An improved partial bundle method for linearly constrained minimax problems
Chunming Tang
2016-02-01
Full Text Available In this paper, we propose an improved partial bundle method for solving linearly constrained minimax problems. In order to reduce the number of component function evaluations, we utilize a partial cutting-planes model to substitute for the traditional one. At each iteration, only one quadratic programming subproblem needs to be solved to obtain a new trial point. An improved descent test criterion is introduced to simplify the algorithm. The method produces a sequence of feasible trial points, and ensures that the objective function is monotonically decreasing on the sequence of stability centers. Global convergence of the algorithm is established. Moreover, we utilize the subgradient aggregation strategy to control the size of the bundle and therefore overcome the difficulty of computation and storage. Finally, some preliminary numerical results show that the proposed method is effective.
Linearly constrained minimax optimization
Madsen, Kaj; Schjær-Jacobsen, Hans
1978-01-01
We present an algorithm for nonlinear minimax optimization subject to linear equality and inequality constraints which requires first order partial derivatives. The algorithm is based on successive linear approximations to the functions defining the problem. The resulting linear subproblems...
Fast Combinatorial Algorithm for the Solution of Linearly Constrained Least Squares Problems
Van Benthem, Mark H.; Keenan, Michael R.
2008-11-11
A fast combinatorial algorithm can significantly reduce the computational burden when solving general equality and inequality constrained least squares problems with large numbers of observation vectors. The combinatorial algorithm provides a mathematically rigorous solution and operates at great speed by reorganizing the calculations to take advantage of the combinatorial nature of the problems to be solved. The combinatorial algorithm exploits the structure that exists in large-scale problems in order to minimize the number of arithmetic operations required to obtain a solution.
Stress-constrained truss topology optimization problems that can be solved by linear programming
Stolpe, Mathias; Svanberg, Krister
2004-01-01
We consider the problem of simultaneously selecting the material and determining the area of each bar in a truss structure in such a way that the cost of the structure is minimized subject to stress constraints under a single load condition. We show that such problems can be solved by linear...... programming to give the global optimum, and that two different materials are always sufficient in an optimal structure....
Lukšan, Ladislav; Vlček, Jan
1998-01-01
Roč. 5, č. 3 (1998), s. 219-247 ISSN 1070-5325 R&D Projects: GA ČR GA201/96/0918 Keywords : nonlinear programming * sparse problems * equality constraints * truncated Newton method * augmented Lagrangian function * indefinite systems * indefinite preconditioners * conjugate gradient method * residual smoothing Subject RIV: BA - General Mathematics Impact factor: 0.741, year: 1998
Order-constrained linear optimization.
Tidwell, Joe W; Dougherty, Michael R; Chrabaszcz, Jeffrey S; Thomas, Rick P
2017-11-01
Despite the fact that data and theories in the social, behavioural, and health sciences are often represented on an ordinal scale, there has been relatively little emphasis on modelling ordinal properties. The most common analytic framework used in psychological science is the general linear model, whose variants include ANOVA, MANOVA, and ordinary linear regression. While these methods are designed to provide the best fit to the metric properties of the data, they are not designed to maximally model ordinal properties. In this paper, we develop an order-constrained linear least-squares (OCLO) optimization algorithm that maximizes the linear least-squares fit to the data conditional on maximizing the ordinal fit based on Kendall's τ. The algorithm builds on the maximum rank correlation estimator (Han, 1987, Journal of Econometrics, 35, 303) and the general monotone model (Dougherty & Thomas, 2012, Psychological Review, 119, 321). Analyses of simulated data indicate that when modelling data that adhere to the assumptions of ordinary least squares, OCLO shows minimal bias, little increase in variance, and almost no loss in out-of-sample predictive accuracy. In contrast, under conditions in which data include a small number of extreme scores (fat-tailed distributions), OCLO shows less bias and variance, and substantially better out-of-sample predictive accuracy, even when the outliers are removed. We show that the advantages of OCLO over ordinary least squares in predicting new observations hold across a variety of scenarios in which researchers must decide to retain or eliminate extreme scores when fitting data. © 2017 The British Psychological Society.
Delbos, F.
2004-11-01
Reflexion tomography allows the determination of a subsurface velocity model from the travel times of seismic waves. The introduction of a priori information in this inverse problem can lead to the resolution of a constrained non-linear least-squares problem. The goal of the thesis is to improve the resolution techniques of this optimization problem, whose main difficulties are its ill-conditioning, its large scale and an expensive cost function in terms of CPU time. Thanks to a detailed study of the problem and to numerous numerical experiments, we justify the use of a sequential quadratic programming method, in which the tangential quadratic programs are solved by an original augmented Lagrangian method. We show the global linear convergence of the latter. The efficiency and robustness of the approach are demonstrated on several synthetic examples and on two real data cases. (author)
Delbos, F
2004-11-01
Reflexion tomography allows the determination of a subsurface velocity model from the travel times of seismic waves. The introduction of a priori information in this inverse problem can lead to the resolution of a constrained non-linear least-squares problem. The goal of the thesis is to improve the resolution techniques of this optimization problem, whose main difficulties are its ill-conditioning, its large scale and an expensive cost function in terms of CPU time. Thanks to a detailed study of the problem and to numerous numerical experiments, we justify the use of a sequential quadratic programming method, in which the tangential quadratic programs are solved by an original augmented Lagrangian method. We show the global linear convergence of the latter. The efficiency and robustness of the approach are demonstrated on several synthetic examples and on two real data cases. (author)
Duality in constrained location problems
Juel, Henrik; Love, Robert F.
1987-01-01
The dual of a facility location problem with general norms, distance constraints, and linear constraints is formulated.......The dual of a facility location problem with general norms, distance constraints, and linear constraints is formulated....
Horacio Hideki Yanasse
2013-01-01
Full Text Available Neste trabalho revemos alguns modelos lineares e não lineares inteiros para gerar padrões de corte bidimensionais guilhotinados de 2 estágios, incluindo os casos exato e não exato e restrito e irrestrito. Esses problemas são casos particulares do problema da mochila bidimensional. Apresentamos também novos modelos para gerar esses padrões de corte, baseados em adaptações ou extensões de modelos para gerar padrões de corte bidimensionais restritos 1-grupo. Padrões 2 estágios aparecem em diferentes processos de corte, como, por exemplo, em indústrias de móveis e de chapas de madeira. Os modelos são úteis para a pesquisa e o desenvolvimento de métodos de solução mais eficientes, explorando estruturas particulares, a decomposição do modelo, relaxações do modelo etc. Eles também são úteis para a avaliação do desempenho de heurísticas, já que permitem (pelo menos para problemas de tamanho moderado uma estimativa do gap de otimalidade de soluções obtidas por heurísticas. Para ilustrar a aplicação dos modelos, analisamos os resultados de alguns experimentos computacionais com exemplos da literatura e outros gerados aleatoriamente. Os resultados foram produzidos usando um software comercial conhecido e mostram que o esforço computacional necessário para resolver os modelos pode ser bastante diferente.In this work we review some linear and nonlinear integer models to generate two stage two-dimensional guillotine cutting patterns, including the constrained, non constrained, exact and non exact cases. These problems are particular cases of the two dimensional knapsack problems. We also present new models to generate these cutting patterns, based on adaptations and extensions of models that generate one-group constrained two dimensional cutting patterns. Two stage patterns arise in different cutting processes like, for instance, in the furniture industry and wooden hardboards. The models are useful for the research and
Formal language constrained path problems
Barrett, C.; Jacob, R.; Marathe, M.
1997-07-08
In many path finding problems arising in practice, certain patterns of edge/vertex labels in the labeled graph being traversed are allowed/preferred, while others are disallowed. Motivated by such applications as intermodal transportation planning, the authors investigate the complexity of finding feasible paths in a labeled network, where the mode choice for each traveler is specified by a formal language. The main contributions of this paper include the following: (1) the authors show that the problem of finding a shortest path between a source and destination for a traveler whose mode choice is specified as a context free language is solvable efficiently in polynomial time, when the mode choice is specified as a regular language they provide algorithms with improved space and time bounds; (2) in contrast, they show that the problem of finding simple paths between a source and a given destination is NP-hard, even when restricted to very simple regular expressions and/or very simple graphs; (3) for the class of treewidth bounded graphs, they show that (i) the problem of finding a regular language constrained simple path between source and a destination is solvable in polynomial time and (ii) the extension to finding context free language constrained simple paths is NP-complete. Several extensions of these results are presented in the context of finding shortest paths with additional constraints. These results significantly extend the results in [MW95]. As a corollary of the results, they obtain a polynomial time algorithm for the BEST k-SIMILAR PATH problem studied in [SJB97]. The previous best algorithm was given by [SJB97] and takes exponential time in the worst case.
Hyperbolicity and constrained evolution in linearized gravity
Matzner, Richard A.
2005-01-01
Solving the 4-d Einstein equations as evolution in time requires solving equations of two types: the four elliptic initial data (constraint) equations, followed by the six second order evolution equations. Analytically the constraint equations remain solved under the action of the evolution, and one approach is to simply monitor them (unconstrained evolution). Since computational solution of differential equations introduces almost inevitable errors, it is clearly 'more correct' to introduce a scheme which actively maintains the constraints by solution (constrained evolution). This has shown promise in computational settings, but the analysis of the resulting mixed elliptic hyperbolic method has not been completely carried out. We present such an analysis for one method of constrained evolution, applied to a simple vacuum system, linearized gravitational waves. We begin with a study of the hyperbolicity of the unconstrained Einstein equations. (Because the study of hyperbolicity deals only with the highest derivative order in the equations, linearization loses no essential details.) We then give explicit analytical construction of the effect of initial data setting and constrained evolution for linearized gravitational waves. While this is clearly a toy model with regard to constrained evolution, certain interesting features are found which have relevance to the full nonlinear Einstein equations
Semidefinite linear complementarity problems
Eckhardt, U.
1978-04-01
Semidefinite linear complementarity problems arise by discretization of variational inequalities describing e.g. elastic contact problems, free boundary value problems etc. In the present paper linear complementarity problems are introduced and the theory as well as the numerical treatment of them are described. In the special case of semidefinite linear complementarity problems a numerical method is presented which combines the advantages of elimination and iteration methods without suffering from their drawbacks. This new method has very attractive properties since it has a high degree of invariance with respect to the representation of the set of all feasible solutions of a linear complementarity problem by linear inequalities. By means of some practical applications the properties of the new method are demonstrated. (orig.) [de
Perturbed asymptotically linear problems
Bartolo, R.; Candela, A. M.; Salvatore, A.
2012-01-01
The aim of this paper is investigating the existence of solutions of some semilinear elliptic problems on open bounded domains when the nonlinearity is subcritical and asymptotically linear at infinity and there is a perturbation term which is just continuous. Also in the case when the problem has not a variational structure, suitable procedures and estimates allow us to prove that the number of distinct crtitical levels of the functional associated to the unperturbed problem is "stable" unde...
Fuzzy chance constrained linear programming model for scrap charge optimization in steel production
Rong, Aiying; Lahdelma, Risto
2008-01-01
the uncertainty based on fuzzy set theory and constrain the failure risk based on a possibility measure. Consequently, the scrap charge optimization problem is modeled as a fuzzy chance constrained linear programming problem. Since the constraints of the model mainly address the specification of the product...
Solution of a Complex Least Squares Problem with Constrained Phase.
Bydder, Mark
2010-12-30
The least squares solution of a complex linear equation is in general a complex vector with independent real and imaginary parts. In certain applications in magnetic resonance imaging, a solution is desired such that each element has the same phase. A direct method for obtaining the least squares solution to the phase constrained problem is described.
Quantization of the Linearized Kepler Problem
Guerrero, Julio; Perez, Jose Miguel
2003-01-01
The linearized Kepler problem is considered, as obtained from the Kustaanheimo-Stiefel (K-S)transformation, both for negative and positive energies. The symmetry group for the Kepler problem turns out to be SU(2,2). For negative energies, the Hamiltonian of Kepler problem can be realized as the sum of the energies of four harmonic oscillator with the same frequency, with a certain constrain. For positive energies, it can be realized as the sum of the energies of four repulsive oscillator with...
The cost-constrained traveling salesman problem
Sokkappa, P.R.
1990-10-01
The Cost-Constrained Traveling Salesman Problem (CCTSP) is a variant of the well-known Traveling Salesman Problem (TSP). In the TSP, the goal is to find a tour of a given set of cities such that the total cost of the tour is minimized. In the CCTSP, each city is given a value, and a fixed cost-constraint is specified. The objective is to find a subtour of the cities that achieves maximum value without exceeding the cost-constraint. Thus, unlike the TSP, the CCTSP requires both selection and sequencing. As a consequence, most results for the TSP cannot be extended to the CCTSP. We show that the CCTSP is NP-hard and that no K-approximation algorithm or fully polynomial approximation scheme exists, unless P = NP. We also show that several special cases are polynomially solvable. Algorithms for the CCTSP, which outperform previous methods, are developed in three areas: upper bounding methods, exact algorithms, and heuristics. We found that a bounding strategy based on the knapsack problem performs better, both in speed and in the quality of the bounds, than methods based on the assignment problem. Likewise, we found that a branch-and-bound approach using the knapsack bound was superior to a method based on a common branch-and-bound method for the TSP. In our study of heuristic algorithms, we found that, when selecting modes for inclusion in the subtour, it is important to consider the neighborhood'' of the nodes. A node with low value that brings the subtour near many other nodes may be more desirable than an isolated node of high value. We found two types of repetition to be desirable: repetitions based on randomization in the subtour buildings process, and repetitions encouraging the inclusion of different subsets of the nodes. By varying the number and type of repetitions, we can adjust the computation time required by our method to obtain algorithms that outperform previous methods.
Dufour, F., E-mail: dufour@math.u-bordeaux1.fr [Institut de Mathématiques de Bordeaux, INRIA Bordeaux Sud Ouest, Team: CQFD, and IMB (France); Prieto-Rumeau, T., E-mail: tprieto@ccia.uned.es [UNED, Department of Statistics and Operations Research (Spain)
2016-08-15
We consider a discrete-time constrained discounted Markov decision process (MDP) with Borel state and action spaces, compact action sets, and lower semi-continuous cost functions. We introduce a set of hypotheses related to a positive weight function which allow us to consider cost functions that might not be bounded below by a constant, and which imply the solvability of the linear programming formulation of the constrained MDP. In particular, we establish the existence of a constrained optimal stationary policy. Our results are illustrated with an application to a fishery management problem.
Constrained non-linear waves for offshore wind turbine design
Rainey, P J; Camp, T R
2007-01-01
Advancements have been made in the modelling of extreme wave loading in the offshore environment. We give an overview of wave models used at present, and their relative merits. We describe a method for embedding existing non-linear solutions for large, regular wave kinematics into linear, irregular seas. Although similar methods have been used before, the new technique is shown to offer advances in computational practicality, repeatability, and accuracy. NewWave theory has been used to constrain the linear simulation, allowing best possible fit with the large non-linear wave. GH Bladed was used to compare the effect of these models on a generic 5 MW turbine mounted on a tripod support structure
Korman, Jonathan; McCann, Robert J.; Seis, Christian
2013-01-01
A new approach to linear programming duality is proposed which relies on quadratic penalization, so that the relation between solutions to the penalized primal and dual problems becomes affine. This yields a new proof of Levin's duality theorem for capacity-constrained optimal transport as an infinite-dimensional application.
New Exact Penalty Functions for Nonlinear Constrained Optimization Problems
Bingzhuang Liu
2014-01-01
Full Text Available For two kinds of nonlinear constrained optimization problems, we propose two simple penalty functions, respectively, by augmenting the dimension of the primal problem with a variable that controls the weight of the penalty terms. Both of the penalty functions enjoy improved smoothness. Under mild conditions, it can be proved that our penalty functions are both exact in the sense that local minimizers of the associated penalty problem are precisely the local minimizers of the original constrained problem.
Guo, Sangang
2017-09-01
There are two stages in solving security-constrained unit commitment problems (SCUC) within Lagrangian framework: one is to obtain feasible units’ states (UC), the other is power economic dispatch (ED) for each unit. The accurate solution of ED is more important for enhancing the efficiency of the solution to SCUC for the fixed feasible units’ statues. Two novel methods named after Convex Combinatorial Coefficient Method and Power Increment Method respectively based on linear programming problem for solving ED are proposed by the piecewise linear approximation to the nonlinear convex fuel cost functions. Numerical testing results show that the methods are effective and efficient.
A Globally Convergent Matrix-Free Method for Constrained Equations and Its Linear Convergence Rate
Min Sun
2014-01-01
Full Text Available A matrix-free method for constrained equations is proposed, which is a combination of the well-known PRP (Polak-Ribière-Polyak conjugate gradient method and the famous hyperplane projection method. The new method is not only derivative-free, but also completely matrix-free, and consequently, it can be applied to solve large-scale constrained equations. We obtain global convergence of the new method without any differentiability requirement on the constrained equations. Compared with the existing gradient methods for solving such problem, the new method possesses linear convergence rate under standard conditions, and a relax factor γ is attached in the update step to accelerate convergence. Preliminary numerical results show that it is promising in practice.
Constraint Optimization for Highly Constrained Logistic Problems
Mochnacs, Maria Kinga; Tanaka, Meang Akira; Nyborg, Anders
This report investigates whether propagators combined with branch and bound algorithm are suitable for solving the storage area stowage problem within reasonable time. The approach has not been attempted before and experiments show that the implementation was not capable of solving the storage ar...
A New Interpolation Approach for Linearly Constrained Convex Optimization
Espinoza, Francisco
2012-08-01
In this thesis we propose a new class of Linearly Constrained Convex Optimization methods based on the use of a generalization of Shepard\\'s interpolation formula. We prove the properties of the surface such as the interpolation property at the boundary of the feasible region and the convergence of the gradient to the null space of the constraints at the boundary. We explore several descent techniques such as steepest descent, two quasi-Newton methods and the Newton\\'s method. Moreover, we implement in the Matlab language several versions of the method, particularly for the case of Quadratic Programming with bounded variables. Finally, we carry out performance tests against Matab Optimization Toolbox methods for convex optimization and implementations of the standard log-barrier and active-set methods. We conclude that the steepest descent technique seems to be the best choice so far for our method and that it is competitive with other standard methods both in performance and empirical growth order.
Templates for Linear Algebra Problems
Bai, Z.; Day, D.; Demmel, J.; Dongarra, J.; Gu, M.; Ruhe, A.; Vorst, H.A. van der
1995-01-01
The increasing availability of advanced-architecture computers is having a very signicant eect on all spheres of scientic computation, including algorithm research and software development in numerical linear algebra. Linear algebra {in particular, the solution of linear systems of equations and
Split diversity in constrained conservation prioritization using integer linear programming.
Chernomor, Olga; Minh, Bui Quang; Forest, Félix; Klaere, Steffen; Ingram, Travis; Henzinger, Monika; von Haeseler, Arndt
2015-01-01
Phylogenetic diversity (PD) is a measure of biodiversity based on the evolutionary history of species. Here, we discuss several optimization problems related to the use of PD, and the more general measure split diversity (SD), in conservation prioritization.Depending on the conservation goal and the information available about species, one can construct optimization routines that incorporate various conservation constraints. We demonstrate how this information can be used to select sets of species for conservation action. Specifically, we discuss the use of species' geographic distributions, the choice of candidates under economic pressure, and the use of predator-prey interactions between the species in a community to define viability constraints.Despite such optimization problems falling into the area of NP hard problems, it is possible to solve them in a reasonable amount of time using integer programming. We apply integer linear programming to a variety of models for conservation prioritization that incorporate the SD measure.We exemplarily show the results for two data sets: the Cape region of South Africa and a Caribbean coral reef community. Finally, we provide user-friendly software at http://www.cibiv.at/software/pda.
Evaluating potentialities and constrains of Problem Based Learning curriculum
Guerra, Aida
2013-01-01
This paper presents a research design to evaluate Problem Based Learning (PBL) curriculum potentialities and constrains for future changes. PBL literature lacks examples of how to evaluate and analyse established PBL learning environments to address new challenges posed. The research design......) in the curriculum and a mean to choose cases for further case study (third phase)....
On the Integrated Job Scheduling and Constrained Network Routing Problem
Gamst, Mette
This paper examines the NP-hard problem of scheduling a number of jobs on a finite set of machines such that the overall profit of executed jobs is maximized. Each job demands a number of resources, which must be sent to the executing machine via constrained paths. Furthermore, two resource demand...
Effective Teaching of Economics: A Constrained Optimization Problem?
Hultberg, Patrik T.; Calonge, David Santandreu
2017-01-01
One of the fundamental tenets of economics is that decisions are often the result of optimization problems subject to resource constraints. Consumers optimize utility, subject to constraints imposed by prices and income. As economics faculty, instructors attempt to maximize student learning while being constrained by their own and students'…
Constraint-Based Local Search for Constrained Optimum Paths Problems
Pham, Quang Dung; Deville, Yves; van Hentenryck, Pascal
Constrained Optimum Path (COP) problems arise in many real-life applications and are ubiquitous in communication networks. They have been traditionally approached by dedicated algorithms, which are often hard to extend with side constraints and to apply widely. This paper proposes a constraint-based local search (CBLS) framework for COP applications, bringing the compositionality, reuse, and extensibility at the core of CBLS and CP systems. The modeling contribution is the ability to express compositional models for various COP applications at a high level of abstraction, while cleanly separating the model and the search procedure. The main technical contribution is a connected neighborhood based on rooted spanning trees to find high-quality solutions to COP problems. The framework, implemented in COMET, is applied to Resource Constrained Shortest Path (RCSP) problems (with and without side constraints) and to the edge-disjoint paths problem (EDP). Computational results show the potential significance of the approach.
Exact methods for time constrained routing and related scheduling problems
Kohl, Niklas
1995-01-01
of customers. In the VRPTW customers must be serviced within a given time period - a so called time window. The objective can be to minimize operating costs (e.g. distance travelled), fixed costs (e.g. the number of vehicles needed) or a combination of these component costs. During the last decade optimization......This dissertation presents a number of optimization methods for the Vehicle Routing Problem with Time Windows (VRPTW). The VRPTW is a generalization of the well known capacity constrained Vehicle Routing Problem (VRP), where a fleet of vehicles based at a central depot must service a set...... of J?rnsten, Madsen and S?rensen (1986), which has been tested computationally by Halse (1992). Both methods decompose the problem into a series of time and capacity constrained shotest path problems. This yields a tight lower bound on the optimal objective, and the dual gap can often be closed...
Particle swarm optimization - Genetic algorithm (PSOGA) on linear transportation problem
Rahmalia, Dinita
2017-08-01
Linear Transportation Problem (LTP) is the case of constrained optimization where we want to minimize cost subject to the balance of the number of supply and the number of demand. The exact method such as northwest corner, vogel, russel, minimal cost have been applied at approaching optimal solution. In this paper, we use heurisitic like Particle Swarm Optimization (PSO) for solving linear transportation problem at any size of decision variable. In addition, we combine mutation operator of Genetic Algorithm (GA) at PSO to improve optimal solution. This method is called Particle Swarm Optimization - Genetic Algorithm (PSOGA). The simulations show that PSOGA can improve optimal solution resulted by PSO.
THE DUBINS TRAVELING SALESMAN PROBLEM WITH CONSTRAINED COLLECTING MANEUVERS
Petr Váňa
2016-11-01
Full Text Available In this paper, we introduce a variant of the Dubins traveling salesman problem (DTSP that is called the Dubins traveling salesman problem with constrained collecting maneuvers (DTSP-CM. In contrast to the ordinary formulation of the DTSP, in the proposed DTSP-CM, the vehicle is requested to visit each target by specified collecting maneuver to accomplish the mission. The proposed problem formulation is motivated by scenarios with unmanned aerial vehicles where particular maneuvers are necessary for accomplishing the mission, such as object dropping or data collection with sensor sensitive to changes in vehicle heading. We consider existing methods for the DTSP and propose its modifications to use these methods to address a variant of the introduced DTSP-CM, where the collecting maneuvers are constrained to straight line segments.
Mak, Vicky; Thomadsen, Tommy
2006-01-01
This paper considers the cardinality constrained quadratic knapsack problem (QKP) and the quadratic selective travelling salesman problem (QSTSP). The QKP is a generalization of the knapsack problem and the QSTSP is a generalization of the travelling salesman problem. Thus, both problems are NP...
Distributionally Robust Joint Chance Constrained Problem under Moment Uncertainty
Ke-wei Ding
2014-01-01
Full Text Available We discuss and develop the convex approximation for robust joint chance constraints under uncertainty of first- and second-order moments. Robust chance constraints are approximated by Worst-Case CVaR constraints which can be reformulated by a semidefinite programming. Then the chance constrained problem can be presented as semidefinite programming. We also find that the approximation for robust joint chance constraints has an equivalent individual quadratic approximation form.
Stochastic Linear Quadratic Optimal Control Problems
Chen, S.; Yong, J.
2001-01-01
This paper is concerned with the stochastic linear quadratic optimal control problem (LQ problem, for short) for which the coefficients are allowed to be random and the cost functional is allowed to have a negative weight on the square of the control variable. Some intrinsic relations among the LQ problem, the stochastic maximum principle, and the (linear) forward-backward stochastic differential equations are established. Some results involving Riccati equation are discussed as well
Perturbation analysis of linear control problems
Petkov, Petko; Konstantinov, Mihail
2017-01-01
The paper presents a brief overview of the technique of splitting operators, proposed by the authors and intended for perturbation analysis of control problems involving unitary and orthogonal matrices. Combined with the technique of Lyapunov majorants and the implementation of the Banach and Schauder fixed point principles, it allows to obtain rigorous non-local perturbation bounds for a set of sensitivity analysis problems. Among them are the reduction of linear systems into orthogonal canonical forms, the feedback synthesis problem and pole assignment problem in particular, as well as other important problems in control theory and linear algebra. Key words: perturbation analysis, canonical forms, feedback synthesis
Application of Constrained Linear MPC to a Spray Dryer
Petersen, Lars Norbert; Poulsen, Niels Kjølstad; Niemann, Hans Henrik
2014-01-01
In this paper we develop a linear model predictive control (MPC) algorithm for control of a two stage spray dryer. The states are estimated by a stationary Kalman filter. A non-linear first-principle engineering model is developed to simulate the spray drying process. The model is validated against...... experimental data and able to precisely predict the temperatures, the air humidity and the residual moisture in the dryer. The MPC controls these variables to the target and reject disturbances. Spray drying is a cost-effective method to evaporate water from liquid foods and produces a free flowing powder...
Robust self-triggered MPC for constrained linear systems
Brunner, F.D.; Heemels, W.P.M.H.; Allgöwer, F.
2014-01-01
In this paper we propose a robust self-triggered model predictive control algorithm for linear systems with additive bounded disturbances and hard constraints on the inputs and state. In self-triggered control, at every sampling instant the time until the next sampling instant is computed online
Solving of L0 norm constrained EEG inverse problem.
Xu, Peng; Lei, Xu; Hu, Xiao; Yao, Dezhong
2009-01-01
l(0) norm is an effective constraint used to solve EEG inverse problem for a sparse solution. However, due to the discontinuous and un-differentiable properties, it is an open issue to solve the l(0) norm constrained problem, which is usually instead solved by using some alternative functions like l(1) norm to approximate l(0) norm. In this paper, a continuous and differentiable function having the same form as the transfer function of Butterworth low-pass filter is introduced to approximate l(0) norm constraint involved in EEG inverse problem. The new approximation based approach was compared with l(1) norm and LORETA solutions on a realistic head model using simulated sources. The preliminary results show that this alternative approximation to l(0) norm is promising for the estimation of EEG sources with sparse distribution.
Constrained Null Space Component Analysis for Semiblind Source Separation Problem.
Hwang, Wen-Liang; Lu, Keng-Shih; Ho, Jinn
2018-02-01
The blind source separation (BSS) problem extracts unknown sources from observations of their unknown mixtures. A current trend in BSS is the semiblind approach, which incorporates prior information on sources or how the sources are mixed. The constrained independent component analysis (ICA) approach has been studied to impose constraints on the famous ICA framework. We introduced an alternative approach based on the null space component (NCA) framework and referred to the approach as the c-NCA approach. We also presented the c-NCA algorithm that uses signal-dependent semidefinite operators, which is a bilinear mapping, as signatures for operator design in the c-NCA approach. Theoretically, we showed that the source estimation of the c-NCA algorithm converges with a convergence rate dependent on the decay of the sequence, obtained by applying the estimated operators on corresponding sources. The c-NCA can be formulated as a deterministic constrained optimization method, and thus, it can take advantage of solvers developed in optimization society for solving the BSS problem. As examples, we demonstrated electroencephalogram interference rejection problems can be solved by the c-NCA with proximal splitting algorithms by incorporating a sparsity-enforcing separation model and considering the case when reference signals are available.
Convex variational problems linear, nearly linear and anisotropic growth conditions
Bildhauer, Michael
2003-01-01
The author emphasizes a non-uniform ellipticity condition as the main approach to regularity theory for solutions of convex variational problems with different types of non-standard growth conditions. This volume first focuses on elliptic variational problems with linear growth conditions. Here the notion of a "solution" is not obvious and the point of view has to be changed several times in order to get some deeper insight. Then the smoothness properties of solutions to convex anisotropic variational problems with superlinear growth are studied. In spite of the fundamental differences, a non-uniform ellipticity condition serves as the main tool towards a unified view of the regularity theory for both kinds of problems.
Students’ difficulties in solving linear equation problems
Wati, S.; Fitriana, L.; Mardiyana
2018-03-01
A linear equation is an algebra material that exists in junior high school to university. It is a very important material for students in order to learn more advanced mathematics topics. Therefore, linear equation material is essential to be mastered. However, the result of 2016 national examination in Indonesia showed that students’ achievement in solving linear equation problem was low. This fact became a background to investigate students’ difficulties in solving linear equation problems. This study used qualitative descriptive method. An individual written test on linear equation tasks was administered, followed by interviews. Twenty-one sample students of grade VIII of SMPIT Insan Kamil Karanganyar did the written test, and 6 of them were interviewed afterward. The result showed that students with high mathematics achievement donot have difficulties, students with medium mathematics achievement have factual difficulties, and students with low mathematics achievement have factual, conceptual, operational, and principle difficulties. Based on the result there is a need of meaningfulness teaching strategy to help students to overcome difficulties in solving linear equation problems.
Inverse problems in linear transport theory
Dressler, K.
1988-01-01
Inverse problems for a class of linear kinetic equations are investigated. The aim is to identify the scattering kernel of a transport equation (corresponding to the structure of a background medium) by observing the 'albedo' part of the solution operator for the corresponding direct initial boundary value problem. This means to get information on some integral operator in an integrodifferential equation through on overdetermined boundary value problem. We first derive a constructive method for solving direct halfspace problems and prove a new factorization theorem for the solutions. Using this result we investigate stationary inverse problems with respect to well posedness (e.g. reduce them to classical ill-posed problems, such as integral equations of first kind). In the time-dependent case we show that a quite general inverse problem is well posed and solve it constructively. (orig.)
Invariant imbedding equations for linear scattering problems
Apresyan, L.
1988-01-01
A general form of the invariant imbedding equations is investigated for the linear problem of scattering by a bounded scattering volume. The conditions for the derivability of such equations are described. It is noted that the possibility of the explicit representation of these equations for a sphere and for a layer involves the separation of variables in the unperturbed wave equation
Provencher, Stephen W.
1982-09-01
CONTIN is a portable Fortran IV package for inverting noisy linear operator equations. These problems occur in the analysis of data from a wide variety experiments. They are generally ill-posed problems, which means that errors in an unregularized inversion are unbounded. Instead, CONTIN seeks the optimal solution by incorporating parsimony and any statistical prior knowledge into the regularizor and absolute prior knowledge into equallity and inequality constraints. This can be greatly increase the resolution and accuracyh of the solution. CONTIN is very flexible, consisting of a core of about 50 subprograms plus 13 small "USER" subprograms, which the user can easily modify to specify special-purpose constraints, regularizors, operator equations, simulations, statistical weighting, etc. Specjial collections of USER subprograms are available for photon correlation spectroscopy, multicomponent spectra, and Fourier-Bessel, Fourier and Laplace transforms. Numerically stable algorithms are used throughout CONTIN. A fairly precise definition of information content in terms of degrees of freedom is given. The regularization parameter can be automatically chosen on the basis of an F-test and confidence region. The interpretation of the latter and of error estimates based on the covariance matrix of the constrained regularized solution are discussed. The strategies, methods and options in CONTIN are outlined. The program itself is described in the following paper.
Keulen, van T.A.C.; Gillot, J.; Jager, de A.G.; Steinbuch, M.
2014-01-01
This paper presents a numerical solution for scalar state constrained optimal control problems. The algorithm rewrites the constrained optimal control problem as a sequence of unconstrained optimal control problems which can be solved recursively as a two point boundary value problem. The solution
Identification problems in linear transformation system
Delforge, Jacques.
1975-01-01
An attempt was made to solve the theoretical and numerical difficulties involved in the identification problem relative to the linear part of P. Delattre's theory of transformation systems. The theoretical difficulties are due to the very important problem of the uniqueness of the solution, which must be demonstrated in order to justify the value of the solution found. Simple criteria have been found when measurements are possible on all the equivalence classes, but the problem remains imperfectly solved when certain evolution curves are unknown. The numerical difficulties are of two kinds: a slow convergence of iterative methods and a strong repercussion of numerical and experimental errors on the solution. In the former case a fast convergence was obtained by transformation of the parametric space, while in the latter it was possible, from sensitivity functions, to estimate the errors, to define and measure the conditioning of the identification problem then to minimize this conditioning as a function of the experimental conditions [fr
Stability problems for linear hyperbolic systems
Eckhoff, K.S.
1975-05-01
The stability properties for the trivial solution of a general linear hyperbolic system of partial differential equations of the first order are studied. It is shown that results may be obtained by studying the stability properties of certain systems of ordinary differential equations which can be constructed from the hyperbolic system (the so-called transport equations). In some cases the associated stability problem for the transport equations can in fact be shown to be equivalent to the stability problem for the hyperbolic system, but in general the transport equations will only give the necessary conditions for stability. (Auth.)
A Variant of the Topkis-Veinott Method for Solving Inequality Constrained Optimization Problems
Birge, J. R.; Qi, L.; Wei, Z.
2000-01-01
In this paper we give a variant of the Topkis-Veinott method for solving inequality constrained optimization problems. This method uses a linearly constrained positive semidefinite quadratic problem to generate a feasible descent direction at each iteration. Under mild assumptions, the algorithm is shown to be globally convergent in the sense that every accumulation point of the sequence generated by the algorithm is a Fritz-John point of the problem. We introduce a Fritz-John (FJ) function, an FJ1 strong second-order sufficiency condition (FJ1-SSOSC), and an FJ2 strong second-order sufficiency condition (FJ2-SSOSC), and then show, without any constraint qualification (CQ), that (i) if an FJ point z satisfies the FJ1-SSOSC, then there exists a neighborhood N(z) of z such that, for any FJ point y element of N(z) {z } , f 0 (y) ≠ f 0 (z) , where f 0 is the objective function of the problem; (ii) if an FJ point z satisfies the FJ2-SSOSC, then z is a strict local minimum of the problem. The result (i) implies that the entire iteration point sequence generated by the method converges to an FJ point. We also show that if the parameters are chosen large enough, a unit step length can be accepted by the proposed algorithm
Robust and Reliable Portfolio Optimization Formulation of a Chance Constrained Problem
Sengupta Raghu Nandan
2017-02-01
Full Text Available We solve a linear chance constrained portfolio optimization problem using Robust Optimization (RO method wherein financial script/asset loss return distributions are considered as extreme valued. The objective function is a convex combination of portfolio’s CVaR and expected value of loss return, subject to a set of randomly perturbed chance constraints with specified probability values. The robust deterministic counterpart of the model takes the form of Second Order Cone Programming (SOCP problem. Results from extensive simulation runs show the efficacy of our proposed models, as it helps the investor to (i utilize extensive simulation studies to draw insights into the effect of randomness in portfolio decision making process, (ii incorporate different risk appetite scenarios to find the optimal solutions for the financial portfolio allocation problem and (iii compare the risk and return profiles of the investments made in both deterministic as well as in uncertain and highly volatile financial markets.
Filter Pattern Search Algorithms for Mixed Variable Constrained Optimization Problems
Abramson, Mark A; Audet, Charles; Dennis, Jr, J. E
2004-01-01
.... This class combines and extends the Audet-Dennis Generalized Pattern Search (GPS) algorithms for bound constrained mixed variable optimization, and their GPS-filter algorithms for general nonlinear constraints...
An Entropic Estimator for Linear Inverse Problems
Amos Golan
2012-05-01
Full Text Available In this paper we examine an Information-Theoretic method for solving noisy linear inverse estimation problems which encompasses under a single framework a whole class of estimation methods. Under this framework, the prior information about the unknown parameters (when such information exists, and constraints on the parameters can be incorporated in the statement of the problem. The method builds on the basics of the maximum entropy principle and consists of transforming the original problem into an estimation of a probability density on an appropriate space naturally associated with the statement of the problem. This estimation method is generic in the sense that it provides a framework for analyzing non-normal models, it is easy to implement and is suitable for all types of inverse problems such as small and or ill-conditioned, noisy data. First order approximation, large sample properties and convergence in distribution are developed as well. Analytical examples, statistics for model comparisons and evaluations, that are inherent to this method, are discussed and complemented with explicit examples.
Solving fault diagnosis problems linear synthesis techniques
Varga, Andreas
2017-01-01
This book addresses fault detection and isolation topics from a computational perspective. Unlike most existing literature, it bridges the gap between the existing well-developed theoretical results and the realm of reliable computational synthesis procedures. The model-based approach to fault detection and diagnosis has been the subject of ongoing research for the past few decades. While the theoretical aspects of fault diagnosis on the basis of linear models are well understood, most of the computational methods proposed for the synthesis of fault detection and isolation filters are not satisfactory from a numerical standpoint. Several features make this book unique in the fault detection literature: Solution of standard synthesis problems in the most general setting, for both continuous- and discrete-time systems, regardless of whether they are proper or not; consequently, the proposed synthesis procedures can solve a specific problem whenever a solution exists Emphasis on the best numerical algorithms to ...
Numerical stability in problems of linear algebra.
Babuska, I.
1972-01-01
Mathematical problems are introduced as mappings from the space of input data to that of the desired output information. Then a numerical process is defined as a prescribed recurrence of elementary operations creating the mapping of the underlying mathematical problem. The ratio of the error committed by executing the operations of the numerical process (the roundoff errors) to the error introduced by perturbations of the input data (initial error) gives rise to the concept of lambda-stability. As examples, several processes are analyzed from this point of view, including, especially, old and new processes for solving systems of linear algebraic equations with tridiagonal matrices. In particular, it is shown how such a priori information can be utilized as, for instance, a knowledge of the row sums of the matrix. Information of this type is frequently available where the system arises in connection with the numerical solution of differential equations.
Belkina, T. A.; Konyukhova, N. B.; Kurochkin, S. V.
2016-01-01
Previous and new results are used to compare two mathematical insurance models with identical insurance company strategies in a financial market, namely, when the entire current surplus or its constant fraction is invested in risky assets (stocks), while the rest of the surplus is invested in a risk-free asset (bank account). Model I is the classical Cramér-Lundberg risk model with an exponential claim size distribution. Model II is a modification of the classical risk model (risk process with stochastic premiums) with exponential distributions of claim and premium sizes. For the survival probability of an insurance company over infinite time (as a function of its initial surplus), there arise singular problems for second-order linear integrodifferential equations (IDEs) defined on a semiinfinite interval and having nonintegrable singularities at zero: model I leads to a singular constrained initial value problem for an IDE with a Volterra integral operator, while II model leads to a more complicated nonlocal constrained problem for an IDE with a non-Volterra integral operator. A brief overview of previous results for these two problems depending on several positive parameters is given, and new results are presented. Additional results are concerned with the formulation, analysis, and numerical study of "degenerate" problems for both models, i.e., problems in which some of the IDE parameters vanish; moreover, passages to the limit with respect to the parameters through which we proceed from the original problems to the degenerate ones are singular for small and/or large argument values. Such problems are of mathematical and practical interest in themselves. Along with insurance models without investment, they describe the case of surplus completely invested in risk-free assets, as well as some noninsurance models of surplus dynamics, for example, charity-type models.
Zhang, Chenglong; Guo, Ping
2017-10-01
The vague and fuzzy parametric information is a challenging issue in irrigation water management problems. In response to this problem, a generalized fuzzy credibility-constrained linear fractional programming (GFCCFP) model is developed for optimal irrigation water allocation under uncertainty. The model can be derived from integrating generalized fuzzy credibility-constrained programming (GFCCP) into a linear fractional programming (LFP) optimization framework. Therefore, it can solve ratio optimization problems associated with fuzzy parameters, and examine the variation of results under different credibility levels and weight coefficients of possibility and necessary. It has advantages in: (1) balancing the economic and resources objectives directly; (2) analyzing system efficiency; (3) generating more flexible decision solutions by giving different credibility levels and weight coefficients of possibility and (4) supporting in-depth analysis of the interrelationships among system efficiency, credibility level and weight coefficient. The model is applied to a case study of irrigation water allocation in the middle reaches of Heihe River Basin, northwest China. Therefore, optimal irrigation water allocation solutions from the GFCCFP model can be obtained. Moreover, factorial analysis on the two parameters (i.e. λ and γ) indicates that the weight coefficient is a main factor compared with credibility level for system efficiency. These results can be effective for support reasonable irrigation water resources management and agricultural production.
Reinforcement learning solution for HJB equation arising in constrained optimal control problem.
Luo, Biao; Wu, Huai-Ning; Huang, Tingwen; Liu, Derong
2015-11-01
The constrained optimal control problem depends on the solution of the complicated Hamilton-Jacobi-Bellman equation (HJBE). In this paper, a data-based off-policy reinforcement learning (RL) method is proposed, which learns the solution of the HJBE and the optimal control policy from real system data. One important feature of the off-policy RL is that its policy evaluation can be realized with data generated by other behavior policies, not necessarily the target policy, which solves the insufficient exploration problem. The convergence of the off-policy RL is proved by demonstrating its equivalence to the successive approximation approach. Its implementation procedure is based on the actor-critic neural networks structure, where the function approximation is conducted with linearly independent basis functions. Subsequently, the convergence of the implementation procedure with function approximation is also proved. Finally, its effectiveness is verified through computer simulations. Copyright © 2015 Elsevier Ltd. All rights reserved.
Regularization Techniques for Linear Least-Squares Problems
Suliman, Mohamed
2016-04-01
Linear estimation is a fundamental branch of signal processing that deals with estimating the values of parameters from a corrupted measured data. Throughout the years, several optimization criteria have been used to achieve this task. The most astonishing attempt among theses is the linear least-squares. Although this criterion enjoyed a wide popularity in many areas due to its attractive properties, it appeared to suffer from some shortcomings. Alternative optimization criteria, as a result, have been proposed. These new criteria allowed, in one way or another, the incorporation of further prior information to the desired problem. Among theses alternative criteria is the regularized least-squares (RLS). In this thesis, we propose two new algorithms to find the regularization parameter for linear least-squares problems. In the constrained perturbation regularization algorithm (COPRA) for random matrices and COPRA for linear discrete ill-posed problems, an artificial perturbation matrix with a bounded norm is forced into the model matrix. This perturbation is introduced to enhance the singular value structure of the matrix. As a result, the new modified model is expected to provide a better stabilize substantial solution when used to estimate the original signal through minimizing the worst-case residual error function. Unlike many other regularization algorithms that go in search of minimizing the estimated data error, the two new proposed algorithms are developed mainly to select the artifcial perturbation bound and the regularization parameter in a way that approximately minimizes the mean-squared error (MSE) between the original signal and its estimate under various conditions. The first proposed COPRA method is developed mainly to estimate the regularization parameter when the measurement matrix is complex Gaussian, with centered unit variance (standard), and independent and identically distributed (i.i.d.) entries. Furthermore, the second proposed COPRA
Parametrices and exact paralinearization of semi-linear boundary problems
Johnsen, Jon
2008-01-01
The subject is parametrices for semi-linear problems, based on parametrices for linear boundary problems and on non-linearities that decompose into solution-dependent linear operators acting on the solutions. Non-linearities of product type are shown to admit this via exact paralinearization...... of homogeneous distributions, tensor products and halfspace extensions have been revised. Examples include the von Karman equation....
Solving discretely-constrained MPEC problems with applications in electric power markets
Gabriel, Steven A.; Leuthold, Florian U.
2010-01-01
Many of the European energy markets are characterized by dominant players that own a large share of their respective countries' generation capacities. In addition to that, there is a significant lack of cross-border transmission capacity. Combining both facts justifies the assumption that these dominant players are able to influence the market outcome of an internal European energy market due to strategic behavior. In this paper, we present a mathematical formulation in order to solve a Stackelberg game for a network-constrained energy market using integer programming. The strategic player is the Stackelberg leader and the independent system operator (including the decisions of the competitive fringe firms) acts as follower. We assume that there is one strategic player which results in a mathematical program with equilibrium constraints (MPEC). This MPEC is reformulated as mixed-integer linear program (MILP) by using disjunctive constraints and linearization. The MILP formulation gives the opportunity to solve the problems reliably and paves the way to add discrete constraints to the original MPEC formulation which can be used in order to solve discretely-constrained mathematical programs with equilibrium constraints (DC-MPECs). We report computational results for a small illustrative network as well as a stylized Western European grid with realistic data. (author)
Solving discretely-constrained MPEC problems with applications in electric power markets
Gabriel, Steven A. [1143 Glenn L. Martin Hall, Department of Civil and Environmental Engineering, University of Maryland, College Park, MD 20742-3021 (United States); Leuthold, Florian U. [Chair of Energy Economics and Public Sector Management, Dresden University of Technology, 01069 Dresden (Germany)
2010-01-15
Many of the European energy markets are characterized by dominant players that own a large share of their respective countries' generation capacities. In addition to that, there is a significant lack of cross-border transmission capacity. Combining both facts justifies the assumption that these dominant players are able to influence the market outcome of an internal European energy market due to strategic behavior. In this paper, we present a mathematical formulation in order to solve a Stackelberg game for a network-constrained energy market using integer programming. The strategic player is the Stackelberg leader and the independent system operator (including the decisions of the competitive fringe firms) acts as follower. We assume that there is one strategic player which results in a mathematical program with equilibrium constraints (MPEC). This MPEC is reformulated as mixed-integer linear program (MILP) by using disjunctive constraints and linearization. The MILP formulation gives the opportunity to solve the problems reliably and paves the way to add discrete constraints to the original MPEC formulation which can be used in order to solve discretely-constrained mathematical programs with equilibrium constraints (DC-MPECs). We report computational results for a small illustrative network as well as a stylized Western European grid with realistic data. (author)
Zhimiao Tao
2013-01-01
Full Text Available An equilibrium chance-constrained multiobjective programming model with birandom parameters is proposed. A type of linear model is converted into its crisp equivalent model. Then a birandom simulation technique is developed to tackle the general birandom objective functions and birandom constraints. By embedding the birandom simulation technique, a modified genetic algorithm is designed to solve the equilibrium chance-constrained multiobjective programming model. We apply the proposed model and algorithm to a real-world inventory problem and show the effectiveness of the model and the solution method.
A Global Optimization Algorithm for Sum of Linear Ratios Problem
Yuelin Gao; Siqiao Jin
2013-01-01
We equivalently transform the sum of linear ratios programming problem into bilinear programming problem, then by using the linear characteristics of convex envelope and concave envelope of double variables product function, linear relaxation programming of the bilinear programming problem is given, which can determine the lower bound of the optimal value of original problem. Therefore, a branch and bound algorithm for solving sum of linear ratios programming problem is put forward, and the c...
A novel approach based on preference-based index for interval bilevel linear programming problem
Aihong Ren; Yuping Wang; Xingsi Xue
2017-01-01
This paper proposes a new methodology for solving the interval bilevel linear programming problem in which all coefficients of both objective functions and constraints are considered as interval numbers. In order to keep as much uncertainty of the original constraint region as possible, the original problem is first converted into an interval bilevel programming problem with interval coefficients in both objective functions only through normal variation of interval number and chance-constrain...
Nonlinear Chance Constrained Problems: Optimality Conditions, Regularization and Solvers
Adam, Lukáš; Branda, Martin
2016-01-01
Roč. 170, č. 2 (2016), s. 419-436 ISSN 0022-3239 R&D Projects: GA ČR GA15-00735S Institutional support: RVO:67985556 Keywords : Chance constrained programming * Optimality conditions * Regularization * Algorithms * Free MATLAB codes Subject RIV: BB - Applied Statistics, Operational Research Impact factor: 1.289, year: 2016 http://library.utia.cas.cz/separaty/2016/MTR/adam-0460909.pdf
Topological inversion for solution of geodesy-constrained geophysical problems
Saltogianni, Vasso; Stiros, Stathis
2015-04-01
Geodetic data, mostly GPS observations, permit to measure displacements of selected points around activated faults and volcanoes, and on the basis of geophysical models, to model the underlying physical processes. This requires inversion of redundant systems of highly non-linear equations with >3 unknowns; a situation analogous to the adjustment of geodetic networks. However, in geophysical problems inversion cannot be based on conventional least-squares techniques, and is based on numerical inversion techniques (a priori fixing of some variables, optimization in steps with values of two variables each time to be regarded fixed, random search in the vicinity of approximate solutions). Still these techniques lead to solutions trapped in local minima, to correlated estimates and to solutions with poor error control (usually sampling-based approaches). To overcome these problems, a numerical-topological, grid-search based technique in the RN space is proposed (N the number of unknown variables). This technique is in fact a generalization and refinement of techniques used in lighthouse positioning and in some cases of low-accuracy 2-D positioning using Wi-Fi etc. The basic concept is to assume discrete possible ranges of each variable, and from these ranges to define a grid G in the RN space, with some of the gridpoints to approximate the true solutions of the system. Each point of hyper-grid G is then tested whether it satisfies the observations, given their uncertainty level, and successful grid points define a sub-space of G containing the true solutions. The optimal (minimal) space containing one or more solutions is obtained using a trial-and-error approach, and a single optimization factor. From this essentially deterministic identification of the set of gridpoints satisfying the system of equations, at a following step, a stochastic optimal solution is computed corresponding to the center of gravity of this set of gridpoints. This solution corresponds to a
Numerical Methods for Solution of the Extended Linear Quadratic Control Problem
Jørgensen, John Bagterp; Frison, Gianluca; Gade-Nielsen, Nicolai Fog
2012-01-01
In this paper we present the extended linear quadratic control problem, its efficient solution, and a discussion of how it arises in the numerical solution of nonlinear model predictive control problems. The extended linear quadratic control problem is the optimal control problem corresponding...... to the Karush-Kuhn-Tucker system that constitute the majority of computational work in constrained nonlinear and linear model predictive control problems solved by efficient MPC-tailored interior-point and active-set algorithms. We state various methods of solving the extended linear quadratic control problem...... and discuss instances in which it arises. The methods discussed in the paper have been implemented in efficient C code for both CPUs and GPUs for a number of test examples....
M. ZANGIABADI; H. R. MALEKI
2007-01-01
In the real-world optimization problems, coefficients of the objective function are not known precisely and can be interpreted as fuzzy numbers. In this paper we define the concepts of optimality for linear programming problems with fuzzy parameters based on those for multiobjective linear programming problems. Then by using the concept of comparison of fuzzy numbers, we transform a linear programming problem with fuzzy parameters to a multiobjective linear programming problem. To this end, w...
Liu, Qingshan; Wang, Jun
2011-04-01
This paper presents a one-layer recurrent neural network for solving a class of constrained nonsmooth optimization problems with piecewise-linear objective functions. The proposed neural network is guaranteed to be globally convergent in finite time to the optimal solutions under a mild condition on a derived lower bound of a single gain parameter in the model. The number of neurons in the neural network is the same as the number of decision variables of the optimization problem. Compared with existing neural networks for optimization, the proposed neural network has a couple of salient features such as finite-time convergence and a low model complexity. Specific models for two important special cases, namely, linear programming and nonsmooth optimization, are also presented. In addition, applications to the shortest path problem and constrained least absolute deviation problem are discussed with simulation results to demonstrate the effectiveness and characteristics of the proposed neural network.
A Heuristic Algorithm for Constrain Single-Source Problem with Constrained Customers
S. A. Raisi Dehkordi∗
2012-09-01
Full Text Available The Fermat-Weber location problem is to find a point in R n that minimizes the sum of the weighted Euclidean distances from m given points in R n . In this paper we consider the Fermat-Weber problem of one new facilitiy with respect to n unknown customers in order to minimizing the sum of transportation costs between this facility and the customers. We assumed that each customer is located in a nonempty convex closed bounded subset of R n .
Zeb, Salman; Yousaf, Muhammad
2017-01-01
In this article, we present a QR updating procedure as a solution approach for linear least squares problem with equality constraints. We reduce the constrained problem to unconstrained linear least squares and partition it into a small subproblem. The QR factorization of the subproblem is calculated and then we apply updating techniques to its upper triangular factor R to obtain its solution. We carry out the error analysis of the proposed algorithm to show that it is backward stable. We also illustrate the implementation and accuracy of the proposed algorithm by providing some numerical experiments with particular emphasis on dense problems.
Menu-Driven Solver Of Linear-Programming Problems
Viterna, L. A.; Ferencz, D.
1992-01-01
Program assists inexperienced user in formulating linear-programming problems. A Linear Program Solver (ALPS) computer program is full-featured LP analysis program. Solves plain linear-programming problems as well as more-complicated mixed-integer and pure-integer programs. Also contains efficient technique for solution of purely binary linear-programming problems. Written entirely in IBM's APL2/PC software, Version 1.01. Packed program contains licensed material, property of IBM (copyright 1988, all rights reserved).
An Approach for Solving Linear Fractional Programming Problems
Andrew Oyakhobo Odior
2012-01-01
Linear fractional programming problems are useful tools in production planning, financial and corporate planning, health care and hospital planning and as such have attracted considerable research interest. The paper presents a new approach for solving a fractional linear programming problem in which the objective function is a linear fractional function, while the constraint functions are in the form of linear inequalities. The approach adopted is based mainly upon solving the problem algebr...
Vorozheikin, A.; Gonchar, T.; Panfilov, I.; Sopov, E.; Sopov, S.
2009-01-01
A new algorithm for the solution of complex constrained optimization problems based on the probabilistic genetic algorithm with optimal solution prediction is proposed. The efficiency investigation results in comparison with standard genetic algorithm are presented.
Cross-constrained problems for nonlinear Schrodinger equation with harmonic potential
Runzhang Xu
2012-11-01
Full Text Available This article studies a nonlinear Schodinger equation with harmonic potential by constructing different cross-constrained problems. By comparing the different cross-constrained problems, we derive different sharp criterion and different invariant manifolds that separate the global solutions and blowup solutions. Moreover, we conclude that some manifolds are empty due to the essence of the cross-constrained problems. Besides, we compare the three cross-constrained problems and the three depths of the potential wells. In this way, we explain the gaps in [J. Shu and J. Zhang, Nonlinear Shrodinger equation with harmonic potential, Journal of Mathematical Physics, 47, 063503 (2006], which was pointed out in [R. Xu and Y. Liu, Remarks on nonlinear Schrodinger equation with harmonic potential, Journal of Mathematical Physics, 49, 043512 (2008].
Artificial bee colony algorithm for constrained possibilistic portfolio optimization problem
Chen, Wei
2015-07-01
In this paper, we discuss the portfolio optimization problem with real-world constraints under the assumption that the returns of risky assets are fuzzy numbers. A new possibilistic mean-semiabsolute deviation model is proposed, in which transaction costs, cardinality and quantity constraints are considered. Due to such constraints the proposed model becomes a mixed integer nonlinear programming problem and traditional optimization methods fail to find the optimal solution efficiently. Thus, a modified artificial bee colony (MABC) algorithm is developed to solve the corresponding optimization problem. Finally, a numerical example is given to illustrate the effectiveness of the proposed model and the corresponding algorithm.
The linear ordering problem: an algorithm for the optimal solution ...
In this paper we describe and implement an algorithm for the exact solution of the Linear Ordering problem. Linear Ordering is the problem of finding a linear order of the nodes of a graph such that the sum of the weights which are consistent with this order is as large as possible. It is an NP - Hard combinatorial optimisation ...
An approach for solving linear fractional programming problems ...
The paper presents a new approach for solving a fractional linear programming problem in which the objective function is a linear fractional function, while the constraint functions are in the form of linear inequalities. The approach adopted is based mainly upon solving the problem algebraically using the concept of duality ...
A Global Optimization Algorithm for Sum of Linear Ratios Problem
Yuelin Gao
2013-01-01
Full Text Available We equivalently transform the sum of linear ratios programming problem into bilinear programming problem, then by using the linear characteristics of convex envelope and concave envelope of double variables product function, linear relaxation programming of the bilinear programming problem is given, which can determine the lower bound of the optimal value of original problem. Therefore, a branch and bound algorithm for solving sum of linear ratios programming problem is put forward, and the convergence of the algorithm is proved. Numerical experiments are reported to show the effectiveness of the proposed algorithm.
A Volume Constrained Variational Problem with Lower-Order Terms
Morini, M.; Rieger, M.O.
2003-01-01
We study a one-dimensional variational problem with two or more level set constraints. The existence of global and local minimizers turns out to be dependent on the regularity of the energy density. A complete characterization of local minimizers and the underlying energy landscape is provided. The Γ -limit when the phases exhaust the whole domain is computed
Microlocal analysis of a seismic linearized inverse problem
Stolk, C.C.
1999-01-01
The seismic inverse problem is to determine the wavespeed c x in the interior of a medium from measurements at the boundary In this paper we analyze the linearized inverse problem in general acoustic media The problem is to nd a left inverse of the linearized forward map F or equivalently to nd the
A Mixed Integer Linear Programming Approach to Electrical Stimulation Optimization Problems.
Abouelseoud, Gehan; Abouelseoud, Yasmine; Shoukry, Amin; Ismail, Nour; Mekky, Jaidaa
2018-02-01
Electrical stimulation optimization is a challenging problem. Even when a single region is targeted for excitation, the problem remains a constrained multi-objective optimization problem. The constrained nature of the problem results from safety concerns while its multi-objectives originate from the requirement that non-targeted regions should remain unaffected. In this paper, we propose a mixed integer linear programming formulation that can successfully address the challenges facing this problem. Moreover, the proposed framework can conclusively check the feasibility of the stimulation goals. This helps researchers to avoid wasting time trying to achieve goals that are impossible under a chosen stimulation setup. The superiority of the proposed framework over alternative methods is demonstrated through simulation examples.
Off-Line Robust Constrained MPC for Linear Time-Varying Systems with Persistent Disturbances
P. Bumroongsri
2014-01-01
Full Text Available An off-line robust constrained model predictive control (MPC algorithm for linear time-varying (LTV systems is developed. A novel feature is the fact that both model uncertainty and bounded additive disturbance are explicitly taken into account in the off-line formulation of MPC. In order to reduce the on-line computational burdens, a sequence of explicit control laws corresponding to a sequence of positively invariant sets is computed off-line. At each sampling time, the smallest positively invariant set containing the measured state is determined and the corresponding control law is implemented in the process. The proposed MPC algorithm can guarantee robust stability while ensuring the satisfaction of input and output constraints. The effectiveness of the proposed MPC algorithm is illustrated by two examples.
Health physics problems encountered in the Saclay linear accelerator
Delsaut, R.
1979-01-01
The safety and health physics problems specific to the Saclay linear accelerator are presented: activation (of gases, dust, water, structural materials, targets); individual dosimetry; the safety engineering [fr
Chance constrained problems: penalty reformulation and performance of sample approximation technique
Branda, Martin
2012-01-01
Roč. 48, č. 1 (2012), s. 105-122 ISSN 0023-5954 R&D Projects: GA ČR(CZ) GBP402/12/G097 Institutional research plan: CEZ:AV0Z10750506 Keywords : chance constrained problems * penalty functions * asymptotic equivalence * sample approximation technique * investment problem Subject RIV: BB - Applied Statistics, Operational Research Impact factor: 0.619, year: 2012 http://library.utia.cas.cz/separaty/2012/E/branda-chance constrained problems penalty reformulation and performance of sample approximation technique.pdf
A Local Search Modeling for Constrained Optimum Paths Problems (Extended Abstract
Quang Dung Pham
2009-10-01
Full Text Available Constrained Optimum Path (COP problems appear in many real-life applications, especially on communication networks. Some of these problems have been considered and solved by specific techniques which are usually difficult to extend. In this paper, we introduce a novel local search modeling for solving some COPs by local search. The modeling features the compositionality, modularity, reuse and strengthens the benefits of Constrained-Based Local Search. We also apply the modeling to the edge-disjoint paths problem (EDP. We show that side constraints can easily be added in the model. Computational results show the significance of the approach.
The Resource constrained shortest path problem implemented in a lazy functional language
Hartel, Pieter H.; Glaser, Hugh
The resource constrained shortest path problem is an NP-hard problem for which many ingenious algorithms have been developed. These algorithms are usually implemented in Fortran or another imperative programming language. We have implemented some of the simpler algorithms in a lazy functional
Minimizers of a Class of Constrained Vectorial Variational Problems: Part I
Hajaiej, Hichem
2014-04-18
In this paper, we prove the existence of minimizers of a class of multiconstrained variational problems. We consider systems involving a nonlinearity that does not satisfy compactness, monotonicity, neither symmetry properties. Our approach hinges on the concentration-compactness approach. In the second part, we will treat orthogonal constrained problems for another class of integrands using density matrices method. © 2014 Springer Basel.
Resource-constrained project scheduling: computing lower bounds by solving minimum cut problems
Möhring, R.H.; Nesetril, J.; Schulz, A.S.; Stork, F.; Uetz, Marc Jochen
1999-01-01
We present a novel approach to compute Lagrangian lower bounds on the objective function value of a wide class of resource-constrained project scheduling problems. The basis is a polynomial-time algorithm to solve the following scheduling problem: Given a set of activities with start-time dependent
A penalty method for PDE-constrained optimization in inverse problems
Leeuwen, T van; Herrmann, F J
2016-01-01
Many inverse and parameter estimation problems can be written as PDE-constrained optimization problems. The goal is to infer the parameters, typically coefficients of the PDE, from partial measurements of the solutions of the PDE for several right-hand sides. Such PDE-constrained problems can be solved by finding a stationary point of the Lagrangian, which entails simultaneously updating the parameters and the (adjoint) state variables. For large-scale problems, such an all-at-once approach is not feasible as it requires storing all the state variables. In this case one usually resorts to a reduced approach where the constraints are explicitly eliminated (at each iteration) by solving the PDEs. These two approaches, and variations thereof, are the main workhorses for solving PDE-constrained optimization problems arising from inverse problems. In this paper, we present an alternative method that aims to combine the advantages of both approaches. Our method is based on a quadratic penalty formulation of the constrained optimization problem. By eliminating the state variable, we develop an efficient algorithm that has roughly the same computational complexity as the conventional reduced approach while exploiting a larger search space. Numerical results show that this method indeed reduces some of the nonlinearity of the problem and is less sensitive to the initial iterate. (paper)
A Linearized Relaxing Algorithm for the Specific Nonlinear Optimization Problem
Mio Horai
2016-01-01
Full Text Available We propose a new method for the specific nonlinear and nonconvex global optimization problem by using a linear relaxation technique. To simplify the specific nonlinear and nonconvex optimization problem, we transform the problem to the lower linear relaxation form, and we solve the linear relaxation optimization problem by the Branch and Bound Algorithm. Under some reasonable assumptions, the global convergence of the algorithm is certified for the problem. Numerical results show that this method is more efficient than the previous methods.
Ellis, J H; McBean, E A; Farquhar, G J
1985-01-01
A Linear Programming model is presented for development of acid rain abatement strategies in eastern North America. For a system comprised of 235 large controllable point sources and 83 uncontrolled area sources, it determines the least-cost method of reducing SO/sub 2/ emissions to satisfy maximum wet sulfur deposition limits at 20 sensitive receptor locations. In this paper, the purely deterministic model is extended to a probabilistic form by incorporating the effects of meteorologic variability on the long-range pollutant transport processes. These processes are represented by source-receptor-specific transfer coefficients. Experiments for quantifying the spatial variability of transfer coefficients showed their distributions to be approximately lognormal with logarithmic standard deviations consistently about unity. Three methods of incorporating second-moment random variable uncertainty into the deterministic LP framework are described: Two-Stage Programming Under Uncertainty, Chance-Constrained Programming and Stochastic Linear Programming. A composite CCP-SLP model is developed which embodies the two-dimensional characteristics of transfer coefficient uncertainty. Two probabilistic formulations are described involving complete colinearity and complete noncolinearity for the transfer coefficient covariance-correlation structure. The completely colinear and noncolinear formulations are considered extreme bounds in a meteorologic sense and yield abatement strategies of largely didactic value. Such strategies can be characterized as having excessive costs and undesirable deposition results in the completely colinear case and absence of a clearly defined system risk level (other than expected-value) in the noncolinear formulation.
Wanfang Shen
2012-01-01
Full Text Available The mathematical formulation for a quadratic optimal control problem governed by a linear quasiparabolic integrodifferential equation is studied. The control constrains are given in an integral sense: Uad={u∈X;∫ΩUu⩾0, t∈[0,T]}. Then the a posteriori error estimates in L∞(0,T;H1(Ω-norm and L2(0,T;L2(Ω-norm for both the state and the control approximation are given.
Students' errors in solving linear equation word problems: Case ...
The study examined errors students make in solving linear equation word problems with a view to expose the nature of these errors and to make suggestions for classroom teaching. A diagnostic test comprising 10 linear equation word problems, was administered to a sample (n=130) of senior high school first year Home ...
An Optimal Linear Coding for Index Coding Problem
Pezeshkpour, Pouya
2015-01-01
An optimal linear coding solution for index coding problem is established. Instead of network coding approach by focus on graph theoric and algebraic methods a linear coding program for solving both unicast and groupcast index coding problem is presented. The coding is proved to be the optimal solution from the linear perspective and can be easily utilize for any number of messages. The importance of this work is lying mostly on the usage of the presented coding in the groupcast index coding ...
The regular indefinite linear-quadratic problem with linear endpoint constraints
Soethoudt, J.M.; Trentelman, H.L.
1989-01-01
This paper deals with the infinite horizon linear-quadratic problem with indefinite cost. Given a linear system, a quadratic cost functional and a subspace of the state space, we consider the problem of minimizing the cost functional over all inputs for which the state trajectory converges to that
Gamst, M.
2014-01-01
problem. The methods are computationally evaluated on test instances arising from telecommunications with up to 500 jobs and 500 machines. Results show that solving the integrated job scheduling and constrained network routing problem to optimality is very difficult. The exact solution approach performs......This paper examines the problem of scheduling a number of jobs on a finite set of machines such that the overall profit of executed jobs is maximized. Each job has a certain demand, which must be sent to the executing machine via constrained paths. A job cannot start before all its demands have...... arrived at the machine. Furthermore, two resource demand transmissions cannot use the same edge in the same time period. The problem has application in grid computing, where a number of geographically distributed machines work together for solving large problems. The machines are connected through...
Turnpike theory of continuous-time linear optimal control problems
Zaslavski, Alexander J
2015-01-01
Individual turnpike results are of great interest due to their numerous applications in engineering and in economic theory; in this book the study is focused on new results of turnpike phenomenon in linear optimal control problems. The book is intended for engineers as well as for mathematicians interested in the calculus of variations, optimal control, and in applied functional analysis. Two large classes of problems are studied in more depth. The first class studied in Chapter 2 consists of linear control problems with periodic nonsmooth convex integrands. Chapters 3-5 consist of linear control problems with autonomous nonconvex and nonsmooth integrands. Chapter 6 discusses a turnpike property for dynamic zero-sum games with linear constraints. Chapter 7 examines genericity results. In Chapter 8, the description of structure of variational problems with extended-valued integrands is obtained. Chapter 9 ends the exposition with a study of turnpike phenomenon for dynamic games with extended value integran...
Axelsson, Owe; Farouq, S.; Neytcheva, M.
2017-01-01
Roč. 74, č. 1 (2017), s. 19-37 ISSN 1017-1398 Institutional support: RVO:68145535 Keywords : PDE-constrained optimization problems * finite elements * iterative solution method s * preconditioning Subject RIV: BA - General Mathematics OBOR OECD: Applied mathematics Impact factor: 1.241, year: 2016 https://link.springer.com/article/10.1007%2Fs11075-016-0136-5
Axelsson, Owe; Farouq, S.; Neytcheva, M.
2017-01-01
Roč. 74, č. 1 (2017), s. 19-37 ISSN 1017-1398 Institutional support: RVO:68145535 Keywords : PDE-constrained optimization problems * finite elements * iterative solution methods * preconditioning Subject RIV: BA - General Mathematics OBOR OECD: Applied mathematics Impact factor: 1.241, year: 2016 https://link.springer.com/article/10.1007%2Fs11075-016-0136-5
Stanimirović Ivan
2009-01-01
Full Text Available We introduce a heuristic method for the single resource constrained project scheduling problem, based on the dynamic programming solution of the knapsack problem. This method schedules projects with one type of resources, in the non-preemptive case: once started an activity is not interrupted and runs to completion. We compare the implementation of this method with well-known heuristic scheduling method, called Minimum Slack First (known also as Gray-Kidd algorithm, as well as with Microsoft Project.
LinvPy : a Python package for linear inverse problems
Beaud, Guillaume François Paul
2016-01-01
The goal of this project is to make a Python package including the tau-estimator algorithm to solve linear inverse problems. The package must be distributed, well documented, easy to use and easy to extend for future developers.
Formulated linear programming problems from game theory and its ...
Formulated linear programming problems from game theory and its computer implementation using Tora package. ... Game theory, a branch of operations research examines the various concepts of decision ... AJOL African Journals Online.
On a non-linear pseudodifferential boundary value problem
Nguyen Minh Chuong.
1989-12-01
A pseudodifferential boundary value problem for operators with symbols taking values in Sobolev spaces and with non-linear right-hand side was studied. Existence and uniqueness theorems were proved. (author). 11 refs
An experimental comparison of some heuristics for cardinality constrained bin packing problem
Maja Remic
2012-01-01
Full Text Available Background: Bin packing is an NPhard optimization problem of packing items of given sizes into minimum number of capacitylimited bins. Besides the basic problem, numerous other variants of bin packing exist. The cardinality constrained bin packing adds an additional constraint that the number of items in a bin must not exceed a given limit Nmax. Objectives: Goal of the paper is to present a preliminary experimental study which demostrates adaptations of the new algorithms to the general cardinality constrained bin packing problem. Methods/Approach: Straightforward modifications of First Fit Decreasing (FFD, Refined First Fit (RFF and the algorithm by Zhang et al. for the bin packing problem are compared to four cardinality constrained bin packing problem specific algorithms on random lists of items with 0%, 10%, 30% and 50% of large items. The behaviour of all algorithms when cardinality constraint Nmax increases is also studied. Results: Results show that all specific algorithms outperform the general algorithms on lists with low percentage of big items. Conclusions: One of the specific algorithms performs better or equally well even on lists with high percentage of big items and is therefore of significant interest. The behaviour when Nmax increases shows that specific algorithms can be used for solving the general bin packing problem as well.
Efficient decomposition and linearization methods for the stochastic transportation problem
Holmberg, K.
1993-01-01
The stochastic transportation problem can be formulated as a convex transportation problem with nonlinear objective function and linear constraints. We compare several different methods based on decomposition techniques and linearization techniques for this problem, trying to find the most efficient method or combination of methods. We discuss and test a separable programming approach, the Frank-Wolfe method with and without modifications, the new technique of mean value cross decomposition and the more well known Lagrangian relaxation with subgradient optimization, as well as combinations of these approaches. Computational tests are presented, indicating that some new combination methods are quite efficient for large scale problems. (authors) (27 refs.)
Halyo, N.; Caglayan, A. K.
1976-01-01
This paper considers the control of a continuous linear plant disturbed by white plant noise when the control is constrained to be a piecewise constant function of time; i.e. a stochastic sampled-data system. The cost function is the integral of quadratic error terms in the state and control, thus penalizing errors at every instant of time while the plant noise disturbs the system continuously. The problem is solved by reducing the constrained continuous problem to an unconstrained discrete one. It is shown that the separation principle for estimation and control still holds for this problem when the plant disturbance and measurement noise are Gaussian.
A property of assignment type mixed integer linear programming problems
Benders, J.F.; van Nunen, J.A.E.E.
1982-01-01
In this paper we will proof that rather tight upper bounds can be given for the number of non-unique assignments that are achieved after solving the linear programming relaxation of some types of mixed integer linear assignment problems. Since in these cases the number of splitted assignments is
Experiences with linear solvers for oil reservoir simulation problems
Joubert, W.; Janardhan, R. [Los Alamos National Lab., NM (United States); Biswas, D.; Carey, G.
1996-12-31
This talk will focus on practical experiences with iterative linear solver algorithms used in conjunction with Amoco Production Company`s Falcon oil reservoir simulation code. The goal of this study is to determine the best linear solver algorithms for these types of problems. The results of numerical experiments will be presented.
Multisplitting for linear, least squares and nonlinear problems
Renaut, R.
1996-12-31
In earlier work, presented at the 1994 Iterative Methods meeting, a multisplitting (MS) method of block relaxation type was utilized for the solution of the least squares problem, and nonlinear unconstrained problems. This talk will focus on recent developments of the general approach and represents joint work both with Andreas Frommer, University of Wupertal for the linear problems and with Hans Mittelmann, Arizona State University for the nonlinear problems.
Linear Programming and Its Application to Pattern Recognition Problems
Omalley, M. J.
1973-01-01
Linear programming and linear programming like techniques as applied to pattern recognition problems are discussed. Three relatively recent research articles on such applications are summarized. The main results of each paper are described, indicating the theoretical tools needed to obtain them. A synopsis of the author's comments is presented with regard to the applicability or non-applicability of his methods to particular problems, including computational results wherever given.
Solution of linear ill-posed problems using overcomplete dictionaries
Pensky, Marianna
2016-01-01
In the present paper we consider application of overcomplete dictionaries to solution of general ill-posed linear inverse problems. Construction of an adaptive optimal solution for such problems usually relies either on a singular value decomposition or representation of the solution via an orthonormal basis. The shortcoming of both approaches lies in the fact that, in many situations, neither the eigenbasis of the linear operator nor a standard orthonormal basis constitutes an appropriate co...
Minggang Dong
2014-01-01
Full Text Available Motivated by recent advancements in differential evolution and constraints handling methods, this paper presents a novel modified oracle penalty function-based composite differential evolution (MOCoDE for constrained optimization problems (COPs. More specifically, the original oracle penalty function approach is modified so as to satisfy the optimization criterion of COPs; then the modified oracle penalty function is incorporated in composite DE. Furthermore, in order to solve more complex COPs with discrete, integer, or binary variables, a discrete variable handling technique is introduced into MOCoDE to solve complex COPs with mix variables. This method is assessed on eleven constrained optimization benchmark functions and seven well-studied engineering problems in real life. Experimental results demonstrate that MOCoDE achieves competitive performance with respect to some other state-of-the-art approaches in constrained optimization evolutionary algorithms. Moreover, the strengths of the proposed method include few parameters and its ease of implementation, rendering it applicable to real life. Therefore, MOCoDE can be an efficient alternative to solving constrained optimization problems.
Aiding the search: Examining individual differences in multiply-constrained problem solving.
Ellis, Derek M; Brewer, Gene A
2018-07-01
Understanding and resolving complex problems is of vital importance in daily life. Problems can be defined by the limitations they place on the problem solver. Multiply-constrained problems are traditionally examined with the compound remote associates task (CRAT). Performance on the CRAT is partially dependent on an individual's working memory capacity (WMC). These findings suggest that executive processes are critical for problem solving and that there are reliable individual differences in multiply-constrained problem solving abilities. The goals of the current study are to replicate and further elucidate the relation between WMC and CRAT performance. To achieve these goals, we manipulated preexposure to CRAT solutions and measured WMC with complex-span tasks. In Experiment 1, we report evidence that preexposure to CRAT solutions improved problem solving accuracy, WMC was correlated with problem solving accuracy, and that WMC did not moderate the effect of preexposure on problem solving accuracy. In Experiment 2, we preexposed participants to correct and incorrect solutions. We replicated Experiment 1 and found that WMC moderates the effect of exposure to CRAT solutions such that high WMC participants benefit more from preexposure to correct solutions than low WMC (although low WMC participants have preexposure benefits as well). Broadly, these results are consistent with theories of working memory and problem solving that suggest a mediating role of attention control processes. Published by Elsevier Inc.
Yongyi Shou
2014-01-01
Full Text Available A multiagent evolutionary algorithm is proposed to solve the resource-constrained project portfolio selection and scheduling problem. The proposed algorithm has a dual level structure. In the upper level a set of agents make decisions to select appropriate project portfolios. Each agent selects its project portfolio independently. The neighborhood competition operator and self-learning operator are designed to improve the agent’s energy, that is, the portfolio profit. In the lower level the selected projects are scheduled simultaneously and completion times are computed to estimate the expected portfolio profit. A priority rule-based heuristic is used by each agent to solve the multiproject scheduling problem. A set of instances were generated systematically from the widely used Patterson set. Computational experiments confirmed that the proposed evolutionary algorithm is effective for the resource-constrained project portfolio selection and scheduling problem.
Krohling, Renato A; Coelho, Leandro dos Santos
2006-12-01
In this correspondence, an approach based on coevolutionary particle swarm optimization to solve constrained optimization problems formulated as min-max problems is presented. In standard or canonical particle swarm optimization (PSO), a uniform probability distribution is used to generate random numbers for the accelerating coefficients of the local and global terms. We propose a Gaussian probability distribution to generate the accelerating coefficients of PSO. Two populations of PSO using Gaussian distribution are used on the optimization algorithm that is tested on a suite of well-known benchmark constrained optimization problems. Results have been compared with the canonical PSO (constriction factor) and with a coevolutionary genetic algorithm. Simulation results show the suitability of the proposed algorithm in terms of effectiveness and robustness.
Essential linear algebra with applications a problem-solving approach
Andreescu, Titu
2014-01-01
This textbook provides a rigorous introduction to linear algebra in addition to material suitable for a more advanced course while emphasizing the subject’s interactions with other topics in mathematics such as calculus and geometry. A problem-based approach is used to develop the theoretical foundations of vector spaces, linear equations, matrix algebra, eigenvectors, and orthogonality. Key features include: • a thorough presentation of the main results in linear algebra along with numerous examples to illustrate the theory; • over 500 problems (half with complete solutions) carefully selected for their elegance and theoretical significance; • an interleaved discussion of geometry and linear algebra, giving readers a solid understanding of both topics and the relationship between them. Numerous exercises and well-chosen examples make this text suitable for advanced courses at the junior or senior levels. It can also serve as a source of supplementary problems for a sophomore-level course. ...
Integer Linear Programming for Constrained Multi-Aspect Committee Review Assignment
Karimzadehgan, Maryam; Zhai, ChengXiang
2011-01-01
Automatic review assignment can significantly improve the productivity of many people such as conference organizers, journal editors and grant administrators. A general setup of the review assignment problem involves assigning a set of reviewers on a committee to a set of documents to be reviewed under the constraint of review quota so that the reviewers assigned to a document can collectively cover multiple topic aspects of the document. No previous work has addressed such a setup of committee review assignments while also considering matching multiple aspects of topics and expertise. In this paper, we tackle the problem of committee review assignment with multi-aspect expertise matching by casting it as an integer linear programming problem. The proposed algorithm can naturally accommodate any probabilistic or deterministic method for modeling multiple aspects to automate committee review assignments. Evaluation using a multi-aspect review assignment test set constructed using ACM SIGIR publications shows that the proposed algorithm is effective and efficient for committee review assignments based on multi-aspect expertise matching. PMID:22711970
Animesh Biswas
2016-04-01
Full Text Available This paper deals with fuzzy goal programming approach to solve fuzzy linear bilevel integer programming problems with fuzzy probabilistic constraints following Pareto distribution and Frechet distribution. In the proposed approach a new chance constrained programming methodology is developed from the view point of managing those probabilistic constraints in a hybrid fuzzy environment. A method of defuzzification of fuzzy numbers using ?-cut has been adopted to reduce the problem into a linear bilevel integer programming problem. The individual optimal value of the objective of each DM is found in isolation to construct the fuzzy membership goals. Finally, fuzzy goal programming approach is used to achieve maximum degree of each of the membership goals by minimizing under deviational variables in the decision making environment. To demonstrate the efficiency of the proposed approach, a numerical example is provided.
Inverse Modelling Problems in Linear Algebra Undergraduate Courses
Martinez-Luaces, Victor E.
2013-01-01
This paper will offer an analysis from a theoretical point of view of mathematical modelling, applications and inverse problems of both causation and specification types. Inverse modelling problems give the opportunity to establish connections between theory and practice and to show this fact, a simple linear algebra example in two different…
Students' errors in solving linear equation word problems: Case ...
kofi.mereku
Development in most areas of life is based on effective knowledge of science and ... Problem solving, as used in mathematics education literature, refers ... word problems, on the other hand, are those linear equation tasks or ... taught LEWPs in the junior high school, many of them reach the senior high school without a.
Yi-hua Zhong
2013-01-01
Full Text Available Recently, various methods have been developed for solving linear programming problems with fuzzy number, such as simplex method and dual simplex method. But their computational complexities are exponential, which is not satisfactory for solving large-scale fuzzy linear programming problems, especially in the engineering field. A new method which can solve large-scale fuzzy number linear programming problems is presented in this paper, which is named a revised interior point method. Its idea is similar to that of interior point method used for solving linear programming problems in crisp environment before, but its feasible direction and step size are chosen by using trapezoidal fuzzy numbers, linear ranking function, fuzzy vector, and their operations, and its end condition is involved in linear ranking function. Their correctness and rationality are proved. Moreover, choice of the initial interior point and some factors influencing the results of this method are also discussed and analyzed. The result of algorithm analysis and example study that shows proper safety factor parameter, accuracy parameter, and initial interior point of this method may reduce iterations and they can be selected easily according to the actual needs. Finally, the method proposed in this paper is an alternative method for solving fuzzy number linear programming problems.
An L∞/L1-Constrained Quadratic Optimization Problem with Applications to Neural Networks
Leizarowitz, Arie; Rubinstein, Jacob
2003-01-01
Pattern formation in associative neural networks is related to a quadratic optimization problem. Biological considerations imply that the functional is constrained in the L ∞ norm and in the L 1 norm. We consider such optimization problems. We derive the Euler-Lagrange equations, and construct basic properties of the maximizers. We study in some detail the case where the kernel of the quadratic functional is finite-dimensional. In this case the optimization problem can be fully characterized by the geometry of a certain convex and compact finite-dimensional set
A chance-constrained stochastic approach to intermodal container routing problems.
Zhao, Yi; Liu, Ronghui; Zhang, Xi; Whiteing, Anthony
2018-01-01
We consider a container routing problem with stochastic time variables in a sea-rail intermodal transportation system. The problem is formulated as a binary integer chance-constrained programming model including stochastic travel times and stochastic transfer time, with the objective of minimising the expected total cost. Two chance constraints are proposed to ensure that the container service satisfies ship fulfilment and cargo on-time delivery with pre-specified probabilities. A hybrid heuristic algorithm is employed to solve the binary integer chance-constrained programming model. Two case studies are conducted to demonstrate the feasibility of the proposed model and to analyse the impact of stochastic variables and chance-constraints on the optimal solution and total cost.
Nebojsa Bacanin
2014-01-01
portfolio model with entropy constraint. Firefly algorithm is one of the latest, very successful swarm intelligence algorithm; however, it exhibits some deficiencies when applied to constrained problems. To overcome lack of exploration power during early iterations, we modified the algorithm and tested it on standard portfolio benchmark data sets used in the literature. Our proposed modified firefly algorithm proved to be better than other state-of-the-art algorithms, while introduction of entropy diversity constraint further improved results.
2014-01-01
Portfolio optimization (selection) problem is an important and hard optimization problem that, with the addition of necessary realistic constraints, becomes computationally intractable. Nature-inspired metaheuristics are appropriate for solving such problems; however, literature review shows that there are very few applications of nature-inspired metaheuristics to portfolio optimization problem. This is especially true for swarm intelligence algorithms which represent the newer branch of nature-inspired algorithms. No application of any swarm intelligence metaheuristics to cardinality constrained mean-variance (CCMV) portfolio problem with entropy constraint was found in the literature. This paper introduces modified firefly algorithm (FA) for the CCMV portfolio model with entropy constraint. Firefly algorithm is one of the latest, very successful swarm intelligence algorithm; however, it exhibits some deficiencies when applied to constrained problems. To overcome lack of exploration power during early iterations, we modified the algorithm and tested it on standard portfolio benchmark data sets used in the literature. Our proposed modified firefly algorithm proved to be better than other state-of-the-art algorithms, while introduction of entropy diversity constraint further improved results. PMID:24991645
Bacanin, Nebojsa; Tuba, Milan
2014-01-01
Portfolio optimization (selection) problem is an important and hard optimization problem that, with the addition of necessary realistic constraints, becomes computationally intractable. Nature-inspired metaheuristics are appropriate for solving such problems; however, literature review shows that there are very few applications of nature-inspired metaheuristics to portfolio optimization problem. This is especially true for swarm intelligence algorithms which represent the newer branch of nature-inspired algorithms. No application of any swarm intelligence metaheuristics to cardinality constrained mean-variance (CCMV) portfolio problem with entropy constraint was found in the literature. This paper introduces modified firefly algorithm (FA) for the CCMV portfolio model with entropy constraint. Firefly algorithm is one of the latest, very successful swarm intelligence algorithm; however, it exhibits some deficiencies when applied to constrained problems. To overcome lack of exploration power during early iterations, we modified the algorithm and tested it on standard portfolio benchmark data sets used in the literature. Our proposed modified firefly algorithm proved to be better than other state-of-the-art algorithms, while introduction of entropy diversity constraint further improved results.
Geodynamic inversion to constrain the non-linear rheology of the lithosphere
Baumann, T. S.; Kaus, Boris J. P.
2015-08-01
One of the main methods to determine the strength of the lithosphere is by estimating it's effective elastic thickness. This method assumes that the lithosphere is a thin elastic plate that floats on the mantle and uses both topography and gravity anomalies to estimate the plate thickness. Whereas this seems to work well for oceanic plates, it has given controversial results in continental collision zones. For most of these locations, additional geophysical data sets such as receiver functions and seismic tomography exist that constrain the geometry of the lithosphere and often show that it is rather complex. Yet, lithospheric geometry by itself is insufficient to understand the dynamics of the lithosphere as this also requires knowledge of the rheology of the lithosphere. Laboratory experiments suggest that rocks deform in a viscous manner if temperatures are high and stresses low, or in a plastic/brittle manner if the yield stress is exceeded. Yet, the experimental results show significant variability between various rock types and there are large uncertainties in extrapolating laboratory values to nature, which leaves room for speculation. An independent method is thus required to better understand the rheology and dynamics of the lithosphere in collision zones. The goal of this paper is to discuss such an approach. Our method relies on performing numerical thermomechanical forward models of the present-day lithosphere with an initial geometry that is constructed from geophysical data sets. We employ experimentally determined creep-laws for the various parts of the lithosphere, but assume that the parameters of these creep-laws as well as the temperature structure of the lithosphere are uncertain. This is used as a priori information to formulate a Bayesian inverse problem that employs topography, gravity, horizontal and vertical surface velocities to invert for the unknown material parameters and temperature structure. In order to test the general methodology
Optimization of a constrained linear monochromator design for neutral atom beams
Kaltenbacher, Thomas
2016-01-01
A focused ground state, neutral atom beam, exploiting its de Broglie wavelength by means of atom optics, is used for neutral atom microscopy imaging. Employing Fresnel zone plates as a lens for these beams is a well established microscopy technique. To date, even for favorable beam source conditions a minimal focus spot size of slightly below 1 μm was reached. This limitation is essentially given by the intrinsic spectral purity of the beam in combination with the chromatic aberration of the diffraction based zone plate. Therefore, it is important to enhance the monochromaticity of the beam, enabling a higher spatial resolution, preferably below 100 nm. We propose to increase the monochromaticity of a neutral atom beam by means of a so-called linear monochromator set-up – a Fresnel zone plate in combination with a pinhole aperture – in order to gain more than one order of magnitude in spatial resolution. This configuration is known in X-ray microscopy and has proven to be useful, but has not been applied to neutral atom beams. The main result of this work is optimal design parameters based on models for this linear monochromator set-up followed by a second zone plate for focusing. The optimization was performed for minimizing the focal spot size and maximizing the centre line intensity at the detector position for an atom beam simultaneously. The results presented in this work are for, but not limited to, a neutral helium atom beam. - Highlights: • The presented results are essential for optimal operation conditions of a neutral atom microscope set-up. • The key parameters for the experimental arrangement of a neutral microscopy set-up are identified and their interplay is quantified. • Insights in the multidimensional problem provide deep and crucial understanding for pushing beyond the apparent focus limitations. • This work points out the trade-offs for high intensity and high spatial resolution indicating several use cases.
Optimization of a constrained linear monochromator design for neutral atom beams
Kaltenbacher, Thomas
2016-04-15
A focused ground state, neutral atom beam, exploiting its de Broglie wavelength by means of atom optics, is used for neutral atom microscopy imaging. Employing Fresnel zone plates as a lens for these beams is a well established microscopy technique. To date, even for favorable beam source conditions a minimal focus spot size of slightly below 1 μm was reached. This limitation is essentially given by the intrinsic spectral purity of the beam in combination with the chromatic aberration of the diffraction based zone plate. Therefore, it is important to enhance the monochromaticity of the beam, enabling a higher spatial resolution, preferably below 100 nm. We propose to increase the monochromaticity of a neutral atom beam by means of a so-called linear monochromator set-up – a Fresnel zone plate in combination with a pinhole aperture – in order to gain more than one order of magnitude in spatial resolution. This configuration is known in X-ray microscopy and has proven to be useful, but has not been applied to neutral atom beams. The main result of this work is optimal design parameters based on models for this linear monochromator set-up followed by a second zone plate for focusing. The optimization was performed for minimizing the focal spot size and maximizing the centre line intensity at the detector position for an atom beam simultaneously. The results presented in this work are for, but not limited to, a neutral helium atom beam. - Highlights: • The presented results are essential for optimal operation conditions of a neutral atom microscope set-up. • The key parameters for the experimental arrangement of a neutral microscopy set-up are identified and their interplay is quantified. • Insights in the multidimensional problem provide deep and crucial understanding for pushing beyond the apparent focus limitations. • This work points out the trade-offs for high intensity and high spatial resolution indicating several use cases.
Linear decomposition approach for a class of nonconvex programming problems.
Shen, Peiping; Wang, Chunfeng
2017-01-01
This paper presents a linear decomposition approach for a class of nonconvex programming problems by dividing the input space into polynomially many grids. It shows that under certain assumptions the original problem can be transformed and decomposed into a polynomial number of equivalent linear programming subproblems. Based on solving a series of liner programming subproblems corresponding to those grid points we can obtain the near-optimal solution of the original problem. Compared to existing results in the literature, the proposed algorithm does not require the assumptions of quasi-concavity and differentiability of the objective function, and it differs significantly giving an interesting approach to solving the problem with a reduced running time.
Stegeman, Alwin; De Almeida, Andre L. F.
2009-01-01
In this paper, we derive uniqueness conditions for a constrained version of the parallel factor (Parafac) decomposition, also known as canonical decomposition (Candecomp). Candecomp/Parafac (CP) decomposes a three-way array into a prespecified number of outer product arrays. The constraint is that
On a linear-quadratic problem with Caputo derivative
Dariusz Idczak
2016-01-01
Full Text Available In this paper, we study a linear-quadratic optimal control problem with a fractional control system containing a Caputo derivative of unknown function. First, we derive the formulas for the differential and gradient of the cost functional under given constraints. Next, we prove an existence result and derive a maximum principle. Finally, we describe the gradient and projection of the gradient methods for the problem under consideration.
Multiobjective fuzzy stochastic linear programming problems with inexact probability distribution
Hamadameen, Abdulqader Othman [Optimization, Department of Mathematical Sciences, Faculty of Science, UTM (Malaysia); Zainuddin, Zaitul Marlizawati [Department of Mathematical Sciences, Faculty of Science, UTM (Malaysia)
2014-06-19
This study deals with multiobjective fuzzy stochastic linear programming problems with uncertainty probability distribution which are defined as fuzzy assertions by ambiguous experts. The problem formulation has been presented and the two solutions strategies are; the fuzzy transformation via ranking function and the stochastic transformation when α{sup –}. cut technique and linguistic hedges are used in the uncertainty probability distribution. The development of Sen’s method is employed to find a compromise solution, supported by illustrative numerical example.
The Combinatorial Multi-Mode Resource Constrained Multi-Project Scheduling Problem
Denis Pinha
2016-11-01
Full Text Available This paper presents the formulation and solution of the Combinatorial Multi-Mode Resource Constrained Multi-Project Scheduling Problem. The focus of the proposed method is not on finding a single optimal solution, instead on presenting multiple feasible solutions, with cost and duration information to the project manager. The motivation for developing such an approach is due in part to practical situations where the definition of optimal changes on a regular basis. The proposed approach empowers the project manager to determine what is optimal, on a given day, under the current constraints, such as, change of priorities, lack of skilled worker. The proposed method utilizes a simulation approach to determine feasible solutions, under the current constraints. Resources can be non-consumable, consumable, or doubly constrained. The paper also presents a real-life case study dealing with scheduling of ship repair activities.
Paradox in a non-linear capacitated transportation problem
Dahiya Kalpana
2006-01-01
Full Text Available This paper discusses a paradox in fixed charge capacitated transportation problem where the objective function is the sum of two linear fractional functions consisting of variables costs and fixed charges respectively. A paradox arises when the transportation problem admits of an objective function value which is lower than the optimal objective function value, by transporting larger quantities of goods over the same route. A sufficient condition for the existence of a paradox is established. Paradoxical range of flow is obtained for any given flow in which the corresponding objective function value is less than the optimum value of the given transportation problem. Numerical illustration is included in support of theory.
Beam dynamics problems for next generation linear colliders
Yokoya, Kaoru
1990-01-01
The most critical issue for the feasibility of high-energy e + e - linear colliders is obviously the development of intense microwave power sources. Remaining problems, however, are not trivial and in fact some of them require several order-of-magnitude improvement from the existing SLC parameters. The present report summarizes the study status of the beam dynamics problems of high energy linear colliders with an exaggeration on the beam-beam phenomenon at the interaction region. There are four laboratories having linear collider plans, SLAC, CERN, Novosibirsk-Protovino, and KEK. The parameters of these projects scatter in some range but seem to converge slowly if one recalls the status five years ago. The beam energy will be below 500GeV. The basic requirements to the damping ring are the short damping time and small equilibrium emittance. All the proposed designs make use of tight focusing optics and strong wiggler magnets to meet these requirements and seem to have no major problems at least compared with other problems in the colliders. One of the major problems in the linac is the transverse beam blow-up due to the wake field created by the head of the bunch and, in the case of multiple bunches per pulse, by the preceeding bunches. (N.K.)
Linear finite element method for one-dimensional diffusion problems
Brandao, Michele A.; Dominguez, Dany S.; Iglesias, Susana M., E-mail: micheleabrandao@gmail.com, E-mail: dany@labbi.uesc.br, E-mail: smiglesias@uesc.br [Universidade Estadual de Santa Cruz (LCC/DCET/UESC), Ilheus, BA (Brazil). Departamento de Ciencias Exatas e Tecnologicas. Laboratorio de Computacao Cientifica
2011-07-01
We describe in this paper the fundamentals of Linear Finite Element Method (LFEM) applied to one-speed diffusion problems in slab geometry. We present the mathematical formulation to solve eigenvalue and fixed source problems. First, we discretized a calculus domain using a finite set of elements. At this point, we obtain the spatial balance equations for zero order and first order spatial moments inside each element. Then, we introduce the linear auxiliary equations to approximate neutron flux and current inside the element and architect a numerical scheme to obtain the solution. We offer numerical results for fixed source typical model problems to illustrate the method's accuracy for coarse-mesh calculations in homogeneous and heterogeneous domains. Also, we compare the accuracy and computational performance of LFEM formulation with conventional Finite Difference Method (FDM). (author)
Mak, Vicky; Thomadsen, Tommy
2004-01-01
A well-known extension of the Travelling Salesman Problem (TSP) is the Selective (or Prize-collecting) TSP: In addition to the edge-costs, each node has an associated reward (denoted the node-reward) and instead of visiting all nodes, only profitable nodes are visited. The Quadratic Selective TSP...
Oscillatory solutions of the Cauchy problem for linear differential equations
Gro Hovhannisyan
2015-06-01
Full Text Available We consider the Cauchy problem for second and third order linear differential equations with constant complex coefficients. We describe necessary and sufficient conditions on the data for the existence of oscillatory solutions. It is known that in the case of real coefficients the oscillatory behavior of solutions does not depend on initial values, but we show that this is no longer true in the complex case: hence in practice it is possible to control oscillatory behavior by varying the initial conditions. Our Proofs are based on asymptotic analysis of the zeros of solutions, represented as linear combinations of exponential functions.
Problems of linear electron (polaron) transport theory in semiconductors
Klinger, M I
1979-01-01
Problems of Linear Electron (Polaron) Transport Theory in Semiconductors summarizes and discusses the development of areas in electron transport theory in semiconductors, with emphasis on the fundamental aspects of the theory and the essential physical nature of the transport processes. The book is organized into three parts. Part I focuses on some general topics in the theory of transport phenomena: the general dynamical theory of linear transport in dissipative systems (Kubo formulae) and the phenomenological theory. Part II deals with the theory of polaron transport in a crystalline semicon
Towards an ideal preconditioner for linearized Navier-Stokes problems
Murphy, M.F. [Univ. of Bristol (United Kingdom)
1996-12-31
Discretizing certain linearizations of the steady-state Navier-Stokes equations gives rise to nonsymmetric linear systems with indefinite symmetric part. We show that for such systems there exists a block diagonal preconditioner which gives convergence in three GMRES steps, independent of the mesh size and viscosity parameter (Reynolds number). While this {open_quotes}ideal{close_quotes} preconditioner is too expensive to be used in practice, it provides a useful insight into the problem. We then consider various approximations to the ideal preconditioner, and describe the eigenvalues of the preconditioned systems. Finally, we compare these preconditioners numerically, and present our conclusions.
Muller, Laurent Flindt
2009-01-01
We present an application of an Adaptive Large Neighborhood Search (ALNS) algorithm to the Resource-constrained Project Scheduling Problem (RCPSP). The ALNS framework was first proposed by Pisinger and Røpke [19] and can be described as a large neighborhood search algorithm with an adaptive layer......, where a set of destroy/repair neighborhoods compete to modify the current solution in each iteration of the algorithm. Experiments are performed on the wellknown J30, J60 and J120 benchmark instances, which show that the proposed algorithm is competitive and confirms the strength of the ALNS framework...
Constrained Optimal Stochastic Control of Non-Linear Wave Energy Point Absorbers
Sichani, Mahdi Teimouri; Chen, Jian-Bing; Kramer, Morten
2014-01-01
to extract energy. Constrains are enforced on the control force to prevent large structural stresses in the floater at specific hot spots with the risk of inducing fatigue damage, or because the demanded control force cannot be supplied by the actuator system due to saturation. Further, constraints...... are enforced on the motion of the floater to prevent it from hitting the bottom of the sea or to make unacceptable jumps out of the water. The applied control law, which is of the feedback type with feedback from the displacement, velocity, and acceleration of the floater, contains two unprovided gain...
Wei, J [City College of New York, New York, NY (United States); Chao, M [The Mount Sinai Medical Center, New York, NY (United States)
2016-06-15
Purpose: To develop a novel strategy to extract the respiratory motion of the thoracic diaphragm from kilovoltage cone beam computed tomography (CBCT) projections by a constrained linear regression optimization technique. Methods: A parabolic function was identified as the geometric model and was employed to fit the shape of the diaphragm on the CBCT projections. The search was initialized by five manually placed seeds on a pre-selected projection image. Temporal redundancies, the enabling phenomenology in video compression and encoding techniques, inherent in the dynamic properties of the diaphragm motion together with the geometrical shape of the diaphragm boundary and the associated algebraic constraint that significantly reduced the searching space of viable parabolic parameters was integrated, which can be effectively optimized by a constrained linear regression approach on the subsequent projections. The innovative algebraic constraints stipulating the kinetic range of the motion and the spatial constraint preventing any unphysical deviations was able to obtain the optimal contour of the diaphragm with minimal initialization. The algorithm was assessed by a fluoroscopic movie acquired at anteriorposterior fixed direction and kilovoltage CBCT projection image sets from four lung and two liver patients. The automatic tracing by the proposed algorithm and manual tracking by a human operator were compared in both space and frequency domains. Results: The error between the estimated and manual detections for the fluoroscopic movie was 0.54mm with standard deviation (SD) of 0.45mm, while the average error for the CBCT projections was 0.79mm with SD of 0.64mm for all enrolled patients. The submillimeter accuracy outcome exhibits the promise of the proposed constrained linear regression approach to track the diaphragm motion on rotational projection images. Conclusion: The new algorithm will provide a potential solution to rendering diaphragm motion and ultimately
Wei, J; Chao, M
2016-01-01
Purpose: To develop a novel strategy to extract the respiratory motion of the thoracic diaphragm from kilovoltage cone beam computed tomography (CBCT) projections by a constrained linear regression optimization technique. Methods: A parabolic function was identified as the geometric model and was employed to fit the shape of the diaphragm on the CBCT projections. The search was initialized by five manually placed seeds on a pre-selected projection image. Temporal redundancies, the enabling phenomenology in video compression and encoding techniques, inherent in the dynamic properties of the diaphragm motion together with the geometrical shape of the diaphragm boundary and the associated algebraic constraint that significantly reduced the searching space of viable parabolic parameters was integrated, which can be effectively optimized by a constrained linear regression approach on the subsequent projections. The innovative algebraic constraints stipulating the kinetic range of the motion and the spatial constraint preventing any unphysical deviations was able to obtain the optimal contour of the diaphragm with minimal initialization. The algorithm was assessed by a fluoroscopic movie acquired at anteriorposterior fixed direction and kilovoltage CBCT projection image sets from four lung and two liver patients. The automatic tracing by the proposed algorithm and manual tracking by a human operator were compared in both space and frequency domains. Results: The error between the estimated and manual detections for the fluoroscopic movie was 0.54mm with standard deviation (SD) of 0.45mm, while the average error for the CBCT projections was 0.79mm with SD of 0.64mm for all enrolled patients. The submillimeter accuracy outcome exhibits the promise of the proposed constrained linear regression approach to track the diaphragm motion on rotational projection images. Conclusion: The new algorithm will provide a potential solution to rendering diaphragm motion and ultimately
Numerical algorithms for contact problems in linear elastostatics
Barbosa, H.J.C.; Feijoo, R.A.
1984-01-01
In this work contact problems in linear elasticity are analysed by means of Finite Elements and Mathematical Programming Techniques. The principle of virtual work leads in this case to a variational inequality which in turn is equivalent, for Hookean materials and infinitesimal strains, to the minimization of the total potential energy over the set of all admissible virtual displacements. The use of Gauss-Seidel algorithm with relaxation and projection and also Lemke's algorithm and Uzawa's algorithm for solving the minimization problem is discussed. Finally numerical examples are presented. (Author) [pt
Hailong Wang
2018-01-01
Full Text Available The backtracking search optimization algorithm (BSA is a population-based evolutionary algorithm for numerical optimization problems. BSA has a powerful global exploration capacity while its local exploitation capability is relatively poor. This affects the convergence speed of the algorithm. In this paper, we propose a modified BSA inspired by simulated annealing (BSAISA to overcome the deficiency of BSA. In the BSAISA, the amplitude control factor (F is modified based on the Metropolis criterion in simulated annealing. The redesigned F could be adaptively decreased as the number of iterations increases and it does not introduce extra parameters. A self-adaptive ε-constrained method is used to handle the strict constraints. We compared the performance of the proposed BSAISA with BSA and other well-known algorithms when solving thirteen constrained benchmarks and five engineering design problems. The simulation results demonstrated that BSAISA is more effective than BSA and more competitive with other well-known algorithms in terms of convergence speed.
A Hybrid Method for the Modelling and Optimisation of Constrained Search Problems
Sitek Pawel
2014-08-01
Full Text Available The paper presents a concept and the outline of the implementation of a hybrid approach to modelling and solving constrained problems. Two environments of mathematical programming (in particular, integer programming and declarative programming (in particular, constraint logic programming were integrated. The strengths of integer programming and constraint logic programming, in which constraints are treated in a different way and different methods are implemented, were combined to use the strengths of both. The hybrid method is not worse than either of its components used independently. The proposed approach is particularly important for the decision models with an objective function and many discrete decision variables added up in multiple constraints. To validate the proposed approach, two illustrative examples are presented and solved. The first example is the authors’ original model of cost optimisation in the supply chain with multimodal transportation. The second one is the two-echelon variant of the well-known capacitated vehicle routing problem.
Vivek Patel
2012-08-01
Full Text Available Nature inspired population based algorithms is a research field which simulates different natural phenomena to solve a wide range of problems. Researchers have proposed several algorithms considering different natural phenomena. Teaching-Learning-based optimization (TLBO is one of the recently proposed population based algorithm which simulates the teaching-learning process of the class room. This algorithm does not require any algorithm-specific control parameters. In this paper, elitism concept is introduced in the TLBO algorithm and its effect on the performance of the algorithm is investigated. The effects of common controlling parameters such as the population size and the number of generations on the performance of the algorithm are also investigated. The proposed algorithm is tested on 35 constrained benchmark functions with different characteristics and the performance of the algorithm is compared with that of other well known optimization algorithms. The proposed algorithm can be applied to various optimization problems of the industrial environment.
Optimization of constrained multiple-objective reliability problems using evolutionary algorithms
Salazar, Daniel; Rocco, Claudio M.; Galvan, Blas J.
2006-01-01
This paper illustrates the use of multi-objective optimization to solve three types of reliability optimization problems: to find the optimal number of redundant components, find the reliability of components, and determine both their redundancy and reliability. In general, these problems have been formulated as single objective mixed-integer non-linear programming problems with one or several constraints and solved by using mathematical programming techniques or special heuristics. In this work, these problems are reformulated as multiple-objective problems (MOP) and then solved by using a second-generation Multiple-Objective Evolutionary Algorithm (MOEA) that allows handling constraints. The MOEA used in this paper (NSGA-II) demonstrates the ability to identify a set of optimal solutions (Pareto front), which provides the Decision Maker with a complete picture of the optimal solution space. Finally, the advantages of both MOP and MOEA approaches are illustrated by solving four redundancy problems taken from the literature
Optimization of constrained multiple-objective reliability problems using evolutionary algorithms
Salazar, Daniel [Instituto de Sistemas Inteligentes y Aplicaciones Numericas en Ingenieria (IUSIANI), Division de Computacion Evolutiva y Aplicaciones (CEANI), Universidad de Las Palmas de Gran Canaria, Islas Canarias (Spain) and Facultad de Ingenieria, Universidad Central Venezuela, Caracas (Venezuela)]. E-mail: danielsalazaraponte@gmail.com; Rocco, Claudio M. [Facultad de Ingenieria, Universidad Central Venezuela, Caracas (Venezuela)]. E-mail: crocco@reacciun.ve; Galvan, Blas J. [Instituto de Sistemas Inteligentes y Aplicaciones Numericas en Ingenieria (IUSIANI), Division de Computacion Evolutiva y Aplicaciones (CEANI), Universidad de Las Palmas de Gran Canaria, Islas Canarias (Spain)]. E-mail: bgalvan@step.es
2006-09-15
This paper illustrates the use of multi-objective optimization to solve three types of reliability optimization problems: to find the optimal number of redundant components, find the reliability of components, and determine both their redundancy and reliability. In general, these problems have been formulated as single objective mixed-integer non-linear programming problems with one or several constraints and solved by using mathematical programming techniques or special heuristics. In this work, these problems are reformulated as multiple-objective problems (MOP) and then solved by using a second-generation Multiple-Objective Evolutionary Algorithm (MOEA) that allows handling constraints. The MOEA used in this paper (NSGA-II) demonstrates the ability to identify a set of optimal solutions (Pareto front), which provides the Decision Maker with a complete picture of the optimal solution space. Finally, the advantages of both MOP and MOEA approaches are illustrated by solving four redundancy problems taken from the literature.
Polymorphic Uncertain Linear Programming for Generalized Production Planning Problems
Xinbo Zhang
2014-01-01
Full Text Available A polymorphic uncertain linear programming (PULP model is constructed to formulate a class of generalized production planning problems. In accordance with the practical environment, some factors such as the consumption of raw material, the limitation of resource and the demand of product are incorporated into the model as parameters of interval and fuzzy subsets, respectively. Based on the theory of fuzzy interval program and the modified possibility degree for the order of interval numbers, a deterministic equivalent formulation for this model is derived such that a robust solution for the uncertain optimization problem is obtained. Case study indicates that the constructed model and the proposed solution are useful to search for an optimal production plan for the polymorphic uncertain generalized production planning problems.
Risk adjusted receding horizon control of constrained linear parameter varying systems
Sznaier, M.; Lagoa, C.; Stoorvogel, Antonie Arij; Li, X.
2005-01-01
In the past few years, control of Linear Parameter Varying Systems (LPV) has been the object of considerable attention, as a way of formalizing the intuitively appealing idea of gain scheduling control for nonlinear systems. However, currently available LPV techniques are both computationally
Constraining ALPs with linear and circular polarisation measurements of quasar light
Payez, Alexandre
2013-09-01
We discuss the constraints derived on the mixing of photons with light pseudoscalars using the distributions of good-quality linear and circular polarisation measurements of light from the least polarised classes of quasars. We also provide the dependence of our limit on the average electron density in the local supercluster for nearly massless particles.
Constraining ALPs with linear and circular polarisation measurements of quasar light
Payez, Alexandre [Liege Univ. (Belgium). IFPA Group; Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)
2013-09-15
We discuss the constraints derived on the mixing of photons with light pseudoscalars using the distributions of good-quality linear and circular polarisation measurements of light from the least polarised classes of quasars. We also provide the dependence of our limit on the average electron density in the local supercluster for nearly massless particles.
2016-11-22
structure of the graph, we replace the ℓ1- norm by the nonconvex Capped -ℓ1 norm , and obtain the Generalized Capped -ℓ1 regularized logistic regression...X. M. Yuan. Linearized augmented lagrangian and alternating direction methods for nuclear norm minimization. Mathematics of Computation, 82(281):301...better approximations of ℓ0- norm theoretically and computationally beyond ℓ1- norm , for example, the compressive sensing (Xiao et al., 2011). The
A HYBRID HEURISTIC ALGORITHM FOR SOLVING THE RESOURCE CONSTRAINED PROJECT SCHEDULING PROBLEM (RCPSP
Juan Carlos Rivera
Full Text Available The Resource Constrained Project Scheduling Problem (RCPSP is a problem of great interest for the scientific community because it belongs to the class of NP-Hard problems and no methods are known that can solve it accurately in polynomial processing times. For this reason heuristic methods are used to solve it in an efficient way though there is no guarantee that an optimal solution can be obtained. This research presents a hybrid heuristic search algorithm to solve the RCPSP efficiently, combining elements of the heuristic Greedy Randomized Adaptive Search Procedure (GRASP, Scatter Search and Justification. The efficiency obtained is measured taking into account the presence of the new elements added to the GRASP algorithm taken as base: Justification and Scatter Search. The algorithms are evaluated using three data bases of instances of the problem: 480 instances of 30 activities, 480 of 60, and 600 of 120 activities respectively, taken from the library PSPLIB available online. The solutions obtained by the developed algorithm for the instances of 30, 60 and 120 are compared with results obtained by other researchers at international level, where a prominent place is obtained, according to Chen (2011.
A recurrent neural network for solving bilevel linear programming problem.
He, Xing; Li, Chuandong; Huang, Tingwen; Li, Chaojie; Huang, Junjian
2014-04-01
In this brief, based on the method of penalty functions, a recurrent neural network (NN) modeled by means of a differential inclusion is proposed for solving the bilevel linear programming problem (BLPP). Compared with the existing NNs for BLPP, the model has the least number of state variables and simple structure. Using nonsmooth analysis, the theory of differential inclusions, and Lyapunov-like method, the equilibrium point sequence of the proposed NNs can approximately converge to an optimal solution of BLPP under certain conditions. Finally, the numerical simulations of a supply chain distribution model have shown excellent performance of the proposed recurrent NNs.
Numerical solution of non-linear diffusion problems
Carmen, A. del; Ferreri, J.C.
1998-01-01
This paper presents a method for the numerical solution of non-linear diffusion problems using finite-differences in moving grids. Due to the presence of steep fronts in the solution domain and to the presence of advective terms originating in the grid movement, an implicit TVD scheme, first order in time and second order in space has been developed. Some algebraic details of the derivation are given. Results are shown for the pure advection of a scalar as a test case and an example dealing with the slow spreading of viscous fluids over plane surfaces. The agreement between numerical and analytical solutions is excellent. (author). 8 refs., 3 figs
Description of All Solutions of a Linear Complementarity Problem
Rohn, Jiří
2009-01-01
Roč. 18, - (2009), s. 246-252 E-ISSN 1081-3810 R&D Projects: GA ČR GA201/09/1957; GA ČR GC201/08/J020 Institutional research plan: CEZ:AV0Z10300504 Keywords : linear complementarity problem * Moore-Penrose inverse * verified solution * absolute value equation Subject RIV: BA - General Mathematics Impact factor: 0.892, year: 2009 http://www.math.technion.ac.il/iic/ ela / ela -articles/articles/vol18_pp246-252.pdf
Quan, Zhe; Wu, Lei
2017-09-01
This article investigates the use of parallel computing for solving the disjunctively constrained knapsack problem. The proposed parallel computing model can be viewed as a cooperative algorithm based on a multi-neighbourhood search. The cooperation system is composed of a team manager and a crowd of team members. The team members aim at applying their own search strategies to explore the solution space. The team manager collects the solutions from the members and shares the best one with them. The performance of the proposed method is evaluated on a group of benchmark data sets. The results obtained are compared to those reached by the best methods from the literature. The results show that the proposed method is able to provide the best solutions in most cases. In order to highlight the robustness of the proposed parallel computing model, a new set of large-scale instances is introduced. Encouraging results have been obtained.
Xu, Y; Li, N
2014-09-01
Biological species have produced many simple but efficient rules in their complex and critical survival activities such as hunting and mating. A common feature observed in several biological motion strategies is that the predator only moves along paths in a carefully selected or iteratively refined subspace (or manifold), which might be able to explain why these motion strategies are effective. In this paper, a unified linear algebraic formulation representing such a predator-prey relationship is developed to simplify the construction and refinement process of the subspace (or manifold). Specifically, the following three motion strategies are studied and modified: motion camouflage, constant absolute target direction and local pursuit. The framework constructed based on this varying subspace concept could significantly reduce the computational cost in solving a class of nonlinear constrained optimal trajectory planning problems, particularly for the case with severe constraints. Two non-trivial examples, a ground robot and a hypersonic aircraft trajectory optimization problem, are used to show the capabilities of the algorithms in this new computational framework.
Xu, Y; Li, N
2014-01-01
Biological species have produced many simple but efficient rules in their complex and critical survival activities such as hunting and mating. A common feature observed in several biological motion strategies is that the predator only moves along paths in a carefully selected or iteratively refined subspace (or manifold), which might be able to explain why these motion strategies are effective. In this paper, a unified linear algebraic formulation representing such a predator–prey relationship is developed to simplify the construction and refinement process of the subspace (or manifold). Specifically, the following three motion strategies are studied and modified: motion camouflage, constant absolute target direction and local pursuit. The framework constructed based on this varying subspace concept could significantly reduce the computational cost in solving a class of nonlinear constrained optimal trajectory planning problems, particularly for the case with severe constraints. Two non-trivial examples, a ground robot and a hypersonic aircraft trajectory optimization problem, are used to show the capabilities of the algorithms in this new computational framework. (paper)
Convergence diagnostics for Eigenvalue problems with linear regression model
Shi, Bo; Petrovic, Bojan
2011-01-01
Although the Monte Carlo method has been extensively used for criticality/Eigenvalue problems, a reliable, robust, and efficient convergence diagnostics method is still desired. Most methods are based on integral parameters (multiplication factor, entropy) and either condense the local distribution information into a single value (e.g., entropy) or even disregard it. We propose to employ the detailed cycle-by-cycle local flux evolution obtained by using mesh tally mechanism to assess the source and flux convergence. By applying a linear regression model to each individual mesh in a mesh tally for convergence diagnostics, a global convergence criterion can be obtained. We exemplify this method on two problems and obtain promising diagnostics results. (author)
Bounds and estimates for the linearly perturbed eigenvalue problem
Raddatz, W.D.
1983-01-01
This thesis considers the problem of bounding and estimating the discrete portion of the spectrum of a linearly perturbed self-adjoint operator, M(x). It is supposed that one knows an incomplete set of data consisting in the first few coefficients of the Taylor series expansions of one or more of the eigenvalues of M(x) about x = 0. The foundations of the variational study of eigen-values are first presented. These are then used to construct the best possible upper bounds and estimates using various sets of given information. Lower bounds are obtained by estimating the error in the upper bounds. The extension of these bounds and estimates to the eigenvalues of the doubly-perturbed operator M(x,y) is discussed. The results presented have numerous practical application in the physical sciences, including problems in atomic physics and the theory of vibrations of acoustical and mechanical systems
A hybrid guided neighborhood search for the disjunctively constrained knapsack problem
Mhand Hifi
2015-12-01
Full Text Available In this paper, we investigate the use of a hybrid guided neighborhood search for solving the disjunctively constrained knapsack problem. The studied problem may be viewed as a combination of two NP-hard combinatorial optimization problems: the weighted-independent set and the classical binary knapsack. The proposed algorithm is a hybrid approach that combines both deterministic and random local searches. The deterministic local search is based on a descent method, where both building and exploring procedures are alternatively used for improving the solution at hand. In order to escape from a local optima, a random local search strategy is introduced which is based on a modified ant colony optimization system. During the search process, the ant colony optimization system tries to diversify and to enhance the solutions using some informations collected from the previous iterations. Finally, the proposed algorithm is computationally analyzed on a set of benchmark instances available in the literature. The provided results are compared to those realized by both the Cplex solver and a recent algorithm of the literature. The computational part shows that the obtained results improve most existing solution values.
Resource-constrained project scheduling problem: review of past and recent developments
Farhad Habibi
2018-01-01
Full Text Available The project scheduling problem is both practically and theoretically of paramount importance. From the practical perspective, improvement of project scheduling as a critical part of project management process can lead to successful project completion and significantly decrease of the relevant costs. From the theoretical perspective, project scheduling is regarded as one of the in-teresting optimization issues, which has attracted the attention of many researchers in the area of operations research. Therefore, the project scheduling issue has been significantly evaluated over time and has been developed from various aspects. In this research, the topics related to Re-source-Constrained Project Scheduling Problem (RCPSP are reviewed, recent developments in this field are evaluated, and the results are presented for future studies. In this regard, first, the standard problem of RCPSP is expressed and related developments are presented from four as-pects of resources, characteristics of activities, type of objective functions, and availability level of information. Following that, details about 216 articles conducted on RCPSP during 1980-2017 are expressed. At the end, in line with the statistics obtained from the evaluation of previ-ous articles, suggestions are made for the future studies in order to help the development of new issues in this area.
Optimization of a constrained linear monochromator design for neutral atom beams.
Kaltenbacher, Thomas
2016-04-01
A focused ground state, neutral atom beam, exploiting its de Broglie wavelength by means of atom optics, is used for neutral atom microscopy imaging. Employing Fresnel zone plates as a lens for these beams is a well established microscopy technique. To date, even for favorable beam source conditions a minimal focus spot size of slightly below 1μm was reached. This limitation is essentially given by the intrinsic spectral purity of the beam in combination with the chromatic aberration of the diffraction based zone plate. Therefore, it is important to enhance the monochromaticity of the beam, enabling a higher spatial resolution, preferably below 100nm. We propose to increase the monochromaticity of a neutral atom beam by means of a so-called linear monochromator set-up - a Fresnel zone plate in combination with a pinhole aperture - in order to gain more than one order of magnitude in spatial resolution. This configuration is known in X-ray microscopy and has proven to be useful, but has not been applied to neutral atom beams. The main result of this work is optimal design parameters based on models for this linear monochromator set-up followed by a second zone plate for focusing. The optimization was performed for minimizing the focal spot size and maximizing the centre line intensity at the detector position for an atom beam simultaneously. The results presented in this work are for, but not limited to, a neutral helium atom beam. Copyright © 2016 Elsevier B.V. All rights reserved.
A novel approach based on preference-based index for interval bilevel linear programming problem.
Ren, Aihong; Wang, Yuping; Xue, Xingsi
2017-01-01
This paper proposes a new methodology for solving the interval bilevel linear programming problem in which all coefficients of both objective functions and constraints are considered as interval numbers. In order to keep as much uncertainty of the original constraint region as possible, the original problem is first converted into an interval bilevel programming problem with interval coefficients in both objective functions only through normal variation of interval number and chance-constrained programming. With the consideration of different preferences of different decision makers, the concept of the preference level that the interval objective function is preferred to a target interval is defined based on the preference-based index. Then a preference-based deterministic bilevel programming problem is constructed in terms of the preference level and the order relation [Formula: see text]. Furthermore, the concept of a preference δ -optimal solution is given. Subsequently, the constructed deterministic nonlinear bilevel problem is solved with the help of estimation of distribution algorithm. Finally, several numerical examples are provided to demonstrate the effectiveness of the proposed approach.
A novel approach based on preference-based index for interval bilevel linear programming problem
Aihong Ren
2017-05-01
Full Text Available Abstract This paper proposes a new methodology for solving the interval bilevel linear programming problem in which all coefficients of both objective functions and constraints are considered as interval numbers. In order to keep as much uncertainty of the original constraint region as possible, the original problem is first converted into an interval bilevel programming problem with interval coefficients in both objective functions only through normal variation of interval number and chance-constrained programming. With the consideration of different preferences of different decision makers, the concept of the preference level that the interval objective function is preferred to a target interval is defined based on the preference-based index. Then a preference-based deterministic bilevel programming problem is constructed in terms of the preference level and the order relation ⪯ m w $\\preceq_{mw}$ . Furthermore, the concept of a preference δ-optimal solution is given. Subsequently, the constructed deterministic nonlinear bilevel problem is solved with the help of estimation of distribution algorithm. Finally, several numerical examples are provided to demonstrate the effectiveness of the proposed approach.
葛恒武; 陈中文
2002-01-01
We present a class of nonmonotone trust region algorithms for linearly constrained optimization in this paper.The algorithm may adjust automatically the scope of the monotonicity by the degree that the quadratic model is "trusted".Under the suitable conditions,it is proved that any limit point of the infinite sequence generated by the algorithm is the Kuhn-Tucker point of the primal problem.Finally,some numerical results show that the new algorithm is very effective.
Zhong, Shuya; Pantelous, Athanasios A.; Beer, Michael; Zhou, Jian
2018-05-01
Offshore wind farm is an emerging source of renewable energy, which has been shown to have tremendous potential in recent years. In this blooming area, a key challenge is that the preventive maintenance of offshore turbines should be scheduled reasonably to satisfy the power supply without failure. In this direction, two significant goals should be considered simultaneously as a trade-off. One is to maximise the system reliability and the other is to minimise the maintenance related cost. Thus, a non-linear multi-objective programming model is proposed including two newly defined objectives with thirteen families of constraints suitable for the preventive maintenance of offshore wind farms. In order to solve our model effectively, the nondominated sorting genetic algorithm II, especially for the multi-objective optimisation is utilised and Pareto-optimal solutions of schedules can be obtained to offer adequate support to decision-makers. Finally, an example is given to illustrate the performances of the devised model and algorithm, and explore the relationships of the two targets with the help of a contrast model.
A simulation based research on chance constrained programming in robust facility location problem
Kaijun Leng
2017-03-01
Full Text Available Since facility location decisions problem include long-term character and potential parameter variations, it is important to consider uncertainty in its modeling. This paper examines robust facility location problem considering supply uncertainty, in which we assume the supply of the facility in the actual operation is not equal to the supply initially established, the supply is subject to random fluctuation. The chance constraints are introduced when formulating the robust facility location model to make sure the system operate properly with a certain probability while the supply fluctuates. The chance constraints are approximated safely by using Hoeffding’s inequality and the problem is transformed to a general deterministic linear programming. Furthermore, how the facility location cost change with confidence level is investigated through a numerical example. The sensitivity analysis is conducted for important parameters of the model and we get the main factors that affect the facility location cost.
Arneson, Heather M.; Dousse, Nicholas; Langbort, Cedric
2014-01-01
We consider control design for positive compartmental systems in which each compartment's outflow rate is described by a concave function of the amount of material in the compartment.We address the problem of determining the routing of material between compartments to satisfy time-varying state constraints while ensuring that material reaches its intended destination over a finite time horizon. We give sufficient conditions for the existence of a time-varying state-dependent routing strategy which ensures that the closed-loop system satisfies basic network properties of positivity, conservation and interconnection while ensuring that capacity constraints are satisfied, when possible, or adjusted if a solution cannot be found. These conditions are formulated as a linear programming problem. Instances of this linear programming problem can be solved iteratively to generate a solution to the finite horizon routing problem. Results are given for the application of this control design method to an example problem. Key words: linear programming; control of networks; positive systems; controller constraints and structure.
A Framework for Constrained Optimization Problems Based on a Modified Particle Swarm Optimization
Biwei Tang
2016-01-01
Full Text Available This paper develops a particle swarm optimization (PSO based framework for constrained optimization problems (COPs. Aiming at enhancing the performance of PSO, a modified PSO algorithm, named SASPSO 2011, is proposed by adding a newly developed self-adaptive strategy to the standard particle swarm optimization 2011 (SPSO 2011 algorithm. Since the convergence of PSO is of great importance and significantly influences the performance of PSO, this paper first theoretically investigates the convergence of SASPSO 2011. Then, a parameter selection principle guaranteeing the convergence of SASPSO 2011 is provided. Subsequently, a SASPSO 2011-based framework is established to solve COPs. Attempting to increase the diversity of solutions and decrease optimization difficulties, the adaptive relaxation method, which is combined with the feasibility-based rule, is applied to handle constraints of COPs and evaluate candidate solutions in the developed framework. Finally, the proposed method is verified through 4 benchmark test functions and 2 real-world engineering problems against six PSO variants and some well-known methods proposed in the literature. Simulation results confirm that the proposed method is highly competitive in terms of the solution quality and can be considered as a vital alternative to solve COPs.
Point source reconstruction principle of linear inverse problems
Terazono, Yasushi; Matani, Ayumu; Fujimaki, Norio; Murata, Tsutomu
2010-01-01
Exact point source reconstruction for underdetermined linear inverse problems with a block-wise structure was studied. In a block-wise problem, elements of a source vector are partitioned into blocks. Accordingly, a leadfield matrix, which represents the forward observation process, is also partitioned into blocks. A point source is a source having only one nonzero block. An example of such a problem is current distribution estimation in electroencephalography and magnetoencephalography, where a source vector represents a vector field and a point source represents a single current dipole. In this study, the block-wise norm, a block-wise extension of the l p -norm, was defined as the family of cost functions of the inverse method. The main result is that a set of three conditions was found to be necessary and sufficient for block-wise norm minimization to ensure exact point source reconstruction for any leadfield matrix that admit such reconstruction. The block-wise norm that satisfies the conditions is the sum of the cost of all the observations of source blocks, or in other words, the block-wisely extended leadfield-weighted l 1 -norm. Additional results are that minimization of such a norm always provides block-wisely sparse solutions and that its solutions form cones in source space
Linear differential equations to solve nonlinear mechanical problems: A novel approach
Nair, C. Radhakrishnan
2004-01-01
Often a non-linear mechanical problem is formulated as a non-linear differential equation. A new method is introduced to find out new solutions of non-linear differential equations if one of the solutions of a given non-linear differential equation is known. Using the known solution of the non-linear differential equation, linear differential equations are set up. The solutions of these linear differential equations are found using standard techniques. Then the solutions of the linear differe...
Tunjo Perić
2017-01-01
Full Text Available This paper presents and analyzes the applicability of three linearization techniques used for solving multi-objective linear fractional programming problems using the goal programming method. The three linearization techniques are: (1 Taylor’s polynomial linearization approximation, (2 the method of variable change, and (3 a modification of the method of variable change proposed in [20]. All three linearization techniques are presented and analyzed in two variants: (a using the optimal value of the objective functions as the decision makers’ aspirations, and (b the decision makers’ aspirations are given by the decision makers. As the criteria for the analysis we use the efficiency of the obtained solutions and the difficulties the analyst comes upon in preparing the linearization models. To analyze the applicability of the linearization techniques incorporated in the linear goal programming method we use an example of a financial structure optimization problem.
Duan, Qianqian; Yang, Genke; Xu, Guanglin; Pan, Changchun
2014-01-01
This paper is devoted to develop an approximation method for scheduling refinery crude oil operations by taking into consideration the demand uncertainty. In the stochastic model the demand uncertainty is modeled as random variables which follow a joint multivariate distribution with a specific correlation structure. Compared to deterministic models in existing works, the stochastic model can be more practical for optimizing crude oil operations. Using joint chance constraints, the demand uncertainty is treated by specifying proximity level on the satisfaction of product demands. However, the joint chance constraints usually hold strong nonlinearity and consequently, it is still hard to handle it directly. In this paper, an approximation method combines a relax-and-tight technique to approximately transform the joint chance constraints to a serial of parameterized linear constraints so that the complicated problem can be attacked iteratively. The basic idea behind this approach is to approximate, as much as possible, nonlinear constraints by a lot of easily handled linear constraints which will lead to a well balance between the problem complexity and tractability. Case studies are conducted to demonstrate the proposed methods. Results show that the operation cost can be reduced effectively compared with the case without considering the demand correlation.
Qianqian Duan
2014-01-01
Full Text Available This paper is devoted to develop an approximation method for scheduling refinery crude oil operations by taking into consideration the demand uncertainty. In the stochastic model the demand uncertainty is modeled as random variables which follow a joint multivariate distribution with a specific correlation structure. Compared to deterministic models in existing works, the stochastic model can be more practical for optimizing crude oil operations. Using joint chance constraints, the demand uncertainty is treated by specifying proximity level on the satisfaction of product demands. However, the joint chance constraints usually hold strong nonlinearity and consequently, it is still hard to handle it directly. In this paper, an approximation method combines a relax-and-tight technique to approximately transform the joint chance constraints to a serial of parameterized linear constraints so that the complicated problem can be attacked iteratively. The basic idea behind this approach is to approximate, as much as possible, nonlinear constraints by a lot of easily handled linear constraints which will lead to a well balance between the problem complexity and tractability. Case studies are conducted to demonstrate the proposed methods. Results show that the operation cost can be reduced effectively compared with the case without considering the demand correlation.
Shao, H.; Huang, Y.; Kolditz, O.
2015-12-01
Multiphase flow problems are numerically difficult to solve, as it often contains nonlinear Phase transition phenomena A conventional technique is to introduce the complementarity constraints where fluid properties such as liquid saturations are confined within a physically reasonable range. Based on such constraints, the mathematical model can be reformulated into a system of nonlinear partial differential equations coupled with variational inequalities. They can be then numerically handled by optimization algorithms. In this work, two different approaches utilizing the complementarity constraints based on persistent primary variables formulation[4] are implemented and investigated. The first approach proposed by Marchand et.al[1] is using "local complementary constraints", i.e. coupling the constraints with the local constitutive equations. The second approach[2],[3] , namely the "global complementary constrains", applies the constraints globally with the mass conservation equation. We will discuss how these two approaches are applied to solve non-isothermal componential multiphase flow problem with the phase change phenomenon. Several benchmarks will be presented for investigating the overall numerical performance of different approaches. The advantages and disadvantages of different models will also be concluded. References[1] E.Marchand, T.Mueller and P.Knabner. Fully coupled generalized hybrid-mixed finite element approximation of two-phase two-component flow in porous media. Part I: formulation and properties of the mathematical model, Computational Geosciences 17(2): 431-442, (2013). [2] A. Lauser, C. Hager, R. Helmig, B. Wohlmuth. A new approach for phase transitions in miscible multi-phase flow in porous media. Water Resour., 34,(2011), 957-966. [3] J. Jaffré, and A. Sboui. Henry's Law and Gas Phase Disappearance. Transp. Porous Media. 82, (2010), 521-526. [4] A. Bourgeat, M. Jurak and F. Smaï. Two-phase partially miscible flow and transport modeling in
Priority classes and weighted constrained equal awards rules for the claims problem
Szwagrzak, Karol
2015-01-01
. They are priority-augmented versions of the standard weighted constrained equal awards rules, also known as weighted gains methods (Moulin, 2000): individuals are sorted into priority classes; the resource is distributed among the individuals in the first priority class using a weighted constrained equal awards...... rule; if some of the resource is left over, then it is distributed among the individuals in the second priority class, again using a weighted constrained equal awards rule; the distribution carries on in this way until the resource is exhausted. Our characterization extends to a generalized version...
Helsgaun, Keld
This report describes the implementation of an extension of the Lin-Kernighan-Helsgaun TSP solver for solving constrained traveling salesman and vehicle routing problems. The extension, which is called LKH-3, is able to solve a variety of well-known problems, including the sequential ordering...... problem (SOP), the traveling repairman problem (TRP), variants of the multiple travel-ing salesman problem (mTSP), as well as vehicle routing problems (VRPs) with capacity, time windows, pickup-and-delivery and distance constraints. The implementation of LKH-3 builds on the idea of transforming...... the problems into standard symmetric traveling salesman problems and handling constraints by means of penalty functions. Extensive testing on benchmark instances from the literature has shown that LKH-3 is effective. Best known solutions are often obtained, and in some cases, new best solutions are found...
A Linear Programming Reformulation of the Standard Quadratic Optimization Problem
de Klerk, E.; Pasechnik, D.V.
2005-01-01
The problem of minimizing a quadratic form over the standard simplex is known as the standard quadratic optimization problem (SQO).It is NPhard, and contains the maximum stable set problem in graphs as a special case.In this note we show that the SQO problem may be reformulated as an (exponentially
A local-global problem for linear differential equations
Put, Marius van der; Reversat, Marc
2008-01-01
An inhomogeneous linear differential equation Ly = f over a global differential field can have a formal solution for each place without having a global solution. The vector space lgl(L) measures this phenomenon. This space is interpreted in terms of cohomology of linear algebraic groups and is
A local-global problem for linear differential equations
Put, Marius van der; Reversat, Marc
An inhomogeneous linear differential equation Ly = f over a global differential field can have a formal solution for each place without having a global solution. The vector space lgl(L) measures this phenomenon. This space is interpreted in terms of cohomology of linear algebraic groups and is
The intelligence of dual simplex method to solve linear fractional fuzzy transportation problem.
Narayanamoorthy, S; Kalyani, S
2015-01-01
An approach is presented to solve a fuzzy transportation problem with linear fractional fuzzy objective function. In this proposed approach the fractional fuzzy transportation problem is decomposed into two linear fuzzy transportation problems. The optimal solution of the two linear fuzzy transportations is solved by dual simplex method and the optimal solution of the fractional fuzzy transportation problem is obtained. The proposed method is explained in detail with an example.
The Intelligence of Dual Simplex Method to Solve Linear Fractional Fuzzy Transportation Problem
S. Narayanamoorthy
2015-01-01
Full Text Available An approach is presented to solve a fuzzy transportation problem with linear fractional fuzzy objective function. In this proposed approach the fractional fuzzy transportation problem is decomposed into two linear fuzzy transportation problems. The optimal solution of the two linear fuzzy transportations is solved by dual simplex method and the optimal solution of the fractional fuzzy transportation problem is obtained. The proposed method is explained in detail with an example.
Mathematical problems in non-linear Physics: some results
1979-01-01
The basic results presented in this report are the following: 1) Characterization of the range and Kernel of the variational derivative. 2) Determination of general conservation laws in linear evolution equations, as well as bounds for the number of polynomial conserved densities in non-linear evolution equations in two independent variables of even order. 3) Construction of the most general evolution equation which has a given family of conserved densities. 4) Regularity conditions for the validity of the Lie invariance method. 5) A simple class of perturbations in non-linear wave equations. 6) Soliton solutions in generalized KdV equations. (author)
Burgers' turbulence problem with linear or quadratic external potential
Barndorff-Nielsen, Ole Eiler; Leonenko, N.N.
2005-01-01
We consider solutions of Burgers' equation with linear or quadratic external potential and stationary random initial conditions of Ornstein-Uhlenbeck type. We study a class of limit laws that correspond to a scale renormalization of the solutions.......We consider solutions of Burgers' equation with linear or quadratic external potential and stationary random initial conditions of Ornstein-Uhlenbeck type. We study a class of limit laws that correspond to a scale renormalization of the solutions....
A program package for solving linear optimization problems
Horikami, Kunihiko; Fujimura, Toichiro; Nakahara, Yasuaki
1980-09-01
Seven computer programs for the solution of linear, integer and quadratic programming (four programs for linear programming, one for integer programming and two for quadratic programming) have been prepared and tested on FACOM M200 computer, and auxiliary programs have been written to make it easy to use the optimization program package. The characteristics of each program are explained and the detailed input/output descriptions are given in order to let users know how to use them. (author)
Axelsson, Owe; Farouq, S.; Neytcheva, M.
2016-01-01
Roč. 73, č. 3 (2016), s. 631-633 ISSN 1017-1398 R&D Projects: GA MŠk ED1.1.00/02.0070 Institutional support: RVO:68145535 Keywords : PDE-constrained optimization problems * finite elements * iterative solution methods Subject RIV: BA - General Mathematics Impact factor: 1.241, year: 2016 http://link.springer.com/article/10.1007%2Fs11075-016-0111-1
Dirichlet problem for quasi-linear elliptic equations
Azeddine Baalal
2002-10-01
Full Text Available We study the Dirichlet Problem associated to the quasilinear elliptic problem $$ -sum_{i=1}^{n}frac{partial }{partial x_i}mathcal{A}_i(x,u(x, abla u(x+mathcal{B}(x,u(x,abla u(x=0. $$ Then we define a potential theory related to this problem and we show that the sheaf of continuous solutions satisfies the Bauer axiomatic theory. Submitted April 9, 2002. Published October 2, 2002. Math Subject Classifications: 31C15, 35B65, 35J60. Key Words: Supersolution; Dirichlet problem; obstacle problem; nonlinear potential theory.
H Kazemipoor
2012-04-01
Full Text Available A multi-skilled project scheduling problem (MSPSP has been generally presented to schedule a project with staff members as resources. Each activity in project network requires different skills and also staff members have different skills, too. This causes the MSPSP becomes a special type of a multi-mode resource-constrained project scheduling problem (MM-RCPSP with a huge number of modes. Given the importance of this issue, in this paper, a mixed integer linear programming for the MSPSP is presented. Due to the complexity of the problem, a meta-heuristic algorithm is proposed in order to find near optimal solutions. To validate performance of the algorithm, results are compared against exact solutions solved by the LINGO solver. The results are promising and show that optimal or near-optimal solutions are derived for small instances and good solutions for larger instances in reasonable time.
Igor Stojanović
2017-01-01
Full Text Available The continuous planar facility location problem with the connected region of feasible solutions bounded by arcs is a particular case of the constrained Weber problem. This problem is a continuous optimization problem which has a nonconvex feasible set of constraints. This paper suggests appropriate modifications of four metaheuristic algorithms which are defined with the aim of solving this type of nonconvex optimization problems. Also, a comparison of these algorithms to each other as well as to the heuristic algorithm is presented. The artificial bee colony algorithm, firefly algorithm, and their recently proposed improved versions for constrained optimization are appropriately modified and applied to the case study. The heuristic algorithm based on modified Weiszfeld procedure is also implemented for the purpose of comparison with the metaheuristic approaches. Obtained numerical results show that metaheuristic algorithms can be successfully applied to solve the instances of this problem of up to 500 constraints. Among these four algorithms, the improved version of artificial bee algorithm is the most efficient with respect to the quality of the solution, robustness, and the computational efficiency.
Reza Hosnavi Atashgah
2013-06-01
Full Text Available Selecting from a pool of interdependent projects under certainty, when faced with resource constraints, has been studied well in the literature of project selection problem. After briefly reviewing and discussing popular modeling approaches for dealing with uncertainty, this paper proposes an approach based on chance constrained programming and utility theory for a certain range of problems and under some practical assumptions. Expected Utility Programming, as the proposed modeling approach, will be compared with other well-known methods and its meaningfulness and usefulness will be illustrated via two numerical examples and one real case.
On nonlocal semi linear elliptic problem with an indefinite term
Yechoui, Akila
2007-08-01
The aim of this paper is to investigate the existence of solutions of a nonlocal semi linear elliptic equation with an indefinite term. The monotone method, the method of upper and lower solutions and the classical maximum principle are used to obtain our results. (author)
Preconditioned Iterative Methods for Solving Weighted Linear Least Squares Problems
Bru, R.; Marín, J.; Mas, J.; Tůma, Miroslav
2014-01-01
Roč. 36, č. 4 (2014), A2002-A2022 ISSN 1064-8275 Institutional support: RVO:67985807 Keywords : preconditioned iterative methods * incomplete decompositions * approximate inverses * linear least squares Subject RIV: BA - General Mathematics Impact factor: 1.854, year: 2014
Hybrid Method for Solving Inventory Problems with a Linear ...
Osagiede and Omosigho (2004) proposed a direct search method for identifying the number of replenishment when the demand pattern is linearly increasing. The main computational task in this direct search method was associated with finding the optimal number of replenishments. To accelerate the use of this method, the ...
Answers to selected problems in multivariable calculus with linear algebra and series
Trench, William F
1972-01-01
Answers to Selected Problems in Multivariable Calculus with Linear Algebra and Series contains the answers to selected problems in linear algebra, the calculus of several variables, and series. Topics covered range from vectors and vector spaces to linear matrices and analytic geometry, as well as differential calculus of real-valued functions. Theorems and definitions are included, most of which are followed by worked-out illustrative examples.The problems and corresponding solutions deal with linear equations and matrices, including determinants; vector spaces and linear transformations; eig
R. Venkata Rao
2014-01-01
Full Text Available The present work proposes a multi-objective improved teaching-learning based optimization (MO-ITLBO algorithm for unconstrained and constrained multi-objective function optimization. The MO-ITLBO algorithm is the improved version of basic teaching-learning based optimization (TLBO algorithm adapted for multi-objective problems. The basic TLBO algorithm is improved to enhance its exploration and exploitation capacities by introducing the concept of number of teachers, adaptive teaching factor, tutorial training and self-motivated learning. The MO-ITLBO algorithm uses a grid-based approach to adaptively assess the non-dominated solutions (i.e. Pareto front maintained in an external archive. The performance of the MO-ITLBO algorithm is assessed by implementing it on unconstrained and constrained test problems proposed for the Congress on Evolutionary Computation 2009 (CEC 2009 competition. The performance assessment is done by using the inverted generational distance (IGD measure. The IGD measures obtained by using the MO-ITLBO algorithm are compared with the IGD measures of the other state-of-the-art algorithms available in the literature. Finally, Lexicographic ordering is used to assess the overall performance of competitive algorithms. Results have shown that the proposed MO-ITLBO algorithm has obtained the 1st rank in the optimization of unconstrained test functions and the 3rd rank in the optimization of constrained test functions.
The Tree Inclusion Problem: In Linear Space and Faster
Bille, Philip; Gørtz, Inge Li
2011-01-01
Given two rooted, ordered, and labeled trees P and T the tree inclusion problem is to determine if P can be obtained from T by deleting nodes in T. This problem has recently been recognized as an important query primitive in XML databases. Kilpel äinen and Mannila [1995] presented the first....... This is particularly important in practical applications, such as XML databases, where the space is likely to be a bottleneck. © 2011 ACM....
Some mathematical problems in non-linear Physics
1983-01-01
The main results contained in this report are the following: I) A general analysis of non-autonomous conserved densities for simple linear evolution systems. II) Partial differential systems within a wide class are converted into Lagrange an form. III) Rigorous criteria for existence of integrating factor matrices. IV) Isolation of all third-order evolution equations with high order symmetries and conservation laws. (Author) 3 refs
Analytical Solutions to Non-linear Mechanical Oscillation Problems
Kaliji, H. D.; Ghadimi, M.; Barari, Amin
2011-01-01
In this paper, the Max-Min Method is utilized for solving the nonlinear oscillation problems. The proposed approach is applied to three systems with complex nonlinear terms in their motion equations. By means of this method, the dynamic behavior of oscillation systems can be easily approximated u...
Delayed Stochastic Linear-Quadratic Control Problem and Related Applications
Li Chen
2012-01-01
stochastic differential equations (FBSDEs with Itô’s stochastic delay equations as forward equations and anticipated backward stochastic differential equations as backward equations. Especially, we present the optimal feedback regulator for the time delay system via a new type of Riccati equations and also apply to a population optimal control problem.
(AJST) THE LINEAR ORDERING PROBLEM: AN ALGORITHM FOR ...
ABSTRACT:- In this paper we describe and implement an algorithm for the exact ... of the solutions space which grows exponentially with ... terms of the formulation of the problem, these are the ... Definition: A digraph D = (V, A) is called a k-fence if it has the following ... (iv) If two dicycles Ci and Cj, 2
Yu, Huan; Yang, Jun; Peng, Rui; Zhao, Yu
2016-01-01
This paper extends the linear multi-state consecutively-connected system (LMCCS) to the case of LMCCS-MN, where MN denotes the dual constraints of m consecutive gaps and n total gaps. All the nodes are distributed along a line and form a sequence. The distances between the adjacent nodes are usually non-uniform. The nodes except the last one can contain statistically independent multi-state connection elements (MCEs). Each MCE can provide a connection between the node at which it is located and the next nodes along the sequence. The LMCCS-MN fails if it meets either of the two constraints. The universal generating function technique is adopted to evaluate the system reliability. The optimal allocations of LMCCS-MN with two different types of failures are solved by genetic algorithm. Finally, two examples are given for the demonstration of the proposed model. - Highlights: • A new model of multi-state consecutively-connected system (LMCCS-MN) is proposed. • The non-uniform distributed nodes are involved in the proposed LMCCS-MN model. • An algorithm for system reliability evaluation is provided by the UGF method. • The computational complexity of the proposed algorithm is discussed in detail. • Optimal element allocation problem is formulated and solved.
From a Nonlinear, Nonconvex Variational Problem to a Linear, Convex Formulation
Egozcue, J.; Meziat, R.; Pedregal, P.
2002-01-01
We propose a general approach to deal with nonlinear, nonconvex variational problems based on a reformulation of the problem resulting in an optimization problem with linear cost functional and convex constraints. As a first step we explicitly explore these ideas to some one-dimensional variational problems and obtain specific conclusions of an analytical and numerical nature
Hongchun Sun
2012-01-01
Full Text Available For the extended mixed linear complementarity problem (EML CP, we first present the characterization of the solution set for the EMLCP. Based on this, its global error bound is also established under milder conditions. The results obtained in this paper can be taken as an extension for the classical linear complementarity problems.
Linear problems and Baecklund transformations for the Hirota-Ohta system
Adler, V.E.; Postnikov, V.V.
2011-01-01
The auxiliary linear problems are presented for all discretization levels of the Hirota-Ohta system. The structure of these linear problems coincides essentially with the structure of Nonlinear Schroedinger hierarchy. The squared eigenfunction constraints are found which relate Hirota-Ohta and Kulish-Sklyanin vectorial NLS hierarchies.
Sensitivity analysis of linear programming problem through a recurrent neural network
Das, Raja
2017-11-01
In this paper we study the recurrent neural network for solving linear programming problems. To achieve optimality in accuracy and also in computational effort, an algorithm is presented. We investigate the sensitivity analysis of linear programming problem through the neural network. A detailed example is also presented to demonstrate the performance of the recurrent neural network.
Fundamental solution of the problem of linear programming and method of its determination
Petrunin, S. V.
1978-01-01
The idea of a fundamental solution to a problem in linear programming is introduced. A method of determining the fundamental solution and of applying this method to the solution of a problem in linear programming is proposed. Numerical examples are cited.
Some contributions to non-linear physic: Mathematical problems
1981-01-01
The main results contained in this report are the following: i ) Lagrangian universality holds in a precisely defined weak sense. II ) Isolation of 5th order polynomial evolution equations having high order conservation laws. III ) Hamiltonian formulation of a wide class of non-linear evolution equations. IV) Some properties of the symmetries of Gardner-like systems. v) Characterization of the range and Kernel of ζ/ζ u α , |α | - 1. vi) A generalized variational approach and application to the anharmonic oscillator. v II ) Relativistic correction and quasi-classical approximation to the anechoic oscillator. VII ) Properties of a special class of 6th-order anharmonic oscillators. ix) A new method for constructing conserved densities In PDE. (Author) 97 refs
Genetic algorithm parameters tuning for resource-constrained project scheduling problem
Tian, Xingke; Yuan, Shengrui
2018-04-01
Project Scheduling Problem (RCPSP) is a kind of important scheduling problem. To achieve a certain optimal goal such as the shortest duration, the smallest cost, the resource balance and so on, it is required to arrange the start and finish of all tasks under the condition of satisfying project timing constraints and resource constraints. In theory, the problem belongs to the NP-hard problem, and the model is abundant. Many combinatorial optimization problems are special cases of RCPSP, such as job shop scheduling, flow shop scheduling and so on. At present, the genetic algorithm (GA) has been used to deal with the classical RCPSP problem and achieved remarkable results. Vast scholars have also studied the improved genetic algorithm for the RCPSP problem, which makes it to solve the RCPSP problem more efficiently and accurately. However, for the selection of the main parameters of the genetic algorithm, there is no parameter optimization in these studies. Generally, we used the empirical method, but it cannot ensure to meet the optimal parameters. In this paper, the problem was carried out, which is the blind selection of parameters in the process of solving the RCPSP problem. We made sampling analysis, the establishment of proxy model and ultimately solved the optimal parameters.
R. Venkata Rao
2016-01-01
Full Text Available The teaching-learning-based optimization (TLBO algorithm is finding a large number of applications in different fields of engineering and science since its introduction in 2011. The major applications are found in electrical engineering, mechanical design, thermal engineering, manufacturing engineering, civil engineering, structural engineering, computer engineering, electronics engineering, physics, chemistry, biotechnology and economics. This paper presents a review of applications of TLBO algorithm and a tutorial for solving the unconstrained and constrained optimization problems. The tutorial is expected to be useful to the beginners.
Solving Multi-Resource Constrained Project Scheduling Problem using Ant Colony Optimization
Hsiang-Hsi Huang
2015-01-01
Full Text Available This paper applied Ant Colony Optimization (ACO to develop a resource constraints scheduling model to achieve the resource allocation optimization and the shortest completion time of a project under resource constraints and the activities precedence requirement for projects. Resource leveling is also discussed and has to be achieved under the resource allocation optimization in this research. Testing cases and examples adopted from the international test bank were studied for verifying the effectiveness of the proposed model. The results showed that the solutions of different cases all have a better performance within a reasonable time. These can be obtained through ACO algorithm under the same constrained conditions. A program was written for the proposed model that is able to automatically produce the project resource requirement figure after the project duration is solved.
Kong, Rong; Spanier, Jerome
2013-01-01
In this paper we develop novel extensions of collision and track length estimators for the complete space-angle solutions of radiative transport problems. We derive the relevant equations, prove that our new estimators are unbiased, and compare their performance with that of more conventional estimators. Such comparisons based on numerical solutions of simple one dimensional slab problems indicate the the potential superiority of the new estimators for a wide variety of more general transport problems
Leibov Roman
2017-01-01
This paper presents a bilinear approach to nonlinear differential equations system approximation problem. Sometimes the nonlinear differential equations right-hand sides linearization is extremely difficult or even impossible. Then piecewise-linear approximation of nonlinear differential equations can be used. The bilinear differential equations allow to improve piecewise-linear differential equations behavior and reduce errors on the border of different linear differential equations systems ...
Inverse Boundary Value Problem for Non-linear Hyperbolic Partial Differential Equations
Nakamura, Gen; Vashisth, Manmohan
2017-01-01
In this article we are concerned with an inverse boundary value problem for a non-linear wave equation of divergence form with space dimension $n\\geq 3$. This non-linear wave equation has a trivial solution, i.e. zero solution. By linearizing this equation at the trivial solution, we have the usual linear isotropic wave equation with the speed $\\sqrt{\\gamma(x)}$ at each point $x$ in a given spacial domain. For any small solution $u=u(t,x)$ of this non-linear equation, we have the linear isotr...
Zhao, Yingfeng; Liu, Sanyang
2016-01-01
We present a practical branch and bound algorithm for globally solving generalized linear multiplicative programming problem with multiplicative constraints. To solve the problem, a relaxation programming problem which is equivalent to a linear programming is proposed by utilizing a new two-phase relaxation technique. In the algorithm, lower and upper bounds are simultaneously obtained by solving some linear relaxation programming problems. Global convergence has been proved and results of some sample examples and a small random experiment show that the proposed algorithm is feasible and efficient.
Robust optimization methods for chance constrained, simulation-based, and bilevel problems
Yanikoglu, I.
2014-01-01
The objective of robust optimization is to find solutions that are immune to the uncertainty of the parameters in a mathematical optimization problem. It requires that the constraints of a given problem should be satisfied for all realizations of the uncertain parameters in a so-called uncertainty
Towards Resolving the Crab Sigma-Problem: A Linear Accelerator?
Contopoulos, Ioannis; Kazanas, Demosthenes; White, Nicholas E. (Technical Monitor)
2002-01-01
Using the exact solution of the axisymmetric pulsar magnetosphere derived in a previous publication and the conservation laws of the associated MHD flow, we show that the Lorentz factor of the outflowing plasma increases linearly with distance from the light cylinder. Therefore, the ratio of the Poynting to particle energy flux, generically referred to as sigma, decreases inversely proportional to distance, from a large value (typically approx. greater than 10(exp 4)) near the light cylinder to sigma approx. = 1 at a transition distance R(sub trans). Beyond this distance the inertial effects of the outflowing plasma become important and the magnetic field geometry must deviate from the almost monopolar form it attains between R(sub lc), and R(sub trans). We anticipate that this is achieved by collimation of the poloidal field lines toward the rotation axis, ensuring that the magnetic field pressure in the equatorial region will fall-off faster than 1/R(sup 2) (R being the cylindrical radius). This leads both to a value sigma = a(sub s) much less than 1 at the nebular reverse shock at distance R(sub s) (R(sub s) much greater than R(sub trans)) and to a component of the flow perpendicular to the equatorial component, as required by observation. The presence of the strong shock at R = R(sub s) allows for the efficient conversion of kinetic energy into radiation. We speculate that the Crab pulsar is unique in requiring sigma(sub s) approx. = 3 x 10(exp -3) because of its small translational velocity, which allowed for the shock distance R(sub s) to grow to values much greater than R(sub trans).
Solving a large-scale precedence constrained scheduling problem with elastic jobs using tabu search
Pedersen, C.R.; Rasmussen, R.V.; Andersen, Kim Allan
2007-01-01
exploitation of the elastic jobs and solve the problem using a tabu search procedure. Finding an initial feasible solution is in general -complete, but the tabu search procedure includes a specialized heuristic for solving this problem. The solution method has proven to be very efficient and leads......This paper presents a solution method for minimizing makespan of a practical large-scale scheduling problem with elastic jobs. The jobs are processed on three servers and restricted by precedence constraints, time windows and capacity limitations. We derive a new method for approximating the server...... to a significant decrease in makespan compared to the strategy currently implemented....
Solving a large-scale precedence constrained scheduling problem with elastic jobs using tabu search
Pedersen, C.R.; Rasmussen, R.V.; Andersen, Kim Allan
2007-01-01
This paper presents a solution method for minimizing makespan of a practical large-scale scheduling problem with elastic jobs. The jobs are processed on three servers and restricted by precedence constraints, time windows and capacity limitations. We derive a new method for approximating the server...... exploitation of the elastic jobs and solve the problem using a tabu search procedure. Finding an initial feasible solution is in general -complete, but the tabu search procedure includes a specialized heuristic for solving this problem. The solution method has proven to be very efficient and leads...
Walrand, Stephan; Jamar, François; Pauwels, Stanislas
2009-01-01
Ill-posed linear systems occur in many different fields. A class of regularization methods, called constrained optimization, aims to determine the extremum of a penalty function whilst constraining an objective function to a likely value. We propose here a novel heuristic way to screen the local extrema satisfying the discrepancy principle. A modified version of the Landweber algorithm is used for the iteration process. After finding a local extremum, a bound is performed to the 'farthest' estimate in the data space still satisfying the discrepancy principle. Afterwards, the modified Landweber algorithm is again applied to find a new local extremum. This bound-iteration process is repeated until a satisfying solution is reached. For evaluation in nuclear medicine tomography, a novel penalty function that preserves the edge steps in the reconstructed solution was evaluated on Monte Carlo simulations and using real SPECT acquisitions as well. Surprisingly, the first bound always provided a significantly better solution in a wide range of statistics
Minimizers of a Class of Constrained Vectorial Variational Problems: Part I
Hajaiej, Hichem; Markowich, Peter A.; Trabelsi, Saber
2014-01-01
In this paper, we prove the existence of minimizers of a class of multiconstrained variational problems. We consider systems involving a nonlinearity that does not satisfy compactness, monotonicity, neither symmetry properties. Our approach hinges
Preconditioners for state-constrained optimal control problems with Moreau-Yosida penalty function
Pearson, John W.; Stoll, Martin; Wathen, Andrew J.
2012-01-01
Optimal control problems with partial differential equations as constraints play an important role in many applications. The inclusion of bound constraints for the state variable poses a significant challenge for optimization methods. Our focus here
DESIGN OF EDUCATIONAL PROBLEMS ON LINEAR PROGRAMMING USING SYSTEMS OF COMPUTER MATHEMATICS
Volodymyr M. Mykhalevych
2013-11-01
Full Text Available From a perspective of the theory of educational problems a problem of substitution in the conditions of ICT use of one discipline by an educational problem of another discipline is represented. Through the example of mathematical problems of linear programming it is showed that a student’s method of operation in the course of an educational problem solving is determinant in the identification of an educational problem in relation to a specific discipline: linear programming, informatics, mathematical modeling, methods of optimization, automatic control theory, calculus etc. It is substantiated the necessity of linear programming educational problems renovation with the purpose of making students free of bulky similar arithmetic calculations and notes which often becomes a barrier to a deeper understanding of key ideas taken as a basis of algorithms used by them.
Method for solving fully fuzzy linear programming problems using deviation degree measure
Haifang Cheng; Weilai Huang; Jianhu Cai
2013-01-01
A new ful y fuzzy linear programming (FFLP) prob-lem with fuzzy equality constraints is discussed. Using deviation degree measures, the FFLP problem is transformed into a crispδ-parametric linear programming (LP) problem. Giving the value of deviation degree in each constraint, the δ-fuzzy optimal so-lution of the FFLP problem can be obtained by solving this LP problem. An algorithm is also proposed to find a balance-fuzzy optimal solution between two goals in conflict: to improve the va-lues of the objective function and to decrease the values of the deviation degrees. A numerical example is solved to il ustrate the proposed method.
An introduction to fuzzy linear programming problems theory, methods and applications
Kaur, Jagdeep
2016-01-01
The book presents a snapshot of the state of the art in the field of fully fuzzy linear programming. The main focus is on showing current methods for finding the fuzzy optimal solution of fully fuzzy linear programming problems in which all the parameters and decision variables are represented by non-negative fuzzy numbers. It presents new methods developed by the authors, as well as existing methods developed by others, and their application to real-world problems, including fuzzy transportation problems. Moreover, it compares the outcomes of the different methods and discusses their advantages/disadvantages. As the first work to collect at one place the most important methods for solving fuzzy linear programming problems, the book represents a useful reference guide for students and researchers, providing them with the necessary theoretical and practical knowledge to deal with linear programming problems under uncertainty.
Gene Golub; Kwok Ko
2009-01-01
The solutions of sparse eigenvalue problems and linear systems constitute one of the key computational kernels in the discretization of partial differential equations for the modeling of linear accelerators. The computational challenges faced by existing techniques for solving those sparse eigenvalue problems and linear systems call for continuing research to improve on the algorithms so that ever increasing problem size as required by the physics application can be tackled. Under the support of this award, the filter algorithm for solving large sparse eigenvalue problems was developed at Stanford to address the computational difficulties in the previous methods with the goal to enable accelerator simulations on then the world largest unclassified supercomputer at NERSC for this class of problems. Specifically, a new method, the Hemitian skew-Hemitian splitting method, was proposed and researched as an improved method for solving linear systems with non-Hermitian positive definite and semidefinite matrices.
Solution of Constrained Optimal Control Problems Using Multiple Shooting and ESDIRK Methods
Capolei, Andrea; Jørgensen, John Bagterp
2012-01-01
of this paper is the use of ESDIRK integration methods for solution of the initial value problems and the corresponding sensitivity equations arising in the multiple shooting algorithm. Compared to BDF-methods, ESDIRK-methods are advantageous in multiple shooting algorithms in which restarts and frequent...... algorithm. As we consider stiff systems, implicit solvers with sensitivity computation capabilities for initial value problems must be used in the multiple shooting algorithm. Traditionally, multi-step methods based on the BDF algorithm have been used for such problems. The main novel contribution...... discontinuities on each shooting interval are present. The ESDIRK methods are implemented using an inexact Newton method that reuses the factorization of the iteration matrix for the integration as well as the sensitivity computation. Numerical experiments are provided to demonstrate the algorithm....
A non-penalty recurrent neural network for solving a class of constrained optimization problems.
Hosseini, Alireza
2016-01-01
In this paper, we explain a methodology to analyze convergence of some differential inclusion-based neural networks for solving nonsmooth optimization problems. For a general differential inclusion, we show that if its right hand-side set valued map satisfies some conditions, then solution trajectory of the differential inclusion converges to optimal solution set of its corresponding in optimization problem. Based on the obtained methodology, we introduce a new recurrent neural network for solving nonsmooth optimization problems. Objective function does not need to be convex on R(n) nor does the new neural network model require any penalty parameter. We compare our new method with some penalty-based and non-penalty based models. Moreover for differentiable cases, we implement circuit diagram of the new neural network. Copyright © 2015 Elsevier Ltd. All rights reserved.
Regis, Rommel G.
2014-02-01
This article develops two new algorithms for constrained expensive black-box optimization that use radial basis function surrogates for the objective and constraint functions. These algorithms are called COBRA and Extended ConstrLMSRBF and, unlike previous surrogate-based approaches, they can be used for high-dimensional problems where all initial points are infeasible. They both follow a two-phase approach where the first phase finds a feasible point while the second phase improves this feasible point. COBRA and Extended ConstrLMSRBF are compared with alternative methods on 20 test problems and on the MOPTA08 benchmark automotive problem (D.R. Jones, Presented at MOPTA 2008), which has 124 decision variables and 68 black-box inequality constraints. The alternatives include a sequential penalty derivative-free algorithm, a direct search method with kriging surrogates, and two multistart methods. Numerical results show that COBRA algorithms are competitive with Extended ConstrLMSRBF and they generally outperform the alternatives on the MOPTA08 problem and most of the test problems.
SC: A NOVEL FUZZY CRITERION FOR SOLVING ENGINEERING AND CONSTRAINED OPTIMIZATION PROBLEMS
Sergio G. De los Cobos Silva
2017-04-01
Full Text Available In this paper a novel fuzzy convergence system (SC and its fundamentals are presented. The model was implemented on a monoobjetive PSO algorithm with three phases: 1 Stabilization, 2 generation and breadth-first search, and 3 generation and depth-first. The system SC-PSO-3P was tested with several benchmark engineering problems and with several CEC2006 problems. The computing experience and comparison with previously reported results is presented. In some cases the results reported in the literature are improved.
Preconditioners for state-constrained optimal control problems with Moreau-Yosida penalty function
Pearson, John W.
2012-11-21
Optimal control problems with partial differential equations as constraints play an important role in many applications. The inclusion of bound constraints for the state variable poses a significant challenge for optimization methods. Our focus here is on the incorporation of the constraints via the Moreau-Yosida regularization technique. This method has been studied recently and has proven to be advantageous compared with other approaches. In this paper, we develop robust preconditioners for the efficient solution of the Newton steps associated with the fast solution of the Moreau-Yosida regularized problem. Numerical results illustrate the efficiency of our approach. © 2012 John Wiley & Sons, Ltd.
Bruhn, Peter; Geyer-Schulz, Andreas
2002-01-01
In this paper, we introduce genetic programming over context-free languages with linear constraints for combinatorial optimization, apply this method to several variants of the multidimensional knapsack problem, and discuss its performance relative to Michalewicz's genetic algorithm with penalty functions. With respect to Michalewicz's approach, we demonstrate that genetic programming over context-free languages with linear constraints improves convergence. A final result is that genetic programming over context-free languages with linear constraints is ideally suited to modeling complementarities between items in a knapsack problem: The more complementarities in the problem, the stronger the performance in comparison to its competitors.
Constrained Optimization Problems in Cost and Managerial Accounting--Spreadsheet Tools
Amlie, Thomas T.
2009-01-01
A common problem addressed in Managerial and Cost Accounting classes is that of selecting an optimal production mix given scarce resources. That is, if a firm produces a number of different products, and is faced with scarce resources (e.g., limitations on labor, materials, or machine time), what combination of products yields the greatest profit…
Giva, Karen R N; Duma, Sinegugu E
2015-08-31
Problem-based learning (PBL) was introduced in Malawi in 2002 in order to improve the nursing education system and respond to the acute nursing human resources shortage. However, its implementation has been very slow throughout the country. The objectives of the study were to explore and describe the goals that were identified by the college to facilitate the implementation of PBL, the resources of the organisation that facilitated the implementation of PBL, the factors related to sources of students that facilitated the implementation of PBL, and the influence of the external system of the organisation on facilitating the implementation of PBL, and to identify critical success factors that could guide the implementation of PBL in nursing education in Malawi. This is an ethnographic, exploratory and descriptive qualitative case study. Purposive sampling was employed to select the nursing college, participants and documents for review.Three data collection methods, including semi-structured interviews, participant observation and document reviews, were used to collect data. The four steps of thematic analysis were used to analyse data from all three sources. Four themes and related subthemes emerged from the triangulated data sources. The first three themes and their subthemes are related to the characteristics related to successful implementation of PBL in a human resource-constrained nursing college, whilst the last theme is related to critical success factors that contribute to successful implementation of PBL in a human resource-constrained country like Malawi. This article shows that implementation of PBL is possible in a human resource-constrained country if there is political commitment and support.
Frick, Klaus; Marnitz, Philipp; Munk, Axel
2012-01-01
This paper is concerned with a novel regularization technique for solving linear ill-posed operator equations in Hilbert spaces from data that are corrupted by white noise. We combine convex penalty functionals with extreme-value statistics of projections of the residuals on a given set of sub-spaces in the image space of the operator. We prove general consistency and convergence rate results in the framework of Bregman divergences which allows for a vast range of penalty functionals. Various examples that indicate the applicability of our approach will be discussed. We will illustrate in the context of signal and image processing that the presented method constitutes a locally adaptive reconstruction method. (paper)
Axelsson, Owe; Farouq, S.; Neytcheva, M.
2017-01-01
Roč. 310, January 2017 (2017), s. 5-18 ISSN 0377-0427 R&D Projects: GA MŠk ED1.1.00/02.0070 Institutional support: RVO:68145535 Keywords : optimal control * time-harmonic Stokes problem * preconditioning Subject RIV: BA - General Mathematics OBOR OECD: Applied mathematics Impact factor: 1.357, year: 2016 http://www. science direct.com/ science /article/pii/S0377042716302631?via%3Dihub
Axelsson, Owe; Farouq, S.; Neytcheva, M.
2017-01-01
Roč. 310, January 2017 (2017), s. 5-18 ISSN 0377-0427 R&D Projects: GA MŠk ED1.1.00/02.0070 Institutional support: RVO:68145535 Keywords : optimal control * time-harmonic Stokes problem * preconditioning Subject RIV: BA - General Mathematics OBOR OECD: Applied mathematics Impact factor: 1.357, year: 2016 http://www.sciencedirect.com/science/article/pii/S0377042716302631?via%3Dihub
Tupek, Michael R. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
2016-06-30
In recent years there has been a proliferation of modeling techniques for forward predictions of crack propagation in brittle materials, including: phase-field/gradient damage models, peridynamics, cohesive-zone models, and G/XFEM enrichment techniques. However, progress on the corresponding inverse problems has been relatively lacking. Taking advantage of key features of existing modeling approaches, we propose a parabolic regularization of Barenblatt cohesive models which borrows extensively from previous phase-field and gradient damage formulations. An efficient explicit time integration strategy for this type of nonlocal fracture model is then proposed and justified. In addition, we present a C++ computational framework for computing in- put parameter sensitivities efficiently for explicit dynamic problems using the adjoint method. This capability allows for solving inverse problems involving crack propagation to answer interesting engineering questions such as: 1) what is the optimal design topology and material placement for a heterogeneous structure to maximize fracture resistance, 2) what loads must have been applied to a structure for it to have failed in an observed way, 3) what are the existing cracks in a structure given various experimental observations, etc. In this work, we focus on the first of these engineering questions and demonstrate a capability to automatically and efficiently compute optimal designs intended to minimize crack propagation in structures.
Fuzzy Multi Objective Linear Programming Problem with Imprecise Aspiration Level and Parameters
Zahra Shahraki
2015-07-01
Full Text Available This paper considers the multi-objective linear programming problems with fuzzygoal for each of the objective functions and constraints. Most existing works deal withlinear membership functions for fuzzy goals. In this paper, exponential membershipfunction is used.
Analytical vs. Simulation Solution Techniques for Pulse Problems in Non-linear Stochastic Dynamics
Iwankiewicz, R.; Nielsen, Søren R. K.
Advantages and disadvantages of available analytical and simulation techniques for pulse problems in non-linear stochastic dynamics are discussed. First, random pulse problems, both those which do and do not lead to Markov theory, are presented. Next, the analytical and analytically-numerical tec......Advantages and disadvantages of available analytical and simulation techniques for pulse problems in non-linear stochastic dynamics are discussed. First, random pulse problems, both those which do and do not lead to Markov theory, are presented. Next, the analytical and analytically...
EZLP: An Interactive Computer Program for Solving Linear Programming Problems. Final Report.
Jarvis, John J.; And Others
Designed for student use in solving linear programming problems, the interactive computer program described (EZLP) permits the student to input the linear programming model in exactly the same manner in which it would be written on paper. This report includes a brief review of the development of EZLP; narrative descriptions of program features,…
Zörnig, Peter
2015-08-01
We present integer programming models for some variants of the farthest string problem. The number of variables and constraints is substantially less than that of the integer linear programming models known in the literature. Moreover, the solution of the linear programming-relaxation contains only a small proportion of noninteger values, which considerably simplifies the rounding process. Numerical tests have shown excellent results, especially when a small set of long sequences is given.
Bui-Thanh, T.; Girolami, M.
2014-11-01
We consider the Riemann manifold Hamiltonian Monte Carlo (RMHMC) method for solving statistical inverse problems governed by partial differential equations (PDEs). The Bayesian framework is employed to cast the inverse problem into the task of statistical inference whose solution is the posterior distribution in infinite dimensional parameter space conditional upon observation data and Gaussian prior measure. We discretize both the likelihood and the prior using the H1-conforming finite element method together with a matrix transfer technique. The power of the RMHMC method is that it exploits the geometric structure induced by the PDE constraints of the underlying inverse problem. Consequently, each RMHMC posterior sample is almost uncorrelated/independent from the others providing statistically efficient Markov chain simulation. However this statistical efficiency comes at a computational cost. This motivates us to consider computationally more efficient strategies for RMHMC. At the heart of our construction is the fact that for Gaussian error structures the Fisher information matrix coincides with the Gauss-Newton Hessian. We exploit this fact in considering a computationally simplified RMHMC method combining state-of-the-art adjoint techniques and the superiority of the RMHMC method. Specifically, we first form the Gauss-Newton Hessian at the maximum a posteriori point and then use it as a fixed constant metric tensor throughout RMHMC simulation. This eliminates the need for the computationally costly differential geometric Christoffel symbols, which in turn greatly reduces computational effort at a corresponding loss of sampling efficiency. We further reduce the cost of forming the Fisher information matrix by using a low rank approximation via a randomized singular value decomposition technique. This is efficient since a small number of Hessian-vector products are required. The Hessian-vector product in turn requires only two extra PDE solves using the adjoint
Non-linear analytic and coanalytic problems (Lp-theory, Clifford analysis, examples)
Dubinskii, Yu A; Osipenko, A S
2000-01-01
Two kinds of new mathematical model of variational type are put forward: non-linear analytic and coanalytic problems. The formulation of these non-linear boundary-value problems is based on a decomposition of the complete scale of Sobolev spaces into the 'orthogonal' sum of analytic and coanalytic subspaces. A similar decomposition is considered in the framework of Clifford analysis. Explicit examples are presented
Non-linear analytic and coanalytic problems ( L_p-theory, Clifford analysis, examples)
Dubinskii, Yu A.; Osipenko, A. S.
2000-02-01
Two kinds of new mathematical model of variational type are put forward: non-linear analytic and coanalytic problems. The formulation of these non-linear boundary-value problems is based on a decomposition of the complete scale of Sobolev spaces into the "orthogonal" sum of analytic and coanalytic subspaces. A similar decomposition is considered in the framework of Clifford analysis. Explicit examples are presented.
A goal programming procedure for solving fuzzy multiobjective fractional linear programming problems
Tunjo Perić
2014-12-01
Full Text Available This paper presents a modification of Pal, Moitra and Maulik's goal programming procedure for fuzzy multiobjective linear fractional programming problem solving. The proposed modification of the method allows simpler solving of economic multiple objective fractional linear programming (MOFLP problems, enabling the obtained solutions to express the preferences of the decision maker defined by the objective function weights. The proposed method is tested on the production planning example.
Lesmana, E.; Chaerani, D.; Khansa, H. N.
2018-03-01
Energy-Saving Generation Dispatch (ESGD) is a scheme made by Chinese Government in attempt to minimize CO2 emission produced by power plant. This scheme is made related to global warming which is primarily caused by too much CO2 in earth’s atmosphere, and while the need of electricity is something absolute, the power plants producing it are mostly thermal-power plant which produced many CO2. Many approach to fulfill this scheme has been made, one of them came through Minimum Cost Flow in which resulted in a Quadratically Constrained Quadratic Programming (QCQP) form. In this paper, ESGD problem with Minimum Cost Flow in QCQP form will be solved using Lagrange’s Multiplier Method
Solving Constrained Consumption-Investment Problems by Simulation of Artificial Market Strategies
Bick, Björn; Kraft, Holger; Munk, Claus
2013-01-01
Utility-maximizing consumption and investment strategies in closed form are unknown for realistic settings involving portfolio constraints, incomplete markets, and potentially a high number of state variables. Standard numerical methods are hard to implement in such cases. We propose a numerical...... procedure that combines the abstract idea of artificial, unconstrained complete markets, well-known closed-form solutions in affine or quadratic return models, straightforward Monte Carlo simulation, and a standard iterative optimization routine. Our method provides an upper bound on the wealth......-equivalent loss compared to the unknown optimal strategy, and it facilitates our understanding of the economic forces at play by building on closed-form expressions for the strategies considered. We illustrate and test our method on the life-cycle problem of an individual who receives unspanned labor income...
A Review On Linear Programming Analysis Of The Outsourcing Problem Using MATLAB
FLt Lt Dinesh Kumar Gupta Retd.
2015-08-01
Full Text Available Abstract This study examines the case where market demand exceeds the companys capacity to manufacture. Manufacturing companies often function in situations where internal production resources constrain their throughput. Such situations are characterized as the problem of finite capacity scheduling. Management policy is to meet all demand in order to prevent competitor from entering the field. Now if management needs to decide what quantities of each product to manufacture and what quantities to buy from external contractors. In this study we have described two methodologies based on LP analysis to solve production outsourcing problem using latest version of MATLAB. We choose the best methodology which gives us maximum profits.
Mohammad Hossein Sadeghi
2013-08-01
Full Text Available In this paper, two different sub-problems are considered to solve a resource constrained project scheduling problem (RCPSP, namely i assignment of modes to tasks and ii scheduling of these tasks in order to minimize the makespan of the project. The modified electromagnetism-like algorithm deals with the first problem to create an assignment of modes to activities. This list is used to generate a project schedule. When a new assignment is made, it is necessary to fix all mode dependent requirements of the project activities and to generate a random schedule with the serial SGS method. A local search will optimize the sequence of the activities. Also in this paper, a new penalty function has been proposed for solutions which are infeasible with respect to non-renewable resources. Performance of the proposed algorithm has been compared with the best algorithms published so far on the basis of CPU time and number of generated schedules stopping criteria. Reported results indicate excellent performance of the algorithm.
Guo, Weian; Li, Wuzhao; Zhang, Qun; Wang, Lei; Wu, Qidi; Ren, Hongliang
2014-11-01
In evolutionary algorithms, elites are crucial to maintain good features in solutions. However, too many elites can make the evolutionary process stagnate and cannot enhance the performance. This article employs particle swarm optimization (PSO) and biogeography-based optimization (BBO) to propose a hybrid algorithm termed biogeography-based particle swarm optimization (BPSO) which could make a large number of elites effective in searching optima. In this algorithm, the whole population is split into several subgroups; BBO is employed to search within each subgroup and PSO for the global search. Since not all the population is used in PSO, this structure overcomes the premature convergence in the original PSO. Time complexity analysis shows that the novel algorithm does not increase the time consumption. Fourteen numerical benchmarks and four engineering problems with constraints are used to test the BPSO. To better deal with constraints, a fuzzy strategy for the number of elites is investigated. The simulation results validate the feasibility and effectiveness of the proposed algorithm.
Effective linear two-body method for many-body problems in atomic and nuclear physics
Kim, Y.E.; Zubarev, A.L.
2000-01-01
We present an equivalent linear two-body method for the many body problem, which is based on an approximate reduction of the many-body Schroedinger equation by the use of a variational principle. The method is applied to several problems in atomic and nuclear physics. (author)
Xunjing, L.
1981-12-01
The vector-valued measure defined by the well-posed linear boundary value problems is discussed. The maximum principle of the optimal control problem with non-convex constraint is proved by using the vector-valued measure. Especially, the necessary conditions of the optimal control of elliptic systems is derived without the convexity of the control domain and the cost function. (author)
Sergienko, I.V.; Golodnikov, A.N.
1984-01-01
This article applies the methods of decompositions, which are used to solve continuous linear problems, to integer and partially integer problems. The fall-vector method is used to solve the obtained coordinate problems. An algorithm of the fall-vector is described. The Kornai-Liptak decomposition principle is used to reduce the integer linear programming problem to integer linear programming problems of a smaller dimension and to a discrete coordinate problem with simple constraints
Single-machine common/slack due window assignment problems with linear decreasing processing times
Zhang, Xingong; Lin, Win-Chin; Wu, Wen-Hsiang; Wu, Chin-Chia
2017-08-01
This paper studies linear non-increasing processing times and the common/slack due window assignment problems on a single machine, where the actual processing time of a job is a linear non-increasing function of its starting time. The aim is to minimize the sum of the earliness cost, tardiness cost, due window location and due window size. Some optimality results are discussed for the common/slack due window assignment problems and two O(n log n) time algorithms are presented to solve the two problems. Finally, two examples are provided to illustrate the correctness of the corresponding algorithms.
Quasi-stability of a vector trajectorial problem with non-linear partial criteria
Vladimir A. Emelichev
2003-10-01
Full Text Available Multi-objective (vector combinatorial problem of finding the Pareto set with four kinds of non-linear partial criteria is considered. Necessary and sufficient conditions of that kind of stability of the problem (quasi-stability are obtained. The problem is a discrete analogue of the lower semicontinuity by Hausdorff of the optimal mapping. Mathematics Subject Classification 2000: 90C10, 90C05, 90C29, 90C31.
A new neural network model for solving random interval linear programming problems.
Arjmandzadeh, Ziba; Safi, Mohammadreza; Nazemi, Alireza
2017-05-01
This paper presents a neural network model for solving random interval linear programming problems. The original problem involving random interval variable coefficients is first transformed into an equivalent convex second order cone programming problem. A neural network model is then constructed for solving the obtained convex second order cone problem. Employing Lyapunov function approach, it is also shown that the proposed neural network model is stable in the sense of Lyapunov and it is globally convergent to an exact satisfactory solution of the original problem. Several illustrative examples are solved in support of this technique. Copyright © 2017 Elsevier Ltd. All rights reserved.
The Core Problem within a Linear Approximation Problem $AX/approx B$ with Multiple Right-Hand Sides
Hnětynková, Iveta; Plešinger, Martin; Strakoš, Z.
2013-01-01
Roč. 34, č. 3 (2013), s. 917-931 ISSN 0895-4798 R&D Projects: GA ČR GA13-06684S Grant - others:GA ČR(CZ) GA201/09/0917; GA MŠk(CZ) EE2.3.09.0155; GA MŠk(CZ) EE2.3.30.0065 Program:GA Institutional support: RVO:67985807 Keywords : total least squares problem * multiple right-hand sides * core problem * linear approximation problem * error-in-variables modeling * orthogonal regression * singular value decomposition Subject RIV: BA - General Mathematics Impact factor: 1.806, year: 2013
Averaging and Linear Programming in Some Singularly Perturbed Problems of Optimal Control
Gaitsgory, Vladimir, E-mail: vladimir.gaitsgory@mq.edu.au [Macquarie University, Department of Mathematics (Australia); Rossomakhine, Sergey, E-mail: serguei.rossomakhine@flinders.edu.au [Flinders University, Flinders Mathematical Sciences Laboratory, School of Computer Science, Engineering and Mathematics (Australia)
2015-04-15
The paper aims at the development of an apparatus for analysis and construction of near optimal solutions of singularly perturbed (SP) optimal controls problems (that is, problems of optimal control of SP systems) considered on the infinite time horizon. We mostly focus on problems with time discounting criteria but a possibility of the extension of results to periodic optimization problems is discussed as well. Our consideration is based on earlier results on averaging of SP control systems and on linear programming formulations of optimal control problems. The idea that we exploit is to first asymptotically approximate a given problem of optimal control of the SP system by a certain averaged optimal control problem, then reformulate this averaged problem as an infinite-dimensional linear programming (LP) problem, and then approximate the latter by semi-infinite LP problems. We show that the optimal solution of these semi-infinite LP problems and their duals (that can be found with the help of a modification of an available LP software) allow one to construct near optimal controls of the SP system. We demonstrate the construction with two numerical examples.
A Fast Condensing Method for Solution of Linear-Quadratic Control Problems
Frison, Gianluca; Jørgensen, John Bagterp
2013-01-01
consider a condensing (or state elimination) method to solve an extended version of the LQ control problem, and we show how to exploit the structure of this problem to both factorize the dense Hessian matrix and solve the system. Furthermore, we present two efficient implementations. The first......In both Active-Set (AS) and Interior-Point (IP) algorithms for Model Predictive Control (MPC), sub-problems in the form of linear-quadratic (LQ) control problems need to be solved at each iteration. The solution of these sub-problems is usually the main computational effort. In this paper we...... implementation is formally identical to the Riccati recursion based solver and has a computational complexity that is linear in the control horizon length and cubic in the number of states. The second implementation has a computational complexity that is quadratic in the control horizon length as well...
Solutions to estimation problems for scalar hamilton-jacobi equations using linear programming
Claudel, Christian G.; Chamoin, Timothee; Bayen, Alexandre M.
2014-01-01
This brief presents new convex formulations for solving estimation problems in systems modeled by scalar Hamilton-Jacobi (HJ) equations. Using a semi-analytic formula, we show that the constraints resulting from a HJ equation are convex, and can be written as a set of linear inequalities. We use this fact to pose various (and seemingly unrelated) estimation problems related to traffic flow-engineering as a set of linear programs. In particular, we solve data assimilation and data reconciliation problems for estimating the state of a system when the model and measurement constraints are incompatible. We also solve traffic estimation problems, such as travel time estimation or density estimation. For all these problems, a numerical implementation is performed using experimental data from the Mobile Century experiment. In the context of reproducible research, the code and data used to compute the results presented in this brief have been posted online and are accessible to regenerate the results. © 2013 IEEE.
An improved error bound for linear complementarity problems for B-matrices
Lei Gao
2017-06-01
Full Text Available Abstract A new error bound for the linear complementarity problem when the matrix involved is a B-matrix is presented, which improves the corresponding result in (Li et al. in Electron. J. Linear Algebra 31(1:476-484, 2016. In addition some sufficient conditions such that the new bound is sharper than that in (García-Esnaola and Peña in Appl. Math. Lett. 22(7:1071-1075, 2009 are provided.
An analogue of Morse theory for planar linear networks and the generalized Steiner problem
Karpunin, G A
2000-01-01
A study is made of the generalized Steiner problem: the problem of finding all the locally minimal networks spanning a given boundary set (terminal set). It is proposed to solve this problem by using an analogue of Morse theory developed here for planar linear networks. The space K of all planar linear networks spanning a given boundary set is constructed. The concept of a critical point and its index is defined for the length function l of a planar linear network. It is shown that locally minimal networks are local minima of l on K and are critical points of index 1. The theorem is proved that the sum of the indices of all the critical points is equal to χ(K)=1. This theorem is used to find estimates for the number of locally minimal networks spanning a given boundary set
Cichocki, A; Unbehauen, R
1994-01-01
In this paper a new class of simplified low-cost analog artificial neural networks with on chip adaptive learning algorithms are proposed for solving linear systems of algebraic equations in real time. The proposed learning algorithms for linear least squares (LS), total least squares (TLS) and data least squares (DLS) problems can be considered as modifications and extensions of well known algorithms: the row-action projection-Kaczmarz algorithm and/or the LMS (Adaline) Widrow-Hoff algorithms. The algorithms can be applied to any problem which can be formulated as a linear regression problem. The correctness and high performance of the proposed neural networks are illustrated by extensive computer simulation results.
Parallel Implementation of Riccati Recursion for Solving Linear-Quadratic Control Problems
Frison, Gianluca; Jørgensen, John Bagterp
2013-01-01
In both Active-Set (AS) and Interior-Point (IP) algorithms for Model Predictive Control (MPC), sub-problems in the form of linear-quadratic (LQ) control problems need to be solved at each iteration. The solution of these sub-problems is usually the main computational effort. In this paper...... an alternative version of the Riccati recursion solver for LQ control problems is presented. The performance of both the classical and the alternative version is analyzed from a theoretical as well as a numerical point of view, and the alternative version is found to be approximately 50% faster than...
Multigrid for the Galerkin least squares method in linear elasticity: The pure displacement problem
Yoo, Jaechil [Univ. of Wisconsin, Madison, WI (United States)
1996-12-31
Franca and Stenberg developed several Galerkin least squares methods for the solution of the problem of linear elasticity. That work concerned itself only with the error estimates of the method. It did not address the related problem of finding effective methods for the solution of the associated linear systems. In this work, we prove the convergence of a multigrid (W-cycle) method. This multigrid is robust in that the convergence is uniform as the parameter, v, goes to 1/2 Computational experiments are included.
A Compensatory Approach to Multiobjective Linear Transportation Problem with Fuzzy Cost Coefficients
Hale Gonce Kocken
2011-01-01
Full Text Available This paper deals with the Multiobjective Linear Transportation Problem that has fuzzy cost coefficients. In the solution procedure, many objectives may conflict with each other; therefore decision-making process becomes complicated. And also due to the fuzziness in the costs, this problem has a nonlinear structure. In this paper, fuzziness in the objective functions is handled with a fuzzy programming technique in the sense of multiobjective approach. And then we present a compensatory approach to solve Multiobjective Linear Transportation Problem with fuzzy cost coefficients by using Werner's and operator. Our approach generates compromise solutions which are both compensatory and Pareto optimal. A numerical example has been provided to illustrate the problem.
The Cauchy problem for non-linear Klein-Gordon equations
Simon, J.C.H.; Taflin, E.
1993-01-01
We consider in R n+1 , n≥2, the non-linear Klein-Gordon equation. We prove for such an equation that there is neighbourhood of zero in a Hilbert space of initial conditions for which the Cauchy problem has global solutions and on which there is asymptotic completeness. The inverse of the wave operator linearizes the non-linear equation. If, moreover, the equation is manifestly Poincare covariant then the non-linear representation of the Poincare-Lie algebra, associated with the non-linear Klein-Gordon equation is integrated to a non-linear representation of the Poincare group on an invariant neighbourhood of zero in the Hilbert space. This representation is linearized by the inverse of the wave operator. The Hilbert space is, in both cases, the closure of the space of the differentiable vectors for the linear representation of the Poincare group, associated with the Klein-Gordon equation, with respect to a norm defined by the representation of the enveloping algebra. (orig.)
Goretzki, Nora; Inbar, Nimrod; Siebert, Christian; Möller, Peter; Rosenthal, Eliyahu; Schneider, Michael; Magri, Fabien
2015-04-01
Salty and thermal springs exist along the lakeshore of the Sea of Galilee, which covers most of the Tiberias Basin (TB) in the northern Jordan- Dead Sea Transform, Israel/Jordan. As it is the only freshwater reservoir of the entire area, it is important to study the salinisation processes that pollute the lake. Simulations of thermohaline flow along a 35 km NW-SE profile show that meteoric and relic brines are flushed by the regional flow from the surrounding heights and thermally induced groundwater flow within the faults (Magri et al., 2015). Several model runs with trial and error were necessary to calibrate the hydraulic conductivity of both faults and major aquifers in order to fit temperature logs and spring salinity. It turned out that the hydraulic conductivity of the faults ranges between 30 and 140 m/yr whereas the hydraulic conductivity of the Upper Cenomanian aquifer is as high as 200 m/yr. However, large-scale transport processes are also dependent on other physical parameters such as thermal conductivity, porosity and fluid thermal expansion coefficient, which are hardly known. Here, inverse problems (IP) are solved along the NW-SE profile to better constrain the physical parameters (a) hydraulic conductivity, (b) thermal conductivity and (c) thermal expansion coefficient. The PEST code (Doherty, 2010) is applied via the graphical interface FePEST in FEFLOW (Diersch, 2014). The results show that both thermal and hydraulic conductivity are consistent with the values determined with the trial and error calibrations. Besides being an automatic approach that speeds up the calibration process, the IP allows to cover a wide range of parameter values, providing additional solutions not found with the trial and error method. Our study shows that geothermal systems like TB are more comprehensively understood when inverse models are applied to constrain coupled fluid flow processes over large spatial scales. References Diersch, H.-J.G., 2014. FEFLOW Finite
Mixed problems for linear symmetric hyperbolic systems with characteristic boundary conditions
Secchi, P.
1994-01-01
We consider the initial-boundary value problem for symmetric hyperbolic systems with characteristic boundary of constant multiplicity. In the linear case we give some results about the existence of regular solutions in suitable functions spaces which take in account the loss of regularity in the normal direction to the characteristic boundary. We also consider the equations of ideal magneto-hydrodynamics under perfectly conducting wall boundary conditions and give some results about the solvability of such mixed problem. (author). 16 refs
Fuzzy solution of the linear programming problem with interval coefficients in the constraints
Dorota Kuchta
2005-01-01
A fuzzy concept of solving the linear programming problem with interval coefficients is proposed. For each optimism level of the decision maker (where the optimism concerns the certainty that no errors have been committed in the estimation of the interval coefficients and the belief that optimistic realisations of the interval coefficients will occur) another interval solution of the problem will be generated and the decision maker will be able to choose the final solution having a complete v...
An Improved Search Approach for Solving Non-Convex Mixed-Integer Non Linear Programming Problems
Sitopu, Joni Wilson; Mawengkang, Herman; Syafitri Lubis, Riri
2018-01-01
The nonlinear mathematical programming problem addressed in this paper has a structure characterized by a subset of variables restricted to assume discrete values, which are linear and separable from the continuous variables. The strategy of releasing nonbasic variables from their bounds, combined with the “active constraint” method, has been developed. This strategy is used to force the appropriate non-integer basic variables to move to their neighbourhood integer points. Successful implementation of these algorithms was achieved on various test problems.
Analysis of junior high school students' attempt to solve a linear inequality problem
Taqiyuddin, Muhammad; Sumiaty, Encum; Jupri, Al
2017-08-01
Linear inequality is one of fundamental subjects within junior high school mathematics curricula. Several studies have been conducted to asses students' perform on linear inequality. However, it can hardly be found that linear inequality problems are in the form of "ax + b condition leads to the research questions concerning students' attempt on solving a simple linear inequality problem in this form. In order to do so, the written test was administered to 58 students from two schools in Bandung followed by interviews. The other sources of the data are from teachers' interview and mathematics books used by students. After that, the constant comparative method was used to analyse the data. The result shows that the majority approached the question by doing algebraic operations. Interestingly, most of them did it incorrectly. In contrast, algebraic operations were correctly used by some of them. Moreover, the others performed expected-numbers solution, rewriting the question, translating the inequality into words, and blank answer. Furthermore, we found that there is no one who was conscious of the existence of all-numbers solution. It was found that this condition is reasonably due to how little the learning components concern about why a procedure of solving a linear inequality works and possibilities of linear inequality solution.
Efficient Implementation of the Riccati Recursion for Solving Linear-Quadratic Control Problems
Frison, Gianluca; Jørgensen, John Bagterp
2013-01-01
In both Active-Set (AS) and Interior-Point (IP) algorithms for Model Predictive Control (MPC), sub-problems in the form of linear-quadratic (LQ) control problems need to be solved at each iteration. The solution of these sub-problems is typically the main computational effort at each iteration....... In this paper, we compare a number of solvers for an extended formulation of the LQ control problem: a Riccati recursion based solver can be considered the best choice for the general problem with dense matrices. Furthermore, we present a novel version of the Riccati solver, that makes use of the Cholesky...... factorization of the Pn matrices to reduce the number of flops. When combined with regularization and mixed precision, this algorithm can solve large instances of the LQ control problem up to 3 times faster than the classical Riccati solver....
Sentis, R.
1984-07-01
The radiative transfer equations may be approximated by a non linear diffusion equation (called Rosseland equation) when the mean free paths of the photons are small with respect to the size of the medium. Some technical assomptions are made, namely about the initial conditions, to avoid any problem of initial layer terms
Visual, Algebraic and Mixed Strategies in Visually Presented Linear Programming Problems.
Shama, Gilli; Dreyfus, Tommy
1994-01-01
Identified and classified solution strategies of (n=49) 10th-grade students who were presented with linear programming problems in a predominantly visual setting in the form of a computerized game. Visual strategies were developed more frequently than either algebraic or mixed strategies. Appendix includes questionnaires. (Contains 11 references.)…
Remark on periodic boundary-value problem for second-order linear ordinary differential equations
Dosoudilová, M.; Lomtatidze, Alexander
2018-01-01
Roč. 2018, č. 13 (2018), s. 1-7 ISSN 1072-6691 Institutional support: RVO:67985840 Keywords : second-order linear equation * periodic boundary value problem * unique solvability Subject RIV: BA - General Mathematics OBOR OECD: Applied mathematics Impact factor: 0.954, year: 2016 https://ejde.math.txstate.edu/Volumes/2018/13/abstr.html
Kent, James; Holdaway, Daniel
2015-01-01
A number of geophysical applications require the use of the linearized version of the full model. One such example is in numerical weather prediction, where the tangent linear and adjoint versions of the atmospheric model are required for the 4DVAR inverse problem. The part of the model that represents the resolved scale processes of the atmosphere is known as the dynamical core. Advection, or transport, is performed by the dynamical core. It is a central process in many geophysical applications and is a process that often has a quasi-linear underlying behavior. However, over the decades since the advent of numerical modelling, significant effort has gone into developing many flavors of high-order, shape preserving, nonoscillatory, positive definite advection schemes. These schemes are excellent in terms of transporting the quantities of interest in the dynamical core, but they introduce nonlinearity through the use of nonlinear limiters. The linearity of the transport schemes used in Goddard Earth Observing System version 5 (GEOS-5), as well as a number of other schemes, is analyzed using a simple 1D setup. The linearized version of GEOS-5 is then tested using a linear third order scheme in the tangent linear version.
Minimization of Linear Functionals Defined on| Solutions of Large-Scale Discrete Ill-Posed Problems
Elden, Lars; Hansen, Per Christian; Rojas, Marielba
2003-01-01
The minimization of linear functionals de ned on the solutions of discrete ill-posed problems arises, e.g., in the computation of con dence intervals for these solutions. In 1990, Elden proposed an algorithm for this minimization problem based on a parametric-programming reformulation involving...... the solution of a sequence of trust-region problems, and using matrix factorizations. In this paper, we describe MLFIP, a large-scale version of this algorithm where a limited-memory trust-region solver is used on the subproblems. We illustrate the use of our algorithm in connection with an inverse heat...
A primal-dual exterior point algorithm for linear programming problems
Samaras Nikolaos
2009-01-01
Full Text Available The aim of this paper is to present a new simplex type algorithm for the Linear Programming Problem. The Primal - Dual method is a Simplex - type pivoting algorithm that generates two paths in order to converge to the optimal solution. The first path is primal feasible while the second one is dual feasible for the original problem. Specifically, we use a three-phase-implementation. The first two phases construct the required primal and dual feasible solutions, using the Primal Simplex algorithm. Finally, in the third phase the Primal - Dual algorithm is applied. Moreover, a computational study has been carried out, using randomly generated sparse optimal linear problems, to compare its computational efficiency with the Primal Simplex algorithm and also with MATLAB's Interior Point Method implementation. The algorithm appears to be very promising since it clearly shows its superiority to the Primal Simplex algorithm as well as its robustness over the IPM algorithm.
Weihua Jin
2013-01-01
Full Text Available This paper proposes a genetic-algorithms-based approach as an all-purpose problem-solving method for operation programming problems under uncertainty. The proposed method was applied for management of a municipal solid waste treatment system. Compared to the traditional interactive binary analysis, this approach has fewer limitations and is able to reduce the complexity in solving the inexact linear programming problems and inexact quadratic programming problems. The implementation of this approach was performed using the Genetic Algorithm Solver of MATLAB (trademark of MathWorks. The paper explains the genetic-algorithms-based method and presents details on the computation procedures for each type of inexact operation programming problems. A comparison of the results generated by the proposed method based on genetic algorithms with those produced by the traditional interactive binary analysis method is also presented.
Shen, Peiping; Zhang, Tongli; Wang, Chunfeng
2017-01-01
This article presents a new approximation algorithm for globally solving a class of generalized fractional programming problems (P) whose objective functions are defined as an appropriate composition of ratios of affine functions. To solve this problem, the algorithm solves an equivalent optimization problem (Q) via an exploration of a suitably defined nonuniform grid. The main work of the algorithm involves checking the feasibility of linear programs associated with the interesting grid points. It is proved that the proposed algorithm is a fully polynomial time approximation scheme as the ratio terms are fixed in the objective function to problem (P), based on the computational complexity result. In contrast to existing results in literature, the algorithm does not require the assumptions on quasi-concavity or low-rank of the objective function to problem (P). Numerical results are given to illustrate the feasibility and effectiveness of the proposed algorithm.
Hideki Katagiri
2017-10-01
Full Text Available This paper considers linear programming problems (LPPs where the objective functions involve discrete fuzzy random variables (fuzzy set-valued discrete random variables. New decision making models, which are useful in fuzzy stochastic environments, are proposed based on both possibility theory and probability theory. In multi-objective cases, Pareto optimal solutions of the proposed models are newly defined. Computational algorithms for obtaining the Pareto optimal solutions of the proposed models are provided. It is shown that problems involving discrete fuzzy random variables can be transformed into deterministic nonlinear mathematical programming problems which can be solved through a conventional mathematical programming solver under practically reasonable assumptions. A numerical example of agriculture production problems is given to demonstrate the applicability of the proposed models to real-world problems in fuzzy stochastic environments.
On the problem of linear calibration for a reading system of measuring devices
Shigaev, V.N.
1978-01-01
The problem of gauging the frame of reference of a measuring device has been giVen a general approach which consists in finding an approximated inverse transformation on the basis of a partial diagram of a direct transformation which is defined on a given set, D, within the limits of the device measuring range. The following linear models of frame of reference are discussed: a general oblique system; a rectangular system with axes having different scales; a rectangular system with similar scale axes. Linear distortion for two rectangular models has been assessed. It is pointed out that the best approximation to the reduction operation should be found over the D set
APPLYING ROBUST RANKING METHOD IN TWO PHASE FUZZY OPTIMIZATION LINEAR PROGRAMMING PROBLEMS (FOLPP
Monalisha Pattnaik
2014-12-01
Full Text Available Background: This paper explores the solutions to the fuzzy optimization linear program problems (FOLPP where some parameters are fuzzy numbers. In practice, there are many problems in which all decision parameters are fuzzy numbers, and such problems are usually solved by either probabilistic programming or multi-objective programming methods. Methods: In this paper, using the concept of comparison of fuzzy numbers, a very effective method is introduced for solving these problems. This paper extends linear programming based problem in fuzzy environment. With the problem assumptions, the optimal solution can still be theoretically solved using the two phase simplex based method in fuzzy environment. To handle the fuzzy decision variables can be initially generated and then solved and improved sequentially using the fuzzy decision approach by introducing robust ranking technique. Results and conclusions: The model is illustrated with an application and a post optimal analysis approach is obtained. The proposed procedure was programmed with MATLAB (R2009a version software for plotting the four dimensional slice diagram to the application. Finally, numerical example is presented to illustrate the effectiveness of the theoretical results, and to gain additional managerial insights.
Baofeng Cai
2017-08-01
Full Text Available The Interconnected River System Network Project (IRSNP is a significant water supply engineering project, which is capable of effectively utilizing flood resources to generate ecological value, by connecting 198 lakes and ponds in western Jilin, northeast China. In this article, an optimization research approach has been proposed to maximize the incremental value of IRSNP ecosystem services. A double-sided chance-constrained integer linear program (DCCILP method has been proposed to support the optimization, which can deal with uncertainties presented as integers or random parameters that appear on both sides of the decision variable at the same time. The optimal scheme indicates that after rational optimization, the total incremental value of ecosystem services from the interconnected river system network project increased 22.25%, providing an increase in benefits of 3.26 × 109 ¥ compared to the original scheme. Most of the functional area is swamp wetland, which provides the greatest ecological benefits. Adjustment services increased obviously, implying that the optimization scheme prioritizes ecological benefits rather than supply and production services.
Nurdan Cetin
2014-01-01
Full Text Available We consider a multiobjective linear fractional transportation problem (MLFTP with several fractional criteria, such as, the maximization of the transport profitability like profit/cost or profit/time, and its two properties are source and destination. Our aim is to introduce MLFTP which has not been studied in literature before and to provide a fuzzy approach which obtain a compromise Pareto-optimal solution for this problem. To do this, first, we present a theorem which shows that MLFTP is always solvable. And then, reducing MLFTP to the Zimmermann’s “min” operator model which is the max-min problem, we construct Generalized Dinkelbach’s Algorithm for solving the obtained problem. Furthermore, we provide an illustrative numerical example to explain this fuzzy approach.
Problems of systems dataware using optoelectronic measuring means of linear displacement
Bazykin, S. N.; Bazykina, N. A.; Samohina, K. S.
2017-10-01
Problems of the dataware of the systems with the use of optoelectronic means of the linear displacement are considered in the article. The classification of the known physical effects, realized by the means of information-measuring systems, is given. The organized analysis of information flows in technical systems from the standpoint of determination of inaccuracies of measurement and management was conducted. In spite of achieved successes in automation of machine-building and instruments-building equipment in the field of dataware of the technical systems, there are unresolved problems, concerning the qualitative aspect of the production process. It was shown that the given problem can be solved using optoelectronic lazer information-measuring systems. Such information-measuring systems are capable of not only executing the measuring functions, but also solving the problems of management and control during processing, thereby guaranteeing the quality of final products.
Jian Jinbao; Li Jianling; Mo Xingde
2006-01-01
This paper discusses a kind of optimization problem with linear complementarity constraints, and presents a sequential quadratic programming (SQP) algorithm for solving a stationary point of the problem. The algorithm is a modification of the SQP algorithm proposed by Fukushima et al. [Computational Optimization and Applications, 10 (1998),5-34], and is based on a reformulation of complementarity condition as a system of linear equations. At each iteration, one quadratic programming and one system of equations needs to be solved, and a curve search is used to yield the step size. Under some appropriate assumptions, including the lower-level strict complementarity, but without the upper-level strict complementarity for the inequality constraints, the algorithm is proved to possess strong convergence and superlinear convergence. Some preliminary numerical results are reported
A class of singular Ro-matrices and extensions to semidefinite linear complementarity problems
Sivakumar K.C.
2013-01-01
Full Text Available For ARnxn and qRn, the linear complementarity problem LCP(A, q is to determine if there is xRn such that x ≥ 0; y = Ax + q ≥ 0 and xT y = 0. Such an x is called a solution of LCP(A,q. A is called an Ro-matrix if LCP(A,0 has zero as the only solution. In this article, the class of R0-matrices is extended to include typically singular matrices, by requiring in addition that the solution x above belongs to a subspace of Rn. This idea is then extended to semidefinite linear complementarity problems, where a characterization is presented for the multplicative transformation.
Efficient Non-Linear Finite Element Implementation of Elasto-Plasticity for Geotechnical Problems
Clausen, Johan
-Coulomb yield criterion and the corresponding plastic potential possess corners and an apex, which causes numerical difficulties. A simple, elegant and efficient solution to these problems is presented in this thesis. The solution is based on a transformation into principal stress space and is valid for all...... linear isotropic plasticity models in which corners and apexes are encountered. The validity and merits of the proposed solution are examined in relation to the Mohr-Coulomb and the Modified Mohr-Coulomb material models. It is found that the proposed method compares well with existing methods......-Brown material. The efficiency and validity are demonstrated by comparing the finite-element results with well-known solutions for simple geometries. A common geotechnical problem is the assessment of slope stability. For slopes with simple geometries and consisting of a linear Mohr-Coulomb material, this can...
A New Spectral Local Linearization Method for Nonlinear Boundary Layer Flow Problems
S. S. Motsa
2013-01-01
Full Text Available We propose a simple and efficient method for solving highly nonlinear systems of boundary layer flow problems with exponentially decaying profiles. The algorithm of the proposed method is based on an innovative idea of linearizing and decoupling the governing systems of equations and reducing them into a sequence of subsystems of differential equations which are solved using spectral collocation methods. The applicability of the proposed method, hereinafter referred to as the spectral local linearization method (SLLM, is tested on some well-known boundary layer flow equations. The numerical results presented in this investigation indicate that the proposed method, despite being easy to develop and numerically implement, is very robust in that it converges rapidly to yield accurate results and is more efficient in solving very large systems of nonlinear boundary value problems of the similarity variable boundary layer type. The accuracy and numerical stability of the SLLM can further be improved by using successive overrelaxation techniques.
Mixed integer linear programming model for dynamic supplier selection problem considering discounts
Adi Wicaksono Purnawan
2018-01-01
Full Text Available Supplier selection is one of the most important elements in supply chain management. This function involves evaluation of many factors such as, material costs, transportation costs, quality, delays, supplier capacity, storage capacity and others. Each of these factors varies with time, therefore, supplier identified for one period is not necessarily be same for the next period to supply the same product. So, mixed integer linear programming (MILP was developed to overcome the dynamic supplier selection problem (DSSP. In this paper, a mixed integer linear programming model is built to solve the lot-sizing problem with multiple suppliers, multiple periods, multiple products and quantity discounts. The buyer has to make a decision for some products which will be supplied by some suppliers for some periods cosidering by discount. To validate the MILP model with randomly generated data. The model is solved by Lingo 16.
A Class of Optimal Portfolio Liquidation Problems with a Linear Decreasing Impact
Jiangming Ma
2017-01-01
Full Text Available A problem of an optimal liquidation is investigated by using the Almgren-Chriss market impact model on the background that the n agents liquidate assets completely. The impact of market is divided into three components: unaffected price process, permanent impact, and temporary impact. The key element is that the variable temporary market impact is analyzed. When the temporary market impact is decreasing linearly, the optimal problem is described by a Nash equilibrium in finite time horizon. The stochastic component of the price process is eliminated from the mean-variance. Mathematically, the Nash equilibrium is considered as the second-order linear differential equation with variable coefficients. We prove the existence and uniqueness of solutions for the differential equation with two boundaries and find the closed-form solutions in special situations. The numerical examples and properties of the solution are given. The corresponding finance phenomenon is interpreted.
On an Optimal -Control Problem in Coefficients for Linear Elliptic Variational Inequality
Olha P. Kupenko
2013-01-01
Full Text Available We consider optimal control problems for linear degenerate elliptic variational inequalities with homogeneous Dirichlet boundary conditions. We take the matrix-valued coefficients in the main part of the elliptic operator as controls in . Since the eigenvalues of such matrices may vanish and be unbounded in , it leads to the “noncoercivity trouble.” Using the concept of convergence in variable spaces and following the direct method in the calculus of variations, we establish the solvability of the optimal control problem in the class of the so-called -admissible solutions.
An investigation on the solutions for the linear inverse problem in gamma ray tomography
Araujo, Bruna G.M.; Dantas, Carlos C.; Santos, Valdemir A. dos; Finkler, Christine L.L.; Oliveira, Eric F. de; Melo, Silvio B.; Santos, M. Graca dos
2009-01-01
This paper the results obtained in single beam gamma ray tomography are investigated according to direct problem formulation and the applied solution for the linear system of equations. By image reconstruction based algebraic computational algorithms are used. The sparse under and over-determined linear system of equations was analyzed. Build in functions of Matlab software were applied and optimal solutions were investigate. Experimentally a section of the tube is scanned from various positions and at different angles. The solution, to find the vector of coefficients μ, from the vector of measured p values through the W matrix inversion, constitutes an inverse problem. A industrial tomography process requires a numerical solution of the system of equations. The definition of inverse problem according to Hadmard's is considered and as well the requirement of a well posed problem to find stable solutions. The formulation of the basis function and the computational algorithm to structure the weight matrix W were analyzed. For W full rank matrix the obtained solution is unique as expected. Total Least Squares was implemented which theory and computation algorithm gives adequate treatment for the problems due to non-unique solutions of the system of equations. Stability of the solution was investigating by means of a regularization technique and the comparison shows that it improves the results. An optimal solution as a function of the image quality, computation time and minimum residuals were quantified. The corresponding reconstructed images are shown in 3D graphics in order to compare with the solution. (author)
Lorber, A.A.; Carey, G.F.; Bova, S.W.; Harle, C.H. [Univ. of Texas, Austin, TX (United States)
1996-12-31
The connection between the solution of linear systems of equations by iterative methods and explicit time stepping techniques is used to accelerate to steady state the solution of ODE systems arising from discretized PDEs which may involve either physical or artificial transient terms. Specifically, a class of Runge-Kutta (RK) time integration schemes with extended stability domains has been used to develop recursion formulas which lead to accelerated iterative performance. The coefficients for the RK schemes are chosen based on the theory of Chebyshev iteration polynomials in conjunction with a local linear stability analysis. We refer to these schemes as Chebyshev Parameterized Runge Kutta (CPRK) methods. CPRK methods of one to four stages are derived as functions of the parameters which describe an ellipse {Epsilon} which the stability domain of the methods is known to contain. Of particular interest are two-stage, first-order CPRK and four-stage, first-order methods. It is found that the former method can be identified with any two-stage RK method through the correct choice of parameters. The latter method is found to have a wide range of stability domains, with a maximum extension of 32 along the real axis. Recursion performance results are presented below for a model linear convection-diffusion problem as well as non-linear fluid flow problems discretized by both finite-difference and finite-element methods.
Multi-point boundary value problems for linear functional-differential equations
Domoshnitsky, A.; Hakl, Robert; Půža, Bedřich
2017-01-01
Roč. 24, č. 2 (2017), s. 193-206 ISSN 1072-947X Institutional support: RVO:67985840 Keywords : boundary value problems * linear functional- differential equations * functional- differential inequalities Subject RIV: BA - General Mathematics OBOR OECD: Applied mathematics Impact factor: 0.290, year: 2016 https://www.degruyter.com/view/j/gmj.2017.24.issue-2/gmj-2016-0076/gmj-2016-0076.xml
Multi-point boundary value problems for linear functional-differential equations
Domoshnitsky, A.; Hakl, Robert; Půža, Bedřich
2017-01-01
Roč. 24, č. 2 (2017), s. 193-206 ISSN 1072-947X Institutional support: RVO:67985840 Keywords : boundary value problems * linear functional-differential equations * functional-differential inequalities Subject RIV: BA - General Mathematics OBOR OECD: Applied mathematics Impact factor: 0.290, year: 2016 https://www.degruyter.com/view/j/gmj.2017.24.issue-2/gmj-2016-0076/gmj-2016-0076. xml
Ito, Kazufumi; Teglas, Russell
1987-01-01
The numerical scheme based on the Legendre-tau approximation is proposed to approximate the feedback solution to the linear quadratic optimal control problem for hereditary differential systems. The convergence property is established using Trotter ideas. The method yields very good approximations at low orders and provides an approximation technique for computing closed-loop eigenvalues of the feedback system. A comparison with existing methods (based on averaging and spline approximations) is made.
On the Cauchy problem for a Sobolev-type equation with quadratic non-linearity
Aristov, Anatoly I
2011-01-01
We investigate the asymptotic behaviour as t→∞ of the solution of the Cauchy problem for a Sobolev-type equation with quadratic non-linearity and develop ideas used by I. A. Shishmarev and other authors in the study of classical and Sobolev-type equations. Conditions are found under which it is possible to consider the case of an arbitrary dimension of the spatial variable.
Ito, K.; Teglas, R.
1984-01-01
The numerical scheme based on the Legendre-tau approximation is proposed to approximate the feedback solution to the linear quadratic optimal control problem for hereditary differential systems. The convergence property is established using Trotter ideas. The method yields very good approximations at low orders and provides an approximation technique for computing closed-loop eigenvalues of the feedback system. A comparison with existing methods (based on averaging and spline approximations) is made.
FUNDAMENTAL MATRIX OF LINEAR CONTINUOUS SYSTEM IN THE PROBLEM OF ESTIMATING ITS TRANSPORT DELAY
N. A. Dudarenko
2014-09-01
Full Text Available The paper deals with the problem of quantitative estimation for transport delay of linear continuous systems. The main result is received by means of fundamental matrix of linear differential equations solutions specified in the normal Cauchy form for the cases of SISO and MIMO systems. Fundamental matrix has the dual property. It means that the weight function of the system can be formed as a free motion of systems. Last one is generated by the vector of initial system conditions, which coincides with the matrix input of the system being researched. Thus, using the properties of the system- solving for fundamental matrix has given the possibility to solve the problem of estimating transport linear continuous system delay without the use of derivation procedure in hardware environment and without formation of exogenous Dirac delta function. The paper is illustrated by examples. The obtained results make it possible to solve the problem of modeling the pure delay links using consecutive chain of aperiodic links of the first order with the equal time constants. Modeling results have proved the correctness of obtained computations. Knowledge of transport delay can be used when configuring multi- component technological complexes and in the diagnosis of their possible functional degeneration.
Stability of multi-objective bi-level linear programming problems under fuzziness
Abo-Sinna Mahmoud A.
2013-01-01
Full Text Available This paper deals with multi-objective bi-level linear programming problems under fuzzy environment. In the proposed method, tentative solutions are obtained and evaluated by using the partial information on preference of the decision-makers at each level. The existing results concerning the qualitative analysis of some basic notions in parametric linear programming problems are reformulated to study the stability of multi-objective bi-level linear programming problems. An algorithm for obtaining any subset of the parametric space, which has the same corresponding Pareto optimal solution, is presented. Also, this paper established the model for the supply-demand interaction in the age of electronic commerce (EC. First of all, the study uses the individual objectives of both parties as the foundation of the supply-demand interaction. Subsequently, it divides the interaction, in the age of electronic commerce, into the following two classifications: (i Market transactions, with the primary focus on the supply demand relationship in the marketplace; and (ii Information service, with the primary focus on the provider and the user of information service. By applying the bi-level programming technique of interaction process, the study will develop an analytical process to explain how supply-demand interaction achieves a compromise or why the process fails. Finally, a numerical example of information service is provided for the sake of illustration.
A parallel algorithm for solving linear equations arising from one-dimensional network problems
Mesina, G.L.
1991-01-01
One-dimensional (1-D) network problems, such as those arising from 1- D fluid simulations and electrical circuitry, produce systems of sparse linear equations which are nearly tridiagonal and contain a few non-zero entries outside the tridiagonal. Most direct solution techniques for such problems either do not take advantage of the special structure of the matrix or do not fully utilize parallel computer architectures. We describe a new parallel direct linear equation solution algorithm, called TRBR, which is especially designed to take advantage of this structure on MIMD shared memory machines. The new method belongs to a family of methods which split the coefficient matrix into the sum of a tridiagonal matrix T and a matrix comprised of the remaining coefficients R. Efficient tridiagonal methods are used to algebraically simplify the linear system. A smaller auxiliary subsystem is created and solved and its solution is used to calculate the solution of the original system. The newly devised BR method solves the subsystem. The serial and parallel operation counts are given for the new method and related earlier methods. TRBR is shown to have the smallest operation count in this class of direct methods. Numerical results are given. Although the algorithm is designed for one-dimensional networks, it has been applied successfully to three-dimensional problems as well. 20 refs., 2 figs., 4 tabs
Scilab software as an alternative low-cost computing in solving the linear equations problem
Agus, Fahrul; Haviluddin
2017-02-01
Numerical computation packages are widely used both in teaching and research. These packages consist of license (proprietary) and open source software (non-proprietary). One of the reasons to use the package is a complexity of mathematics function (i.e., linear problems). Also, number of variables in a linear or non-linear function has been increased. The aim of this paper was to reflect on key aspects related to the method, didactics and creative praxis in the teaching of linear equations in higher education. If implemented, it could be contribute to a better learning in mathematics area (i.e., solving simultaneous linear equations) that essential for future engineers. The focus of this study was to introduce an additional numerical computation package of Scilab as an alternative low-cost computing programming. In this paper, Scilab software was proposed some activities that related to the mathematical models. In this experiment, four numerical methods such as Gaussian Elimination, Gauss-Jordan, Inverse Matrix, and Lower-Upper Decomposition (LU) have been implemented. The results of this study showed that a routine or procedure in numerical methods have been created and explored by using Scilab procedures. Then, the routine of numerical method that could be as a teaching material course has exploited.
A linear programming approach to max-sum problem: a review.
Werner, Tomás
2007-07-01
The max-sum labeling problem, defined as maximizing a sum of binary (i.e., pairwise) functions of discrete variables, is a general NP-hard optimization problem with many applications, such as computing the MAP configuration of a Markov random field. We review a not widely known approach to the problem, developed by Ukrainian researchers Schlesinger et al. in 1976, and show how it contributes to recent results, most importantly, those on the convex combination of trees and tree-reweighted max-product. In particular, we review Schlesinger et al.'s upper bound on the max-sum criterion, its minimization by equivalent transformations, its relation to the constraint satisfaction problem, the fact that this minimization is dual to a linear programming relaxation of the original problem, and the three kinds of consistency necessary for optimality of the upper bound. We revisit problems with Boolean variables and supermodular problems. We describe two algorithms for decreasing the upper bound. We present an example application for structural image analysis.
EL-Nabulsi, Ahmad Rami [Department of Nuclear and Energy Engineering, Cheju National University, Ara-dong 1, Jeju 690-756 (Korea, Republic of)], E-mail: nabulsiahmadrami@yahoo.fr
2009-10-15
We communicate through this work the fractional calculus of variations and its corresponding Euler-Lagrange equations in 1D constrained holonomic, non-holonomic, and semi-holonomic dissipative dynamical system. The extension of the laws obtained to the 2D space state is done. Some interesting consequences are revealed.
Implementation of a multi-layer perception for a non-linear control problem
Lister, J.B.; Schnurrenberger, H.; Marmillod, P.
1990-12-01
We present the practical application of a 1-hidden-layer multilayer perception (MLP) to provide a non-linear continuous multi-variable mapping with 42 inputs and 13 outputs. The problem resolved is one of extracting information from experimental signals with a bandwidth of many kilohertz. We have an exact model of the inverse mapping of this problem, but we have no explicit form of the required forward mapping. This is the typical situation in data interpretation. The MLP was trained to provide this mapping by learning on 500 input-output examples. The success of the off-line solution to this problem using an MLP led us to examine the robustness of the MLP to different noise sources. We found that the MLP is more robust than an approximate linear mapping of the same problem. 12 bits of resolution in the weights are necessary to avoid a significant loss of precision. The practical implementation of large analog weight matrices using DAS-multipliers and a simple segmented sigmoid is also presented. A General Adaptive Recipe (GAR) for improving the performance of conventional back-propagation was developed. The GAR uses an adaptive step length and both the bias terms and the initial weight seeding are determined by the network size. The GAR was found to be robust and much faster than conventional back-propagation. (author) 20 figs., 1 tab., 15 refs
Arbitrary Lagrangian-Eulerian method for non-linear problems of geomechanics
Nazem, M; Carter, J P; Airey, D W
2010-01-01
In many geotechnical problems it is vital to consider the geometrical non-linearity caused by large deformation in order to capture a more realistic model of the true behaviour. The solutions so obtained should then be more accurate and reliable, which should ultimately lead to cheaper and safer design. The Arbitrary Lagrangian-Eulerian (ALE) method originated from fluid mechanics, but has now been well established for solving large deformation problems in geomechanics. This paper provides an overview of the ALE method and its challenges in tackling problems involving non-linearities due to material behaviour, large deformation, changing boundary conditions and time-dependency, including material rate effects and inertia effects in dynamic loading applications. Important aspects of ALE implementation into a finite element framework will also be discussed. This method is then employed to solve some interesting and challenging geotechnical problems such as the dynamic bearing capacity of footings on soft soils, consolidation of a soil layer under a footing, and the modelling of dynamic penetration of objects into soil layers.
Barari, Amin; Ganjavi, B.; Jeloudar, M. Ghanbari
2010-01-01
and fluid mechanics. Design/methodology/approach – Two new but powerful analytical methods, namely, He's VIM and HPM, are introduced to solve some boundary value problems in structural engineering and fluid mechanics. Findings – Analytical solutions often fit under classical perturbation methods. However......, as with other analytical techniques, certain limitations restrict the wide application of perturbation methods, most important of which is the dependence of these methods on the existence of a small parameter in the equation. Disappointingly, the majority of nonlinear problems have no small parameter at all......Purpose – In the last two decades with the rapid development of nonlinear science, there has appeared ever-increasing interest of scientists and engineers in the analytical techniques for nonlinear problems. This paper considers linear and nonlinear systems that are not only regarded as general...
IESIP - AN IMPROVED EXPLORATORY SEARCH TECHNIQUE FOR PURE INTEGER LINEAR PROGRAMMING PROBLEMS
Fogle, F. R.
1994-01-01
IESIP, an Improved Exploratory Search Technique for Pure Integer Linear Programming Problems, addresses the problem of optimizing an objective function of one or more variables subject to a set of confining functions or constraints by a method called discrete optimization or integer programming. Integer programming is based on a specific form of the general linear programming problem in which all variables in the objective function and all variables in the constraints are integers. While more difficult, integer programming is required for accuracy when modeling systems with small numbers of components such as the distribution of goods, machine scheduling, and production scheduling. IESIP establishes a new methodology for solving pure integer programming problems by utilizing a modified version of the univariate exploratory move developed by Robert Hooke and T.A. Jeeves. IESIP also takes some of its technique from the greedy procedure and the idea of unit neighborhoods. A rounding scheme uses the continuous solution found by traditional methods (simplex or other suitable technique) and creates a feasible integer starting point. The Hook and Jeeves exploratory search is modified to accommodate integers and constraints and is then employed to determine an optimal integer solution from the feasible starting solution. The user-friendly IESIP allows for rapid solution of problems up to 10 variables in size (limited by DOS allocation). Sample problems compare IESIP solutions with the traditional branch-and-bound approach. IESIP is written in Borland's TURBO Pascal for IBM PC series computers and compatibles running DOS. Source code and an executable are provided. The main memory requirement for execution is 25K. This program is available on a 5.25 inch 360K MS DOS format diskette. IESIP was developed in 1990. IBM is a trademark of International Business Machines. TURBO Pascal is registered by Borland International.
Gupta, R. K.; Bhunia, A. K.; Roy, D.
2009-10-01
In this paper, we have considered the problem of constrained redundancy allocation of series system with interval valued reliability of components. For maximizing the overall system reliability under limited resource constraints, the problem is formulated as an unconstrained integer programming problem with interval coefficients by penalty function technique and solved by an advanced GA for integer variables with interval fitness function, tournament selection, uniform crossover, uniform mutation and elitism. As a special case, considering the lower and upper bounds of the interval valued reliabilities of the components to be the same, the corresponding problem has been solved. The model has been illustrated with some numerical examples and the results of the series redundancy allocation problem with fixed value of reliability of the components have been compared with the existing results available in the literature. Finally, sensitivity analyses have been shown graphically to study the stability of our developed GA with respect to the different GA parameters.
Comments on the comparison of global methods for linear two-point boundary value problems
de Boor, C.; Swartz, B.
1977-01-01
A more careful count of the operations involved in solving the linear system associated with collocation of a two-point boundary value problem using a rough splines reverses results recently reported by others in this journal. In addition, it is observed that the use of the technique of ''condensation of parameters'' can decrease the computer storage required. Furthermore, the use of a particular highly localized basis can also reduce the setup time when the mesh is irregular. Finally, operation counts are roughly estimated for the solution of certain linear system associated with two competing collocation methods; namely, collocation with smooth splines and collocation of the equivalent first order system with continuous piecewise polynomials
Li, Yanning
2013-10-01
This article presents a new robust control framework for transportation problems in which the state is modeled by a first order scalar conservation law. Using an equivalent formulation based on a Hamilton-Jacobi equation, we pose the problem of controlling the state of the system on a network link, using boundary flow control, as a Linear Program. Unlike many previously investigated transportation control schemes, this method yields a globally optimal solution and is capable of handling shocks (i.e. discontinuities in the state of the system). We also demonstrate that the same framework can handle robust control problems, in which the uncontrollable components of the initial and boundary conditions are encoded in intervals on the right hand side of inequalities in the linear program. The lower bound of the interval which defines the smallest feasible solution set is used to solve the robust LP (or MILP if the objective function depends on boolean variables). Since this framework leverages the intrinsic properties of the Hamilton-Jacobi equation used to model the state of the system, it is extremely fast. Several examples are given to demonstrate the performance of the robust control solution and the trade-off between the robustness and the optimality. © 2013 IEEE.
Li, Yanning; Canepa, Edward S.; Claudel, Christian G.
2013-01-01
This article presents a new robust control framework for transportation problems in which the state is modeled by a first order scalar conservation law. Using an equivalent formulation based on a Hamilton-Jacobi equation, we pose the problem of controlling the state of the system on a network link, using boundary flow control, as a Linear Program. Unlike many previously investigated transportation control schemes, this method yields a globally optimal solution and is capable of handling shocks (i.e. discontinuities in the state of the system). We also demonstrate that the same framework can handle robust control problems, in which the uncontrollable components of the initial and boundary conditions are encoded in intervals on the right hand side of inequalities in the linear program. The lower bound of the interval which defines the smallest feasible solution set is used to solve the robust LP (or MILP if the objective function depends on boolean variables). Since this framework leverages the intrinsic properties of the Hamilton-Jacobi equation used to model the state of the system, it is extremely fast. Several examples are given to demonstrate the performance of the robust control solution and the trade-off between the robustness and the optimality. © 2013 IEEE.
A feasible DY conjugate gradient method for linear equality constraints
LI, Can
2017-09-01
In this paper, we propose a feasible conjugate gradient method for solving linear equality constrained optimization problem. The method is an extension of the Dai-Yuan conjugate gradient method proposed by Dai and Yuan to linear equality constrained optimization problem. It can be applied to solve large linear equality constrained problem due to lower storage requirement. An attractive property of the method is that the generated direction is always feasible and descent direction. Under mild conditions, the global convergence of the proposed method with exact line search is established. Numerical experiments are also given which show the efficiency of the method.
Boundary value problems of the circular cylinders in the strain-gradient theory of linear elasticity
Kao, B.G.
1979-11-01
Three boundary value problems in the strain-gradient theory of linear elasticity are solved for circular cylinders. They are the twisting of circular cylinder, uniformly pressuring of concentric circular cylinder, and pure-bending of simply connected cylinder. The comparisons of these solutions with the solutions in classical elasticity and in couple-stress theory reveal the differences in the stress fields as well as the apparent stress fields due to the influences of the strain-gradient. These aspects of the strain-gradient theory could be important in modeling the failure behavior of structural materials
Cetin, Bilge Kartal; Prasad, Neeli R.; Prasad, Ramjee
2011-01-01
In wireless sensor networks, one of the key challenge is to achieve minimum energy consumption in order to maximize network lifetime. In fact, lifetime depends on many parameters: the topology of the sensor network, the data aggregation regime in the network, the channel access schemes, the routing...... protocols, and the energy model for transmission. In this paper, we tackle the routing challenge for maximum lifetime of the sensor network. We introduce a novel linear programming approach to the maximum lifetime routing problem. To the best of our knowledge, this is the first mathematical programming...
Noack, K.
1982-01-01
The perturbation source method may be a powerful Monte-Carlo means to calculate small effects in a particle field. In a preceding paper we have formulated this methos in inhomogeneous linear particle transport problems describing the particle fields by solutions of Fredholm integral equations and have derived formulae for the second moment of the difference event point estimator. In the present paper we analyse the general structure of its variance, point out the variance peculiarities, discuss the dependence on certain transport games and on generation procedures of the auxiliary particles and draw conclusions to improve this method
Solving the linear radiation problem using a volume method on an overset grid
Read, Robert; Bingham, Harry B.
2012-01-01
of numerical results with established analytical solutions. The linear radiation problem is considered in this paper. A two-dimensional computational tool has been developed to calculate the force applied to a floating body of arbitrary form in response to a prescribed displacement. Fourier transforms......This paper describes recent progress towards the development of a computational tool, based on potential ow theory, that can accurately and effciently simulate wave-induced loadings on marine structures. Engsig-Karup et al. (2009) have successfully developed an arbitrary-order, finite...
Pseudoinverse preconditioners and iterative methods for large dense linear least-squares problems
Oskar Cahueñas
2013-05-01
Full Text Available We address the issue of approximating the pseudoinverse of the coefficient matrix for dynamically building preconditioning strategies for the numerical solution of large dense linear least-squares problems. The new preconditioning strategies are embedded into simple and well-known iterative schemes that avoid the use of the, usually ill-conditioned, normal equations. We analyze a scheme to approximate the pseudoinverse, based on Schulz iterative method, and also different iterative schemes, based on extensions of Richardson's method, and the conjugate gradient method, that are suitable for preconditioning strategies. We present preliminary numerical results to illustrate the advantages of the proposed schemes.
Aihong Ren
2016-01-01
This paper is concerned with a class of fully fuzzy bilevel linear programming problems where all the coefficients and decision variables of both objective functions and the constraints are fuzzy numbers. A new approach based on deviation degree measures and a ranking function method is proposed to solve these problems. We first introduce concepts of the feasible region and the fuzzy optimal solution of a fully fuzzy bilevel linear programming problem. In order to obtain a fuzzy optimal solut...
Huang Zhenghai; Gu Weizhe
2008-01-01
In this paper, we construct an augmented system of the standard monotone linear complementarity problem (LCP), and establish the relations between the augmented system and the LCP. We present a smoothing-type algorithm for solving the augmented system. The algorithm is shown to be globally convergent without assuming any prior knowledge of feasibility/infeasibility of the problem. In particular, if the LCP has a solution, then the algorithm either generates a maximal complementary solution of the LCP or detects correctly solvability of the LCP, and in the latter case, an existing smoothing-type algorithm can be directly applied to solve the LCP without any additional assumption and it generates a maximal complementary solution of the LCP; and that if the LCP is infeasible, then the algorithm detect correctly infeasibility of the LCP. To the best of our knowledge, such properties have not appeared in the existing literature for smoothing-type algorithms
Perturbation-Based Regularization for Signal Estimation in Linear Discrete Ill-posed Problems
Suliman, Mohamed Abdalla Elhag; Ballal, Tarig; Al-Naffouri, Tareq Y.
2016-01-01
Estimating the values of unknown parameters from corrupted measured data faces a lot of challenges in ill-posed problems. In such problems, many fundamental estimation methods fail to provide a meaningful stabilized solution. In this work, we propose a new regularization approach and a new regularization parameter selection approach for linear least-squares discrete ill-posed problems. The proposed approach is based on enhancing the singular-value structure of the ill-posed model matrix to acquire a better solution. Unlike many other regularization algorithms that seek to minimize the estimated data error, the proposed approach is developed to minimize the mean-squared error of the estimator which is the objective in many typical estimation scenarios. The performance of the proposed approach is demonstrated by applying it to a large set of real-world discrete ill-posed problems. Simulation results demonstrate that the proposed approach outperforms a set of benchmark regularization methods in most cases. In addition, the approach also enjoys the lowest runtime and offers the highest level of robustness amongst all the tested benchmark regularization methods.
Perturbation-Based Regularization for Signal Estimation in Linear Discrete Ill-posed Problems
Suliman, Mohamed Abdalla Elhag
2016-11-29
Estimating the values of unknown parameters from corrupted measured data faces a lot of challenges in ill-posed problems. In such problems, many fundamental estimation methods fail to provide a meaningful stabilized solution. In this work, we propose a new regularization approach and a new regularization parameter selection approach for linear least-squares discrete ill-posed problems. The proposed approach is based on enhancing the singular-value structure of the ill-posed model matrix to acquire a better solution. Unlike many other regularization algorithms that seek to minimize the estimated data error, the proposed approach is developed to minimize the mean-squared error of the estimator which is the objective in many typical estimation scenarios. The performance of the proposed approach is demonstrated by applying it to a large set of real-world discrete ill-posed problems. Simulation results demonstrate that the proposed approach outperforms a set of benchmark regularization methods in most cases. In addition, the approach also enjoys the lowest runtime and offers the highest level of robustness amongst all the tested benchmark regularization methods.
Ruggeri, Fabrizio
2016-05-12
In this work we develop a Bayesian setting to infer unknown parameters in initial-boundary value problems related to linear parabolic partial differential equations. We realistically assume that the boundary data are noisy, for a given prescribed initial condition. We show how to derive the joint likelihood function for the forward problem, given some measurements of the solution field subject to Gaussian noise. Given Gaussian priors for the time-dependent Dirichlet boundary values, we analytically marginalize the joint likelihood using the linearity of the equation. Our hierarchical Bayesian approach is fully implemented in an example that involves the heat equation. In this example, the thermal diffusivity is the unknown parameter. We assume that the thermal diffusivity parameter can be modeled a priori through a lognormal random variable or by means of a space-dependent stationary lognormal random field. Synthetic data are used to test the inference. We exploit the behavior of the non-normalized log posterior distribution of the thermal diffusivity. Then, we use the Laplace method to obtain an approximated Gaussian posterior and therefore avoid costly Markov Chain Monte Carlo computations. Expected information gains and predictive posterior densities for observable quantities are numerically estimated using Laplace approximation for different experimental setups.
Rubio Gerardo
2011-03-01
Full Text Available We consider the Cauchy problem in ℝd for a class of semilinear parabolic partial differential equations that arises in some stochastic control problems. We assume that the coefficients are unbounded and locally Lipschitz, not necessarily differentiable, with continuous data and local uniform ellipticity. We construct a classical solution by approximation with linear parabolic equations. The linear equations involved can not be solved with the traditional results. Therefore, we construct a classical solution to the linear Cauchy problem under the same hypotheses on the coefficients for the semilinear equation. Our approach is using stochastic differential equations and parabolic differential equations in bounded domains. Finally, we apply the results to a stochastic optimal consumption problem. Nous considérons le problème de Cauchy dans ℝd pour une classe d’équations aux dérivées partielles paraboliques semi linéaires qui se pose dans certains problèmes de contrôle stochastique. Nous supposons que les coefficients ne sont pas bornés et sont localement Lipschitziennes, pas nécessairement différentiables, avec des données continues et ellipticité local uniforme. Nous construisons une solution classique par approximation avec les équations paraboliques linéaires. Les équations linéaires impliquées ne peuvent être résolues avec les résultats traditionnels. Par conséquent, nous construisons une solution classique au problème de Cauchy linéaire sous les mêmes hypothèses sur les coefficients pour l’équation semi-linéaire. Notre approche utilise les équations différentielles stochastiques et les équations différentielles paraboliques dans les domaines bornés. Enfin, nous appliquons les résultats à un problème stochastique de consommation optimale.
Guliyev, Namig J.
2008-01-01
International audience; Inverse problems of recovering the coefficients of Sturm–Liouville problems with the eigenvalue parameter linearly contained in one of the boundary conditions are studied: 1) from the sequences of eigenvalues and norming constants; 2) from two spectra. Necessary and sufficient conditions for the solvability of these inverse problems are obtained.
Evolutionary constrained optimization
Deb, Kalyanmoy
2015-01-01
This book makes available a self-contained collection of modern research addressing the general constrained optimization problems using evolutionary algorithms. Broadly the topics covered include constraint handling for single and multi-objective optimizations; penalty function based methodology; multi-objective based methodology; new constraint handling mechanism; hybrid methodology; scaling issues in constrained optimization; design of scalable test problems; parameter adaptation in constrained optimization; handling of integer, discrete and mix variables in addition to continuous variables; application of constraint handling techniques to real-world problems; and constrained optimization in dynamic environment. There is also a separate chapter on hybrid optimization, which is gaining lots of popularity nowadays due to its capability of bridging the gap between evolutionary and classical optimization. The material in the book is useful to researchers, novice, and experts alike. The book will also be useful...
Carey, G.F.; Young, D.M.
1993-12-31
The program outlined here is directed to research on methods, algorithms, and software for distributed parallel supercomputers. Of particular interest are finite element methods and finite difference methods together with sparse iterative solution schemes for scientific and engineering computations of very large-scale systems. Both linear and nonlinear problems will be investigated. In the nonlinear case, applications with bifurcation to multiple solutions will be considered using continuation strategies. The parallelizable numerical methods of particular interest are a family of partitioning schemes embracing domain decomposition, element-by-element strategies, and multi-level techniques. The methods will be further developed incorporating parallel iterative solution algorithms with associated preconditioners in parallel computer software. The schemes will be implemented on distributed memory parallel architectures such as the CRAY MPP, Intel Paragon, the NCUBE3, and the Connection Machine. We will also consider other new architectures such as the Kendall-Square (KSQ) and proposed machines such as the TERA. The applications will focus on large-scale three-dimensional nonlinear flow and reservoir problems with strong convective transport contributions. These are legitimate grand challenge class computational fluid dynamics (CFD) problems of significant practical interest to DOE. The methods developed and algorithms will, however, be of wider interest.
An improved exploratory search technique for pure integer linear programming problems
Fogle, F. R.
1990-01-01
The development is documented of a heuristic method for the solution of pure integer linear programming problems. The procedure draws its methodology from the ideas of Hooke and Jeeves type 1 and 2 exploratory searches, greedy procedures, and neighborhood searches. It uses an efficient rounding method to obtain its first feasible integer point from the optimal continuous solution obtained via the simplex method. Since this method is based entirely on simple addition or subtraction of one to each variable of a point in n-space and the subsequent comparison of candidate solutions to a given set of constraints, it facilitates significant complexity improvements over existing techniques. It also obtains the same optimal solution found by the branch-and-bound technique in 44 of 45 small to moderate size test problems. Two example problems are worked in detail to show the inner workings of the method. Furthermore, using an established weighted scheme for comparing computational effort involved in an algorithm, a comparison of this algorithm is made to the more established and rigorous branch-and-bound method. A computer implementation of the procedure, in PC compatible Pascal, is also presented and discussed.
Takabe, Satoshi; Hukushima, Koji
2016-05-01
Typical behavior of the linear programming (LP) problem is studied as a relaxation of the minimum vertex cover (min-VC), a type of integer programming (IP) problem. A lattice-gas model on the Erdös-Rényi random graphs of α-uniform hyperedges is proposed to express both the LP and IP problems of the min-VC in the common statistical mechanical model with a one-parameter family. Statistical mechanical analyses reveal for α=2 that the LP optimal solution is typically equal to that given by the IP below the critical average degree c=e in the thermodynamic limit. The critical threshold for good accuracy of the relaxation extends the mathematical result c=1 and coincides with the replica symmetry-breaking threshold of the IP. The LP relaxation for the minimum hitting sets with α≥3, minimum vertex covers on α-uniform random graphs, is also studied. Analytic and numerical results strongly suggest that the LP relaxation fails to estimate optimal values above the critical average degree c=e/(α-1) where the replica symmetry is broken.
Takabe, Satoshi; Hukushima, Koji
2016-05-01
Typical behavior of the linear programming (LP) problem is studied as a relaxation of the minimum vertex cover (min-VC), a type of integer programming (IP) problem. A lattice-gas model on the Erdös-Rényi random graphs of α -uniform hyperedges is proposed to express both the LP and IP problems of the min-VC in the common statistical mechanical model with a one-parameter family. Statistical mechanical analyses reveal for α =2 that the LP optimal solution is typically equal to that given by the IP below the critical average degree c =e in the thermodynamic limit. The critical threshold for good accuracy of the relaxation extends the mathematical result c =1 and coincides with the replica symmetry-breaking threshold of the IP. The LP relaxation for the minimum hitting sets with α ≥3 , minimum vertex covers on α -uniform random graphs, is also studied. Analytic and numerical results strongly suggest that the LP relaxation fails to estimate optimal values above the critical average degree c =e /(α -1 ) where the replica symmetry is broken.
G. M. Behery
2009-01-01
Full Text Available This paper presents an automatic system of neural networks (NNs that has the ability to simulate and predict many of applied problems. The system architectures are automatically reorganized and the experimental process starts again, if the required performance is not reached. This processing is continued until the performance obtained. This system is first applied and tested on the two spiral problem; it shows that excellent generalization performance obtained by classifying all points of the two-spirals correctly. After that, it is applied and tested on the shear stress and the pressure drop problem across the short orifice die as a function of shear rate at different mean pressures for linear low-density polyethylene copolymer (LLDPE at 190∘C. The system shows a better agreement with an experimental data of the two cases: shear stress and pressure drop. The proposed system has been also designed to simulate other distributions not presented in the training set (predicted and matched them effectively.
Dotti, Gustavo; Gleiser, Reinaldo J [Facultad de Matematica, AstronomIa y Fisica (FaMAF), Universidad Nacional de Cordoba, Ciudad Universitaria, 5000 Cordoba (Argentina)
2009-11-07
The coupled equations for the scalar modes of the linearized Einstein equations around Schwarzschild's spacetime were reduced by Zerilli to a (1+1) wave equation partial deriv{sup 2}PSI{sub z} /partial derivt{sup 2} +HPSI{sub z} =0, where H= -partial deriv{sup 2} /partial derivx{sup 2} + V(x) is the Zerilli 'Hamiltonian' and x is the tortoise radial coordinate. From its definition, for smooth metric perturbations the field PSI{sub z} is singular at r{sub s} = -6M/(l - 1)(l +2), with l being the mode harmonic number. The equation PSI{sub z} obeys is also singular, since V has a second-order pole at r{sub s}. This is irrelevant to the black hole exterior stability problem, where r > 2M > 0, and r{sub s} < 0, but it introduces a non-trivial problem in the naked singular case where M < 0, then r{sub s} > 0, and the singularity appears in the relevant range of r (0 < r < infinity). We solve this problem by developing a new approach to the evolution of the even mode, based on a new gauge invariant function, PSI-circumflex, that is a regular function of the metric perturbation for any value of M. The relation of PSI-circumflex to PSI{sub z} is provided by an intertwiner operator. The spatial pieces of the (1 + 1) wave equations that PSI-circumflex and PSI{sub z} obey are related as a supersymmetric pair of quantum Hamiltonians H and H-circumflex. For M < 0,H-circumflex has a regular potential and a unique self-adjoint extension in a domain D defined by a physically motivated boundary condition at r = 0. This allows us to address the issue of evolution of gravitational perturbations in this non-globally hyperbolic background. This formulation is used to complete the proof of the linear instability of the Schwarzschild naked singularity, by showing that a previously found unstable mode belongs to a complete basis of H-circumflex in D, and thus is excitable by generic initial data. This is further illustrated by numerically solving the linearized equations for
Kerschke, Pascal
2017-01-01
Choosing the best-performing optimizer(s) out of a portfolio of optimization algorithms is usually a difficult and complex task. It gets even worse, if the underlying functions are unknown, i.e., so-called Black-Box problems, and function evaluations are considered to be expensive. In the case of continuous single-objective optimization problems, Exploratory Landscape Analysis (ELA) - a sophisticated and effective approach for characterizing the landscapes of such problems by means of numeric...
Online constrained model-based reinforcement learning
Van Niekerk, B
2017-08-01
Full Text Available Constrained Model-based Reinforcement Learning Benjamin van Niekerk School of Computer Science University of the Witwatersrand South Africa Andreas Damianou∗ Amazon.com Cambridge, UK Benjamin Rosman Council for Scientific and Industrial Research, and School... MULTIPLE SHOOTING Using direct multiple shooting (Bock and Plitt, 1984), problem (1) can be transformed into a structured non- linear program (NLP). First, the time horizon [t0, t0 + T ] is partitioned into N equal subintervals [tk, tk+1] for k = 0...
Casas, E.; Troeltzsch, F.
1999-01-01
In this paper we are concerned with some optimal control problems governed by semilinear elliptic equations. The case of a boundary control is studied. We consider pointwise constraints on the control and a finite number of equality and inequality constraints on the state. The goal is to derive first- and second-order optimality conditions satisfied by locally optimal solutions of the problem
Banks, H. T.; Ito, K.
1991-01-01
A hybrid method for computing the feedback gains in linear quadratic regulator problem is proposed. The method, which combines use of a Chandrasekhar type system with an iteration of the Newton-Kleinman form with variable acceleration parameter Smith schemes, is formulated to efficiently compute directly the feedback gains rather than solutions of an associated Riccati equation. The hybrid method is particularly appropriate when used with large dimensional systems such as those arising in approximating infinite-dimensional (distributed parameter) control systems (e.g., those governed by delay-differential and partial differential equations). Computational advantages of the proposed algorithm over the standard eigenvector (Potter, Laub-Schur) based techniques are discussed, and numerical evidence of the efficacy of these ideas is presented.
Optimal Stochastic Control Problem for General Linear Dynamical Systems in Neuroscience
Yan Chen
2017-01-01
Full Text Available This paper considers a d-dimensional stochastic optimization problem in neuroscience. Suppose the arm’s movement trajectory is modeled by high-order linear stochastic differential dynamic system in d-dimensional space, the optimal trajectory, velocity, and variance are explicitly obtained by using stochastic control method, which allows us to analytically establish exact relationships between various quantities. Moreover, the optimal trajectory is almost a straight line for a reaching movement; the optimal velocity bell-shaped and the optimal variance are consistent with the experimental Fitts law; that is, the longer the time of a reaching movement, the higher the accuracy of arriving at the target position, and the results can be directly applied to designing a reaching movement performed by a robotic arm in a more general environment.
On the global "two-sided" characteristic Cauchy problem for linear wave equations on manifolds
Lupo, Umberto
2018-04-01
The global characteristic Cauchy problem for linear wave equations on globally hyperbolic Lorentzian manifolds is examined, for a class of smooth initial value hypersurfaces satisfying favourable global properties. First it is shown that, if geometrically well-motivated restrictions are placed on the supports of the (smooth) initial datum and of the (smooth) inhomogeneous term, then there exists a continuous global solution which is smooth "on each side" of the initial value hypersurface. A uniqueness result in Sobolev regularity H^{1/2+ɛ }_{loc} is proved among solutions supported in the union of the causal past and future of the initial value hypersurface, and whose product with the indicator function of the causal future (resp. past) of the hypersurface is past compact (resp. future compact). An explicit representation formula for solutions is obtained, which prominently features an invariantly defined, densitised version of the null expansion of the hypersurface. Finally, applications to quantum field theory on curved spacetimes are briefly discussed.
Constraints to solve parallelogram grid problems in 2D non separable linear canonical transform
Zhao, Liang; Healy, John J.; Muniraj, Inbarasan; Cui, Xiao-Guang; Malallah, Ra'ed; Ryle, James P.; Sheridan, John T.
2017-05-01
The 2D non-separable linear canonical transform (2D-NS-LCT) can model a range of various paraxial optical systems. Digital algorithms to evaluate the 2D-NS-LCTs are important in modeling the light field propagations and also of interest in many digital signal processing applications. In [Zhao 14] we have reported that a given 2D input image with rectangular shape/boundary, in general, results in a parallelogram output sampling grid (generally in an affine coordinates rather than in a Cartesian coordinates) thus limiting the further calculations, e.g. inverse transform. One possible solution is to use the interpolation techniques; however, it reduces the speed and accuracy of the numerical approximations. To alleviate this problem, in this paper, some constraints are derived under which the output samples are located in the Cartesian coordinates. Therefore, no interpolation operation is required and thus the calculation error can be significantly eliminated.
Sorokin, Vladislav; Thomsen, Jon Juel
2015-01-01
Parametrically excited systems appear in many fields of science and technology, intrinsically or imposed purposefully; e.g. spatially periodic structures represent an important class of such systems [4]. When the parametric excitation can be considered weak, classical asymptotic methods like...... the method of averaging [2] or multiple scales [6] can be applied. However, with many practically important applications this simplification is inadequate, e.g. with spatially periodic structures it restricts the possibility to affect their effective dynamic properties by a structural parameter modulation...... of considerable magnitude. Approximate methods based on Floquet theory [4] for analyzing problems involving parametric excitation, e.g. the classical Hill’s method of infinite determinants [3,4], can be employed also in cases of strong excitation; however, with Floquet theory being applicable only for linear...
First-order system least squares for the pure traction problem in planar linear elasticity
Cai, Z.; Manteuffel, T.; McCormick, S.; Parter, S.
1996-12-31
This talk will develop two first-order system least squares (FOSLS) approaches for the solution of the pure traction problem in planar linear elasticity. Both are two-stage algorithms that first solve for the gradients of displacement, then for the displacement itself. One approach, which uses L{sup 2} norms to define the FOSLS functional, is shown under certain H{sup 2} regularity assumptions to admit optimal H{sup 1}-like performance for standard finite element discretization and standard multigrid solution methods that is uniform in the Poisson ratio for all variables. The second approach, which is based on H{sup -1} norms, is shown under general assumptions to admit optimal uniform performance for displacement flux in an L{sup 2} norm and for displacement in an H{sup 1} norm. These methods do not degrade as other methods generally do when the material properties approach the incompressible limit.
A linear programming model for protein inference problem in shotgun proteomics.
Huang, Ting; He, Zengyou
2012-11-15
Assembling peptides identified from tandem mass spectra into a list of proteins, referred to as protein inference, is an important issue in shotgun proteomics. The objective of protein inference is to find a subset of proteins that are truly present in the sample. Although many methods have been proposed for protein inference, several issues such as peptide degeneracy still remain unsolved. In this article, we present a linear programming model for protein inference. In this model, we use a transformation of the joint probability that each peptide/protein pair is present in the sample as the variable. Then, both the peptide probability and protein probability can be expressed as a formula in terms of the linear combination of these variables. Based on this simple fact, the protein inference problem is formulated as an optimization problem: minimize the number of proteins with non-zero probabilities under the constraint that the difference between the calculated peptide probability and the peptide probability generated from peptide identification algorithms should be less than some threshold. This model addresses the peptide degeneracy issue by forcing some joint probability variables involving degenerate peptides to be zero in a rigorous manner. The corresponding inference algorithm is named as ProteinLP. We test the performance of ProteinLP on six datasets. Experimental results show that our method is competitive with the state-of-the-art protein inference algorithms. The source code of our algorithm is available at: https://sourceforge.net/projects/prolp/. zyhe@dlut.edu.cn. Supplementary data are available at Bioinformatics Online.
Cabral de Mello Meena
2011-09-01
Full Text Available Abstract Background Most adolescents live in resource-constrained countries and their mental health has been less well recognised than other aspects of their health. The World Health Organization's 4-S Framework provides a structure for national initiatives to improve adolescent health through: gathering and using strategic information; developing evidence-informed policies; scaling up provision and use of health services; and strengthening linkages with other government sectors. The aim of this paper is to discuss how the findings of a recent systematic review of mental health problems in adolescents in resource-constrained settings might be applied using the 4-S Framework. Method Analysis of the implications of the findings of a systematic search of the English-language literature for national strategies, policies, services and cross-sectoral linkages to improve the mental health of adolescents in resource-constrained settings. Results Data are available for only 33/112 [29%] resource-constrained countries, but in all where data are available, non-psychotic mental health problems in adolescents are identifiable, prevalent and associated with reduced quality of life, impaired participation and compromised development. In the absence of evidence about effective interventions in these settings expert opinion is that a broad public policy response which addresses direct strategies for prevention, early intervention and treatment; health service and health workforce requirements; social inclusion of marginalised groups of adolescents; and specific education is required. Specific endorsed strategies include public education, parent education, training for teachers and primary healthcare workers, psycho-educational curricula, identification through periodic screening of the most vulnerable and referral for care, and the availability of counsellors or other identified trained staff members in schools from whom adolescents can seek assistance for
A Primal-Dual Interior Point-Linear Programming Algorithm for MPC
Edlund, Kristian; Sokoler, Leo Emil; Jørgensen, John Bagterp
2009-01-01
Constrained optimal control problems for linear systems with linear constraints and an objective function consisting of linear and l1-norm terms can be expressed as linear programs. We develop an efficient primal-dual interior point algorithm for solution of such linear programs. The algorithm...
Interpolation problem for the solutions of linear elasticity equations based on monogenic functions
Grigor'ev, Yuri; Gürlebeck, Klaus; Legatiuk, Dmitrii
2017-11-01
Interpolation is an important tool for many practical applications, and very often it is beneficial to interpolate not only with a simple basis system, but rather with solutions of a certain differential equation, e.g. elasticity equation. A typical example for such type of interpolation are collocation methods widely used in practice. It is known, that interpolation theory is fully developed in the framework of the classical complex analysis. However, in quaternionic analysis, which shows a lot of analogies to complex analysis, the situation is more complicated due to the non-commutative multiplication. Thus, a fundamental theorem of algebra is not available, and standard tools from linear algebra cannot be applied in the usual way. To overcome these problems, a special system of monogenic polynomials the so-called Pseudo Complex Polynomials, sharing some properties of complex powers, is used. In this paper, we present an approach to deal with the interpolation problem, where solutions of elasticity equations in three dimensions are used as an interpolation basis.
Response of Non-Linear Shock Absorbers-Boundary Value Problem Analysis
Rahman, M. A.; Ahmed, U.; Uddin, M. S.
2013-08-01
A nonlinear boundary value problem of two degrees-of-freedom (DOF) untuned vibration damper systems using nonlinear springs and dampers has been numerically studied. As far as untuned damper is concerned, sixteen different combinations of linear and nonlinear springs and dampers have been comprehensively analyzed taking into account transient terms. For different cases, a comparative study is made for response versus time for different spring and damper types at three important frequency ratios: one at r = 1, one at r > 1 and one at r <1. The response of the system is changed because of the spring and damper nonlinearities; the change is different for different cases. Accordingly, an initially stable absorber may become unstable with time and vice versa. The analysis also shows that higher nonlinearity terms make the system more unstable. Numerical simulation includes transient vibrations. Although problems are much more complicated compared to those for a tuned absorber, a comparison of the results generated by the present numerical scheme with the exact one shows quite a reasonable agreement
Kuchment, Peter
2015-05-10
© 2015, Springer Basel. In the previous paper (Kuchment and Steinhauer in Inverse Probl 28(8):084007, 2012), the authors introduced a simple procedure that allows one to detect whether and explain why internal information arising in several novel coupled physics (hybrid) imaging modalities could turn extremely unstable techniques, such as optical tomography or electrical impedance tomography, into stable, good-resolution procedures. It was shown that in all cases of interest, the Fréchet derivative of the forward mapping is a pseudo-differential operator with an explicitly computable principal symbol. If one can set up the imaging procedure in such a way that the symbol is elliptic, this would indicate that the problem was stabilized. In the cases when the symbol is not elliptic, the technique suggests how to change the procedure (e.g., by adding extra measurements) to achieve ellipticity. In this article, we consider the situation arising in acousto-optical tomography (also called ultrasound modulated optical tomography), where the internal data available involves the Green’s function, and thus depends globally on the unknown parameter(s) of the equation and its solution. It is shown that the technique of (Kuchment and Steinhauer in Inverse Probl 28(8):084007, 2012) can be successfully adopted to this situation as well. A significant part of the article is devoted to results on generic uniqueness for the linearized problem in a variety of situations, including those arising in acousto-electric and quantitative photoacoustic tomography.
Portfolio selection problem: a comparison of fuzzy goal programming and linear physical programming
Fusun Kucukbay
2016-04-01
Full Text Available Investors have limited budget and they try to maximize their return with minimum risk. Therefore this study aims to deal with the portfolio selection problem. In the study two criteria are considered which are expected return, and risk. In this respect, linear physical programming (LPP technique is applied on Bist 100 stocks to be able to find out the optimum portfolio. The analysis covers the period April 2009- March 2015. This period is divided into two; April 2009-March 2014 and April 2014 – March 2015. April 2009-March 2014 period is used as data to find an optimal solution. April 2014-March 2015 period is used to test the real performance of portfolios. The performance of the obtained portfolio is compared with that obtained from fuzzy goal programming (FGP. Then the performances of both method, LPP and FGP are compared with BIST 100 in terms of their Sharpe Indexes. The findings reveal that LPP for portfolio selection problem is a good alternative to FGP.
Greedy algorithms for high-dimensional non-symmetric linear problems***
Cancès E.
2013-12-01
Full Text Available In this article, we present a family of numerical approaches to solve high-dimensional linear non-symmetric problems. The principle of these methods is to approximate a function which depends on a large number of variates by a sum of tensor product functions, each term of which is iteratively computed via a greedy algorithm ? . There exists a good theoretical framework for these methods in the case of (linear and nonlinear symmetric elliptic problems. However, the convergence results are not valid any more as soon as the problems under consideration are not symmetric. We present here a review of the main algorithms proposed in the literature to circumvent this difficulty, together with some new approaches. The theoretical convergence results and the practical implementation of these algorithms are discussed. Their behaviors are illustrated through some numerical examples. Dans cet article, nous présentons une famille de méthodes numériques pour résoudre des problèmes linéaires non symétriques en grande dimension. Le principe de ces approches est de représenter une fonction dépendant d’un grand nombre de variables sous la forme d’une somme de fonctions produit tensoriel, dont chaque terme est calculé itérativement via un algorithme glouton ? . Ces méthodes possèdent de bonnes propriétés théoriques dans le cas de problèmes elliptiques symétriques (linéaires ou non linéaires, mais celles-ci ne sont plus valables dès lors que les problèmes considérés ne sont plus symétriques. Nous présentons une revue des principaux algorithmes proposés dans la littérature pour contourner cette difficulté ainsi que de nouvelles approches que nous proposons. Les résultats de convergence théoriques et la mise en oeuvre pratique de ces algorithmes sont détaillés et leur comportement est illustré au travers d’exemples numériques.
Affine Lie algebraic origin of constrained KP hierarchies
Aratyn, H.; Gomes, J.F.; Zimerman, A.H.
1994-07-01
It is presented an affine sl(n+1) algebraic construction of the basic constrained KP hierarchy. This hierarchy is analyzed using two approaches, namely linear matrix eigenvalue problem on hermitian symmetric space and constrained KP Lax formulation and we show that these approaches are equivalent. The model is recognized to be generalized non-linear Schroedinger (GNLS) hierarchy and it is used as a building block for a new class of constrained KP hierarchies. These constrained KP hierarchies are connected via similarity-Backlund transformations and interpolate between GNLS and multi-boson KP-Toda hierarchies. The construction uncovers origin of the Toda lattice structure behind the latter hierarchy. (author). 23 refs
Young, Katherine C.; Sobieszczanski-Sobieski, Jaroslaw
1988-01-01
This project has two objectives. The first is to determine whether linear programming techniques can improve performance when handling design optimization problems with a large number of design variables and constraints relative to the feasible directions algorithm. The second purpose is to determine whether using the Kreisselmeier-Steinhauser (KS) function to replace the constraints with one constraint will reduce the cost of total optimization. Comparisons are made using solutions obtained with linear and non-linear methods. The results indicate that there is no cost saving using the linear method or in using the KS function to replace constraints.
Minimal constrained supergravity
Cribiori, N. [Dipartimento di Fisica e Astronomia “Galileo Galilei”, Università di Padova, Via Marzolo 8, 35131 Padova (Italy); INFN, Sezione di Padova, Via Marzolo 8, 35131 Padova (Italy); Dall' Agata, G., E-mail: dallagat@pd.infn.it [Dipartimento di Fisica e Astronomia “Galileo Galilei”, Università di Padova, Via Marzolo 8, 35131 Padova (Italy); INFN, Sezione di Padova, Via Marzolo 8, 35131 Padova (Italy); Farakos, F. [Dipartimento di Fisica e Astronomia “Galileo Galilei”, Università di Padova, Via Marzolo 8, 35131 Padova (Italy); INFN, Sezione di Padova, Via Marzolo 8, 35131 Padova (Italy); Porrati, M. [Center for Cosmology and Particle Physics, Department of Physics, New York University, 4 Washington Place, New York, NY 10003 (United States)
2017-01-10
We describe minimal supergravity models where supersymmetry is non-linearly realized via constrained superfields. We show that the resulting actions differ from the so called “de Sitter” supergravities because we consider constraints eliminating directly the auxiliary fields of the gravity multiplet.
Minimal constrained supergravity
N. Cribiori
2017-01-01
Full Text Available We describe minimal supergravity models where supersymmetry is non-linearly realized via constrained superfields. We show that the resulting actions differ from the so called “de Sitter” supergravities because we consider constraints eliminating directly the auxiliary fields of the gravity multiplet.
Minimal constrained supergravity
Cribiori, N.; Dall'Agata, G.; Farakos, F.; Porrati, M.
2017-01-01
We describe minimal supergravity models where supersymmetry is non-linearly realized via constrained superfields. We show that the resulting actions differ from the so called “de Sitter” supergravities because we consider constraints eliminating directly the auxiliary fields of the gravity multiplet.
Invariant set computation for constrained uncertain discrete-time systems
Athanasopoulos, N.; Bitsoris, G.
2010-01-01
In this article a novel approach to the determination of polytopic invariant sets for constrained discrete-time linear uncertain systems is presented. First, the problem of stabilizing a prespecified initial condition set in the presence of input and state constraints is addressed. Second, the
Karsten, Christian Vad; Pisinger, David; Røpke, Stefan
2015-01-01
-commodity network flow problem with transit time constraints which puts limits on the duration of the transit of the commodities through the network. It is shown that for the particular application it does not increase the solution time to include the transit time constraints and that including the transit time...... is essential to offer customers a competitive product. © 2015 Elsevier Ltd. All rights reserved....
Cartesian Mesh Linearized Euler Equations Solver for Aeroacoustic Problems around Full Aircraft
Yuma Fukushima
2015-01-01
Full Text Available The linearized Euler equations (LEEs solver for aeroacoustic problems has been developed on block-structured Cartesian mesh to address complex geometry. Taking advantage of the benefits of Cartesian mesh, we employ high-order schemes for spatial derivatives and for time integration. On the other hand, the difficulty of accommodating curved wall boundaries is addressed by the immersed boundary method. The resulting LEEs solver is robust to complex geometry and numerically efficient in a parallel environment. The accuracy and effectiveness of the present solver are validated by one-dimensional and three-dimensional test cases. Acoustic scattering around a sphere and noise propagation from the JT15D nacelle are computed. The results show good agreement with analytical, computational, and experimental results. Finally, noise propagation around fuselage-wing-nacelle configurations is computed as a practical example. The results show that the sound pressure level below the over-the-wing nacelle (OWN configuration is much lower than that of the conventional DLR-F6 aircraft configuration due to the shielding effect of the OWN configuration.
Error Analysis Of Students Working About Word Problem Of Linear Program With NEA Procedure
Santoso, D. A.; Farid, A.; Ulum, B.
2017-06-01
Evaluation and assessment is an important part of learning. In evaluation process of learning, written test is still commonly used. However, the tests usually do not following-up by further evaluation. The process only up to grading stage not to evaluate the process and errors which done by students. Whereas if the student has a pattern error and process error, actions taken can be more focused on the fault and why is that happen. NEA procedure provides a way for educators to evaluate student progress more comprehensively. In this study, students’ mistakes in working on some word problem about linear programming have been analyzed. As a result, mistakes are often made students exist in the modeling phase (transformation) and process skills (process skill) with the overall percentage distribution respectively 20% and 15%. According to the observations, these errors occur most commonly due to lack of precision of students in modeling and in hastiness calculation. Error analysis with students on this matter, it is expected educators can determine or use the right way to solve it in the next lesson.
Lyubetsky, Vassily; Gershgorin, Roman; Gorbunov, Konstantin
2017-12-06
Chromosome structure is a very limited model of the genome including the information about its chromosomes such as their linear or circular organization, the order of genes on them, and the DNA strand encoding a gene. Gene lengths, nucleotide composition, and intergenic regions are ignored. Although highly incomplete, such structure can be used in many cases, e.g., to reconstruct phylogeny and evolutionary events, to identify gene synteny, regulatory elements and promoters (considering highly conserved elements), etc. Three problems are considered; all assume unequal gene content and the presence of gene paralogs. The distance problem is to determine the minimum number of operations required to transform one chromosome structure into another and the corresponding transformation itself including the identification of paralogs in two structures. We use the DCJ model which is one of the most studied combinatorial rearrangement models. Double-, sesqui-, and single-operations as well as deletion and insertion of a chromosome region are considered in the model; the single ones comprise cut and join. In the reconstruction problem, a phylogenetic tree with chromosome structures in the leaves is given. It is necessary to assign the structures to inner nodes of the tree to minimize the sum of distances between terminal structures of each edge and to identify the mutual paralogs in a fairly large set of structures. A linear algorithm is known for the distance problem without paralogs, while the presence of paralogs makes it NP-hard. If paralogs are allowed but the insertion and deletion operations are missing (and special constraints are imposed), the reduction of the distance problem to integer linear programming is known. Apparently, the reconstruction problem is NP-hard even in the absence of paralogs. The problem of contigs is to find the optimal arrangements for each given set of contigs, which also includes the mutual identification of paralogs. We proved that these
A Globally Convergent Parallel SSLE Algorithm for Inequality Constrained Optimization
Zhijun Luo
2014-01-01
Full Text Available A new parallel variable distribution algorithm based on interior point SSLE algorithm is proposed for solving inequality constrained optimization problems under the condition that the constraints are block-separable by the technology of sequential system of linear equation. Each iteration of this algorithm only needs to solve three systems of linear equations with the same coefficient matrix to obtain the descent direction. Furthermore, under certain conditions, the global convergence is achieved.
Dujardin, G. M.
2009-08-12
This paper deals with the asymptotic behaviour of the solutions of linear initial boundary value problems with constant coefficients on the half-line and on finite intervals. We assume that the boundary data are periodic in time and we investigate whether the solution becomes time-periodic after sufficiently long time. Using Fokas\\' transformation method, we show that, for the linear Schrödinger equation, the linear heat equation and the linearized KdV equation on the half-line, the solutions indeed become periodic for large time. However, for the same linear Schrödinger equation on a finite interval, we show that the solution, in general, is not asymptotically periodic; actually, the asymptotic behaviour of the solution depends on the commensurability of the time period T of the boundary data with the square of the length of the interval over. © 2009 The Royal Society.
Nelson Maculan
2003-01-01
Full Text Available We present integer linear models with a polynomial number of variables and constraints for combinatorial optimization problems in graphs: optimum elementary cycles, optimum elementary paths and optimum tree problems.Apresentamos modelos lineares inteiros com um número polinomial de variáveis e restrições para problemas de otimização combinatória em grafos: ciclos elementares ótimos, caminhos elementares ótimos e problemas em árvores ótimas.
Faridah Hani Mohamed Salleh
2017-01-01
Full Text Available Gene regulatory network (GRN reconstruction is the process of identifying regulatory gene interactions from experimental data through computational analysis. One of the main reasons for the reduced performance of previous GRN methods had been inaccurate prediction of cascade motifs. Cascade error is defined as the wrong prediction of cascade motifs, where an indirect interaction is misinterpreted as a direct interaction. Despite the active research on various GRN prediction methods, the discussion on specific methods to solve problems related to cascade errors is still lacking. In fact, the experiments conducted by the past studies were not specifically geared towards proving the ability of GRN prediction methods in avoiding the occurrences of cascade errors. Hence, this research aims to propose Multiple Linear Regression (MLR to infer GRN from gene expression data and to avoid wrongly inferring of an indirect interaction (A → B → C as a direct interaction (A → C. Since the number of observations of the real experiment datasets was far less than the number of predictors, some predictors were eliminated by extracting the random subnetworks from global interaction networks via an established extraction method. In addition, the experiment was extended to assess the effectiveness of MLR in dealing with cascade error by using a novel experimental procedure that had been proposed in this work. The experiment revealed that the number of cascade errors had been very minimal. Apart from that, the Belsley collinearity test proved that multicollinearity did affect the datasets used in this experiment greatly. All the tested subnetworks obtained satisfactory results, with AUROC values above 0.5.
Salleh, Faridah Hani Mohamed; Zainudin, Suhaila; Arif, Shereena M
2017-01-01
Gene regulatory network (GRN) reconstruction is the process of identifying regulatory gene interactions from experimental data through computational analysis. One of the main reasons for the reduced performance of previous GRN methods had been inaccurate prediction of cascade motifs. Cascade error is defined as the wrong prediction of cascade motifs, where an indirect interaction is misinterpreted as a direct interaction. Despite the active research on various GRN prediction methods, the discussion on specific methods to solve problems related to cascade errors is still lacking. In fact, the experiments conducted by the past studies were not specifically geared towards proving the ability of GRN prediction methods in avoiding the occurrences of cascade errors. Hence, this research aims to propose Multiple Linear Regression (MLR) to infer GRN from gene expression data and to avoid wrongly inferring of an indirect interaction (A → B → C) as a direct interaction (A → C). Since the number of observations of the real experiment datasets was far less than the number of predictors, some predictors were eliminated by extracting the random subnetworks from global interaction networks via an established extraction method. In addition, the experiment was extended to assess the effectiveness of MLR in dealing with cascade error by using a novel experimental procedure that had been proposed in this work. The experiment revealed that the number of cascade errors had been very minimal. Apart from that, the Belsley collinearity test proved that multicollinearity did affect the datasets used in this experiment greatly. All the tested subnetworks obtained satisfactory results, with AUROC values above 0.5.
Heinkenschloss, Matthias
2005-01-01
We study a class of time-domain decomposition-based methods for the numerical solution of large-scale linear quadratic optimal control problems. Our methods are based on a multiple shooting reformulation of the linear quadratic optimal control problem as a discrete-time optimal control (DTOC) problem. The optimality conditions for this DTOC problem lead to a linear block tridiagonal system. The diagonal blocks are invertible and are related to the original linear quadratic optimal control problem restricted to smaller time-subintervals. This motivates the application of block Gauss-Seidel (GS)-type methods for the solution of the block tridiagonal systems. Numerical experiments show that the spectral radii of the block GS iteration matrices are larger than one for typical applications, but that the eigenvalues of the iteration matrices decay to zero fast. Hence, while the GS method is not expected to convergence for typical applications, it can be effective as a preconditioner for Krylov-subspace methods. This is confirmed by our numerical tests.A byproduct of this research is the insight that certain instantaneous control techniques can be viewed as the application of one step of the forward block GS method applied to the DTOC optimality system.
Ebrahimnejad, Ali
2015-08-01
There are several methods, in the literature, for solving fuzzy variable linear programming problems (fuzzy linear programming in which the right-hand-side vectors and decision variables are represented by trapezoidal fuzzy numbers). In this paper, the shortcomings of some existing methods are pointed out and to overcome these shortcomings a new method based on the bounded dual simplex method is proposed to determine the fuzzy optimal solution of that kind of fuzzy variable linear programming problems in which some or all variables are restricted to lie within lower and upper bounds. To illustrate the proposed method, an application example is solved and the obtained results are given. The advantages of the proposed method over existing methods are discussed. Also, one application of this algorithm in solving bounded transportation problems with fuzzy supplies and demands is dealt with. The proposed method is easy to understand and to apply for determining the fuzzy optimal solution of bounded fuzzy variable linear programming problems occurring in real-life situations.
Exploring Constrained Creative Communication
Sørensen, Jannick Kirk
2017-01-01
Creative collaboration via online tools offers a less ‘media rich’ exchange of information between participants than face-to-face collaboration. The participants’ freedom to communicate is restricted in means of communication, and rectified in terms of possibilities offered in the interface. How do...... these constrains influence the creative process and the outcome? In order to isolate the communication problem from the interface- and technology problem, we examine via a design game the creative communication on an open-ended task in a highly constrained setting, a design game. Via an experiment the relation...... between communicative constrains and participants’ perception of dialogue and creativity is examined. Four batches of students preparing for forming semester project groups were conducted and documented. Students were asked to create an unspecified object without any exchange of communication except...
Mihai-Victor PRICOP
2010-09-01
Full Text Available The present paper introduces a numerical approach of static linear elasticity equations for anisotropic materials. The domain and boundary conditions are simple, to enhance an easy implementation of the finite difference scheme. SOR and gradient are used to solve the resulting linear system. The simplicity of the geometry is also useful for MPI parallelization of the code.
Červinka, Michal
2010-01-01
Roč. 2010, č. 4 (2010), s. 730-753 ISSN 0023-5954 Institutional research plan: CEZ:AV0Z10750506 Keywords : equilibrium problems with complementarity constraints * homotopy * C-stationarity Subject RIV: BC - Control Systems Theory Impact factor: 0.461, year: 2010 http://library.utia.cas.cz/separaty/2010/MTR/cervinka-on computation of c-stationary points for equilibrium problems with linear complementarity constraints via homotopy method.pdf
Anastassi, Z. A.; Simos, T. E.
2010-01-01
We develop a new family of explicit symmetric linear multistep methods for the efficient numerical solution of the Schroedinger equation and related problems with oscillatory solution. The new methods are trigonometrically fitted and have improved intervals of periodicity as compared to the corresponding classical method with constant coefficients and other methods from the literature. We also apply the methods along with other known methods to real periodic problems, in order to measure their efficiency.
Aihong Ren
2016-01-01
Full Text Available This paper is concerned with a class of fully fuzzy bilevel linear programming problems where all the coefficients and decision variables of both objective functions and the constraints are fuzzy numbers. A new approach based on deviation degree measures and a ranking function method is proposed to solve these problems. We first introduce concepts of the feasible region and the fuzzy optimal solution of a fully fuzzy bilevel linear programming problem. In order to obtain a fuzzy optimal solution of the problem, we apply deviation degree measures to deal with the fuzzy constraints and use a ranking function method of fuzzy numbers to rank the upper and lower level fuzzy objective functions. Then the fully fuzzy bilevel linear programming problem can be transformed into a deterministic bilevel programming problem. Considering the overall balance between improving objective function values and decreasing allowed deviation degrees, the computational procedure for finding a fuzzy optimal solution is proposed. Finally, a numerical example is provided to illustrate the proposed approach. The results indicate that the proposed approach gives a better optimal solution in comparison with the existing method.
Dilna, N.; Rontó, András
2010-01-01
Roč. 60, č. 3 (2010), s. 327-338 ISSN 0139-9918 R&D Projects: GA ČR(CZ) GA201/06/0254 Institutional research plan: CEZ:AV0Z10190503 Keywords : non-linear boundary value-problem * functional differential equation * non-local condition * unique solvability * differential inequality Subject RIV: BA - General Mathematics Impact factor: 0.316, year: 2010 http://link.springer.com/article/10.2478%2Fs12175-010-0015-9
Goncalves, Glenio A.; Bodmann, Bardo; Bogado, Sergio; Vilhena, Marco T.
2008-01-01
Analytical solutions for neutron transport in cylindrical geometry is available for isotropic problems, but to the best of our knowledge for anisotropic problems are not available, yet. In this work, an analytical solution for the neutron transport equation in an infinite cylinder assuming anisotropic scattering is reported. Here we specialize the solution, without loss of generality, for the linearly anisotropic problem using the combined decomposition and HTS N methods. The key feature of this method consists in the application of the decomposition method to the anisotropic problem by virtue of the fact that the inverse of the operator associated to isotropic problem is well know and determined by the HTS N approach. So far, following the idea of the decomposition method, we apply this operator to the integral term, assuming that the angular flux appearing in the integrand is considered to be equal to the HTS N solution interpolated by polynomial considering only even powers. This leads to the first approximation for an anisotropic solution. Proceeding further, we replace this solution for the angular flux in the integral and apply again the inverse operator for the isotropic problem in the integral term and obtain a new approximation for the angular flux. This iterative procedure yields a closed form solution for the angular flux. This methodology can be generalized, in a straightforward manner, for transport problems with any degree of anisotropy. For the sake of illustration, we report numerical simulations for linearly anisotropic transport problems. (author)
Suliman, Mohamed Abdalla Elhag; Ballal, Tarig; Kammoun, Abla; Al-Naffouri, Tareq Y.
2016-01-01
This paper proposes a new approach to find the regularization parameter for linear least-squares discrete ill-posed problems. In the proposed approach, an artificial perturbation matrix with a bounded norm is forced into the discrete ill-posed model
Kiguradze, I.; Šremr, Jiří
2011-01-01
Roč. 74, č. 17 (2011), s. 6537-6552 ISSN 0362-546X Institutional research plan: CEZ:AV0Z10190503 Keywords : half-linear differential system * non-local boundary value problem * solvability Subject RIV: BA - General Mathematics Impact factor: 1.536, year: 2011 http://www.sciencedirect.com/science/article/pii/S0362546X11004573
Dujardin, G. M.
2009-01-01
This paper deals with the asymptotic behaviour of the solutions of linear initial boundary value problems with constant coefficients on the half-line and on finite intervals. We assume that the boundary data are periodic in time and we investigate
Cost Cumulant-Based Control for a Class of Linear Quadratic Tracking Problems
Pham, Khanh D
2007-01-01
.... For instance, the present paper extends the application of cost-cumulant controller design to control of a wide class of linear-quadratic tracking systems where output measurements of a tracker...
Sole, Marla A.
2016-01-01
Open-ended questions that can be solved using different strategies help students learn and integrate content, and provide teachers with greater insights into students' unique capabilities and levels of understanding. This article provides a problem that was modified to allow for multiple approaches. Students tended to employ high-powered, complex,…
Tuereci, R.G. [Kirikkale Univ., Kirikkale (Turkey). Kirikkale Vocational School; Tuereci, D. [Ministry of Education, Ankara (Turkey). 75th year Anatolia High School
2017-05-15
One speed, time independent and homogeneous medium neutron transport equation can be solved with the anisotropic scattering which includes both the linear anisotropic and the quadratic anisotropic scattering properties. Having solved Case's eigenfunctions and the orthogonality relations among these eigenfunctions, some neutron transport problems such as albedo problem can be calculated as numerically by using numerical or semi-analytic methods. In this study the half-space albedo problem is investigated by using the modified F{sub N} method.
Some problems on non-linear semigroups and the blow-up of integral solutions
Pavel, N.H.
1983-07-01
After some introductory remarks, this highly mathematical document considers a unifying approach in the theory of non-linear semigroups. Then a brief survey is given on blow-up of mild solutions from the semilinear case. Finally, the global behavior of solutions to non-linear evolution equations is addressed; it is found that classical results on the behavior of the maximal solution u as t up-arrow tsub(max) hold also for integral solutions
Ghoreishi, Newsha; Sørensen, Jan Corfixen; Jørgensen, Bo Nørregaard
2015-01-01
Non-trivial real world decision-making processes usually involve multiple parties having potentially conflicting interests over a set of issues. State-of-the-art multi-objective evolutionary algorithms (MOEA) are well known to solve this class of complex real-world problems. In this paper, we...... compare the performance of state-of-the-art multi-objective evolutionary algorithms to solve a non-linear multi-objective multi-issue optimisation problem found in Greenhouse climate control. The chosen algorithms in the study includes NSGAII, eNSGAII, eMOEA, PAES, PESAII and SPEAII. The performance...... of all aforementioned algorithms is assessed and compared using performance indicators to evaluate proximity, diversity and consistency. Our insights to this comparative study enhanced our understanding of MOEAs performance in order to solve a non-linear complex climate control problem. The empirical...
A less-constrained (2,0) super-Yang-Mills model: the coupling to non-linear σ-models
Almeida, C.A.S.; Doria, R.M.
1990-01-01
Considering a class of (2,0) super-Yang-Mills multiplets characterised by the appearance of a pair of independent gauge potentials, we present here their coupling to non-linear σ-models in (2,0)-superspace. Contrary to the case of the coupling to (2,0) matter superfields, the extra gauge potential present in the Yang-Mills sector does not decouple from the theory in the case one gauges isometry groups of σ-models. (author)
Dauda GuliburYAKUBU
2012-12-01
Full Text Available Accurate solutions to initial value systems of ordinary differential equations may be approximated efficiently by Runge-Kutta methods or linear multistep methods. Each of these has limitations of one sort or another. In this paper we consider, as a middle ground, the derivation of continuous general linear methods for solution of stiff systems of initial value problems in ordinary differential equations. These methods are designed to combine the advantages of both Runge-Kutta and linear multistep methods. Particularly, methods possessing the property of A-stability are identified as promising methods within this large class of general linear methods. We show that the continuous general linear methods are self-starting and have more ability to solve the stiff systems of ordinary differential equations, than the discrete ones. The initial value systems of ordinary differential equations are solved, for instance, without looking for any other method to start the integration process. This desirable feature of the proposed approach leads to obtaining very high accuracy of the solution of the given problem. Illustrative examples are given to demonstrate the novelty and reliability of the methods.
Amini Afshar, Mostafa; Bingham, Harry B.
2017-01-01
. Frequency-domain results are then obtained from a Fourier transform of the force and motion signals. In order to make a robust Fourier transform, and capture the response around the critical frequency, the tail of the force signal is asymptotically extrapolated assuming a linear decay rate. Fourth......The linearized potential flow approximation for the forward speed radiation problem is solved in the time domain using a high-order finite difference method. The finite-difference discretization is developed on overlapping, curvilinear body-fitted grids. To ensure numerical stability...
Ben Gharbia , Ibtihel; Gilbert , Jean Charles
2012-01-01
The plain Newton-min algorithm to solve the linear complementarity problem (LCP for short) 0 ≤ x ⊥ (Mx+q) ≥ 0 can be viewed as a nonsmooth Newton algorithm without globalization technique to solve the system of piecewise linear equations min(x,Mx+q)=0, which is equivalent to the LCP. When M is an M-matrix of order n, the algorithm is known to converge in at most n iterations. We show in this paper that this result no longer holds when M is a P-matrix of order ≥ 3, since then the algorithm may...
The longitudinal space charge problem in the high current linear proton accelerators
Lustfeld, H.
1984-01-01
In a linear proton accelerator peak currents of 200 mA lead to high space charge densities and the resultant space charge forces reduce the effective focussing considerably. In particular the longitudinal focussing is affected. A new concept based on linear theory is proposed that restricts the influence of the space charge forces on the longitudinal focussing by increasing a, the mean transverse bunch radius, as a proportional(βγ)sup(3/8). This concept is compared with other concepts for the Alvarez (1 MeV - 100 MeV) and for the high energy part (100 MeV - 1100 MeV) of the SNQ linear accelerator. (orig.)
Rosenberg, D. E.; Alafifi, A.
2016-12-01
Water resources systems analysis often focuses on finding optimal solutions. Yet an optimal solution is optimal only for the modelled issues and managers often seek near-optimal alternatives that address un-modelled objectives, preferences, limits, uncertainties, and other issues. Early on, Modelling to Generate Alternatives (MGA) formalized near-optimal as the region comprising the original problem constraints plus a new constraint that allowed performance within a specified tolerance of the optimal objective function value. MGA identified a few maximally-different alternatives from the near-optimal region. Subsequent work applied Markov Chain Monte Carlo (MCMC) sampling to generate a larger number of alternatives that span the near-optimal region of linear problems or select portions for non-linear problems. We extend the MCMC Hit-And-Run method to generate alternatives that span the full extent of the near-optimal region for non-linear, non-convex problems. First, start at a feasible hit point within the near-optimal region, then run a random distance in a random direction to a new hit point. Next, repeat until generating the desired number of alternatives. The key step at each iterate is to run a random distance along the line in the specified direction to a new hit point. If linear equity constraints exist, we construct an orthogonal basis and use a null space transformation to confine hits and runs to a lower-dimensional space. Linear inequity constraints define the convex bounds on the line that runs through the current hit point in the specified direction. We then use slice sampling to identify a new hit point along the line within bounds defined by the non-linear inequity constraints. This technique is computationally efficient compared to prior near-optimal alternative generation techniques such MGA, MCMC Metropolis-Hastings, evolutionary, or firefly algorithms because search at each iteration is confined to the hit line, the algorithm can move in one
Advanced topics in linear algebra weaving matrix problems through the Weyr form
O'Meara, Kevin; Vinsonhaler, Charles
2011-01-01
The Weyr matrix canonical form is a largely unknown cousin of the Jordan canonical form. Discovered by Eduard Weyr in 1885, the Weyr form outperforms the Jordan form in a number of mathematical situations, yet it remains somewhat of a mystery, even to many who are skilled in linear algebra. Written in an engaging style, this book presents various advanced topics in linear algebra linked through the Weyr form. Kevin O'Meara, John Clark, and Charles Vinsonhaler develop the Weyr form from scratch and include an algorithm for computing it. A fascinating duality exists between the Weyr form and the
Britz, K
2011-09-01
Full Text Available their basic properties and relationship. In Section 3 we present a modal instance of these constructions which also illustrates with an example how to reason abductively with constrained entailment in a causal or action oriented context. In Section 4 we... of models with the former approach, whereas in Section 3.3 we give an example illustrating ways in which C can be de ned with both. Here we employ the following versions of local consequence: De nition 3.4. Given a model M = hW;R;Vi and formulas...
Angela Hsiang-Ling Chen
2016-09-01
Full Text Available Modeling and optimizing organizational processes, such as the one represented by the Resource-Constrained Project Scheduling Problem (RCPSP, improve outcomes. Based on assumptions and simplification, this model tackles the allocation of resources so that organizations can continue to generate profits and reinvest in future growth. Nonetheless, despite all of the research dedicated to solving the RCPSP and its multi-mode variations, there is no standardized procedure that can guide project management practitioners in their scheduling tasks. This is mainly because many of the proposed approaches are either based on unrealistic/oversimplified scenarios or they propose solution procedures not easily applicable or even feasible in real-life situations. In this study, we solve a more true-to-life and complex model, Multimode RCPSP with minimal and maximal time lags (MRCPSP/max. The complexity of the model solved is presented, and the practicality of the proposed approach is justified depending on only information that is available for every project regardless of its industrial context. The results confirm that it is possible to determine a robust makespan and to calculate an execution time-frame with gaps lower than 11% between their lower and upper bounds. In addition, in many instances, the solved lower bound obtained was equal to the best-known optimum.
Xu, Jiuping
2014-01-01
This paper presents an extension of the multimode resource-constrained project scheduling problem for a large scale construction project where multiple parallel projects and a fuzzy random environment are considered. By taking into account the most typical goals in project management, a cost/weighted makespan/quality trade-off optimization model is constructed. To deal with the uncertainties, a hybrid crisp approach is used to transform the fuzzy random parameters into fuzzy variables that are subsequently defuzzified using an expected value operator with an optimistic-pessimistic index. Then a combinatorial-priority-based hybrid particle swarm optimization algorithm is developed to solve the proposed model, where the combinatorial particle swarm optimization and priority-based particle swarm optimization are designed to assign modes to activities and to schedule activities, respectively. Finally, the results and analysis of a practical example at a large scale hydropower construction project are presented to demonstrate the practicality and efficiency of the proposed model and optimization method. PMID:24550708
Xu, Jiuping; Feng, Cuiying
2014-01-01
This paper presents an extension of the multimode resource-constrained project scheduling problem for a large scale construction project where multiple parallel projects and a fuzzy random environment are considered. By taking into account the most typical goals in project management, a cost/weighted makespan/quality trade-off optimization model is constructed. To deal with the uncertainties, a hybrid crisp approach is used to transform the fuzzy random parameters into fuzzy variables that are subsequently defuzzified using an expected value operator with an optimistic-pessimistic index. Then a combinatorial-priority-based hybrid particle swarm optimization algorithm is developed to solve the proposed model, where the combinatorial particle swarm optimization and priority-based particle swarm optimization are designed to assign modes to activities and to schedule activities, respectively. Finally, the results and analysis of a practical example at a large scale hydropower construction project are presented to demonstrate the practicality and efficiency of the proposed model and optimization method.
Half-linear Sturm-Liouville problem with weights: asymptotic behavior of eigenfunctions
Drábek, P.; Kufner, Alois; Kuliev, K.
2014-01-01
Roč. 284, č. 1 (2014), s. 148-154 ISSN 0081-5438 Institutional support: RVO:67985840 Keywords : Sturm-Liouville problem * spectral problems * Hardy inequality Subject RIV: BA - General Mathematics Impact factor: 0.302, year: 2014 http://link.springer.com/article/10.1134%2FS008154381401009X
Solution of the spherically symmetric linear thermoviscoelastic problem in the inertia-free limit
Christensen, Tage Emil; Dyre, J. C.
2008-01-01
paper-the thermoviscoelastic problem may be solved analytically in the inertia-free limit, i.e., the limit where the sample is much smaller than the wavelength of sound waves at the frequencies of interest. As for the one-dimensional thermoviscoelastic problem [Christensen et al., Phys. Rev. E 75...
Novel method of interpolation and extrapolation of functions by a linear initial value problem
Shatalov, M
2008-09-01
Full Text Available A novel method of function approximation using an initial value, linear, ordinary differential equation (ODE) is presented. The main advantage of this method is to obtain the approximation expressions in a closed form. This technique can be taught...
Sain, M. K.; Antsaklis, P. J.; Gejji, R. R.; Wyman, B. F.; Peczkowski, J. L.
1981-01-01
Zames (1981) has observed that there is, in general, no 'separation principle' to guarantee optimality of a division between control law design and filtering of plant uncertainty. Peczkowski and Sain (1978) have solved a model matching problem using transfer functions. Taking into consideration this investigation, Peczkowski et al. (1979) proposed the Total Synthesis Problem (TSP), wherein both the command/output-response and command/control-response are to be synthesized, subject to the plant constraint. The TSP concept can be subdivided into a Nominal Design Problem (NDP), which is not dependent upon specific controller structures, and a Feedback Synthesis Problem (FSP), which is. Gejji (1980) found that NDP was characterized in terms of the plant structural matrices and a single, 'good' transfer function matrix. Sain et al. (1981) have extended this NDP work. The present investigation is concerned with a study of FSP for the unity feedback case. NDP, together with feedback synthesis, is understood as a Total Synthesis Problem.
Non-linear singular problems in p-adic analysis: associative algebras of p-adic distributions
Albeverio, S; Khrennikov, A Yu; Shelkovich, V M
2005-01-01
We propose an algebraic theory which can be used for solving both linear and non-linear singular problems of p-adic analysis related to p-adic distributions (generalized functions). We construct the p-adic Colombeau-Egorov algebra of generalized functions, in which Vladimirov's pseudo-differential operator plays the role of differentiation. This algebra is closed under Fourier transformation and associative convolution. Pointvalues of generalized functions are defined, and it turns out that any generalized function is uniquely determined by its pointvalues. We also construct an associative algebra of asymptotic distributions, which is generated by the linear span of the set of associated homogeneous p-adic distributions. This algebra is embedded in the Colombeau-Egorov algebra as a subalgebra. In addition, a new technique for constructing weak asymptotics is developed
Auger-Méthé, Marie; Field, Chris; Albertsen, Christoffer Moesgaard
2016-01-01
problems. We demonstrate that these problems occur primarily when measurement error is larger than biological stochasticity, the condition that often drives ecologists to use SSMs. Using an animal movement example, we show how these estimation problems can affect ecological inference. Biased parameter......State-space models (SSMs) are increasingly used in ecology to model time-series such as animal movement paths and population dynamics. This type of hierarchical model is often structured to account for two levels of variability: biological stochasticity and measurement error. SSMs are flexible...
Synthetic acceleration methods for linear transport problems with highly anisotropic scattering
Khattab, K.M.; Larsen, E.W.
1992-01-01
The diffusion synthetic acceleration (DSA) algorithm effectively accelerates the iterative solution of transport problems with isotropic or mildly anisotropic scattering. However, DSA loses its effectiveness for transport problems that have strongly anisotropic scattering. Two generalizations of DSA are proposed, which, for highly anisotropic scattering problems, converge at least an order of magnitude (clock time) faster than the DSA method. These two methods are developed, the results of Fourier analysis that theoretically predict their efficiency are described, and numerical results that verify the theoretical predictions are presented. (author). 10 refs., 7 figs., 5 tabs
Synthetic acceleration methods for linear transport problems with highly anisotropic scattering
Khattab, K.M.; Larsen, E.W.
1991-01-01
This paper reports on the diffusion synthetic acceleration (DSA) algorithm that effectively accelerates the iterative solution of transport problems with isotropic or mildly anisotropic scattering. However, DSA loses its effectiveness for transport problems that have strongly anisotropic scattering. Two generalizations of DSA are proposed, which, for highly anisotropic scattering problems, converge at least an order of magnitude (clock time) faster than the DSA method. These two methods are developed, the results of Fourier analyses that theoretically predict their efficiency are described, and numerical results that verify the theoretical predictions are presented
Skajaa, Anders; Andersen, Erling D.; Ye, Yinyu
2013-01-01
and their negligible computational cost. This is a major advantage when compared to previously suggested strategies that require a pool of iterates from the solution process of the initial problem. Consequently our strategies are better suited for users who use optimization algorithms as black-box routines which...... worst-case complexity. We present extensive computational results showing work reductions when warmstarting compared to coldstarting in the range 30–75% depending on the problem class and magnitude of the problem perturbation. The computational experiments thus substantiate that the warmstarting...
Govaerts, Jan; Hounkonnou, M Norbert; Mweene, Habatwa V
2009-01-01
The ordinary Landau problem of a charged particle in a plane subjected to a perpendicular homogeneous and static magnetic field is reconsidered from different points of view. The role of phase space canonical transformations and their relation to a choice of gauge in the solution of the problem is addressed. The Landau problem is then extended to different contexts, in particular the singular situation of a purely linear potential term being added as an interaction, for which a complete purely algebraic solution is presented. This solution is then exploited to solve this same singular Landau problem in the half-plane, with as motivation the potential relevance of such a geometry for quantum Hall measurements in the presence of an electric field or a gravitational quantum well.
Govaerts, Jan [Center for Particle Physics and Phenomenology (CP3), Institut de Physique Nucleaire, Universite catholique de Louvain (UCL), 2, Chemin du Cyclotron, B-1348 Louvain-la Neuve (Belgium); Hounkonnou, M Norbert [International Chair in Mathematical Physics and Applications (ICMPA-UNESCO Chair), University of Abomey-Calavi, 072 BP 50, Cotonou (Benin); Mweene, Habatwa V [Physics Department, University of Zambia, PO Box 32379, Lusaka (Zambia)], E-mail: Jan.Govaerts@uclouvain.be, E-mail: hounkonnou@yahoo.fr, E-mail: norbert.hounkonnou@cipma.uac.bj, E-mail: habatwamweene@yahoo.com, E-mail: hmweene@unza.zm
2009-12-04
The ordinary Landau problem of a charged particle in a plane subjected to a perpendicular homogeneous and static magnetic field is reconsidered from different points of view. The role of phase space canonical transformations and their relation to a choice of gauge in the solution of the problem is addressed. The Landau problem is then extended to different contexts, in particular the singular situation of a purely linear potential term being added as an interaction, for which a complete purely algebraic solution is presented. This solution is then exploited to solve this same singular Landau problem in the half-plane, with as motivation the potential relevance of such a geometry for quantum Hall measurements in the presence of an electric field or a gravitational quantum well.
Moryakov, A. V., E-mail: sailor@orc.ru [National Research Centre Kurchatov Institute (Russian Federation)
2016-12-15
An algorithm for solving the linear Cauchy problem for large systems of ordinary differential equations is presented. The algorithm for systems of first-order differential equations is implemented in the EDELWEISS code with the possibility of parallel computations on supercomputers employing the MPI (Message Passing Interface) standard for the data exchange between parallel processes. The solution is represented by a series of orthogonal polynomials on the interval [0, 1]. The algorithm is characterized by simplicity and the possibility to solve nonlinear problems with a correction of the operator in accordance with the solution obtained in the previous iterative process.
Fernandes, L.; Friedlander, A.; Guedes, M.; Judice, J.
2001-01-01
This paper addresses a General Linear Complementarity Problem (GLCP) that has found applications in global optimization. It is shown that a solution of the GLCP can be computed by finding a stationary point of a differentiable function over a set defined by simple bounds on the variables. The application of this result to the solution of bilinear programs and LCPs is discussed. Some computational evidence of its usefulness is included in the last part of the paper
An interior-point method for the Cartesian P*(k-linear complementarity problem over symmetric cones
B Kheirfam
2014-06-01
Full Text Available A novel primal-dual path-following interior-point algorithm for the Cartesian P*(k-linear complementarity problem over symmetric cones is presented. The algorithm is based on a reformulation of the central path for finding the search directions. For a full Nesterov-Todd step feasible interior-point algorithm based on the new search directions, the complexity bound of the algorithm with small-update approach is the best-available bound.
Pfeil, W. H.; De Los Reyes, G.; Bobula, G. A.
1985-01-01
A power turbine governor was designed for a recent-technology turboshaft engine coupled to a modern, articulated rotor system using Linear Quadratic Regulator (LQR) and Kalman Filter (KF) techniques. A linear, state-space model of the engine and rotor system was derived for six engine power settings from flight idle to maximum continuous. An integrator was appended to the fuel flow input to reduce the steady-state governor error to zero. Feedback gains were calculated for the system states at each power setting using the LQR technique. The main rotor tip speed state is not measurable, so a Kalman Filter of the rotor was used to estimate this state. The crossover of the system was increased to 10 rad/s compared to 2 rad/sec for a current governor. Initial computer simulations with a nonlinear engine model indicate a significant decrease in power turbine speed variation with the LQR governor compared to a conventional governor.
Pérez Gladish, Blanca María; Arenas Parra, María del Mar; Bilbao Terol, Amelia María; Rodríguez Uria, María Victoria
2005-01-01
This study attempts to apply a management science technique to improve the efficiency of Hospital Administration. We aim to design the performance of the surgical services at a Public Hospital that allows the Decision-Maker to plan surgical scheduling over one year in order to reduce waiting lists. Real decision problems usually involve several objectives that have parameters which are often given by the decision maker in an imprecise way. It is possible to handle these kinds of problems ...
SOCP relaxation bounds for the optimal subset selection problem applied to robust linear regression
Flores, Salvador
2015-01-01
This paper deals with the problem of finding the globally optimal subset of h elements from a larger set of n elements in d space dimensions so as to minimize a quadratic criterion, with an special emphasis on applications to computing the Least Trimmed Squares Estimator (LTSE) for robust regression. The computation of the LTSE is a challenging subset selection problem involving a nonlinear program with continuous and binary variables, linked in a highly nonlinear fashion. The selection of a ...
Qiong Liu
2012-01-01
Full Text Available We study the following fourth-order elliptic equations: Δ2+Δ=(,,∈Ω,=Δ=0,∈Ω, where Ω⊂ℝ is a bounded domain with smooth boundary Ω and (, is asymptotically linear with respect to at infinity. Using an equivalent version of Cerami's condition and the symmetric mountain pass lemma, we obtain the existence of multiple solutions for the equations.
Haslinger, Jaroslav; Repin, S.; Sysala, Stanislav
2016-01-01
Roč. 61, č. 5 (2016), s. 527-564 ISSN 0862-7940 R&D Projects: GA MŠk LQ1602 Institutional support: RVO:68145535 Keywords : functionals with linear growth * limit load * truncation method * perfect plasticity Subject RIV: BA - General Mathematics Impact factor: 0.618, year: 2016 http://link.springer.com/article/10.1007/s10492-016-0146-6
A Unique Technique to get Kaprekar Iteration in Linear Programming Problem
Sumathi, P.; Preethy, V.
2018-04-01
This paper explores about a frivolous number popularly known as Kaprekar constant and Kaprekar numbers. A large number of courses and the different classroom capacities with difference in study periods make the assignment between classrooms and courses complicated. An approach of getting the minimum value of number of iterations to reach the Kaprekar constant for four digit numbers and maximum value is also obtained through linear programming techniques.
Some mathematical problems in non-linear Physics; Algunos problemas matematicos en fisica no-lineal
NONE
1983-07-01
The main results contained in this report are the following: I) A general analysis of non-autonomous conserved densities for simple linear evolution systems. II) Partial differential systems within a wide class are converted into Lagrange an form. III) Rigorous criteria for existence of integrating factor matrices. IV) Isolation of all third-order evolution equations with high order symmetries and conservation laws. (Author) 3 refs.
A Linear Time Algorithm for the k Maximal Sums Problem
Brodal, Gerth Stølting; Jørgensen, Allan Grønlund
2007-01-01
k maximal sums problem. We use this algorithm to obtain algorithms solving the two-dimensional k maximal sums problem in O(m 2·n + k) time, where the input is an m ×n matrix with m ≤ n. We generalize this algorithm to solve the d-dimensional problem in O(n 2d − 1 + k) time. The space usage of all......Finding the sub-vector with the largest sum in a sequence of n numbers is known as the maximum sum problem. Finding the k sub-vectors with the largest sums is a natural extension of this, and is known as the k maximal sums problem. In this paper we design an optimal O(n + k) time algorithm for the...... the algorithms can be reduced to O(n d − 1 + k). This leads to the first algorithm for the k maximal sums problem in one dimension using O(n + k) time and O(k) space....
An Improved Method for Solving Multiobjective Integer Linear Fractional Programming Problem
Meriem Ait Mehdi
2014-01-01
Full Text Available We describe an improvement of Chergui and Moulaï’s method (2008 that generates the whole efficient set of a multiobjective integer linear fractional program based on the branch and cut concept. The general step of this method consists in optimizing (maximizing without loss of generality one of the fractional objective functions over a subset of the original continuous feasible set; then if necessary, a branching process is carried out until obtaining an integer feasible solution. At this stage, an efficient cut is built from the criteria’s growth directions in order to discard a part of the feasible domain containing only nonefficient solutions. Our contribution concerns firstly the optimization process where a linear program that we define later will be solved at each step rather than a fractional linear program. Secondly, local ideal and nadir points will be used as bounds to prune some branches leading to nonefficient solutions. The computational experiments show that the new method outperforms the old one in all the treated instances.
Reduction of Linear Programming to Linear Approximation
Vaserstein, Leonid N.
2006-01-01
It is well known that every Chebyshev linear approximation problem can be reduced to a linear program. In this paper we show that conversely every linear program can be reduced to a Chebyshev linear approximation problem.
Primal and Dual Penalty Methods for Contact Problems with Geometrical Non-linearities
Vondrák, V.; Dostál, Z.; Dobiáš, Jiří; Pták, Svatopluk
-, č. 5 (2005), s. 449-450 ISSN 1617-7061. [GAMM Annual Meeting 2005. Luxembourg, 28.03.2005-01.04.2005] R&D Projects: GA ČR(CZ) GA101/05/0423 Institutional research plan: CEZ:AV0Z20760514 Keywords : primal penalty * dual penalty * contact problem Subject RIV: BA - General Mathematics
Yanti, Y. R.; Amin, S. M.; Sulaiman, R.
2018-01-01
This study described representation of students who have musical, logical-mathematic and naturalist intelligence in solving a problem. Subjects were selected on the basis of multiple intelligence tests (TPM) consists of 108 statements, with 102 statements adopted from Chislet and Chapman and 6 statements equal to eksistensial intelligences. Data were analyzed based on problem-solving tests (TPM) and interviewing. See the validity of the data then problem-solving tests (TPM) and interviewing is given twice with an analyzed using the representation indikator and the problem solving step. The results showed that: the stage of presenting information known, stage of devising a plan, and stage of carrying out the plan those three subjects were using same form of representation. While he stage of presenting information asked and stage of looking back, subject of logical-mathematic was using different forms of representation with subjects of musical and naturalist intelligence. From this research is expected to provide input to the teacher in determining the learning strategy that will be used by considering the representation of students with the basis of multiple intelligences.
On nonseparated three-point boundary value problems for linear functional differential equations
Rontó, András; Rontó, M.
2011-01-01
Roč. 2011, - (2011), s. 326052 ISSN 1085-3375 Institutional research plan: CEZ:AV0Z10190503 Keywords : functional-differential equation * three-point boundary value problem * nonseparated boundary condition Subject RIV: BA - General Mathematics Impact factor: 1.318, year: 2011 http://www.hindawi.com/journals/ aaa /2011/326052/
Fan, Xitao; Wang, Lin
The Monte Carlo study compared the performance of predictive discriminant analysis (PDA) and that of logistic regression (LR) for the two-group classification problem. Prior probabilities were used for classification, but the cost of misclassification was assumed to be equal. The study used a fully crossed three-factor experimental design (with…
Well-posedness of the second-order linear singular Dirichlet problem
Lomtatidze, Alexander; Opluštil, Z.
2015-01-01
Roč. 22, č. 3 (2015), s. 409-419 ISSN 1072-947X Institutional support: RVO:67985840 Keywords : singular Dirichlet problem * well-posedness Subject RIV: BA - General Mathematics Impact factor: 0.417, year: 2015 http://www.degruyter.com/view/j/gmj.2015.22.issue-3/gmj-2015-0023/gmj-2015-0023. xml
Jensen, Jakob Søndergaard; Nakshatrala, Praveen B.; Tortorelli, Daniel A.
2014-01-01
Gradient-based topology optimization typically involves thousands or millions of design variables. This makes efficient sensitivity analysis essential and for this the adjoint variable method (AVM) is indispensable. For transient problems it has been observed that the traditional AVM, based on a ...
Umbarkar, A. J.; Balande, U. T.; Seth, P. D.
2017-06-01
The field of nature inspired computing and optimization techniques have evolved to solve difficult optimization problems in diverse fields of engineering, science and technology. The firefly attraction process is mimicked in the algorithm for solving optimization problems. In Firefly Algorithm (FA) sorting of fireflies is done by using sorting algorithm. The original FA is proposed with bubble sort for ranking the fireflies. In this paper, the quick sort replaces bubble sort to decrease the time complexity of FA. The dataset used is unconstrained benchmark functions from CEC 2005 [22]. The comparison of FA using bubble sort and FA using quick sort is performed with respect to best, worst, mean, standard deviation, number of comparisons and execution time. The experimental result shows that FA using quick sort requires less number of comparisons but requires more execution time. The increased number of fireflies helps to converge into optimal solution whereas by varying dimension for algorithm performed better at a lower dimension than higher dimension.
Samir Dey
2015-07-01
Full Text Available This paper proposes a new multi-objective intuitionistic fuzzy goal programming approach to solve a multi-objective nonlinear programming problem in context of a structural design. Here we describe some basic properties of intuitionistic fuzzy optimization. We have considered a multi-objective structural optimization problem with several mutually conflicting objectives. The design objective is to minimize weight of the structure and minimize the vertical deflection at loading point of a statistically loaded three-bar planar truss subjected to stress constraints on each of the truss members. This approach is used to solve the above structural optimization model based on arithmetic mean and compare with the solution by intuitionistic fuzzy goal programming approach. A numerical solution is given to illustrate our approach.
The Dirichlet problem with L2-boundary data for elliptic linear equations
Chabrowski, Jan
1991-01-01
The Dirichlet problem has a very long history in mathematics and its importance in partial differential equations, harmonic analysis, potential theory and the applied sciences is well-known. In the last decade the Dirichlet problem with L2-boundary data has attracted the attention of several mathematicians. The significant features of this recent research are the use of weighted Sobolev spaces, existence results for elliptic equations under very weak regularity assumptions on coefficients, energy estimates involving L2-norm of a boundary data and the construction of a space larger than the usual Sobolev space W1,2 such that every L2-function on the boundary of a given set is the trace of a suitable element of this space. The book gives a concise account of main aspects of these recent developments and is intended for researchers and graduate students. Some basic knowledge of Sobolev spaces and measure theory is required.
Special Cases in Optimization Problems for Stationary Linear Closed-Loop Systems
Aliev, F. A.; Larin, Vladimir Borisovich
2003-03-01
Consideration is given to problems of solving the algebraic Riccati equation (ARE)— J-factorization of matrix polynomials and J-factorization of rational matrices—to which traditional solution algorithms are not applicable. In this connection, solution algorithms for these problems are discussed where the eigenvalues of the Hamiltonian matrix corresponding to the ARE and the zeros of matrix polynomials are located on the imaginary axis. Moreover, a procedure is set forth for asymptotic expansion of a stabilizing solution of the ARE in the neighborhood of a point at which the ARE has no stabilizing solution. It is shown how this expansion can be used for constructing canonical J-factorization of matrix polynomials that is nearly a noncanonical J-factorization. It is pointed out that the algorithms described can be implemented with the help of MATLAB routines
Non-linear time series extreme events and integer value problems
Turkman, Kamil Feridun; Zea Bermudez, Patrícia
2014-01-01
This book offers a useful combination of probabilistic and statistical tools for analyzing nonlinear time series. Key features of the book include a study of the extremal behavior of nonlinear time series and a comprehensive list of nonlinear models that address different aspects of nonlinearity. Several inferential methods, including quasi likelihood methods, sequential Markov Chain Monte Carlo Methods and particle filters, are also included so as to provide an overall view of the available tools for parameter estimation for nonlinear models. A chapter on integer time series models based on several thinning operations, which brings together all recent advances made in this area, is also included. Readers should have attended a prior course on linear time series, and a good grasp of simulation-based inferential methods is recommended. This book offers a valuable resource for second-year graduate students and researchers in statistics and other scientific areas who need a basic understanding of nonlinear time ...
Mueller, E.
2007-01-01
The paper presents an approach which treats topics of macroeconomics by methods familiar in physics and technology, especially in nuclear reactor technology and in quantum mechanics. Such methods are applied to simplified models for the money flows within a national economy, their variation in time and thereby for the annual national growth rate. As usual, money flows stand for economic activities. The money flows between the economic groups are described by a set of difference equations or by a set of approximative differential equations or eventually by a set of linear algebraic equations. Thus this paper especially deals with the time behaviour of model economies which are under the influence of imbalances and of delay processes, thereby dealing also with economic growth and recession rates. These differential equations are solved by a completely numerical Runge-Kutta algorithm. Case studies are presented for cases with 12 groups only and are to show the capability of the methods which have been worked out. (orig.)
Huang, C.-H.; Li, J.-X.
2006-01-01
A non-linear optimal control algorithm is examined in this study for the diffusion process of semiconductor materials. The purpose of this algorithm is to estimate an optimal control function such that the homogeneity of the concentration can be controlled during the diffusion process and the diffusion-induced stresses for the semiconductor materials can thus be reduced. The validation of this optimal control analysis utilizing the conjugate gradient method of minimization is analysed by using numerical experiments. Three different diffusion processing times are given and the corresponding optimal control functions are to be determined. Results show that the diffusion time can be shortened significantly by applying the optimal control function at the boundary and the homogeneity of the concentration is also guaranteed. This control function can be obtained within a very short CPU time on a Pentium III 600 MHz PC
Mueller, E.
2007-12-15
The paper presents an approach which treats topics of macroeconomics by methods familiar in physics and technology, especially in nuclear reactor technology and in quantum mechanics. Such methods are applied to simplified models for the money flows within a national economy, their variation in time and thereby for the annual national growth rate. As usual, money flows stand for economic activities. The money flows between the economic groups are described by a set of difference equations or by a set of approximative differential equations or eventually by a set of linear algebraic equations. Thus this paper especially deals with the time behaviour of model economies which are under the influence of imbalances and of delay processes, thereby dealing also with economic growth and recession rates. These differential equations are solved by a completely numerical Runge-Kutta algorithm. Case studies are presented for cases with 12 groups only and are to show the capability of the methods which have been worked out. (orig.)
Parametric linear programming for a materials requirement planning problem solution with uncertainty
Martin Darío Arango Serna; Conrado Augusto Serna; Giovanni Pérez Ortega
2010-01-01
Using fuzzy set theory as a methodology for modelling and analysing decision systems is particularly interesting for researchers in industrial engineering because it allows qualitative and quantitative analysis of problems involving uncertainty and imprecision. Thus, in an effort to gain a better understanding of the use of fuzzy logic in industrial engineering, more specifically in the field of production planning, this article was aimed at providing a materials requirement planning (MRP) pr...
The general linear thermoelastic end problem for solid and hollow cylinders
Thompson, J.J.; Chen, P.Y.P.
1977-01-01
This paper reports on three topics arising from work in progress on theoretical and computational aspects of the utilization of self equilibrating and load stress systems, to solve thermoelastic problems of finite, or semi-infinite, solid or hollow circular cylinders, with particular reference to the pellets, rods, tubes and shells with arbitrary internal heat generation encountered in Nuclear Reactor Technology. Specifically the work is aimed at the evaluation of stress intensification factors in the end elastic boundary layer region, due to various thermal and mechanical end load conditions, in relation to the external, exact stress solutions, which satisfy conditions on the curved surfaces only and are valid over the remainder of the cylindrical body. More generally, it is possible, at least for symmetric thermoelastic problems, to derive exact external solutions, using self equilibrating end load systems, which describe the stress/displacement state completely as a combination of a simple local plane strain solution and a correction dependent on the magnitude of axial thermal gradients. Thus plane strain, and self equilibrating end load systems are sufficient for the complete external and boundary layer solution of a finite cylindrical body. This formulation is capable of further extension, e.g., to concentric multi-region problems, and provides a useful approach to the study of local stress intensification factors due to thermal perturbations
The bounds of feasible space on constrained nonconvex quadratic programming
Zhu, Jinghao
2008-03-01
This paper presents a method to estimate the bounds of the radius of the feasible space for a class of constrained nonconvex quadratic programmingsE Results show that one may compute a bound of the radius of the feasible space by a linear programming which is known to be a P-problem [N. Karmarkar, A new polynomial-time algorithm for linear programming, Combinatorica 4 (1984) 373-395]. It is proposed that one applies this method for using the canonical dual transformation [D.Y. Gao, Canonical duality theory and solutions to constrained nonconvex quadratic programming, J. Global Optimization 29 (2004) 377-399] for solving a standard quadratic programming problem.
Ekel, P.Y.; Galperin, E.A.
2003-01-01
Models for multicriteria resource allocation are constructed with the specific box-triangular structure of a feasible region. The method of balance set equations is extended for the satisfaction level representation of the cost function space including the case of linearly dependent cost functions. On this basis, different goal criteria on the balance set are investigated for linear cases. Procedures for determining the balance set and finding goal-optimal Pareto solutions are illustrated on examples. The results of the paper are of universal character and can find wide applications in allocating diverse types of resources on the multiobjective basis in planning and control of complex systems including load management and energy market problems. (Author)
Cobb, J.W.
1995-02-01
There is an increasing need for more accurate numerical methods for large-scale nonlinear magneto-fluid turbulence calculations. These methods should not only increase the current state of the art in terms of accuracy, but should also continue to optimize other desired properties such as simplicity, minimized computation, minimized memory requirements, and robust stability. This includes the ability to stably solve stiff problems with long time-steps. This work discusses a general methodology for deriving higher-order numerical methods. It also discusses how the selection of various choices can affect the desired properties. The explicit discussion focuses on third-order Runge-Kutta methods, including general solutions and five examples. The study investigates the linear numerical analysis of these methods, including their accuracy, general stability, and stiff stability. Additional appendices discuss linear multistep methods, discuss directions for further work, and exhibit numerical analysis results for some other commonly used lower-order methods.
Jagadish Singh
2012-01-01
Full Text Available This paper investigates the positions and linear stability of an infinitesimal body around the equilibrium points in the framework of the Robe’s circular restricted three-body problem, with assumptions that the hydrostatic equilibrium figure of the first primary is an oblate spheroid and the second primary is an oblate body as well. It is found that equilibrium point exists near the centre of the first primary. Further, there can be one more equilibrium point on the line joining the centers of both primaries. Points on the circle within the first primary are also equilibrium points under certain conditions and the existence of two out-of-plane points is also observed. The linear stability of this configuration is examined and it is found that points near the center of the first primary are conditionally stable, while the circular and out of plane equilibrium points are unstable.
Optimization of lift gas allocation in a gas lifted oil field as non-linear optimization problem
Roshan Sharma
2012-01-01
Full Text Available Proper allocation and distribution of lift gas is necessary for maximizing total oil production from a field with gas lifted oil wells. When the supply of the lift gas is limited, the total available gas should be optimally distributed among the oil wells of the field such that the total production of oil from the field is maximized. This paper describes a non-linear optimization problem with constraints associated with the optimal distribution of the lift gas. A non-linear objective function is developed using a simple dynamic model of the oil field where the decision variables represent the lift gas flow rate set points of each oil well of the field. The lift gas optimization problem is solved using the emph'fmincon' solver found in MATLAB. As an alternative and for verification, hill climbing method is utilized for solving the optimization problem. Using both of these methods, it has been shown that after optimization, the total oil production is increased by about 4. For multiple oil wells sharing lift gas from a common source, a cascade control strategy along with a nonlinear steady state optimizer behaves as a self-optimizing control structure when the total supply of lift gas is assumed to be the only input disturbance present in the process. Simulation results show that repeated optimization performed after the first time optimization under the presence of the input disturbance has no effect in the total oil production.
Shilov, Georgi E
1977-01-01
Covers determinants, linear spaces, systems of linear equations, linear functions of a vector argument, coordinate transformations, the canonical form of the matrix of a linear operator, bilinear and quadratic forms, Euclidean spaces, unitary spaces, quadratic forms in Euclidean and unitary spaces, finite-dimensional space. Problems with hints and answers.
A Mixed-Integer Linear Programming Problem which is Efficiently Solvable.
1987-10-01
ger prongramn rg versions or the problem is not ac’hievable in genieral for sparse inistancves of’ P rolem(r Mi. Th le remrai nder or thris paper is...rClazes c:oIh edge (i,I*) by comlpli urg +- rnirr(z 3, ,x + a,j). A sirnI) le analysis (11 vto Nei [131 indicates why whe Iellinan-Ford algorithm works...ari cl(cck to iceat reguilar rnct’vtuls. For c’xamiic, oi1cc Wwitiil pcroccc’ssicg svlstcici1 rccjcilrcc thicit I iisc wires ice repeated verr 200W
Parker, Peter A.; Geoffrey, Vining G.; Wilson, Sara R.; Szarka, John L., III; Johnson, Nels G.
2010-01-01
The calibration of measurement systems is a fundamental but under-studied problem within industrial statistics. The origins of this problem go back to basic chemical analysis based on NIST standards. In today's world these issues extend to mechanical, electrical, and materials engineering. Often, these new scenarios do not provide "gold standards" such as the standard weights provided by NIST. This paper considers the classic "forward regression followed by inverse regression" approach. In this approach the initial experiment treats the "standards" as the regressor and the observed values as the response to calibrate the instrument. The analyst then must invert the resulting regression model in order to use the instrument to make actual measurements in practice. This paper compares this classical approach to "reverse regression," which treats the standards as the response and the observed measurements as the regressor in the calibration experiment. Such an approach is intuitively appealing because it avoids the need for the inverse regression. However, it also violates some of the basic regression assumptions.
Buscaglia Gustavo C.
2001-01-01
Full Text Available A new numerical approach is proposed to alleviate the computational cost of solving non-linear non-uniform homogenized problems. The article details the application of the proposed approach to lubrication problems with roughness effects. The method is based on a two-parameter Taylor expansion of the implicit dependence of the homogenized coefficients on the average pressure and on the local value of the air gap thickness. A fourth-order Taylor expansion provides an approximation that is accurate enough to be used in the global problem solution instead of the exact dependence, without introducing significant errors. In this way, when solving the global problem, the solution of local problems is simply replaced by the evaluation of a polynomial. Moreover, the method leads naturally to Newton-Raphson nonlinear iterations, that further reduce the cost. The overall efficiency of the numerical methodology makes it feasible to apply rigorous homogenization techniques in the analysis of compressible fluid contact considering roughness effects. Previous work makes use of an heuristic averaging technique. Numerical comparison proves that homogenization-based methods are superior when the roughness is strongly anisotropic and not aligned with the flow direction.
Gardner, Robin P.; Xu, Libai
2009-10-01
The Center for Engineering Applications of Radioisotopes (CEAR) has been working for over a decade on the Monte Carlo library least-squares (MCLLS) approach for treating non-linear radiation analyzer problems including: (1) prompt gamma-ray neutron activation analysis (PGNAA) for bulk analysis, (2) energy-dispersive X-ray fluorescence (EDXRF) analyzers, and (3) carbon/oxygen tool analysis in oil well logging. This approach essentially consists of using Monte Carlo simulation to generate the libraries of all the elements to be analyzed plus any other required background libraries. These libraries are then used in the linear library least-squares (LLS) approach with unknown sample spectra to analyze for all elements in the sample. Iterations of this are used until the LLS values agree with the composition used to generate the libraries. The current status of the methods (and topics) necessary to implement the MCLLS approach is reported. This includes: (1) the Monte Carlo codes such as CEARXRF, CEARCPG, and CEARCO for forward generation of the necessary elemental library spectra for the LLS calculation for X-ray fluorescence, neutron capture prompt gamma-ray analyzers, and carbon/oxygen tools; (2) the correction of spectral pulse pile-up (PPU) distortion by Monte Carlo simulation with the code CEARIPPU; (3) generation of detector response functions (DRF) for detectors with linear and non-linear responses for Monte Carlo simulation of pulse-height spectra; and (4) the use of the differential operator (DO) technique to make the necessary iterations for non-linear responses practical. In addition to commonly analyzed single spectra, coincidence spectra or even two-dimensional (2-D) coincidence spectra can also be used in the MCLLS approach and may provide more accurate results.
Stolpe, Mathias; Bendsøe, Martin P.
2007-01-01
This paper present some initial results pertaining to a search for globally optimal solutions to a challenging benchmark example proposed by Zhou and Rozvany. This means that we are dealing with global optimization of the classical single load minimum compliance topology design problem with a fixed...... finite element discretization and with discrete design variables. Global optimality is achieved by the implementation of some specially constructed convergent nonlinear branch and cut methods, based on the use of natural relaxations and by applying strengthening constraints (linear valid inequalities...
Antar, B. N.
1976-01-01
A numerical technique is presented for locating the eigenvalues of two point linear differential eigenvalue problems. The technique is designed to search for complex eigenvalues belonging to complex operators. With this method, any domain of the complex eigenvalue plane could be scanned and the eigenvalues within it, if any, located. For an application of the method, the eigenvalues of the Orr-Sommerfeld equation of the plane Poiseuille flow are determined within a specified portion of the c-plane. The eigenvalues for alpha = 1 and R = 10,000 are tabulated and compared for accuracy with existing solutions.
Zhifeng Dai
2014-01-01
Full Text Available Combining the Rosen gradient projection method with the two-term Polak-Ribière-Polyak (PRP conjugate gradient method, we propose a two-term Polak-Ribière-Polyak (PRP conjugate gradient projection method for solving linear equality constraints optimization problems. The proposed method possesses some attractive properties: (1 search direction generated by the proposed method is a feasible descent direction; consequently the generated iterates are feasible points; (2 the sequences of function are decreasing. Under some mild conditions, we show that it is globally convergent with Armijio-type line search. Preliminary numerical results show that the proposed method is promising.
Stolpe, Mathias; Bendsøe, Martin P.
2007-01-01
This paper present some initial results pertaining to a search for globally optimal solutions to a challenging benchmark example proposed by Zhou and Rozvany. This means that we are dealing with global optimization of the classical single load minimum compliance topology design problem with a fixed...... finite element discretization and with discrete design variables. Global optimality is achieved by the implementation of some specially constructed convergent nonlinear branch and cut methods, based on the use of natural relaxations and by applying strengthening constraints (linear valid inequalities......) and cuts....
Generalized Uncertainty Quantification for Linear Inverse Problems in X-ray Imaging
Fowler, Michael James [Clarkson Univ., Potsdam, NY (United States)
2014-04-25
In industrial and engineering applications, X-ray radiography has attained wide use as a data collection protocol for the assessment of material properties in cases where direct observation is not possible. The direct measurement of nuclear materials, particularly when they are under explosive or implosive loading, is not feasible, and radiography can serve as a useful tool for obtaining indirect measurements. In such experiments, high energy X-rays are pulsed through a scene containing material of interest, and a detector records a radiograph by measuring the radiation that is not attenuated in the scene. One approach to the analysis of these radiographs is to model the imaging system as an operator that acts upon the object being imaged to produce a radiograph. In this model, the goal is to solve an inverse problem to reconstruct the values of interest in the object, which are typically material properties such as density or areal density. The primary objective in this work is to provide quantitative solutions with uncertainty estimates for three separate applications in X-ray radiography: deconvolution, Abel inversion, and radiation spot shape reconstruction. For each problem, we introduce a new hierarchical Bayesian model for determining a posterior distribution on the unknowns and develop efficient Markov chain Monte Carlo (MCMC) methods for sampling from the posterior. A Poisson likelihood, based on a noise model for photon counts at the detector, is combined with a prior tailored to each application: an edge-localizing prior for deconvolution; a smoothing prior with non-negativity constraints for spot reconstruction; and a full covariance sampling prior based on a Wishart hyperprior for Abel inversion. After developing our methods in a general setting, we demonstrate each model on both synthetically generated datasets, including those from a well known radiation transport code, and real high energy radiographs taken at two U. S. Department of Energy
Synthetic acceleration methods for linear transport problems with highly anisotropic scattering
Khattab, K.M.
1989-01-01
One of the iterative methods which is used to solve the discretized transport equation is called the Source Iteration Method (SI). The SI method converges very slowly for problems with optically thick regions and scattering ratios (σ s /σ t ) near unity. The Diffusion-Synthetic Acceleration method (DSA) is one of the methods which has been devised to improve the convergence rate of the SI method. The DSA method is a good tool to accelerate the SI method, if the particle which is being dealt with is a neutron. This is because the scattering process for neutrons is not severely anisotropic. However, if the particle is a charged particle (electron), DSA becomes ineffective as an acceleration device because here the scattering process is severely anisotropic. To improve the DSA algorithm for electron transport, the author approaches the problem in two different ways in this thesis. He develops the first approach by accelerating more angular moments (φ 0 , φ 1 , φ 2 , φ 3 ,...) than is done in DSA; he calls this approach the Modified P N Synthetic Acceleration (MPSA) method. In the second approach he modifies the definition of the transport sweep, using the physics of the scattering; he calls this approach the Modified Diffusion Synthetic Acceleration (MDSA) method. In general, he has developed, analyzed, and implemented the MPSA and MDSA methods in this thesis and has shown that for a high order quadrature set and mesh widths about 1.0 cm, they are each about 34 times faster (clock time) than the DSA method. Also, he has found that the MDSA spectral radius decreases as the mesh size increases. This makes the MDSA method a better choice for large spatial meshes
Herman, Gabor T; Chen, Wei
2008-03-01
The goal of Intensity-Modulated Radiation Therapy (IMRT) is to deliver sufficient doses to tumors to kill them, but without causing irreparable damage to critical organs. This requirement can be formulated as a linear feasibility problem. The sequential (i.e., iteratively treating the constraints one after another in a cyclic fashion) algorithm ART3 is known to find a solution to such problems in a finite number of steps, provided that the feasible region is full dimensional. We present a faster algorithm called ART3+. The idea of ART3+ is to avoid unnecessary checks on constraints that are likely to be satisfied. The superior performance of the new algorithm is demonstrated by mathematical experiments inspired by the IMRT application.
Suliman, Mohamed Abdalla Elhag
2016-12-19
This paper proposes a new approach to find the regularization parameter for linear least-squares discrete ill-posed problems. In the proposed approach, an artificial perturbation matrix with a bounded norm is forced into the discrete ill-posed model matrix. This perturbation is introduced to enhance the singular-value (SV) structure of the matrix and hence to provide a better solution. The proposed approach is derived to select the regularization parameter in a way that minimizes the mean-squared error (MSE) of the estimator. Numerical results demonstrate that the proposed approach outperforms a set of benchmark methods in most cases when applied to different scenarios of discrete ill-posed problems. Jointly, the proposed approach enjoys the lowest run-time and offers the highest level of robustness amongst all the tested methods.
Memon, Sajid; Nataraj, Neela; Pani, Amiya Kumar
2012-01-01
In this article, a posteriori error estimates are derived for mixed finite element Galerkin approximations to second order linear parabolic initial and boundary value problems. Using mixed elliptic reconstructions, a posteriori error estimates in L∞(L2)- and L2(L2)-norms for the solution as well as its flux are proved for the semidiscrete scheme. Finally, based on a backward Euler method, a completely discrete scheme is analyzed and a posteriori error bounds are derived, which improves upon earlier results on a posteriori estimates of mixed finite element approximations to parabolic problems. Results of numerical experiments verifying the efficiency of the estimators have also been provided. © 2012 Society for Industrial and Applied Mathematics.
Gilberto Chavarría Arroyo
2014-06-01
Full Text Available The current article presents the results of a study that aimed to analyze the difficulties faced by eighth grade students when learning to solve algebraic problems based on linear equations with one unknown variable. The participants were learners with low average performance in mathematics at a high school in Heredia. The research followed a naturalistic paradigm and the case study method with a qualitative approach. Different techniques like class observations, questionnaires to students, non-structured interviews to teachers and interviews to the learners were applied. The research helped to identify the main causes of difficulty when learning to solve algebraic problems. Some of the causes that were identified are affective aspects, lack of previous knowledge, poor relational understanding, fatigue, diversion, reading deficiencies and misunderstanding of terminology.
Data-driven non-linear elasticity: constitutive manifold construction and problem discretization
Ibañez, Ruben; Borzacchiello, Domenico; Aguado, Jose Vicente; Abisset-Chavanne, Emmanuelle; Cueto, Elias; Ladeveze, Pierre; Chinesta, Francisco
2017-11-01
The use of constitutive equations calibrated from data has been implemented into standard numerical solvers for successfully addressing a variety problems encountered in simulation-based engineering sciences (SBES). However, the complexity remains constantly increasing due to the need of increasingly detailed models as well as the use of engineered materials. Data-Driven simulation constitutes a potential change of paradigm in SBES. Standard simulation in computational mechanics is based on the use of two very different types of equations. The first one, of axiomatic character, is related to balance laws (momentum, mass, energy,\\ldots ), whereas the second one consists of models that scientists have extracted from collected, either natural or synthetic, data. Data-driven (or data-intensive) simulation consists of directly linking experimental data to computers in order to perform numerical simulations. These simulations will employ laws, universally recognized as epistemic, while minimizing the need of explicit, often phenomenological, models. The main drawback of such an approach is the large amount of required data, some of them inaccessible from the nowadays testing facilities. Such difficulty can be circumvented in many cases, and in any case alleviated, by considering complex tests, collecting as many data as possible and then using a data-driven inverse approach in order to generate the whole constitutive manifold from few complex experimental tests, as discussed in the present work.
Pole shifting with constrained output feedback
Hamel, D.; Mensah, S.; Boisvert, J.
1984-03-01
The concept of pole placement plays an important role in linear, multi-variable, control theory. It has received much attention since its introduction, and several pole shifting algorithms are now available. This work presents a new method which allows practical and engineering constraints such as gain limitation and controller structure to be introduced right into the pole shifting design strategy. This is achieved by formulating the pole placement problem as a constrained optimization problem. Explicit constraints (controller structure and gain limits) are defined to identify an admissible region for the feedback gain matrix. The desired pole configuration is translated into an appropriate cost function which must be closed-loop minimized. The resulting constrained optimization problem can thus be solved with optimization algorithms. The method has been implemented as an algorithmic interactive module in a computer-aided control system design package, MVPACK. The application of the method is illustrated to design controllers for an aircraft and an evaporator. The results illustrate the importance of controller structure on overall performance of a control system
NP-Hardness of optimizing the sum of Rational Linear Functions over an Asymptotic-Linear-Program
Chermakani, Deepak Ponvel
2012-01-01
We convert, within polynomial-time and sequential processing, an NP-Complete Problem into a real-variable problem of minimizing a sum of Rational Linear Functions constrained by an Asymptotic-Linear-Program. The coefficients and constants in the real-variable problem are 0, 1, -1, K, or -K, where K is the time parameter that tends to positive infinity. The number of variables, constraints, and rational linear functions in the objective, of the real-variable problem is bounded by a polynomial ...
Goswami, Deepjyoti; Pani, Amiya K.
2011-01-01
In this article, we propose and analyze an alternate proof of a priori error estimates for semidiscrete Galerkin approximations to a general second order linear parabolic initial and boundary value problem with rough initial data. Our analysis
Nikolay N. Nefedov
2018-01-01
Full Text Available In the paper, we study a singularly perturbed periodic in time problem for the parabolic reaction-advection-diffusion equation with a weak linear advection. The case of the reactive term in the form of a cubic nonlinearity is considered. On the basis of already known results, a more general formulation of the problem is investigated, with weaker sufficient conditions for the existence of a solution with an internal transition layer to be provided than in previous studies. For convenience, the known results are given, which ensure the fulfillment of the existence theorem of the contrast structure. The justification for the existence of a solution with an internal transition layer is based on the use of an asymptotic method of differential inequalities based on the modification of the terms of the constructed asymptotic expansion. Further, sufficient conditions are established to fulfill these requirements, and they have simple and concise formulations in the form of the algebraic equation w(x0,t = 0 and the condition wx(x0,t < 0, which is essentially a condition of simplicity of the root x0(t and ensuring the stability of the solution found. The function w is a function of the known functions appearing in the reactive and advective terms of the original problem. The equation w(x0,t = 0 is a problem for finding the zero approximation x0(t to determine the localization region of the inner transition layer. In addition, the asymptotic Lyapunov stability of the found periodic solution is investigated, based on the application of the so-called compressible barrier method. The main result of the paper is formulated as a theorem.
Ignatovich, V.K.
1989-01-01
The equations. governing the transport of radiation in plane media of finite thickness are formulated and solved in terms reflection and extintion of radiation inthe case of semi infinite media. 13 refs
Nahed S. Hussein
2014-01-01
Full Text Available A numerical boundary integral scheme is proposed for the solution to the system of eld equations of plane. The stresses are prescribed on one-half of the circle, while the displacements are given. The considered problem with mixed boundary conditions in the circle is replaced by two problems with homogeneous boundary conditions, one of each type, having a common solution. The equations are reduced to a system of boundary integral equations, which is then discretized in the usual way, and the problem at this stage is reduced to the solution to a rectangular linear system of algebraic equations. The unknowns in this system of equations are the boundary values of four harmonic functions which define the full elastic solution and the unknown boundary values of stresses or displacements on proper parts of the boundary. On the basis of the obtained results, it is inferred that a stress component has a singularity at each of the two separation points, thought to be of logarithmic type. The results are discussed and boundary plots are given. We have also calculated the unknown functions in the bulk directly from the given boundary conditions using the boundary collocation method. The obtained results in the bulk are discussed and three-dimensional plots are given. A tentative form for the singular solution is proposed and the corresponding singular stresses and displacements are plotted in the bulk. The form of the singular tangential stress is seen to be compatible with the boundary values obtained earlier. The efficiency of the used numerical schemes is discussed.
Addona, Davide, E-mail: d.addona@campus.unimib.it [Università degli Studi di Milano Bicocca, (MILANO BICOCCA) Dipartimento di Matematica (Italy)
2015-08-15
We obtain weighted uniform estimates for the gradient of the solutions to a class of linear parabolic Cauchy problems with unbounded coefficients. Such estimates are then used to prove existence and uniqueness of the mild solution to a semi-linear backward parabolic Cauchy problem, where the differential equation is the Hamilton–Jacobi–Bellman equation of a suitable optimal control problem. Via backward stochastic differential equations, we show that the mild solution is indeed the value function of the controlled equation and that the feedback law is verified.
Goswami, Deepjyoti
2011-09-01
In this article, we propose and analyze an alternate proof of a priori error estimates for semidiscrete Galerkin approximations to a general second order linear parabolic initial and boundary value problem with rough initial data. Our analysis is based on energy arguments without using parabolic duality. Further, it follows the spirit of the proof technique used for deriving optimal error estimates for finite element approximations to parabolic problems with smooth initial data and hence, it unifies both theories, that is, one for smooth initial data and other for nonsmooth data. Moreover, the proposed technique is also extended to a semidiscrete mixed method for linear parabolic problems. In both cases, optimal L2-error estimates are derived, when the initial data is in L2. A superconvergence phenomenon is also observed, which is then used to prove L∞-estimates for linear parabolic problems defined on two-dimensional spatial domain again with rough initial data. Copyright © Taylor & Francis Group, LLC.
Fahmida, Umi; Kolopaking, Risatianti; Santika, Otte; Sriani, Sriani; Umar, Jahja; Htet, Min Kyaw; Ferguson, Elaine
2015-03-01
Complementary feeding recommendations (CFRs) with the use of locally available foods can be developed by using linear programming (LP). Although its potential has been shown for planning phases of food-based interventions, the effectiveness in the community setting has not been tested to our knowledge. We aimed to assess effectiveness of promoting optimized CFRs for improving maternal knowledge, feeding practices, and child intakes of key problem nutrients (calcium, iron, niacin, and zinc). A community-intervention trial with a quasi-experimental design was conducted in East Lombok, West Nusa Tenggara Province, Indonesia, on children aged 9-16 mo at baseline. A CFR group (n = 240) was compared with a non-CFR group (n = 215). The CFRs, which were developed using LP, were promoted in an intervention that included monthly cooking sessions and weekly home visits. The mother's nutrition knowledge and her child's feeding practices and the child's nutrient intakes were measured before and after the 6-mo intervention by using a structured interview, 24-h recall, and 1-wk food-frequency questionnaire. The CFR intervention improved mothers' knowledge and children's feeding practices and improved children's intakes of calcium, iron, and zinc. At the end line, median (IQR) nutrient densities were significantly higher in the CFR group than in the non-CFR group for iron [i.e., 0.6 mg/100 kcal (0.4-0.8 mg/100 kcal) compared with 0.5 mg/100 kcal (0.4-0.7 mg/100 kcal)] and niacin [i.e., 0.8 mg/100 kcal (0.5-1.0 mg/100 kcal) compared with 0.6 mg/100 kcal (0.4-0.8 mg/100 kcal)]. However, median nutrient densities for calcium, iron, niacin, and zinc in the CFR group (23, 0.6, 0.7, and 0.5 mg/100 kcal, respectively) were still below desired densities (63, 1.0, 0.9, and 0.6 mg/100 kcal, respectively). The CFRs significantly increased intakes of calcium, iron, niacin, and zinc, but nutrient densities were still below desired nutrient densities. When the adoption of optimized CFRs is
Yun, Sung Hwan
2004-02-01
Radiative transfer is a complex phenomenon in which radiation field interacts with material. This thermal radiative transfer phenomenon is composed of two equations which are the balance equation of photons and the material energy balance equation. The two equations involve non-linearity due to the temperature and that makes the radiative transfer equation more difficult to solve. During the last several years, there have been many efforts to solve the non-linear radiative transfer problems by Monte Carlo method. Among them, it is known that Semi-Analog Monte Carlo (SMC) method developed by Ahrens and Larsen is accurate regard-less of the time step size in low temperature region. But their works are limited to one-dimensional, low temperature problems. In this thesis, we suggest some method to remove their limitations in the SMC method and apply to the more realistic problems. An initially cold problem was solved over entire temperature region by using piecewise linear interpolation of the heat capacity, while heat capacity is still fitted as a cubic curve within the lowest temperature region. If we assume the heat capacity to be linear in each temperature region, the non-linearity still remains in the radiative transfer equations. We then introduce the first-order Taylor expansion to linearize the non-linear radiative transfer equations. During the linearization procedure, absorption-reemission phenomena may be described by a conventional reemission time sampling scheme which is similar to the repetitive sampling scheme in particle transport Monte Carlo method. But this scheme causes significant stochastic errors, which necessitates many histories. Thus, we present a new reemission time sampling scheme which reduces stochastic errors by storing the information of absorption times. The results of the comparison of the two schemes show that the new scheme has less stochastic errors. Therefore, the improved SMC method is able to solve more realistic problems with
Sengupta, Tapan K.; Sharma, Nidhi; Sengupta, Aditi
2018-05-01
An enstrophy-based non-linear instability analysis of the Navier-Stokes equation for two-dimensional (2D) flows is presented here, using the Taylor-Green vortex (TGV) problem as an example. This problem admits a time-dependent analytical solution as the base flow, whose instability is traced here. The numerical study of the evolution of the Taylor-Green vortices shows that the flow becomes turbulent, but an explanation for this transition has not been advanced so far. The deviation of the numerical solution from the analytical solution is studied here using a high accuracy compact scheme on a non-uniform grid (NUC6), with the fourth-order Runge-Kutta method. The stream function-vorticity (ψ, ω) formulation of the governing equations is solved here in a periodic square domain with four vortices at t = 0. Simulations performed at different Reynolds numbers reveal that numerical errors in computations induce a breakdown of symmetry and simultaneous fragmentation of vortices. It is shown that the actual physical instability is triggered by the growth of disturbances and is explained by the evolution of disturbance mechanical energy and enstrophy. The disturbance evolution equations have been traced by looking at (a) disturbance mechanical energy of the Navier-Stokes equation, as described in the work of Sengupta et al., "Vortex-induced instability of an incompressible wall-bounded shear layer," J. Fluid Mech. 493, 277-286 (2003), and (b) the creation of rotationality via the enstrophy transport equation in the work of Sengupta et al., "Diffusion in inhomogeneous flows: Unique equilibrium state in an internal flow," Comput. Fluids 88, 440-451 (2013).
Trends in PDE constrained optimization
Benner, Peter; Engell, Sebastian; Griewank, Andreas; Harbrecht, Helmut; Hinze, Michael; Rannacher, Rolf; Ulbrich, Stefan
2014-01-01
Optimization problems subject to constraints governed by partial differential equations (PDEs) are among the most challenging problems in the context of industrial, economical and medical applications. Almost the entire range of problems in this field of research was studied and further explored as part of the Deutsche Forschungsgemeinschaft (DFG) priority program 1253 on “Optimization with Partial Differential Equations” from 2006 to 2013. The investigations were motivated by the fascinating potential applications and challenging mathematical problems that arise in the field of PDE constrained optimization. New analytic and algorithmic paradigms have been developed, implemented and validated in the context of real-world applications. In this special volume, contributions from more than fifteen German universities combine the results of this interdisciplinary program with a focus on applied mathematics. The book is divided into five sections on “Constrained Optimization, Identification and Control”...
Oliva, Amaury M.; Filho, Hermes A.; Silva, Davi M.; Garcia, Carlos R., E-mail: aoliva@iprj.uerj.br, E-mail: halves@iprj.uerj.br, E-mail: davijmsilva@yahoo.com.br, E-mail: cgh@instec.cu [Universidade do Estado do Rio de Janeiro (UERJ), Nova Friburgo, RJ (Brazil). Instituto Politecnico. Departamento de Modelagem Computacional; Instituto Superior de Tecnologias y Ciencias Aplicadas (InSTEC), La Habana (Cuba)
2017-07-01
In this paper, we propose a numerical methodology for the development of a method of the spectral nodal class that will generate numerical solutions free from spatial truncation errors. This method, denominated Spectral Deterministic Method (SDM), is tested as an initial study of the solutions (spectral analysis) of neutron transport equations in the discrete ordinates (S{sub N}) formulation, in one-dimensional slab geometry, multigroup approximation, with linearly anisotropic scattering, considering homogeneous and heterogeneous domains with fixed source. The unknowns in the methodology are the cell-edge, and cell average angular fluxes, the numerical values calculated for these quantities coincide with the analytic solution of the equations. These numerical results are shown and compared with the traditional ne- mesh method Diamond Difference (DD) and the coarse-mesh method spectral Green's function (SGF) to illustrate the method's accuracy and stability. The solution algorithms problems are implemented in a computer simulator made in C++ language, the same that was used to generate the results of the reference work. (author)
Hall, Philip
1989-01-01
Goertler vortices are thought to be the cause of transition in many fluid flows of practical importance. A review of the different stages of vortex growth is given. In the linear regime, nonparallel effects completely govern this growth, and parallel flow theories do not capture the essential features of the development of the vortices. A detailed comparison between the parallel and nonparallel theories is given and it is shown that at small vortex wavelengths, the parallel flow theories have some validity; otherwise nonparallel effects are dominant. New results for the receptivity problem for Goertler vortices are given; in particular vortices induced by free stream perturbations impinging on the leading edge of the walls are considered. It is found that the most dangerous mode of this type can be isolated and it's neutral curve is determined. This curve agrees very closely with the available experimental data. A discussion of the different regimes of growth of nonlinear vortices is also given. Again it is shown that, unless the vortex wavelength is small, nonparallel effects are dominant. Some new results for nonlinear vortices of 0(1) wavelengths are given and compared to experimental observations.
Dima, G. I.; Kuhn, J. R.; Berdyugina, S.
2017-12-01
Measurements of the coronal magnetic field are difficult because of the intrinsically faint emission of coronal plasma and the large spurious background due to the bright solar disk. This work addresses the problem of resolving the confusion of the line-of-sight (LOS) integration through the optically-thin corona being observed. Work on developing new measuring techniques based on single-point inversions using the Hanle effect has already been described (Dima et al. 2016). It is important to develop a technique to assess when the LOS confusion makes comparing models and observations problematic. Using forward integration of synthetic emission through magnetohydrodynamic (MHD) models together with simultaneous linearly polarized observations of the FeXIII 1075nm and SiX 1430nm emission lines allows us to assess LOS confusion. Since the lines are both in the Hanle saturated regime their polarization angles are expected to be aligned as long as the gas is sampling the same magnetic field. If significant contributions to the emission is taking place from different regions along the LOS due to the additive nature of the polarized brightness the measured linear polarization between the two lines will be offset. The size of the resolution element is important for this determination since observing larger coronal regions will confuse the variation along the LOS with that in the plane-of-sky. We also present comparisons between synthetic linearly polarized emission through a global MHD model and observations of the same regions obtained using the 0.5m Scatter-free Observatory for Limb Active Regions and Coronae (SOLARC) telescope located on Haleakala, Maui. This work is being done in preparation for the type of observations that will become possible when the next generation 4m DKIST telescope comes online in 2020.
Linear versus non-linear supersymmetry, in general
Ferrara, Sergio [Theoretical Physics Department, CERN,CH-1211 Geneva 23 (Switzerland); INFN - Laboratori Nazionali di Frascati,Via Enrico Fermi 40, I-00044 Frascati (Italy); Department of Physics and Astronomy, UniversityC.L.A.,Los Angeles, CA 90095-1547 (United States); Kallosh, Renata [SITP and Department of Physics, Stanford University,Stanford, California 94305 (United States); Proeyen, Antoine Van [Institute for Theoretical Physics, Katholieke Universiteit Leuven,Celestijnenlaan 200D, B-3001 Leuven (Belgium); Wrase, Timm [Institute for Theoretical Physics, Technische Universität Wien,Wiedner Hauptstr. 8-10, A-1040 Vienna (Austria)
2016-04-12
We study superconformal and supergravity models with constrained superfields. The underlying version of such models with all unconstrained superfields and linearly realized supersymmetry is presented here, in addition to the physical multiplets there are Lagrange multiplier (LM) superfields. Once the equations of motion for the LM superfields are solved, some of the physical superfields become constrained. The linear supersymmetry of the original models becomes non-linearly realized, its exact form can be deduced from the original linear supersymmetry. Known examples of constrained superfields are shown to require the following LM’s: chiral superfields, linear superfields, general complex superfields, some of them are multiplets with a spin.
Linear versus non-linear supersymmetry, in general
Ferrara, Sergio; Kallosh, Renata; Proeyen, Antoine Van; Wrase, Timm
2016-01-01
We study superconformal and supergravity models with constrained superfields. The underlying version of such models with all unconstrained superfields and linearly realized supersymmetry is presented here, in addition to the physical multiplets there are Lagrange multiplier (LM) superfields. Once the equations of motion for the LM superfields are solved, some of the physical superfields become constrained. The linear supersymmetry of the original models becomes non-linearly realized, its exact form can be deduced from the original linear supersymmetry. Known examples of constrained superfields are shown to require the following LM’s: chiral superfields, linear superfields, general complex superfields, some of them are multiplets with a spin.
NONE
1980-07-01
The main topics treated in this report are: I) Existence of generalized Lagrangians. II) Conserved densities for odd-order polynomial evolution equations and linear evolution systems. III ) Conservation laws for Klein-Gordon, Di rae and Maxwell equations. IV) Stability conditions for finite-energy solutions of a non-linear Klein-Gordon equation. V) Hamiltonian approach to non-linear evolution equations and Backlund transformations. VI) Anharmonic vibrations: Status of results and new possible approaches. (Author) 83 refs.
Linear programming foundations and extensions
Vanderbei, Robert J
2001-01-01
Linear Programming: Foundations and Extensions is an introduction to the field of optimization. The book emphasizes constrained optimization, beginning with a substantial treatment of linear programming, and proceeding to convex analysis, network flows, integer programming, quadratic programming, and convex optimization. The book is carefully written. Specific examples and concrete algorithms precede more abstract topics. Topics are clearly developed with a large number of numerical examples worked out in detail. Moreover, Linear Programming: Foundations and Extensions underscores the purpose of optimization: to solve practical problems on a computer. Accordingly, the book is coordinated with free efficient C programs that implement the major algorithms studied: -The two-phase simplex method; -The primal-dual simplex method; -The path-following interior-point method; -The homogeneous self-dual methods. In addition, there are online JAVA applets that illustrate various pivot rules and variants of the simplex m...
Nakhanu, Shikuku Beatrice; Musasia, Amadalo Maurice
2015-01-01
The topic Linear Programming is included in the compulsory Kenyan secondary school mathematics curriculum at form four. The topic provides skills for determining best outcomes in a given mathematical model involving some linear relationship. This technique has found application in business, economics as well as various engineering fields. Yet many…
Strickland, Tricia K.; Maccini, Paula
2013-01-01
We examined the effects of the Concrete-Representational-Abstract Integration strategy on the ability of secondary students with learning disabilities to multiply linear algebraic expressions embedded within contextualized area problems. A multiple-probe design across three participants was used. Results indicated that the integration of the…
Yanmei Sun
2012-01-01
Full Text Available By using the Leggett-Williams fixed theorem, we establish the existence of multiple positive solutions for second-order nonhomogeneous Sturm-Liouville boundary value problems with linear functional boundary conditions. One explicit example with singularity is presented to demonstrate the application of our main results.
Gobet, F; Simon, H A
1996-01-01
Chess has long served as an important standard task environment for research on human memory and problem-solving abilities and processes. In this paper, we report evidence on the relative importance of recognition processes and planning (look-ahead) processes in very high level expert performance in chess. The data show that the rated skill of a top-level grandmaster is only slightly lower when he is playing simultaneously against a half dozen grandmaster opponents than under tournament con...
Constrained State Estimation for Individual Localization in Wireless Body Sensor Networks
Xiaoxue Feng
2014-11-01
Full Text Available Wireless body sensor networks based on ultra-wideband radio have recently received much research attention due to its wide applications in health-care, security, sports and entertainment. Accurate localization is a fundamental problem to realize the development of effective location-aware applications above. In this paper the problem of constrained state estimation for individual localization in wireless body sensor networks is addressed. Priori knowledge about geometry among the on-body nodes as additional constraint is incorporated into the traditional filtering system. The analytical expression of state estimation with linear constraint to exploit the additional information is derived. Furthermore, for nonlinear constraint, first-order and second-order linearizations via Taylor series expansion are proposed to transform the nonlinear constraint to the linear case. Examples between the first-order and second-order nonlinear constrained filters based on interacting multiple model extended kalman filter (IMM-EKF show that the second-order solution for higher order nonlinearity as present in this paper outperforms the first-order solution, and constrained IMM-EKF obtains superior estimation than IMM-EKF without constraint. Another brownian motion individual localization example also illustrates the effectiveness of constrained nonlinear iterative least square (NILS, which gets better filtering performance than NILS without constraint.
Constrained State Estimation for Individual Localization in Wireless Body Sensor Networks
Feng, Xiaoxue; Snoussi, Hichem; Liang, Yan; Jiao, Lianmeng
2014-01-01
Wireless body sensor networks based on ultra-wideband radio have recently received much research attention due to its wide applications in health-care, security, sports and entertainment. Accurate localization is a fundamental problem to realize the development of effective location-aware applications above. In this paper the problem of constrained state estimation for individual localization in wireless body sensor networks is addressed. Priori knowledge about geometry among the on-body nodes as additional constraint is incorporated into the traditional filtering system. The analytical expression of state estimation with linear constraint to exploit the additional information is derived. Furthermore, for nonlinear constraint, first-order and second-order linearizations via Taylor series expansion are proposed to transform the nonlinear constraint to the linear case. Examples between the first-order and second-order nonlinear constrained filters based on interacting multiple model extended kalman filter (IMM-EKF) show that the second-order solution for higher order nonlinearity as present in this paper outperforms the first-order solution, and constrained IMM-EKF obtains superior estimation than IMM-EKF without constraint. Another brownian motion individual localization example also illustrates the effectiveness of constrained nonlinear iterative least square (NILS), which gets better filtering performance than NILS without constraint. PMID:25390408
Constrained state estimation for individual localization in wireless body sensor networks.
Feng, Xiaoxue; Snoussi, Hichem; Liang, Yan; Jiao, Lianmeng
2014-11-10
Wireless body sensor networks based on ultra-wideband radio have recently received much research attention due to its wide applications in health-care, security, sports and entertainment. Accurate localization is a fundamental problem to realize the development of effective location-aware applications above. In this paper the problem of constrained state estimation for individual localization in wireless body sensor networks is addressed. Priori knowledge about geometry among the on-body nodes as additional constraint is incorporated into the traditional filtering system. The analytical expression of state estimation with linear constraint to exploit the additional information is derived. Furthermore, for nonlinear constraint, first-order and second-order linearizations via Taylor series expansion are proposed to transform the nonlinear constraint to the linear case. Examples between the first-order and second-order nonlinear constrained filters based on interacting multiple model extended kalman filter (IMM-EKF) show that the second-order solution for higher order nonlinearity as present in this paper outperforms the first-order solution, and constrained IMM-EKF obtains superior estimation than IMM-EKF without constraint. Another brownian motion individual localization example also illustrates the effectiveness of constrained nonlinear iterative least square (NILS), which gets better filtering performance than NILS without constraint.
Chi-Chang Wang
2013-09-01
Full Text Available This paper seeks to use the proposed residual correction method in coordination with the monotone iterative technique to obtain upper and lower approximate solutions of singularly perturbed non-linear boundary value problems. First, the monotonicity of a non-linear differential equation is reinforced using the monotone iterative technique, then the cubic-spline method is applied to discretize and convert the differential equation into the mathematical programming problems of an inequation, and finally based on the residual correction concept, complex constraint solution problems are transformed into simpler questions of equational iteration. As verified by the four examples given in this paper, the method proposed hereof can be utilized to fast obtain the upper and lower solutions of questions of this kind, and to easily identify the error range between mean approximate solutions and exact solutions.
Dinh Nho Hao; Nguyen Trung Thanh; Sahli, Hichem
2008-01-01
In this paper we consider a multi-dimensional inverse heat conduction problem with time-dependent coefficients in a box, which is well-known to be severely ill-posed, by a variational method. The gradient of the functional to be minimized is obtained by aids of an adjoint problem and the conjugate gradient method with a stopping rule is then applied to this ill-posed optimization problem. To enhance the stability and the accuracy of the numerical solution to the problem we apply this scheme to the discretized inverse problem rather than to the continuous one. The difficulties with large dimensions of discretized problems are overcome by a splitting method which only requires the solution of easy-to-solve one-dimensional problems. The numerical results provided by our method are very good and the techniques seem to be very promising.
Shenar, T.; Oskinova, L. M.; Järvinen, S. P.; Luckas, P.; Hainich, R.; Todt, H.; Hubrig, S.; Sander, A. A. C.; Ilyin, I.; Hamann, W.-R.
2017-10-01
Context. HD 54879 (O9.7 V) is one of a dozen O-stars for which an organized atmospheric magnetic field has been detected. Despite their importance, little is known about the winds and evolution of magnetized massive stars. Aims: To gain insights into the interplay between atmospheres, winds, and magnetic fields of massive stars, we acquired UV and X-ray data of HD 54879 using the Hubble Space Telescope and the XMM-Newton satellite. In addition, 35 optical amateur spectra were secured to study the variability of HD 54879. Methods: A multiwavelength (X-ray to optical) spectral analysis is performed using the Potsdam Wolf-Rayet (PoWR) model atmosphere code and the xspec software. Results: The photospheric parameters (T∗ = 30.5 kK, log g = 4.0 [cm s-2], log L = 4.45 [L⊙]) are typical for an O9.7 V star. The microturbulent, macroturbulent, and projected rotational velocities are lower than previously suggested (ξph,vmac,vsini ≤ 4 km s-1). An initial mass of 16 M⊙ and an age of 5 Myr are inferred from evolutionary tracks. We derive a mean X-ray emitting temperature of log TX = 6.7 [K] and an X-ray luminosity of LX = 1 × 1032 erg s-1. Short- and long-scale variability is seen in the Hα line, but only a very long period of P ≈ 5 yr could be estimated. Assessing the circumstellar density of HD 54879 using UV spectra, we can roughly estimate the mass-loss rate HD 54879 would have in the absence of a magnetic field as log ṀB = 0 ≈ -9.0 [M⊙ yr-1]. The magnetic field traps the stellar wind up to the Alfvén radius rA ≳ 12 R∗, implying that its true mass-loss rate is log Ṁ ≲ -10.2 [M⊙ yr-1]. Hence, density enhancements around magnetic stars can be exploited to estimate mass-loss rates of non-magnetic stars of similar spectral types, essential for resolving the weak wind problem. Conclusions: Our study confirms that strongly magnetized stars lose little or no mass, and supplies important constraints on the weak-wind problem of massive main sequence
Rontó, András; Samoilenko, A. M.
2007-01-01
Roč. 41, - (2007), s. 115-136 ISSN 1512-0015 R&D Projects: GA ČR(CZ) GA201/06/0254 Institutional research plan: CEZ:AV0Z10190503 Keywords : two-point problem * functional differential equation * singular boundary problem Subject RIV: BA - General Mathematics
Mills, James W.; And Others
1973-01-01
The Study reported here tested an application of the Linear Programming Model at the Reading Clinic of Drew University. Results, while not conclusive, indicate that this approach yields greater gains in speed scores than a traditional approach for this population. (Author)
B. Koren (Barry); M.R. Lewis; E.H. van Brummelen (Harald); B. van Leer
2001-01-01
textabstractA finite-volume method is presented for the computation of compressible flows of two immiscible fluids at very different densities. The novel ingredient in the method is a two-fluid linearized Godunov scheme, allowing for flux computations in case of different fluids (e.g., water and
A first-order multigrid method for bound-constrained convex optimization
Kočvara, Michal; Mohammed, S.
2016-01-01
Roč. 31, č. 3 (2016), s. 622-644 ISSN 1055-6788 R&D Projects: GA ČR(CZ) GAP201/12/0671 Grant - others:European Commission - EC(XE) 313781 Institutional support: RVO:67985556 Keywords : bound-constrained optimization * multigrid methods * linear complementarity problems Subject RIV: BA - General Mathematics Impact factor: 1.023, year: 2016 http://library.utia.cas.cz/separaty/2016/MTR/kocvara-0460326.pdf
Multiplicative algorithms for constrained non-negative matrix factorization
Peng, Chengbin
2012-12-01
Non-negative matrix factorization (NMF) provides the advantage of parts-based data representation through additive only combinations. It has been widely adopted in areas like item recommending, text mining, data clustering, speech denoising, etc. In this paper, we provide an algorithm that allows the factorization to have linear or approximatly linear constraints with respect to each factor. We prove that if the constraint function is linear, algorithms within our multiplicative framework will converge. This theory supports a large variety of equality and inequality constraints, and can facilitate application of NMF to a much larger domain. Taking the recommender system as an example, we demonstrate how a specialized weighted and constrained NMF algorithm can be developed to fit exactly for the problem, and the tests justify that our constraints improve the performance for both weighted and unweighted NMF algorithms under several different metrics. In particular, on the Movielens data with 94% of items, the Constrained NMF improves recall rate 3% compared to SVD50 and 45% compared to SVD150, which were reported as the best two in the top-N metric. © 2012 IEEE.