WorldWideScience

Sample records for linearized vlasov-maxwell equations

  1. Variational principle for nonlinear gyrokinetic Vlasov--Maxwell equations

    Brizard, Alain J.

    2000-01-01

    A new variational principle for the nonlinear gyrokinetic Vlasov--Maxwell equations is presented. This Eulerian variational principle uses constrained variations for the gyrocenter Vlasov distribution in eight-dimensional extended phase space and turns out to be simpler than the Lagrangian variational principle recently presented by H. Sugama [Phys. Plasmas 7, 466 (2000)]. A local energy conservation law is then derived explicitly by the Noether method. In future work, this new variational principle will be used to derive self-consistent, nonlinear, low-frequency Vlasov--Maxwell bounce-gyrokinetic equations, in which the fast gyromotion and bounce-motion time scales have been eliminated

  2. Local WKB dispersion relation for the Vlasov-Maxwell equations

    Berk, H.L.; Dominguez, R.R.

    1982-10-01

    A formalism for analyzing systems of integral equations, based on the Wentzel-Kramers-Brillouin (WKB) approximation, is applied to the Vlasov-Maxwell integral equations in an arbitrary-β, spatially inhomogenous plasma model. It is shown that when treating frequencies comparable with and larger than the cyclotron frequency, relevant new terms must be accounted for to treat waves that depend upon local spatial gradients. For a specific model, the response for very short wavelength and high frequency is shown to reduce to the straight-line orbit approximation when the WKB rules are correctly followed

  3. Mathematical and numerical methods for Vlasov-Maxwell equations: the contributions of data mining

    Assous, F.; Chaskalovic, J.

    2014-01-01

    There exist a lot of formulations that can model plasma physics or particle accelerators problems as the Vlasov- Maxwell equations. This paper deals with the applications of data mining techniques in the evaluation of numerical solutions of Vlasov-Maxwell models. This is part of the topic of characterizing the model and approximation errors via learning techniques. We give two examples of application. The first one aims at comparing two Vlasov-Maxwell approximate models. In the second one, a scheme based on data mining techniques is proposed to characterize the errors between a P1 and a P2 finite element Particle-In-Cell approach. Beyond these examples, this original approach should operate in all cases where intricate numerical simulations like for the Vlasov-Maxwell equations take a central part. (authors)

  4. Implications of the Electrostatic Approximation in the Beam Frame on the Nonlinear Vlasov-Maxwell Equations for Intense Beam Propagation

    Davidson, Ronald C.; Lee, W. Wei-li; Hong Qin; Startsev, Edward

    2001-01-01

    This paper develops a clear procedure for solving the nonlinear Vlasov-Maxwell equations for a one-component intense charged particle beam or finite-length charge bunch propagating through a cylindrical conducting pipe (radius r = r(subscript)w = const.), and confined by an applied focusing force. In particular, the nonlinear Vlasov-Maxwell equations are Lorentz-transformed to the beam frame ('primed' variables) moving with axial velocity relative to the laboratory. In the beam frame, the particle motions are nonrelativistic for the applications of practical interest, already a major simplification. Then, in the beam frame, we make the electrostatic approximation which fully incorporates beam space-charge effects, but neglects any fast electromagnetic processes with transverse polarization (e.g., light waves). The resulting Vlasov-Maxwell equations are then Lorentz-transformed back to the laboratory frame, and properties of the self-generated fields and resulting nonlinear Vlasov-Maxwell equations in the laboratory frame are discussed

  5. Deterministic methods for the relativistic Vlasov-Maxwell equations and the Van Allen belts dynamics

    Le Bourdiec, S.

    2007-03-01

    Artificial satellites operate in an hostile radiation environment, the Van Allen radiation belts, which partly condition their reliability and their lifespan. In order to protect them, it is necessary to characterize the dynamics of the energetic electrons trapped in these radiation belts. This dynamics is essentially determined by the interactions between the energetic electrons and the existing electromagnetic waves. This work consisted in designing a numerical scheme to solve the equations modelling these interactions: the relativistic Vlasov-Maxwell system of equations. Our choice was directed towards methods of direct integration. We propose three new spectral methods for the momentum discretization: a Galerkin method and two collocation methods. All of them are based on scaled Hermite functions. The scaling factor is chosen in order to obtain the proper velocity resolution. We present in this thesis the discretization of the one-dimensional Vlasov-Poisson system and the numerical results obtained. Then we study the possible extensions of the methods to the complete relativistic problem. In order to reduce the computing time, parallelization and optimization of the algorithms were carried out. Finally, we present 1Dx-3Dv (mono-dimensional for x and three-dimensional for velocity) computations of Weibel and whistler instabilities with one or two electrons species. (author)

  6. Kinetic description of intense nonneutral beam propagation through a periodic solenoidal focusing field based on the nonlinear Vlasov-Maxwell equations

    Davidson, R.C.; Chen, C.

    1997-08-01

    A kinetic description of intense nonneutral beam propagation through a periodic solenoidal focusing field B sol (rvec x) is developed. The analysis is carried out for a thin beam with characteristic beam radius r b much-lt S, and directed axial momentum γ b mβ b c (in the z-direction) large compared with the transverse momentum and axial momentum spread of the beam particles. Making use of the nonlinear Vlasov-Maxwell equations for general distribution function f b (rvec x,rvec p,t) and self-consistent electrostatic field consistent with the thin-beam approximation, the kinetic model is used to investigate detailed beam equilibrium properties for a variety of distribution functions. Examples are presented both for the case of a uniform solenoidal focusing field B z (z) = B 0 = const. and for the case of a periodic solenoidal focusing field B z (z + S) = B z (z). The nonlinear Vlasov-Maxwell equations are simplified in the thin-beam approximation, and an alternative Hamiltonian formulation is developed that is particularly well-suited to intense beam propagation in periodic focusing systems. Based on the present analysis, the Vlasov-Maxwell description of intense nonneutral beam propagation through a periodic solenoidal focusing field rvec B sol (rvec x) is found to be remarkably tractable and rich in physics content. The Vlasov-Maxwell formalism developed here can be extended in a straightforward manner to investigate detailed stability behavior for perturbations about specific choices of beam equilibria

  7. Deterministic methods for the relativistic Vlasov-Maxwell equations and the Van Allen belts dynamics; Methodes deterministes de resolution des equations de Vlasov-Maxwell relativistes en vue du calcul de la dynamique des ceintures de Van Allen

    Le Bourdiec, S

    2007-03-15

    Artificial satellites operate in an hostile radiation environment, the Van Allen radiation belts, which partly condition their reliability and their lifespan. In order to protect them, it is necessary to characterize the dynamics of the energetic electrons trapped in these radiation belts. This dynamics is essentially determined by the interactions between the energetic electrons and the existing electromagnetic waves. This work consisted in designing a numerical scheme to solve the equations modelling these interactions: the relativistic Vlasov-Maxwell system of equations. Our choice was directed towards methods of direct integration. We propose three new spectral methods for the momentum discretization: a Galerkin method and two collocation methods. All of them are based on scaled Hermite functions. The scaling factor is chosen in order to obtain the proper velocity resolution. We present in this thesis the discretization of the one-dimensional Vlasov-Poisson system and the numerical results obtained. Then we study the possible extensions of the methods to the complete relativistic problem. In order to reduce the computing time, parallelization and optimization of the algorithms were carried out. Finally, we present 1Dx-3Dv (mono-dimensional for x and three-dimensional for velocity) computations of Weibel and whistler instabilities with one or two electrons species. (author)

  8. Multi-dimensional, fully-implicit, spectral method for the Vlasov-Maxwell equations with exact conservation laws in discrete form

    Delzanno, G. L.

    2015-11-01

    A spectral method for the numerical solution of the multi-dimensional Vlasov-Maxwell equations is presented. The plasma distribution function is expanded in Fourier (for the spatial part) and Hermite (for the velocity part) basis functions, leading to a truncated system of ordinary differential equations for the expansion coefficients (moments) that is discretized with an implicit, second order accurate Crank-Nicolson time discretization. The discrete non-linear system is solved with a preconditioned Jacobian-Free Newton-Krylov method. It is shown analytically that the Fourier-Hermite method features exact conservation laws for total mass, momentum and energy in discrete form. Standard tests involving plasma waves and the whistler instability confirm the validity of the conservation laws numerically. The whistler instability test also shows that we can step over the fastest time scale in the system without incurring in numerical instabilities. Some preconditioning strategies are presented, showing that the number of linear iterations of the Krylov solver can be drastically reduced and a significant gain in performance can be obtained.

  9. Theoretical and numerical study of the equations of Vlasov-Maxwell in the covariant formalism

    Back, A.

    2011-11-01

    A new point of view is proposed for the simulation of plasmas using the kinetic model which links the equations of Vlasov for the distribution of particles and the equations of Maxwell for the electromagnetic contribution of fields. We use the following principle: the equations of Physics are mathematical objects which put in relation geometrical objects. To preserve the geometrical properties of the various objects in an equation, we use, for the theoretical and numerical study, the differential geometry. All the equations of Physics can be written with differential forms and this point of view is not dependent on the choice of coordinates. We propose then a discretization of the differential forms by using B-Splines. To be coherent with the theory, we also propose a discretization of the various operations of the differential geometry. We test our scheme, first on the equations of Maxwell with several boundary conditions and since it does not depend on the system of coordinates, we also test it when we change coordinates. Finally, we apply the same method to the equations of Vlasov-Poisson in one-dimension and we propose several numerical schemes. (author)

  10. Reduced Vlasov-Maxwell simulations

    Helluy, P.; Navoret, L.; Pham, N.; Crestetto, A.

    2014-01-01

    The Maxwell-Vlasov system is a fundamental model in physics. It can be applied to plasma simulations, charged particles beam, astrophysics, etc. The unknowns are the electromagnetic field, solution to the Maxwell equations and the distribution function, solution to the Vlasov equation. In this paper we review two different numerical methods for Vlasov-Maxwell simulations. The first method is based on a coupling between a Discontinuous Galerkin (DG) Maxwell solver and a Particle-In-Cell (PIC) Vlasov solver. The second method only uses a DG approach for the Vlasov and Maxwell equations. The Vlasov equation is first reduced to a space-only hyperbolic system thanks to the finite-element method. The two numerical methods are implemented using OpenCL in order to achieve high performance on recent Graphic Processing Units (GPU). We obtained interesting speedups, but we also observe that the PIC method is the most expensive part of the computation. Therefore we propose another fully Eulerian approach. Thanks to a decomposition of the distribution function on velocity basis functions, we obtain a reduced Vlasov model, which appears to be a hyperbolic system of conservation laws written only in the (x,t) space. We can thus adapt very easily our DG solver to the reduced model

  11. Kinetic description of electron-proton instability in high-intensity proton linacs and storage rings based on the Vlasov-Maxwell equations

    Ronald C. Davidson

    1999-05-01

    Full Text Available The present analysis makes use of the Vlasov-Maxwell equations to develop a fully kinetic description of the electrostatic, electron-ion two-stream instability driven by the directed axial motion of a high-intensity ion beam propagating in the z direction with average axial momentum γ_{b}m_{b}β_{b}c through a stationary population of background electrons. The ion beam has characteristic radius r_{b} and is treated as continuous in the z direction, and the applied transverse focusing force on the beam ions is modeled by F_{foc}^{b}=-γ_{b}m_{b}ω_{βb}^{0^{2}}x_{⊥} in the smooth-focusing approximation. Here, ω_{βb}^{0}=const is the effective betatron frequency associated with the applied focusing field, x_{⊥} is the transverse displacement from the beam axis, (γ_{b}-1m_{b}c^{2} is the ion kinetic energy, and V_{b}=β_{b}c is the average axial velocity, where γ_{b}=(1-β_{b}^{2}^{-1/2}. Furthermore, the ion motion in the beam frame is assumed to be nonrelativistic, and the electron motion in the laboratory frame is assumed to be nonrelativistic. The ion charge and number density are denoted by +Z_{b}e and n_{b}, and the electron charge and number density by -e and n_{e}. For Z_{b}n_{b}>n_{e}, the electrons are electrostatically confined in the transverse direction by the space-charge potential φ produced by the excess ion charge. The equilibrium and stability analysis retains the effects of finite radial geometry transverse to the beam propagation direction, including the presence of a perfectly conducting cylindrical wall located at radius r=r_{w}. In addition, the analysis assumes perturbations with long axial wavelength, k_{z}^{2}r_{b}^{2}≪1, and sufficiently high frequency that |ω/k_{z}|≫v_{Tez} and |ω/k_{z}-V_{b}|≫v_{Tbz}, where v_{Tez} and v_{Tbz} are the characteristic axial thermal speeds of the background electrons and beam ions. In this regime, Landau damping (in axial velocity space v_{z} by resonant ions and

  12. Fully nonlinear phenomenology of the Berk-Breizman augmentation of the Vlasov-Maxwell system

    Vann, R.G.L.; Dendy, R.O.; Rowlands, G.; Arber, T.D.; D'Ambrumenil, N.

    2003-01-01

    The Berk-Breizman augmentation of the Vlasov-Maxwell system is widely used to model self-consistent resonant excitation and damping of wave fields by evolving energetic particle populations in magnetic fusion plasmas. The key model parameters are the particle annihilation rate ν a , which drives bump-on-tail structure, and the linear wave damping rate γ d . A code, based on the piecewise parabolic method, is used to integrate the fully nonlinear Berk-Breizman system of equations across the whole (ν a ,γ d ) parameter space. The results of this code show that the system's behavior can be classified into one of four types, each of which occurs in a well-defined region of parameter space: chaotic, periodic, steady state, and damped. The corresponding evolution in (x,v) phase space is also examined

  13. L2-stability of the Vlasov-Maxwell-Boltzmann system near global Maxwellians

    Ha, Seung-Yeal; Xiao, Qinghua; Xiong, Linjie; Zhao, Huijiang

    2013-01-01

    We present a L 2 -stability theory of the Vlasov-Maxwell-Boltzmann system for the two-species collisional plasma. We show that in a perturbative regime of a global Maxwellian, the L 2 -distance between two strong solutions can be controlled by that between initial data in a Lipschitz manner. Our stability result extends earlier results [Ha, S.-Y. and Xiao, Q.-H., “A revisiting to the L 2 -stability theory of the Boltzmann equation near global Maxwellians,” (submitted) and Ha, S.-Y., Yang, X.-F., and Yun, S.-B., “L 2 stability theory of the Boltzmann equation near a global Maxwellian,” Arch. Ration. Mech. Anal. 197, 657–688 (2010)] on the L 2 -stability of the Boltzmann equation to the Boltzmann equation coupled with self-consistent external forces. As a direct application of our stability result, we show that classical solutions in Duan et al. [“Optimal large-time behavior of the Vlasov-Maxwell-Boltzmann system in the whole space,” Commun. Pure Appl. Math. 24, 1497–1546 (2011)] and Guo [“The Vlasov-Maxwell-Boltzmann system near Maxwellians,” Invent. Math. 153(3), 593–630 (2003)] satisfy a uniform L 2 -stability estimate. This is the first result on the L 2 -stability of the Boltzmann equation coupled with self-consistent field equations in three dimensions

  14. Geometric integration of the Vlasov-Maxwell system with a variational particle-in-cell scheme

    Squire, J.; Tang, W. M. [Plasma Physics Laboratory, Princeton University, Princeton, New Jersey 08543 (United States); Qin, H. [Plasma Physics Laboratory, Princeton University, Princeton, New Jersey 08543 (United States); Department of Modern Physics, University of Science and Technology of China, Hefei, Anhui 230026 (China)

    2012-08-15

    A fully variational, unstructured, electromagnetic particle-in-cell integrator is developed for integration of the Vlasov-Maxwell equations. Using the formalism of discrete exterior calculus [Desbrun et al., e-print arXiv:math/0508341 (2005)], the field solver, interpolation scheme, and particle advance algorithm are derived through minimization of a single discrete field theory action. As a consequence of ensuring that the action is invariant under discrete electromagnetic gauge transformations, the integrator exactly conserves Gauss's law.

  15. Fourth-Order Conservative Vlasov-Maxwell Solver for Cartesian and Cylindrical Phase Space Coordinates

    Vogman, Genia

    coordinates present a new development in the field of computational plasma physics. A fourth-order finite-volume method for solving the Vlasov-Maxwell equation system is presented first for Cartesian and then for cylindrical phase space coordinates. Special attention is given to the treatment of the discrete primary variables and to the quadrature rule for evaluating the surface and line integrals that appear in the governing equations. The finite-volume treatment of conducting wall and axis boundaries is particularly nuanced when it comes to phase space coordinates, and is described in detail. In addition to the mechanics of each part of the finite-volume discretization in the two different coordinate systems, the complete algorithm is also presented. The Cartesian coordinate discretization is applied to several well-known test problems. Since even linear analysis of kinetic theory governing equations is complicated on account of velocity being an independent coordinate, few analytic or semi-analytic predictions exist. Benchmarks are particularly scarce for configurations that have magnetic fields and involve more than two phase space dimensions. Ensuring that simulations are true to the physics thus presents a difficulty in the development of robust numerical methods. The research described in this dissertation addresses this challenge through the development of more complete physics-based benchmarks based on the Dory-Guest-Harris instability. The instability is a special case of perpendicularly-propagating kinetic electrostatic waves in a warm uniformly magnetized plasma. A complete derivation of the closed-form linear theory dispersion relation for the instability is presented. The electric field growth rates and oscillation frequencies specified by the dispersion relation provide concrete measures against which simulation results can be quantitatively compared. Furthermore, a specialized form of perturbation is shown to strongly excite the fastest growing mode. The

  16. Regionally Implicit Discontinuous Galerkin Methods for Solving the Relativistic Vlasov-Maxwell System Submitted to Iowa State University

    Guthrey, Pierson Tyler

    ) argument requires. The maximum stable time-step scales inversely with the highest degree in the DG polynomial approximation space and becomes progressively smaller with each added spatial dimension. In this work, we overcome this difficulty by introducing a novel time-stepping strategy: the regionally-implicit discontinuous Galerkin (RIDG) method. The RIDG is method is based on an extension of the Lax-Wendroff DG (LxW-DG) method, which previously had been shown to be equivalent (for linear constant coefficient problems) to a predictor-corrector approach, where the prediction is computed by a space-time DG method (STDG). The corrector is an explicit method that uses the space-time reconstructed solution from the predictor step. In this work, we modify the predictor to include not just local information, but also neighboring information. With this modification, we show that the stability is greatly enhanced; we show that we can remove the polynomial degree dependence of the maximum time-step and show vastly improved time-steps in multiple spatial dimensions. Upon the development of the general RIDG method, we apply it to the non-relativistic 1D1V Vlasov-Poisson equations and the relativistic 1D2V Vlasov-Maxwell equations. For each we validate the high-order method on several test cases. In the final test case, we demonstrate the ability of the method to simulate the acceleration of electrons to relativistic speeds in a simplified test case.

  17. Vlasov-Maxwell equilibrium solutions for Harris sheet magnetic field with Kappa velocity distribution

    Fu, W.-Z.; Hau, L.-N.

    2005-01-01

    An exact solution of the steady-state, one-dimensional Vlasov-Maxwell equations for a plasma current sheet with oppositely directed magnetic field was found by Harris in 1962. The so-called Harris magnetic field model assumes Maxwellian velocity distributions for oppositely drifting ions and electrons and has been widely used for plasma stability studies. This paper extends Harris solutions by using more general κ distribution functions that incorporate Maxwellian distribution in the limit of κ→∞. A new functional form for the plasma pressure as a function of the magnetic vector potential p(A) is found and the magnetic field is a modified tanh z function. In the extended solutions the effective temperature is no longer spatially uniform like in the Harris model and the thickness of the current layer decreases with decreasing κ

  18. Resolution of the Vlasov-Maxwell system by PIC discontinuous Galerkin method on GPU with OpenCL

    Crestetto Anaïs

    2013-01-01

    Full Text Available We present an implementation of a Vlasov-Maxwell solver for multicore processors. The Vlasov equation describes the evolution of charged particles in an electromagnetic field, solution of the Maxwell equations. The Vlasov equation is solved by a Particle-In-Cell method (PIC, while the Maxwell system is computed by a Discontinuous Galerkin method. We use the OpenCL framework, which allows our code to run on multicore processors or recent Graphic Processing Units (GPU. We present several numerical applications to two-dimensional test cases.

  19. Self-consistent Vlasov-Maxwell description of the longitudinal dynamics of intense charged particle beams

    Ronald C. Davidson

    2004-02-01

    Full Text Available This paper describes a self-consistent kinetic model for the longitudinal dynamics of a long, coasting beam propagating in straight (linear geometry in the z direction in the smooth-focusing approximation. Starting with the three-dimensional Vlasov-Maxwell equations, and integrating over the phase-space (x_{⊥},p_{⊥} transverse to beam propagation, a closed system of equations is obtained for the nonlinear evolution of the longitudinal distribution function F_{b}(z,p_{z},t and average axial electric field ⟨E_{z}^{s}⟩(z,t. The primary assumptions in the present analysis are that the dependence on axial momentum p_{z} of the distribution function f_{b}(x,p,t is factorable, and that the transverse beam dynamics remains relatively quiescent (absence of transverse instability or beam mismatch. The analysis is carried out correct to order k_{z}^{2}r_{w}^{2} assuming slow axial spatial variations with k_{z}^{2}r_{w}^{2}≪1, where k_{z}∼∂/∂z is the inverse length scale of axial variation in the line density λ_{b}(z,t=∫dp_{z}F_{b}(z,p_{z},t, and r_{w} is the radius of the conducting wall (assumed perfectly conducting. A closed expression for the average longitudinal electric field ⟨E_{z}^{s}⟩(z,t in terms of geometric factors, the line density λ_{b}, and its derivatives ∂λ_{b}/∂z,… is obtained for the class of bell-shaped density profiles n_{b}(r,z,t=(λ_{b}/πr_{b}^{2}f(r/r_{b}, where the shape function f(r/r_{b} has the form specified by f(r/r_{b}=(n+1(1-r^{2}/r_{b}^{2}^{n} for 0≤r

  20. Transition from convective to absolute Raman instability via the longitudinal relativistic effect by using Vlasov-Maxwell simulations

    Wang, Q.; Liu, Z. J.; Zheng, C. Y.; Xiao, C. Z.; Feng, Q. S.; Zhang, H. C.; He, X. T.

    2018-01-01

    The longitudinal relativistic effect on stimulated Raman backscattering (SRBS) is investigated by using one-dimensional (1D) Vlasov-Maxwell simulations. Using a short backscattered light seed pulse with a very small amplitude, the linear gain spectra of SRBS in the strongly convective regime is presented by combining the relativistic and non-relativistic 1D Vlasov-Maxwell simulations, which is in agreement with the steady-state linear theory. More interestingly, by considering transition from convective to absolute instability due to electron trapping, we successfully predict the critical duration of the seed which can just trigger the kinetic inflation of the excited SRBS after the seed leaves the simulation box. The critical duration in the relativistic case is much shorter than that in the nonrelativistic case, which indicates that the kinetic inflation more easily occurs in the relativistic case than in the nonrelativistic case. In the weakly convective regime, the transition from convective to absolute instability for SRBS can directly occur in the linear regime due to the longitudinal relativistic modification. For the same pump, our simulations first demonstrate that the SRBS excited by a short and small seed pulse is a convective instability in the nonrelativistic case but becomes an absolute instability due to the decrease of the linear Landau damping from the longitudinal relativistic modification in the relativistic case. In more detail, the growth rate of the backscattered light is also in excellent agreement with theoretical prediction.

  1. Instability of the time splitting scheme for the one-dimensional and relativistic Vlasov-Maxwell system

    Huot, F; Bertrand, P; Sonnendrücker, E; Coulaud, O

    2003-01-01

    The Time Splitting Scheme (TSS) has been examined within the context of the one-dimensional (1D) relativistic Vlasov-Maxwell model. In the strongly relativistic regime of the laser-plasma interaction, the TSS cannot be applied to solve the Vlasov equation. We propose a new semi-Lagrangian scheme based on a full 2D advection and study its advantages over the classical Splitting procedure. Details of the underlying integration of the Vlasov equation appear to be important in achieving accurate plasma simulations. Examples are given which are related to the relativistic modulational instability and the self-induced transparency of an ultra-intense electromagnetic pulse in the relativistic regime.

  2. One-Dimensional Vlasov-Maxwell Equilibrium for the Force-Free Harris Sheet

    Harrison, Michael G.; Neukirch, Thomas

    2009-01-01

    In this Letter, the first nonlinear force-free Vlasov-Maxwell equilibrium is presented. One component of the equilibrium magnetic field has the same spatial structure as the Harris sheet, but whereas the Harris sheet is kept in force balance by pressure gradients, in the force-free solution presented here force balance is maintained by magnetic shear. Magnetic pressure, plasma pressure and plasma density are constant. The method used to find the equilibrium is based on the analogy of the one-dimensional Vlasov-Maxwell equilibrium problem to the motion of a pseudoparticle in a two-dimensional conservative potential. The force-free solution can be generalized to a complete family of equilibria that describe the transition between the purely pressure-balanced Harris sheet to the force-free Harris sheet

  3. Explicit high-order non-canonical symplectic particle-in-cell algorithms for Vlasov-Maxwell systems

    Xiao, Jianyuan; Liu, Jian; He, Yang; Zhang, Ruili; Qin, Hong; Sun, Yajuan

    2015-01-01

    Explicit high-order non-canonical symplectic particle-in-cell algorithms for classical particle-field systems governed by the Vlasov-Maxwell equations are developed. The algorithms conserve a discrete non-canonical symplectic structure derived from the Lagrangian of the particle-field system, which is naturally discrete in particles. The electromagnetic field is spatially discretized using the method of discrete exterior calculus with high-order interpolating differential forms for a cubic grid. The resulting time-domain Lagrangian assumes a non-canonical symplectic structure. It is also gauge invariant and conserves charge. The system is then solved using a structure-preserving splitting method discovered by He et al. [preprint http://arxiv.org/abs/arXiv:1505.06076 (2015)], which produces five exactly soluble sub-systems, and high-order structure-preserving algorithms follow by combinations. The explicit, high-order, and conservative nature of the algorithms is especially suitable for long-term simulations of particle-field systems with extremely large number of degrees of freedom on massively parallel supercomputers. The algorithms have been tested and verified by the two physics problems, i.e., the nonlinear Landau damping and the electron Bernstein wave

  4. Explicit high-order non-canonical symplectic particle-in-cell algorithms for Vlasov-Maxwell systems

    Xiao, Jianyuan [School of Nuclear Science and Technology and Department of Modern Physics, University of Science and Technology of China, Hefei, Anhui 230026, China; Key Laboratory of Geospace Environment, CAS, Hefei, Anhui 230026, China; Qin, Hong [School of Nuclear Science and Technology and Department of Modern Physics, University of Science and Technology of China, Hefei, Anhui 230026, China; Plasma Physics Laboratory, Princeton University, Princeton, New Jersey 08543, USA; Liu, Jian [School of Nuclear Science and Technology and Department of Modern Physics, University of Science and Technology of China, Hefei, Anhui 230026, China; Key Laboratory of Geospace Environment, CAS, Hefei, Anhui 230026, China; He, Yang [School of Nuclear Science and Technology and Department of Modern Physics, University of Science and Technology of China, Hefei, Anhui 230026, China; Key Laboratory of Geospace Environment, CAS, Hefei, Anhui 230026, China; Zhang, Ruili [School of Nuclear Science and Technology and Department of Modern Physics, University of Science and Technology of China, Hefei, Anhui 230026, China; Key Laboratory of Geospace Environment, CAS, Hefei, Anhui 230026, China; Sun, Yajuan [LSEC, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, P.O. Box 2719, Beijing 100190, China

    2015-11-01

    Explicit high-order non-canonical symplectic particle-in-cell algorithms for classical particle-field systems governed by the Vlasov-Maxwell equations are developed. The algorithms conserve a discrete non-canonical symplectic structure derived from the Lagrangian of the particle-field system, which is naturally discrete in particles. The electromagnetic field is spatially discretized using the method of discrete exterior calculus with high-order interpolating differential forms for a cubic grid. The resulting time-domain Lagrangian assumes a non-canonical symplectic structure. It is also gauge invariant and conserves charge. The system is then solved using a structure-preserving splitting method discovered by He et al. [preprint arXiv: 1505.06076 (2015)], which produces five exactly soluble sub-systems, and high-order structure-preserving algorithms follow by combinations. The explicit, high-order, and conservative nature of the algorithms is especially suitable for long-term simulations of particle-field systems with extremely large number of degrees of freedom on massively parallel supercomputers. The algorithms have been tested and verified by the two physics problems, i.e., the nonlinear Landau damping and the electron Bernstein wave. (C) 2015 AIP Publishing LLC.

  5. Lifting particle coordinate changes of magnetic moment type to Vlasov-Maxwell Hamiltonian dynamics

    Morrison, P. J.; Vittot, M.; Guillebon, L. de

    2013-01-01

    Techniques for coordinate changes that depend on both dependent and independent variables are developed and applied to the Maxwell-Vlasov Hamiltonian theory. Particle coordinate changes with a new velocity variable dependent on the magnetic field, with spatial coordinates unchanged, are lifted to the field theoretic level, by transforming the noncanonical Poisson bracket and Hamiltonian structure of the Vlasov-Maxwell dynamics. Several examples are given including magnetic coordinates, where the velocity is decomposed into components parallel and perpendicular to the local magnetic field, and the case of spherical velocity coordinates. An example of the lifting procedure is performed to obtain a simplified version of gyrokinetics, where the magnetic moment is used as a coordinate and the dynamics is reduced by elimination of the electric field energy in the Hamiltonian.

  6. A wavelet-MRA-based adaptive semi-Lagrangian method for the relativistic Vlasov-Maxwell system

    Besse, Nicolas; Latu, Guillaume; Ghizzo, Alain; Sonnendruecker, Eric; Bertrand, Pierre

    2008-01-01

    In this paper we present a new method for the numerical solution of the relativistic Vlasov-Maxwell system on a phase-space grid using an adaptive semi-Lagrangian method. The adaptivity is performed through a wavelet multiresolution analysis, which gives a powerful and natural refinement criterion based on the local measurement of the approximation error and regularity of the distribution function. Therefore, the multiscale expansion of the distribution function allows to get a sparse representation of the data and thus save memory space and CPU time. We apply this numerical scheme to reduced Vlasov-Maxwell systems arising in laser-plasma physics. Interaction of relativistically strong laser pulses with overdense plasma slabs is investigated. These Vlasov simulations revealed a rich variety of phenomena associated with the fast particle dynamics induced by electromagnetic waves as electron trapping, particle acceleration, and electron plasma wavebreaking. However, the wavelet based adaptive method that we developed here, does not yield significant improvements compared to Vlasov solvers on a uniform mesh due to the substantial overhead that the method introduces. Nonetheless they might be a first step towards more efficient adaptive solvers based on different ideas for the grid refinement or on a more efficient implementation. Here the Vlasov simulations are performed in a two-dimensional phase-space where the development of thin filaments, strongly amplified by relativistic effects requires an important increase of the total number of points of the phase-space grid as they get finer as time goes on. The adaptive method could be more useful in cases where these thin filaments that need to be resolved are a very small fraction of the hyper-volume, which arises in higher dimensions because of the surface-to-volume scaling and the essentially one-dimensional structure of the filaments. Moreover, the main way to improve the efficiency of the adaptive method is to

  7. Quantum linear Boltzmann equation

    Vacchini, Bassano; Hornberger, Klaus

    2009-01-01

    We review the quantum version of the linear Boltzmann equation, which describes in a non-perturbative fashion, by means of scattering theory, how the quantum motion of a single test particle is affected by collisions with an ideal background gas. A heuristic derivation of this Lindblad master equation is presented, based on the requirement of translation-covariance and on the relation to the classical linear Boltzmann equation. After analyzing its general symmetry properties and the associated relaxation dynamics, we discuss a quantum Monte Carlo method for its numerical solution. We then review important limiting forms of the quantum linear Boltzmann equation, such as the case of quantum Brownian motion and pure collisional decoherence, as well as the application to matter wave optics. Finally, we point to the incorporation of quantum degeneracies and self-interactions in the gas by relating the equation to the dynamic structure factor of the ambient medium, and we provide an extension of the equation to include internal degrees of freedom.

  8. Correct Linearization of Einstein's Equations

    Rabounski D.

    2006-06-01

    Full Text Available Regularly Einstein's equations can be reduced to a wave form (linearly dependent from the second derivatives of the space metric in the absence of gravitation, the space rotation and Christoffel's symbols. As shown here, the origin of the problem is that one uses the general covariant theory of measurement. Here the wave form of Einstein's equations is obtained in the terms of Zelmanov's chronometric invariants (physically observable projections on the observer's time line and spatial section. The obtained equations depend on solely the second derivatives even if gravitation, the space rotation and Christoffel's symbols. The correct linearization proves: the Einstein equations are completely compatible with weak waves of the metric.

  9. Saturation and linear transport equation

    Kutak, K.

    2009-03-01

    We show that the GBW saturation model provides an exact solution to the one dimensional linear transport equation. We also show that it is motivated by the BK equation considered in the saturated regime when the diffusion and the splitting term in the diffusive approximation are balanced by the nonlinear term. (orig.)

  10. Basic linear partial differential equations

    Treves, Francois

    1975-01-01

    Focusing on the archetypes of linear partial differential equations, this text for upper-level undergraduates and graduate students features most of the basic classical results. The methods, however, are decidedly nontraditional: in practically every instance, they tend toward a high level of abstraction. This approach recalls classical material to contemporary analysts in a language they can understand, as well as exploiting the field's wealth of examples as an introduction to modern theories.The four-part treatment covers the basic examples of linear partial differential equations and their

  11. Variational linear algebraic equations method

    Moiseiwitsch, B.L.

    1982-01-01

    A modification of the linear algebraic equations method is described which ensures a variational bound on the phaseshifts for potentials having a definite sign at all points. The method is illustrated by the elastic scattering of s-wave electrons by the static field of atomic hydrogen. (author)

  12. Systems of Inhomogeneous Linear Equations

    Scherer, Philipp O. J.

    Many problems in physics and especially computational physics involve systems of linear equations which arise e.g. from linearization of a general nonlinear problem or from discretization of differential equations. If the dimension of the system is not too large standard methods like Gaussian elimination or QR decomposition are sufficient. Systems with a tridiagonal matrix are important for cubic spline interpolation and numerical second derivatives. They can be solved very efficiently with a specialized Gaussian elimination method. Practical applications often involve very large dimensions and require iterative methods. Convergence of Jacobi and Gauss-Seidel methods is slow and can be improved by relaxation or over-relaxation. An alternative for large systems is the method of conjugate gradients.

  13. Action principles for the Vlasov equation

    Ye, H.; Morrison, P.J.

    1992-01-01

    Five action principles for the Vlasov--Poisson and Vlasov--Maxwell equations, which differ by the variables incorporated to describe the distribution of particles in phase space, are presented. Three action principles previously known for the Vlasov--Maxwell equations are altered so as to produce the Vlasov--Poisson equation upon variation with respect to only the particle variables, and one action principle previously known for the Vlasov--Poisson equation is altered to produce the Vlasov--Maxwell equations upon variations with respect to particle and field variables independently. Also, a new action principle for both systems, which is called the leaf action, is presented. This new action has the desirable features of using only a single generating function as the dynamical variable for describing the particle distribution, and manifestly preserving invariants of the system known as Casimir invariants. The relationships between the various actions are described, and it is shown that the leaf action is a link between actions written in terms of Lagrangian and Eulerian variables

  14. Linearized gyro-kinetic equation

    Catto, P.J.; Tsang, K.T.

    1976-01-01

    An ordering of the linearized Fokker-Planck equation is performed in which gyroradius corrections are retained to lowest order and the radial dependence appropriate for sheared magnetic fields is treated without resorting to a WKB technique. This description is shown to be necessary to obtain the proper radial dependence when the product of the poloidal wavenumber and the gyroradius is large (k rho much greater than 1). A like particle collision operator valid for arbitrary k rho also has been derived. In addition, neoclassical, drift, finite β (plasma pressure/magnetic pressure), and unperturbed toroidal electric field modifications are treated

  15. Linear determining equations for differential constraints

    Kaptsov, O V

    1998-01-01

    A construction of differential constraints compatible with partial differential equations is considered. Certain linear determining equations with parameters are used to find such differential constraints. They generalize the classical determining equations used in the search for admissible Lie operators. As applications of this approach equations of an ideal incompressible fluid and non-linear heat equations are discussed

  16. Linear integral equations and soliton systems

    Quispel, G.R.W.

    1983-01-01

    A study is presented of classical integrable dynamical systems in one temporal and one spatial dimension. The direct linearizations are given of several nonlinear partial differential equations, for example the Korteweg-de Vries equation, the modified Korteweg-de Vries equation, the sine-Gordon equation, the nonlinear Schroedinger equation, and the equation of motion for the isotropic Heisenberg spin chain; the author also discusses several relations between these equations. The Baecklund transformations of these partial differential equations are treated on the basis of a singular transformation of the measure (or equivalently of the plane-wave factor) occurring in the corresponding linear integral equations, and the Baecklund transformations are used to derive the direct linearization of a chain of so-called modified partial differential equations. Finally it is shown that the singular linear integral equations lead in a natural way to the direct linearizations of various nonlinear difference-difference equations. (Auth.)

  17. Linear superposition solutions to nonlinear wave equations

    Liu Yu

    2012-01-01

    The solutions to a linear wave equation can satisfy the principle of superposition, i.e., the linear superposition of two or more known solutions is still a solution of the linear wave equation. We show in this article that many nonlinear wave equations possess exact traveling wave solutions involving hyperbolic, triangle, and exponential functions, and the suitable linear combinations of these known solutions can also constitute linear superposition solutions to some nonlinear wave equations with special structural characteristics. The linear superposition solutions to the generalized KdV equation K(2,2,1), the Oliver water wave equation, and the k(n, n) equation are given. The structure characteristic of the nonlinear wave equations having linear superposition solutions is analyzed, and the reason why the solutions with the forms of hyperbolic, triangle, and exponential functions can form the linear superposition solutions is also discussed

  18. Invariant imbedding equations for linear scattering problems

    Apresyan, L.

    1988-01-01

    A general form of the invariant imbedding equations is investigated for the linear problem of scattering by a bounded scattering volume. The conditions for the derivability of such equations are described. It is noted that the possibility of the explicit representation of these equations for a sphere and for a layer involves the separation of variables in the unperturbed wave equation

  19. Isomorphism of Intransitive Linear Lie Equations

    Jose Miguel Martins Veloso

    2009-11-01

    Full Text Available We show that formal isomorphism of intransitive linear Lie equations along transversal to the orbits can be extended to neighborhoods of these transversal. In analytic cases, the word formal is dropped from theorems. Also, we associate an intransitive Lie algebra with each intransitive linear Lie equation, and from the intransitive Lie algebra we recover the linear Lie equation, unless of formal isomorphism. The intransitive Lie algebra gives the structure functions introduced by É. Cartan.

  20. Linear q-nonuniform difference equations

    Bangerezako, Gaspard

    2010-01-01

    We introduce basic concepts of q-nonuniform differentiation and integration and study linear q-nonuniform difference equations and systems, as well as their application in q-nonuniform difference linear control systems. (author)

  1. Linear and quasi-linear equations of parabolic type

    Ladyženskaja, O A; Ural′ceva, N N; Uralceva, N N

    1968-01-01

    Equations of parabolic type are encountered in many areas of mathematics and mathematical physics, and those encountered most frequently are linear and quasi-linear parabolic equations of the second order. In this volume, boundary value problems for such equations are studied from two points of view: solvability, unique or otherwise, and the effect of smoothness properties of the functions entering the initial and boundary conditions on the smoothness of the solutions.

  2. Lie algebras and linear differential equations.

    Brockett, R. W.; Rahimi, A.

    1972-01-01

    Certain symmetry properties possessed by the solutions of linear differential equations are examined. For this purpose, some basic ideas from the theory of finite dimensional linear systems are used together with the work of Wei and Norman on the use of Lie algebraic methods in differential equation theory.

  3. Numerical Solution of Heun Equation Via Linear Stochastic Differential Equation

    Hamidreza Rezazadeh

    2014-05-01

    Full Text Available In this paper, we intend to solve special kind of ordinary differential equations which is called Heun equations, by converting to a corresponding stochastic differential equation(S.D.E.. So, we construct a stochastic linear equation system from this equation which its solution is based on computing fundamental matrix of this system and then, this S.D.E. is solved by numerically methods. Moreover, its asymptotic stability and statistical concepts like expectation and variance of solutions are discussed. Finally, the attained solutions of these S.D.E.s compared with exact solution of corresponding differential equations.

  4. Computing with linear equations and matrices

    Churchhouse, R.F.

    1983-01-01

    Systems of linear equations and matrices arise in many disciplines. The equations may accurately represent conditions satisfied by a system or, more likely, provide an approximation to a more complex system of non-linear or differential equations. The system may involve a few or many thousand unknowns and each individual equation may involve few or many of them. Over the past 50 years a vast literature on methods for solving systems of linear equations and the associated problems of finding the inverse or eigenvalues of a matrix has been produced. These lectures cover those methods which have been found to be most useful for dealing with such types of problem. References are given where appropriate and attention is drawn to the possibility of improved methods for use on vector and parallel processors. (orig.)

  5. Linear causal modeling with structural equations

    Mulaik, Stanley A

    2009-01-01

    Emphasizing causation as a functional relationship between variables that describe objects, Linear Causal Modeling with Structural Equations integrates a general philosophical theory of causation with structural equation modeling (SEM) that concerns the special case of linear causal relations. In addition to describing how the functional relation concept may be generalized to treat probabilistic causation, the book reviews historical treatments of causation and explores recent developments in experimental psychology on studies of the perception of causation. It looks at how to perceive causal

  6. Diffusion phenomenon for linear dissipative wave equations

    Said-Houari, Belkacem

    2012-01-01

    In this paper we prove the diffusion phenomenon for the linear wave equation. To derive the diffusion phenomenon, a new method is used. In fact, for initial data in some weighted spaces, we prove that for {equation presented} decays with the rate {equation presented} [0,1] faster than that of either u or v, where u is the solution of the linear wave equation with initial data {equation presented} [0,1], and v is the solution of the related heat equation with initial data v 0 = u 0 + u 1. This result improves the result in H. Yang and A. Milani [Bull. Sci. Math. 124 (2000), 415-433] in the sense that, under the above restriction on the initial data, the decay rate given in that paper can be improved by t -γ/2. © European Mathematical Society.

  7. Students’ difficulties in solving linear equation problems

    Wati, S.; Fitriana, L.; Mardiyana

    2018-03-01

    A linear equation is an algebra material that exists in junior high school to university. It is a very important material for students in order to learn more advanced mathematics topics. Therefore, linear equation material is essential to be mastered. However, the result of 2016 national examination in Indonesia showed that students’ achievement in solving linear equation problem was low. This fact became a background to investigate students’ difficulties in solving linear equation problems. This study used qualitative descriptive method. An individual written test on linear equation tasks was administered, followed by interviews. Twenty-one sample students of grade VIII of SMPIT Insan Kamil Karanganyar did the written test, and 6 of them were interviewed afterward. The result showed that students with high mathematics achievement donot have difficulties, students with medium mathematics achievement have factual difficulties, and students with low mathematics achievement have factual, conceptual, operational, and principle difficulties. Based on the result there is a need of meaningfulness teaching strategy to help students to overcome difficulties in solving linear equation problems.

  8. Dual exponential polynomials and linear differential equations

    Wen, Zhi-Tao; Gundersen, Gary G.; Heittokangas, Janne

    2018-01-01

    We study linear differential equations with exponential polynomial coefficients, where exactly one coefficient is of order greater than all the others. The main result shows that a nontrivial exponential polynomial solution of such an equation has a certain dual relationship with the maximum order coefficient. Several examples illustrate our results and exhibit possibilities that can occur.

  9. Simplified Linear Equation Solvers users manual

    Gropp, W. [Argonne National Lab., IL (United States); Smith, B. [California Univ., Los Angeles, CA (United States)

    1993-02-01

    The solution of large sparse systems of linear equations is at the heart of many algorithms in scientific computing. The SLES package is a set of easy-to-use yet powerful and extensible routines for solving large sparse linear systems. The design of the package allows new techniques to be used in existing applications without any source code changes in the applications.

  10. Hypocoercivity for linear kinetic equations conserving mass

    Dolbeault, Jean; Mouhot, Clé ment; Schmeiser, Christian

    2015-01-01

    We develop a new method for proving hypocoercivity for a large class of linear kinetic equations with only one conservation law. Local mass conservation is assumed at the level of the collision kernel, while transport involves a confining potential, so that the solution relaxes towards a unique equilibrium state. Our goal is to evaluate in an appropriately weighted $ L^2$ norm the exponential rate of convergence to the equilibrium. The method covers various models, ranging from diffusive kinetic equations like Vlasov-Fokker-Planck equations, to scattering models or models with time relaxation collision kernels corresponding to polytropic Gibbs equilibria, including the case of the linear Boltzmann model. In this last case and in the case of Vlasov-Fokker-Planck equations, any linear or superlinear growth of the potential is allowed. - See more at: http://www.ams.org/journals/tran/2015-367-06/S0002-9947-2015-06012-7/#sthash.ChjyK6rc.dpuf

  11. Hypocoercivity for linear kinetic equations conserving mass

    Dolbeault, Jean

    2015-02-03

    We develop a new method for proving hypocoercivity for a large class of linear kinetic equations with only one conservation law. Local mass conservation is assumed at the level of the collision kernel, while transport involves a confining potential, so that the solution relaxes towards a unique equilibrium state. Our goal is to evaluate in an appropriately weighted $ L^2$ norm the exponential rate of convergence to the equilibrium. The method covers various models, ranging from diffusive kinetic equations like Vlasov-Fokker-Planck equations, to scattering models or models with time relaxation collision kernels corresponding to polytropic Gibbs equilibria, including the case of the linear Boltzmann model. In this last case and in the case of Vlasov-Fokker-Planck equations, any linear or superlinear growth of the potential is allowed. - See more at: http://www.ams.org/journals/tran/2015-367-06/S0002-9947-2015-06012-7/#sthash.ChjyK6rc.dpuf

  12. Diffusive limits for linear transport equations

    Pomraning, G.C.

    1992-01-01

    The authors show that the Hibert and Chapman-Enskog asymptotic treatments that reduce the nonlinear Boltzmann equation to the Euler and Navier-Stokes fluid equations have analogs in linear transport theory. In this linear setting, these fluid limits are described by diffusion equations, involving familiar and less familiar diffusion coefficients. Because of the linearity extant, one can carry out explicitly the initial and boundary layer analyses required to obtain asymptotically consistent initial and boundary conditions for the diffusion equations. In particular, the effects of boundary curvature and boundary condition variation along the surface can be included in the boundary layer analysis. A brief review of heuristic (nonasymptotic) diffusion description derivations is also included in our discussion

  13. Kinetic description of linear theta-pinch equilibria

    Batchelor, D.B.; Davidson, R.C.

    1975-01-01

    Equilibrium properties of linear theta-pinch plasmas are studied within the framework of the steady-state (o/x=0) Vlasov-Maxwell equations. The analysis is carried out for an infinitely long plasma column aligned parallel to an externally applied axial magnetic field Bsub(z)sup(ext)esub(z). Equilibrium properties are calculated for the class of rigid-rotor Vlasov equilibria, in which the th component distribution function (Hsub(perpendicular), Psub(theta), upsilonsub(z) depends on perpendicular energy H and canonical angular momentum Psub(theta), exclusively through the linear combination Hsub(perpendicular)-ωsub(j)Psub(theta), where ω;=const.=angular velocity of mean rotation. General equilibrium relations that pertain to the entire class of rigid-rotor Vlasov equilibria are discussed; and specific examples of sharp- and diffuse-boundary equilibrium configurations are considered. Rigid-rotor density and magnetic field profiles are compared with experimentally observed profiles. A general prescription is given for determining the functional dependence of the equilibrium distribution function on Hsub(perpendicular)-ωsub(j)Psub(theta) in circumstances, where the density profile or magnetic field profile is specified. (author)

  14. Spectral theories for linear differential equations

    Sell, G.R.

    1976-01-01

    The use of spectral analysis in the study of linear differential equations with constant coefficients is not only a fundamental technique but also leads to far-reaching consequences in describing the qualitative behaviour of the solutions. The spectral analysis, via the Jordan canonical form, will not only lead to a representation theorem for a basis of solutions, but will also give a rather precise statement of the (exponential) growth rates of various solutions. Various attempts have been made to extend this analysis to linear differential equations with time-varying coefficients. The most complete such extensions is the Floquet theory for equations with periodic coefficients. For time-varying linear differential equations with aperiodic coefficients several authors have attempted to ''extend'' the Foquet theory. The precise meaning of such an extension is itself a problem, and we present here several attempts in this direction that are related to the general problem of extending the spectral analysis of equations with constant coefficients. The main purpose of this paper is to introduce some problems of current research. The primary problem we shall examine occurs in the context of linear differential equations with almost periodic coefficients. We call it ''the Floquet problem''. (author)

  15. Solvable linear potentials in the Dirac equation

    Dominguez-Adame, F.; Gonzalez, M.A.

    1990-01-01

    The Dirac equation for some linear potentials leading to Schroedinger-like oscillator equations for the upper and lower components of the Dirac spinor have been solved. Energy levels for the bound states appear in pairs, so that both particles and antiparticles may be bound with the same energy. For weak coupling, the spacing between levels is proportional to the coupling constant while in the strong limit those levels are depressed compared to the nonrelativistic ones

  16. Emmy Noether and Linear Evolution Equations

    P. G. L. Leach

    2013-01-01

    Full Text Available Noether’s Theorem relates the Action Integral of a Lagrangian with symmetries which leave it invariant and the first integrals consequent upon the variational principle and the existence of the symmetries. These each have an equivalent in the Schrödinger Equation corresponding to the Lagrangian and by extension to linear evolution equations in general. The implications of these connections are investigated.

  17. On index-2 linear implicit difference equations

    Nguyen Huu Du, [No Value; Le Cong Loi, [No Value; Trinh Khanh Duy, [No Value; Vu Tien Viet, [No Value

    2011-01-01

    This paper deals with an index-2 notion for linear implicit difference equations (LIDEs) and with the solvability of initial value problems (IVPs) for index-2 LIDEs. Besides, the cocycle property as well as the multiplicative ergodic theorem of Oseledets type are also proved. (C) 2010 Elsevier Inc.

  18. Singular Linear Differential Equations in Two Variables

    Braaksma, B.L.J.; Put, M. van der

    2008-01-01

    The formal and analytic classification of integrable singular linear differential equations has been studied among others by R. Gerard and Y. Sibuya. We provide a simple proof of their main result, namely: For certain irregular systems in two variables there is no Stokes phenomenon, i.e. there is no

  19. Introduction to linear systems of differential equations

    Adrianova, L Ya

    1995-01-01

    The theory of linear systems of differential equations is one of the cornerstones of the whole theory of differential equations. At its root is the concept of the Lyapunov characteristic exponent. In this book, Adrianova presents introductory material and further detailed discussions of Lyapunov exponents. She also discusses the structure of the space of solutions of linear systems. Classes of linear systems examined are from the narrowest to widest: 1)�autonomous, 2)�periodic, 3)�reducible to autonomous, 4)�nearly reducible to autonomous, 5)�regular. In addition, Adrianova considers the following: stability of linear systems and the influence of perturbations of the coefficients on the stability the criteria of uniform stability and of uniform asymptotic stability in terms of properties of the solutions several estimates of the growth rate of solutions of a linear system in terms of its coefficients How perturbations of the coefficients change all the elements of the spectrum of the system is defin...

  20. Nonoscillation of half-linear dynamic equations

    Matucci, S.; Řehák, Pavel

    2010-01-01

    Roč. 60, č. 5 (2010), s. 1421-1429 ISSN 0898-1221 R&D Projects: GA AV ČR KJB100190701 Grant - others:GA ČR(CZ) GA201/07/0145 Institutional research plan: CEZ:AV0Z10190503 Keywords : half-linear dynamic equation * time scale * (non)oscillation * Riccati technique Subject RIV: BA - General Mathematics Impact factor: 1.472, year: 2010 http://www.sciencedirect.com/science/article/pii/S0898122110004384

  1. On a representation of linear differential equations

    Neuman, František

    2010-01-01

    Roč. 52, 1-2 (2010), s. 355-360 ISSN 0895-7177 Grant - others:GA ČR(CZ) GA201/08/0469 Institutional research plan: CEZ:AV0Z10190503 Keywords : Brandt and Ehresmann groupoinds * transformations * canonical forms * linear differential equations Subject RIV: BA - General Mathematics Impact factor: 1.066, year: 2010 http://www.sciencedirect.com/science/article/pii/S0895717710001184

  2. Covariant kinetic dispersion theory of linear transverse waves parallel propagating in magnetized plasmas with thermal anisotropy

    Lazar, M.; Schlickeiser, R.

    2006-01-01

    The properties of transverse waves parallel propagating in magnetized plasmas with arbitrary composition and thermally anisotropic, are investigated on the basis of relativistic Vlasov-Maxwell equations. The transverse dispersion relations for plasmas with arbitrary distribution functions are derived. These dispersion relations describe the linear response of the system to the initial perturbations and thus define all existing linear (transverse) plasma modes in the system. By analytic continuation the dispersion relations in the whole complex frequency plane are constructed. Further analysis is restricted to the important case of anisotropic bi-Maxwellian equilibrium plasma distribution functions. Explicit forms of the relativistically correct transverse dispersion relations are derived that hold for any values of the plasma temperatures and the temperature anisotropy. In the limit of nonrelativistic plasma temperatures the dispersion relations are expressed in terms of plasma dispersion function, however, the dependence on frequency and wave numbers is markedly different from the standard noncovariant nonrelativistic analysis. Only in the strictly unphysical formal limit of an infinitely large speed of light, c→∞, does the nonrelativistic dispersion relations reduce to the standard noncovariant dispersion relations

  3. Localization of the eigenvalues of linear integral equations with applications to linear ordinary differential equations.

    Sloss, J. M.; Kranzler, S. K.

    1972-01-01

    The equivalence of a considered integral equation form with an infinite system of linear equations is proved, and the localization of the eigenvalues of the infinite system is expressed. Error estimates are derived, and the problems of finding upper bounds and lower bounds for the eigenvalues are solved simultaneously.

  4. Linear measure functional differential equations with infinite delay

    Monteiro, G. (Giselle Antunes); Slavík, A.

    2014-01-01

    We use the theory of generalized linear ordinary differential equations in Banach spaces to study linear measure functional differential equations with infinite delay. We obtain new results concerning the existence, uniqueness, and continuous dependence of solutions. Even for equations with a finite delay, our results are stronger than the existing ones. Finally, we present an application to functional differential equations with impulses.

  5. Schwarz maps of algebraic linear ordinary differential equations

    Sanabria Malagón, Camilo

    2017-12-01

    A linear ordinary differential equation is called algebraic if all its solution are algebraic over its field of definition. In this paper we solve the problem of finding closed form solution to algebraic linear ordinary differential equations in terms of standard equations. Furthermore, we obtain a method to compute all algebraic linear ordinary differential equations with rational coefficients by studying their associated Schwarz map through the Picard-Vessiot Theory.

  6. Construction of a Roe linearization for the ideal MHD equations

    Cargo, P.; Gallice, G.; Raviart, P.A.

    1996-01-01

    In [3], Munz has constructed a Roe linearization for the equations of gas dynamics in Lagrangian coordinates. We extend this construction to the case of the ideal magnetohydrodynamics equations again in Lagrangian coordinates. As a consequence we obtain a Roe linearization for the MHD equations in Eulerian coordinates. (author)

  7. Hamiltonian structures of some non-linear evolution equations

    Tu, G.Z.

    1983-06-01

    The Hamiltonian structure of the O(2,1) non-linear sigma model, generalized AKNS equations, are discussed. By reducing the O(2,1) non-linear sigma model to its Hamiltonian form some new conservation laws are derived. A new hierarchy of non-linear evolution equations is proposed and shown to be generalized Hamiltonian equations with an infinite number of conservation laws. (author)

  8. Generalized Kapchinskij-Vladimirskij Distribution and Envelope Equation for High-intensity Beams in a Coupled Transverse Focusing Lattice

    Qin, Hong; Chung, Moses; Davidson, Ronald C.

    2009-01-01

    In an uncoupled lattice, the Kapchinskij-Vladimirskij (KV) distribution function first analyzed in 1959 is the only known exact solution of the nonlinear Vlasov-Maxwell equations for high- intensity beams including self-fields in a self-consistent manner. The KV solution is generalized here to high-intensity beams in a coupled transverse lattice using the recently developed generalized Courant-Snyder invariant for coupled transverse dynamics. This solution projects to a rotating, pulsating elliptical beam in transverse configuration space, determined by the generalized matrix envelope equation.

  9. Stability of Linear Equations--Algebraic Approach

    Cherif, Chokri; Goldstein, Avraham; Prado, Lucio M. G.

    2012-01-01

    This article could be of interest to teachers of applied mathematics as well as to people who are interested in applications of linear algebra. We give a comprehensive study of linear systems from an application point of view. Specifically, we give an overview of linear systems and problems that can occur with the computed solution when the…

  10. Oscillation theory of linear differential equations

    Došlý, Ondřej

    2000-01-01

    Roč. 36, č. 5 (2000), s. 329-343 ISSN 0044-8753 R&D Projects: GA ČR GA201/98/0677 Keywords : discrete oscillation theory %Sturm-Liouville equation%Riccati equation Subject RIV: BA - General Mathematics

  11. Geometric Insight into Scalar Combination of Linear Equations

    ... Journals; Resonance – Journal of Science Education; Volume 14; Issue 11. Geometric Insight into Scalar Combination of Linear Equations. Ranjit Konkar. Classroom Volume 14 Issue 11 November 2009 pp 1092-1097 ... Keywords. Linear algebra; linear dependence; linear combination; family of lines; family of planes.

  12. Students' errors in solving linear equation word problems: Case ...

    The study examined errors students make in solving linear equation word problems with a view to expose the nature of these errors and to make suggestions for classroom teaching. A diagnostic test comprising 10 linear equation word problems, was administered to a sample (n=130) of senior high school first year Home ...

  13. Linear orbit parameters for the exact equations of motion

    Parzen, G.

    1995-01-01

    This paper defines the beta function and other linear orbit parameters using the exact equations of motion. The β, α and ψ functions are redefined using the exact equations. Expressions are found for the transfer matrix and the emittance. The differential equations for η = x/β 1/2 is found. New relationships between α, β, ψ and ν are derived

  14. GLOBAL LINEARIZATION OF DIFFERENTIAL EQUATIONS WITH SPECIAL STRUCTURES

    2011-01-01

    This paper introduces the global linearization of the differential equations with special structures.The function in the differential equation is unbounded.We prove that the differential equation with unbounded function can be topologically linearlized if it has a special structure.

  15. On some perturbation techniques for quasi-linear parabolic equations

    Igor Malyshev

    1990-01-01

    Full Text Available We study a nonhomogeneous quasi-linear parabolic equation and introduce a method that allows us to find the solution of a nonlinear boundary value problem in “explicit” form. This task is accomplished by perturbing the original equation with a source function, which is then found as a solution of some nonlinear operator equation.

  16. A General Linear Method for Equating with Small Samples

    Albano, Anthony D.

    2015-01-01

    Research on equating with small samples has shown that methods with stronger assumptions and fewer statistical estimates can lead to decreased error in the estimated equating function. This article introduces a new approach to linear observed-score equating, one which provides flexible control over how form difficulty is assumed versus estimated…

  17. Iterative solution of linear equations in ODE codes. [Krylov subspaces

    Gear, C. W.; Saad, Y.

    1981-01-01

    Each integration step of a stiff equation involves the solution of a nonlinear equation, usually by a quasi-Newton method that leads to a set of linear problems. Iterative methods for these linear equations are studied. Of particular interest are methods that do not require an explicit Jacobian, but can work directly with differences of function values using J congruent to f(x + delta) - f(x). Some numerical experiments using a modification of LSODE are reported. 1 figure, 2 tables.

  18. Linear algebra a first course with applications to differential equations

    Apostol, Tom M

    2014-01-01

    Developed from the author's successful two-volume Calculus text this book presents Linear Algebra without emphasis on abstraction or formalization. To accommodate a variety of backgrounds, the text begins with a review of prerequisites divided into precalculus and calculus prerequisites. It continues to cover vector algebra, analytic geometry, linear spaces, determinants, linear differential equations and more.

  19. Solving polynomial differential equations by transforming them to linear functional-differential equations

    Nahay, John Michael

    2008-01-01

    We present a new approach to solving polynomial ordinary differential equations by transforming them to linear functional equations and then solving the linear functional equations. We will focus most of our attention upon the first-order Abel differential equation with two nonlinear terms in order to demonstrate in as much detail as possible the computations necessary for a complete solution. We mention in our section on further developments that the basic transformation idea can be generali...

  20. Resonance tongues in the linear Sitnikov equation

    Misquero, Mauricio

    2018-04-01

    In this paper, we deal with a Hill's equation, depending on two parameters e\\in [0,1) and Λ >0, that has applications to some problems in Celestial Mechanics of the Sitnikov type. Due to the nonlinearity of the eccentricity parameter e and the coexistence problem, the stability diagram in the (e,Λ )-plane presents unusual resonance tongues emerging from points (0,(n/2)^2), n=1,2,\\ldots The tongues bounded by curves of eigenvalues corresponding to 2π -periodic solutions collapse into a single curve of coexistence (for which there exist two independent 2π -periodic eigenfunctions), whereas the remaining tongues have no pockets and are very thin. Unlike most of the literature related to resonance tongues and Sitnikov-type problems, the study of the tongues is made from a global point of view in the whole range of e\\in [0,1). Indeed, an interesting behavior of the tongues is found: almost all of them concentrate in a small Λ -interval [1, 9 / 8] as e→ 1^-. We apply the stability diagram of our equation to determine the regions for which the equilibrium of a Sitnikov (N+1)-body problem is stable in the sense of Lyapunov and the regions having symmetric periodic solutions with a given number of zeros. We also study the Lyapunov stability of the equilibrium in the center of mass of a curved Sitnikov problem.

  1. Subroutine for series solutions of linear differential equations

    Tasso, H.; Steuerwald, J.

    1976-02-01

    A subroutine for Taylor series solutions of systems of ordinary linear differential equations is descriebed. It uses the old idea of Lie series but allows simple implementation and is time-saving for symbolic manipulations. (orig.) [de

  2. On a class of fourth order linear recurrence equations

    Sui-Sun Cheng

    1984-01-01

    Full Text Available This paper is concerned with sequences that satisfy a class of fourth order linear recurrence equations. Basic properties of such sequences are derived. In addition, we discuss the oscillatory and nonoscillatory behavior of such sequences.

  3. Exact solution of some linear matrix equations using algebraic methods

    Djaferis, T. E.; Mitter, S. K.

    1977-01-01

    A study is done of solution methods for Linear Matrix Equations including Lyapunov's equation, using methods of modern algebra. The emphasis is on the use of finite algebraic procedures which are easily implemented on a digital computer and which lead to an explicit solution to the problem. The action f sub BA is introduced a Basic Lemma is proven. The equation PA + BP = -C as well as the Lyapunov equation are analyzed. Algorithms are given for the solution of the Lyapunov and comment is given on its arithmetic complexity. The equation P - A'PA = Q is studied and numerical examples are given.

  4. Approximate Method for Solving the Linear Fuzzy Delay Differential Equations

    S. Narayanamoorthy

    2015-01-01

    Full Text Available We propose an algorithm of the approximate method to solve linear fuzzy delay differential equations using Adomian decomposition method. The detailed algorithm of the approach is provided. The approximate solution is compared with the exact solution to confirm the validity and efficiency of the method to handle linear fuzzy delay differential equation. To show this proper features of this proposed method, numerical example is illustrated.

  5. Linear matrix differential equations of higher-order and applications

    Mustapha Rachidi

    2008-07-01

    Full Text Available In this article, we study linear differential equations of higher-order whose coefficients are square matrices. The combinatorial method for computing the matrix powers and exponential is adopted. New formulas representing auxiliary results are obtained. This allows us to prove properties of a large class of linear matrix differential equations of higher-order, in particular results of Apostol and Kolodner are recovered. Also illustrative examples and applications are presented.

  6. Local energy decay for linear wave equations with variable coefficients

    Ikehata, Ryo

    2005-06-01

    A uniform local energy decay result is derived to the linear wave equation with spatial variable coefficients. We deal with this equation in an exterior domain with a star-shaped complement. Our advantage is that we do not assume any compactness of the support on the initial data, and its proof is quite simple. This generalizes a previous famous result due to Morawetz [The decay of solutions of the exterior initial-boundary value problem for the wave equation, Comm. Pure Appl. Math. 14 (1961) 561-568]. In order to prove local energy decay, we mainly apply two types of ideas due to Ikehata-Matsuyama [L2-behaviour of solutions to the linear heat and wave equations in exterior domains, Sci. Math. Japon. 55 (2002) 33-42] and Todorova-Yordanov [Critical exponent for a nonlinear wave equation with damping, J. Differential Equations 174 (2001) 464-489].

  7. Analytical exact solution of the non-linear Schroedinger equation

    Martins, Alisson Xavier; Rocha Filho, Tarcisio Marciano da

    2011-01-01

    Full text: In this work we present how to classify and obtain analytical solutions of the Schroedinger equation with a generic non-linearity in 1+1 dimensions. Our approach is based on the determination of Lie symmetry transformation mapping solutions into solutions, and non-classical symmetry transformations, mapping a given solution into itself. From these symmetries it is then possible to reduce the equation to a system of ordinary differential equations which can then be solved using standard methods. The generic non-linearity is handled by considering it as an additional unknown in the determining equations for the symmetry transformations. This results in an over-determined system of non-linear partial differential equations. Its solution can then be determined in some cases by reducing it to the so called involutive (triangular) form, and then solved. This reduction is very tedious and can only performed using a computer algebra system. Once the determining system is solved, we obtain the explicit form for the non-linearity admitting a Lie or non-classical symmetry. The analytical solutions are then derived by solving the reduced ordinary differential equations. The non-linear determining system for the non-classical symmetry transformations and Lie symmetry generators are obtaining using the computer algebra package SADE (symmetry analysis of differential equations), developed at our group. (author)

  8. Focal decompositions for linear differential equations of the second order

    L. Birbrair

    2003-01-01

    two-points problems to itself such that the image of the focal decomposition associated to the first equation is a focal decomposition associated to the second one. In this paper, we present a complete classification for linear second-order equations with respect to this equivalence relation.

  9. Asymptotic properties for half-linear difference equations

    Cecchi, M.; Došlá, Z.; Marini, M.; Vrkoč, Ivo

    2006-01-01

    Roč. 131, č. 4 (2006), s. 347-363 ISSN 0862-7959 R&D Projects: GA ČR(CZ) GA201/04/0580 Institutional research plan: CEZ:AV0Z10190503 Keywords : half-linear second order difference equation * nonoscillatory solutions * Riccati difference equation Subject RIV: BA - General Mathematics

  10. A Hamiltonian structure for the linearized Einstein vacuum field equations

    Torres del Castillo, G.F.

    1991-01-01

    By considering the Einstein vacuum field equations linearized about the Minkowski metric, the evolution equations for the gauge-invariant quantities characterizing the gravitational field are written in a Hamiltonian form. A Poisson bracket between functionals of the field, compatible with the constraints satisfied by the field variables, is obtained (Author)

  11. An implicit spectral formula for generalized linear Schroedinger equations

    Schulze-Halberg, A.; Garcia-Ravelo, J.; Pena Gil, Jose Juan

    2009-01-01

    We generalize the semiclassical Bohr–Sommerfeld quantization rule to an exact, implicit spectral formula for linear, generalized Schroedinger equations admitting a discrete spectrum. Special cases include the position-dependent mass Schroedinger equation or the Schroedinger equation for weighted energy. Requiring knowledge of the potential and the solution associated with the lowest spectral value, our formula predicts the complete spectrum in its exact form. (author)

  12. Visual construction of characteristic equations of linear electric circuits

    V.V. Kostyukov

    2013-12-01

    Full Text Available A visual identification method with application of partial circuits is developed for characteristic equation coefficients of transients in linear electric circuits. The method is based on interrelationship between the roots of algebraic polynomial and its coefficients. The method is illustrated with an example of a third-order linear electric circuit.

  13. A local-global problem for linear differential equations

    Put, Marius van der; Reversat, Marc

    2008-01-01

    An inhomogeneous linear differential equation Ly = f over a global differential field can have a formal solution for each place without having a global solution. The vector space lgl(L) measures this phenomenon. This space is interpreted in terms of cohomology of linear algebraic groups and is

  14. A local-global problem for linear differential equations

    Put, Marius van der; Reversat, Marc

    An inhomogeneous linear differential equation Ly = f over a global differential field can have a formal solution for each place without having a global solution. The vector space lgl(L) measures this phenomenon. This space is interpreted in terms of cohomology of linear algebraic groups and is

  15. Linear differential equations to solve nonlinear mechanical problems: A novel approach

    Nair, C. Radhakrishnan

    2004-01-01

    Often a non-linear mechanical problem is formulated as a non-linear differential equation. A new method is introduced to find out new solutions of non-linear differential equations if one of the solutions of a given non-linear differential equation is known. Using the known solution of the non-linear differential equation, linear differential equations are set up. The solutions of these linear differential equations are found using standard techniques. Then the solutions of the linear differe...

  16. Rational approximations to solutions of linear differential equations.

    Chudnovsky, D V; Chudnovsky, G V

    1983-08-01

    Rational approximations of Padé and Padé type to solutions of differential equations are considered. One of the main results is a theorem stating that a simultaneous approximation to arbitrary solutions of linear differential equations over C(x) cannot be "better" than trivial ones implied by the Dirichlet box principle. This constitutes, in particular, the solution in the linear case of Kolchin's problem that the "Roth's theorem" holds for arbitrary solutions of algebraic differential equations. Complete effective proofs for several valuations are presented based on the Wronskian methods and graded subrings of Picard-Vessiot extensions.

  17. Non-local quasi-linear parabolic equations

    Amann, H

    2005-01-01

    This is a survey of the most common approaches to quasi-linear parabolic evolution equations, a discussion of their advantages and drawbacks, and a presentation of an entirely new approach based on maximal L p regularity. The general results here apply, above all, to parabolic initial-boundary value problems that are non-local in time. This is illustrated by indicating their relevance for quasi-linear parabolic equations with memory and, in particular, for time-regularized versions of the Perona-Malik equation of image processing

  18. Darboux transformations and linear parabolic partial differential equations

    Arrigo, Daniel J.; Hickling, Fred

    2002-01-01

    Solutions for a class of linear parabolic partial differential equation are provided. These solutions are obtained by first solving a system of (n+1) nonlinear partial differential equations. This system arises as the coefficients of a Darboux transformation and is equivalent to a matrix Burgers' equation. This matrix equation is solved using a generalized Hopf-Cole transformation. The solutions for the original equation are given in terms of solutions of the heat equation. These results are applied to the (1+1)-dimensional Schroedinger equation where all bound state solutions are obtained for a 2n-parameter family of potentials. As a special case, the solutions for integral members of the regular and modified Poeschl-Teller potentials are recovered. (author). Letter-to-the-editor

  19. A Proposed Method for Solving Fuzzy System of Linear Equations

    Reza Kargar

    2014-01-01

    Full Text Available This paper proposes a new method for solving fuzzy system of linear equations with crisp coefficients matrix and fuzzy or interval right hand side. Some conditions for the existence of a fuzzy or interval solution of m×n linear system are derived and also a practical algorithm is introduced in detail. The method is based on linear programming problem. Finally the applicability of the proposed method is illustrated by some numerical examples.

  20. Periodic feedback stabilization for linear periodic evolution equations

    Wang, Gengsheng

    2016-01-01

    This book introduces a number of recent advances regarding periodic feedback stabilization for linear and time periodic evolution equations. First, it presents selected connections between linear quadratic optimal control theory and feedback stabilization theory for linear periodic evolution equations. Secondly, it identifies several criteria for the periodic feedback stabilization from the perspective of geometry, algebra and analyses respectively. Next, it describes several ways to design periodic feedback laws. Lastly, the book introduces readers to key methods for designing the control machines. Given its coverage and scope, it offers a helpful guide for graduate students and researchers in the areas of control theory and applied mathematics.

  1. Dynamical symmetries of semi-linear Schrodinger and diffusion equations

    Stoimenov, Stoimen; Henkel, Malte

    2005-01-01

    Conditional and Lie symmetries of semi-linear 1D Schrodinger and diffusion equations are studied if the mass (or the diffusion constant) is considered as an additional variable. In this way, dynamical symmetries of semi-linear Schrodinger equations become related to the parabolic and almost-parabolic subalgebras of a three-dimensional conformal Lie algebra (conf 3 ) C . We consider non-hermitian representations and also include a dimensionful coupling constant of the non-linearity. The corresponding representations of the parabolic and almost-parabolic subalgebras of (conf 3 ) C are classified and the complete list of conditionally invariant semi-linear Schrodinger equations is obtained. Possible applications to the dynamical scaling behaviour of phase-ordering kinetics are discussed

  2. New Equating Methods and Their Relationships with Levine Observed Score Linear Equating under the Kernel Equating Framework

    Chen, Haiwen; Holland, Paul

    2010-01-01

    In this paper, we develop a new curvilinear equating for the nonequivalent groups with anchor test (NEAT) design under the assumption of the classical test theory model, that we name curvilinear Levine observed score equating. In fact, by applying both the kernel equating framework and the mean preserving linear transformation of…

  3. HESS Opinions: Linking Darcy's equation to the linear reservoir

    Savenije, Hubert H. G.

    2018-03-01

    In groundwater hydrology, two simple linear equations exist describing the relation between groundwater flow and the gradient driving it: Darcy's equation and the linear reservoir. Both equations are empirical and straightforward, but work at different scales: Darcy's equation at the laboratory scale and the linear reservoir at the watershed scale. Although at first sight they appear similar, it is not trivial to upscale Darcy's equation to the watershed scale without detailed knowledge of the structure or shape of the underlying aquifers. This paper shows that these two equations, combined by the water balance, are indeed identical provided there is equal resistance in space for water entering the subsurface network. This implies that groundwater systems make use of an efficient drainage network, a mostly invisible pattern that has evolved over geological timescales. This drainage network provides equally distributed resistance for water to access the system, connecting the active groundwater body to the stream, much like a leaf is organized to provide all stomata access to moisture at equal resistance. As a result, the timescale of the linear reservoir appears to be inversely proportional to Darcy's conductance, the proportionality being the product of the porosity and the resistance to entering the drainage network. The main question remaining is which physical law lies behind pattern formation in groundwater systems, evolving in a way that resistance to drainage is constant in space. But that is a fundamental question that is equally relevant for understanding the hydraulic properties of leaf veins in plants or of blood veins in animals.

  4. The numerical solution of linear multi-term fractional differential equations: systems of equations

    Edwards, John T.; Ford, Neville J.; Simpson, A. Charles

    2002-11-01

    In this paper, we show how the numerical approximation of the solution of a linear multi-term fractional differential equation can be calculated by reduction of the problem to a system of ordinary and fractional differential equations each of order at most unity. We begin by showing how our method applies to a simple class of problems and we give a convergence result. We solve the Bagley Torvik equation as an example. We show how the method can be applied to a general linear multi-term equation and give two further examples.

  5. High-order quantum algorithm for solving linear differential equations

    Berry, Dominic W

    2014-01-01

    Linear differential equations are ubiquitous in science and engineering. Quantum computers can simulate quantum systems, which are described by a restricted type of linear differential equations. Here we extend quantum simulation algorithms to general inhomogeneous sparse linear differential equations, which describe many classical physical systems. We examine the use of high-order methods (where the error over a time step is a high power of the size of the time step) to improve the efficiency. These provide scaling close to Δt 2 in the evolution time Δt. As with other algorithms of this type, the solution is encoded in amplitudes of the quantum state, and it is possible to extract global features of the solution. (paper)

  6. Solution methods for large systems of linear equations in BACCHUS

    Homann, C.; Dorr, B.

    1993-05-01

    The computer programme BACCHUS is used to describe steady state and transient thermal-hydraulic behaviour of a coolant in a fuel element with intact geometry in a fast breeder reactor. In such computer programmes generally large systems of linear equations with sparse matrices of coefficients, resulting from discretization of coolant conservation equations, must be solved thousands of times giving rise to large demands of main storage and CPU time. Direct and iterative solution methods of the systems of linear equations, available in BACCHUS, are described, giving theoretical details and experience with their use in the programme. Besides use of a method of lines, a Runge-Kutta-method, for solution of the partial differential equation is outlined. (orig.) [de

  7. Linear Einstein equations and Kerr-Schild maps

    Gergely, Laszlo A

    2002-01-01

    We prove that given a solution of the Einstein equations g ab for the matter field T ab , an autoparallel null vector field l a and a solution (l a l c , T ac ) of the linearized Einstein equation on the given background, the Kerr-Schild metric g ac + λl a l c (λ arbitrary constant) is an exact solution of the Einstein equation for the energy-momentum tensor T ac + λT ac + λ 2 l (a T c)b l b . The mixed form of the Einstein equation for Kerr-Schild metrics with autoparallel null congruence is also linear. Some more technical conditions hold when the null congruence is not autoparallel. These results generalize previous theorems for vacuum due to Xanthopoulos and for flat seed spacetime due to Guerses and Guersey

  8. A Hamiltonian functional for the linearized Einstein vacuum field equations

    Rosas-RodrIguez, R

    2005-01-01

    By considering the Einstein vacuum field equations linearized about the Minkowski metric, the evolution equations for the gauge-invariant quantities characterizing the gravitational field are written in a Hamiltonian form by using a conserved functional as Hamiltonian; this Hamiltonian is not the analog of the energy of the field. A Poisson bracket between functionals of the field, compatible with the constraints satisfied by the field variables, is obtained. The generator of spatial translations associated with such bracket is also obtained

  9. Linearized pseudo-Einstein equations on the Heisenberg group

    Barletta, Elisabetta; Dragomir, Sorin; Jacobowitz, Howard

    2017-02-01

    We study the pseudo-Einstein equation R11bar = 0 on the Heisenberg group H1 = C × R. We consider first order perturbations θɛ =θ0 + ɛ θ and linearize the pseudo-Einstein equation about θ0 (the canonical Tanaka-Webster flat contact form on H1 thought of as a strictly pseudoconvex CR manifold). If θ =e2uθ0 the linearized pseudo-Einstein equation is Δb u - 4 | Lu|2 = 0 where Δb is the sublaplacian of (H1 ,θ0) and L bar is the Lewy operator. We solve the linearized pseudo-Einstein equation on a bounded domain Ω ⊂H1 by applying subelliptic theory i.e. existence and regularity results for weak subelliptic harmonic maps. We determine a solution u to the linearized pseudo-Einstein equation, possessing Heisenberg spherical symmetry, and such that u(x) → - ∞ as | x | → + ∞.

  10. New non-linear modified massless Klein-Gordon equation

    Asenjo, Felipe A. [Universidad Adolfo Ibanez, UAI Physics Center, Santiago (Chile); Universidad Adolfo Ibanez, Facultad de Ingenieria y Ciencias, Santiago (Chile); Hojman, Sergio A. [Universidad Adolfo Ibanez, UAI Physics Center, Santiago (Chile); Universidad Adolfo Ibanez, Departamento de Ciencias, Facultad de Artes Liberales, Santiago (Chile); Universidad de Chile, Departamento de Fisica, Facultad de Ciencias, Santiago (Chile); Centro de Recursos Educativos Avanzados, CREA, Santiago (Chile)

    2017-11-15

    The massless Klein-Gordon equation on arbitrary curved backgrounds allows for solutions which develop ''tails'' inside the light cone and, therefore, do not strictly follow null geodesics as discovered by DeWitt and Brehme almost 60 years ago. A modification of the massless Klein-Gordon equation is presented, which always exhibits null geodesic propagation of waves on arbitrary curved spacetimes. This new equation is derived from a Lagrangian which exhibits current-current interaction. Its non-linearity is due to a self-coupling term which is related to the quantum mechanical Bohm potential. (orig.)

  11. Exact non-linear equations for cosmological perturbations

    Gong, Jinn-Ouk [Asia Pacific Center for Theoretical Physics, Pohang 37673 (Korea, Republic of); Hwang, Jai-chan [Department of Astronomy and Atmospheric Sciences, Kyungpook National University, Daegu 41566 (Korea, Republic of); Noh, Hyerim [Korea Astronomy and Space Science Institute, Daejeon 34055 (Korea, Republic of); Wu, David Chan Lon; Yoo, Jaiyul, E-mail: jinn-ouk.gong@apctp.org, E-mail: jchan@knu.ac.kr, E-mail: hr@kasi.re.kr, E-mail: clwu@physik.uzh.ch, E-mail: jyoo@physik.uzh.ch [Center for Theoretical Astrophysics and Cosmology, Institute for Computational Science, Universität Zürich, CH-8057 Zürich (Switzerland)

    2017-10-01

    We present a complete set of exact and fully non-linear equations describing all three types of cosmological perturbations—scalar, vector and tensor perturbations. We derive the equations in a thoroughly gauge-ready manner, so that any spatial and temporal gauge conditions can be employed. The equations are completely general without any physical restriction except that we assume a flat homogeneous and isotropic universe as a background. We also comment briefly on the application of our formulation to the non-expanding Minkowski background.

  12. Solving Fully Fuzzy Linear System of Equations in General Form

    A. Yousefzadeh

    2012-06-01

    Full Text Available In this work, we propose an approach for computing the positive solution of a fully fuzzy linear system where the coefficient matrix is a fuzzy $nimes n$ matrix. To do this, we use arithmetic operations on fuzzy numbers that introduced by Kaffman in and convert the fully fuzzy linear system into two $nimes n$ and $2nimes 2n$ crisp linear systems. If the solutions of these linear systems don't satisfy in positive fuzzy solution condition, we introduce the constrained least squares problem to obtain optimal fuzzy vector solution by applying the ranking function in given fully fuzzy linear system. Using our proposed method, the fully fuzzy linear system of equations always has a solution. Finally, we illustrate the efficiency of proposed method by solving some numerical examples.

  13. Linear Equating for the NEAT Design: Parameter Substitution Models and Chained Linear Relationship Models

    Kane, Michael T.; Mroch, Andrew A.; Suh, Youngsuk; Ripkey, Douglas R.

    2009-01-01

    This paper analyzes five linear equating models for the "nonequivalent groups with anchor test" (NEAT) design with internal anchors (i.e., the anchor test is part of the full test). The analysis employs a two-dimensional framework. The first dimension contrasts two general approaches to developing the equating relationship. Under a "parameter…

  14. Non-linear effects in the Boltzmann equation

    Barrachina, R.O.

    1985-01-01

    The Boltzmann equation is studied by defining an integral transformation of the energy distribution function for an isotropic and homogeneous gas. This transformation may be interpreted as a linear superposition of equilibrium states with variable temperatures. It is shown that the temporal evolution features of the distribution function are determined by the singularities of said transformation. This method is applied to Maxwell and Very Hard Particle interaction models. For the latter, the solution of the Boltzmann equation with the solution of its linearized version is compared, finding out many basic discrepancies and non-linear effects. This gives a hint to propose a new rational approximation method with a clear physical meaning. Applying this technique, the relaxation features of the BKW (Bobylev, Krook anf Wu) mode is analyzed, finding a conclusive counter-example for the Krook and Wu conjecture. The anisotropic Boltzmann equation for Maxwell models is solved as an expansion in terms of the eigenfunctions of the corresponding linearized collision operator, finding interesting transient overpopulation and underpopulation effects at thermal energies as well as a new preferential spreading effect. By analyzing the initial collision, a criterion is established to deduce the general features of the final approach to equilibrium. Finally, it is shown how to improve the convergence of the eigenfunction expansion for high energy underpopulated distribution functions. As an application of this theory, the linear cascade model for sputtering is analyzed, thus finding out that many differences experimentally observed are due to non-linear effects. (M.E.L.) [es

  15. Linear System of Equations, Matrix Inversion, and Linear Programming Using MS Excel

    El-Gebeily, M.; Yushau, B.

    2008-01-01

    In this note, we demonstrate with illustrations two different ways that MS Excel can be used to solve Linear Systems of Equation, Linear Programming Problems, and Matrix Inversion Problems. The advantage of using MS Excel is its availability and transparency (the user is responsible for most of the details of how a problem is solved). Further, we…

  16. Constructive Development of the Solutions of Linear Equations in Introductory Ordinary Differential Equations

    Mallet, D. G.; McCue, S. W.

    2009-01-01

    The solution of linear ordinary differential equations (ODEs) is commonly taught in first-year undergraduate mathematics classrooms, but the understanding of the concept of a solution is not always grasped by students until much later. Recognizing what it is to be a solution of a linear ODE and how to postulate such solutions, without resorting to…

  17. Nonoscillation criteria for half-linear second order difference equations

    Došlý, Ondřej; Řehák, Pavel

    2001-01-01

    Roč. 42, - (2001), s. 453-464 ISSN 0898-1221 R&D Projects: GA ČR GA201/98/0677; GA ČR GA201/99/0295 Keywords : half-linear difference equation%nonoscillation criteria%variational principle Subject RIV: BA - General Mathematics Impact factor: 0.383, year: 2001

  18. Lie symmetries and differential galois groups of linear equations

    Oudshoorn, W.R.; Put, M. van der

    2002-01-01

    For a linear ordinary differential equation the Lie algebra of its infinitesimal Lie symmetries is compared with its differential Galois group. For this purpose an algebraic formulation of Lie symmetries is developed. It turns out that there is no direct relation between the two above objects. In

  19. Asymptotic formulae for solutions of half-linear differential equations

    Řehák, Pavel

    2017-01-01

    Roč. 292, January (2017), s. 165-177 ISSN 0096-3003 Institutional support: RVO:67985840 Keywords : half-linear differential equation * nonoscillatory solution * regular variation Subject RIV: BA - General Mathematics OBOR OECD: Applied mathematics Impact factor: 1.738, year: 2016 http://www.sciencedirect.com/science/article/pii/S0096300316304581

  20. On oscillation of second-order linear ordinary differential equations

    Lomtatidze, A.; Šremr, Jiří

    2011-01-01

    Roč. 54, - (2011), s. 69-81 ISSN 1512-0015 Institutional research plan: CEZ:AV0Z10190503 Keywords : linear second-order ordinary differential equation * Kamenev theorem * oscillation Subject RIV: BA - General Mathematics http://www.rmi.ge/jeomj/memoirs/vol54/abs54-4.htm

  1. Quantum osp-invariant non-linear Schroedinger equation

    Kulish, P.P.

    1985-04-01

    The generalizations of the non-linear Schroedinger equation (NS) associated with the orthosymplectic superalgebras are formulated. The simplest osp(1/2)-NS model is solved by the quantum inverse scattering method on a finite interval under periodic boundary conditions as well as on the wholeline in the case of a finite number of excitations. (author)

  2. Exponential estimates for solutions of half-linear differential equations

    Řehák, Pavel

    2015-01-01

    Roč. 147, č. 1 (2015), s. 158-171 ISSN 0236-5294 Institutional support: RVO:67985840 Keywords : half-linear differential equation * decreasing solution * increasing solution * asymptotic behavior Subject RIV: BA - General Mathematics Impact factor: 0.469, year: 2015 http://link.springer.com/article/10.1007%2Fs10474-015-0522-9

  3. An inhomogeneous wave equation and non-linear Diophantine approximation

    Beresnevich, V.; Dodson, M. M.; Kristensen, S.

    2008-01-01

    A non-linear Diophantine condition involving perfect squares and arising from an inhomogeneous wave equation on the torus guarantees the existence of a smooth solution. The exceptional set associated with the failure of the Diophantine condition and hence of the existence of a smooth solution...

  4. On nonnegative solutions of second order linear functional differential equations

    Lomtatidze, Alexander; Vodstrčil, Petr

    2004-01-01

    Roč. 32, č. 1 (2004), s. 59-88 ISSN 1512-0015 Institutional research plan: CEZ:AV0Z1019905 Keywords : second order linear functional differential equations * nonnegative solution * two-point boundary value problem Subject RIV: BA - General Mathematics

  5. Radial solutions to semilinear elliptic equations via linearized operators

    Phuong Le

    2017-04-01

    Full Text Available Let $u$ be a classical solution of semilinear elliptic equations in a ball or an annulus in $\\mathbb{R}^N$ with zero Dirichlet boundary condition where the nonlinearity has a convex first derivative. In this note, we prove that if the $N$-th eigenvalue of the linearized operator at $u$ is positive, then $u$ must be radially symmetric.

  6. Minimal solution of linear formed fuzzy matrix equations

    Maryam Mosleh

    2012-10-01

    Full Text Available In this paper according to the structured element method, the $mimes n$ inconsistent fuzzy matrix equation $Ailde{X}=ilde{B},$ which are linear formed by fuzzy structured element, is investigated. The necessary and sufficient condition for the existence of a fuzzy solution is also discussed. some examples are presented to illustrate the proposed method.

  7. Insights into the School Mathematics Tradition from Solving Linear Equations

    Buchbinder, Orly; Chazan, Daniel; Fleming, Elizabeth

    2015-01-01

    In this article, we explore how the solving of linear equations is represented in English­-language algebra text books from the early nineteenth century when schooling was becoming institutionalized, and then survey contemporary teachers. In the text books, we identify the increasing presence of a prescribed order of steps (a canonical method) for…

  8. Students' errors in solving linear equation word problems: Case ...

    kofi.mereku

    Development in most areas of life is based on effective knowledge of science and ... Problem solving, as used in mathematics education literature, refers ... word problems, on the other hand, are those linear equation tasks or ... taught LEWPs in the junior high school, many of them reach the senior high school without a.

  9. Asymptotic solutions and spectral theory of linear wave equations

    Adam, J.A.

    1982-01-01

    This review contains two closely related strands. Firstly the asymptotic solution of systems of linear partial differential equations is discussed, with particular reference to Lighthill's method for obtaining the asymptotic functional form of the solution of a scalar wave equation with constant coefficients. Many of the applications of this technique are highlighted. Secondly, the methods and applications of the theory of the reduced (one-dimensional) wave equation - particularly spectral theory - are discussed. While the breadth of application and power of the techniques is emphasised throughout, the opportunity is taken to present to a wider readership, developments of the methods which have occured in some aspects of astrophysical (particularly solar) and geophysical fluid dynamics. It is believed that the topics contained herein may be of relevance to the applied mathematician or theoretical physicist interest in problems of linear wave propagation in these areas. (orig./HSI)

  10. Non-linear wave equations:Mathematical techniques

    1978-01-01

    An account of certain well-established mathematical methods, which prove useful to deal with non-linear partial differential equations is presented. Within the strict framework of Functional Analysis, it describes Semigroup Techniques in Banach Spaces as well as variational approaches towards critical points. Detailed proofs are given of the existence of local and global solutions of the Cauchy problem and of the stability of stationary solutions. The formal approach based upon invariance under Lie transformations deserves attention due to its wide range of applicability, even if the explicit solutions thus obtained do not allow for a deep analysis of the equations. A compre ensive introduction to the inverse scattering approach and to the solution concept for certain non-linear equations of physical interest are also presented. A detailed discussion is made about certain convergence and stability problems which arise in importance need not be emphasized. (author) [es

  11. Dark energy cosmology with generalized linear equation of state

    Babichev, E; Dokuchaev, V; Eroshenko, Yu

    2005-01-01

    Dark energy with the usually used equation of state p = wρ, where w const 0 ), where the constants α and ρ 0 are free parameters. This non-homogeneous linear equation of state provides the description of both hydrodynamically stable (α > 0) and unstable (α < 0) fluids. In particular, the considered cosmological model describes the hydrodynamically stable dark (and phantom) energy. The possible types of cosmological scenarios in this model are determined and classified in terms of attractors and unstable points by using phase trajectories analysis. For the dark energy case, some distinctive types of cosmological scenarios are possible: (i) the universe with the de Sitter attractor at late times, (ii) the bouncing universe, (iii) the universe with the big rip and with the anti-big rip. In the framework of a linear equation of state the universe filled with a phantom energy, w < -1, may have either the de Sitter attractor or the big rip

  12. Approximate Controllability for Linear Stochastic Differential Equations in Infinite Dimensions

    Goreac, D.

    2009-01-01

    The objective of the paper is to investigate the approximate controllability property of a linear stochastic control system with values in a separable real Hilbert space. In a first step we prove the existence and uniqueness for the solution of the dual linear backward stochastic differential equation. This equation has the particularity that in addition to an unbounded operator acting on the Y-component of the solution there is still another one acting on the Z-component. With the help of this dual equation we then deduce the duality between approximate controllability and observability. Finally, under the assumption that the unbounded operator acting on the state process of the forward equation is an infinitesimal generator of an exponentially stable semigroup, we show that the generalized Hautus test provides a necessary condition for the approximate controllability. The paper generalizes former results by Buckdahn, Quincampoix and Tessitore (Stochastic Partial Differential Equations and Applications, Series of Lecture Notes in Pure and Appl. Math., vol. 245, pp. 253-260, Chapman and Hall, London, 2006) and Goreac (Applied Analysis and Differential Equations, pp. 153-164, World Scientific, Singapore, 2007) from the finite dimensional to the infinite dimensional case

  13. Experimental quantum computing to solve systems of linear equations.

    Cai, X-D; Weedbrook, C; Su, Z-E; Chen, M-C; Gu, Mile; Zhu, M-J; Li, Li; Liu, Nai-Le; Lu, Chao-Yang; Pan, Jian-Wei

    2013-06-07

    Solving linear systems of equations is ubiquitous in all areas of science and engineering. With rapidly growing data sets, such a task can be intractable for classical computers, as the best known classical algorithms require a time proportional to the number of variables N. A recently proposed quantum algorithm shows that quantum computers could solve linear systems in a time scale of order log(N), giving an exponential speedup over classical computers. Here we realize the simplest instance of this algorithm, solving 2×2 linear equations for various input vectors on a quantum computer. We use four quantum bits and four controlled logic gates to implement every subroutine required, demonstrating the working principle of this algorithm.

  14. Stochastic modeling of mode interactions via linear parabolized stability equations

    Ran, Wei; Zare, Armin; Hack, M. J. Philipp; Jovanovic, Mihailo

    2017-11-01

    Low-complexity approximations of the Navier-Stokes equations have been widely used in the analysis of wall-bounded shear flows. In particular, the parabolized stability equations (PSE) and Floquet theory have been employed to capture the evolution of primary and secondary instabilities in spatially-evolving flows. We augment linear PSE with Floquet analysis to formally treat modal interactions and the evolution of secondary instabilities in the transitional boundary layer via a linear progression. To this end, we leverage Floquet theory by incorporating the primary instability into the base flow and accounting for different harmonics in the flow state. A stochastic forcing is introduced into the resulting linear dynamics to model the effect of nonlinear interactions on the evolution of modes. We examine the H-type transition scenario to demonstrate how our approach can be used to model nonlinear effects and capture the growth of the fundamental and subharmonic modes observed in direct numerical simulations and experiments.

  15. Linear fractional diffusion-wave equation for scientists and engineers

    Povstenko, Yuriy

    2015-01-01

    This book systematically presents solutions to the linear time-fractional diffusion-wave equation. It introduces the integral transform technique and discusses the properties of the Mittag-Leffler, Wright, and Mainardi functions that appear in the solutions. The time-nonlocal dependence between the flux and the gradient of the transported quantity with the “long-tail” power kernel results in the time-fractional diffusion-wave equation with the Caputo fractional derivative. Time-nonlocal generalizations of classical Fourier’s, Fick’s and Darcy’s laws are considered and different kinds of boundary conditions for this equation are discussed (Dirichlet, Neumann, Robin, perfect contact). The book provides solutions to the fractional diffusion-wave equation with one, two and three space variables in Cartesian, cylindrical and spherical coordinates. The respective sections of the book can be used for university courses on fractional calculus, heat and mass transfer, transport processes in porous media and ...

  16. A fast iterative scheme for the linearized Boltzmann equation

    Wu, Lei; Zhang, Jun; Liu, Haihu; Zhang, Yonghao; Reese, Jason M.

    2017-06-01

    Iterative schemes to find steady-state solutions to the Boltzmann equation are efficient for highly rarefied gas flows, but can be very slow to converge in the near-continuum flow regime. In this paper, a synthetic iterative scheme is developed to speed up the solution of the linearized Boltzmann equation by penalizing the collision operator L into the form L = (L + Nδh) - Nδh, where δ is the gas rarefaction parameter, h is the velocity distribution function, and N is a tuning parameter controlling the convergence rate. The velocity distribution function is first solved by the conventional iterative scheme, then it is corrected such that the macroscopic flow velocity is governed by a diffusion-type equation that is asymptotic-preserving into the Navier-Stokes limit. The efficiency of this new scheme is assessed by calculating the eigenvalue of the iteration, as well as solving for Poiseuille and thermal transpiration flows. We find that the fastest convergence of our synthetic scheme for the linearized Boltzmann equation is achieved when Nδ is close to the average collision frequency. The synthetic iterative scheme is significantly faster than the conventional iterative scheme in both the transition and the near-continuum gas flow regimes. Moreover, due to its asymptotic-preserving properties, the synthetic iterative scheme does not need high spatial resolution in the near-continuum flow regime, which makes it even faster than the conventional iterative scheme. Using this synthetic scheme, with the fast spectral approximation of the linearized Boltzmann collision operator, Poiseuille and thermal transpiration flows between two parallel plates, through channels of circular/rectangular cross sections and various porous media are calculated over the whole range of gas rarefaction. Finally, the flow of a Ne-Ar gas mixture is solved based on the linearized Boltzmann equation with the Lennard-Jones intermolecular potential for the first time, and the difference

  17. Novel algorithm of large-scale simultaneous linear equations

    Fujiwara, T; Hoshi, T; Yamamoto, S; Sogabe, T; Zhang, S-L

    2010-01-01

    We review our recently developed methods of solving large-scale simultaneous linear equations and applications to electronic structure calculations both in one-electron theory and many-electron theory. This is the shifted COCG (conjugate orthogonal conjugate gradient) method based on the Krylov subspace, and the most important issue for applications is the shift equation and the seed switching method, which greatly reduce the computational cost. The applications to nano-scale Si crystals and the double orbital extended Hubbard model are presented.

  18. What happens to linear properties as we move from the Klein-Gordon equation to the sine-Gordon equation

    Kovalyov, Mikhail

    2010-01-01

    In this article the sets of solutions of the sine-Gordon equation and its linearization the Klein-Gordon equation are discussed and compared. It is shown that the set of solutions of the sine-Gordon equation possesses a richer structure which partly disappears during linearization. Just like the solutions of the Klein-Gordon equation satisfy the linear superposition principle, the solutions of the sine-Gordon equation satisfy a nonlinear superposition principle.

  19. Oscillatory solutions of the Cauchy problem for linear differential equations

    Gro Hovhannisyan

    2015-06-01

    Full Text Available We consider the Cauchy problem for second and third order linear differential equations with constant complex coefficients. We describe necessary and sufficient conditions on the data for the existence of oscillatory solutions. It is known that in the case of real coefficients the oscillatory behavior of solutions does not depend on initial values, but we show that this is no longer true in the complex case: hence in practice it is possible to control oscillatory behavior by varying the initial conditions. Our Proofs are based on asymptotic analysis of the zeros of solutions, represented as linear combinations of exponential functions.

  20. Infinite sets of conservation laws for linear and non-linear field equations

    Niederle, J.

    1984-01-01

    The work was motivated by a desire to understand group theoretically the existence of an infinite set of conservation laws for non-interacting fields and to carry over these conservation laws to the case of interacting fields. The relation between an infinite set of conservation laws of a linear field equation and the enveloping algebra of its space-time symmetry group was established. It is shown that in the case of the Korteweg-de Vries (KdV) equation to each symmetry of the corresponding linear equation delta sub(o)uxxx=u sub() determined by an element of the enveloping algebra of the space translation algebra, there corresponds a symmetry of the full KdV equation

  1. Refined Fuchs inequalities for systems of linear differential equations

    Gontsov, R R

    2004-01-01

    We refine the Fuchs inequalities obtained by Corel for systems of linear meromorphic differential equations given on the Riemann sphere. Fuchs inequalities enable one to estimate the sum of exponents of the system over all its singular points. We refine these well-known inequalities by considering the Jordan structure of the leading coefficient of the Laurent series for the matrix of the right-hand side of the system in the neighbourhood of a singular point

  2. Inhomogeneous linear equation in Rota-Baxter algebra

    Pietrzkowski, Gabriel

    2014-01-01

    We consider a complete filtered Rota-Baxter algebra of weight $\\lambda$ over a commutative ring. Finding the unique solution of a non-homogeneous linear algebraic equation in this algebra, we generalize Spitzer's identity in both commutative and non-commutative cases. As an application, considering the Rota-Baxter algebra of power series in one variable with q-integral as the Rota-Baxter operator, we show certain Eulerian identities.

  3. A general method for enclosing solutions of interval linear equations

    Rohn, Jiří

    2012-01-01

    Roč. 6, č. 4 (2012), s. 709-717 ISSN 1862-4472 R&D Projects: GA ČR GA201/09/1957; GA ČR GC201/08/J020 Institutional research plan: CEZ:AV0Z10300504 Keywords : interval linear equations * solution set * enclosure * absolute value inequality Subject RIV: BA - General Mathematics Impact factor: 1.654, year: 2012

  4. Disformal invariance of continuous media with linear equation of state

    Celoria, Marco [Gran Sasso Science Institute (INFN), Viale Francesco Crispi 7, L' Aquila, I-67100 Italy (Italy); Matarrese, Sabino [Dipartimento di Fisica e Astronomia ' G. Galilei' , Università degli Studi di Padova, via Marzolo 8, Padova, I-35131 Italy (Italy); Pilo, Luigi, E-mail: marco.celoria@gssi.infn.it, E-mail: sabino.matarrese@pd.infn.it, E-mail: luigi.pilo@aquila.infn.it [Dipartimento di Fisica, Università di L' Aquila, L' Aquila, I-67010 Italy (Italy)

    2017-02-01

    We show that the effective theory describing single component continuous media with a linear and constant equation of state of the form p = w ρ is invariant under a 1-parameter family of continuous disformal transformations. In the special case of w =1/3 (ultrarelativistic gas), such a family reduces to conformal transformations. As examples, perfect fluids, irrotational dust (mimetic matter) and homogeneous and isotropic solids are discussed.

  5. A linearizing transformation for the Korteweg-de Vries equation; generalizations to higher-dimensional nonlinear partial differential equations

    Dorren, H.J.S.

    1998-01-01

    It is shown that the Korteweg–de Vries (KdV) equation can be transformed into an ordinary linear partial differential equation in the wave number domain. Explicit solutions of the KdV equation can be obtained by subsequently solving this linear differential equation and by applying a cascade of

  6. Piecewise-linear and bilinear approaches to nonlinear differential equations approximation problem of computational structural mechanics

    Leibov Roman

    2017-01-01

    This paper presents a bilinear approach to nonlinear differential equations system approximation problem. Sometimes the nonlinear differential equations right-hand sides linearization is extremely difficult or even impossible. Then piecewise-linear approximation of nonlinear differential equations can be used. The bilinear differential equations allow to improve piecewise-linear differential equations behavior and reduce errors on the border of different linear differential equations systems ...

  7. Runge-Kutta Methods for Linear Ordinary Differential Equations

    Zingg, David W.; Chisholm, Todd T.

    1997-01-01

    Three new Runge-Kutta methods are presented for numerical integration of systems of linear inhomogeneous ordinary differential equations (ODES) with constant coefficients. Such ODEs arise in the numerical solution of the partial differential equations governing linear wave phenomena. The restriction to linear ODEs with constant coefficients reduces the number of conditions which the coefficients of the Runge-Kutta method must satisfy. This freedom is used to develop methods which are more efficient than conventional Runge-Kutta methods. A fourth-order method is presented which uses only two memory locations per dependent variable, while the classical fourth-order Runge-Kutta method uses three. This method is an excellent choice for simulations of linear wave phenomena if memory is a primary concern. In addition, fifth- and sixth-order methods are presented which require five and six stages, respectively, one fewer than their conventional counterparts, and are therefore more efficient. These methods are an excellent option for use with high-order spatial discretizations.

  8. Inverse scattering solution of non-linear evolution equations in one space dimension: an introduction

    Alvarez-Estrada, R.F.

    1979-01-01

    A comprehensive review of the inverse scattering solution of certain non-linear evolution equations of physical interest in one space dimension is presented. We explain in some detail the interrelated techniques which allow to linearize exactly the following equations: (1) the Korteweg and de Vries equation; (2) the non-linear Schrodinger equation; (3) the modified Korteweg and de Vries equation; (4) the Sine-Gordon equation. We concentrate in discussing the pairs of linear operators which accomplish such an exact linearization and the solution of the associated initial value problem. The application of the method to other non-linear evolution equations is reviewed very briefly

  9. Chaotic dynamics and diffusion in a piecewise linear equation

    Shahrear, Pabel; Glass, Leon; Edwards, Rod

    2015-01-01

    Genetic interactions are often modeled by logical networks in which time is discrete and all gene activity states update simultaneously. However, there is no synchronizing clock in organisms. An alternative model assumes that the logical network is preserved and plays a key role in driving the dynamics in piecewise nonlinear differential equations. We examine dynamics in a particular 4-dimensional equation of this class. In the equation, two of the variables form a negative feedback loop that drives a second negative feedback loop. By modifying the original equations by eliminating exponential decay, we generate a modified system that is amenable to detailed analysis. In the modified system, we can determine in detail the Poincaré (return) map on a cross section to the flow. By analyzing the eigenvalues of the map for the different trajectories, we are able to show that except for a set of measure 0, the flow must necessarily have an eigenvalue greater than 1 and hence there is sensitive dependence on initial conditions. Further, there is an irregular oscillation whose amplitude is described by a diffusive process that is well-modeled by the Irwin-Hall distribution. There is a large class of other piecewise-linear networks that might be analyzed using similar methods. The analysis gives insight into possible origins of chaotic dynamics in periodically forced dynamical systems

  10. Chaotic dynamics and diffusion in a piecewise linear equation

    Shahrear, Pabel; Glass, Leon; Edwards, Rod

    2015-03-01

    Genetic interactions are often modeled by logical networks in which time is discrete and all gene activity states update simultaneously. However, there is no synchronizing clock in organisms. An alternative model assumes that the logical network is preserved and plays a key role in driving the dynamics in piecewise nonlinear differential equations. We examine dynamics in a particular 4-dimensional equation of this class. In the equation, two of the variables form a negative feedback loop that drives a second negative feedback loop. By modifying the original equations by eliminating exponential decay, we generate a modified system that is amenable to detailed analysis. In the modified system, we can determine in detail the Poincaré (return) map on a cross section to the flow. By analyzing the eigenvalues of the map for the different trajectories, we are able to show that except for a set of measure 0, the flow must necessarily have an eigenvalue greater than 1 and hence there is sensitive dependence on initial conditions. Further, there is an irregular oscillation whose amplitude is described by a diffusive process that is well-modeled by the Irwin-Hall distribution. There is a large class of other piecewise-linear networks that might be analyzed using similar methods. The analysis gives insight into possible origins of chaotic dynamics in periodically forced dynamical systems.

  11. KAM for the non-linear Schroedinger equation

    Eliasson, L H

    2006-01-01

    We consider the $d$-dimensional nonlinear Schr\\"o\\-dinger equation under periodic boundary conditions:-i\\dot u=\\Delta u+V(x)*u+\\ep|u|^2u;\\quad u=u(t,x),\\;x\\in\\T^dwhere $V(x)=\\sum \\hat V(a)e^{i\\sc{a,x}}$ is an analytic function with $\\hat V$ real. (This equation is a popular model for the `real' NLS equation, where instead of the convolution term $V*u$ we have the potential term $Vu$.) For $\\ep=0$ the equation is linear and has time--quasi-periodic solutions $u$,u(t,x)=\\sum_{s\\in \\AA}\\hat u_0(a)e^{i(|a|^2+\\hat V(a))t}e^{i\\sc{a,x}}, \\quad 0<|\\hat u_0(a)|\\le1,where $\\AA$ is any finite subset of $\\Z^d$. We shall treat $\\omega_a=|a|^2+\\hat V(a)$, $a\\in\\AA$, as free parameters in some domain $U\\subset\\R^{\\AA}$. This is a Hamiltonian system in infinite degrees of freedom, degenerate but with external parameters, and we shall describe a KAM-theory which, in particular, will have the following consequence: \\smallskip {\\it If $|\\ep|$ is sufficiently small, then there is a large subset $U'$ of $U$ such that for all $...

  12. Approximate solution to neutron transport equation with linear anisotropic scattering

    Coppa, G.; Ravetto, P.; Sumini, M.

    1983-01-01

    A method to obtain an approximate solution to the transport equation, when both sources and collisions show a linearly anisotropic behavior, is outlined and the possible implications for numerical calculations in applied neutronics as well as shielding evaluations are investigated. The form of the differential system of equations taken by the method is quite handy and looks simpler and more manageable than any other today available technique. To go deeper into the efficiency of the method, some typical calculations concerning critical dimension of multiplying systems are then performed and the results are compared with the ones coming from the classical Ssub(N) approximations. The outcome of such calculations leads us to think of interesting developments of the method which could be quite useful in alternative to other today widespread approximate procedures, for any geometry, but especially for curved ones. (author)

  13. General solutions of second-order linear difference equations of Euler type

    Akane Hongyo

    2017-01-01

    Full Text Available The purpose of this paper is to give general solutions of linear difference equations which are related to the Euler-Cauchy differential equation \\(y^{\\prime\\prime}+(\\lambda/t^2y=0\\ or more general linear differential equations. We also show that the asymptotic behavior of solutions of the linear difference equations are similar to solutions of the linear differential equations.

  14. First order linear ordinary differential equations in associative algebras

    Gordon Erlebacher

    2004-01-01

    Full Text Available In this paper, we study the linear differential equation $$ frac{dx}{dt}=sum_{i=1}^n a_i(t x b_i(t + f(t $$ in an associative but non-commutative algebra $mathcal{A}$, where the $b_i(t$ form a set of commuting $mathcal{A}$-valued functions expressed in a time-independent spectral basis consisting of mutually annihilating idempotents and nilpotents. Explicit new closed solutions are derived, and examples are presented to illustrate the theory.

  15. A Solution to the Fundamental Linear Fractional Order Differential Equation

    Hartley, Tom T.; Lorenzo, Carl F.

    1998-01-01

    This paper provides a solution to the fundamental linear fractional order differential equation, namely, (sub c)d(sup q, sub t) + ax(t) = bu(t). The impulse response solution is shown to be a series, named the F-function, which generalizes the normal exponential function. The F-function provides the basis for a qth order "fractional pole". Complex plane behavior is elucidated and a simple example, the inductor terminated semi- infinite lossy line, is used to demonstrate the theory.

  16. Linear stochastic differential equations with anticipating initial conditions

    Khalifa, Narjess; Kuo, Hui-Hsiung; Ouerdiane, Habib

    In this paper we use the new stochastic integral introduced by Ayed and Kuo (2008) and the results obtained by Kuo et al. (2012b) to find a solution to a drift-free linear stochastic differential equation with anticipating initial condition. Our solution is based on well-known results from...... classical Itô theory and anticipative Itô formula results from Kue et al. (2012b). We also show that the solution obtained by our method is consistent with the solution obtained by the methods of Malliavin calculus, e.g. Buckdahn and Nualart (1994)....

  17. Oscillation of solutions of some higher order linear differential equations

    Hong-Yan Xu

    2009-11-01

    Full Text Available In this paper, we deal with the order of growth and the hyper order of solutions of higher order linear differential equations $$f^{(k}+B_{k-1}f^{(k-1}+\\cdots+B_1f'+B_0f=F$$ where $B_j(z (j=0,1,\\ldots,k-1$ and $F$ are entire functions or polynomials. Some results are obtained which improve and extend previous results given by Z.-X. Chen, J. Wang, T.-B. Cao and C.-H. Li.

  18. Mathematics Literacy of Secondary Students in Solving Simultanenous Linear Equations

    Sitompul, R. S. I.; Budayasa, I. K.; Masriyah

    2018-01-01

    This study examines the profile of secondary students’ mathematical literacy in solving simultanenous linear equations problems in terms of cognitive style of visualizer and verbalizer. This research is a descriptive research with qualitative approach. The subjects in this research consist of one student with cognitive style of visualizer and one student with cognitive style of verbalizer. The main instrument in this research is the researcher herself and supporting instruments are cognitive style tests, mathematics skills tests, problem-solving tests and interview guidelines. Research was begun by determining the cognitive style test and mathematics skill test. The subjects chosen were given problem-solving test about simultaneous linear equations and continued with interview. To ensure the validity of the data, the researcher conducted data triangulation; the steps of data reduction, data presentation, data interpretation, and conclusion drawing. The results show that there is a similarity of visualizer and verbalizer-cognitive style in identifying and understanding the mathematical structure in the process of formulating. There are differences in how to represent problems in the process of implementing, there are differences in designing strategies and in the process of interpreting, and there are differences in explaining the logical reasons.

  19. Two-dimensional differential transform method for solving linear and non-linear Schroedinger equations

    Ravi Kanth, A.S.V.; Aruna, K.

    2009-01-01

    In this paper, we propose a reliable algorithm to develop exact and approximate solutions for the linear and nonlinear Schroedinger equations. The approach rest mainly on two-dimensional differential transform method which is one of the approximate methods. The method can easily be applied to many linear and nonlinear problems and is capable of reducing the size of computational work. Exact solutions can also be achieved by the known forms of the series solutions. Several illustrative examples are given to demonstrate the effectiveness of the present method.

  20. Inverse Boundary Value Problem for Non-linear Hyperbolic Partial Differential Equations

    Nakamura, Gen; Vashisth, Manmohan

    2017-01-01

    In this article we are concerned with an inverse boundary value problem for a non-linear wave equation of divergence form with space dimension $n\\geq 3$. This non-linear wave equation has a trivial solution, i.e. zero solution. By linearizing this equation at the trivial solution, we have the usual linear isotropic wave equation with the speed $\\sqrt{\\gamma(x)}$ at each point $x$ in a given spacial domain. For any small solution $u=u(t,x)$ of this non-linear equation, we have the linear isotr...

  1. Resolution of unsteady Maxwell equations with charges in non convex domains

    Garcia, Emmanuelle

    2002-01-01

    This research thesis deals with the modelling and numerical resolution of problems related to plasma physics. The interaction of charged particles (electrons and ions) with electromagnetic fields is modelled with the system of unsteady Vlasov-Maxwell coupled equations (the Vlasov system describes the transport of charged particles and the Maxwell equations describe the wave propagation). The author presents definitions related to singular domains, establishes a Helmholtz decomposition in a space of electro-magnetostatic solutions. He reports a mathematical analysis of decompositions into a regular and a singular part of general functional spaces intervening in the investigation of the Maxwell system in complex geometries. The method is then implemented for bi-dimensional domains. A last part addressed the study and the numerical resolution of three-dimensional problems

  2. Half-trek criterion for generic identifiability of linear structural equation models

    Foygel, R.; Draisma, J.; Drton, M.

    2012-01-01

    A linear structural equation model relates random variables of interest and corresponding Gaussian noise terms via a linear equation system. Each such model can be represented by a mixed graph in which directed edges encode the linear equations, and bidirected edges indicate possible correlations

  3. Half-trek criterion for generic identifiability of linear structural equation models

    Foygel, R.; Draisma, J.; Drton, M.

    2011-01-01

    A linear structural equation model relates random variables of interest and corresponding Gaussian noise terms via a linear equation system. Each such model can be represented by a mixed graph in which directed edges encode the linear equations, and bidirected edges indicate possible correlations

  4. Explicit estimating equations for semiparametric generalized linear latent variable models

    Ma, Yanyuan

    2010-07-05

    We study generalized linear latent variable models without requiring a distributional assumption of the latent variables. Using a geometric approach, we derive consistent semiparametric estimators. We demonstrate that these models have a property which is similar to that of a sufficient complete statistic, which enables us to simplify the estimating procedure and explicitly to formulate the semiparametric estimating equations. We further show that the explicit estimators have the usual root n consistency and asymptotic normality. We explain the computational implementation of our method and illustrate the numerical performance of the estimators in finite sample situations via extensive simulation studies. The advantage of our estimators over the existing likelihood approach is also shown via numerical comparison. We employ the method to analyse a real data example from economics. © 2010 Royal Statistical Society.

  5. Optimal overlapping of waveform relaxation method for linear differential equations

    Yamada, Susumu; Ozawa, Kazufumi

    2000-01-01

    Waveform relaxation (WR) method is extremely suitable for solving large systems of ordinary differential equations (ODEs) on parallel computers, but the convergence of the method is generally slow. In order to accelerate the convergence, the methods which decouple the system into many subsystems with overlaps some of the components between the adjacent subsystems have been proposed. The methods, in general, converge much faster than the ones without overlapping, but the computational cost per iteration becomes larger due to the increase of the dimension of each subsystem. In this research, the convergence of the WR method for solving constant coefficients linear ODEs is investigated and the strategy to determine the number of overlapped components which minimizes the cost of the parallel computations is proposed. Numerical experiments on an SR2201 parallel computer show that the estimated number of the overlapped components by the proposed strategy is reasonable. (author)

  6. Parallel computation for solving the tridiagonal linear system of equations

    Ishiguro, Misako; Harada, Hiroo; Fujii, Minoru; Fujimura, Toichiro; Nakamura, Yasuhiro; Nanba, Katsumi.

    1981-09-01

    Recently, applications of parallel computation for scientific calculations have increased from the need of the high speed calculation of large scale programs. At the JAERI computing center, an array processor FACOM 230-75 APU has installed to study the applicability of parallel computation for nuclear codes. We made some numerical experiments by using the APU on the methods of solution of tridiagonal linear equation which is an important problem in scientific calculations. Referring to the recent papers with parallel methods, we investigate eight ones. These are Gauss elimination method, Parallel Gauss method, Accelerated parallel Gauss method, Jacobi method, Recursive doubling method, Cyclic reduction method, Chebyshev iteration method, and Conjugate gradient method. The computing time and accuracy were compared among the methods on the basis of the numerical experiments. As the result, it is found that the Cyclic reduction method is best both in computing time and accuracy and the Gauss elimination method is the second one. (author)

  7. A new linearized equation for servo valve in hydraulic control systems

    Kim, Tae Hyung; Lee, Ill Yeong

    2002-01-01

    In the procedure of the hydraulic control system analysis, a linearized approximate equation described by the first order term of Taylor's series has been widely used. Such a linearized equation is effective just near the operating point. And, as of now, there are no general standards on how to determine the operating point of a servo valve in the process of applying the linearized equation. So, in this study, a new linearized equation for valve characteristics is proposed as a modified form of the existing linearized equation. And, a method for selecting an optimal operating point is proposed for the new linearized equation. The effectiveness of the new linearized equation is confirmed through numerical simulations and experiments for a model hydraulic control system

  8. A Comparison between Linear IRT Observed-Score Equating and Levine Observed-Score Equating under the Generalized Kernel Equating Framework

    Chen, Haiwen

    2012-01-01

    In this article, linear item response theory (IRT) observed-score equating is compared under a generalized kernel equating framework with Levine observed-score equating for nonequivalent groups with anchor test design. Interestingly, these two equating methods are closely related despite being based on different methodologies. Specifically, when…

  9. Linear homotopy solution of nonlinear systems of equations in geodesy

    Paláncz, Béla; Awange, Joseph L.; Zaletnyik, Piroska; Lewis, Robert H.

    2010-01-01

    A fundamental task in geodesy is solving systems of equations. Many geodetic problems are represented as systems of multivariate polynomials. A common problem in solving such systems is improper initial starting values for iterative methods, leading to convergence to solutions with no physical meaning, or to convergence that requires global methods. Though symbolic methods such as Groebner bases or resultants have been shown to be very efficient, i.e., providing solutions for determined systems such as 3-point problem of 3D affine transformation, the symbolic algebra can be very time consuming, even with special Computer Algebra Systems (CAS). This study proposes the Linear Homotopy method that can be implemented easily in high-level computer languages like C++ and Fortran that are faster than CAS by at least two orders of magnitude. Using Mathematica, the power of Homotopy is demonstrated in solving three nonlinear geodetic problems: resection, GPS positioning, and affine transformation. The method enlarging the domain of convergence is found to be efficient, less sensitive to rounding of numbers, and has lower complexity compared to other local methods like Newton-Raphson.

  10. On the Liouvillian solution of second-order linear differential equations and algebraic invariant curves

    Man, Yiu-Kwong

    2010-01-01

    In this communication, we present a method for computing the Liouvillian solution of second-order linear differential equations via algebraic invariant curves. The main idea is to integrate Kovacic's results on second-order linear differential equations with the Prelle-Singer method for computing first integrals of differential equations. Some examples on using this approach are provided. (fast track communication)

  11. Equations of motion for a (non-linear) scalar field model as derived from the field equations

    Kaniel, S.; Itin, Y.

    2006-01-01

    The problem of derivation of the equations of motion from the field equations is considered. Einstein's field equations have a specific analytical form: They are linear in the second order derivatives and quadratic in the first order derivatives of the field variables. We utilize this particular form and propose a novel algorithm for the derivation of the equations of motion from the field equations. It is based on the condition of the balance between the singular terms of the field equation. We apply the algorithm to a non-linear Lorentz invariant scalar field model. We show that it results in the Newton law of attraction between the singularities of the field moved on approximately geodesic curves. The algorithm is applicable to the N-body problem of the Lorentz invariant field equations. (Abstract Copyright [2006], Wiley Periodicals, Inc.)

  12. Variations in the Solution of Linear First-Order Differential Equations. Classroom Notes

    Seaman, Brian; Osler, Thomas J.

    2004-01-01

    A special project which can be given to students of ordinary differential equations is described in detail. Students create new differential equations by changing the dependent variable in the familiar linear first-order equation (dv/dx)+p(x)v=q(x) by means of a substitution v=f(y). The student then creates a table of the new equations and…

  13. On a Linear Equation Arising in Isometric Embedding of Torus-like Surface

    Chunhe LI

    2009-01-01

    The solvability of a linear equation and the regularity of the solution are discussed.The equation is arising in a geometric problem which is concerned with the realization of Alexandroff's positive annul in R3.

  14. Contact symmetries of general linear second-order ordinary differential equations: letter to the editor

    Martini, Ruud; Kersten, P.H.M.

    1983-01-01

    Using 1-1 mappings, the complete symmetry groups of contact transformations of general linear second-order ordinary differential equations are determined from two independent solutions of those equations, and applied to the harmonic oscillator with and without damping.

  15. Some Additional Remarks on the Cumulant Expansion for Linear Stochastic Differential Equations

    Roerdink, J.B.T.M.

    1984-01-01

    We summarize our previous results on cumulant expansions for linear stochastic differential equations with correlated multipliclative and additive noise. The application of the general formulas to equations with statistically independent multiplicative and additive noise is reconsidered in detail,

  16. Some additional remarks on the cumulant expansion for linear stochastic differential equations

    Roerdink, J.B.T.M.

    1984-01-01

    We summarize our previous results on cumular expasions for linear stochastic differential equations with correlated multipliclative and additive noise. The application of the general formulas to equations with statistically independent multiplicative and additive noise is reconsidered in detail,

  17. Solution of systems of linear algebraic equations by the method of summation of divergent series

    Kirichenko, G.A.; Korovin, Ya.S.; Khisamutdinov, M.V.; Shmojlov, V.I.

    2015-01-01

    A method for solving systems of linear algebraic equations has been proposed on the basis on the summation of the corresponding continued fractions. The proposed algorithm for solving systems of linear algebraic equations is classified as direct algorithms providing an exact solution in a finite number of operations. Examples of solving systems of linear algebraic equations have been presented and the effectiveness of the algorithm has been estimated [ru

  18. Numerical method for solving linear Fredholm fuzzy integral equations of the second kind

    Abbasbandy, S. [Department of Mathematics, Imam Khomeini International University, P.O. Box 288, Ghazvin 34194 (Iran, Islamic Republic of)]. E-mail: saeid@abbasbandy.com; Babolian, E. [Faculty of Mathematical Sciences and Computer Engineering, Teacher Training University, Tehran 15618 (Iran, Islamic Republic of); Alavi, M. [Department of Mathematics, Arak Branch, Islamic Azad University, Arak 38135 (Iran, Islamic Republic of)

    2007-01-15

    In this paper we use parametric form of fuzzy number and convert a linear fuzzy Fredholm integral equation to two linear system of integral equation of the second kind in crisp case. We can use one of the numerical method such as Nystrom and find the approximation solution of the system and hence obtain an approximation for fuzzy solution of the linear fuzzy Fredholm integral equations of the second kind. The proposed method is illustrated by solving some numerical examples.

  19. Technological pedagogical content knowledge of junior high school mathematics teachers in teaching linear equation

    Wati, S.; Fitriana, L.; Mardiyana

    2018-04-01

    Linear equation is one of the topics in mathematics that are considered difficult. Student difficulties of understanding linear equation can be caused by lack of understanding this concept and the way of teachers teach. TPACK is a way to understand the complex relationships between teaching and content taught through the use of specific teaching approaches and supported by the right technology tools. This study aims to identify TPACK of junior high school mathematics teachers in teaching linear equation. The method used in the study was descriptive. In the first phase, a survey using a questionnaire was carried out on 45 junior high school mathematics teachers in teaching linear equation. While in the second phase, the interview involved three teachers. The analysis of data used were quantitative and qualitative technique. The result PCK revealed teachers emphasized developing procedural and conceptual knowledge through reliance on traditional in teaching linear equation. The result of TPK revealed teachers’ lower capacity to deal with the general information and communications technologies goals across the curriculum in teaching linear equation. The result indicated that PowerPoint constitutes TCK modal technological capability in teaching linear equation. The result of TPACK seems to suggest a low standard in teachers’ technological skills across a variety of mathematics education goals in teaching linear equation. This means that the ability of teachers’ TPACK in teaching linear equation still needs to be improved.

  20. Appearance of eigen modes for the linearized Vlasov-Poisson equation

    Degond, P.

    1983-01-01

    In order to determine the asymptotic behaviour, when the time goes to infinity, of the solution of the linearized Vlasov-Poisson equation, we use eigen modes, associated to continuous linear functionals on a Banach space of analytic functions [fr

  1. Linear measure functional differential equations with infinite delay

    Monteiro, Giselle Antunes; Slavík, A.

    2014-01-01

    Roč. 287, 11-12 (2014), s. 1363-1382 ISSN 0025-584X Institutional support: RVO:67985840 Keywords : measure functional differential equations * generalized ordinary differential equations * Kurzweil-Stieltjes integral Subject RIV: BA - General Mathematics Impact factor: 0.683, year: 2014 http://onlinelibrary.wiley.com/doi/10.1002/mana.201300048/abstract

  2. Backward stochastic differential equations from linear to fully nonlinear theory

    Zhang, Jianfeng

    2017-01-01

    This book provides a systematic and accessible approach to stochastic differential equations, backward stochastic differential equations, and their connection with partial differential equations, as well as the recent development of the fully nonlinear theory, including nonlinear expectation, second order backward stochastic differential equations, and path dependent partial differential equations. Their main applications and numerical algorithms, as well as many exercises, are included. The book focuses on ideas and clarity, with most results having been solved from scratch and most theories being motivated from applications. It can be considered a starting point for junior researchers in the field, and can serve as a textbook for a two-semester graduate course in probability theory and stochastic analysis. It is also accessible for graduate students majoring in financial engineering.

  3. Explicit estimating equations for semiparametric generalized linear latent variable models

    Ma, Yanyuan; Genton, Marc G.

    2010-01-01

    which is similar to that of a sufficient complete statistic, which enables us to simplify the estimating procedure and explicitly to formulate the semiparametric estimating equations. We further show that the explicit estimators have the usual root n

  4. Localized solutions of non-linear Klein--Gordon equations

    Werle, J.

    1977-05-01

    Nondissipative, stationary solutions for a class of nonlinear Klein-Gordon equations for a scalar field were found explicitly. Since the field is different from zero only inside a sphere of definite radius, the solutions are called quantum droplets

  5. Numerical treatment of linearized equations describing inhomogeneous collisionless plasmas

    Lewis, H.R.

    1979-01-01

    The equations governing the small-signal response of spatially inhomogeneous collisionless plasmas have practical significance in physics, for example in controlled thermonuclear fusion research. Although the solutions are very complicated and the equations are different to solve numerically, effective methods for them are being developed which are applicable when the equilibrium involves only one nonignorable coordinate. The general theoretical framework probably will provide a basis for progress when there are two or three nonignorable coordinates

  6. Applicability of refined Born approximation to non-linear equations

    Rayski, J.

    1990-01-01

    A computational method called ''Refined Born Approximation'', formerly applied exclusively to linear problems, is shown to be successfully applicable also to non-linear problems enabling me to compute bifurcations and other irregular solutions which cannot be obtained by the standard perturbation procedures. (author)

  7. POSITIVE SOLUTIONS TO SEMI-LINEAR SECOND-ORDER ORDINARY DIFFERENTIAL EQUATIONS IN BANACH SPACE

    2008-01-01

    In this paper,we study the existence of positive periodic solution to some second- order semi-linear differential equation in Banach space.By the fixed point index theory, we prove that the semi-linear differential equation has two positive periodic solutions.

  8. On the Linearized Darboux Equation Arising in Isometric Embedding of the Alexandrov Positive Annulus

    Chunhe LI

    2013-01-01

    In the present paper,the solvability condition of the linearized Gauss-Codazzi system and the solutions to the homogenous system are given.In the meantime,the Solvability of a relevant linearized Darboux equation is given.The equations are arising in a geometric problem which is concerned with the realization of the Alexandrov's positive annulus in R3.

  9. Collective spin by linearization of the Schrodinger equation for nuclear collective motion

    Greiner, M.; Scheid, W.; Herrmann, R.

    1988-01-01

    The free Schrodinger equation for multipole degrees of freedom is linearized so that energy and momentum operators appear only in first order. As an example, the authors demonstrate the linearization procedure for quadrupole degrees of freedom. The wave function solving this equation carries a spin. The authors derive the operator of the collective spin and its eigen values depending on multipolarity

  10. New approach to solve fully fuzzy system of linear equations using ...

    This paper proposes two new methods to solve fully fuzzy system of linear equations. The fuzzy system has been converted to a crisp system of linear equations by using single and double parametric form of fuzzy numbers to obtain the non-negative solution. Double parametric form of fuzzy numbers is defined and applied ...

  11. Supporting Students' Understanding of Linear Equations with One Variable Using Algebra Tiles

    Saraswati, Sari; Putri, Ratu Ilma Indra; Somakim

    2016-01-01

    This research aimed to describe how algebra tiles can support students' understanding of linear equations with one variable. This article is a part of a larger research on learning design of linear equations with one variable using algebra tiles combined with balancing method. Therefore, it will merely discuss one activity focused on how students…

  12. An Evaluation of Five Linear Equating Methods for the NEAT Design

    Mroch, Andrew A.; Suh, Youngsuk; Kane, Michael T.; Ripkey, Douglas R.

    2009-01-01

    This study uses the results of two previous papers (Kane, Mroch, Suh, & Ripkey, this issue; Suh, Mroch, Kane, & Ripkey, this issue) and the literature on linear equating to evaluate five linear equating methods along several dimensions, including the plausibility of their assumptions and their levels of bias and root mean squared difference…

  13. A canonical form of the equation of motion of linear dynamical systems

    Kawano, Daniel T.; Salsa, Rubens Goncalves; Ma, Fai; Morzfeld, Matthias

    2018-03-01

    The equation of motion of a discrete linear system has the form of a second-order ordinary differential equation with three real and square coefficient matrices. It is shown that, for almost all linear systems, such an equation can always be converted by an invertible transformation into a canonical form specified by two diagonal coefficient matrices associated with the generalized acceleration and displacement. This canonical form of the equation of motion is unique up to an equivalence class for non-defective systems. As an important by-product, a damped linear system that possesses three symmetric and positive definite coefficients can always be recast as an undamped and decoupled system.

  14. Infinite sets of conservation laws for linear and nonlinear field equations

    Mickelsson, J.

    1984-01-01

    The relation between an infinite set of conservation laws of a linear field equation and the enveloping algebra of the space-time symmetry group is established. It is shown that each symmetric element of the enveloping algebra of the space-time symmetry group of a linear field equation generates a one-parameter group of symmetries of the field equation. The cases of the Maxwell and Dirac equations are studied in detail. Then it is shown that (at least in the sense of a power series in the 'coupling constant') the conservation laws of the linear case can be deformed to conservation laws of a nonlinear field equation which is obtained from the linear one by adding a nonlinear term invariant under the group of space-time symmetries. As an example, our method is applied to the Korteweg-de Vries equation and to the massless Thirring model. (orig.)

  15. On the equivalence between particular types of Navier-Stokes and non-linear Schroedinger equations

    Dietrich, K.; Vautherin, D.

    1985-01-01

    We derive a Schroedinger equation equivalent to the Navier-Stokes equation in the special case of constant kinematic viscosities. This equation contains a non-linear term similar to that proposed by Kostin for a quantum description of friction [fr

  16. A non linear half space problem for radiative transfer equations. Application to the Rosseland approximation

    Sentis, R.

    1984-07-01

    The radiative transfer equations may be approximated by a non linear diffusion equation (called Rosseland equation) when the mean free paths of the photons are small with respect to the size of the medium. Some technical assomptions are made, namely about the initial conditions, to avoid any problem of initial layer terms

  17. Hyers-Ulam stability for second-order linear differential equations with boundary conditions

    Pasc Gavruta

    2011-06-01

    Full Text Available We prove the Hyers-Ulam stability of linear differential equations of second-order with boundary conditions or with initial conditions. That is, if y is an approximate solution of the differential equation $y''+ eta (x y = 0$ with $y(a = y(b =0$, then there exists an exact solution of the differential equation, near y.

  18. Linear and nonlinear analogues of the Schroedinger equation in the contextual approach in quantum mechanics

    Khrennikov, A.Yu.

    2005-01-01

    One derived the general evolutionary differential equation within the Hilbert space describing dynamics of the wave function. The derived contextual model is more comprehensive in contrast to a quantum one. The contextual equation may be a nonlinear one. Paper presents the conditions ensuring linearity of the evolution and derivation of the Schroedinger equation [ru

  19. ADM For Solving Linear Second-Order Fredholm Integro-Differential Equations

    Karim, Mohd F.; Mohamad, Mahathir; Saifullah Rusiman, Mohd; Che-Him, Norziha; Roslan, Rozaini; Khalid, Kamil

    2018-04-01

    In this paper, we apply Adomian Decomposition Method (ADM) as numerically analyse linear second-order Fredholm Integro-differential Equations. The approximate solutions of the problems are calculated by Maple package. Some numerical examples have been considered to illustrate the ADM for solving this equation. The results are compared with the existing exact solution. Thus, the Adomian decomposition method can be the best alternative method for solving linear second-order Fredholm Integro-Differential equation. It converges to the exact solution quickly and in the same time reduces computational work for solving the equation. The result obtained by ADM shows the ability and efficiency for solving these equations.

  20. From the hypergeometric differential equation to a non-linear Schrödinger one

    Plastino, A.; Rocca, M.C.

    2015-01-01

    We show that the q-exponential function is a hypergeometric function. Accordingly, it obeys the hypergeometric differential equation. We demonstrate that this differential equation can be transformed into a non-linear Schrödinger equation (NLSE). This NLSE exhibits both similarities and differences vis-a-vis the Nobre–Rego-Monteiro–Tsallis one. - Highlights: • We show that the q-exponential is a hypergeometric function. • It thus obeys the hypergeometric differential equation (HDE). • We show that the HDE can be cast as a non-linear Schrödinger equation. • This is different from the Nobre, Rego-Monteiro, Tsallis one.

  1. Solving the Linear 1D Thermoelasticity Equations with Pure Delay

    Denys Ya. Khusainov

    2015-01-01

    Full Text Available We propose a system of partial differential equations with a single constant delay τ>0 describing the behavior of a one-dimensional thermoelastic solid occupying a bounded interval of R1. For an initial-boundary value problem associated with this system, we prove a well-posedness result in a certain topology under appropriate regularity conditions on the data. Further, we show the solution of our delayed model to converge to the solution of the classical equations of thermoelasticity as τ→0. Finally, we deduce an explicit solution representation for the delay problem.

  2. Integration of differential equations by the pseudo-linear (PL) approximation

    Bonalumi, Riccardo A.

    1998-01-01

    A new method of integrating differential equations was originated with the technique of approximately calculating the integrals called the pseudo-linear (PL) procedure: this method is A-stable. This article contains the following examples: 1st order ordinary differential equations (ODEs), 2nd order linear ODEs, stiff system of ODEs (neutron kinetics), one-dimensional parabolic (diffusion) partial differential equations. In this latter case, this PL method coincides with the Crank-Nicholson method

  3. Unbounded solutions of quasi-linear difference equations

    Cecchi, M.; Došlá, Zuzana; Marini, M.

    2003-01-01

    Roč. 45, 10-11 (2003), s. 1113-1123 ISSN 0898-1221 Institutional research plan: CEZ:AV0Z1019905 Keywords : nonlinear difference equation * possitive increasing solution * strongly increasing solution Subject RIV: BA - General Mathematics Impact factor: 0.498, year: 2003

  4. Ten-Year-Old Students Solving Linear Equations

    Brizuela, Barbara; Schliemann, Analucia

    2004-01-01

    In this article, the authors seek to re-conceptualize the perspective regarding students' difficulties with algebra. While acknowledging that students "do" have difficulties when learning algebra, they also argue that the generally espoused criteria for algebra as the ability to work with the syntactical rules for solving equations is…

  5. Construction of local and non-local conservation laws for non-linear field equations

    Vladimirov, V.S.; Volovich, I.V.

    1984-08-01

    A method of constructing conserved currents for non-linear field equations is presented. More explicitly for non-linear equations, which can be derived from compatibility conditions of some linear system with a parameter, a procedure of obtaining explicit expressions for local and non-local currents is developed. Some examples such as the classical Heisenberg spin chain and supersymmetric Yang-Mills theory are considered. (author)

  6. Sensitivity theory for general non-linear algebraic equations with constraints

    Oblow, E.M.

    1977-04-01

    Sensitivity theory has been developed to a high state of sophistication for applications involving solutions of the linear Boltzmann equation or approximations to it. The success of this theory in the field of radiation transport has prompted study of possible extensions of the method to more general systems of non-linear equations. Initial work in the U.S. and in Europe on the reactor fuel cycle shows that the sensitivity methodology works equally well for those non-linear problems studied to date. The general non-linear theory for algebraic equations is summarized and applied to a class of problems whose solutions are characterized by constrained extrema. Such equations form the basis of much work on energy systems modelling and the econometrics of power production and distribution. It is valuable to have a sensitivity theory available for these problem areas since it is difficult to repeatedly solve complex non-linear equations to find out the effects of alternative input assumptions or the uncertainties associated with predictions of system behavior. The sensitivity theory for a linear system of algebraic equations with constraints which can be solved using linear programming techniques is discussed. The role of the constraints in simplifying the problem so that sensitivity methodology can be applied is highlighted. The general non-linear method is summarized and applied to a non-linear programming problem in particular. Conclusions are drawn in about the applicability of the method for practical problems

  7. Symmetry groups of integro-differential equations for linear thermoviscoelastic materials with memory

    Zhou, L.-Q.; Meleshko, S. V.

    2017-07-01

    The group analysis method is applied to a system of integro-differential equations corresponding to a linear thermoviscoelastic model. A recently developed approach for calculating the symmetry groups of such equations is used. The general solution of the determining equations for the system is obtained. Using subalgebras of the admitted Lie algebra, two classes of partially invariant solutions of the considered system of integro-differential equations are studied.

  8. Linear analysis of the momentum cooling Fokker-Planck equation

    Rosenzweig, J.B.

    1989-01-01

    In order to optimize the extraction scheme used to take antiprotons out of the accumulator, it is necessary to understand the basic processes involved. At present, six antiproton bunches per Tevatron store are removed sequentially by RF unstacking from the accumulator. The phase space dynamics of this process, with its accompanying phase displacement deceleration and phase space dilution of portions of the stack, can be modelled by numerical solution of the longitudinal equations of motion for a large number of particles. We have employed the tracking code ESME for this purpose. In between RF extractions, however, the stochastic cooling system is turned on for a short time, and we must take into account the effect of momentum stochastic cooling on the antiproton energy spectrum. This process is described by the Fokker-Planck equation, which models the evolution of the antiproton stack energy distribution by accounting for the cooling through an applied coherent drag force and the competing heating of the stack due to diffusion, which can arise from intra-beam scattering, amplifier noise and coherent (Schottky) effects. In this note we examine the aspects of the Fokker-Planck in the regime where the nonlinear terms due to Schottky effects are small. This discussion ultimately leads to solution of the equation in terms of an orthonormal set of functions which are closely related to the quantum simple-harmonic oscillator wave-functions. 5 refs

  9. The Embedding Method for Linear Partial Differential Equations

    The recently suggested embedding method to solve linear boundary value problems is here extended to cover situations where the domain of interest is unbounded or multiply connected. The extensions involve the use of complete sets of exterior and interior eigenfunctions on canonical domains. Applications to typical ...

  10. Canonical structure of evolution equations with non-linear ...

    The dispersion produced is compensated by non-linear effects resulting in the formation of exponentially localized .... determining the values of Lagrange's multipliers αis. We postulate that a slightly .... c3 «w2x -v. (36). To include the effect of the secondary constraint c3 in the total Hamiltonian H we modify. (33) as. 104.

  11. Oscillation and non-oscillation criterion for Riemann–Weber type half-linear differential equations

    Petr Hasil

    2016-08-01

    Full Text Available By the combination of the modified half-linear Prüfer method and the Riccati technique, we study oscillatory properties of half-linear differential equations. Taking into account the transformation theory of half-linear equations and using some known results, we show that the analysed equations in the Riemann–Weber form with perturbations in both terms are conditionally oscillatory. Within the process, we identify the critical oscillation values of their coefficients and, consequently, we decide when the considered equations are oscillatory and when they are non-oscillatory. As a direct corollary of our main result, we solve the so-called critical case for a certain type of half-linear non-perturbed equations.

  12. The Cauchy problem for non-linear Klein-Gordon equations

    Simon, J.C.H.; Taflin, E.

    1993-01-01

    We consider in R n+1 , n≥2, the non-linear Klein-Gordon equation. We prove for such an equation that there is neighbourhood of zero in a Hilbert space of initial conditions for which the Cauchy problem has global solutions and on which there is asymptotic completeness. The inverse of the wave operator linearizes the non-linear equation. If, moreover, the equation is manifestly Poincare covariant then the non-linear representation of the Poincare-Lie algebra, associated with the non-linear Klein-Gordon equation is integrated to a non-linear representation of the Poincare group on an invariant neighbourhood of zero in the Hilbert space. This representation is linearized by the inverse of the wave operator. The Hilbert space is, in both cases, the closure of the space of the differentiable vectors for the linear representation of the Poincare group, associated with the Klein-Gordon equation, with respect to a norm defined by the representation of the enveloping algebra. (orig.)

  13. Linear relativistic gyrokinetic equation in general magnetically confined plasmas

    Tsai, S.T.; Van Dam, J.W.; Chen, L.

    1983-08-01

    The gyrokinetic formalism for linear electromagnetic waves of arbitrary frequency in general magnetic-field configurations is extended to include full relativistic effects. The derivation employs the small adiabaticity parameter rho/L 0 where rho is the Larmor radius and L 0 the equilibrium scale length. The effects of the plasma and magnetic field inhomogeneities and finite Larmor-radii effects are also contained

  14. Calculations of stationary solutions for the non linear viscous resistive MHD equations in slab geometry

    Edery, D.

    1983-11-01

    The reduced system of the non linear resistive MHD equations is used in the 2-D one helicity approximation in the numerical computations of stationary tearing modes. The critical magnetic Raynolds number S (S=tausub(r)/tausub(H) where tausub(R) and tausub(H) are respectively the characteristic resistive and hydro magnetic times) and the corresponding linear solution are computed as a starting approximation for the full non linear equations. These equations are then treated numerically by an iterative procedure which is shown to be rapidly convergent. A numerical application is given in the last part of this paper

  15. An Etude in non-linear Dyson-Schwinger Equations

    Kreimer, Dirk; Yeats, Karen

    2006-01-01

    We show how to use the Hopf algebra structure of quantum field theory to derive nonperturbative results for the short-distance singular sector of a renormalizable quantum field theory in a simple but generic example. We discuss renormalized Green functions G R (α,L) in such circumstances which depend on a single scale L=lnq 2 /μ 2 and start from an expansion in the scale G R (α,L)=1+-bar k γ k (α)L k . We derive recursion relations between the γ k which make full use of the renormalization group. We then show how to determine the Green function by the use of a Mellin transform on suitable integral kernels. We exhibit our approach in an example for which we find a functional equation relating weak and strong coupling expansions

  16. Perturbations of linear delay differential equations at the verge of instability.

    Lingala, N; Namachchivaya, N Sri

    2016-06-01

    The characteristic equation for a linear delay differential equation (DDE) has countably infinite roots on the complex plane. This paper considers linear DDEs that are on the verge of instability, i.e., a pair of roots of the characteristic equation lies on the imaginary axis of the complex plane and all other roots have negative real parts. It is shown that when small noise perturbations are present, the probability distribution of the dynamics can be approximated by the probability distribution of a certain one-dimensional stochastic differential equation (SDE) without delay. This is advantageous because equations without delay are easier to simulate and one-dimensional SDEs are analytically tractable. When the perturbations are also linear, it is shown that the stability depends on a specific complex number. The theory is applied to study oscillators with delayed feedback. Some errors in other articles that use multiscale approach are pointed out.

  17. Excited-state lifetime measurements: Linearization of the Foerster equation by the phase-plane method

    Love, J.C.; Demas, J.N.

    1983-01-01

    The Foerster equation describes excited-state decay curves involving resonance intermolecular energy transfer. A linearized solution based on the phase-plane method has been developed. The new method is quick, insensitive to the fitting region, accurate, and precise

  18. Stability of the trivial solution for linear stochastic differential equations with Poisson white noise

    Grigoriu, Mircea; Samorodnitsky, Gennady

    2004-01-01

    Two methods are considered for assessing the asymptotic stability of the trivial solution of linear stochastic differential equations driven by Poisson white noise, interpreted as the formal derivative of a compound Poisson process. The first method attempts to extend a result for diffusion processes satisfying linear stochastic differential equations to the case of linear equations with Poisson white noise. The developments for the method are based on Ito's formula for semimartingales and Lyapunov exponents. The second method is based on a geometric ergodic theorem for Markov chains providing a criterion for the asymptotic stability of the solution of linear stochastic differential equations with Poisson white noise. Two examples are presented to illustrate the use and evaluate the potential of the two methods. The examples demonstrate limitations of the first method and the generality of the second method

  19. An implicit iterative scheme for solving large systems of linear equations

    Barry, J.M.; Pollard, J.P.

    1986-12-01

    An implicit iterative scheme for the solution of large systems of linear equations arising from neutron diffusion studies is presented. The method is applied to three-dimensional reactor studies and its performance is compared with alternative iterative approaches

  20. Solution of linear transport equation using Chebyshev polynomials and Laplace transform

    Cardona, A.V.; Vilhena, M.T.M.B. de

    1994-01-01

    The Chebyshev polynomials and the Laplace transform are combined to solve, analytically, the linear transport equation in planar geometry, considering isotropic scattering and the one-group model. Numerical simulation is presented. (author)

  1. On a class of strongly degenerate and singular linear elliptic equation

    Duong Minh Duc, D.M.; Le Dung.

    1992-11-01

    We consider a class of strongly degenerate linear elliptic equation. The boundedness and the Holder regularity of the weak solutions in the weighted Sobolev-Hardy spaces will be studied. (author). 9 refs

  2. SUPPORTING STUDENTS’ UNDERSTANDING OF LINEAR EQUATIONS WITH ONE VARIABLE USING ALGEBRA TILES

    Sari Saraswati

    2016-01-01

    Full Text Available This research aimed to describe how algebra tiles can support students’ understanding of linear equations with one variable. This article is a part of a larger research on learning design of linear equations with one variable using algebra tiles combined with balancing method. Therefore, it will merely discuss one activity focused on how students use the algebra tiles to find a method to solve linear equations with one variable. Design research was used as an approach in this study. It consists of three phases, namely preliminary design, teaching experiment and retrospective analysis. Video registrations, students’ written works, pre-test, post-test, field notes, and interview are technic to collect data. The data were analyzed by comparing the hypothetical learning trajectory (HLT and the actual learning process. The result shows that algebra tiles could supports students’ understanding to find the formal solution of linear equation with one variable.

  3. Matrix form of Legendre polynomials for solving linear integro-differential equations of high order

    Kammuji, M.; Eshkuvatov, Z. K.; Yunus, Arif A. M.

    2017-04-01

    This paper presents an effective approximate solution of high order of Fredholm-Volterra integro-differential equations (FVIDEs) with boundary condition. Legendre truncated series is used as a basis functions to estimate the unknown function. Matrix operation of Legendre polynomials is used to transform FVIDEs with boundary conditions into matrix equation of Fredholm-Volterra type. Gauss Legendre quadrature formula and collocation method are applied to transfer the matrix equation into system of linear algebraic equations. The latter equation is solved by Gauss elimination method. The accuracy and validity of this method are discussed by solving two numerical examples and comparisons with wavelet and methods.

  4. Optimal Homotopy Asymptotic Method for Solving the Linear Fredholm Integral Equations of the First Kind

    Mohammad Almousa

    2013-01-01

    Full Text Available The aim of this study is to present the use of a semi analytical method called the optimal homotopy asymptotic method (OHAM for solving the linear Fredholm integral equations of the first kind. Three examples are discussed to show the ability of the method to solve the linear Fredholm integral equations of the first kind. The results indicated that the method is very effective and simple.

  5. Some applications of linear difference equations in finance with wolfram|alpha and maple

    Dana Rıhová

    2014-12-01

    Full Text Available The principle objective of this paper is to show how linear difference equations can be applied to solve some issues of financial mathematics. We focus on the area of compound interest and annuities. In both cases we determine appropriate recursive rules, which constitute the first order linear difference equations with constant coefficients, and derive formulas required for calculating examples. Finally, we present possibilities of application of two selected computer algebra systems Wolfram|Alpha and Maple in this mathematical area.

  6. Solving Linear Equations by Classical Jacobi-SR Based Hybrid Evolutionary Algorithm with Uniform Adaptation Technique

    Jamali, R. M. Jalal Uddin; Hashem, M. M. A.; Hasan, M. Mahfuz; Rahman, Md. Bazlar

    2013-01-01

    Solving a set of simultaneous linear equations is probably the most important topic in numerical methods. For solving linear equations, iterative methods are preferred over the direct methods especially when the coefficient matrix is sparse. The rate of convergence of iteration method is increased by using Successive Relaxation (SR) technique. But SR technique is very much sensitive to relaxation factor, {\\omega}. Recently, hybridization of classical Gauss-Seidel based successive relaxation t...

  7. Growth of meromorphic solutions of higher-order linear differential equations

    Wenjuan Chen

    2009-01-01

    Full Text Available In this paper, we investigate the higher-order linear differential equations with meromorphic coefficients. We improve and extend a result of M.S. Liu and C.L. Yuan, by using the estimates for the logarithmic derivative of a transcendental meromorphic function due to Gundersen, and the extended Winman-Valiron theory which proved by J. Wang and H.X. Yi. In addition, we also consider the nonhomogeneous linear differential equations.

  8. Solution of linear ordinary differential equations by means of the method of variation of arbitrary constants

    Mejlbro, Leif

    1997-01-01

    An alternative formula for the solution of linear differential equations of order n is suggested. When applicable, the suggested method requires fewer and simpler computations than the well-known method using Wronskians.......An alternative formula for the solution of linear differential equations of order n is suggested. When applicable, the suggested method requires fewer and simpler computations than the well-known method using Wronskians....

  9. Large-time asymptotic behaviour of solutions of non-linear Sobolev-type equations

    Kaikina, Elena I; Naumkin, Pavel I; Shishmarev, Il'ya A

    2009-01-01

    The large-time asymptotic behaviour of solutions of the Cauchy problem is investigated for a non-linear Sobolev-type equation with dissipation. For small initial data the approach taken is based on a detailed analysis of the Green's function of the linear problem and the use of the contraction mapping method. The case of large initial data is also closely considered. In the supercritical case the asymptotic formulae are quasi-linear. The asymptotic behaviour of solutions of a non-linear Sobolev-type equation with a critical non-linearity of the non-convective kind differs by a logarithmic correction term from the behaviour of solutions of the corresponding linear equation. For a critical convective non-linearity, as well as for a subcritical non-convective non-linearity it is proved that the leading term of the asymptotic expression for large times is a self-similar solution. For Sobolev equations with convective non-linearity the asymptotic behaviour of solutions in the subcritical case is the product of a rarefaction wave and a shock wave. Bibliography: 84 titles.

  10. A linear functional differential equation with distributions in the input

    Vadim Z. Tsalyuk

    2003-10-01

    Full Text Available This paper studies the functional differential equation $$ dot x(t = int_a^t {d_s R(t,s, x(s} + F'(t, quad t in [a,b], $$ where $F'$ is a generalized derivative, and $R(t,cdot$ and $F$ are functions of bounded variation. A solution is defined by the difference $x - F$ being absolutely continuous and satisfying the inclusion $$ frac{d}{dt} (x(t - F(t in int_a^t {d_s R(t,s,x(s}. $$ Here, the integral in the right is the multivalued Stieltjes integral presented in cite{VTs1} (in this article we review and extend the results in cite{VTs1}. We show that the solution set for the initial-value problem is nonempty, compact, and convex. A solution $x$ is said to have memory if there exists the function $x$ such that $x(a = x(a$, $x(b = x(b$, $ x(t in [x(t-0,x(t+0]$ for $t in (a,b$, and $frac{d}{dt} (x(t - F(t = int_a^t {d_s R(t,s,{x}(s}$, where Lebesgue-Stieltjes integral is used. We show that such solutions form a nonempty, compact, and convex set. It is shown that solutions with memory obey the Cauchy-type formula $$ x(t in C(t,ax(a + int_a^t C(t,s, dF(s. $$

  11. Factorization of a class of almost linear second-order differential equations

    Estevez, P G; Kuru, S; Negro, J; Nieto, L M

    2007-01-01

    A general type of almost linear second-order differential equations, which are directly related to several interesting physical problems, is characterized. The solutions of these equations are obtained using the factorization technique, and their non-autonomous invariants are also found by means of scale transformations

  12. The H-N method for solving linear transport equation: theory and application

    Kaskas, A.; Gulecyuz, M.C.; Tezcan, C.

    2002-01-01

    The system of singular integral equation which is obtained from the integro-differential form of the linear transport equation as a result of Placzec lemma is solved. Application are given using the exit distributions and the infinite medium Green's function. The same theoretical results are also obtained with the use of the singular eigenfunction of the method of elementary solutions

  13. Bounded solutions of self-adjoint second order linear difference equations with periodic coeffients

    Encinas A.M.

    2018-02-01

    Full Text Available In this work we obtain easy characterizations for the boundedness of the solutions of the discrete, self–adjoint, second order and linear unidimensional equations with periodic coefficients, including the analysis of the so-called discrete Mathieu equations as particular cases.

  14. A study on linear and nonlinear Schrodinger equations by the variational iteration method

    Wazwaz, Abdul-Majid

    2008-01-01

    In this work, we introduce a framework to obtain exact solutions to linear and nonlinear Schrodinger equations. The He's variational iteration method (VIM) is used for analytic treatment of these equations. Numerical examples are tested to show the pertinent features of this method

  15. Could solitons be adiabatic invariants attached to certain non linear equations

    Lochak, P.

    1984-01-01

    Arguments are given to support the claim that solitons should be the adiabatic invariants associated to certain non linear partial differential equations; a precise mathematical form of this conjecture is then stated. As a particular case of the conjecture, the Korteweg-de Vries equation is studied. (Auth.)

  16. Diffusion phenomenon for linear dissipative wave equations in an exterior domain

    Ikehata, Ryo

    Under the general condition of the initial data, we will derive the crucial estimates which imply the diffusion phenomenon for the dissipative linear wave equations in an exterior domain. In order to derive the diffusion phenomenon for dissipative wave equations, the time integral method which was developed by Ikehata and Matsuyama (Sci. Math. Japon. 55 (2002) 33) plays an effective role.

  17. Prolongation structure and linear eigenvalue equations for Einstein-Maxwell fields

    Kramer, D.; Neugebauer, G.

    1981-01-01

    The Einstein-Maxwell equations for stationary axisymmetric exterior fields are shown to be the integrability conditions of a set of linear eigenvalue equations for pseudopotentials. Using the method of Wahlquist and Estabrook (J. Math Phys.; 16:1 (1975)) it is shown that the prolongation structure of the Einstein-Maxwell equations contains the SU(2,1) Lie algebra. A new mapping of known solutions to other solutions has been found. (author)

  18. GDTM-Padé technique for the non-linear differential-difference equation

    Lu Jun-Feng

    2013-01-01

    Full Text Available This paper focuses on applying the GDTM-Padé technique to solve the non-linear differential-difference equation. The bell-shaped solitary wave solution of Belov-Chaltikian lattice equation is considered. Comparison between the approximate solutions and the exact ones shows that this technique is an efficient and attractive method for solving the differential-difference equations.

  19. Non-linear partial differential equations an algebraic view of generalized solutions

    Rosinger, Elemer E

    1990-01-01

    A massive transition of interest from solving linear partial differential equations to solving nonlinear ones has taken place during the last two or three decades. The availability of better computers has often made numerical experimentations progress faster than the theoretical understanding of nonlinear partial differential equations. The three most important nonlinear phenomena observed so far both experimentally and numerically, and studied theoretically in connection with such equations have been the solitons, shock waves and turbulence or chaotical processes. In many ways, these phenomen

  20. Stochastic differential equation model for linear growth birth and death processes with immigration and emigration

    Granita; Bahar, A.

    2015-01-01

    This paper discusses on linear birth and death with immigration and emigration (BIDE) process to stochastic differential equation (SDE) model. Forward Kolmogorov equation in continuous time Markov chain (CTMC) with a central-difference approximation was used to find Fokker-Planckequation corresponding to a diffusion process having the stochastic differential equation of BIDE process. The exact solution, mean and variance function of BIDE process was found

  1. Stochastic differential equation model for linear growth birth and death processes with immigration and emigration

    Granita, E-mail: granitafc@gmail.com [Dept. Mathematical Education, State Islamic University of Sultan Syarif Kasim Riau, 28293 Indonesia and Dept. of Mathematical Science, Universiti Teknologi Malaysia, 81310,Johor (Malaysia); Bahar, A. [Dept. of Mathematical Science, Universiti Teknologi Malaysia, 81310,Johor Malaysia and UTM Center for Industrial and Applied Mathematics (UTM-CIAM) (Malaysia)

    2015-03-09

    This paper discusses on linear birth and death with immigration and emigration (BIDE) process to stochastic differential equation (SDE) model. Forward Kolmogorov equation in continuous time Markov chain (CTMC) with a central-difference approximation was used to find Fokker-Planckequation corresponding to a diffusion process having the stochastic differential equation of BIDE process. The exact solution, mean and variance function of BIDE process was found.

  2. Hyers-Ulam stability of linear second-order differential equations in complex Banach spaces

    Yongjin Li

    2013-08-01

    Full Text Available We prove the Hyers-Ulam stability of linear second-order differential equations in complex Banach spaces. That is, if y is an approximate solution of the differential equation $y''+ alpha y'(t +eta y = 0$ or $y''+ alpha y'(t +eta y = f(t$, then there exists an exact solution of the differential equation near to y.

  3. Asymptotic behavior of solutions of linear multi-order fractional differential equation systems

    Diethelm, Kai; Siegmund, Stefan; Tuan, H. T.

    2017-01-01

    In this paper, we investigate some aspects of the qualitative theory for multi-order fractional differential equation systems. First, we obtain a fundamental result on the existence and uniqueness for multi-order fractional differential equation systems. Next, a representation of solutions of homogeneous linear multi-order fractional differential equation systems in series form is provided. Finally, we give characteristics regarding the asymptotic behavior of solutions to some classes of line...

  4. Solution of second order linear fuzzy difference equation by Lagrange's multiplier method

    Sankar Prasad Mondal

    2016-06-01

    Full Text Available In this paper we execute the solution procedure for second order linear fuzzy difference equation by Lagrange's multiplier method. In crisp sense the difference equation are easy to solve, but when we take in fuzzy sense it forms a system of difference equation which is not so easy to solve. By the help of Lagrange's multiplier we can solved it easily. The results are illustrated by two different numerical examples and followed by two applications.

  5. Linear Ordinary Differential Equations with Constant Coefficients. Revisiting the Impulsive Response Method Using Factorization

    Camporesi, Roberto

    2011-01-01

    We present an approach to the impulsive response method for solving linear constant-coefficient ordinary differential equations based on the factorization of the differential operator. The approach is elementary, we only assume a basic knowledge of calculus and linear algebra. In particular, we avoid the use of distribution theory, as well as of…

  6. Non-monotone positive solutions of second-order linear differential equations: existence, nonexistence and criteria

    Mervan Pašić

    2016-10-01

    Full Text Available We study non-monotone positive solutions of the second-order linear differential equations: $(p(tx'' + q(t x = e(t$, with positive $p(t$ and $q(t$. For the first time, some criteria as well as the existence and nonexistence of non-monotone positive solutions are proved in the framework of some properties of solutions $\\theta (t$ of the corresponding integrable linear equation: $(p(t\\theta''=e(t$. The main results are illustrated by many examples dealing with equations which allow exact non-monotone positive solutions not necessarily periodic. Finally, we pose some open questions.

  7. Shifted Legendre method with residual error estimation for delay linear Fredholm integro-differential equations

    Şuayip Yüzbaşı

    2017-03-01

    Full Text Available In this paper, we suggest a matrix method for obtaining the approximate solutions of the delay linear Fredholm integro-differential equations with constant coefficients using the shifted Legendre polynomials. The problem is considered with mixed conditions. Using the required matrix operations, the delay linear Fredholm integro-differential equation is transformed into a matrix equation. Additionally, error analysis for the method is presented using the residual function. Illustrative examples are given to demonstrate the efficiency of the method. The results obtained in this study are compared with the known results.

  8. Moduli spaces for linear differential equations and the Painlev'e equations

    Put, Marius van der; Saito, Masa-Hiko

    2009-01-01

    In this paper, we give a systematic construction of ten isomonodromic families of connections of rank two on P1 inducing Painlev´e equations. The classification of ten families is given by considering the Riemann-Hilbert morphism from a moduli space of connections with certain type of regular and

  9. CFORM- LINEAR CONTROL SYSTEM DESIGN AND ANALYSIS: CLOSED FORM SOLUTION AND TRANSIENT RESPONSE OF THE LINEAR DIFFERENTIAL EQUATION

    Jamison, J. W.

    1994-01-01

    CFORM was developed by the Kennedy Space Center Robotics Lab to assist in linear control system design and analysis using closed form and transient response mechanisms. The program computes the closed form solution and transient response of a linear (constant coefficient) differential equation. CFORM allows a choice of three input functions: the Unit Step (a unit change in displacement); the Ramp function (step velocity); and the Parabolic function (step acceleration). It is only accurate in cases where the differential equation has distinct roots, and does not handle the case for roots at the origin (s=0). Initial conditions must be zero. Differential equations may be input to CFORM in two forms - polynomial and product of factors. In some linear control analyses, it may be more appropriate to use a related program, Linear Control System Design and Analysis (KSC-11376), which uses root locus and frequency response methods. CFORM was written in VAX FORTRAN for a VAX 11/780 under VAX VMS 4.7. It has a central memory requirement of 30K. CFORM was developed in 1987.

  10. A New Theory of Non-Linear Thermo-Elastic Constitutive Equation of Isotropic Hyperelastic Materials

    Li, Chen; Liao, Yufei

    2018-03-01

    Considering the influence of temperature and strain variables on materials. According to the relationship of conjugate stress-strain, a complete and irreducible non-linear constitutive equation of isotropic hyperelastic materials is derived and the constitutive equations of 16 types of isotropic hyperelastic materials are given we study the transformation methods and routes of 16 kinds of constitutive equations and the study proves that transformation of two forms of constitutive equation. As an example of application, the non-linear thermo-elastic constitutive equation of isotropic hyperelastic materials is combined with the natural vulcanized rubber experimental data in the existing literature base on MATLAB, The results show that the fitting accuracy is satisfactory.

  11. Solutions of the linearized Bach-Einstein equation in the static spherically symmetric case

    Schmidt, H.J.

    1985-01-01

    The Bach-Einstein equation linearized around Minkowski space-time is completely solved. The set of solutions depends on three parameters; a two-parameter subset of it becomes asymptotically flat. In that region the gravitational potential is of the type phi = -m/r + epsilon exp (-r/l). Because of the different asymptotic behaviour of both terms, it became necessary to linearize also around the Schwarzschild solution phi = -m/r. The linearized equation resulting in this case is discussed using qualitative methods. The result is that for m = 2l phi = -m/r + epsilon r -2 exp (-r/l) u, where u is some bounded function; m is arbitrary and epsilon again small. Further, the relation between the solution of the linearized and the full equation is discussed. (author)

  12. An introduction to linear ordinary differential equations using the impulsive response method and factorization

    Camporesi, Roberto

    2016-01-01

    This book presents a method for solving linear ordinary differential equations based on the factorization of the differential operator. The approach for the case of constant coefficients is elementary, and only requires a basic knowledge of calculus and linear algebra. In particular, the book avoids the use of distribution theory, as well as the other more advanced approaches: Laplace transform, linear systems, the general theory of linear equations with variable coefficients and variation of parameters. The case of variable coefficients is addressed using Mammana’s result for the factorization of a real linear ordinary differential operator into a product of first-order (complex) factors, as well as a recent generalization of this result to the case of complex-valued coefficients.

  13. Dissipative behavior of some fully non-linear KdV-type equations

    Brenier, Yann; Levy, Doron

    2000-03-01

    The KdV equation can be considered as a special case of the general equation u t+f(u) x-δg(u xx) x=0, δ>0, where f is non-linear and g is linear, namely f( u)= u2/2 and g( v)= v. As the parameter δ tends to 0, the dispersive behavior of the KdV equation has been throughly investigated (see, e.g., [P.G. Drazin, Solitons, London Math. Soc. Lect. Note Ser. 85, Cambridge University Press, Cambridge, 1983; P.D. Lax, C.D. Levermore, The small dispersion limit of the Korteweg-de Vries equation, III, Commun. Pure Appl. Math. 36 (1983) 809-829; G.B. Whitham, Linear and Nonlinear Waves, Wiley/Interscience, New York, 1974] and the references therein). We show through numerical evidence that a completely different, dissipative behavior occurs when g is non-linear, namely when g is an even concave function such as g( v)=-∣ v∣ or g( v)=- v2. In particular, our numerical results hint that as δ→0 the solutions strongly converge to the unique entropy solution of the formal limit equation, in total contrast with the solutions of the KdV equation.

  14. The non-linear coupled spin 2-spin 3 Cotton equation in three dimensions

    Linander, Hampus; Nilsson, Bengt E.W. [Department of Physics, Theoretical PhysicsChalmers University of Technology, S-412 96 Göteborg (Sweden)

    2016-07-05

    In the context of three-dimensional conformal higher spin theory we derive, in the frame field formulation, the full non-linear spin 3 Cotton equation coupled to spin 2. This is done by solving the corresponding Chern-Simons gauge theory system of equations, that is, using F=0 to eliminate all auxiliary fields and thus expressing the Cotton equation in terms of just the spin 3 frame field and spin 2 covariant derivatives and tensors (Schouten). In this derivation we neglect the spin 4 and higher spin sectors and approximate the star product commutator by a Poisson bracket. The resulting spin 3 Cotton equation is complicated but can be related to linearized versions in the metric formulation obtained previously by other authors. The expected symmetry (spin 3 “translation”, “Lorentz” and “dilatation”) properties are verified for Cotton and other relevant tensors but some perhaps unexpected features emerge in the process, in particular in relation to the non-linear equations. We discuss the structure of this non-linear spin 3 Cotton equation but its explicit form is only presented here, in an exact but not completely refined version, in appended files obtained by computer algebra methods. Both the frame field and metric formulations are provided.

  15. Quasi-linear landau kinetic equations for magnetized plasmas: compact propagator formalism, rotation matrices and interaction

    Misguich, J.H.

    2004-04-01

    As a first step toward a nonlinear renormalized description of turbulence phenomena in magnetized plasmas, the lowest order quasi-linear description is presented here from a unified point of view for collisionless as well as for collisional plasmas in a constant magnetic field. The quasi-linear approximation is applied to a general kinetic equation obtained previously from the Klimontovich exact equation, by means of a generalised Dupree-Weinstock method. The so-obtained quasi-linear description of electromagnetic turbulence in a magnetoplasma is applied to three separate physical cases: -) weak electrostatic turbulence, -) purely magnetic field fluctuations (the classical quasi-linear results are obtained for cosmic ray diffusion in the 'slab model' of magnetostatic turbulence in the solar wind), and -) collisional kinetic equations of magnetized plasmas. This mathematical technique has allowed us to derive basic kinetic equations for turbulent plasmas and collisional plasmas, respectively in the quasi-linear and Landau approximation. In presence of a magnetic field we have shown that the systematic use of rotation matrices describing the helical particle motion allows for a much more compact derivation than usually performed. Moreover, from the formal analogy between turbulent and collisional plasmas, the results derived here in detail for the turbulent plasmas, can be immediately translated to obtain explicit results for the Landau kinetic equation

  16. Quasi-linear landau kinetic equations for magnetized plasmas: compact propagator formalism, rotation matrices and interaction

    Misguich, J.H

    2004-04-01

    As a first step toward a nonlinear renormalized description of turbulence phenomena in magnetized plasmas, the lowest order quasi-linear description is presented here from a unified point of view for collisionless as well as for collisional plasmas in a constant magnetic field. The quasi-linear approximation is applied to a general kinetic equation obtained previously from the Klimontovich exact equation, by means of a generalised Dupree-Weinstock method. The so-obtained quasi-linear description of electromagnetic turbulence in a magnetoplasma is applied to three separate physical cases: -) weak electrostatic turbulence, -) purely magnetic field fluctuations (the classical quasi-linear results are obtained for cosmic ray diffusion in the 'slab model' of magnetostatic turbulence in the solar wind), and -) collisional kinetic equations of magnetized plasmas. This mathematical technique has allowed us to derive basic kinetic equations for turbulent plasmas and collisional plasmas, respectively in the quasi-linear and Landau approximation. In presence of a magnetic field we have shown that the systematic use of rotation matrices describing the helical particle motion allows for a much more compact derivation than usually performed. Moreover, from the formal analogy between turbulent and collisional plasmas, the results derived here in detail for the turbulent plasmas, can be immediately translated to obtain explicit results for the Landau kinetic equation.

  17. SUPPORTING STUDENTS’ UNDERSTANDING OF LINEAR EQUATIONS WITH ONE VARIABLE USING ALGEBRA TILES

    Sari Saraswati

    2016-01-01

    Full Text Available This research aimed to describe how algebra tiles can support students’ understanding of linear equations with one variable. This article is a part of a larger research on learning design of linear equations with one variable using algebra tiles combined with balancing method. Therefore, it will merely discuss one activity focused on how students use the algebra tiles to find a method to solve linear equations with one variable. Design research was used as an approach in this study. It consists of three phases, namely preliminary design, teaching experiment and retrospective analysis. Video registrations, students’ written works, pre-test, post-test, field notes, and interview are technic to collect data. The data were analyzed by comparing the hypothetical learning trajectory (HLT and the actual learning process. The result shows that algebra tiles could supports students’ understanding to find the formal solution of linear equation with one variable.Keywords: linear equation with one variable, algebra tiles, design research, balancing method, HLT DOI: http://dx.doi.org/10.22342/jme.7.1.2814.19-30

  18. Non-linear mixed-effects pharmacokinetic/pharmacodynamic modelling in NLME using differential equations

    Tornøe, Christoffer Wenzel; Agersø, Henrik; Madsen, Henrik

    2004-01-01

    The standard software for non-linear mixed-effect analysis of pharmacokinetic/phar-macodynamic (PK/PD) data is NONMEM while the non-linear mixed-effects package NLME is an alternative as tong as the models are fairly simple. We present the nlmeODE package which combines the ordinary differential...... equation (ODE) solver package odesolve and the non-Linear mixed effects package NLME thereby enabling the analysis of complicated systems of ODEs by non-linear mixed-effects modelling. The pharmacokinetics of the anti-asthmatic drug theophylline is used to illustrate the applicability of the nlme...

  19. Fully Electromagnetic Nonlinear Gyrokinetic Equations for Tokamak Edge Turbulence

    Hahm, T.S.; Wang, Lu; Madsen, J.

    2008-01-01

    An energy conserving set of the fully electromagnetic nonlinear gyrokinetic Vlasov equation and Maxwell's equations, which is applicable to both L-mode turbulence with large amplitude and H-mode turbulence in the presence of high E x B shear has been derived. The phase-space action variational Lie perturbation method ensures the preservation of the conservation laws of the underlying Vlasov-Maxwell system. Our generalized ordering takes ρ i θi ∼ L E ∼ L p i is the thermal ion Larmor radius and ρ θi = B/B θ ρ i ), as typically observed in the tokamak H-mode edge, with L E and L p being the radial electric field and pressure gradient lengths. We take k # perpendicular# ρ i ∼ 1 for generality, and keep the relative fluctuation amplitudes e(delta)φ/T i ∼ (delta)B/B up to the second order. Extending the electrostatic theory in the presence of high E x B shear [Hahm, Phys. Plasmas 3, 4658 (1996)], contributions of electromagnetic fluctuations to the particle charge density and current are explicitly evaluated via pull-back transformation from the gyrocenter distribution function in the gyrokinetic Maxwell's equation

  20. Local linearization methods for the numerical integration of ordinary differential equations: An overview

    Jimenez, J.C.

    2009-06-01

    Local Linearization (LL) methods conform a class of one-step explicit integrators for ODEs derived from the following primary and common strategy: the vector field of the differential equation is locally (piecewise) approximated through a first-order Taylor expansion at each time step, thus obtaining successive linear equations that are explicitly integrated. Hereafter, the LL approach may include some additional strategies to improve that basic affine approximation. Theoretical and practical results have shown that the LL integrators have a number of convenient properties. These include arbitrary order of convergence, A-stability, linearization preserving, regularity under quite general conditions, preservation of the dynamics of the exact solution around hyperbolic equilibrium points and periodic orbits, integration of stiff and high-dimensional equations, low computational cost, and others. In this paper, a review of the LL methods and their properties is presented. (author)

  1. Stability of numerical method for semi-linear stochastic pantograph differential equations

    Yu Zhang

    2016-01-01

    Full Text Available Abstract As a particular expression of stochastic delay differential equations, stochastic pantograph differential equations have been widely used in nonlinear dynamics, quantum mechanics, and electrodynamics. In this paper, we mainly study the stability of analytical solutions and numerical solutions of semi-linear stochastic pantograph differential equations. Some suitable conditions for the mean-square stability of an analytical solution are obtained. Then we proved the general mean-square stability of the exponential Euler method for a numerical solution of semi-linear stochastic pantograph differential equations, that is, if an analytical solution is stable, then the exponential Euler method applied to the system is mean-square stable for arbitrary step-size h > 0 $h>0$ . Numerical examples further illustrate the obtained theoretical results.

  2. Hadronic equation of state in the statistical bootstrap model and linear graph theory

    Fre, P.; Page, R.

    1976-01-01

    Taking a statistical mechanical point og view, the statistical bootstrap model is discussed and, from a critical analysis of the bootstrap volume comcept, it is reached a physical ipothesis, which leads immediately to the hadronic equation of state provided by the bootstrap integral equation. In this context also the connection between the statistical bootstrap and the linear graph theory approach to interacting gases is analyzed

  3. Optimal Control Strategies in a Two Dimensional Differential Game Using Linear Equation under a Perturbed System

    Musa Danjuma SHEHU

    2008-06-01

    Full Text Available This paper lays emphasis on formulation of two dimensional differential games via optimal control theory and consideration of control systems whose dynamics is described by a system of Ordinary Differential equation in the form of linear equation under the influence of two controls U(. and V(.. Base on this, strategies were constructed. Hence we determine the optimal strategy for a control say U(. under a perturbation generated by the second control V(. within a given manifold M.

  4. Mellin-Barnes representations of Feynman diagrams, linear systems of differential equations, and polynomial solutions

    Kalmykov, Mikhail Yu.; Kniehl, Bernd A.

    2012-05-01

    We argue that the Mellin-Barnes representations of Feynman diagrams can be used for obtaining linear systems of homogeneous differential equations for the original Feynman diagrams with arbitrary powers of propagators without recourse to the integration-by-parts technique. These systems of differential equation can be used (i) for the differential reductions to sets of basic functions and (ii) for counting the numbers of master-integrals.

  5. Computer programs for the solution of systems of linear algebraic equations

    Sequi, W. T.

    1973-01-01

    FORTRAN subprograms for the solution of systems of linear algebraic equations are described, listed, and evaluated in this report. Procedures considered are direct solution, iteration, and matrix inversion. Both incore methods and those which utilize auxiliary data storage devices are considered. Some of the subroutines evaluated require the entire coefficient matrix to be in core, whereas others account for banding or sparceness of the system. General recommendations relative to equation solving are made, and on the basis of tests, specific subprograms are recommended.

  6. On the Cauchy problem for a Sobolev-type equation with quadratic non-linearity

    Aristov, Anatoly I

    2011-01-01

    We investigate the asymptotic behaviour as t→∞ of the solution of the Cauchy problem for a Sobolev-type equation with quadratic non-linearity and develop ideas used by I. A. Shishmarev and other authors in the study of classical and Sobolev-type equations. Conditions are found under which it is possible to consider the case of an arbitrary dimension of the spatial variable.

  7. Generalized multivariate Fokker-Planck equations derived from kinetic transport theory and linear nonequilibrium thermodynamics

    Frank, T.D.

    2002-01-01

    We study many particle systems in the context of mean field forces, concentration-dependent diffusion coefficients, generalized equilibrium distributions, and quantum statistics. Using kinetic transport theory and linear nonequilibrium thermodynamics we derive for these systems a generalized multivariate Fokker-Planck equation. It is shown that this Fokker-Planck equation describes relaxation processes, has stationary maximum entropy distributions, can have multiple stationary solutions and stationary solutions that differ from Boltzmann distributions

  8. A piecewise linear finite element discretization of the diffusion equation for arbitrary polyhedral grids

    Bailey, T S; Adams, M L [Texas A M Univ., Dept. of Nuclear Engineering, College Station, TX (United States); Yang, B; Zika, M R [Lawrence Livermore National Lab., Livermore, CA (United States)

    2005-07-01

    We develop a piecewise linear (PWL) Galerkin finite element spatial discretization for the multi-dimensional radiation diffusion equation. It uses piecewise linear weight and basis functions in the finite element approximation, and it can be applied on arbitrary polygonal (2-dimensional) or polyhedral (3-dimensional) grids. We show that this new PWL method gives solutions comparable to those from Palmer's finite-volume method. However, since the PWL method produces a symmetric positive definite coefficient matrix, it should be substantially more computationally efficient than Palmer's method, which produces an asymmetric matrix. We conclude that the Galerkin PWL method is an attractive option for solving diffusion equations on unstructured grids. (authors)

  9. Spectrum of the linearized operator for the Ginzburg-Landau equation

    Tai-Chia Lin

    2000-06-01

    Full Text Available We study the spectrum of the linearized operator for the Ginzburg-Landau equation about a symmetric vortex solution with degree one. We show that the smallest eigenvalue of the linearized operator has multiplicity two, and then we describe its behavior as a small parameter approaches zero. We also find a positive lower bound for all the other eigenvalues, and find estimates of the first eigenfunction. Then using these results, we give partial results on the dynamics of vortices in the nonlinear heat and Schrodinger equations.

  10. Improved harmonic balance approach to periodic solutions of non-linear jerk equations

    Wu, B.S.; Lim, C.W.; Sun, W.P.

    2006-01-01

    An analytical approximate approach for determining periodic solutions of non-linear jerk equations involving third-order time-derivative is presented. This approach incorporates salient features of both Newton's method and the method of harmonic balance. By appropriately imposing the method of harmonic balance to the linearized equation, the approach requires only one or two iterations to predict very accurate analytical approximate solutions for a large range of initial velocity amplitude. One typical example is used to verify and illustrate the usefulness and effectiveness of the proposed approach

  11. An efficient parallel algorithm for the solution of a tridiagonal linear system of equations

    Stone, H. S.

    1971-01-01

    Tridiagonal linear systems of equations are solved on conventional serial machines in a time proportional to N, where N is the number of equations. The conventional algorithms do not lend themselves directly to parallel computations on computers of the ILLIAC IV class, in the sense that they appear to be inherently serial. An efficient parallel algorithm is presented in which computation time grows as log sub 2 N. The algorithm is based on recursive doubling solutions of linear recurrence relations, and can be used to solve recurrence relations of all orders.

  12. On the economical solution method for a system of linear algebraic equations

    Jan Awrejcewicz

    2004-01-01

    Full Text Available The present work proposes a novel optimal and exact method of solving large systems of linear algebraic equations. In the approach under consideration, the solution of a system of algebraic linear equations is found as a point of intersection of hyperplanes, which needs a minimal amount of computer operating storage. Two examples are given. In the first example, the boundary value problem for a three-dimensional stationary heat transfer equation in a parallelepiped in ℝ3 is considered, where boundary value problems of first, second, or third order, or their combinations, are taken into account. The governing differential equations are reduced to algebraic ones with the help of the finite element and boundary element methods for different meshes applied. The obtained results are compared with known analytical solutions. The second example concerns computation of a nonhomogeneous shallow physically and geometrically nonlinear shell subject to transversal uniformly distributed load. The partial differential equations are reduced to a system of nonlinear algebraic equations with the error of O(hx12+hx22. The linearization process is realized through either Newton method or differentiation with respect to a parameter. In consequence, the relations of the boundary condition variations along the shell side and the conditions for the solution matching are reported.

  13. Asymptotic integration of a linear fourth order differential equation of Poincaré type

    Anibal Coronel

    2015-11-01

    Full Text Available This article deals with the asymptotic behavior of nonoscillatory solutions of fourth order linear differential equation where the coefficients are perturbations of constants. We define a change of variable and deduce that the new variable satisfies a third order nonlinear differential equation. We assume three hypotheses. The first hypothesis is related to the constant coefficients and set up that the characteristic polynomial associated with the fourth order linear equation has simple and real roots. The other two hypotheses are related to the behavior of the perturbation functions and establish asymptotic integral smallness conditions of the perturbations. Under these general hypotheses, we obtain four main results. The first two results are related to the application of a fixed point argument to prove that the nonlinear third order equation has a unique solution. The next result concerns with the asymptotic behavior of the solutions of the nonlinear third order equation. The fourth main theorem is introduced to establish the existence of a fundamental system of solutions and to precise the formulas for the asymptotic behavior of the linear fourth order differential equation. In addition, we present an example to show that the results introduced in this paper can be applied in situations where the assumptions of some classical theorems are not satisfied.

  14. A discrete homotopy perturbation method for non-linear Schrodinger equation

    H. A. Wahab

    2015-12-01

    Full Text Available A general analysis is made by homotopy perturbation method while taking the advantages of the initial guess, appearance of the embedding parameter, different choices of the linear operator to the approximated solution to the non-linear Schrodinger equation. We are not dependent upon the Adomian polynomials and find the linear forms of the components without these calculations. The discretised forms of the nonlinear Schrodinger equation allow us whether to apply any numerical technique on the discritisation forms or proceed for perturbation solution of the problem. The discretised forms obtained by constructed homotopy provide the linear parts of the components of the solution series and hence a new discretised form is obtained. The general discretised form for the NLSE allows us to choose any initial guess and the solution in the closed form.

  15. Skin effect of microwaves and transverse pseudowaves in plasmas

    Minami, Kazuo

    1977-09-01

    Using linearized Vlasov-Maxwell equations, the skin effect of microwaves and transverse pseudowaves excited by an idealized grid antenna in plasmas are analyzed. It is shown that the latter is predominant over the former, in such a plasma that ω sub(p) v sub(t)/ωc >= 1, where ω sub(p) and ω are the plasma and microwave angular frequencies, v sub(t) and c are the electron thermal and light velocities, respectively. (auth.)

  16. Role of statistical linearization in the solution of nonlinear stochastic equations

    Budgor, A.B.

    1977-01-01

    The solution of a generalized Langevin equation is referred to as a stochastic process. If the external forcing function is Gaussian white noise, the forward Kolmogarov equation yields the transition probability density function. Nonlinear problems must be handled by approximation procedures e.g., perturbation theories, eigenfunction expansions, and nonlinear optimization procedures. After some comments on the first two of these, attention is directed to the third, and the method of statistical linearization is used to demonstrate a relation to the former two. Nonlinear stochastic systems exhibiting sustained or forced oscillations and the centered nonlinear Schroedinger equation in the presence of Gaussian white noise excitation are considered as examples. 5 figures, 2 tables

  17. Equations for the non linear evolution of the resistive tearing modes in toroidal plasmas

    Edery, D.; Pellat, R.; Soule, J.L.

    1979-09-01

    Following the tokamak ordering, we simplify the resistive MHD equations in toroidal geometry. We obtain a closed system of non linear equations for two scalar potentials of the magnetic and velocity fields and for plasma density and temperature. If we expand these equations in the inverse of aspect ratio they are exact to the two first orders. Our formalism should correctly describe the mode coupling by curvature effects /1/ and the toroidal displacement of magnetic surfaces /2/. It provides a natural extension of the well known cylindrical model /3/ and is now being solved on computer

  18. Path integral solution of linear second order partial differential equations I: the general construction

    LaChapelle, J.

    2004-01-01

    A path integral is presented that solves a general class of linear second order partial differential equations with Dirichlet/Neumann boundary conditions. Elementary kernels are constructed for both Dirichlet and Neumann boundary conditions. The general solution can be specialized to solve elliptic, parabolic, and hyperbolic partial differential equations with boundary conditions. This extends the well-known path integral solution of the Schroedinger/diffusion equation in unbounded space. The construction is based on a framework for functional integration introduced by Cartier/DeWitt-Morette

  19. q-analogue of summability of formal solutions of some linear q-difference-differential equations

    Hidetoshi Tahara

    2015-01-01

    Full Text Available Let \\(q\\gt 1\\. The paper considers a linear \\(q\\-difference-differential equation: it is a \\(q\\-difference equation in the time variable \\(t\\, and a partial differential equation in the space variable \\(z\\. Under suitable conditions and by using \\(q\\-Borel and \\(q\\-Laplace transforms (introduced by J.-P. Ramis and C. Zhang, the authors show that if it has a formal power series solution \\(\\hat{X}(t,z\\ one can construct an actual holomorphic solution which admits \\(\\hat{X}(t,z\\ as a \\(q\\-Gevrey asymptotic expansion of order \\(1\\.

  20. Quasi-linear equation for magnetoplasma oscillations in the weakly relativistic approximation

    Rizzato, F.B.

    1985-01-01

    Some limitations which are present in the dynamical equations for collisionless plasmas are discussed. Some elementary corrections to the linear theories are obtained in a heuristic form, which directly lead to the so-called quasi-linear theories in its non-relativistic and relativistic forms. The effect of the relativistic variation of the gyrofrequency on the diffusion coefficient is examined in a typically perturbative approximation. (author)

  1. On the prolongation structure and Backlund transformation for new non-linear Klein-Gordon equations

    Roy Chowdhury, A.; Mukherjee, J.

    1986-07-01

    We have considered the complete integrability of two nonlinear equations which are some kind of extensions of usual Sine-Gordon and Sinh-Gordon equations. The first one is of non-autonomous version of Sinh-Gordon system and the second is closely related to the usual Sine-Gordon theory. The first problem indicates how (x,t) dependent non-linear equations can be treated in the prolongation theory and how a Backlund map can be constructed. The second one is a variation of the usual Sine-Gordon equation and suggests that there may be other equations (similar to Sine-Gordon) which are completely integrable. In both cases we have been able to construct the Lax pair. We then construct an auto-Backlund map by following the idea of Konno and Wadati, for the generation of multisolution states. (author)

  2. Nonlinear and linear wave equations for propagation in media with frequency power law losses

    Szabo, Thomas L.

    2003-10-01

    The Burgers, KZK, and Westervelt wave equations used for simulating wave propagation in nonlinear media are based on absorption that has a quadratic dependence on frequency. Unfortunately, most lossy media, such as tissue, follow a more general frequency power law. The authors first research involved measurements of loss and dispersion associated with a modification to Blackstock's solution to the linear thermoviscous wave equation [J. Acoust. Soc. Am. 41, 1312 (1967)]. A second paper by Blackstock [J. Acoust. Soc. Am. 77, 2050 (1985)] showed the loss term in the Burgers equation for plane waves could be modified for other known instances of loss. The authors' work eventually led to comprehensive time-domain convolutional operators that accounted for both dispersion and general frequency power law absorption [Szabo, J. Acoust. Soc. Am. 96, 491 (1994)]. Versions of appropriate loss terms were developed to extend the standard three nonlinear wave equations to these more general losses. Extensive experimental data has verified the predicted phase velocity dispersion for different power exponents for the linear case. Other groups are now working on methods suitable for solving wave equations numerically for these types of loss directly in the time domain for both linear and nonlinear media.

  3. Hardy inequality on time scales and its application to half-linear dynamic equations

    Řehák Pavel

    2005-01-01

    Full Text Available A time-scale version of the Hardy inequality is presented, which unifies and extends well-known Hardy inequalities in the continuous and in the discrete setting. An application in the oscillation theory of half-linear dynamic equations is given.

  4. Local Fractional Laplace Variational Iteration Method for Solving Linear Partial Differential Equations with Local Fractional Derivative

    Ai-Min Yang

    2014-01-01

    Full Text Available The local fractional Laplace variational iteration method was applied to solve the linear local fractional partial differential equations. The local fractional Laplace variational iteration method is coupled by the local fractional variational iteration method and Laplace transform. The nondifferentiable approximate solutions are obtained and their graphs are also shown.

  5. An Explicit Enclosure of the Solution Set of Overdetermined Interval Linear Equations

    Rohn, Jiří

    2017-01-01

    Roč. 24, February (2017), s. 1-10 ISSN 1573-1340 Institutional support: RVO:67985807 Keywords : interval linear equations * interval hull * unit midpoint * enclosure Subject RIV: BA - General Mathematics OBOR OECD: Applied mathematics http://interval.louisiana.edu/ reliable -computing-journal/volume-24/ reliable -computing-24-pp-001-010.pdf

  6. Linear indices in nonlinear structural equation models : best fitting proper indices and other composites

    Dijkstra, T.K.; Henseler, J.

    2011-01-01

    The recent advent of nonlinear structural equation models with indices poses a new challenge to the measurement of scientific constructs. We discuss, exemplify and add to a family of statistical methods aimed at creating linear indices, and compare their suitability in a complex path model with

  7. Solutions of half-linear differential equations in the classes Gamma and Pi

    Řehák, Pavel; Taddei, V.

    2016-01-01

    Roč. 29, 7-8 (2016), s. 683-714 ISSN 0893-4983 Institutional support: RVO:67985840 Keywords : half-linear differential equation * positive solution * asymptotic formula Subject RIV: BA - General Mathematics Impact factor: 0.565, year: 2016 http://projecteuclid.org/euclid.die/1462298681

  8. Exact solutions of linearized Schwinger endash Dyson equation of fermion self-energy

    Zhou, B.

    1997-01-01

    The Schwinger endash Dyson equation of fermion self-energy in the linearization approximation is solved exactly in a theory with gauge and effective four-fermion interactions. Different expressions for the independent solutions, which, respectively, submit to irregular and regular ultraviolet boundary condition are derived and expounded. copyright 1997 American Institute of Physics

  9. Comparison of nonlinearities in oscillation theory of half-linear differential equations

    Řehák, Pavel

    2008-01-01

    Roč. 121, č. 2 (2008), s. 93-105 ISSN 0236-5294 R&D Projects: GA AV ČR KJB100190701 Institutional research plan: CEZ:AV0Z10190503 Keywords : half-linear differential equation * comparison theorem * Riccati technique Subject RIV: BA - General Mathematics Impact factor: 0.317, year: 2008

  10. The Use of Graphs in Specific Situations of the Initial Conditions of Linear Differential Equations

    Buendía, Gabriela; Cordero, Francisco

    2013-01-01

    In this article, we present a discussion on the role of graphs and its significance in the relation between the number of initial conditions and the order of a linear differential equation, which is known as the initial value problem. We propose to make a functional framework for the use of graphs that intends to broaden the explanations of the…

  11. Improved Pedagogy for Linear Differential Equations by Reconsidering How We Measure the Size of Solutions

    Tisdell, Christopher C.

    2017-01-01

    For over 50 years, the learning of teaching of "a priori" bounds on solutions to linear differential equations has involved a Euclidean approach to measuring the size of a solution. While the Euclidean approach to "a priori" bounds on solutions is somewhat manageable in the learning and teaching of the proofs involving…

  12. A generalized variational algebra and conserved densities for linear evolution equations

    Abellanas, L.; Galindo, A.

    1978-01-01

    The symbolic algebra of Gel'fand and Dikii is generalized to the case of n variables. Using this algebraic approach a rigorous characterization of the polynomial kernel of the variational derivative is given. This is applied to classify all the conservation laws for linear polynomial evolution equations of arbitrary order. (Auth.)

  13. A block Krylov subspace time-exact solution method for linear ordinary differential equation systems

    Bochev, Mikhail A.

    2013-01-01

    We propose a time-exact Krylov-subspace-based method for solving linear ordinary differential equation systems of the form $y'=-Ay+g(t)$ and $y"=-Ay+g(t)$, where $y(t)$ is the unknown function. The method consists of two stages. The first stage is an accurate piecewise polynomial approximation of

  14. Inhomogeneous Linear Random Differential Equations with Mutual Correlations between Multiplicative, Additive and Initial-Value Terms

    Roerdink, J.B.T.M.

    1981-01-01

    The cumulant expansion for linear stochastic differential equations is extended to the general case in which the coefficient matrix, the inhomogeneous part and the initial condition are all random and, moreover, statistically interdependent. The expansion now involves not only the autocorrelation

  15. Oscillation and nonoscillation results for solutions of half-linear equations with deviated argument

    Drábek, P.; Kufner, Alois; Kuliev, K.

    2017-01-01

    Roč. 447, č. 1 (2017), s. 371-382 ISSN 0022-247X Institutional support: RVO:67985840 Keywords : half-linear equation * oscillatory solution * nonoscillatory solution Subject RIV: BA - General Mathematics OBOR OECD: Pure mathematics Impact factor: 1.064, year: 2016 http://www.sciencedirect.com/science/article/pii/S0022247X16306059

  16. Peculiarities in power type comparison results for half-linear dynamic equations

    Řehák, Pavel

    2012-01-01

    Roč. 42, č. 6 (2012), s. 1995-2013 ISSN 0035-7596 R&D Projects: GA AV ČR KJB100190701 Institutional support: RVO:67985840 Keywords : half-linear dynamic equation * time scale * comparison theorem Subject RIV: BA - General Mathematics Impact factor: 0.389, year: 2012 http://projecteuclid.org/euclid.rmjm/1361800616

  17. Myshkis type oscillation criteria for second-order linear delay differential equations

    Opluštil, Z.; Šremr, Jiří

    2015-01-01

    Roč. 178, č. 1 (2015), s. 143-161 ISSN 0026-9255 Institutional support: RVO:67985840 Keywords : linear second-order delay differential equation * oscillation criteria Subject RIV: BA - General Mathematics Impact factor: 0.664, year: 2015 http://link.springer.com/article/10.1007%2Fs00605-014-0719-y

  18. Stationary distributions of stochastic processes described by a linear neutral delay differential equation

    Frank, T D

    2005-01-01

    Stationary distributions of processes are derived that involve a time delay and are defined by a linear stochastic neutral delay differential equation. The distributions are Gaussian distributions. The variances of the Gaussian distributions are either monotonically increasing or decreasing functions of the time delays. The variances become infinite when fixed points of corresponding deterministic processes become unstable. (letter to the editor)

  19. Linear hyperbolic functional-differential equations with essentially bounded right-hand side

    Domoshnitsky, A.; Lomtatidze, Alexander; Maghakyan, A.; Šremr, Jiří

    2011-01-01

    Roč. 2011, - (2011), s. 242965 ISSN 1085-3375 Institutional research plan: CEZ:AV0Z10190503 Keywords : linear functional-differential equation of hyperbolic type * Darboux problem * unique solvability Subject RIV: BA - General Mathematics Impact factor: 1.318, year: 2011 http://www.hindawi.com/journals/ aaa /2011/242965/

  20. Some oscillation criteria for the second-order linear delay differential equation

    Opluštil, Z.; Šremr, Jiří

    2011-01-01

    Roč. 136, č. 2 (2011), s. 195-204 ISSN 0862-7959 Institutional research plan: CEZ:AV0Z10190503 Keywords : second-order linear differential equation with a delay * oscillatory solution Subject RIV: BA - General Mathematics http://www.dml.cz/handle/10338.dmlcz/141582

  1. On the multisummability of WKB solutions of certain singularly perturbed linear ordinary differential equations

    Yoshitsugu Takei

    2015-01-01

    Full Text Available Using two concrete examples, we discuss the multisummability of WKB solutions of singularly perturbed linear ordinary differential equations. Integral representations of solutions and a criterion for the multisummability based on the Cauchy-Heine transform play an important role in the proof.

  2. Lie symmetries of systems of second-order linear ordinary differential equations with constant coefficients.

    Boyko, Vyacheslav M; Popovych, Roman O; Shapoval, Nataliya M

    2013-01-01

    Lie symmetries of systems of second-order linear ordinary differential equations with constant coefficients are exhaustively described over both the complex and real fields. The exact lower and upper bounds for the dimensions of the maximal Lie invariance algebras possessed by such systems are obtained using an effective algebraic approach.

  3. Solution of the Schrodinger Equation for a Diatomic Oscillator Using Linear Algebra: An Undergraduate Computational Experiment

    Gasyna, Zbigniew L.

    2008-01-01

    Computational experiment is proposed in which a linear algebra method is applied to the solution of the Schrodinger equation for a diatomic oscillator. Calculations of the vibration-rotation spectrum for the HCl molecule are presented and the results show excellent agreement with experimental data. (Contains 1 table and 1 figure.)

  4. Remark on periodic boundary-value problem for second-order linear ordinary differential equations

    Dosoudilová, M.; Lomtatidze, Alexander

    2018-01-01

    Roč. 2018, č. 13 (2018), s. 1-7 ISSN 1072-6691 Institutional support: RVO:67985840 Keywords : second-order linear equation * periodic boundary value problem * unique solvability Subject RIV: BA - General Mathematics OBOR OECD: Applied mathematics Impact factor: 0.954, year: 2016 https://ejde.math.txstate.edu/Volumes/2018/13/abstr.html

  5. An Empirical Comparison of Five Linear Equating Methods for the NEAT Design

    Suh, Youngsuk; Mroch, Andrew A.; Kane, Michael T.; Ripkey, Douglas R.

    2009-01-01

    In this study, a data base containing the responses of 40,000 candidates to 90 multiple-choice questions was used to mimic data sets for 50-item tests under the "nonequivalent groups with anchor test" (NEAT) design. Using these smaller data sets, we evaluated the performance of five linear equating methods for the NEAT design with five levels of…

  6. Linear Equating for the NEAT Design: A Rejoinder and Some Further Comments

    Kane, Michael T.; Mroch, Andrew A.; Suh, Youngsuk; Ripkey, Douglas R.

    2010-01-01

    This article presents the authors' rejoinder to commentaries on linear equating and the NEAT design. The authors appreciate the insightful work of the commentary writers. Each has made a number of interesting points, many of which the authors had not considered at all. Before responding to some of those points, the authors reiterate what they see…

  7. On the solution of a class of fuzzy system of linear equations

    J. Mathematics and Comput. Sci. 1: 1–5. Salkuyeh D K 2011 On the solution of the fuzzy Sylvester matrix equation. Soft Computing 15: 953–961. Senthilkumar P and Rajendran G 2011 New approach to solve symmetric fully fuzzy linear systems. S¯adhan¯a 36: 933–940. Wang K and Zheng B 2007 Block iterative methods ...

  8. Anti-symmetrically fused model and non-linear integral equations in the three-state Uimin-Sutherland model

    Fujii, Akira; Kluemper, Andreas

    1999-01-01

    We derive the non-linear integral equations determining the free energy of the three-state pure bosonic Uimin-Sutherland model. In order to find a complete set of auxiliary functions, the anti-symmetric fusion procedure is utilized. We solve the non-linear integral equations numerically and see that the low-temperature behavior coincides with that predicted by conformal field theory. The magnetization and magnetic susceptibility are also calculated by means of the non-linear integral equation

  9. Aspects on increase and decrease within a national economy as eigenvalue problem of linear homogeneous equations

    Mueller, E.

    2007-01-01

    The paper presents an approach which treats topics of macroeconomics by methods familiar in physics and technology, especially in nuclear reactor technology and in quantum mechanics. Such methods are applied to simplified models for the money flows within a national economy, their variation in time and thereby for the annual national growth rate. As usual, money flows stand for economic activities. The money flows between the economic groups are described by a set of difference equations or by a set of approximative differential equations or eventually by a set of linear algebraic equations. Thus this paper especially deals with the time behaviour of model economies which are under the influence of imbalances and of delay processes, thereby dealing also with economic growth and recession rates. These differential equations are solved by a completely numerical Runge-Kutta algorithm. Case studies are presented for cases with 12 groups only and are to show the capability of the methods which have been worked out. (orig.)

  10. Aspects on increase and decrease within a national economy as eigenvalue problem of linear homogeneous equations

    Mueller, E.

    2007-12-15

    The paper presents an approach which treats topics of macroeconomics by methods familiar in physics and technology, especially in nuclear reactor technology and in quantum mechanics. Such methods are applied to simplified models for the money flows within a national economy, their variation in time and thereby for the annual national growth rate. As usual, money flows stand for economic activities. The money flows between the economic groups are described by a set of difference equations or by a set of approximative differential equations or eventually by a set of linear algebraic equations. Thus this paper especially deals with the time behaviour of model economies which are under the influence of imbalances and of delay processes, thereby dealing also with economic growth and recession rates. These differential equations are solved by a completely numerical Runge-Kutta algorithm. Case studies are presented for cases with 12 groups only and are to show the capability of the methods which have been worked out. (orig.)

  11. Analytical approach to linear fractional partial differential equations arising in fluid mechanics

    Momani, Shaher; Odibat, Zaid

    2006-01-01

    In this Letter, we implement relatively new analytical techniques, the variational iteration method and the Adomian decomposition method, for solving linear fractional partial differential equations arising in fluid mechanics. The fractional derivatives are described in the Caputo sense. The two methods in applied mathematics can be used as alternative methods for obtaining analytic and approximate solutions for different types of fractional differential equations. In these methods, the solution takes the form of a convergent series with easily computable components. The corresponding solutions of the integer order equations are found to follow as special cases of those of fractional order equations. Some numerical examples are presented to illustrate the efficiency and reliability of the two methods

  12. Perturbation Solutions for Random Linear Structural Systems subject to Random Excitation using Stochastic Differential Equations

    Köyluoglu, H.U.; Nielsen, Søren R.K.; Cakmak, A.S.

    1994-01-01

    perturbation method using stochastic differential equations. The joint statistical moments entering the perturbation solution are determined by considering an augmented dynamic system with state variables made up of the displacement and velocity vector and their first and second derivatives with respect......The paper deals with the first and second order statistical moments of the response of linear systems with random parameters subject to random excitation modelled as white-noise multiplied by an envelope function with random parameters. The method of analysis is basically a second order...... to the random parameters of the problem. Equations for partial derivatives are obtained from the partial differentiation of the equations of motion. The zero time-lag joint statistical moment equations for the augmented state vector are derived from the Itô differential formula. General formulation is given...

  13. The structure of solutions of the matrix linear unilateral polynomial equation with two variables

    N. S. Dzhaliuk

    2017-07-01

    Full Text Available We investigate the structure of solutions of the matrix linear polynomial equation $A(\\lambdaX(\\lambda+B(\\lambdaY(\\lambda=C(\\lambda,$ in particular, possible degrees of the solutions. The solving of this equation is reduced to the solving of the equivalent matrix polynomial equation with matrix coefficients in triangular forms with invariant factors on the main diagonals, to which the matrices $A (\\lambda, B(\\lambda$ \\ and \\ $C(\\lambda$ are reduced by means of semiscalar equivalent transformations. On the basis of it, we have pointed out the bounds of the degrees of the matrix polynomial equation solutions. Necessary and sufficient conditions for the uniqueness of a solution with a minimal degree are established. An effective method for constructing minimal degree solutions of the equations is suggested. In this article, unlike well-known results about the estimations of the degrees of the solutions of the matrix polynomial equations in which both matrix coefficients are regular or at least one of them is regular, we have considered the case when the matrix polynomial equation has arbitrary matrix coefficients $A(\\lambda$ and $B(\\lambda.$ 

  14. About simple nonlinear and linear superpositions of special exact solutions of Veselov-Novikov equation

    Dubrovsky, V. G.; Topovsky, A. V.

    2013-01-01

    New exact solutions, nonstationary and stationary, of Veselov-Novikov (VN) equation in the forms of simple nonlinear and linear superpositions of arbitrary number N of exact special solutions u (n) , n= 1, …, N are constructed via Zakharov and Manakov ∂-dressing method. Simple nonlinear superpositions are represented up to a constant by the sums of solutions u (n) and calculated by ∂-dressing on nonzero energy level of the first auxiliary linear problem, i.e., 2D stationary Schrödinger equation. It is remarkable that in the zero energy limit simple nonlinear superpositions convert to linear ones in the form of the sums of special solutions u (n) . It is shown that the sums u=u (k 1 ) +...+u (k m ) , 1 ⩽k 1 2 m ⩽N of arbitrary subsets of these solutions are also exact solutions of VN equation. The presented exact solutions include as superpositions of special line solitons and also superpositions of plane wave type singular periodic solutions. By construction these exact solutions represent also new exact transparent potentials of 2D stationary Schrödinger equation and can serve as model potentials for electrons in planar structures of modern electronics.

  15. About simple nonlinear and linear superpositions of special exact solutions of Veselov-Novikov equation

    Dubrovsky, V. G.; Topovsky, A. V. [Novosibirsk State Technical University, Karl Marx prosp. 20, Novosibirsk 630092 (Russian Federation)

    2013-03-15

    New exact solutions, nonstationary and stationary, of Veselov-Novikov (VN) equation in the forms of simple nonlinear and linear superpositions of arbitrary number N of exact special solutions u{sup (n)}, n= 1, Horizontal-Ellipsis , N are constructed via Zakharov and Manakov {partial_derivative}-dressing method. Simple nonlinear superpositions are represented up to a constant by the sums of solutions u{sup (n)} and calculated by {partial_derivative}-dressing on nonzero energy level of the first auxiliary linear problem, i.e., 2D stationary Schroedinger equation. It is remarkable that in the zero energy limit simple nonlinear superpositions convert to linear ones in the form of the sums of special solutions u{sup (n)}. It is shown that the sums u=u{sup (k{sub 1})}+...+u{sup (k{sub m})}, 1 Less-Than-Or-Slanted-Equal-To k{sub 1} < k{sub 2} < Horizontal-Ellipsis < k{sub m} Less-Than-Or-Slanted-Equal-To N of arbitrary subsets of these solutions are also exact solutions of VN equation. The presented exact solutions include as superpositions of special line solitons and also superpositions of plane wave type singular periodic solutions. By construction these exact solutions represent also new exact transparent potentials of 2D stationary Schroedinger equation and can serve as model potentials for electrons in planar structures of modern electronics.

  16. Improved pedagogy for linear differential equations by reconsidering how we measure the size of solutions

    Tisdell, Christopher C.

    2017-11-01

    For over 50 years, the learning of teaching of a priori bounds on solutions to linear differential equations has involved a Euclidean approach to measuring the size of a solution. While the Euclidean approach to a priori bounds on solutions is somewhat manageable in the learning and teaching of the proofs involving second-order, linear problems with constant co-efficients, we believe it is not pedagogically optimal. Moreover, the Euclidean method becomes pedagogically unwieldy in the proofs involving higher-order cases. The purpose of this work is to propose a simpler pedagogical approach to establish a priori bounds on solutions by considering a different way of measuring the size of a solution to linear problems, which we refer to as the Uber size. The Uber form enables a simplification of pedagogy from the literature and the ideas are accessible to learners who have an understanding of the Fundamental Theorem of Calculus and the exponential function, both usually seen in a first course in calculus. We believe that this work will be of mathematical and pedagogical interest to those who are learning and teaching in the area of differential equations or in any of the numerous disciplines where linear differential equations are used.

  17. Non self-similar collapses described by the non-linear Schroedinger equation

    Berge, L.; Pesme, D.

    1992-01-01

    We develop a rapid method in order to find the contraction rates of the radially symmetric collapsing solutions of the nonlinear Schroedinger equation defined for space dimensions exceeding a threshold value. We explicitly determine the asymptotic behaviour of these latter solutions by solving the non stationary linear problem relative to the nonlinear Schroedinger equation. We show that the self-similar states associated with the collapsing solutions are characterized by a spatial extent which is bounded from the top by a cut-off radius

  18. Quadratic-linear pattern in cancer fractional radiotherapy. Equations for a computering program

    Burgos, D.; Bullejos, J.; Garcia Puche, J.L.; Pedraza, V.

    1990-01-01

    Knowledge of equivalence between different tratment schemes with the same iso-effect is the essential thing in clinical cancer radiotherapy. For this purpose it is very useful the group of ideas derived from quadratic-linear pattern (Q-L) proposed in order to analyze cell survival curve to radiation. Iso-effect definition caused by several irradiation rules is done by extrapolated tolerance dose (ETD). Because equations for ETD are complex, a computering program have been carried out. In this paper, iso-effect equations for well defined therapeutic situations and flow diagram proposed for resolution, have been studied. (Author)

  19. A critical oscillation constant as a variable of time scales for half-linear dynamic equations

    Řehák, Pavel

    2010-01-01

    Roč. 60, č. 2 (2010), s. 237-256 ISSN 0139-9918 R&D Projects: GA AV ČR KJB100190701 Institutional research plan: CEZ:AV0Z10190503 Keywords : dynamic equation * time scale * half-linear equation * (non)oscillation criteria * Hille-Nehari criteria * Kneser criteria * critical constant * oscillation constant * Hardy inequality Subject RIV: BA - General Mathematics Impact factor: 0.316, year: 2010 http://link.springer.com/article/10.2478%2Fs12175-010-0009-7

  20. Higher derivative discontinuous solutions to linear ordinary differential equations: a new route to complexity?

    Datta, Dhurjati Prasad; Bose, Manoj Kumar

    2004-01-01

    We present a new one parameter family of second derivative discontinuous solutions to the simplest scale invariant linear ordinary differential equation. We also point out how the construction could be extended to generate families of higher derivative discontinuous solutions as well. The discontinuity can occur only for a subset of even order derivatives, viz., 2nd, 4th, 8th, 16th,.... The solutions are shown to break the discrete parity (reflection) symmetry of the underlying equation. These results are expected to gain significance in the contemporary search of a new dynamical principle for understanding complex phenomena in nature

  1. Solving large-scale sparse eigenvalue problems and linear systems of equations for accelerator modeling

    Gene Golub; Kwok Ko

    2009-01-01

    The solutions of sparse eigenvalue problems and linear systems constitute one of the key computational kernels in the discretization of partial differential equations for the modeling of linear accelerators. The computational challenges faced by existing techniques for solving those sparse eigenvalue problems and linear systems call for continuing research to improve on the algorithms so that ever increasing problem size as required by the physics application can be tackled. Under the support of this award, the filter algorithm for solving large sparse eigenvalue problems was developed at Stanford to address the computational difficulties in the previous methods with the goal to enable accelerator simulations on then the world largest unclassified supercomputer at NERSC for this class of problems. Specifically, a new method, the Hemitian skew-Hemitian splitting method, was proposed and researched as an improved method for solving linear systems with non-Hermitian positive definite and semidefinite matrices.

  2. Scilab software as an alternative low-cost computing in solving the linear equations problem

    Agus, Fahrul; Haviluddin

    2017-02-01

    Numerical computation packages are widely used both in teaching and research. These packages consist of license (proprietary) and open source software (non-proprietary). One of the reasons to use the package is a complexity of mathematics function (i.e., linear problems). Also, number of variables in a linear or non-linear function has been increased. The aim of this paper was to reflect on key aspects related to the method, didactics and creative praxis in the teaching of linear equations in higher education. If implemented, it could be contribute to a better learning in mathematics area (i.e., solving simultaneous linear equations) that essential for future engineers. The focus of this study was to introduce an additional numerical computation package of Scilab as an alternative low-cost computing programming. In this paper, Scilab software was proposed some activities that related to the mathematical models. In this experiment, four numerical methods such as Gaussian Elimination, Gauss-Jordan, Inverse Matrix, and Lower-Upper Decomposition (LU) have been implemented. The results of this study showed that a routine or procedure in numerical methods have been created and explored by using Scilab procedures. Then, the routine of numerical method that could be as a teaching material course has exploited.

  3. Linear Scaling Solution of the Time-Dependent Self-Consistent-Field Equations

    Matt Challacombe

    2014-03-01

    Full Text Available A new approach to solving the Time-Dependent Self-Consistent-Field equations is developed based on the double quotient formulation of Tsiper 2001 (J. Phys. B. Dual channel, quasi-independent non-linear optimization of these quotients is found to yield convergence rates approaching those of the best case (single channel Tamm-Dancoff approximation. This formulation is variational with respect to matrix truncation, admitting linear scaling solution of the matrix-eigenvalue problem, which is demonstrated for bulk excitons in the polyphenylene vinylene oligomer and the (4,3 carbon nanotube segment.

  4. Linear analysis of neoclassical tearing mode based on the four-field reduced neoclassical MHD equation

    Furuya, Atsushi; Yagi, Masatoshi; Itoh, Sanae-I.

    2003-01-01

    The linear neoclassical tearing mode is investigated using the four-field reduced neoclassical MHD equations, in which the fluctuating ion parallel flow and ion neoclassical viscosity are taken into account. The dependences of the neoclassical tearing mode on collisionality, diamagnetic drift and q profile are investigated. These results are compared with the results from the conventional three-field model. It is shown that the linear neoclassical tearing mode is stabilized by the ion neoclassical viscosity in the banana regime even if Δ' > 0. (author)

  5. First-order systems of linear partial differential equations: normal forms, canonical systems, transform methods

    Heinz Toparkus

    2014-04-01

    Full Text Available In this paper we consider first-order systems with constant coefficients for two real-valued functions of two real variables. This is both a problem in itself, as well as an alternative view of the classical linear partial differential equations of second order with constant coefficients. The classification of the systems is done using elementary methods of linear algebra. Each type presents its special canonical form in the associated characteristic coordinate system. Then you can formulate initial value problems in appropriate basic areas, and you can try to achieve a solution of these problems by means of transform methods.

  6. A piecewise linear finite element discretization of the diffusion equation for arbitrary polyhedral grids

    Bailey, Teresa S. [Texas A and M University, Department of Nuclear Engineering, College Station, TX 77843-3133 (United States)], E-mail: baileyte@tamu.edu; Adams, Marvin L. [Texas A and M University, Department of Nuclear Engineering, College Station, TX 77843-3133 (United States)], E-mail: mladams@tamu.edu; Yang, Brian [Lawrence Livermore National Laboratory, Livermore, CA 94551 (United States); Zika, Michael R. [Lawrence Livermore National Laboratory, Livermore, CA 94551 (United States)], E-mail: zika@llnl.gov

    2008-04-01

    We develop a piecewise linear (PWL) Galerkin finite element spatial discretization for the multi-dimensional radiation diffusion equation. It uses recently introduced piecewise linear weight and basis functions in the finite element approximation and it can be applied on arbitrary polygonal (2D) or polyhedral (3D) grids. We first demonstrate some analytical properties of the PWL method and perform a simple mode analysis to compare the PWL method with Palmer's vertex-centered finite-volume method and with a bilinear continuous finite element method. We then show that this new PWL method gives solutions comparable to those from Palmer's. However, since the PWL method produces a symmetric positive-definite coefficient matrix, it should be substantially more computationally efficient than Palmer's method, which produces an asymmetric matrix. We conclude that the Galerkin PWL method is an attractive option for solving diffusion equations on unstructured grids.

  7. A piecewise linear finite element discretization of the diffusion equation for arbitrary polyhedral grids

    Bailey, T.S.; Adams, M.L. [Texas A M Univ., Dept. of Nuclear Engineering, College Station, TX (United States); Yang, B.; Zika, M.R. [Lawrence Livermore National Lab., Livermore, CA (United States)

    2005-07-01

    We develop a piecewise linear (PWL) Galerkin finite element spatial discretization for the multi-dimensional radiation diffusion equation. It uses piecewise linear weight and basis functions in the finite element approximation, and it can be applied on arbitrary polygonal (2-dimensional) or polyhedral (3-dimensional) grids. We show that this new PWL method gives solutions comparable to those from Palmer's finite-volume method. However, since the PWL method produces a symmetric positive definite coefficient matrix, it should be substantially more computationally efficient than Palmer's method, which produces an asymmetric matrix. We conclude that the Galerkin PWL method is an attractive option for solving diffusion equations on unstructured grids. (authors)

  8. A piecewise linear finite element discretization of the diffusion equation for arbitrary polyhedral grids

    Bailey, Teresa S.; Adams, Marvin L.; Yang, Brian; Zika, Michael R.

    2008-01-01

    We develop a piecewise linear (PWL) Galerkin finite element spatial discretization for the multi-dimensional radiation diffusion equation. It uses recently introduced piecewise linear weight and basis functions in the finite element approximation and it can be applied on arbitrary polygonal (2D) or polyhedral (3D) grids. We first demonstrate some analytical properties of the PWL method and perform a simple mode analysis to compare the PWL method with Palmer's vertex-centered finite-volume method and with a bilinear continuous finite element method. We then show that this new PWL method gives solutions comparable to those from Palmer's. However, since the PWL method produces a symmetric positive-definite coefficient matrix, it should be substantially more computationally efficient than Palmer's method, which produces an asymmetric matrix. We conclude that the Galerkin PWL method is an attractive option for solving diffusion equations on unstructured grids

  9. Solutions to estimation problems for scalar hamilton-jacobi equations using linear programming

    Claudel, Christian G.; Chamoin, Timothee; Bayen, Alexandre M.

    2014-01-01

    This brief presents new convex formulations for solving estimation problems in systems modeled by scalar Hamilton-Jacobi (HJ) equations. Using a semi-analytic formula, we show that the constraints resulting from a HJ equation are convex, and can be written as a set of linear inequalities. We use this fact to pose various (and seemingly unrelated) estimation problems related to traffic flow-engineering as a set of linear programs. In particular, we solve data assimilation and data reconciliation problems for estimating the state of a system when the model and measurement constraints are incompatible. We also solve traffic estimation problems, such as travel time estimation or density estimation. For all these problems, a numerical implementation is performed using experimental data from the Mobile Century experiment. In the context of reproducible research, the code and data used to compute the results presented in this brief have been posted online and are accessible to regenerate the results. © 2013 IEEE.

  10. TOEPLITZ, Solution of Linear Equation System with Toeplitz or Circulant Matrix

    Garbow, B.

    1984-01-01

    Description of program or function: TOEPLITZ is a collection of FORTRAN subroutines for solving linear systems Ax=b, where A is a Toeplitz matrix, a Circulant matrix, or has one or several block structures based on Toeplitz or Circulant matrices. Such systems arise in problems of electrodynamics, acoustics, mathematical statistics, algebra, in the numerical solution of integral equations with a difference kernel, and in the theory of stationary time series and signals

  11. A High-Accuracy Linear Conservative Difference Scheme for Rosenau-RLW Equation

    Jinsong Hu

    2013-01-01

    Full Text Available We study the initial-boundary value problem for Rosenau-RLW equation. We propose a three-level linear finite difference scheme, which has the theoretical accuracy of Oτ2+h4. The scheme simulates two conservative properties of original problem well. The existence, uniqueness of difference solution, and a priori estimates in infinite norm are obtained. Furthermore, we analyze the convergence and stability of the scheme by energy method. At last, numerical experiments demonstrate the theoretical results.

  12. Adaptive Finite Element Method for Optimal Control Problem Governed by Linear Quasiparabolic Integrodifferential Equations

    Wanfang Shen

    2012-01-01

    Full Text Available The mathematical formulation for a quadratic optimal control problem governed by a linear quasiparabolic integrodifferential equation is studied. The control constrains are given in an integral sense: Uad={u∈X;∫ΩUu⩾0, t∈[0,T]}. Then the a posteriori error estimates in L∞(0,T;H1(Ω-norm and L2(0,T;L2(Ω-norm for both the state and the control approximation are given.

  13. Multi-point boundary value problems for linear functional-differential equations

    Domoshnitsky, A.; Hakl, Robert; Půža, Bedřich

    2017-01-01

    Roč. 24, č. 2 (2017), s. 193-206 ISSN 1072-947X Institutional support: RVO:67985840 Keywords : boundary value problems * linear functional- differential equations * functional- differential inequalities Subject RIV: BA - General Mathematics OBOR OECD: Applied mathematics Impact factor: 0.290, year: 2016 https://www.degruyter.com/view/j/gmj.2017.24.issue-2/gmj-2016-0076/gmj-2016-0076.xml

  14. On one two-point BVP for the fourth order linear ordinary differential equation

    Mukhigulashvili, Sulkhan; Manjikashvili, M.

    2017-01-01

    Roč. 24, č. 2 (2017), s. 265-275 ISSN 1072-947X Institutional support: RVO:67985840 Keywords : fourth order linear ordinary differential equations * two-point boundary value problems Subject RIV: BA - General Mathematics OBOR OECD: Applied mathematics Impact factor: 0.290, year: 2016 https://www.degruyter.com/view/j/gmj.2017.24.issue-2/gmj-2016-0077/gmj-2016-0077.xml

  15. On oscillations of solutions to second-order linear delay differential equations

    Opluštil, Z.; Šremr, Jiří

    2013-01-01

    Roč. 20, č. 1 (2013), s. 65-94 ISSN 1072-947X Institutional support: RVO:67985840 Keywords : linear second-order delay differential equation * oscillatory solution Subject RIV: BA - General Mathematics Impact factor: 0.340, year: 2013 http://www.degruyter.com/view/j/gmj.2013.20.issue-1/gmj-2013-0001/gmj-2013-0001.xml?format=INT

  16. Stationary solutions of linear stochastic delay differential equations: applications to biological systems.

    Frank, T D; Beek, P J

    2001-08-01

    Recently, Küchler and Mensch [Stochastics Stochastics Rep. 40, 23 (1992)] derived exact stationary probability densities for linear stochastic delay differential equations. This paper presents an alternative derivation of these solutions by means of the Fokker-Planck approach introduced by Guillouzic [Phys. Rev. E 59, 3970 (1999); 61, 4906 (2000)]. Applications of this approach, which is argued to have greater generality, are discussed in the context of stochastic models for population growth and tracking movements.

  17. Fibonacci collocation method with a residual error Function to solve linear Volterra integro differential equations

    Salih Yalcinbas

    2016-01-01

    Full Text Available In this paper, a new collocation method based on the Fibonacci polynomials is introduced to solve the high-order linear Volterra integro-differential equations under the conditions. Numerical examples are included to demonstrate the applicability and validity of the proposed method and comparisons are made with the existing results. In addition, an error estimation based on the residual functions is presented for this method. The approximate solutions are improved by using this error estimation.

  18. On oscillations of solutions to second-order linear delay differential equations

    Opluštil, Z.; Šremr, Jiří

    2013-01-01

    Roč. 20, č. 1 (2013), s. 65-94 ISSN 1072-947X Institutional support: RVO:67985840 Keywords : linear second-order delay differential equation * oscillatory solution Subject RIV: BA - General Mathematics Impact factor: 0.340, year: 2013 http://www.degruyter.com/view/j/gmj.2013.20.issue-1/gmj-2013-0001/gmj-2013-0001. xml ?format=INT

  19. On one two-point BVP for the fourth order linear ordinary differential equation

    Mukhigulashvili, Sulkhan; Manjikashvili, M.

    2017-01-01

    Roč. 24, č. 2 (2017), s. 265-275 ISSN 1072-947X Institutional support: RVO:67985840 Keywords : fourth order linear ordinary differential equations * two-point boundary value problems Subject RIV: BA - General Mathematics OBOR OECD: Applied mathematics Impact factor: 0.290, year: 2016 https://www.degruyter.com/view/j/gmj.2017.24.issue-2/gmj-2016-0077/gmj-2016-0077. xml

  20. Remark on zeros of solutions of second-order linear ordinary differential equations

    Dosoudilová, M.; Lomtatidze, Alexander

    2016-01-01

    Roč. 23, č. 4 (2016), s. 571-577 ISSN 1072-947X Institutional support: RVO:67985840 Keywords : second-order linear equation * zeros of solutions * periodic boundary value problem Subject RIV: BA - General Mathematics Impact factor: 0.290, year: 2016 https://www.degruyter.com/view/j/gmj.2016.23.issue-4/gmj-2016-0052/gmj-2016-0052. xml

  1. Multi-point boundary value problems for linear functional-differential equations

    Domoshnitsky, A.; Hakl, Robert; Půža, Bedřich

    2017-01-01

    Roč. 24, č. 2 (2017), s. 193-206 ISSN 1072-947X Institutional support: RVO:67985840 Keywords : boundary value problems * linear functional-differential equations * functional-differential inequalities Subject RIV: BA - General Mathematics OBOR OECD: Applied mathematics Impact factor: 0.290, year: 2016 https://www.degruyter.com/view/j/gmj.2017.24.issue-2/gmj-2016-0076/gmj-2016-0076. xml

  2. On the Use of Linearized Euler Equations in the Prediction of Jet Noise

    Mankbadi, Reda R.; Hixon, R.; Shih, S.-H.; Povinelli, L. A.

    1995-01-01

    Linearized Euler equations are used to simulate supersonic jet noise generation and propagation. Special attention is given to boundary treatment. The resulting solution is stable and nearly free from boundary reflections without the need for artificial dissipation, filtering, or a sponge layer. The computed solution is in good agreement with theory and observation and is much less CPU-intensive as compared to large-eddy simulations.

  3. A General Construction of Linear Differential Equations with Solutions of Prescribed Properties

    Neuman, František

    2004-01-01

    Roč. 17, č. 1 (2004), s. 71-76 ISSN 0893-9659 R&D Projects: GA AV ČR IAA1019902; GA ČR GA201/99/0295 Institutional research plan: CEZ:AV0Z1019905 Keywords : construction of linear differential equations * prescribed qualitative properties of solutions Subject RIV: BA - General Mathematics Impact factor: 0.414, year: 2004

  4. Remark on zeros of solutions of second-order linear ordinary differential equations

    Dosoudilová, M.; Lomtatidze, Alexander

    2016-01-01

    Roč. 23, č. 4 (2016), s. 571-577 ISSN 1072-947X Institutional support: RVO:67985840 Keywords : second-order linear equation * zero s of solutions * periodic boundary value problem Subject RIV: BA - General Mathematics Impact factor: 0.290, year: 2016 https://www.degruyter.com/view/j/gmj.2016.23.issue-4/gmj-2016-0052/gmj-2016-0052.xml

  5. Decoherence of histories and hydrodynamic equations for a linear oscillator chain

    Halliwell, J.J.

    2003-01-01

    We investigate the decoherence of histories of local densities for linear oscillators models. It is shown that histories of local number, momentum and energy density are approximately decoherent, when coarse grained over sufficiently large volumes. Decoherence arises directly from the proximity of these variables to exactly conserved quantities (which are exactly decoherent), and not from environmentally induced decoherence. We discuss the approach to local equilibrium and the subsequent emergence of hydrodynamic equations for the local densities

  6. An algorithm for computing the hull of the solution set of interval linear equations

    Rohn, Jiří

    2011-01-01

    Roč. 435, č. 2 (2011), s. 193-201 ISSN 0024-3795 R&D Projects: GA ČR GA201/09/1957; GA ČR GC201/08/J020 Institutional research plan: CEZ:AV0Z10300504 Keywords : interval linear equations * solution set * interval hull * algorithm * absolute value inequality Subject RIV: BA - General Mathematics Impact factor: 0.974, year: 2011

  7. A Lie-Deprit perturbation algorithm for linear differential equations with periodic coefficients

    Casas Pérez, Fernando; Chiralt Monleon, Cristina

    2014-01-01

    A perturbative procedure based on the Lie-Deprit algorithm of classical mechanics is proposed to compute analytic approximations to the fundamental matrix of linear di erential equations with periodic coe cients. These approximations reproduce the structure assured by the Floquet theorem. Alternatively, the algorithm provides explicit approximations to the Lyapunov transformation reducing the original periodic problem to an autonomous sys- tem and also to its characteristic ...

  8. A Globally Convergent Matrix-Free Method for Constrained Equations and Its Linear Convergence Rate

    Min Sun

    2014-01-01

    Full Text Available A matrix-free method for constrained equations is proposed, which is a combination of the well-known PRP (Polak-Ribière-Polyak conjugate gradient method and the famous hyperplane projection method. The new method is not only derivative-free, but also completely matrix-free, and consequently, it can be applied to solve large-scale constrained equations. We obtain global convergence of the new method without any differentiability requirement on the constrained equations. Compared with the existing gradient methods for solving such problem, the new method possesses linear convergence rate under standard conditions, and a relax factor γ is attached in the update step to accelerate convergence. Preliminary numerical results show that it is promising in practice.

  9. A novel algebraic procedure for solving non-linear evolution equations of higher order

    Huber, Alfred

    2007-01-01

    We report here a systematic approach that can easily be used for solving non-linear partial differential equations (nPDE), especially of higher order. We restrict the analysis to the so called evolution equations describing any wave propagation. The proposed new algebraic approach leads us to traveling wave solutions and moreover, new class of solution can be obtained. The crucial step of our method is the basic assumption that the solutions satisfy an ordinary differential equation (ODE) of first order that can be easily integrated. The validity and reliability of the method is tested by its application to some non-linear evolution equations. The important aspect of this paper however is the fact that we are able to calculate distinctive class of solutions which cannot be found in the current literature. In other words, using this new algebraic method the solution manifold is augmented to new class of solution functions. Simultaneously we would like to stress the necessity of such sophisticated methods since a general theory of nPDE does not exist. Otherwise, for practical use the algebraic construction of new class of solutions is of fundamental interest

  10. Supporting second grade lower secondary school students’ understanding of linear equation system in two variables using ethnomathematics

    Nursyahidah, F.; Saputro, B. A.; Rubowo, M. R.

    2018-03-01

    The aim of this research is to know the students’ understanding of linear equation system in two variables using Ethnomathematics and to acquire learning trajectory of linear equation system in two variables for the second grade of lower secondary school students. This research used methodology of design research that consists of three phases, there are preliminary design, teaching experiment, and retrospective analysis. Subject of this study is 28 second grade students of Sekolah Menengah Pertama (SMP) 37 Semarang. The result of this research shows that the students’ understanding in linear equation system in two variables can be stimulated by using Ethnomathematics in selling buying tradition in Peterongan traditional market in Central Java as a context. All of strategies and model that was applied by students and also their result discussion shows how construction and contribution of students can help them to understand concept of linear equation system in two variables. All the activities that were done by students produce learning trajectory to gain the goal of learning. Each steps of learning trajectory of students have an important role in understanding the concept from informal to the formal level. Learning trajectory using Ethnomathematics that is produced consist of watching video of selling buying activity in Peterongan traditional market to construct linear equation in two variables, determine the solution of linear equation in two variables, construct model of linear equation system in two variables from contextual problem, and solving a contextual problem related to linear equation system in two variables.

  11. A linear multiple balance method for discrete ordinates neutron transport equations

    Park, Chang Je; Cho, Nam Zin

    2000-01-01

    A linear multiple balance method (LMB) is developed to provide more accurate and positive solutions for the discrete ordinates neutron transport equations. In this multiple balance approach, one mesh cell is divided into two subcells with quadratic approximation of angular flux distribution. Four multiple balance equations are used to relate center angular flux with average angular flux by Simpson's rule. From the analysis of spatial truncation error, the accuracy of the linear multiple balance scheme is ο(Δ 4 ) whereas that of diamond differencing is ο(Δ 2 ). To accelerate the linear multiple balance method, we also describe a simplified additive angular dependent rebalance factor scheme which combines a modified boundary projection acceleration scheme and the angular dependent rebalance factor acceleration schme. It is demonstrated, via fourier analysis of a simple model problem as well as numerical calculations, that the additive angular dependent rebalance factor acceleration scheme is unconditionally stable with spectral radius < 0.2069c (c being the scattering ration). The numerical results tested so far on slab-geometry discrete ordinates transport problems show that the solution method of linear multiple balance is effective and sufficiently efficient

  12. A fresh look at linear ordinary differential equations with constant coefficients. Revisiting the impulsive response method using factorization

    Camporesi, Roberto

    2016-01-01

    We present an approach to the impulsive response method for solving linear constant-coefficient ordinary differential equations of any order based on the factorization of the differential operator. The approach is elementary, we only assume a basic knowledge of calculus and linear algebra. In particular, we avoid the use of distribution theory, as well as of the other more advanced approaches: Laplace transform, linear systems, the general theory of linear equations with variable coefficients and variation of parameters. The approach presented here can be used in a first course on differential equations for science and engineering majors.

  13. Solution of linear and nonlinear matrix systems. Application to a nonlinear diffusion equation

    Bonnet, M.; Meurant, G.

    1978-01-01

    Different methods of solution of linear and nonlinear algebraic systems are applied to the nonlinear system obtained by discretizing a nonlinear diffusion equation. For linear systems, methods in general use of alternating directions type or Gauss Seidel's methods are compared to more recent ones of the type of generalized conjugate gradient; the superiority of the latter is shown by numerical examples. For nonlinear systems, a method on nonlinear conjugate gradient is studied as also Newton's method and some of its variants. It should be noted, however that Newton's method is found to be more efficient when coupled with a good method for solution of the linear system. To conclude, such methods are used to solve a nonlinear diffusion problem and the numerical results obtained are to be compared [fr

  14. Solution of linear and nonlinear matrix systems. Application to a nonlinear diffusion equation

    Bonnet, M.; Meurant, G.

    1978-01-01

    The object of this study is to compare different methods of solving linear and nonlinear algebraic systems and to apply them to the nonlinear system obtained by discretizing a nonlinear diffusion equation. For linear systems the conventional methods of alternating direction type or Gauss Seidel's methods are compared to more recent ones of the type of generalized conjugate gradient; the superiority of the latter is shown by numerical examples. For nonlinear systems, a method of nonlinear conjugate gradient is studied together with Newton's method and some of its variants. It should be noted, however, that Newton's method is found to be more efficient when coupled with a good method for solving the linear system. As a conclusion, these methods are used to solve a nonlinear diffusion problem and the numerical results obtained are compared [fr

  15. An implicit meshless scheme for the solution of transient non-linear Poisson-type equations

    Bourantas, Georgios

    2013-07-01

    A meshfree point collocation method is used for the numerical simulation of both transient and steady state non-linear Poisson-type partial differential equations. Particular emphasis is placed on the application of the linearization method with special attention to the lagging of coefficients method and the Newton linearization method. The localized form of the Moving Least Squares (MLS) approximation is employed for the construction of the shape functions, in conjunction with the general framework of the point collocation method. Computations are performed for regular nodal distributions, stressing the positivity conditions that make the resulting system stable and convergent. The accuracy and the stability of the proposed scheme are demonstrated through representative and well-established benchmark problems. © 2013 Elsevier Ltd.

  16. An implicit meshless scheme for the solution of transient non-linear Poisson-type equations

    Bourantas, Georgios; Burganos, Vasilis N.

    2013-01-01

    A meshfree point collocation method is used for the numerical simulation of both transient and steady state non-linear Poisson-type partial differential equations. Particular emphasis is placed on the application of the linearization method with special attention to the lagging of coefficients method and the Newton linearization method. The localized form of the Moving Least Squares (MLS) approximation is employed for the construction of the shape functions, in conjunction with the general framework of the point collocation method. Computations are performed for regular nodal distributions, stressing the positivity conditions that make the resulting system stable and convergent. The accuracy and the stability of the proposed scheme are demonstrated through representative and well-established benchmark problems. © 2013 Elsevier Ltd.

  17. Unsteady Solution of Non-Linear Differential Equations Using Walsh Function Series

    Gnoffo, Peter A.

    2015-01-01

    Walsh functions form an orthonormal basis set consisting of square waves. The discontinuous nature of square waves make the system well suited for representing functions with discontinuities. The product of any two Walsh functions is another Walsh function - a feature that can radically change an algorithm for solving non-linear partial differential equations (PDEs). The solution algorithm of non-linear differential equations using Walsh function series is unique in that integrals and derivatives may be computed using simple matrix multiplication of series representations of functions. Solutions to PDEs are derived as functions of wave component amplitude. Three sample problems are presented to illustrate the Walsh function series approach to solving unsteady PDEs. These include an advection equation, a Burgers equation, and a Riemann problem. The sample problems demonstrate the use of the Walsh function solution algorithms, exploiting Fast Walsh Transforms in multi-dimensions (O(Nlog(N))). Details of a Fast Walsh Reciprocal, defined here for the first time, enable inversion of aWalsh Symmetric Matrix in O(Nlog(N)) operations. Walsh functions have been derived using a fractal recursion algorithm and these fractal patterns are observed in the progression of pairs of wave number amplitudes in the solutions. These patterns are most easily observed in a remapping defined as a fractal fingerprint (FFP). A prolongation of existing solutions to the next highest order exploits these patterns. The algorithms presented here are considered a work in progress that provide new alternatives and new insights into the solution of non-linear PDEs.

  18. Customized Steady-State Constraints for Parameter Estimation in Non-Linear Ordinary Differential Equation Models.

    Rosenblatt, Marcus; Timmer, Jens; Kaschek, Daniel

    2016-01-01

    Ordinary differential equation models have become a wide-spread approach to analyze dynamical systems and understand underlying mechanisms. Model parameters are often unknown and have to be estimated from experimental data, e.g., by maximum-likelihood estimation. In particular, models of biological systems contain a large number of parameters. To reduce the dimensionality of the parameter space, steady-state information is incorporated in the parameter estimation process. For non-linear models, analytical steady-state calculation typically leads to higher-order polynomial equations for which no closed-form solutions can be obtained. This can be circumvented by solving the steady-state equations for kinetic parameters, which results in a linear equation system with comparatively simple solutions. At the same time multiplicity of steady-state solutions is avoided, which otherwise is problematic for optimization. When solved for kinetic parameters, however, steady-state constraints tend to become negative for particular model specifications, thus, generating new types of optimization problems. Here, we present an algorithm based on graph theory that derives non-negative, analytical steady-state expressions by stepwise removal of cyclic dependencies between dynamical variables. The algorithm avoids multiple steady-state solutions by construction. We show that our method is applicable to most common classes of biochemical reaction networks containing inhibition terms, mass-action and Hill-type kinetic equations. Comparing the performance of parameter estimation for different analytical and numerical methods of incorporating steady-state information, we show that our approach is especially well-tailored to guarantee a high success rate of optimization.

  19. On the classical theory of ordinary linear differential equations of the second order and the Schroedinger equation for power law potentials

    Lima, M.L.; Mignaco, J.A.

    1983-01-01

    The power law potentials in the Schroedinger equation solved recently are shown to come from the classical treatment of the singularities of a linear, second order differential equation. This allows to enlarge the class of solvable power law potentials. (Author) [pt

  20. The Schroedinger equation for central power law potentials and the classical theory of ordinary linear differential equations of the second order

    Lima, M.L.; Mignaco, J.A.

    1985-01-01

    It is shown that the rational power law potentials in the two-body radial Schrodinger equations admit a systematic treatment available from the classical theory of ordinary linear differential equations of the second order. The resulting potentials come into families evolved from equations having a fixed number of elementary regular singularities. As a consequence, relations are found and discussed among the several potentials in a family. (Author) [pt

  1. The Schroedinger equation for central power law potentials and the classical theory of ordinary linear differential equations of the second order

    Lima, M.L.; Mignaco, J.A.

    1985-01-01

    It is shown that the rational power law potentials in the two-body radial Schoedinger equation admit a systematic treatment available from the classical theory of ordinary linear differential equations of the second order. The admissible potentials come into families evolved from equations having a fixed number of elementary singularities. As a consequence, relations are found and discussed among the several potentials in a family. (Author) [pt

  2. Existence and uniqueness to the Cauchy problem for linear and semilinear parabolic equations with local conditions⋆

    Rubio Gerardo

    2011-03-01

    Full Text Available We consider the Cauchy problem in ℝd for a class of semilinear parabolic partial differential equations that arises in some stochastic control problems. We assume that the coefficients are unbounded and locally Lipschitz, not necessarily differentiable, with continuous data and local uniform ellipticity. We construct a classical solution by approximation with linear parabolic equations. The linear equations involved can not be solved with the traditional results. Therefore, we construct a classical solution to the linear Cauchy problem under the same hypotheses on the coefficients for the semilinear equation. Our approach is using stochastic differential equations and parabolic differential equations in bounded domains. Finally, we apply the results to a stochastic optimal consumption problem. Nous considérons le problème de Cauchy dans ℝd pour une classe d’équations aux dérivées partielles paraboliques semi linéaires qui se pose dans certains problèmes de contrôle stochastique. Nous supposons que les coefficients ne sont pas bornés et sont localement Lipschitziennes, pas nécessairement différentiables, avec des données continues et ellipticité local uniforme. Nous construisons une solution classique par approximation avec les équations paraboliques linéaires. Les équations linéaires impliquées ne peuvent être résolues avec les résultats traditionnels. Par conséquent, nous construisons une solution classique au problème de Cauchy linéaire sous les mêmes hypothèses sur les coefficients pour l’équation semi-linéaire. Notre approche utilise les équations différentielles stochastiques et les équations différentielles paraboliques dans les domaines bornés. Enfin, nous appliquons les résultats à un problème stochastique de consommation optimale.

  3. Fast solution of elliptic partial differential equations using linear combinations of plane waves.

    Pérez-Jordá, José M

    2016-02-01

    Given an arbitrary elliptic partial differential equation (PDE), a procedure for obtaining its solution is proposed based on the method of Ritz: the solution is written as a linear combination of plane waves and the coefficients are obtained by variational minimization. The PDE to be solved is cast as a system of linear equations Ax=b, where the matrix A is not sparse, which prevents the straightforward application of standard iterative methods in order to solve it. This sparseness problem can be circumvented by means of a recursive bisection approach based on the fast Fourier transform, which makes it possible to implement fast versions of some stationary iterative methods (such as Gauss-Seidel) consuming O(NlogN) memory and executing an iteration in O(Nlog(2)N) time, N being the number of plane waves used. In a similar way, fast versions of Krylov subspace methods and multigrid methods can also be implemented. These procedures are tested on Poisson's equation expressed in adaptive coordinates. It is found that the best results are obtained with the GMRES method using a multigrid preconditioner with Gauss-Seidel relaxation steps.

  4. Geon-type solutions of the non-linear Heisenberg-Klein-Gordon equation

    Mielke, E.W.; Scherzer, R.

    1980-10-01

    As a model for a ''unitary'' field theory of extended particles we consider the non-linear Klein-Gordon equation - associated with a ''squared'' Heisenberg-Pauli-Weyl non-linear spinor equation - coupled to strong gravity. Using a stationary spherical ansatz for the complex scalar field as well as for the background metric generated via Einstein's field equation, we are able to study the effects of the scalar self-interaction as well as of the classical tensor forces. By numerical integration we obtain a continuous spectrum of localized, gravitational solitons resembling the geons previously constructed for the Einstein-Maxwell system by Wheeler. A self-generated curvature potential originating from the curved background partially confines the Schroedinger type wave functions within the ''scalar geon''. For zero angular momentum states and normalized scalar charge the spectrum for the total gravitational energy of these solitons exhibits a branching with respect to the number of nodes appearing in the radial part of the scalar field. Preliminary studies for higher values of the corresponding ''principal quantum number'' reveal that a kind of fine splitting of the energy levels occurs, which may indicate a rich, particle-like structure of these ''quantized geons''. (author)

  5. A parallel algorithm for solving linear equations arising from one-dimensional network problems

    Mesina, G.L.

    1991-01-01

    One-dimensional (1-D) network problems, such as those arising from 1- D fluid simulations and electrical circuitry, produce systems of sparse linear equations which are nearly tridiagonal and contain a few non-zero entries outside the tridiagonal. Most direct solution techniques for such problems either do not take advantage of the special structure of the matrix or do not fully utilize parallel computer architectures. We describe a new parallel direct linear equation solution algorithm, called TRBR, which is especially designed to take advantage of this structure on MIMD shared memory machines. The new method belongs to a family of methods which split the coefficient matrix into the sum of a tridiagonal matrix T and a matrix comprised of the remaining coefficients R. Efficient tridiagonal methods are used to algebraically simplify the linear system. A smaller auxiliary subsystem is created and solved and its solution is used to calculate the solution of the original system. The newly devised BR method solves the subsystem. The serial and parallel operation counts are given for the new method and related earlier methods. TRBR is shown to have the smallest operation count in this class of direct methods. Numerical results are given. Although the algorithm is designed for one-dimensional networks, it has been applied successfully to three-dimensional problems as well. 20 refs., 2 figs., 4 tabs

  6. Local Ray-Based Traveltime Computation Using the Linearized Eikonal Equation

    Almubarak, Mohammed S.

    2013-05-01

    The computation of traveltimes plays a critical role in the conventional implementations of Kirchhoff migration. Finite-difference-based methods are considered one of the most effective approaches for traveltime calculations and are therefore widely used. However, these eikonal solvers are mainly used to obtain early-arrival traveltime. Ray tracing can be used to pick later traveltime branches, besides the early arrivals, which may lead to an improvement in velocity estimation or in seismic imaging. In this thesis, I improved the accuracy of the solution of the linearized eikonal equation by constructing a linear system of equations (LSE) based on finite-difference approximation, which is of second-order accuracy. The ill-conditioned LSE is initially regularized and subsequently solved to calculate the traveltime update. Numerical tests proved that this method is as accurate as the second-order eikonal solver. Later arrivals are picked using ray tracing. These traveltimes are binned to the nearest node on a regular grid and empty nodes are estimated by interpolating the known values. The resulting traveltime field is used as an input to the linearized eikonal algorithm, which improves the accuracy of the interpolated nodes and yields a local ray-based traveltime. This is a preliminary study and further investigation is required to test the efficiency and the convergence of the solutions.

  7. A three operator split-step method covering a larger set of non-linear partial differential equations

    Zia, Haider

    2017-06-01

    This paper describes an updated exponential Fourier based split-step method that can be applied to a greater class of partial differential equations than previous methods would allow. These equations arise in physics and engineering, a notable example being the generalized derivative non-linear Schrödinger equation that arises in non-linear optics with self-steepening terms. These differential equations feature terms that were previously inaccessible to model accurately with low computational resources. The new method maintains a 3rd order error even with these additional terms and models the equation in all three spatial dimensions and time. The class of non-linear differential equations that this method applies to is shown. The method is fully derived and implementation of the method in the split-step architecture is shown. This paper lays the mathematical ground work for an upcoming paper employing this method in white-light generation simulations in bulk material.

  8. Dyson-Schwinger equations for the non-linear σ-model

    Drouffe, J.M.; Flyvbjerg, H.

    1989-08-01

    Dyson-Schwinger equations for the O(N)-symmetric non-linear σ-model are derived. They are polynomials in N, hence 1/N-expanded ab initio. A finite, closed set of equations is obtained by keeping only the leading term and the first correction term in this 1/N-series. These equations are solved numerically in two dimensions on square lattices measuring 50x50, 100x100, 200x200, and 400x400. They are also solved analytically at strong coupling and at weak coupling in a finite volume. In these two limits the solution is asymptotically identical to the exact strong- and weak-coupling series through the first three terms. Between these two limits, results for the magnetic susceptibility and the mass gap are identical to the Monte Carlo results available for N=3 and N=4 within a uniform systematic error of O(1/N 3 ), i.e. the results seem good to O(1/N 2 ), though obtained from equations that are exact only to O(1/N). This is understood by seeing the results as summed infinite subseries of the 1/N-series for the exact susceptibility and mass gap. We conclude that the kind of 1/N-expansion presented here converges as well as one might ever hope for, even for N as small as 3. (orig.)

  9. KAM for the non-linear Schroedinger equation a short presentation

    Eliasson, H L

    2006-01-01

    We consider the $d$-dimensional nonlinear Schr\\"o\\-dinger equation under periodic boundary conditions:-i\\dot u=\\Delta u+V(x)*u+\\ep \\frac{\\p F}{\\p \\bar u}(x,u,\\bar u) ;\\quad u=u(t,x),\\;x\\in\\T^dwhere $V(x)=\\sum \\hat V(a)e^{i\\sc{a,x}}$ is an analytic function with $\\hat V$ real and $F$ is a real analytic function in $\\Re u$, $\\Im u$ and $x$. (This equation is a popular model for the `real' NLS equation, where instead of the convolution term $V*u$ we have the potential term $Vu$.) For $\\ep=0$ the equation is linear and has time--quasi-periodic solutions $u$,u(t,x)=\\sum_{s\\in \\AA}\\hat u_0(a)e^{i(|a|^2+\\hat V(a))t}e^{i\\sc{a,x}}, \\quad 0<|\\hat u_0(a)|\\le1,where $\\AA$ is any finite subset of $\\Z^d$. We shall treat $\\omega_a=|a|^2+\\hat V(a)$, $a\\in\\AA$, as free parameters in some domain $U\\subset\\R^{\\AA}$. This is a Hamiltonian system in infinite degrees of freedom, degenerate but with external parameters, and we shall describe a KAM-theory which, in particular, will have the following consequence: \\smallskip {\\it ...

  10. Compact tunable silicon photonic differential-equation solver for general linear time-invariant systems.

    Wu, Jiayang; Cao, Pan; Hu, Xiaofeng; Jiang, Xinhong; Pan, Ting; Yang, Yuxing; Qiu, Ciyuan; Tremblay, Christine; Su, Yikai

    2014-10-20

    We propose and experimentally demonstrate an all-optical temporal differential-equation solver that can be used to solve ordinary differential equations (ODEs) characterizing general linear time-invariant (LTI) systems. The photonic device implemented by an add-drop microring resonator (MRR) with two tunable interferometric couplers is monolithically integrated on a silicon-on-insulator (SOI) wafer with a compact footprint of ~60 μm × 120 μm. By thermally tuning the phase shifts along the bus arms of the two interferometric couplers, the proposed device is capable of solving first-order ODEs with two variable coefficients. The operation principle is theoretically analyzed, and system testing of solving ODE with tunable coefficients is carried out for 10-Gb/s optical Gaussian-like pulses. The experimental results verify the effectiveness of the fabricated device as a tunable photonic ODE solver.

  11. On Attainability of Optimal Solutions for Linear Elliptic Equations with Unbounded Coefficients

    P. I. Kogut

    2011-12-01

    Full Text Available We study an optimal boundary control problem (OCP associated to a linear elliptic equation —div (Vj/ + A(xVy = f describing diffusion in a turbulent flow. The characteristic feature of this equation is the fact that, in applications, the stream matrix A(x = [a,ij(x]i,j=i,...,N is skew-symmetric, ац(х = —a,ji(x, measurable, and belongs to L -space (rather than L°°. An optimal solution to such problem can inherit a singular character of the original stream matrix A. We show that optimal solutions can be attainable by solutions of special optimal boundary control problems.

  12. Engineering equations for characterizing non-linear laser intensity propagation in air with loss.

    Karr, Thomas; Stotts, Larry B; Tellez, Jason A; Schmidt, Jason D; Mansell, Justin D

    2018-02-19

    The propagation of high peak-power laser beams in real atmospheres will be affected at long range by both linear and nonlinear effects contained therein. Arguably, J. H. Marburger is associated with the mathematical characterization of this phenomenon. This paper provides a validated set of engineering equations for characterizing the self-focusing distance from a laser beam propagating through non-turbulent air with, and without, loss as well as three source configurations: (1) no lens, (2) converging lens and (3) diverging lens. The validation was done against wave-optics simulation results. Some validated equations follow Marburger completely, but others do not, requiring modification of the original theory. Our results can provide a guide for numerical simulations and field experiments.

  13. Properties of linear integral equations related to the six-vertex model with disorder parameter II

    Boos, Hermann; Göhmann, Frank

    2012-01-01

    We study certain functions arising in the context of the calculation of correlation functions of the XXZ spin chain and of integrable field theories related to various scaling limits of the underlying six-vertex model. We show that several of these functions that are related to linear integral equations can be obtained by acting with (deformed) difference operators on a master function Φ. The latter is defined in terms of a functional equation and of its asymptotic behavior. Concentrating on the so-called temperature case, we show that these conditions uniquely determine the high-temperature series expansions of the master function. This provides an efficient calculation scheme for the high-temperature expansions of the derived functions as well. (paper)

  14. Anisotropic compacts stars on paraboloidal spacetime with linear equation of state

    Thomas, V.O. [The Maharaja Sayajirao University of Baroda, Department of Mathematics, Faculty of Science, Vadodara, Gujarat (India); Pandya, D.M. [Pandit Deendayal Petroleum University, Department of Mathematics and Computer Science, Gandhinagar, Gujarat (India)

    2017-06-15

    New exact solutions of Einstein's field equations (EFEs) by assuming a linear equation of state, p{sub r} = α(ρ-ρ{sub R}), where p{sub r} is the radial pressure and ρ{sub R} is the surface density, are obtained on the background of a paraboloidal spacetime. By assuming estimated mass and radius of strange star candidate 4U 1820-30, various physical and energy conditions are used for estimating the range of parameter α. The suitability of the model for describing pulsars like PSR J1903+327, Vela X-1, Her X-1 and SAX J1808.4-3658 has been explored and respective ranges of α, for which all physical and energy conditions are satisfied throughout the distribution, are obtained. (orig.)

  15. A convergence analysis for a sweeping preconditioner for block tridiagonal systems of linear equations

    Bagci, Hakan

    2014-11-11

    We study sweeping preconditioners for symmetric and positive definite block tridiagonal systems of linear equations. The algorithm provides an approximate inverse that can be used directly or in a preconditioned iterative scheme. These algorithms are based on replacing the Schur complements appearing in a block Gaussian elimination direct solve by hierarchical matrix approximations with reduced off-diagonal ranks. This involves developing low rank hierarchical approximations to inverses. We first provide a convergence analysis for the algorithm for reduced rank hierarchical inverse approximation. These results are then used to prove convergence and preconditioning estimates for the resulting sweeping preconditioner.

  16. Comparison of different methods for the solution of sets of linear equations

    Bilfinger, T.; Schmidt, F.

    1978-06-01

    The application of the conjugate-gradient methods as novel general iterative methods for the solution of sets of linear equations with symmetrical systems matrices led to this paper, where a comparison of these methods with the conventional differently accelerated Gauss-Seidel iteration was carried out. In additon, the direct Cholesky method was also included in the comparison. The studies referred mainly to memory requirement, computing time, speed of convergence, and accuracy of different conditions of the systems matrices, by which also the sensibility of the methods with respect to the influence of truncation errors may be recognized. (orig.) 891 RW [de

  17. Solutions of First-Order Volterra Type Linear Integrodifferential Equations by Collocation Method

    Olumuyiwa A. Agbolade

    2017-01-01

    Full Text Available The numerical solutions of linear integrodifferential equations of Volterra type have been considered. Power series is used as the basis polynomial to approximate the solution of the problem. Furthermore, standard and Chebyshev-Gauss-Lobatto collocation points were, respectively, chosen to collocate the approximate solution. Numerical experiments are performed on some sample problems already solved by homotopy analysis method and finite difference methods. Comparison of the absolute error is obtained from the present method and those from aforementioned methods. It is also observed that the absolute errors obtained are very low establishing convergence and computational efficiency.

  18. Development and adjustment of programs for solving systems of linear equations

    Fujimura, Toichiro

    1978-03-01

    Programs for solving the systems of linear equations have been adjusted and developed in expanding the scientific subroutine library SSL. The principal programs adjusted are based on the congruent method, method of product form of the inverse, orthogonal method, Crout's method for sparse system, and acceleration of iterative methods. The programs developed are based on the escalator method, direct parallel residue method and block tridiagonal method for band system. Described are usage of the programs developed and their future improvement. FORTRAN lists with simple examples in tests of the programs are also given. (auth.)

  19. Reproducing kernel method with Taylor expansion for linear Volterra integro-differential equations

    Azizallah Alvandi

    2017-06-01

    Full Text Available This research aims of the present a new and single algorithm for linear integro-differential equations (LIDE. To apply the reproducing Hilbert kernel method, there is made an equivalent transformation by using Taylor series for solving LIDEs. Shown in series form is the analytical solution in the reproducing kernel space and the approximate solution $ u_{N} $ is constructed by truncating the series to $ N $ terms. It is easy to prove the convergence of $ u_{N} $ to the analytical solution. The numerical solutions from the proposed method indicate that this approach can be implemented easily which shows attractive features.

  20. The solution of linear and nonlinear systems of Volterra functional equations using Adomian-Pade technique

    Dehghan, Mehdi; Shakourifar, Mohammad; Hamidi, Asgar

    2009-01-01

    The purpose of this study is to implement Adomian-Pade (Modified Adomian-Pade) technique, which is a combination of Adomian decomposition method (Modified Adomian decomposition method) and Pade approximation, for solving linear and nonlinear systems of Volterra functional equations. The results obtained by using Adomian-Pade (Modified Adomian-Pade) technique, are compared to those obtained by using Adomian decomposition method (Modified Adomian decomposition method) alone. The numerical results, demonstrate that ADM-PADE (MADM-PADE) technique, gives the approximate solution with faster convergence rate and higher accuracy than using the standard ADM (MADM).

  1. A convergence analysis for a sweeping preconditioner for block tridiagonal systems of linear equations

    Bagci, Hakan; Pasciak, Joseph E.; Sirenko, Kostyantyn

    2014-01-01

    We study sweeping preconditioners for symmetric and positive definite block tridiagonal systems of linear equations. The algorithm provides an approximate inverse that can be used directly or in a preconditioned iterative scheme. These algorithms are based on replacing the Schur complements appearing in a block Gaussian elimination direct solve by hierarchical matrix approximations with reduced off-diagonal ranks. This involves developing low rank hierarchical approximations to inverses. We first provide a convergence analysis for the algorithm for reduced rank hierarchical inverse approximation. These results are then used to prove convergence and preconditioning estimates for the resulting sweeping preconditioner.

  2. Hartree Fock-type equations in relativistic quantum electrodynamics with non-linear gauge fixing

    Dietz, K.; Hess, B.A.

    1990-08-01

    Relativistic mean-field equations are obtained by minimizing the effective energy obtained from the gauge-invariant energy density by eliminating electro-magnetic degrees of freedom in certain characteristic non-linear gauges. It is shown that by an appropriate choice of gauge many-body correlations, e.g. screening, three-body 'forces' etc. can be included already at the mean-field level. The many-body perturbation theory built on the latter is then expected to show improved 'convergence'. (orig.)

  3. Asymptotically linear Schrodinger equation with zero on the boundary of the spectrum

    Dongdong Qin

    2015-08-01

    Full Text Available This article concerns the Schr\\"odinger equation $$\\displaylines{ -\\Delta u+V(xu=f(x, u, \\quad \\text{for } x\\in\\mathbb{R}^N,\\cr u(x\\to 0, \\quad \\text{as } |x| \\to \\infty, }$$ where V and f are periodic in x, and 0 is a boundary point of the spectrum $\\sigma(-\\Delta+V$. Assuming that f(x,u is asymptotically linear as $|u|\\to\\infty$, existence of a ground state solution is established using some new techniques.

  4. "Real-Time Optical Laboratory Linear Algebra Solution Of Partial Differential Equations"

    Casasent, David; Jackson, James

    1986-03-01

    A Space Integrating (SI) Optical Linear Algebra Processor (OLAP) employing space and frequency-multiplexing, new partitioning and data flow, and achieving high accuracy performance with a non base-2 number system is described. Laboratory data on the performance of this system and the solution of parabolic Partial Differential Equations (PDEs) is provided. A multi-processor OLAP system is also described for the first time. It use in the solution of multiple banded matrices that frequently arise is then discussed. The utility and flexibility of this processor compared to digital systolic architectures should be apparent.

  5. Reduced-order modelling of parameter-dependent, linear and nonlinear dynamic partial differential equation models.

    Shah, A A; Xing, W W; Triantafyllidis, V

    2017-04-01

    In this paper, we develop reduced-order models for dynamic, parameter-dependent, linear and nonlinear partial differential equations using proper orthogonal decomposition (POD). The main challenges are to accurately and efficiently approximate the POD bases for new parameter values and, in the case of nonlinear problems, to efficiently handle the nonlinear terms. We use a Bayesian nonlinear regression approach to learn the snapshots of the solutions and the nonlinearities for new parameter values. Computational efficiency is ensured by using manifold learning to perform the emulation in a low-dimensional space. The accuracy of the method is demonstrated on a linear and a nonlinear example, with comparisons with a global basis approach.

  6. A piecewise bi-linear discontinuous finite element spatial discretization of the Sn transport equation

    Bailey, Teresa S.; Warsa, James S.; Chang, Jae H.; Adams, Marvin L.

    2011-01-01

    We present a new spatial discretization of the discrete-ordinates transport equation in two dimensional Cartesian (X-Y) geometry for arbitrary polygonal meshes. The discretization is a discontinuous finite element method (DFEM) that utilizes piecewise bi-linear (PWBL) basis functions, which are formally introduced in this paper. We also present a series of numerical results on quadrilateral and polygonal grids and compare these results to a variety of other spatial discretization that have been shown to be successful on these grid types. Finally, we note that the properties of the PWBL basis functions are such that the leading-order piecewise bi-linear discontinuous finite element (PWBLD) solution will satisfy a reasonably accurate diffusion discretization in the thick diffusion limit, making the PWBLD method a viable candidate for many different classes of transport problems. (author)

  7. A Piecewise Bi-Linear Discontinuous Finite Element Spatial Discretization of the Sn Transport Equation

    Bailey, T.S.; Chang, J.H.; Warsa, J.S.; Adams, M.L.

    2010-01-01

    We present a new spatial discretization of the discrete-ordinates transport equation in two-dimensional Cartesian (X-Y) geometry for arbitrary polygonal meshes. The discretization is a discontinuous finite element method (DFEM) that utilizes piecewise bi-linear (PWBL) basis functions, which are formally introduced in this paper. We also present a series of numerical results on quadrilateral and polygonal grids and compare these results to a variety of other spatial discretizations that have been shown to be successful on these grid types. Finally, we note that the properties of the PWBL basis functions are such that the leading-order piecewise bi-linear discontinuous finite element (PWBLD) solution will satisfy a reasonably accurate diffusion discretization in the thick diffusion limit, making the PWBLD method a viable candidate for many different classes of transport problems.

  8. Linear and quadratic exponential modulation of the solutions of the paraxial wave equation

    Torre, A

    2010-01-01

    A review of well-known transformations, which allow us to pass from one solution of the paraxial wave equation (PWE) (in one transverse space variable) to another, is presented. Such transformations are framed within the unifying context of the Lie algebra formalism, being related indeed to symmetries of the PWE. Due to the closure property of the symmetry group of the PWE we are led to consider as not trivial only the linear and the quadratic exponential modulation (accordingly, accompanied by a suitable shift or scaling of the space variables) of the original solutions of the PWE, which are seen to be just conveyed by a linear and a quadratic exponential modulation of the relevant 'source' functions. We will see that recently introduced solutions of the 1D PWE in both rectangular and polar coordinates can be deduced from already known solutions through the resulting symmetry transformation related schemes

  9. A Piecewise Bi-Linear Discontinuous Finite Element Spatial Discretization of the Sn Transport Equation

    Bailey, T S; Chang, J H; Warsa, J S; Adams, M L

    2010-12-22

    We present a new spatial discretization of the discrete-ordinates transport equation in two-dimensional Cartesian (X-Y) geometry for arbitrary polygonal meshes. The discretization is a discontinuous finite element method (DFEM) that utilizes piecewise bi-linear (PWBL) basis functions, which are formally introduced in this paper. We also present a series of numerical results on quadrilateral and polygonal grids and compare these results to a variety of other spatial discretizations that have been shown to be successful on these grid types. Finally, we note that the properties of the PWBL basis functions are such that the leading-order piecewise bi-linear discontinuous finite element (PWBLD) solution will satisfy a reasonably accurate diffusion discretization in the thick diffusion limit, making the PWBLD method a viable candidate for many different classes of transport problems.

  10. Projective-Dual Method for Solving Systems of Linear Equations with Nonnegative Variables

    Ganin, B. V.; Golikov, A. I.; Evtushenko, Yu. G.

    2018-02-01

    In order to solve an underdetermined system of linear equations with nonnegative variables, the projection of a given point onto its solutions set is sought. The dual of this problem—the problem of unconstrained maximization of a piecewise-quadratic function—is solved by Newton's method. The problem of unconstrained optimization dual of the regularized problem of finding the projection onto the solution set of the system is considered. A connection of duality theory and Newton's method with some known algorithms of projecting onto a standard simplex is shown. On the example of taking into account the specifics of the constraints of the transport linear programming problem, the possibility to increase the efficiency of calculating the generalized Hessian matrix is demonstrated. Some examples of numerical calculations using MATLAB are presented.

  11. On the calculation of linear stability with the aid of asymptotic solutions of Orr-Sommerfeld equation, 1

    Fujimura, Kaoru

    1980-11-01

    The numerical treatment of Orr-Sommerfeld equation which is the fundamental equation of linear hydrodynamic stability theory is described. Present calculation procedure is applied to the two-dimensional quasi-parallel flow for which linearized disturbance equation (Orr-Sommerfeld equation) contains one simple turning point and αR >> 1. The numerical procedure for this problem and one numerical example for Jeffery-Hamel flow (J-H III 1 ) are presented. These treatment can be extended to the other velocity profiles by slight midifications. (author)

  12. Exploring inductive linearization for pharmacokinetic-pharmacodynamic systems of nonlinear ordinary differential equations.

    Hasegawa, Chihiro; Duffull, Stephen B

    2018-02-01

    Pharmacokinetic-pharmacodynamic systems are often expressed with nonlinear ordinary differential equations (ODEs). While there are numerous methods to solve such ODEs these methods generally rely on time-stepping solutions (e.g. Runge-Kutta) which need to be matched to the characteristics of the problem at hand. The primary aim of this study was to explore the performance of an inductive approximation which iteratively converts nonlinear ODEs to linear time-varying systems which can then be solved algebraically or numerically. The inductive approximation is applied to three examples, a simple nonlinear pharmacokinetic model with Michaelis-Menten elimination (E1), an integrated glucose-insulin model and an HIV viral load model with recursive feedback systems (E2 and E3, respectively). The secondary aim of this study was to explore the potential advantages of analytically solving linearized ODEs with two examples, again E3 with stiff differential equations and a turnover model of luteinizing hormone with a surge function (E4). The inductive linearization coupled with a matrix exponential solution provided accurate predictions for all examples with comparable solution time to the matched time-stepping solutions for nonlinear ODEs. The time-stepping solutions however did not perform well for E4, particularly when the surge was approximated by a square wave. In circumstances when either a linear ODE is particularly desirable or the uncertainty in matching the integrator to the ODE system is of potential risk, then the inductive approximation method coupled with an analytical integration method would be an appropriate alternative.

  13. Performance prediction of gas turbines by solving a system of non-linear equations

    Kaikko, J

    1998-09-01

    This study presents a novel method for implementing the performance prediction of gas turbines from the component models. It is based on solving the non-linear set of equations that corresponds to the process equations, and the mass and energy balances for the engine. General models have been presented for determining the steady state operation of single components. Single and multiple shad arrangements have been examined with consideration also being given to heat regeneration and intercooling. Emphasis has been placed upon axial gas turbines of an industrial scale. Applying the models requires no information of the structural dimensions of the gas turbines. On comparison with the commonly applied component matching procedures, this method incorporates several advantages. The application of the models for providing results is facilitated as less attention needs to be paid to calculation sequences and routines. Solving the set of equations is based on zeroing co-ordinate functions that are directly derived from the modelling equations. Therefore, controlling the accuracy of the results is easy. This method gives more freedom for the selection of the modelling parameters since, unlike for the matching procedures, exchanging these criteria does not itself affect the algorithms. Implicit relationships between the variables are of no significance, thus increasing the freedom for the modelling equations as well. The mathematical models developed in this thesis will provide facilities to optimise the operation of any major gas turbine configuration with respect to the desired process parameters. The computational methods used in this study may also be adapted to any other modelling problems arising in industry. (orig.) 36 refs.

  14. The Use of BBC (Box, Board, and Comics Media in The Systems of Linear Equation

    P D Widyastuti

    2017-12-01

    Full Text Available Mathematics is one of the lessons in school. Starting from elementary school, junior high school, senior high school, even college. Mathematics is abstract and identic with numbers, so the author guessed that maybe this is the reason why students consider that mathematics is a difficult lesson. In fact, the learners deliver the material step by step. First, the teacher introduced something concrete to the students (related to the surrounding environment. After that, teacher introduced something more abstract to the students. Sometimes, the transition from concrete to abstract become the problem in the learning process. One of the materials that convert concrete to abstract is systems of linear equations in 8th grade because in this stage students are introduced to more coefficients and variables. This article will discuss how to use media in the form of BBC (Box, Board, and Comics on systems of linear equations. This research is about Research and Development (R &D. The procedures of comics followed the ADDIE model which included analysis, design, development, implementation, and evaluation. This research aims to create a valid media based on the validation by the and students’ responses which can be proven that BBC (Box, Board, and Comics media are interesting and worthy to use in the classroom.

  15. An Improved Recurrent Neural Network for Complex-Valued Systems of Linear Equation and Its Application to Robotic Motion Tracking.

    Ding, Lei; Xiao, Lin; Liao, Bolin; Lu, Rongbo; Peng, Hua

    2017-01-01

    To obtain the online solution of complex-valued systems of linear equation in complex domain with higher precision and higher convergence rate, a new neural network based on Zhang neural network (ZNN) is investigated in this paper. First, this new neural network for complex-valued systems of linear equation in complex domain is proposed and theoretically proved to be convergent within finite time. Then, the illustrative results show that the new neural network model has the higher precision and the higher convergence rate, as compared with the gradient neural network (GNN) model and the ZNN model. Finally, the application for controlling the robot using the proposed method for the complex-valued systems of linear equation is realized, and the simulation results verify the effectiveness and superiorness of the new neural network for the complex-valued systems of linear equation.

  16. Stabilized linear semi-implicit schemes for the nonlocal Cahn-Hilliard equation

    Du, Qiang; Ju, Lili; Li, Xiao; Qiao, Zhonghua

    2018-06-01

    Comparing with the well-known classic Cahn-Hilliard equation, the nonlocal Cahn-Hilliard equation is equipped with a nonlocal diffusion operator and can describe more practical phenomena for modeling phase transitions of microstructures in materials. On the other hand, it evidently brings more computational costs in numerical simulations, thus efficient and accurate time integration schemes are highly desired. In this paper, we propose two energy-stable linear semi-implicit methods with first and second order temporal accuracies respectively for solving the nonlocal Cahn-Hilliard equation. The temporal discretization is done by using the stabilization technique with the nonlocal diffusion term treated implicitly, while the spatial discretization is carried out by the Fourier collocation method with FFT-based fast implementations. The energy stabilities are rigorously established for both methods in the fully discrete sense. Numerical experiments are conducted for a typical case involving Gaussian kernels. We test the temporal convergence rates of the proposed schemes and make a comparison of the nonlocal phase transition process with the corresponding local one. In addition, long-time simulations of the coarsening dynamics are also performed to predict the power law of the energy decay.

  17. Interpolation problem for the solutions of linear elasticity equations based on monogenic functions

    Grigor'ev, Yuri; Gürlebeck, Klaus; Legatiuk, Dmitrii

    2017-11-01

    Interpolation is an important tool for many practical applications, and very often it is beneficial to interpolate not only with a simple basis system, but rather with solutions of a certain differential equation, e.g. elasticity equation. A typical example for such type of interpolation are collocation methods widely used in practice. It is known, that interpolation theory is fully developed in the framework of the classical complex analysis. However, in quaternionic analysis, which shows a lot of analogies to complex analysis, the situation is more complicated due to the non-commutative multiplication. Thus, a fundamental theorem of algebra is not available, and standard tools from linear algebra cannot be applied in the usual way. To overcome these problems, a special system of monogenic polynomials the so-called Pseudo Complex Polynomials, sharing some properties of complex powers, is used. In this paper, we present an approach to deal with the interpolation problem, where solutions of elasticity equations in three dimensions are used as an interpolation basis.

  18. Solutions to the linearized Navier-Stokes equations for channel flow via the WKB approximation

    Leonard, Anthony

    2017-11-01

    Progress on determining semi-analytical solutions to the linearized Navier-Stokes equations for incompressible channel flow, laminar and turbulent, is reported. Use of the WKB approximation yields, e.g., solutions to initial-value problem for the inviscid Orr-Sommerfeld equation in terms of the Bessel functions J+ 1 / 3 ,J- 1 / 3 ,J1 , and Y1 and their modified counterparts for any given wave speed c = ω /kx and k⊥ ,(k⊥2 =kx2 +kz2) . Of particular note to be discussed is a sequence i = 1 , 2 , . . . of homogeneous inviscid solutions with complex k⊥ i for each speed c, (0 < c <=Umax), in the downstream direction. These solutions for the velocity component normal to the wall v are localized in the plane parallel to the wall. In addition, for limited range of negative c, (- c * <= c <= 0) , we have found upstream-traveling homogeneous solutions with real k⊥(c) . In both cases the solutions for v serve as a source for corresponding solutions to the inviscid Squire equation for the vorticity component normal to the wall ωy.

  19. The linearized pressure Poisson equation for global instability analysis of incompressible flows

    Theofilis, Vassilis

    2017-12-01

    The linearized pressure Poisson equation (LPPE) is used in two and three spatial dimensions in the respective matrix-forming solution of the BiGlobal and TriGlobal eigenvalue problem in primitive variables on collocated grids. It provides a disturbance pressure boundary condition which is compatible with the recovery of perturbation velocity components that satisfy exactly the linearized continuity equation. The LPPE is employed to analyze instability in wall-bounded flows and in the prototype open Blasius boundary layer flow. In the closed flows, excellent agreement is shown between results of the LPPE and those of global linear instability analyses based on the time-stepping nektar++, Semtex and nek5000 codes, as well as with those obtained from the FreeFEM++ matrix-forming code. In the flat plate boundary layer, solutions extracted from the two-dimensional LPPE eigenvector at constant streamwise locations are found to be in very good agreement with profiles delivered by the NOLOT/PSE space marching code. Benchmark eigenvalue data are provided in all flows analyzed. The performance of the LPPE is seen to be superior to that of the commonly used pressure compatibility (PC) boundary condition: at any given resolution, the discrete part of the LPPE eigenspectrum contains converged and not converged, but physically correct, eigenvalues. By contrast, the PC boundary closure delivers some of the LPPE eigenvalues and, in addition, physically wrong eigenmodes. It is concluded that the LPPE should be used in place of the PC pressure boundary closure, when BiGlobal or TriGlobal eigenvalue problems are solved in primitive variables by the matrix-forming approach on collocated grids.

  20. OSCILLATION OF A SECOND-ORDER HALF-LINEAR NEUTRAL DAMPED DIFFERENTIAL EQUATION WITH TIME-DELAY

    2012-01-01

    In this paper,the oscillation for a class of second-order half-linear neutral damped differential equation with time-delay is studied.By means of Yang-inequality,the generalized Riccati transformation and a certain function,some new sufficient conditions for the oscillation are given for all solutions to the equation.

  1. Direct linearizing transform for three-dimensional discrete integrable systems: the lattice AKP, BKP and CKP equations.

    Fu, Wei; Nijhoff, Frank W

    2017-07-01

    A unified framework is presented for the solution structure of three-dimensional discrete integrable systems, including the lattice AKP, BKP and CKP equations. This is done through the so-called direct linearizing transform, which establishes a general class of integral transforms between solutions. As a particular application, novel soliton-type solutions for the lattice CKP equation are obtained.

  2. Modeling Individual Damped Linear Oscillator Processes with Differential Equations: Using Surrogate Data Analysis to Estimate the Smoothing Parameter

    Deboeck, Pascal R.; Boker, Steven M.; Bergeman, C. S.

    2008-01-01

    Among the many methods available for modeling intraindividual time series, differential equation modeling has several advantages that make it promising for applications to psychological data. One interesting differential equation model is that of the damped linear oscillator (DLO), which can be used to model variables that have a tendency to…

  3. Impact of quadratic non-linearity on the dynamics of periodic solutions of a wave equation

    Kolesov, Andrei Yu; Rozov, Nikolai Kh

    2002-01-01

    For the non-linear telegraph equation with homogeneous Dirichlet or Neumann conditions at the end-points of a finite interval the question of the existence and the stability of time-periodic solutions bifurcating from the zero equilibrium state is considered. The dynamics of these solutions under a change of the diffusion coefficient (that is, the coefficient of the second derivative with respect to the space variable) is investigated. For the Dirichlet boundary conditions it is shown that this dynamics substantially depends on the presence - or the absence - of quadratic terms in the non-linearity. More precisely, it is shown that a quadratic non-linearity results in the occurrence, under an unbounded decrease of diffusion, of an infinite sequence of bifurcations of each periodic solution. En route, the related issue of the limits of applicability of Yu.S. Kolesov's method of quasinormal forms to the construction of self-oscillations in singularly perturbed hyperbolic boundary value problems is studied

  4. Approximate reduction of linear population models governed by stochastic differential equations: application to multiregional models.

    Sanz, Luis; Alonso, Juan Antonio

    2017-12-01

    In this work we develop approximate aggregation techniques in the context of slow-fast linear population models governed by stochastic differential equations and apply the results to the treatment of populations with spatial heterogeneity. Approximate aggregation techniques allow one to transform a complex system involving many coupled variables and in which there are processes with different time scales, by a simpler reduced model with a fewer number of 'global' variables, in such a way that the dynamics of the former can be approximated by that of the latter. In our model we contemplate a linear fast deterministic process together with a linear slow process in which the parameters are affected by additive noise, and give conditions for the solutions corresponding to positive initial conditions to remain positive for all times. By letting the fast process reach equilibrium we build a reduced system with a lesser number of variables, and provide results relating the asymptotic behaviour of the first- and second-order moments of the population vector for the original and the reduced system. The general technique is illustrated by analysing a multiregional stochastic system in which dispersal is deterministic and the rate growth of the populations in each patch is affected by additive noise.

  5. The linear characteristic method for spatially discretizing the discrete ordinates equations in (x,y)-geometry

    Larsen, E.W.; Alcouffe, R.E.

    1981-01-01

    In this article a new linear characteristic (LC) spatial differencing scheme for the discrete ordinates equations in (x,y)-geometry is described and numerical comparisons are given with the diamond difference (DD) method. The LC method is more stable with mesh size and is generally much more accurate than the DD method on both fine and coarse meshes, for eigenvalue and deep penetration problems. The LC method is based on computations involving the exact solution of a cell problem which has spatially linear boundary conditions and interior source. The LC method is coupled to the diffusion synthetic acceleration (DSA) algorithm in that the linear variations of the source are determined in part by the results of the DSA calculation from the previous inner iteration. An inexpensive negative-flux fixup is used which has very little effect on the accuracy of the solution. The storage requirements for LC are essentially the same as that for DD, while the computational times for LC are generally less than twice the DD computational times for the same mesh. This increase in computational cost is offset if one computes LC solutions on somewhat coarser meshes than DD; the resulting LC solutions are still generally much more accurate than the DD solutions. (orig.) [de

  6. Value distribution of meromorphic solutions of homogeneous and non-homogeneous complex linear differential-difference equations

    Luo Li-Qin

    2016-01-01

    Full Text Available In this paper, we investigate the value distribution of meromorphic solutions of homogeneous and non-homogeneous complex linear differential-difference equations, and obtain the results on the relations between the order of the solutions and the convergence exponents of the zeros, poles, a-points and small function value points of the solutions, which show the relations in the case of non-homogeneous equations are sharper than the ones in the case of homogeneous equations.

  7. Linear and nonlinear properties of numerical methods for the rotating shallow water equations

    Eldred, Chris

    The shallow water equations provide a useful analogue of the fully compressible Euler equations since they have similar conservation laws, many of the same types of waves and a similar (quasi-) balanced state. It is desirable that numerical models posses similar properties, and the prototypical example of such a scheme is the 1981 Arakawa and Lamb (AL81) staggered (C-grid) total energy and potential enstrophy conserving scheme, based on the vector invariant form of the continuous equations. However, this scheme is restricted to a subset of logically square, orthogonal grids. The current work extends the AL81 scheme to arbitrary non-orthogonal polygonal grids, by combining Hamiltonian methods (work done by Salmon, Gassmann, Dubos and others) and Discrete Exterior Calculus (Thuburn, Cotter, Dubos, Ringler, Skamarock, Klemp and others). It is also possible to obtain these properties (along with arguably superior wave dispersion properties) through the use of a collocated (Z-grid) scheme based on the vorticity-divergence form of the continuous equations. Unfortunately, existing examples of these schemes in the literature for general, spherical grids either contain computational modes; or do not conserve total energy and potential enstrophy. This dissertation extends an existing scheme for planar grids to spherical grids, through the use of Nambu brackets (as pioneered by Rick Salmon). To compare these two schemes, the linear modes (balanced states, stationary modes and propagating modes; with and without dissipation) are examined on both uniform planar grids (square, hexagonal) and quasi-uniform spherical grids (geodesic, cubed-sphere). In addition to evaluating the linear modes, the results of the two schemes applied to a set of standard shallow water test cases and a recently developed forced-dissipative turbulence test case from John Thuburn (intended to evaluate the ability the suitability of schemes as the basis for a climate model) on both hexagonal

  8. A Fresh Look at Linear Ordinary Differential Equations with Constant Coefficients. Revisiting the Impulsive Response Method Using Factorization

    Camporesi, Roberto

    2016-01-01

    We present an approach to the impulsive response method for solving linear constant-coefficient ordinary differential equations of any order based on the factorization of the differential operator. The approach is elementary, we only assume a basic knowledge of calculus and linear algebra. In particular, we avoid the use of distribution theory, as…

  9. An arbitrary-order staggered time integrator for the linear acoustic wave equation

    Lee, Jaejoon; Park, Hyunseo; Park, Yoonseo; Shin, Changsoo

    2018-02-01

    We suggest a staggered time integrator whose order of accuracy can arbitrarily be extended to solve the linear acoustic wave equation. A strategy to select the appropriate order of accuracy is also proposed based on the error analysis that quantitatively predicts the truncation error of the numerical solution. This strategy not only reduces the computational cost several times, but also allows us to flexibly set the modelling parameters such as the time step length, grid interval and P-wave speed. It is demonstrated that the proposed method can almost eliminate temporal dispersive errors during long term simulations regardless of the heterogeneity of the media and time step lengths. The method can also be successfully applied to the source problem with an absorbing boundary condition, which is frequently encountered in the practical usage for the imaging algorithms or the inverse problems.

  10. Boundary Layers for the Navier-Stokes Equations Linearized Around a Stationary Euler Flow

    Gie, Gung-Min; Kelliher, James P.; Mazzucato, Anna L.

    2018-03-01

    We study the viscous boundary layer that forms at small viscosity near a rigid wall for the solution to the Navier-Stokes equations linearized around a smooth and stationary Euler flow (LNSE for short) in a smooth bounded domain Ω \\subset R^3 under no-slip boundary conditions. LNSE is supplemented with smooth initial data and smooth external forcing, assumed ill-prepared, that is, not compatible with the no-slip boundary condition. We construct an approximate solution to LNSE on the time interval [0, T], 0Math J 45(3):863-916, 1996), Xin and Yanagisawa (Commun Pure Appl Math 52(4):479-541, 1999), and Gie (Commun Math Sci 12(2):383-400, 2014).

  11. From Newton's Law to the Linear Boltzmann Equation Without Cut-Off

    Ayi, Nathalie

    2017-03-01

    We provide a rigorous derivation of the linear Boltzmann equation without cut-off starting from a system of particles interacting via a potential with infinite range as the number of particles N goes to infinity under the Boltzmann-Grad scaling. More particularly, we will describe the motion of a tagged particle in a gas close to global equilibrium. The main difficulty in our context is that, due to the infinite range of the potential, a non-integrable singularity appears in the angular collision kernel, making no longer valid the single-use of Lanford's strategy. Our proof relies then on a combination of Lanford's strategy, of tools developed recently by Bodineau, Gallagher and Saint-Raymond to study the collision process, and of new duality arguments to study the additional terms associated with the long-range interaction, leading to some explicit weak estimates.

  12. An algebraic fractional order differentiator for a class of signals satisfying a linear differential equation

    Liu, Da-Yan; Tian, Yang; Boutat, Driss; Laleg-Kirati, Taous-Meriem

    2015-01-01

    This paper aims at designing a digital fractional order differentiator for a class of signals satisfying a linear differential equation to estimate fractional derivatives with an arbitrary order in noisy case, where the input can be unknown or known with noises. Firstly, an integer order differentiator for the input is constructed using a truncated Jacobi orthogonal series expansion. Then, a new algebraic formula for the Riemann-Liouville derivative is derived, which is enlightened by the algebraic parametric method. Secondly, a digital fractional order differentiator is proposed using a numerical integration method in discrete noisy case. Then, the noise error contribution is analyzed, where an error bound useful for the selection of the design parameter is provided. Finally, numerical examples illustrate the accuracy and the robustness of the proposed fractional order differentiator.

  13. Growth and Zeros of Meromorphic Solutions to Second-Order Linear Differential Equations

    Maamar Andasmas

    2016-04-01

    Full Text Available The main purpose of this article is to investigate the growth of meromorphic solutions to homogeneous and non-homogeneous second order linear differential equations f00+Af0+Bf = F, where A(z, B (z and F (z are meromorphic functions with finite order having only finitely many poles. We show that, if there exist a positive constants σ > 0, α > 0 such that |A(z| ≥ eα|z|σ as |z| → +∞, z ∈ H, where dens{|z| : z ∈ H} > 0 and ρ = max{ρ(B, ρ(F} < σ, then every transcendental meromorphic solution f has an infinite order. Further, we give some estimates of their hyper-order, exponent and hyper-exponent of convergence of distinct zeros.

  14. An algebraic fractional order differentiator for a class of signals satisfying a linear differential equation

    Liu, Da-Yan

    2015-04-30

    This paper aims at designing a digital fractional order differentiator for a class of signals satisfying a linear differential equation to estimate fractional derivatives with an arbitrary order in noisy case, where the input can be unknown or known with noises. Firstly, an integer order differentiator for the input is constructed using a truncated Jacobi orthogonal series expansion. Then, a new algebraic formula for the Riemann-Liouville derivative is derived, which is enlightened by the algebraic parametric method. Secondly, a digital fractional order differentiator is proposed using a numerical integration method in discrete noisy case. Then, the noise error contribution is analyzed, where an error bound useful for the selection of the design parameter is provided. Finally, numerical examples illustrate the accuracy and the robustness of the proposed fractional order differentiator.

  15. Convergence and stability of the exponential Euler method for semi-linear stochastic delay differential equations.

    Zhang, Ling

    2017-01-01

    The main purpose of this paper is to investigate the strong convergence and exponential stability in mean square of the exponential Euler method to semi-linear stochastic delay differential equations (SLSDDEs). It is proved that the exponential Euler approximation solution converges to the analytic solution with the strong order [Formula: see text] to SLSDDEs. On the one hand, the classical stability theorem to SLSDDEs is given by the Lyapunov functions. However, in this paper we study the exponential stability in mean square of the exact solution to SLSDDEs by using the definition of logarithmic norm. On the other hand, the implicit Euler scheme to SLSDDEs is known to be exponentially stable in mean square for any step size. However, in this article we propose an explicit method to show that the exponential Euler method to SLSDDEs is proved to share the same stability for any step size by the property of logarithmic norm.

  16. Interval Oscillation Criteria for Super-Half-Linear Impulsive Differential Equations with Delay

    Zhonghai Guo

    2012-01-01

    Full Text Available We study the following second-order super-half-linear impulsive differential equations with delay [r(tφγ(x′(t]′+p(tφγ(x(t-σ+q(tf(x(t-σ=e(t, t≠τk, x(t+=akx(t, x′(t+=bkx′(t, t=τk, where t≥t0∈ℝ, φ*(u=|u|*-1u, σ is a nonnegative constant, {τk} denotes the impulsive moments sequence with τ1σ. By some classical inequalities, Riccati transformation, and two classes of functions, we give several interval oscillation criteria which generalize and improve some known results. Moreover, we also give two examples to illustrate the effectiveness and nonemptiness of our results.

  17. On the global "two-sided" characteristic Cauchy problem for linear wave equations on manifolds

    Lupo, Umberto

    2018-04-01

    The global characteristic Cauchy problem for linear wave equations on globally hyperbolic Lorentzian manifolds is examined, for a class of smooth initial value hypersurfaces satisfying favourable global properties. First it is shown that, if geometrically well-motivated restrictions are placed on the supports of the (smooth) initial datum and of the (smooth) inhomogeneous term, then there exists a continuous global solution which is smooth "on each side" of the initial value hypersurface. A uniqueness result in Sobolev regularity H^{1/2+ɛ }_{loc} is proved among solutions supported in the union of the causal past and future of the initial value hypersurface, and whose product with the indicator function of the causal future (resp. past) of the hypersurface is past compact (resp. future compact). An explicit representation formula for solutions is obtained, which prominently features an invariantly defined, densitised version of the null expansion of the hypersurface. Finally, applications to quantum field theory on curved spacetimes are briefly discussed.

  18. Convergence and stability of the exponential Euler method for semi-linear stochastic delay differential equations

    Ling Zhang

    2017-10-01

    Full Text Available Abstract The main purpose of this paper is to investigate the strong convergence and exponential stability in mean square of the exponential Euler method to semi-linear stochastic delay differential equations (SLSDDEs. It is proved that the exponential Euler approximation solution converges to the analytic solution with the strong order 1 2 $\\frac{1}{2}$ to SLSDDEs. On the one hand, the classical stability theorem to SLSDDEs is given by the Lyapunov functions. However, in this paper we study the exponential stability in mean square of the exact solution to SLSDDEs by using the definition of logarithmic norm. On the other hand, the implicit Euler scheme to SLSDDEs is known to be exponentially stable in mean square for any step size. However, in this article we propose an explicit method to show that the exponential Euler method to SLSDDEs is proved to share the same stability for any step size by the property of logarithmic norm.

  19. On the asymptotic expansions of solutions of an nth order linear differential equation with power coefficients

    Paris, R.B.; Wood, A.D.

    1984-11-01

    The asymptotic expansions of solutions of a class of linear ordinary differential equations of arbitrary order n, containing a factor zsup(m) multiplying the lower order derivatives, are investigated for large values of z in the complex plane. Four classes of solutions are considered which exhibit the following behaviour as /z/ → infinity in certain sectors: (i) solutions whose behaviour is either exponentially large or algebraic (involving p ( < n) algebraic expansions), (ii) solutions which are exponentially small (iii) solutions with a single algebraic expansion and (iv) solutions which are even and odd functions of z whenever n+m is even. The asymptotic expansions of these solutions in a full neigbourhood of the point at infinity are obtained by means of the theory of the solutions in the case m=O developed in a previous paper

  20. Bayesian analysis of non-linear differential equation models with application to a gut microbial ecosystem.

    Lawson, Daniel J; Holtrop, Grietje; Flint, Harry

    2011-07-01

    Process models specified by non-linear dynamic differential equations contain many parameters, which often must be inferred from a limited amount of data. We discuss a hierarchical Bayesian approach combining data from multiple related experiments in a meaningful way, which permits more powerful inference than treating each experiment as independent. The approach is illustrated with a simulation study and example data from experiments replicating the aspects of the human gut microbial ecosystem. A predictive model is obtained that contains prediction uncertainty caused by uncertainty in the parameters, and we extend the model to capture situations of interest that cannot easily be studied experimentally. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. A hybrid approach to parameter identification of linear delay differential equations involving multiple delays

    Marzban, Hamid Reza

    2018-05-01

    In this paper, we are concerned with the parameter identification of linear time-invariant systems containing multiple delays. The approach is based upon a hybrid of block-pulse functions and Legendre's polynomials. The convergence of the proposed procedure is established and an upper error bound with respect to the L2-norm associated with the hybrid functions is derived. The problem under consideration is first transformed into a system of algebraic equations. The least squares technique is then employed for identification of the desired parameters. Several multi-delay systems of varying complexity are investigated to evaluate the performance and capability of the proposed approximation method. It is shown that the proposed approach is also applicable to a class of nonlinear multi-delay systems. It is demonstrated that the suggested procedure provides accurate results for the desired parameters.

  2. Piecewise linear emulator of the nonlinear Schroedinger equation and the resulting analytic solutions for Bose-Einstein condensates

    Theodorakis, Stavros

    2003-01-01

    We emulate the cubic term Ψ 3 in the nonlinear Schroedinger equation by a piecewise linear term, thus reducing the problem to a set of uncoupled linear inhomogeneous differential equations. The resulting analytic expressions constitute an excellent approximation to the exact solutions, as is explicitly shown in the case of the kink, the vortex, and a δ function trap. Such a piecewise linear emulation can be used for any differential equation where the only nonlinearity is a Ψ 3 one. In particular, it can be used for the nonlinear Schroedinger equation in the presence of harmonic traps, giving analytic Bose-Einstein condensate solutions that reproduce very accurately the numerically calculated ones in one, two, and three dimensions

  3. Operational matrices with respect to Hermite polynomials and their applications in solving linear dierential equations with variable coecients

    A. Aminataei

    2014-05-01

    Full Text Available In this paper, a new and ecient approach is applied for numerical approximation of the linear dierential equations with variable coecients based on operational matrices with respect to Hermite polynomials. Explicit formulae which express the Hermite expansioncoecients for the moments of derivatives of any dierentiable function in terms of the original expansion coecients of the function itself are given in the matrix form. The mainimportance of this scheme is that using this approach reduces solving the linear dierentialequations to solve a system of linear algebraic equations, thus greatly simplifying the problem. In addition, two experiments are given to demonstrate the validity and applicability of the method

  4. Solution to the Diffusion equation for multi groups in X Y geometry using Linear Perturbation theory

    Mugica R, C.A.

    2004-01-01

    Diverse methods exist to solve numerically the neutron diffusion equation for several energy groups in stationary state among those that highlight those of finite elements. In this work the numerical solution of this equation is presented using Raviart-Thomas nodal methods type finite element, the RT0 and RT1, in combination with iterative techniques that allow to obtain the approached solution in a quick form. Nevertheless the above mentioned, the precision of a method is intimately bound to the dimension of the approach space by cell, 5 for the case RT0 and 12 for the RT1, and/or to the mesh refinement, that makes the order of the problem of own value to solve to grow considerably. By this way if it wants to know an acceptable approach to the value of the effective multiplication factor of the system when this it has experimented a small perturbation it was appeal to the Linear perturbation theory with which is possible to determine it starting from the neutron flow and of the effective multiplication factor of the not perturbed case. Results are presented for a reference problem in which a perturbation is introduced in an assemble that simulates changes in the control bar. (Author)

  5. Variational method enabling simplified solutions to the linearized Boltzmann equation for oscillatory gas flows

    Ladiges, Daniel R.; Sader, John E.

    2018-05-01

    Nanomechanical resonators and sensors, operated in ambient conditions, often generate low-Mach-number oscillating rarefied gas flows. Cercignani [C. Cercignani, J. Stat. Phys. 1, 297 (1969), 10.1007/BF01007482] proposed a variational principle for the linearized Boltzmann equation, which can be used to derive approximate analytical solutions of steady (time-independent) flows. Here we extend and generalize this principle to unsteady oscillatory rarefied flows and thus accommodate resonating nanomechanical devices. This includes a mathematical approach that facilitates its general use and allows for systematic improvements in accuracy. This formulation is demonstrated for two canonical flow problems: oscillatory Couette flow and Stokes' second problem. Approximate analytical formulas giving the bulk velocity and shear stress, valid for arbitrary oscillation frequency, are obtained for Couette flow. For Stokes' second problem, a simple system of ordinary differential equations is derived which may be solved to obtain the desired flow fields. Using this framework, a simple and accurate formula is provided for the shear stress at the oscillating boundary, again for arbitrary frequency, which may prove useful in application. These solutions are easily implemented on any symbolic or numerical package, such as Mathematica or matlab, facilitating the characterization of flows produced by nanomechanical devices and providing insight into the underlying flow physics.

  6. A constrained regularization method for inverting data represented by linear algebraic or integral equations

    Provencher, Stephen W.

    1982-09-01

    CONTIN is a portable Fortran IV package for inverting noisy linear operator equations. These problems occur in the analysis of data from a wide variety experiments. They are generally ill-posed problems, which means that errors in an unregularized inversion are unbounded. Instead, CONTIN seeks the optimal solution by incorporating parsimony and any statistical prior knowledge into the regularizor and absolute prior knowledge into equallity and inequality constraints. This can be greatly increase the resolution and accuracyh of the solution. CONTIN is very flexible, consisting of a core of about 50 subprograms plus 13 small "USER" subprograms, which the user can easily modify to specify special-purpose constraints, regularizors, operator equations, simulations, statistical weighting, etc. Specjial collections of USER subprograms are available for photon correlation spectroscopy, multicomponent spectra, and Fourier-Bessel, Fourier and Laplace transforms. Numerically stable algorithms are used throughout CONTIN. A fairly precise definition of information content in terms of degrees of freedom is given. The regularization parameter can be automatically chosen on the basis of an F-test and confidence region. The interpretation of the latter and of error estimates based on the covariance matrix of the constrained regularized solution are discussed. The strategies, methods and options in CONTIN are outlined. The program itself is described in the following paper.

  7. Nodal methods with non linear feedback for the three dimensional resolution of the diffusion's multigroup equations

    Ferri, A.A.

    1986-01-01

    Nodal methods applied in order to calculate the power distribution in a nuclear reactor core are presented. These methods have received special attention, because they yield accurate results in short computing times. Present nodal schemes contain several unknowns per node and per group. In the methods presented here, non linear feedback of the coupling coefficients has been applied to reduce this number to only one unknown per node and per group. The resulting algorithm is a 7- points formula, and the iterative process has proved stable in the response matrix scheme. The intranodal flux shape is determined by partial integration of the diffusion equations over two of the coordinates, leading to a set of three coupled one-dimensional equations. These can be solved by using a polynomial approximation or by integration (analytic solution). The tranverse net leakage is responsible for the coupling between the spatial directions, and two alternative methods are presented to evaluate its shape: direct parabolic approximation and local model expansion. Numerical results, which include the IAEA two-dimensional benchmark problem illustrate the efficiency of the developed methods. (M.E.L.) [es

  8. Iterative methods for the solution of very large complex symmetric linear systems of equations in electrodynamics

    Clemens, M.; Weiland, T. [Technische Hochschule Darmstadt (Germany)

    1996-12-31

    In the field of computational electrodynamics the discretization of Maxwell`s equations using the Finite Integration Theory (FIT) yields very large, sparse, complex symmetric linear systems of equations. For this class of complex non-Hermitian systems a number of conjugate gradient-type algorithms is considered. The complex version of the biconjugate gradient (BiCG) method by Jacobs can be extended to a whole class of methods for complex-symmetric algorithms SCBiCG(T, n), which only require one matrix vector multiplication per iteration step. In this class the well-known conjugate orthogonal conjugate gradient (COCG) method for complex-symmetric systems corresponds to the case n = 0. The case n = 1 yields the BiCGCR method which corresponds to the conjugate residual algorithm for the real-valued case. These methods in combination with a minimal residual smoothing process are applied separately to practical 3D electro-quasistatical and eddy-current problems in electrodynamics. The practical performance of the SCBiCG methods is compared with other methods such as QMR and TFQMR.

  9. Solving the linear inviscid shallow water equations in one dimension, with variable depth, using a recursion formula

    Hernandez-Walls, R; Martín-Atienza, B; Salinas-Matus, M; Castillo, J

    2017-01-01

    When solving the linear inviscid shallow water equations with variable depth in one dimension using finite differences, a tridiagonal system of equations must be solved. Here we present an approach, which is more efficient than the commonly used numerical method, to solve this tridiagonal system of equations using a recursion formula. We illustrate this approach with an example in which we solve for a rectangular channel to find the resonance modes. Our numerical solution agrees very well with the analytical solution. This new method is easy to use and understand by undergraduate students, so it can be implemented in undergraduate courses such as Numerical Methods, Lineal Algebra or Differential Equations. (paper)

  10. Solving the linear inviscid shallow water equations in one dimension, with variable depth, using a recursion formula

    Hernandez-Walls, R.; Martín-Atienza, B.; Salinas-Matus, M.; Castillo, J.

    2017-11-01

    When solving the linear inviscid shallow water equations with variable depth in one dimension using finite differences, a tridiagonal system of equations must be solved. Here we present an approach, which is more efficient than the commonly used numerical method, to solve this tridiagonal system of equations using a recursion formula. We illustrate this approach with an example in which we solve for a rectangular channel to find the resonance modes. Our numerical solution agrees very well with the analytical solution. This new method is easy to use and understand by undergraduate students, so it can be implemented in undergraduate courses such as Numerical Methods, Lineal Algebra or Differential Equations.

  11. Non-linear analysis of wave progagation using transform methods and plates and shells using integral equations

    Pipkins, Daniel Scott

    Two diverse topics of relevance in modern computational mechanics are treated. The first involves the modeling of linear and non-linear wave propagation in flexible, lattice structures. The technique used combines the Laplace Transform with the Finite Element Method (FEM). The procedure is to transform the governing differential equations and boundary conditions into the transform domain where the FEM formulation is carried out. For linear problems, the transformed differential equations can be solved exactly, hence the method is exact. As a result, each member of the lattice structure is modeled using only one element. In the non-linear problem, the method is no longer exact. The approximation introduced is a spatial discretization of the transformed non-linear terms. The non-linear terms are represented in the transform domain by making use of the complex convolution theorem. A weak formulation of the resulting transformed non-linear equations yields a set of element level matrix equations. The trial and test functions used in the weak formulation correspond to the exact solution of the linear part of the transformed governing differential equation. Numerical results are presented for both linear and non-linear systems. The linear systems modeled are longitudinal and torsional rods and Bernoulli-Euler and Timoshenko beams. For non-linear systems, a viscoelastic rod and Von Karman type beam are modeled. The second topic is the analysis of plates and shallow shells under-going finite deflections by the Field/Boundary Element Method. Numerical results are presented for two plate problems. The first is the bifurcation problem associated with a square plate having free boundaries which is loaded by four, self equilibrating corner forces. The results are compared to two existing numerical solutions of the problem which differ substantially. linear model are compared to those

  12. Linear and non-linear stability analysis for finite difference discretizations of high-order Boussinesq equations

    Fuhrman, David R.; Bingham, Harry B.; Madsen, Per A.

    2004-01-01

    of rotational and irrotational formulations in two horizontal dimensions provides evidence that the irrotational formulation has significantly better stability properties when the deep-water non-linearity is high, particularly on refined grids. Computation of matrix pseudospectra shows that the system is only...... insight into the numerical behaviour of this rather complicated system of non-linear PDEs....

  13. Fast linear solver for radiative transport equation with multiple right hand sides in diffuse optical tomography

    Jia, Jingfei; Kim, Hyun K.; Hielscher, Andreas H.

    2015-01-01

    It is well known that radiative transfer equation (RTE) provides more accurate tomographic results than its diffusion approximation (DA). However, RTE-based tomographic reconstruction codes have limited applicability in practice due to their high computational cost. In this article, we propose a new efficient method for solving the RTE forward problem with multiple light sources in an all-at-once manner instead of solving it for each source separately. To this end, we introduce here a novel linear solver called block biconjugate gradient stabilized method (block BiCGStab) that makes full use of the shared information between different right hand sides to accelerate solution convergence. Two parallelized block BiCGStab methods are proposed for additional acceleration under limited threads situation. We evaluate the performance of this algorithm with numerical simulation studies involving the Delta–Eddington approximation to the scattering phase function. The results show that the single threading block RTE solver proposed here reduces computation time by a factor of 1.5–3 as compared to the traditional sequential solution method and the parallel block solver by a factor of 1.5 as compared to the traditional parallel sequential method. This block linear solver is, moreover, independent of discretization schemes and preconditioners used; thus further acceleration and higher accuracy can be expected when combined with other existing discretization schemes or preconditioners. - Highlights: • We solve the multiple-right-hand-side problem in DOT with a block BiCGStab method. • We examine the CPU times of the block solver and the traditional sequential solver. • The block solver is faster than the sequential solver by a factor of 1.5–3.0. • Multi-threading block solvers give additional speedup under limited threads situation.

  14. Subspace orthogonalization for substructuring preconditioners for nonsymmetric systems of linear equations

    Starke, G. [Universitaet Karlsruhe (Germany)

    1994-12-31

    For nonselfadjoint elliptic boundary value problems which are preconditioned by a substructuring method, i.e., nonoverlapping domain decomposition, the author introduces and studies the concept of subspace orthogonalization. In subspace orthogonalization variants of Krylov methods the computation of inner products and vector updates, and the storage of basis elements is restricted to a (presumably small) subspace, in this case the edge and vertex unknowns with respect to the partitioning into subdomains. The author investigates subspace orthogonalization for two specific iterative algorithms, GMRES and the full orthogonalization method (FOM). This is intended to eliminate certain drawbacks of the Arnoldi-based Krylov subspace methods mentioned above. Above all, the length of the Arnoldi recurrences grows linearly with the iteration index which is therefore restricted to the number of basis elements that can be held in memory. Restarts become necessary and this often results in much slower convergence. The subspace orthogonalization methods, in contrast, require the storage of only the edge and vertex unknowns of each basis element which means that one can iterate much longer before restarts become necessary. Moreover, the computation of inner products is also restricted to the edge and vertex points which avoids the disturbance of the computational flow associated with the solution of subdomain problems. The author views subspace orthogonalization as an alternative to restarting or truncating Krylov subspace methods for nonsymmetric linear systems of equations. Instead of shortening the recurrences, one restricts them to a subset of the unknowns which has to be carefully chosen in order to be able to extend this partial solution to the entire space. The author discusses the convergence properties of these iteration schemes and its advantages compared to restarted or truncated versions of Krylov methods applied to the full preconditioned system.

  15. Analytical solutions of linear diffusion and wave equations in semi-infinite domains by using a new integral transform

    Gao Lin

    2017-01-01

    Full Text Available Recently, a new integral transform similar to Sumudu transform has been proposed by Yang [1]. Some of the properties of the integral transform are expanded in the present article. Meanwhile, new applications to the linear wave and diffusion equations in semi-infinite domains are discussed in detail. The proposed method provides an alternative approach to solve the partial differential equations in mathematical physics.

  16. Linear representation of algebras with non-associative operations which are satisfy in the balanced functional equations

    Ehsani, Amir

    2015-01-01

    Algebras with a pair of non-associative binary operations (f, g) which are satisfy in the balanced quadratic functional equations with four object variables considered. First, we obtain a linear representation for the operations, of this kind of binary algebras (A,f,g), over an abelian group (A, +) and then we generalize the linear representation of operations, to an algebra (A,F) with non-associative binary operations which are satisfy in the balanced quadratic functional equations with four object variables. (paper)

  17. Cartesian Mesh Linearized Euler Equations Solver for Aeroacoustic Problems around Full Aircraft

    Yuma Fukushima

    2015-01-01

    Full Text Available The linearized Euler equations (LEEs solver for aeroacoustic problems has been developed on block-structured Cartesian mesh to address complex geometry. Taking advantage of the benefits of Cartesian mesh, we employ high-order schemes for spatial derivatives and for time integration. On the other hand, the difficulty of accommodating curved wall boundaries is addressed by the immersed boundary method. The resulting LEEs solver is robust to complex geometry and numerically efficient in a parallel environment. The accuracy and effectiveness of the present solver are validated by one-dimensional and three-dimensional test cases. Acoustic scattering around a sphere and noise propagation from the JT15D nacelle are computed. The results show good agreement with analytical, computational, and experimental results. Finally, noise propagation around fuselage-wing-nacelle configurations is computed as a practical example. The results show that the sound pressure level below the over-the-wing nacelle (OWN configuration is much lower than that of the conventional DLR-F6 aircraft configuration due to the shielding effect of the OWN configuration.

  18. Global dynamics for switching systems and their extensions by linear differential equations

    Huttinga, Zane; Cummins, Bree; Gedeon, Tomáš; Mischaikow, Konstantin

    2018-03-01

    Switching systems use piecewise constant nonlinearities to model gene regulatory networks. This choice provides advantages in the analysis of behavior and allows the global description of dynamics in terms of Morse graphs associated to nodes of a parameter graph. The parameter graph captures spatial characteristics of a decomposition of parameter space into domains with identical Morse graphs. However, there are many cellular processes that do not exhibit threshold-like behavior and thus are not well described by a switching system. We consider a class of extensions of switching systems formed by a mixture of switching interactions and chains of variables governed by linear differential equations. We show that the parameter graphs associated to the switching system and any of its extensions are identical. For each parameter graph node, there is an order-preserving map from the Morse graph of the switching system to the Morse graph of any of its extensions. We provide counterexamples that show why possible stronger relationships between the Morse graphs are not valid.

  19. Quantitative Pointwise Estimate of the Solution of the Linearized Boltzmann Equation

    Lin, Yu-Chu; Wang, Haitao; Wu, Kung-Chien

    2018-04-01

    We study the quantitative pointwise behavior of the solutions of the linearized Boltzmann equation for hard potentials, Maxwellian molecules and soft potentials, with Grad's angular cutoff assumption. More precisely, for solutions inside the finite Mach number region (time like region), we obtain the pointwise fluid structure for hard potentials and Maxwellian molecules, and optimal time decay in the fluid part and sub-exponential time decay in the non-fluid part for soft potentials. For solutions outside the finite Mach number region (space like region), we obtain sub-exponential decay in the space variable. The singular wave estimate, regularization estimate and refined weighted energy estimate play important roles in this paper. Our results extend the classical results of Liu and Yu (Commun Pure Appl Math 57:1543-1608, 2004), (Bull Inst Math Acad Sin 1:1-78, 2006), (Bull Inst Math Acad Sin 6:151-243, 2011) and Lee et al. (Commun Math Phys 269:17-37, 2007) to hard and soft potentials by imposing suitable exponential velocity weight on the initial condition.

  20. Quantitative Pointwise Estimate of the Solution of the Linearized Boltzmann Equation

    Lin, Yu-Chu; Wang, Haitao; Wu, Kung-Chien

    2018-06-01

    We study the quantitative pointwise behavior of the solutions of the linearized Boltzmann equation for hard potentials, Maxwellian molecules and soft potentials, with Grad's angular cutoff assumption. More precisely, for solutions inside the finite Mach number region (time like region), we obtain the pointwise fluid structure for hard potentials and Maxwellian molecules, and optimal time decay in the fluid part and sub-exponential time decay in the non-fluid part for soft potentials. For solutions outside the finite Mach number region (space like region), we obtain sub-exponential decay in the space variable. The singular wave estimate, regularization estimate and refined weighted energy estimate play important roles in this paper. Our results extend the classical results of Liu and Yu (Commun Pure Appl Math 57:1543-1608, 2004), (Bull Inst Math Acad Sin 1:1-78, 2006), (Bull Inst Math Acad Sin 6:151-243, 2011) and Lee et al. (Commun Math Phys 269:17-37, 2007) to hard and soft potentials by imposing suitable exponential velocity weight on the initial condition.

  1. Global dynamics for switching systems and their extensions by linear differential equations.

    Huttinga, Zane; Cummins, Bree; Gedeon, Tomáš; Mischaikow, Konstantin

    2018-03-15

    Switching systems use piecewise constant nonlinearities to model gene regulatory networks. This choice provides advantages in the analysis of behavior and allows the global description of dynamics in terms of Morse graphs associated to nodes of a parameter graph. The parameter graph captures spatial characteristics of a decomposition of parameter space into domains with identical Morse graphs. However, there are many cellular processes that do not exhibit threshold-like behavior and thus are not well described by a switching system. We consider a class of extensions of switching systems formed by a mixture of switching interactions and chains of variables governed by linear differential equations. We show that the parameter graphs associated to the switching system and any of its extensions are identical. For each parameter graph node, there is an order-preserving map from the Morse graph of the switching system to the Morse graph of any of its extensions. We provide counterexamples that show why possible stronger relationships between the Morse graphs are not valid.

  2. A new modified conjugate gradient coefficient for solving system of linear equations

    Hajar, N.; ‘Aini, N.; Shapiee, N.; Abidin, Z. Z.; Khadijah, W.; Rivaie, M.; Mamat, M.

    2017-09-01

    Conjugate gradient (CG) method is an evolution of computational method in solving unconstrained optimization problems. This approach is easy to implement due to its simplicity and has been proven to be effective in solving real-life application. Although this field has received copious amount of attentions in recent years, some of the new approaches of CG algorithm cannot surpass the efficiency of the previous versions. Therefore, in this paper, a new CG coefficient which retains the sufficient descent and global convergence properties of the original CG methods is proposed. This new CG is tested on a set of test functions under exact line search. Its performance is then compared to that of some of the well-known previous CG methods based on number of iterations and CPU time. The results show that the new CG algorithm has the best efficiency amongst all the methods tested. This paper also includes an application of the new CG algorithm for solving large system of linear equations

  3. An Instructional Media using Comics on the Systems of Linear Equation

    Widyastuti, P. D.; Mardiyana, M.; Saputro, D. R. S.

    2017-09-01

    Comic is one of the frequently used media in our daily life. This media has been familiar for the community. Comic is mostly used as entertainment facilities. Along with the current development, comics are not only functioned as a means of entertainment, but also used in the field of education. There were some problems in a classroom which encouraged the researchers to use comics as a solution for those problems. This article aims at discussing on comics as an instructional media which is appropriate for students. This research uses research and development (R and D) method. The results obtained from this study are based on the students’ responses of the questionnaires and validation to help them understanding the system of linear equations material. Results show that comics can be used to replace LKS (student worksheet). Feedbacks from students and validators also show that comic is an attractive medium. It is said so since comics link the concrete into abstract things so that it is easily understood by the students.

  4. Permanence of the corpuscular appearance and non linearity of the wave equation

    Fargue, D.

    1984-01-01

    The two fold character of matter, undulatory and corpuscular, sets problems of mathematical representation which are not yet really solved. The easier to picture is certainly the wave: there are numerous partial differential equations which can be used and are well studied, at least in the linear domain. It remains to account for the corpuscle and, above all, to connect it in some way with the wave. One way is to represent the particle as a small region of large amplitude, or of large concentration of energy, a limiting case being a mathematical singularity. Such a theory must fulfill a number of requirements, three of which are discussed: 1. The permanence of the corpuscle must be ascertained: the bump in the field must not disappear, at least as long as the particle is not acted upon by too large force gradients. 2. A dynamics must be recovered, that is a law of motion for the corpuscle, which is in good agreement with experiment, or, for lack of it, with the former theories (classical or quantum) in their domain of validity. 3. One must also recover the results of the statistical experiments, the description of which is claimed to be one of the great successes of quantum theory, as it is commonly used in practice. (Auth.)

  5. Linear equations on thermal degradation products of wood chips in alkaline glycerol

    Demirbas, Ayhan

    2004-01-01

    Wood chips of 0.3 and 2 mm depth from poplar and spruce wood samples, respectively, were degraded by using glycerol as a solvent and alkaline glycerol with and without Na 2 CO 3 and NaOH catalysts at different degradation temperatures: 440, 450, 460, 470, 480, 490 and 500 K. By products from the degradation processes of the ligno celluloses include lignin degradation products. Lignin and its degradation products have fuel values. The total degradation degree and cellulose degradation of the wood chips were determined to find the relationship, if any, between the yields of total degradation degree (YTD) and degradation temperature (T). There is a good linear relationship between YTD or the yields of cellulose degradation (YCD) and T (K). For the wood samples, the regression equations from NaOH (10%) catalytic runs for 0.3 mm x 15 mm x 15 mm chip size are: For poplar wood: (YTD=0.7250T-267.507) (YCD=0.1736T-71.707) For spruce wood: (YTD=0.2650T-105.979) (YCD=0.0707T-27.507) For Eqs., the square of the correlation coefficient (r 2 ) were 0.9841, 0.9496, 0.9839 and 0.9447, respectively

  6. TBA equations for the mass gap in the O(2r) non-linear σ-models

    Balog, Janos; Hegedues, Arpad

    2005-01-01

    We propose TBA integral equations for 1-particle states in the O(n) non-linear σ-model for even n. The equations are conjectured on the basis of the analytic properties of the large volume asymptotics of the problem, which is explicitly constructed starting from Luscher's asymptotic formula. For small volumes the mass gap values computed numerically from the TBA equations agree very well with results of three-loop perturbation theory calculations, providing support for the validity of the proposed TBA system

  7. Localized and periodic exact solutions to the nonlinear Schroedinger equation with spatially modulated parameters: Linear and nonlinear lattices

    Belmonte-Beitia, Juan; Konotop, Vladimir V.; Perez-Garcia, Victor M.; Vekslerchik, Vadym E.

    2009-01-01

    Using similarity transformations we construct explicit solutions of the nonlinear Schroedinger equation with linear and nonlinear periodic potentials. We present explicit forms of spatially localized and periodic solutions, and study their properties. We put our results in the framework of the exploited perturbation techniques and discuss their implications on the properties of associated linear periodic potentials and on the possibilities of stabilization of gap solitons using polychromatic lattices.

  8. New exact solutions of the Tzitzéica-type equations in non-linear optics using the expa function method

    Hosseini, K.; Ayati, Z.; Ansari, R.

    2018-04-01

    One specific class of non-linear evolution equations, known as the Tzitzéica-type equations, has received great attention from a group of researchers involved in non-linear science. In this article, new exact solutions of the Tzitzéica-type equations arising in non-linear optics, including the Tzitzéica, Dodd-Bullough-Mikhailov and Tzitzéica-Dodd-Bullough equations, are obtained using the expa function method. The integration technique actually suggests a useful and reliable method to extract new exact solutions of a wide range of non-linear evolution equations.

  9. Dynamical and geometric aspects of Hamilton-Jacobi and linearized Monge-Ampère equations VIASM 2016

    Tran, Hung

    2017-01-01

    Consisting of two parts, the first part of this volume is an essentially self-contained exposition of the geometric aspects of local and global regularity theory for the Monge–Ampère and linearized Monge–Ampère equations. As an application, we solve the second boundary value problem of the prescribed affine mean curvature equation, which can be viewed as a coupling of the latter two equations. Of interest in its own right, the linearized Monge–Ampère equation also has deep connections and applications in analysis, fluid mechanics and geometry, including the semi-geostrophic equations in atmospheric flows, the affine maximal surface equation in affine geometry and the problem of finding Kahler metrics of constant scalar curvature in complex geometry. Among other topics, the second part provides a thorough exposition of the large time behavior and discounted approximation of Hamilton–Jacobi equations, which have received much attention in the last two decades, and a new approach to the subject, the n...

  10. Time-course window estimator for ordinary differential equations linear in the parameters

    Vujacic, Ivan; Dattner, Itai; Gonzalez, Javier; Wit, Ernst

    In many applications obtaining ordinary differential equation descriptions of dynamic processes is scientifically important. In both, Bayesian and likelihood approaches for estimating parameters of ordinary differential equations, the speed and the convergence of the estimation procedure may

  11. Using a Linear Regression Method to Detect Outliers in IRT Common Item Equating

    He, Yong; Cui, Zhongmin; Fang, Yu; Chen, Hanwei

    2013-01-01

    Common test items play an important role in equating alternate test forms under the common item nonequivalent groups design. When the item response theory (IRT) method is applied in equating, inconsistent item parameter estimates among common items can lead to large bias in equated scores. It is prudent to evaluate inconsistency in parameter…

  12. FORCED OSCILLATIONS OF SECOND ORDER SUPER-LINEAR DIFFERENTIAL EQUATION WITH IMPULSES

    2012-01-01

    At first,by means of Kartsatos technique,we reduce the impulsive differential equation to a second order nonlinear impulsive homogeneous equation.We find some suitable impulse functions such that all the solutions to the equation are oscillatory.Several criteria on the oscillations of solutions are given.At last,we give an example to demonstrate our results.

  13. Evaluation of an analytic linear Boltzmann transport equation solver for high-density inhomogeneities

    Lloyd, S. A. M.; Ansbacher, W. [Department of Physics and Astronomy, University of Victoria, Victoria, British Columbia V8W 3P6 (Canada); Department of Physics and Astronomy, University of Victoria, Victoria, British Columbia V8W 3P6 (Canada) and Department of Medical Physics, British Columbia Cancer Agency-Vancouver Island Centre, Victoria, British Columbia V8R 6V5 (Canada)

    2013-01-15

    Purpose: Acuros external beam (Acuros XB) is a novel dose calculation algorithm implemented through the ECLIPSE treatment planning system. The algorithm finds a deterministic solution to the linear Boltzmann transport equation, the same equation commonly solved stochastically by Monte Carlo methods. This work is an evaluation of Acuros XB, by comparison with Monte Carlo, for dose calculation applications involving high-density materials. Existing non-Monte Carlo clinical dose calculation algorithms, such as the analytic anisotropic algorithm (AAA), do not accurately model dose perturbations due to increased electron scatter within high-density volumes. Methods: Acuros XB, AAA, and EGSnrc based Monte Carlo are used to calculate dose distributions from 18 MV and 6 MV photon beams delivered to a cubic water phantom containing a rectangular high density (4.0-8.0 g/cm{sup 3}) volume at its center. The algorithms are also used to recalculate a clinical prostate treatment plan involving a unilateral hip prosthesis, originally evaluated using AAA. These results are compared graphically and numerically using gamma-index analysis. Radio-chromic film measurements are presented to augment Monte Carlo and Acuros XB dose perturbation data. Results: Using a 2% and 1 mm gamma-analysis, between 91.3% and 96.8% of Acuros XB dose voxels containing greater than 50% the normalized dose were in agreement with Monte Carlo data for virtual phantoms involving 18 MV and 6 MV photons, stainless steel and titanium alloy implants and for on-axis and oblique field delivery. A similar gamma-analysis of AAA against Monte Carlo data showed between 80.8% and 87.3% agreement. Comparing Acuros XB and AAA evaluations of a clinical prostate patient plan involving a unilateral hip prosthesis, Acuros XB showed good overall agreement with Monte Carlo while AAA underestimated dose on the upstream medial surface of the prosthesis due to electron scatter from the high-density material. Film measurements

  14. On the removal of boundary errors caused by Runge-Kutta integration of non-linear partial differential equations

    Abarbanel, Saul; Gottlieb, David; Carpenter, Mark H.

    1994-01-01

    It has been previously shown that the temporal integration of hyperbolic partial differential equations (PDE's) may, because of boundary conditions, lead to deterioration of accuracy of the solution. A procedure for removal of this error in the linear case has been established previously. In the present paper we consider hyperbolic (PDE's) (linear and non-linear) whose boundary treatment is done via the SAT-procedure. A methodology is present for recovery of the full order of accuracy, and has been applied to the case of a 4th order explicit finite difference scheme.

  15. Asymptotic Comparison of the Solutions of Linear Time-Delay Systems with Point and Distributed Lags with Those of Their Limiting Equations

    M. De la Sen

    2009-01-01

    Full Text Available This paper investigates the relations between the particular eigensolutions of a limiting functional differential equation of any order, which is the nominal (unperturbed linear autonomous differential equations, and the associate ones of the corresponding perturbed functional differential equation. Both differential equations involve point and distributed delayed dynamics including Volterra class dynamics. The proofs are based on a Perron-type theorem for functional equations so that the comparison is governed by the real part of a dominant zero of the characteristic equation of the nominal differential equation. The obtained results are also applied to investigate the global stability of the perturbed equation based on that of its corresponding limiting equation.

  16. On parametric domain for asymptotic stability with probability one of zero solution of linear Ito stochastic differential equations

    Phan Thanh An; Phan Le Na; Ngo Quoc Chung

    2004-05-01

    We describe a practical implementation for finding parametric domain for asymptotic stability with probability one of zero solution of linear Ito stochastic differential equations based on Korenevskij and Mitropolskij's sufficient condition and our sufficient conditions. Numerical results show that all of these sufficient conditions are crucial in the implementation. (author)

  17. Efficient solution of the non-linear Reynolds equation for compressible fluid using the finite element method

    Larsen, Jon Steffen; Santos, Ilmar

    2015-01-01

    An efficient finite element scheme for solving the non-linear Reynolds equation for compressible fluid coupled to compliant structures is presented. The method is general and fast and can be used in the analysis of airfoil bearings with simplified or complex foil structure models. To illustrate...

  18. Instructional Supports for Representational Fluency in Solving Linear Equations with Computer Algebra Systems and Paper-and-Pencil

    Fonger, Nicole L.; Davis, Jon D.; Rohwer, Mary Lou

    2018-01-01

    This research addresses the issue of how to support students' representational fluency--the ability to create, move within, translate across, and derive meaning from external representations of mathematical ideas. The context of solving linear equations in a combined computer algebra system (CAS) and paper-and-pencil classroom environment is…

  19. LINPACK, Subroutine Library for Linear Equation System Solution and Matrix Calculation

    Dongarra, J.J.

    1979-01-01

    1 - Description of problem or function: LINPACK is a collection of FORTRAN subroutines which analyze and solve various classes of systems of simultaneous linear algebraic equations. The collection deals with general, banded, symmetric indefinite, symmetric positive definite, triangular, and tridiagonal square matrices, as well as with least squares problems and the QR and singular value decompositions of rectangular matrices. A subroutine-naming convention is employed in which each subroutine name consists of five letters which represent a coded specification (TXXYY) of the computation done by that subroutine. The first letter, T, indicates the matrix data type. Standard FORTRAN allows the use of three such types: S REAL, D DOUBLE PRECISION, and C COMPLEX. In addition, some FORTRAN systems allow a double-precision complex type: Z COMPLEX*16. The second and third letters of the subroutine name, XX, indicate the form of the matrix or its decomposition: GE: General, GB: General band, PO: Positive definite, PP: Positive definite packed, PB: Positive definite band, SI: Symmetric indefinite, SP: Symmetric indefinite packed, HI: Hermitian indefinite, HP: Hermitian indefinite packed, TR: Triangular, GT: General tridiagonal, PT: Positive definite tridiagonal, CH: Cholesky decomposition, QR: Orthogonal-triangular decomposition, SV: Singular value decomposition. The final two letters, YY, indicate the computation done by the particular subroutine: FA: Factor, CO: Factor and estimate condition, SL: Solve, DI: Determinant and/or inverse and/or inertia, DC: Decompose, UD: Update, DD: Down-date, EX Exchange. The following chart shows all the LINPACK subroutines. The initial 'S' in the names may be replaced by D, C or Z and the initial 'C' in the complex-only names may be replaced by a Z. SGE: FA, CO, SL, DI; SGB: FA, CO, SL, DI; SPO: FA, CO, SL, DI; SPP: FA, CO, SL, DI; SPB: FA, CO, SL, DI; SSI: FA, CO, SL, DI; SSP: FA, CO, SL, DI; CHI: FA, CO, SL, DI; CHP: FA, CO, SL, DI; STR

  20. Accurate artificial boundary conditions for the semi-discretized linear Schrödinger and heat equations on rectangular domains

    Ji, Songsong; Yang, Yibo; Pang, Gang; Antoine, Xavier

    2018-01-01

    The aim of this paper is to design some accurate artificial boundary conditions for the semi-discretized linear Schrödinger and heat equations in rectangular domains. The Laplace transform in time and discrete Fourier transform in space are applied to get Green's functions of the semi-discretized equations in unbounded domains with single-source. An algorithm is given to compute these Green's functions accurately through some recurrence relations. Furthermore, the finite-difference method is used to discretize the reduced problem with accurate boundary conditions. Numerical simulations are presented to illustrate the accuracy of our method in the case of the linear Schrödinger and heat equations. It is shown that the reflection at the corners is correctly eliminated.

  1. Fourth order Douglas implicit scheme for solving three dimension reaction diffusion equation with non-linear source term

    Shahid Hasnain

    2017-07-01

    Full Text Available This research paper represents a numerical approximation to non-linear three dimension reaction diffusion equation with non-linear source term from population genetics. Since various initial and boundary value problems exist in three dimension reaction diffusion phenomena, which are studied numerically by different numerical methods, here we use finite difference schemes (Alternating Direction Implicit and Fourth Order Douglas Implicit to approximate the solution. Accuracy is studied in term of L2, L∞ and relative error norms by random selected grids along time levels for comparison with analytical results. The test example demonstrates the accuracy, efficiency and versatility of the proposed schemes. Numerical results showed that Fourth Order Douglas Implicit scheme is very efficient and reliable for solving 3-D non-linear reaction diffusion equation.

  2. Fourth order Douglas implicit scheme for solving three dimension reaction diffusion equation with non-linear source term

    Hasnain, Shahid; Saqib, Muhammad; Mashat, Daoud Suleiman

    2017-07-01

    This research paper represents a numerical approximation to non-linear three dimension reaction diffusion equation with non-linear source term from population genetics. Since various initial and boundary value problems exist in three dimension reaction diffusion phenomena, which are studied numerically by different numerical methods, here we use finite difference schemes (Alternating Direction Implicit and Fourth Order Douglas Implicit) to approximate the solution. Accuracy is studied in term of L2, L∞ and relative error norms by random selected grids along time levels for comparison with analytical results. The test example demonstrates the accuracy, efficiency and versatility of the proposed schemes. Numerical results showed that Fourth Order Douglas Implicit scheme is very efficient and reliable for solving 3-D non-linear reaction diffusion equation.

  3. A frequency domain linearized Navier-Stokes equations approach to acoustic propagation in flow ducts with sharp edges.

    Kierkegaard, Axel; Boij, Susann; Efraimsson, Gunilla

    2010-02-01

    Acoustic wave propagation in flow ducts is commonly modeled with time-domain non-linear Navier-Stokes equation methodologies. To reduce computational effort, investigations of a linearized approach in frequency domain are carried out. Calculations of sound wave propagation in a straight duct are presented with an orifice plate and a mean flow present. Results of transmission and reflections at the orifice are presented on a two-port scattering matrix form and are compared to measurements with good agreement. The wave propagation is modeled with a frequency domain linearized Navier-Stokes equation methodology. This methodology is found to be efficient for cases where the acoustic field does not alter the mean flow field, i.e., when whistling does not occur.

  4. On the stability, the periodic solutions and the resolution of certain types of non linear equations, and of non linearly coupled systems of these equations, appearing in betatronic oscillations

    Valat, J.

    1960-12-01

    Universal stability diagrams have been calculated and experimentally checked for Hill-Meissner type equations with square-wave coefficients. The study of these equations in the phase-plane has then made it possible to extend the periodic solution calculations to the case of non-linear differential equations with periodic square-wave coefficients. This theory has been checked experimentally. For non-linear coupled systems with constant coefficients, a search was first made for solutions giving an algebraic motion. The elliptical and Fuchs's functions solve such motions. The study of non-algebraic motions is more delicate, apart from the study of nonlinear Lissajous's motions. A functional analysis shows that it is possible however in certain cases to decouple the system and to find general solutions. For non-linear coupled systems with periodic square-wave coefficients it is then possible to calculate the conditions leading to periodic solutions, if the two non-linear associated systems with constant coefficients fall into one of the categories of the above paragraph. (author) [fr

  5. TECHNOLOGY OF CONSTRUCTING OF GUADRATIC EQUATIONS AND SYSTEMS OF LINEAR ALGEBRAIC EQUATIONS WITH PARAMETERS IN A MAPLE-MEDIUM

    Kushnir V.

    2017-12-01

    Full Text Available The problem of constructing quadratic equations and systems of equations with parameters using Maple-technology is studied. Today, the "learning tasks of reverse thinking" (V.A. Krutetsky or simply "inverse problems" (P.M.Erdniev are increasingly being introduced into the educational process. The tasks of constructing mathematical tasks in advance of a certain type and certain properties are inverse problems that unfold another aspect of the learning situation and thereby create a "surplus of its vision" (M.M. Bakhtin. The solution of inverse problems develops students’ thinking, imagination and other higher mental functions. However, their introduction into the educational process is still insufficient. One of the reasons for this situation is the insufficient number of benefits with a sufficient number of variants of the same type of tasks. Especially it concerns the construction of problems with parameters. Designing in "manual mode" requires significant temporary cognitive, physical and other efforts, carries the risks of allowing technical and computational errors. In the days of the information society and the digital economy, there are all the possibilities to perform the chain of design actions in a certain ICT environment (we have a Maple-environment. It solves the resulted difficulties of construction, creates a new educational and information environment, allows to produce automatically a sufficient number of different versions of the same type of tasks. Tasks with parameters require creativity from the students, non-standard approaches to the solution. Each task with parameters requires the creation of its own method and algorithm for solving and productive learning. The article is devoted to solving of the above problems.

  6. New approach to solve fully fuzzy system of linear equations using ...

    Known example problems are solved to illustrate the efficacy and ... The concept of fuzzy set and fuzzy number were first introduced by Zadeh .... (iii) Fully fuzzy linear systems can be solved by linear programming approach, Gauss elim-.

  7. Resummation of the 1/N-expansion of the non-linear σ-model by Dyson-Schwinger equations

    Drouffe, J.M.; Flyvbjerg, H.

    1988-02-01

    Dyson-Schwinger equations for the O(N)-symmetric non-linear σ-model are derived and expanded in 1/N. A closed set of equations is obtained by keeping only the leading term and the first correction term in this expansion. These equations are solved numerically in 2 dimensions on square lattices of sizes 50x50 and 100x100. Results for the magnetic susceptibility and the mass gap are compared with predictions of the ordinary 1/N-expansion and with Monte Carlo results. The results obtained with the Dyson-Schwinger equations show the same scaling behavior as found in the Monte Carlo results. This is not the behavior predicted by the perturbative renormalization group. (orig.)

  8. Approximate Forward Difference Equations for the Lower Order Non-Stationary Statistics of Geometrically Non-Linear Systems subject to Random Excitation

    Köylüoglu, H. U.; Nielsen, Søren R. K.; Cakmak, A. S.

    Geometrically non-linear multi-degree-of-freedom (MDOF) systems subject to random excitation are considered. New semi-analytical approximate forward difference equations for the lower order non-stationary statistical moments of the response are derived from the stochastic differential equations...... of motion, and, the accuracy of these equations is numerically investigated. For stationary excitations, the proposed method computes the stationary statistical moments of the response from the solution of non-linear algebraic equations....

  9. A general theory for gauge-free lifting

    Morrison, P. J.

    2013-01-01

    A theory for lifting equations of motion for charged particle dynamics, subject to given electromagnetic like forces, up to a gauge-free system of coupled Hamiltonian Vlasov-Maxwell like equations is given. The theory provides very general expressions for the polarization and magnetization vector fields in terms of the particle dynamics description of matter. Thus, as is common in plasma physics, the particle dynamics replaces conventional constitutive relations for matter. Several examples are considered including the usual Vlasov-Maxwell theory, a guiding center kinetic theory, Vlasov-Maxwell theory with the inclusion of spin, and a Vlasov-Maxwell theory with the inclusion of Dirac's magnetic monopoles. All are shown to be Hamiltonian field theories and the Jacobi identity is proven directly.

  10. Linear or linearizable first-order delay ordinary differential equations and their Lie point symmetries

    Dorodnitsyn, Vladimir A.; Kozlov, Roman; Meleshko, Sergey V.; Winternitz, Pavel

    2018-05-01

    A recent article was devoted to an analysis of the symmetry properties of a class of first-order delay ordinary differential systems (DODSs). Here we concentrate on linear DODSs, which have infinite-dimensional Lie point symmetry groups due to the linear superposition principle. Their symmetry algebra always contains a two-dimensional subalgebra realized by linearly connected vector fields. We identify all classes of linear first-order DODSs that have additional symmetries, not due to linearity alone, and we present representatives of each class. These additional symmetries are then used to construct exact analytical particular solutions using symmetry reduction.

  11. Some analytical solutions of the linearized Boussinesq equation with recharge for a sloping aquifer

    Verhoest, N.; Troch, P.A.

    2000-01-01

    Subsurface flow from a hillslope can be described by the hydraulic groundwater theory as formulated by the Boussinesq equation. Several attempts have been made to solve this partial differential equation, and exact solutions have been found for specific situations. In the case of a sloping aquifer,

  12. On the existence of eigenmodes of linear quasi-periodic differential equations and their relation to the MHD continuum

    Salat, A.

    1981-12-01

    The existence of quasi-periodic eigensolutions of a linear second order ordinary differential equation with quasi-periodic coefficient f(ω 1 t,ω 2 t) is investigated numerically and graphically. For sufficiently incommensurate frequencies ω 1 , ω 2 a doubly indexed infinite sequence of eigenvalues and eigenmodes is obtained. The equation considered is a model for the magneto-hydrodynamic 'continuum' in general toroidal geometry. The result suggests that continuum modes exist at least on sufficiently irrational magnetic surfaces. (orig.)

  13. Algorithm for solving the linear Cauchy problem for large systems of ordinary differential equations with the use of parallel computations

    Moryakov, A. V., E-mail: sailor@orc.ru [National Research Centre Kurchatov Institute (Russian Federation)

    2016-12-15

    An algorithm for solving the linear Cauchy problem for large systems of ordinary differential equations is presented. The algorithm for systems of first-order differential equations is implemented in the EDELWEISS code with the possibility of parallel computations on supercomputers employing the MPI (Message Passing Interface) standard for the data exchange between parallel processes. The solution is represented by a series of orthogonal polynomials on the interval [0, 1]. The algorithm is characterized by simplicity and the possibility to solve nonlinear problems with a correction of the operator in accordance with the solution obtained in the previous iterative process.

  14. Solution of Large Systems of Linear Equations with Quadratic or Non-Quadratic Matrices and Deconvoiution of Spectra

    Nygaard, K

    1967-12-15

    The numerical deconvolution of spectra is equivalent to the solution of a (large) system of linear equations with a matrix which is not necessarily a square matrix. The demand that the square sum of the residual errors shall be minimum is not in general sufficient to ensure a unique or 'sound' solution. Therefore other demands which may include the demand for minimum square errors are introduced which lead to 'sound' and 'non-oscillatory' solutions irrespective of the shape of the original matrix and of the determinant of the matrix of the normal equations.

  15. Nonlinear fluctuation-induced rate equations for linear birth-death processes

    Honkonen, J.

    2008-01-01

    The Fock-space approach to the solution of master equations for the one-step Markov processes is reconsidered. It is shown that in birth-death processes with an absorbing state at the bottom of the occupation-number spectrum and occupation-number independent annihilation probability occupation-number fluctuations give rise to rate equations drastically different from the polynomial form typical of birth-death processes. The fluctuation-induced rate equations with the characteristic exponential terms are derived for Mikhailov's ecological model and Lanchester's model of modern warfare

  16. Nonlinear fluctuations-induced rate equations for linear birth-death processes

    Honkonen, J.

    2008-05-01

    The Fock-space approach to the solution of master equations for one-step Markov processes is reconsidered. It is shown that in birth-death processes with an absorbing state at the bottom of the occupation-number spectrum and occupation-number independent annihilation probability of occupation-number fluctuations give rise to rate equations drastically different from the polynomial form typical of birth-death processes. The fluctuation-induced rate equations with the characteristic exponential terms are derived for Mikhailov’s ecological model and Lanchester’s model of modern warfare.

  17. Hölder Regularity of the 2D Dual Semigeostrophic Equations via Analysis of Linearized Monge-Ampère Equations

    Le, Nam Q.

    2018-05-01

    We obtain the Hölder regularity of time derivative of solutions to the dual semigeostrophic equations in two dimensions when the initial potential density is bounded away from zero and infinity. Our main tool is an interior Hölder estimate in two dimensions for an inhomogeneous linearized Monge-Ampère equation with right hand side being the divergence of a bounded vector field. As a further application of our Hölder estimate, we prove the Hölder regularity of the polar factorization for time-dependent maps in two dimensions with densities bounded away from zero and infinity. Our applications improve previous work by G. Loeper who considered the cases of densities sufficiently close to a positive constant.

  18. Positive solution of non-square fully Fuzzy linear system of equation in general form using least square method

    Reza Ezzati

    2014-08-01

    Full Text Available In this paper, we propose the least square method for computing the positive solution of a non-square fully fuzzy linear system. To this end, we use Kaffman' arithmetic operations on fuzzy numbers \\cite{17}. Here, considered existence of exact solution using pseudoinverse, if they are not satisfy in positive solution condition, we will compute fuzzy vector core and then we will obtain right and left spreads of positive fuzzy vector by introducing constrained least squares problem. Using our proposed method, non-square fully fuzzy linear system of equations always has a solution. Finally, we illustrate the efficiency of proposed method by solving some numerical examples.

  19. Stability analysis of explicit entropy viscosity methods for non-linear scalar conservation equations

    Bonito, Andrea; Guermond, Jean-Luc; Popov, Bojan

    2013-01-01

    We establish the L2-stability of an entropy viscosity technique applied to nonlinear scalar conservation equations. First-and second-order explicit time-stepping techniques using continuous finite elements in space are considered. The method

  20. Effective quadrature formula in solving linear integro-differential equations of order two

    Eshkuvatov, Z. K.; Kammuji, M.; Long, N. M. A. Nik; Yunus, Arif A. M.

    2017-08-01

    In this note, we solve general form of Fredholm-Volterra integro-differential equations (IDEs) of order 2 with boundary condition approximately and show that proposed method is effective and reliable. Initially, IDEs is reduced into integral equation of the third kind by using standard integration techniques and identity between multiple and single integrals then truncated Legendre series are used to estimate the unknown function. For the kernel integrals, we have applied Gauss-Legendre quadrature formula and collocation points are chosen as the roots of the Legendre polynomials. Finally, reduce the integral equations of the third kind into the system of algebraic equations and Gaussian elimination method is applied to get approximate solutions. Numerical examples and comparisons with other methods reveal that the proposed method is very effective and dominated others in many cases. General theory of existence of the solution is also discussed.

  1. Development and linearization of generalized material balance equation for coal bed methane reservoirs

    Penuela, G; Ordonez R, A; Bejarano, A

    1998-01-01

    A generalized material balance equation was presented at the Escuela de Petroleos de la Universidad Industrial de Santander for coal seam gas reservoirs based on Walsh's method, who worked in an analogous approach for oil and gas conventional reservoirs (Walsh, 1995). Our equation was based on twelve similar assumptions itemized by Walsh for his generalized expression for conventional reservoirs it was started from the same volume balance consideration and was finally reorganized like Walsh (1994) did. Because it is not expressed in terms of traditional (P/Z) plots, as proposed by King (1990), it allows to perform a lot of quantitative and qualitative analyses. It was also demonstrated that the existent equations are only particular cases of the generalized expression evaluated under certain restrictions. This equation is applicable to coal seam gas reservoirs in saturated, equilibrium and under saturated conditions, and to any type of coal beds without restriction on especial values of the constant diffusion

  2. ON THE BOUNDEDNESS AND THE STABILITY OF SOLUTION TO THIRD ORDER NON-LINEAR DIFFERENTIAL EQUATIONS

    2008-01-01

    In this paper we investigate the global asymptotic stability,boundedness as well as the ultimate boundedness of solutions to a general third order nonlinear differential equation,using complete Lyapunov function.

  3. On symmetry reduction and exact solutions of the linear one-dimensional Schroedinger equation

    Barannik, L.L.

    1996-01-01

    Symmetry reduction of the Schroedinger equation with potential is carried out on subalgebras of the Lie algebra which is the direct sum of the special Galilei algebra and one-dimensional algebra. Some new exact solutions are obtained

  4. A New Entropy Formula and Gradient Estimates for the Linear Heat Equation on Static Manifold

    Abimbola Abolarinwa

    2014-08-01

    Full Text Available In this paper we prove a new monotonicity formula for the heat equation via a generalized family of entropy functionals. This family of entropy formulas generalizes both Perelman’s entropy for evolving metric and Ni’s entropy on static manifold. We show that this entropy satisfies a pointwise differential inequality for heat kernel. The consequences of which are various gradient and Harnack estimates for all positive solutions to the heat equation on compact manifold.

  5. Linear force and moment equations for an annular smooth shaft seal perturbed both angularly and laterally

    Fenwick, J.; Dijulio, R.; Ek, M. C.; Ehrgott, R.

    1982-01-01

    Coefficients are derived for equations expressing the lateral force and pitching moments associated with both planar translation and angular perturbations from a nominally centered rotating shaft with respect to a stationary seal. The coefficients for the lowest order and first derivative terms emerge as being significant and are of approximately the same order of magnitude as the fundamental coefficients derived by means of Black's equations. Second derivative, shear perturbation, and entrance coefficient variation effects are adjudged to be small.

  6. Unique solvability of a non-linear non-local boundary-value problem for systems of non-linear functional differential equations

    Dilna, N.; Rontó, András

    2010-01-01

    Roč. 60, č. 3 (2010), s. 327-338 ISSN 0139-9918 R&D Projects: GA ČR(CZ) GA201/06/0254 Institutional research plan: CEZ:AV0Z10190503 Keywords : non-linear boundary value-problem * functional differential equation * non-local condition * unique solvability * differential inequality Subject RIV: BA - General Mathematics Impact factor: 0.316, year: 2010 http://link.springer.com/article/10.2478%2Fs12175-010-0015-9

  7. Molecular representation of molar domain (volume), evolution equations, and linear constitutive relations for volume transport.

    Eu, Byung Chan

    2008-09-07

    In the traditional theories of irreversible thermodynamics and fluid mechanics, the specific volume and molar volume have been interchangeably used for pure fluids, but in this work we show that they should be distinguished from each other and given distinctive statistical mechanical representations. In this paper, we present a general formula for the statistical mechanical representation of molecular domain (volume or space) by using the Voronoi volume and its mean value that may be regarded as molar domain (volume) and also the statistical mechanical representation of volume flux. By using their statistical mechanical formulas, the evolution equations of volume transport are derived from the generalized Boltzmann equation of fluids. Approximate solutions of the evolution equations of volume transport provides kinetic theory formulas for the molecular domain, the constitutive equations for molar domain (volume) and volume flux, and the dissipation of energy associated with volume transport. Together with the constitutive equation for the mean velocity of the fluid obtained in a previous paper, the evolution equations for volume transport not only shed a fresh light on, and insight into, irreversible phenomena in fluids but also can be applied to study fluid flow problems in a manner hitherto unavailable in fluid dynamics and irreversible thermodynamics. Their roles in the generalized hydrodynamics will be considered in the sequel.

  8. ILUBCG2-11: Solution of 11-banded nonsymmetric linear equation systems by a preconditioned biconjugate gradient routine

    Chen, Y.-M.; Koniges, A. E.; Anderson, D. V.

    1989-10-01

    The biconjugate gradient method (BCG) provides an attractive alternative to the usual conjugate gradient algorithms for the solution of sparse systems of linear equations with nonsymmetric and indefinite matrix operators. A preconditioned algorithm is given, whose form resembles the incomplete L-U conjugate gradient scheme (ILUCG2) previously presented. Although the BCG scheme requires the storage of two additional vectors, it converges in a significantly lesser number of iterations (often half), while the number of calculations per iteration remains essentially the same.

  9. On the boundedness and integration of non-oscillatory solutions of certain linear differential equations of second order.

    Tunç, Cemil; Tunç, Osman

    2016-01-01

    In this paper, certain system of linear homogeneous differential equations of second-order is considered. By using integral inequalities, some new criteria for bounded and [Formula: see text]-solutions, upper bounds for values of improper integrals of the solutions and their derivatives are established to the considered system. The obtained results in this paper are considered as extension to the results obtained by Kroopnick (2014) [1]. An example is given to illustrate the obtained results.

  10. A role of the coefficient of the differential term in qualitative theory of half-linear equations

    Řehák, Pavel

    2010-01-01

    Roč. 135, č. 2 (2010), s. 151-162 ISSN 0862-7959 R&D Projects: GA AV ČR KJB100190701 Grant - others:GA ČR(CZ) GA201/07/0145 Institutional research plan: CEZ:AV0Z10190503 Keywords : half-linear dynamic equation * time scale * transformation * comparison theorem * oscillation criteria Subject RIV: BA - General Mathematics http://www.dml.cz/handle/10338.dmlcz/140692

  11. A Family of Symmetric Linear Multistep Methods for the Numerical Solution of the Schroedinger Equation and Related Problems

    Anastassi, Z. A.; Simos, T. E.

    2010-01-01

    We develop a new family of explicit symmetric linear multistep methods for the efficient numerical solution of the Schroedinger equation and related problems with oscillatory solution. The new methods are trigonometrically fitted and have improved intervals of periodicity as compared to the corresponding classical method with constant coefficients and other methods from the literature. We also apply the methods along with other known methods to real periodic problems, in order to measure their efficiency.

  12. Solution of the linear transport equation, monoenergetic in multiregions with anisotopic scattering by the method F sub(N)

    Pontedeiro, E.M.B.D.; Maiorino, J.R.

    1982-01-01

    The linear equation transport, monoenergetic, with anysotropic scattering, in multiregions, by F sub(N) method, is resolved. The mathematical analysis used for this method consists in to use parcially the expansion method in singular autofunctions, or Case's method, aiming to derive a set of integral equations coupled to the angular distribution in the boundaries and interfaces, and then to approximate these distributions by polynomics of N order, aiming to derive, with the use of these boundary and continuity conditions in the interfaces, a set of algebric equations for the coef. of polynomical approximation. With the goal to obtain numerical results, a computer code (FNAM-1) with options for the number of regions, boundary conditions, F sub(N) approx order, were developed. Numerical results were then obtained for various sample problems and compared with the results published in the literature with the objective to demonstrate the precision and applicability of the F sub(N) method. (E.G.) [pt

  13. Diffusion-accelerated solution of the 2-D x-y Sn equations with linear-bilinear nodal differencing

    Wareing, T.A.; Walters, W.F.; Morel, J.E.

    1994-01-01

    Recently a new diffusion-synthetic acceleration scheme was developed for solving the 2-D S n Equations in x-y geometry with bilinear-discontinuous finite element spatial discretization using a bilinear-discontinuous diffusion differencing scheme for the diffusion acceleration equations. This method differs from previous methods in that it is conditional efficient for problems with isotropic or nearly isotropic scattering. We have used the same bilinear-discontinuous diffusion scheme, and associated solution technique, to accelerate the x-y geometry S n equations with linear-bilinear nodal spatial differencing. We find that this leads to an unconditionally efficient solution method for problems with isotropic or nearly isotropic scattering. computational results are given which demonstrate this property

  14. Non-linear corrections to the time-covariance function derived from a multi-state chemical master equation.

    Scott, M

    2012-08-01

    The time-covariance function captures the dynamics of biochemical fluctuations and contains important information about the underlying kinetic rate parameters. Intrinsic fluctuations in biochemical reaction networks are typically modelled using a master equation formalism. In general, the equation cannot be solved exactly and approximation methods are required. For small fluctuations close to equilibrium, a linearisation of the dynamics provides a very good description of the relaxation of the time-covariance function. As the number of molecules in the system decrease, deviations from the linear theory appear. Carrying out a systematic perturbation expansion of the master equation to capture these effects results in formidable algebra; however, symbolic mathematics packages considerably expedite the computation. The authors demonstrate that non-linear effects can reveal features of the underlying dynamics, such as reaction stoichiometry, not available in linearised theory. Furthermore, in models that exhibit noise-induced oscillations, non-linear corrections result in a shift in the base frequency along with the appearance of a secondary harmonic.

  15. Numerical solution of non-linear dual-phase-lag bioheat transfer equation within skin tissues.

    Kumar, Dinesh; Kumar, P; Rai, K N

    2017-11-01

    This paper deals with numerical modeling and simulation of heat transfer in skin tissues using non-linear dual-phase-lag (DPL) bioheat transfer model under periodic heat flux boundary condition. The blood perfusion is assumed temperature-dependent which results in non-linear DPL bioheat transfer model in order to predict more accurate results. A numerical method of line which is based on finite difference and Runge-Kutta (4,5) schemes, is used to solve the present non-linear problem. Under specific case, the exact solution has been obtained and compared with the present numerical scheme, and we found that those are in good agreement. A comparison based on model selection criterion (AIC) has been made among non-linear DPL models when the variation of blood perfusion rate with temperature is of constant, linear and exponential type with the experimental data and it has been found that non-linear DPL model with exponential variation of blood perfusion rate is closest to the experimental data. In addition, it is found that due to absence of phase-lag phenomena in Pennes bioheat transfer model, it achieves steady state more quickly and always predict higher temperature than thermal and DPL non-linear models. The effect of coefficient of blood perfusion rate, dimensionless heating frequency and Kirchoff number on dimensionless temperature distribution has also been analyzed. The whole analysis is presented in dimensionless form. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Rapid Fourier space solution of linear partial integro-differential equations in toroidal magnetic confinement geometries

    McMillan, B.F.; Jolliet, S.; Tran, T.M.; Villard, L.; Bottino, A.; Angelino, P.

    2010-01-01

    Fluctuating quantities in magnetic confinement geometries often inherit a strong anisotropy along the field lines. One technique for describing these structures is the use of a certain set of Fourier components on the tori of nested flux surfaces. We describe an implementation of this approach for solving partial differential equations, like Poisson's equation, where a different set of Fourier components may be chosen on each surface according to the changing safety factor profile. Allowing the resolved components to change to follow the anisotropy significantly reduces the total number of degrees of freedom in the description. This can permit large gains in computational performance. We describe, in particular, how this approach can be applied to rapidly solve the gyrokinetic Poisson equation in a particle code, ORB5 (Jolliet et al. (2007) [5]), with a regular (non-field-aligned) mesh. (authors)

  17. Contractivity properties of a class of linear multistep methods for nonlinear neutral delay differential equations

    Wang Wansheng; Li Shoufu; Wang Wenqiang

    2009-01-01

    In this paper, we show that under identical conditions which guarantee the contractivity of the theoretical solutions of general nonlinear NDDEs, the numerical solutions obtained by a class of linear multistep methods are also contractive.

  18. Existence of entire solutions of some non-linear differential-difference equations.

    Chen, Minfeng; Gao, Zongsheng; Du, Yunfei

    2017-01-01

    In this paper, we investigate the admissible entire solutions of finite order of the differential-difference equations [Formula: see text] and [Formula: see text], where [Formula: see text], [Formula: see text] are two non-zero polynomials, [Formula: see text] is a polynomial and [Formula: see text]. In addition, we investigate the non-existence of entire solutions of finite order of the differential-difference equation [Formula: see text], where [Formula: see text], [Formula: see text] are two non-constant polynomials, [Formula: see text], m , n are positive integers and satisfy [Formula: see text] except for [Formula: see text], [Formula: see text].

  19. Operational method of solution of linear non-integer ordinary and partial differential equations.

    Zhukovsky, K V

    2016-01-01

    We propose operational method with recourse to generalized forms of orthogonal polynomials for solution of a variety of differential equations of mathematical physics. Operational definitions of generalized families of orthogonal polynomials are used in this context. Integral transforms and the operational exponent together with some special functions are also employed in the solutions. The examples of solution of physical problems, related to such problems as the heat propagation in various models, evolutional processes, Black-Scholes-like equations etc. are demonstrated by the operational technique.

  20. The Form of the Solutions of the Linear Integro-Differential Equations of Subsonic Aeroelasticity.

    1979-09-01

    coefficients w (0) are given in Table 3; it V follows that, for T > 0 and (E - K v2) non-singular, the inverse transform of M- ) has the form, using (B-I) V...degree of freedom system by expanding )M- I in the form of equation (35), obtaining its inverse transform using the v -1results of Appendix A and hence...obtaining the inverse transform of M- l . The two-dimensional case, when the characteristic equation has a zero root, is not as simple. * Assuming all