hardening. Based on a formal description of each hardening mechanism, evidence is presented to show that a quadratic rule of mixtures has the ability to predict quantitatively the flow stress of complex materials such as reactor pressure vessel steel.

  10. Dynamic tensile behavior of electron beam additive manufactured Ti6Al4V

    International Nuclear Information System (INIS)

    Rodriguez, O.L.; Allison, P.G.; Whittington, W.R.; Francis, D.K.; Rivera, O.G.; Chou, K.; Gong, X.; Butler, T.M.; Burroughs, J.F.

    2015-01-01

    High rate and quasi-static tensile experiments examined strain rate dependence on flow stress and strain hardening of additive manufactured Ti6Al4V. Variations on strain-hardening coefficient indicate that the rate of thermal softening is greater than strain hardening during plastic deformation. Strain rate sensitivity calculations within the plastic strain regime suggest changes in deformation mechanisms. Fractography revealed cup-and-cone fracture for quasi-static samples and shear mechanisms for high rate samples. As-deposited microstructure consisted of bimodal α+β with the presence of secondary martensitic phase

  11. Dynamic tensile behavior of electron beam additive manufactured Ti6Al4V

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez, O.L. [Department of Mechanical Engineering, University of Alabama, Tuscaloosa, AL 35487 (United States); Allison, P.G., E-mail: pallison@eng.ua.edu [Department of Mechanical Engineering, University of Alabama, Tuscaloosa, AL 35487 (United States); Whittington, W.R.; Francis, D.K. [Department of Mechanical Engineering, Mississippi State University, Starkville, MS 35759 (United States); Rivera, O.G.; Chou, K.; Gong, X. [Department of Mechanical Engineering, University of Alabama, Tuscaloosa, AL 35487 (United States); Butler, T.M. [Department of Metallurgical Engineering, University of Alabama, Tuscaloosa, AL 35487 (United States); Burroughs, J.F. [Geotechnical & Structures Laboratory, US Army ERDC, Vicksburg, MS 39180 (United States)

    2015-08-12

    High rate and quasi-static tensile experiments examined strain rate dependence on flow stress and strain hardening of additive manufactured Ti6Al4V. Variations on strain-hardening coefficient indicate that the rate of thermal softening is greater than strain hardening during plastic deformation. Strain rate sensitivity calculations within the plastic strain regime suggest changes in deformation mechanisms. Fractography revealed cup-and-cone fracture for quasi-static samples and shear mechanisms for high rate samples. As-deposited microstructure consisted of bimodal α+β with the presence of secondary martensitic phase.

  12. Shear banding in large strain plasticity - Influence of specimen dimensions

    Science.gov (United States)

    Mucha, Marzena; Wcisło, Balbina; Pamin, Jerzy

    2018-01-01

    The paper deals with numerical analysis of shear banding which occurs in an elongated rectangular plate for a large strain elastic-plastic material model. It is focused on the influence of plate size proportions and finite element mesh density on numerical results. The discussion is limited to isothermal conditions and ideal plasticity. First a plain strain case is computed for different lengths of the plate, then simulations are repeated for plane stress for which different thicknesses of the plate are considered. Most of the computations are performed for three finite element meshes to verify discretization sensitivity of the results. The simulations are performed using AceGen and AceFEM packages for Wolfram Mathematica.

  13. The J-integral concept for elastic-plastic material behavior

    International Nuclear Information System (INIS)

    Schmitt, W.; Kienzler, R.

    1987-03-01

    A simple analytical extension of the J integral has been presented which extends the J concept to apply for materials described by an incremental theory of plasticity. The stress work density replacing the strain energy density is load-history dependent. The J integral may be made path independent by virtue of an additional volume integral and may be understood as work dissipation rate. The discussion of the consequences for the applicability of the J concept to describe fracture processes showed that validity criteria proposed in the standards are not sufficient to yield configuration-independent J-resistance curves. However, a possibility is sketched to assess those structure-dependent resistance curves based on plastic-collapse considerations. With 6 figs., 33 refs

  14. Evaluation of fracture mechanics analyses used in RPV integrity assessment regarding brittle fracture

    International Nuclear Information System (INIS)

    Moinereau, D.; Faidy, C.; Valeta, M.P.; Bhandari, S.; Guichard, D.

    1997-01-01

    Electricite de France has conducted during these last years some experimental and numerical research programmes in order to evaluate fracture mechanics analyses used in nuclear reactor pressure vessels structural integrity assessment, regarding the risk of brittle fracture. These programmes included cleavage fracture tests on large scale cladded specimens containing subclad flaws with their interpretations by 2D and 3D numerical computations, and validation of finite element codes for pressurized thermal shocks analyses. Four cladded specimens made of ferritic steel A508 C13 with stainless steel cladding, and containing shallow subclad flaws, have been tested in four point bending at very low temperature in order to obtain cleavage failure. The specimen failure was obtained in each case in base metal by cleavage fracture. These tests have been interpreted by two-dimensional and three-dimensional finite element computations using different fracture mechanics approaches (elastic analysis with specific plasticity corrections, elastic-plastic analysis, local approach to cleavage fracture). The failure of specimens are conservatively predicted by different analyses. The comparison between the elastic analyses and elastic-plastic analyses shows the conservatism of specific plasticity corrections used in French RPV elastic analyses. Numerous finite element calculations have also been performed between EDF, CEA and Framatome in order to compare and validate several fracture mechanics post processors implemented in finite element programmes used in pressurized thermal shock analyses. This work includes two-dimensional numerical computations on specimens with different geometries and loadings. The comparisons show a rather good agreement on main results, allowing to validate the finite element codes and their post-processors. (author). 11 refs, 24 figs, 3 tabs

  15. Evaluation of fracture mechanics analyses used in RPV integrity assessment regarding brittle fracture

    Energy Technology Data Exchange (ETDEWEB)

    Moinereau, D [Electricite de France, Dept. MTC, Moret-sur-Loing (France); Faidy, C [Electricite de France, SEPTEN, Villeurbanne (France); Valeta, M P [Commisariat a l` Energie Atomique, Dept. DMT, Gif-sur-Yvette (France); Bhandari, S; Guichard, D [Societe Franco-Americaine de Constructions Atomiques (FRAMATOME), 92 - Paris-La-Defense (France)

    1997-09-01

    Electricite de France has conducted during these last years some experimental and numerical research programmes in order to evaluate fracture mechanics analyses used in nuclear reactor pressure vessels structural integrity assessment, regarding the risk of brittle fracture. These programmes included cleavage fracture tests on large scale cladded specimens containing subclad flaws with their interpretations by 2D and 3D numerical computations, and validation of finite element codes for pressurized thermal shocks analyses. Four cladded specimens made of ferritic steel A508 C13 with stainless steel cladding, and containing shallow subclad flaws, have been tested in four point bending at very low temperature in order to obtain cleavage failure. The specimen failure was obtained in each case in base metal by cleavage fracture. These tests have been interpreted by two-dimensional and three-dimensional finite element computations using different fracture mechanics approaches (elastic analysis with specific plasticity corrections, elastic-plastic analysis, local approach to cleavage fracture). The failure of specimens are conservatively predicted by different analyses. The comparison between the elastic analyses and elastic-plastic analyses shows the conservatism of specific plasticity corrections used in French RPV elastic analyses. Numerous finite element calculations have also been performed between EDF, CEA and Framatome in order to compare and validate several fracture mechanics post processors implemented in finite element programmes used in pressurized thermal shock analyses. This work includes two-dimensional numerical computations on specimens with different geometries and loadings. The comparisons show a rather good agreement on main results, allowing to validate the finite element codes and their post-processors. (author). 11 refs, 24 figs, 3 tabs.

  16. A comparative study on the elastic modulus of polyvinyl alcohol sponge using different stress-strain definitions.

    Science.gov (United States)

    Karimi, Alireza; Navidbakhsh, Mahdi; Alizadeh, Mansour; Razaghi, Reza

    2014-10-01

    There have been different stress-strain definitions to measure the elastic modulus of spongy materials, especially polyvinyl alcohol (PVA) sponge. However, there is no agreement as to which stress-strain definition should be implemented. This study was aimed to show how different results are given by the various definitions of stress-strain used, and to recommend a specific definition when testing spongy materials. A fabricated PVA sponge was subjected to a series of tensile tests in order to measure its mechanical properties. Three stress definitions (second Piola-Kichhoff stress, engineering stress, and true stress) and four strain definitions (Almansi-Hamel strain, Green-St. Venant strain, engineering strain, and true strain) were used to determine the elastic modulus. The results revealed that the Almansi-Hamel strain definition exhibited the highest non-linear stress-strain relation and, as a result, may overestimate the elastic modulus at different stress definitions (second Piola-Kichhoff stress, engineering stress, and true stress). The Green-St. Venant strain definition failed to address the non-linear stress-strain relation using different definitions of stress and invoked an underestimation of the elastic modulus values. Engineering stress and strain definitions were only valid for small strains and displacements, which make them impractical when analyzing spongy materials. The results showed that the effect of varying the stress definition on the maximum stress measurements was significant but not when calculating the elastic modulus. It is important to consider which stress-strain definition is employed when characterizing the mechanical properties of spongy materials. Although the true stress-true strain definition exhibits a non-linear relation, we favor it in spongy materials mechanics as it gives more accurate measurements of the material's response using the instantaneous values.

  17. A plastic stress intensity factor approach to turbine disk structural integrity assessment

    OpenAIRE

    Shlyannikov, V.; Zakharov, A.; Yarullin, R.

    2016-01-01

    This study based on a new fracture mechanics parameter is concerned with assessing the integrity of cracked steam turbine disk which operate under startup-shutdown cyclic loading conditions. Damage accumulation and growth in service have occurred on the inner surface of slot fillet of key. In order to determine elastic-plastic fracture mechanics parameters full-size stress-strain state analysis of turbine disk was performed for a quote-elliptical part-through cracks under consider...

  18. Elastic-plastic response of a piping system due to simulated double-ended guillotine break events

    International Nuclear Information System (INIS)

    Kussmaul, K.; Diem, H.; Hunger, H.; Katzenmeier, G.

    1987-01-01

    From the blowdown experiments performed on the HDR feedwater line with feedwater check valve the conclusion can be drawn that high transient loads of up to plastic strains of 3%, acting on an initially integer piping system, can be sustained without loss of integrity for a low number of load cycles due to the plasticizing capacity of the pipework materials nowadays used in the reactor technology. In the experiments carried out with ferritic piping of ND 400 pressure peaks up to about 31,5 mPA were achieved which resulted in excessive strains of up to 3%. By nonlinear finite element computations (ABAQUS) it was possible to describe the elastic-plastic behaviour of the piping in a good approximation. On account of the safety margins proved in the experiments, potential inaccuracies in theoretical structure analyses are recommended so as to be on the safe side. On the other hand, it appears that designing pipework with reference to elastic stress categories does not adequately take into account the actual reserves of the pipework material

  19. A study on plastic strain accumulation caused by traveling of temperature distribution synchronizing with temperature rise

    International Nuclear Information System (INIS)

    Okajima, Satoshi

    2016-01-01

    The prevention of excessive deformation by thermal ratcheting is important in the design of high-temperature components of fast breeder reactors (FBR). This includes evaluation methods for a new type of thermal ratcheting caused by an axial traveling of temperature distribution, which corresponds to moving-up of liquid sodium surface in startup phase. Long range traveling of the axial temperature distribution brings flat plastic deformation profile in wide range. Therefore, at the center of this range, residual stress that brings shakedown behavior does not accumulate. As a result, repeating of this temperature traveling brings continuous accumulation of the plastic strain, even if there is no primary stress. In contrast, in the case with short range traveling, residual stress is caused by constraint against elastic part, and finally it results in shakedown. Because of this mechanism, we supposed that limit for the shakedown behavior depends on distance from the elastic part (i.e. half length of region with plastic deformation). In this paper, we examined characteristics of the accumulation of the plastic strain caused by realistic heat transients, namely, traveling of temperature distribution synchronizing with temperature rise. This examination was based on finite element analyses using elastic-perfectly plastic material. As a result, we confirmed that the shakedown limit depends not on the traveling range of the temperature distribution but the plastic deformation range, which was predicted by the elastic analysis. In the actual application, we can control the plastic deformation range by changing rate of the moving-up of liquid sodium surface. (author)

  20. Elastic-plastic response of a piping system due to simulated double-ended guillotine break events

    International Nuclear Information System (INIS)

    Kussmaul, K.; Diem, H.; Hunger, H.; Katzenmeier, G.

    1987-01-01

    From the blowdown experiments performed on the HDR feedwater line with feedwater check valve the conclusion can be drawn that high transient loads of up to plastic strains of 3%, acting on an initially integer piping system, can be sustained without loss of integrity for a low number of load cycles due to the plasticizing capacity of the pipework materials nowadays used in reactor technology. In the experiments carried out with ferritic piping of ND 400 pressure peaks up to about 31,5 MPa were achieved which resulted in excessive strains of up to 3%. By nonlinear finite element computations (ABAQUS) it was possible to describe the elastic-plastic behaviour of the piping in a good approximation. (orig./GL)

  1. Application of elastic and elastic-plastic fracture mechanics methods to surface flaws

    Science.gov (United States)

    McCabe, Donald E.; Ernst, Hugo A.; Newman, James C., Jr.

    Fuel tanks that are a part of the External Tank assembly for the Space Shuttle are made of relatively thin 2219-T87 aluminum plate. These tanks contain about 917 m of fusion weld seam, all of which is nondestructively inspected for flaws and all those found are repaired. The tanks are subsequently proof-tested to a pressure that is sufficiently severe to cause weld metal yielding in a few local regions of the weld seam. The work undertaken in the present project was to develop a capability to predict flaw growth from undetected surface flaws that are assumed to be located in the highly stressed regions. The technical challenge was to develop R-curve prediction capability for surface cracks in specimens that contain the flaws of unusual sizes and shapes deemed to be of interest. The test techniques developed and the elastic-plastic analysis concepts adopted are presented. The flaws of interest were quite small surface cracks that were narrow-deep ellipses that served to exacerbate the technical difficulties involved.

  2. A new criterion for elasto-plastic transition in nanomaterials: Application to size and composite effects on Cu-Nb nanocomposite wires

    International Nuclear Information System (INIS)

    Thilly, Ludovic; Van Petegem, Steven; Renault, Pierre-Olivier; Lecouturier, Florence; Vidal, Vanessa; Schmitt, Bernd; Van Swygenhoven, Helena

    2009-01-01

    Nanocomposite wires composed of a multi-scale Cu matrix embedding Nb nanotubes are cyclically deformed in tension under synchrotron radiation in order to follow the X-ray peak profiles (position and width) during mechanical testing. The evolution of elastic strains vs. applied stress suggests the presence of phase-specific elasto-plastic regimes. The nature of the elasto-plastic transition is uncovered by the 'tangent modulus' analysis and correlated to the microstructure of the Cu channels and the Nb nanotubes. Finally, a new criterion for the determination of the macroyield stress is given as the stress to which the macroscopic work hardening, θ a = dσ a /dε 0 , becomes smaller than one third of the macroscopic elastic modulus.

  3. Linear elastic obstacles: analysis of experimental results in the case of stress dependent pre-exponentials

    International Nuclear Information System (INIS)

    Surek, T.; Kuon, L.G.; Luton, M.J.; Jones, J.J.

    1975-01-01

    For the case of linear elastic obstacles, the analysis of experimental plastic flow data is shown to have a particularly simple form when the pre-exponential factor is a single-valued function of the modulus-reduced stress. The analysis permits the separation of the stress and temperature dependence of the strain rate into those of the pre-exponential factor and the activation free energy. As a consequence, the true values of the activation enthalpy, volume and entropy also are obtained. The approach is applied to four sets of experimental data, including Zr, and the results for the pre-exponential term are examined for self-consistency in view of the assumed functional dependence

  4. Electrical resistivity response due to elastic-plastic deformations

    International Nuclear Information System (INIS)

    Stout, R.B.

    1987-01-01

    The electrical resistivity of many materials is sensitive to changes in the electronic band configurations surrounding the atoms, changes in the electron-phonon interaction cross-sections, and changes in the density of intrinsic defect structures. These changes are most directly dependent on interatomic measures of relative deformation. For this reason, a model for resistivity response is developed in terms of interatomic measures of relative deformation. The relative deformation consists of two terms, a continuous function to describe the recoverable displacement between two atoms in the atomic lattice structure and a functional to describe the nonrecoverable displacement between two atoms as a result of interatomic discontinuities from dislocation kinetics. This model for resistivity extends the classical piezoresistance representation and relates electric resistance change directly to physical mechanisms. An analysis for the resistivity change of a thin foil ideally embedded in a material that undergoes elastic-plastic deformation is presented. For the case of elastic deformations, stress information in the material surrounding the thin foil is inferred for the cases of pure strain coupling boundary conditions, pure stress coupling boundary conditions, and a combination of stress-strain coupling boundary conditions. 42 refs., 4 figs

  5. X-ray fractography on fatigue fracture surface of high manganese austenitic steel

    International Nuclear Information System (INIS)

    Akita, Koichi; Misawa, Hiroshi; Kodama, Shotaro; Saito, Tetsuro.

    1997-01-01

    Fatigue tests were carried out under constant stress amplitude, using a non-magnetic high manganese Mn-Cr steel. X-ray fractography was applied on the fatigue fractured surface to investigate the relationship between stress intensity factor and residual stress or half-value breadth of the X-ray diffraction profile. The fatigue crack propagation rate of this non-magnetic Mn-Cr steel had the same tendency as in the ordinary structural ferritic steels. The relationship between stress intensity factor and the residual stress or half-value breadth of the steel was almost the same as that of the ferritic cyclic work hardening steels. No stress induced transformation was observed on the fracture surface, but the residual stress on the fractured surface was compressive in the high stress intensity factors range, which is typical in the cyclic work hardening steels. The half-value breadth on the fractured surface increased with increasing effective stress intensity factor range. The relationship between the half-value breadth and stress intensity factor range was represented by a linear line regardless of the stress ratio. Therefore, the acting stress intensity factor range at the time of fracture can be estimated from the half-value breadth. The depth of monotonic plastic zone was estimated from the distribution of half-value breadth beneath the fractured surface. The relationship between the maximum stress intensity factor and half-value breadth was expressed by the equation ω m α(K max /σ y ) 2 , where the value of α was 0.025. This is about one sixth of the value for ferritic steels, and the fact shows the severe work hardening occuring in the plastic zone in this manganese steel. (author)

  6. A comparison between rib fracture patterns in peri- and post-mortem compressive injury in a piglet model.

    Science.gov (United States)

    Bradley, Amanda L; Swain, Michael V; Neil Waddell, J; Das, Raj; Athens, Josie; Kieser, Jules A

    2014-05-01

    Forensic biomechanics is increasingly being used to explain how observed injuries occur. We studied infant rib fractures from a biomechanical and morphological perspective using a porcine model. We used 24, 6th ribs of one day old domestic pigs Sus scrofa, divided into three groups, desiccated (representing post-mortem trauma), fresh ribs with intact periosteum (representing peri-mortem trauma) and those stored at -20°C. Two experiments were designed to study their biomechanical behaviour fracture morphology: ribs were axially compressed and subjected to four-point bending in an Instron 3339 fitted with custom jigs. Morphoscopic analysis of resultant fractures consisted of standard optical methods, micro-CT (μCT) and Scanning Electron Microscopy (SEM). During axial compression fresh ribs did not fracture because of energy absorption capabilities of their soft and fluidic components. In flexure tests, dry ribs showed typical elastic-brittle behaviour with long linear load-extension curves, followed by short non-linear elastic (hyperelastic) behaviour and brittle fracture. Fresh ribs showed initial linear-elastic behaviour, followed by strain softening and visco-plastic responses. During the course of loading, dry bone showed minimal observable damage prior to the onset of unstable fracture. Frozen then thawed bone showed similar patterns to fresh bone. Morphologically, fresh ribs showed extensive periosteal damage to the tensile surface with areas of collagen fibre pull-out along the tensile surface. While all dry ribs fractured precipitously, with associated fibre pull-out, the latter feature was absent in thawed ribs. Our study highlights the fact that under controlled loading, fresh piglet ribs (representing perimortem trauma) did not fracture through bone, but was associated with periosteal tearing. These results suggest firstly, that complete lateral rib fracture in infants may in fact not result from pure compression as has been previously assumed; and

  7. Detection of Natural Fractures from Observed Surface Seismic Data Based on a Linear-Slip Model

    Science.gov (United States)

    Chen, Huaizhen; Zhang, Guangzhi

    2018-03-01

    Natural fractures play an important role in migration of hydrocarbon fluids. Based on a rock physics effective model, the linear-slip model, which defines fracture parameters (fracture compliances) for quantitatively characterizing the effects of fractures on rock total compliance, we propose a method to detect natural fractures from observed seismic data via inversion for the fracture compliances. We first derive an approximate PP-wave reflection coefficient in terms of fracture compliances. Using the approximate reflection coefficient, we derive azimuthal elastic impedance as a function of fracture compliances. An inversion method to estimate fracture compliances from seismic data is presented based on a Bayesian framework and azimuthal elastic impedance, which is implemented in a two-step procedure: a least-squares inversion for azimuthal elastic impedance and an iterative inversion for fracture compliances. We apply the inversion method to synthetic and real data to verify its stability and reasonability. Synthetic tests confirm that the method can make a stable estimation of fracture compliances in the case of seismic data containing a moderate signal-to-noise ratio for Gaussian noise, and the test on real data reveals that reasonable fracture compliances are obtained using the proposed method.

  8. Microstructural evolution at high strain rates in solution-hardened interstitial free steels

    International Nuclear Information System (INIS)

    Uenishi, A.; Teodosiu, C.; Nesterova, E.V.

    2005-01-01

    Comprehensive transmission electron microscopical studies have been conducted for solution-hardened steels deformed at high (1000 s -1 ) and low (0.001 s -1 ) strain rates, in order to clarify the effects of strain rate and a jump in strain rate on the evolution of the microstructure and its connection with the mechanical response. It was revealed that the various types of microstructure, observed even within the same specimen, depend on the corresponding grain orientations and their evolution with progressive deformation depends on these microstructure types. At high strain rates, the dislocation density increases especially at low strains and the onset of dislocation organization is delayed. A jump in strain rate causes an increase of the dislocation density inside an organized structure. These results corroborated the mechanical behaviour at high strain rates after compensation for the cross-sectional reduction and temperature increase. The higher work-hardening rate at high strain rates could be connected to a delay in the dislocation organization. The high work-hardening rate just after a jump could be due to an increase of the density of dislocations distributed uniformly inside an organized structure

  9. Strain hardening of cold-rolled lean-alloyed metastable ferritic-austenitic stainless steels

    Energy Technology Data Exchange (ETDEWEB)

    Papula, Suvi [Aalto University School of Engineering, Department of Mechanical Engineering, P.O. Box 14200, FI-00076 Aalto (Finland); Anttila, Severi [Centre for Advanced Steels Research, University of Oulu, P.O. Box 4200, 90014 Oulu (Finland); Talonen, Juho [Outokumpu Oyj, P.O. Box 245, FI-00181 Helsinki (Finland); Sarikka, Teemu; Virkkunen, Iikka; Hänninen, Hannu [Aalto University School of Engineering, Department of Mechanical Engineering, P.O. Box 14200, FI-00076 Aalto (Finland)

    2016-11-20

    Mechanical properties and strain hardening of two pilot-scale lean-alloyed ferritic-austenitic stainless steels having metastable austenite phase, present at 0.50 and 0.30 volume fractions, have been studied by means of tensile testing and nanoindentation. These ferritic-austenitic stainless steels have high strain-hardening capacity, due to the metastable austenite phase, which leads to an improved uniform elongation and higher tensile strength in comparison with most commercial lean duplex stainless steels. According to the results, even as low as 0.30 volume fraction of austenite seems efficient for achieving nearly 40% elongation. The austenite phase is initially the harder phase, and exhibits more strain hardening than the ferrite phase. The rate of strain hardening and the evolution of the martensite phase were found to depend on the loading direction: both are higher when strained in the rolling direction as compared to the transverse direction. Based on the mechanical testing, characterization of the microstructure by optical/electron microscopy, magnetic balance measurements and EBSD texture analysis, this anisotropy in mechanical properties of the cold-rolled metastable ferritic-austenitic stainless steels can be explained by the elongated dual-phase microstructure, fiber reinforcement effect of the harder austenite phase and the presence and interplay of rolling textures in the two phases.

  10. Comparison of elastic and inelastic seismic response of high temperature piping systems

    International Nuclear Information System (INIS)

    Thomas, F.M.; McCabe, S.L.; Liu, Y.

    1994-01-01

    A study of high temperature power piping systems is presented. The response of the piping systems is determined when subjected to seismic disturbances. Two piping systems are presented, a main steam line, and a cold reheat line. Each of the piping systems are modeled using the ANSYS computer program and two analyses are performed on each piping system. First, each piping system is subjected to a seismic disturbance and the pipe material is assumed to remain linear and elastic. Next the analysis is repeated for each piping system when the pipe material is modeled as having elastic-plastic behavior. The results of the linear elastic analysis and elastic-plastic analysis are compared for each of the two pipe models. The pipe stresses, strains, and displacements, are compared. These comparisons are made so that the effect of the material yielding can be determined and to access what error is made when a linear analysis is performed on a system that yields

  11. Influence of Microstructure and Process Conditions on Simultaneous Low-Temperature Surface Hardening and Bulk Precipitation Hardening of Nanoflex®

    DEFF Research Database (Denmark)

    Bottoli, Federico; Winther, Grethe; Christiansen, Thomas L.

    2015-01-01

    Precipitation hardening martensitic stainless steel Nanoflex was low-temperature nitrided or nitrocarburized. In these treatments, simultaneous hardening of the bulk, by precipitation hardening, and the surface by dissolving nitrogen/carbon can be obtained because the treatment temperatures...... and times for these essentially different hardening mechanisms are compatible. The effect of the processing history of the steel on the nitrided/nitrocarburized case was investigated by varying the amounts of austenite and martensite through variation of the degree of plastic deformation by tensile strain...... consisting of martensite results in the deepest nitrided case, while a shallow case develops on a microstructure consisting of austenite. For an initial microstructure consisting of both martensite and austenite a non-uniform case depth is achieved. Simultaneous bulk and surface hardening is only possible...

  12. A new coupled elastoplastic damage model for clay-stone and its parameter identification

    International Nuclear Information System (INIS)

    Jia, S.P.; Chen, W.Z.; Yu, H.D.; Li, X.L.; Sillen, X.

    2010-01-01

    Document available in extended abstract form only. In Belgium, the Boom Clay is considered as a potential host rock for the geological disposal of the high level nuclear waste and is intensively studied from hydro-mechanical point of view. Laboratory tests on Boom clay shown that the Boom clay presents very complex stress strain behaviour. Undrained triaxial tests indicated often a hardening behaviour at small deformation and softening at larger deformation. It is not easy to give an explicit function to describe the stress-strain behaviour under triaxial stress state. The mechanical characteristics are obviously affected by the porosity, fractures growth, water content, and stress, etc., four stages can be usually distinguished from the stress-strain curve of Boom Clay, named as OA, AB, BC and CD. 1) Stage OA, the relation between stress and strain is linear. This stage is elastic state, and point A is called as yield strength σ c0 . 2) Stage AB, the weak fractures in the rock appear, develop and cumulate gradually. Point B is called peak strength σ cu . 3) Stage BC, peak strength is reached and stress reduces with the increasing of strain, up to the residual strength. This stage is called strain softening and point C is the residual strength σ cr . The axial pressure causes the fracture developing and strength reducing. 4) Stage CD, the final strength doesn't reduce obviously with the development of plastic deformation. This stage is called plastic flow. Obviously, The conventional elasto-plastic constitutive model can not describe the mechanical behaviours of Boom Clay. Based on damage mechanics theory, an new elasto-plastic damage constitutive model is put forward and applied to Boom Clay, which can describe the complex stress-strain behaviour of clay. It is described as follows: stage OA with an elastic model, stage AB with elastic damage model, stage BC and stage CD with plastic damage model. The complete process curve of stress-strain can be divided

  13. THE STRESS-STRAIN STATE OF ELASTIC HALF-SPACE FROM RUNNING LINEAR LOAD ACTING ON THE LIMITED AND UNLIMITED EXTENT OVER ITS SURFACE

    Directory of Open Access Journals (Sweden)

    I. K. Badalakha

    2009-02-01

    Full Text Available The article shows the result of solving the problem of stress-strain state of an elastic half-space because of the load action that uniformly distributed over the line, with the use of untraditional linear dependence of deformations on stressed state that is different from the generalized Hooke’s law.

  14. Effect of dynamic strain aging on isotropic hardening in low cycle fatigue for carbon manganese steel

    International Nuclear Information System (INIS)

    Huang, Zhi Yong; Chaboche, Jean-Louis; Wang, Qing Yuan; Wagner, Danièle; Bathias, Claude

    2014-01-01

    Carbon–manganese steel A48 (French standard) is used in steam generator pipes of nuclear reactor pressure vessels at high temperatures (about 200 °C). The steel is sensitive to dynamic strain aging in monotonic tensile test and low cycle fatigue test at certain temperature range and strain rate. Its isotropic hardening behavior observed from experiments has a hardening, softening and hardening evolution with the effect of dynamic strain aging. The isotropic hardening model is improved by coupling the dislocation and dynamic strain aging theory to describe the behavior of A48 at 200 °C

  15. Effect of dynamic strain aging on isotropic hardening in low cycle fatigue for carbon manganese steel

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Zhi Yong, E-mail: huangzy@scu.edu.cn [Sichuan University, School of Aeronautics and Astronautics, No. 29 Jiuyanqiao Wangjiang Road, Chengdu 610064 (China); Chaboche, Jean-Louis [ONERA, DMSM, 29 avenue de la Division Lecerc, F-92320 Chatillon (France); Wang, Qing Yuan [Sichuan University, School of Aeronautics and Astronautics, No. 29 Jiuyanqiao Wangjiang Road, Chengdu 610064 (China); Wagner, Danièle; Bathias, Claude [Université ParisOuest Nanterre La Défense (France)

    2014-01-01

    Carbon–manganese steel A48 (French standard) is used in steam generator pipes of nuclear reactor pressure vessels at high temperatures (about 200 °C). The steel is sensitive to dynamic strain aging in monotonic tensile test and low cycle fatigue test at certain temperature range and strain rate. Its isotropic hardening behavior observed from experiments has a hardening, softening and hardening evolution with the effect of dynamic strain aging. The isotropic hardening model is improved by coupling the dislocation and dynamic strain aging theory to describe the behavior of A48 at 200 °C.

  16. Fracture mechanism of a dispersion-hardened molybdenum alloy with strong structural interfaces

    International Nuclear Information System (INIS)

    Vasil'ev, A.D.; Malashenko, I.S.; Moiseev, V.F.; Pechkovskij, Eh.P.; Sul'zhenko, V.K.; Trefilov, V.I.; AN Ukrainskoj SSR, Kiev. Inst. Ehlektrosvarki)

    1978-01-01

    Fracture mechanism in the two-phase Mo-15wt.%Nb-3.5 vol.% TiN alloy known to be of ''brittle matrix-strong interfaces'' type has been investigated depending on tensile test temperature. Several temperature intervals of fracture have been found, each of them having its own peculiarities. A scheme is suggested for fracture mechanism changes in dispersion-hardened alloys with strong interfaces. At low test temperatures brittle cleavage fracture takes place. With temperature increase fracture mechanisms change in the following way: brittle intergranular fracture; fracture of ''microvoid coalescence'' type; fracture typical for reinforced materials with ductile matrix; intergran laru fracture. Particles of strengthening phase have been shown to play different roles depending on the test temperature in the fracture of the alloys studied

  17. Effects of a high mean stress on the high cycle fatigue life of PWA 1480 and correlation of data by linear elastic fracture mechanics

    Science.gov (United States)

    Majumdar, S.; Kwasny, R.

    1985-01-01

    High-cycle fatigue tests using 5-mm-diameter smooth specimens were performed on the single crystal alloy PWA 1480 (001 axis) at 70F (room temperature) in air and at 100F (538C) in vacuum (10 to the -6 power torr). Tests were conducted at zero mean stress as well as at high tensile mean stress. The results indicate that, although a tensile mean stress, in general, reduces life, the reduction in fatigue strength, for a given mean stress at a life of one million cycles, is much less than what is predicted by the usual linear Goodman plot. Further, the material appears to be significantly more resistant to mean stress effects at 1000F than at 70F. Metallographic examinations of failed specimens indicate that failures in all cases are initiated from micropores of sizes of the order of 30 to 40 microns. Since the macroscopic stress-strain response in all cases was observed to be linear elastic, linear elastic fracture mechanics (LEFM) analyses were carried out to determine the crack growth curves of the material assuming that crack initiation from a micropore (a sub o = 40 microns) occurs very early in life. The results indicate that the calculated crack growth rates at an R (defined as the ratio between minimum stress to maximum stress) value of zero are approximately the same at 70F as at 1000F. However, the calculated crack growth rates at other R ratios, both positive and negative, tend to be higher at 70F than at 1000F. Calculated threshold effects at large R values tend to be independent of temperature in the temperature regime studied. They are relatively constant with increasing R ratio up to a value of about 0.6, beyond which the calculated threshold stress intensity factor range decreases rapidly with increasing R ratios.

  18. Structural evaluation method for class 1 vessels by using elastic-plastic finite element analysis in code case of JSME rules on design and construction

    International Nuclear Information System (INIS)

    Asada, Seiji; Hirano, Takashi; Nagata, Tetsuya; Kasahara, Naoto

    2008-01-01

    A structural evaluation method by using elastic-plastic finite element analysis has been developed and published as a code case of Rules on Design and Construction for Nuclear Power Plants (The First Part: Light Water Reactor Structural Design Standard) in the JSME Codes for Nuclear Power Generation Facilities. Its title is 'Alternative Structural Evaluation Criteria for Class 1 Vessels Based on Elastic-Plastic Finite Element Analysis' (NC-CC-005). This code case applies elastic-plastic analysis to evaluation of such failure modes as plastic collapse, thermal ratchet, fatigue and so on. Advantage of this evaluation method is free from stress classification, consistently use of Mises stress and applicability to complex 3-dimensional structures which are hard to be treated by the conventional stress classification method. The evaluation method for plastic collapse has such variation as the Lower Bound Approach Method, Twice-Elastic-Slope Method and Elastic Compensation Method. Cyclic Yield Area (CYA) based on elastic analysis is applied to screening evaluation of thermal ratchet instead of secondary stress evaluation, and elastic-plastic analysis is performed when the CYA screening criteria is not satisfied. Strain concentration factors can be directly calculated based on elastic-plastic analysis. (author)

  19. Influence of elastic strain on the thermodynamics and kinetics of lithium vacancy in bulk LiCoO2

    Science.gov (United States)

    Moradabadi, Ashkan; Kaghazchi, Payam; Rohrer, Jochen; Albe, Karsten

    2018-01-01

    The influence of elastic strain on the lithium vacancy formation and migration in bulk LiCoO2 is evaluated by means of first-principles calculations within density functional theory (DFT). Strain dependent energies are determined directly from defective cells and also within linear elasticity theory from the elastic dipole tensor (Gi j) for ground state and saddle point configurations. We analyze finite size effects in the calculation of Gi j, compare the predictions of the linear elastic model with those obtained from direct calculations of defective cells under strain, and discuss the differences. Based on our data, we calculate the variations in vacancy concentration and mobility due to the presence of external strain in bulk LiCoO2 cathodes. Our results reveal that elastic in-plane and out-of-plane strains can significantly change the ionic conductivity of bulk LiCoO2 by up to several orders of magnitude and thus strongly affect the performance of Li-secondary batteries.

  20. DESTRUCTION CRITERION IN MODEL OF NON-LINEAR ELASTIC PLASTIC MEDIUM

    Directory of Open Access Journals (Sweden)

    O. L. Shved

    2014-01-01

    Full Text Available The paper considers a destruction criterion in a specific phenomenological model of elastic plastic medium which significantly differs from the known criteria. In case of vector interpretation of rank-2 symmetric tensors yield surface in the Cauchy stress space is formed by closed piecewise concave surfaces of its deviator sections with due account of experimental data. Section surface is determined by normal vector which is selected from two private vectors of criterial “deviator” operator. Such selection is not always possible in the case of anisotropy growth. It is expected that destruction can only start when a process point in the stress space is located in the current deviator section of the yield surface. It occurs when a critical point appears in the section, and a private value of an operator becomes N-fold in the point that determines the private vector corresponding to the normal vector. Unique and reasonable selection of the normal vector becomes impossible in the critical point and an yield criteria loses its significance in the point.When the destruction initiation is determined there is a possibility of a special case due to the proposed conic form of the yield surface. The deviator section degenerates into the point at the yield surface peak. Criterion formulation at the surface peak lies in the fact that there is no physically correct solution while using a state equation in regard to elastic distortion measures with a fixed tensor of elastic turn. Such usage of the equation is always possible for the rest points of the yield surface and it is considered as an obligatory condition for determination of the deviator section. A critical point is generally absent at any deviator section of the yield surface for isotropic material. A limiting value of the mean stress has been calculated at uniform tension.

  1. Coefficient of work-hardening in stage-IV

    CSIR Research Space (South Africa)

    Nabarro, FRN

    1994-04-15

    Full Text Available The theory of work hardening in stage IV depends on the relation between the relative misorientation Psi of neighbouring subgrains and the plastic strain gamma (Psi = B gamma exp). The value of the constant B is suggested to be better related...

  2. Diverging strains near threshold: Breakdown of the elastic description of a charge density wave model

    International Nuclear Information System (INIS)

    Mungan, M.; Coppersmith, S.; Vinokur, V.M.

    1999-01-01

    We analyze the strains near threshold in 1-d charge density wave models at zero temperature and strong pinning. We show that in these models local strains diverge near the depinning threshold and characterize the scaling behavior of the phenomenon. This helps quantify when the underlying elastic description breaks down and plastic effects have to be included

  3. Use of J-integral and modified J-integral as measures of elastic-plastic fracture toughness

    International Nuclear Information System (INIS)

    Davis, D.A.; Hays, R.A.; Hackett, E.M.; Joyce, J.A.

    1988-01-01

    J-R Curve tests were conducted on 12T, 1T and 2T compact specimens of materials having J/sub IC/ values ranging from 150 in-lbsq in to over 2600 in-lbsq in. These materials were chosen such that some would exceed the maximum crack length criterion of ASTM E1152-87 prior to reaching the maximum J criterion (3-Ni steel, 5000 series Al) and some would exceed the maximum J criterion first (A533B, A710). The elastic-plastic fracture behavior of these materials was examined using both the deformation theory J-integral (J/sub D/) and the modified J-integral (J/sub M/). The J-R curve testing was performed to very large values of crack opening displacement (COD) where the crack growth was typically 75% of the original remaining ligament. The results of this work suggest that the J/sub D/-R curves exhibit no specimen size dependence to crack extensions far in excess of the E1152 allowables. The J/sub M/-R curves calculated for the same specimens show a significant amount of specimen size dependence which becomes larger as the material toughness decreases. This work suggests that it is premature to utilize the modified J-integral in assessing the flaw tolerance of structures

  4. Elastic-Plastic Calculation of a Dilatation Compensation Component

    Science.gov (United States)

    Atanasiu, Costică; Iliescu, Nicolae; Sorohan, Ștefan

    2017-12-01

    Compensators are elastic structures that have the role of taking over the axial displacements that occur in the junction areas of the technological equipment (pipelines or containers) through which the fluids circulate at pressures and high temperatures. These elastic structures, realized in a very wide range of shapes and sizes, are sujected by the inner pressure and an axial force produced by dilatation of structures in which they are mounted. The calculation of the expansion compensators raises many problems caused by the working regimes of the technological equipments they belong to. Following previous studies, undertaken by calculus and experimental, by the authors of this paper, it was found that in operation the state of stress in these elastic structures exceeds the flow limit of the material from which they are manufacturated. For this reason, in the present paper, the authors present the results of a calculus study, by FEM, on the stress and strain state, in the elasto-plastic regime of a leticular compensator. The calculation was made for two loading modes, separately applied and superimposed. The nonlinear mechanical behavior of this compensator is analyzed and discussed comparatively to the results of previous studies performed in elastic regime on the same type of compensator.

  5. Fracture mechanics

    CERN Document Server

    Perez, Nestor

    2017-01-01

    The second edition of this textbook includes a refined presentation of concepts in each chapter, additional examples; new problems and sections, such as conformal mapping and mechanical behavior of wood; while retaining all the features of the original book. The material included in this book is based upon the development of analytical and numerical procedures pertinent to particular fields of linear elastic fracture mechanics (LEFM) and plastic fracture mechanics (PFM), including mixed-mode-loading interaction. The mathematical approach undertaken herein is coupled with a brief review of several fracture theories available in cited references, along with many color images and figures. Dynamic fracture mechanics is included through the field of fatigue and Charpy impact testing. Explains computational and engineering approaches for solving crack-related problems using straightforward mathematics that facilitate comprehension of the physical meaning of crack growth processes; Expands computational understandin...

  6. Plastic incompatibility stresses and stored elastic energy in plastically deformed copper

    Energy Technology Data Exchange (ETDEWEB)

    Baczmanski, A. [Faculty of Physics and Applied Computer Science, AGH-University of Science and Technology, al. Mickiewicza 30, 30-059 Krakow (Poland)], E-mail: baczman@ftj.agh.edu.pl; Hfaiedh, N.; Francois, M. [LASMIS, Universite de Technologie de Troyes, 11 rue Marie Curie, B.P. 2060, 10010 Troyes (France); Wierzbanowski, K. [Faculty of Physics and Applied Computer Science, AGH-University of Science and Technology, al. Mickiewicza 30, 30-059 Krakow (Poland)

    2009-02-15

    The X-ray diffraction method and theoretical model of elastoplastic deformation were used to examine the residual stresses in polycrystalline copper. To this end, the {l_brace}2 2 0{r_brace} strain pole figures were determined for samples subjected to different magnitudes of tensile deformation. Using diffraction data and the self-consistent model, the tensor of plastic incompatibility stress was found for each orientation of a polycrystalline grain. Crystallographic textures, macroscopic and second-order residual stresses were considered in the analysis. As a result, the distributions of elastic stored energy and von Mises equivalent stress were presented in Euler space and correlated with the preferred orientations of grains. Moreover, using the model prediction, the variation of the critical resolved shear stress with grain orientation was determined.

  7. Adhesive friction for elastic-plastic contacting rough surfaces considering asperity interaction

    International Nuclear Information System (INIS)

    Sahoo, Prasanta

    2006-01-01

    The paper describes a theoretical study of adhesive friction at the contact between rough surfaces taking asperity interaction into consideration and using an elastic-plastic model of contact deformation that is based on an accurate finite element analysis of an elastic-plastic single asperity contact. The micro-contact model of asperity interactions, developed by Zhao and Chang, is integrated into the improved elastic-plastic rough surface adhesive contact analysis to consider the adhesive friction behaviour of rough surfaces. The model considers a large range of interference values from fully elastic through elastic-plastic to fully plastic regimes of contacting asperities. Two well-established adhesion indices are used to consider different conditions that arise as a result of varying load, surface and material parameters. Results are obtained for the coefficient of friction against applied load for various combinations of these parameters. The results show that the coefficient of friction depends strongly on the applied load for the no-interaction case while it becomes insensitive to the load for interaction consideration. Moreover, the inclusion of elastic-plastic asperities further reduces the friction coefficient

  8. Theoretical aspects of fracture mechanics

    Science.gov (United States)

    Atkinson, C.; Craster, R. V.

    1995-03-01

    In this review we try to cover various topics in fracture mechanics in which mathematical analysis can be used both to aid numerical methods and cast light on key features of the stress field. The dominant singular near crack tip stress field can often be parametrized in terms of three parameters K(sub I), K(sub II) and K(sub III) designating three fracture modes each having an angular variation entirely specified for the stress tensor and displacement vector. These results and contact zone models for removing the interpenetration anomaly are described. Generalizations of the above results to viscoelastic media are described. For homogeneous media with constant Poisson's ratio the angular variation of singular crack tip stresses and displacements are shown to be the same for all time and the same inverse square root singularity as occurs in the elastic medium case is found (this being true for a time varying Poisson ratio too). Only the stress intensity factor varies through time dependence of loads and relaxation properties of the medium. For cracks against bimaterial interfaces both the stress singularity and angular form evolve with time as a function of the time dependent properties of the bimaterial. Similar behavior is identified for sharp notches in viscoelastic plates. The near crack tip behavior in material with non-linear stress strain laws is also identified and stress singularities classified in terms of the hardening exponent for power law hardening materials. Again for interface cracks the near crack tip behavior requires careful analysis and it is shown that more than one singular term may be present in the near crack tip stress field. A variety of theory and applications is presented for inhomogeneous elastic media, coupled thermoelasticity etc. Methods based on reciprocal theorems and dual functions which can also aid in getting awkward singular stress behavior from numerical solutions are also reviewed. Finally theoretical calculations of fiber

  9. Investigation of the thermo-mechanical behavior of neutron-irradiated Fe-Cr alloys by self-consistent plasticity theory

    Energy Technology Data Exchange (ETDEWEB)

    Xiao, Xiazi [State Key Laboratory for Turbulence and Complex System, Department of Mechanics and Engineering Science, College of Engineering, Peking University, Beijing 100871 (China); CAPT, HEDPS and IFSA Collaborative Innovation Center of MoE, BIC-ESAT, Peking University, Beijing 100871 (China); Terentyev, Dmitry [Structural Material Group, Institute of Nuclear Materials Science, SCK CEN, Mol (Belgium); Yu, Long [State Key Laboratory for Turbulence and Complex System, Department of Mechanics and Engineering Science, College of Engineering, Peking University, Beijing 100871 (China); Bakaev, A. [Structural Material Group, Institute of Nuclear Materials Science, SCK CEN, Mol (Belgium); Jin, Zhaohui [School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240 (China); Duan, Huiling, E-mail: hlduan@pku.edu.cn [State Key Laboratory for Turbulence and Complex System, Department of Mechanics and Engineering Science, College of Engineering, Peking University, Beijing 100871 (China); CAPT, HEDPS and IFSA Collaborative Innovation Center of MoE, BIC-ESAT, Peking University, Beijing 100871 (China)

    2016-08-15

    The thermo-mechanical behavior of non-irradiated (at 223 K, 302 K and 573 K) and neutron irradiated (at 573 K) Fe-2.5Cr, Fe-5Cr and Fe-9Cr alloys is studied by a self-consistent plasticity theory, which consists of constitutive equations describing the contribution of radiation defects at grain level, and the elastic-viscoplastic self-consistent method to obtain polycrystalline behaviors. Attention is paid to two types of radiation-induced defects: interstitial dislocation loops and solute rich clusters, which are believed to be the main sources of hardening in Fe-Cr alloys at medium irradiation doses. Both the hardening mechanism and microstructural evolution are investigated by using available experimental data on microstructures, and implementing hardening rules derived from atomistic data. Good agreement with experimental data is achieved for both the yield stress and strain hardening of non-irradiated and irradiated Fe-Cr alloys by treating dislocation loops as strong thermally activated obstacles and solute rich clusters as weak shearable ones. - Highlights: • A self-consistent plasticity theory is proposed for irradiated Fe-Cr alloys. • Both the irradiation-induced hardening and plastic flow evolution are studied. • Dislocation loops and solute rich clusters are considered as the main defects. • Numerical results of the proposed model match with corresponding experimental data.

  10. Plasticity - a limiting case of creep

    International Nuclear Information System (INIS)

    Cords, H.; Kleist, G.; Zimmermann, R.

    1986-11-01

    The present work is an attempt to develop further the so-called unified theory for viscoplastic constitutive equations as used for metals or metal alloys. Typically, in similar approaches creep strains and plastic strains are derived from one common stress-strain relationship for inelastic strain rates employing an internal stress function as a back stress. Some novel concepts concerning the definition of the internal stress, plastic yielding and material hardening have been introduced, formulated mathematically and tested for correspondence with a standard type of materials behaviour. As a result of the investigations a system of simultaneous differential equations is defined which has been used to elaborate a common view on a number of different material effects observed in creep and plasticity i.e. normal and inverted primary creep, recoverable creep, incubation time and anelasticity in stress reduction, negative stress relaxation, plastic yielding, perfect plasticity, negative strain rate sensitivity, serrated flow, strain hardening in monotonic and cyclic loading. The theoretical approach is mainly based on a lateral contraction movement not following rigidly the longitudinal extension of the material specimen by a prescribed constant value of Poisson's ratio as usual, but following the axial extension in a process of drag which allows for retardation and which simultaneously impedes the longitudinal straining. (orig.) [de

  11. Fatigue fracture modes of a stainless steel

    International Nuclear Information System (INIS)

    Pacheco, D.J.; Souza e Silva, A.S. de; Monteiro, S.N.

    1977-01-01

    The influence of strain hardening and martensite phase transformation on the fatigue fracture regions (pulsative tension) of a Stainless Steel type AISI 316 was investigated. This lead to the conclusion that the greater austenite strain hardening level only favours the occurrence of a brittle fracture. Also, in as much as the static induced martensite is concerned, a direct influence on the failure process was not observed, whereas, apparently, the one transformed under cyclic loading has no contribution to the rupture mechanisms. (author) [pt

  12. On the prediction of ductile fracture by void coalescence and strain localization

    Science.gov (United States)

    Luo, Tuo; Gao, Xiaosheng

    2018-04-01

    This paper presents a unit cell model based on the observation that ductile fracture occurs when plastic flow is localized in a band. The unit cell consists of three void containing material units stacked in the direction normal to the localization plane. Localization takes place in the middle material unit while the two outer units undergo elastic recovery after failure occurs. Thus a failure criterion is established as when the macroscopic effective strain of the outer material units reaches the maximum value. Analyses are conducted to demonstrate the effect of the voids existing outside the localization band. Comparisons of the present model with several previous models suggest that the present model is not only easy to implement in finite element analysis but also more suitable to robustly determine the failure strain. A series of unit cell analyses are conducted for various macroscopic stress triaxialities and Lode parameters. The analysis results confirm that for a fixed Lode parameter, the failure strain decreases exponentially with the stress triaxiality and for a given stress triaxiality, it increases as the stress state approaches the generalized tension and generalized compression. The analysis results also reveal the effect of the stress state on the deformed void shape within and near the localization band.

  13. Chapter 4. Fundamental mechanisms of the low temperature plastic deformation of metals

    International Nuclear Information System (INIS)

    Fouquet, J. de

    1976-01-01

    The influence of microstructure, grain boundaries, and strain hardening, on the low temperature plasticity of polycristals is studied. The experimental data on flow stress, work hardening, temperature and strain rate effects, alloying elements and grain size effect are firstly considered, on a macroscopic scale. The mechanisms of the low temperature plastic deformation, and the strain-stress relations are then described in terms of slip modes, mobility, configuration and distributions and interactions of dislocations [fr

  14. Effect of residual stress and hardening on grain boundary sliding in welds of low-carbon stainless steels with surface machining

    International Nuclear Information System (INIS)

    Mori, Hiroaki; Mochizuki, Masahito; Nishimoto, Kazutoshi; Katsuyama, Jinya

    2007-01-01

    To clarify the effects of residual stress and hardening on intergranular stress corrosion cracking (IGSCC) behavior in welds of low-carbon austenitic stainless steels with surface machining, residual stress and hardness were evaluated by 3-dimentional thermo elastic-plastic analysis and grain boundary sliding behavior was examined using a constant strain rate tensile test. It was revealed that grain boundary sliding occurred in the material at 561K by the tensile test with the numerically simulated tensile residual stress due to welding and surface machining. In addition, it was clarified that the grain boundary energy is raised by the grain boundary sliding. On the basis of these results, it was concluded that the cause of IGSCC in the welds of low-carbon austenitic stainless steel with surface hardening is the increase in grain boundary energy due to grain boundary sliding accelerated by residual stress of multi pass welding and surface hardening. (author)

  15. Effect of residual stress and hardening on grain boundary sliding in welds of low-carbon stainless steels with surface machining

    International Nuclear Information System (INIS)

    Mori, Hiroaki; Mochizuki, Masahito; Nishimoto, Kazutoshi; Katsuyama, Jinya

    2008-01-01

    To clarify the effects of residual stress and hardening on intergranular stress corrosion cracking (IGSCC) behavior in welds of low-carbon austenitic stainless steels with surface machining, residual stress and hardness were evaluated by 3-dimentional thermo elastic-plastic analysis and grain boundary sliding behavior was examined using a constant strain rate tensile test. It was revealed that grain boundary sliding occurred in the material at 561K by the tensile test with the numerically simulated tensile residual stress due to multi-pass welding and surface machining. In addition, it was clarified that the grain boundary energy is raised by the grain boundary sliding. On the basis of these results, it was concluded that the cause of IGSCC in the welds of low-carbon austenitic stainless steel with surface hardening is the increase in grain boundary energy due to grain boundary sliding induced by residual stress of multi pass welding and surface hardening. (author)

  16. Size Effects on Deformation and Fracture of Scandium Deuteride Films.

    Energy Technology Data Exchange (ETDEWEB)

    Teresi, C. S. [Univ. of Minnesota, Minneapolis, MN (United States); Hintsala, E. [Univ. of Minnesota, Minneapolis, MN (United States); Hysitron, Inc., Eden Prairie, MN (United States); Adams, David P. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Yang, Nancy Y. C. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Kammler, Daniel [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Moody, N. R. [Univ. of Minnesota, Minneapolis, MN (United States); Gerberich, W. W. [Univ. of Minnesota, Minneapolis, MN (United States)

    2017-07-01

    Metal hydride films have been observed to crack during production and use, prompting mechanical property studies of scandium deuteride films. The following focuses on elastic modulus, fracture, and size effects observed in the system for future film mechanical behavior modeling efforts. Scandium deuteride films were produced through the deuterium charging of electron beam evaporated scandium films using X-ray diffraction, scanning Auger microscopy, and electron backscatter diffraction to monitor changes in the films before and after charging. Scanning electron microscopy, nanoindentation, and focused ion beam machined micropillar compression tests were used for mechanical characterization of the scandium deuteride films. The micropillars showed a size effect for flow stress, indicating that film thickness is a relevant tuning parameter for film performance, and that fracture was controlled by the presence of grain boundaries. Elastic modulus was determined by both micropillar compression and nanoindentation to be approximately 150 GPa, Fracture studies of bulk film channel cracking as well as compression induced cracks in some of the pillars yielded a fracture toughness around 1.0 MPa-m1/2. Preliminary Weibull distributions of fracture in the micropillars are provided. Despite this relatively low value of fracture toughness, scandium deuteride micropillars can undergo a large degree of plasticity in small volumes and can harden to some degree, demonstrating the ductile and brittle nature of this material

  17. Work Hardening Behavior of 1020 Steel During Cold-Beating Simulation

    Science.gov (United States)

    CUI, Fengkui; LING, Yuanfei; XUE, Jinxue; LIU, Jia; LIU, Yuhui; LI, Yan

    2017-03-01

    The present research of cold-beating formation mainly focused on roller design and manufacture, kinematics, constitutive relation, metal flow law, thermo-mechanical coupling, surface micro-topography and microstructure evolution. However, the research on surface quality and performance of workpieces in the process of cold-beating is rare. Cold-beating simulation experiment of 1020 steel is conducted at room temperature and strain rates ranging from 2000 to 4000 s-1 base on the law of plastic forming. According to the experimental data, the model of strain hardening of 1020 steel is established, Scanning Electron Microscopy(SEM) is conducted, the mechanism of the work hardening of 1020 steel is clarified by analyzing microstructure variation of 1020 steel. It is found that the strain rate hardening effect of 1020 steel is stronger than the softening effect induced by increasing temperatures, the process of simulation cold-beating cause the grain shape of 1020 steel significant change and microstructure elongate significantly to form a fibrous tissue parallel to the direction of deformation, the higher strain rate, the more obvious grain refinement and the more hardening effect. Additionally, the change law of the work hardening rate is investigated, the relationship between dislocation density and strain, the relationship between work hardening rate and dislocation density is obtained. Results show that the change trend of the work hardening rate of 1020 steel is divided into two stages, the work hardening rate decreases dramatically in the first stage and slowly decreases in the second stage, finally tending toward zero. Dislocation density increases with increasing strain and strain rate, work hardening rate decreases with increasing dislocation density. The research results provide the basis for solving the problem of improving the surface quality and performance of workpieces under cold-beating formation of 1020 steel.

  18. Elastic-plastic-creep analysis of shells

    International Nuclear Information System (INIS)

    Pai, D.H.

    1979-01-01

    This paper presents the recent experience of a designer/fabricator of nuclear heat transport components in the area of elastic-plastic-creep analysis of shell-like structures. A brief historical perspective is first given to highlight the evolution leading to the present industry practice. The ASME elevated temperature design criteria will be discussed followed by examples of actual computations performed to support the design/analysis and fabrication of a breeder reactor component in which a substantial amount of elastic-plastic-creep analysis was performed. Mathematical challenges encountered by the design analyst in these problems will be highlighted. Developmental needs and future trends will then be given

  19. Effect of pre-hardening on the lifetime of type 304L austenitic stainless steels

    International Nuclear Information System (INIS)

    Kpodekon, C.

    2010-01-01

    This study deals with the effect of the loading history on the cyclic behavior and the fatigue life of two kinds (THYSSEN and CLI) of 304L stainless steel at room temperature. The experiments have been performed using two specimens' categories. The first one (virgin) has been submitted to only classical fatigue tests while in the second category, prior to the fatigue test, the specimen is subjected to a pre-hardening process under either monotonic or cyclic strain control. Cyclic softening followed by cyclic hardening are observed for the virgin specimens while only cyclic softening is exhibited by the pre-hardened specimens. The obtained results show that fatigue life is strongly influenced by the pre-hardening: it seems beneficial under stress control but detrimental under strain control, even in the presence of a compressive mean stress. The results are discussed regarding the cyclic evolution of the elastic modulus as well as the isotropic and kinematic parts of the strain hardening, and strain energy density per cycle, in different configurations: with or without prehardening,stress or strain control. (author)

  20. Fully plastic solutions of semi-elliptical surface cracks

    International Nuclear Information System (INIS)

    Yagawa, Genki; Yoshimura, Shinobu; Kitajima, Yasumi; Ueda, Hiroyoshi.

    1990-01-01

    Nonlinear finite element analyses of semi-elliptical surface cracks are performed under the fully plastic condition. The power-law hardening materials and the deformation theory of plasticity are assumed. Either the penalty function method or the Uzawa's algorithm is utilized to treat the incompressibility of plastic strains. The local and global J-integral values are obtained using a virtual crack extension technique for plates and cylinders with semi-elliptical surface cracks subjected to uniform tensions. The fully plastic solutions for surface cracked plates are given in the form of polynominals with geometric parameters a/t, a/c and the strain hardening exponent (n). In addition, the effects of curvature on fully plastic solutions are discussed through the comparison between the results of plates and cylinders. (author)

  1. A new criterion for elasto-plastic transition in nanomaterials: Application to size and composite effects on Cu-Nb nanocomposite wires

    Energy Technology Data Exchange (ETDEWEB)

    Thilly, Ludovic, E-mail: ludovic.thilly@univ-poitiers.fr [PHYMAT, University of Poitiers, SP2MI, 86962 Futuroscope (France); Van Petegem, Steven [Paul Scherrer Institute, CH-5232 Villigen-PSI (Switzerland); Renault, Pierre-Olivier [PHYMAT, University of Poitiers, SP2MI, 86962 Futuroscope (France); Lecouturier, Florence [Laboratoire National des Champs Magnetiques Pulses, UPS-INSA-CNRS, 31400 Toulouse (France); Vidal, Vanessa [CROMeP, ENSTIMAC, Campus Jarlard, 81013 Albi (France); Schmitt, Bernd; Van Swygenhoven, Helena [Paul Scherrer Institute, CH-5232 Villigen-PSI (Switzerland)

    2009-06-15

    Nanocomposite wires composed of a multi-scale Cu matrix embedding Nb nanotubes are cyclically deformed in tension under synchrotron radiation in order to follow the X-ray peak profiles (position and width) during mechanical testing. The evolution of elastic strains vs. applied stress suggests the presence of phase-specific elasto-plastic regimes. The nature of the elasto-plastic transition is uncovered by the 'tangent modulus' analysis and correlated to the microstructure of the Cu channels and the Nb nanotubes. Finally, a new criterion for the determination of the macroyield stress is given as the stress to which the macroscopic work hardening, {theta}{sub a} = d{sigma}{sub a}/d{epsilon}{sub 0}, becomes smaller than one third of the macroscopic elastic modulus.

  2. High strain rate deformation and fracture of the magnesium alloy Ma2-1 under shock wave loading

    Science.gov (United States)

    Garkushin, G. V.; Kanel', G. I.; Razorenov, S. V.

    2012-05-01

    This paper presents the results of measurements of the dynamic elastic limit and spall strength under shock wave loading of specimens of the magnesium alloy Ma2-1 with a thickness ranging from 0.25 to 10 mm at normal and elevated (to 550°C) temperatures. From the results of measurements of the decay of the elastic precursor of a shock compression wave, it has been found that the plastic strain rate behind the front of the elastic precursor decreases from 2 × 105 s-1 at a distance of 0.25 mm to 103 s-1 at a distance of 10 mm. The plastic strain rate in a shock wave is one order of magnitude higher than that in the elastic precursor at the same value of the shear stress. The spall strength of the alloy decreases as the solidus temperature is approached.

  3. Strain fluctuations and elastic constants

    Energy Technology Data Exchange (ETDEWEB)

    Parrinello, M.; Rahman, A.

    1982-03-01

    It is shown that the elastic strain fluctuations are a direct measure of elastic compliances in a general anisotropic medium; depending on the ensemble in which the fluctuation is measured either the isothermal or the adiabatic compliances are obtained. These fluctuations can now be calculated in a constant enthalpy and pressure, and hence, constant entropy, ensemble due to recent develpments in the molecular dynamics techniques. A calculation for a Ni single crystal under uniform uniaxial 100 tensile or compressive load is presented as an illustration of the relationships derived between various strain fluctuations and the elastic modulii. The Born stability criteria and the behavior of strain fluctuations are shown to be related.

  4. Strain solitons in solids and how to construct them

    CERN Document Server

    Samsonov, Alexander M

    2001-01-01

    Although the theory behind solitary waves of strain shows that they hold significant promise in nondestructive testing and a variety of other applications, an enigma has long persisted-the absence of observable elastic solitary waves in practice. Inspired by this apparent contradiction, Strain Solitons in Solids and How to Construct Them refines the existing theory, explores how to construct a powerful deformation pulse in a waveguide without plastic flow or fracture, and proposes a direct method of strain soliton generation, detection, and observation.The author focuses on the theory, simulation, generation, and propagation of strain solitary waves in a nonlinearly elastic, straight cylindrical rod under finite deformations. He introduces the general theory of wave propagation in nonlinearly elastic solids and shows, from first principles, how its main ideas can lead to successful experiments. In doing so, he develops a new approach to solving the corresponding doubly dispersive equation (DDE) with dissipati...

  5. Interaction of heat production, strain rate and stress power in a plastically deforming body under tensile test

    Science.gov (United States)

    Paglietti, A.

    1982-01-01

    At high strain rates the heat produced by plastic deformation can give rise to a rate dependent response even if the material has rate independent constitutive equations. This effect has to be evaluated when interpreting a material test, or else it could erroneously be ascribed to viscosity. A general thermodynamic theory of tensile testing of elastic-plastic materials is given in this paper; it is valid for large strain at finite strain rates. It enables discovery of the parameters governing the thermodynamic strain rate effect, provides a method for proper interpretation of the results of the tests of dynamic plasticity, and suggests a way of planning experiments in order to detect the real contribution of viscosity.

  6. Finite Element Simulation of Fracture Toughness Test

    International Nuclear Information System (INIS)

    Chu, Seok Jae; Liu, Cong Hao

    2013-01-01

    Finite element simulations of tensile tests were performed to determine the equivalent stress - equivalent plastic strain curves, critical equivalent stresses, and critical equivalent plastic strains. Then, the curves were used as inputs to finite element simulations of fracture toughness tests to determine the plane strain fracture toughness. The critical COD was taken as the COD when the equivalent plastic strain at the crack tip reached a critical value, and it was used as a crack growth criterion. The relationship between the critical COD and the critical equivalent plastic strain or the reduction of area was found. The relationship between the plane strain fracture toughness and the product of the critical equivalent stress and the critical equivalent plastic strain was also found

  7. Nanomechanical quantification of elastic, plastic, and fracture properties of LiCoO{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Qu, Meng; Woodford, William H.; Maloney, John M.; Carter, W. Craig; Chiang, Yet-Ming; Van Vliet, Krystyn J. [Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA (United States)

    2012-08-15

    Young's elastic modulus, hardness, and fracture toughness (K{sub Ic}) of individual grains are reported for polycrystalline LiCoO{sub 2}, a metal oxide cathode used in lithium-ion batteries, as measured via instrumented nanoindentation (indentations within circled locations; dashed line indicates grain boundary). The wide range of K{sub Ic} does not correlate strongly with grain orientation. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  8. Probabilistic application of fracture mechanics

    International Nuclear Information System (INIS)

    Dufresne, J.

    1981-04-01

    The different methods used to evaluate the rupture probability of a pressure vessel are reviewed. Data collection and processing of all parameters necessary for fracture mechanics evaluation are presented with particular attention to the size distribution of defects in actual vessels. Physical process is followed during crack growth and unstable propagation, using LEFM (Linear Elastic Fracture Mechanism) and plastic instability. Results show that the final failure probability for a PWR pressure vessel is 3.5 10 -8 , and is due essentially to LOCAs for any break size. The weakest point is the internal side of the belt line

  9. Effects of Host-rock Fracturing on Elastic-deformation Source Models of Volcano Deflation.

    Science.gov (United States)

    Holohan, Eoghan P; Sudhaus, Henriette; Walter, Thomas R; Schöpfer, Martin P J; Walsh, John J

    2017-09-08

    Volcanoes commonly inflate or deflate during episodes of unrest or eruption. Continuum mechanics models that assume linear elastic deformation of the Earth's crust are routinely used to invert the observed ground motions. The source(s) of deformation in such models are generally interpreted in terms of magma bodies or pathways, and thus form a basis for hazard assessment and mitigation. Using discontinuum mechanics models, we show how host-rock fracturing (i.e. non-elastic deformation) during drainage of a magma body can progressively change the shape and depth of an elastic-deformation source. We argue that this effect explains the marked spatio-temporal changes in source model attributes inferred for the March-April 2007 eruption of Piton de la Fournaise volcano, La Reunion. We find that pronounced deflation-related host-rock fracturing can: (1) yield inclined source model geometries for a horizontal magma body; (2) cause significant upward migration of an elastic-deformation source, leading to underestimation of the true magma body depth and potentially to a misinterpretation of ascending magma; and (3) at least partly explain underestimation by elastic-deformation sources of changes in sub-surface magma volume.

  10. Study of a design criterion for 316L irradiated represented by a strain hardened material

    International Nuclear Information System (INIS)

    Gouin, H.

    1999-01-01

    The aim of this study is to analyse the consequence of radiation on different structure submitted to imposed displacement loading and for damages due to plastic instability or rupture. The main consequence of radiation is a material hardening with a ductility decrease. This effect is similar to initial mechanical hardening: the mechanical properties (determined on smooth tensile specimen) evolve in the same way while irradiation or mechanical hardening increase. So in this study, radiation hardening is simulated by mechanical hardening (swaging). Tests were carried out for which two damages were considered: plastic instability and rupture. These two damages were studied with initial mechanical hardening (5 tested hammering rate 0, 15, 25, 35 and 45% on 316L stainless steel). Likewise two types of loading were studied: tensile or bending loading on specimens with or without geometrical singularities (notches). From tensile tests, two deformation criteria are proposed for prevention against the two quoted damages. Numerical study is carried out allowing to confirm hypothesis made at the time of the tensile test result interpretation and to validate the rupture criterion by applying on bending test. (author)

  11. Four-dimensional Hooke's law can encompass linear elasticity and inertia

    International Nuclear Information System (INIS)

    Antoci, S.; Mihich, L.

    1999-01-01

    The question is examined whether the formally straightforward extension of Hooke's time-honoured stress-strain relation to the four dimensions of special and of general relativity can make physical sense. The four-dimensional Hooke law is found able to account for the inertia of matter; in the flat-space, slow-motion approximation the field equations for the displacement four-vector field ξ i can encompass both linear elasticity and inertia. In this limit one just recovers the equations of motion of the classical theory of elasticity

  12. Material Properties Test to Determine Ultimate Strain and True Stress-True Strain Curves for High Yield Steels

    Energy Technology Data Exchange (ETDEWEB)

    K.R. Arpin; T.F. Trimble

    2003-04-01

    This testing was undertaken to develop material true stress-true strain curves for elastic-plastic material behavior for use in performing transient analysis. Based on the conclusions of this test, the true stress-true strain curves derived herein are valid for use in elastic-plastic finite element analysis for structures fabricated from these materials. In addition, for the materials tested herein, the ultimate strain values are greater than those values cited as the limits for the elastic-plastic strain acceptance criteria for transient analysis.

  13. Effect of plasticity on cleavage crack growth resistance at an interface

    DEFF Research Database (Denmark)

    Tvergaard, Viggo

    1999-01-01

    The mixed mode toughness of an interface joining an elastic-plastic metal to a solid which does not yield plastically is studied numerically for cases where fracture occurs by atomic separation. Thus, the length scale of the fracture process is typically much smaller than the dislocation spacing...... of a thin elastic strip of material along the metal side of the crack tip, while the metal outside the strip is described by continuum plasticity. Most of the computations use an infinitely long elastic strip to represent the elastic core region around the tip, but the approximation of using a long strip...

  14. Flow and fracture of alloys in the fusion environment

    International Nuclear Information System (INIS)

    Wolfer, W.G.

    1982-01-01

    The present paper examines both ductile and brittle fracture models of steels and assesses the impact of the fusion reactor environment on the fracture processes. In particular, the connections between plastic flow properties and fracture modes are reviewed for both ductile and brittle crack propagation. Highly radiation-hardened materials exhibit extreme flow location resulting in channel fracture. Physical models for this phenomon are developed and an estimate for the associated fracture toughness is given. The impact of radiation-hardening and ductility loss on fatigue crack growth is examined. Next, models describing the chemical effects on fatigue and fracture are briefly discussed. Finally, fracture design criteria are proposed for first wall structures in fusion reactors. (orig.)

  15. Dislocation-free zone model of fracture comparison with experiments

    International Nuclear Information System (INIS)

    Ohr, S.M.; Chang, S.

    1982-01-01

    The dislocation-free zone (DFZ) model of fracture has been extended to study the relationship between the stress intensity factor, extent of plastic deformation, and crack tip geometry of an elastic-plastic crack as a function of applied stress. The results show that the stress intensity factor K decreases from the elastic value at first slowly, then goes rapidly to zero as the number of dislocations in the plastic zone increases. The crack with a zero stress intensity factor has its crack tip stress field completely relaxed by plastic deformation and hence is called a plastic crack. Between the elastic and plastic cracks, a wide range of elastic-plastic cracks having both a stress singularity and a plastic zone are possible. These elastic-plastic cracks with a DFZ are predicted if there is a critical stress intensity factor K/sub g/ required for the generation of dislocations at the crack tip. The expression for K/sub g/ is obtained from the crack tip dislocation nucleation model of Rice and Thomson. In most metals, the magnitude of K/sub g/ is less than the critical stress intensity factor for brittle fracture K/sub c/. The values of K are determined from electron microscope fracture experiments for various metals and they are found to be in good agreement with the K/sub g/ predicted from the model. It is concluded that for most ductile and semibrittle metals, the mechanism of dislocation generation is more important than the fracture surface energy in determining the stress intensity factor at the crack tip

  16. Application of the Single Hardening Model in the Finite Element Program ABAQUS

    DEFF Research Database (Denmark)

    Jakobsen, Kim Parsberg

    model, developed by Lade and Kim (Kim & Lade 1988, Lade & Kim 1988a, Lade & Kim 1988b) is implemented as a user defined material module, UMAT, in the commercial finite element program, ABAQUS. The advantages of the Single Hardening Model Iie in its ability to predict elastic and plastic displacements...

  17. Deformation localization at the tips of shear fractures: An analytical approach

    Science.gov (United States)

    Misra, Santanu

    2011-04-01

    Mechanical heterogeneities are important features in rocks which trigger deformation localization in brittle, ductile or brittle-ductile modes during deformation. In a recent study Misra et al. (2009) have investigated these different processes of deformation localization at the tips of pre-existing planar shear fractures. The authors identified four mechanisms of deformation, ranging from brittle to ductile, operating at the crack tips. Mechanism A: brittle deformation is the dominant process that forms a pair of long tensile fractures at the two crack tips. Mechanism B: nature of deformation is mixed where the tensile fractures grow to a finite length with incipient plastic deformation at the tips. Mechanism C: mixed mode deformation characterized by dominating macro-scale shear bands, and short, opened-out tensile fissures. Mechanism D: localization of plastic bands in the form of a pair of shear bands at each tip without any discernible brittle fracturing. The transition of the mechanisms is a function of orientation ( α) of the crack with respect to the bulk compression direction and the finite length ( l) of the crack. The aim of this study is to present a theoretical analysis to account for the variability of deformation localization in the vicinity of pre-existing shear cracks considering an elastic-plastic rheological model. The analysis calculates the principal tensile stress ( σ1) and the second stress invariant ( I2) of the stress field at the fracture tip to explain the transition from Mechanism A (tensile fracturing) to Mechanism D (ductile strain). The results show that σ1 at the fracture tip increases non-linearly with increasing α and Ar (aspect ratio of the shear crack), and assumes a large value when α > 50 o, promoting tensile fractures. On the other hand, I2 is a maximum at α < 45°, resulting in nucleation of ductile shear bands.

  18. A new macroscopically anisotropic pressure dependent yield function for metal matrix composite based on strain gradient plasticity for the microstructure

    DEFF Research Database (Denmark)

    Azizi, Reza; Legarth, Brian Nyvang; Niordson, Christian Frithiof

    2013-01-01

    Metal matrix composites with long aligned elastic fibers are studied using an energetic rate independent strain gradient plasticity theory with an isotropic pressure independent yield function at the microscale. The material response is homogenized to obtain a conventional macroscopic model...... is investigated numerically using a unit cell model with periodic boundary conditions containing a single fiber deformed under generalized plane strain conditions. The homogenized response can be modeled by conventional plasticity with an anisotropic yield surface and a free energy depending on plastic strain...

  19. Thermal image analysis of plastic deformation and fracture behavior by a thermo-video measurement system

    International Nuclear Information System (INIS)

    Ohbuchi, Yoshifumi; Sakamoto, Hidetoshi; Nagatomo, Nobuaki

    2016-01-01

    The visualization of the plastic region and the measurement of its size are necessary and indispensable to evaluate the deformation and fracture behavior of a material. In order to evaluate the plastic deformation and fracture behavior in a structural member with some flaws, the authors paid attention to the surface temperature which is generated by plastic strain energy. The visualization of the plastic deformation was developed by analyzing the relationship between the extension of the plastic deformation range and the surface temperature distribution, which was obtained by an infrared thermo-video system. Furthermore, FEM elasto-plastic analysis was carried out with the experiment, and the effectiveness of this non-contact measurement system of the plastic deformation and fracture process by a thermography system was discussed. The evaluation method using an infrared imaging device proposed in this research has a feature which does not exist in the current evaluation method, i.e. the heat distribution on the surface of the material has been measured widely by noncontact at 2D at high speed. The new measuring technique proposed here can measure the macroscopic plastic deformation distribution on the material surface widely and precisely as a 2D image, and at high speed, by calculation from the heat generation and the heat propagation distribution. (paper)

  20. Concepts and possibilities of fracture mechanics for fracture safety assessment

    International Nuclear Information System (INIS)

    Blauel, J.

    1980-01-01

    In very tough materials for pressure vessels and pipelines of nuclear plants, cracking begins in a stable manner and only after macroscopic plastic deformations and crack blunting. It is possible to describe this elasto-plastic fracture behaviour and to quantify the safety margin compared to the assessment criteria based on linear elastic stressing and initiation by the concept of the J integral, the crack peak width and the crack resistance Jsub(R) curve. The numerous problems of details still open and the partly very limited validity range should not prevent the further investigation into the great possibilities of this concept and making greater use of the interpretation of large scale tests. (orig./RW) [de

  1. Computer implementation of an elastic-plastic concrete relationship

    International Nuclear Information System (INIS)

    Murray, D.W.; Chitnuyanondh, L.; Wong, C.

    1979-01-01

    The purpose of this paper is to describe the difficulties that arose, and the strategies that were developed to overcome these difficulties, during the incorporation of a relatively complex elastic-plastic concrete constitutive relationship into an existing computer code for the analysis of axisymmetric loading acting on thin shells of revolution. The program had the capability of elastic-plastic analysis using a von-Mises yield curve prior to any modification by the writers. (orig.)

  2. Investigating dynamic characteristics of porous double-layered FG nanoplates in elastic medium via generalized nonlocal strain gradient elasticity

    Science.gov (United States)

    Reza Barati, Mohammad

    2017-09-01

    For the first time, a vibrating porous double-nanoplate system under in-plane periodic loads is modeled via the generalized nonlocal strain gradient theory (NSGT). Based on the proposed theory, one can examine both stiffness-softening and stiffness-hardening effects for a more accurate analysis of nanoplates. Nanopores or nanovoids are incorporated to the model based on a modified rule of mixture. Modeling of porous double-layered nanoplate is conducted according to a refined four-variable plate theory with fewer field variables than first-order plate theory. The governing equations and related classical and nonclassical boundary conditions are derived based on Hamilton's principle. These equations are solved for hinged nanoplates via Galerkin's method. It is shown that porosities, nonlocal parameter, strain gradient parameter, material gradation, interlayer stiffness, elastic foundation, side-to-thickness and aspect ratios have a notable impact on the vibration behavior of nanoporous materials.

  3. Practical solution of plastic deformation problems in elastic-plastic range

    Science.gov (United States)

    Mendelson, A; Manson, S

    1957-01-01

    A practical method for solving plastic deformation problems in the elastic-plastic range is presented. The method is one of successive approximations and is illustrated by four examples which include a flat plate with temperature distribution across the width, a thin shell with axial temperature distribution, a solid cylinder with radial temperature distribution, and a rotating disk with radial temperature distribution.

  4. A compact cyclic plasticity model with parameter evolution

    DEFF Research Database (Denmark)

    Krenk, Steen; Tidemann, L.

    2017-01-01

    The paper presents a compact model for cyclic plasticity based on energy in terms of external and internal variables, and plastic yielding described by kinematic hardening and a flow potential with an additive term controlling the nonlinear cyclic hardening. The model is basically described by five...... parameters: external and internal stiffness, a yield stress and a limiting ultimate stress, and finally a parameter controlling the gradual development of plastic deformation. Calibration against numerous experimental results indicates that typically larger plastic strains develop than predicted...

  5. Computational description of nanocrystalline deformation based on crystal plasticity

    International Nuclear Information System (INIS)

    Fu, H.-H.; Benson, David J.; Andre Meyers, Marc

    2004-01-01

    The effect of grain size on the mechanical response of polycrystalline metals was investigated computationally and applied to the nanocrystalline domain. A phenomenological constitutive description is adopted to build the computational crystal model. Two approaches are implemented. In the first, the material is envisaged as a composite; the grain interior is modeled as a monocrystalline core surrounded by a mantle (grain boundary) with a lower yield stress and higher work hardening rate response. Both a quasi-isotropic and crystal plasticity approaches are used to simulate the grain interiors. The grain boundary is modeled either by an isotropic Voce equation (Model I) or by crystal plasticity (Model II). Elastic and plastic anisotropy are incorporated into this simulation. An implicit Eulerian finite element formulation with von Mises plasticity or rate dependent crystal plasticity is used to study the nonuniform deformation and localized plastic flow. The computational predictions are compared with the experimentally determined mechanical response of copper with grain sizes of 1 μm and 26 nm. Shear localization is observed during work hardening in view of the inhomogeneous mechanical response. In the second approach, the use of a continuous change in mechanical response, expressed by the magnitude of the maximum shear stress orientation gradient, is introduced. It is shown that the magnitude of the gradient is directly dependent on grain size. This gradient term is inserted into a constitutive equation that predicts the local stress-strain evolution

  6. The effects of perturbations on the strain distribution in numerical simulations - elasto-viscoplastic modeling of boudinage as a case study

    Science.gov (United States)

    Peters, Max; Karrech, Ali; Poulet, Thomas; Herwegh, Marco; Regenauer-Lieb, Klaus

    2014-05-01

    During necking of a mechanically stiffer layer embedded in a weaker matrix, relatively large amounts of strain localize in small areas. As this deformation style appears under distinct geological conditions, necking phenomena, e.g. boudinaged veins, are associated with a variety of deformation modes. So far, there exists rather limited knowledge about the origin of instabilities and their role as precursory structures, i.e. strong localization of elastic energy affecting further plastic deformation (e.g. Regenauer-Lieb & Yuen, 1998; 2004; Karrech et al., 2011a). We applied the finite element solver ABAQUS in order to investigate the 2-D strain distribution in layers including different mechanical material properties during plane strain co-axial deformation. First, linear perturbation analyses were performed in order to evaluate the imperfection sensitivity in the elastic and viscous regimes. We perform a classical modal analysis to determine the natural mode shapes and frequencies of our geological structure during arbitrary vibrations. This analysis aims at detecting the eigenmodes of the geological structure, which are sinusoidal vibrations with geometry specific natural modal shapes and frequencies. The eigenvalues represent the nodal points where the onset of (visco)-elasto-plastic localization can initiate in the structure (Rice, 1977). The eigenmodes, eigenvalues and eigenvectors are highly sensitive to the layer-box' aspect ratio and differences in Young's moduli, or effective viscosity, respectively. Boundary effect-free strain propagation occurs for layer-box aspect ratios smaller than 1:10. Second, these preloading structures were used as seeds for imperfections in elasto-viscoplastic numerical modeling of continuous necking of a coarse-grained mineral layer embedded in a finer-grained matrix (pinch-and-swell type of boudinage), following the thermo-mechanical coupling of grain size evolutions by Herwegh et al. (in press). The evolution of symmetric necks

  7. Elastic-Plastic Nonlinear Response of a Space Shuttle External Tank Stringer. Part 2; Thermal and Mechanical Loadings

    Science.gov (United States)

    Knight, Norman F., Jr.; Warren, Jerry E.; Elliott, Kenny B.; Song, Kyongchan; Raju, Ivatury S.

    2012-01-01

    Elastic-plastic, large-deflection nonlinear thermo-mechanical stress analyses are performed for the Space Shuttle external tank s intertank stringers. Detailed threedimensional finite element models are developed and used to investigate the stringer s elastic-plastic response for different thermal and mechanical loading events from assembly through flight. Assembly strains caused by initial installation on an intertank panel are accounted for in the analyses. Thermal loading due to tanking was determined to be the bounding loading event. The cryogenic shrinkage caused by tanking resulted in a rotation of the intertank chord flange towards the center of the intertank, which in turn loaded the intertank stringer feet. The analyses suggest that the strain levels near the first three fasteners remain sufficiently high that a failure may occur. The analyses also confirmed that the installation of radius blocks on the stringer feet ends results in an increase in the stringer capability.

  8. Description of near-tip fracture processes in strain hardening cementitious composites using image-based analysis and the compact tension test

    DEFF Research Database (Denmark)

    Pereira, Eduardo B.; Fischer, Gregor; Barros, Joaquim A.O.

    2013-01-01

    The cracking mechanisms assume a key role in the composite behavior of Strain Hardening Cementitious Composites (SHCCs). Due to their importance, in previous studies the mechanical behavior of SHCC materials, as well as of other strain softening fiber reinforced cementitious composites......, was characterized under eccentric tensile loading using the Compact Tension Test (CTT). The present research further extends this investigation, with particular emphasis on cementitious composites reinforced with multiple types of fibers. The experimental tensile load-displacement results are discussed and compared...

  9. A 3D Orthotropic Strain-Rate Dependent Elastic Damage Material Model.

    Energy Technology Data Exchange (ETDEWEB)

    English, Shawn Allen

    2014-09-01

    A three dimensional orthotropic elastic constitutive model with continuum damage and cohesive based fracture is implemented for a general polymer matrix composite lamina. The formulation assumes the possibility of distributed (continuum) damage followed b y localized damage. The current damage activation functions are simply partially interactive quadratic strain criteria . However, the code structure allows for changes in the functions without extraordinary effort. The material model formulation, implementation, characterization and use cases are presented.

  10. Resonant frequency and elastic modulus measurements on hardened cement pastes

    International Nuclear Information System (INIS)

    Lee, D.J.

    1982-12-01

    A new technique for measuring resonant frequency and elastic modulus is described. This has been used on specimens of hardened cement paste containing water with no simulated waste, and the results compared with measurements of ultrasonic pulse velocity, dimensional movements and compressive strength made on the same formulations. In addition, measurements were made on a specimen containing simulated waste which demonstrated the applicability of the new technique for following the development of the mechanical properties of cemented simulant radioactive waste in the laboratory. (U.K.)

  11. The microstructural origin of work hardening stages

    DEFF Research Database (Denmark)

    Hughes, D. A.; Hansen, N.

    2018-01-01

    The strain evolution of the flow stress and work hardening rate in stages III and IV is explored by utilizing a fully described deformation microstructure. Extensive measurements by transmission electron microscopy reveal a hierarchical subdivision of grains by low angle incidental dislocation...... addition of the classical Taylor and Hall-Petch formulations. Model predictions agree closely with experimental values of flow stress and work hardening rate in stages III and IV. Strong connections between the evolutionary stages of the deformation microstructure and work hardening rates create a new...... (modern) basis for the classic problem of work hardening in metals and alloys. These connections lead the way for the future development of ultra high strength ductile metals produced via plastic deformation.(c) 2018 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved....

  12. Microstructural evolution and the variation of tensile behavior after aging heat treatment of precipitation hardened martensitic steel

    International Nuclear Information System (INIS)

    Shin, Jong-Ho; Jeong, JaeSuk; Lee, Jong-Wook

    2015-01-01

    The effects of aging temperature on the microstructural evolution and the tensile behavior of precipitation hardened martensitic steel were investigated. Microscopic analysis using transmission electron microscope (TEM) was combined with the microstructural analysis using the synchrotron X-ray diffraction (XRD) to characterize the microstructural evolution with aging temperature. Peak hardness was obtained by precipitation of the Ni 3 Al ordered phase. After aging at temperature range from 420 to 590 °C, spherical Ni 3 Al precipitates and ellipsoidal M 23 C 6 carbides were observed within laths and at lath boundaries, respectively. Strain hardening behavior was analyzed with Ludwik equation. It is observed that the plastic strain regimes can be divided into two different stages by a rapid increase in strain hardening followed by a comparatively lower increase. At the first strain hardening stage, the aged specimen exhibited higher strain hardening exponent than the as-quenched specimen, and the exponent in the aged specimen was not changed considerably with increasing aging temperature. It is revealed that the strain hardening exponents at the first and the second stages were associated with the Ni 3 Al precipitates and the domain size representing the coherent scattering area, respectively. - Highlights: • All of aged specimen exhibited higher strain hardening exponent than the as-quenched specimen at the first stage. • The value of strain hardening exponent in the aged specimen was nearly constant with aging temperature. • Ni 3 Al precipitation dominantly influenced to the increase of strain hardening exponent at the first strain hardening stage. • Domain size was associated with strain hardening exponent at the second strain hardening stage

  13. Microstructural evolution and the variation of tensile behavior after aging heat treatment of precipitation hardened martensitic steel

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Jong-Ho, E-mail: jongho.shin@doosan.com [Casting and Forging Technology Development Team, Doosan Heavy Industries and Construction, 22 Doosanvolvo-ro, Changwon 642-792 (Korea, Republic of); Jeong, JaeSuk [Materials and Manufacturing Development Team, Doosan Heavy Industries and Construction, 22 Doosanvolvo-ro, Changwon 642-792 (Korea, Republic of); Lee, Jong-Wook [Casting and Forging Technology Development Team, Doosan Heavy Industries and Construction, 22 Doosanvolvo-ro, Changwon 642-792 (Korea, Republic of)

    2015-01-15

    The effects of aging temperature on the microstructural evolution and the tensile behavior of precipitation hardened martensitic steel were investigated. Microscopic analysis using transmission electron microscope (TEM) was combined with the microstructural analysis using the synchrotron X-ray diffraction (XRD) to characterize the microstructural evolution with aging temperature. Peak hardness was obtained by precipitation of the Ni{sub 3}Al ordered phase. After aging at temperature range from 420 to 590 °C, spherical Ni{sub 3}Al precipitates and ellipsoidal M{sub 23}C{sub 6} carbides were observed within laths and at lath boundaries, respectively. Strain hardening behavior was analyzed with Ludwik equation. It is observed that the plastic strain regimes can be divided into two different stages by a rapid increase in strain hardening followed by a comparatively lower increase. At the first strain hardening stage, the aged specimen exhibited higher strain hardening exponent than the as-quenched specimen, and the exponent in the aged specimen was not changed considerably with increasing aging temperature. It is revealed that the strain hardening exponents at the first and the second stages were associated with the Ni{sub 3}Al precipitates and the domain size representing the coherent scattering area, respectively. - Highlights: • All of aged specimen exhibited higher strain hardening exponent than the as-quenched specimen at the first stage. • The value of strain hardening exponent in the aged specimen was nearly constant with aging temperature. • Ni{sub 3}Al precipitation dominantly influenced to the increase of strain hardening exponent at the first strain hardening stage. • Domain size was associated with strain hardening exponent at the second strain hardening stage.

  14. Creep-fatigue life assessment of cruciform weldments using the linear matching method

    International Nuclear Information System (INIS)

    Gorash, Yevgen; Chen, Haofeng

    2013-01-01

    This paper presents a creep-fatigue life assessment of a cruciform weldment made of the steel AISI type 316N(L) and subjected to reversed bending and cyclic dwells at 550 °C using the Linear Matching Method (LMM) and considering different weld zones. The design limits are estimated by the shakedown analysis using the LMM and elastic-perfectly-plastic material model. The creep-fatigue analysis is implemented using the following material models: 1) Ramberg–Osgood model for plastic strains under saturated cyclic conditions; 2) power-law model in “time hardening” form for creep strains during primary creep stage. The number of cycles to failure N ⋆ under creep-fatigue interaction is defined by: a) relation for cycles to fatigue failure N ∗ dependent on numerical total strain range Δε tot for the fatigue damage ω f ; b) long-term strength relation for the time to creep rupture t ∗ dependent on numerical average stress σ ¯ during dwell Δt for the creep damage ω cr ; c) non-linear creep-fatigue interaction diagram for the total damage. Numerically estimated N ⋆ for different Δt and Δε tot shows good quantitative agreement with experiments. A parametric study of different dwell times Δt is used to formulate the functions for N ⋆ and residual life L ⋆ dependent on Δt and normalised bending moment M -tilde , and the corresponding contour plot intended for design applications is created. -- Highlights: ► Ramberg–Osgood model is used for plastic strains under saturated cyclic conditions. ► Power-law model in time-hardening form is used for creep strains during dwells. ► Life assessment procedure is based on time fraction rule to evaluate creep damage. ► Function for cycles to failure is dependent on dwell period and normalised moment. ► Function for FSRF dependent on dwell period takes into account the effect of creep

  15. Analysis of elastic-plastic problems using edge-based smoothed finite element method

    International Nuclear Information System (INIS)

    Cui, X.Y.; Liu, G.R.; Li, G.Y.; Zhang, G.Y.; Sun, G.Y.

    2009-01-01

    In this paper, an edge-based smoothed finite element method (ES-FEM) is formulated for stress field determination of elastic-plastic problems using triangular meshes, in which smoothing domains associated with the edges of the triangles are used for smoothing operations to improve the accuracy and the convergence rate of the method. The smoothed Galerkin weak form is adopted to obtain the discretized system equations, and the numerical integration becomes a simple summation over the edge-based smoothing domains. The pseudo-elastic method is employed for the determination of stress field and Hencky's total deformation theory is used to define effective elastic material parameters, which are treated as field variables and considered as functions of the final state of stress fields. The effective elastic material parameters are then obtained in an iterative manner based on the strain controlled projection method from the uniaxial material curve. Some numerical examples are investigated and excellent results have been obtained demonstrating the effectivity of the present method.

  16. High strain rate tensile behavior of Al-4.8Cu-1.2Mg alloy

    International Nuclear Information System (INIS)

    Bobbili, Ravindranadh; Paman, Ashish; Madhu, V.

    2016-01-01

    The purpose of the current study is to perform quasi static and high strain rate tensile tests on Al-4.8Cu-1.2Mg alloy under different strain rates ranging from 0.01–3500/s and also at temperatures of 25,100, 200 and 300 °C. The combined effect of strain rate, temperature and stress triaxiality on the material behavior is studied by testing both smooth and notched specimens. Johnson–Cook (J–C) constitutive and fracture models are established based on high strain rate tensile data obtained from Split hopkinson tension bar (SHTB) and quasi-static tests. By modifying the strain hardening and strain rate hardening terms in the Johnson–Cook (J–C) constitutive model, a new J–C constitutive model of Al-4.8Cu-1.2Mg alloy was obtained. The improved Johnson–Cook constitutive model matched the experiment results very well. With the Johnson–Cook constitutive and fracture models, numerical simulations of tensile tests at different conditions for Al-4.8Cu-1.2Mg alloy were conducted. Numerical simulations are performed using a non-linear explicit finite element code autodyn. Good agreement is obtained between the numerical simulation results and the experiment results. The fracture surfaces of specimens tested under various strain rates and temperatures were studied under scanning electron microscopy (SEM).

  17. Finite element analysis of cylindrical indentation for determining plastic properties of materials in small volumes

    International Nuclear Information System (INIS)

    Lu, Y Charles; Kurapati, Siva N V R K; Yang Fuqian

    2008-01-01

    The cylindrical indentation is analysed, using the finite element method, for determining the plastic properties of elastic-plastic materials and the effect of strain hardening. The results are compared with those obtained from spherical indentation, the commonly used technique for measuring plastic properties of materials in small volumes. The analysis shows that the deformation under a cylindrical indenter quickly reaches a fully plastic state and that the size (diameter) of the plastic zone remains constant during further indentation. The indentation load is proportional to the indentation depth at large indentation depth, from which the indentation pressure P m at the onset of yielding can be readily extrapolated. The analysis of cylindrical indentation suggests that it does not need parameters such as impression radius (a) and contact stiffness (S) for determining the plastic behaviour of materials. Thus, the cylindrical indentation can suppress the uncertainties in measuring material properties

  18. Low-cycle fatigue of dissimilar friction stir welded aluminum alloys

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez, R.I. [The University of Alabama, Department of Mechanical Engineering, Tuscaloosa, AL 35487 (United States); Jordon, J.B., E-mail: bjordon@eng.ua.edu [The University of Alabama, Department of Mechanical Engineering, Tuscaloosa, AL 35487 (United States); Allison, P.G. [The University of Alabama, Department of Mechanical Engineering, Tuscaloosa, AL 35487 (United States); Rushing, T.; Garcia, L. [Engineering Research and Development Center, Army Corps of Engineers, Vicksburg, MS 39180 (United States)

    2016-01-27

    In this work, experiments were conducted to quantify structure-property relations of low-cycle fatigue behavior of dissimilar friction stir welding (FSW) of AA6061-to-AA7050 high strength aluminum alloys. In addition, a microstructure-sensitive fatigue model is employed to further elucidate cause-effect relationships. Experimental strain-controlled fatigue testing revealed an increase in the cyclic strain hardening and the number-of cycles to failure as the tool rotational speed was increased. At higher applied strain amplitudes (>0.3%), the corresponding stress amplitude increased and the plastic strain amplitude decreased, as the number of cycles increased. However, at 0.2% strain amplitude, the plastic strain decreased until it was almost negligible. Inspection of the hysteresis loops demonstrated that at low strain amplitudes, there was an initial stage of strain hardening that increased until it reached a maximum strain hardening level, afterwards a nearly perfect elastic behavior was observed. Under fully-reversed fatigue loading, all samples failed at the region between the heat-affected and thermomechanically-affected zones. Inspection of the fractured surfaces under scanning electron microscopy revealed that the cracks initiated at either the crown or the root surface of the weld, and from secondary intermetallic particles located near the free surface of the weld. Lastly, a microstructure-sensitive multistage fatigue model was employed to correlate the fatigue life of the dissimilar FSW of AA6061-to-AA7050 considering microstructural features such as grain size, intermetallic particles and mechanical properties.

  19. Numerical development of a new correlation between biaxial fracture strain and material fracture toughness for small punch test

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Pradeep [Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094 (India); Dutta, B.K., E-mail: bijon.dutta@gmail.com [Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094 (India); Chattopadhyay, J. [Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094 (India); Reactor Safety Division, Bhabha Atomic Research Centre, Mumbai 400085 (India)

    2017-04-01

    The miniaturized specimens are used to determine mechanical properties of the materials, such as yield stress, ultimate stress, fracture toughness etc. Use of such specimens is essential whenever limited quantity of material is available for testing, such as aged/irradiated materials. The miniaturized small punch test (SPT) is a technique which is widely used to determine change in mechanical properties of the materials. Various empirical correlations are proposed in the literature to determine the value of fracture toughness (J{sub IC}) using this technique. bi-axial fracture strain is determined using SPT tests. This parameter is then used to determine J{sub IC} using available empirical correlations. The correlations between J{sub IC} and biaxial fracture strain quoted in the literature are based on experimental data acquired for large number of materials. There are number of such correlations available in the literature, which are generally not in agreement with each other. In the present work, an attempt has been made to determine the correlation between biaxial fracture strain (ε{sub qf}) and crack initiation toughness (J{sub i}) numerically. About one hundred materials are digitally generated by varying yield stress, ultimate stress, hardening coefficient and Gurson parameters. Such set of each material is then used to analyze a SPT specimen and a standard TPB specimen. Analysis of SPT specimen generated biaxial fracture strain (ε{sub qf}) and analysis of TPB specimen generated value of J{sub i}. A graph is then plotted between these two parameters for all the digitally generated materials. The best fit straight line determines the correlation. It has been also observed that it is possible to have variation in J{sub i} for the same value of biaxial fracture strain (ε{sub qf}) within a limit. Such variation in the value of J{sub i} has been also ascertained using the graph. Experimental SPT data acquired earlier for three materials were then used to get J

  20. Effects of fracture distribution and length scale on the equivalent continuum elastic compliance of fractured rock masses

    Directory of Open Access Journals (Sweden)

    Marte Gutierrez

    2015-12-01

    Full Text Available Fracture systems have strong influence on the overall mechanical behavior of fractured rock masses due to their relatively lower stiffness and shear strength than those of the rock matrix. Understanding the effects of fracture geometrical distribution, such as length, spacing, persistence and orientation, is important for quantifying the mechanical behavior of fractured rock masses. The relation between fracture geometry and the mechanical characteristics of the fractured rock mass is complicated due to the fact that the fracture geometry and mechanical behaviors of fractured rock mass are strongly dependent on the length scale. In this paper, a comprehensive study was conducted to determine the effects of fracture distribution on the equivalent continuum elastic compliance of fractured rock masses over a wide range of fracture lengths. To account for the stochastic nature of fracture distributions, three different simulation techniques involving Oda's elastic compliance tensor, Monte Carlo simulation (MCS, and suitable probability density functions (PDFs were employed to represent the elastic compliance of fractured rock masses. To yield geologically realistic results, parameters for defining fracture distributions were obtained from different geological fields. The influence of the key fracture parameters and their relations to the overall elastic behavior of the fractured rock mass were studied and discussed. A detailed study was also carried out to investigate the validity of the use of a representative element volume (REV in the equivalent continuum representation of fractured rock masses. A criterion was also proposed to determine the appropriate REV given the fracture distribution of the rock mass.

  1. Fatigue Hardening and Nucleation of Persistent Slip Bands in Copper

    DEFF Research Database (Denmark)

    Pedersen, Ole Bøcker; Winter, A. T.

    1982-01-01

    A study of fatigue hardening in single crystals of pure copper shows that, before saturation, stress-strain loops can display workhardening rates of about a third of the elastic shear modulus. These rates exceed tensile workhardening rates by roughly two orders of magnitude. This suggests that th...

  2. Investigation on method of elasto-plastic analysis for piping system (benchmark analysis)

    International Nuclear Information System (INIS)

    Kabaya, Takuro; Kojima, Nobuyuki; Arai, Masashi

    2015-01-01

    This paper provides method of an elasto-plastic analysis for practical seismic design of nuclear piping system. JSME started up the task to establish method of an elasto-plastic analysis for nuclear piping system. The benchmark analyses have been performed in the task to investigate on method of an elasto-plastic analysis. And our company has participated in the benchmark analyses. As a result, we have settled on the method which simulates the result of piping exciting test accurately. Therefore the recommended method of an elasto-plastic analysis is shown as follows; 1) An elasto-plastic analysis is composed of dynamic analysis of piping system modeled by using beam elements and static analysis of deformed elbow modeled by using shell elements. 2) Bi-linear is applied as an elasto-plastic property. Yield point is standardized yield point multiplied by 1.2 times, and second gradient is 1/100 young's modulus. Kinematic hardening is used as a hardening rule. 3) The fatigue life is evaluated on strain ranges obtained by elasto-plastic analysis, by using the rain flow method and the fatigue curve of previous studies. (author)

  3. Uniqueness theorems in linear elasticity

    CERN Document Server

    Knops, Robin John

    1971-01-01

    The classical result for uniqueness in elasticity theory is due to Kirchhoff. It states that the standard mixed boundary value problem for a homogeneous isotropic linear elastic material in equilibrium and occupying a bounded three-dimensional region of space possesses at most one solution in the classical sense, provided the Lame and shear moduli, A and J1 respectively, obey the inequalities (3 A + 2 J1) > 0 and J1>O. In linear elastodynamics the analogous result, due to Neumann, is that the initial-mixed boundary value problem possesses at most one solution provided the elastic moduli satisfy the same set of inequalities as in Kirchhoffs theorem. Most standard textbooks on the linear theory of elasticity mention only these two classical criteria for uniqueness and neglect altogether the abundant literature which has appeared since the original publications of Kirchhoff. To remedy this deficiency it seems appropriate to attempt a coherent description ofthe various contributions made to the study of uniquenes...

  4. On generalization uniaxial stress-strain relation

    International Nuclear Information System (INIS)

    Sahay, C.; Dubey, R.N.

    1980-01-01

    Different forms of constitutive relations have been advanced for elastic, plastic and elastic-plastic behaviour of materials. It is shown that the various forms of the stress-strain relationship are specialized forms of generalization of a single stress-strain relation. For example, it is shown how the laws of elastic deformation, and the incremental and total deformation relationship for plastic behaviour are derivable from the Ramberg-Osgood relation. (orig.)

  5. Fracture dynamics of a propagating crack in a pressurized ductile cylinder

    International Nuclear Information System (INIS)

    Emery, A.F.; Love, W.J.; Kobayashi, A.S.

    1977-01-01

    A suddenly-introduced axial through-crack in the wall of a pipe pressurized by hot water is allowed to propagate according to Weiss' notch-strength theory of ductile static fracture. The dynamic-fracture criterion used enabled the authors to obtain a unique comparison of the results of ductile-fracture with those of brittle-fracture in a fracturing A533B steel pipe. Since the pipe cross-sectional area is likely to increase with large flap motions under ductile tearing, a large deformation shell-finite-difference-dynamic-code which includes rotary inertia was used in this analysis. The uniaxial-stress-strain curve of A533B steel was approximated by a bilinear-stress-strain where Von-Mises yield criterion and associated flow rule were used in the elastic-plastic analysis. The fluid pressure was assumed constant and thus pipe flaps are only lightly loaded by pressure in this analysis. (Auth.)

  6. Thermo-elastic-plastic analysis for elastic component under high temperature fatigue crack growth rate

    Science.gov (United States)

    Ali, Mohammed Ali Nasser

    The research project presents a fundamental understanding of the fatigue crack growth mechanisms of AISI 420 martensitic stainless steel, based on the comparison analysis between the theoretical and numerical modelling, incorporating research findings under isothermal fatigue loading for solid cylindrical specimen and the theoretical modelling with the numerical simulation for tubular specimen when subjected to cyclic mechanical loading superimposed by cyclic thermal shock.The experimental part of this research programme studied the fatigue stress-life data for three types of surface conditions specimen and the isothermal stress-controlled fatigue testing at 300 °C - 600 °C temperature range. It is observed that the highest strength is obtained for the polished specimen, while the machined specimen shows lower strength, and the lowest strength is the notched specimen due to the high effect of the stress concentration. The material behaviour at room and high temperatures shows an initial hardening, followed by slow extension until fully plastic saturation then followed by crack initiation and growth eventually reaching the failure of the specimen, resulting from the dynamic strain ageing occurred from the transformation of austenitic microstructure to martensite and also, the nucleation of precipitation at grain boundaries and the incremental temperature increase the fatigue crack growth rate with stress intensity factor however, the crack growth rate at 600 °C test temperature is less than 500 °C because of the creep-fatigue taking place.The theoretical modelling presents the crack growth analysis and stress and strain intensity factor approaches analysed in two case studies based on the addition of thermo-elastic-plastic stresses to the experimental fatigue applied loading. Case study one estimates the thermal stresses superimposed sinusoidal cyclic mechanical stress results in solid cylinder under isothermal fatigue simulation. Case study two estimates the

  7. Mechanically equivalent elastic-plastic deformations and the problem of plastic spin

    Directory of Open Access Journals (Sweden)

    Steigmann David J.

    2011-01-01

    Full Text Available The problem of plastic spin is phrased in terms of a notion of mechanical equivalence among local intermediate configurations of an elastic/ plastic crystalline solid. This idea is used to show that, without further qualification, the plastic spin may be suppressed at the constitutive level. However, the spin is closely tied to an underlying undistorted crystal lattice which, once specified, eliminates the freedom afforded by mechanical equivalence. As a practical matter a constitutive specification of plastic spin is therefore required. Suppression of plastic spin thus emerges as merely one such specification among many. Restrictions on these are derived in the case of rate-independent response.

  8. A review of macroscopic ductile failure criteria.

    Energy Technology Data Exchange (ETDEWEB)

    Corona, Edmundo; Reedlunn, Benjamin

    2013-09-01

    The objective of this work was to describe several of the ductile failure criteria com- monly used to solve practical problems. The following failure models were considered: equivalent plastic strain, equivalent plastic strain in tension, maximum shear, Mohr- Coulomb, Wellman's tearing parameter, Johnson-Cook and BCJ MEM. The document presents the main characteristics of each failure model as well as sample failure predic- tions for simple proportional loading stress histories in three dimensions and in plane stress. Plasticity calculations prior to failure were conducted with a simple, linear hardening, J2 plasticity model. The resulting failure envelopes were plotted in prin- cipal stress space and plastic strain space, where the dependence on stress triaxiality and Lode angle are clearly visible. This information may help analysts select a ductile fracture model for a practical problem and help interpret analysis results.

  9. Some Aspects of Formation of Cracks in FRC with Main Reinforcement

    DEFF Research Database (Denmark)

    Brincker, Rune; Simonsen, J.; Hansen, W.

    1997-01-01

    In this paper the response of fibre reinforced concrete (FRC) with main reinforcement in pure tension is considered. Test results are presented showing three distinct regimes: a regime og linear elasticity, a regime of yielding at approximately constant stress, and finally, a regime of strain...... hardening. a simple model is presented which takes into account the debonding between the reinforcement and the fiber reinforced matrix as well as the crack opening relation of the fiber reinforced matrix. The fracture process is described from the un-cracked state and formation of the first crack till......, and a more ductile contribution from the fiber bridging, a plastic regime will be present in the tensile response. The case of a parabolic crack opening relation defines a brittleness number that describes the transition from formation of unstable discrete cracks to smaller cracks controlled by the softening...

  10. Elasto-plastic bond mechanics of embedded fiber optic sensors in concrete under uniaxial tension with strain localization

    Science.gov (United States)

    Li, Qingbin; Li, Guang; Wang, Guanglun

    2003-12-01

    Brittleness of the glass core inside fiber optic sensors limits their practical usage, and therefore they are coated with low-modulus softer protective materials. Protective coatings absorb a portion of the strain, and hence part of the structural strain is sensed. The study reported here corrects for this error through development of a theoretical model to account for the loss of strain in the protective coating of optical fibers. The model considers the coating as an elasto-plastic material and formulates strain transfer coefficients for elastic, elasto-plastic and strain localization phases of coating deformations in strain localization in concrete. The theoretical findings were verified through laboratory experimentation. The experimental program involved fabrication of interferometric optical fiber sensors, embedding within mortar samples and tensile tests in a closed-loop servo-hydraulic testing machine. The elasto-plastic strain transfer coefficients were employed for correction of optical fiber sensor data and results were compared with those of conventional extensometers.

  11. Experimental study on kinematic hardening of 1Cr18Ni9Ti stainless steel under low cycle fatigue

    International Nuclear Information System (INIS)

    Shao Er; Yang Xianjie; Mao Jianghui; Sun Yafang

    2006-01-01

    To study the effect of the monotonic loading on subsequent cyclic plastic hardening and flow properties of 1Cr18Ni9Ti steel, an experimental study of the low cycle fatigue tests with mean strains for 1Cr18Ni9Ti stainless steel was carried out. An analysis on the evolutions of the yield surface radius and the back stresses under symmetric and asymmetric cyclic strain loading with different strain amplitudes was made. The dependence of the evolutions of the material kinematic hardening and isotropic hardening on the strain amplitude and mean strain was observed. These results provide the experimental foundation for the constitutive model of the material under combined monotonic and cyclic complicated loads. (authors)

  12. Plastic deformation and contact area of an elastic-plastic contact of ellipsoid bodies after unloading

    NARCIS (Netherlands)

    Jamari, Jamari; Schipper, Dirk J.

    2007-01-01

    This paper presents theoretical and experimental results of the residual or plastic deformation and the plastic contact area of an elastic–plastic contact of ellipsoid bodies after unloading. There are three regime responses of the deformation and contact area: elastic, elastic–plastic and fully

  13. Mechanical Behavior of UO2 at Sub-grain Length Scales: Quantification of Elastic, Plastic and Creep Properties via Microscale Testing

    Energy Technology Data Exchange (ETDEWEB)

    Peralta, Pedro

    2018-04-16

    a viscoplastic model to account for steady state (stage II) creep behavior, along with basic assumptions from crystal plasticity and kinematic constraints due to testing fixtures. In the micro-scale, testing of microcantilever beams at temperatures ranging from 25 to 570 °C was performed in-situ with a scanning electron microscope with a special attachment to apply load and measure displacement while the samples were at temperature. The load-displacement curves obtained showed linear behavior before fracture for all temperatures attempted except 570 °C, where clear deviations from non-linearity were observed before fracture. These deviations were consistently observed for all samples tested for a given orientation. A viscoplastic model was used to account for the presence of inelastic strain, along with basic assumptions from crystal plasticity and beam theory. These models were kept as simple as possible, and results from tests performed in a set of samples with a given crystal orientation were used to calibrate the material constants for the model, while results from a different sample set were then used for validation, thus satisfying the conditions of all main tasks within the parameters of this project. Details of these efforts are outlined in this report.

  14. Strain Localization during Equal-Channel Angular Pressing Analyzed by Finite Element Simulations

    Directory of Open Access Journals (Sweden)

    Tobias Daniel Horn

    2018-01-01

    Full Text Available Equal-Channel Angular Pressing (ECAP is a method used to introduce severe plastic deformation into a metallic billet without changing its geometry. In special cases, strain localization occurs and a pattern consisting of regions with high and low deformation (so-called shear and matrix bands can emerge. This paper studies this phenomenon numerically adopting two-dimensional finite element simulations of one ECAP pass. The mechanical behavior of aluminum is modeled using phenomenological plasticity theory with isotropic or kinematic hardening. The effects of the two different strain hardening types are investigated numerically by systematic parameter studies: while isotropic hardening only causes minor fluctuations in the plastic strain fields, a material with high initial hardening rate and sufficient strain hardening capacity can exhibit pronounced localized deformation after ECAP. The corresponding finite element simulation results show a regular pattern of shear and matrix bands. This result is confirmed experimentally by ECAP-processing of AA6060 material in a severely cold worked condition, where microstructural analysis also reveals the formation of shear and matrix bands. Excellent agreement is found between the experimental and numerical results in terms of shear and matrix band width and length scale. The simulations provide additional insights regarding the evolution of the strain and stress states in shear and matrix bands.

  15. A procedure for the hardening of materials

    International Nuclear Information System (INIS)

    Dearnaley, G.

    1984-01-01

    A method of hardening metals or ceramics which have fcc, bcc or hcp structures in which two species of differing atomic radii are introduced into the material to be hardened. One species is of a size such that it can diffuse through the lattice normally. The other is of a size such that it can diffuse readily only along dislocations. Ion bombardment is the preferred method of introducing the species with different atomic radii. The material to be hardened is subjected to heat and plastic deformation so as to cause a large number of dislocations with jogs. The species meet at the jogs where they interact and are trapped and set up strain fields which prevent further deformation of the material. (author)

  16. Finite element analysis of elasto-plastic tee joints

    International Nuclear Information System (INIS)

    Powell, G.H.

    1974-09-01

    The theory and computational procedures used in the computer program B169TJ/EP for the analysis of elasto-plastic tee joints are described, and detailed user's guide is presented. The program is particularly applicable to joints conforming to the ANSI B16.9 Manufacturing Standard, but can also be applied to other joint geometries. The joint may be loaded by internal pressure and by arbitrary combinations of applied forces and moments at the ends of the branch and run pipes, and the loading sequence may be arbitrary. The joint material is assumed to yield according to the von Mises criterion, and to exhibit either linear kinematic hardening or nonlinear isotropic hardening after yield. The program makes use of the finite element and mesh generation procedures previously applied in the elastic stress analysis program B16.9TJ/ SA, with minor modifications. (U.S.)

  17. Observation of a New Mechanism Balancing Hardening and Softening in Metals

    DEFF Research Database (Denmark)

    Yu, Tianbo; Hansen, Niels; Huang, Xiaoxu

    2014-01-01

    Plastic deformation of metals refines the microstructure and increases the strength through work hardening, but this effect of deformation is counterbalanced by dynamic recovery. After large strain, the microstructure typically shows a lamellar morphology, with finely spaced lamellar boundaries...... connected by triple junctions. Here, we report that mechanically assisted triple junction motion is an important contributor to dynamic recovery, leading to an almost steady state. Triple junction motion replaces two boundaries by one, while maintaining the structural morphology. The observation...... rationalizes both a decreasing work hardening rate and the approach to a dynamic equilibrium of structural refinement at large strains....

  18. Geometrical foundations of continuum mechanics an application to first- and second-order elasticity and elasto-plasticity

    CERN Document Server

    Steinmann, Paul

    2015-01-01

    This book illustrates the deep roots of the geometrically nonlinear kinematics of generalized continuum mechanics in differential geometry. Besides applications to first- order elasticity and elasto-plasticity an appreciation thereof is particularly illuminating for generalized models of continuum mechanics such as second-order (gradient-type) elasticity and elasto-plasticity.   After a motivation that arises from considering geometrically linear first- and second- order crystal plasticity in Part I several concepts from differential geometry, relevant for what follows, such as connection, parallel transport, torsion, curvature, and metric for holonomic and anholonomic coordinate transformations are reiterated in Part II. Then, in Part III, the kinematics of geometrically nonlinear continuum mechanics are considered. There various concepts of differential geometry, in particular aspects related to compatibility, are generically applied to the kinematics of first- and second- order geometrically nonlinear con...

  19. Characterization and Strain-Hardening Behavior of Friction Stir-Welded Ferritic Stainless Steel

    Science.gov (United States)

    Sharma, Gaurav; Dwivedi, Dheerendra Kumar; Jain, Pramod Kumar

    2017-12-01

    In this study, friction stir-welded joint of 3-mm-thick plates of 409 ferritic stainless steel (FSS) was characterized in light of microstructure, x-ray diffraction analysis, hardness, tensile strength, ductility, corrosion and work hardening properties. The FSW joint made of ferritic stainless steel comprises of three distinct regions including the base metal. In stir zone highly refined ferrite grains with martensite and some carbide precipitates at the grain boundaries were observed. X-ray diffraction analysis also revealed precipitation of Cr23C6 and martensite formation in heat-affected zone and stir zone. In tensile testing of the transverse weld samples, the failure eventuated within the gauge length of the specimen from the base metal region having tensile properties overmatched to the as-received base metal. The tensile strength and elongation of the longitudinal (all weld) sample were found to be 1014 MPa and 9.47%, respectively. However, in potentiodynamic polarization test, the corrosion current density of the stir zone was highest among all the three zones. The strain-hardening exponent for base metal, transverse and longitudinal (all weld) weld samples was calculated using various equations. Both the transverse and longitudinal weld samples exhibited higher strain-hardening exponents as compared to the as-received base metal. In Kocks-Mecking plots for the base metal and weld samples at least two stages of strain hardening were observed.

  20. Performance study of the simplified theory of plastic zones and the Twice-Yield method for the fatigue check

    International Nuclear Information System (INIS)

    Hübel, Hartwig; Willuweit, Adrian; Rudolph, Jürgen; Ziegler, Rainer; Lang, Hermann; Rother, Klemens; Deller, Simon

    2014-01-01

    As elastic–plastic fatigue analyses are still time consuming the simplified elastic–plastic analysis (e.g. ASME Section III, NB 3228.5, the French RCC-M code, paragraphs B 3234.3, B 3234.5 and B3234.6 and the German KTA rule 3201.2, paragraph 7.8.4) is often applied. Besides linearly elastic analyses and factorial plasticity correction (K e factors) direct methods are an option. In fact, calculation effort and accuracy of results are growing in the following graded scheme: a) linearly elastic analysis along with K e correction, b) direct methods for the determination of stabilized elastic–plastic strain ranges and c) incremental elastic–plastic methods for the determination of stabilized elastic–plastic strain ranges. The paper concentrates on option b) by substantiating the practical applicability of the simplified theory of plastic zones STPZ (based on Zarka's method) and – for comparison – the established Twice-Yield method. The Twice-Yield method is explicitly addressed in ASME Code, Section VIII, Div. 2. Application relevant aspects are particularly addressed. Furthermore, the applicability of the STPZ for arbitrary load time histories in connection with an appropriate cycle counting method is discussed. Note, that the STPZ is applicable both for the determination of (fatigue relevant) elastic–plastic strain ranges and (ratcheting relevant) locally accumulated strains. This paper concentrates on the performance of the method in terms of the determination of elastic–plastic strain ranges and fatigue usage factors. The additional performance in terms of locally accumulated strains and ratcheting will be discussed in a future publication. - Highlights: • Simplified elastic–plastic fatigue analyses. • Simplified theory of plastic zones. • Thermal cyclic loading. • Twice-Yield method. • Practical application examples

  1. Work hardening characteristics of gamma-ray irradiated Al-5356 alloy

    International Nuclear Information System (INIS)

    Saad, G.; Fayek, S.A.; Fawzy, A.; Soliman, H.N.; Nassr, E.

    2014-01-01

    Effects of γ-irradiation and deformation temperatures on the hardening behavior of Al-5356 alloy have been investigated by means of stress–strain measurements. Wire samples irradiated with different doses (ranging from 500 to 2000 kGy) were strained at different deformation temperatures T w (ranging from 303 to 523 K) and a constant strain rate of 1.5×10 −3 s −1 . The effect of γ-irradiation on the work-hardening parameters (WHP): yield stress σ y , fracture stress σ f , total strain ε T and work-hardening coefficient χ p of the given alloy was studied at the applied deformation temperature range. The obtained results showed that γ-irradiation exhibited an increase in the WHP of the given alloy while the increase in its deformation temperature showed a reverse effect. The mean activation energy of the deformation process was calculated using an Arrhenius-type relation, and was found to be ∼80 kJ/mole, which is close to that of grain boundary diffusion in aluminum alloys

  2. An integrated structural and geochemical study of fracture aperture growth in the Campito Formation of eastern California

    Science.gov (United States)

    Doungkaew, N.; Eichhubl, P.

    2015-12-01

    Processes of fracture formation control flow of fluid in the subsurface and the mechanical properties of the brittle crust. Understanding of fundamental fracture growth mechanisms is essential for understanding fracture formation and cementation in chemically reactive systems with implications for seismic and aseismic fault and fracture processes, migration of hydrocarbons, long-term CO2 storage, and geothermal energy production. A recent study on crack-seal veins in deeply buried sandstone of east Texas provided evidence for non-linear fracture growth, which is indicated by non-elliptical kinematic fracture aperture profiles. We hypothesize that similar non-linear fracture growth also occurs in other geologic settings, including under higher temperature where solution-precipitation reactions are kinetically favored. To test this hypothesis, we investigate processes of fracture growth in quartzitic sandstone of the Campito Formation, eastern California, by combining field structural observations, thin section petrography, and fluid inclusion microthermometry. Fracture aperture profile measurements of cemented opening-mode fractures show both elliptical and non-elliptical kinematic aperture profiles. In general, fractures that contain fibrous crack-seal cement have elliptical aperture profiles. Fractures filled with blocky cement have linear aperture profiles. Elliptical fracture aperture profiles are consistent with linear-elastic or plastic fracture mechanics. Linear aperture profiles may reflect aperture growth controlled by solution-precipitation creep, with the aperture distribution controlled by solution-precipitation kinetics. We hypothesize that synkinematic crack-seal cement preserves the elliptical aperture profiles of elastic fracture opening increments. Blocky cement, on the other hand, may form postkinematically relative to fracture opening, with fracture opening accommodated by continuous solution-precipitation creep.

  3. Variations of fracture toughness and stress-strain curve of cold worked stainless steel and their influence on failure strength of cracked pipe

    International Nuclear Information System (INIS)

    Kamaya, Masayuki

    2016-01-01

    In order to assess failure probability of cracked components, it is important to know the variations of the material properties and their influence on the failure load assessment. In this study, variations of the fracture toughness and stress-strain curve were investigated for cold worked stainless steel. The variations of the 0.2% proof and ultimate strengths obtained using 8 specimens of 20% cold worked stainless steel (CW20) were 77 MPa and 81 MPa, respectively. The respective variations were decreased to 13 and 21 MPa for 40% cold worked material (CW40). Namely, the variation in the tensile strength was decreased by hardening. The COVs (coefficients of variation) of fracture toughness were 7.3% and 16.7% for CW20 and CW40, respectively. Namely, the variation in the fracture toughness was increased by hardening. Then, in order to investigate the influence of the variations in the material properties on failure load of a cracked pipe, flaw assessments were performed for a cracked pipe subjected to a global bending load. Using the obtained material properties led to variation in the failure load. The variation in the failure load of the cracked pipe caused by the variation in the stress-strain curve was less than 1.5% for the COV. The variation in the failure load caused by fracture toughness variation was relatively large for CW40, although it was less than 2.0% for the maximum case. It was concluded that the hardening induced by cold working does not cause significant variation in the failure load of cracked stainless steel pipe. (author)

  4. Simultaneous enhancement of strength and ductility in cryogenically treated AISI D2 tool steel

    Energy Technology Data Exchange (ETDEWEB)

    Ghasemi-Nanesa, Hadi; Jahazi, Mohammad, E-mail: mohammad.jahazi@etsmtl.ca

    2014-03-01

    In this research, the effect of cryogenic treatment on microstructural evolution and mechanical properties enhancement of AISI D2 tool steel was investigated. Cryogenic treatment down to liquid nitrogen temperature (77 K) was added to the conventional heat treatment between hardening and tempering steps. Electron microscopy investigation showed higher volume fraction of fine carbides with average diameter below 1 μm indicating effective retardation in carbide coarsening process as a results of cryogenic treatment. A modification in types of carbides was also observed after cryogenic treatment. X-ray diffraction diagrams revealed transformation of retained austenite to martensite at cryogenic temperature. Weakening or removal of carbides peak in the X-ray diagram was considered as evidence of carbides different behavior at cryogenic temperature. Mechanical testing results indicated higher ultimate tensile strength, better ductility, and higher elastic modulus after cryogenic treatment. Analysis of stress–strain diagrams revealed different strain hardening behavior for cryogenically treated alloy when compared to the conventionally heat treated one. Fractography results confirmed strain hardening behavior and showed cleavage fracture for conventionally treated alloy but mixed cleavage–ductile fracture mode for cryogenically treated alloy. The improved mechanical properties after cryogenic treatment are interpreted in terms of the influence of higher volume fraction and uniform distribution of fine carbides in reducing the average active dislocations length and enhancement of the flow stress at any given plastic strain.

  5. Simultaneous enhancement of strength and ductility in cryogenically treated AISI D2 tool steel

    International Nuclear Information System (INIS)

    Ghasemi-Nanesa, Hadi; Jahazi, Mohammad

    2014-01-01

    In this research, the effect of cryogenic treatment on microstructural evolution and mechanical properties enhancement of AISI D2 tool steel was investigated. Cryogenic treatment down to liquid nitrogen temperature (77 K) was added to the conventional heat treatment between hardening and tempering steps. Electron microscopy investigation showed higher volume fraction of fine carbides with average diameter below 1 μm indicating effective retardation in carbide coarsening process as a results of cryogenic treatment. A modification in types of carbides was also observed after cryogenic treatment. X-ray diffraction diagrams revealed transformation of retained austenite to martensite at cryogenic temperature. Weakening or removal of carbides peak in the X-ray diagram was considered as evidence of carbides different behavior at cryogenic temperature. Mechanical testing results indicated higher ultimate tensile strength, better ductility, and higher elastic modulus after cryogenic treatment. Analysis of stress–strain diagrams revealed different strain hardening behavior for cryogenically treated alloy when compared to the conventionally heat treated one. Fractography results confirmed strain hardening behavior and showed cleavage fracture for conventionally treated alloy but mixed cleavage–ductile fracture mode for cryogenically treated alloy. The improved mechanical properties after cryogenic treatment are interpreted in terms of the influence of higher volume fraction and uniform distribution of fine carbides in reducing the average active dislocations length and enhancement of the flow stress at any given plastic strain

  6. Asperity interaction in elastic-plastic contact of rough surfaces in presence of adhesion

    International Nuclear Information System (INIS)

    Sahoo, Prasanta; Banerjee, Atanu

    2005-01-01

    This paper presents an analysis of the effect of asperity interaction in elastic-plastic contact of rough surfaces in the presence of adhesion. The micro-contact model of asperity interactions, developed by Zhao and Chang (2001 Trans. ASME: J. Tribol. 123 857-64), is integrated into the elastic-plastic contact model developed by Roy Chowdhury and Ghosh (1994 Wear 174 9-19) to allow the asperity interaction and elastic-plastic deformation in the presence of surface forces to be considered simultaneously. The well-established elastic and plastic adhesion indices are used to consider the different conditions that arise as a result of varying load and material parameters. Results show that asperity interaction influences the loading-unloading behaviour in elastic-plastic adhesive contact of rough surfaces and in general asperity interactions reduce the effect of surface forces

  7. Plasticity and fracture modeling of quench-hardenable boron steel with tailored properties

    NARCIS (Netherlands)

    Eller, Tom; Greve, L; Andres, M.T.; Medricky, M; Hatscher, A; Meinders, Vincent T.; van den Boogaard, Antonius H.

    2014-01-01

    In this article, a constitutive model for quench-hardenable boron steel is presented. Three sets of boron steel blanks are heat treated such that their as-treated microstructures are close to fully martensitic, bainitic and ferritic/pearlitic, respectively. Hardness measurements show that the

  8. On the use of J-integral and modified J-integral as measures of elastic-plastic fracture toughness

    International Nuclear Information System (INIS)

    Davis, D.A.; Hays, R.A.; Hackett, E.M.; Joyce, J.A.

    1988-01-01

    J-R Curve tests were conducted on 1/2T, 1T and 2T compact specimens of materials having J IC values ranging from 150 in-1b/sq in to over 2600 in-lb/sq in. These materials were chosen such that some would exceed the maximum crack length criterion of ASTM E1152-87 prior to reaching the maximum J criterion (3-Ni steel, 5000 series A1) and some would exceed the maximum J criterion first (A533B, A710). The elastic-plastic fracture behavior of these materials was examined using both the deformation theory J-integral (J D ) and the modified J-integral (J M ). The J-R curve testing was performed to very large values of crack opening displacement (COD) where the crack growth was typically 75% of the original remaining ligament. The results of this work suggest that the J D -R curves exhibit no specimen size dependence to crack extensions far in excess of the E1152 allowables. The J M -R curves calculated for the same specimens show a significant amount of specimen size dependence which becomes larger as the material toughness decreases. This work suggests that it is premature to utilize the modified J-integral in assessing the flaw tolerance of structures. (author)

  9. Stage IV work-hardening related to disorientations in dislocation structures

    DEFF Research Database (Denmark)

    Pantleon, W.

    2004-01-01

    The effect of deformation-induced disorientations on the work-hardening of metals is modelled based on dislocation dynamics. Essentially, Kocks’ dislocation model describing stage III hardening is extended to stage IV by incorporation of excess dislocations related to the disorientations....... Disorientations evolving from purely statistical reasons — leading to a square root dependence of the average disorientation angle on strain — affect the initial work-hardening rate (and the saturation stress) of stage III only slightly. On the other hand, deterministic contributions to the development...... of disorientations, as differences in the activated slip systems across boundaries, cause a linear increase of the flow stress at large strains. Such a constant work-hardening rate is characteristic for stage IV....

  10. Anisotropic yield surfaces in bi-axial cyclic plasticity

    International Nuclear Information System (INIS)

    Rider, R.J.; Harvey, S.J.; Breckell, T.H.

    1985-01-01

    Some aspects of the behaviour of yield surfaces and work-hardening surfaces occurring in biaxial cyclic plasticity have been studied experimentally and theoretically. The experimental work consisted of subjecting thin-walled tubular steel specimens to cyclic plastic torsion in the presence of sustained axial loads of various magnitudes. The experimental results show that considerable anisotropy is induced when the cyclic shear strains are dominant. Although the true shapes of yield and work-hardening surfaces can be very complex, a mathematical model is presented which includes both anisotropy and Bauschinger effects. The model is able to qualitatively predict the deformation patterns during a cycle of applied plastic shear strain for a range of sustained axial stresses and also indicate the material response to changes in axial stress. (orig.)

  11. Fracture mechanics evaluation of heavy welded structures

    International Nuclear Information System (INIS)

    Sprung, I.; Ericksson, C.W.; Zilberstein, V.A.

    1982-01-01

    This paper describes some applications of nondestructive examination (NDE) and engineering fracture mechanics to evaluation of flaws in heavy welded structures. The paper discusses not only widely recognized linear elastic fracture mechanics (LEFM) analysis, but also methods of the elastic-plastic fracture mechanics (EPFM), such as COD, J-integral, and Failure Assessment Diagram. Examples are given to highlight the importance of interaction between specialists providing input and the specialists performing the analysis. The paper points out that the critical parameters for as-welded structures when calculated by these methods are conservative since they are based on two pessimistic assumptions: that the magnitude of residual stress is always at the yield strength level, and that the residual stress always acts in the same direction as the applied (mechanical) stress. The suggestion is made that it would be prudent to use the COD or the FAD design curves for a conservative design. The appendix examines a J-design curve modified to include residual stresses

  12. Influence of anisotropic hardening on longitudinal welding strains and stresses

    International Nuclear Information System (INIS)

    Gatovskij, K.M.; Revutskij, M.N.

    1981-01-01

    The algorithm and program for estimation of longitudinal welding strains and stresses with account of hardening and Bauschinger effect, which expand the possibilities of more complete description of stress change during thermodeformation welding cycles at bead surfacing on plate made of the 06Kh18N9T steel and AMg61 alloy. It is shown that for metals, deformation curves which are characterized by considerable yield moduli (Esub(T)/E>=0.05) hardening effect is considerable and its account leads to the decrease of stress level in the heataffected zone (down to 20%) [ru

  13. Localization of plastic yield and fracture mechanism in high-strength niobium alloy with ultra-fine particles of non-metallic phase

    International Nuclear Information System (INIS)

    Tyumentsev, A.N.; Gonchikov, V.Ch.; Korotaev, A.D.; Pinzhin, Yu.P.; Tyumentseva, S.F.

    1989-01-01

    The regularities of localization of plastic flow in high-strength dispersion-strengthened niobium alloy are studied. On the basis of investigations of the microstructure of strain localization zones the mechanism of stability losses of plastic flow including, the processes of diffusion of nonequilibrium vacancies in fields of nonuniform stresses, is proposed. The role of diffuse strain mechanisms during reorientation of the crystalline lattice is discussed. The regularities of fracture of high-strength alloy under conditions of rotational-shift instability of plastic flow are investigated

  14. Experimental control of calculation model of scale factor during fracture of circular samples with cracks

    International Nuclear Information System (INIS)

    Gnyp, I.P.; Ganulich, B.K.; Pokhmurskij, V.I.

    1982-01-01

    Reliable methods of estimation of cracking resistance of low-strength plastic materials using the notched samples acceptable for laboratory tests are analysed. Experimental data on the fracture of round notched samples for a number of steels are given. A perfect comparability of calculational and experimental data confirms the legitimacy of the proposed scheme of estimation of the scale factor effect. The necessity of taking into account the strain hardening coefficient at the choice of a sample size for determining the stress intensity factor is pointed out

  15. Texture, residual strain, and plastic deformation around scratches in alloy 600 using synchrotron X-ray Laue micro-diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Suominen Fuller, M.L. [Surface Science Western, Room G-1, Western Science Centre, University of Western Ontario, London, Ontario, N6A 5B7 (Canada)], E-mail: mfuller@uwo.ca; Klassen, R.J. [Department of Mechanical and Materials Engineering, Room 3002 Spencer Engineering Building, University of Western Ontario, London, Ontario, N6A 5B9 (Canada); McIntyre, N.S. [Surface Science Western, Room G-1, Western Science Centre, University of Western Ontario, London, Ontario, N6A 5B7 (Canada); Gerson, A.R. [Applied Centre for Structural and Synchrotron Studies, Mawson Lakes Campus, University of South Australia, Adelaide, South Australia 5095 (Australia); Ramamurthy, S. [Surface Science Western, Room G-1, Western Science Centre, University of Western Ontario, London, Ontario, N6A 5B7 (Canada); King, P.J. [Babcock and Wilcox Canada, 581 Coronation Blvd., Cambridge, Ontario, N1R5V3 (Canada); Liu, W. [Advanced Photon Source, Argonne National Laboratory, 9700 S. Cass Avenue, Argonne, IL 60439 (United States)

    2008-03-15

    Deformation around two scratches in Alloy 600 (A600) was studied nondestructively using synchrotron Laue differential aperture X-ray microscopy. The orientation of grains and elastic strain distribution around the scratches were measured. A complex residual deviatoric elastic strain state was found to exist around the scratches. Heavy plastic deformation was observed up to a distance of 20 {mu}m from the scratches. In the region 20-30 {mu}m from the scratches the diffraction spots were heavily streaked and split indicating misoriented dislocation cell structures.

  16. Effect of heat treatment on the elevated temperature tensile and fracture toughness behavior of Alloy 718 weldments

    International Nuclear Information System (INIS)

    Mills, W.J.

    1980-05-01

    The effect of heat treatment on the tensile and fracture toughness properties of Alloy 718 weldments was characterized at room temperature and elevated temperatures. The two heat treatments employed during this investigation were the convectional (ASTM A637) precipitation treatment and a modified treatment designed to improve the toughness of Alloy 718 welds. Weldments were also examined in the as-welded condition. The fracture toughness behavior of the Alloy 718 weldments was determined at 24, 427 and 538 degree C using both linear-elastic (K Ic ) and elastic-plastic (J Ic ) fracture mechanics concepts. Metallographic and electron fractographic examination of Alloy 718 weld fracture surfaces revealed that differences in fracture toughness behavior for the as-welded, conventional and modified conditions were associated with variations in the weld microstructure. 28 refs., 16 figs., 4 tabs

  17. Dynamics of shock waves in elastic-plastic solids

    OpenAIRE

    Favrie , Nicolas; Gavrilyuk , Sergey ,

    2010-01-01

    Submitted in ESAIM Procedings; The Maxwell type elastic-plastic solids are characterized by decaying the absolute values of the principal components of the deviatoric part of the stress tensor during the plastic relaxation step. We propose a mathematical formulation of such a model which is compatible with the von Mises criterion of plasticity. Numerical examples show the ability of the model to deal with complex physical phenomena.

  18. Draft fracture mechanics code case for American Society of Mechanical Engineers NUPACK rules

    International Nuclear Information System (INIS)

    McConnell, P.; Sorenson, K.; Nickell, R.; Saegusa, T.

    2004-01-01

    The containment boundaries of most spent-fuel casks certified for use in the United States by the Nuclear Regulatory Commission are constructed with stainless steel, a material that is ductile in an engineering sense at all temperatures and for which, therefore, fracture mechanics principles are not relevant for the containment application. Ferritic materials may fail in a nonductile manner at sufficiently low temperatures, so fracture mechanics principles may be applied to preclude nonductile fracture. Because of the need to transport and store spent nuclear fuel safely in all types of climatic conditions, these vessels have regulatory lowest service temperatures that range down to -40 C (-40 F) for transport application. Such low service temperatures represent a severe challenge in terms of fracture toughness to many ferritic materials. Linear-elastic and elastic-plastic fracture mechanics principles provide a methodology for evaluating ferritic materials under such conditions

  19. A Nonlocal Peridynamic Plasticity Model for the Dynamic Flow and Fracture of Concrete.

    Energy Technology Data Exchange (ETDEWEB)

    Vogler, Tracy; Lammi, Christopher James

    2014-10-01

    A nonlocal, ordinary peridynamic constitutive model is formulated to numerically simulate the pressure-dependent flow and fracture of heterogeneous, quasi-brittle ma- terials, such as concrete. Classical mechanics and traditional computational modeling methods do not accurately model the distributed fracture observed within this family of materials. The peridynamic horizon, or range of influence, provides a characteristic length to the continuum and limits localization of fracture. Scaling laws are derived to relate the parameters of peridynamic constitutive model to the parameters of the classical Drucker-Prager plasticity model. Thermodynamic analysis of associated and non-associated plastic flow is performed. An implicit integration algorithm is formu- lated to calculate the accumulated plastic bond extension and force state. The gov- erning equations are linearized and the simulation of the quasi-static compression of a cylinder is compared to the classical theory. A dissipation-based peridynamic bond failure criteria is implemented to model fracture and the splitting of a concrete cylinder is numerically simulated. Finally, calculation of the impact and spallation of a con- crete structure is performed to assess the suitability of the material and failure models for simulating concrete during dynamic loadings. The peridynamic model is found to accurately simulate the inelastic deformation and fracture behavior of concrete during compression, splitting, and dynamically induced spall. The work expands the types of materials that can be modeled using peridynamics. A multi-scale methodology for simulating concrete to be used in conjunction with the plasticity model is presented. The work was funded by LDRD 158806.

  20. Comparison of elastic-viscous-plastic and viscous-plastic dynamics models using a high resolution Arctic sea ice model

    Energy Technology Data Exchange (ETDEWEB)

    Hunke, E.C. [Los Alamos National Lab., NM (United States); Zhang, Y. [Naval Postgraduate School, Monterey, CA (United States)

    1997-12-31

    A nonlinear viscous-plastic (VP) rheology proposed by Hibler (1979) has been demonstrated to be the most suitable of the rheologies commonly used for modeling sea ice dynamics. However, the presence of a huge range of effective viscosities hinders numerical implementations of this model, particularly on high resolution grids or when the ice model is coupled to an ocean or atmosphere model. Hunke and Dukowicz (1997) have modified the VP model by including elastic waves as a numerical regularization in the case of zero strain rate. This modification (EVP) allows an efficient, fully explicit discretization that adapts well to parallel architectures. The authors present a comparison of EVP and VP dynamics model results from two 5-year simulations of Arctic sea ice, obtained with a high resolution sea ice model. The purpose of the comparison is to determine how differently the two dynamics models behave, and to decide whether the elastic-viscous-plastic model is preferable for high resolution climate simulations, considering its high efficiency in parallel computation. Results from the first year of this experiment (1990) are discussed in detail in Hunke and Zhang (1997).