WorldWideScience

Sample records for linear-scaling smooth local

  1. Subcellular localization for Gram positive and Gram negative bacterial proteins using linear interpolation smoothing model.

    Science.gov (United States)

    Saini, Harsh; Raicar, Gaurav; Dehzangi, Abdollah; Lal, Sunil; Sharma, Alok

    2015-12-07

    Protein subcellular localization is an important topic in proteomics since it is related to a protein׳s overall function, helps in the understanding of metabolic pathways, and in drug design and discovery. In this paper, a basic approximation technique from natural language processing called the linear interpolation smoothing model is applied for predicting protein subcellular localizations. The proposed approach extracts features from syntactical information in protein sequences to build probabilistic profiles using dependency models, which are used in linear interpolation to determine how likely is a sequence to belong to a particular subcellular location. This technique builds a statistical model based on maximum likelihood. It is able to deal effectively with high dimensionality that hinders other traditional classifiers such as Support Vector Machines or k-Nearest Neighbours without sacrificing performance. This approach has been evaluated by predicting subcellular localizations of Gram positive and Gram negative bacterial proteins. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Non-linear second-order periodic systems with non-smooth potential

    Indian Academy of Sciences (India)

    In this paper we study second order non-linear periodic systems driven by the ordinary vector -Laplacian with a non-smooth, locally Lipschitz potential function. Our approach is variational and it is based on the non-smooth critical point theory. We prove existence and multiplicity results under general growth conditions on ...

  3. Non-linear second-order periodic systems with non-smooth potential

    Indian Academy of Sciences (India)

    R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22

    Abstract. In this paper we study second order non-linear periodic systems driven by the ordinary vector p-Laplacian with a non-smooth, locally Lipschitz potential function. Our approach is variational and it is based on the non-smooth critical point theory. We prove existence and multiplicity results under general growth ...

  4. Single image super-resolution using locally adaptive multiple linear regression.

    Science.gov (United States)

    Yu, Soohwan; Kang, Wonseok; Ko, Seungyong; Paik, Joonki

    2015-12-01

    This paper presents a regularized superresolution (SR) reconstruction method using locally adaptive multiple linear regression to overcome the limitation of spatial resolution of digital images. In order to make the SR problem better-posed, the proposed method incorporates the locally adaptive multiple linear regression into the regularization process as a local prior. The local regularization prior assumes that the target high-resolution (HR) pixel is generated by a linear combination of similar pixels in differently scaled patches and optimum weight parameters. In addition, we adapt a modified version of the nonlocal means filter as a smoothness prior to utilize the patch redundancy. Experimental results show that the proposed algorithm better restores HR images than existing state-of-the-art methods in the sense of the most objective measures in the literature.

  5. Linear-scaling evaluation of the local energy in quantum Monte Carlo

    International Nuclear Information System (INIS)

    Austin, Brian; Aspuru-Guzik, Alan; Salomon-Ferrer, Romelia; Lester, William A. Jr.

    2006-01-01

    For atomic and molecular quantum Monte Carlo calculations, most of the computational effort is spent in the evaluation of the local energy. We describe a scheme for reducing the computational cost of the evaluation of the Slater determinants and correlation function for the correlated molecular orbital (CMO) ansatz. A sparse representation of the Slater determinants makes possible efficient evaluation of molecular orbitals. A modification to the scaled distance function facilitates a linear scaling implementation of the Schmidt-Moskowitz-Boys-Handy (SMBH) correlation function that preserves the efficient matrix multiplication structure of the SMBH function. For the evaluation of the local energy, these two methods lead to asymptotic linear scaling with respect to the molecule size

  6. Linear scaling of density functional algorithms

    International Nuclear Information System (INIS)

    Stechel, E.B.; Feibelman, P.J.; Williams, A.R.

    1993-01-01

    An efficient density functional algorithm (DFA) that scales linearly with system size will revolutionize electronic structure calculations. Density functional calculations are reliable and accurate in determining many condensed matter and molecular ground-state properties. However, because current DFA's, including methods related to that of Car and Parrinello, scale with the cube of the system size, density functional studies are not routinely applied to large systems. Linear scaling is achieved by constructing functions that are both localized and fully occupied, thereby eliminating the need to calculate global eigenfunctions. It is, however, widely believed that exponential localization requires the existence of an energy gap between the occupied and unoccupied states. Despite this, the authors demonstrate that linear scaling can still be achieved for metals. Using a linear scaling algorithm, they have explicitly constructed localized, almost fully occupied orbitals for the quintessential metallic system, jellium. The algorithm is readily generalizable to any system geometry and Hamiltonian. They will discuss the conceptual issues involved, convergence properties and scaling for their new algorithm

  7. Linear independence of localized magnon states

    International Nuclear Information System (INIS)

    Schmidt, Heinz-Juergen; Richter, Johannes; Moessner, Roderich

    2006-01-01

    At the magnetic saturation field, certain frustrated lattices have a class of states known as 'localized multi-magnon states' as exact ground states. The number of these states scales exponentially with the number N of spins and hence they have a finite entropy also in the thermodynamic limit N → ∞ provided they are sufficiently linearly independent. In this paper, we present rigorous results concerning the linear dependence or independence of localized magnon states and investigate special examples. For large classes of spin lattices, including what we call the orthogonal type and the isolated type, as well as the kagome, the checkerboard and the star lattice, we have proven linear independence of all localized multi-magnon states. On the other hand, the pyrochlore lattice provides an example of a spin lattice having localized multi-magnon states with considerable linear dependence

  8. Preface: Introductory Remarks: Linear Scaling Methods

    Science.gov (United States)

    Bowler, D. R.; Fattebert, J.-L.; Gillan, M. J.; Haynes, P. D.; Skylaris, C.-K.

    2008-07-01

    implementation questions relating to parallelization (particularly with multi-core processors starting to dominate the market) and inherent scaling and basis sets (in both normal and linear scaling codes). For now, the answer seems to lie between 100-1,000 atoms, though this depends on the type of simulation used among other factors. Basis sets are still a problematic question in the area of electronic structure calculations. The linear scaling community has largely split into two camps: those using relatively small basis sets based on local atomic-like functions (where systematic convergence to the full basis set limit is hard to achieve); and those that use necessarily larger basis sets which allow convergence systematically and therefore are the localised equivalent of plane waves. Related to basis sets is the study of Wannier functions, on which some linear scaling methods are based and which give a good point of contact with traditional techniques; they are particularly interesting for modelling unoccupied states with linear scaling methods. There are, of course, as many approaches to linear scaling solution for the density matrix as there are groups in the area, though there are various broad areas: McWeeny-based methods, fragment-based methods, recursion methods, and combinations of these. While many ideas have been in development for several years, there are still improvements emerging, as shown by the rich variety of the talks below. Applications using O(N) DFT methods are now starting to emerge, though they are still clearly not trivial. Once systems to be simulated cross the 10,000 atom barrier, only linear scaling methods can be applied, even with the most efficient standard techniques. One of the most challenging problems remaining, now that ab initio methods can be applied to large systems, is the long timescale problem. Although much of the work presented was concerned with improving the performance of the codes, and applying them to scientificallyimportant

  9. Smoothing identification of systems with small non-linearities

    Czech Academy of Sciences Publication Activity Database

    Kozánek, Jan; Piranda, J.

    2003-01-01

    Roč. 38, č. 1 (2003), s. 71-84 ISSN 0025-6455 R&D Projects: GA ČR GA101/00/1471 Institutional research plan: CEZ:AV0Z2076919 Keywords : identification * small non-linearities * smoothing methods Subject RIV: BI - Acoustics Impact factor: 0.237, year: 2003

  10. Local smoothness for global optical flow

    DEFF Research Database (Denmark)

    Rakêt, Lars Lau

    2012-01-01

    by this technique and work on local-global optical flow we propose a simple method for fusing optical flow estimates of different smoothness by evaluating interpolation quality locally by means of L1 block match on the corresponding set of gradient images. We illustrate the method in a setting where optical flows...

  11. Effect of smoothing on robust chaos.

    Science.gov (United States)

    Deshpande, Amogh; Chen, Qingfei; Wang, Yan; Lai, Ying-Cheng; Do, Younghae

    2010-08-01

    In piecewise-smooth dynamical systems, situations can arise where the asymptotic attractors of the system in an open parameter interval are all chaotic (e.g., no periodic windows). This is the phenomenon of robust chaos. Previous works have established that robust chaos can occur through the mechanism of border-collision bifurcation, where border is the phase-space region where discontinuities in the derivatives of the dynamical equations occur. We investigate the effect of smoothing on robust chaos and find that periodic windows can arise when a small amount of smoothness is present. We introduce a parameter of smoothing and find that the measure of the periodic windows in the parameter space scales linearly with the parameter, regardless of the details of the smoothing function. Numerical support and a heuristic theory are provided to establish the scaling relation. Experimental evidence of periodic windows in a supposedly piecewise linear dynamical system, which has been implemented as an electronic circuit, is also provided.

  12. A smooth bouncing cosmology with scale invariant spectrum

    International Nuclear Information System (INIS)

    Creminelli, P.; Senatore, L.

    2007-01-01

    We present a bouncing cosmology which evolves from the contracting to the expanding phase in a smooth way, without developing instabilities or pathologies and remaining in the regime of validity of 4d effective field theory. A nearly scale invariant spectrum of perturbations is generated during the contracting phase by an isocurvature scalar with a negative exponential potential and then converted to adiabatic. The model predicts a slightly blue spectrum, n S > or approx. 1, no observable gravitational waves and a high (but model dependent) level of non-Gaussianities with local shape. The model represents an explicit and predictive alternative to inflation, although, at present, it is clearly less compelling. (author)

  13. Non-smooth optimization methods for large-scale problems: applications to mid-term power generation planning

    International Nuclear Information System (INIS)

    Emiel, G.

    2008-01-01

    This manuscript deals with large-scale non-smooth optimization that may typically arise when performing Lagrangian relaxation of difficult problems. This technique is commonly used to tackle mixed-integer linear programming - or large-scale convex problems. For example, a classical approach when dealing with power generation planning problems in a stochastic environment is to perform a Lagrangian relaxation of the coupling constraints of demand. In this approach, a master problem coordinates local subproblems, specific to each generation unit. The master problem deals with a separable non-smooth dual function which can be maximized with, for example, bundle algorithms. In chapter 2, we introduce basic tools of non-smooth analysis and some recent results regarding incremental or inexact instances of non-smooth algorithms. However, in some situations, the dual problem may still be very hard to solve. For instance, when the number of dualized constraints is very large (exponential in the dimension of the primal problem), explicit dualization may no longer be possible or the update of dual variables may fail. In order to reduce the dual dimension, different heuristics were proposed. They involve a separation procedure to dynamically select a restricted set of constraints to be dualized along the iterations. This relax-and-cut type approach has shown its numerical efficiency in many combinatorial problems. In chapter 3, we show Primal-dual convergence of such strategy when using an adapted sub-gradient method for the dual step and under minimal assumptions on the separation procedure. Another limit of Lagrangian relaxation may appear when the dual function is separable in highly numerous or complex sub-functions. In such situation, the computational burden of solving all local subproblems may be preponderant in the whole iterative process. A natural strategy would be here to take full advantage of the dual separable structure, performing a dual iteration after having

  14. Turbulence Spreading into Linearly Stable Zone and Transport Scaling

    International Nuclear Information System (INIS)

    Hahm, T.S.; Diamond, P.H.; Lin, Z.; Itoh, K.; Itoh, S.-I.

    2003-01-01

    We study the simplest problem of turbulence spreading corresponding to the spatio-temporal propagation of a patch of turbulence from a region where it is locally excited to a region of weaker excitation, or even local damping. A single model equation for the local turbulence intensity I(x, t) includes the effects of local linear growth and damping, spatially local nonlinear coupling to dissipation and spatial scattering of turbulence energy induced by nonlinear coupling. In the absence of dissipation, the front propagation into the linearly stable zone occurs with the property of rapid progression at small t, followed by slower subdiffusive progression at late times. The turbulence radial spreading into the linearly stable zone reduces the turbulent intensity in the linearly unstable zone, and introduces an additional dependence on the rho* is always equal to rho i/a to the turbulent intensity and the transport scaling. These are in broad, semi-quantitative agreements with a number of global gyrokinetic simulation results with zonal flows and without zonal flows. The front propagation stops when the radial flux of fluctuation energy from the linearly unstable region is balanced by local dissipation in the linearly stable region

  15. Smoothed Conditional Scale Function Estimation in AR(1-ARCH(1 Processes

    Directory of Open Access Journals (Sweden)

    Lema Logamou Seknewna

    2018-01-01

    Full Text Available The estimation of the Smoothed Conditional Scale Function for time series was taken out under the conditional heteroscedastic innovations by imitating the kernel smoothing in nonparametric QAR-QARCH scheme. The estimation was taken out based on the quantile regression methodology proposed by Koenker and Bassett. And the proof of the asymptotic properties of the Conditional Scale Function estimator for this type of process was given and its consistency was shown.

  16. Single Image Super-Resolution Using Global Regression Based on Multiple Local Linear Mappings.

    Science.gov (United States)

    Choi, Jae-Seok; Kim, Munchurl

    2017-03-01

    Super-resolution (SR) has become more vital, because of its capability to generate high-quality ultra-high definition (UHD) high-resolution (HR) images from low-resolution (LR) input images. Conventional SR methods entail high computational complexity, which makes them difficult to be implemented for up-scaling of full-high-definition input images into UHD-resolution images. Nevertheless, our previous super-interpolation (SI) method showed a good compromise between Peak-Signal-to-Noise Ratio (PSNR) performances and computational complexity. However, since SI only utilizes simple linear mappings, it may fail to precisely reconstruct HR patches with complex texture. In this paper, we present a novel SR method, which inherits the large-to-small patch conversion scheme from SI but uses global regression based on local linear mappings (GLM). Thus, our new SR method is called GLM-SI. In GLM-SI, each LR input patch is divided into 25 overlapped subpatches. Next, based on the local properties of these subpatches, 25 different local linear mappings are applied to the current LR input patch to generate 25 HR patch candidates, which are then regressed into one final HR patch using a global regressor. The local linear mappings are learned cluster-wise in our off-line training phase. The main contribution of this paper is as follows: Previously, linear-mapping-based conventional SR methods, including SI only used one simple yet coarse linear mapping to each patch to reconstruct its HR version. On the contrary, for each LR input patch, our GLM-SI is the first to apply a combination of multiple local linear mappings, where each local linear mapping is found according to local properties of the current LR patch. Therefore, it can better approximate nonlinear LR-to-HR mappings for HR patches with complex texture. Experiment results show that the proposed GLM-SI method outperforms most of the state-of-the-art methods, and shows comparable PSNR performance with much lower

  17. Phenomenology of local scale invariance: from conformal invariance to dynamical scaling

    International Nuclear Information System (INIS)

    Henkel, Malte

    2002-01-01

    Statistical systems displaying a strongly anisotropic or dynamical scaling behaviour are characterized by an anisotropy exponent θ or a dynamical exponent z. For a given value of θ (or z), we construct local scale transformations, which can be viewed as scale transformations with a space-time-dependent dilatation factor. Two distinct types of local scale transformations are found. The first type may describe strongly anisotropic scaling of static systems with a given value of θ, whereas the second type may describe dynamical scaling with a dynamical exponent z. Local scale transformations act as a dynamical symmetry group of certain non-local free-field theories. Known special cases of local scale invariance are conformal invariance for θ=1 and Schroedinger invariance for θ=2. The hypothesis of local scale invariance implies that two-point functions of quasi primary operators satisfy certain linear fractional differential equations, which are constructed from commuting fractional derivatives. The explicit solution of these yields exact expressions for two-point correlators at equilibrium and for two-point response functions out of equilibrium. A particularly simple and general form is found for the two-time auto response function. These predictions are explicitly confirmed at the uniaxial Lifshitz points in the ANNNI and ANNNS models and in the aging behaviour of simple ferromagnets such as the kinetic Glauber-Ising model and the kinetic spherical model with a non-conserved order parameter undergoing either phase-ordering kinetics or non-equilibrium critical dynamics

  18. Linear-scaling implementation of the direct random-phase approximation

    International Nuclear Information System (INIS)

    Kállay, Mihály

    2015-01-01

    We report the linear-scaling implementation of the direct random-phase approximation (dRPA) for closed-shell molecular systems. As a bonus, linear-scaling algorithms are also presented for the second-order screened exchange extension of dRPA as well as for the second-order Møller–Plesset (MP2) method and its spin-scaled variants. Our approach is based on an incremental scheme which is an extension of our previous local correlation method [Rolik et al., J. Chem. Phys. 139, 094105 (2013)]. The approach extensively uses local natural orbitals to reduce the size of the molecular orbital basis of local correlation domains. In addition, we also demonstrate that using natural auxiliary functions [M. Kállay, J. Chem. Phys. 141, 244113 (2014)], the size of the auxiliary basis of the domains and thus that of the three-center Coulomb integral lists can be reduced by an order of magnitude, which results in significant savings in computation time. The new approach is validated by extensive test calculations for energies and energy differences. Our benchmark calculations also demonstrate that the new method enables dRPA calculations for molecules with more than 1000 atoms and 10 000 basis functions on a single processor

  19. A Smoothing-Type Algorithm for Solving Linear Complementarity Problems with Strong Convergence Properties

    International Nuclear Information System (INIS)

    Huang Zhenghai; Gu Weizhe

    2008-01-01

    In this paper, we construct an augmented system of the standard monotone linear complementarity problem (LCP), and establish the relations between the augmented system and the LCP. We present a smoothing-type algorithm for solving the augmented system. The algorithm is shown to be globally convergent without assuming any prior knowledge of feasibility/infeasibility of the problem. In particular, if the LCP has a solution, then the algorithm either generates a maximal complementary solution of the LCP or detects correctly solvability of the LCP, and in the latter case, an existing smoothing-type algorithm can be directly applied to solve the LCP without any additional assumption and it generates a maximal complementary solution of the LCP; and that if the LCP is infeasible, then the algorithm detect correctly infeasibility of the LCP. To the best of our knowledge, such properties have not appeared in the existing literature for smoothing-type algorithms

  20. Smooth solutions of the Navier-Stokes equations

    International Nuclear Information System (INIS)

    Pokhozhaev, S I

    2014-01-01

    We consider smooth solutions of the Cauchy problem for the Navier-Stokes equations on the scale of smooth functions which are periodic with respect to x∈R 3 . We obtain existence theorems for global (with respect to t>0) and local solutions of the Cauchy problem. The statements of these depend on the smoothness and the norm of the initial vector function. Upper bounds for the behaviour of solutions in both classes, which depend on t, are also obtained. Bibliography: 10 titles

  1. Sparse maps—A systematic infrastructure for reduced-scaling electronic structure methods. I. An efficient and simple linear scaling local MP2 method that uses an intermediate basis of pair natural orbitals

    Energy Technology Data Exchange (ETDEWEB)

    Pinski, Peter; Riplinger, Christoph; Neese, Frank, E-mail: evaleev@vt.edu, E-mail: frank.neese@cec.mpg.de [Max Planck Institute for Chemical Energy Conversion, Stiftstr. 34-36, D-45470 Mülheim an der Ruhr (Germany); Valeev, Edward F., E-mail: evaleev@vt.edu, E-mail: frank.neese@cec.mpg.de [Department of Chemistry, Virginia Tech, Blacksburg, Virginia 24061 (United States)

    2015-07-21

    In this work, a systematic infrastructure is described that formalizes concepts implicit in previous work and greatly simplifies computer implementation of reduced-scaling electronic structure methods. The key concept is sparse representation of tensors using chains of sparse maps between two index sets. Sparse map representation can be viewed as a generalization of compressed sparse row, a common representation of a sparse matrix, to tensor data. By combining few elementary operations on sparse maps (inversion, chaining, intersection, etc.), complex algorithms can be developed, illustrated here by a linear-scaling transformation of three-center Coulomb integrals based on our compact code library that implements sparse maps and operations on them. The sparsity of the three-center integrals arises from spatial locality of the basis functions and domain density fitting approximation. A novel feature of our approach is the use of differential overlap integrals computed in linear-scaling fashion for screening products of basis functions. Finally, a robust linear scaling domain based local pair natural orbital second-order Möller-Plesset (DLPNO-MP2) method is described based on the sparse map infrastructure that only depends on a minimal number of cutoff parameters that can be systematically tightened to approach 100% of the canonical MP2 correlation energy. With default truncation thresholds, DLPNO-MP2 recovers more than 99.9% of the canonical resolution of the identity MP2 (RI-MP2) energy while still showing a very early crossover with respect to the computational effort. Based on extensive benchmark calculations, relative energies are reproduced with an error of typically <0.2 kcal/mol. The efficiency of the local MP2 (LMP2) method can be drastically improved by carrying out the LMP2 iterations in a basis of pair natural orbitals. While the present work focuses on local electron correlation, it is of much broader applicability to computation with sparse tensors in

  2. Efficient Estimation of Non-Linear Dynamic Panel Data Models with Application to Smooth Transition Models

    DEFF Research Database (Denmark)

    Gørgens, Tue; Skeels, Christopher L.; Wurtz, Allan

    This paper explores estimation of a class of non-linear dynamic panel data models with additive unobserved individual-specific effects. The models are specified by moment restrictions. The class includes the panel data AR(p) model and panel smooth transition models. We derive an efficient set...... of moment restrictions for estimation and apply the results to estimation of panel smooth transition models with fixed effects, where the transition may be determined endogenously. The performance of the GMM estimator, both in terms of estimation precision and forecasting performance, is examined in a Monte...

  3. Ultrastructural autoradiographic localization of exogenous arachidonic acid in cultured endothelial and smooth muscle cells

    International Nuclear Information System (INIS)

    Tasca, S.I.; Galis, Z.

    1988-01-01

    The uptake and intracellular localization of exogenous arachidonic acid (AA) were investigated in cultured endothelial (EC) and smooth muscle cells (SMC) isolated from bovine aorta. The [ 14 C]AA uptake was assessed biochemically and by light and electron microscopic autoradiography. The highest values of silver grain surface density were associated with the mitochondria, lysosomes, and the Golgi apparatus of the EC. The grain linear density was greater on the nuclear envelope than on plasmalemma. On SMC, the grain density was highest on lipid droplets whereas the linear densities of the nuclear envelope and plasmalemma were similar. The share of each subcellular compartment in the AA distribution was estimated as the percentage of the individual silver grain count out of the total cell-associated radioactivity. The results showed that cytoplasm (including endoplasmic reticulum, ribosomes, and small vesicles) made the main contribution followed by the nucleus and at lower values by other organelles. These subcompartments may represent the intracellular sites from which AA could be mobilized for prostanoid synthesis by EC and SMC. (author)

  4. Kalman filtering and smoothing for linear wave equations with model error

    International Nuclear Information System (INIS)

    Lee, Wonjung; McDougall, D; Stuart, A M

    2011-01-01

    Filtering is a widely used methodology for the incorporation of observed data into time-evolving systems. It provides an online approach to state estimation inverse problems when data are acquired sequentially. The Kalman filter plays a central role in many applications because it is exact for linear systems subject to Gaussian noise, and because it forms the basis for many approximate filters which are used in high-dimensional systems. The aim of this paper is to study the effect of model error on the Kalman filter, in the context of linear wave propagation problems. A consistency result is proved when no model error is present, showing recovery of the true signal in the large data limit. This result, however, is not robust: it is also proved that arbitrarily small model error can lead to inconsistent recovery of the signal in the large data limit. If the model error is in the form of a constant shift to the velocity, the filtering and smoothing distributions only recover a partial Fourier expansion, a phenomenon related to aliasing. On the other hand, for a class of wave velocity model errors which are time dependent, it is possible to recover the filtering distribution exactly, but not the smoothing distribution. Numerical results are presented which corroborate the theory, and also propose a computational approach which overcomes the inconsistency in the presence of model error, by relaxing the model

  5. Linear-scaling quantum mechanical methods for excited states.

    Science.gov (United States)

    Yam, ChiYung; Zhang, Qing; Wang, Fan; Chen, GuanHua

    2012-05-21

    The poor scaling of many existing quantum mechanical methods with respect to the system size hinders their applications to large systems. In this tutorial review, we focus on latest research on linear-scaling or O(N) quantum mechanical methods for excited states. Based on the locality of quantum mechanical systems, O(N) quantum mechanical methods for excited states are comprised of two categories, the time-domain and frequency-domain methods. The former solves the dynamics of the electronic systems in real time while the latter involves direct evaluation of electronic response in the frequency-domain. The localized density matrix (LDM) method is the first and most mature linear-scaling quantum mechanical method for excited states. It has been implemented in time- and frequency-domains. The O(N) time-domain methods also include the approach that solves the time-dependent Kohn-Sham (TDKS) equation using the non-orthogonal localized molecular orbitals (NOLMOs). Besides the frequency-domain LDM method, other O(N) frequency-domain methods have been proposed and implemented at the first-principles level. Except one-dimensional or quasi-one-dimensional systems, the O(N) frequency-domain methods are often not applicable to resonant responses because of the convergence problem. For linear response, the most efficient O(N) first-principles method is found to be the LDM method with Chebyshev expansion for time integration. For off-resonant response (including nonlinear properties) at a specific frequency, the frequency-domain methods with iterative solvers are quite efficient and thus practical. For nonlinear response, both on-resonance and off-resonance, the time-domain methods can be used, however, as the time-domain first-principles methods are quite expensive, time-domain O(N) semi-empirical methods are often the practical choice. Compared to the O(N) frequency-domain methods, the O(N) time-domain methods for excited states are much more mature and numerically stable, and

  6. Toward Optimal Manifold Hashing via Discrete Locally Linear Embedding.

    Science.gov (United States)

    Rongrong Ji; Hong Liu; Liujuan Cao; Di Liu; Yongjian Wu; Feiyue Huang

    2017-11-01

    Binary code learning, also known as hashing, has received increasing attention in large-scale visual search. By transforming high-dimensional features to binary codes, the original Euclidean distance is approximated via Hamming distance. More recently, it is advocated that it is the manifold distance, rather than the Euclidean distance, that should be preserved in the Hamming space. However, it retains as an open problem to directly preserve the manifold structure by hashing. In particular, it first needs to build the local linear embedding in the original feature space, and then quantize such embedding to binary codes. Such a two-step coding is problematic and less optimized. Besides, the off-line learning is extremely time and memory consuming, which needs to calculate the similarity matrix of the original data. In this paper, we propose a novel hashing algorithm, termed discrete locality linear embedding hashing (DLLH), which well addresses the above challenges. The DLLH directly reconstructs the manifold structure in the Hamming space, which learns optimal hash codes to maintain the local linear relationship of data points. To learn discrete locally linear embeddingcodes, we further propose a discrete optimization algorithm with an iterative parameters updating scheme. Moreover, an anchor-based acceleration scheme, termed Anchor-DLLH, is further introduced, which approximates the large similarity matrix by the product of two low-rank matrices. Experimental results on three widely used benchmark data sets, i.e., CIFAR10, NUS-WIDE, and YouTube Face, have shown superior performance of the proposed DLLH over the state-of-the-art approaches.

  7. Smoothing optimization of supporting quadratic surfaces with Zernike polynomials

    Science.gov (United States)

    Zhang, Hang; Lu, Jiandong; Liu, Rui; Ma, Peifu

    2018-03-01

    A new optimization method to get a smooth freeform optical surface from an initial surface generated by the supporting quadratic method (SQM) is proposed. To smooth the initial surface, a 9-vertex system from the neighbor quadratic surface and the Zernike polynomials are employed to establish a linear equation system. A local optimized surface to the 9-vertex system can be build by solving the equations. Finally, a continuous smooth optimization surface is constructed by stitching the above algorithm on the whole initial surface. The spot corresponding to the optimized surface is no longer discrete pixels but a continuous distribution.

  8. Comparison of some nonlinear smoothing methods

    International Nuclear Information System (INIS)

    Bell, P.R.; Dillon, R.S.

    1977-01-01

    Due to the poor quality of many nuclear medicine images, computer-driven smoothing procedures are frequently employed to enhance the diagnostic utility of these images. While linear methods were first tried, it was discovered that nonlinear techniques produced superior smoothing with little detail suppression. We have compared four methods: Gaussian smoothing (linear), two-dimensional least-squares smoothing (linear), two-dimensional least-squares bounding (nonlinear), and two-dimensional median smoothing (nonlinear). The two dimensional least-squares procedures have yielded the most satisfactorily enhanced images, with the median smoothers providing quite good images, even in the presence of widely aberrant points

  9. Automatic smoothing parameter selection in GAMLSS with an application to centile estimation.

    Science.gov (United States)

    Rigby, Robert A; Stasinopoulos, Dimitrios M

    2014-08-01

    A method for automatic selection of the smoothing parameters in a generalised additive model for location, scale and shape (GAMLSS) model is introduced. The method uses a P-spline representation of the smoothing terms to express them as random effect terms with an internal (or local) maximum likelihood estimation on the predictor scale of each distribution parameter to estimate its smoothing parameters. This provides a fast method for estimating multiple smoothing parameters. The method is applied to centile estimation where all four parameters of a distribution for the response variable are modelled as smooth functions of a transformed explanatory variable x This allows smooth modelling of the location, scale, skewness and kurtosis parameters of the response variable distribution as functions of x. © The Author(s) 2013 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.

  10. Smoothed Analysis of Local Search Algorithms

    NARCIS (Netherlands)

    Manthey, Bodo; Dehne, Frank; Sack, Jörg-Rüdiger; Stege, Ulrike

    2015-01-01

    Smoothed analysis is a method for analyzing the performance of algorithms for which classical worst-case analysis fails to explain the performance observed in practice. Smoothed analysis has been applied to explain the performance of a variety of algorithms in the last years. One particular class of

  11. A one-layer recurrent neural network for non-smooth convex optimization subject to linear inequality constraints

    International Nuclear Information System (INIS)

    Liu, Xiaolan; Zhou, Mi

    2016-01-01

    In this paper, a one-layer recurrent network is proposed for solving a non-smooth convex optimization subject to linear inequality constraints. Compared with the existing neural networks for optimization, the proposed neural network is capable of solving more general convex optimization with linear inequality constraints. The convergence of the state variables of the proposed neural network to achieve solution optimality is guaranteed as long as the designed parameters in the model are larger than the derived lower bounds.

  12. Consensus for linear multi-agent system with intermittent information transmissions using the time-scale theory

    Science.gov (United States)

    Taousser, Fatima; Defoort, Michael; Djemai, Mohamed

    2016-01-01

    This paper investigates the consensus problem for linear multi-agent system with fixed communication topology in the presence of intermittent communication using the time-scale theory. Since each agent can only obtain relative local information intermittently, the proposed consensus algorithm is based on a discontinuous local interaction rule. The interaction among agents happens at a disjoint set of continuous-time intervals. The closed-loop multi-agent system can be represented using mixed linear continuous-time and linear discrete-time models due to intermittent information transmissions. The time-scale theory provides a powerful tool to combine continuous-time and discrete-time cases and study the consensus protocol under a unified framework. Using this theory, some conditions are derived to achieve exponential consensus under intermittent information transmissions. Simulations are performed to validate the theoretical results.

  13. Multiple predictor smoothing methods for sensitivity analysis.

    Energy Technology Data Exchange (ETDEWEB)

    Helton, Jon Craig; Storlie, Curtis B.

    2006-08-01

    The use of multiple predictor smoothing methods in sampling-based sensitivity analyses of complex models is investigated. Specifically, sensitivity analysis procedures based on smoothing methods employing the stepwise application of the following nonparametric regression techniques are described: (1) locally weighted regression (LOESS), (2) additive models, (3) projection pursuit regression, and (4) recursive partitioning regression. The indicated procedures are illustrated with both simple test problems and results from a performance assessment for a radioactive waste disposal facility (i.e., the Waste Isolation Pilot Plant). As shown by the example illustrations, the use of smoothing procedures based on nonparametric regression techniques can yield more informative sensitivity analysis results than can be obtained with more traditional sensitivity analysis procedures based on linear regression, rank regression or quadratic regression when nonlinear relationships between model inputs and model predictions are present.

  14. Multiple predictor smoothing methods for sensitivity analysis

    International Nuclear Information System (INIS)

    Helton, Jon Craig; Storlie, Curtis B.

    2006-01-01

    The use of multiple predictor smoothing methods in sampling-based sensitivity analyses of complex models is investigated. Specifically, sensitivity analysis procedures based on smoothing methods employing the stepwise application of the following nonparametric regression techniques are described: (1) locally weighted regression (LOESS), (2) additive models, (3) projection pursuit regression, and (4) recursive partitioning regression. The indicated procedures are illustrated with both simple test problems and results from a performance assessment for a radioactive waste disposal facility (i.e., the Waste Isolation Pilot Plant). As shown by the example illustrations, the use of smoothing procedures based on nonparametric regression techniques can yield more informative sensitivity analysis results than can be obtained with more traditional sensitivity analysis procedures based on linear regression, rank regression or quadratic regression when nonlinear relationships between model inputs and model predictions are present

  15. Stability of bumps in piecewise smooth neural fields with nonlinear adaptation

    KAUST Repository

    Kilpatrick, Zachary P.

    2010-06-01

    We study the linear stability of stationary bumps in piecewise smooth neural fields with local negative feedback in the form of synaptic depression or spike frequency adaptation. The continuum dynamics is described in terms of a nonlocal integrodifferential equation, in which the integral kernel represents the spatial distribution of synaptic weights between populations of neurons whose mean firing rate is taken to be a Heaviside function of local activity. Discontinuities in the adaptation variable associated with a bump solution means that bump stability cannot be analyzed by constructing the Evans function for a network with a sigmoidal gain function and then taking the high-gain limit. In the case of synaptic depression, we show that linear stability can be formulated in terms of solutions to a system of pseudo-linear equations. We thus establish that sufficiently strong synaptic depression can destabilize a bump that is stable in the absence of depression. These instabilities are dominated by shift perturbations that evolve into traveling pulses. In the case of spike frequency adaptation, we show that for a wide class of perturbations the activity and adaptation variables decouple in the linear regime, thus allowing us to explicitly determine stability in terms of the spectrum of a smooth linear operator. We find that bumps are always unstable with respect to this class of perturbations, and destabilization of a bump can result in either a traveling pulse or a spatially localized breather. © 2010 Elsevier B.V. All rights reserved.

  16. Visualizing measurement for 3D smooth density distributions by means of linear programming

    International Nuclear Information System (INIS)

    Tayama, Norio; Yang, Xue-dong

    1994-01-01

    This paper is concerned with a theoretical possibility of a new visualizing measurement method based on an optimum 3D reconstruction from a few selected projections. A theory of optimum 3D reconstruction by a linear programming is discussed, utilizing a few projections for sampled 3D smooth-density-distribution model which satisfies the condition of the 3D sampling theorem. First by use of the sampling theorem, it is shown that we can set up simultaneous simple equations which corresponds to the case of the parallel beams. Then we solve the simultaneous simple equations by means of linear programming algorithm, and we can get an optimum 3D density distribution images with minimum error in the reconstruction. The results of computer simulation with the algorithm are presented. (author)

  17. Sparse PDF maps for non-linear multi-resolution image operations

    KAUST Repository

    Hadwiger, Markus; Sicat, Ronell Barrera; Beyer, Johanna; Krü ger, Jens J.; Mö ller, Torsten

    2012-01-01

    feasible for gigapixel images, while enabling direct evaluation of a variety of non-linear operators from the same representation. We illustrate this versatility for antialiased color mapping, O(n) local Laplacian filters, smoothed local histogram filters

  18. Data smoothing techniques applied to proton microprobe scans of teleost hard parts

    International Nuclear Information System (INIS)

    West, I.F.; Gauldie, R.W.; Coote, G.E.

    1992-01-01

    We use a proton microprobe to examine the distribution of elements in otoliths and scales of teleost (bony) fish. The elements of principal interest are calcium and strontium in otoliths and calcium and fluorine in scales. Changes in the distribution of these elements across hard structures may allow inferences about the life histories of fish. Otoliths and scales of interest are up to a centimeter in linear dimension and to reveal the structures of interest up to 200 sampling points are required in each dimension. The time needed to accumulate high X-ray counts at each sampling point can be large, particularly for strontium. To reduce microprobe usage we use data smoothing techniques to reveal changing patterns with modest X-ray count accumulations at individual data points. In this paper we review performance for revealing pattern at modest levels of X-ray count accumulations of a selection of digital filters (moving average smoothers), running median filters, robust locally weighted regression filters and adaptive spline filters. (author)

  19. Spatially continuous dataset at local scale of Taita Hills in Kenya and Mount Kilimanjaro in Tanzania

    Directory of Open Access Journals (Sweden)

    Sizah Mwalusepo

    2016-09-01

    Full Text Available Climate change is a global concern, requiring local scale spatially continuous dataset and modeling of meteorological variables. This dataset article provided the interpolated temperature, rainfall and relative humidity dataset at local scale along Taita Hills and Mount Kilimanjaro altitudinal gradients in Kenya and Tanzania, respectively. The temperature and relative humidity were recorded hourly using automatic onset THHOBO data loggers and rainfall was recorded daily using GENERALR wireless rain gauges. Thin plate spline (TPS was used to interpolate, with the degree of data smoothing determined by minimizing the generalized cross validation. The dataset provide information on the status of the current climatic conditions along the two mountainous altitudinal gradients in Kenya and Tanzania. The dataset will, thus, enhance future research. Keywords: Spatial climate data, Climate change, Modeling, Local scale

  20. Compact solitary waves in linearly elastic chains with non-smooth on-site potential

    Energy Technology Data Exchange (ETDEWEB)

    Gaeta, Giuseppe [Dipartimento di Matematica, Universita di Milano, Via Saldini 50, 20133 Milan (Italy); Gramchev, Todor [Dipartimento di Matematica e Informatica, Universita di Cagliari, Via Ospedale 72, 09124 Cagliari (Italy); Walcher, Sebastian [Lehrstuhl A Mathematik, RWTH Aachen, 52056 Aachen (Germany)

    2007-04-27

    It was recently observed by Saccomandi and Sgura that one-dimensional chains with nonlinear elastic interaction and regular on-site potential can support compact solitary waves, i.e. travelling solitary waves with strictly compact support. In this paper, we show that the same applies to chains with linear elastic interaction and an on-site potential which is continuous but non-smooth at minima. Some different features arise; in particular, the speed of compact solitary waves is not uniquely fixed by the equation. We also discuss several generalizations of our findings.

  1. A local cubic smoothing in an adaptation mode

    International Nuclear Information System (INIS)

    Dikoussar, N.D.

    2001-01-01

    A new approach to a local curve approximation and the smoothing is proposed. The relation between curve points is defined using a special cross-ratio weight functions. The coordinates of three curve points are used as parameters for both the weight functions and the tree-point cubic model (TPS). A very simple in computing and stable to random errors cubic smoother in an adaptation mode (LOCUS) is constructed. The free parameter of TPS is estimated independently of the fixed parameters by recursion with the effective error suppression and can be controlled by the cross-ratio parameters. Efficiency and the noise stability of the algorithm are confirmed by examples and by comparison with other known non-parametric smoothers

  2. Construction of local and non-local conservation laws for non-linear field equations

    International Nuclear Information System (INIS)

    Vladimirov, V.S.; Volovich, I.V.

    1984-08-01

    A method of constructing conserved currents for non-linear field equations is presented. More explicitly for non-linear equations, which can be derived from compatibility conditions of some linear system with a parameter, a procedure of obtaining explicit expressions for local and non-local currents is developed. Some examples such as the classical Heisenberg spin chain and supersymmetric Yang-Mills theory are considered. (author)

  3. Local linear viscoelasticity of confined fluids.

    Science.gov (United States)

    Hansen, J S; Daivis, P J; Todd, B D

    2007-04-14

    In this paper the authors propose a novel method to study the local linear viscoelasticity of fluids confined between two walls. The method is based on the linear constitutive equation and provides details about the real and imaginary parts of the local complex viscosity. They apply the method to a simple atomic fluid undergoing zero mean oscillatory flow using nonequilibrium molecular dynamics simulations. The method shows that the viscoelastic properties of the fluid exhibit dramatic spatial changes near the wall-fluid boundary due to the high density in this region. It is also shown that the real part of the viscosity converges to the frequency dependent local shear viscosity sufficiently far away from the wall. This also provides valuable information about the transport properties in the fluid, in general. The viscosity is compared with predictions from the local average density model. The two methods disagree in that the local average density model predicts larger viscosity variations near the wall-fluid boundary than what is observed through the method presented here.

  4. Efficient computation of smoothing splines via adaptive basis sampling

    KAUST Repository

    Ma, Ping

    2015-06-24

    © 2015 Biometrika Trust. Smoothing splines provide flexible nonparametric regression estimators. However, the high computational cost of smoothing splines for large datasets has hindered their wide application. In this article, we develop a new method, named adaptive basis sampling, for efficient computation of smoothing splines in super-large samples. Except for the univariate case where the Reinsch algorithm is applicable, a smoothing spline for a regression problem with sample size n can be expressed as a linear combination of n basis functions and its computational complexity is generally O(n3). We achieve a more scalable computation in the multivariate case by evaluating the smoothing spline using a smaller set of basis functions, obtained by an adaptive sampling scheme that uses values of the response variable. Our asymptotic analysis shows that smoothing splines computed via adaptive basis sampling converge to the true function at the same rate as full basis smoothing splines. Using simulation studies and a large-scale deep earth core-mantle boundary imaging study, we show that the proposed method outperforms a sampling method that does not use the values of response variables.

  5. Efficient computation of smoothing splines via adaptive basis sampling

    KAUST Repository

    Ma, Ping; Huang, Jianhua Z.; Zhang, Nan

    2015-01-01

    © 2015 Biometrika Trust. Smoothing splines provide flexible nonparametric regression estimators. However, the high computational cost of smoothing splines for large datasets has hindered their wide application. In this article, we develop a new method, named adaptive basis sampling, for efficient computation of smoothing splines in super-large samples. Except for the univariate case where the Reinsch algorithm is applicable, a smoothing spline for a regression problem with sample size n can be expressed as a linear combination of n basis functions and its computational complexity is generally O(n3). We achieve a more scalable computation in the multivariate case by evaluating the smoothing spline using a smaller set of basis functions, obtained by an adaptive sampling scheme that uses values of the response variable. Our asymptotic analysis shows that smoothing splines computed via adaptive basis sampling converge to the true function at the same rate as full basis smoothing splines. Using simulation studies and a large-scale deep earth core-mantle boundary imaging study, we show that the proposed method outperforms a sampling method that does not use the values of response variables.

  6. Self-consistent field theory based molecular dynamics with linear system-size scaling

    Energy Technology Data Exchange (ETDEWEB)

    Richters, Dorothee [Institute of Mathematics and Center for Computational Sciences, Johannes Gutenberg University Mainz, Staudinger Weg 9, D-55128 Mainz (Germany); Kühne, Thomas D., E-mail: kuehne@uni-mainz.de [Institute of Physical Chemistry and Center for Computational Sciences, Johannes Gutenberg University Mainz, Staudinger Weg 7, D-55128 Mainz (Germany); Technical and Macromolecular Chemistry, University of Paderborn, Warburger Str. 100, D-33098 Paderborn (Germany)

    2014-04-07

    We present an improved field-theoretic approach to the grand-canonical potential suitable for linear scaling molecular dynamics simulations using forces from self-consistent electronic structure calculations. It is based on an exact decomposition of the grand canonical potential for independent fermions and does neither rely on the ability to localize the orbitals nor that the Hamilton operator is well-conditioned. Hence, this scheme enables highly accurate all-electron linear scaling calculations even for metallic systems. The inherent energy drift of Born-Oppenheimer molecular dynamics simulations, arising from an incomplete convergence of the self-consistent field cycle, is circumvented by means of a properly modified Langevin equation. The predictive power of the present approach is illustrated using the example of liquid methane under extreme conditions.

  7. Torque scaling in small-gap Taylor-Couette flow with smooth or grooved wall

    Science.gov (United States)

    Zhu, Bihai; Ji, Zengqi; Lou, Zhengkun; Qian, Pengcheng

    2018-03-01

    The torque in the Taylor-Couette flow for radius ratios η ≥0.97 , with smooth or grooved wall static outer cylinders, is studied experimentally, with the Reynolds number of the inner cylinder reaching up to Rei=2 ×105 , corresponding to the Taylor number up to Ta =5 ×1010 . The grooves are perpendicular to the mean flow, and similar to the structure of a submersible motor stator. It is found that the dimensionless torque G , at a given Rei and η , is significantly greater for grooved cases than smooth cases. We compare our experimental torques for the smooth cases to the fit proposed by Wendt [F. Wendt, Ing.-Arch. 4, 577 (1993), 10.1007/BF02084936] and the fit proposed by Bilgen and Boulos [E. Bilgen and R. Boulos, J Fluids Eng. 95, 122 (1973), 10.1115/1.3446944], which shows both fits are outside their range for small gaps. Furthermore, an additional dimensionless torque (angular velocity flux) N uω in the smooth cases exhibits an effective scaling of N uω˜T a0.39 in the ultimate regime, which occurs at a lower Taylor number, Ta ≈3.5 ×107 , than the well-explored η =0.714 case (at Ta ≈3 ×108 ). The same effective scaling exponent, 0.39, is also evident in the grooved cases, but for η =0.97 and 0.985, there is a peak before this exponent appears.

  8. Is the local linearity of space-time inherited from the linearity of probabilities?

    Science.gov (United States)

    Müller, Markus P.; Carrozza, Sylvain; Höhn, Philipp A.

    2017-02-01

    The appearance of linear spaces, describing physical quantities by vectors and tensors, is ubiquitous in all of physics, from classical mechanics to the modern notion of local Lorentz invariance. However, as natural as this seems to the physicist, most computer scientists would argue that something like a ‘local linear tangent space’ is not very typical and in fact a quite surprising property of any conceivable world or algorithm. In this paper, we take the perspective of the computer scientist seriously, and ask whether there could be any inherently information-theoretic reason to expect this notion of linearity to appear in physics. We give a series of simple arguments, spanning quantum information theory, group representation theory, and renormalization in quantum gravity, that supports a surprising thesis: namely, that the local linearity of space-time might ultimately be a consequence of the linearity of probabilities. While our arguments involve a fair amount of speculation, they have the virtue of being independent of any detailed assumptions on quantum gravity, and they are in harmony with several independent recent ideas on emergent space-time in high-energy physics.

  9. Is the local linearity of space-time inherited from the linearity of probabilities?

    International Nuclear Information System (INIS)

    Müller, Markus P; Carrozza, Sylvain; Höhn, Philipp A

    2017-01-01

    The appearance of linear spaces, describing physical quantities by vectors and tensors, is ubiquitous in all of physics, from classical mechanics to the modern notion of local Lorentz invariance. However, as natural as this seems to the physicist, most computer scientists would argue that something like a ‘local linear tangent space’ is not very typical and in fact a quite surprising property of any conceivable world or algorithm. In this paper, we take the perspective of the computer scientist seriously, and ask whether there could be any inherently information-theoretic reason to expect this notion of linearity to appear in physics. We give a series of simple arguments, spanning quantum information theory, group representation theory, and renormalization in quantum gravity, that supports a surprising thesis: namely, that the local linearity of space-time might ultimately be a consequence of the linearity of probabilities. While our arguments involve a fair amount of speculation, they have the virtue of being independent of any detailed assumptions on quantum gravity, and they are in harmony with several independent recent ideas on emergent space-time in high-energy physics. (paper)

  10. Linear Polarization Properties of Parsec-Scale AGN Jets

    Directory of Open Access Journals (Sweden)

    Alexander B. Pushkarev

    2017-12-01

    Full Text Available We used 15 GHz multi-epoch Very Long Baseline Array (VLBA polarization sensitive observations of 484 sources within a time interval 1996–2016 from the MOJAVE program, and also from the NRAO data archive. We have analyzed the linear polarization characteristics of the compact core features and regions downstream, and their changes along and across the parsec-scale active galactic nuclei (AGN jets. We detected a significant increase of fractional polarization with distance from the radio core along the jet as well as towards the jet edges. Compared to quasars, BL Lacs have a higher degree of polarization and exhibit more stable electric vector position angles (EVPAs in their core features and a better alignment of the EVPAs with the local jet direction. The latter is accompanied by a higher degree of linear polarization, suggesting that compact bright jet features might be strong transverse shocks, which enhance magnetic field regularity by compression.

  11. The large-scale gravitational bias from the quasi-linear regime.

    Science.gov (United States)

    Bernardeau, F.

    1996-08-01

    It is known that in gravitational instability scenarios the nonlinear dynamics induces non-Gaussian features in cosmological density fields that can be investigated with perturbation theory. Here, I derive the expression of the joint moments of cosmological density fields taken at two different locations. The results are valid when the density fields are filtered with a top-hat filter window function, and when the distance between the two cells is large compared to the smoothing length. In particular I show that it is possible to get the generating function of the coefficients C_p,q_ defined by _c_=C_p,q_ ^p+q-2^ where δ({vec}(x)) is the local smoothed density field. It is then possible to reconstruct the joint density probability distribution function (PDF), generalizing for two points what has been obtained previously for the one-point density PDF. I discuss the validity of the large separation approximation in an explicit numerical Monte Carlo integration of the C_2,1_ parameter as a function of |{vec}(x)_1_-{vec}(x)_2_|. A straightforward application is the calculation of the large-scale ``bias'' properties of the over-dense (or under-dense) regions. The properties and the shape of the bias function are presented in details and successfully compared with numerical results obtained in an N-body simulation with CDM initial conditions.

  12. Local Transfer Coefficient, Smooth Channel

    Directory of Open Access Journals (Sweden)

    R. T. Kukreja

    1998-01-01

    Full Text Available Naphthalene sublimation technique and the heat/mass transfer analogy are used to determine the detailed local heat/mass transfer distributions on the leading and trailing walls of a twopass square channel with smooth walls that rotates about a perpendicular axis. Since the variation of density is small in the flow through the channel, buoyancy effect is negligible. Results show that, in both the stationary and rotating channel cases, very large spanwise variations of the mass transfer exist in he turn and in the region immediately downstream of the turn in the second straight pass. In the first straight pass, the rotation-induced Coriolis forces reduce the mass transfer on the leading wall and increase the mass transfer on the trailing wall. In the turn, rotation significantly increases the mass transfer on the leading wall, especially in the upstream half of the turn. Rotation also increases the mass transfer on the trailing wall, more in the downstream half of the turn than in the upstream half of the turn. Immediately downstream of the turn, rotation causes the mass transfer to be much higher on the trailing wall near the downstream corner of the tip of the inner wall than on the opposite leading wall. The mass transfer in the second pass is higher on the leading wall than on the trailing wall. A slower flow causes higher mass transfer enhancement in the turn on both the leading and trailing walls.

  13. Energy conserving, linear scaling Born-Oppenheimer molecular dynamics.

    Science.gov (United States)

    Cawkwell, M J; Niklasson, Anders M N

    2012-10-07

    Born-Oppenheimer molecular dynamics simulations with long-term conservation of the total energy and a computational cost that scales linearly with system size have been obtained simultaneously. Linear scaling with a low pre-factor is achieved using density matrix purification with sparse matrix algebra and a numerical threshold on matrix elements. The extended Lagrangian Born-Oppenheimer molecular dynamics formalism [A. M. N. Niklasson, Phys. Rev. Lett. 100, 123004 (2008)] yields microcanonical trajectories with the approximate forces obtained from the linear scaling method that exhibit no systematic drift over hundreds of picoseconds and which are indistinguishable from trajectories computed using exact forces.

  14. Sparse maps—A systematic infrastructure for reduced-scaling electronic structure methods. II. Linear scaling domain based pair natural orbital coupled cluster theory

    International Nuclear Information System (INIS)

    Riplinger, Christoph; Pinski, Peter; Becker, Ute; Neese, Frank; Valeev, Edward F.

    2016-01-01

    Domain based local pair natural orbital coupled cluster theory with single-, double-, and perturbative triple excitations (DLPNO-CCSD(T)) is a highly efficient local correlation method. It is known to be accurate and robust and can be used in a black box fashion in order to obtain coupled cluster quality total energies for large molecules with several hundred atoms. While previous implementations showed near linear scaling up to a few hundred atoms, several nonlinear scaling steps limited the applicability of the method for very large systems. In this work, these limitations are overcome and a linear scaling DLPNO-CCSD(T) method for closed shell systems is reported. The new implementation is based on the concept of sparse maps that was introduced in Part I of this series [P. Pinski, C. Riplinger, E. F. Valeev, and F. Neese, J. Chem. Phys. 143, 034108 (2015)]. Using the sparse map infrastructure, all essential computational steps (integral transformation and storage, initial guess, pair natural orbital construction, amplitude iterations, triples correction) are achieved in a linear scaling fashion. In addition, a number of additional algorithmic improvements are reported that lead to significant speedups of the method. The new, linear-scaling DLPNO-CCSD(T) implementation typically is 7 times faster than the previous implementation and consumes 4 times less disk space for large three-dimensional systems. For linear systems, the performance gains and memory savings are substantially larger. Calculations with more than 20 000 basis functions and 1000 atoms are reported in this work. In all cases, the time required for the coupled cluster step is comparable to or lower than for the preceding Hartree-Fock calculation, even if this is carried out with the efficient resolution-of-the-identity and chain-of-spheres approximations. The new implementation even reduces the error in absolute correlation energies by about a factor of two, compared to the already accurate

  15. A local homology theory for linearly compact modules

    International Nuclear Information System (INIS)

    Nguyen Tu Cuong; Tran Tuan Nam

    2004-11-01

    We introduce a local homology theory for linearly modules which is in some sense dual to the local cohomology theory of A. Grothendieck. Some basic properties of local homology modules are shown such as: the vanishing and non-vanishing, the noetherianness of local homology modules. By using duality, we extend some well-known results in theory of local cohomology of A. Grothendieck. (author)

  16. Fast and local non-linear evolution of steep wave-groups on deep water: A comparison of approximate models to fully non-linear simulations

    International Nuclear Information System (INIS)

    Adcock, T. A. A.; Taylor, P. H.

    2016-01-01

    The non-linear Schrödinger equation and its higher order extensions are routinely used for analysis of extreme ocean waves. This paper compares the evolution of individual wave-packets modelled using non-linear Schrödinger type equations with packets modelled using fully non-linear potential flow models. The modified non-linear Schrödinger Equation accurately models the relatively large scale non-linear changes to the shape of wave-groups, with a dramatic contraction of the group along the mean propagation direction and a corresponding extension of the width of the wave-crests. In addition, as extreme wave form, there is a local non-linear contraction of the wave-group around the crest which leads to a localised broadening of the wave spectrum which the bandwidth limited non-linear Schrödinger Equations struggle to capture. This limitation occurs for waves of moderate steepness and a narrow underlying spectrum

  17. Large-scale dynamo action due to α fluctuations in a linear shear flow

    Science.gov (United States)

    Sridhar, S.; Singh, Nishant K.

    2014-12-01

    We present a model of large-scale dynamo action in a shear flow that has stochastic, zero-mean fluctuations of the α parameter. This is based on a minimal extension of the Kraichnan-Moffatt model, to include a background linear shear and Galilean-invariant α-statistics. Using the first-order smoothing approximation we derive a linear integro-differential equation for the large-scale magnetic field, which is non-perturbative in the shearing rate S , and the α-correlation time τα . The white-noise case, τα = 0 , is solved exactly, and it is concluded that the necessary condition for dynamo action is identical to the Kraichnan-Moffatt model without shear; this is because white-noise does not allow for memory effects, whereas shear needs time to act. To explore memory effects we reduce the integro-differential equation to a partial differential equation, valid for slowly varying fields when τα is small but non-zero. Seeking exponential modal solutions, we solve the modal dispersion relation and obtain an explicit expression for the growth rate as a function of the six independent parameters of the problem. A non-zero τα gives rise to new physical scales, and dynamo action is completely different from the white-noise case; e.g. even weak α fluctuations can give rise to a dynamo. We argue that, at any wavenumber, both Moffatt drift and Shear always contribute to increasing the growth rate. Two examples are presented: (a) a Moffatt drift dynamo in the absence of shear and (b) a Shear dynamo in the absence of Moffatt drift.

  18. Applications of Kalman Filtering to nuclear material control. [Kalman filtering and linear smoothing for detecting nuclear material losses

    Energy Technology Data Exchange (ETDEWEB)

    Pike, D.H.; Morrison, G.W.; Westley, G.W.

    1977-10-01

    The feasibility of using modern state estimation techniques (specifically Kalman Filtering and Linear Smoothing) to detect losses of material from material balance areas is evaluated. It is shown that state estimation techniques are not only feasible but in most situations are superior to existing methods of analysis. The various techniques compared include Kalman Filtering, linear smoothing, standard control charts, and average cumulative summation (CUSUM) charts. Analysis results indicated that the standard control chart is the least effective method for detecting regularly occurring losses. An improvement in the detection capability over the standard control chart can be realized by use of the CUSUM chart. Even more sensitivity in the ability to detect losses can be realized by use of the Kalman Filter and the linear smoother. It was found that the error-covariance matrix can be used to establish limits of error for state estimates. It is shown that state estimation techniques represent a feasible and desirable method of theft detection. The technique is usually more sensitive than the CUSUM chart in detecting losses. One kind of loss which is difficult to detect using state estimation techniques is a single isolated loss. State estimation procedures are predicated on dynamic models and are well-suited for detecting losses which occur regularly over several accounting periods. A single isolated loss does not conform to this basic assumption and is more difficult to detect.

  19. L1-norm locally linear representation regularization multi-source adaptation learning.

    Science.gov (United States)

    Tao, Jianwen; Wen, Shiting; Hu, Wenjun

    2015-09-01

    In most supervised domain adaptation learning (DAL) tasks, one has access only to a small number of labeled examples from target domain. Therefore the success of supervised DAL in this "small sample" regime needs the effective utilization of the large amounts of unlabeled data to extract information that is useful for generalization. Toward this end, we here use the geometric intuition of manifold assumption to extend the established frameworks in existing model-based DAL methods for function learning by incorporating additional information about the target geometric structure of the marginal distribution. We would like to ensure that the solution is smooth with respect to both the ambient space and the target marginal distribution. In doing this, we propose a novel L1-norm locally linear representation regularization multi-source adaptation learning framework which exploits the geometry of the probability distribution, which has two techniques. Firstly, an L1-norm locally linear representation method is presented for robust graph construction by replacing the L2-norm reconstruction measure in LLE with L1-norm one, which is termed as L1-LLR for short. Secondly, considering the robust graph regularization, we replace traditional graph Laplacian regularization with our new L1-LLR graph Laplacian regularization and therefore construct new graph-based semi-supervised learning framework with multi-source adaptation constraint, which is coined as L1-MSAL method. Moreover, to deal with the nonlinear learning problem, we also generalize the L1-MSAL method by mapping the input data points from the input space to a high-dimensional reproducing kernel Hilbert space (RKHS) via a nonlinear mapping. Promising experimental results have been obtained on several real-world datasets such as face, visual video and object. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Multiple predictor smoothing methods for sensitivity analysis: Example results

    International Nuclear Information System (INIS)

    Storlie, Curtis B.; Helton, Jon C.

    2008-01-01

    The use of multiple predictor smoothing methods in sampling-based sensitivity analyses of complex models is investigated. Specifically, sensitivity analysis procedures based on smoothing methods employing the stepwise application of the following nonparametric regression techniques are described in the first part of this presentation: (i) locally weighted regression (LOESS), (ii) additive models, (iii) projection pursuit regression, and (iv) recursive partitioning regression. In this, the second and concluding part of the presentation, the indicated procedures are illustrated with both simple test problems and results from a performance assessment for a radioactive waste disposal facility (i.e., the Waste Isolation Pilot Plant). As shown by the example illustrations, the use of smoothing procedures based on nonparametric regression techniques can yield more informative sensitivity analysis results than can be obtained with more traditional sensitivity analysis procedures based on linear regression, rank regression or quadratic regression when nonlinear relationships between model inputs and model predictions are present

  1. Linear velocity fields in non-Gaussian models for large-scale structure

    Science.gov (United States)

    Scherrer, Robert J.

    1992-01-01

    Linear velocity fields in two types of physically motivated non-Gaussian models are examined for large-scale structure: seed models, in which the density field is a convolution of a density profile with a distribution of points, and local non-Gaussian fields, derived from a local nonlinear transformation on a Gaussian field. The distribution of a single component of the velocity is derived for seed models with randomly distributed seeds, and these results are applied to the seeded hot dark matter model and the global texture model with cold dark matter. An expression for the distribution of a single component of the velocity in arbitrary local non-Gaussian models is given, and these results are applied to such fields with chi-squared and lognormal distributions. It is shown that all seed models with randomly distributed seeds and all local non-Guassian models have single-component velocity distributions with positive kurtosis.

  2. Vortices, semi-local vortices in gauged linear sigma model

    International Nuclear Information System (INIS)

    Kim, Namkwon

    1998-11-01

    We consider the static (2+1)D gauged linear sigma model. By analyzing the governing system of partial differential equations, we investigate various aspects of the model. We show the existence of energy finite vortices under a partially broken symmetry on R 2 with the necessary condition suggested by Y. Yang. We also introduce generalized semi-local vortices and show the existence of energy finite semi-local vortices under a certain condition. The vacuum manifold for the semi-local vortices turns out to be graded. Besides, with a special choice of a representation, we show that the O(3) sigma model of which target space is nonlinear is a singular limit of the gauged linear sigma model of which target space is linear. (author)

  3. Generalized local homology and cohomology for linearly compact modules

    International Nuclear Information System (INIS)

    Tran Tuan Nam

    2006-07-01

    We study generalized local homology for linearly compact modules. By duality, we get some properties of generalized local cohomology modules and extend well-known properties of local cohomology of A. Grothendieck. (author)

  4. Non-local quasi-linear parabolic equations

    International Nuclear Information System (INIS)

    Amann, H

    2005-01-01

    This is a survey of the most common approaches to quasi-linear parabolic evolution equations, a discussion of their advantages and drawbacks, and a presentation of an entirely new approach based on maximal L p regularity. The general results here apply, above all, to parabolic initial-boundary value problems that are non-local in time. This is illustrated by indicating their relevance for quasi-linear parabolic equations with memory and, in particular, for time-regularized versions of the Perona-Malik equation of image processing

  5. Local hyperspectral data multisharpening based on linear/linear-quadratic nonnegative matrix factorization by integrating lidar data

    Science.gov (United States)

    Benhalouche, Fatima Zohra; Karoui, Moussa Sofiane; Deville, Yannick; Ouamri, Abdelaziz

    2015-10-01

    In this paper, a new Spectral-Unmixing-based approach, using Nonnegative Matrix Factorization (NMF), is proposed to locally multi-sharpen hyperspectral data by integrating a Digital Surface Model (DSM) obtained from LIDAR data. In this new approach, the nature of the local mixing model is detected by using the local variance of the object elevations. The hyper/multispectral images are explored using small zones. In each zone, the variance of the object elevations is calculated from the DSM data in this zone. This variance is compared to a threshold value and the adequate linear/linearquadratic spectral unmixing technique is used in the considered zone to independently unmix hyperspectral and multispectral data, using an adequate linear/linear-quadratic NMF-based approach. The obtained spectral and spatial information thus respectively extracted from the hyper/multispectral images are then recombined in the considered zone, according to the selected mixing model. Experiments based on synthetic hyper/multispectral data are carried out to evaluate the performance of the proposed multi-sharpening approach and literature linear/linear-quadratic approaches used on the whole hyper/multispectral data. In these experiments, real DSM data are used to generate synthetic data containing linear and linear-quadratic mixed pixel zones. The DSM data are also used for locally detecting the nature of the mixing model in the proposed approach. Globally, the proposed approach yields good spatial and spectral fidelities for the multi-sharpened data and significantly outperforms the used literature methods.

  6. Local Adaptive Calibration of the GLASS Surface Incident Shortwave Radiation Product Using Smoothing Spline

    Science.gov (United States)

    Zhang, X.; Liang, S.; Wang, G.

    2015-12-01

    Incident solar radiation (ISR) over the Earth's surface plays an important role in determining the Earth's climate and environment. Generally, can be obtained from direct measurements, remotely sensed data, or reanalysis and general circulation models (GCMs) data. Each type of product has advantages and limitations: the surface direct measurements provide accurate but sparse spatial coverage, whereas other global products may have large uncertainties. Ground measurements have been normally used for validation and occasionally calibration, but transforming their "true values" spatially to improve the satellite products is still a new and challenging topic. In this study, an improved thin-plate smoothing spline approach is presented to locally "calibrate" the Global LAnd Surface Satellite (GLASS) ISR product using the reconstructed ISR data from surface meteorological measurements. The influences of surface elevation on ISR estimation was also considered in the proposed method. The point-based surface reconstructed ISR was used as the response variable, and the GLASS ISR product and the surface elevation data at the corresponding locations as explanatory variables to train the thin plate spline model. We evaluated the performance of the approach using the cross-validation method at both daily and monthly time scales over China. We also evaluated estimated ISR based on the thin-plate spline method using independent ground measurements at 10 sites from the Coordinated Enhanced Observation Network (CEON). These validation results indicated that the thin plate smoothing spline method can be effectively used for calibrating satellite derived ISR products using ground measurements to achieve better accuracy.

  7. Multiple predictor smoothing methods for sensitivity analysis: Description of techniques

    International Nuclear Information System (INIS)

    Storlie, Curtis B.; Helton, Jon C.

    2008-01-01

    The use of multiple predictor smoothing methods in sampling-based sensitivity analyses of complex models is investigated. Specifically, sensitivity analysis procedures based on smoothing methods employing the stepwise application of the following nonparametric regression techniques are described: (i) locally weighted regression (LOESS), (ii) additive models, (iii) projection pursuit regression, and (iv) recursive partitioning regression. Then, in the second and concluding part of this presentation, the indicated procedures are illustrated with both simple test problems and results from a performance assessment for a radioactive waste disposal facility (i.e., the Waste Isolation Pilot Plant). As shown by the example illustrations, the use of smoothing procedures based on nonparametric regression techniques can yield more informative sensitivity analysis results than can be obtained with more traditional sensitivity analysis procedures based on linear regression, rank regression or quadratic regression when nonlinear relationships between model inputs and model predictions are present

  8. Lensing smoothing of BAO wiggles

    Energy Technology Data Exchange (ETDEWEB)

    Dio, Enea Di, E-mail: enea.didio@oats.inaf.it [INAF—Osservatorio Astronomico di Trieste, Via G.B. Tiepolo 11, I-34143 Trieste (Italy)

    2017-03-01

    We study non-perturbatively the effect of the deflection angle on the BAO wiggles of the matter power spectrum in real space. We show that from redshift z ∼2 this introduces a dispersion of roughly 1 Mpc at BAO scale, which corresponds approximately to a 1% effect. The lensing effect induced by the deflection angle, which is completely geometrical and survey independent, smears out the BAO wiggles. The effect on the power spectrum amplitude at BAO scale is about 0.1 % for z ∼2 and 0.2 % for z ∼4. We compare the smoothing effects induced by the lensing potential and non-linear structure formation, showing that the two effects become comparable at z ∼ 4, while the lensing effect dominates for sources at higher redshifts. We note that this effect is not accounted through BAO reconstruction techniques.

  9. Time signal filtering by relative neighborhood graph localized linear approximation

    DEFF Research Database (Denmark)

    Sørensen, John Aasted

    1994-01-01

    A time signal filtering algorithm based on the relative neighborhood graph (RNG) used for localization of linear filters is proposed. The filter is constructed from a training signal during two stages. During the first stage an RNG is constructed. During the second stage, localized linear filters...

  10. Did you smooth your well logs the right way for seismic interpretation?

    International Nuclear Information System (INIS)

    Duchesne, Mathieu J; Gaillot, Philippe

    2011-01-01

    Correlations between physical properties and seismic reflection data are useful to determine the geological nature of seismic reflections and the lateral extent of geological strata. The difference in resolution between well logs and seismic data is a major hurdle faced by seismic interpreters when tying both data sets. In general, log data have a resolution of at least two orders of magnitude greater than seismic data. Smoothing physical property logs improves correlation at the seismic scale. Three different approaches were used and compared to smooth a density log: binomial filtering, seismic wavelet filtering and discrete wavelet transform (DWT) filtering. Regression plots between the density logs and the acoustic impedance show that the data smoothed with the DWT is the only method that preserves the original relationship between the raw density data and the acoustic impedance. Smoothed logs were then used to generate synthetic seismograms that were tied to seismic data at the borehole site. Best ties were achieved using the synthetic seismogram computed with the density log processed with the DWT. The good performance of the DWT is explained by its adaptive multi-scale characteristic which preserved significant local changes of density on the high-resolution data series that were also pictured at the seismic scale. Since synthetic seismograms are generated using smoothed logs, the choice of the smoothing method impacts on the quality of seismic-to-well ties. This ultimately can have economical implications during hydrocarbon exploration or exploitation phases

  11. Linear and quasi-linear equations of parabolic type

    CERN Document Server

    Ladyženskaja, O A; Ural′ceva, N N; Uralceva, N N

    1968-01-01

    Equations of parabolic type are encountered in many areas of mathematics and mathematical physics, and those encountered most frequently are linear and quasi-linear parabolic equations of the second order. In this volume, boundary value problems for such equations are studied from two points of view: solvability, unique or otherwise, and the effect of smoothness properties of the functions entering the initial and boundary conditions on the smoothness of the solutions.

  12. Edge preserving smoothing and segmentation of 4-D images via transversely isotropic scale-space processing and fingerprint analysis

    International Nuclear Information System (INIS)

    Reutter, Bryan W.; Algazi, V. Ralph; Gullberg, Grant T; Huesman, Ronald H.

    2004-01-01

    Enhancements are described for an approach that unifies edge preserving smoothing with segmentation of time sequences of volumetric images, based on differential edge detection at multiple spatial and temporal scales. Potential applications of these 4-D methods include segmentation of respiratory gated positron emission tomography (PET) transmission images to improve accuracy of attenuation correction for imaging heart and lung lesions, and segmentation of dynamic cardiac single photon emission computed tomography (SPECT) images to facilitate unbiased estimation of time-activity curves and kinetic parameters for left ventricular volumes of interest. Improved segmentation of lung surfaces in simulated respiratory gated cardiac PET transmission images is achieved with a 4-D edge detection operator composed of edge preserving 1-D operators applied in various spatial and temporal directions. Smoothing along the axis of a 1-D operator is driven by structure separation seen in the scale-space fingerprint, rather than by image contrast. Spurious noise structures are reduced with use of small-scale isotropic smoothing in directions transverse to the 1-D operator axis. Analytic expressions are obtained for directional derivatives of the smoothed, edge preserved image, and the expressions are used to compose a 4-D operator that detects edges as zero-crossings in the second derivative in the direction of the image intensity gradient. Additional improvement in segmentation is anticipated with use of multiscale transversely isotropic smoothing and a novel interpolation method that improves the behavior of the directional derivatives. The interpolation method is demonstrated on a simulated 1-D edge and incorporation of the method into the 4-D algorithm is described

  13. On locally uniformly linearizable high breakdown location and scale functionals

    NARCIS (Netherlands)

    Davies, P.L.

    1998-01-01

    This article gives two constructions of a weighted mean which has a large domain, is affinely equivariant, has a locally high breakdown point and is locally uniformly linearizable. One construction is based on $M$-functionals with smooth defining $\\psi$- and $\\chi$ -functions which are used to

  14. Users manual for Opt-MS : local methods for simplicial mesh smoothing and untangling.

    Energy Technology Data Exchange (ETDEWEB)

    Freitag, L.

    1999-07-20

    Creating meshes containing good-quality elements is a challenging, yet critical, problem facing computational scientists today. Several researchers have shown that the size of the mesh, the shape of the elements within that mesh, and their relationship to the physical application of interest can profoundly affect the efficiency and accuracy of many numerical approximation techniques. If the application contains anisotropic physics, the mesh can be improved by considering both local characteristics of the approximate application solution and the geometry of the computational domain. If the application is isotropic, regularly shaped elements in the mesh reduce the discretization error, and the mesh can be improved a priori by considering geometric criteria only. The Opt-MS package provides several local node point smoothing techniques that improve elements in the mesh by adjusting grid point location using geometric, criteria. The package is easy to use; only three subroutine calls are required for the user to begin using the software. The package is also flexible; the user may change the technique, function, or dimension of the problem at any time during the mesh smoothing process. Opt-MS is designed to interface with C and C++ codes, ad examples for both two-and three-dimensional meshes are provided.

  15. Dynamic MRI Using SmooThness Regularization on Manifolds (SToRM).

    Science.gov (United States)

    Poddar, Sunrita; Jacob, Mathews

    2016-04-01

    We introduce a novel algorithm to recover real time dynamic MR images from highly under-sampled k- t space measurements. The proposed scheme models the images in the dynamic dataset as points on a smooth, low dimensional manifold in high dimensional space. We propose to exploit the non-linear and non-local redundancies in the dataset by posing its recovery as a manifold smoothness regularized optimization problem. A navigator acquisition scheme is used to determine the structure of the manifold, or equivalently the associated graph Laplacian matrix. The estimated Laplacian matrix is used to recover the dataset from undersampled measurements. The utility of the proposed scheme is demonstrated by comparisons with state of the art methods in multi-slice real-time cardiac and speech imaging applications.

  16. A generalized Fellner-Schall method for smoothing parameter optimization with application to Tweedie location, scale and shape models.

    Science.gov (United States)

    Wood, Simon N; Fasiolo, Matteo

    2017-12-01

    We consider the optimization of smoothing parameters and variance components in models with a regular log likelihood subject to quadratic penalization of the model coefficients, via a generalization of the method of Fellner (1986) and Schall (1991). In particular: (i) we generalize the original method to the case of penalties that are linear in several smoothing parameters, thereby covering the important cases of tensor product and adaptive smoothers; (ii) we show why the method's steps increase the restricted marginal likelihood of the model, that it tends to converge faster than the EM algorithm, or obvious accelerations of this, and investigate its relation to Newton optimization; (iii) we generalize the method to any Fisher regular likelihood. The method represents a considerable simplification over existing methods of estimating smoothing parameters in the context of regular likelihoods, without sacrificing generality: for example, it is only necessary to compute with the same first and second derivatives of the log-likelihood required for coefficient estimation, and not with the third or fourth order derivatives required by alternative approaches. Examples are provided which would have been impossible or impractical with pre-existing Fellner-Schall methods, along with an example of a Tweedie location, scale and shape model which would be a challenge for alternative methods, and a sparse additive modeling example where the method facilitates computational efficiency gains of several orders of magnitude. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. © 2017, The Authors Biometrics published by Wiley Periodicals, Inc. on behalf of International Biometric Society.

  17. Smooth halos in the cosmic web

    Energy Technology Data Exchange (ETDEWEB)

    Gaite, José, E-mail: jose.gaite@upm.es [Physics Dept., ETSIAE, IDR, Universidad Politécnica de Madrid, Pza. Cardenal Cisneros 3, E-28040 Madrid (Spain)

    2015-04-01

    Dark matter halos can be defined as smooth distributions of dark matter placed in a non-smooth cosmic web structure. This definition of halos demands a precise definition of smoothness and a characterization of the manner in which the transition from smooth halos to the cosmic web takes place. We introduce entropic measures of smoothness, related to measures of inequality previously used in economy and with the advantage of being connected with standard methods of multifractal analysis already used for characterizing the cosmic web structure in cold dark matter N-body simulations. These entropic measures provide us with a quantitative description of the transition from the small scales portrayed as a distribution of halos to the larger scales portrayed as a cosmic web and, therefore, allow us to assign definite sizes to halos. However, these ''smoothness sizes'' have no direct relation to the virial radii. Finally, we discuss the influence of N-body discreteness parameters on smoothness.

  18. Smooth halos in the cosmic web

    International Nuclear Information System (INIS)

    Gaite, José

    2015-01-01

    Dark matter halos can be defined as smooth distributions of dark matter placed in a non-smooth cosmic web structure. This definition of halos demands a precise definition of smoothness and a characterization of the manner in which the transition from smooth halos to the cosmic web takes place. We introduce entropic measures of smoothness, related to measures of inequality previously used in economy and with the advantage of being connected with standard methods of multifractal analysis already used for characterizing the cosmic web structure in cold dark matter N-body simulations. These entropic measures provide us with a quantitative description of the transition from the small scales portrayed as a distribution of halos to the larger scales portrayed as a cosmic web and, therefore, allow us to assign definite sizes to halos. However, these ''smoothness sizes'' have no direct relation to the virial radii. Finally, we discuss the influence of N-body discreteness parameters on smoothness

  19. A simple smoothness indicator for the WENO scheme with adaptive order

    Science.gov (United States)

    Huang, Cong; Chen, Li Li

    2018-01-01

    The fifth order WENO scheme with adaptive order is competent for solving hyperbolic conservation laws, its reconstruction is a convex combination of a fifth order linear reconstruction and three third order linear reconstructions. Note that, on uniform mesh, the computational cost of smoothness indicator for fifth order linear reconstruction is comparable with the sum of ones for three third order linear reconstructions, thus it is too heavy; on non-uniform mesh, the explicit form of smoothness indicator for fifth order linear reconstruction is difficult to be obtained, and its computational cost is much heavier than the one on uniform mesh. In order to overcome these problems, a simple smoothness indicator for fifth order linear reconstruction is proposed in this paper.

  20. Frequency scaling of linear super-colliders

    International Nuclear Information System (INIS)

    Mondelli, A.; Chernin, D.; Drobot, A.; Reiser, M.; Granatstein, V.

    1986-06-01

    The development of electron-positron linear colliders in the TeV energy range will be facilitated by the development of high-power rf sources at frequencies above 2856 MHz. Present S-band technology, represented by the SLC, would require a length in excess of 50 km per linac to accelerate particles to energies above 1 TeV. By raising the rf driving frequency, the rf breakdown limit is increased, thereby allowing the length of the accelerators to be reduced. Currently available rf power sources set the realizable gradient limit in an rf linac at frequencies above S-band. This paper presents a model for the frequency scaling of linear colliders, with luminosity scaled in proportion to the square of the center-of-mass energy. Since wakefield effects are the dominant deleterious effect, a separate single-bunch simulation model is described which calculates the evolution of the beam bunch with specified wakefields, including the effects of using programmed phase positioning and Landau damping. The results presented here have been obtained for a SLAC structure, scaled in proportion to wavelength

  1. A New Finite Continuation Algorithm for Linear Programming

    DEFF Research Database (Denmark)

    Madsen, Kaj; Nielsen, Hans Bruun; Pinar, Mustafa

    1996-01-01

    We describe a new finite continuation algorithm for linear programming. The dual of the linear programming problem with unit lower and upper bounds is formulated as an $\\ell_1$ minimization problem augmented with the addition of a linear term. This nondifferentiable problem is approximated...... by a smooth problem. It is shown that the minimizers of the smooth problem define a family of piecewise-linear paths as a function of a smoothing parameter. Based on this property, a finite algorithm that traces these paths to arrive at an optimal solution of the linear program is developed. The smooth...

  2. Error Estimation for the Linearized Auto-Localization Algorithm

    Directory of Open Access Journals (Sweden)

    Fernando Seco

    2012-02-01

    Full Text Available The Linearized Auto-Localization (LAL algorithm estimates the position of beacon nodes in Local Positioning Systems (LPSs, using only the distance measurements to a mobile node whose position is also unknown. The LAL algorithm calculates the inter-beacon distances, used for the estimation of the beacons’ positions, from the linearized trilateration equations. In this paper we propose a method to estimate the propagation of the errors of the inter-beacon distances obtained with the LAL algorithm, based on a first order Taylor approximation of the equations. Since the method depends on such approximation, a confidence parameter τ is defined to measure the reliability of the estimated error. Field evaluations showed that by applying this information to an improved weighted-based auto-localization algorithm (WLAL, the standard deviation of the inter-beacon distances can be improved by more than 30% on average with respect to the original LAL method.

  3. Accurate and Efficient Parallel Implementation of an Effective Linear-Scaling Direct Random Phase Approximation Method.

    Science.gov (United States)

    Graf, Daniel; Beuerle, Matthias; Schurkus, Henry F; Luenser, Arne; Savasci, Gökcen; Ochsenfeld, Christian

    2018-05-08

    An efficient algorithm for calculating the random phase approximation (RPA) correlation energy is presented that is as accurate as the canonical molecular orbital resolution-of-the-identity RPA (RI-RPA) with the important advantage of an effective linear-scaling behavior (instead of quartic) for large systems due to a formulation in the local atomic orbital space. The high accuracy is achieved by utilizing optimized minimax integration schemes and the local Coulomb metric attenuated by the complementary error function for the RI approximation. The memory bottleneck of former atomic orbital (AO)-RI-RPA implementations ( Schurkus, H. F.; Ochsenfeld, C. J. Chem. Phys. 2016 , 144 , 031101 and Luenser, A.; Schurkus, H. F.; Ochsenfeld, C. J. Chem. Theory Comput. 2017 , 13 , 1647 - 1655 ) is addressed by precontraction of the large 3-center integral matrix with the Cholesky factors of the ground state density reducing the memory requirements of that matrix by a factor of [Formula: see text]. Furthermore, we present a parallel implementation of our method, which not only leads to faster RPA correlation energy calculations but also to a scalable decrease in memory requirements, opening the door for investigations of large molecules even on small- to medium-sized computing clusters. Although it is known that AO methods are highly efficient for extended systems, where sparsity allows for reaching the linear-scaling regime, we show that our work also extends the applicability when considering highly delocalized systems for which no linear scaling can be achieved. As an example, the interlayer distance of two covalent organic framework pore fragments (comprising 384 atoms in total) is analyzed.

  4. Unstable volatility functions: the break preserving local linear estimator

    DEFF Research Database (Denmark)

    Casas, Isabel; Gijbels, Irene

    The objective of this paper is to introduce the break preserving local linear (BPLL) estimator for the estimation of unstable volatility functions. Breaks in the structure of the conditional mean and/or the volatility functions are common in Finance. Markov switching models (Hamilton, 1989......) and threshold models (Lin and Terasvirta, 1994) are amongst the most popular models to describe the behaviour of data with structural breaks. The local linear (LL) estimator is not consistent at points where the volatility function has a break and it may even report negative values for finite samples...

  5. Linearized versus non-linear inverse methods for seismic localization of underground sources

    DEFF Research Database (Denmark)

    Oh, Geok Lian; Jacobsen, Finn

    2013-01-01

    The problem of localization of underground sources from seismic measurements detected by several geophones located on the ground surface is addressed. Two main approaches to the solution of the problem are considered: a beamforming approach that is derived from the linearized inversion problem, a...

  6. Decentralised stabilising controllers for a class of large-scale linear ...

    Indian Academy of Sciences (India)

    subsystems resulting from a new aggregation-decomposition technique. The method has been illustrated through a numerical example of a large-scale linear system consisting of three subsystems each of the fourth order. Keywords. Decentralised stabilisation; large-scale linear systems; optimal feedback control; algebraic ...

  7. Local linear heat rate ramps in the WWER-440 transient regimes

    International Nuclear Information System (INIS)

    Brik, A.N.; Bibilashvili, Ju.L.; Bogatyr, S.M.; Medvedev, A.V.

    1998-01-01

    The operation of the WWER-440 reactors must be accomplished in such a way that the fuel rods durability would be high enough during the whole operation period. The important factors determining the absence of fuel rod failures are the criteria limiting the core characteristics (fuel rod and fuel assembly power, local linear heat rate, etc.). For the transient and load follow conditions the limitations on the permissible local linear rate ramp are also introduced. This limitation is the result of design limit of stress corrosion cracking of the fuel cladding and depends on the local fuel burn-up. The control rod motion is accompanied by power redistribution, which, in principle, can result in violating the design and operation limitations. Consequently, this motion have to be such as the core parameters, including the local ramps of the linear heat generation rates would not exceed the permissible ones.The paper considers the problem of WWER-440 reactor control under transient and load follow conditions and the associated optimisation of local linear heat generation rate ramps. The main factors affecting the solution of the problem under consideration are discussed. Some recommendations for a more optimal reactor operation are given.(Author)

  8. Evaluation of non-linear adaptive smoothing filter by digital phantom

    International Nuclear Information System (INIS)

    Sato, Kazuhiro; Ishiya, Hiroki; Oshita, Ryosuke; Yanagawa, Isao; Goto, Mitsunori; Mori, Issei

    2008-01-01

    As a result of the development of multi-slice CT, diagnoses based on three-dimensional reconstruction images and multi-planar reconstruction have spread. For these applications, which require high z-resolution, thin slice imaging is essential. However, because z-resolution is always based on a trade-off with image noise, thin slice imaging is necessarily accompanied by an increase in noise level. To improve the quality of thin slice images, a non-linear adaptive smoothing filter has been developed, and is being widely applied to clinical use. We developed a digital bar pattern phantom for the purpose of evaluating the effect of this filter and attempted evaluation from an addition image of the bar pattern phantom and the image of the water phantom. The effect of this filter was changed in a complex manner by the contrast and spatial frequency of the original image. We have confirmed the reduced effect of image noise in the low frequency component of the image, but decreased contrast or increased quantity of noise in the image of the high frequency component. This result represents the effect of change in the adaptation of this filter. The digital phantom was useful for this evaluation, but to understand the total effect of filtering, much improvement of the shape of the digital phantom is required. (author)

  9. Smitin, a novel smooth muscle titin-like protein, interacts with myosin filaments in vivo and in vitro.

    Science.gov (United States)

    Kim, Kyoungtae; Keller, Thomas C S

    2002-01-07

    Smooth muscle cells use an actin-myosin II-based contractile apparatus to produce force for a variety of physiological functions, including blood pressure regulation and gut peristalsis. The organization of the smooth muscle contractile apparatus resembles that of striated skeletal and cardiac muscle, but remains much more poorly understood. We have found that avian vascular and visceral smooth muscles contain a novel, megadalton protein, smitin, that is similar to striated muscle titin in molecular morphology, localization in a contractile apparatus, and ability to interact with myosin filaments. Smitin, like titin, is a long fibrous molecule with a globular domain on one end. Specific reactivities of an anti-smitin polyclonal antibody and an anti-titin monoclonal antibody suggest that smitin and titin are distinct proteins rather than differentially spliced isoforms encoded by the same gene. Smitin immunofluorescently colocalizes with myosin in chicken gizzard smooth muscle, and interacts with two configurations of smooth muscle myosin filaments in vitro. In physiological ionic strength conditions, smitin and smooth muscle myosin coassemble into irregular aggregates containing large sidepolar myosin filaments. In low ionic strength conditions, smitin and smooth muscle myosin form highly ordered structures containing linear and polygonal end-to-end and side-by-side arrays of small bipolar myosin filaments. We have used immunogold localization and sucrose density gradient cosedimentation analyses to confirm association of smitin with both the sidepolar and bipolar smooth muscle myosin filaments. These findings suggest that the titin-like protein smitin may play a central role in organizing myosin filaments in the contractile apparatus and perhaps in other structures in smooth muscle cells.

  10. LRP1 in brain vascular smooth muscle cells mediates local clearance of Alzheimer's amyloid-β.

    Science.gov (United States)

    Kanekiyo, Takahisa; Liu, Chia-Chen; Shinohara, Mitsuru; Li, Jie; Bu, Guojun

    2012-11-14

    Impaired clearance of amyloid-β (Aβ) is a major pathogenic event for Alzheimer's disease (AD). Aβ depositions in brain parenchyma as senile plaques and along cerebrovasculature as cerebral amyloid angiopathy (CAA) are hallmarks of AD. A major pathway that mediates brain Aβ clearance is the cerebrovascular system where Aβ is eliminated through the blood-brain barrier (BBB) and/or degraded by cerebrovascular cells along the interstitial fluid drainage pathway. An Aβ clearance receptor, the low-density lipoprotein receptor-related protein 1 (LRP1), is abundantly expressed in cerebrovasculature, in particular in vascular smooth muscle cells. Previous studies have indicated a role of LRP1 in endothelial cells in transcytosing Aβ out of the brain across the BBB; however, whether this represents a significant pathway for brain Aβ clearance remains controversial. Here, we demonstrate that Aβ can be cleared locally in the cerebrovasculature by an LRP1-dependent endocytic pathway in smooth muscle cells. The uptake and degradation of both endogenous and exogenous Aβ were significantly reduced in LRP1-suppressed human brain vascular smooth muscle cells. Conditional deletion of Lrp1 in vascular smooth muscle cell in amyloid model APP/PS1 mice accelerated brain Aβ accumulation and exacerbated Aβ deposition as amyloid plaques and CAA without affecting Aβ production. Our results demonstrate that LRP1 is a major Aβ clearance receptor in cerebral vascular smooth muscle cell and a disturbance of this pathway contributes to Aβ accumulation. These studies establish critical functions of the cerebrovasculature system in Aβ metabolism and identify a new pathway involved in the pathogenesis of both AD and CAA.

  11. multiscale smoothing in supervised statistical learning

    Indian Academy of Sciences (India)

    Optimum level of smoothing is chosen based on the entire training sample, while a good choice of smoothing parameter may also depend on the observation to be classified. One may like to assess the strength of evidence in favor of different competing class at different scale of smoothing. In allows only one single ...

  12. Digital linear control theory applied to automatic stepsize control in electrical circuit simulation

    NARCIS (Netherlands)

    Verhoeven, A.; Beelen, T.G.J.; Hautus, M.L.J.; Maten, ter E.J.W.; Di Bucchianico, A.; Mattheij, R.M.M.; Peletier, M.A.

    2006-01-01

    Adaptive stepsize control is used to control the local errors of the numerical solution. For optimization purposes smoother stepsize controllers are wanted, such that the errors and stepsizes also behave smoothly. We consider approaches from digital linear control theory applied to multistep

  13. Digital linear control theory applied to automatic stepsize control in electrical circuit simulation

    NARCIS (Netherlands)

    Verhoeven, A.; Beelen, T.G.J.; Hautus, M.L.J.; Maten, ter E.J.W.

    2005-01-01

    Adaptive stepsize control is used to control the local errors of the numerical solution. For optimization purposes smoother stepsize controllers are wanted, such that the errors and stepsizes also behave smoothly. We consider approaches from digital linear control theory applied to multistep

  14. Local Fractional Laplace Variational Iteration Method for Solving Linear Partial Differential Equations with Local Fractional Derivative

    Directory of Open Access Journals (Sweden)

    Ai-Min Yang

    2014-01-01

    Full Text Available The local fractional Laplace variational iteration method was applied to solve the linear local fractional partial differential equations. The local fractional Laplace variational iteration method is coupled by the local fractional variational iteration method and Laplace transform. The nondifferentiable approximate solutions are obtained and their graphs are also shown.

  15. Bessel smoothing filter for spectral-element mesh

    Science.gov (United States)

    Trinh, P. T.; Brossier, R.; Métivier, L.; Virieux, J.; Wellington, P.

    2017-06-01

    Smoothing filters are extremely important tools in seismic imaging and inversion, such as for traveltime tomography, migration and waveform inversion. For efficiency, and as they can be used a number of times during inversion, it is important that these filters can easily incorporate prior information on the geological structure of the investigated medium, through variable coherent lengths and orientation. In this study, we promote the use of the Bessel filter to achieve these purposes. Instead of considering the direct application of the filter, we demonstrate that we can rely on the equation associated with its inverse filter, which amounts to the solution of an elliptic partial differential equation. This enhances the efficiency of the filter application, and also its flexibility. We apply this strategy within a spectral-element-based elastic full waveform inversion framework. Taking advantage of this formulation, we apply the Bessel filter by solving the associated partial differential equation directly on the spectral-element mesh through the standard weak formulation. This avoids cumbersome projection operators between the spectral-element mesh and a regular Cartesian grid, or expensive explicit windowed convolution on the finite-element mesh, which is often used for applying smoothing operators. The associated linear system is solved efficiently through a parallel conjugate gradient algorithm, in which the matrix vector product is factorized and highly optimized with vectorized computation. Significant scaling behaviour is obtained when comparing this strategy with the explicit convolution method. The theoretical numerical complexity of this approach increases linearly with the coherent length, whereas a sublinear relationship is observed practically. Numerical illustrations are provided here for schematic examples, and for a more realistic elastic full waveform inversion gradient smoothing on the SEAM II benchmark model. These examples illustrate well the

  16. A new type of change blindness: smooth, isoluminant color changes are monitored on a coarse spatial scale.

    Science.gov (United States)

    Goddard, Erin; Clifford, Colin W G

    2013-04-22

    Attending selectively to changes in our visual environment may help filter less important, unchanging information within a scene. Here, we demonstrate that color changes can go unnoticed even when they occur throughout an otherwise static image. The novelty of this demonstration is that it does not rely upon masking by a visual disruption or stimulus motion, nor does it require the change to be very gradual and restricted to a small section of the image. Using a two-interval, forced-choice change-detection task and an odd-one-out localization task, we showed that subjects were slowest to respond and least accurate (implying that change was hardest to detect) when the color changes were isoluminant, smoothly varying, and asynchronous with one another. This profound change blindness offers new constraints for theories of visual change detection, implying that, in the absence of transient signals, changes in color are typically monitored at a coarse spatial scale.

  17. Adaptive smoothing based on Gaussian processes regression increases the sensitivity and specificity of fMRI data.

    Science.gov (United States)

    Strappini, Francesca; Gilboa, Elad; Pitzalis, Sabrina; Kay, Kendrick; McAvoy, Mark; Nehorai, Arye; Snyder, Abraham Z

    2017-03-01

    Temporal and spatial filtering of fMRI data is often used to improve statistical power. However, conventional methods, such as smoothing with fixed-width Gaussian filters, remove fine-scale structure in the data, necessitating a tradeoff between sensitivity and specificity. Specifically, smoothing may increase sensitivity (reduce noise and increase statistical power) but at the cost loss of specificity in that fine-scale structure in neural activity patterns is lost. Here, we propose an alternative smoothing method based on Gaussian processes (GP) regression for single subjects fMRI experiments. This method adapts the level of smoothing on a voxel by voxel basis according to the characteristics of the local neural activity patterns. GP-based fMRI analysis has been heretofore impractical owing to computational demands. Here, we demonstrate a new implementation of GP that makes it possible to handle the massive data dimensionality of the typical fMRI experiment. We demonstrate how GP can be used as a drop-in replacement to conventional preprocessing steps for temporal and spatial smoothing in a standard fMRI pipeline. We present simulated and experimental results that show the increased sensitivity and specificity compared to conventional smoothing strategies. Hum Brain Mapp 38:1438-1459, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  18. Estimates of gradient Richardson numbers from vertically smoothed data in the Gulf Stream region

    Directory of Open Access Journals (Sweden)

    Paul van Gastel

    2004-12-01

    Full Text Available We use several hydrographic and velocity sections crossing the Gulf Stream to examine how the gradient Richardson number, Ri, is modified due to both vertical smoothing of the hydrographic and/or velocity fields and the assumption of parallel or geostrophic flow. Vertical smoothing of the original (25 m interval velocity field leads to a substantial increase in the Ri mean value, of the same order as the smoothing factor, while its standard deviation remains approximately constant. This contrasts with very minor changes in the distribution of the Ri values due to vertical smoothing of the density field over similar lengths. Mean geostrophic Ri values remain always above the actual unsmoothed Ri values, commonly one to two orders of magnitude larger, but the standard deviation is typically a factor of five larger in geostrophic than in actual Ri values. At high vertical wavenumbers (length scales below 3 m the geostrophic shear only leads to near critical conditions in already rather mixed regions. At these scales, hence, the major contributor to shear mixing is likely to come from the interaction of the background flow with internal waves. At low vertical wavenumbers (scales above 25 m the ageostrophic motions provide the main source for shear, with cross-stream movements having a minor but non-negligible contribution. These large-scale motions may be associated with local accelerations taking place during frontogenetic phases of meanders.

  19. A convex optimization approach for solving large scale linear systems

    Directory of Open Access Journals (Sweden)

    Debora Cores

    2017-01-01

    Full Text Available The well-known Conjugate Gradient (CG method minimizes a strictly convex quadratic function for solving large-scale linear system of equations when the coefficient matrix is symmetric and positive definite. In this work we present and analyze a non-quadratic convex function for solving any large-scale linear system of equations regardless of the characteristics of the coefficient matrix. For finding the global minimizers, of this new convex function, any low-cost iterative optimization technique could be applied. In particular, we propose to use the low-cost globally convergent Spectral Projected Gradient (SPG method, which allow us to extend this optimization approach for solving consistent square and rectangular linear system, as well as linear feasibility problem, with and without convex constraints and with and without preconditioning strategies. Our numerical results indicate that the new scheme outperforms state-of-the-art iterative techniques for solving linear systems when the symmetric part of the coefficient matrix is indefinite, and also for solving linear feasibility problems.

  20. Multi-scale simulations of field ion microscopy images—Image compression with and without the tip shank

    International Nuclear Information System (INIS)

    NiewieczerzaŁ, Daniel; Oleksy, CzesŁaw; Szczepkowicz, Andrzej

    2012-01-01

    Multi-scale simulations of field ion microscopy images of faceted and hemispherical samples are performed using a 3D model. It is shown that faceted crystals have compressed images even in cases with no shank. The presence of the shank increases the compression of images of faceted crystals quantitatively in the same way as for hemispherical samples. It is hereby proven that the shank does not influence significantly the local, relative variations of the magnification caused by the atomic-scale structure of the sample. -- Highlights: ► Multi-scale simulations of field ion microscopy images. ► Faceted and hemispherical samples with and without shank. ► Shank causes overall compression, but does not influence local magnification effects. ► Image compression linearly increases with the shank angle. ► Shank changes compression of image of faceted tip in the same way as for smooth sample.

  1. Assessment of smoothed spectra using autocorrelation function

    International Nuclear Information System (INIS)

    Urbanski, P.; Kowalska, E.

    2006-01-01

    Recently, data and signal smoothing became almost standard procedures in the spectrometric and chromatographic methods. In radiometry, the main purpose to apply smoothing is minimisation of the statistical fluctuation and avoid distortion. The aim of the work was to find a qualitative parameter, which could be used, as a figure of merit for detecting distortion of the smoothed spectra, based on the linear model. It is assumed that as long as the part of the raw spectrum removed by the smoothing procedure (v s ) will be of random nature, the smoothed spectrum can be considered as undistorted. Thanks to this feature of the autocorrelation function, drifts of the mean value in the removed noise vs as well as its periodicity can be more easily detected from the autocorrelogram than from the original data

  2. Localized states in an unbounded neural field equation with smooth firing rate function: a multi-parameter analysis.

    Science.gov (United States)

    Faye, Grégory; Rankin, James; Chossat, Pascal

    2013-05-01

    The existence of spatially localized solutions in neural networks is an important topic in neuroscience as these solutions are considered to characterize working (short-term) memory. We work with an unbounded neural network represented by the neural field equation with smooth firing rate function and a wizard hat spatial connectivity. Noting that stationary solutions of our neural field equation are equivalent to homoclinic orbits in a related fourth order ordinary differential equation, we apply normal form theory for a reversible Hopf bifurcation to prove the existence of localized solutions; further, we present results concerning their stability. Numerical continuation is used to compute branches of localized solution that exhibit snaking-type behaviour. We describe in terms of three parameters the exact regions for which localized solutions persist.

  3. Object matching using a locally affine invariant and linear programming techniques.

    Science.gov (United States)

    Li, Hongsheng; Huang, Xiaolei; He, Lei

    2013-02-01

    In this paper, we introduce a new matching method based on a novel locally affine-invariant geometric constraint and linear programming techniques. To model and solve the matching problem in a linear programming formulation, all geometric constraints should be able to be exactly or approximately reformulated into a linear form. This is a major difficulty for this kind of matching algorithm. We propose a novel locally affine-invariant constraint which can be exactly linearized and requires a lot fewer auxiliary variables than other linear programming-based methods do. The key idea behind it is that each point in the template point set can be exactly represented by an affine combination of its neighboring points, whose weights can be solved easily by least squares. Errors of reconstructing each matched point using such weights are used to penalize the disagreement of geometric relationships between the template points and the matched points. The resulting overall objective function can be solved efficiently by linear programming techniques. Our experimental results on both rigid and nonrigid object matching show the effectiveness of the proposed algorithm.

  4. Scalable and Fully Distributed Localization in Large-Scale Sensor Networks

    Directory of Open Access Journals (Sweden)

    Miao Jin

    2017-06-01

    Full Text Available This work proposes a novel connectivity-based localization algorithm, well suitable for large-scale sensor networks with complex shapes and a non-uniform nodal distribution. In contrast to current state-of-the-art connectivity-based localization methods, the proposed algorithm is highly scalable with linear computation and communication costs with respect to the size of the network; and fully distributed where each node only needs the information of its neighbors without cumbersome partitioning and merging process. The algorithm is theoretically guaranteed and numerically stable. Moreover, the algorithm can be readily extended to the localization of networks with a one-hop transmission range distance measurement, and the propagation of the measurement error at one sensor node is limited within a small area of the network around the node. Extensive simulations and comparison with other methods under various representative network settings are carried out, showing the superior performance of the proposed algorithm.

  5. A national-scale model of linear features improves predictions of farmland biodiversity.

    Science.gov (United States)

    Sullivan, Martin J P; Pearce-Higgins, James W; Newson, Stuart E; Scholefield, Paul; Brereton, Tom; Oliver, Tom H

    2017-12-01

    Modelling species distribution and abundance is important for many conservation applications, but it is typically performed using relatively coarse-scale environmental variables such as the area of broad land-cover types. Fine-scale environmental data capturing the most biologically relevant variables have the potential to improve these models. For example, field studies have demonstrated the importance of linear features, such as hedgerows, for multiple taxa, but the absence of large-scale datasets of their extent prevents their inclusion in large-scale modelling studies.We assessed whether a novel spatial dataset mapping linear and woody-linear features across the UK improves the performance of abundance models of 18 bird and 24 butterfly species across 3723 and 1547 UK monitoring sites, respectively.Although improvements in explanatory power were small, the inclusion of linear features data significantly improved model predictive performance for many species. For some species, the importance of linear features depended on landscape context, with greater importance in agricultural areas. Synthesis and applications . This study demonstrates that a national-scale model of the extent and distribution of linear features improves predictions of farmland biodiversity. The ability to model spatial variability in the role of linear features such as hedgerows will be important in targeting agri-environment schemes to maximally deliver biodiversity benefits. Although this study focuses on farmland, data on the extent of different linear features are likely to improve species distribution and abundance models in a wide range of systems and also can potentially be used to assess habitat connectivity.

  6. Penalized Estimation in Large-Scale Generalized Linear Array Models

    DEFF Research Database (Denmark)

    Lund, Adam; Vincent, Martin; Hansen, Niels Richard

    2017-01-01

    Large-scale generalized linear array models (GLAMs) can be challenging to fit. Computation and storage of its tensor product design matrix can be impossible due to time and memory constraints, and previously considered design matrix free algorithms do not scale well with the dimension...

  7. Linearity and Misspecification Tests for Vector Smooth Transition Regression Models

    DEFF Research Database (Denmark)

    Teräsvirta, Timo; Yang, Yukai

    The purpose of the paper is to derive Lagrange multiplier and Lagrange multiplier type specification and misspecification tests for vector smooth transition regression models. We report results from simulation studies in which the size and power properties of the proposed asymptotic tests in small...

  8. Bayesian multi-scale smoothing of photon-limited images with applications to astronomy and medicine

    Science.gov (United States)

    White, John

    Multi-scale models for smoothing Poisson signals or images have gained much attention over the past decade. A new Bayesian model is developed using the concept of the Chinese restaurant process to find structures in two-dimensional images when performing image reconstruction or smoothing. This new model performs very well when compared to other leading methodologies for the same problem. It is developed and evaluated theoretically and empirically throughout Chapter 2. The newly developed Bayesian model is extended to three-dimensional images in Chapter 3. The third dimension has numerous different applications, such as different energy spectra, another spatial index, or possibly a temporal dimension. Empirically, this method shows promise in reducing error with the use of simulation studies. A further development removes background noise in the image. This removal can further reduce the error and is done using a modeling adjustment and post-processing techniques. These details are given in Chapter 4. Applications to real world problems are given throughout. Photon-based images are common in astronomical imaging due to the collection of different types of energy such as X-Rays. Applications to real astronomical images are given, and these consist of X-ray images from the Chandra X-ray observatory satellite. Diagnostic medicine uses many types of imaging such as magnetic resonance imaging and computed tomography that can also benefit from smoothing techniques such as the one developed here. Reducing the amount of radiation a patient takes will make images more noisy, but this can be mitigated through the use of image smoothing techniques. Both types of images represent the potential real world use for these methods.

  9. Vestibular-related frontal cortical areas and their roles in smooth-pursuit eye movements: representation of neck velocity, neck-vestibular interactions and memory-based smooth-pursuit

    Directory of Open Access Journals (Sweden)

    Kikuro eFukushima

    2011-12-01

    Full Text Available Smooth-pursuit eye movements are voluntary responses to small slow-moving objects in the fronto-parallel plane. They evolved in primates, who possess high-acuity foveae, to ensure clear vision about the moving target. The primate frontal cortex contains two smooth-pursuit related areas; the caudal part of the frontal eye fields (FEF and the supplementary eye fields (SEF. Both areas receive vestibular inputs. We review functional differences between the two areas in smooth-pursuit. Most FEF pursuit neurons signal pursuit parameters such as eye velocity and gaze-velocity, and are involved in cancelling the vestibulo-ocular reflex by linear addition of vestibular and smooth-pursuit responses. In contrast, gaze-velocity signals are rarely represented in the SEF. Most FEF pursuit neurons receive neck velocity inputs, while discharge modulation during pursuit and trunk-on-head rotation adds linearly. Linear addition also occurs between neck velocity responses and vestibular responses during head-on-trunk rotation in a task-dependent manner. During cross-axis pursuit-vestibular interactions, vestibular signals effectively initiate predictive pursuit eye movements. Most FEF pursuit neurons discharge during the interaction training after the onset of pursuit eye velocity, making their involvement unlikely in the initial stages of generating predictive pursuit. Comparison of representative signals in the two areas and the results of chemical inactivation during a memory-based smooth-pursuit task indicate they have different roles; the SEF plans smooth-pursuit including working memory of motion-direction, whereas the caudal FEF generates motor commands for pursuit eye movements. Patients with idiopathic Parkinson’s disease were asked to perform this task, since impaired smooth-pursuit and visual working memory deficit during cognitive tasks have been reported in most patients. Preliminary results suggested specific roles of the basal ganglia in memory

  10. Quantification of smoothing requirement for 3D optic flow calculation of volumetric images

    DEFF Research Database (Denmark)

    Bab-Hadiashar, Alireza; Tennakoon, Ruwan B.; de Bruijne, Marleen

    2013-01-01

    Complexities of dynamic volumetric imaging challenge the available computer vision techniques on a number of different fronts. This paper examines the relationship between the estimation accuracy and required amount of smoothness for a general solution from a robust statistics perspective. We show...... that a (surprisingly) small amount of local smoothing is required to satisfy both the necessary and sufficient conditions for accurate optic flow estimation. This notion is called 'just enough' smoothing, and its proper implementation has a profound effect on the preservation of local information in processing 3D...... dynamic scans. To demonstrate the effect of 'just enough' smoothing, a robust 3D optic flow method with quantized local smoothing is presented, and the effect of local smoothing on the accuracy of motion estimation in dynamic lung CT images is examined using both synthetic and real image sequences...

  11. Gait recognition using kinect and locally linear embedding ...

    African Journals Online (AJOL)

    This paper presents the use of locally linear embedding (LLE) as feature extraction technique for classifying a person's identity based on their walking gait patterns. Skeleton data acquired from Microsoft Kinect camera were used as an input for (1). Multilayer Perceptron (MLP) and (2). LLE with MLP. The MLP classification ...

  12. Vanishing-Overhead Linear-Scaling Random Phase Approximation by Cholesky Decomposition and an Attenuated Coulomb-Metric.

    Science.gov (United States)

    Luenser, Arne; Schurkus, Henry F; Ochsenfeld, Christian

    2017-04-11

    A reformulation of the random phase approximation within the resolution-of-the-identity (RI) scheme is presented, that is competitive to canonical molecular orbital RI-RPA already for small- to medium-sized molecules. For electronically sparse systems drastic speedups due to the reduced scaling behavior compared to the molecular orbital formulation are demonstrated. Our reformulation is based on two ideas, which are independently useful: First, a Cholesky decomposition of density matrices that reduces the scaling with basis set size for a fixed-size molecule by one order, leading to massive performance improvements. Second, replacement of the overlap RI metric used in the original AO-RPA by an attenuated Coulomb metric. Accuracy is significantly improved compared to the overlap metric, while locality and sparsity of the integrals are retained, as is the effective linear scaling behavior.

  13. Smoothing-based compressed state Kalman filter for joint state-parameter estimation: Applications in reservoir characterization and CO2 storage monitoring

    Science.gov (United States)

    Li, Y. J.; Kokkinaki, Amalia; Darve, Eric F.; Kitanidis, Peter K.

    2017-08-01

    The operation of most engineered hydrogeological systems relies on simulating physical processes using numerical models with uncertain parameters and initial conditions. Predictions by such uncertain models can be greatly improved by Kalman-filter techniques that sequentially assimilate monitoring data. Each assimilation constitutes a nonlinear optimization, which is solved by linearizing an objective function about the model prediction and applying a linear correction to this prediction. However, if model parameters and initial conditions are uncertain, the optimization problem becomes strongly nonlinear and a linear correction may yield unphysical results. In this paper, we investigate the utility of one-step ahead smoothing, a variant of the traditional filtering process, to eliminate nonphysical results and reduce estimation artifacts caused by nonlinearities. We present the smoothing-based compressed state Kalman filter (sCSKF), an algorithm that combines one step ahead smoothing, in which current observations are used to correct the state and parameters one step back in time, with a nonensemble covariance compression scheme, that reduces the computational cost by efficiently exploring the high-dimensional state and parameter space. Numerical experiments show that when model parameters are uncertain and the states exhibit hyperbolic behavior with sharp fronts, as in CO2 storage applications, one-step ahead smoothing reduces overshooting errors and, by design, gives physically consistent state and parameter estimates. We compared sCSKF with commonly used data assimilation methods and showed that for the same computational cost, combining one step ahead smoothing and nonensemble compression is advantageous for real-time characterization and monitoring of large-scale hydrogeological systems with sharp moving fronts.

  14. Large-scale linear programs in planning and prediction.

    Science.gov (United States)

    2017-06-01

    Large-scale linear programs are at the core of many traffic-related optimization problems in both planning and prediction. Moreover, many of these involve significant uncertainty, and hence are modeled using either chance constraints, or robust optim...

  15. Non-linear scaling of a musculoskeletal model of the lower limb using statistical shape models.

    Science.gov (United States)

    Nolte, Daniel; Tsang, Chui Kit; Zhang, Kai Yu; Ding, Ziyun; Kedgley, Angela E; Bull, Anthony M J

    2016-10-03

    Accurate muscle geometry for musculoskeletal models is important to enable accurate subject-specific simulations. Commonly, linear scaling is used to obtain individualised muscle geometry. More advanced methods include non-linear scaling using segmented bone surfaces and manual or semi-automatic digitisation of muscle paths from medical images. In this study, a new scaling method combining non-linear scaling with reconstructions of bone surfaces using statistical shape modelling is presented. Statistical Shape Models (SSMs) of femur and tibia/fibula were used to reconstruct bone surfaces of nine subjects. Reference models were created by morphing manually digitised muscle paths to mean shapes of the SSMs using non-linear transformations and inter-subject variability was calculated. Subject-specific models of muscle attachment and via points were created from three reference models. The accuracy was evaluated by calculating the differences between the scaled and manually digitised models. The points defining the muscle paths showed large inter-subject variability at the thigh and shank - up to 26mm; this was found to limit the accuracy of all studied scaling methods. Errors for the subject-specific muscle point reconstructions of the thigh could be decreased by 9% to 20% by using the non-linear scaling compared to a typical linear scaling method. We conclude that the proposed non-linear scaling method is more accurate than linear scaling methods. Thus, when combined with the ability to reconstruct bone surfaces from incomplete or scattered geometry data using statistical shape models our proposed method is an alternative to linear scaling methods. Copyright © 2016 The Author. Published by Elsevier Ltd.. All rights reserved.

  16. Non-Linear Relationship between Economic Growth and CO₂ Emissions in China: An Empirical Study Based on Panel Smooth Transition Regression Models.

    Science.gov (United States)

    Wang, Zheng-Xin; Hao, Peng; Yao, Pei-Yi

    2017-12-13

    The non-linear relationship between provincial economic growth and carbon emissions is investigated by using panel smooth transition regression (PSTR) models. The research indicates that, on the condition of separately taking Gross Domestic Product per capita (GDPpc), energy structure (Es), and urbanisation level (Ul) as transition variables, three models all reject the null hypothesis of a linear relationship, i.e., a non-linear relationship exists. The results show that the three models all contain only one transition function but different numbers of location parameters. The model taking GDPpc as the transition variable has two location parameters, while the other two models separately considering Es and Ul as the transition variables both contain one location parameter. The three models applied in the study all favourably describe the non-linear relationship between economic growth and CO₂ emissions in China. It also can be seen that the conversion rate of the influence of Ul on per capita CO₂ emissions is significantly higher than those of GDPpc and Es on per capita CO₂ emissions.

  17. Multicrack Localization in Rotors Based on Proper Orthogonal Decomposition Using Fractal Dimension and Gapped Smoothing Method

    Directory of Open Access Journals (Sweden)

    Zhiwen Lu

    2016-01-01

    Full Text Available Multicrack localization in operating rotor systems is still a challenge today. Focusing on this challenge, a new approach based on proper orthogonal decomposition (POD is proposed for multicrack localization in rotors. A two-disc rotor-bearing system with breathing cracks is established by the finite element method and simulated sensors are distributed along the rotor to obtain the steady-state transverse responses required by POD. Based on the discontinuities introduced in the proper orthogonal modes (POMs at the locations of cracks, the characteristic POM (CPOM, which is sensitive to crack locations and robust to noise, is selected for cracks localization. Instead of using the CPOM directly, due to its difficulty to localize incipient cracks, damage indexes using fractal dimension (FD and gapped smoothing method (GSM are adopted, in order to extract the locations more efficiently. The method proposed in this work is validated to be effective for multicrack localization in rotors by numerical experiments on rotors in different crack configuration cases considering the effects of noise. In addition, the feasibility of using fewer sensors is also investigated.

  18. An {Mathematical expression} iteration bound primal-dual cone affine scaling algorithm for linear programmingiteration bound primal-dual cone affine scaling algorithm for linear programming

    NARCIS (Netherlands)

    J.F. Sturm; J. Zhang (Shuzhong)

    1996-01-01

    textabstractIn this paper we introduce a primal-dual affine scaling method. The method uses a search-direction obtained by minimizing the duality gap over a linearly transformed conic section. This direction neither coincides with known primal-dual affine scaling directions (Jansen et al., 1993;

  19. On logarithmic extensions of local scale-invariance

    International Nuclear Information System (INIS)

    Henkel, Malte

    2013-01-01

    Ageing phenomena far from equilibrium naturally present dynamical scaling and in many situations this may be generalised to local scale-invariance. Generically, the absence of time-translation-invariance implies that each scaling operator is characterised by two independent scaling dimensions. Building on analogies with logarithmic conformal invariance and logarithmic Schrödinger-invariance, this work proposes a logarithmic extension of local scale-invariance, without time-translation-invariance. Carrying this out requires in general to replace both scaling dimensions of each scaling operator by Jordan cells. Co-variant two-point functions are derived for the most simple case of a two-dimensional logarithmic extension. Their form is compared to simulational data for autoresponse functions in several universality classes of non-equilibrium ageing phenomena

  20. The instantaneous local transition of a stable equilibrium to a chaotic attractor in piecewise-smooth systems of differential equations

    Energy Technology Data Exchange (ETDEWEB)

    Simpson, D.J.W., E-mail: d.j.w.simpson@massey.ac.nz

    2016-09-07

    An attractor of a piecewise-smooth continuous system of differential equations can bifurcate from a stable equilibrium to a more complicated invariant set when it collides with a switching manifold under parameter variation. Here numerical evidence is provided to show that this invariant set can be chaotic. The transition occurs locally (in a neighbourhood of a point) and instantaneously (for a single critical parameter value). This phenomenon is illustrated for the normal form of a boundary equilibrium bifurcation in three dimensions using parameter values adapted from of a piecewise-linear model of a chaotic electrical circuit. The variation of a secondary parameter reveals a period-doubling cascade to chaos with windows of periodicity. The dynamics is well approximated by a one-dimensional unimodal map which explains the bifurcation structure. The robustness of the attractor is also investigated by studying the influence of nonlinear terms. - Highlights: • A boundary equilibrium bifurcation involving stable and saddle foci is considered. • A two-dimensional return map is constructed and approximated by a one-dimensional map. • A trapping region and Smale horseshoe are identified for a Rössler-like attractor. • Bifurcation diagrams reveal period-doubling cascades and windows of periodicity.

  1. Polarization properties of linearly polarized parabolic scaling Bessel beams

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Mengwen; Zhao, Daomu, E-mail: zhaodaomu@yahoo.com

    2016-10-07

    The intensity profiles for the dominant polarization, cross polarization, and longitudinal components of modified parabolic scaling Bessel beams with linear polarization are investigated theoretically. The transverse intensity distributions of the three electric components are intimately connected to the topological charge. In particular, the intensity patterns of the cross polarization and longitudinal components near the apodization plane reflect the sign of the topological charge. - Highlights: • We investigated the polarization properties of modified parabolic scaling Bessel beams with linear polarization. • We studied the evolution of transverse intensity profiles for the three components of these beams. • The intensity patterns of the cross polarization and longitudinal components can reflect the sign of the topological charge.

  2. Violations of local equilibrium and linear response in classical lattice systems

    International Nuclear Information System (INIS)

    Aoki, Kenichiro; Kusnezov, Dimitri

    2003-01-01

    We quantitatively and systematically analyze how local equilibrium, and linear response in transport are violated as systems move far from equilibrium. This is done by studying heat flow in classical lattice models with and without bulk transport behavior, in 1-3 dimensions, at various temperatures. Equations of motion for the system are integrated numerically to construct the non-equilibrium steady states. Linear response and local equilibrium assumptions are seen to break down in a similar manner. We quantify the breakdown through the analysis of both microscopic and macroscopic observables and examine its transformation properties under general redefinitions of the non-equilibrium temperature

  3. Determining the Optimal Values of Exponential Smoothing Constants--Does Solver Really Work?

    Science.gov (United States)

    Ravinder, Handanhal V.

    2013-01-01

    A key issue in exponential smoothing is the choice of the values of the smoothing constants used. One approach that is becoming increasingly popular in introductory management science and operations management textbooks is the use of Solver, an Excel-based non-linear optimizer, to identify values of the smoothing constants that minimize a measure…

  4. The local structure of a Liouville vector field

    International Nuclear Information System (INIS)

    Ciriza, E.

    1990-05-01

    In this work we investigate the local structure of a Liouville vector field ξ of a Kaehler manifold (P,Ω) which vanishes on an isotropic submanifold Q of P. Some of the eigenvalues of its linear part at the singular points are zero and the remaining ones are in resonance. We show that there is a C 1 -smooth linearizing conjugation between the Liouville vector field ξ and its linear part. To do this we construct Darboux coordinates adapted to the unstable foliation which is provided by the Centre Manifold Theorem. We then apply recent linearization results due to G. Sell. (author). 11 refs

  5. Estimating monotonic rates from biological data using local linear regression.

    Science.gov (United States)

    Olito, Colin; White, Craig R; Marshall, Dustin J; Barneche, Diego R

    2017-03-01

    Accessing many fundamental questions in biology begins with empirical estimation of simple monotonic rates of underlying biological processes. Across a variety of disciplines, ranging from physiology to biogeochemistry, these rates are routinely estimated from non-linear and noisy time series data using linear regression and ad hoc manual truncation of non-linearities. Here, we introduce the R package LoLinR, a flexible toolkit to implement local linear regression techniques to objectively and reproducibly estimate monotonic biological rates from non-linear time series data, and demonstrate possible applications using metabolic rate data. LoLinR provides methods to easily and reliably estimate monotonic rates from time series data in a way that is statistically robust, facilitates reproducible research and is applicable to a wide variety of research disciplines in the biological sciences. © 2017. Published by The Company of Biologists Ltd.

  6. A Smoothed Finite Element-Based Elasticity Model for Soft Bodies

    Directory of Open Access Journals (Sweden)

    Juan Zhang

    2017-01-01

    Full Text Available One of the major challenges in mesh-based deformation simulation in computer graphics is to deal with mesh distortion. In this paper, we present a novel mesh-insensitive and softer method for simulating deformable solid bodies under the assumptions of linear elastic mechanics. A face-based strain smoothing method is adopted to alleviate mesh distortion instead of the traditional spatial adaptive smoothing method. Then, we propose a way to combine the strain smoothing method and the corotational method. With this approach, the amplitude and frequency of transient displacements are slightly affected by the distorted mesh. Realistic simulation results are generated under large rotation using a linear elasticity model without adding significant complexity or computational cost to the standard corotational FEM. Meanwhile, softening effect is a by-product of our method.

  7. Localization of the eigenvalues of linear integral equations with applications to linear ordinary differential equations.

    Science.gov (United States)

    Sloss, J. M.; Kranzler, S. K.

    1972-01-01

    The equivalence of a considered integral equation form with an infinite system of linear equations is proved, and the localization of the eigenvalues of the infinite system is expressed. Error estimates are derived, and the problems of finding upper bounds and lower bounds for the eigenvalues are solved simultaneously.

  8. Sparse PDF maps for non-linear multi-resolution image operations

    KAUST Repository

    Hadwiger, Markus

    2012-11-01

    We introduce a new type of multi-resolution image pyramid for high-resolution images called sparse pdf maps (sPDF-maps). Each pyramid level consists of a sparse encoding of continuous probability density functions (pdfs) of pixel neighborhoods in the original image. The encoded pdfs enable the accurate computation of non-linear image operations directly in any pyramid level with proper pre-filtering for anti-aliasing, without accessing higher or lower resolutions. The sparsity of sPDF-maps makes them feasible for gigapixel images, while enabling direct evaluation of a variety of non-linear operators from the same representation. We illustrate this versatility for antialiased color mapping, O(n) local Laplacian filters, smoothed local histogram filters (e.g., median or mode filters), and bilateral filters. © 2012 ACM.

  9. Novel algorithm of large-scale simultaneous linear equations

    International Nuclear Information System (INIS)

    Fujiwara, T; Hoshi, T; Yamamoto, S; Sogabe, T; Zhang, S-L

    2010-01-01

    We review our recently developed methods of solving large-scale simultaneous linear equations and applications to electronic structure calculations both in one-electron theory and many-electron theory. This is the shifted COCG (conjugate orthogonal conjugate gradient) method based on the Krylov subspace, and the most important issue for applications is the shift equation and the seed switching method, which greatly reduce the computational cost. The applications to nano-scale Si crystals and the double orbital extended Hubbard model are presented.

  10. Small-scale quantum information processing with linear optics

    International Nuclear Information System (INIS)

    Bergou, J.A.; Steinberg, A.M.; Mohseni, M.

    2005-01-01

    Full text: Photons are the ideal systems for carrying quantum information. Although performing large-scale quantum computation on optical systems is extremely demanding, non scalable linear-optics quantum information processing may prove essential as part of quantum communication networks. In addition efficient (scalable) linear-optical quantum computation proposal relies on the same optical elements. Here, by constructing multirail optical networks, we experimentally study two central problems in quantum information science, namely optimal discrimination between nonorthogonal quantum states, and controlling decoherence in quantum systems. Quantum mechanics forbids deterministic discrimination between nonorthogonal states. This is one of the central features of quantum cryptography, which leads to secure communications. Quantum state discrimination is an important primitive in quantum information processing, since it determines the limitations of a potential eavesdropper, and it has applications in quantum cloning and entanglement concentration. In this work, we experimentally implement generalized measurements in an optical system and demonstrate the first optimal unambiguous discrimination between three non-orthogonal states with a success rate of 55 %, to be compared with the 25 % maximum achievable using projective measurements. Furthermore, we present the first realization of unambiguous discrimination between a pure state and a nonorthogonal mixed state. In a separate experiment, we demonstrate how decoherence-free subspaces (DFSs) may be incorporated into a prototype optical quantum algorithm. Specifically, we present an optical realization of two-qubit Deutsch-Jozsa algorithm in presence of random noise. By introduction of localized turbulent airflow we produce a collective optical dephasing, leading to large error rates and demonstrate that using DFS encoding, the error rate in the presence of decoherence can be reduced from 35 % to essentially its pre

  11. Ureter smooth muscle cell orientation in rat is predominantly longitudinal.

    Directory of Open Access Journals (Sweden)

    Bart Spronck

    Full Text Available In ureter peristalsis, the orientation of the contracting smooth muscle cells is essential, yet current descriptions of orientation and composition of the smooth muscle layer in human as well as in rat ureter are inconsistent. The present study aims to improve quantification of smooth muscle orientation in rat ureters as a basis for mechanistic understanding of peristalsis. A crucial step in our approach is to use two-photon laser scanning microscopy and image analysis providing objective, quantitative data on smooth muscle cell orientation in intact ureters, avoiding the usual sectioning artifacts. In 36 rat ureter segments, originating from a proximal, middle or distal site and from a left or right ureter, we found close to the adventitia a well-defined longitudinal smooth muscle orientation. Towards the lamina propria, the orientation gradually became slightly more disperse, yet the main orientation remained longitudinal. We conclude that smooth muscle cell orientation in rat ureter is predominantly longitudinal, though the orientation gradually becomes more disperse towards the proprial side. These findings do not support identification of separate layers. The observed longitudinal orientation suggests that smooth muscle contraction would rather cause local shortening of the ureter, than cause luminal constriction. However, the net-like connective tissue of the ureter wall may translate local longitudinal shortening into co-local luminal constriction, facilitating peristalsis. Our quantitative, minimally invasive approach is a crucial step towards more mechanistic insight into ureter peristalsis, and may also be used to study smooth muscle cell orientation in other tube-like structures like gut and blood vessels.

  12. Ureter smooth muscle cell orientation in rat is predominantly longitudinal.

    Science.gov (United States)

    Spronck, Bart; Merken, Jort J; Reesink, Koen D; Kroon, Wilco; Delhaas, Tammo

    2014-01-01

    In ureter peristalsis, the orientation of the contracting smooth muscle cells is essential, yet current descriptions of orientation and composition of the smooth muscle layer in human as well as in rat ureter are inconsistent. The present study aims to improve quantification of smooth muscle orientation in rat ureters as a basis for mechanistic understanding of peristalsis. A crucial step in our approach is to use two-photon laser scanning microscopy and image analysis providing objective, quantitative data on smooth muscle cell orientation in intact ureters, avoiding the usual sectioning artifacts. In 36 rat ureter segments, originating from a proximal, middle or distal site and from a left or right ureter, we found close to the adventitia a well-defined longitudinal smooth muscle orientation. Towards the lamina propria, the orientation gradually became slightly more disperse, yet the main orientation remained longitudinal. We conclude that smooth muscle cell orientation in rat ureter is predominantly longitudinal, though the orientation gradually becomes more disperse towards the proprial side. These findings do not support identification of separate layers. The observed longitudinal orientation suggests that smooth muscle contraction would rather cause local shortening of the ureter, than cause luminal constriction. However, the net-like connective tissue of the ureter wall may translate local longitudinal shortening into co-local luminal constriction, facilitating peristalsis. Our quantitative, minimally invasive approach is a crucial step towards more mechanistic insight into ureter peristalsis, and may also be used to study smooth muscle cell orientation in other tube-like structures like gut and blood vessels.

  13. Linear local stability of electrostatic drift modes in helical systems

    International Nuclear Information System (INIS)

    Yamagishi, O.; Nakajima, N.; Sugama, H.; Nakamura, Y.

    2003-01-01

    We investigate the stability of the drift wave in helical systems. For this purpose, we solve the linear local gyrokinetic-Poisson equation, in the electrostatic regime. As a model of helical plasmas, Large helical Device (LHD) is considered. The equation we apply is rather exact in the framework of linear gyrokinetic theory, where only the approximation is the ballooning representation. In this paper, we consider only collisionless cases. All the frequency regime can be naturally reated without any assumptions, and in such cases, ion temperature gradient modes (ITG), trapped electron modes (TEM), and electron temperature gradient modes (ETG) are expected to become unstable linearly independently. (orig.)

  14. Smooth random change point models.

    Science.gov (United States)

    van den Hout, Ardo; Muniz-Terrera, Graciela; Matthews, Fiona E

    2011-03-15

    Change point models are used to describe processes over time that show a change in direction. An example of such a process is cognitive ability, where a decline a few years before death is sometimes observed. A broken-stick model consists of two linear parts and a breakpoint where the two lines intersect. Alternatively, models can be formulated that imply a smooth change between the two linear parts. Change point models can be extended by adding random effects to account for variability between subjects. A new smooth change point model is introduced and examples are presented that show how change point models can be estimated using functions in R for mixed-effects models. The Bayesian inference using WinBUGS is also discussed. The methods are illustrated using data from a population-based longitudinal study of ageing, the Cambridge City over 75 Cohort Study. The aim is to identify how many years before death individuals experience a change in the rate of decline of their cognitive ability. Copyright © 2010 John Wiley & Sons, Ltd.

  15. Feature Genes Selection Using Supervised Locally Linear Embedding and Correlation Coefficient for Microarray Classification.

    Science.gov (United States)

    Xu, Jiucheng; Mu, Huiyu; Wang, Yun; Huang, Fangzhou

    2018-01-01

    The selection of feature genes with high recognition ability from the gene expression profiles has gained great significance in biology. However, most of the existing methods have a high time complexity and poor classification performance. Motivated by this, an effective feature selection method, called supervised locally linear embedding and Spearman's rank correlation coefficient (SLLE-SC 2 ), is proposed which is based on the concept of locally linear embedding and correlation coefficient algorithms. Supervised locally linear embedding takes into account class label information and improves the classification performance. Furthermore, Spearman's rank correlation coefficient is used to remove the coexpression genes. The experiment results obtained on four public tumor microarray datasets illustrate that our method is valid and feasible.

  16. Suspension system vibration analysis with regard to variable type ability to smooth road irregularities

    Science.gov (United States)

    Rykov, S. P.; Rykova, O. A.; Koval, V. S.; Makhno, D. E.; Fedotov, K. V.

    2018-03-01

    The paper aims to analyze vibrations of the dynamic system equivalent of the suspension system with regard to tyre ability to smooth road irregularities. The research is based on static dynamics for linear systems of automated control, methods of correlation, spectral and numerical analysis. Input of new data on the smoothing effect of the pneumatic tyre reflecting changes of a contact area between the wheel and road under vibrations of the suspension makes the system non-linear which requires using numerical analysis methods. Taking into account the variable smoothing ability of the tyre when calculating suspension vibrations, one can approximate calculation and experimental results and improve the constant smoothing ability of the tyre.

  17. Thresholds, switches and hysteresis in hydrology from the pedon to the catchment scale: a non-linear systems theory

    Directory of Open Access Journals (Sweden)

    2007-01-01

    Full Text Available Hysteresis is a rate-independent non-linearity that is expressed through thresholds, switches, and branches. Exceedance of a threshold, or the occurrence of a turning point in the input, switches the output onto a particular output branch. Rate-independent branching on a very large set of switches with non-local memory is the central concept in the new definition of hysteresis. Hysteretic loops are a special case. A self-consistent mathematical description of hydrological systems with hysteresis demands a new non-linear systems theory of adequate generality. The goal of this paper is to establish this and to show how this may be done. Two results are presented: a conceptual model for the hysteretic soil-moisture characteristic at the pedon scale and a hysteretic linear reservoir at the catchment scale. Both are based on the Preisach model. A result of particular significance is the demonstration that the independent domain model of the soil moisture characteristic due to Childs, Poulavassilis, Mualem and others, is equivalent to the Preisach hysteresis model of non-linear systems theory, a result reminiscent of the reduction of the theory of the unit hydrograph to linear systems theory in the 1950s. A significant reduction in the number of model parameters is also achieved. The new theory implies a change in modelling paradigm.

  18. Smoothing of Fault Slip Surfaces by Scale Invariant Wear

    Science.gov (United States)

    Dascher-Cousineau, K.; Kirkpatrick, J. D.

    2017-12-01

    Fault slip surface roughness plays a determining role in the overall strength, friction, and dynamic behavior of fault systems. Previous wear models and field observations suggest that roughness decreases with increasing displacement. However, measurements have yet to isolate the effect of displacement from other possible controls, such as lithology or tectonic setting. In an effort to understand the effect of displacement, we present comprehensive qualitative and quantitative description of the evolution of fault slip surfaces in and around the San-Rafael Desert, S.E. Utah, United States. In the study area, faults accommodated regional extension at shallow (1 to 3 km) depth and are hosted in the massive, well-sorted, high-porosity Navajo and Entrada sandstones. Existing displacement profiles along with tight displacement controls readily measureable in the field, combined with uniform lithology and tectonic history, allowed us to isolate for the effect of displacement during the embryonic stages of faulting (0 to 60 m in displacement). Our field observations indicate a clear compositional and morphological progression from isolated joints or deformation bands towards smooth, continuous, and mirror-like fault slip surfaces with increasing displacement. We scanned pristine slip surfaces with a white light interferometer, a laser scanner, and a ground-based LiDAR. We produce and analyses more than 120 individual scans of fault slip surfaces. Results for the surfaces with the best displacement constraints indicate that roughness as defined by the power spectral density at any given length scale decreases with displacement according to a power law with an exponent of -1. Roughness measurements associated with only maximum constraints on displacements corroborate this result. Moreover, maximum roughness for any given fault is bounded by a primordial roughness corresponding to that of joint surfaces and deformation band edges. Building upon these results, we propose a

  19. Mechanisms of mechanical strain memory in airway smooth muscle.

    Science.gov (United States)

    Kim, Hak Rim; Hai, Chi-Ming

    2005-10-01

    We evaluated the hypothesis that mechanical deformation of airway smooth muscle induces structural remodeling of airway smooth muscle cells, thereby modulating mechanical performance in subsequent contractions. This hypothesis implied that past experience of mechanical deformation was retained (or "memorized") as structural changes in airway smooth muscle cells, which modulated the cell's subsequent contractile responses. We termed this phenomenon mechanical strain memory. Preshortening has been found to induce attenuation of both force and isotonic shortening velocity in cholinergic receptor-activated airway smooth muscle. Rapid stretching of cholinergic receptor-activated airway smooth muscle from an initial length to a final length resulted in post-stretch force and myosin light chain phosphorylation that correlated significantly with initial length. Thus post-stretch muscle strips appeared to retain memory of the initial length prior to rapid stretch (mechanical strain memory). Cytoskeletal recruitment of actin- and integrin-binding proteins and Erk 1/2 MAPK appeared to be important mechanisms of mechanical strain memory. Sinusoidal length oscillation led to force attenuation during oscillation and in subsequent contractions in intact airway smooth muscle, and p38 MAPK appeared to be an important mechanism. In contrast, application of local mechanical strain to cultured airway smooth muscle cells induced local actin polymerization and cytoskeletal stiffening. It is conceivable that deep inspiration-induced bronchoprotection may be a manifestation of mechanical strain memory such that mechanical deformation from past breathing cycles modulated the mechanical performance of airway smooth muscle in subsequent cycles in a continuous and dynamic manner.

  20. The Scaling LInear Macroweather model (SLIM): using scaling to forecast global scale macroweather from months to decades

    Science.gov (United States)

    Lovejoy, S.; del Rio Amador, L.; Hébert, R.

    2015-03-01

    At scales of ≈ 10 days (the lifetime of planetary scale structures), there is a drastic transition from high frequency weather to low frequency macroweather. This scale is close to the predictability limits of deterministic atmospheric models; so that in GCM macroweather forecasts, the weather is a high frequency noise. But neither the GCM noise nor the GCM climate is fully realistic. In this paper we show how simple stochastic models can be developped that use empirical data to force the statistics and climate to be realistic so that even a two parameter model can outperform GCM's for annual global temperature forecasts. The key is to exploit the scaling of the dynamics and the enormous stochastic memories that it implies. Since macroweather intermittency is low, we propose using the simplest model based on fractional Gaussian noise (fGn): the Scaling LInear Macroweather model (SLIM). SLIM is based on a stochastic ordinary differential equations, differing from usual linear stochastic models (such as the Linear Inverse Modelling, LIM) in that it is of fractional rather than integer order. Whereas LIM implicitly assumes there is no low frequency memory, SLIM has a huge memory that can be exploited. Although the basic mathematical forecast problem for fGn has been solved, we approach the problem in an original manner notably using the method of innovations to obtain simpler results on forecast skill and on the size of the effective system memory. A key to successful forecasts of natural macroweather variability is to first remove the low frequency anthropogenic component. A previous attempt to use fGn for forecasts had poor results because this was not done. We validate our theory using hindcasts of global and Northern Hemisphere temperatures at monthly and annual resolutions. Several nondimensional measures of forecast skill - with no adjustable parameters - show excellent agreement with hindcasts and these show some skill even at decadal scales. We also compare

  1. Nuclear fusion-independent smooth muscle differentiation of human adipose-derived stem cells induced by a smooth muscle environment.

    Science.gov (United States)

    Zhang, Rong; Jack, Gregory S; Rao, Nagesh; Zuk, Patricia; Ignarro, Louis J; Wu, Benjamin; Rodríguez, Larissa V

    2012-03-01

    Human adipose-derived stem cells hASC have been isolated and were shown to have multilineage differentiation capacity. Although both plasticity and cell fusion have been suggested as mechanisms for cell differentiation in vivo, the effect of the local in vivo environment on the differentiation of adipose-derived stem cells has not been evaluated. We previously reported the in vitro capacity of smooth muscle differentiation of these cells. In this study, we evaluate the effect of an in vivo smooth muscle environment in the differentiation of hASC. We studied this by two experimental designs: (a) in vivo evaluation of smooth muscle differentiation of hASC injected into a smooth muscle environment and (b) in vitro evaluation of smooth muscle differentiation capacity of hASC exposed to bladder smooth muscle cells. Our results indicate a time-dependent differentiation of hASC into mature smooth muscle cells when these cells are injected into the smooth musculature of the urinary bladder. Similar findings were seen when the cells were cocultured in vitro with primary bladder smooth muscle cells. Chromosomal analysis demonstrated that microenvironment cues rather than nuclear fusion are responsible for this differentiation. We conclude that cell plasticity is present in hASCs, and their differentiation is accomplished in the absence of nuclear fusion. Copyright © 2011 AlphaMed Press.

  2. Scaling properties of localized quantum chaos

    International Nuclear Information System (INIS)

    Izrailev, F.M.

    1991-01-01

    Statistical properties of spectra and eigenfunctions are studied for the model of quantum chaos in the presence of dynamical localization. The main attention is paid to the scaling properties of localization length and level spacing distribution in the intermediate region between Poissonian and Wigner-Dyson statistics. It is shown that main features of such localized quantum chaos are well described by the introduced ensemble of band random matrices. 28 refs.; 7 figs

  3. Local energy decay for linear wave equations with variable coefficients

    Science.gov (United States)

    Ikehata, Ryo

    2005-06-01

    A uniform local energy decay result is derived to the linear wave equation with spatial variable coefficients. We deal with this equation in an exterior domain with a star-shaped complement. Our advantage is that we do not assume any compactness of the support on the initial data, and its proof is quite simple. This generalizes a previous famous result due to Morawetz [The decay of solutions of the exterior initial-boundary value problem for the wave equation, Comm. Pure Appl. Math. 14 (1961) 561-568]. In order to prove local energy decay, we mainly apply two types of ideas due to Ikehata-Matsuyama [L2-behaviour of solutions to the linear heat and wave equations in exterior domains, Sci. Math. Japon. 55 (2002) 33-42] and Todorova-Yordanov [Critical exponent for a nonlinear wave equation with damping, J. Differential Equations 174 (2001) 464-489].

  4. On a linear method in bootstrap confidence intervals

    Directory of Open Access Journals (Sweden)

    Andrea Pallini

    2007-10-01

    Full Text Available A linear method for the construction of asymptotic bootstrap confidence intervals is proposed. We approximate asymptotically pivotal and non-pivotal quantities, which are smooth functions of means of n independent and identically distributed random variables, by using a sum of n independent smooth functions of the same analytical form. Errors are of order Op(n-3/2 and Op(n-2, respectively. The linear method allows a straightforward approximation of bootstrap cumulants, by considering the set of n independent smooth functions as an original random sample to be resampled with replacement.

  5. A simplified density matrix minimization for linear scaling self-consistent field theory

    International Nuclear Information System (INIS)

    Challacombe, M.

    1999-01-01

    A simplified version of the Li, Nunes and Vanderbilt [Phys. Rev. B 47, 10891 (1993)] and Daw [Phys. Rev. B 47, 10895 (1993)] density matrix minimization is introduced that requires four fewer matrix multiplies per minimization step relative to previous formulations. The simplified method also exhibits superior convergence properties, such that the bulk of the work may be shifted to the quadratically convergent McWeeny purification, which brings the density matrix to idempotency. Both orthogonal and nonorthogonal versions are derived. The AINV algorithm of Benzi, Meyer, and Tuma [SIAM J. Sci. Comp. 17, 1135 (1996)] is introduced to linear scaling electronic structure theory, and found to be essential in transformations between orthogonal and nonorthogonal representations. These methods have been developed with an atom-blocked sparse matrix algebra that achieves sustained megafloating point operations per second rates as high as 50% of theoretical, and implemented in the MondoSCF suite of linear scaling SCF programs. For the first time, linear scaling Hartree - Fock theory is demonstrated with three-dimensional systems, including water clusters and estane polymers. The nonorthogonal minimization is shown to be uncompetitive with minimization in an orthonormal representation. An early onset of linear scaling is found for both minimal and double zeta basis sets, and crossovers with a highly optimized eigensolver are achieved. Calculations with up to 6000 basis functions are reported. The scaling of errors with system size is investigated for various levels of approximation. copyright 1999 American Institute of Physics

  6. General rigid motion correction for computed tomography imaging based on locally linear embedding

    Science.gov (United States)

    Chen, Mianyi; He, Peng; Feng, Peng; Liu, Baodong; Yang, Qingsong; Wei, Biao; Wang, Ge

    2018-02-01

    The patient motion can damage the quality of computed tomography images, which are typically acquired in cone-beam geometry. The rigid patient motion is characterized by six geometric parameters and are more challenging to correct than in fan-beam geometry. We extend our previous rigid patient motion correction method based on the principle of locally linear embedding (LLE) from fan-beam to cone-beam geometry and accelerate the computational procedure with the graphics processing unit (GPU)-based all scale tomographic reconstruction Antwerp toolbox. The major merit of our method is that we need neither fiducial markers nor motion-tracking devices. The numerical and experimental studies show that the LLE-based patient motion correction is capable of calibrating the six parameters of the patient motion simultaneously, reducing patient motion artifacts significantly.

  7. Local beam angle optimization with linear programming and gradient search

    International Nuclear Information System (INIS)

    Craft, David

    2007-01-01

    The optimization of beam angles in IMRT planning is still an open problem, with literature focusing on heuristic strategies and exhaustive searches on discrete angle grids. We show how a beam angle set can be locally refined in a continuous manner using gradient-based optimization in the beam angle space. The gradient is derived using linear programming duality theory. Applying this local search to 100 random initial angle sets of a phantom pancreatic case demonstrates the method, and highlights the many-local-minima aspect of the BAO problem. Due to this function structure, we recommend a search strategy of a thorough global search followed by local refinement at promising beam angle sets. Extensions to nonlinear IMRT formulations are discussed. (note)

  8. On the existence of tunneling bounce solutions in piecewise linear potentials

    International Nuclear Information System (INIS)

    Dutta, Koushik; Hector, Cecelie; Konstandin, Thomas; Vaudrevange, Pascal M.; Westphal, Alexander

    2012-02-01

    Coleman tunneling in a general scalar potential with two non-degenerate minima is known to have an approximation in terms of a piecewise linear triangular-shaped potential with sharp 'kinks' at the place of the local minima. This approximate potential has a regime where the existence of the bounce solution needs the scalar field to 'wait' for some amount of Euclidean time at one of the 'kinks'. We discuss under which circumstances the correct bounce action can be consistently obtained as the limiting case of a regular scalar potential where 'kinks' are resolved as locally smooth 'cap' regions. (orig.)

  9. Dynamics of wetting on smooth and rough surfaces.

    NARCIS (Netherlands)

    Cazabat, A.M.; Cohen Stuart, M.A.

    1987-01-01

    The rate of spreading of non-volatile liquids on smooth and on rough surfaces was investigated. The radius of the wetted spot was found to agree with recently proposed scaling laws (t 1/10 for capillarity driven andt 1/8 for gravity driven spreading) when the surface was smooth. However, the

  10. Scale-adaptive Local Patches for Robust Visual Object Tracking

    Directory of Open Access Journals (Sweden)

    Kang Sun

    2014-04-01

    Full Text Available This paper discusses the problem of robustly tracking objects which undergo rapid and dramatic scale changes. To remove the weakness of global appearance models, we present a novel scheme that combines object’s global and local appearance features. The local feature is a set of local patches that geometrically constrain the changes in the target’s appearance. In order to adapt to the object’s geometric deformation, the local patches could be removed and added online. The addition of these patches is constrained by the global features such as color, texture and motion. The global visual features are updated via the stable local patches during tracking. To deal with scale changes, we adapt the scale of patches in addition to adapting the object bound box. We evaluate our method by comparing it to several state-of-the-art trackers on publicly available datasets. The experimental results on challenging sequences confirm that, by using this scale-adaptive local patches and global properties, our tracker outperforms the related trackers in many cases by having smaller failure rate as well as better accuracy.

  11. Graph-based linear scaling electronic structure theory

    Energy Technology Data Exchange (ETDEWEB)

    Niklasson, Anders M. N., E-mail: amn@lanl.gov; Negre, Christian F. A.; Cawkwell, Marc J.; Swart, Pieter J.; Germann, Timothy C.; Bock, Nicolas [Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Mniszewski, Susan M.; Mohd-Yusof, Jamal; Wall, Michael E.; Djidjev, Hristo [Computer, Computational, and Statistical Sciences Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Rubensson, Emanuel H. [Division of Scientific Computing, Department of Information Technology, Uppsala University, Box 337, SE-751 05 Uppsala (Sweden)

    2016-06-21

    We show how graph theory can be combined with quantum theory to calculate the electronic structure of large complex systems. The graph formalism is general and applicable to a broad range of electronic structure methods and materials, including challenging systems such as biomolecules. The methodology combines well-controlled accuracy, low computational cost, and natural low-communication parallelism. This combination addresses substantial shortcomings of linear scaling electronic structure theory, in particular with respect to quantum-based molecular dynamics simulations.

  12. Electrochemically replicated smooth aluminum foils for anodic alumina nanochannel arrays

    International Nuclear Information System (INIS)

    Biring, Sajal; Tsai, K-T; Sur, Ujjal Kumar; Wang, Y-L

    2008-01-01

    A fast electrochemical replication technique has been developed to fabricate large-scale ultra-smooth aluminum foils by exploiting readily available large-scale smooth silicon wafers as the masters. Since the adhesion of aluminum on silicon depends on the time of surface pretreatment in water, it is possible to either detach the replicated aluminum from the silicon master without damaging the replicated aluminum and master or integrate the aluminum film to the silicon substrate. Replicated ultra-smooth aluminum foils are used for the growth of both self-organized and lithographically guided long-range ordered arrays of anodic alumina nanochannels without any polishing pretreatment

  13. Universality of quadratic to linear magnetoresistance crossover in disordered conductors

    Science.gov (United States)

    Lara, Silvia; Ramakrishnan, Navneeth; Lai, Ying Tong; Adam, Shaffique

    Many experiments measuring Magnetoresistance (MR) showed unsaturating linear behavior at high magnetic fields and quadratic behavior at low fields. In the literature, two very different theoretical models have been used to explain this classical MR as a consequence of sample disorder. The phenomenological Random Resistor Network (RRN) model constructs a grid of four-terminal resistors each with a varying random resistance. The Effective Medium Theory (EMT) model imagines a smoothly varying disorder potential that causes a continuous variation of the local conductivity. In this theoretical work, we demonstrate numerically that both the RRN and EMT models belong to the same universality class, and that a single parameter (the ratio of the fluctuations in the carrier density to the average carrier density) completely determines both the magnitude of the MR and the B-field scale for the crossover from quadratic to linear MR. By considering several experimental data sets in the literature, ranging from thin films of InSb to graphene to Weyl semimetals like Na3Bi, we show that this disorder-induced mechanism for MR is in good agreement with the experiments, and that this comparison of MR with theory reveals information about the spatial carrier density inhomogeneity. This work was supported by the National Research Foundation of Singapore (NRF-NRFF2012-01).

  14. Analysis of local-scale background concentrations of methane and other gas-phase species in the Marcellus Shale

    Directory of Open Access Journals (Sweden)

    J. Douglas Goetz

    2017-02-01

    Full Text Available The Marcellus Shale is a rapidly developing unconventional natural gas resource found in part of the Appalachian region. Air quality and climate concerns have been raised regarding development of unconventional natural gas resources. Two ground-based mobile measurement campaigns were conducted to assess the impact of Marcellus Shale natural gas development on local scale atmospheric background concentrations of air pollution and climate relevant pollutants in Pennsylvania. The first campaign took place in Northeastern and Southwestern PA in the summer of 2012. Compounds monitored included methane (CH4, ethane, carbon monoxide (CO, nitrogen dioxide, and Proton Transfer Reaction Mass Spectrometer (PTR-MS measured volatile organic compounds (VOC including oxygenated and aromatic VOC. The second campaign took place in Northeastern PA in the summer of 2015. The mobile monitoring data were analyzed using interval percentile smoothing to remove bias from local unmixed emissions to isolate local-scale background concentrations. Comparisons were made to other ambient monitoring in the Marcellus region including a NOAA SENEX flight in 2013. Local background CH4 mole fractions were 140 ppbv greater in Southwestern PA compared to Northeastern PA in 2012 and background CH4 increased 100 ppbv from 2012 to 2015. CH4 local background mole fractions were not found to have a detectable relationship between well density or production rates in either region. In Northeastern PA, CO was observed to decrease 75 ppbv over the three year period. Toluene to benzene ratios in both study regions were found to be most similar to aged rural air masses indicating that the emission of aromatic VOC from Marcellus Shale activity may not be significantly impacting local background concentrations. In addition to understanding local background concentrations the ground-based mobile measurements were useful for investigating the composition of natural gas emissions in the region.

  15. A local adaptive algorithm for emerging scale-free hierarchical networks

    International Nuclear Information System (INIS)

    Gomez Portillo, I J; Gleiser, P M

    2010-01-01

    In this work we study a growing network model with chaotic dynamical units that evolves using a local adaptive rewiring algorithm. Using numerical simulations we show that the model allows for the emergence of hierarchical networks. First, we show that the networks that emerge with the algorithm present a wide degree distribution that can be fitted by a power law function, and thus are scale-free networks. Using the LaNet-vi visualization tool we present a graphical representation that reveals a central core formed only by hubs, and also show the presence of a preferential attachment mechanism. In order to present a quantitative analysis of the hierarchical structure we analyze the clustering coefficient. In particular, we show that as the network grows the clustering becomes independent of system size, and also presents a power law decay as a function of the degree. Finally, we compare our results with a similar version of the model that has continuous non-linear phase oscillators as dynamical units. The results show that local interactions play a fundamental role in the emergence of hierarchical networks.

  16. Some properties of the smoothed Wigner function

    International Nuclear Information System (INIS)

    Soto, F.; Claverie, P.

    1981-01-01

    Recently it has been proposed a modification of the Wigner function which consists in smoothing it by convolution with a phase-space gaussian function; this smoothed Wigner function is non-negative if the gaussian parameters Δ and delta satisfy the condition Δdelta > h/2π. We analyze in this paper the predictions of this modified Wigner function for the harmonic oscillator, for anharmonic oscillator and finally for the hydrogen atom. We find agreement with experiment in the linear case, but for strongly nonlinear systems, such as the hydrogen atom, the results obtained are completely wrong. (orig.)

  17. ONETEP: linear-scaling density-functional theory with plane-waves

    International Nuclear Information System (INIS)

    Haynes, P D; Mostof, A A; Skylaris, C-K; Payne, M C

    2006-01-01

    This paper provides a general overview of the methodology implemented in onetep (Order-N Electronic Total Energy Package), a parallel density-functional theory code for largescale first-principles quantum-mechanical calculations. The distinctive features of onetep are linear-scaling in both computational effort and resources, obtained by making well-controlled approximations which enable simulations to be performed with plane-wave accuracy. Titanium dioxide clusters of increasing size designed to mimic surfaces are studied to demonstrate the accuracy and scaling of onetep

  18. Multidimensional Scaling Localization Algorithm in Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Zhang Dongyang

    2014-02-01

    Full Text Available Due to the localization algorithm in large-scale wireless sensor network exists shortcomings both in positioning accuracy and time complexity compared to traditional localization algorithm, this paper presents a fast multidimensional scaling location algorithm. By positioning algorithm for fast multidimensional scaling, fast mapping initialization, fast mapping and coordinate transform can get schematic coordinates of node, coordinates Initialize of MDS algorithm, an accurate estimate of the node coordinates and using the PRORUSTES to analysis alignment of the coordinate and final position coordinates of nodes etc. There are four steps, and the thesis gives specific implementation steps of the algorithm. Finally, compared with stochastic algorithms and classical MDS algorithm experiment, the thesis takes application of specific examples. Experimental results show that: the proposed localization algorithm has fast multidimensional scaling positioning accuracy in ensuring certain circumstances, but also greatly improves the speed of operation.

  19. Climate analysis at local scale in the context of climate change

    International Nuclear Information System (INIS)

    Quenol, H.

    2013-01-01

    Issues related to climate change increasingly concern the functioning of local scale geo-systems. A global change will necessarily affect local climates. In this context, the potential impacts of climate change lead to numerous inter rogations concerning adaptation. Despite numerous studies on the impact of projected global warming on different regions global atmospheric models (GCM) are not adapted to local scales and, as a result, impacts at local scales are still approximate. Although real progress in meso-scale atmospheric modeling was realized over the past years, no operative model is in use yet to simulate climate at local scales (ten or so meters). (author)

  20. Spline smoothing of histograms by linear programming

    Science.gov (United States)

    Bennett, J. O.

    1972-01-01

    An algorithm for an approximating function to the frequency distribution is obtained from a sample of size n. To obtain the approximating function a histogram is made from the data. Next, Euclidean space approximations to the graph of the histogram using central B-splines as basis elements are obtained by linear programming. The approximating function has area one and is nonnegative.

  1. Self-Attractive Hartree Decomposition: Partitioning Electron Density into Smooth Localized Fragments.

    Science.gov (United States)

    Zhu, Tianyu; de Silva, Piotr; Van Voorhis, Troy

    2018-01-09

    Chemical bonding plays a central role in the description and understanding of chemistry. Many methods have been proposed to extract information about bonding from quantum chemical calculations, the majority of them resorting to molecular orbitals as basic descriptors. Here, we present a method called self-attractive Hartree (SAH) decomposition to unravel pairs of electrons directly from the electron density, which unlike molecular orbitals is a well-defined observable that can be accessed experimentally. The key idea is to partition the density into a sum of one-electron fragments that simultaneously maximize the self-repulsion and maintain regular shapes. This leads to a set of rather unusual equations in which every electron experiences self-attractive Hartree potential in addition to an external potential common for all the electrons. The resulting symmetry breaking and localization are surprisingly consistent with chemical intuition. SAH decomposition is also shown to be effective in visualization of single/multiple bonds, lone pairs, and unusual bonds due to the smooth nature of fragment densities. Furthermore, we demonstrate that it can be used to identify specific chemical bonds in molecular complexes and provides a simple and accurate electrostatic model of hydrogen bonding.

  2. Consistent deformations of dual formulations of linearized gravity: A no-go result

    International Nuclear Information System (INIS)

    Bekaert, Xavier; Boulanger, Nicolas; Henneaux, Marc

    2003-01-01

    The consistent, local, smooth deformations of the dual formulation of linearized gravity involving a tensor field in the exotic representation of the Lorentz group with Young symmetry type (D-3,1) (one column of length D-3 and one column of length 1) are systematically investigated. The rigidity of the Abelian gauge algebra is first established. We next prove a no-go theorem for interactions involving at most two derivatives of the fields

  3. Locally Linear Embedding of Local Orthogonal Least Squares Images for Face Recognition

    Science.gov (United States)

    Hafizhelmi Kamaru Zaman, Fadhlan

    2018-03-01

    Dimensionality reduction is very important in face recognition since it ensures that high-dimensionality data can be mapped to lower dimensional space without losing salient and integral facial information. Locally Linear Embedding (LLE) has been previously used to serve this purpose, however, the process of acquiring LLE features requires high computation and resources. To overcome this limitation, we propose a locally-applied Local Orthogonal Least Squares (LOLS) model can be used as initial feature extraction before the application of LLE. By construction of least squares regression under orthogonal constraints we can preserve more discriminant information in the local subspace of facial features while reducing the overall features into a more compact form that we called LOLS images. LLE can then be applied on the LOLS images to maps its representation into a global coordinate system of much lower dimensionality. Several experiments carried out using publicly available face datasets such as AR, ORL, YaleB, and FERET under Single Sample Per Person (SSPP) constraint demonstrates that our proposed method can reduce the time required to compute LLE features while delivering better accuracy when compared to when either LLE or OLS alone is used. Comparison against several other feature extraction methods and more recent feature-learning method such as state-of-the-art Convolutional Neural Networks (CNN) also reveal the superiority of the proposed method under SSPP constraint.

  4. Linear Time Local Approximation Algorithm for Maximum Stable Marriage

    Directory of Open Access Journals (Sweden)

    Zoltán Király

    2013-08-01

    Full Text Available We consider a two-sided market under incomplete preference lists with ties, where the goal is to find a maximum size stable matching. The problem is APX-hard, and a 3/2-approximation was given by McDermid [1]. This algorithm has a non-linear running time, and, more importantly needs global knowledge of all preference lists. We present a very natural, economically reasonable, local, linear time algorithm with the same ratio, using some ideas of Paluch [2]. In this algorithm every person make decisions using only their own list, and some information asked from members of these lists (as in the case of the famous algorithm of Gale and Shapley. Some consequences to the Hospitals/Residents problem are also discussed.

  5. Regularization by fractional filter methods and data smoothing

    International Nuclear Information System (INIS)

    Klann, E; Ramlau, R

    2008-01-01

    This paper is concerned with the regularization of linear ill-posed problems by a combination of data smoothing and fractional filter methods. For the data smoothing, a wavelet shrinkage denoising is applied to the noisy data with known error level δ. For the reconstruction, an approximation to the solution of the operator equation is computed from the data estimate by fractional filter methods. These fractional methods are based on the classical Tikhonov and Landweber method, but avoid, at least partially, the well-known drawback of oversmoothing. Convergence rates as well as numerical examples are presented

  6. Offset linear scaling for H-mode confinement

    International Nuclear Information System (INIS)

    Miura, Yukitoshi; Tamai, Hiroshi; Suzuki, Norio; Mori, Masahiro; Matsuda, Toshiaki; Maeda, Hikosuke; Takizuka, Tomonori; Itoh, Sanae; Itoh, Kimitaka.

    1992-01-01

    An offset linear scaling for the H-mode confinement time is examined based on single parameter scans on the JFT-2M experiment. Regression study is done for various devices with open divertor configuration such as JET, DIII-D, JFT-2M. The scaling law of the thermal energy is given in the MKSA unit as W th =0.0046R 1.9 I P 1.1 B T 0.91 √A+2.9x10 -8 I P 1.0 R 0.87 P√AP, where R is the major radius, I P is the plasma current, B T is the toroidal magnetic field, A is the average mass number of plasma and neutral beam particles, and P is the heating power. This fitting has a similar root mean square error (RMSE) compared to the power law scaling. The result is also compared with the H-mode in other configurations. The W th of closed divertor H-mode on ASDEX shows a little better values than that of open divertor H-mode. (author)

  7. Common Nearly Best Linear Estimates of Location and Scale ...

    African Journals Online (AJOL)

    Common nearly best linear estimates of location and scale parameters of normal and logistic distributions, which are based on complete samples, are considered. Here, the population from which the samples are drawn is either normal or logistic population or a fusion of both distributions and the estimates are computed ...

  8. Alignment Challenges for a Future Linear Collider

    CERN Document Server

    Durand, H; Stern, G

    2013-01-01

    The preservation of ultra-low emittances in the main linac and Beam Delivery System area is one of the main challenges for linear colliders. This requires alignment tolerances never achieved before at that scale, down to the micrometre level. As a matter of fact, in the LHC, the goal for the smoothing of the components was to obtain a 1σ deviation with respect to a smooth curve of 0.15 mm over a 150 m long sliding window, while for the CLIC project for example, it corresponds to 10 μm over a sliding window of 200 m in the Beam Delivery System area. Two complementary strategies are being studied to fulfil these requirements: the development and validation of long range alignment systems over a few hundreds of metres and short range alignment systems over a few metres. The studies undertaken, with associated tests setups and the latest results will be detailed, as well as their application for the alignment of both CLIC and ILC colliders.

  9. Scaling local species-habitat relations to the larger landscape with a hierarchical spatial count model

    Science.gov (United States)

    Thogmartin, W.E.; Knutson, M.G.

    2007-01-01

    Much of what is known about avian species-habitat relations has been derived from studies of birds at local scales. It is entirely unclear whether the relations observed at these scales translate to the larger landscape in a predictable linear fashion. We derived habitat models and mapped predicted abundances for three forest bird species of eastern North America using bird counts, environmental variables, and hierarchical models applied at three spatial scales. Our purpose was to understand habitat associations at multiple spatial scales and create predictive abundance maps for purposes of conservation planning at a landscape scale given the constraint that the variables used in this exercise were derived from local-level studies. Our models indicated a substantial influence of landscape context for all species, many of which were counter to reported associations at finer spatial extents. We found land cover composition provided the greatest contribution to the relative explained variance in counts for all three species; spatial structure was second in importance. No single spatial scale dominated any model, indicating that these species are responding to factors at multiple spatial scales. For purposes of conservation planning, areas of predicted high abundance should be investigated to evaluate the conservation potential of the landscape in their general vicinity. In addition, the models and spatial patterns of abundance among species suggest locations where conservation actions may benefit more than one species. ?? 2006 Springer Science+Business Media B.V.

  10. Local-scale and watershed-scale determinants of summertime urban stream temperatures

    Science.gov (United States)

    Derek B. Booth; Kristin A. Kraseski; C. Rhett. Jackson

    2014-01-01

    The influence of urbanization on the temperature of small streams is widely recognized, but these effects are confounded by the great natural variety of their contributing watersheds. To evaluate the relative importance of local-scale and watershed-scale factors on summer temperatures in urban streams, hundreds of near-instantaneous temperature measurements throughout...

  11. TOPOLOGY OF A LARGE-SCALE STRUCTURE AS A TEST OF MODIFIED GRAVITY

    International Nuclear Information System (INIS)

    Wang Xin; Chen Xuelei; Park, Changbom

    2012-01-01

    The genus of the isodensity contours is a robust measure of the topology of a large-scale structure, and it is relatively insensitive to nonlinear gravitational evolution, galaxy bias, and redshift-space distortion. We show that the growth of density fluctuations is scale dependent even in the linear regime in some modified gravity theories, which opens a new possibility of testing the theories observationally. We propose to use the genus of the isodensity contours, an intrinsic measure of the topology of the large-scale structure, as a statistic to be used in such tests. In Einstein's general theory of relativity, density fluctuations grow at the same rate on all scales in the linear regime, and the genus per comoving volume is almost conserved as structures grow homologously, so we expect that the genus-smoothing-scale relation is basically time independent. However, in some modified gravity models where structures grow with different rates on different scales, the genus-smoothing-scale relation should change over time. This can be used to test the gravity models with large-scale structure observations. We study the cases of the f(R) theory, DGP braneworld theory as well as the parameterized post-Friedmann models. We also forecast how the modified gravity models can be constrained with optical/IR or redshifted 21 cm radio surveys in the near future.

  12. On the existence of tunneling bounce solutions in piecewise linear potentials

    Energy Technology Data Exchange (ETDEWEB)

    Dutta, Koushik; Hector, Cecelie; Konstandin, Thomas; Vaudrevange, Pascal M.; Westphal, Alexander

    2012-02-15

    Coleman tunneling in a general scalar potential with two non-degenerate minima is known to have an approximation in terms of a piecewise linear triangular-shaped potential with sharp 'kinks' at the place of the local minima. This approximate potential has a regime where the existence of the bounce solution needs the scalar field to 'wait' for some amount of Euclidean time at one of the 'kinks'. We discuss under which circumstances the correct bounce action can be consistently obtained as the limiting case of a regular scalar potential where 'kinks' are resolved as locally smooth 'cap' regions. (orig.)

  13. Local linearization methods for the numerical integration of ordinary differential equations: An overview

    International Nuclear Information System (INIS)

    Jimenez, J.C.

    2009-06-01

    Local Linearization (LL) methods conform a class of one-step explicit integrators for ODEs derived from the following primary and common strategy: the vector field of the differential equation is locally (piecewise) approximated through a first-order Taylor expansion at each time step, thus obtaining successive linear equations that are explicitly integrated. Hereafter, the LL approach may include some additional strategies to improve that basic affine approximation. Theoretical and practical results have shown that the LL integrators have a number of convenient properties. These include arbitrary order of convergence, A-stability, linearization preserving, regularity under quite general conditions, preservation of the dynamics of the exact solution around hyperbolic equilibrium points and periodic orbits, integration of stiff and high-dimensional equations, low computational cost, and others. In this paper, a review of the LL methods and their properties is presented. (author)

  14. Predicting non-linear dynamics by stable local learning in a recurrent spiking neural network.

    Science.gov (United States)

    Gilra, Aditya; Gerstner, Wulfram

    2017-11-27

    The brain needs to predict how the body reacts to motor commands, but how a network of spiking neurons can learn non-linear body dynamics using local, online and stable learning rules is unclear. Here, we present a supervised learning scheme for the feedforward and recurrent connections in a network of heterogeneous spiking neurons. The error in the output is fed back through fixed random connections with a negative gain, causing the network to follow the desired dynamics. The rule for Feedback-based Online Local Learning Of Weights (FOLLOW) is local in the sense that weight changes depend on the presynaptic activity and the error signal projected onto the postsynaptic neuron. We provide examples of learning linear, non-linear and chaotic dynamics, as well as the dynamics of a two-link arm. Under reasonable approximations, we show, using the Lyapunov method, that FOLLOW learning is uniformly stable, with the error going to zero asymptotically.

  15. Three-point phase correlations: A new measure of non-linear large-scale structure

    CERN Document Server

    Wolstenhulme, Richard; Obreschkow, Danail

    2015-01-01

    We derive an analytical expression for a novel large-scale structure observable: the line correlation function. The line correlation function, which is constructed from the three-point correlation function of the phase of the density field, is a robust statistical measure allowing the extraction of information in the non-linear and non-Gaussian regime. We show that, in perturbation theory, the line correlation is sensitive to the coupling kernel F_2, which governs the non-linear gravitational evolution of the density field. We compare our analytical expression with results from numerical simulations and find a very good agreement for separations r>20 Mpc/h. Fitting formulae for the power spectrum and the non-linear coupling kernel at small scales allow us to extend our prediction into the strongly non-linear regime. We discuss the advantages of the line correlation relative to standard statistical measures like the bispectrum. Unlike the latter, the line correlation is independent of the linear bias. Furtherm...

  16. A Meshfree Cell-based Smoothed Point Interpolation Method for Solid Mechanics Problems

    International Nuclear Information System (INIS)

    Zhang Guiyong; Liu Guirong

    2010-01-01

    In the framework of a weakened weak (W 2 ) formulation using a generalized gradient smoothing operation, this paper introduces a novel meshfree cell-based smoothed point interpolation method (CS-PIM) for solid mechanics problems. The W 2 formulation seeks solutions from a normed G space which includes both continuous and discontinuous functions and allows the use of much more types of methods to create shape functions for numerical methods. When PIM shape functions are used, the functions constructed are in general not continuous over the entire problem domain and hence are not compatible. Such an interpolation is not in a traditional H 1 space, but in a G 1 space. By introducing the generalized gradient smoothing operation properly, the requirement on function is now further weakened upon the already weakened requirement for functions in a H 1 space and G 1 space can be viewed as a space of functions with weakened weak (W 2 ) requirement on continuity. The cell-based smoothed point interpolation method (CS-PIM) is formulated based on the W 2 formulation, in which displacement field is approximated using the PIM shape functions, which possess the Kronecker delta property facilitating the enforcement of essential boundary conditions [3]. The gradient (strain) field is constructed by the generalized gradient smoothing operation within the cell-based smoothing domains, which are exactly the triangular background cells. A W 2 formulation of generalized smoothed Galerkin (GS-Galerkin) weak form is used to derive the discretized system equations. It was found that the CS-PIM possesses the following attractive properties: (1) It is very easy to implement and works well with the simplest linear triangular mesh without introducing additional degrees of freedom; (2) it is at least linearly conforming; (3) this method is temporally stable and works well for dynamic analysis; (4) it possesses a close-to-exact stiffness, which is much softer than the overly-stiff FEM model and

  17. Second-order numerical methods for multi-term fractional differential equations: Smooth and non-smooth solutions

    Science.gov (United States)

    Zeng, Fanhai; Zhang, Zhongqiang; Karniadakis, George Em

    2017-12-01

    Starting with the asymptotic expansion of the error equation of the shifted Gr\\"{u}nwald--Letnikov formula, we derive a new modified weighted shifted Gr\\"{u}nwald--Letnikov (WSGL) formula by introducing appropriate correction terms. We then apply one special case of the modified WSGL formula to solve multi-term fractional ordinary and partial differential equations, and we prove the linear stability and second-order convergence for both smooth and non-smooth solutions. We show theoretically and numerically that numerical solutions up to certain accuracy can be obtained with only a few correction terms. Moreover, the correction terms can be tuned according to the fractional derivative orders without explicitly knowing the analytical solutions. Numerical simulations verify the theoretical results and demonstrate that the new formula leads to better performance compared to other known numerical approximations with similar resolution.

  18. Polarization beam smoothing for inertial confinement fusion

    International Nuclear Information System (INIS)

    Rothenberg, Joshua E.

    2000-01-01

    For both direct and indirect drive approaches to inertial confinement fusion (ICF) it is imperative to obtain the best possible drive beam uniformity. The approach chosen for the National Ignition Facility uses a random-phase plate to generate a speckle pattern with a precisely controlled envelope on target. A number of temporal smoothing techniques can then be employed to utilize bandwidth to rapidly change the speckle pattern, and thus average out the small-scale speckle structure. One technique which generally can supplement other smoothing methods is polarization smoothing (PS): the illumination of the target with two distinct and orthogonally polarized speckle patterns. Since these two polarizations do not interfere, the intensity patterns add incoherently, and the rms nonuniformity can be reduced by a factor of (√2). A number of PS schemes are described and compared on the basis of the aggregate rms and the spatial spectrum of the focused illumination distribution. The (√2) rms nonuniformity reduction of PS is present on an instantaneous basis and is, therefore, of particular interest for the suppression of laser plasma instabilities, which have a very rapid response time. When combining PS and temporal methods, such as smoothing by spectral dispersion (SSD), PS can reduce the rms of the temporally smoothed illumination by an additional factor of (√2). However, it has generally been thought that in order to achieve this reduction of (√2), the increased divergence of the beam from PS must exceed the divergence of SSD. It is also shown here that, over the time scales of interest to direct or indirect drive ICF, under some conditions PS can reduce the smoothed illumination rms by nearly (√2) even when the PS divergence is much smaller than that of SSD. (c) 2000 American Institute of Physics

  19. Validation of CMIP5 multimodel ensembles through the smoothness of climate variables

    KAUST Repository

    Lee, Myoungji

    2015-05-14

    Smoothness is an important characteristic of a spatial process that measures local variability. If climate model outputs are realistic, then not only the values at each grid pixel but also the relative variation over nearby pixels should represent the true climate. We estimate the smoothness of long-term averages for land surface temperature anomalies in the Coupled Model Intercomparison Project Phase 5 (CMIP5), and compare them by climate regions and seasons. We also compare the estimated smoothness of the climate outputs in CMIP5 with those of reanalysis data. The estimation is done through the composite likelihood approach for locally self-similar processes. The composite likelihood that we consider is a product of conditional likelihoods of neighbouring observations. We find that the smoothness of the surface temperature anomalies in CMIP5 depends primarily on the modelling institution and on the climate region. The seasonal difference in the smoothness is generally small, except for some climate regions where the average temperature is extremely high or low.

  20. Nonlinear smooth orthogonal decomposition of kinematic features of sawing reconstructs muscle fatigue evolution as indicated by electromyography.

    Science.gov (United States)

    Segala, David B; Gates, Deanna H; Dingwell, Jonathan B; Chelidze, David

    2011-03-01

    Tracking or predicting physiological fatigue is important for developing more robust training protocols and better energy supplements and/or reducing muscle injuries. Current methodologies are usually impractical and/or invasive and may not be realizable outside of laboratory settings. It was recently demonstrated that smooth orthogonal decomposition (SOD) of phase space warping (PSW) features of motion kinematics can identify fatigue in individual muscle groups. We hypothesize that a nonlinear extension of SOD will identify more optimal fatigue coordinates and provide a lower-dimensional reconstruction of local fatigue dynamics than the linear SOD. Both linear and nonlinear SODs were applied to PSW features estimated from measured kinematics to reconstruct muscle fatigue dynamics in subjects performing a sawing motion. Ten healthy young right-handed subjects pushed a weighted handle back and forth until voluntary exhaustion. Three sets of joint kinematic angles were measured from the right upper extremity in addition to surface electromyography (EMG) recordings. The SOD coordinates of kinematic PSW features were compared against independently measured fatigue markers (i.e., mean and median EMG spectrum frequencies of individual muscle groups). This comparison was based on a least-squares linear fit of a fixed number of the dominant SOD coordinates to the appropriate local fatigue markers. Between subject variability showed that at most four to five nonlinear SOD coordinates were needed to reconstruct fatigue in local muscle groups, while on average 15 coordinates were needed for the linear SOD. Thus, the nonlinear coordinates provided a one-order-of-magnitude improvement over the linear ones.

  1. Matrices and linear transformations

    CERN Document Server

    Cullen, Charles G

    1990-01-01

    ""Comprehensive . . . an excellent introduction to the subject."" - Electronic Engineer's Design Magazine.This introductory textbook, aimed at sophomore- and junior-level undergraduates in mathematics, engineering, and the physical sciences, offers a smooth, in-depth treatment of linear algebra and matrix theory. The major objects of study are matrices over an arbitrary field. Contents include Matrices and Linear Systems; Vector Spaces; Determinants; Linear Transformations; Similarity: Part I and Part II; Polynomials and Polynomial Matrices; Matrix Analysis; and Numerical Methods. The first

  2. Locally linear approximation for Kernel methods : the Railway Kernel

    OpenAIRE

    Muñoz, Alberto; González, Javier

    2008-01-01

    In this paper we present a new kernel, the Railway Kernel, that works properly for general (nonlinear) classification problems, with the interesting property that acts locally as a linear kernel. In this way, we avoid potential problems due to the use of a general purpose kernel, like the RBF kernel, as the high dimension of the induced feature space. As a consequence, following our methodology the number of support vectors is much lower and, therefore, the generalization capab...

  3. Constraints on smoothness parameter and dark energy using observational H(z) data

    International Nuclear Information System (INIS)

    Yu Haoran; Lan Tian; Zhang Tongjie; Wan Haoyi; Wang Baoquan

    2011-01-01

    With large-scale homogeneity, the universe is locally inhomogeneous, clustering into stars, galaxies and larger structures. Such property is described by the smoothness parameter α which is defined as the proportion of matter in the form of intergalactic medium. If we consider the inhomogeneities over a small scale, there should be modifications of the cosmological distances compared to a homogenous model. Dyer and Roeder developed a second-order ordinary differential equation (D-R equation) that describes the angular diameter distance-redshift relation for inhomogeneous cosmological models. Furthermore, we may obtain the D-R equation for observational H(z) data (OHD). The density-parameter ΩM, the state of dark energy ω, and the smoothness-parameter α are constrained by a set of OHD in a spatially flat ΛCDM universe as well as a spatially flat XCDM universe. By using a χ 2 minimization method, we get α = 0.81 +0.19 -0.20 and Ω M = 0.32 +0.12 -0.06 at the 1σ confidence level. If we assume a Gaussian prior of Ω M = 0.26 ± 0.1, we get α = 0.93 +0.07 -0.19 and Ω M = 0.31 +0.06 -0.05 . For the XCDM model, α is constrained to α ≥ 0.80 but ω is weakly constrained around -1, where ω describes the equation of state of the dark energy (p X = ωρ X ). We conclude that OHD constrains the smoothness parameter more effectively than the data of SNe Ia and compact radio sources.

  4. Simulation of electron energy loss spectra of nanomaterials with linear-scaling density functional theory

    International Nuclear Information System (INIS)

    Tait, E W; Payne, M C; Ratcliff, L E; Haynes, P D; Hine, N D M

    2016-01-01

    Experimental techniques for electron energy loss spectroscopy (EELS) combine high energy resolution with high spatial resolution. They are therefore powerful tools for investigating the local electronic structure of complex systems such as nanostructures, interfaces and even individual defects. Interpretation of experimental electron energy loss spectra is often challenging and can require theoretical modelling of candidate structures, which themselves may be large and complex, beyond the capabilities of traditional cubic-scaling density functional theory. In this work, we present functionality to compute electron energy loss spectra within the onetep linear-scaling density functional theory code. We first demonstrate that simulated spectra agree with those computed using conventional plane wave pseudopotential methods to a high degree of precision. The ability of onetep to tackle large problems is then exploited to investigate convergence of spectra with respect to supercell size. Finally, we apply the novel functionality to a study of the electron energy loss spectra of defects on the (1 0 1) surface of an anatase slab and determine concentrations of defects which might be experimentally detectable. (paper)

  5. Mixed linear-nonlinear fault slip inversion: Bayesian inference of model, weighting, and smoothing parameters

    Science.gov (United States)

    Fukuda, J.; Johnson, K. M.

    2009-12-01

    Studies utilizing inversions of geodetic data for the spatial distribution of coseismic slip on faults typically present the result as a single fault plane and slip distribution. Commonly the geometry of the fault plane is assumed to be known a priori and the data are inverted for slip. However, sometimes there is not strong a priori information on the geometry of the fault that produced the earthquake and the data is not always strong enough to completely resolve the fault geometry. We develop a method to solve for the full posterior probability distribution of fault slip and fault geometry parameters in a Bayesian framework using Monte Carlo methods. The slip inversion problem is particularly challenging because it often involves multiple data sets with unknown relative weights (e.g. InSAR, GPS), model parameters that are related linearly (slip) and nonlinearly (fault geometry) through the theoretical model to surface observations, prior information on model parameters, and a regularization prior to stabilize the inversion. We present the theoretical framework and solution method for a Bayesian inversion that can handle all of these aspects of the problem. The method handles the mixed linear/nonlinear nature of the problem through combination of both analytical least-squares solutions and Monte Carlo methods. We first illustrate and validate the inversion scheme using synthetic data sets. We then apply the method to inversion of geodetic data from the 2003 M6.6 San Simeon, California earthquake. We show that the uncertainty in strike and dip of the fault plane is over 20 degrees. We characterize the uncertainty in the slip estimate with a volume around the mean fault solution in which the slip most likely occurred. Slip likely occurred somewhere in a volume that extends 5-10 km in either direction normal to the fault plane. We implement slip inversions with both traditional, kinematic smoothing constraints on slip and a simple physical condition of uniform stress

  6. Parameter Scaling in Non-Linear Microwave Tomography

    DEFF Research Database (Denmark)

    Jensen, Peter Damsgaard; Rubæk, Tonny; Talcoth, Oskar

    2012-01-01

    Non-linear microwave tomographic imaging of the breast is a challenging computational problem. The breast is heterogeneous and contains several high-contrast and lossy regions, resulting in large differences in the measured signal levels. This implies that special care must be taken when the imag......Non-linear microwave tomographic imaging of the breast is a challenging computational problem. The breast is heterogeneous and contains several high-contrast and lossy regions, resulting in large differences in the measured signal levels. This implies that special care must be taken when...... the imaging problem is formulated. Under such conditions, microwave imaging systems will most often be considerably more sensitive to changes in the electromagnetic properties in certain regions of the breast. The result is that the parameters might not be reconstructed correctly in the less sensitive regions...... introduced as a measure of the sensitivity. The scaling of the parameters is shown to improve performance of the microwave imaging system when applied to reconstruction of images from 2-D simulated data and measurement data....

  7. Local correlation detection with linearity enhancement in streaming data

    KAUST Repository

    Xie, Qing

    2013-01-01

    This paper addresses the challenges in detecting the potential correlation between numerical data streams, which facilitates the research of data stream mining and pattern discovery. We focus on local correlation with delay, which may occur in burst at different time in different streams, and last for a limited period. The uncertainty on the correlation occurrence and the time delay make it diff cult to monitor the correlation online. Furthermore, the conventional correlation measure lacks the ability of ref ecting visual linearity, which is more desirable in reality. This paper proposes effective methods to continuously detect the correlation between data streams. Our approach is based on the Discrete Fourier Transform to make rapid cross-correlation calculation with time delay allowed. In addition, we introduce a shape-based similarity measure into the framework, which ref nes the results by representative trend patterns to enhance the signif cance of linearity. The similarity of proposed linear representations can quickly estimate the correlation, and the window sliding strategy in segment level improves the eff ciency for online detection. The empirical study demonstrates the accuracy of our detection approach, as well as more than 30% improvement of eff ciency. Copyright 2013 ACM.

  8. Smooth individual level covariates adjustment in disease mapping.

    Science.gov (United States)

    Huque, Md Hamidul; Anderson, Craig; Walton, Richard; Woolford, Samuel; Ryan, Louise

    2018-05-01

    Spatial models for disease mapping should ideally account for covariates measured both at individual and area levels. The newly available "indiCAR" model fits the popular conditional autoregresssive (CAR) model by accommodating both individual and group level covariates while adjusting for spatial correlation in the disease rates. This algorithm has been shown to be effective but assumes log-linear associations between individual level covariates and outcome. In many studies, the relationship between individual level covariates and the outcome may be non-log-linear, and methods to track such nonlinearity between individual level covariate and outcome in spatial regression modeling are not well developed. In this paper, we propose a new algorithm, smooth-indiCAR, to fit an extension to the popular conditional autoregresssive model that can accommodate both linear and nonlinear individual level covariate effects while adjusting for group level covariates and spatial correlation in the disease rates. In this formulation, the effect of a continuous individual level covariate is accommodated via penalized splines. We describe a two-step estimation procedure to obtain reliable estimates of individual and group level covariate effects where both individual and group level covariate effects are estimated separately. This distributed computing framework enhances its application in the Big Data domain with a large number of individual/group level covariates. We evaluate the performance of smooth-indiCAR through simulation. Our results indicate that the smooth-indiCAR method provides reliable estimates of all regression and random effect parameters. We illustrate our proposed methodology with an analysis of data on neutropenia admissions in New South Wales (NSW), Australia. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Local-scale topoclimate effects on treeline elevations: a country-wide investigation of New Zealand's southern beech treelines.

    Science.gov (United States)

    Case, Bradley S; Buckley, Hannah L

    2015-01-01

    Although treeline elevations are limited globally by growing season temperature, at regional scales treelines frequently deviate below their climatic limit. The cause of these deviations relate to a host of climatic, disturbance, and geomorphic factors that operate at multiple scales. The ability to disentangle the relative effects of these factors is currently hampered by the lack of reliable topoclimatic data, which describe how regional climatic characteristics are modified by topographic effects in mountain areas. In this study we present an analysis of the combined effects of local- and regional-scale factors on southern beech treeline elevation variability at 28 study areas across New Zealand. We apply a mesoscale atmospheric model to generate local-scale (200 m) meteorological data at these treelines and, from these data, we derive a set of topoclimatic indices that reflect possible detrimental and ameliorative influences on tree physiological functioning. Principal components analysis of meteorological data revealed geographic structure in how study areas were situated in multivariate space along gradients of topoclimate. Random forest and conditional inference tree modelling enabled us to tease apart the relative effects of 17 explanatory factors on local-scale treeline elevation variability. Overall, modelling explained about 50% of the variation in treeline elevation variability across the 28 study areas, with local landform and topoclimatic effects generally outweighing those from regional-scale factors across the 28 study areas. Further, the nature of the relationships between treeline elevation variability and the explanatory variables were complex, frequently non-linear, and consistent with the treeline literature. To our knowledge, this is the first study where model-generated meteorological data, and derived topoclimatic indices, have been developed and applied to explain treeline variation. Our results demonstrate the potential of such an approach

  10. Fault Diagnosis of Supervision and Homogenization Distance Based on Local Linear Embedding Algorithm

    Directory of Open Access Journals (Sweden)

    Guangbin Wang

    2015-01-01

    Full Text Available In view of the problems of uneven distribution of reality fault samples and dimension reduction effect of locally linear embedding (LLE algorithm which is easily affected by neighboring points, an improved local linear embedding algorithm of homogenization distance (HLLE is developed. The method makes the overall distribution of sample points tend to be homogenization and reduces the influence of neighboring points using homogenization distance instead of the traditional Euclidean distance. It is helpful to choose effective neighboring points to construct weight matrix for dimension reduction. Because the fault recognition performance improvement of HLLE is limited and unstable, the paper further proposes a new local linear embedding algorithm of supervision and homogenization distance (SHLLE by adding the supervised learning mechanism. On the basis of homogenization distance, supervised learning increases the category information of sample points so that the same category of sample points will be gathered and the heterogeneous category of sample points will be scattered. It effectively improves the performance of fault diagnosis and maintains stability at the same time. A comparison of the methods mentioned above was made by simulation experiment with rotor system fault diagnosis, and the results show that SHLLE algorithm has superior fault recognition performance.

  11. Local and landscape-scale biotic correlates of mistletoe distribution in Mediterranean pine forests

    Energy Technology Data Exchange (ETDEWEB)

    Roura-Pascual, N.; Brotons, L.; Garcia, D.; Zamora, R.; Caceres, M. de

    2012-11-01

    The study of the spatial patterns of species allows the examination of hypotheses on the most plausible ecological processes and factors determining their distribution. To investigate the determinants of parasite species on Mediterranean forests at regional scales, occurrence data of the European Misletoe (Viscum album) in Catalonia (NE Iberian Peninsula) were extracted from forest inventory data and combined with different types of explanatory variables by means of generalized linear mixed models. The presence of mistletoes in stands of Pinus halepensis seems to be determined by multiple factors (climatic conditions, and characteristics of the host tree and landscape structure) operating at different spatial scales, with the availability of orchards of Olea europaea in the surroundings playing a relevant role. These results suggest that host quality and landscape structure are important mediators of plant-plant and plant-animal interactions and, therefore, management of mistletoe populations should be conducted at both local (i.e. clearing of infected host trees) and landscape scales (e.g. controlling the availability of nutrient-rich food sources that attract bird dispersers). Research and management at landscape-scales are necessary to anticipate the negative consequence of land-use changes in Mediterranean forests. (Author) 38 refs.

  12. Multi-Repeated Projection Lithography for High-Precision Linear Scale Based on Average Homogenization Effect

    Directory of Open Access Journals (Sweden)

    Dongxu Ren

    2016-04-01

    Full Text Available A multi-repeated photolithography method for manufacturing an incremental linear scale using projection lithography is presented. The method is based on the average homogenization effect that periodically superposes the light intensity of different locations of pitches in the mask to make a consistent energy distribution at a specific wavelength, from which the accuracy of a linear scale can be improved precisely using the average pitch with different step distances. The method’s theoretical error is within 0.01 µm for a periodic mask with a 2-µm sine-wave error. The intensity error models in the focal plane include the rectangular grating error on the mask, static positioning error, and lithography lens focal plane alignment error, which affect pitch uniformity less than in the common linear scale projection lithography splicing process. It was analyzed and confirmed that increasing the repeat exposure number of a single stripe could improve accuracy, as could adjusting the exposure spacing to achieve a set proportion of black and white stripes. According to the experimental results, the effectiveness of the multi-repeated photolithography method is confirmed to easily realize a pitch accuracy of 43 nm in any 10 locations of 1 m, and the whole length accuracy of the linear scale is less than 1 µm/m.

  13. Nonlinear aeroacoustic characterization of Helmholtz resonators with a local-linear neuro-fuzzy network model

    Science.gov (United States)

    Förner, K.; Polifke, W.

    2017-10-01

    The nonlinear acoustic behavior of Helmholtz resonators is characterized by a data-based reduced-order model, which is obtained by a combination of high-resolution CFD simulation and system identification. It is shown that even in the nonlinear regime, a linear model is capable of describing the reflection behavior at a particular amplitude with quantitative accuracy. This observation motivates to choose a local-linear model structure for this study, which consists of a network of parallel linear submodels. A so-called fuzzy-neuron layer distributes the input signal over the linear submodels, depending on the root mean square of the particle velocity at the resonator surface. The resulting model structure is referred to as an local-linear neuro-fuzzy network. System identification techniques are used to estimate the free parameters of this model from training data. The training data are generated by CFD simulations of the resonator, with persistent acoustic excitation over a wide range of frequencies and sound pressure levels. The estimated nonlinear, reduced-order models show good agreement with CFD and experimental data over a wide range of amplitudes for several test cases.

  14. Local facet approximation for image stitching

    Science.gov (United States)

    Li, Jing; Lai, Shiming; Liu, Yu; Wang, Zhengming; Zhang, Maojun

    2018-01-01

    Image stitching aims at eliminating multiview parallax and generating a seamless panorama given a set of input images. This paper proposes a local adaptive stitching method, which could achieve both accurate and robust image alignments across the whole panorama. A transformation estimation model is introduced by approximating the scene as a combination of neighboring facets. Then, the local adaptive stitching field is constructed using a series of linear systems of the facet parameters, which enables the parallax handling in three-dimensional space. We also provide a concise but effective global projectivity preserving technique that smoothly varies the transformations from local adaptive to global planar. The proposed model is capable of stitching both normal images and fisheye images. The efficiency of our method is quantitatively demonstrated in the comparative experiments on several challenging cases.

  15. Multifractality in edge localized modes in Japan Atomic Energy Research Institute Tokamak-60 Upgrade

    International Nuclear Information System (INIS)

    Bak, P.E.; Asakura, N.; Miura, Y.; Nakano, T.; Yoshino, R.

    2001-01-01

    The temporal losses of confinement during edge localized modes in the Japan Atomic Energy Research Institute Tokamak-60 Upgrade (JT-60U) show multifractal scaling and the spectra are generally smooth, but in some cases there are signs of discontinuous derivatives. Dynamics of the Sugama-Horton model, interpreted as edge localized modes, also display multifractal scaling. The spectra display singularities in the derivative, which can be interpreted as a phase transition. It is argued that the multifractal spectra of edge localized modes can be used to discriminate between different experimental discharges and validate edge localized mode models

  16. On the interaction of small-scale linear waves with nonlinear solitary waves

    Science.gov (United States)

    Xu, Chengzhu; Stastna, Marek

    2017-04-01

    In the study of environmental and geophysical fluid flows, linear wave theory is well developed and its application has been considered for phenomena of various length and time scales. However, due to the nonlinear nature of fluid flows, in many cases results predicted by linear theory do not agree with observations. One of such cases is internal wave dynamics. While small-amplitude wave motion may be approximated by linear theory, large amplitude waves tend to be solitary-like. In some cases, when the wave is highly nonlinear, even weakly nonlinear theories fail to predict the wave properties correctly. We study the interaction of small-scale linear waves with nonlinear solitary waves using highly accurate pseudo spectral simulations that begin with a fully nonlinear solitary wave and a train of small-amplitude waves initialized from linear waves. The solitary wave then interacts with the linear waves through either an overtaking collision or a head-on collision. During the collision, there is a net energy transfer from the linear wave train to the solitary wave, resulting in an increase in the kinetic energy carried by the solitary wave and a phase shift of the solitary wave with respect to a freely propagating solitary wave. At the same time the linear waves are greatly reduced in amplitude. The percentage of energy transferred depends primarily on the wavelength of the linear waves. We found that after one full collision cycle, the longest waves may retain as much as 90% of the kinetic energy they had initially, while the shortest waves lose almost all of their initial energy. We also found that a head-on collision is more efficient in destroying the linear waves than an overtaking collision. On the other hand, the initial amplitude of the linear waves has very little impact on the percentage of energy that can be transferred to the solitary wave. Because of the nonlinearity of the solitary wave, these results provide us some insight into wave-mean flow

  17. Universal Linear Scaling of Permeability and Time for Heterogeneous Fracture Dissolution

    Science.gov (United States)

    Wang, L.; Cardenas, M. B.

    2017-12-01

    Fractures are dynamically changing over geological time scale due to mechanical deformation and chemical reactions. However, the latter mechanism remains poorly understood with respect to the expanding fracture, which leads to a positively coupled flow and reactive transport processes, i.e., as a fracture expands, so does its permeability (k) and thus flow and reactive transport processes. To unravel this coupling, we consider a self-enhancing process that leads to fracture expansion caused by acidic fluid, i.e., CO2-saturated brine dissolving calcite fracture. We rigorously derive a theory, for the first time, showing that fracture permeability increases linearly with time [Wang and Cardenas, 2017]. To validate this theory, we resort to the direct simulation that solves the Navier-Stokes and Advection-Diffusion equations with a moving mesh according to the dynamic dissolution process in two-dimensional (2D) fractures. We find that k slowly increases first until the dissolution front breakthrough the outbound when we observe a rapid k increase, i.e., the linear time-dependence of k occurs. The theory agrees well with numerical observations across a broad range of Peclet and Damkohler numbers through homogeneous and heterogeneous 2D fractures. Moreover, the theory of linear scaling relationship between k and time matches well with experimental observations of three-dimensional (3D) fractures' dissolution. To further attest to our theory's universality for 3D heterogeneous fractures across a broad range of roughness and correlation length of aperture field, we develop a depth-averaged model that simulates the process-based reactive transport. The simulation results show that, regardless of a wide variety of dissolution patterns such as the presence of dissolution fingers and preferential dissolution paths, the linear scaling relationship between k and time holds. Our theory sheds light on predicting permeability evolution in many geological settings when the self

  18. Mapping of Agricultural Crops from Single High-Resolution Multispectral Images—Data-Driven Smoothing vs. Parcel-Based Smoothing

    Directory of Open Access Journals (Sweden)

    Asli Ozdarici-Ok

    2015-05-01

    Full Text Available Mapping agricultural crops is an important application of remote sensing. However, in many cases it is based either on hyperspectral imagery or on multitemporal coverage, both of which are difficult to scale up to large-scale deployment at high spatial resolution. In the present paper, we evaluate the possibility of crop classification based on single images from very high-resolution (VHR satellite sensors. The main objective of this work is to expose performance difference between state-of-the-art parcel-based smoothing and purely data-driven conditional random field (CRF smoothing, which is yet unknown. To fulfill this objective, we perform extensive tests with four different classification methods (Support Vector Machines, Random Forest, Gaussian Mixtures, and Maximum Likelihood to compute the pixel-wise data term; and we also test two different definitions of the pairwise smoothness term. We have performed a detailed evaluation on different multispectral VHR images (Ikonos, QuickBird, Kompsat-2. The main finding of this study is that pairwise CRF smoothing comes close to the state-of-the-art parcel-based method that requires parcel boundaries (average difference ≈ 2.5%. Our results indicate that a single multispectral (R, G, B, NIR image is enough to reach satisfactory classification accuracy for six crop classes (corn, pasture, rice, sugar beet, wheat, and tomato in Mediterranean climate. Overall, it appears that crop mapping using only one-shot VHR imagery taken at the right time may be a viable alternative, especially since high-resolution multitemporal or hyperspectral coverage as well as parcel boundaries are in practice often not available.

  19. A Non-smooth Newton Method for Multibody Dynamics

    International Nuclear Information System (INIS)

    Erleben, K.; Ortiz, R.

    2008-01-01

    In this paper we deal with the simulation of rigid bodies. Rigid body dynamics have become very important for simulating rigid body motion in interactive applications, such as computer games or virtual reality. We present a novel way of computing contact forces using a Newton method. The contact problem is reformulated as a system of non-linear and non-smooth equations, and we solve this system using a non-smooth version of Newton's method. One of the main contribution of this paper is the reformulation of the complementarity problems, used to model impacts, as a system of equations that can be solved using traditional methods.

  20. Cross-beam energy transfer: On the accuracy of linear stationary models in the linear kinetic regime

    Science.gov (United States)

    Debayle, A.; Masson-Laborde, P.-E.; Ruyer, C.; Casanova, M.; Loiseau, P.

    2018-05-01

    We present an extensive numerical study by means of particle-in-cell simulations of the energy transfer that occurs during the crossing of two laser beams. In the linear regime, when ions are not trapped in the potential well induced by the laser interference pattern, a very good agreement is obtained with a simple linear stationary model, provided the laser intensity is sufficiently smooth. These comparisons include different plasma compositions to cover the strong and weak Landau damping regimes as well as the multispecies case. The correct evaluation of the linear Landau damping at the phase velocity imposed by the laser interference pattern is essential to estimate the energy transfer rate between the laser beams, once the stationary regime is reached. The transient evolution obtained in kinetic simulations is also analysed by means of a full analytical formula that includes 3D beam energy exchange coupled with the ion acoustic wave response. Specific attention is paid to the energy transfer when the laser presents small-scale inhomogeneities. In particular, the energy transfer is reduced when the laser inhomogeneities are comparable with the Landau damping characteristic length of the ion acoustic wave.

  1. Linear combination of forecasts with numerical adjustment via MINIMAX non-linear programming

    Directory of Open Access Journals (Sweden)

    Jairo Marlon Corrêa

    2016-03-01

    Full Text Available This paper proposes a linear combination of forecasts obtained from three forecasting methods (namely, ARIMA, Exponential Smoothing and Artificial Neural Networks whose adaptive weights are determined via a multi-objective non-linear programming problem, which seeks to minimize, simultaneously, the statistics: MAE, MAPE and MSE. The results achieved by the proposed combination are compared with the traditional approach of linear combinations of forecasts, where the optimum adaptive weights are determined only by minimizing the MSE; with the combination method by arithmetic mean; and with individual methods

  2. Challenges in Upscaling Geomorphic Transport Laws: Scale-dependence of Local vs. Non-local Formalisms and Derivation of Closures (Invited)

    Science.gov (United States)

    Foufoula-Georgiou, E.; Ganti, V. K.; Passalacqua, P.

    2010-12-01

    Nonlinear geomorphic transport laws are often derived from mechanistic considerations at a point, and yet they are implemented on 90m or 30 m DEMs, presenting a mismatch in the scales of derivation and application of the flux laws. Since estimates of local slopes and curvatures are known to depend on the scale of the DEM used in their computation, two questions arise: (1) how to meaningfully compensate for the scale dependence, if any, of local transport laws? and (2) how to formally derive, via upscaling, constitutive laws that are applicable at larger scales? Recently, non-local geomorphic transport laws for sediment transport on hillslopes have been introduced using the concept of an integral flux that depends on topographic attributes in the vicinity of a point of interest. In this paper, we demonstrate the scale dependence of local nonlinear hillslope sediment transport laws and derive a closure term via upscaling (Reynolds averaging). We also show that the non-local hillslope transport laws are inherently scale independent owing to their non-local, scale-free nature. These concepts are demonstrated via an application to a small subbasin of the Oregon Coast Range using 2m LiDAR topographic data.

  3. The algebra of non-local charges in non-linear sigma models

    International Nuclear Information System (INIS)

    Abdalla, E.; Abdalla, M.C.B.; Brunelli, J.C.; Zadra, A.

    1993-07-01

    We obtain the exact Dirac algebra obeyed by the conserved non-local charges in bosonic non-linear sigma models. Part of the computation is specialized for a symmetry group O(N). As it turns out the algebra corresponds to a cubic deformation of the Kac-Moody algebra. The non-linear terms are computed in closed form. In each Dirac bracket we only find highest order terms (as explained in the paper), defining a saturated algebra. We generalize the results for the presence of a Wess-Zumino term. The algebra is very similar to the previous one, containing now a calculable correction of order one unit lower. (author). 22 refs, 5 figs

  4. From neurons to circuits: linear estimation of local field potentials

    Science.gov (United States)

    Rasch, Malte; Logthetis, Nikos K.; Kreiman, Gabriel

    2010-01-01

    Extracellular physiological recordings are typically separated into two frequency bands: local field potentials (LFPs, a circuit property) and spiking multi-unit activity (MUA). There has been increased interest in LFPs due to their correlation with fMRI measurements and the possibility of studying local processing and neuronal synchrony. To further understand the biophysical origin of LFPs, we asked whether it is possible to estimate their time course based on the spiking activity from the same or nearby electrodes. We used Signal Estimation Theory to show that a linear filter operation on the activity of one/few neurons can explain a significant fraction of the LFP time course in the macaque primary visual cortex. The linear filter used to estimate the LFPs had a stereotypical shape characterized by a sharp downstroke at negative time lags and a slower positive upstroke for positve time lags. The filter was similar across neocortical regions and behavioral conditions including spontaneous activity and visual stimulation. The estimations had a spatial resolution of ~1 mm and a temporal resolution of ~200 ms. By considering a causal filter, we observed a temporal asymmetry such that the positive time lags in the filter contributed more to the LFP estimation than negative time lags. Additionally, we showed that spikes occurring within ~10 ms of spikes from nearby neurons yielded better estimation accuracies than nonsynchronous spikes. In sum, our results suggest that at least some circuit-level local properties of the field potentials can be predicted from the activity of one or a few neurons. PMID:19889990

  5. Linear-scaling time-dependent density-functional theory beyond the Tamm-Dancoff approximation: Obtaining efficiency and accuracy with in situ optimised local orbitals

    Energy Technology Data Exchange (ETDEWEB)

    Zuehlsdorff, T. J., E-mail: tjz21@cam.ac.uk; Payne, M. C. [Cavendish Laboratory, J. J. Thomson Avenue, Cambridge CB3 0HE (United Kingdom); Hine, N. D. M. [Department of Physics, University of Warwick, Coventry CV4 7AL (United Kingdom); Haynes, P. D. [Department of Materials, Imperial College London, Exhibition Road, London SW7 2AZ (United Kingdom); Department of Physics, Imperial College London, Exhibition Road, London SW7 2AZ (United Kingdom); Thomas Young Centre for Theory and Simulation of Materials, Imperial College London, Exhibition Road, London SW7 2AZ (United Kingdom)

    2015-11-28

    We present a solution of the full time-dependent density-functional theory (TDDFT) eigenvalue equation in the linear response formalism exhibiting a linear-scaling computational complexity with system size, without relying on the simplifying Tamm-Dancoff approximation (TDA). The implementation relies on representing the occupied and unoccupied subspaces with two different sets of in situ optimised localised functions, yielding a very compact and efficient representation of the transition density matrix of the excitation with the accuracy associated with a systematic basis set. The TDDFT eigenvalue equation is solved using a preconditioned conjugate gradient algorithm that is very memory-efficient. The algorithm is validated on a small test molecule and a good agreement with results obtained from standard quantum chemistry packages is found, with the preconditioner yielding a significant improvement in convergence rates. The method developed in this work is then used to reproduce experimental results of the absorption spectrum of bacteriochlorophyll in an organic solvent, where it is demonstrated that the TDA fails to reproduce the main features of the low energy spectrum, while the full TDDFT equation yields results in good qualitative agreement with experimental data. Furthermore, the need for explicitly including parts of the solvent into the TDDFT calculations is highlighted, making the treatment of large system sizes necessary that are well within reach of the capabilities of the algorithm introduced here. Finally, the linear-scaling properties of the algorithm are demonstrated by computing the lowest excitation energy of bacteriochlorophyll in solution. The largest systems considered in this work are of the same order of magnitude as a variety of widely studied pigment-protein complexes, opening up the possibility of studying their properties without having to resort to any semiclassical approximations to parts of the protein environment.

  6. Parameter spaces for linear and nonlinear whistler-mode waves

    International Nuclear Information System (INIS)

    Summers, Danny; Tang, Rongxin; Omura, Yoshiharu; Lee, Dong-Hun

    2013-01-01

    We examine the growth of magnetospheric whistler-mode waves which comprises a linear growth phase followed by a nonlinear growth phase. We construct time-profiles for the wave amplitude that smoothly match at the transition between linear and nonlinear wave growth. This matching procedure can only take place over a limited “matching region” in (N h /N 0 ,A T )-space, where A T is the electron thermal anisotropy, N h is the hot (energetic) electron number density, and N 0 is the cold (background) electron number density. We construct this matching region and determine how the matching wave amplitude varies throughout the region. Further, we specify a boundary in (N h /N 0 ,A T )-space that separates a region where only linear chorus wave growth can occur from the region in which fully nonlinear chorus growth is possible. We expect that this boundary should prove of practical use in performing computationally expensive full-scale particle simulations, and in interpreting experimental wave data

  7. Alignment of the stanford linear collider Arcs

    International Nuclear Information System (INIS)

    Pitthan, R.; Bell, B.; Friedsam, H.

    1987-01-01

    The alignment of the Arcs for the Stanford Linear Collider at SLAC has posed problems in accelerator survey and alignment not encountered before. These problems come less from the tight tolerances of 0.1 mm, although reaching such a tight statistically defined accuracy in a controlled manner is difficult enough, but from the absence of a common reference plane for the Arcs. Traditional circular accelerators, including HERA and LEP, have been designed in one plane referenced to local gravity. For the SLC Arcs no such single plane exists. Methods and concepts developed to solve these and other problems, connected with the unique design of SLC, range from the first use of satellites for accelerator alignment, use of electronic laser theodolites for placement of components, computer control of the manual adjustment process, complete automation of the data flow incorporating the most advanced concepts of geodesy, strict separation of survey and alignment, to linear principal component analysis for the final statistical smoothing of the mechanical components

  8. Scaling laws for e+/e- linear colliders

    International Nuclear Information System (INIS)

    Delahaye, J.P.; Guignard, G.; Raubenheimer, T.; Wilson, I.

    1999-01-01

    Design studies of a future TeV e + e - Linear Collider (TLC) are presently being made by five major laboratories within the framework of a world-wide collaboration. A figure of merit is defined which enables an objective comparison of these different designs. This figure of merit is shown to depend only on a small number of parameters. General scaling laws for the main beam parameters and linac parameters are derived and prove to be very effective when used as guidelines to optimize the linear collider design. By adopting appropriate parameters for beam stability, the figure of merit becomes nearly independent of accelerating gradient and RF frequency of the accelerating structures. In spite of the strong dependence of the wake fields with frequency, the single-bunch emittance blow-up during acceleration along the linac is also shown to be independent of the RF frequency when using equivalent trajectory correction schemes. In this situation, beam acceleration using high-frequency structures becomes very advantageous because it enables high accelerating fields to be obtained, which reduces the overall length and consequently the total cost of the linac. (Copyright (c) 1999 Elsevier Science B.V., Amsterdam. All rights reserved.)

  9. An accurate and linear-scaling method for calculating charge-transfer excitation energies and diabatic couplings

    Energy Technology Data Exchange (ETDEWEB)

    Pavanello, Michele [Department of Chemistry, Rutgers University, Newark, New Jersey 07102-1811 (United States); Van Voorhis, Troy [Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139-4307 (United States); Visscher, Lucas [Amsterdam Center for Multiscale Modeling, VU University, De Boelelaan 1083, 1081 HV Amsterdam (Netherlands); Neugebauer, Johannes [Theoretische Organische Chemie, Organisch-Chemisches Institut der Westfaelischen Wilhelms-Universitaet Muenster, Corrensstrasse 40, 48149 Muenster (Germany)

    2013-02-07

    Quantum-mechanical methods that are both computationally fast and accurate are not yet available for electronic excitations having charge transfer character. In this work, we present a significant step forward towards this goal for those charge transfer excitations that take place between non-covalently bound molecules. In particular, we present a method that scales linearly with the number of non-covalently bound molecules in the system and is based on a two-pronged approach: The molecular electronic structure of broken-symmetry charge-localized states is obtained with the frozen density embedding formulation of subsystem density-functional theory; subsequently, in a post-SCF calculation, the full-electron Hamiltonian and overlap matrix elements among the charge-localized states are evaluated with an algorithm which takes full advantage of the subsystem DFT density partitioning technique. The method is benchmarked against coupled-cluster calculations and achieves chemical accuracy for the systems considered for intermolecular separations ranging from hydrogen-bond distances to tens of Angstroms. Numerical examples are provided for molecular clusters comprised of up to 56 non-covalently bound molecules.

  10. Large-scale evaluation of carnivore road mortality: the effect of landscape and local scale characteristics

    Czech Academy of Sciences Publication Activity Database

    Červinka, J.; Riegert, J.; Grill, S.; Šálek, Martin

    2015-01-01

    Roč. 60, č. 3 (2015), s. 233-243 ISSN 2199-2401 Institutional support: RVO:68081766 Keywords : Carnivores * Landscape characteristics * Linear structures * Local characteristics * Road mortality * Temporal pattern Subject RIV: EH - Ecology, Behaviour

  11. Energy Decomposition Analysis Based on Absolutely Localized Molecular Orbitals for Large-Scale Density Functional Theory Calculations in Drug Design.

    Science.gov (United States)

    Phipps, M J S; Fox, T; Tautermann, C S; Skylaris, C-K

    2016-07-12

    We report the development and implementation of an energy decomposition analysis (EDA) scheme in the ONETEP linear-scaling electronic structure package. Our approach is hybrid as it combines the localized molecular orbital EDA (Su, P.; Li, H. J. Chem. Phys., 2009, 131, 014102) and the absolutely localized molecular orbital EDA (Khaliullin, R. Z.; et al. J. Phys. Chem. A, 2007, 111, 8753-8765) to partition the intermolecular interaction energy into chemically distinct components (electrostatic, exchange, correlation, Pauli repulsion, polarization, and charge transfer). Limitations shared in EDA approaches such as the issue of basis set dependence in polarization and charge transfer are discussed, and a remedy to this problem is proposed that exploits the strictly localized property of the ONETEP orbitals. Our method is validated on a range of complexes with interactions relevant to drug design. We demonstrate the capabilities for large-scale calculations with our approach on complexes of thrombin with an inhibitor comprised of up to 4975 atoms. Given the capability of ONETEP for large-scale calculations, such as on entire proteins, we expect that our EDA scheme can be applied in a large range of biomolecular problems, especially in the context of drug design.

  12. Methods for simultaneously identifying coherent local clusters with smooth global patterns in gene expression profiles

    Directory of Open Access Journals (Sweden)

    Lee Yun-Shien

    2008-03-01

    Full Text Available Abstract Background The hierarchical clustering tree (HCT with a dendrogram 1 and the singular value decomposition (SVD with a dimension-reduced representative map 2 are popular methods for two-way sorting the gene-by-array matrix map employed in gene expression profiling. While HCT dendrograms tend to optimize local coherent clustering patterns, SVD leading eigenvectors usually identify better global grouping and transitional structures. Results This study proposes a flipping mechanism for a conventional agglomerative HCT using a rank-two ellipse (R2E, an improved SVD algorithm for sorting purpose seriation by Chen 3 as an external reference. While HCTs always produce permutations with good local behaviour, the rank-two ellipse seriation gives the best global grouping patterns and smooth transitional trends. The resulting algorithm automatically integrates the desirable properties of each method so that users have access to a clustering and visualization environment for gene expression profiles that preserves coherent local clusters and identifies global grouping trends. Conclusion We demonstrate, through four examples, that the proposed method not only possesses better numerical and statistical properties, it also provides more meaningful biomedical insights than other sorting algorithms. We suggest that sorted proximity matrices for genes and arrays, in addition to the gene-by-array expression matrix, can greatly aid in the search for comprehensive understanding of gene expression structures. Software for the proposed methods can be obtained at http://gap.stat.sinica.edu.tw/Software/GAP.

  13. Implementation of non-linear filters for iterative penalized maximum likelihood image reconstruction

    International Nuclear Information System (INIS)

    Liang, Z.; Gilland, D.; Jaszczak, R.; Coleman, R.

    1990-01-01

    In this paper, the authors report on the implementation of six edge-preserving, noise-smoothing, non-linear filters applied in image space for iterative penalized maximum-likelihood (ML) SPECT image reconstruction. The non-linear smoothing filters implemented were the median filter, the E 6 filter, the sigma filter, the edge-line filter, the gradient-inverse filter, and the 3-point edge filter with gradient-inverse filter, and the 3-point edge filter with gradient-inverse weight. A 3 x 3 window was used for all these filters. The best image obtained, by viewing the profiles through the image in terms of noise-smoothing, edge-sharpening, and contrast, was the one smoothed with the 3-point edge filter. The computation time for the smoothing was less than 1% of one iteration, and the memory space for the smoothing was negligible. These images were compared with the results obtained using Bayesian analysis

  14. Linear arrangement of nano-scale magnetic particles formed in Cu-Fe-Ni alloys

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Sung, E-mail: k3201s@hotmail.co [Department of Materials Engineering (SEISAN), Yokohama National University, 79-5 Tokiwadai, Hodogayaku, Yokohama, 240-8501 (Japan); Takeda, Mahoto [Department of Materials Engineering (SEISAN), Yokohama National University, 79-5 Tokiwadai, Hodogayaku, Yokohama, 240-8501 (Japan); Takeguchi, Masaki [Advanced Electron Microscopy Group, National Institute for Materials Science (NIMS), Sakura 3-13, Tsukuba, 305-0047 (Japan); Bae, Dong-Sik [School of Nano and Advanced Materials Engineering, Changwon National University, Gyeongnam, 641-773 (Korea, Republic of)

    2010-04-30

    The structural evolution of nano-scale magnetic particles formed in Cu-Fe-Ni alloys on isothermal annealing at 878 K has been investigated by means of transmission electron microscopy (TEM), electron dispersive X-ray spectroscopy (EDS), electron energy-loss spectroscopy (EELS) and field-emission scanning electron microscopy (FE-SEM). Phase decomposition of Cu-Fe-Ni occurred after an as-quenched specimen received a short anneal, and nano-scale magnetic particles were formed randomly in the Cu-rich matrix. A striking feature that two or more nano-scale particles with a cubic shape were aligned linearly along <1,0,0> directions was observed, and the trend was more pronounced at later stages of the precipitation. Large numbers of <1,0,0> linear chains of precipitates extended in three dimensions in late stages of annealing.

  15. An MPCC Formulation and Its Smooth Solution Algorithm for Continuous Network Design Problem

    Directory of Open Access Journals (Sweden)

    Guangmin Wang

    2017-12-01

    Full Text Available Continuous network design problem (CNDP is searching for a transportation network configuration to minimize the sum of the total system travel time and the investment cost of link capacity expansions by considering that the travellers follow a traditional Wardrop user equilibrium (UE to choose their routes. In this paper, the CNDP model can be formulated as mathematical programs with complementarity constraints (MPCC by describing UE as a non-linear complementarity problem (NCP. To address the difficulty resulting from complementarity constraints in MPCC, they are substituted by the Fischer-Burmeister (FB function, which can be smoothed by the introduction of the smoothing parameter. Therefore, the MPCC can be transformed into a well-behaved non-linear program (NLP by replacing the complementarity constraints with a smooth equation. Consequently, the solver such as LINDOGLOBAL in GAMS can be used to solve the smooth approximate NLP to obtain the solution to MPCC for modelling CNDP. The numerical experiments on the example from the literature demonstrate that the proposed algorithm is feasible.

  16. Quadratic obstructions to small-time local controllability for scalar-input systems

    Science.gov (United States)

    Beauchard, Karine; Marbach, Frédéric

    2018-03-01

    We consider nonlinear finite-dimensional scalar-input control systems in the vicinity of an equilibrium. When the linearized system is controllable, the nonlinear system is smoothly small-time locally controllable: whatever m > 0 and T > 0, the state can reach a whole neighborhood of the equilibrium at time T with controls arbitrary small in Cm-norm. When the linearized system is not controllable, we prove that: either the state is constrained to live within a smooth strict manifold, up to a cubic residual, or the quadratic order adds a signed drift with respect to it. This drift holds along a Lie bracket of length (2 k + 1), is quantified in terms of an H-k-norm of the control, holds for controls small in W 2 k , ∞-norm and these spaces are optimal. Our proof requires only C3 regularity of the vector field. This work underlines the importance of the norm used in the smallness assumption on the control, even in finite dimension.

  17. Study of effect of a smooth hump on hypersonic boundary layer instability

    Science.gov (United States)

    Park, Donghun; Park, Seung O.

    2016-12-01

    Effect of a two-dimensional smooth hump on linear instability of hypersonic boundary layer is studied by using parabolized stability equations. Linear evolution of mode S over a hump is analyzed for Mach 4.5 and 5.92 flat plate and Mach 7.1 sharp cone boundary layers. Mean flow for stability analysis is obtained by solving the parabolized Navier-Stokes equations. Hump with height smaller than local boundary layer thickness is considered. The case of flat plate and sharp cone without the hump are also studied to provide comparable data. For flat plate boundary layers, destabilization and stabilization effect is confirmed for hump located at upstream and downstream of synchronization point, respectively. Results of parametric studies to examine the effect of hump height, location, etc., are also given. For sharp cone boundary layer, stabilization influence of hump is also identified for a specific range of frequency. Stabilization influence of hump on convective instability of mode S is found to be a possible cause of previous experimental observations of delaying transition in hypersonic boundary layers.

  18. Local-scale topoclimate effects on treeline elevations: a country-wide investigation of New Zealand’s southern beech treelines

    Directory of Open Access Journals (Sweden)

    Bradley S. Case

    2015-10-01

    Full Text Available Although treeline elevations are limited globally by growing season temperature, at regional scales treelines frequently deviate below their climatic limit. The cause of these deviations relate to a host of climatic, disturbance, and geomorphic factors that operate at multiple scales. The ability to disentangle the relative effects of these factors is currently hampered by the lack of reliable topoclimatic data, which describe how regional climatic characteristics are modified by topographic effects in mountain areas. In this study we present an analysis of the combined effects of local- and regional-scale factors on southern beech treeline elevation variability at 28 study areas across New Zealand. We apply a mesoscale atmospheric model to generate local-scale (200 m meteorological data at these treelines and, from these data, we derive a set of topoclimatic indices that reflect possible detrimental and ameliorative influences on tree physiological functioning. Principal components analysis of meteorological data revealed geographic structure in how study areas were situated in multivariate space along gradients of topoclimate. Random forest and conditional inference tree modelling enabled us to tease apart the relative effects of 17 explanatory factors on local-scale treeline elevation variability. Overall, modelling explained about 50% of the variation in treeline elevation variability across the 28 study areas, with local landform and topoclimatic effects generally outweighing those from regional-scale factors across the 28 study areas. Further, the nature of the relationships between treeline elevation variability and the explanatory variables were complex, frequently non-linear, and consistent with the treeline literature. To our knowledge, this is the first study where model-generated meteorological data, and derived topoclimatic indices, have been developed and applied to explain treeline variation. Our results demonstrate the potential

  19. Local-scale topoclimate effects on treeline elevations: a country-wide investigation of New Zealand’s southern beech treelines

    Science.gov (United States)

    Buckley, Hannah L.

    2015-01-01

    Although treeline elevations are limited globally by growing season temperature, at regional scales treelines frequently deviate below their climatic limit. The cause of these deviations relate to a host of climatic, disturbance, and geomorphic factors that operate at multiple scales. The ability to disentangle the relative effects of these factors is currently hampered by the lack of reliable topoclimatic data, which describe how regional climatic characteristics are modified by topographic effects in mountain areas. In this study we present an analysis of the combined effects of local- and regional-scale factors on southern beech treeline elevation variability at 28 study areas across New Zealand. We apply a mesoscale atmospheric model to generate local-scale (200 m) meteorological data at these treelines and, from these data, we derive a set of topoclimatic indices that reflect possible detrimental and ameliorative influences on tree physiological functioning. Principal components analysis of meteorological data revealed geographic structure in how study areas were situated in multivariate space along gradients of topoclimate. Random forest and conditional inference tree modelling enabled us to tease apart the relative effects of 17 explanatory factors on local-scale treeline elevation variability. Overall, modelling explained about 50% of the variation in treeline elevation variability across the 28 study areas, with local landform and topoclimatic effects generally outweighing those from regional-scale factors across the 28 study areas. Further, the nature of the relationships between treeline elevation variability and the explanatory variables were complex, frequently non-linear, and consistent with the treeline literature. To our knowledge, this is the first study where model-generated meteorological data, and derived topoclimatic indices, have been developed and applied to explain treeline variation. Our results demonstrate the potential of such an approach

  20. Error Analysis for RADAR Neighbor Matching Localization in Linear Logarithmic Strength Varying Wi-Fi Environment

    Directory of Open Access Journals (Sweden)

    Mu Zhou

    2014-01-01

    Full Text Available This paper studies the statistical errors for the fingerprint-based RADAR neighbor matching localization with the linearly calibrated reference points (RPs in logarithmic received signal strength (RSS varying Wi-Fi environment. To the best of our knowledge, little comprehensive analysis work has appeared on the error performance of neighbor matching localization with respect to the deployment of RPs. However, in order to achieve the efficient and reliable location-based services (LBSs as well as the ubiquitous context-awareness in Wi-Fi environment, much attention has to be paid to the highly accurate and cost-efficient localization systems. To this end, the statistical errors by the widely used neighbor matching localization are significantly discussed in this paper to examine the inherent mathematical relations between the localization errors and the locations of RPs by using a basic linear logarithmic strength varying model. Furthermore, based on the mathematical demonstrations and some testing results, the closed-form solutions to the statistical errors by RADAR neighbor matching localization can be an effective tool to explore alternative deployment of fingerprint-based neighbor matching localization systems in the future.

  1. Error Analysis for RADAR Neighbor Matching Localization in Linear Logarithmic Strength Varying Wi-Fi Environment

    Science.gov (United States)

    Tian, Zengshan; Xu, Kunjie; Yu, Xiang

    2014-01-01

    This paper studies the statistical errors for the fingerprint-based RADAR neighbor matching localization with the linearly calibrated reference points (RPs) in logarithmic received signal strength (RSS) varying Wi-Fi environment. To the best of our knowledge, little comprehensive analysis work has appeared on the error performance of neighbor matching localization with respect to the deployment of RPs. However, in order to achieve the efficient and reliable location-based services (LBSs) as well as the ubiquitous context-awareness in Wi-Fi environment, much attention has to be paid to the highly accurate and cost-efficient localization systems. To this end, the statistical errors by the widely used neighbor matching localization are significantly discussed in this paper to examine the inherent mathematical relations between the localization errors and the locations of RPs by using a basic linear logarithmic strength varying model. Furthermore, based on the mathematical demonstrations and some testing results, the closed-form solutions to the statistical errors by RADAR neighbor matching localization can be an effective tool to explore alternative deployment of fingerprint-based neighbor matching localization systems in the future. PMID:24683349

  2. Piecewise linear regression splines with hyperbolic covariates

    International Nuclear Information System (INIS)

    Cologne, John B.; Sposto, Richard

    1992-09-01

    Consider the problem of fitting a curve to data that exhibit a multiphase linear response with smooth transitions between phases. We propose substituting hyperbolas as covariates in piecewise linear regression splines to obtain curves that are smoothly joined. The method provides an intuitive and easy way to extend the two-phase linear hyperbolic response model of Griffiths and Miller and Watts and Bacon to accommodate more than two linear segments. The resulting regression spline with hyperbolic covariates may be fit by nonlinear regression methods to estimate the degree of curvature between adjoining linear segments. The added complexity of fitting nonlinear, as opposed to linear, regression models is not great. The extra effort is particularly worthwhile when investigators are unwilling to assume that the slope of the response changes abruptly at the join points. We can also estimate the join points (the values of the abscissas where the linear segments would intersect if extrapolated) if their number and approximate locations may be presumed known. An example using data on changing age at menarche in a cohort of Japanese women illustrates the use of the method for exploratory data analysis. (author)

  3. Variational and robust density fitting of four-center two-electron integrals in local metrics

    Science.gov (United States)

    Reine, Simen; Tellgren, Erik; Krapp, Andreas; Kjærgaard, Thomas; Helgaker, Trygve; Jansik, Branislav; Høst, Stinne; Salek, Paweł

    2008-09-01

    Density fitting is an important method for speeding up quantum-chemical calculations. Linear-scaling developments in Hartree-Fock and density-functional theories have highlighted the need for linear-scaling density-fitting schemes. In this paper, we present a robust variational density-fitting scheme that allows for solving the fitting equations in local metrics instead of the traditional Coulomb metric, as required for linear scaling. Results of fitting four-center two-electron integrals in the overlap and the attenuated Gaussian damped Coulomb metric are presented, and we conclude that density fitting can be performed in local metrics at little loss of chemical accuracy. We further propose to use this theory in linear-scaling density-fitting developments.

  4. Simulations of reactive transport and precipitation with smoothed particle hydrodynamics

    Science.gov (United States)

    Tartakovsky, Alexandre M.; Meakin, Paul; Scheibe, Timothy D.; Eichler West, Rogene M.

    2007-03-01

    A numerical model based on smoothed particle hydrodynamics (SPH) was developed for reactive transport and mineral precipitation in fractured and porous materials. Because of its Lagrangian particle nature, SPH has several advantages for modeling Navier-Stokes flow and reactive transport including: (1) in a Lagrangian framework there is no non-linear term in the momentum conservation equation, so that accurate solutions can be obtained for momentum dominated flows and; (2) complicated physical and chemical processes such as surface growth due to precipitation/dissolution and chemical reactions are easy to implement. In addition, SPH simulations explicitly conserve mass and linear momentum. The SPH solution of the diffusion equation with fixed and moving reactive solid-fluid boundaries was compared with analytical solutions, Lattice Boltzmann [Q. Kang, D. Zhang, P. Lichtner, I. Tsimpanogiannis, Lattice Boltzmann model for crystal growth from supersaturated solution, Geophysical Research Letters, 31 (2004) L21604] simulations and diffusion limited aggregation (DLA) [P. Meakin, Fractals, scaling and far from equilibrium. Cambridge University Press, Cambridge, UK, 1998] model simulations. To illustrate the capabilities of the model, coupled three-dimensional flow, reactive transport and precipitation in a fracture aperture with a complex geometry were simulated.

  5. Several localized waves induced by linear interference between a nonlinear plane wave and bright solitons

    Science.gov (United States)

    Qin, Yan-Hong; Zhao, Li-Chen; Yang, Zhan-Ying; Yang, Wen-Li

    2018-01-01

    We investigate linear interference effects between a nonlinear plane wave and bright solitons, which are admitted by a pair-transition coupled two-component Bose-Einstein condensate. We demonstrate that the interference effects can induce several localized waves possessing distinctive wave structures, mainly including anti-dark solitons, W-shaped solitons, multi-peak solitons, Kuznetsov-Ma like breathers, and multi-peak breathers. Specifically, the explicit conditions for them are clarified by a phase diagram based on the linear interference properties. Furthermore, the interactions between these localized waves are discussed. The detailed analysis indicates that the soliton-soliton interaction induced phase shift brings the collision between these localized waves which can be inelastic for solitons involving collision and can be elastic for breathers. These characters come from the fact that the profile of solitons depends on the relative phase between bright solitons and a plane wave, and the profile of breathers does not depend on the relative phase. These results would motivate more discussions on linear interference between other nonlinear waves. Specifically, the solitons or breathers obtained here are not related to modulational instability. The underlying reasons are discussed in detail. In addition, possibilities to observe these localized waves are discussed in a two species Bose-Einstein condensate.

  6. Identifiability of large-scale non-linear dynamic network models applied to the ADM1-case study.

    Science.gov (United States)

    Nimmegeers, Philippe; Lauwers, Joost; Telen, Dries; Logist, Filip; Impe, Jan Van

    2017-06-01

    In this work, both the structural and practical identifiability of the Anaerobic Digestion Model no. 1 (ADM1) is investigated, which serves as a relevant case study of large non-linear dynamic network models. The structural identifiability is investigated using the probabilistic algorithm, adapted to deal with the specifics of the case study (i.e., a large-scale non-linear dynamic system of differential and algebraic equations). The practical identifiability is analyzed using a Monte Carlo parameter estimation procedure for a 'non-informative' and 'informative' experiment, which are heuristically designed. The model structure of ADM1 has been modified by replacing parameters by parameter combinations, to provide a generally locally structurally identifiable version of ADM1. This means that in an idealized theoretical situation, the parameters can be estimated accurately. Furthermore, the generally positive structural identifiability results can be explained from the large number of interconnections between the states in the network structure. This interconnectivity, however, is also observed in the parameter estimates, making uncorrelated parameter estimations in practice difficult. Copyright © 2017. Published by Elsevier Inc.

  7. An inhomogeneous wave equation and non-linear Diophantine approximation

    DEFF Research Database (Denmark)

    Beresnevich, V.; Dodson, M. M.; Kristensen, S.

    2008-01-01

    A non-linear Diophantine condition involving perfect squares and arising from an inhomogeneous wave equation on the torus guarantees the existence of a smooth solution. The exceptional set associated with the failure of the Diophantine condition and hence of the existence of a smooth solution...

  8. Linear Scaling Solution of the Time-Dependent Self-Consistent-Field Equations

    Directory of Open Access Journals (Sweden)

    Matt Challacombe

    2014-03-01

    Full Text Available A new approach to solving the Time-Dependent Self-Consistent-Field equations is developed based on the double quotient formulation of Tsiper 2001 (J. Phys. B. Dual channel, quasi-independent non-linear optimization of these quotients is found to yield convergence rates approaching those of the best case (single channel Tamm-Dancoff approximation. This formulation is variational with respect to matrix truncation, admitting linear scaling solution of the matrix-eigenvalue problem, which is demonstrated for bulk excitons in the polyphenylene vinylene oligomer and the (4,3 carbon nanotube segment.

  9. Wavelet-Smoothed Interpolation of Masked Scientific Data for JPEG 2000 Compression

    Energy Technology Data Exchange (ETDEWEB)

    Brislawn, Christopher M. [Los Alamos National Laboratory

    2012-08-13

    How should we manage scientific data with 'holes'? Some applications, like JPEG 2000, expect logically rectangular data, but some sources, like the Parallel Ocean Program (POP), generate data that isn't defined on certain subsets. We refer to grid points that lack well-defined, scientifically meaningful sample values as 'masked' samples. Wavelet-smoothing is a highly scalable interpolation scheme for regions with complex boundaries on logically rectangular grids. Computation is based on forward/inverse discrete wavelet transforms, so runtime complexity and memory scale linearly with respect to sample count. Efficient state-of-the-art minimal realizations yield small constants (O(10)) for arithmetic complexity scaling, and in-situ implementation techniques make optimal use of memory. Implementation in two dimensions using tensor product filter banks is straighsorward and should generalize routinely to higher dimensions. No hand-tuning required when the interpolation mask changes, making the method aeractive for problems with time-varying masks. Well-suited for interpolating undefined samples prior to JPEG 2000 encoding. The method outperforms global mean interpolation, as judged by both SNR rate-distortion performance and low-rate artifact mitigation, for data distributions whose histograms do not take the form of sharply peaked, symmetric, unimodal probability density functions. These performance advantages can hold even for data whose distribution differs only moderately from the peaked unimodal case, as demonstrated by POP salinity data. The interpolation method is very general and is not tied to any particular class of applications, could be used for more generic smooth interpolation.

  10. A three-dimensional cell-based smoothed finite element method for elasto-plasticity

    International Nuclear Information System (INIS)

    Lee, Kye Hyung; Im, Se Yong; Lim, Jae Hyuk; Sohn, Dong Woo

    2015-01-01

    This work is concerned with a three-dimensional cell-based smoothed finite element method for application to elastic-plastic analysis. The formulation of smoothed finite elements is extended to cover elastic-plastic deformations beyond the classical linear theory of elasticity, which has been the major application domain of smoothed finite elements. The finite strain deformations are treated with the aid of the formulation based on the hyperelastic constitutive equation. The volumetric locking originating from the nearly incompressible behavior of elastic-plastic deformations is remedied by relaxing the volumetric strain through the mean value. The comparison with the conventional finite elements demonstrates the effectiveness and accuracy of the present approach.

  11. A three-dimensional cell-based smoothed finite element method for elasto-plasticity

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Kye Hyung; Im, Se Yong [KAIST, Daejeon (Korea, Republic of); Lim, Jae Hyuk [KARI, Daejeon (Korea, Republic of); Sohn, Dong Woo [Korea Maritime and Ocean University, Busan (Korea, Republic of)

    2015-02-15

    This work is concerned with a three-dimensional cell-based smoothed finite element method for application to elastic-plastic analysis. The formulation of smoothed finite elements is extended to cover elastic-plastic deformations beyond the classical linear theory of elasticity, which has been the major application domain of smoothed finite elements. The finite strain deformations are treated with the aid of the formulation based on the hyperelastic constitutive equation. The volumetric locking originating from the nearly incompressible behavior of elastic-plastic deformations is remedied by relaxing the volumetric strain through the mean value. The comparison with the conventional finite elements demonstrates the effectiveness and accuracy of the present approach.

  12. Islands Climatology at Local Scale. Downscaling with CIELO model

    Science.gov (United States)

    Azevedo, Eduardo; Reis, Francisco; Tomé, Ricardo; Rodrigues, Conceição

    2016-04-01

    Islands with horizontal scales of the order of tens of km, as is the case of the Atlantic Islands of Macaronesia, are subscale orographic features for Global Climate Models (GCMs) since the horizontal scales of these models are too coarse to give a detailed representation of the islands' topography. Even the Regional Climate Models (RCMs) reveals limitations when they are forced to reproduce the climate of small islands mainly by the way they flat and lowers the elevation of the islands, reducing the capacity of the model to reproduce important local mechanisms that lead to a very deep local climate differentiation. Important local thermodynamics mechanisms like Foehn effect, or the influence of topography on radiation balance, have a prominent role in the climatic spatial differentiation. Advective transport of air - and the consequent induced adiabatic cooling due to orography - lead to transformations of the state parameters of the air that leads to the spatial configuration of the fields of pressure, temperature and humidity. The same mechanism is in the origin of the orographic clouds cover that, besides the direct role as water source by the reinforcement of precipitation, act like a filter to direct solar radiation and as a source of long-wave radiation that affect the local balance of energy. Also, the saturation (or near saturation) conditions that they provide constitute a barrier to water vapour diffusion in the mechanisms of evapotranspiration. Topographic factors like slope, aspect and orographic mask have also significant importance in the local energy balance. Therefore, the simulation of the local scale climate (past, present and future) in these archipelagos requires the use of downscaling techniques to adjust locally outputs obtained at upper scales. This presentation will discuss and analyse the evolution of the CIELO model (acronym for Clima Insular à Escala LOcal) a statistical/dynamical technique developed at the University of the Azores

  13. NADPH oxidase 1 deficiency alters caveolin phosphorylation and angiotensin II-receptor localization in vascular smooth muscle.

    Science.gov (United States)

    Basset, Olivier; Deffert, Christine; Foti, Michelangelo; Bedard, Karen; Jaquet, Vincent; Ogier-Denis, Eric; Krause, Karl-Heinz

    2009-10-01

    The superoxide-generating NADPH oxidase NOX1 is thought to be involved in signaling by the angiotensin II-receptor AT1R. However, underlying signaling steps are poorly understood. In this study, we investigated the effect of AngII on aortic smooth muscle from wild-type and NOX1-deficient mice. NOX1-deficient cells showed decreased basal ROS generation and did not produce ROS in response to AngII. Unexpectedly, AngII-dependent Ca(2+) signaling was markedly decreased in NOX1-deficient cells. Immunostaining demonstrated that AT1R was localized on the plasma membrane in wild-type, but intracellularly in NOX1-deficient cells. Immunohistochemistry and immunoblotting showed a decreased expression of AT1R in the aorta of NOX1-deficient mice. To investigate the basis of the abnormal AT1R targeting, we studied caveolin expression and phosphorylation. The amounts of total caveolin and of caveolae were not different in NOX1-deficient mice, but a marked decrease occurred in the phosphorylated form of caveolin. Exogenous H(2)O(2) or transfection of a NOX1 plasmid restored AngII responses in NOX1-deficient cells. Based on these findings, we propose that NOX1-derived reactive oxygen species regulate cell-surface expression of AT1R through mechanisms including caveolin phosphorylation. The lack cell-surface AT1R expression in smooth muscle could be involved in the decreased blood pressure in NOX1-deficient mice.

  14. Coherent density fluctuation model as a local-scale limit to ATDHF

    International Nuclear Information System (INIS)

    Antonov, A.N.; Petkov, I.Zh.; Stoitsov, M.V.

    1985-04-01

    The local scale transformation method is used for the construction of an Adiabatic Time-Dependent Hartree-Fock approach in terms of the local density distribution. The coherent density fluctuation relations of the model result in a particular case when the ''flucton'' local density is connected with the plane wave determinant model function be means of the local-scale coordinate transformation. The collective potential energy expression is obtained and its relation to the nuclear matter energy saturation curve is revealed. (author)

  15. Smooth and fast versus instantaneous quenches in quantum field theory

    Science.gov (United States)

    Das, Sumit R.; Galante, Damián A.; Myers, Robert C.

    2015-08-01

    We examine in detail the relationship between smooth fast quantum quenches, characterized by a time scale δ t, and instantaneous quenches, within the framework of exactly solvable mass quenches in free scalar field theory. Our earlier studies [1, 2] highlighted that the two protocols remain distinct in the limit δ t → 0 because of the relation of the quench rate to the UV cut-off, i.e., 1 /δ t ≪ Λ always holds in the fast smooth quenches while 1 /δ t ˜ Λ for instantaneous quenches. Here we study UV finite quantities like correlators at finite spatial distances and the excess energy produced above the final ground state energy. We show that at late times and large distances (compared to the quench time scale) the smooth quench correlator approaches that for the instantaneous quench. At early times, we find that for small spatial separation and small δ t, the correlator scales universally with δ t, exactly as in the scaling of renormalized one point functions found in earlier work. At larger separation, the dependence on δ t drops out. The excess energy density is finite (for finite mδ t) and scales in a universal fashion for all d. However, the scaling behaviour produces a divergent result in the limit mδ t → 0 for d ≥ 4, just as in an instantaneous quench, where it is UV divergent for d ≥ 4. We argue that similar results hold for arbitrary interacting theories: the excess energy density produced is expected to diverge for scaling dimensions Δ > d/2.

  16. A note on the Akivis algebra of a smooth hyporeductive loop

    International Nuclear Information System (INIS)

    Issa, A.N.

    2002-05-01

    Using the fundamental tensors of a smooth loop and the differential geometric characterization of smooth hyporeductive loops, the Akivis operations of a local smooth hyporeductive loop are expressed through the two binary and the one ternary operations of the hyporeductive triple algebra (h.t.a.) associated with the given hyporeductive loop. Those Akivis operations are also given in terms of Lie brackets of a Lie algebra of vector fields with the hyporeductive decomposition which generalizes the reductive decomposition of Lie algebras. A nontrivial real two-dimensional h.t.a. is presented. (author)

  17. Polarized atomic orbitals for linear scaling methods

    Science.gov (United States)

    Berghold, Gerd; Parrinello, Michele; Hutter, Jürg

    2002-02-01

    We present a modified version of the polarized atomic orbital (PAO) method [M. S. Lee and M. Head-Gordon, J. Chem. Phys. 107, 9085 (1997)] to construct minimal basis sets optimized in the molecular environment. The minimal basis set derives its flexibility from the fact that it is formed as a linear combination of a larger set of atomic orbitals. This approach significantly reduces the number of independent variables to be determined during a calculation, while retaining most of the essential chemistry resulting from the admixture of higher angular momentum functions. Furthermore, we combine the PAO method with linear scaling algorithms. We use the Chebyshev polynomial expansion method, the conjugate gradient density matrix search, and the canonical purification of the density matrix. The combined scheme overcomes one of the major drawbacks of standard approaches for large nonorthogonal basis sets, namely numerical instabilities resulting from ill-conditioned overlap matrices. We find that the condition number of the PAO overlap matrix is independent from the condition number of the underlying extended basis set, and consequently no numerical instabilities are encountered. Various applications are shown to confirm this conclusion and to compare the performance of the PAO method with extended basis-set calculations.

  18. Comments on the comparison of global methods for linear two-point boundary value problems

    International Nuclear Information System (INIS)

    de Boor, C.; Swartz, B.

    1977-01-01

    A more careful count of the operations involved in solving the linear system associated with collocation of a two-point boundary value problem using a rough splines reverses results recently reported by others in this journal. In addition, it is observed that the use of the technique of ''condensation of parameters'' can decrease the computer storage required. Furthermore, the use of a particular highly localized basis can also reduce the setup time when the mesh is irregular. Finally, operation counts are roughly estimated for the solution of certain linear system associated with two competing collocation methods; namely, collocation with smooth splines and collocation of the equivalent first order system with continuous piecewise polynomials

  19. Local magnitude scale for Valle Medio del Magdalena region, Colombia

    Science.gov (United States)

    Londoño, John Makario; Romero, Jaime A.

    2017-12-01

    A local Magnitude (ML) scale for Valle Medio del Magdalena (VMM) region was defined by using 514 high quality earthquakes located at VMM area and inversion of 2797 amplitude values of horizontal components of 17 stations seismic broad band stations, simulated in a Wood-Anderson seismograph. The derived local magnitude scale for VMM region was: ML =log(A) + 1.3744 ∗ log(r) + 0.0014776 ∗ r - 2.397 + S Where A is the zero-to-peak amplitude in nm in horizontal components, r is the hypocentral distance in km, and S is the station correction. Higher values of ML were obtained for VMM region compared with those obtained with the current formula used for ML determination, and with California formula. With this new scale ML values are adjusted to local conditions beneath VMM region leading to more realistic ML values. Moreover, with this new ML scale the seismicity caused by tectonic or fracking activity at VMM region can be monitored more accurately.

  20. Approaches to linear local gauge-invariant observables in inflationary cosmologies

    Science.gov (United States)

    Fröb, Markus B.; Hack, Thomas-Paul; Khavkine, Igor

    2018-06-01

    We review and relate two recent complementary constructions of linear local gauge-invariant observables for cosmological perturbations in generic spatially flat single-field inflationary cosmologies. After briefly discussing their physical significance, we give explicit, covariant and mutually invertible transformations between the two sets of observables, thus resolving any doubts about their equivalence. In this way, we get a geometric interpretation and show the completeness of both sets of observables, while previously each of these properties was available only for one of them.

  1. Scaling relations of moment magnitude, local magnitude, and duration magnitude for earthquakes originated in northeast India

    Science.gov (United States)

    Bora, Dipok K.

    2016-06-01

    In this study, we aim to improve the scaling between the moment magnitude ( M W), local magnitude ( M L), and the duration magnitude ( M D) for 162 earthquakes in Shillong-Mikir plateau and its adjoining region of northeast India by extending the M W estimates to lower magnitude earthquakes using spectral analysis of P-waves from vertical component seismograms. The M W- M L and M W- M D relationships are determined by linear regression analysis. It is found that, M W values can be considered consistent with M L and M D, within 0.1 and 0.2 magnitude units respectively, in 90 % of the cases. The scaling relationships investigated comply well with similar relationships in other regions in the world and in other seismogenic areas in the northeast India region.

  2. Contact area of rough spheres: Large scale simulations and simple scaling laws

    Energy Technology Data Exchange (ETDEWEB)

    Pastewka, Lars, E-mail: lars.pastewka@kit.edu [Institute for Applied Materials & MicroTribology Center muTC, Karlsruhe Institute of Technology, Engelbert-Arnold-Straße 4, 76131 Karlsruhe (Germany); Department of Physics and Astronomy, Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218 (United States); Robbins, Mark O., E-mail: mr@pha.jhu.edu [Department of Physics and Astronomy, Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218 (United States)

    2016-05-30

    We use molecular simulations to study the nonadhesive and adhesive atomic-scale contact of rough spheres with radii ranging from nanometers to micrometers over more than ten orders of magnitude in applied normal load. At the lowest loads, the interfacial mechanics is governed by the contact mechanics of the first asperity that touches. The dependence of contact area on normal force becomes linear at intermediate loads and crosses over to Hertzian at the largest loads. By combining theories for the limiting cases of nominally flat rough surfaces and smooth spheres, we provide parameter-free analytical expressions for contact area over the whole range of loads. Our results establish a range of validity for common approximations that neglect curvature or roughness in modeling objects on scales from atomic force microscope tips to ball bearings.

  3. Contact area of rough spheres: Large scale simulations and simple scaling laws

    Science.gov (United States)

    Pastewka, Lars; Robbins, Mark O.

    2016-05-01

    We use molecular simulations to study the nonadhesive and adhesive atomic-scale contact of rough spheres with radii ranging from nanometers to micrometers over more than ten orders of magnitude in applied normal load. At the lowest loads, the interfacial mechanics is governed by the contact mechanics of the first asperity that touches. The dependence of contact area on normal force becomes linear at intermediate loads and crosses over to Hertzian at the largest loads. By combining theories for the limiting cases of nominally flat rough surfaces and smooth spheres, we provide parameter-free analytical expressions for contact area over the whole range of loads. Our results establish a range of validity for common approximations that neglect curvature or roughness in modeling objects on scales from atomic force microscope tips to ball bearings.

  4. Direct numerical simulation of open channel flow over smooth-to-rough and rough-to-smooth step changes

    Science.gov (United States)

    Rouhi, Amirreza; Chung, Daniel; Hutchins, Nicholas

    2017-11-01

    Direct numerical simulations (DNSs) are reported for open channel flow over streamwise-alternating patches of smooth and fully rough walls. Owing to the streamwise periodicity, the flow configuration is composed of a step change from smooth to rough, and a step change from rough to smooth. The friction Reynolds number varies from 443 over the smooth patch to 715 over the rough patch. The flow is thoroughly studied by mean and fluctuation profiles, and spectrograms. The detailed flow from DNS reveals discrepancies of up to 50% among the various definitions of the internal-layer thickness, with apparent power-law exponents differing by up to 60%. The definition based on the logarithmic slope of the velocity profile, as proposed by Chamorro et al. (Boundary-Layer Meteorol., vol. 130, 2009, pp. 29-41), is most consistent with the physical notion of the internal layer; this is supported by the defect similarity based on this internal-layer thickness, and the streamwise homogeneity of the dissipation length-scale within this internal layer. The statistics inside this internal-layer, and the growth of the internal layer itself, are minimally affected by the streamwise periodicity when the patch length is at least six times the channel height.

  5. Reconnection Scaling Experiment (RSX): Magnetic Reconnection in Linear Geometry

    Science.gov (United States)

    Intrator, T.; Sovinec, C.; Begay, D.; Wurden, G.; Furno, I.; Werley, C.; Fisher, M.; Vermare, L.; Fienup, W.

    2001-10-01

    The linear Reconnection Scaling Experiment (RSX) at LANL is a new experiment that can create MHD relevant plasmas to look at the physics of magnetic reconnection. This experiment can scale many relevant parameters because the guns that generate the plasma and current channels do not depend on equilibrium or force balance for startup. We describe the experiment and initial electrostatic and magnetic probe data. Two parallel current channels sweep down a long plasma column and probe data accumulated over many shots gives 3D movies of magnetic reconnection. Our first data tries to define an operating regime free from kink instabilities that might otherwise confuse the data and shot repeatability. We compare this with MHD 2 fluid NIMROD simulations of the single current channel kink stability boundary for a variety of experimental conditions.

  6. Combining vibrational linear-by-part dynamics and kinetic-based decoupling of the dynamics for multiple elastoplastic smooth impacts

    Energy Technology Data Exchange (ETDEWEB)

    Barjau, Ana, E-mail: ana.barjau@upc.edu; Batlle, Joaquim A., E-mail: agullo.batlle@upc.edu; Font-Llagunes, Josep M., E-mail: josep.m.font@upc.edu [Universitat Politècnica de Catalunya, Department of Mechanical Engineering and Biomedical Engineering Research Centre (Spain)

    2015-11-15

    This article proposes a linear-by-part approach for elastoplastic 3D multiple-point smooth impacts in multibody systems with perfect constraints. The model is an extension of a previous version, restricted to the perfectly elastic case, able to account for the high sensitivity to initial conditions and for redundancy without assuming any particular collision sequence (Barjau et al., Multibody Syst. Dyn. 31:497–517, 2014). Energy losses associated with compression and expansion in percussive analysis is a matter as complex as the physical phenomena involved, at the nanoscale level, for different materials. Simplified models can be developed for specific purposes, which can retain the most relevant trends of internal damping and at the same time be suitable for a particular analytical approach of impact mechanics. In the context of this article, energy dissipation due to material deformation is introduced through a linear-by-part elastoplastic model consisting on two elementary sets of springs and dry-friction dampers. The first set accounts for inelastic behavior (energy loss without permanent indentation), whereas the second one introduces plasticity (that is, permanent indentation). In inelastic and plastic collisions, instantaneous unilateral constraints may appear, thus reducing the number of degrees of freedom (DOF) of the system. The calculation of the corresponding normal contact force at the constrained points is then necessary in order to detect whether the constraint holds or disappears (either because a new compression or an expansion phase starts, or because contact is lost). Different simulated application examples are presented and thoroughly discussed.

  7. The non-linear evolution of edge localized modes

    International Nuclear Information System (INIS)

    Wenninger, Ronald

    2013-01-01

    Edge localized modes (ELMs) are instabilities in the edge of tokamak plasmas in the high confinement regime (H-mode). Without them the edge transport in ordinary H-mode plasmas is too low to establish a stationary situation. However in a future device large unmitigated ELMs are believed to cause divertor power flux densities far in excess of tolerable material limits. Hence the size of energy loss per ELM and the resulting ELM frequency must be controlled. To proceed in understanding how the ELM size is determined and how ELM mitigation methods work it is necessary to characterize the non-linear evolution of pedestal erosion. In order to achieve this experimental data is compared to the results of ELM simulations with the code JOREK (reduced MHD, non-linear) applying a specially developed synthetic magnetic diagnostic. The experimental data are acquired by several fast sampling diagnostics at the experiments ASDEX Upgrade and TCV at a large number of toroidal/poloidal positions. A central element of the presented work is the detailed characterization of dominant magnetic perturbations during ELMs. These footprints of the instability can be observed most intensely in close temporal vicinity to the onset of pedestal erosion. Dominant magnetic perturbations are caused by current perturbations located at or inside the last closed flux surface. In ASDEX Upgrade under certain conditions dominant magnetic perturbations like other H-mode edge instabilities display a similarity to solitons. Furthermore - as expected - they are often observed to be correlated to a perturbation of electron temperature. In TCV it is possible to characterize the evolution of the toroidal structure of dominant magnetic perturbations. Between growing above the level of background fluctuations and the maximum perturbation level for all time instance a similar toroidal structure is observed. This rigid mode-structure is an indication for non-linear coupling. Most frequently the dominant toroidal

  8. The non-linear evolution of edge localized modes

    Energy Technology Data Exchange (ETDEWEB)

    Wenninger, Ronald

    2013-01-09

    Edge localized modes (ELMs) are instabilities in the edge of tokamak plasmas in the high confinement regime (H-mode). Without them the edge transport in ordinary H-mode plasmas is too low to establish a stationary situation. However in a future device large unmitigated ELMs are believed to cause divertor power flux densities far in excess of tolerable material limits. Hence the size of energy loss per ELM and the resulting ELM frequency must be controlled. To proceed in understanding how the ELM size is determined and how ELM mitigation methods work it is necessary to characterize the non-linear evolution of pedestal erosion. In order to achieve this experimental data is compared to the results of ELM simulations with the code JOREK (reduced MHD, non-linear) applying a specially developed synthetic magnetic diagnostic. The experimental data are acquired by several fast sampling diagnostics at the experiments ASDEX Upgrade and TCV at a large number of toroidal/poloidal positions. A central element of the presented work is the detailed characterization of dominant magnetic perturbations during ELMs. These footprints of the instability can be observed most intensely in close temporal vicinity to the onset of pedestal erosion. Dominant magnetic perturbations are caused by current perturbations located at or inside the last closed flux surface. In ASDEX Upgrade under certain conditions dominant magnetic perturbations like other H-mode edge instabilities display a similarity to solitons. Furthermore - as expected - they are often observed to be correlated to a perturbation of electron temperature. In TCV it is possible to characterize the evolution of the toroidal structure of dominant magnetic perturbations. Between growing above the level of background fluctuations and the maximum perturbation level for all time instance a similar toroidal structure is observed. This rigid mode-structure is an indication for non-linear coupling. Most frequently the dominant toroidal

  9. Planning under uncertainty solving large-scale stochastic linear programs

    Energy Technology Data Exchange (ETDEWEB)

    Infanger, G. [Stanford Univ., CA (United States). Dept. of Operations Research]|[Technische Univ., Vienna (Austria). Inst. fuer Energiewirtschaft

    1992-12-01

    For many practical problems, solutions obtained from deterministic models are unsatisfactory because they fail to hedge against certain contingencies that may occur in the future. Stochastic models address this shortcoming, but up to recently seemed to be intractable due to their size. Recent advances both in solution algorithms and in computer technology now allow us to solve important and general classes of practical stochastic problems. We show how large-scale stochastic linear programs can be efficiently solved by combining classical decomposition and Monte Carlo (importance) sampling techniques. We discuss the methodology for solving two-stage stochastic linear programs with recourse, present numerical results of large problems with numerous stochastic parameters, show how to efficiently implement the methodology on a parallel multi-computer and derive the theory for solving a general class of multi-stage problems with dependency of the stochastic parameters within a stage and between different stages.

  10. Verification of micro-scale photogrammetry for smooth three-dimensional object measurement

    Science.gov (United States)

    Sims-Waterhouse, Danny; Piano, Samanta; Leach, Richard

    2017-05-01

    By using sub-millimetre laser speckle pattern projection we show that photogrammetry systems are able to measure smooth three-dimensional objects with surface height deviations less than 1 μm. The projection of laser speckle patterns allows correspondences on the surface of smooth spheres to be found, and as a result, verification artefacts with low surface height deviations were measured. A combination of VDI/VDE and ISO standards were also utilised to provide a complete verification method, and determine the quality parameters for the system under test. Using the proposed method applied to a photogrammetry system, a 5 mm radius sphere was measured with an expanded uncertainty of 8.5 μm for sizing errors, and 16.6 μm for form errors with a 95 % confidence interval. Sphere spacing lengths between 6 mm and 10 mm were also measured by the photogrammetry system, and were found to have expanded uncertainties of around 20 μm with a 95 % confidence interval.

  11. Phase space properties of local observables and structure of scaling limits

    International Nuclear Information System (INIS)

    Buchholz, D.

    1995-05-01

    For any given algebra of local observables in relativistic quantum field theory there exists an associated scaling algebra which permits one to introduce renormalization group transformations and to construct the scaling (short distance) limit of the theory. On the basis of this result it is discussed how the phase space properties of a theory determine the structure of its scaling limit. Bounds on the number of local degrees of freedom appearing in the scaling limit are given which allow one to distinguish between theories with classical and quantum scaling limits. The results can also be used to establish physically significant algebraic properties of the scaling limit theories, such as the split property. (orig.)

  12. Chimera states in an ensemble of linearly locally coupled bistable oscillators

    Science.gov (United States)

    Shchapin, D. S.; Dmitrichev, A. S.; Nekorkin, V. I.

    2017-11-01

    Chimera states in a system with linear local connections have been studied. The system is a ring ensemble of analog bistable self-excited oscillators with a resistive coupling. It has been shown that the existence of chimera states is not due to the nonidentity of oscillators and noise, which is always present in real experiments, but is due to the nonlinear dynamics of the system on invariant tori with various dimensions.

  13. Effective Five Directional Partial Derivatives-Based Image Smoothing and a Parallel Structure Design.

    Science.gov (United States)

    Choongsang Cho; Sangkeun Lee

    2016-04-01

    Image smoothing has been used for image segmentation, image reconstruction, object classification, and 3D content generation. Several smoothing approaches have been used at the pre-processing step to retain the critical edge, while removing noise and small details. However, they have limited performance, especially in removing small details and smoothing discrete regions. Therefore, to provide fast and accurate smoothing, we propose an effective scheme that uses a weighted combination of the gradient, Laplacian, and diagonal derivatives of a smoothed image. In addition, to reduce computational complexity, we designed and implemented a parallel processing structure for the proposed scheme on a graphics processing unit (GPU). For an objective evaluation of the smoothing performance, the images were linearly quantized into several layers to generate experimental images, and the quantized images were smoothed using several methods for reconstructing the smoothly changed shape and intensity of the original image. Experimental results showed that the proposed scheme has higher objective scores and better successful smoothing performance than similar schemes, while preserving and removing critical and trivial details, respectively. For computational complexity, the proposed smoothing scheme running on a GPU provided 18 and 16 times lower complexity than the proposed smoothing scheme running on a CPU and the L0-based smoothing scheme, respectively. In addition, a simple noise reduction test was conducted to show the characteristics of the proposed approach; it reported that the presented algorithm outperforms the state-of-the art algorithms by more than 5.4 dB. Therefore, we believe that the proposed scheme can be a useful tool for efficient image smoothing.

  14. Smooth and fast versus instantaneous quenches in quantum field theory

    International Nuclear Information System (INIS)

    Das, Sumit R.; Galante, Damián A.; Myers, Robert C.

    2015-01-01

    We examine in detail the relationship between smooth fast quantum quenches, characterized by a time scale δt, and instantaneous quenches, within the framework of exactly solvable mass quenches in free scalar field theory. Our earlier studies http://dx.doi.org/10.1103/PhysRevLett.112.171601 and http://dx.doi.org/10.1007/JHEP02(2015)167 highlighted that the two protocols remain distinct in the limit δt→0 because of the relation of the quench rate to the UV cut-off, i.e., 1/δt≪Λ always holds in the fast smooth quenches while 1/δt∼Λ for instantaneous quenches. Here we study UV finite quantities like correlators at finite spatial distances and the excess energy produced above the final ground state energy. We show that at late times and large distances (compared to the quench time scale) the smooth quench correlator approaches that for the instantaneous quench. At early times, we find that for small spatial separation and small δt, the correlator scales universally with δt, exactly as in the scaling of renormalized one point functions found in earlier work. At larger separation, the dependence on δt drops out. The excess energy density is finite (for finite mδt) and scales in a universal fashion for all d. However, the scaling behaviour produces a divergent result in the limit mδt→0 for d≥4, just as in an instantaneous quench, where it is UV divergent for d≥4. We argue that similar results hold for arbitrary interacting theories: the excess energy density produced is expected to diverge for scaling dimensions Δ>d/2.

  15. Recent Trends in Local-Scale Marine Biodiversity Reflect Community Structure and Human Impacts.

    Science.gov (United States)

    Elahi, Robin; O'Connor, Mary I; Byrnes, Jarrett E K; Dunic, Jillian; Eriksson, Britas Klemens; Hensel, Marc J S; Kearns, Patrick J

    2015-07-20

    The modern biodiversity crisis reflects global extinctions and local introductions. Human activities have dramatically altered rates and scales of processes that regulate biodiversity at local scales. Reconciling the threat of global biodiversity loss with recent evidence of stability at fine spatial scales is a major challenge and requires a nuanced approach to biodiversity change that integrates ecological understanding. With a new dataset of 471 diversity time series spanning from 1962 to 2015 from marine coastal ecosystems, we tested (1) whether biodiversity changed at local scales in recent decades, and (2) whether we can ignore ecological context (e.g., proximate human impacts, trophic level, spatial scale) and still make informative inferences regarding local change. We detected a predominant signal of increasing species richness in coastal systems since 1962 in our dataset, though net species loss was associated with localized effects of anthropogenic impacts. Our geographically extensive dataset is unlikely to be a random sample of marine coastal habitats; impacted sites (3% of our time series) were underrepresented relative to their global presence. These local-scale patterns do not contradict the prospect of accelerating global extinctions but are consistent with local species loss in areas with direct human impacts and increases in diversity due to invasions and range expansions in lower impact areas. Attempts to detect and understand local biodiversity trends are incomplete without information on local human activities and ecological context. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Full Waveform Inversion Using Nonlinearly Smoothed Wavefields

    KAUST Repository

    Li, Y.; Choi, Yun Seok; Alkhalifah, Tariq Ali; Li, Z.

    2017-01-01

    The lack of low frequency information in the acquired data makes full waveform inversion (FWI) conditionally converge to the accurate solution. An initial velocity model that results in data with events within a half cycle of their location in the observed data was required to converge. The multiplication of wavefields with slightly different frequencies generates artificial low frequency components. This can be effectively utilized by multiplying the wavefield with itself, which is nonlinear operation, followed by a smoothing operator to extract the artificially produced low frequency information. We construct the objective function using the nonlinearly smoothed wavefields with a global-correlation norm to properly handle the energy imbalance in the nonlinearly smoothed wavefield. Similar to the multi-scale strategy, we progressively reduce the smoothing width applied to the multiplied wavefield to welcome higher resolution. We calculate the gradient of the objective function using the adjoint-state technique, which is similar to the conventional FWI except for the adjoint source. Examples on the Marmousi 2 model demonstrate the feasibility of the proposed FWI method to mitigate the cycle-skipping problem in the case of a lack of low frequency information.

  17. Full Waveform Inversion Using Nonlinearly Smoothed Wavefields

    KAUST Repository

    Li, Y.

    2017-05-26

    The lack of low frequency information in the acquired data makes full waveform inversion (FWI) conditionally converge to the accurate solution. An initial velocity model that results in data with events within a half cycle of their location in the observed data was required to converge. The multiplication of wavefields with slightly different frequencies generates artificial low frequency components. This can be effectively utilized by multiplying the wavefield with itself, which is nonlinear operation, followed by a smoothing operator to extract the artificially produced low frequency information. We construct the objective function using the nonlinearly smoothed wavefields with a global-correlation norm to properly handle the energy imbalance in the nonlinearly smoothed wavefield. Similar to the multi-scale strategy, we progressively reduce the smoothing width applied to the multiplied wavefield to welcome higher resolution. We calculate the gradient of the objective function using the adjoint-state technique, which is similar to the conventional FWI except for the adjoint source. Examples on the Marmousi 2 model demonstrate the feasibility of the proposed FWI method to mitigate the cycle-skipping problem in the case of a lack of low frequency information.

  18. Smooth function approximation using neural networks.

    Science.gov (United States)

    Ferrari, Silvia; Stengel, Robert F

    2005-01-01

    An algebraic approach for representing multidimensional nonlinear functions by feedforward neural networks is presented. In this paper, the approach is implemented for the approximation of smooth batch data containing the function's input, output, and possibly, gradient information. The training set is associated to the network adjustable parameters by nonlinear weight equations. The cascade structure of these equations reveals that they can be treated as sets of linear systems. Hence, the training process and the network approximation properties can be investigated via linear algebra. Four algorithms are developed to achieve exact or approximate matching of input-output and/or gradient-based training sets. Their application to the design of forward and feedback neurocontrollers shows that algebraic training is characterized by faster execution speeds and better generalization properties than contemporary optimization techniques.

  19. Design techniques for large scale linear measurement systems

    International Nuclear Information System (INIS)

    Candy, J.V.

    1979-03-01

    Techniques to design measurement schemes for systems modeled by large scale linear time invariant systems, i.e., physical systems modeled by a large number (> 5) of ordinary differential equations, are described. The techniques are based on transforming the physical system model to a coordinate system facilitating the design and then transforming back to the original coordinates. An example of a three-stage, four-species, extraction column used in the reprocessing of spent nuclear fuel elements is presented. The basic ideas are briefly discussed in the case of noisy measurements. An example using a plutonium nitrate storage vessel (reprocessing) with measurement uncertainty is also presented

  20. Generating clustered scale-free networks using Poisson based localization of edges

    Science.gov (United States)

    Türker, İlker

    2018-05-01

    We introduce a variety of network models using a Poisson-based edge localization strategy, which result in clustered scale-free topologies. We first verify the success of our localization strategy by realizing a variant of the well-known Watts-Strogatz model with an inverse approach, implying a small-world regime of rewiring from a random network through a regular one. We then apply the rewiring strategy to a pure Barabasi-Albert model and successfully achieve a small-world regime, with a limited capacity of scale-free property. To imitate the high clustering property of scale-free networks with higher accuracy, we adapted the Poisson-based wiring strategy to a growing network with the ingredients of both preferential attachment and local connectivity. To achieve the collocation of these properties, we used a routine of flattening the edges array, sorting it, and applying a mixing procedure to assemble both global connections with preferential attachment and local clusters. As a result, we achieved clustered scale-free networks with a computational fashion, diverging from the recent studies by following a simple but efficient approach.

  1. A Smooth Transition Logit Model of the Effects of Deregulation in the Electricity Market

    DEFF Research Database (Denmark)

    Hurn, A.S.; Silvennoinen, Annastiina; Teräsvirta, Timo

    We consider a nonlinear vector model called the logistic vector smooth transition autoregressive model. The bivariate single-transition vector smooth transition regression model of Camacho (2004) is generalised to a multivariate and multitransition one. A modelling strategy consisting of specific......We consider a nonlinear vector model called the logistic vector smooth transition autoregressive model. The bivariate single-transition vector smooth transition regression model of Camacho (2004) is generalised to a multivariate and multitransition one. A modelling strategy consisting...... of specification, including testing linearity, estimation and evaluation of these models is constructed. Nonlinear least squares estimation of the parameters of the model is discussed. Evaluation by misspecification tests is carried out using tests derived in a companion paper. The use of the modelling strategy...

  2. Local-scale models reveal ecological niche variability in amphibian and reptile communities from two contrasting biogeographic regions

    Directory of Open Access Journals (Sweden)

    Alberto Muñoz

    2016-10-01

    Full Text Available Ecological Niche Models (ENMs are widely used to describe how environmental factors influence species distribution. Modelling at a local scale, compared to a large scale within a high environmental gradient, can improve our understanding of ecological species niches. The main goal of this study is to assess and compare the contribution of environmental variables to amphibian and reptile ENMs in two Spanish national parks located in contrasting biogeographic regions, i.e., the Mediterranean and the Atlantic area. The ENMs were built with maximum entropy modelling using 11 environmental variables in each territory. The contributions of these variables to the models were analysed and classified using various statistical procedures (Mann–Whitney U tests, Principal Components Analysis and General Linear Models. Distance to the hydrological network was consistently the most relevant variable for both parks and taxonomic classes. Topographic variables (i.e., slope and altitude were the second most predictive variables, followed by climatic variables. Differences in variable contribution were observed between parks and taxonomic classes. Variables related to water availability had the larger contribution to the models in the Mediterranean park, while topography variables were decisive in the Atlantic park. Specific response curves to environmental variables were in accordance with the biogeographic affinity of species (Mediterranean and non-Mediterranean species and taxonomy (amphibians and reptiles. Interestingly, these results were observed for species located in both parks, particularly those situated at their range limits. Our findings show that ecological niche models built at local scale reveal differences in habitat preferences within a wide environmental gradient. Therefore, modelling at local scales rather than assuming large-scale models could be preferable for the establishment of conservation strategies for herptile species in natural

  3. Local-scale models reveal ecological niche variability in amphibian and reptile communities from two contrasting biogeographic regions

    Science.gov (United States)

    Santos, Xavier; Felicísimo, Ángel M.

    2016-01-01

    Ecological Niche Models (ENMs) are widely used to describe how environmental factors influence species distribution. Modelling at a local scale, compared to a large scale within a high environmental gradient, can improve our understanding of ecological species niches. The main goal of this study is to assess and compare the contribution of environmental variables to amphibian and reptile ENMs in two Spanish national parks located in contrasting biogeographic regions, i.e., the Mediterranean and the Atlantic area. The ENMs were built with maximum entropy modelling using 11 environmental variables in each territory. The contributions of these variables to the models were analysed and classified using various statistical procedures (Mann–Whitney U tests, Principal Components Analysis and General Linear Models). Distance to the hydrological network was consistently the most relevant variable for both parks and taxonomic classes. Topographic variables (i.e., slope and altitude) were the second most predictive variables, followed by climatic variables. Differences in variable contribution were observed between parks and taxonomic classes. Variables related to water availability had the larger contribution to the models in the Mediterranean park, while topography variables were decisive in the Atlantic park. Specific response curves to environmental variables were in accordance with the biogeographic affinity of species (Mediterranean and non-Mediterranean species) and taxonomy (amphibians and reptiles). Interestingly, these results were observed for species located in both parks, particularly those situated at their range limits. Our findings show that ecological niche models built at local scale reveal differences in habitat preferences within a wide environmental gradient. Therefore, modelling at local scales rather than assuming large-scale models could be preferable for the establishment of conservation strategies for herptile species in natural parks. PMID

  4. Localization of foot-and-mouth disease - RNA synthesis on newly formed cellular smooth membranous vacuoles

    International Nuclear Information System (INIS)

    Polatnick, J.; Wool, S.H.

    1982-01-01

    Viral RNA synthesis in foot-and-mouth disease infected bovine kidney cell cultures was associated throughout the infectious period with newly formed smooth membranous vacuoles. Membrane formation was measured by choline uptake. The site of RNA synthesis was determined by electron microscopic examination of autoradiograms of incorporated [ 3 H] uridine. Both membrane formation and RNA synthesis became signifcant at 2.5 hours postinfection, but membrane formation increased steadily to 4.5 hours while RNA synthesis peaked at 3.5 hours. Percent density distributions of developed silver grains on autoradiograms showed that almost all RNA synthesis was concentrated on the smooth vacuoles of infected cells. Histogram analysis of grain density distributions established that the site of RNA synthesis was the vacuolar membrane. The newly formed smooth membrane-bound vacuoles were not seen to coalesce into the large vacuolated areas typical of poliovirus cytopathogenicity. (Author)

  5. Localization of foot-and-mouth disease - RNA synthesis on newly formed cellular smooth membranous vacuoles

    Energy Technology Data Exchange (ETDEWEB)

    Polatnick, J.; Wool, S.H. (United States Department of Agriculture, Science and Education, Greenport, New York (USA). Agricultural Research, Plum Island Animal Disease Center)

    1982-01-01

    Viral RNA synthesis in foot-and-mouth disease infected bovine kidney cell cultures was associated throughout the infectious period with newly formed smooth membranous vacuoles. Membrane formation was measured by choline uptake. The site of RNA synthesis was determined by electron microscopic examination of autoradiograms of incorporated (/sup 3/H) uridine. Both membrane formation and RNA synthesis became signifcant at 2.5 hours postinfection, but membrane formation increased steadily to 4.5 hours while RNA synthesis peaked at 3.5 hours. Percent density distributions of developed silver grains on autoradiograms showed that almost all RNA synthesis was concentrated on the smooth vacuoles of infected cells. Histogram analysis of grain density distributions established that the site of RNA synthesis was the vacuolar membrane. The newly formed smooth membrane-bound vacuoles were not seen to coalesce into the large vacuolated areas typical of poliovirus cytopathogenicity.

  6. Smooth, cusped, and discontinuous traveling waves in the periodic fluid resonance equation

    Science.gov (United States)

    Kruse, Matthew Thomas

    The principal motivation for this dissertation is to extend the study of small amplitude high frequency wave propagation in solutions for hyperbolic conservation laws begun by A. Majda and R. Rosales in 1984. It was then that Majda and Rosales obtained equations governing the leading order wave amplitudes of resonantly interacting weakly nonlinear high frequency wave trains in the compressible Euler equations. The equations were obtained through systematic application of multiple scales and result in a pair of nonlinear acoustic wave equations coupled through a convolution operator. The extended solutions satisfy a pair of inviscid Burgers' equations coupled via a spatial convolution operator. Since then, many mathematicians have used this technique to extend the time validity of solutions to systems of equations other than the Euler equations and have arrived at similar nonlinear non-local systems. This work attempts to look at some of the basic features of the linear and nonlinear coupled and decoupled non- local equations, offering some analytic solutions and numerical insight into the phenomena associated with these equations. We do so by examining a single non-local linear equation, and then a single equation coupling a Burgers' nonlinearity with a linear convolution operator. The linear case is completely solvable. Analytic solutions are provided along with numerical results showing the fundamental properties of the linear non- local equations. In the nonlinear case some analytic solutions, including steady state profiles and traveling wave solutions, are provided along with a battery of numerical simulations. Evidence indicates the existence of attractors for solutions of the single equation with a single mode kernel. Provided resonant interaction takes place, the profile of the attractor is uniquely dependent on the kernel alone. Hamiltonian equations are obtained for both the linear and nonlinear equations with the condition that the resonant kernel must

  7. Linear and Nonlinear Optical Properties of Micrometer-Scale Gold Nanoplates

    International Nuclear Information System (INIS)

    Liu Xiao-Lan; Peng Xiao-Niu; Yang Zhong-Jian; Li Min; Zhou Li

    2011-01-01

    Micrometer-scale gold nanoplates have been synthesized in high yield through a polyol process. The morphology, crystal structure and linear optical extinction of the gold nanoplates have been characterized. These gold nanoplates are single-crystalline with triangular, truncated triangular and hexagonal shapes, exhibiting strong surface plasmon resonance (SPR) extinction in the visible and near-infrared (NIR) region. The linear optical properties of gold nanoplates are also investigated by theoretical calculations. We further investigate the nonlinear optical properties of the gold nanoplates in solution by Z-scan technique. The nonlinear absorption (NLA) coefficient and nonlinear refraction (NLR) index are measured to be 1.18×10 2 cm/GW and −1.04×10 −3 cm 2 /GW, respectively. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  8. Turbulence Intensity and the Friction Factor for Smooth- and Rough-Wall Pipe Flow

    OpenAIRE

    Nils T. Basse

    2017-01-01

    Turbulence intensity profiles are compared for smooth- and rough-wall pipe flow measurements made in the Princeton Superpipe. The profile development in the transition from hydraulically smooth to fully rough flow displays a propagating sequence from the pipe wall towards the pipe axis. The scaling of turbulence intensity with Reynolds number shows that the smooth- and rough wall level deviates with increasing Reynolds number. We quantify the correspondence between turbulence intensity and th...

  9. Local unitary transformation method for large-scale two-component relativistic calculations: case for a one-electron Dirac Hamiltonian.

    Science.gov (United States)

    Seino, Junji; Nakai, Hiromi

    2012-06-28

    An accurate and efficient scheme for two-component relativistic calculations at the spin-free infinite-order Douglas-Kroll-Hess (IODKH) level is presented. The present scheme, termed local unitary transformation (LUT), is based on the locality of the relativistic effect. Numerical assessments of the LUT scheme were performed in diatomic molecules such as HX and X(2) (X = F, Cl, Br, I, and At) and hydrogen halide clusters, (HX)(n) (X = F, Cl, Br, and I). Total energies obtained by the LUT method agree well with conventional IODKH results. The computational costs of the LUT method are drastically lower than those of conventional methods since in the former there is linear-scaling with respect to the system size and a small prefactor.

  10. Dual linear structured support vector machine tracking method via scale correlation filter

    Science.gov (United States)

    Li, Weisheng; Chen, Yanquan; Xiao, Bin; Feng, Chen

    2018-01-01

    Adaptive tracking-by-detection methods based on structured support vector machine (SVM) performed well on recent visual tracking benchmarks. However, these methods did not adopt an effective strategy of object scale estimation, which limits the overall tracking performance. We present a tracking method based on a dual linear structured support vector machine (DLSSVM) with a discriminative scale correlation filter. The collaborative tracker comprised of a DLSSVM model and a scale correlation filter obtains good results in tracking target position and scale estimation. The fast Fourier transform is applied for detection. Extensive experiments show that our tracking approach outperforms many popular top-ranking trackers. On a benchmark including 100 challenging video sequences, the average precision of the proposed method is 82.8%.

  11. Unique solvability of a non-linear non-local boundary-value problem for systems of non-linear functional differential equations

    Czech Academy of Sciences Publication Activity Database

    Dilna, N.; Rontó, András

    2010-01-01

    Roč. 60, č. 3 (2010), s. 327-338 ISSN 0139-9918 R&D Projects: GA ČR(CZ) GA201/06/0254 Institutional research plan: CEZ:AV0Z10190503 Keywords : non-linear boundary value-problem * functional differential equation * non-local condition * unique solvability * differential inequality Subject RIV: BA - General Mathematics Impact factor: 0.316, year: 2010 http://link.springer.com/article/10.2478%2Fs12175-010-0015-9

  12. The algebra of non-local charges in non-linear sigma models

    International Nuclear Information System (INIS)

    Abdalla, E.; Abdalla, M.C.B.; Brunelli, J.C.; Zadra, A.

    1994-01-01

    It is derived the complete Dirac algebra satisfied by non-local charges conserved in non-linear sigma models. Some examples of calculation are given for the O(N) symmetry group. The resulting algebra corresponds to a saturated cubic deformation (with only maximum order terms) of the Kac-Moody algebra. The results are generalized for when a Wess-Zumino term be present. In that case the algebra contains a minor order correction (sub-saturation). (author). 1 ref

  13. Mathematical models of non-linear phenomena, processes and systems: from molecular scale to planetary atmosphere

    CERN Document Server

    2013-01-01

    This book consists of twenty seven chapters, which can be divided into three large categories: articles with the focus on the mathematical treatment of non-linear problems, including the methodologies, algorithms and properties of analytical and numerical solutions to particular non-linear problems; theoretical and computational studies dedicated to the physics and chemistry of non-linear micro-and nano-scale systems, including molecular clusters, nano-particles and nano-composites; and, papers focused on non-linear processes in medico-biological systems, including mathematical models of ferments, amino acids, blood fluids and polynucleic chains.

  14. Calcium signaling in smooth muscle.

    Science.gov (United States)

    Hill-Eubanks, David C; Werner, Matthias E; Heppner, Thomas J; Nelson, Mark T

    2011-09-01

    Changes in intracellular Ca(2+) are central to the function of smooth muscle, which lines the walls of all hollow organs. These changes take a variety of forms, from sustained, cell-wide increases to temporally varying, localized changes. The nature of the Ca(2+) signal is a reflection of the source of Ca(2+) (extracellular or intracellular) and the molecular entity responsible for generating it. Depending on the specific channel involved and the detection technology employed, extracellular Ca(2+) entry may be detected optically as graded elevations in intracellular Ca(2+), junctional Ca(2+) transients, Ca(2+) flashes, or Ca(2+) sparklets, whereas release of Ca(2+) from intracellular stores may manifest as Ca(2+) sparks, Ca(2+) puffs, or Ca(2+) waves. These diverse Ca(2+) signals collectively regulate a variety of functions. Some functions, such as contractility, are unique to smooth muscle; others are common to other excitable cells (e.g., modulation of membrane potential) and nonexcitable cells (e.g., regulation of gene expression).

  15. Spaces of Piecewise Linear Manifolds

    DEFF Research Database (Denmark)

    Gomez Lopez, Mauricio Esteban

    Abstract In this thesis we introduce Δ-set  ψPLd(RN) which we regard as the piecewise linear analogue of the space ψd(RN) of smooth d-dimensional submanifoldsin RN introduced by Galatius in [4]. Using ψPLd(RN) we define a bi-Δ-set Cd(RN)•,• ( whose geometric realization BCPLd(RN) = llCd(RN)•,•ll ......Abstract In this thesis we introduce Δ-set  ψPLd(RN) which we regard as the piecewise linear analogue of the space ψd(RN) of smooth d-dimensional submanifoldsin RN introduced by Galatius in [4]. Using ψPLd(RN) we define a bi-Δ-set Cd(RN)•,• ( whose geometric realization BCPLd(RN) = ll...... BCPLd (RN) ≅ ΩN–1lψPLd (RN)•l when N — d  ≥ 3. The proof of the main theorem relies on properties of ψPLd (RN) • which arise from the fact that this Δ-set can be obtained from a more general contravariant functor PL op → Sets defined on the category of finite dimensional polyhedraand piecewise linear...... maps, and on a fiberwise transversality result for piecewise linear submersions whose fibers are contained in R × (-1,1)N-1 ⊆ RN . For the proof of this transversality result we use a theorem of Hudson on extensions of piecewise linear isotopies which is why we need to include the condition N — d ≥ 3...

  16. Scale of association: hierarchical linear models and the measurement of ecological systems

    Science.gov (United States)

    Sean M. McMahon; Jeffrey M. Diez

    2007-01-01

    A fundamental challenge to understanding patterns in ecological systems lies in employing methods that can analyse, test and draw inference from measured associations between variables across scales. Hierarchical linear models (HLM) use advanced estimation algorithms to measure regression relationships and variance-covariance parameters in hierarchically structured...

  17. Locally supersymmetric D=3 non-linear sigma models

    International Nuclear Information System (INIS)

    Wit, B. de; Tollsten, A.K.; Nicolai, H.

    1993-01-01

    We study non-linear sigma models with N local supersymmetries in three space-time dimensions. For N=1 and 2 the target space of these models is riemannian or Kaehler, respectively. All N>2 theories are associated with Einstein spaces. For N=3 the target space is quaternionic, while for N=4 it generally decomposes, into two separate quaternionic spaces, associated with inequivalent supermultiplets. For N=5, 6, 8 there is a unique (symmetric) space for any given number of supermultiplets. Beyond that there are only theories based on a single supermultiplet for N=9, 10, 12 and 16, associated with coset spaces with the exceptional isometry groups F 4(-20) , E 6(-14) , E 7(-5) and E 8(+8) , respectively. For N=3 and N ≥ 5 the D=2 theories obtained by dimensional reduction are two-loop finite. (orig.)

  18. Active learning for semi-supervised clustering based on locally linear propagation reconstruction.

    Science.gov (United States)

    Chang, Chin-Chun; Lin, Po-Yi

    2015-03-01

    The success of semi-supervised clustering relies on the effectiveness of side information. To get effective side information, a new active learner learning pairwise constraints known as must-link and cannot-link constraints is proposed in this paper. Three novel techniques are developed for learning effective pairwise constraints. The first technique is used to identify samples less important to cluster structures. This technique makes use of a kernel version of locally linear embedding for manifold learning. Samples neither important to locally linear propagation reconstructions of other samples nor on flat patches in the learned manifold are regarded as unimportant samples. The second is a novel criterion for query selection. This criterion considers not only the importance of a sample to expanding the space coverage of the learned samples but also the expected number of queries needed to learn the sample. To facilitate semi-supervised clustering, the third technique yields inferred must-links for passing information about flat patches in the learned manifold to semi-supervised clustering algorithms. Experimental results have shown that the learned pairwise constraints can capture the underlying cluster structures and proven the feasibility of the proposed approach. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Many-body localization transition: Schmidt gap, entanglement length, and scaling

    Science.gov (United States)

    Gray, Johnnie; Bose, Sougato; Bayat, Abolfazl

    2018-05-01

    Many-body localization has become an important phenomenon for illuminating a potential rift between nonequilibrium quantum systems and statistical mechanics. However, the nature of the transition between ergodic and localized phases in models displaying many-body localization is not yet well understood. Assuming that this is a continuous transition, analytic results show that the length scale should diverge with a critical exponent ν ≥2 in one-dimensional systems. Interestingly, this is in stark contrast with all exact numerical studies which find ν ˜1 . We introduce the Schmidt gap, new in this context, which scales near the transition with an exponent ν >2 compatible with the analytical bound. We attribute this to an insensitivity to certain finite-size fluctuations, which remain significant in other quantities at the sizes accessible to exact numerical methods. Additionally, we find that a physical manifestation of the diverging length scale is apparent in the entanglement length computed using the logarithmic negativity between disjoint blocks.

  20. Non-linear statistical downscaling of present and LGM precipitation and temperatures over Europe

    Directory of Open Access Journals (Sweden)

    M. Vrac

    2007-12-01

    Full Text Available Local-scale climate information is increasingly needed for the study of past, present and future climate changes. In this study we develop a non-linear statistical downscaling method to generate local temperatures and precipitation values from large-scale variables of a Earth System Model of Intermediate Complexity (here CLIMBER. Our statistical downscaling scheme is based on the concept of Generalized Additive Models (GAMs, capturing non-linearities via non-parametric techniques. Our GAMs are calibrated on the present Western Europe climate. For this region, annual GAMs (i.e. models based on 12 monthly values per location are fitted by combining two types of large-scale explanatory variables: geographical (e.g. topographical information and physical (i.e. entirely simulated by the CLIMBER model.

    To evaluate the adequacy of the non-linear transfer functions fitted on the present Western European climate, they are applied to different spatial and temporal large-scale conditions. Local projections for present North America and Northern Europe climates are obtained and compared to local observations. This partially addresses the issue of spatial robustness of our transfer functions by answering the question "does our statistical model remain valid when applied to large-scale climate conditions from a region different from the one used for calibration?". To asses their temporal performances, local projections for the Last Glacial Maximum period are derived and compared to local reconstructions and General Circulation Model outputs.

    Our downscaling methodology performs adequately for the Western Europe climate. Concerning the spatial and temporal evaluations, it does not behave as well for Northern America and Northern Europe climates because the calibration domain may be too different from the targeted regions. The physical explanatory variables alone are not capable of downscaling realistic values. However, the inclusion of

  1. The Theory of Linear Prediction

    CERN Document Server

    Vaidyanathan, PP

    2007-01-01

    Linear prediction theory has had a profound impact in the field of digital signal processing. Although the theory dates back to the early 1940s, its influence can still be seen in applications today. The theory is based on very elegant mathematics and leads to many beautiful insights into statistical signal processing. Although prediction is only a part of the more general topics of linear estimation, filtering, and smoothing, this book focuses on linear prediction. This has enabled detailed discussion of a number of issues that are normally not found in texts. For example, the theory of vecto

  2. Asymptotic variance of grey-scale surface area estimators

    DEFF Research Database (Denmark)

    Svane, Anne Marie

    Grey-scale local algorithms have been suggested as a fast way of estimating surface area from grey-scale digital images. Their asymptotic mean has already been described. In this paper, the asymptotic behaviour of the variance is studied in isotropic and sufficiently smooth settings, resulting...... in a general asymptotic bound. For compact convex sets with nowhere vanishing Gaussian curvature, the asymptotics can be described more explicitly. As in the case of volume estimators, the variance is decomposed into a lattice sum and an oscillating term of at most the same magnitude....

  3. Local Ray-Based Traveltime Computation Using the Linearized Eikonal Equation

    KAUST Repository

    Almubarak, Mohammed S.

    2013-05-01

    The computation of traveltimes plays a critical role in the conventional implementations of Kirchhoff migration. Finite-difference-based methods are considered one of the most effective approaches for traveltime calculations and are therefore widely used. However, these eikonal solvers are mainly used to obtain early-arrival traveltime. Ray tracing can be used to pick later traveltime branches, besides the early arrivals, which may lead to an improvement in velocity estimation or in seismic imaging. In this thesis, I improved the accuracy of the solution of the linearized eikonal equation by constructing a linear system of equations (LSE) based on finite-difference approximation, which is of second-order accuracy. The ill-conditioned LSE is initially regularized and subsequently solved to calculate the traveltime update. Numerical tests proved that this method is as accurate as the second-order eikonal solver. Later arrivals are picked using ray tracing. These traveltimes are binned to the nearest node on a regular grid and empty nodes are estimated by interpolating the known values. The resulting traveltime field is used as an input to the linearized eikonal algorithm, which improves the accuracy of the interpolated nodes and yields a local ray-based traveltime. This is a preliminary study and further investigation is required to test the efficiency and the convergence of the solutions.

  4. A three critical point theorem for non-smooth functionals with ...

    Indian Academy of Sciences (India)

    1Department of Mathematics, Faculty of Mathematics Sciences, ... In many applications, we encounter problems with non-smooth energy functionals. These .... The next lemma shows that a locally Lipschitz functional with a compact gradient, is.

  5. THE HALO MASS FUNCTION FROM EXCURSION SET THEORY. I. GAUSSIAN FLUCTUATIONS WITH NON-MARKOVIAN DEPENDENCE ON THE SMOOTHING SCALE

    International Nuclear Information System (INIS)

    Maggiore, Michele; Riotto, Antonio

    2010-01-01

    A classic method for computing the mass function of dark matter halos is provided by excursion set theory, where density perturbations evolve stochastically with the smoothing scale, and the problem of computing the probability of halo formation is mapped into the so-called first-passage time problem in the presence of a barrier. While the full dynamical complexity of halo formation can only be revealed through N-body simulations, excursion set theory provides a simple analytic framework for understanding various aspects of this complex process. In this series of papers we propose improvements of both technical and conceptual aspects of excursion set theory, and we explore up to which point the method can reproduce quantitatively the data from N-body simulations. In Paper I of the series, we show how to derive excursion set theory from a path integral formulation. This allows us both to derive rigorously the absorbing barrier boundary condition, that in the usual formulation is just postulated, and to deal analytically with the non-Markovian nature of the random walk. Such a non-Markovian dynamics inevitably enters when either the density is smoothed with filters such as the top-hat filter in coordinate space (which is the only filter associated with a well-defined halo mass) or when one considers non-Gaussian fluctuations. In these cases, beside 'Markovian' terms, we find 'memory' terms that reflect the non-Markovianity of the evolution with the smoothing scale. We develop a general formalism for evaluating perturbatively these non-Markovian corrections, and in this paper we perform explicitly the computation of the halo mass function for Gaussian fluctuations, to first order in the non-Markovian corrections due to the use of a top-hat filter in coordinate space. In Paper II of this series we propose to extend excursion set theory by treating the critical threshold for collapse as a stochastic variable, which better captures some of the dynamical complexity of the

  6. Adaptive local routing strategy on a scale-free network

    International Nuclear Information System (INIS)

    Feng, Liu; Han, Zhao; Ming, Li; Yan-Bo, Zhu; Feng-Yuan, Ren

    2010-01-01

    Due to the heterogeneity of the structure on a scale-free network, making the betweennesses of all nodes become homogeneous by reassigning the weights of nodes or edges is very difficult. In order to take advantage of the important effect of high degree nodes on the shortest path communication and preferentially deliver packets by them to increase the probability to destination, an adaptive local routing strategy on a scale-free network is proposed, in which the node adjusts the forwarding probability with the dynamical traffic load (packet queue length) and the degree distribution of neighbouring nodes. The critical queue length of a node is set to be proportional to its degree, and the node with high degree has a larger critical queue length to store and forward more packets. When the queue length of a high degree node is shorter than its critical queue length, it has a higher probability to forward packets. After higher degree nodes are saturated (whose queue lengths are longer than their critical queue lengths), more packets will be delivered by the lower degree nodes around them. The adaptive local routing strategy increases the probability of a packet finding its destination quickly, and improves the transmission capacity on the scale-free network by reducing routing hops. The simulation results show that the transmission capacity of the adaptive local routing strategy is larger than that of three previous local routing strategies. (general)

  7. SHAPE FROM TEXTURE USING LOCALLY SCALED POINT PROCESSES

    Directory of Open Access Journals (Sweden)

    Eva-Maria Didden

    2015-09-01

    Full Text Available Shape from texture refers to the extraction of 3D information from 2D images with irregular texture. This paper introduces a statistical framework to learn shape from texture where convex texture elements in a 2D image are represented through a point process. In a first step, the 2D image is preprocessed to generate a probability map corresponding to an estimate of the unnormalized intensity of the latent point process underlying the texture elements. The latent point process is subsequently inferred from the probability map in a non-parametric, model free manner. Finally, the 3D information is extracted from the point pattern by applying a locally scaled point process model where the local scaling function represents the deformation caused by the projection of a 3D surface onto a 2D image.

  8. Quantification of local and global elastic anisotropy in ultrafine grained gradient microstructures, produced by linear flow splitting

    DEFF Research Database (Denmark)

    Niehuesbernd, Jörn; Müller, Clemens; Pantleon, Wolfgang

    2013-01-01

    . Consequently, the macroscopic elastic behavior results from the local elastic properties within the gradient. In the present investigation profiles produced by the linear flow splitting process were examined with respect to local and global elastic anisotropy, which develops during the complex forming process...

  9. Smooth manifolds

    CERN Document Server

    Sinha, Rajnikant

    2014-01-01

    This book offers an introduction to the theory of smooth manifolds, helping students to familiarize themselves with the tools they will need for mathematical research on smooth manifolds and differential geometry. The book primarily focuses on topics concerning differential manifolds, tangent spaces, multivariable differential calculus, topological properties of smooth manifolds, embedded submanifolds, Sard’s theorem and Whitney embedding theorem. It is clearly structured, amply illustrated and includes solved examples for all concepts discussed. Several difficult theorems have been broken into many lemmas and notes (equivalent to sub-lemmas) to enhance the readability of the book. Further, once a concept has been introduced, it reoccurs throughout the book to ensure comprehension. Rank theorem, a vital aspect of smooth manifolds theory, occurs in many manifestations, including rank theorem for Euclidean space and global rank theorem. Though primarily intended for graduate students of mathematics, the book ...

  10. Stationarity and periodicities of linear speed of coronal mass ejection: a statistical signal processing approach

    Science.gov (United States)

    Chattopadhyay, Anirban; Khondekar, Mofazzal Hossain; Bhattacharjee, Anup Kumar

    2017-09-01

    In this paper initiative has been taken to search the periodicities of linear speed of Coronal Mass Ejection in solar cycle 23. Double exponential smoothing and Discrete Wavelet Transform are being used for detrending and filtering of the CME linear speed time series. To choose the appropriate statistical methodology for the said purpose, Smoothed Pseudo Wigner-Ville distribution (SPWVD) has been used beforehand to confirm the non-stationarity of the time series. The Time-Frequency representation tool like Hilbert Huang Transform and Empirical Mode decomposition has been implemented to unearth the underneath periodicities in the non-stationary time series of the linear speed of CME. Of all the periodicities having more than 95% Confidence Level, the relevant periodicities have been segregated out using Integral peak detection algorithm. The periodicities observed are of low scale ranging from 2-159 days with some relevant periods like 4 days, 10 days, 11 days, 12 days, 13.7 days, 14.5 and 21.6 days. These short range periodicities indicate the probable origin of the CME is the active longitude and the magnetic flux network of the sun. The results also insinuate about the probable mutual influence and causality with other solar activities (like solar radio emission, Ap index, solar wind speed, etc.) owing to the similitude between their periods and CME linear speed periods. The periodicities of 4 days and 10 days indicate the possible existence of the Rossby-type waves or planetary waves in Sun.

  11. Matrix Tricks for Linear Statistical Models

    CERN Document Server

    Puntanen, Simo; Styan, George PH

    2011-01-01

    In teaching linear statistical models to first-year graduate students or to final-year undergraduate students there is no way to proceed smoothly without matrices and related concepts of linear algebra; their use is really essential. Our experience is that making some particular matrix tricks very familiar to students can substantially increase their insight into linear statistical models (and also multivariate statistical analysis). In matrix algebra, there are handy, sometimes even very simple "tricks" which simplify and clarify the treatment of a problem - both for the student and

  12. The linearly scaling 3D fragment method for large scale electronic structure calculations

    Energy Technology Data Exchange (ETDEWEB)

    Zhao Zhengji [National Energy Research Scientific Computing Center (NERSC) (United States); Meza, Juan; Shan Hongzhang; Strohmaier, Erich; Bailey, David; Wang Linwang [Computational Research Division, Lawrence Berkeley National Laboratory (United States); Lee, Byounghak, E-mail: ZZhao@lbl.go [Physics Department, Texas State University (United States)

    2009-07-01

    The linearly scaling three-dimensional fragment (LS3DF) method is an O(N) ab initio electronic structure method for large-scale nano material simulations. It is a divide-and-conquer approach with a novel patching scheme that effectively cancels out the artificial boundary effects, which exist in all divide-and-conquer schemes. This method has made ab initio simulations of thousand-atom nanosystems feasible in a couple of hours, while retaining essentially the same accuracy as the direct calculation methods. The LS3DF method won the 2008 ACM Gordon Bell Prize for algorithm innovation. Our code has reached 442 Tflop/s running on 147,456 processors on the Cray XT5 (Jaguar) at OLCF, and has been run on 163,840 processors on the Blue Gene/P (Intrepid) at ALCF, and has been applied to a system containing 36,000 atoms. In this paper, we will present the recent parallel performance results of this code, and will apply the method to asymmetric CdSe/CdS core/shell nanorods, which have potential applications in electronic devices and solar cells.

  13. Linear-scaling explicitly correlated treatment of solids: Periodic local MP2-F12 method

    Energy Technology Data Exchange (ETDEWEB)

    Usvyat, Denis, E-mail: denis.usvyat@chemie.uni-regensburg.de [Institute of Physical and Theoretical Chemistry, University of Regensburg, Universitätsstraße 31, D-93040 Regensburg (Germany)

    2013-11-21

    Theory and implementation of the periodic local MP2-F12 method in the 3*A fixed-amplitude ansatz is presented. The method is formulated in the direct space, employing local representation for the occupied, virtual, and auxiliary orbitals in the form of Wannier functions (WFs), projected atomic orbitals (PAOs), and atom-centered Gaussian-type orbitals, respectively. Local approximations are introduced, restricting the list of the explicitly correlated pairs, as well as occupied, virtual, and auxiliary spaces in the strong orthogonality projector to the pair-specific domains on the basis of spatial proximity of respective orbitals. The 4-index two-electron integrals appearing in the formalism are approximated via the direct-space density fitting technique. In this procedure, the fitting orbital spaces are also restricted to local fit-domains surrounding the fitted densities. The formulation of the method and its implementation exploits the translational symmetry and the site-group symmetries of the WFs. Test calculations are performed on LiH crystal. The results show that the periodic LMP2-F12 method substantially accelerates basis set convergence of the total correlation energy, and even more so the correlation energy differences. The resulting energies are quite insensitive to the resolution-of-the-identity domain sizes and the quality of the auxiliary basis sets. The convergence with the orbital domain size is somewhat slower, but still acceptable. Moreover, inclusion of slightly more diffuse functions, than those usually used in the periodic calculations, improves the convergence of the LMP2-F12 correlation energy with respect to both the size of the PAO-domains and the quality of the orbital basis set. At the same time, the essentially diffuse atomic orbitals from standard molecular basis sets, commonly utilized in molecular MP2-F12 calculations, but problematic in the periodic context, are not necessary for LMP2-F12 treatment of crystals.

  14. Water-safety strategies and local-scale spatial quality

    NARCIS (Netherlands)

    Nillesen, A.L.

    2013-01-01

    Delta regions throughout the world are subject to increasing flood risks. For protection, regional water safety strategies are being developed. Local-scale spatial qualities should be included in their evaluation. An experimental methodology has been developed for this purpose. This paper

  15. Smoothing dynamic positron emission tomography time courses using functional principal components

    OpenAIRE

    Jiang, Ci-Ren; Aston, John A. D.; Wang, Jane-Ling

    2009-01-01

    A functional smoothing approach to the analysis of PET time course data is presented. By borrowing information across space and accounting for this pooling through the use of a non-parametric covariate adjustment, it is possible to smooth the PET time course data thus reducing the noise. A new model for functional data analysis, the Multiplicative Nonparametric Random Effects Model, is introduced to more accurately account for the variation in the data. A locally adaptive bandwidth choice hel...

  16. Localization of periodic orbits of polynomial vector fields of even degree by linear functions

    Energy Technology Data Exchange (ETDEWEB)

    Starkov, Konstantin E. [CITEDI-IPN, Av. del Parque 1310, Mesa de Otay, Tijuana, BC (Mexico)] e-mail: konst@citedi.mx

    2005-08-01

    This paper is concerned with the localization problem of periodic orbits of polynomial vector fields of even degree by using linear functions. Conditions of the localization of all periodic orbits in sets of a simple structure are obtained. Our results are based on the solution of the conditional extremum problem and the application of homogeneous polynomial forms of even degrees. As examples, the Lanford system, the jerky system with one quadratic monomial and a quartically perturbed harmonic oscillator are considered.

  17. Localization of periodic orbits of polynomial vector fields of even degree by linear functions

    International Nuclear Information System (INIS)

    Starkov, Konstantin E.

    2005-01-01

    This paper is concerned with the localization problem of periodic orbits of polynomial vector fields of even degree by using linear functions. Conditions of the localization of all periodic orbits in sets of a simple structure are obtained. Our results are based on the solution of the conditional extremum problem and the application of homogeneous polynomial forms of even degrees. As examples, the Lanford system, the jerky system with one quadratic monomial and a quartically perturbed harmonic oscillator are considered

  18. Alignment of the Stanford Linear Collider Arcs: Concepts and results

    International Nuclear Information System (INIS)

    Pitthan, R.; Bell, B.; Friedsam, H.; Pietryka, M.; Oren, W.; Ruland, R.

    1987-02-01

    The alignment of the Arcs for the Stanford Linear Collider at SLAC has posed problems in accelerator survey and alignment not encountered before. These problems come less from the tight tolerances of 0.1 mm, although reaching such a tight statistically defined accuracy in a controlled manner is difficult enough, but from the absence of a common reference plane for the Arcs. Traditional circular accelerators, including HERA and LEP, have been designed in one plane referenced to local gravity. For the SLC Arcs no such single plane exists. Methods and concepts developed to solve these and other problems, connected with the unique design of SLC, range from the first use of satellites for accelerator alignment, use of electronic laser theodolites for placement of components, computer control of the manual adjustment process, complete automation of the data flow incorporating the most advanced concepts of geodesy, strict separation of survey and alignment, to linear principal component analysis for the final statistical smoothing of the mechanical components

  19. Nonlinear dynamics between linear and impact limits

    CERN Document Server

    Pilipchuk, Valery N; Wriggers, Peter

    2010-01-01

    This book examines nonlinear dynamic analyses based on the existence of strongly nonlinear but simple counterparts to the linear models and tools. Discusses possible application to periodic elastic structures with non-smooth or discontinuous characteristics.

  20. Time scales of tunneling decay of a localized state

    International Nuclear Information System (INIS)

    Ban, Yue; Muga, J. G.; Sherman, E. Ya.; Buettiker, M.

    2010-01-01

    Motivated by recent time-domain experiments on ultrafast atom ionization, we analyze the transients and time scales that characterize, aside from the relatively long lifetime, the decay of a localized state by tunneling. While the tunneling starts immediately, some time is required for the outgoing flux to develop. This short-term behavior depends strongly on the initial state. For the initial state, tightly localized so that the initial transients are dominated by over-the-barrier motion, the time scale for flux propagation through the barrier is close to the Buettiker-Landauer traversal time. Then a quasistationary, slow-decay process follows, which sets ideal conditions for observing diffraction in time at longer times and distances. To define operationally a tunneling time at the barrier edge, we extrapolate backward the propagation of the wave packet that escaped from the potential. This extrapolated time is considerably longer than the time scale of the flux and density buildup at the barrier edge.

  1. Canonical-ensemble extended Lagrangian Born-Oppenheimer molecular dynamics for the linear scaling density functional theory.

    Science.gov (United States)

    Hirakawa, Teruo; Suzuki, Teppei; Bowler, David R; Miyazaki, Tsuyoshi

    2017-10-11

    We discuss the development and implementation of a constant temperature (NVT) molecular dynamics scheme that combines the Nosé-Hoover chain thermostat with the extended Lagrangian Born-Oppenheimer molecular dynamics (BOMD) scheme, using a linear scaling density functional theory (DFT) approach. An integration scheme for this canonical-ensemble extended Lagrangian BOMD is developed and discussed in the context of the Liouville operator formulation. Linear scaling DFT canonical-ensemble extended Lagrangian BOMD simulations are tested on bulk silicon and silicon carbide systems to evaluate our integration scheme. The results show that the conserved quantity remains stable with no systematic drift even in the presence of the thermostat.

  2. Surface temperature and evapotranspiration: application of local scale methods to regional scales using satellite data

    International Nuclear Information System (INIS)

    Seguin, B.; Courault, D.; Guerif, M.

    1994-01-01

    Remotely sensed surface temperatures have proven useful for monitoring evapotranspiration (ET) rates and crop water use because of their direct relationship with sensible and latent energy exchange processes. Procedures for using the thermal infrared (IR) obtained with hand-held radiometers deployed at ground level are now well established and even routine for many agricultural research and management purposes. The availability of IR from meteorological satellites at scales from 1 km (NOAA-AVHRR) to 5 km (METEOSAT) permits extension of local, ground-based approaches to larger scale crop monitoring programs. Regional observations of surface minus air temperature (i.e., the stress degree day) and remote estimates of daily ET were derived from satellite data over sites in France, the Sahel, and North Africa and summarized here. Results confirm that similar approaches can be applied at local and regional scales despite differences in pixel size and heterogeneity. This article analyzes methods for obtaining these data and outlines the potential utility of satellite data for operational use at the regional scale. (author)

  3. Seamless Heterogeneous 3D Tessellation via DWT Domain Smoothing and Mosaicking

    Directory of Open Access Journals (Sweden)

    Gilles Gesquière

    2010-01-01

    Full Text Available With todays geobrowsers, the tessellations are far from being smooth due to a variety of reasons: the principal being the light difference and resolution heterogeneity. Whilst the former has been extensively dealt with in the literature through classic mosaicking techniques, the latter has got little attention. We focus on this latter aspect and present two DWT domain methods to seamlessly stitch tiles of heterogeneous resolutions. The first method is local in that each of the tiles that constitute the view, is subjected to one of the three context-based smoothing functions proposed for horizontal, vertical, and radial smoothing, depending on its localization in the tessellation. These functions are applied at the DWT subband level and followed by an inverse DWT to give a smoothened tile. In the second method, though we assume the same tessellation scenario, the view field is thought to be of a sliding window which may contain parts of the tiles from the heterogeneous tessellation. The window is refined in the DWT domain through mosaicking and smoothing followed by a global inverse DWT. Rather than the traditional sense, the mosaicking employed over here targets the heterogeneous resolution. Perceptually, this second method has shown better results than the first one. The methods have been successfully applied to practical examples of both the texture and its corresponding DEM for seamless 3D terrain visualization.

  4. Hardy inequality on time scales and its application to half-linear dynamic equations

    Directory of Open Access Journals (Sweden)

    Řehák Pavel

    2005-01-01

    Full Text Available A time-scale version of the Hardy inequality is presented, which unifies and extends well-known Hardy inequalities in the continuous and in the discrete setting. An application in the oscillation theory of half-linear dynamic equations is given.

  5. Error analysis of dimensionless scaling experiments with multiple points using linear regression

    International Nuclear Information System (INIS)

    Guercan, Oe.D.; Vermare, L.; Hennequin, P.; Bourdelle, C.

    2010-01-01

    A general method of error estimation in the case of multiple point dimensionless scaling experiments, using linear regression and standard error propagation, is proposed. The method reduces to the previous result of Cordey (2009 Nucl. Fusion 49 052001) in the case of a two-point scan. On the other hand, if the points follow a linear trend, it explains how the estimated error decreases as more points are added to the scan. Based on the analytical expression that is derived, it is argued that for a low number of points, adding points to the ends of the scanned range, rather than the middle, results in a smaller error estimate. (letter)

  6. Localized massive halo properties in BAHAMAS and MACSIS simulations: scalings, log-normality, and covariance

    Science.gov (United States)

    Farahi, Arya; Evrard, August E.; McCarthy, Ian; Barnes, David J.; Kay, Scott T.

    2018-05-01

    Using tens of thousands of halos realized in the BAHAMAS and MACSIS simulations produced with a consistent astrophysics treatment that includes AGN feedback, we validate a multi-property statistical model for the stellar and hot gas mass behavior in halos hosting groups and clusters of galaxies. The large sample size allows us to extract fine-scale mass-property relations (MPRs) by performing local linear regression (LLR) on individual halo stellar mass (Mstar) and hot gas mass (Mgas) as a function of total halo mass (Mhalo). We find that: 1) both the local slope and variance of the MPRs run with mass (primarily) and redshift (secondarily); 2) the conditional likelihood, p(Mstar, Mgas| Mhalo, z) is accurately described by a multivariate, log-normal distribution, and; 3) the covariance of Mstar and Mgas at fixed Mhalo is generally negative, reflecting a partially closed baryon box model for high mass halos. We validate the analytical population model of Evrard et al. (2014), finding sub-percent accuracy in the log-mean halo mass selected at fixed property, ⟨ln Mhalo|Mgas⟩ or ⟨ln Mhalo|Mstar⟩, when scale-dependent MPR parameters are employed. This work highlights the potential importance of allowing for running in the slope and scatter of MPRs when modeling cluster counts for cosmological studies. We tabulate LLR fit parameters as a function of halo mass at z = 0, 0.5 and 1 for two popular mass conventions.

  7. A scaling analysis of electronic localization in two-dimensional random media

    International Nuclear Information System (INIS)

    Ye Zhen

    2003-01-01

    By an improved scaling analysis, we suggest that there may appear two possibilities concerning the electronic localization in two-dimensional random media. The first is that all electronic states are localized in two dimensions, as conjectured previously. The second possibility is that electronic behaviors in two- and three-dimensional random systems are similar, in agreement with a recent calculation based on a direct calculation of the conductance with the use of the Kubo formula. In this case, non-localized states are possible in two dimensions, and have some peculiar properties. A few predictions are proposed. Moreover, the present analysis accommodates results from the previous scaling analysis

  8. Local-scaling density-functional method: Intraorbit and interorbit density optimizations

    International Nuclear Information System (INIS)

    Koga, T.; Yamamoto, Y.; Ludena, E.V.

    1991-01-01

    The recently proposed local-scaling density-functional theory provides us with a practical method for the direct variational determination of the electron density function ρ(r). The structure of ''orbits,'' which ensures the one-to-one correspondence between the electron density ρ(r) and the N-electron wave function Ψ({r k }), is studied in detail. For the realization of the local-scaling density-functional calculations, procedures for intraorbit and interorbit optimizations of the electron density function are proposed. These procedures are numerically illustrated for the helium atom in its ground state at the beyond-Hartree-Fock level

  9. Recent trends in local-scale marine biodiversity reflect community structure and human impacts

    NARCIS (Netherlands)

    Elahi, Robin; O'Connor, Mary I; Byrnes, Jarrett E K; Dunic, Jillian; Eriksson, Britas Klemens; Hensel, Marc J S; Kearns, Patrick J

    2015-01-01

    The modern biodiversity crisis reflects global extinctions and local introductions. Human activities have dramatically altered rates and scales of processes that regulate biodiversity at local scales [1-7]. Reconciling the threat of global biodiversity loss [2, 4, 6-9] with recent evidence of

  10. Integrated simulation of continuous-scale and discrete-scale radiative transfer in metal foams

    Science.gov (United States)

    Xia, Xin-Lin; Li, Yang; Sun, Chuang; Ai, Qing; Tan, He-Ping

    2018-06-01

    A novel integrated simulation of radiative transfer in metal foams is presented. It integrates the continuous-scale simulation with the direct discrete-scale simulation in a single computational domain. It relies on the coupling of the real discrete-scale foam geometry with the equivalent continuous-scale medium through a specially defined scale-coupled zone. This zone holds continuous but nonhomogeneous volumetric radiative properties. The scale-coupled approach is compared to the traditional continuous-scale approach using volumetric radiative properties in the equivalent participating medium and to the direct discrete-scale approach employing the real 3D foam geometry obtained by computed tomography. All the analyses are based on geometrical optics. The Monte Carlo ray-tracing procedure is used for computations of the absorbed radiative fluxes and the apparent radiative behaviors of metal foams. The results obtained by the three approaches are in tenable agreement. The scale-coupled approach is fully validated in calculating the apparent radiative behaviors of metal foams composed of very absorbing to very reflective struts and that composed of very rough to very smooth struts. This new approach leads to a reduction in computational time by approximately one order of magnitude compared to the direct discrete-scale approach. Meanwhile, it can offer information on the local geometry-dependent feature and at the same time the equivalent feature in an integrated simulation. This new approach is promising to combine the advantages of the continuous-scale approach (rapid calculations) and direct discrete-scale approach (accurate prediction of local radiative quantities).

  11. Smooth polyhedral surfaces

    KAUST Repository

    Gü nther, Felix; Jiang, Caigui; Pottmann, Helmut

    2017-01-01

    Polyhedral surfaces are fundamental objects in architectural geometry and industrial design. Whereas closeness of a given mesh to a smooth reference surface and its suitability for numerical simulations were already studied extensively, the aim of our work is to find and to discuss suitable assessments of smoothness of polyhedral surfaces that only take the geometry of the polyhedral surface itself into account. Motivated by analogies to classical differential geometry, we propose a theory of smoothness of polyhedral surfaces including suitable notions of normal vectors, tangent planes, asymptotic directions, and parabolic curves that are invariant under projective transformations. It is remarkable that seemingly mild conditions significantly limit the shapes of faces of a smooth polyhedral surface. Besides being of theoretical interest, we believe that smoothness of polyhedral surfaces is of interest in the architectural context, where vertices and edges of polyhedral surfaces are highly visible.

  12. Smooth polyhedral surfaces

    KAUST Repository

    Günther, Felix

    2017-03-15

    Polyhedral surfaces are fundamental objects in architectural geometry and industrial design. Whereas closeness of a given mesh to a smooth reference surface and its suitability for numerical simulations were already studied extensively, the aim of our work is to find and to discuss suitable assessments of smoothness of polyhedral surfaces that only take the geometry of the polyhedral surface itself into account. Motivated by analogies to classical differential geometry, we propose a theory of smoothness of polyhedral surfaces including suitable notions of normal vectors, tangent planes, asymptotic directions, and parabolic curves that are invariant under projective transformations. It is remarkable that seemingly mild conditions significantly limit the shapes of faces of a smooth polyhedral surface. Besides being of theoretical interest, we believe that smoothness of polyhedral surfaces is of interest in the architectural context, where vertices and edges of polyhedral surfaces are highly visible.

  13. Optimal HRF and smoothing parameters for fMRI time series within an autoregressive modeling framework.

    Science.gov (United States)

    Galka, Andreas; Siniatchkin, Michael; Stephani, Ulrich; Groening, Kristina; Wolff, Stephan; Bosch-Bayard, Jorge; Ozaki, Tohru

    2010-12-01

    The analysis of time series obtained by functional magnetic resonance imaging (fMRI) may be approached by fitting predictive parametric models, such as nearest-neighbor autoregressive models with exogeneous input (NNARX). As a part of the modeling procedure, it is possible to apply instantaneous linear transformations to the data. Spatial smoothing, a common preprocessing step, may be interpreted as such a transformation. The autoregressive parameters may be constrained, such that they provide a response behavior that corresponds to the canonical haemodynamic response function (HRF). We present an algorithm for estimating the parameters of the linear transformations and of the HRF within a rigorous maximum-likelihood framework. Using this approach, an optimal amount of both the spatial smoothing and the HRF can be estimated simultaneously for a given fMRI data set. An example from a motor-task experiment is discussed. It is found that, for this data set, weak, but non-zero, spatial smoothing is optimal. Furthermore, it is demonstrated that activated regions can be estimated within the maximum-likelihood framework.

  14. THREE-DIMENSIONAL DISK-PLANET TORQUES IN A LOCALLY ISOTHERMAL DISK

    International Nuclear Information System (INIS)

    D'Angelo, Gennaro; Lubow, Stephen H.

    2010-01-01

    We determine an expression for the Type I planet migration torque involving a locally isothermal disk, with moderate turbulent viscosity (5 x 10 -4 ∼< α ∼< 0.05), based on three-dimensional nonlinear hydrodynamical simulations. The radial gradients (in a dimensionless logarithmic form) of density and temperature are assumed to be constant near the planet. We find that the torque is roughly equally sensitive to the surface density and temperature radial gradients. Both gradients contribute to inward migration when they are negative. Our results indicate that two-dimensional calculations with a smoothed planet potential, used to account for the effects of the third dimension, do not accurately determine the effects of density and temperature gradients on the three-dimensional torque. The results suggest that substantially slowing or stopping planet migration by means of changes in disk opacity or shadowing is difficult and appears unlikely for a disk that is locally isothermal. The scalings of the torque and torque density with planet mass and gas sound speed follow the expectations of linear theory. We also determine an improved formula for the torque density distribution that can be used in one-dimensional long-term evolution studies of planets embedded in locally isothermal disks. This formula can be also applied in the presence of mildly varying radial gradients and of planets that open gaps. We illustrate its use in the case of migrating super-Earths and determine some conditions sufficient for survival.

  15. SmoothMoves : Smooth pursuits head movements for augmented reality

    NARCIS (Netherlands)

    Esteves, Augusto; Verweij, David; Suraiya, Liza; Islam, Rasel; Lee, Youryang; Oakley, Ian

    2017-01-01

    SmoothMoves is an interaction technique for augmented reality (AR) based on smooth pursuits head movements. It works by computing correlations between the movements of on-screen targets and the user's head while tracking those targets. The paper presents three studies. The first suggests that head

  16. Smoothing a Piecewise-Smooth: An Example from Plankton Population Dynamics

    DEFF Research Database (Denmark)

    Piltz, Sofia Helena

    2016-01-01

    In this work we discuss a piecewise-smooth dynamical system inspired by plankton observations and constructed for one predator switching its diet between two different types of prey. We then discuss two smooth formulations of the piecewise-smooth model obtained by using a hyperbolic tangent funct...... function and adding a dimension to the system. We compare model behaviour of the three systems and show an example case where the steepness of the switch is determined from a comparison with data on freshwater plankton....

  17. Spatially-smooth regionalization of flow duration curves in non-pristine basins

    Directory of Open Access Journals (Sweden)

    D. Ganora

    2016-05-01

    Full Text Available The flow duration curve (FDC is a fundamental signature of the hydrological cycle to support water management strategies. Despite many studies on this topic, its estimation in ungauged basins is still a relevant issue as the FDC is controlled by different types of processes at different time-space scales, thus resulting quite sensitive to the specific case study. In this work, a regional spatially-smooth procedure to evaluate the annual FDC in ungauged basins is proposed, based on the estimation of the L-moments (mean, L-CV and L-skewness through regression models valid for the whole case study area. In this approach, homogeneous regions are no longer required and the L-moments are allowed to continuously vary along the river network, thus providing a final FDC smoothly evolving for different locations on the river. Regressions are based on a set of topographic, climatic, land use and vegetation descriptors at the basin scale. Moreover, the model ensures that the mean annual runoff is preserved at the river confluences, i.e. the sum of annual flows of the upstream reaches is equal to the predicted annual downstream flow. The proposed model is adapted to incorporate different "sub-models" to account for local information within the regional framework, where man-induced alterations are known, as common in non-pristine catchments. In particular, we propose a module to consider the impact of existing/designed water withdrawals on the L-moments of the FDC. The procedure has been applied to a dataset of daily observation of about 120 gauged basins on the upper Po river basin in North-Western Italy.

  18. The effect of scale on the interpretation of geochemical anomalies

    Science.gov (United States)

    Theobald, P.K.; Eppinger, R.G.; Turner, R.L.; Shiquan, S.

    1991-01-01

    conduits for mineralizing fluids. At a larger scale, the linear, northeast-trending anomalies can be shown to result from a series of discrete mineralized systems with different ages and mineral assemblages. The linear pattern of anomalies disintegrates. A regional geochemical survey in the Sonoran Desert in southwestern Arizona displays a cluster of samples anomalous in Pb, Mo, Bi and W. In detail, the original regional anomaly separates into four discrete anomalous areas, each with its own distinctive suite of elements, geographic distribution and age of mineralization. A prominent regional gold anomaly in the Gobi Desert, Xinjiang, Peoples Republic of China, extends southeastward for 30 km from known lode gold deposits. Because the anomaly cuts both lithologic units and the structural grain, and because it parallels the prevailing direction of high-velocity winds, it was originally attributed to eolian dispersion. In detail, the regional anomaly consists of several east-west-trending anomalies, parallel to local lithology and structure that most likely reflect independent sources of lode gold. The regional anomaly results from smoothing of an en-echelon set of local anomalies. These examples emphasize that interpretation of regional anomalies must be tempered to consider regional-sized geologic features. Attempts to overinterpret anomalies by assigning deposit-scale attributes to regional anomalies can lead to confusion and incorrect interpretations. Potential targets that can be readily resolved only at intermediate or detailed scales of study may be overlooked. ?? 1991.

  19. Localization of Non-Linearly Modeled Autonomous Mobile Robots Using Out-of-Sequence Measurements

    Directory of Open Access Journals (Sweden)

    Jesus M. de la Cruz

    2012-02-01

    Full Text Available This paper presents a state of the art of the estimation algorithms dealing with Out-of-Sequence (OOS measurements for non-linearly modeled systems. The state of the art includes a critical analysis of the algorithm properties that takes into account the applicability of these techniques to autonomous mobile robot navigation based on the fusion of the measurements provided, delayed and OOS, by multiple sensors. Besides, it shows a representative example of the use of one of the most computationally efficient approaches in the localization module of the control software of a real robot (which has non-linear dynamics, and linear and non-linear sensors and compares its performance against other approaches. The simulated results obtained with the selected OOS algorithm shows the computational requirements that each sensor of the robot imposes to it. The real experiments show how the inclusion of the selected OOS algorithm in the control software lets the robot successfully navigate in spite of receiving many OOS measurements. Finally, the comparison highlights that not only is the selected OOS algorithm among the best performing ones of the comparison, but it also has the lowest computational and memory cost.

  20. Logarithmic superposition of force response with rapid length changes in relaxed porcine airway smooth muscle.

    Science.gov (United States)

    Ijpma, G; Al-Jumaily, A M; Cairns, S P; Sieck, G C

    2010-12-01

    We present a systematic quantitative analysis of power-law force relaxation and investigate logarithmic superposition of force response in relaxed porcine airway smooth muscle (ASM) strips in vitro. The term logarithmic superposition describes linear superposition on a logarithmic scale, which is equivalent to multiplication on a linear scale. Additionally, we examine whether the dynamic response of contracted and relaxed muscles is dominated by cross-bridge cycling or passive dynamics. The study shows the following main findings. For relaxed ASM, the force response to length steps of varying amplitude (0.25-4% of reference length, both lengthening and shortening) are well-fitted with power-law functions over several decades of time (10⁻² to 10³ s), and the force response after consecutive length changes is more accurately fitted assuming logarithmic superposition rather than linear superposition. Furthermore, for sinusoidal length oscillations in contracted and relaxed muscles, increasing the oscillation amplitude induces greater hysteresivity and asymmetry of force-length relationships, whereas increasing the frequency dampens hysteresivity but increases asymmetry. We conclude that logarithmic superposition is an important feature of relaxed ASM, which may facilitate a more accurate prediction of force responses in the continuous dynamic environment of the respiratory system. In addition, the single power-function response to length changes shows that the dynamics of cross-bridge cycling can be ignored in relaxed muscle. The similarity in response between relaxed and contracted states implies that the investigated passive dynamics play an important role in both states and should be taken into account.

  1. Large area smoothing of surfaces by ion bombardment: fundamentals and applications

    International Nuclear Information System (INIS)

    Frost, F; Fechner, R; Ziberi, B; Voellner, J; Flamm, D; Schindler, A

    2009-01-01

    Ion beam erosion can be used as a process for achieving surface smoothing at microscopic length scales and for the preparation of ultrasmooth surfaces, as an alternative to nanostructuring of various surfaces via self-organization. This requires that in the evolution of the surface topography different relaxation mechanisms dominate over the roughening, and smoothing of initially rough surfaces can occur. This contribution focuses on the basic mechanisms as well as potential applications of surface smoothing using low energy ion beams. In the first part, the fundamentals for the smoothing of III/V semiconductors, Si and quartz glass surfaces using low energy ion beams (ion energy: ≤2000 eV) are reviewed using examples. The topography evolution of these surfaces with respect to different process parameters (ion energy, ion incidence angle, erosion time, sample rotation) has been investigated. On the basis of the time evolution of different roughness parameters, the relevant surface relaxation mechanisms responsible for surface smoothing are discussed. In this context, physical constraints as regards the effectiveness of surface smoothing by direct ion bombardment will also be addressed and furthermore ion beam assisted smoothing techniques are introduced. In the second application-orientated part, recent technological developments related to ion beam assisted smoothing of optically relevant surfaces are summarized. It will be demonstrated that smoothing by direct ion bombardment in combination with the use of sacrificial smoothing layers and the utilization of appropriate broad beam ion sources enables the polishing of various technologically important surfaces down to 0.1 nm root mean square roughness level, showing great promise for large area surface processing. Specific examples are given for ion beam smoothing of different optical surfaces, especially for substrates used for advanced optical applications (e.g., in x-ray optics and components for extreme

  2. The small length scale effect for a non-local cantilever beam: a paradox solved.

    Science.gov (United States)

    Challamel, N; Wang, C M

    2008-08-27

    Non-local continuum mechanics allows one to account for the small length scale effect that becomes significant when dealing with microstructures or nanostructures. This paper presents some simplified non-local elastic beam models, for the bending analyses of small scale rods. Integral-type or gradient non-local models abandon the classical assumption of locality, and admit that stress depends not only on the strain value at that point but also on the strain values of all points on the body. There is a paradox still unresolved at this stage: some bending solutions of integral-based non-local elastic beams have been found to be identical to the classical (local) solution, i.e. the small scale effect is not present at all. One example is the Euler-Bernoulli cantilever nanobeam model with a point load which has application in microelectromechanical systems and nanoelectromechanical systems as an actuator. In this paper, it will be shown that this paradox may be overcome with a gradient elastic model as well as an integral non-local elastic model that is based on combining the local and the non-local curvatures in the constitutive elastic relation. The latter model comprises the classical gradient model and Eringen's integral model, and its application produces small length scale terms in the non-local elastic cantilever beam solution.

  3. A Spatial Framework to Map Heat Health Risks at Multiple Scales.

    Science.gov (United States)

    Ho, Hung Chak; Knudby, Anders; Huang, Wei

    2015-12-18

    In the last few decades extreme heat events have led to substantial excess mortality, most dramatically in Central Europe in 2003, in Russia in 2010, and even in typically cool locations such as Vancouver, Canada, in 2009. Heat-related morbidity and mortality is expected to increase over the coming centuries as the result of climate-driven global increases in the severity and frequency of extreme heat events. Spatial information on heat exposure and population vulnerability may be combined to map the areas of highest risk and focus mitigation efforts there. However, a mismatch in spatial resolution between heat exposure and vulnerability data can cause spatial scale issues such as the Modifiable Areal Unit Problem (MAUP). We used a raster-based model to integrate heat exposure and vulnerability data in a multi-criteria decision analysis, and compared it to the traditional vector-based model. We then used the Getis-Ord G(i) index to generate spatially smoothed heat risk hotspot maps from fine to coarse spatial scales. The raster-based model allowed production of maps at spatial resolution, more description of local-scale heat risk variability, and identification of heat-risk areas not identified with the vector-based approach. Spatial smoothing with the Getis-Ord G(i) index produced heat risk hotspots from local to regional spatial scale. The approach is a framework for reducing spatial scale issues in future heat risk mapping, and for identifying heat risk hotspots at spatial scales ranging from the block-level to the municipality level.

  4. A new method to detect transitory signatures and local time/space variability structures in the climate system: the scale-dependent correlation analysis

    Science.gov (United States)

    Rodó, Xavier; Rodríguez-Arias, Miquel-Àngel

    2006-10-01

    The study of transitory signals and local variability structures in both/either time and space and their role as sources of climatic memory, is an important but often neglected topic in climate research despite its obvious importance and extensive coverage in the literature. Transitory signals arise either from non-linearities, in the climate system, transitory atmosphere-ocean couplings, and other processes in the climate system evolving after a critical threshold is crossed. These temporary interactions that, though intense, may not last long, can be responsible for a large amount of unexplained variability but are normally considered of limited relevance and often, discarded. With most of the current techniques at hand these typology of signatures are difficult to isolate because the low signal-to-noise ratio in midlatitudes, the limited recurrence of the transitory signals during a customary interval of data considered. Also, there is often a serious problem arising from the smoothing of local or transitory processes if statistical techniques are applied, that consider all the length of data available, rather than taking into account the size of the specific variability structure under investigation. Scale-dependent correlation (SDC) analysis is a new statistical method capable of highlighting the presence of transitory processes, these former being understood as temporary significant lag-dependent autocovariance in a single series, or covariance structures between two series. This approach, therefore, complements other approaches such as those resulting from the families of wavelet analysis, singular-spectrum analysis and recurrence plots. A main feature of SDC is its high-performance for short time series, its ability to characterize phase-relationships and thresholds in the bivariate domain. Ultimately, SDC helps tracking short-lagged relationships among processes that locally or temporarily couple and uncouple. The use of SDC is illustrated in the present

  5. A Nonlinear Framework of Delayed Particle Smoothing Method for Vehicle Localization under Non-Gaussian Environment

    Directory of Open Access Journals (Sweden)

    Zhu Xiao

    2016-05-01

    Full Text Available In this paper, a novel nonlinear framework of smoothing method, non-Gaussian delayed particle smoother (nGDPS, is proposed, which enables vehicle state estimation (VSE with high accuracy taking into account the non-Gaussianity of the measurement and process noises. Within the proposed method, the multivariate Student’s t-distribution is adopted in order to compute the probability distribution function (PDF related to the process and measurement noises, which are assumed to be non-Gaussian distributed. A computation approach based on Ensemble Kalman Filter (EnKF is designed to cope with the mean and the covariance matrix of the proposal non-Gaussian distribution. A delayed Gibbs sampling algorithm, which incorporates smoothing of the sampled trajectories over a fixed-delay, is proposed to deal with the sample degeneracy of particles. The performance is investigated based on the real-world data, which is collected by low-cost on-board vehicle sensors. The comparison study based on the real-world experiments and the statistical analysis demonstrates that the proposed nGDPS has significant improvement on the vehicle state accuracy and outperforms the existing filtering and smoothing methods.

  6. Detecting Local Drivers of Fire Cycle Heterogeneity in Boreal Forests: A Scale Issue

    Directory of Open Access Journals (Sweden)

    Annie Claude Bélisle

    2016-07-01

    Full Text Available Severe crown fires are determining disturbances for the composition and structure of boreal forests in North America. Fire cycle (FC associations with continental climate gradients are well known, but smaller scale controls remain poorly documented. Using a time since fire map (time scale of 300 years, the study aims to assess the relative contributions of local and regional controls on FC and to describe the relationship between FC heterogeneity and vegetation patterns. The study area, located in boreal eastern North America, was partitioned into watersheds according to five scales going from local (3 km2 to landscape (2800 km2 scales. Using survival analysis, we observed that dry surficial deposits and hydrography density better predict FC when measured at the local scale, while terrain complexity and slope position perform better when measured at the middle and landscape scales. The most parsimonious model was selected according to the Akaike information criterion to predict FC throughout the study area. We detected two FC zones, one short (159 years and one long (303 years, with specific age structures and tree compositions. We argue that the local heterogeneity of the fire regime contributes to ecosystem diversity and must be considered in ecosystem management.

  7. Small Smooth Units ('Young' Lavas?) Abutting Lobate Scarps on Mercury

    Science.gov (United States)

    Malliband, C. C.; Rothery, D. A.; Balme, M. R.; Conway, S. J.

    2018-05-01

    We have identified small units abutting, and so stratigraphy younger than, lobate scarps. This post dates the end of large scale smooth plains formation at the onset of global contraction. This elaborates the history of volcanism on Mercury.

  8. Cosmological large-scale structures beyond linear theory in modified gravity

    Energy Technology Data Exchange (ETDEWEB)

    Bernardeau, Francis; Brax, Philippe, E-mail: francis.bernardeau@cea.fr, E-mail: philippe.brax@cea.fr [CEA, Institut de Physique Théorique, 91191 Gif-sur-Yvette Cédex (France)

    2011-06-01

    We consider the effect of modified gravity on the growth of large-scale structures at second order in perturbation theory. We show that modified gravity models changing the linear growth rate of fluctuations are also bound to change, although mildly, the mode coupling amplitude in the density and reduced velocity fields. We present explicit formulae which describe this effect. We then focus on models of modified gravity involving a scalar field coupled to matter, in particular chameleons and dilatons, where it is shown that there exists a transition scale around which the existence of an extra scalar degree of freedom induces significant changes in the coupling properties of the cosmic fields. We obtain the amplitude of this effect for realistic dilaton models at the tree-order level for the bispectrum, finding them to be comparable in amplitude to those obtained in the DGP and f(R) models.

  9. Equation Chapter 1 Section 1Cross Layer Design for Localization in Large-Scale Underwater Sensor Networks

    Directory of Open Access Journals (Sweden)

    Yuanfeng ZHANG

    2014-02-01

    Full Text Available There are many technical challenges for designing large-scale underwater sensor networks, especially the sensor node localization. Although many papers studied for large-scale sensor node localization, previous studies mainly study the location algorithm without the cross layer design for localization. In this paper, by utilizing the network hierarchical structure of underwater sensor networks, we propose a new large-scale underwater acoustic localization scheme based on cross layer design. In this scheme, localization is performed in a hierarchical way, and the whole localization process focused on the physical layer, data link layer and application layer. We increase the pipeline parameters which matched the acoustic channel, added in MAC protocol to increase the authenticity of the large-scale underwater sensor networks, and made analysis of different location algorithm. We conduct extensive simulations, and our results show that MAC layer protocol and the localization algorithm all would affect the result of localization which can balance the trade-off between localization accuracy, localization coverage, and communication cost.

  10. Testing the efficiency of the wine market using unit root tests with sharp and smooth breaks

    Directory of Open Access Journals (Sweden)

    Elie Bouri

    2017-12-01

    Full Text Available This paper examines the efficient market hypothesis for the wine market using a novel unit root test while accounting for sharp shifts and smooth breaks in the monthly data. We find evidence of structural shifts and nonlinearity in the wine indices. Contrary to the results from conventional linear unit root tests, when we account for sharp shifts and smooth breaks, the unit root null for each of the wine indices has been rejected. Overall, our results suggest that the wine market is inefficient when we incorporate breaks. We provide some practical and policy implications of our findings. Keywords: Wine market, Efficiency, Sharp and smooth breaks, Unit root tests

  11. Local supersymmetry and the problem of the mass scales

    International Nuclear Information System (INIS)

    Nilles, H.P.

    1983-02-01

    Spontaneously broken supergravity might help us to understand the puzzle of the mass scales in grand unified models. We describe the general mechanism and point out the remaining problems. Some new results on local supercolor are presented

  12. Local, distributed topology control for large-scale wireless ad-hoc networks

    NARCIS (Netherlands)

    Nieberg, T.; Hurink, Johann L.

    In this document, topology control of a large-scale, wireless network by a distributed algorithm that uses only locally available information is presented. Topology control algorithms adjust the transmission power of wireless nodes to create a desired topology. The algorithm, named local power

  13. Recent development of linear scaling quantum theories in GAMESS

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Cheol Ho [Kyungpook National Univ., Daegu (Korea, Republic of)

    2003-06-01

    Linear scaling quantum theories are reviewed especially focusing on the method adopted in GAMESS. The three key translation equations of the fast multipole method (FMM) are deduced from the general polypolar expansions given earlier by Steinborn and Rudenberg. Simplifications are introduced for the rotation-based FMM that lead to a very compact FMM formalism. The OPS (optimum parameter searching) procedure, a stable and efficient way of obtaining the optimum set of FMM parameters, is established with complete control over the tolerable error {epsilon}. In addition, a new parallel FMM algorithm requiring virtually no inter-node communication, is suggested which is suitable for the parallel construction of Fock matrices in electronic structure calculations.

  14. Smoothing-Based Relative Navigation and Coded Aperture Imaging

    Science.gov (United States)

    Saenz-Otero, Alvar; Liebe, Carl Christian; Hunter, Roger C.; Baker, Christopher

    2017-01-01

    This project will develop an efficient smoothing software for incremental estimation of the relative poses and velocities between multiple, small spacecraft in a formation, and a small, long range depth sensor based on coded aperture imaging that is capable of identifying other spacecraft in the formation. The smoothing algorithm will obtain the maximum a posteriori estimate of the relative poses between the spacecraft by using all available sensor information in the spacecraft formation.This algorithm will be portable between different satellite platforms that possess different sensor suites and computational capabilities, and will be adaptable in the case that one or more satellites in the formation become inoperable. It will obtain a solution that will approach an exact solution, as opposed to one with linearization approximation that is typical of filtering algorithms. Thus, the algorithms developed and demonstrated as part of this program will enhance the applicability of small spacecraft to multi-platform operations, such as precisely aligned constellations and fractionated satellite systems.

  15. Local heat/mass transfer distributions around sharp 180 deg turns in two-pass smooth and rib-roughened channels

    Science.gov (United States)

    Han, J. C.; Chandra, P. R.; Lau, S. C.

    1988-01-01

    The napthalene sublimation technique was employed to study the detailed mass transfer distributions around the sharp 180 deg turns in a two-pass, square, smooth channel and in an identical channel with two rib-roughened opposite walls. Experiments conducted for Reynolds numbers of 15,000, 30,000, and 60,000 indicate that the Sherwood numbers on the top, outer, and inner walls around the turn in the rib-roughened channel are higher than the corresponding Sherwood numbers around the turn in the smooth channel. Sherwood numbers after the sharp turn are found to be higher than those before the turn for both the smooth and the ribbed channels.

  16. Ion bombardment induced smoothing of amorphous metallic surfaces: Experiments versus computer simulations

    International Nuclear Information System (INIS)

    Vauth, Sebastian; Mayr, S. G.

    2008-01-01

    Smoothing of rough amorphous metallic surfaces by bombardment with heavy ions in the low keV regime is investigated by a combined experimental-simulational study. Vapor deposited rough amorphous Zr 65 Al 7.5 Cu 27.5 films are the basis for systematic in situ scanning tunneling microscopy measurements on the smoothing reaction due to 3 keV Kr + ion bombardment. The experimental results are directly compared to the predictions of a multiscale simulation approach, which incorporates stochastic rate equations of the Langevin type in combination with previously reported classical molecular dynamics simulations [Phys. Rev. B 75, 224107 (2007)] to model surface smoothing across length and time scales. The combined approach of experiments and simulations clearly corroborates a key role of ion induced viscous flow and ballistic effects in low keV heavy ion induced smoothing of amorphous metallic surfaces at ambient temperatures

  17. Transformation-invariant and nonparametric monotone smooth estimation of ROC curves.

    Science.gov (United States)

    Du, Pang; Tang, Liansheng

    2009-01-30

    When a new diagnostic test is developed, it is of interest to evaluate its accuracy in distinguishing diseased subjects from non-diseased subjects. The accuracy of the test is often evaluated by receiver operating characteristic (ROC) curves. Smooth ROC estimates are often preferable for continuous test results when the underlying ROC curves are in fact continuous. Nonparametric and parametric methods have been proposed by various authors to obtain smooth ROC curve estimates. However, there are certain drawbacks with the existing methods. Parametric methods need specific model assumptions. Nonparametric methods do not always satisfy the inherent properties of the ROC curves, such as monotonicity and transformation invariance. In this paper we propose a monotone spline approach to obtain smooth monotone ROC curves. Our method ensures important inherent properties of the underlying ROC curves, which include monotonicity, transformation invariance, and boundary constraints. We compare the finite sample performance of the newly proposed ROC method with other ROC smoothing methods in large-scale simulation studies. We illustrate our method through a real life example. Copyright (c) 2008 John Wiley & Sons, Ltd.

  18. Multifractal scaling analysis of autopoisoning reactions over a rough surface

    International Nuclear Information System (INIS)

    Chaudhari, Ajay; Yan, Ching-Cher Sanders; Lee, S.-L.

    2003-01-01

    Decay type diffusion-limited reactions (DLR) over a rough surface generated by a random deposition model were performed. To study the effect of the decay profile on the reaction probability distribution (RPD), multifractal scaling analysis has been carried out. The dynamics of these autopoisoning reactions are controlled by the two parameters in the decay function, namely, the initial sticking probability (P ini ) of every site and the decay rate (m). The smaller the decay rate, the narrower is the range of α values in the α-f(α) multifractal spectrum. The results are compared with the earlier work of DLR over a surface of diffusion-limited aggregation (DLA). We also considered here the autopoisoning reactions over a smooth surface for comparing our results, which show clearly how the roughness affects the chemical reactions. The q-τ(q) multifractal curves for the smooth surface are linear whereas those for the rough surface are nonlinear. The range of α values in the case of a rough surface is wider than that of the smooth surface

  19. Local and global dynamical effects of dark energy

    Science.gov (United States)

    Chernin, A. D.

    Local expansion flows of galaxies were discovered by Lemaitre and Hubble in 1927-29 at distances of less than 25-30 Mpc. The global expansion of the Universe as a whole was predicted theoretically by Friedmann in 1922-24 and discovered in the 1990s in observations at truly cosmological distances of more than 1 000 Mpc. On all these spatial scales, the flows follow a (nearly) linear velocity-distance relation, known now as Hubble's law. This similarity of local and global phenomena is due to the universal dark energy antigravity which dominates the cosmic dynamics on both local and global spatial scales.

  20. A uniform law for convergence to the local times of linear fractional stable motions

    OpenAIRE

    Duffy, James A.

    2016-01-01

    We provide a uniform law for the weak convergence of additive functionals of partial sum processes to the local times of linear fractional stable motions, in a setting sufficiently general for statistical applications. Our results are fundamental to the analysis of the global properties of nonparametric estimators of nonlinear statistical models that involve such processes as covariates.

  1. Application of local area networks to accelerator control systems at the Stanford Linear Accelerator

    International Nuclear Information System (INIS)

    Fox, J.D.; Linstadt, E.; Melen, R.

    1983-03-01

    The history and current status of SLAC's SDLC networks for distributed accelerator control systems are discussed. These local area networks have been used for instrumentation and control of the linear accelerator. Network topologies, protocols, physical links, and logical interconnections are discussed for specific applications in distributed data acquisition and control system, computer networks and accelerator operations

  2. Large-scale weakly supervised object localization via latent category learning.

    Science.gov (United States)

    Chong Wang; Kaiqi Huang; Weiqiang Ren; Junge Zhang; Maybank, Steve

    2015-04-01

    Localizing objects in cluttered backgrounds is challenging under large-scale weakly supervised conditions. Due to the cluttered image condition, objects usually have large ambiguity with backgrounds. Besides, there is also a lack of effective algorithm for large-scale weakly supervised localization in cluttered backgrounds. However, backgrounds contain useful latent information, e.g., the sky in the aeroplane class. If this latent information can be learned, object-background ambiguity can be largely reduced and background can be suppressed effectively. In this paper, we propose the latent category learning (LCL) in large-scale cluttered conditions. LCL is an unsupervised learning method which requires only image-level class labels. First, we use the latent semantic analysis with semantic object representation to learn the latent categories, which represent objects, object parts or backgrounds. Second, to determine which category contains the target object, we propose a category selection strategy by evaluating each category's discrimination. Finally, we propose the online LCL for use in large-scale conditions. Evaluation on the challenging PASCAL Visual Object Class (VOC) 2007 and the large-scale imagenet large-scale visual recognition challenge 2013 detection data sets shows that the method can improve the annotation precision by 10% over previous methods. More importantly, we achieve the detection precision which outperforms previous results by a large margin and can be competitive to the supervised deformable part model 5.0 baseline on both data sets.

  3. Smoothing and projecting age-specific probabilities of death by TOPALS

    Directory of Open Access Journals (Sweden)

    Joop de Beer

    2012-10-01

    Full Text Available BACKGROUND TOPALS is a new relational model for smoothing and projecting age schedules. The model is operationally simple, flexible, and transparent. OBJECTIVE This article demonstrates how TOPALS can be used for both smoothing and projecting age-specific mortality for 26 European countries and compares the results of TOPALS with those of other smoothing and projection methods. METHODS TOPALS uses a linear spline to describe the ratios between the age-specific death probabilities of a given country and a standard age schedule. For smoothing purposes I use the average of death probabilities over 15 Western European countries as standard, whereas for projection purposes I use an age schedule of 'best practice' mortality. A partial adjustment model projects how quickly the death probabilities move in the direction of the best-practice level of mortality. RESULTS On average, TOPALS performs better than the Heligman-Pollard model and the Brass relational method in smoothing mortality age schedules. TOPALS can produce projections that are similar to those of the Lee-Carter method, but can easily be used to produce alternative scenarios as well. This article presents three projections of life expectancy at birth for the year 2060 for 26 European countries. The Baseline scenario assumes a continuation of the past trend in each country, the Convergence scenario assumes that there is a common trend across European countries, and the Acceleration scenario assumes that the future decline of death probabilities will exceed that in the past. The Baseline scenario projects that average European life expectancy at birth will increase to 80 years for men and 87 years for women in 2060, whereas the Acceleration scenario projects an increase to 90 and 93 years respectively. CONCLUSIONS TOPALS is a useful new tool for demographers for both smoothing age schedules and making scenarios.

  4. Impact of the pedestal plasma density on dynamics of edge localized mode crashes and energy loss scaling

    Energy Technology Data Exchange (ETDEWEB)

    Xu, X. Q., E-mail: xxu@llnl.gov [Lawrence Livermore National Laboratory, Livermore, California 94551 (United States); Ma, J. F. [Lawrence Livermore National Laboratory, Livermore, California 94551 (United States); Institute for Fusion Studies, University of Texas, Austin, Texas 78712 (United States); Li, G. Q. [Lawrence Livermore National Laboratory, Livermore, California 94551 (United States); Institute of Plasma Physics, Chinese Academy of Sciences, Hefei (China)

    2014-12-15

    The latest BOUT++ studies show an emerging understanding of dynamics of edge localized mode (ELM) crashes and the consistent collisionality scaling of ELM energy losses with the world multi-tokamak database. A series of BOUT++ simulations are conducted to investigate the scaling characteristics of the ELM energy losses vs collisionality via a density scan. Linear results demonstrate that as the pedestal collisionality decreases, the growth rate of the peeling-ballooning modes decreases for high n but increases for low n (1 < n < 5), therefore the width of the growth rate spectrum γ(n) becomes narrower and the peak growth shifts to lower n. Nonlinear BOUT++ simulations show a two-stage process of ELM crash evolution of (i) initial bursts of pressure blob and void creation and (ii) inward void propagation. The inward void propagation stirs the top of pedestal plasma and yields an increasing ELM size with decreasing collisionality after a series of micro-bursts. The pedestal plasma density plays a major role in determining the ELM energy loss through its effect on the edge bootstrap current and ion diamagnetic stabilization. The critical trend emerges as a transition (1) linearly from ballooning-dominated states at high collisionality to peeling-dominated states at low collisionality with decreasing density and (2) nonlinearly from turbulence spreading dynamics at high collisionality into avalanche-like dynamics at low collisionality.

  5. Recombination clumping factor during cosmic reionization

    International Nuclear Information System (INIS)

    Kaurov, Alexander A.; Gnedin, Nickolay Y.

    2014-01-01

    We discuss the role of recombinations in the intergalactic medium, and the related concept of the clumping factor, during cosmic reionization. The clumping factor is, in general, a local quantity that depends on both the local overdensity and the scale below which the baryon density field can be assumed smooth. That scale, called the filtering scale, depends on over-density and local thermal history. We present a method for building a self-consistent analytical model of inhomogeneous reionization, assuming the linear growth rate of the density fluctuation, which simultaneously accounts for these effects. We show that taking into account the local clumping factor introduces significant corrections to the total recombination rate, compared to the model with a globally uniform clumping factor.

  6. Log canonical thresholds of smooth Fano threefolds

    International Nuclear Information System (INIS)

    Cheltsov, Ivan A; Shramov, Konstantin A

    2008-01-01

    The complex singularity exponent is a local invariant of a holomorphic function determined by the integrability of fractional powers of the function. The log canonical thresholds of effective Q-divisors on normal algebraic varieties are algebraic counterparts of complex singularity exponents. For a Fano variety, these invariants have global analogues. In the former case, it is the so-called α-invariant of Tian; in the latter case, it is the global log canonical threshold of the Fano variety, which is the infimum of log canonical thresholds of all effective Q-divisors numerically equivalent to the anticanonical divisor. An appendix to this paper contains a proof that the global log canonical threshold of a smooth Fano variety coincides with its α-invariant of Tian. The purpose of the paper is to compute the global log canonical thresholds of smooth Fano threefolds (altogether, there are 105 deformation families of such threefolds). The global log canonical thresholds are computed for every smooth threefold in 64 deformation families, and the global log canonical thresholds are computed for a general threefold in 20 deformation families. Some bounds for the global log canonical thresholds are computed for 14 deformation families. Appendix A is due to J.-P. Demailly.

  7. Smoothing expansion rate data to reconstruct cosmological matter perturbations

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez, J.E.; Alcaniz, J.S.; Carvalho, J.C., E-mail: javierernesto@on.br, E-mail: alcaniz@on.br, E-mail: jcarvalho@on.br [Departamento de Astronomia, Observatório Nacional, Rua Gal. José Cristino, 77, Rio de Janeiro, RJ 20921-400 (Brazil)

    2017-08-01

    The existing degeneracy between different dark energy and modified gravity cosmologies at the background level may be broken by analyzing quantities at the perturbative level. In this work, we apply a non-parametric smoothing (NPS) method to reconstruct the expansion history of the Universe ( H ( z )) from model-independent cosmic chronometers and high- z quasar data. Assuming a homogeneous and isotropic flat universe and general relativity (GR) as the gravity theory, we calculate the non-relativistic matter perturbations in the linear regime using the H ( z ) reconstruction and realistic values of Ω {sub m} {sub 0} and σ{sub 8} from Planck and WMAP-9 collaborations. We find a good agreement between the measurements of the growth rate and f σ{sub 8}( z ) from current large-scale structure observations and the estimates obtained from the reconstruction of the cosmic expansion history. Considering a recently proposed null test for GR using matter perturbations, we also apply the NPS method to reconstruct f σ{sub 8}( z ). For this case, we find a ∼ 3σ tension (good agreement) with the standard relativistic cosmology when the Planck (WMAP-9) priors are used.

  8. Smoothing expansion rate data to reconstruct cosmological matter perturbations

    International Nuclear Information System (INIS)

    Gonzalez, J.E.; Alcaniz, J.S.; Carvalho, J.C.

    2017-01-01

    The existing degeneracy between different dark energy and modified gravity cosmologies at the background level may be broken by analyzing quantities at the perturbative level. In this work, we apply a non-parametric smoothing (NPS) method to reconstruct the expansion history of the Universe ( H ( z )) from model-independent cosmic chronometers and high- z quasar data. Assuming a homogeneous and isotropic flat universe and general relativity (GR) as the gravity theory, we calculate the non-relativistic matter perturbations in the linear regime using the H ( z ) reconstruction and realistic values of Ω m 0 and σ 8 from Planck and WMAP-9 collaborations. We find a good agreement between the measurements of the growth rate and f σ 8 ( z ) from current large-scale structure observations and the estimates obtained from the reconstruction of the cosmic expansion history. Considering a recently proposed null test for GR using matter perturbations, we also apply the NPS method to reconstruct f σ 8 ( z ). For this case, we find a ∼ 3σ tension (good agreement) with the standard relativistic cosmology when the Planck (WMAP-9) priors are used.

  9. Nesting, Subsidiarity, and Community-based environmental Governance beyond the Local Scale

    Directory of Open Access Journals (Sweden)

    Graham Marshall

    2007-11-01

    Full Text Available Community-based approaches to environmental management have become widely adopted over the last two decades. From their origins in grassroots frustrations with governmental inabilities to solve local environmental problems, these approaches are now sponsored frequently by governments as a way of dealing with such problems at much higher spatial levels. However, this 'up-scaling' of community-based approaches has run well ahead of knowledge about how they might work. This article explores how Elinor Ostrom's 'nesting principle' for robust common property governance of large-scale common-pool resources might inform future up-scaling efforts. In particular, I consider how the design of nested governance systems for large-scale environmental problems might be guided by the principle of subsidiarity. The challenges of applying this principle are illustrated by Australia's experience in up-scaling community-based natural resource management from local groups comprising 20-30 members to regional bodies representing hundreds of thousands of people. Seven lessons are distilled for fostering community-based environmental governance as a multi-level system of nested enterprises.

  10. Ensemble Linear Neighborhood Propagation for Predicting Subchloroplast Localization of Multi-Location Proteins.

    Science.gov (United States)

    Wan, Shibiao; Mak, Man-Wai; Kung, Sun-Yuan

    2016-12-02

    In the postgenomic era, the number of unreviewed protein sequences is remarkably larger and grows tremendously faster than that of reviewed ones. However, existing methods for protein subchloroplast localization often ignore the information from these unlabeled proteins. This paper proposes a multi-label predictor based on ensemble linear neighborhood propagation (LNP), namely, LNP-Chlo, which leverages hybrid sequence-based feature information from both labeled and unlabeled proteins for predicting localization of both single- and multi-label chloroplast proteins. Experimental results on a stringent benchmark dataset and a novel independent dataset suggest that LNP-Chlo performs at least 6% (absolute) better than state-of-the-art predictors. This paper also demonstrates that ensemble LNP significantly outperforms LNP based on individual features. For readers' convenience, the online Web server LNP-Chlo is freely available at http://bioinfo.eie.polyu.edu.hk/LNPChloServer/ .

  11. SparseMaps—A systematic infrastructure for reduced-scaling electronic structure methods. III. Linear-scaling multireference domain-based pair natural orbital N-electron valence perturbation theory

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Yang; Sivalingam, Kantharuban; Neese, Frank, E-mail: Frank.Neese@cec.mpg.de [Max Planck Institut für Chemische Energiekonversion, Stiftstr. 34-36, D-45470 Mülheim an der Ruhr (Germany); Valeev, Edward F. [Department of Chemistry, Virginia Tech, Blacksburg, Virginia 24014 (United States)

    2016-03-07

    Multi-reference (MR) electronic structure methods, such as MR configuration interaction or MR perturbation theory, can provide reliable energies and properties for many molecular phenomena like bond breaking, excited states, transition states or magnetic properties of transition metal complexes and clusters. However, owing to their inherent complexity, most MR methods are still too computationally expensive for large systems. Therefore the development of more computationally attractive MR approaches is necessary to enable routine application for large-scale chemical systems. Among the state-of-the-art MR methods, second-order N-electron valence state perturbation theory (NEVPT2) is an efficient, size-consistent, and intruder-state-free method. However, there are still two important bottlenecks in practical applications of NEVPT2 to large systems: (a) the high computational cost of NEVPT2 for large molecules, even with moderate active spaces and (b) the prohibitive cost for treating large active spaces. In this work, we address problem (a) by developing a linear scaling “partially contracted” NEVPT2 method. This development uses the idea of domain-based local pair natural orbitals (DLPNOs) to form a highly efficient algorithm. As shown previously in the framework of single-reference methods, the DLPNO concept leads to an enormous reduction in computational effort while at the same time providing high accuracy (approaching 99.9% of the correlation energy), robustness, and black-box character. In the DLPNO approach, the virtual space is spanned by pair natural orbitals that are expanded in terms of projected atomic orbitals in large orbital domains, while the inactive space is spanned by localized orbitals. The active orbitals are left untouched. Our implementation features a highly efficient “electron pair prescreening” that skips the negligible inactive pairs. The surviving pairs are treated using the partially contracted NEVPT2 formalism. A detailed

  12. Improved scaling of temperature-accelerated dynamics using localization

    Energy Technology Data Exchange (ETDEWEB)

    Shim, Yunsic; Amar, Jacques G. [Department of Physics and Astronomy, University of Toledo, Toledo, Ohio 43606 (United States)

    2016-07-07

    While temperature-accelerated dynamics (TAD) is a powerful method for carrying out non-equilibrium simulations of systems over extended time scales, the computational cost of serial TAD increases approximately as N{sup 3} where N is the number of atoms. In addition, although a parallel TAD method based on domain decomposition [Y. Shim et al., Phys. Rev. B 76, 205439 (2007)] has been shown to provide significantly improved scaling, the dynamics in such an approach is only approximate while the size of activated events is limited by the spatial decomposition size. Accordingly, it is of interest to develop methods to improve the scaling of serial TAD. As a first step in understanding the factors which determine the scaling behavior, we first present results for the overall scaling of serial TAD and its components, which were obtained from simulations of Ag/Ag(100) growth and Ag/Ag(100) annealing, and compare with theoretical predictions. We then discuss two methods based on localization which may be used to address two of the primary “bottlenecks” to the scaling of serial TAD with system size. By implementing both of these methods, we find that for intermediate system-sizes, the scaling is improved by almost a factor of N{sup 1/2}. Some additional possible methods to improve the scaling of TAD are also discussed.

  13. Improved scaling of temperature-accelerated dynamics using localization

    International Nuclear Information System (INIS)

    Shim, Yunsic; Amar, Jacques G.

    2016-01-01

    While temperature-accelerated dynamics (TAD) is a powerful method for carrying out non-equilibrium simulations of systems over extended time scales, the computational cost of serial TAD increases approximately as N 3 where N is the number of atoms. In addition, although a parallel TAD method based on domain decomposition [Y. Shim et al., Phys. Rev. B 76, 205439 (2007)] has been shown to provide significantly improved scaling, the dynamics in such an approach is only approximate while the size of activated events is limited by the spatial decomposition size. Accordingly, it is of interest to develop methods to improve the scaling of serial TAD. As a first step in understanding the factors which determine the scaling behavior, we first present results for the overall scaling of serial TAD and its components, which were obtained from simulations of Ag/Ag(100) growth and Ag/Ag(100) annealing, and compare with theoretical predictions. We then discuss two methods based on localization which may be used to address two of the primary “bottlenecks” to the scaling of serial TAD with system size. By implementing both of these methods, we find that for intermediate system-sizes, the scaling is improved by almost a factor of N 1/2 . Some additional possible methods to improve the scaling of TAD are also discussed.

  14. Discrimination of curvature from motion during smooth pursuit eye movements and fixation.

    Science.gov (United States)

    Ross, Nicholas M; Goettker, Alexander; Schütz, Alexander C; Braun, Doris I; Gegenfurtner, Karl R

    2017-09-01

    Smooth pursuit and motion perception have mainly been investigated with stimuli moving along linear trajectories. Here we studied the quality of pursuit movements to curved motion trajectories in human observers and examined whether the pursuit responses would be sensitive enough to discriminate various degrees of curvature. In a two-interval forced-choice task subjects pursued a Gaussian blob moving along a curved trajectory and then indicated in which interval the curve was flatter. We also measured discrimination thresholds for the same curvatures during fixation. Motion curvature had some specific effects on smooth pursuit properties: trajectories with larger amounts of curvature elicited lower open-loop acceleration, lower pursuit gain, and larger catch-up saccades compared with less curved trajectories. Initially, target motion curvatures were underestimated; however, ∼300 ms after pursuit onset pursuit responses closely matched the actual curved trajectory. We calculated perceptual thresholds for curvature discrimination, which were on the order of 1.5 degrees of visual angle (°) for a 7.9° curvature standard. Oculometric sensitivity to curvature discrimination based on the whole pursuit trajectory was quite similar to perceptual performance. Oculometric thresholds based on smaller time windows were higher. Thus smooth pursuit can quite accurately follow moving targets with curved trajectories, but temporal integration over longer periods is necessary to reach perceptual thresholds for curvature discrimination. NEW & NOTEWORTHY Even though motion trajectories in the real world are frequently curved, most studies of smooth pursuit and motion perception have investigated linear motion. We show that pursuit initially underestimates the curvature of target motion and is able to reproduce the target curvature ∼300 ms after pursuit onset. Temporal integration of target motion over longer periods is necessary for pursuit to reach the level of precision found

  15. A New Spectral Local Linearization Method for Nonlinear Boundary Layer Flow Problems

    Directory of Open Access Journals (Sweden)

    S. S. Motsa

    2013-01-01

    Full Text Available We propose a simple and efficient method for solving highly nonlinear systems of boundary layer flow problems with exponentially decaying profiles. The algorithm of the proposed method is based on an innovative idea of linearizing and decoupling the governing systems of equations and reducing them into a sequence of subsystems of differential equations which are solved using spectral collocation methods. The applicability of the proposed method, hereinafter referred to as the spectral local linearization method (SLLM, is tested on some well-known boundary layer flow equations. The numerical results presented in this investigation indicate that the proposed method, despite being easy to develop and numerically implement, is very robust in that it converges rapidly to yield accurate results and is more efficient in solving very large systems of nonlinear boundary value problems of the similarity variable boundary layer type. The accuracy and numerical stability of the SLLM can further be improved by using successive overrelaxation techniques.

  16. Existence and uniqueness to the Cauchy problem for linear and semilinear parabolic equations with local conditions⋆

    Directory of Open Access Journals (Sweden)

    Rubio Gerardo

    2011-03-01

    Full Text Available We consider the Cauchy problem in ℝd for a class of semilinear parabolic partial differential equations that arises in some stochastic control problems. We assume that the coefficients are unbounded and locally Lipschitz, not necessarily differentiable, with continuous data and local uniform ellipticity. We construct a classical solution by approximation with linear parabolic equations. The linear equations involved can not be solved with the traditional results. Therefore, we construct a classical solution to the linear Cauchy problem under the same hypotheses on the coefficients for the semilinear equation. Our approach is using stochastic differential equations and parabolic differential equations in bounded domains. Finally, we apply the results to a stochastic optimal consumption problem. Nous considérons le problème de Cauchy dans ℝd pour une classe d’équations aux dérivées partielles paraboliques semi linéaires qui se pose dans certains problèmes de contrôle stochastique. Nous supposons que les coefficients ne sont pas bornés et sont localement Lipschitziennes, pas nécessairement différentiables, avec des données continues et ellipticité local uniforme. Nous construisons une solution classique par approximation avec les équations paraboliques linéaires. Les équations linéaires impliquées ne peuvent être résolues avec les résultats traditionnels. Par conséquent, nous construisons une solution classique au problème de Cauchy linéaire sous les mêmes hypothèses sur les coefficients pour l’équation semi-linéaire. Notre approche utilise les équations différentielles stochastiques et les équations différentielles paraboliques dans les domaines bornés. Enfin, nous appliquons les résultats à un problème stochastique de consommation optimale.

  17. A method for local transport analysis in tokamaks with error calculation

    International Nuclear Information System (INIS)

    Hogeweij, G.M.D.; Hordosy, G.; Lopes Cardozo, N.J.

    1989-01-01

    Global transport studies have revealed that heat transport in a tokamak is anomalous, but cannot provide information about the nature of the anomaly. Therefore, local transport analysis is essential for the study of anomalous transport. However, the determination of local transport coefficients is not a trivial affair. Generally speaking one can either directly measure the heat diffusivity, χ, by means of heat pulse propagation analysis, or deduce the profile of χ from measurements of the profiles of the temperature, T, and the power deposition. Here we are concerned only with the latter method, the local power balance analysis. For the sake of clarity heat diffusion only is considered: ρ=-gradT/q (1) where ρ=κ -1 =(nχ) -1 is the heat resistivity and q is the heat flux per unit area. It is assumed that the profiles T(r) and q(r) are given with some experimental error. In practice T(r) is measured directly, e.g. from ECE spectroscopy, while q(r) is deduced from the power deposition and loss profiles. The latter cannot be measured directly and is partly determined on the basis of models. This complication will not be considered here. Since in eq. (1) the gradient of T appears, noise on T can severely affect the solution ρ. This means that in general some form of smoothing must be applied. A criterion is needed to select the optimal smoothing. Too much smoothing will wipe out the details, whereas with too little smoothing the noise will distort the reconstructed profile of ρ. Here a new method to solve eq. (1) is presented which expresses ρ(r) as a cosine-series. The coefficients of this series are given as linear combinations of the Fourier coefficients of the measured T- and q-profiles. This formulation allows 1) the stable and accurate calculation of the ρ-profile, and 2) the analytical calculation of the error in this profile. (author) 5 refs., 3 figs

  18. Localization Algorithm Based on a Spring Model (LASM for Large Scale Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Shuai Li

    2008-03-01

    Full Text Available A navigation method for a lunar rover based on large scale wireless sensornetworks is proposed. To obtain high navigation accuracy and large exploration area, highnode localization accuracy and large network scale are required. However, thecomputational and communication complexity and time consumption are greatly increasedwith the increase of the network scales. A localization algorithm based on a spring model(LASM method is proposed to reduce the computational complexity, while maintainingthe localization accuracy in large scale sensor networks. The algorithm simulates thedynamics of physical spring system to estimate the positions of nodes. The sensor nodesare set as particles with masses and connected with neighbor nodes by virtual springs. Thevirtual springs will force the particles move to the original positions, the node positionscorrespondingly, from the randomly set positions. Therefore, a blind node position can bedetermined from the LASM algorithm by calculating the related forces with the neighbornodes. The computational and communication complexity are O(1 for each node, since thenumber of the neighbor nodes does not increase proportionally with the network scale size.Three patches are proposed to avoid local optimization, kick out bad nodes and deal withnode variation. Simulation results show that the computational and communicationcomplexity are almost constant despite of the increase of the network scale size. The time consumption has also been proven to remain almost constant since the calculation steps arealmost unrelated with the network scale size.

  19. Inlet effect induced ''upstream'' critical heat flux in smooth tubes

    International Nuclear Information System (INIS)

    Kitto, J.B. Jr.

    1986-01-01

    An unusual form of ''upstream'' critical heat flux (CHF) has been observed and directly linked to the inlet flow pattern during an experimental study of high pressure (17 - 20 MPa) water flowing through a vertical 38.1 mm ID smooth bore tube with uniform axial and nonuniform circumferential heating. These upstream CHF data were characterized by temperature excursions which initially occurred at a relatively fixed axial location in the middle of the test section while the outlet and inlet heated lengths experienced no change. A rifled tube inlet flow conditioner could be substituted for a smooth tube section to generate the desired swirling inlet flow pattern. The upstream CHF data were found to match data from a uniformly heated smooth bore tube when the comparison was made using the peak local heat flux. The mechanism proposed to account for the upstream CHF observations involves the destructive interference between the decaying swirl flow and the secondary circumferential liquid flow field resulting from the one-sided heating

  20. Classification of smooth Fano polytopes

    DEFF Research Database (Denmark)

    Øbro, Mikkel

    A simplicial lattice polytope containing the origin in the interior is called a smooth Fano polytope, if the vertices of every facet is a basis of the lattice. The study of smooth Fano polytopes is motivated by their connection to toric varieties. The thesis concerns the classification of smooth...... Fano polytopes up to isomorphism. A smooth Fano -polytope can have at most vertices. In case of vertices an explicit classification is known. The thesis contains the classification in case of vertices. Classifications of smooth Fano -polytopes for fixed exist only for . In the thesis an algorithm...... for the classification of smooth Fano -polytopes for any given is presented. The algorithm has been implemented and used to obtain the complete classification for ....

  1. The fastclime Package for Linear Programming and Large-Scale Precision Matrix Estimation in R.

    Science.gov (United States)

    Pang, Haotian; Liu, Han; Vanderbei, Robert

    2014-02-01

    We develop an R package fastclime for solving a family of regularized linear programming (LP) problems. Our package efficiently implements the parametric simplex algorithm, which provides a scalable and sophisticated tool for solving large-scale linear programs. As an illustrative example, one use of our LP solver is to implement an important sparse precision matrix estimation method called CLIME (Constrained L 1 Minimization Estimator). Compared with existing packages for this problem such as clime and flare, our package has three advantages: (1) it efficiently calculates the full piecewise-linear regularization path; (2) it provides an accurate dual certificate as stopping criterion; (3) it is completely coded in C and is highly portable. This package is designed to be useful to statisticians and machine learning researchers for solving a wide range of problems.

  2. PySSM: A Python Module for Bayesian Inference of Linear Gaussian State Space Models

    Directory of Open Access Journals (Sweden)

    Christopher Strickland

    2014-04-01

    Full Text Available PySSM is a Python package that has been developed for the analysis of time series using linear Gaussian state space models. PySSM is easy to use; models can be set up quickly and efficiently and a variety of different settings are available to the user. It also takes advantage of scientific libraries NumPy and SciPy and other high level features of the Python language. PySSM is also used as a platform for interfacing between optimized and parallelized Fortran routines. These Fortran routines heavily utilize basic linear algebra and linear algebra Package functions for maximum performance. PySSM contains classes for filtering, classical smoothing as well as simulation smoothing.

  3. Forecasting performance of smooth transition autoregressive (STAR model on travel and leisure stock index

    Directory of Open Access Journals (Sweden)

    Usman M. Umer

    2018-06-01

    Full Text Available Travel and leisure recorded a consecutive robust growth and become among the fastest economic sectors in the world. Various forecasting models are proposed by researchers that serve as an early recommendation for investors and policy makers. Numerous studies proposed distinct forecasting models to predict the dynamics of this sector and provide early recommendation for investors and policy makers. In this paper, we compare the performance of smooth transition autoregressive (STAR and linear autoregressive (AR models using monthly returns of Turkey and FTSE travel and leisure index from April 1997 to August 2016. MSCI world index used as a proxy of the overall market. The result shows that nonlinear LSTAR model cannot improve the out-of-sample forecast of linear AR model. This finding demonstrates little to be gained from using LSTAR model in the prediction of travel and leisure stock index. Keywords: Nonlinear time-series, Out-of-sample forecasting, Smooth transition autoregressive, Travel and leisure

  4. Smooth Optical Self-similar Emission of Gamma-Ray Bursts

    Energy Technology Data Exchange (ETDEWEB)

    Lipunov, Vladimir; Simakov, Sergey; Gorbovskoy, Evgeny; Vlasenko, Daniil, E-mail: lipunov2007@gmail.com [Lomonosov Moscow State University, Sternberg Astronomical Institute, Universitetsky prospect, 13, 119992, Moscow (Russian Federation)

    2017-08-10

    We offer a new type of calibration for gamma-ray bursts (GRB), in which some class of GRB can be marked and share a common behavior. We name this behavior Smooth Optical Self-similar Emission (SOS-similar Emission) and identify this subclasses of GRBs with optical light curves described by a universal scaling function.

  5. On the structure on non-local conservation laws in the two-dimensional non-linear sigma-model

    International Nuclear Information System (INIS)

    Zamolodchikov, Al.B.

    1978-01-01

    The non-local conserved charges are supposed to satisfy a special multiplicative law in the space of asymptotic states of the non-linear sigma-model. This supposition leads to factorization equations for two-particle scattering matrix elements and determines to some extent the action of these charges in the asymptotic space. Their conservation turns out to be consistent with the factorized S-matrix of the non-linear sigma-model. It is shown also that the factorized sine-Gordon S-matrix is consistent with a similar family of conservation laws

  6. Solvability conditions for non-local boundary value problems for two-dimensional half-linear differential systems

    Czech Academy of Sciences Publication Activity Database

    Kiguradze, I.; Šremr, Jiří

    2011-01-01

    Roč. 74, č. 17 (2011), s. 6537-6552 ISSN 0362-546X Institutional research plan: CEZ:AV0Z10190503 Keywords : half-linear differential system * non-local boundary value problem * solvability Subject RIV: BA - General Mathematics Impact factor: 1.536, year: 2011 http://www.sciencedirect.com/science/article/pii/S0362546X11004573

  7. Local-scale dynamics and local drivers of bushmeat trade.

    Science.gov (United States)

    Nyaki, Angela; Gray, Steven A; Lepczyk, Christopher A; Skibins, Jeffrey C; Rentsch, Dennis

    2014-10-01

    Bushmeat management policies are often developed outside the communities in which they are to be implemented. These policies are also routinely designed to be applied uniformly across communities with little regard for variation in social or ecological conditions. We used fuzzy-logic cognitive mapping, a form of participatory modeling, to compare the assumptions driving externally generated bushmeat management policies with perceptions of bushmeat trade dynamics collected from local community members who admitted to being recently engaged in bushmeat trading (e.g., hunters, sellers, consumers). Data were collected during 9 workshops in 4 Tanzanian villages bordering Serengeti National Park. Specifically, we evaluated 9 community-generated models for the presence of the central factors that comprise and drive the bushmeat trade and whether or not models included the same core concepts, relationships, and logical chains of reasoning on which bushmeat conservation policies are commonly based. Across local communities, there was agreement about the most central factors important to understanding the bushmeat trade (e.g., animal recruitment, low income, and scarcity of food crops). These matched policy assumptions. However, the factors perceived to drive social-ecological bushmeat trade dynamics were more diverse and varied considerably across communities (e.g., presence or absence of collaborative law enforcement, increasing human population, market demand, cultural preference). Sensitive conservation issues, such as the bushmeat trade, that require cooperation between communities and outside conservation organizations can benefit from participatory modeling approaches that make local-scale dynamics and conservation policy assumptions explicit. Further, communities' and conservation organizations' perceptions need to be aligned. This can improve success by allowing context appropriate policies to be developed, monitored, and appropriately adapted as new evidence is

  8. Correlation coefficient based supervised locally linear embedding for pulmonary nodule recognition.

    Science.gov (United States)

    Wu, Panpan; Xia, Kewen; Yu, Hengyong

    2016-11-01

    Dimensionality reduction techniques are developed to suppress the negative effects of high dimensional feature space of lung CT images on classification performance in computer aided detection (CAD) systems for pulmonary nodule detection. An improved supervised locally linear embedding (SLLE) algorithm is proposed based on the concept of correlation coefficient. The Spearman's rank correlation coefficient is introduced to adjust the distance metric in the SLLE algorithm to ensure that more suitable neighborhood points could be identified, and thus to enhance the discriminating power of embedded data. The proposed Spearman's rank correlation coefficient based SLLE (SC(2)SLLE) is implemented and validated in our pilot CAD system using a clinical dataset collected from the publicly available lung image database consortium and image database resource initiative (LICD-IDRI). Particularly, a representative CAD system for solitary pulmonary nodule detection is designed and implemented. After a sequential medical image processing steps, 64 nodules and 140 non-nodules are extracted, and 34 representative features are calculated. The SC(2)SLLE, as well as SLLE and LLE algorithm, are applied to reduce the dimensionality. Several quantitative measurements are also used to evaluate and compare the performances. Using a 5-fold cross-validation methodology, the proposed algorithm achieves 87.65% accuracy, 79.23% sensitivity, 91.43% specificity, and 8.57% false positive rate, on average. Experimental results indicate that the proposed algorithm outperforms the original locally linear embedding and SLLE coupled with the support vector machine (SVM) classifier. Based on the preliminary results from a limited number of nodules in our dataset, this study demonstrates the great potential to improve the performance of a CAD system for nodule detection using the proposed SC(2)SLLE. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  9. Scaling versus asymptotic scaling in the non-linear σ-model in 2D. Continuum version

    International Nuclear Information System (INIS)

    Flyvbjerg, H.

    1990-01-01

    The two-point function of the O(N)-symmetric non-linear σ-model in two dimensions is large-N expanded and renormalized, neglecting terms of O(1/N 2 ). At finite cut-off, universal, analytical expressions relate the magnetic susceptibility and the dressed mass to the bare coupling. Removing the cut-off, a similar relation gives the renormalized coupling as a function of the mass gap. In the weak-coupling limit these relations reproduce the results of renormalization group improved weak-coupling perturbation theory to two-loop order. The constant left unknown, when the renormalization group is integrated, is determined here. The approach to asymptotic scaling is studied for various values of N. (orig.)

  10. MIDAS: Regionally linear multivariate discriminative statistical mapping.

    Science.gov (United States)

    Varol, Erdem; Sotiras, Aristeidis; Davatzikos, Christos

    2018-07-01

    Statistical parametric maps formed via voxel-wise mass-univariate tests, such as the general linear model, are commonly used to test hypotheses about regionally specific effects in neuroimaging cross-sectional studies where each subject is represented by a single image. Despite being informative, these techniques remain limited as they ignore multivariate relationships in the data. Most importantly, the commonly employed local Gaussian smoothing, which is important for accounting for registration errors and making the data follow Gaussian distributions, is usually chosen in an ad hoc fashion. Thus, it is often suboptimal for the task of detecting group differences and correlations with non-imaging variables. Information mapping techniques, such as searchlight, which use pattern classifiers to exploit multivariate information and obtain more powerful statistical maps, have become increasingly popular in recent years. However, existing methods may lead to important interpretation errors in practice (i.e., misidentifying a cluster as informative, or failing to detect truly informative voxels), while often being computationally expensive. To address these issues, we introduce a novel efficient multivariate statistical framework for cross-sectional studies, termed MIDAS, seeking highly sensitive and specific voxel-wise brain maps, while leveraging the power of regional discriminant analysis. In MIDAS, locally linear discriminative learning is applied to estimate the pattern that best discriminates between two groups, or predicts a variable of interest. This pattern is equivalent to local filtering by an optimal kernel whose coefficients are the weights of the linear discriminant. By composing information from all neighborhoods that contain a given voxel, MIDAS produces a statistic that collectively reflects the contribution of the voxel to the regional classifiers as well as the discriminative power of the classifiers. Critically, MIDAS efficiently assesses the

  11. Analytical constraints on layered gas trapping and smoothing of atmospheric variability in ice under low-accumulation conditions

    Directory of Open Access Journals (Sweden)

    K. Fourteau

    2017-12-01

    Full Text Available We investigate for the first time the loss and alteration of past atmospheric information from air trapping mechanisms under low-accumulation conditions through continuous CH4 (and CO measurements. Methane concentration changes were measured over the Dansgaard–Oeschger event 17 (DO-17,  ∼  60 000 yr BP in the Antarctic Vostok 4G-2 ice core. Measurements were performed using continuous-flow analysis combined with laser spectroscopy. The results highlight many anomalous layers at the centimeter scale that are unevenly distributed along the ice core. The anomalous methane mixing ratios differ from those in the immediate surrounding layers by up to 50 ppbv. This phenomenon can be theoretically reproduced by a simple layered trapping model, creating very localized gas age scale inversions. We propose a method for cleaning the record of anomalous values that aims at minimizing the bias in the overall signal. Once the layered-trapping-induced anomalies are removed from the record, DO-17 appears to be smoother than its equivalent record from the high-accumulation WAIS Divide ice core. This is expected due to the slower sinking and densification speeds of firn layers at lower accumulation. However, the degree of smoothing appears surprisingly similar between modern and DO-17 conditions at Vostok. This suggests that glacial records of trace gases from low-accumulation sites in the East Antarctic plateau can provide a better time resolution of past atmospheric composition changes than previously expected. We also developed a numerical method to extract the gas age distributions in ice layers after the removal of the anomalous layers based on comparison with a weakly smoothed record. It is particularly adapted for the conditions of the East Antarctic plateau, as it helps to characterize smoothing for a large range of very low-temperature and low-accumulation conditions.

  12. Decoupling local mechanics from large-scale structure in modular metamaterials

    Science.gov (United States)

    Yang, Nan; Silverberg, Jesse L.

    2017-04-01

    A defining feature of mechanical metamaterials is that their properties are determined by the organization of internal structure instead of the raw fabrication materials. This shift of attention to engineering internal degrees of freedom has coaxed relatively simple materials into exhibiting a wide range of remarkable mechanical properties. For practical applications to be realized, however, this nascent understanding of metamaterial design must be translated into a capacity for engineering large-scale structures with prescribed mechanical functionality. Thus, the challenge is to systematically map desired functionality of large-scale structures backward into a design scheme while using finite parameter domains. Such “inverse design” is often complicated by the deep coupling between large-scale structure and local mechanical function, which limits the available design space. Here, we introduce a design strategy for constructing 1D, 2D, and 3D mechanical metamaterials inspired by modular origami and kirigami. Our approach is to assemble a number of modules into a voxelized large-scale structure, where the module’s design has a greater number of mechanical design parameters than the number of constraints imposed by bulk assembly. This inequality allows each voxel in the bulk structure to be uniquely assigned mechanical properties independent from its ability to connect and deform with its neighbors. In studying specific examples of large-scale metamaterial structures we show that a decoupling of global structure from local mechanical function allows for a variety of mechanically and topologically complex designs.

  13. Localized and periodic exact solutions to the nonlinear Schroedinger equation with spatially modulated parameters: Linear and nonlinear lattices

    International Nuclear Information System (INIS)

    Belmonte-Beitia, Juan; Konotop, Vladimir V.; Perez-Garcia, Victor M.; Vekslerchik, Vadym E.

    2009-01-01

    Using similarity transformations we construct explicit solutions of the nonlinear Schroedinger equation with linear and nonlinear periodic potentials. We present explicit forms of spatially localized and periodic solutions, and study their properties. We put our results in the framework of the exploited perturbation techniques and discuss their implications on the properties of associated linear periodic potentials and on the possibilities of stabilization of gap solitons using polychromatic lattices.

  14. A Collision-Free G2 Continuous Path-Smoothing Algorithm Using Quadratic Polynomial Interpolation

    Directory of Open Access Journals (Sweden)

    Seong-Ryong Chang

    2014-12-01

    Full Text Available Most path-planning algorithms are used to obtain a collision-free path without considering continuity. On the other hand, a continuous path is needed for stable movement. In this paper, the searched path was converted into a G2 continuous path using the modified quadratic polynomial and membership function interpolation algorithm. It is simple, unique and provides a good geometric interpretation. In addition, a collision-checking and improvement algorithm is proposed. The collision-checking algorithm can check the collisions of a smoothed path. If collisions are detected, the collision improvement algorithm modifies the collision path to a collision-free path. The collision improvement algorithm uses a geometric method. This method uses the perpendicular line between a collision position and the collision piecewise linear path. The sub-waypoint is added, and the QPMI algorithm is applied again. As a result, the collision-smoothed path is converted into a collision-free smooth path without changing the continuity.

  15. Local and linear chemical reactivity response functions at finite temperature in density functional theory

    International Nuclear Information System (INIS)

    Franco-Pérez, Marco; Ayers, Paul W.; Gázquez, José L.; Vela, Alberto

    2015-01-01

    We explore the local and nonlocal response functions of the grand canonical potential density functional at nonzero temperature. In analogy to the zero-temperature treatment, local (e.g., the average electron density and the local softness) and nonlocal (e.g., the softness kernel) intrinsic response functions are defined as partial derivatives of the grand canonical potential with respect to its thermodynamic variables (i.e., the chemical potential of the electron reservoir and the external potential generated by the atomic nuclei). To define the local and nonlocal response functions of the electron density (e.g., the Fukui function, the linear density response function, and the dual descriptor), we differentiate with respect to the average electron number and the external potential. The well-known mathematical relationships between the intrinsic response functions and the electron-density responses are generalized to nonzero temperature, and we prove that in the zero-temperature limit, our results recover well-known identities from the density functional theory of chemical reactivity. Specific working equations and numerical results are provided for the 3-state ensemble model

  16. Topology, isomorphic smoothness and polyhedrality in Banach spaces

    OpenAIRE

    Smith, Richard J.

    2018-01-01

    In recent decades, topology has come to play an increasing role in some geometric aspects of Banach space theory. The class of so-called $w^*$-locally relatively compact sets was introduced recently by Fonf, Pallares, Troyanski and the author, and were found to be a useful topological tool in the theory of isomorphic smoothness and polyhedrality in Banach spaces. We develop the topological theory of these sets and present some Banach space applications.

  17. The Smoothing Artifact of Spatially Constrained Canonical Correlation Analysis in Functional MRI

    Directory of Open Access Journals (Sweden)

    Dietmar Cordes

    2012-01-01

    Full Text Available A wide range of studies show the capacity of multivariate statistical methods for fMRI to improve mapping of brain activations in a noisy environment. An advanced method uses local canonical correlation analysis (CCA to encompass a group of neighboring voxels instead of looking at the single voxel time course. The value of a suitable test statistic is used as a measure of activation. It is customary to assign the value to the center voxel; however, this is a choice of convenience and without constraints introduces artifacts, especially in regions of strong localized activation. To compensate for these deficiencies, different spatial constraints in CCA have been introduced to enforce dominance of the center voxel. However, even if the dominance condition for the center voxel is satisfied, constrained CCA can still lead to a smoothing artifact, often called the “bleeding artifact of CCA”, in fMRI activation patterns. In this paper a new method is introduced to measure and correct for the smoothing artifact for constrained CCA methods. It is shown that constrained CCA methods corrected for the smoothing artifact lead to more plausible activation patterns in fMRI as shown using data from a motor task and a memory task.

  18. Comparison of height-diameter models based on geographically weighted regressions and linear mixed modelling applied to large scale forest inventory data

    Energy Technology Data Exchange (ETDEWEB)

    Quirós Segovia, M.; Condés Ruiz, S.; Drápela, K.

    2016-07-01

    Aim of the study: The main objective of this study was to test Geographically Weighted Regression (GWR) for developing height-diameter curves for forests on a large scale and to compare it with Linear Mixed Models (LMM). Area of study: Monospecific stands of Pinus halepensis Mill. located in the region of Murcia (Southeast Spain). Materials and Methods: The dataset consisted of 230 sample plots (2582 trees) from the Third Spanish National Forest Inventory (SNFI) randomly split into training data (152 plots) and validation data (78 plots). Two different methodologies were used for modelling local (Petterson) and generalized height-diameter relationships (Cañadas I): GWR, with different bandwidths, and linear mixed models. Finally, the quality of the estimated models was compared throughout statistical analysis. Main results: In general, both LMM and GWR provide better prediction capability when applied to a generalized height-diameter function than when applied to a local one, with R2 values increasing from around 0.6 to 0.7 in the model validation. Bias and RMSE were also lower for the generalized function. However, error analysis showed that there were no large differences between these two methodologies, evidencing that GWR provides results which are as good as the more frequently used LMM methodology, at least when no additional measurements are available for calibrating. Research highlights: GWR is a type of spatial analysis for exploring spatially heterogeneous processes. GWR can model spatial variation in tree height-diameter relationship and its regression quality is comparable to LMM. The advantage of GWR over LMM is the possibility to determine the spatial location of every parameter without additional measurements. Abbreviations: GWR (Geographically Weighted Regression); LMM (Linear Mixed Model); SNFI (Spanish National Forest Inventory). (Author)

  19. Maximum principles for boundary-degenerate second-order linear elliptic differential operators

    OpenAIRE

    Feehan, Paul M. N.

    2012-01-01

    We prove weak and strong maximum principles, including a Hopf lemma, for smooth subsolutions to equations defined by linear, second-order, partial differential operators whose principal symbols vanish along a portion of the domain boundary. The boundary regularity property of the smooth subsolutions along this boundary vanishing locus ensures that these maximum principles hold irrespective of the sign of the Fichera function. Boundary conditions need only be prescribed on the complement in th...

  20. Bayesian Exponential Smoothing.

    OpenAIRE

    Forbes, C.S.; Snyder, R.D.; Shami, R.S.

    2000-01-01

    In this paper, a Bayesian version of the exponential smoothing method of forecasting is proposed. The approach is based on a state space model containing only a single source of error for each time interval. This model allows us to improve current practices surrounding exponential smoothing by providing both point predictions and measures of the uncertainty surrounding them.

  1. Modelling free surface flows with smoothed particle hydrodynamics

    Directory of Open Access Journals (Sweden)

    L.Di G.Sigalotti

    2006-01-01

    Full Text Available In this paper the method of Smoothed Particle Hydrodynamics (SPH is extended to include an adaptive density kernel estimation (ADKE procedure. It is shown that for a van der Waals (vdW fluid, this method can be used to deal with free-surface phenomena without difficulties. In particular, arbitrary moving boundaries can be easily handled because surface tension is effectively simulated by the cohesive pressure forces. Moreover, the ADKE method is seen to increase both the accuracy and stability of SPH since it allows the width of the kernel interpolant to vary locally in a way that only the minimum necessary smoothing is applied at and near free surfaces and sharp fluid-fluid interfaces. The method is robust and easy to implement. Examples of its resolving power are given for both the formation of a circular liquid drop under surface tension and the nonlinear oscillation of excited drops.

  2. The correlation function for density perturbations in an expanding universe. I - Linear theory

    Science.gov (United States)

    Mcclelland, J.; Silk, J.

    1977-01-01

    The evolution of the two-point correlation function for adiabatic density perturbations in the early universe is studied. Analytical solutions are obtained for the evolution of linearized spherically symmetric adiabatic density perturbations and the two-point correlation function for these perturbations in the radiation-dominated portion of the early universe. The results are then extended to the regime after decoupling. It is found that: (1) adiabatic spherically symmetric perturbations comparable in scale with the maximum Jeans length would survive the radiation-dominated regime; (2) irregular fluctuations are smoothed out up to the scale of the maximum Jeans length in the radiation era, but regular fluctuations might survive on smaller scales; (3) in general, the only surviving structures for irregularly shaped adiabatic density perturbations of arbitrary but finite scale in the radiation regime are the size of or larger than the maximum Jeans length in that regime; (4) infinite plane waves with a wavelength smaller than the maximum Jeans length but larger than the critical dissipative damping scale could survive the radiation regime; and (5) black holes would also survive the radiation regime and might accrete sufficient mass after decoupling to nucleate the formation of galaxies.

  3. Growth of linear Ni-filled carbon nanotubes by local arc discharge in liquid ethanol

    Energy Technology Data Exchange (ETDEWEB)

    Sagara, Takuya [Department of Electric Engineering, Graduated School of Science and Technology, Nihon University, 1-8-14 Surugadai Kanda, Chiyoda, Tokyo 101-8308 (Japan); Kurumi, Satoshi [Department of Electric Engineering, College of Science and Technology, Nihon University, 1-8-14 Surugadai Kanda, Chiyoda, Tokyo 101-8308 (Japan); Suzuki, Kaoru, E-mail: kaoru@ele.cst.nihon-u.ac.jp [Department of Electric Engineering, College of Science and Technology, Nihon University, 1-8-14 Surugadai Kanda, Chiyoda, Tokyo 101-8308 (Japan)

    2014-02-15

    The cylindrical geometry of carbon nanotubes (CNTs) allows them to be filled with metal catalysts; the resulting metal-filled CNTs possess different properties depending on the filler metal. Here we report the synthesis of Ni-filled CNTs in which Ni is situated linearly and homogeneously by local arc discharge in liquid ethanol. The structural characteristics of synthesized Ni-filled CNTs were determined by transmission electron microscopy (TEM), and the relationship between pyrolysis conditions and the length and diameter of Ni-filled CNTs was examined. The encapsulated Ni was identified by a TEM-equipped energy-dispersive X-ray spectroscope and found to have a single-crystal fcc structure by nano-beam diffraction. The features of linear Ni-filled CNT are expected to be applicable to probes for magnetic force microscopy.

  4. Plasmon mass scale and quantum fluctuations of classical fields on a real time lattice

    Science.gov (United States)

    Kurkela, Aleksi; Lappi, Tuomas; Peuron, Jarkko

    2018-03-01

    Classical real-time lattice simulations play an important role in understanding non-equilibrium phenomena in gauge theories and are used in particular to model the prethermal evolution of heavy-ion collisions. Above the Debye scale the classical Yang-Mills (CYM) theory can be matched smoothly to kinetic theory. First we study the limits of the quasiparticle picture of the CYM fields by determining the plasmon mass of the system using 3 different methods. Then we argue that one needs a numerical calculation of a system of classical gauge fields and small linearized fluctuations, which correspond to quantum fluctuations, in a way that keeps the separation between the two manifest. We demonstrate and test an implementation of an algorithm with the linearized fluctuation showing that the linearization indeed works and that the Gauss's law is conserved.

  5. Cauchy problem with general discontinuous initial data along a smooth curve for 2-d Euler system

    Science.gov (United States)

    Chen, Shuxing; Li, Dening

    2014-09-01

    We study the Cauchy problems for the isentropic 2-d Euler system with discontinuous initial data along a smooth curve. All three singularities are present in the solution: shock wave, rarefaction wave and contact discontinuity. We show that the usual restrictive high order compatibility conditions for the initial data are automatically satisfied. The local existence of piecewise smooth solution containing all three waves is established.

  6. Anti-smooth muscle antibody

    Science.gov (United States)

    ... gov/ency/article/003531.htm Anti-smooth muscle antibody To use the sharing features on this page, please enable JavaScript. Anti-smooth muscle antibody is a blood test that detects the presence ...

  7. Smooth functors vs. differential forms

    NARCIS (Netherlands)

    Schreiber, U.; Waldorf, K.

    2011-01-01

    We establish a relation between smooth 2-functors defined on the path 2-groupoid of a smooth manifold and differential forms on this manifold. This relation can be understood as a part of a dictionary between fundamental notions from category theory and differential geometry. We show that smooth

  8. A Robust Vehicle Localization Approach Based on GNSS/IMU/DMI/LiDAR Sensor Fusion for Autonomous Vehicles

    Directory of Open Access Journals (Sweden)

    Xiaoli Meng

    2017-09-01

    Full Text Available Precise and robust localization in a large-scale outdoor environment is essential for an autonomous vehicle. In order to improve the performance of the fusion of GNSS (Global Navigation Satellite System/IMU (Inertial Measurement Unit/DMI (Distance-Measuring Instruments, a multi-constraint fault detection approach is proposed to smooth the vehicle locations in spite of GNSS jumps. Furthermore, the lateral localization error is compensated by the point cloud-based lateral localization method proposed in this paper. Experiment results have verified the algorithms proposed in this paper, which shows that the algorithms proposed in this paper are capable of providing precise and robust vehicle localization.

  9. A Robust Vehicle Localization Approach Based on GNSS/IMU/DMI/LiDAR Sensor Fusion for Autonomous Vehicles.

    Science.gov (United States)

    Meng, Xiaoli; Wang, Heng; Liu, Bingbing

    2017-09-18

    Precise and robust localization in a large-scale outdoor environment is essential for an autonomous vehicle. In order to improve the performance of the fusion of GNSS (Global Navigation Satellite System)/IMU (Inertial Measurement Unit)/DMI (Distance-Measuring Instruments), a multi-constraint fault detection approach is proposed to smooth the vehicle locations in spite of GNSS jumps. Furthermore, the lateral localization error is compensated by the point cloud-based lateral localization method proposed in this paper. Experiment results have verified the algorithms proposed in this paper, which shows that the algorithms proposed in this paper are capable of providing precise and robust vehicle localization.

  10. Galaxy bias and non-linear structure formation in general relativity

    International Nuclear Information System (INIS)

    Baldauf, Tobias; Seljak, Uroš; Senatore, Leonardo; Zaldarriaga, Matias

    2011-01-01

    Length scales probed by the large scale structure surveys are becoming closer and closer to the horizon scale. Further, it has been recently understood that non-Gaussianity in the initial conditions could show up in a scale dependence of the bias of galaxies at the largest possible distances. It is therefore important to take General Relativistic effects into account. Here we provide a General Relativistic generalization of the bias that is valid both for Gaussian and for non-Gaussian initial conditions. The collapse of objects happens on very small scales, while long-wavelength modes are always in the quasi linear regime. Around every small collapsing region, it is therefore possible to find a reference frame that is valid for arbitrary times and where the space time is almost flat: the Fermi frame. Here the Newtonian approximation is applicable and the equations of motion are the ones of the standard N-body codes. The effects of long-wavelength modes are encoded in the mapping from the cosmological frame to the local Fermi frame. At the level of the linear bias, the effect of the long-wavelength modes on the dynamics of the short scales is all encoded in the local curvature of the Universe, which allows us to define a General Relativistic generalization of the bias in the standard Newtonian setting. We show that the bias due to this effect goes to zero as the square of the ratio between the physical wavenumber and the Hubble scale for modes longer than the horizon, confirming the intuitive picture that modes longer than the horizon do not have any dynamical effect. On the other hand, the bias due to non-Gaussianities does not need to vanish for modes longer than the Hubble scale, and for non-Gaussianities of the local kind it goes to a constant. As a further application of our setup, we show that it is not necessary to perform large N-body simulations to extract information about long-wavelength modes: N-body simulations can be done on small scales and long

  11. StreamMap: Smooth Dynamic Visualization of High-Density Streaming Points.

    Science.gov (United States)

    Li, Chenhui; Baciu, George; Han, Yu

    2018-03-01

    Interactive visualization of streaming points for real-time scatterplots and linear blending of correlation patterns is increasingly becoming the dominant mode of visual analytics for both big data and streaming data from active sensors and broadcasting media. To better visualize and interact with inter-stream patterns, it is generally necessary to smooth out gaps or distortions in the streaming data. Previous approaches either animate the points directly or present a sampled static heat-map. We propose a new approach, called StreamMap, to smoothly blend high-density streaming points and create a visual flow that emphasizes the density pattern distributions. In essence, we present three new contributions for the visualization of high-density streaming points. The first contribution is a density-based method called super kernel density estimation that aggregates streaming points using an adaptive kernel to solve the overlapping problem. The second contribution is a robust density morphing algorithm that generates several smooth intermediate frames for a given pair of frames. The third contribution is a trend representation design that can help convey the flow directions of the streaming points. The experimental results on three datasets demonstrate the effectiveness of StreamMap when dynamic visualization and visual analysis of trend patterns on streaming points are required.

  12. Kalman filter with a linear state model for PDR+WLAN positioning and its application to assisting a particle filter

    Science.gov (United States)

    Raitoharju, Matti; Nurminen, Henri; Piché, Robert

    2015-12-01

    Indoor positioning based on wireless local area network (WLAN) signals is often enhanced using pedestrian dead reckoning (PDR) based on an inertial measurement unit. The state evolution model in PDR is usually nonlinear. We present a new linear state evolution model for PDR. In simulated-data and real-data tests of tightly coupled WLAN-PDR positioning, the positioning accuracy with this linear model is better than with the traditional models when the initial heading is not known, which is a common situation. The proposed method is computationally light and is also suitable for smoothing. Furthermore, we present modifications to WLAN positioning based on Gaussian coverage areas and show how a Kalman filter using the proposed model can be used for integrity monitoring and (re)initialization of a particle filter.

  13. Kansas City Transportation and Local-Scale Air Quality Study (KC-TRAQS) Fact Sheet

    Science.gov (United States)

    In fall 2017, the U.S. Environmental Protection Agency (EPA) launched the Kansas City Transportation Local-Scale Air Quality Study (KC-TRAQS) to learn more about local community air quality in three neighborhoods in Kansas City, KS.

  14. Boundary Layers for the Navier-Stokes Equations Linearized Around a Stationary Euler Flow

    Science.gov (United States)

    Gie, Gung-Min; Kelliher, James P.; Mazzucato, Anna L.

    2018-03-01

    We study the viscous boundary layer that forms at small viscosity near a rigid wall for the solution to the Navier-Stokes equations linearized around a smooth and stationary Euler flow (LNSE for short) in a smooth bounded domain Ω \\subset R^3 under no-slip boundary conditions. LNSE is supplemented with smooth initial data and smooth external forcing, assumed ill-prepared, that is, not compatible with the no-slip boundary condition. We construct an approximate solution to LNSE on the time interval [0, T], 0Math J 45(3):863-916, 1996), Xin and Yanagisawa (Commun Pure Appl Math 52(4):479-541, 1999), and Gie (Commun Math Sci 12(2):383-400, 2014).

  15. 2MASS Constraints on the Local Large-Scale Structure: A Challenge to LCDM?

    OpenAIRE

    Frith, W. J.; Shanks, T.; Outram, P. J.

    2004-01-01

    We investigate the large-scale structure of the local galaxy distribution using the recently completed 2 Micron All Sky Survey (2MASS). First, we determine the K-band number counts over the 4000 sq.deg. APM survey area where evidence for a large-scale `local hole' has previously been detected and compare them to a homogeneous prediction. Considering a LCDM form for the 2-point angular correlation function, the observed deficiency represents a 5 sigma fluctuation in the galaxy distribution. We...

  16. Local-Scale Simulations of Nucleate Boiling on Micrometer-Featured Surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Sitaraman, Hariswaran [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Moreno, Gilberto [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Narumanchi, Sreekant V [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Dede, Ercan M. [Toyota Research Institute of North America; Joshi, Shailesh N. [Toyota Research Institute of North America; Zhou, Feng [Toyota Research Institute of North America

    2017-07-12

    A high-fidelity computational fluid dynamics (CFD)-based model for bubble nucleation of the refrigerant HFE7100 on micrometer-featured surfaces is presented in this work. The single-fluid incompressible Navier-Stokes equations, along with energy transport and natural convection effects are solved on a featured surface resolved grid. An a priori cavity detection method is employed to convert raw profilometer data of a surface into well-defined cavities. The cavity information and surface morphology are represented in the CFD model by geometric mesh deformations. Surface morphology is observed to initiate buoyancy-driven convection in the liquid phase, which in turn results in faster nucleation of cavities. Simulations pertaining to a generic rough surface show a trend where smaller size cavities nucleate with higher wall superheat. This local-scale model will serve as a self-consistent connection to larger device scale continuum models where local feature representation is not possible.

  17. A Cross-Domain Collaborative Filtering Algorithm Based on Feature Construction and Locally Weighted Linear Regression.

    Science.gov (United States)

    Yu, Xu; Lin, Jun-Yu; Jiang, Feng; Du, Jun-Wei; Han, Ji-Zhong

    2018-01-01

    Cross-domain collaborative filtering (CDCF) solves the sparsity problem by transferring rating knowledge from auxiliary domains. Obviously, different auxiliary domains have different importance to the target domain. However, previous works cannot evaluate effectively the significance of different auxiliary domains. To overcome this drawback, we propose a cross-domain collaborative filtering algorithm based on Feature Construction and Locally Weighted Linear Regression (FCLWLR). We first construct features in different domains and use these features to represent different auxiliary domains. Thus the weight computation across different domains can be converted as the weight computation across different features. Then we combine the features in the target domain and in the auxiliary domains together and convert the cross-domain recommendation problem into a regression problem. Finally, we employ a Locally Weighted Linear Regression (LWLR) model to solve the regression problem. As LWLR is a nonparametric regression method, it can effectively avoid underfitting or overfitting problem occurring in parametric regression methods. We conduct extensive experiments to show that the proposed FCLWLR algorithm is effective in addressing the data sparsity problem by transferring the useful knowledge from the auxiliary domains, as compared to many state-of-the-art single-domain or cross-domain CF methods.

  18. Smoothness in Binomial Edge Ideals

    Directory of Open Access Journals (Sweden)

    Hamid Damadi

    2016-06-01

    Full Text Available In this paper we study some geometric properties of the algebraic set associated to the binomial edge ideal of a graph. We study the singularity and smoothness of the algebraic set associated to the binomial edge ideal of a graph. Some of these algebraic sets are irreducible and some of them are reducible. If every irreducible component of the algebraic set is smooth we call the graph an edge smooth graph, otherwise it is called an edge singular graph. We show that complete graphs are edge smooth and introduce two conditions such that the graph G is edge singular if and only if it satisfies these conditions. Then, it is shown that cycles and most of trees are edge singular. In addition, it is proved that complete bipartite graphs are edge smooth.

  19. Golden Eagle fatalities and the continental-scale consequences of local wind-energy generation.

    Science.gov (United States)

    Katzner, Todd E; Nelson, David M; Braham, Melissa A; Doyle, Jacqueline M; Fernandez, Nadia B; Duerr, Adam E; Bloom, Peter H; Fitzpatrick, Matthew C; Miller, Tricia A; Culver, Renee C E; Braswell, Loan; DeWoody, J Andrew

    2017-04-01

    Renewable energy production is expanding rapidly despite mostly unknown environmental effects on wildlife and habitats. We used genetic and stable isotope data collected from Golden Eagles (Aquila chrysaetos) killed at the Altamont Pass Wind Resource Area (APWRA) in California in demographic models to test hypotheses about the geographic extent and demographic consequences of fatalities caused by renewable energy facilities. Geospatial analyses of δ 2 H values obtained from feathers showed that ≥25% of these APWRA-killed eagles were recent immigrants to the population, most from long distances away (>100 km). Data from nuclear genes indicated this subset of immigrant eagles was genetically similar to birds identified as locals from the δ 2 H data. Demographic models implied that in the face of this mortality, the apparent stability of the local Golden Eagle population was maintained by continental-scale immigration. These analyses demonstrate that ecosystem management decisions concerning the effects of local-scale renewable energy can have continental-scale consequences. © 2016 Society for Conservation Biology.

  20. Elongation cutoff technique armed with quantum fast multipole method for linear scaling.

    Science.gov (United States)

    Korchowiec, Jacek; Lewandowski, Jakub; Makowski, Marcin; Gu, Feng Long; Aoki, Yuriko

    2009-11-30

    A linear-scaling implementation of the elongation cutoff technique (ELG/C) that speeds up Hartree-Fock (HF) self-consistent field calculations is presented. The cutoff method avoids the known bottleneck of the conventional HF scheme, that is, diagonalization, because it operates within the low dimension subspace of the whole atomic orbital space. The efficiency of ELG/C is illustrated for two model systems. The obtained results indicate that the ELG/C is a very efficient sparse matrix algebra scheme. Copyright 2009 Wiley Periodicals, Inc.

  1. Ensemble Kalman filtering with one-step-ahead smoothing

    KAUST Repository

    Raboudi, Naila F.

    2018-01-11

    The ensemble Kalman filter (EnKF) is widely used for sequential data assimilation. It operates as a succession of forecast and analysis steps. In realistic large-scale applications, EnKFs are implemented with small ensembles and poorly known model error statistics. This limits their representativeness of the background error covariances and, thus, their performance. This work explores the efficiency of the one-step-ahead (OSA) smoothing formulation of the Bayesian filtering problem to enhance the data assimilation performance of EnKFs. Filtering with OSA smoothing introduces an updated step with future observations, conditioning the ensemble sampling with more information. This should provide an improved background ensemble in the analysis step, which may help to mitigate the suboptimal character of EnKF-based methods. Here, the authors demonstrate the efficiency of a stochastic EnKF with OSA smoothing for state estimation. They then introduce a deterministic-like EnKF-OSA based on the singular evolutive interpolated ensemble Kalman (SEIK) filter. The authors show that the proposed SEIK-OSA outperforms both SEIK, as it efficiently exploits the data twice, and the stochastic EnKF-OSA, as it avoids observational error undersampling. They present extensive assimilation results from numerical experiments conducted with the Lorenz-96 model to demonstrate SEIK-OSA’s capabilities.

  2. Extraction of the 3D local orientation of myocytes in human cardiac tissue using X-ray phase-contrast micro-tomography and multi-scale analysis.

    Science.gov (United States)

    Varray, François; Mirea, Iulia; Langer, Max; Peyrin, Françoise; Fanton, Laurent; Magnin, Isabelle E

    2017-05-01

    This paper presents a methodology to access the 3D local myocyte arrangements in fresh human post-mortem heart samples. We investigated the cardiac micro-structure at a high and isotropic resolution of 3.5 µm in three dimensions using X-ray phase micro-tomography at the European Synchrotron Radiation Facility. We then processed the reconstructed volumes to extract the 3D local orientation of the myocytes using a multi-scale approach with no segmentation. We created a simplified 3D model of tissue sample made of simulated myocytes with known size and orientations, to evaluate our orientation extraction method. Afterwards, we applied it to 2D histological cuts and to eight 3D left ventricular (LV) cardiac tissue samples. Then, the variation of the helix angles, from the endocardium to the epicardium, was computed at several spatial resolutions ranging from 3.6 3  mm 3 to 112 3  µm 3 . We measure an increased range of 20° to 30° from the coarsest resolution level to the finest level in the experimental samples. This result is in line with the higher values measured from histology. The displayed tractography demonstrates a rather smooth evolution of the transmural helix angle in six LV samples and a sudden discontinuity of the helix angle in two septum samples. These measurements bring a new vision of the human heart architecture from macro- to micro-scale. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Assessing the suitability of commercial fisheries data for local-scale ...

    African Journals Online (AJOL)

    ... are suitable for systematic spatial planning on a local scale and can be used for future spatial management and conservation. Keywords: chokka-squid, conservation planning, demersal trawl, linefish, logbooks, observer data, shark longline, small pelagic, vessel monitoring system. African Journal of Marine Science 2014, ...

  4. A generalized transport-velocity formulation for smoothed particle hydrodynamics

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Chi; Hu, Xiangyu Y., E-mail: xiangyu.hu@tum.de; Adams, Nikolaus A.

    2017-05-15

    The standard smoothed particle hydrodynamics (SPH) method suffers from tensile instability. In fluid-dynamics simulations this instability leads to particle clumping and void regions when negative pressure occurs. In solid-dynamics simulations, it results in unphysical structure fragmentation. In this work the transport-velocity formulation of Adami et al. (2013) is generalized for providing a solution of this long-standing problem. Other than imposing a global background pressure, a variable background pressure is used to modify the particle transport velocity and eliminate the tensile instability completely. Furthermore, such a modification is localized by defining a shortened smoothing length. The generalized formulation is suitable for fluid and solid materials with and without free surfaces. The results of extensive numerical tests on both fluid and solid dynamics problems indicate that the new method provides a unified approach for multi-physics SPH simulations.

  5. Quantum non-local charges and absence of particle production in the two-dimensional non-linear sigma-model

    International Nuclear Information System (INIS)

    Luescher, M.

    1977-12-01

    Conserved non-local charges are shown to exist in the quantum non-linear sigma-model by a non-perturbative method. They imply the absence of particle production and the 'factorization equations' for the two particle S-matrix, which can then be calculated explicitly. (Auth.)

  6. The Fragmentation Criteria in Local Vertically Stratified Self-gravitating Disk Simulations

    Energy Technology Data Exchange (ETDEWEB)

    Baehr, Hans; Klahr, Hubert [Max Planck Institute for Astronomy, Königstuhl 17, D-69117 Heidelberg (Germany); Kratter, Kaitlin M., E-mail: baehr@mpia.de [Steward Observatory, University of Arizona, Tucson, AZ 85721 (United States)

    2017-10-10

    Massive circumstellar disks are prone to gravitational instabilities, which trigger the formation of spiral arms that can fragment into bound clumps under the right conditions. Two-dimensional simulations of self-gravitating disks are useful starting points for studying fragmentation because they allow high-resolution simulations of thin disks. However, convergence issues can arise in 2D from various sources. One of these sources is the 2D approximation of self-gravity, which exaggerates the effect of self-gravity on small scales when the potential is not smoothed to account for the assumed vertical extent of the disk. This effect is enhanced by increased resolution, resulting in fragmentation at longer cooling timescales β . If true, it suggests that the 3D simulations of disk fragmentation may not have the same convergence problem and could be used to examine the nature of fragmentation without smoothing self-gravity on scales similar to the disk scale height. To that end, we have carried out local 3D self-gravitating disk simulations with simple β cooling with fixed background irradiation to determine if 3D is necessary to properly describe disk fragmentation. Above a resolution of ∼40 grid cells per scale height, we find that our simulations converge with respect to the cooling timescale. This result converges in agreement with analytic expectations which place a fragmentation boundary at β {sub crit} = 3.

  7. Local Fitting of the Kohn-Sham Density in a Gaussian and Plane Waves Scheme for Large-Scale Density Functional Theory Simulations.

    Science.gov (United States)

    Golze, Dorothea; Iannuzzi, Marcella; Hutter, Jürg

    2017-05-09

    A local resolution-of-the-identity (LRI) approach is introduced in combination with the Gaussian and plane waves (GPW) scheme to enable large-scale Kohn-Sham density functional theory calculations. In GPW, the computational bottleneck is typically the description of the total charge density on real-space grids. Introducing the LRI approximation, the linear scaling of the GPW approach with respect to system size is retained, while the prefactor for the grid operations is reduced. The density fitting is an O(N) scaling process implemented by approximating the atomic pair densities by an expansion in one-center fit functions. The computational cost for the grid-based operations becomes negligible in LRIGPW. The self-consistent field iteration is up to 30 times faster for periodic systems dependent on the symmetry of the simulation cell and on the density of grid points. However, due to the overhead introduced by the local density fitting, single point calculations and complete molecular dynamics steps, including the calculation of the forces, are effectively accelerated by up to a factor of ∼10. The accuracy of LRIGPW is assessed for different systems and properties, showing that total energies, reaction energies, intramolecular and intermolecular structure parameters are well reproduced. LRIGPW yields also high quality results for extended condensed phase systems such as liquid water, ice XV, and molecular crystals.

  8. Optimal control of the gear shifting process for shift smoothness in dual-clutch transmissions

    Science.gov (United States)

    Li, Guoqiang; Görges, Daniel

    2018-03-01

    The control of the transmission system in vehicles is significant for the driving comfort. In order to design a controller for smooth shifting and comfortable driving, a dynamic model of a dual-clutch transmission is presented in this paper. A finite-time linear quadratic regulator is proposed for the optimal control of the two friction clutches in the torque phase for the upshift process. An integral linear quadratic regulator is introduced to regulate the relative speed difference between the engine and the slipping clutch under the optimization of the input torque during the inertia phase. The control objective focuses on smoothing the upshift process so as to improve the driving comfort. Considering the available sensors in vehicles for feedback control, an observer design is presented to track the immeasurable variables. Simulation results show that the jerk can be reduced both in the torque phase and inertia phase, indicating good shift performance. Furthermore, compared with conventional controllers for the upshift process, the proposed control method can reduce shift jerk and improve shift quality.

  9. A local-global problem for linear differential equations

    NARCIS (Netherlands)

    Put, Marius van der; Reversat, Marc

    An inhomogeneous linear differential equation Ly = f over a global differential field can have a formal solution for each place without having a global solution. The vector space lgl(L) measures this phenomenon. This space is interpreted in terms of cohomology of linear algebraic groups and is

  10. A local-global problem for linear differential equations

    NARCIS (Netherlands)

    Put, Marius van der; Reversat, Marc

    2008-01-01

    An inhomogeneous linear differential equation Ly = f over a global differential field can have a formal solution for each place without having a global solution. The vector space lgl(L) measures this phenomenon. This space is interpreted in terms of cohomology of linear algebraic groups and is

  11. Non-linear optical materials

    CERN Document Server

    Saravanan, R

    2018-01-01

    Non-linear optical materials have widespread and promising applications, but the efforts to understand the local structure, electron density distribution and bonding is still lacking. The present work explores the structural details, the electron density distribution and the local bond length distribution of some non-linear optical materials. It also gives estimation of the optical band gap, the particle size, crystallite size, and the elemental composition from UV-Visible analysis, SEM, XRD and EDS of some non-linear optical materials respectively.

  12. Importance of woodlots to local communities, small scale entrepreneurs and indigenous forest conservation – A case study

    CSIR Research Space (South Africa)

    Ham, C

    2000-01-01

    Full Text Available forestry, South Africa The Importance of Woodlots to Local Communities, Small-scale Entrepreneurs and Indigenous Forest Conservation A case study Cori Ham ii The Importance of Woodlots to Local Communities, Small Scale Entrepreneurs... by the financial support of the UK Department for International Development and the European Commission iii Citation: Ham, C. 2000. The importance of woodlots to local communities, small scale entrepreneurs and indigenous forest conservation– A case study...

  13. Small-Scale, Local Area, and Transitional Millimeter Wave Propagation for 5G Communications

    Science.gov (United States)

    Rappaport, Theodore S.; MacCartney, George R.; Sun, Shu; Yan, Hangsong; Deng, Sijia

    2017-12-01

    This paper studies radio propagation mechanisms that impact handoffs, air interface design, beam steering, and MIMO for 5G mobile communication systems. Knife edge diffraction (KED) and a creeping wave linear model are shown to predict diffraction loss around typical building objects from 10 to 26 GHz, and human blockage measurements at 73 GHz are shown to fit a double knife-edge diffraction (DKED) model which incorporates antenna gains. Small-scale spatial fading of millimeter wave received signal voltage amplitude is generally Ricean-distributed for both omnidirectional and directional receive antenna patterns under both line-of-sight (LOS) and non-line-of-sight (NLOS) conditions in most cases, although the log-normal distribution fits measured data better for the omnidirectional receive antenna pattern in the NLOS environment. Small-scale spatial autocorrelations of received voltage amplitudes are shown to fit sinusoidal exponential and exponential functions for LOS and NLOS environments, respectively, with small decorrelation distances of 0.27 cm to 13.6 cm (smaller than the size of a handset) that are favorable for spatial multiplexing. Local area measurements using cluster and route scenarios show how the received signal changes as the mobile moves and transitions from LOS to NLOS locations, with reasonably stationary signal levels within clusters. Wideband mmWave power levels are shown to fade from 0.4 dB/ms to 40 dB/s, depending on travel speed and surroundings.

  14. Nuclear localization of CPI-17, a protein phosphatase-1 inhibitor protein, affects histone H3 phosphorylation and corresponds to proliferation of cancer and smooth muscle cells

    Energy Technology Data Exchange (ETDEWEB)

    Eto, Masumi, E-mail: masumi.eto@jefferson.edu [Department of Molecular Physiology and Biophysics, and Kimmel Cancer Center, Thomas Jefferson University, 1020 Locust Street, PA 19107 (United States); Kirkbride, Jason A.; Chugh, Rishika; Karikari, Nana Kofi [Department of Molecular Physiology and Biophysics, and Kimmel Cancer Center, Thomas Jefferson University, 1020 Locust Street, PA 19107 (United States); Kim, Jee In [Department of Molecular Physiology and Biophysics, and Kimmel Cancer Center, Thomas Jefferson University, 1020 Locust Street, PA 19107 (United States); Cardiovascular Research Institute, Kyungpook National University School of Medicine, Daegu 700-422 (Korea, Republic of)

    2013-04-26

    Highlights: •Non-canonical roles of the myosin phosphatase inhibitor (CPI-17) were studied. •CPI-17 is localized in the nucleus of hyperplastic cancer and smooth muscle cells. •CPI-17 Ser12 phosphorylation may regulate the nuclear import. •CPI-17 regulates histone H3 phosphorylation and cell proliferation. •The nuclear CPI-17-PP1 axis plays a proliferative role in cells. -- Abstract: CPI-17 (C-kinase-activated protein phosphatase-1 (PP1) inhibitor, 17 kDa) is a cytoplasmic protein predominantly expressed in mature smooth muscle (SM) that regulates the myosin-associated PP1 holoenzyme (MLCP). Here, we show CPI-17 expression in proliferating cells, such as pancreatic cancer and hyperplastic SM cells. Immunofluorescence showed that CPI-17 was concentrated in nuclei of human pancreatic cancer (Panc1) cells. Nuclear accumulation of CPI-17 was also detected in the proliferating vascular SM cell culture and cells at neointima of rat vascular injury model. The N-terminal 21-residue tail domain of CPI-17 was necessary for the nuclear localization. Phospho-mimetic Asp-substitution of CPI-17 at Ser12 attenuated the nuclear import. CPI-17 phosphorylated at Ser12 was not localized at nuclei, suggesting a suppressive role of Ser12 phosphorylation in the nuclear import. Activated CPI-17 bound to all three isoforms of PP1 catalytic subunit in Panc1 nuclear extracts. CPI-17 knockdown in Panc1 resulted in dephosphorylation of histone H3 at Thr3, Ser10 and Thr11, whereas it had no effects on the phosphorylation of myosin light chain and merlin, the known targets of MLCP. In parallel, CPI-17 knockdown suppressed Panc1 proliferation. We propose that CPI-17 accumulated in the nucleus through the N-terminal tail targets multiple PP1 signaling pathways regulating cell proliferation.

  15. Remote and Local Influences in Forecasting Pacific SST: a Linear Inverse Model and a Multimodel Ensemble Study

    Science.gov (United States)

    Faggiani Dias, D.; Subramanian, A. C.; Zanna, L.; Miller, A. J.

    2017-12-01

    Sea surface temperature (SST) in the Pacific sector is well known to vary on time scales from seasonal to decadal, and the ability to predict these SST fluctuations has many societal and economical benefits. Therefore, we use a suite of statistical linear inverse models (LIMs) to understand the remote and local SST variability that influences SST predictions over the North Pacific region and further improve our understanding on how the long-observed SST record can help better guide multi-model ensemble forecasts. Observed monthly SST anomalies in the Pacific sector (between 15oS and 60oN) are used to construct different regional LIMs for seasonal to decadal prediction. The forecast skills of the LIMs are compared to that from two operational forecast systems in the North American Multi-Model Ensemble (NMME) revealing that the LIM has better skill in the Northeastern Pacific than NMME models. The LIM is also found to have comparable forecast skill for SST in the Tropical Pacific with NMME models. This skill, however, is highly dependent on the initialization month, with forecasts initialized during the summer having better skill than those initialized during the winter. The forecast skill with LIM is also influenced by the verification period utilized to make the predictions, likely due to the changing character of El Niño in the 20th century. The North Pacific seems to be a source of predictability for the Tropics on seasonal to interannual time scales, while the Tropics act to worsen the skill for the forecast in the North Pacific. The data were also bandpassed into seasonal, interannual and decadal time scales to identify the relationships between time scales using the structure of the propagator matrix. For the decadal component, this coupling occurs the other way around: Tropics seem to be a source of predictability for the Extratropics, but the Extratropics don't improve the predictability for the Tropics. These results indicate the importance of temporal

  16. Cosmicflows Constrained Local UniversE Simulations

    Science.gov (United States)

    Sorce, Jenny G.; Gottlöber, Stefan; Yepes, Gustavo; Hoffman, Yehuda; Courtois, Helene M.; Steinmetz, Matthias; Tully, R. Brent; Pomarède, Daniel; Carlesi, Edoardo

    2016-01-01

    This paper combines observational data sets and cosmological simulations to generate realistic numerical replicas of the nearby Universe. The latter are excellent laboratories for studies of the non-linear process of structure formation in our neighbourhood. With measurements of radial peculiar velocities in the local Universe (cosmicflows-2) and a newly developed technique, we produce Constrained Local UniversE Simulations (CLUES). To assess the quality of these constrained simulations, we compare them with random simulations as well as with local observations. The cosmic variance, defined as the mean one-sigma scatter of cell-to-cell comparison between two fields, is significantly smaller for the constrained simulations than for the random simulations. Within the inner part of the box where most of the constraints are, the scatter is smaller by a factor of 2 to 3 on a 5 h-1 Mpc scale with respect to that found for random simulations. This one-sigma scatter obtained when comparing the simulated and the observation-reconstructed velocity fields is only 104 ± 4 km s-1, I.e. the linear theory threshold. These two results demonstrate that these simulations are in agreement with each other and with the observations of our neighbourhood. For the first time, simulations constrained with observational radial peculiar velocities resemble the local Universe up to a distance of 150 h-1 Mpc on a scale of a few tens of megaparsecs. When focusing on the inner part of the box, the resemblance with our cosmic neighbourhood extends to a few megaparsecs (<5 h-1 Mpc). The simulations provide a proper large-scale environment for studies of the formation of nearby objects.

  17. Extending Local Canonical Correlation Analysis to Handle General Linear Contrasts for fMRI Data

    Directory of Open Access Journals (Sweden)

    Mingwu Jin

    2012-01-01

    Full Text Available Local canonical correlation analysis (CCA is a multivariate method that has been proposed to more accurately determine activation patterns in fMRI data. In its conventional formulation, CCA has several drawbacks that limit its usefulness in fMRI. A major drawback is that, unlike the general linear model (GLM, a test of general linear contrasts of the temporal regressors has not been incorporated into the CCA formalism. To overcome this drawback, a novel directional test statistic was derived using the equivalence of multivariate multiple regression (MVMR and CCA. This extension will allow CCA to be used for inference of general linear contrasts in more complicated fMRI designs without reparameterization of the design matrix and without reestimating the CCA solutions for each particular contrast of interest. With the proper constraints on the spatial coefficients of CCA, this test statistic can yield a more powerful test on the inference of evoked brain regional activations from noisy fMRI data than the conventional t-test in the GLM. The quantitative results from simulated and pseudoreal data and activation maps from fMRI data were used to demonstrate the advantage of this novel test statistic.

  18. A non-linear kinematic hardening function

    International Nuclear Information System (INIS)

    Ottosen, N.S.

    1977-05-01

    Based on the classical theory of plasticity, and accepting the von Mises criterion as the initial yield criterion, a non-linear kinematic hardening function applicable both to Melan-Prager's and to Ziegler's hardening rule is proposed. This non-linear hardening function is determined by means of the uniaxial stress-strain curve, and any such curve is applicable. The proposed hardening function considers the problem of general reversed loading, and a smooth change in the behaviour from one plastic state to another nearlying plastic state is obtained. A review of both the kinematic hardening theory and the corresponding non-linear hardening assumptions is given, and it is shown that material behaviour is identical whether Melan-Prager's or Ziegler's hardening rule is applied, provided that the von Mises yield criterion is adopted. (author)

  19. Climate Controls AM Fungal Distributions from Global to Local Scales

    Science.gov (United States)

    Kivlin, S. N.; Hawkes, C.; Muscarella, R.; Treseder, K. K.; Kazenel, M.; Lynn, J.; Rudgers, J.

    2016-12-01

    Arbuscular mycorrhizal (AM) fungi have key functions in terrestrial biogeochemical processes; thus, determining the relative importance of climate, edaphic factors, and plant community composition on their geographic distributions can improve predictions of their sensitivity to global change. Local adaptation by AM fungi to plant hosts, soil nutrients, and climate suggests that all of these factors may control fungal geographic distributions, but their relative importance is unknown. We created species distribution models for 142 AM fungal taxa at the global scale with data from GenBank. We compared climate variables (BioClim and soil moisture), edaphic variables (phosphorus, carbon, pH, and clay content), and plant variables using model selection on models with (1) all variables, (2) climatic variables only (including soil moisture) and (3) resource-related variables only (all other soil parameters and NPP) using the MaxEnt algorithm evaluated with ENMEval. We also evaluated whether drivers of AM fungal distributions were phylogenetically conserved. To test whether global correlates of AM fungal distributions were reflected at local scales, we then surveyed AM fungi in nine plant hosts along three elevation gradients in the Upper Gunnison Basin, Colorado, USA. At the global scale, the distributions of 55% of AM fungal taxa were affected by both climate and soil resources, whereas 16% were only affected by climate and 29% were only affected by soil resources. Even for AM fungi that were affected by both climate and resources, the effects of climatic variables nearly always outweighed those of resources. Soil moisture and isothermality were the main climatic and NPP and soil carbon the main resource related factors influencing AM fungal distributions. Distributions of closely related AM fungal taxa were similarly affected by climate, but not by resources. Local scale surveys of AM fungi across elevations confirmed that climate was a key driver of AM fungal

  20. Conductance of finite systems and scaling in localization theory

    Science.gov (United States)

    Suslov, I. M.

    2012-11-01

    The conductance of finite systems plays a central role in the scaling theory of localization (Abrahams et al., Phys. Rev. Lett. 42, 673 (1979)). Usually it is defined by the Landauer-type formulas, which remain open the following questions: (a) exclusion of the contact resistance in the many-channel case; (b) correspondence of the Landauer conductance with internal properties of the system; (c) relation with the diffusion coefficient D(ω, q) of an infinite system. The answers to these questions are obtained below in the framework of two approaches: (1) self-consistent theory of localization by Vollhardt and Wölfle, and (2) quantum mechanical analysis based on the shell model. Both approaches lead to the same definition for the conductance of a finite system, closely related to the Thouless definition. In the framework of the self-consistent theory, the relations of finite-size scaling are derived and the Gell-Mann-Low functions β( g) for space dimensions d = 1, 2, 3 are calculated. In contrast to the previous attempt by Vollhardt and Wölfle (1982), the metallic and localized phase are considered from the same standpoint, and the conductance of a finite system has no singularity at the critical point. In the 2D case, the expansion of β( g) in 1/ g coincides with results of the σ-model approach on the two-loop level and depends on the renormalization scheme in higher loops; the use of dimensional regularization for transition to dimension d = 2 + ɛ looks incompatible with the physical essence of the problem. The results are compared with numerical and physical experiments. A situation in higher dimensions and the conditions for observation of the localization law σ(ω) ∝ - iω for conductivity are discussed.

  1. Conductance of finite systems and scaling in localization theory

    International Nuclear Information System (INIS)

    Suslov, I. M.

    2012-01-01

    The conductance of finite systems plays a central role in the scaling theory of localization (Abrahams et al., Phys. Rev. Lett. 42, 673 (1979)). Usually it is defined by the Landauer-type formulas, which remain open the following questions: (a) exclusion of the contact resistance in the many-channel case; (b) correspondence of the Landauer conductance with internal properties of the system; (c) relation with the diffusion coefficient D(ω, q) of an infinite system. The answers to these questions are obtained below in the framework of two approaches: (1) self-consistent theory of localization by Vollhardt and Wölfle, and (2) quantum mechanical analysis based on the shell model. Both approaches lead to the same definition for the conductance of a finite system, closely related to the Thouless definition. In the framework of the self-consistent theory, the relations of finite-size scaling are derived and the Gell-Mann-Low functions β(g) for space dimensions d = 1, 2, 3 are calculated. In contrast to the previous attempt by Vollhardt and Wölfle (1982), the metallic and localized phase are considered from the same standpoint, and the conductance of a finite system has no singularity at the critical point. In the 2D case, the expansion of β(g) in 1/g coincides with results of the σ-model approach on the two-loop level and depends on the renormalization scheme in higher loops; the use of dimensional regularization for transition to dimension d = 2 + ε looks incompatible with the physical essence of the problem. The results are compared with numerical and physical experiments. A situation in higher dimensions and the conditions for observation of the localization law σ(ω) ∝ −iω for conductivity are discussed.

  2. Contruction of a smoothed DEA frontier

    Directory of Open Access Journals (Sweden)

    Mello João Carlos Correia Baptista Soares de

    2002-01-01

    Full Text Available It is known that the DEA multipliers model does not allow a unique solution for the weights. This is due to the absence of unique derivatives in the extreme-efficient points, which is a consequence of the piecewise linear nature of the frontier. In this paper we propose a method to solve this problem, consisting of changing the original DEA frontier for a new one, smooth (with continuous derivatives at every point and closest to the original frontier. We present the theoretical development for the general case, exemplified with the particular case of the BCC model with one input and one output. The 3-dimensional problem is briefly discussed. Some uses of the model are summarised, and one of them, a new Cross-Evaluation model, is presented.

  3. A smooth exit from eternal inflation?

    Science.gov (United States)

    Hawking, S. W.; Hertog, Thomas

    2018-04-01

    The usual theory of inflation breaks down in eternal inflation. We derive a dual description of eternal inflation in terms of a deformed Euclidean CFT located at the threshold of eternal inflation. The partition function gives the amplitude of different geometries of the threshold surface in the no-boundary state. Its local and global behavior in dual toy models shows that the amplitude is low for surfaces which are not nearly conformal to the round three-sphere and essentially zero for surfaces with negative curvature. Based on this we conjecture that the exit from eternal inflation does not produce an infinite fractal-like multiverse, but is finite and reasonably smooth.

  4. Developing a scale to measure "attachment to the local community" in late middle aged individuals.

    Science.gov (United States)

    Sakai, Taichi; Omori, Junko; Takahashi, Kazuko; Mitsumori, Yasuko; Kobayashi, Maasa; Ono, Wakanako; Miyazaki, Toshie; Anzai, Hitomi; Saito, Mika

    2016-01-01

    Objectives This study was conducted to develop a scale for measuring "attachment to the local community" for its use in health services. The scale is also intended to nurture new social relationships in late middle-aged individuals.Methods Thirty items were initially planned to be included in the scale to measure "attachment to the local community", according to a previous study that identified the concept. The study subjects were late middle-aged residents of City B in Prefecture A, located in Tokyo suburbs. From the basic resident register data, 1,000 individuals (local residents in the 50-69 year age group) were selected by a multi-stage random sampling technique, on the basis of their residential area, age, and sex (while maintaining the male to female ratio). An unsigned self-administered questionnaire was distributed to the subjects, and the responses were collected by postal mail. The collected data was analyzed using psychometric study of scale.Results Valid responses were obtained from 583 subjects, and the response rate was 58.3%. In an item analysis, none of the items were rejected. In a subsequent factor analysis, 7 items were eliminated. These items included 2 items with a factor loading of attachment to the local community" was 0.95, demonstrating internal consistency. We then examined the correlation with an existing scale to measure social support; the results revealed a statistically significant correlation and confirmed criterion-related validity (Pattachment to the local community."

  5. Global and local confinement scaling laws of NBI-heated gas-puffing plasmas on LHD

    International Nuclear Information System (INIS)

    Yamazaki, K.; Miyazawa, J.; Sakakibara, S.; Yamada, H.; Narihara, K.; Tanaka, K.; Osakabe, M.

    2003-01-01

    The relation between global confinement scaling laws and local transport characteristics is evaluated on the Large Helical Device (LHD). Previous 'new LHD' global scaling laws are revised using the precise plasma edge definition and the recent LHD data of 4th, 5th and 6th experimental campaigns. Strong Gyro-Bohm-like feature of global confinement is reconfirmed. The magnetic field dependence and geometrical scale dependence are stronger than the conventional scaling laws. Using same database of LHD data, the radial profiles of transport coefficients are evaluated, and it is reconfirmed that the local transport in the core is Gyro-Bohm-like, and that near the boundary is strong Gyro-Bohm-like. The global confinement property is consistent with effective transport coefficient near the edge. (author)

  6. Precision Scaling Relations for Disk Galaxies in the Local Universe

    Science.gov (United States)

    Lapi, A.; Salucci, P.; Danese, L.

    2018-05-01

    We build templates of rotation curves as a function of the I-band luminosity via the mass modeling (by the sum of a thin exponential disk and a cored halo profile) of suitably normalized, stacked data from wide samples of local spiral galaxies. We then exploit such templates to determine fundamental stellar and halo properties for a sample of about 550 local disk-dominated galaxies with high-quality measurements of the optical radius R opt and of the corresponding rotation velocity V opt. Specifically, we determine the stellar M ⋆ and halo M H masses, the halo size R H and velocity scale V H, and the specific angular momenta of the stellar j ⋆ and dark matter j H components. We derive global scaling relationships involving such stellar and halo properties both for the individual galaxies in our sample and for their mean within bins; the latter are found to be in pleasing agreement with previous determinations by independent methods (e.g., abundance matching techniques, weak-lensing observations, and individual rotation curve modeling). Remarkably, the size of our sample and the robustness of our statistical approach allow us to attain an unprecedented level of precision over an extended range of mass and velocity scales, with 1σ dispersion around the mean relationships of less than 0.1 dex. We thus set new standard local relationships that must be reproduced by detailed physical models, which offer a basis for improving the subgrid recipes in numerical simulations, that provide a benchmark to gauge independent observations and check for systematics, and that constitute a basic step toward the future exploitation of the spiral galaxy population as a cosmological probe.

  7. Plasmon mass scale and quantum fluctuations of classical fields on a real time lattice

    Directory of Open Access Journals (Sweden)

    Kurkela Aleksi

    2018-01-01

    Full Text Available Classical real-time lattice simulations play an important role in understanding non-equilibrium phenomena in gauge theories and are used in particular to model the prethermal evolution of heavy-ion collisions. Above the Debye scale the classical Yang-Mills (CYM theory can be matched smoothly to kinetic theory. First we study the limits of the quasiparticle picture of the CYM fields by determining the plasmon mass of the system using 3 different methods. Then we argue that one needs a numerical calculation of a system of classical gauge fields and small linearized fluctuations, which correspond to quantum fluctuations, in a way that keeps the separation between the two manifest. We demonstrate and test an implementation of an algorithm with the linearized fluctuation showing that the linearization indeed works and that the Gauss’s law is conserved.

  8. Linearly scaling and almost Hamiltonian dielectric continuum molecular dynamics simulations through fast multipole expansions

    Energy Technology Data Exchange (ETDEWEB)

    Lorenzen, Konstantin; Mathias, Gerald; Tavan, Paul, E-mail: tavan@physik.uni-muenchen.de [Lehrstuhl für BioMolekulare Optik, Ludig–Maximilians Universität München, Oettingenstr. 67, 80538 München (Germany)

    2015-11-14

    Hamiltonian Dielectric Solvent (HADES) is a recent method [S. Bauer et al., J. Chem. Phys. 140, 104103 (2014)] which enables atomistic Hamiltonian molecular dynamics (MD) simulations of peptides and proteins in dielectric solvent continua. Such simulations become rapidly impractical for large proteins, because the computational effort of HADES scales quadratically with the number N of atoms. If one tries to achieve linear scaling by applying a fast multipole method (FMM) to the computation of the HADES electrostatics, the Hamiltonian character (conservation of total energy, linear, and angular momenta) may get lost. Here, we show that the Hamiltonian character of HADES can be almost completely preserved, if the structure-adapted fast multipole method (SAMM) as recently redesigned by Lorenzen et al. [J. Chem. Theory Comput. 10, 3244-3259 (2014)] is suitably extended and is chosen as the FMM module. By this extension, the HADES/SAMM forces become exact gradients of the HADES/SAMM energy. Their translational and rotational invariance then guarantees (within the limits of numerical accuracy) the exact conservation of the linear and angular momenta. Also, the total energy is essentially conserved—up to residual algorithmic noise, which is caused by the periodically repeated SAMM interaction list updates. These updates entail very small temporal discontinuities of the force description, because the employed SAMM approximations represent deliberately balanced compromises between accuracy and efficiency. The energy-gradient corrected version of SAMM can also be applied, of course, to MD simulations of all-atom solvent-solute systems enclosed by periodic boundary conditions. However, as we demonstrate in passing, this choice does not offer any serious advantages.

  9. Super-resolved linear fluorescence localization microscopy using photostable fluorophores: A virtual microscopy study

    Science.gov (United States)

    Birk, Udo; Szczurek, Aleksander; Cremer, Christoph

    2017-12-01

    Current approaches to overcome the conventional limit of the resolution potential of light microscopy (of about 200 nm for visible light), often suffer from non-linear effects, which render the quantification of the image intensities in the reconstructions difficult, and also affect the quantification of the biological structure under investigation. As an attempt to face these difficulties, we discuss a particular method of localization microscopy which is based on photostable fluorescent dyes. The proposed method can potentially be implemented as a fast alternative for quantitative localization microscopy, circumventing the need for the acquisition of thousands of image frames and complex, highly dye-specific imaging buffers. Although the need for calibration remains in order to extract quantitative data (such as the number of emitters), multispectral approaches are largely facilitated due to the much less stringent requirements on imaging buffers. Furthermore, multispectral acquisitions can be readily obtained using commercial instrumentation such as e.g. the conventional confocal laser scanning microscope.

  10. Scale-adaptive surface modeling of vascular structures

    Directory of Open Access Journals (Sweden)

    Ma Xin

    2010-11-01

    Full Text Available Abstract Background The effective geometric modeling of vascular structures is crucial for diagnosis, therapy planning and medical education. These applications require good balance with respect to surface smoothness, surface accuracy, triangle quality and surface size. Methods Our method first extracts the vascular boundary voxels from the segmentation result, and utilizes these voxels to build a three-dimensional (3D point cloud whose normal vectors are estimated via covariance analysis. Then a 3D implicit indicator function is computed from the oriented 3D point cloud by solving a Poisson equation. Finally the vessel surface is generated by a proposed adaptive polygonization algorithm for explicit 3D visualization. Results Experiments carried out on several typical vascular structures demonstrate that the presented method yields both a smooth morphologically correct and a topologically preserved two-manifold surface, which is scale-adaptive to the local curvature of the surface. Furthermore, the presented method produces fewer and better-shaped triangles with satisfactory surface quality and accuracy. Conclusions Compared to other state-of-the-art approaches, our method reaches good balance in terms of smoothness, accuracy, triangle quality and surface size. The vessel surfaces produced by our method are suitable for applications such as computational fluid dynamics simulations and real-time virtual interventional surgery.

  11. Territory and energy: policies, scales and tools for mobilization, knowledge and local action

    International Nuclear Information System (INIS)

    Chanard, Camille

    2011-01-01

    The thesis is about French local authorities' energy policies, and more particularly about regional policies. In a context of reassessment of fossil fuel-based energy systems, local authorities have a key role to play. Indeed, energy systems are complex and require to act locally, in order to keep fair access for consumers and to adapt supply to needs and uses. In the same way, environmental constraints and sustainable exploitation of local resources involve to have a good knowledge of territory and of local energy potential. But, local authorities do not know much about boundaries and about components of territorial energy systems. The main purpose of the thesis is to determine structure and behaviour of these energy systems in order to identify public policy incentive levers at local scale. The first part of the thesis deals with the links between land uses, actors' behaviours, political choices and energy consumptions. Here, we point out the specific interest of geography and territorial approach to treat energy issue, both for land planning and for actors' mobilization. In the second part, we identify policy instruments which local authorities should dispose and actions they should implement in order to develop energy saving and renewables. Then, the third part is more specific to regional level. The analysis of two French planning instruments (Regional Plans for Climate, Air and Energy and Regional Energy Observatories), shows the interest of this scale which could, with its position between national and local levels, contribute to improve knowledge of territories, to coordinate local actions and to develop energy policies adapted to local specificities [fr

  12. Linearly and nonlinearly optimized weighted essentially non-oscillatory methods for compressible turbulence

    Science.gov (United States)

    Taylor, Ellen Meredith

    Weighted essentially non-oscillatory (WENO) methods have been developed to simultaneously provide robust shock-capturing in compressible fluid flow and avoid excessive damping of fine-scale flow features such as turbulence. This is accomplished by constructing multiple candidate numerical stencils that adaptively combine so as to provide high order of accuracy and high bandwidth-resolving efficiency in continuous flow regions while averting instability-provoking interpolation across discontinuities. Under certain conditions in compressible turbulence, however, numerical dissipation remains unacceptably high even after optimization of the linear optimal stencil combination that dominates in smooth regions. The remaining nonlinear error arises from two primary sources: (i) the smoothness measurement that governs the application of adaptation away from the optimal stencil and (ii) the numerical properties of individual candidate stencils that govern numerical accuracy when adaptation engages. In this work, both of these sources are investigated, and corrective modifications to the WENO methodology are proposed and evaluated. Excessive nonlinear error due to the first source is alleviated through two separately considered procedures appended to the standard smoothness measurement technique that are designated the "relative smoothness limiter" and the "relative total variation limiter." In theory, appropriate values of their associated parameters should be insensitive to flow configuration, thereby sidestepping the prospect of costly parameter tuning; and this expectation of broad effectiveness is assessed in direct numerical simulations (DNS) of one-dimensional inviscid test problems, three-dimensional compressible isotropic turbulence of varying Reynolds and turbulent Mach numbers, and shock/isotropic-turbulence interaction (SITI). In the process, tools for efficiently comparing WENO adaptation behavior in smooth versus shock-containing regions are developed. The

  13. A Cross-Domain Collaborative Filtering Algorithm Based on Feature Construction and Locally Weighted Linear Regression

    Directory of Open Access Journals (Sweden)

    Xu Yu

    2018-01-01

    Full Text Available Cross-domain collaborative filtering (CDCF solves the sparsity problem by transferring rating knowledge from auxiliary domains. Obviously, different auxiliary domains have different importance to the target domain. However, previous works cannot evaluate effectively the significance of different auxiliary domains. To overcome this drawback, we propose a cross-domain collaborative filtering algorithm based on Feature Construction and Locally Weighted Linear Regression (FCLWLR. We first construct features in different domains and use these features to represent different auxiliary domains. Thus the weight computation across different domains can be converted as the weight computation across different features. Then we combine the features in the target domain and in the auxiliary domains together and convert the cross-domain recommendation problem into a regression problem. Finally, we employ a Locally Weighted Linear Regression (LWLR model to solve the regression problem. As LWLR is a nonparametric regression method, it can effectively avoid underfitting or overfitting problem occurring in parametric regression methods. We conduct extensive experiments to show that the proposed FCLWLR algorithm is effective in addressing the data sparsity problem by transferring the useful knowledge from the auxiliary domains, as compared to many state-of-the-art single-domain or cross-domain CF methods.

  14. Local-scale modelling of density-driven flow for the phases of repository operation and post-closure at Beberg

    International Nuclear Information System (INIS)

    Jaquet, O.; Siegel, P.

    2004-09-01

    repository during the operational phase. Scoping calculations have shown that the results could be improved by applying free-surface boundary conditions when modelling the impact of the repository. Modelling density-driven flow at local scale with a repository under atmospheric pressure conditions is feasible using CONNECTFLOW/NAMMU. Such non-linear problems are intrinsically difficult to solve and linked with numerical difficulties. In particular, we could overcome the numerous convergence issues but it was demanding in terms of computing performance. Concerning pre-processing, this study has allowed us to improve the integration of CONNECTFLOW/NAMMU within Colenco's computing environment. It is especially noteworthy that numerical calculations with complex geometries (e.g. repository layout with tunnels) have become possible. During the phases of repository operation and post-closure, near-surface effects are likely to occur. The evaluation of their environmental impacts needs to be performed using a numerical model with specific boundary conditions (free surface type). The following recommendations are proposed regarding additional work and open issues: Assessment of the environmental impacts in relation to the phases of repository operation and post-closure. Evaluation of repository impact using a more detailed geometry for the repository layout, such as introducing the shafts and access tunnels as well as including skin effect around the tunnels. Determination of repository impact by modelling density-driven flow including the rock matrix diffusion of salt. The approach for modelling repository impact at Beberg has successfully described the assumed conditions and relevant processes. It may certainly serve as a well founded base for future modelling tasks to provide solutions to further questions

  15. Probing the Locality of Excited States with Linear Algebra.

    Science.gov (United States)

    Etienne, Thibaud

    2015-04-14

    This article reports a novel theoretical approach related to the analysis of molecular excited states. The strategy introduced here involves gathering two pieces of physical information, coming from Hilbert and direct space operations, into a general, unique quantum mechanical descriptor of electronic transitions' locality. Moreover, the projection of Hilbert and direct space-derived indices in an Argand plane delivers a straightforward way to visually probe the ability of a dye to undergo a long- or short-range charge-transfer. This information can be applied, for instance, to the analysis of the electronic response of families of dyes to light absorption by unveiling the trend of a given push-pull chromophore to increase the electronic cloud polarization magnitude of its main transition with respect to the size extension of its conjugated spacer. We finally demonstrate that all the quantities reported in this article can be reliably approximated by a linear algebraic derivation, based on the contraction of detachment/attachment density matrices from canonical to atomic space. This alternative derivation has the remarkable advantage of a very low computational cost with respect to the previously used numerical integrations, making fast and accurate characterization of large molecular systems' excited states easily affordable.

  16. Bearing Fault Diagnosis Based on Statistical Locally Linear Embedding.

    Science.gov (United States)

    Wang, Xiang; Zheng, Yuan; Zhao, Zhenzhou; Wang, Jinping

    2015-07-06

    Fault diagnosis is essentially a kind of pattern recognition. The measured signal samples usually distribute on nonlinear low-dimensional manifolds embedded in the high-dimensional signal space, so how to implement feature extraction, dimensionality reduction and improve recognition performance is a crucial task. In this paper a novel machinery fault diagnosis approach based on a statistical locally linear embedding (S-LLE) algorithm which is an extension of LLE by exploiting the fault class label information is proposed. The fault diagnosis approach first extracts the intrinsic manifold features from the high-dimensional feature vectors which are obtained from vibration signals that feature extraction by time-domain, frequency-domain and empirical mode decomposition (EMD), and then translates the complex mode space into a salient low-dimensional feature space by the manifold learning algorithm S-LLE, which outperforms other feature reduction methods such as PCA, LDA and LLE. Finally in the feature reduction space pattern classification and fault diagnosis by classifier are carried out easily and rapidly. Rolling bearing fault signals are used to validate the proposed fault diagnosis approach. The results indicate that the proposed approach obviously improves the classification performance of fault pattern recognition and outperforms the other traditional approaches.

  17. Local morphologic scale: application to segmenting tumor infiltrating lymphocytes in ovarian cancer TMAs

    Science.gov (United States)

    Janowczyk, Andrew; Chandran, Sharat; Feldman, Michael; Madabhushi, Anant

    2011-03-01

    In this paper we present the concept and associated methodological framework for a novel locally adaptive scale notion called local morphological scale (LMS). Broadly speaking, the LMS at every spatial location is defined as the set of spatial locations, with associated morphological descriptors, which characterize the local structure or heterogeneity for the location under consideration. More specifically, the LMS is obtained as the union of all pixels in the polygon obtained by linking the final location of trajectories of particles emanating from the location under consideration, where the path traveled by originating particles is a function of the local gradients and heterogeneity that they encounter along the way. As these particles proceed on their trajectory away from the location under consideration, the velocity of each particle (i.e. do the particles stop, slow down, or simply continue around the object) is modeled using a physics based system. At some time point the particle velocity goes to zero (potentially on account of encountering (a) repeated obstructions, (b) an insurmountable image gradient, or (c) timing out) and comes to a halt. By using a Monte-Carlo sampling technique, LMS is efficiently determined through parallelized computations. LMS is different from previous local scale related formulations in that it is (a) not a locally connected sets of pixels satisfying some pre-defined intensity homogeneity criterion (generalized-scale), nor is it (b) constrained by any prior shape criterion (ball-scale, tensor-scale). Shape descriptors quantifying the morphology of the particle paths are used to define a tensor LMS signature associated with every spatial image location. These features include the number of object collisions per particle, average velocity of a particle, and the length of the individual particle paths. These features can be used in conjunction with a supervised classifier to correctly differentiate between two different object

  18. Cerebellum segmentation in MRI using atlas registration and local multi-scale image descriptors

    DEFF Research Database (Denmark)

    van der Lijn, F.; de Bruijne, M.; Hoogendam, Y.Y.

    2009-01-01

    We propose a novel cerebellum segmentation method for MRI, based on a combination of statistical models of the structure's expected location in the brain and its local appearance. The appearance model is obtained from a k-nearest-neighbor classifier, which uses a set of multi-scale local image...

  19. Mesoscale and Local Scale Evaluations of Quantitative Precipitation Estimates by Weather Radar Products during a Heavy Rainfall Event

    Directory of Open Access Journals (Sweden)

    Basile Pauthier

    2016-01-01

    Full Text Available A 24-hour heavy rainfall event occurred in northeastern France from November 3 to 4, 2014. The accuracy of the quantitative precipitation estimation (QPE by PANTHERE and ANTILOPE radar-based gridded products during this particular event, is examined at both mesoscale and local scale, in comparison with two reference rain-gauge networks. Mesoscale accuracy was assessed for the total rainfall accumulated during the 24-hour event, using the Météo France operational rain-gauge network. Local scale accuracy was assessed for both total event rainfall and hourly rainfall accumulations, using the recently developed HydraVitis high-resolution rain gauge network Evaluation shows that (1 PANTHERE radar-based QPE underestimates rainfall fields at mesoscale and local scale; (2 both PANTHERE and ANTILOPE successfully reproduced the spatial variability of rainfall at local scale; (3 PANTHERE underestimates can be significantly improved at local scale by merging these data with rain gauge data interpolation (i.e., ANTILOPE. This study provides a preliminary evaluation of radar-based QPE at local scale, suggesting that merged products are invaluable for applications at very high resolution. The results obtained underline the importance of using high-density rain-gauge networks to obtain information at high spatial and temporal resolution, for better understanding of local rainfall variation, to calibrate remotely sensed rainfall products.

  20. Curvature histogram features for retrieval of images of smooth 3D objects

    International Nuclear Information System (INIS)

    Zhdanov, I; Scherbakov, O; Potapov, A; Peterson, M

    2014-01-01

    We consider image features on the base of histograms of oriented gradients (HOG) with addition of contour curvature histogram (HOG-CH), and also compare it with results of known scale-invariant feature transform (SIFT) approach in application to retrieval of images of smooth 3D objects.

  1. Investigating the effects of smoothness of interfaces on stability of probing nano-scale thin films by neutron reflectometry

    Directory of Open Access Journals (Sweden)

    S.S. Jahromi

    2012-03-01

    Full Text Available Most of the reflectometry methods which are used for determining the phase of complex reflection coefficient such as Reference Method and Variation of Surroundings medium are based on solving the Schrödinger equation using a discontinuous and step-like scattering optical potential. However, during the deposition process for making a real sample the two adjacent layers are mixed together and the interface would not be discontinuous and sharp. The smearing of adjacent layers at the interface (smoothness of interface, would affect the the reflectivity, phase of reflection coefficient and reconstruction of the scattering length density (SLD of the sample. In this paper, we have investigated the stability of Reference Method in the presence of smooth interfaces. The smoothness of interfaces is considered by using a continuous function scattering potential. We have also proposed a method to achieve the most reliable output result while retrieving the SLD of the sample.

  2. Smooth and non-smooth travelling waves in a nonlinearly dispersive Boussinesq equation

    International Nuclear Information System (INIS)

    Shen Jianwei; Xu Wei; Lei Youming

    2005-01-01

    The dynamical behavior and special exact solutions of nonlinear dispersive Boussinesq equation (B(m,n) equation), u tt -u xx -a(u n ) xx +b(u m ) xxxx =0, is studied by using bifurcation theory of dynamical system. As a result, all possible phase portraits in the parametric space for the travelling wave system, solitary wave, kink and anti-kink wave solutions and uncountably infinite many smooth and non-smooth periodic wave solutions are obtained. It can be shown that the existence of singular straight line in the travelling wave system is the reason why smooth waves converge to cusp waves, finally. When parameter are varied, under different parametric conditions, various sufficient conditions guarantee the existence of the above solutions are given

  3. Communication: An improved linear scaling perturbative triples correction for the domain based local pair-natural orbital based singles and doubles coupled cluster method [DLPNO-CCSD(T)

    KAUST Repository

    Guo, Yang

    2018-01-04

    In this communication, an improved perturbative triples correction (T) algorithm for domain based local pair-natural orbital singles and doubles coupled cluster (DLPNO-CCSD) theory is reported. In our previous implementation, the semi-canonical approximation was used and linear scaling was achieved for both the DLPNO-CCSD and (T) parts of the calculation. In this work, we refer to this previous method as DLPNO-CCSD(T0) to emphasize the semi-canonical approximation. It is well-established that the DLPNO-CCSD method can predict very accurate absolute and relative energies with respect to the parent canonical CCSD method. However, the (T0) approximation may introduce significant errors in absolute energies as the triples correction grows up in magnitude. In the majority of cases, the relative energies from (T0) are as accurate as the canonical (T) results of themselves. Unfortunately, in rare cases and in particular for small gap systems, the (T0) approximation breaks down and relative energies show large deviations from the parent canonical CCSD(T) results. To address this problem, an iterative (T) algorithm based on the previous DLPNO-CCSD(T0) algorithm has been implemented [abbreviated here as DLPNO-CCSD(T)]. Using triples natural orbitals to represent the virtual spaces for triples amplitudes, storage bottlenecks are avoided. Various carefully designed approximations ease the computational burden such that overall, the increase in the DLPNO-(T) calculation time over DLPNO-(T0) only amounts to a factor of about two (depending on the basis set). Benchmark calculations for the GMTKN30 database show that compared to DLPNO-CCSD(T0), the errors in absolute energies are greatly reduced and relative energies are moderately improved. The particularly problematic case of cumulene chains of increasing lengths is also successfully addressed by DLPNO-CCSD(T).

  4. Communication: An improved linear scaling perturbative triples correction for the domain based local pair-natural orbital based singles and doubles coupled cluster method [DLPNO-CCSD(T)

    KAUST Repository

    Guo, Yang; Riplinger, Christoph; Becker, Ute; Liakos, Dimitrios G.; Minenkov, Yury; Cavallo, Luigi; Neese, Frank

    2018-01-01

    In this communication, an improved perturbative triples correction (T) algorithm for domain based local pair-natural orbital singles and doubles coupled cluster (DLPNO-CCSD) theory is reported. In our previous implementation, the semi-canonical approximation was used and linear scaling was achieved for both the DLPNO-CCSD and (T) parts of the calculation. In this work, we refer to this previous method as DLPNO-CCSD(T0) to emphasize the semi-canonical approximation. It is well-established that the DLPNO-CCSD method can predict very accurate absolute and relative energies with respect to the parent canonical CCSD method. However, the (T0) approximation may introduce significant errors in absolute energies as the triples correction grows up in magnitude. In the majority of cases, the relative energies from (T0) are as accurate as the canonical (T) results of themselves. Unfortunately, in rare cases and in particular for small gap systems, the (T0) approximation breaks down and relative energies show large deviations from the parent canonical CCSD(T) results. To address this problem, an iterative (T) algorithm based on the previous DLPNO-CCSD(T0) algorithm has been implemented [abbreviated here as DLPNO-CCSD(T)]. Using triples natural orbitals to represent the virtual spaces for triples amplitudes, storage bottlenecks are avoided. Various carefully designed approximations ease the computational burden such that overall, the increase in the DLPNO-(T) calculation time over DLPNO-(T0) only amounts to a factor of about two (depending on the basis set). Benchmark calculations for the GMTKN30 database show that compared to DLPNO-CCSD(T0), the errors in absolute energies are greatly reduced and relative energies are moderately improved. The particularly problematic case of cumulene chains of increasing lengths is also successfully addressed by DLPNO-CCSD(T).

  5. Families of Smooth Rational Curves of Small Degree on the Fano Variety of Degree 5 of Main Series

    Directory of Open Access Journals (Sweden)

    M. S. Omelkova

    2013-01-01

    Full Text Available In this paper we consider some families of smooth rational curves of degree 2, 3 and 4 on a smooth Fano threefold X which is a linear section of the Grassmanian G(1, 4 under the Pl¨ucker embedding. We prove that these families are irreducible. The proof of the irreducibility of the families of curves of degree d is based on the study of degeneration of a rational curve of degree d into a curve which decomposes into an irreducible rational curve of degree d−1 and a projective line intersecting transversally at a point. We prove that the Hilbert scheme of curves of degree d on X is smooth at the point corresponding to such a reducible curve. Then calculations in the framework of deformation theory show that such a curve varies into a smooth rational curve of degree d. Thus, the set of reducible curves of degree d of the above type lies in the closure of a unique component of the Hilbert scheme of smooth rational curves of degree d on X. From this fact and the irreducibility of the Hilbert scheme of smooth rational curves of degree d on the Grassmannian G(1, 4 one deduces the irreducibility of the Hilbert scheme of smooth rational curves of degree d on a general Fano threefold X.

  6. Myosin Va Plays a Role in Nitrergic Smooth Muscle Relaxation in Gastric Fundus and Corpora Cavernosa of Penis

    Science.gov (United States)

    Carew, Josephine A.; Goyal, Raj K.; Sullivan, Maryrose P.

    2014-01-01

    The intracellular motor protein myosin Va is involved in nitrergic neurotransmission possibly by trafficking of neuronal nitric oxide synthase (nNOS) within the nerve terminals. In this study, we examined the role of myosin Va in the stomach and penis, proto-typical smooth muscle organs in which nitric oxide (NO) mediated relaxation is critical for function. We used confocal microscopy and co-immunoprecipitation of tissue from the gastric fundus (GF) and penile corpus cavernosum (CCP) to localize myosin Va with nNOS and demonstrate their molecular interaction. We utilized in vitro mechanical studies to test whether smooth muscle relaxations during nitrergic neuromuscular neurotransmission is altered in DBA (dilute, brown, non-agouti) mice which lack functional myosin Va. Myosin Va was localized in nNOS-positive nerve terminals and was co-immunoprecipitated with nNOS in both GF and CCP. In comparison to C57BL/6J wild type (WT) mice, electrical field stimulation (EFS) of precontracted smooth muscles of GF and CCP from DBA animals showed significant impairment of nitrergic relaxation. An NO donor, Sodium nitroprusside (SNP), caused comparable levels of relaxation in smooth muscles of WT and DBA mice. These normal postjunctional responses to SNP in DBA tissues suggest that impairment of smooth muscle relaxation resulted from inhibition of NO synthesis in prejunctional nerve terminals. Our results suggest that normal physiological processes of relaxation of gastric and cavernosal smooth muscles that facilitate food accommodation and penile erection, respectively, may be disrupted under conditions of myosin Va deficiency, resulting in complications like gastroparesis and erectile dysfunction. PMID:24516539

  7. Performance of Linear and Nonlinear Two-Leaf Light Use Efficiency Models at Different Temporal Scales

    DEFF Research Database (Denmark)

    Wu, Xiaocui; Ju, Weimin; Zhou, Yanlian

    2015-01-01

    The reliable simulation of gross primary productivity (GPP) at various spatial and temporal scales is of significance to quantifying the net exchange of carbon between terrestrial ecosystems and the atmosphere. This study aimed to verify the ability of a nonlinear two-leaf model (TL-LUEn), a linear...... two-leaf model (TL-LUE), and a big-leaf light use efficiency model (MOD17) to simulate GPP at half-hourly, daily and 8-day scales using GPP derived from 58 eddy-covariance flux sites in Asia, Europe and North America as benchmarks. Model evaluation showed that the overall performance of TL...

  8. Size effects and strain localization in atomic-scale cleavage modeling

    International Nuclear Information System (INIS)

    Elsner, B A M; Müller, S

    2015-01-01

    In this work, we study the adhesion and decohesion of Cu(1 0 0) surfaces using density functional theory (DFT) calculations. An upper stress to surface decohesion is obtained via the universal binding energy relation (UBER), but the model is limited to rigid separation of bulk-terminated surfaces. When structural relaxations are included, an unphysical size effect arises if decohesion is considered to occur as soon as the strain energy equals the energy of the newly formed surfaces. We employ the nudged elastic band (NEB) method to show that this size effect is opposed by a size-dependency of the energy barriers involved in the transition. Further, we find that the transition occurs via a localization of bond strain in the vicinity of the cleavage plane, which resembles the strain localization at the tip of a sharp crack that is predicted by linear elastic fracture mechanics. (paper)

  9. Smoothing effect of the thermal interface material on the temperature distribution in a stepwise varying width microchannel cooling device

    Science.gov (United States)

    Riera, Sara; Barrau, Jérôme; Rosell, Joan I.; Fréchette, Luc G.; Omri, Mohamed; Vilarrubí, Montse; Laguna, Gerard

    2017-09-01

    The impact of the thermal interface material (TIM) layer on the performance of a stepwise varying width microchannel cooling device is analysed. A numerical model shows that the TIM layer, besides its well known negative impact on the temperature, also generates a smoothing effect on the temperature distribution. In this study, an analytical model is used to define a nondimensional parameter, called Smoothing Resistance ratio, as the quotient between the origin of the temperature non uniformities and the TIM thermal resistance that flatten the temperature distribution. The relationship between the temperature uniformity of the cooled device, expressed through the temperature standard deviation, and the Smoothing Resistance ratio is shown to be linear. These results lead to the definition of a new design procedure for this kind of cooling device, which aims to reduce the Smoothing Resistance ratio. Two solutions are identified and their drawbacks are analysed.

  10. Mapping how local perturbations influence systems-level brain dynamics.

    Science.gov (United States)

    Gollo, Leonardo L; Roberts, James A; Cocchi, Luca

    2017-10-15

    The human brain exhibits a distinct spatiotemporal organization that supports brain function and can be manipulated via local brain stimulation. Such perturbations to local cortical dynamics are globally integrated by distinct neural systems. However, it remains unclear how local changes in neural activity affect large-scale system dynamics. Here, we briefly review empirical and computational studies addressing how localized perturbations affect brain activity. We then systematically analyze a model of large-scale brain dynamics, assessing how localized changes in brain activity at the different sites affect whole-brain dynamics. We find that local stimulation induces changes in brain activity that can be summarized by relatively smooth tuning curves, which relate a region's effectiveness as a stimulation site to its position within the cortical hierarchy. Our results also support the notion that brain hubs, operating in a slower regime, are more resilient to focal perturbations and critically contribute to maintain stability in global brain dynamics. In contrast, perturbations of peripheral regions, characterized by faster activity, have greater impact on functional connectivity. As a parallel with this region-level result, we also find that peripheral systems such as the visual and sensorimotor networks were more affected by local perturbations than high-level systems such as the cingulo-opercular network. Our findings highlight the importance of a periphery-to-core hierarchy to determine the effect of local stimulation on the brain network. This study also provides novel resources to orient empirical work aiming at manipulating functional connectivity using non-invasive brain stimulation. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Aerosol numerical modelling at local scale

    International Nuclear Information System (INIS)

    Albriet, Bastien

    2007-01-01

    At local scale and in urban areas, an important part of particulate pollution is due to traffic. It contributes largely to the high number concentrations observed. Two aerosol sources are mainly linked to traffic. Primary emission of soot particles and secondary nanoparticle formation by nucleation. The emissions and mechanisms leading to the formation of such bimodal distribution are still badly understood nowadays. In this thesis, we try to provide an answer to this problematic by numerical modelling. The Modal Aerosol Model MAM is used, coupled with two 3D-codes: a CFD (Mercure Saturne) and a CTM (Polair3D). A sensitivity analysis is performed, at the border of a road but also in the first meters of an exhaust plume, to identify the role of each process involved and the sensitivity of different parameters used in the modelling. (author) [fr

  12. Smooth- and rough-wall boundary layer structure from high spatial range particle image velocimetry

    Science.gov (United States)

    Squire, D. T.; Morrill-Winter, C.; Hutchins, N.; Marusic, I.; Schultz, M. P.; Klewicki, J. C.

    2016-10-01

    Two particle image velocimetry arrangements are used to make true spatial comparisons between smooth- and rough-wall boundary layers at high Reynolds numbers across a very wide range of streamwise scales. Together, the arrangements resolve scales ranging from motions on the order of the Kolmogorov microscale to those longer than twice the boundary layer thickness. The rough-wall experiments were obtained above a continuous sandpaper sheet, identical to that used by Squire et al. [J. Fluid Mech. 795, 210 (2016), 10.1017/jfm.2016.196], and cover a range of friction and equivalent sand-grain roughness Reynolds numbers (12 000 ≲δ+≲ 18000, 62 ≲ks+≲104 ). The smooth-wall experiments comprise new and previously published data spanning 6500 ≲δ+≲17 000 . Flow statistics from all experiments show similar Reynolds number trends and behaviors to recent, well-resolved hot-wire anemometry measurements above the same rough surface. Comparisons, at matched δ+, between smooth- and rough-wall two-point correlation maps and two-point magnitude-squared coherence maps demonstrate that spatially the outer region of the boundary layer is the same between the two flows. This is apparently true even at wall-normal locations where the total (inner-normalized) energy differs between the smooth and rough wall. Generally, the present results provide strong support for Townsend's [The Structure of Turbulent Shear Flow (Cambridge University Press, Cambridge, 1956), Vol. 1] wall-similarity hypothesis in high Reynolds number fully rough boundary layer flows.

  13. Smooth driving of Moessbauer electromechanical transducers

    Energy Technology Data Exchange (ETDEWEB)

    Veiga, A., E-mail: veiga@fisica.unlp.edu.ar; Mayosky, M. A. [Universidad Nacional de La Plata, Facultad de Ingenieria (Argentina); Martinez, N.; Mendoza Zelis, P.; Pasquevich, G. A.; Sanchez, F. H. [Instituto de Fisica La Plata, CONICET (Argentina)

    2011-11-15

    Quality of Moessbauer spectra is strongly related to the performance of source velocity modulator. Traditional electromechanical driving techniques demand hard-edged square or triangular velocity waveforms that introduce long settling times and demand careful driver tuning. For this work, the behavior of commercial velocity transducers and drive units was studied under different working conditions. Different velocity reference waveforms in constant-acceleration, constant-velocity and programmable-velocity techniques were tested. Significant improvement in spectrometer efficiency and accuracy was achieved by replacing triangular and square hard edges with continuous smooth-shaped transitions. A criterion for best waveform selection and synchronization is presented and attainable enhancements are evaluated. In order to fully exploit this driving technique, a compact microprocessor-based architecture is proposed and a suitable data acquisition system implementation is presented. System linearity and efficiency characterization are also shown.

  14. Mediators on human airway smooth muscle.

    Science.gov (United States)

    Armour, C; Johnson, P; Anticevich, S; Ammit, A; McKay, K; Hughes, M; Black, J

    1997-01-01

    1. Bronchial hyperresponsiveness in asthma may be due to several abnormalities, but must include alterations in the airway smooth muscle responsiveness and/or volume. 2. Increased responsiveness of airway smooth muscle in vitro can be induced by certain inflammatory cell products and by induction of sensitization (atopy). 3. Increased airway smooth muscle growth can also be induced by inflammatory cell products and atopic serum. 4. Mast cell numbers are increased in the airways of asthmatics and, in our studies, in airway smooth muscle that is sensitized and hyperresponsive. 5. We propose that there is a relationship between mast cells and airway smooth muscle cells which, once an allergic process has been initiated, results in the development of critical features in the lungs in asthma.

  15. Local scale decision support systems - actual situation and trends for the future

    International Nuclear Information System (INIS)

    Govaerts, P.

    1993-01-01

    Based on the communications presented in the session on local scale decision support systems, some common trends for those models have been identified. During the last decade the evolutionary change of those models is related with the better insight in decisions to be taken with respect to interventions, the acceptance of large uncertainties, the perceived importance of social and economic factors and shift of the identity of the user. A more revolutionary change is predicted for the near future, putting most emphasis on the predictive mode, extending the integration of monitoring data in the decision support system, and the use of pre-established scenarios. The local scale decision support system will become the key module of the off-site emergency control room. (author)

  16. Sparse and smooth canonical correlation analysis through rank-1 matrix approximation

    Science.gov (United States)

    Aïssa-El-Bey, Abdeldjalil; Seghouane, Abd-Krim

    2017-12-01

    Canonical correlation analysis (CCA) is a well-known technique used to characterize the relationship between two sets of multidimensional variables by finding linear combinations of variables with maximal correlation. Sparse CCA and smooth or regularized CCA are two widely used variants of CCA because of the improved interpretability of the former and the better performance of the later. So far, the cross-matrix product of the two sets of multidimensional variables has been widely used for the derivation of these variants. In this paper, two new algorithms for sparse CCA and smooth CCA are proposed. These algorithms differ from the existing ones in their derivation which is based on penalized rank-1 matrix approximation and the orthogonal projectors onto the space spanned by the two sets of multidimensional variables instead of the simple cross-matrix product. The performance and effectiveness of the proposed algorithms are tested on simulated experiments. On these results, it can be observed that they outperform the state of the art sparse CCA algorithms.

  17. Groundwater flow analysis on local scale. Setting boundary conditions for groundwater flow analysis on site scale model in step 1

    International Nuclear Information System (INIS)

    Ohyama, Takuya; Saegusa, Hiromitsu; Onoe, Hironori

    2005-05-01

    Japan Nuclear Cycle Development Institute has been conducting a wide range of geoscientific research in order to build a foundation for multidisciplinary studies of the deep geological environment as a basis of research and development for geological disposal of nuclear wastes. Ongoing geoscientific research programs include the Regional Hydrogeological Study (RHS) project and Mizunami Underground Research Laboratory (MIU) project in the Tono region, Gifu Prefecture. The main goal of these projects is to establish comprehensive techniques for investigation, analysis, and assessment of the deep geological environment at several spatial scales. The RHS project is a local scale study for understanding the groundwater flow system from the recharge area to the discharge area. The surface-based Investigation Phase of the MIU project is a site scale study for understanding the groundwater flow system immediately surrounding the MIU construction site. The MIU project is being conducted using a multiphase, iterative approach. In this study, the hydrogeological modeling and groundwater flow analysis of the local scale were carried out in order to set boundary conditions of the site scale model based on the data obtained from surface-based investigations in Step 1 in site scale of the MIU project. As a result of the study, head distribution to set boundary conditions for groundwater flow analysis on the site scale model could be obtained. (author)

  18. Local Scaling Properties and Market Turning Points at Prague Stock Exchange

    Czech Academy of Sciences Publication Activity Database

    Krištoufek, Ladislav

    2010-01-01

    Roč. 41, č. 6 (2010), s. 1001-1014 ISSN 0587-4254 R&D Projects: GA ČR GA402/09/0965; GA ČR GD402/09/H045 Grant - others:GA UK(CZ) 118310 Institutional research plan: CEZ:AV0Z10750506 Keywords : scaling * Hurst exponent * extreme events Subject RIV: AH - Economics Impact factor: 0.671, year: 2010 http://library.utia.cas.cz/separaty/2010/E/kristoufek-local scaling properties and market turning points at prague stock exchange.pdf

  19. Evaporation characteristics of a hydrophilic surface with micro-scale and/or nano-scale structures fabricated by sandblasting and aluminum anodization

    International Nuclear Information System (INIS)

    Kim, Hyungmo; Kim, Joonwon

    2010-01-01

    This paper presents the results of evaporation experiments using water droplets on aluminum sheets that were either smooth or had surface structures at the micro-scale, at the nano-scale or at both micro- and nano-scales (dual-scale). The smooth surface was a polished aluminum sheet; the surface with micro-scale structures was obtained by sandblasting; the surface with nano-scale structures was obtained using conventional aluminum anodization and the surface with dual-scale structures was prepared using sandblasting and anodization sequentially. The wetting properties and evaporation rates were measured for each surface. The evaporation rates were affected by their static and dynamic wetting properties. Evaporation on the surface with dual-scale structures was fastest and the evaporation rate was analyzed quantitatively.

  20. Is small beautiful? A multicriteria assessment of small-scale energy technology applications in local governments

    International Nuclear Information System (INIS)

    Burton, Jonathan; Hubacek, Klaus

    2007-01-01

    In its 2003 White Paper the UK government set ambitious renewable energy targets. Local governments and households have an increasing role in the overall energy system as consumers, suppliers of smaller-scale applications and citizens discussing energy projects. In this paper, we consider if small-scale or large-scale approaches to renewable energy provision can achieve energy targets in the most socially, economically and environmentally (SEE) effective way. We take a local case study of renewable energy provision in the Metropolitan Borough of Kirklees in Yorkshire, UK, and apply a multi-criteria decision analysis methodology to compare the small-scale schemes implemented in Kirklees with large-scale alternatives. The results indicate that small-scale schemes are the most SEE effective, despite large-scale schemes being more financially viable. The selection of the criteria on which the alternatives are assessed and the assigned weights for each criterion are of crucial importance. It is thus very important to include the relevant stakeholders to elicit this information

  1. Local-Scale Simulations of Nucleate Boiling on Micrometer Featured Surfaces: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Sitaraman, Hariswaran [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Moreno, Gilberto [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Narumanchi, Sreekant V [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Dede, Ercan M. [Toyota Research Institute of North America; Joshi, Shailesh N. [Toyota Research Institute of North America; Zhou, Feng [Toyota Research Institute of North America

    2017-08-03

    A high-fidelity computational fluid dynamics (CFD)-based model for bubble nucleation of the refrigerant HFE7100 on micrometer-featured surfaces is presented in this work. The single-fluid incompressible Navier-Stokes equations, along with energy transport and natural convection effects are solved on a featured surface resolved grid. An a priori cavity detection method is employed to convert raw profilometer data of a surface into well-defined cavities. The cavity information and surface morphology are represented in the CFD model by geometric mesh deformations. Surface morphology is observed to initiate buoyancy-driven convection in the liquid phase, which in turn results in faster nucleation of cavities. Simulations pertaining to a generic rough surface show a trend where smaller size cavities nucleate with higher wall superheat. This local-scale model will serve as a self-consistent connection to larger device scale continuum models where local feature representation is not possible.

  2. Escape jumping by three age-classes of water striders from smooth, wavy and bubbling water surfaces.

    Science.gov (United States)

    Ortega-Jimenez, Victor Manuel; von Rabenau, Lisa; Dudley, Robert

    2017-08-01

    Surface roughness is a ubiquitous phenomenon in both oceanic and terrestrial waters. For insects that live at the air-water interface, such as water striders, non-linear and multi-scale perturbations produce dynamic surface deformations which may impair locomotion. We studied escape jumps of adults, juveniles and first-instar larvae of the water strider Aquarius remigis on smooth, wave-dominated and bubble-dominated water surfaces. Effects of substrate on takeoff jumps were substantial, with significant reductions in takeoff angles, peak translational speeds, attained heights and power expenditure on more perturbed water surfaces. Age effects were similarly pronounced, with the first-instar larvae experiencing the greatest degradation in performance; age-by-treatment effects were also significant for many kinematic variables. Although commonplace in nature, perturbed water surfaces thus have significant and age-dependent effects on water strider locomotion, and on behavior more generally of surface-dwelling insects. © 2017. Published by The Company of Biologists Ltd.

  3. String Chopping and Time-ordered Products of Linear String-localized Quantum Fields

    Science.gov (United States)

    Cardoso, Lucas T.; Mund, Jens; Várilly, Joseph C.

    2018-03-01

    For a renormalizability proof of perturbative models in the Epstein-Glaser scheme with string-localized quantum fields, one needs to know what freedom one has in the definition of time-ordered products of the interaction Lagrangian. This paper provides a first step in that direction. The basic issue is the presence of an open set of n-tuples of strings which cannot be chronologically ordered. We resolve it by showing that almost all such string configurations can be dissected into finitely many pieces which can indeed be chronologically ordered. This fixes the time-ordered products of linear field factors outside a nullset of string configurations. (The extension across the nullset, as well as the definition of time-ordered products of Wick monomials, will be discussed elsewhere).

  4. Grey scale, the 'crispening effect', and perceptual linearization

    NARCIS (Netherlands)

    Belaïd, N.; Martens, J.B.

    1998-01-01

    One way of optimizing a display is to maximize the number of distinguishable grey levels, which in turn is equivalent to perceptually linearizing the display. Perceptual linearization implies that equal steps in grey value evoke equal steps in brightness sensation. The key to perceptual

  5. On the vanishing rate of smooth CR functions

    Directory of Open Access Journals (Sweden)

    Giuseppe Della Sala

    2014-01-01

    Full Text Available Let be a lineally convex hypersurface of ℂⁿ of finite type, 0∈. Then there exist non-trivial smooth CR functions on that are flat at 0, i.e. whose Taylor expansion about 0 vanishes identically. Our aim is to characterize the rate at which flat CR functions can decrease without vanishing identically. As it turns out, non-trivial CR functions cannot decay arbitrarily fast, and a possible way of expressing the critical rate is by comparison with a suitable exponential of the modulus of a local peak function.

  6. Linear study and bundle adjustment data fusion; Application to vision localization

    International Nuclear Information System (INIS)

    Michot, J.

    2010-01-01

    The works presented in this manuscript are in the field of computer vision, and tackle the problem of real-time vision based localization and 3D reconstruction. In this context, the trajectory of a camera and the 3D structure of the filmed scene are initially estimated by linear algorithms and then optimized by a nonlinear algorithm, bundle adjustment. The thesis first presents a new technique of line search, dedicated to the nonlinear minimization algorithms used in Structure-from-Motion. The proposed technique is not iterative and can be quickly installed in traditional bundle adjustment frameworks. This technique, called Global Algebraic Line Search (G-ALS), and its two-dimensional variant (Two way-ALS), accelerate the convergence of the bundle adjustment algorithm. The approximation of the re-projection error by an algebraic distance enables the analytical calculation of an effective displacement amplitude (or two amplitudes for the Two way-ALS variant) by solving a degree 3 (G-ALS) or 5 (Two way-ALS) polynomial. Our experiments, conducted on simulated and real data, show that this amplitude, which is optimal for the algebraic distance, is also efficient for the Euclidean distance and reduces the convergence time of minimizations. One difficulty of real-time tracking algorithms (monocular SLAM) is that the estimated trajectory is often affected by drifts: on the absolute orientation, position and scale. Since these algorithms are incremental, errors and approximations are accumulated throughout the trajectory and cause global drifts. In addition, a tracking vision system can always be dazzled or used under conditions which prevented temporarily to calculate the location of the system. To solve these problems, we propose to use an additional sensor measuring the displacement of the camera. The type of sensor used will vary depending on the targeted application (an odometer for a vehicle, a lightweight inertial navigation system for a person). We propose to

  7. The selection pressures induced non-smooth infectious disease model and bifurcation analysis

    International Nuclear Information System (INIS)

    Qin, Wenjie; Tang, Sanyi

    2014-01-01

    Highlights: • A non-smooth infectious disease model to describe selection pressure is developed. • The effect of selection pressure on infectious disease transmission is addressed. • The key factors which are related to the threshold value are determined. • The stabilities and bifurcations of model have been revealed in more detail. • Strategies for the prevention of emerging infectious disease are proposed. - Abstract: Mathematical models can assist in the design strategies to control emerging infectious disease. This paper deduces a non-smooth infectious disease model induced by selection pressures. Analysis of this model reveals rich dynamics including local, global stability of equilibria and local sliding bifurcations. Model solutions ultimately stabilize at either one real equilibrium or the pseudo-equilibrium on the switching surface of the present model, depending on the threshold value determined by some related parameters. Our main results show that reducing the threshold value to a appropriate level could contribute to the efficacy on prevention and treatment of emerging infectious disease, which indicates that the selection pressures can be beneficial to prevent the emerging infectious disease under medical resource limitation

  8. Food Self-Sufficiency across scales: How local can we go?

    Science.gov (United States)

    Pradhan, Prajal; Lüdeke, Matthias K. B.; Reusser, Dominik E.; Kropp, Jürgen P.

    2013-04-01

    "Think global, act local" is a phrase often used in sustainability debates. Here, we explore the potential of regions to go for local supply in context of sustainable food consumption considering both the present state and the plausible future scenarios. We analyze data on the gridded crop calories production, the gridded livestock calories production, the gridded feed calories use and the gridded food calories consumption in 5' resolution. We derived these gridded data from various sources: Global Agro-ecological Zone (GAEZ v3.0), Gridded Livestock of the World (GLW), FAOSTAT, and Global Rural-Urban Mapping Project (GRUMP). For scenarios analysis, we considered changes in population, dietary patterns and possibility of obtaining the maximum potential yield. We investigate the food self-sufficiency multiple spatial scales. We start from the 5' resolution (i.e. around 10 km x 10 km in the equator) and look at 8 levels of aggregation ranging from the plausible lowest administrative level to the continental level. Results for the different spatial scales show that about 1.9 billion people live in the area of 5' resolution where enough calories can be produced to sustain their food consumption and the feed used. On the country level, about 4.4 billion population can be sustained without international food trade. For about 1 billion population from Asia and Africa, there is a need for cross-continental food trade. However, if we were able to achieve the maximum potential crop yield, about 2.6 billion population can be sustained within their living area of 5' resolution. Furthermore, Africa and Asia could be food self-sufficient by achieving their maximum potential crop yield and only round 630 million populations would be dependent on the international food trade. However, the food self-sufficiency status might differ under consideration of the future change in population, dietary patterns and climatic conditions. We provide an initial approach for investigating the

  9. Adaptive estimation of a time-varying phase with coherent states: Smoothing can give an unbounded improvement over filtering

    Science.gov (United States)

    Laverick, Kiarn T.; Wiseman, Howard M.; Dinani, Hossein T.; Berry, Dominic W.

    2018-04-01

    The problem of measuring a time-varying phase, even when the statistics of the variation is known, is considerably harder than that of measuring a constant phase. In particular, the usual bounds on accuracy, such as the 1 /(4 n ¯) standard quantum limit with coherent states, do not apply. Here, by restricting to coherent states, we are able to analytically obtain the achievable accuracy, the equivalent of the standard quantum limit, for a wide class of phase variation. In particular, we consider the case where the phase has Gaussian statistics and a power-law spectrum equal to κp -1/|ω| p for large ω , for some p >1 . For coherent states with mean photon flux N , we give the quantum Cramér-Rao bound on the mean-square phase error as [psin(π /p ) ] -1(4N /κ ) -(p -1 )/p . Next, we consider whether the bound can be achieved by an adaptive homodyne measurement in the limit N /κ ≫1 , which allows the photocurrent to be linearized. Applying the optimal filtering for the resultant linear Gaussian system, we find the same scaling with N , but with a prefactor larger by a factor of p . By contrast, if we employ optimal smoothing we can exactly obtain the quantum Cramér-Rao bound. That is, contrary to previously considered (p =2 ) cases of phase estimation, here the improvement offered by smoothing over filtering is not limited to a factor of 2 but rather can be unbounded by a factor of p . We also study numerically the performance of these estimators for an adaptive measurement in the limit where N /κ is not large and find a more complicated picture.

  10. Groundwater flow simulation on local scale. Setting boundary conditions of groundwater flow simulation on site scale model in the step 4

    International Nuclear Information System (INIS)

    Onoe, Hironori; Saegusa, Hiromitsu; Ohyama, Takuya

    2007-03-01

    Japan Atomic Energy Agency has been conducting a wide range of geoscientific research in order to build a foundation for multidisciplinary studies of the deep geological environment as a basis of research and development for geological disposal of nuclear wastes. Ongoing geoscientific research programs include the Regional Hydrogeological Study (RHS) project and Mizunami Underground Research Laboratory (MIU) project in the Tono region, Gifu Prefecture. The main goal of these projects is to establish comprehensive techniques for investigation, analysis, and assessment of the deep geological at several spatial scales. The RHS project is a Local scale study for understanding the groundwater flow system from the recharge area to the discharge area. The Surface-based Investigation Phase of the MIU project is a Site scale study for understanding the deep geological environment immediately surrounding the MIU construction site using a multiphase, iterative approach. In this study, the hydrogeological modeling and groundwater flow simulation on Local scale were carried out in order to set boundary conditions of the Site scale model based on the data obtained from surface-based investigations in the Step4 in Site scale of the MIU project. As a result of the study, boundary conditions for groundwater flow simulation on the Site scale model of the Step4 could be obtained. (author)

  11. Unconventional scaling of the anomalous Hall effect accompanying electron localization correction in the dirty regime

    KAUST Repository

    Lu, Y. M.

    2013-03-05

    Scaling of the anomalous Hall conductivity to longitudinal conductivity σAH∝σ2xx has been observed in the dirty regime of two-dimensional weak and strong localization regions in ultrathin, polycrystalline, chemically disordered, ferromagnetic FePt films. The relationship between electron transport and temperature reveals a quantitatively insignificant Coulomb interaction in these films, while the temperature dependent anomalous Hall conductivity experiences quantum correction from electron localization. At the onset of this correction, the low-temperature anomalous Hall resistivity begins to be saturated when the thickness of the FePt film is reduced, and the corresponding Hall conductivity scaling exponent becomes 2, which is above the recent unified theory of 1.6 (σAH∝σ1.6xx). Our results strongly suggest that the correction of the electron localization modulates the scaling exponent of the anomalous Hall effect.

  12. Worst-case and smoothed analysis of k-means clustering with Bregman divergences

    NARCIS (Netherlands)

    Manthey, Bodo; Röglin, H.

    2013-01-01

    The $k$-means method is the method of choice for clustering large-scale data sets and it performs exceedingly well in practice despite its exponential worst-case running-time. To narrow the gap between theory and practice, $k$-means has been studied in the semi-random input model of smoothed

  13. Local models of heterotic flux vacua: spacetime and worldsheet aspects

    International Nuclear Information System (INIS)

    Israel, D.; Carlevaro, L.

    2011-01-01

    We report on some recent progress in understanding heterotic flux compactifications, from a worldsheet perspective mainly. We consider local models consisting in torus fibration over warped Eguchi-Hanson space and non-Kaehler resolved conifold geometries. We analyze the supergravity solutions and define a double-scaling limit of the resolved singularities, defined such that the geometry is smooth and weakly coupled. We show that, remarkably, the heterotic solutions admit solvable worldsheet CFT descriptions in this limit. This allows in particular to understand the important role of worldsheet non-perturbative effects. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  14. Fundamentals of tensor calculus for engineers with a primer on smooth manifolds

    CERN Document Server

    Mühlich, Uwe

    2017-01-01

    This book presents the fundamentals of modern tensor calculus for students in engineering and applied physics, emphasizing those aspects that are crucial for applying tensor calculus safely in Euclidian space and for grasping the very essence of the smooth manifold concept. After introducing the subject, it provides a brief exposition on point set topology to familiarize readers with the subject, especially with those topics required in later chapters. It then describes the finite dimensional real vector space and its dual, focusing on the usefulness of the latter for encoding duality concepts in physics. Moreover, it introduces tensors as objects that encode linear mappings and discusses affine and Euclidean spaces. Tensor analysis is explored first in Euclidean space, starting from a generalization of the concept of differentiability and proceeding towards concepts such as directional derivative, covariant derivative and integration based on differential forms. The final chapter addresses the role of smooth...

  15. Smoothness of limit functors

    Indian Academy of Sciences (India)

    Abstract. Let S be a scheme. Assume that we are given an action of the one dimen- sional split torus Gm,S on a smooth affine S-scheme X. We consider the limit (also called attractor) subfunctor Xλ consisting of points whose orbit under the given action. 'admits a limit at 0'. We show that Xλ is representable by a smooth ...

  16. The influence of end constraints on smooth pipe bends

    International Nuclear Information System (INIS)

    Thomson, G.; Spence, J.

    1981-01-01

    With present trends in the power industries towards higher operating temperatures and pressures, problems associated with the design and safety assessment of pipework systems have become increasingly complex. Within such systems, the importance of smooth pipe bends is well established. The work which will be presented will attempt to clarify the situation and unify the results. An analytical solution of the problem of a linear elastic smooth pipe bend with end constraints under in-plane bending will be presented. The analysis will deal with constraints in the form of flanged tangents of any length. The analysis employs the theorem of minimum total potential energy with suitable kinematically admissible displacements in the form of Fourier series. The integrations and minimisation were performed numerically, thereby permitting the removal of several of the assumptions made by previous authors. Typical results for flexibilities will be given along with comparisons with other works. The differences in some earlier theory are clarified and other more recent work using different solution techniques is substantiated. The bend behaviour is shown to be strongly influenced by the pipe bend parameter, the bend angle, the tangent pipe length and the bend/cross-sectional radius ratio. (orig./GL)

  17. Local correlation detection with linearity enhancement in streaming data

    KAUST Repository

    Xie, Qing; Shang, Shuo; Yuan, Bo; Pang, Chaoyi; Zhang, Xiangliang

    2013-01-01

    -correlation calculation with time delay allowed. In addition, we introduce a shape-based similarity measure into the framework, which ref nes the results by representative trend patterns to enhance the signif cance of linearity. The similarity of proposed linear

  18. Detecting Multi-scale Structures in Chandra Images of Centaurus A

    Science.gov (United States)

    Karovska, M.; Fabbiano, G.; Elvis, M. S.; Evans, I. N.; Kim, D. W.; Prestwich, A. H.; Schwartz, D. A.; Murray, S. S.; Forman, W.; Jones, C.; Kraft, R. P.; Isobe, T.; Cui, W.; Schreier, E. J.

    1999-12-01

    Centaurus A (NGC 5128) is a giant early-type galaxy with a merger history, containing the nearest radio-bright AGN. Recent Chandra High Resolution Camera (HRC) observations of Cen A reveal X-ray multi-scale structures in this object with unprecedented detail and clarity. We show the results of an analysis of the Chandra data with smoothing and edge enhancement techniques that allow us to enhance and quantify the multi-scale structures present in the HRC images. These techniques include an adaptive smoothing algorithm (Ebeling et al 1999), and a multi-directional gradient detection algorithm (Karovska et al 1994). The Ebeling et al adaptive smoothing algorithm, which is incorporated in the CXC analysis s/w package, is a powerful tool for smoothing images containing complex structures at various spatial scales. The adaptively smoothed images of Centaurus A show simultaneously the high-angular resolution bright structures at scales as small as an arcsecond and the extended faint structures as large as several arc minutes. The large scale structures suggest complex symmetry, including a component possibly associated with the inner radio lobes (as suggested by the ROSAT HRI data, Dobereiner et al 1996), and a separate component with an orthogonal symmetry that may be associated with the galaxy as a whole. The dust lane and the x-ray ridges are very clearly visible. The adaptively smoothed images and the edge-enhanced images also suggest several filamentary features including a large filament-like structure extending as far as about 5 arcminutes to North-West.

  19. Recursive inverse kinematics for robot arms via Kalman filtering and Bryson-Frazier smoothing

    Science.gov (United States)

    Rodriguez, G.; Scheid, R. E., Jr.

    1987-01-01

    This paper applies linear filtering and smoothing theory to solve recursively the inverse kinematics problem for serial multilink manipulators. This problem is to find a set of joint angles that achieve a prescribed tip position and/or orientation. A widely applicable numerical search solution is presented. The approach finds the minimum of a generalized distance between the desired and the actual manipulator tip position and/or orientation. Both a first-order steepest-descent gradient search and a second-order Newton-Raphson search are developed. The optimal relaxation factor required for the steepest descent method is computed recursively using an outward/inward procedure similar to those used typically for recursive inverse dynamics calculations. The second-order search requires evaluation of a gradient and an approximate Hessian. A Gauss-Markov approach is used to approximate the Hessian matrix in terms of products of first-order derivatives. This matrix is inverted recursively using a two-stage process of inward Kalman filtering followed by outward smoothing. This two-stage process is analogous to that recently developed by the author to solve by means of spatial filtering and smoothing the forward dynamics problem for serial manipulators.

  20. Global hybrids from the semiclassical atom theory satisfying the local density linear response.

    Science.gov (United States)

    Fabiano, Eduardo; Constantin, Lucian A; Cortona, Pietro; Della Sala, Fabio

    2015-01-13

    We propose global hybrid approximations of the exchange-correlation (XC) energy functional which reproduce well the modified fourth-order gradient expansion of the exchange energy in the semiclassical limit of many-electron neutral atoms and recover the full local density approximation (LDA) linear response. These XC functionals represent the hybrid versions of the APBE functional [Phys. Rev. Lett. 2011, 106, 186406] yet employing an additional correlation functional which uses the localization concept of the correlation energy density to improve the compatibility with the Hartree-Fock exchange as well as the coupling-constant-resolved XC potential energy. Broad energetic and structural testing, including thermochemistry and geometry, transition metal complexes, noncovalent interactions, gold clusters and small gold-molecule interfaces, as well as an analysis of the hybrid parameters, show that our construction is quite robust. In particular, our testing shows that the resulting hybrid, including 20% of Hartree-Fock exchange and named hAPBE, performs remarkably well for a broad palette of systems and properties, being generally better than popular hybrids (PBE0 and B3LYP). Semiempirical dispersion corrections are also provided.

  1. Local unitary transformation method for large-scale two-component relativistic calculations. II. Extension to two-electron Coulomb interaction.

    Science.gov (United States)

    Seino, Junji; Nakai, Hiromi

    2012-10-14

    The local unitary transformation (LUT) scheme at the spin-free infinite-order Douglas-Kroll-Hess (IODKH) level [J. Seino and H. Nakai, J. Chem. Phys. 136, 244102 (2012)], which is based on the locality of relativistic effects, has been extended to a four-component Dirac-Coulomb Hamiltonian. In the previous study, the LUT scheme was applied only to a one-particle IODKH Hamiltonian with non-relativistic two-electron Coulomb interaction, termed IODKH/C. The current study extends the LUT scheme to a two-particle IODKH Hamiltonian as well as one-particle one, termed IODKH/IODKH, which has been a real bottleneck in numerical calculation. The LUT scheme with the IODKH/IODKH Hamiltonian was numerically assessed in the diatomic molecules HX and X(2) and hydrogen halide molecules, (HX)(n) (X = F, Cl, Br, and I). The total Hartree-Fock energies calculated by the LUT method agree well with conventional IODKH/IODKH results. The computational cost of the LUT method is reduced drastically compared with that of the conventional method. In addition, the LUT method achieves linear-scaling with respect to the system size and a small prefactor.

  2. Convex variational problems linear, nearly linear and anisotropic growth conditions

    CERN Document Server

    Bildhauer, Michael

    2003-01-01

    The author emphasizes a non-uniform ellipticity condition as the main approach to regularity theory for solutions of convex variational problems with different types of non-standard growth conditions. This volume first focuses on elliptic variational problems with linear growth conditions. Here the notion of a "solution" is not obvious and the point of view has to be changed several times in order to get some deeper insight. Then the smoothness properties of solutions to convex anisotropic variational problems with superlinear growth are studied. In spite of the fundamental differences, a non-uniform ellipticity condition serves as the main tool towards a unified view of the regularity theory for both kinds of problems.

  3. Oviposition site selection of an endangered butterfly at local spatial scales

    DEFF Research Database (Denmark)

    Tjørnløv, Rune Skjold; Kissling, W. Daniel; Barnagaud, Jean-Yves

    2015-01-01

    As pre-hibernating larvae of the marsh fritillary (Euphydryas aurinia) have limited mobility essential resources need to be available at a very local scale. We surveyed larval webs (2011–2013), the host plant devil’s bit scabious (Succisa pratensis) (2012), and derived variables from digital orth...

  4. Influence of structured sidewalls on the wetting states and superhydrophobic stability of surfaces with dual-scale roughness

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Huaping, E-mail: wuhuaping@gmail.com [Key Laboratory of E& M (Zhejiang University of Technology), Ministry of Education & Zhejiang Province, Hangzhou 310014 (China); State Key Laboratory of Structural Analysis for Industrial Equipment, Dalian University of Technology, Dalian 116024 (China); Zhu, Kai; Wu, Bingbing [Key Laboratory of E& M (Zhejiang University of Technology), Ministry of Education & Zhejiang Province, Hangzhou 310014 (China); Lou, Jia [Piezoelectric Device Laboratory, Department of Mechanics and Engineering Science, Ningbo University, Ningbo, Zhejiang 315211 (China); Zhang, Zheng [Key Laboratory of E& M (Zhejiang University of Technology), Ministry of Education & Zhejiang Province, Hangzhou 310014 (China); Chai, Guozhong, E-mail: chaigz@zjut.edu.cn [Key Laboratory of E& M (Zhejiang University of Technology), Ministry of Education & Zhejiang Province, Hangzhou 310014 (China)

    2016-09-30

    Highlights: • Apparent contact angle equation of all wetting states on dual-scale rough surfaces is derived. • Structured sidewalls can improve superhydrophobicity than smooth sidewalls. • Structured sidewalls can enlarge ACA than smooth sidewalls. • Structured sidewalls present an advantage over smooth sidewalls in terms of enhancing superhydrophobic stability. - Abstract: The superhydrophobicity of biological surfaces with dual-scale roughness has recently received considerable attention because of the unique wettability of such surfaces. Based on this, artificial micro/nano hierarchical structures with structured sidewalls and smooth sidewalls were designed and the influences of sidewall configurations (i.e., structured and smooth) on the wetting state of micro/nano hierarchical structures were systematically investigated based on thermodynamics and the principle of minimum free energy. Wetting transition and superhydrophobic stability were then analyzed for a droplet on dual-scale rough surfaces with structured and smooth sidewalls. Theoretical analysis results show that dual-scale rough surfaces with structured sidewalls have a larger “stable superhydrophobic region” than those with smooth sidewalls. The dual-scale rough surfaces with smooth sidewalls can enlarge the apparent contact angle (ACA) without improvement in the superhydrophobic stability. By contrast, dual-scale rough surfaces with structured sidewalls present an advantage over those with smooth sidewalls in terms of enlarging ACA and enhancing superhydrophobic stability. The proposed thermodynamic model is valid when compared with previous experimental data and numerical analysis results, which is helpful for designing and understanding the wetting states and superhydrophobic stability of surfaces with dual-scale roughness.

  5. Ca2+ sparks act as potent regulators of excitation-contraction coupling in airway smooth muscle.

    Science.gov (United States)

    Zhuge, Ronghua; Bao, Rongfeng; Fogarty, Kevin E; Lifshitz, Lawrence M

    2010-01-15

    Ca2+ sparks are short lived and localized Ca2+ transients resulting from the opening of ryanodine receptors in sarcoplasmic reticulum. These events relax certain types of smooth muscle by activating big conductance Ca2+-activated K+ channels to produce spontaneous transient outward currents (STOCs) and the resultant closure of voltage-dependent Ca2+ channels. But in many smooth muscles from a variety of organs, Ca2+ sparks can additionally activate Ca2+-activated Cl(-) channels to generate spontaneous transient inward current (STICs). To date, the physiological roles of Ca2+ sparks in this latter group of smooth muscle remain elusive. Here, we show that in airway smooth muscle, Ca2+ sparks under physiological conditions, activating STOCs and STICs, induce biphasic membrane potential transients (BiMPTs), leading to membrane potential oscillations. Paradoxically, BiMPTs stabilize the membrane potential by clamping it within a negative range and prevent the generation of action potentials. Moreover, blocking either Ca2+ sparks or hyperpolarization components of BiMPTs activates voltage-dependent Ca2+ channels, resulting in an increase in global [Ca2+](i) and cell contraction. Therefore, Ca2+ sparks in smooth muscle presenting both STICs and STOCs act as a stabilizer of membrane potential, and altering the balance can profoundly alter the status of excitability and contractility. These results reveal a novel mechanism underlying the control of excitability and contractility in smooth muscle.

  6. Estimating local scaling properties for the classification of interstitial lung disease patterns

    Science.gov (United States)

    Huber, Markus B.; Nagarajan, Mahesh B.; Leinsinger, Gerda; Ray, Lawrence A.; Wismueller, Axel

    2011-03-01

    Local scaling properties of texture regions were compared in their ability to classify morphological patterns known as 'honeycombing' that are considered indicative for the presence of fibrotic interstitial lung diseases in high-resolution computed tomography (HRCT) images. For 14 patients with known occurrence of honeycombing, a stack of 70 axial, lung kernel reconstructed images were acquired from HRCT chest exams. 241 regions of interest of both healthy and pathological (89) lung tissue were identified by an experienced radiologist. Texture features were extracted using six properties calculated from gray-level co-occurrence matrices (GLCM), Minkowski Dimensions (MDs), and the estimation of local scaling properties with Scaling Index Method (SIM). A k-nearest-neighbor (k-NN) classifier and a Multilayer Radial Basis Functions Network (RBFN) were optimized in a 10-fold cross-validation for each texture vector, and the classification accuracy was calculated on independent test sets as a quantitative measure of automated tissue characterization. A Wilcoxon signed-rank test was used to compare two accuracy distributions including the Bonferroni correction. The best classification results were obtained by the set of SIM features, which performed significantly better than all the standard GLCM and MD features (p < 0.005) for both classifiers with the highest accuracy (94.1%, 93.7%; for the k-NN and RBFN classifier, respectively). The best standard texture features were the GLCM features 'homogeneity' (91.8%, 87.2%) and 'absolute value' (90.2%, 88.5%). The results indicate that advanced texture features using local scaling properties can provide superior classification performance in computer-assisted diagnosis of interstitial lung diseases when compared to standard texture analysis methods.

  7. On the theory of spatial localization of photons

    International Nuclear Information System (INIS)

    Keller, Ole

    2005-01-01

    In the quantum physics of near-field optics and optical tunneling light-matter interactions are studied on a length scale (much) smaller than the wavelength of light, and questions regarding the possibilities for strong spatial localization of electromagnetic fields are here in focus. Some of these questions relate to the spatial resolution problem in optics, a problem which has gained considerable attention in connection to optical investigations of mesoscopic systems. Optics beyond the classical diffraction limit has renewed our interest in the various theories for spatial localization of single photons. In the present work aspects of these theories of particular importance for light-matter interaction on the microscopic and mesoscopic length scales are reviewed. Photon wave mechanics, i.e. the (rather unknown) first quantized theory of the photon, allows us to address the spatial field localization problem in a flexible manner which links smoothly to classical electromagnetics. The wave mechanics of free photons is discussed both in the momentum-time domain (Part A) and in the space-time domain (Part B). The first-quantized theory of spatial localization of photons subjected to field-matter interaction is described in Part C, paying particular attendance to the so-called photon energy wave function concept. In Part D, the spatial localization of photons are studied on a field theoretic (second-quantized) basis. The coarse-grained photon localization theory and the spatial localization perceived in various representations (gauges) here are core issues. In the two last parts of the review I describe photon fields in near-field optics (Part E), and the optical tunneling phenomenon, here seen as a fingerprint of weak photon localizability (Part F)

  8. Air-quality in the mid-21st century for the city of Paris under two climate scenarios; from regional to local scale

    Science.gov (United States)

    Markakis, K.; Valari, M.; Colette, A.; Sanchez, O.; Perrussel, O.; Honore, C.; Vautard, R.; Klimont, Z.; Rao, S.

    2014-01-01

    Ozone and PM2.5 concentrations over the city of Paris are modeled with the CHIMERE air-quality model at 4 km × 4 km horizontal resolution for two future emission scenarios. High-resolution (1 km × 1 km) emission projection until 2020 for the greater Paris region is developed by local experts (AIRPARIF) and is further extended to year 2050 based on regional scale emission projections developed by the Global Energy Assessment. Model evaluation is performed based on a 10 yr control simulation. Ozone is in very good agreement with measurements while PM2.5 is underestimated by 20% over the urban area mainly due to a large wet bias in wintertime precipitation. A significant increase of maximum ozone relative to present time levels over Paris is modeled under the "business as usual" scenario (+7 ppb) while a more optimistic mitigation scenario leads to moderate ozone decrease (-3.5 ppb) in year 2050. These results are substantially different to previous regional scale projections where 2050 ozone is found to decrease under both future scenarios. A sensitivity analysis showed that this difference is due to the fact that ozone formation over Paris at the current, urban scale study, is driven by VOC-limited chemistry, whereas at the regional scale ozone formation occurs under NOx-sensitive conditions. This explains why the sharp NOx reductions implemented in the future scenarios have a different effect on ozone projections at different scales. In rural areas projections at both scales yield similar results showing that the longer time-scale processes of emission transport and ozone formation are less sensitive to model resolution. PM2.5 concentrations decrease by 78% and 89% under "business as usual" and "mitigation" scenarios respectively compared to present time period. The reduction is much more prominent over the urban part of the domain due to the effective reductions of road transport and residential emissions resulting in the smoothing of the large urban increment

  9. Calcium dynamics in vascular smooth muscle

    OpenAIRE

    Amberg, Gregory C.; Navedo, Manuel F.

    2013-01-01

    Smooth muscle cells are ultimately responsible for determining vascular luminal diameter and blood flow. Dynamic changes in intracellular calcium are a critical mechanism regulating vascular smooth muscle contractility. Processes influencing intracellular calcium are therefore important regulators of vascular function with physiological and pathophysiological consequences. In this review we discuss the major dynamic calcium signals identified and characterized in vascular smooth muscle cells....

  10. Smooth and robust solutions for Dirichlet boundary control of fluid-solid conjugate heat transfer problems

    KAUST Repository

    Yan, Yan; Keyes, David E.

    2015-01-01

    and require the numerical continuation technique applied on regularization parameters. We believe our solution strategy is general and can be applied to other large-scale optimal control problems which involve multiphysics processes and require smooth

  11. Using ensemble models to identify and apportion heavy metal pollution sources in agricultural soils on a local scale

    International Nuclear Information System (INIS)

    Wang, Qi; Xie, Zhiyi; Li, Fangbai

    2015-01-01

    This study aims to identify and apportion multi-source and multi-phase heavy metal pollution from natural and anthropogenic inputs using ensemble models that include stochastic gradient boosting (SGB) and random forest (RF) in agricultural soils on the local scale. The heavy metal pollution sources were quantitatively assessed, and the results illustrated the suitability of the ensemble models for the assessment of multi-source and multi-phase heavy metal pollution in agricultural soils on the local scale. The results of SGB and RF consistently demonstrated that anthropogenic sources contributed the most to the concentrations of Pb and Cd in agricultural soils in the study region and that SGB performed better than RF. - Highlights: • Ensemble models including stochastic gradient boosting and random forest are used. • The models were verified by cross-validation and SGB performed better than RF. • Heavy metal pollution sources on a local scale are identified and apportioned. • Models illustrate good suitability in assessing sources in local-scale agricultural soils. • Anthropogenic sources contributed most to soil Pb and Cd pollution in our case. - Multi-source and multi-phase pollution by heavy metals in agricultural soils on a local scale were identified and apportioned.

  12. Does environmental policy affect scaling laws between population and pollution? Evidence from American metropolitan areas.

    Science.gov (United States)

    Muller, Nicholas Z; Jha, Akshaya

    2017-01-01

    Modern cities are engines of production, innovation, and growth. However, urbanization also increases both local and global pollution from household consumption and firms' production. Do emissions change proportionately to city size or does pollution tend to outpace or lag urbanization? Do emissions scale differently with population versus economic growth or are emissions, population, and economic growth inextricably linked? How are the scaling relationships between emissions, population, and economic growth affected by environmental regulation? This paper examines the link between urbanization, economic growth and pollution using data from Metropolitan Statistical Areas (MSAs) in the United States between 1999 and 2011. We find that the emissions of local air pollution in these MSAs scale according to a ¾ power law with both population size and gross domestic product (GDP). However, the monetary damages from these local emissions scale linearly with both population and GDP. Counties that have previously been out of attainment with the local air quality standards set by the Clean Air Act show an entirely different relationship: local emissions scale according to the square root of population, while the monetary damages from local air pollution follow a 2/3rds power law with population. Counties out of attainment are subject to more stringent emission controls; we argue based on this that enforcement of the Clean Air Act induces sublinear scaling between emissions, damages, and city size. In contrast, we find that metropolitan GDP scales super-linearly with population in all MSAs regardless of attainment status. Summarizing, our findings suggest that environmental policy limits the adverse effects of urbanization without interfering with the productivity benefits that manifest in cities.

  13. Semi-supervised eigenvectors for large-scale locally-biased learning

    DEFF Research Database (Denmark)

    Hansen, Toke Jansen; Mahoney, Michael W.

    2014-01-01

    improved scaling properties. We provide several empirical examples demonstrating how these semi-supervised eigenvectors can be used to perform locally-biased learning; and we discuss the relationship between our results and recent machine learning algorithms that use global eigenvectors of the graph......In many applications, one has side information, e.g., labels that are provided in a semi-supervised manner, about a specific target region of a large data set, and one wants to perform machine learning and data analysis tasks nearby that prespecified target region. For example, one might......-based machine learning and data analysis tools. At root, the reason is that eigenvectors are inherently global quantities, thus limiting the applicability of eigenvector-based methods in situations where one is interested in very local properties of the data. In this paper, we address this issue by providing...

  14. Linear collider: a preview

    Energy Technology Data Exchange (ETDEWEB)

    Wiedemann, H.

    1981-11-01

    Since no linear colliders have been built yet it is difficult to know at what energy the linear cost scaling of linear colliders drops below the quadratic scaling of storage rings. There is, however, no doubt that a linear collider facility for a center of mass energy above say 500 GeV is significantly cheaper than an equivalent storage ring. In order to make the linear collider principle feasible at very high energies a number of problems have to be solved. There are two kinds of problems: one which is related to the feasibility of the principle and the other kind of problems is associated with minimizing the cost of constructing and operating such a facility. This lecture series describes the problems and possible solutions. Since the real test of a principle requires the construction of a prototype I will in the last chapter describe the SLC project at the Stanford Linear Accelerator Center.

  15. Linear collider: a preview

    International Nuclear Information System (INIS)

    Wiedemann, H.

    1981-11-01

    Since no linear colliders have been built yet it is difficult to know at what energy the linear cost scaling of linear colliders drops below the quadratic scaling of storage rings. There is, however, no doubt that a linear collider facility for a center of mass energy above say 500 GeV is significantly cheaper than an equivalent storage ring. In order to make the linear collider principle feasible at very high energies a number of problems have to be solved. There are two kinds of problems: one which is related to the feasibility of the principle and the other kind of problems is associated with minimizing the cost of constructing and operating such a facility. This lecture series describes the problems and possible solutions. Since the real test of a principle requires the construction of a prototype I will in the last chapter describe the SLC project at the Stanford Linear Accelerator Center

  16. A regional-scale assessment of local renewable energy resources in Cumbria, UK

    International Nuclear Information System (INIS)

    Gormally, A.M.; Whyatt, J.D.; Timmis, R.J.; Pooley, C.G.

    2012-01-01

    There is increasing focus on the role small-scale decentralised renewable energy developments could play in helping the UK meet its target of over 15% renewable energy by the year 2020 and alter energy behaviours through active community engagement. Upland areas are considered key areas where such community-based developments could occur due to their natural resources and range of community scales. This study uses GIS-based techniques to develop a methodology that assesses the regional-scale potential for community-based renewable electricity across Cumbria and whether a combination of these developments at the community-scale could make a significant contribution to local electricity consumption. This methodology looks at a range of technologies including hydro-power, wind-power, solar PV and bioenergy. The results suggest there is ample resource available for small communities by combining a mix of localised renewable electricity developments, which is highlighted through energy scenarios for a selected community. Further work will investigate whether this potential can be realised in reality by looking at resource resilience and community-level acceptability. - Highlights: ► A mix of wind, solar, bioenergy and hydro-power options are presented for Cumbria, UK. ► High resolution spatial analysis is conducted focussing on localised developments. ► Locations with sufficient renewable electricity potential were identified. ► Renewable options are explored further through a town case study. ► Scenarios consider different scales, mixes and contributions to local energy demand.

  17. Munition Burial by Local Scour and Sandwaves: large-scale laboratory experiments

    Science.gov (United States)

    Garcia, M. H.

    2017-12-01

    Our effort has been the direct observation and monitoring of the burial process of munitions induced by the combined action of waves, currents and pure oscillatory flows. The experimental conditions have made it possible to observe the burial process due to both local scour around model munitions as well as the passage of sandwaves. One experimental facility is the Large Oscillating Water Sediment Tunnel (LOWST) constructed with DURIP support. LOWST can reproduce field-like conditions near the sea bed. The second facility is a multipurpose wave-current flume which is 4 feet (1.20 m) deep, 6 feet (1.8 m) wide, and 161 feet (49.2 m) long. More than two hundred experiments were carried out in the wave-current flume. The main task completed within this effort has been the characterization of the burial process induced by local scour as well in the presence of dynamic sandwaves with superimposed ripples. It is found that the burial of a finite-length model munition (cylinder) is determined by local scour around the cylinder and by a more global process associated with the formation and evolution of sandwaves having superimposed ripples on them. Depending on the ratio of the amplitude of these features and the body's diameter (D), a model munition can progressively get partially or totally buried as such bedforms migrate. Analysis of the experimental data indicates that existing semi-empirical formulae for prediction of equilibrium-burial-depth, geometry of the scour hole around a cylinder, and time-scales developed for pipelines are not suitable for the case of a cylinder of finite length. Relative burial depth (Bd / D) is found to be mainly a function of two parameters. One is the Keulegan-Carpenter number, KC, and the Shields parameter, θ. Munition burial under either waves or combined flow, is influenced by two different processes. One is related to the local scour around the object, which takes place within the first few hundred minutes of flow action (i.e. short

  18. Localization in small fcc-particles with surface irregularities and disorder

    International Nuclear Information System (INIS)

    Bucher, J.P.; Bloomfield, L.A.

    1991-01-01

    A numerical eigenvector analysis is used to investigate Anderson localization in small fcc-particles of N = 309 and N = 147 atoms. Special attention is given to the way size and surface roughness of the particles influence the localization behavior. States begin to localize in a non-exponential regime several lattice spacings from the center of localization and finally converge to a fully exponentially-localized regime for strong disorder. For smooth surface particles, it is found that the states localize first at the band bottom and a mobility edge can clearly be defined for increasing disorder. This doesn't seem to be the case for the rougher particles, where the band middle and the band bottom show similar behavior towards localization. Although particles with surface irregularities show an onset of localization for smaller values of the disorder than smooth particles, the localization length is greater. (orig.)

  19. Estimation and variable selection for generalized additive partial linear models

    KAUST Repository

    Wang, Li

    2011-08-01

    We study generalized additive partial linear models, proposing the use of polynomial spline smoothing for estimation of nonparametric functions, and deriving quasi-likelihood based estimators for the linear parameters. We establish asymptotic normality for the estimators of the parametric components. The procedure avoids solving large systems of equations as in kernel-based procedures and thus results in gains in computational simplicity. We further develop a class of variable selection procedures for the linear parameters by employing a nonconcave penalized quasi-likelihood, which is shown to have an asymptotic oracle property. Monte Carlo simulations and an empirical example are presented for illustration. © Institute of Mathematical Statistics, 2011.

  20. Distinguishing globally-driven changes from regional- and local-scale impacts: The case for long-term and broad-scale studies of recovery from pollution.

    Science.gov (United States)

    Hawkins, S J; Evans, A J; Mieszkowska, N; Adams, L C; Bray, S; Burrows, M T; Firth, L B; Genner, M J; Leung, K M Y; Moore, P J; Pack, K; Schuster, H; Sims, D W; Whittington, M; Southward, E C

    2017-11-30

    Marine ecosystems are subject to anthropogenic change at global, regional and local scales. Global drivers interact with regional- and local-scale impacts of both a chronic and acute nature. Natural fluctuations and those driven by climate change need to be understood to diagnose local- and regional-scale impacts, and to inform assessments of recovery. Three case studies are used to illustrate the need for long-term studies: (i) separation of the influence of fishing pressure from climate change on bottom fish in the English Channel; (ii) recovery of rocky shore assemblages from the Torrey Canyon oil spill in the southwest of England; (iii) interaction of climate change and chronic Tributyltin pollution affecting recovery of rocky shore populations following the Torrey Canyon oil spill. We emphasize that "baselines" or "reference states" are better viewed as envelopes that are dependent on the time window of observation. Recommendations are made for adaptive management in a rapidly changing world. Copyright © 2017. Published by Elsevier Ltd.