WorldWideScience

Sample records for linear velocity change

  1. JET VELOCITY OF LINEAR SHAPED CHARGES

    Directory of Open Access Journals (Sweden)

    Vječislav Bohanek

    2012-12-01

    Full Text Available Shaped explosive charges with one dimension significantly larger than the other are called linear shaped charges. Linear shaped charges are used in various industries and are applied within specific technologies for metal cutting, such as demolition of steel structures, separating spent rocket fuel tanks, demining, cutting holes in the barriers for fire service, etc. According to existing theories and models efficiency of linear shaped charges depends on the kinetic energy of the jet which is proportional to square of jet velocity. The original method for measuring velocity of linear shaped charge jet is applied in the aforementioned research. Measurements were carried out for two different linear materials, and the results are graphically presented, analysed and compared. Measurement results show a discrepancy in the measured velocity of the jet for different materials with the same ratio between linear and explosive mass (M/C per unit of surface, which is not described by presented models (the paper is published in Croatian.

  2. Mössbauer spectra linearity improvement by sine velocity waveform followed by linearization process

    Science.gov (United States)

    Kohout, Pavel; Frank, Tomas; Pechousek, Jiri; Kouril, Lukas

    2018-05-01

    This note reports the development of a new method for linearizing the Mössbauer spectra recorded with a sine drive velocity signal. Mössbauer spectra linearity is a critical parameter to determine Mössbauer spectrometer accuracy. Measuring spectra with a sine velocity axis and consecutive linearization increases the linearity of spectra in a wider frequency range of a drive signal, as generally harmonic movement is natural for velocity transducers. The obtained data demonstrate that linearized sine spectra have lower nonlinearity and line width parameters in comparison with those measured using a traditional triangle velocity signal.

  3. On linear relationship between shock velocity and particle velocity

    International Nuclear Information System (INIS)

    Dandache, H.

    1986-11-01

    We attempt to derive the linear relationship between shock velocity U s and particle velocity U p from thermodynamic considerations, taking into account an ideal gas equation of state and a Mie-Grueneisen equation of state for solids. 23 refs

  4. Relationship between linear velocity and tangential push force while turning to change the direction of the manual wheelchair.

    Science.gov (United States)

    Hwang, Seonhong; Lin, Yen-Sheng; Hogaboom, Nathan S; Wang, Lin-Hwa; Koontz, Alicia M

    2017-08-28

    Wheelchair propulsion is a major cause of upper limb pain and injuries for manual wheelchair users with spinal cord injuries (SCIs). Few studies have investigated wheelchair turning biomechanics on natural ground surfaces. The purpose of this study was to investigate the relationship between tangential push force and linear velocity of the wheelchair during the turning portions of propulsion. Using an instrumented handrim, velocity and push force data were recorded for 25 subjects while they propel their own wheelchairs on a concrete floor along a figure-eight-shaped course at a maximum velocity. The braking force (1.03 N) of the inside wheel while turning was the largest of all other push forces (p<0.05). Larger changes in squared velocity while turning were significantly correlated with higher propulsive and braking forces used at the pre-turning, turning, and post-turning phases (p<0.05). Subjects with less change of velocity while turning needed less braking force to maneuver themselves successfully and safely around the turns. Considering the magnitude and direction of tangential force applied to the wheel, it seems that there are higher risks of injury and instability for upper limb joints when braking the inside wheel to turn. The results provide insight into wheelchair setup and mobility skills training for wheelchair users.

  5. A Simple Piece of Apparatus to Aid the Understanding of the Relationship between Angular Velocity and Linear Velocity

    Science.gov (United States)

    Unsal, Yasin

    2011-01-01

    One of the subjects that is confusing and difficult for students to fully comprehend is the concept of angular velocity and linear velocity. It is the relationship between linear and angular velocity that students find difficult; most students understand linear motion in isolation. In this article, we detail the design, construction and…

  6. Velocity Gradient Across the San Andreas Fault and Changes in Slip Behavior as Outlined by Full non Linear Tomography

    Science.gov (United States)

    Chiarabba, C.; Giacomuzzi, G.; Piana Agostinetti, N.

    2017-12-01

    The San Andreas Fault (SAF) near Parkfield is the best known fault section which exhibit a clear transition in slip behavior from stable to unstable. Intensive monitoring and decades of studies permit to identify details of these processes with a good definition of fault structure and subsurface models. Tomographic models computed so far revealed the existence of large velocity contrasts, yielding physical insight on fault rheology. In this study, we applied a recently developed full non-linear tomography method to compute Vp and Vs models which focus on the section of the fault that exhibit fault slip transition. The new tomographic code allows not to impose a vertical seismic discontinuity at the fault position, as routinely done in linearized codes. Any lateral velocity contrast found is directly dictated by the data themselves and not imposed by subjective choices. The use of the same dataset of previous tomographic studies allows a proper comparison of results. We use a total of 861 earthquakes, 72 blasts and 82 shots and the overall arrival time dataset consists of 43948 P- and 29158 S-wave arrival times, accurately selected to take care of seismic anisotropy. Computed Vp and Vp/Vs models, which by-pass the main problems related to linarized LET algorithms, excellently match independent available constraints and show crustal heterogeneities with a high resolution. The high resolution obtained in the fault surroundings permits to infer lateral changes of Vp and Vp/Vs across the fault (velocity gradient). We observe that stable and unstable sliding sections of the SAF have different velocity gradients, small and negligible in the stable slip segment, but larger than 15 % in the unstable slip segment. Our results suggest that Vp and Vp/Vs gradients across the fault control fault rheology and the attitude of fault slip behavior.

  7. An extended continuum model considering optimal velocity change with memory and numerical tests

    Science.gov (United States)

    Qingtao, Zhai; Hongxia, Ge; Rongjun, Cheng

    2018-01-01

    In this paper, an extended continuum model of traffic flow is proposed with the consideration of optimal velocity changes with memory. The new model's stability condition and KdV-Burgers equation considering the optimal velocities change with memory are deduced through linear stability theory and nonlinear analysis, respectively. Numerical simulation is carried out to study the extended continuum model, which explores how optimal velocity changes with memory affected velocity, density and energy consumption. Numerical results show that when considering the effects of optimal velocity changes with memory, the traffic jams can be suppressed efficiently. Both the memory step and sensitivity parameters of optimal velocity changes with memory will enhance the stability of traffic flow efficiently. Furthermore, numerical results demonstrates that the effect of optimal velocity changes with memory can avoid the disadvantage of historical information, which increases the stability of traffic flow on road, and so it improve the traffic flow stability and minimize cars' energy consumptions.

  8. System and method for investigating sub-surface features and 3D imaging of non-linear property, compressional velocity VP, shear velocity VS and velocity ratio VP/VS of a rock formation

    Science.gov (United States)

    Vu, Cung Khac; Skelt, Christopher; Nihei, Kurt; Johnson, Paul A.; Guyer, Robert; Ten Cate, James A.; Le Bas, Pierre-Yves; Larmat, Carene S.

    2015-06-02

    A system and a method for generating a three-dimensional image of a rock formation, compressional velocity VP, shear velocity VS and velocity ratio VP/VS of a rock formation are provided. A first acoustic signal includes a first plurality of pulses. A second acoustic signal from a second source includes a second plurality of pulses. A detected signal returning to the borehole includes a signal generated by a non-linear mixing process from the first and second acoustic signals in a non-linear mixing zone within an intersection volume. The received signal is processed to extract the signal over noise and/or signals resulting from linear interaction and the three dimensional image of is generated.

  9. Modeling continuous seismic velocity changes due to ground shaking in Chile

    Science.gov (United States)

    Gassenmeier, Martina; Richter, Tom; Sens-Schönfelder, Christoph; Korn, Michael; Tilmann, Frederik

    2015-04-01

    In order to investigate temporal seismic velocity changes due to earthquake related processes and environmental forcing, we analyze 8 years of ambient seismic noise recorded by the Integrated Plate Boundary Observatory Chile (IPOC) network in northern Chile between 18° and 25° S. The Mw 7.7 Tocopilla earthquake in 2007 and the Mw 8.1 Iquique earthquake in 2014 as well as numerous smaller events occurred in this area. By autocorrelation of the ambient seismic noise field, approximations of the Green's functions are retrieved. The recovered function represents backscattered or multiply scattered energy from the immediate neighborhood of the station. To detect relative changes of the seismic velocities we apply the stretching method, which compares individual autocorrelation functions to stretched or compressed versions of a long term averaged reference autocorrelation function. We use time windows in the coda of the autocorrelations, that contain scattered waves which are highly sensitive to minute changes in the velocity. At station PATCX we observe seasonal changes in seismic velocity as well as temporary velocity reductions in the frequency range of 4-6 Hz. The seasonal changes can be attributed to thermal stress changes in the subsurface related to variations of the atmospheric temperature. This effect can be modeled well by a sine curve and is subtracted for further analysis of short term variations. Temporary velocity reductions occur at the time of ground shaking usually caused by earthquakes and are followed by a recovery. We present an empirical model that describes the seismic velocity variations based on continuous observations of the local ground acceleration. Our hypothesis is that not only the shaking of earthquakes provokes velocity drops, but any small vibrations continuously induce minor velocity variations that are immediately compensated by healing in the steady state. We show that the shaking effect is accumulated over time and best described by

  10. Linear velocity fields in non-Gaussian models for large-scale structure

    Science.gov (United States)

    Scherrer, Robert J.

    1992-01-01

    Linear velocity fields in two types of physically motivated non-Gaussian models are examined for large-scale structure: seed models, in which the density field is a convolution of a density profile with a distribution of points, and local non-Gaussian fields, derived from a local nonlinear transformation on a Gaussian field. The distribution of a single component of the velocity is derived for seed models with randomly distributed seeds, and these results are applied to the seeded hot dark matter model and the global texture model with cold dark matter. An expression for the distribution of a single component of the velocity in arbitrary local non-Gaussian models is given, and these results are applied to such fields with chi-squared and lognormal distributions. It is shown that all seed models with randomly distributed seeds and all local non-Guassian models have single-component velocity distributions with positive kurtosis.

  11. Climate change velocity underestimates climate change exposure in mountainous regions

    Science.gov (United States)

    Solomon Z. Dobrowski; Sean A. Parks

    2016-01-01

    Climate change velocity is a vector depiction of the rate of climate displacement used for assessing climate change impacts. Interpreting velocity requires an assumption that climate trajectory length is proportional to climate change exposure; longer paths suggest greater exposure. However, distance is an imperfect measure of exposure because it does not...

  12. Adaptive H∞ nonlinear velocity tracking using RBFNN for linear DC brushless motor

    Science.gov (United States)

    Tsai, Ching-Chih; Chan, Cheng-Kain; Li, Yi Yu

    2012-01-01

    This article presents an adaptive H ∞ nonlinear velocity control for a linear DC brushless motor. A simplified model of this motor with friction is briefly recalled. The friction dynamics is described by the Lu Gre model and the online tuning radial basis function neural network (RBFNN) is used to parameterise the nonlinear friction function and un-modelled errors. An adaptive nonlinear H ∞ control method is then proposed to achieve velocity tracking, by assuming that the upper bounds of the ripple force, the changeable load and the nonlinear friction can be learned by the RBFNN. The closed-loop system is proven to be uniformly bounded using the Lyapunov stability theory. The feasibility and the efficacy of the proposed control are exemplified by conducting two velocity tracking experiments.

  13. [A capillary blood flow velocity detection system based on linear array charge-coupled devices].

    Science.gov (United States)

    Zhou, Houming; Wang, Ruofeng; Dang, Qi; Yang, Li; Wang, Xiang

    2017-12-01

    In order to detect the flow characteristics of blood samples in the capillary, this paper introduces a blood flow velocity measurement system based on field-programmable gate array (FPGA), linear charge-coupled devices (CCD) and personal computer (PC) software structure. Based on the analysis of the TCD1703C and AD9826 device data sheets, Verilog HDL hardware description language was used to design and simulate the driver. Image signal acquisition and the extraction of the real-time edge information of the blood sample were carried out synchronously in the FPGA. Then a series of discrete displacement were performed in a differential operation to scan each of the blood samples displacement, so that the sample flow rate could be obtained. Finally, the feasibility of the blood flow velocity detection system was verified by simulation and debugging. After drawing the flow velocity curve and analyzing the velocity characteristics, the significance of measuring blood flow velocity is analyzed. The results show that the measurement of the system is less time-consuming and less complex than other flow rate monitoring schemes.

  14. Reliability of the Load-Velocity Relationship Obtained Through Linear and Polynomial Regression Models to Predict the One-Repetition Maximum Load.

    Science.gov (United States)

    Pestaña-Melero, Francisco Luis; Haff, G Gregory; Rojas, Francisco Javier; Pérez-Castilla, Alejandro; García-Ramos, Amador

    2017-12-18

    This study aimed to compare the between-session reliability of the load-velocity relationship between (1) linear vs. polynomial regression models, (2) concentric-only vs. eccentric-concentric bench press variants, as well as (3) the within-participants vs. the between-participants variability of the velocity attained at each percentage of the one-repetition maximum (%1RM). The load-velocity relationship of 30 men (age: 21.2±3.8 y; height: 1.78±0.07 m, body mass: 72.3±7.3 kg; bench press 1RM: 78.8±13.2 kg) were evaluated by means of linear and polynomial regression models in the concentric-only and eccentric-concentric bench press variants in a Smith Machine. Two sessions were performed with each bench press variant. The main findings were: (1) first-order-polynomials (CV: 4.39%-4.70%) provided the load-velocity relationship with higher reliability than second-order-polynomials (CV: 4.68%-5.04%); (2) the reliability of the load-velocity relationship did not differ between the concentric-only and eccentric-concentric bench press variants; (3) the within-participants variability of the velocity attained at each %1RM was markedly lower than the between-participants variability. Taken together, these results highlight that, regardless of the bench press variant considered, the individual determination of the load-velocity relationship by a linear regression model could be recommended to monitor and prescribe the relative load in the Smith machine bench press exercise.

  15. Canonical treatment of the rocket with friction linear in the velocity

    International Nuclear Information System (INIS)

    Campos, I; Jimenez, J L; Valle, G del

    2003-01-01

    We show that the problem of the rocket with friction linear in the velocity can be treated by canonical methods. In order to achieve this we must abandon the restriction to natural Lagrangians of the form L = T - V, and use the method of S-equivalent Lagrangians. We also solve the problem with constant gravity. This example may be useful for the teaching of the application of canonical methods to dissipative systems, as well as to the teaching of the use of the method of S-equivalent Lagrangians

  16. Characteristics of Wind Velocity and Temperature Change Near an Escarpment-Shaped Road Embankment

    Directory of Open Access Journals (Sweden)

    Young-Moon Kim

    2014-01-01

    Full Text Available Artificial structures such as embankments built during the construction of highways influence the surrounding airflow. Various types of damage can occur due to changes in the wind velocity and temperature around highway embankments. However, no study has accurately measured micrometeorological changes (wind velocity and temperature due to embankments. This study conducted a wind tunnel test and field measurement to identify changes in wind velocity and temperature before and after the construction of embankments around roads. Changes in wind velocity around an embankment after its construction were found to be influenced by the surrounding wind velocity, wind angle, and the level difference and distance from the embankment. When the level difference from the embankment was large and the distance was up to 3H, the degree of wind velocity declines was found to be large. In changes in reference wind velocities around the embankment, wind velocity increases were not proportional to the rate at which wind velocities declined. The construction of the embankment influenced surrounding temperatures. The degree of temperature change was large in locations with large level differences from the embankment at daybreak and during evening hours when wind velocity changes were small.

  17. Millennial-scale temperature change velocity in the continental northern Neotropics.

    Directory of Open Access Journals (Sweden)

    Alexander Correa-Metrio

    Full Text Available Climate has been inherently linked to global diversity patterns, and yet no empirical data are available to put modern climate change into a millennial-scale context. High tropical species diversity has been linked to slow rates of climate change during the Quaternary, an assumption that lacks an empirical foundation. Thus, there is the need for quantifying the velocity at which the bioclimatic space changed during the Quaternary in the tropics. Here we present rates of climate change for the late Pleistocene and Holocene from Mexico and Guatemala. An extensive modern pollen survey and fossil pollen data from two long sedimentary records (30,000 and 86,000 years for highlands and lowlands, respectively were used to estimate past temperatures. Derived temperature profiles show a parallel long-term trend and a similar cooling during the Last Glacial Maximum in the Guatemalan lowlands and the Mexican highlands. Temperature estimates and digital elevation models were used to calculate the velocity of isotherm displacement (temperature change velocity for the time period contained in each record. Our analyses showed that temperature change velocities in Mesoamerica during the late Quaternary were at least four times slower than values reported for the last 50 years, but also at least twice as fast as those obtained from recent models. Our data demonstrate that, given extremely high temperature change velocities, species survival must have relied on either microrefugial populations or persistence of suppressed individuals. Contrary to the usual expectation of stable climates being associated with high diversity, our results suggest that Quaternary tropical diversity was probably maintained by centennial-scale oscillatory climatic variability that forestalled competitive exclusion. As humans have simplified modern landscapes, thereby removing potential microrefugia, and climate change is occurring monotonically at a very high velocity, extinction risk

  18. Millennial-scale temperature change velocity in the continental northern Neotropics.

    Science.gov (United States)

    Correa-Metrio, Alexander; Bush, Mark; Lozano-García, Socorro; Sosa-Nájera, Susana

    2013-01-01

    Climate has been inherently linked to global diversity patterns, and yet no empirical data are available to put modern climate change into a millennial-scale context. High tropical species diversity has been linked to slow rates of climate change during the Quaternary, an assumption that lacks an empirical foundation. Thus, there is the need for quantifying the velocity at which the bioclimatic space changed during the Quaternary in the tropics. Here we present rates of climate change for the late Pleistocene and Holocene from Mexico and Guatemala. An extensive modern pollen survey and fossil pollen data from two long sedimentary records (30,000 and 86,000 years for highlands and lowlands, respectively) were used to estimate past temperatures. Derived temperature profiles show a parallel long-term trend and a similar cooling during the Last Glacial Maximum in the Guatemalan lowlands and the Mexican highlands. Temperature estimates and digital elevation models were used to calculate the velocity of isotherm displacement (temperature change velocity) for the time period contained in each record. Our analyses showed that temperature change velocities in Mesoamerica during the late Quaternary were at least four times slower than values reported for the last 50 years, but also at least twice as fast as those obtained from recent models. Our data demonstrate that, given extremely high temperature change velocities, species survival must have relied on either microrefugial populations or persistence of suppressed individuals. Contrary to the usual expectation of stable climates being associated with high diversity, our results suggest that Quaternary tropical diversity was probably maintained by centennial-scale oscillatory climatic variability that forestalled competitive exclusion. As humans have simplified modern landscapes, thereby removing potential microrefugia, and climate change is occurring monotonically at a very high velocity, extinction risk for tropical

  19. Validity of a Commercial Linear Encoder to Estimate Bench Press 1 RM from the Force-Velocity Relationship.

    Science.gov (United States)

    Bosquet, Laurent; Porta-Benache, Jeremy; Blais, Jérôme

    2010-01-01

    The aim of this study was to assess the validity and accuracy of a commercial linear encoder (Musclelab, Ergotest, Norway) to estimate Bench press 1 repetition maximum (1RM) from the force - velocity relationship. Twenty seven physical education students and teachers (5 women and 22 men) with a heterogeneous history of strength training participated in this study. They performed a 1 RM test and a force - velocity test using a Bench press lifting task in a random order. Mean 1 RM was 61.8 ± 15.3 kg (range: 34 to 100 kg), while 1 RM estimated by the Musclelab's software from the force-velocity relationship was 56.4 ± 14.0 kg (range: 33 to 91 kg). Actual and estimated 1 RM were very highly correlated (r = 0.93, pvelocity relationship was a good measure for monitoring training induced adaptations, but also that it was not accurate enough to prescribe training intensities. Additional studies are required to determine whether accuracy is affected by age, sex or initial level. Key pointsSome commercial devices allow to estimate 1 RM from the force-velocity relationship.These estimations are valid. However, their accuracy is not high enough to be of practical help for training intensity prescription.Day-to-day reliability of force and velocity measured by the linear encoder has been shown to be very high, but the specific reliability of 1 RM estimated from the force-velocity relationship has to be determined before concluding to the usefulness of this approach in the monitoring of training induced adaptations.

  20. Velocity of climate change algorithms for guiding conservation and management.

    Science.gov (United States)

    Hamann, Andreas; Roberts, David R; Barber, Quinn E; Carroll, Carlos; Nielsen, Scott E

    2015-02-01

    The velocity of climate change is an elegant analytical concept that can be used to evaluate the exposure of organisms to climate change. In essence, one divides the rate of climate change by the rate of spatial climate variability to obtain a speed at which species must migrate over the surface of the earth to maintain constant climate conditions. However, to apply the algorithm for conservation and management purposes, additional information is needed to improve realism at local scales. For example, destination information is needed to ensure that vectors describing speed and direction of required migration do not point toward a climatic cul-de-sac by pointing beyond mountain tops. Here, we present an analytical approach that conforms to standard velocity algorithms if climate equivalents are nearby. Otherwise, the algorithm extends the search for climate refugia, which can be expanded to search for multivariate climate matches. With source and destination information available, forward and backward velocities can be calculated allowing useful inferences about conservation of species (present-to-future velocities) and management of species populations (future-to-present velocities). © 2014 The Authors. Global Change Biology Published by John Wiley & Sons Ltd.

  1. Phase velocity enhancement of linear explosive shock tubes

    Science.gov (United States)

    Loiseau, Jason; Serge, Matthew; Szirti, Daniel; Higgins, Andrew; Tanguay, Vincent

    2011-06-01

    Strong, high density shocks can be generated by sequentially detonating a hollow cylinder of explosives surrounding a thin-walled, pressurized tube. Implosion of the tube results in a pinch that travels at the detonation velocity of the explosive and acts like a piston to drive a shock into the gas ahead of it. In order to increase the maximum shock velocities that can be obtained, a phase velocity generator can be used to drag an oblique detonation wave along the gas tube at a velocity much higher than the base detonation velocity of the explosive. Since yielding and failure of the gas tube is the primary limitation of these devices, it is desirable to retain the dynamic confinement effects of a heavy-walled tamper without interfering with operation of the phase velocity generator. This was accomplished by cutting a slit into the tamper and introducing a phased detonation wave such that it asymmetrically wraps around the gas tube. This type of configuration has been previously experimentally verified to produce very strong shocks but the post-shock pressure and shock velocity limits have not been investigated. This study measured the shock trajectory for various fill pressures and phase velocities to ascertain the limiting effects of tube yield, detonation obliquity and pinch aspect ratio.

  2. Validity of a Commercial Linear Encoder to Estimate Bench Press 1 RM from the Force-Velocity Relationship

    Science.gov (United States)

    Bosquet, Laurent; Porta-Benache, Jeremy; Blais, Jérôme

    2010-01-01

    The aim of this study was to assess the validity and accuracy of a commercial linear encoder (Musclelab, Ergotest, Norway) to estimate Bench press 1 repetition maximum (1RM) from the force - velocity relationship. Twenty seven physical education students and teachers (5 women and 22 men) with a heterogeneous history of strength training participated in this study. They performed a 1 RM test and a force - velocity test using a Bench press lifting task in a random order. Mean 1 RM was 61.8 ± 15.3 kg (range: 34 to 100 kg), while 1 RM estimated by the Musclelab’s software from the force-velocity relationship was 56.4 ± 14.0 kg (range: 33 to 91 kg). Actual and estimated 1 RM were very highly correlated (r = 0.93, p<0.001) but largely different (Bias: 5.4 ± 5.7 kg, p < 0.001, ES = 1.37). The 95% limits of agreement were ±11.2 kg, which represented ±18% of actual 1 RM. It was concluded that 1 RM estimated from the force-velocity relationship was a good measure for monitoring training induced adaptations, but also that it was not accurate enough to prescribe training intensities. Additional studies are required to determine whether accuracy is affected by age, sex or initial level. Key points Some commercial devices allow to estimate 1 RM from the force-velocity relationship. These estimations are valid. However, their accuracy is not high enough to be of practical help for training intensity prescription. Day-to-day reliability of force and velocity measured by the linear encoder has been shown to be very high, but the specific reliability of 1 RM estimated from the force-velocity relationship has to be determined before concluding to the usefulness of this approach in the monitoring of training induced adaptations. PMID:24149641

  3. Hydrodynamic description of the long-time tails of the linear and rotational velocity autocorrelation functions of a particle in a confined geometry.

    Science.gov (United States)

    Frydel, Derek; Rice, Stuart A

    2007-12-01

    We report a hydrodynamic analysis of the long-time behavior of the linear and angular velocity autocorrelation functions of an isolated colloid particle constrained to have quasi-two-dimensional motion, and compare the predicted behavior with the results of lattice-Boltzmann simulations. Our analysis uses the singularity method to characterize unsteady linear motion of an incompressible fluid. For bounded fluids we construct an image system with a discrete set of fundamental solutions of the Stokes equation from which we extract the long-time decay of the velocity. For the case that there are free slip boundary conditions at walls separated by H particle diameters, the time evolution of the parallel linear velocity and the perpendicular rotational velocity following impulsive excitation both correspond to the time evolution of a two-dimensional (2D) fluid with effective density rho_(2D)=rhoH. For the case that there are no slip boundary conditions at the walls, the same types of motion correspond to 2D fluid motions with a coefficient of friction xi=pi(2)nu/H(2) modulo a prefactor of order 1, with nu the kinematic viscosity. The linear particle motion perpendicular to the walls also experiences an effective frictional force, but the time dependence is proportional to t(-2) , which cannot be related to either pure 3D or pure 2D fluid motion. Our incompressible fluid model predicts correct self-diffusion constants but it does not capture all of the effects of the fluid confinement on the particle motion. In particular, the linear motion of a particle perpendicular to the walls is influenced by coupling between the density flux and the velocity field, which leads to damped velocity oscillations whose frequency is proportional to c_(s)/H , with c_(s) the velocity of sound. For particle motion parallel to no slip walls there is a slowing down of a density flux that spreads diffusively, which generates a long-time decay proportional to t(-1) .

  4. Control of group velocity by phase-changing collisions

    International Nuclear Information System (INIS)

    Goren, C.; Rosenbluh, M.; Wilson-Gordon, A.D.; Friedmann, H.

    2005-01-01

    We discuss the influence of phase-changing collisions on the group velocities in Doppler-broadened, cycling, degenerate two-level systems where F e =F g +1 and F g >0, interacting with pump and probe lasers, that exhibit electromagnetically induced absorption (EIA). Two model systems are considered: the N system where the pump and probe are polarized perpendicularly, and EIA is due to transfer of coherence (TOC), and the double two-level system (TLS) where both lasers have the same polarization, and EIA is due to transfer of population (TOP). For the case of Doppler-broadened EIA TOC, which occurs at low pump intensity, there is a switch from positive to negative dispersion and group velocity, as the rate of phase-changing collisions is increased. For the case of EIA TOP at low pump intensity, the dispersion and group velocity remain negative even when the collision rate is increased. Pressure-induced narrowing, accompanied by an increase in the magnitude of the negative dispersion and a decrease in the magnitude of the negative group velocity, occurs in both EIA TOC and EIA TOP, at low pump intensity. When the pump intensity is increased, a switch from negative to positive dispersion and group velocity, with increasing collision rate, also occurs in the double TLS system. However, the effect is far smaller than in the case of the N system at low pump intensity

  5. Adaptive vision-based control of an unmanned aerial vehicle without linear velocity measurements.

    Science.gov (United States)

    Jabbari Asl, Hamed; Yoon, Jungwon

    2016-11-01

    In this paper, an image-based visual servo controller is designed for an unmanned aerial vehicle. The main objective is to use flow of image features as the velocity cue to compensate for the low quality of linear velocity information obtained from accelerometers. Nonlinear observers are designed to estimate this flow. The proposed controller is bounded, which can help to keep the target points in the field of view of the camera. The main advantages over the previous full dynamic observer-based methods are that, the controller is robust with respect to unknown image depth, and also no yaw information is required. The complete stability analysis is presented and asymptotic convergence of the error signals is guaranteed. Simulation results show the effectiveness of the proposed approach. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.

  6. Velocity measurement of conductor using electromagnetic induction

    International Nuclear Information System (INIS)

    Kim, Gu Hwa; Kim, Ho Young; Park, Joon Po; Jeong, Hee Tae; Lee, Eui Wan

    2002-01-01

    A basic technology was investigated to measure the speed of conductor by non-contact electromagnetic method. The principle of the velocity sensor was electromagnetic induction. To design electromagnet for velocity sensor, 2D electromagnetic analysis was performed using FEM software. The sensor output was analyzed according to the parameters of velocity sensor, such as the type of magnetizing currents and the lift-off. Output of magnetic sensor was linearly depended on the conductor speed and magnetizing current. To compensate the lift-off changes during measurement of velocity, the other magnetic sensor was put at the pole of electromagnet.

  7. The association between changes in speed skating technique and changes in skating velocity

    NARCIS (Netherlands)

    Noordhof, D.A.; Foster Jr., C.C.; Hoozemans, M.J.M.; de Koning, J.J.

    2014-01-01

    A meaningful association between changes (Δ) in push-off angle or effectiveness (e) and changes in skating velocity (ν) has been found during 5000-m races, although no significant association was found between changes in knee (θ

  8. The Reliability of Individualized Load-Velocity Profiles.

    Science.gov (United States)

    Banyard, Harry G; Nosaka, K; Vernon, Alex D; Haff, G Gregory

    2017-11-15

    This study examined the reliability of peak velocity (PV), mean propulsive velocity (MPV), and mean velocity (MV) in the development of load-velocity profiles (LVP) in the full depth free-weight back squat performed with maximal concentric effort. Eighteen resistance-trained men performed a baseline one-repetition maximum (1RM) back squat trial and three subsequent 1RM trials used for reliability analyses, with 48-hours interval between trials. 1RM trials comprised lifts from six relative loads including 20, 40, 60, 80, 90, and 100% 1RM. Individualized LVPs for PV, MPV, or MV were derived from loads that were highly reliable based on the following criteria: intra-class correlation coefficient (ICC) >0.70, coefficient of variation (CV) ≤10%, and Cohen's d effect size (ES) 0.05) between trials, movement velocities, or between linear regression versus second order polynomial fits. PV 20-100% , MPV 20-90% , and MV 20-90% are reliable and can be utilized to develop LVPs using linear regression. Conceptually, LVPs can be used to monitor changes in movement velocity and employed as a method for adjusting sessional training loads according to daily readiness.

  9. Validity of a Commercial Linear Encoder to Estimate Bench Press 1 RM from the Force-Velocity Relationship

    OpenAIRE

    Bosquet, Laurent; Porta-Benache, Jeremy; Blais, Jérôme

    2010-01-01

    The aim of this study was to assess the validity and accuracy of a commercial linear encoder (Musclelab, Ergotest, Norway) to estimate Bench press 1 repetition maximum (1RM) from the force - velocity relationship. Twenty seven physical education students and teachers (5 women and 22 men) with a heterogeneous history of strength training participated in this study. They performed a 1 RM test and a force - velocity test using a Bench press lifting task in a random order. Mean 1 RM was 61.8 ± 15...

  10. Measurement of fast-changing low velocities by photonic Doppler velocimetry

    Energy Technology Data Exchange (ETDEWEB)

    Song Hongwei; Wu Xianqian; Huang Chenguang; Wei Yangpeng; Wang Xi [Key Laboratory for Hydrodynamics and Ocean Engineering, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190 (China)

    2012-07-15

    Despite the increasing popularity of photonic Doppler velocimetry (PDV) in shock wave experiments, its capability of capturing low particle velocities while changing rapidly is still questionable. The paper discusses the performance of short time Fourier transform (STFT) and continuous wavelet transform (CWT) in processing fringe signals of fast-changing low velocities measured by PDV. Two typical experiments are carried out to evaluate the performance. In the laser shock peening test, the CWT gives a better interpretation to the free surface velocity history, where the elastic precursor, main plastic wave, and elastic release wave can be clearly identified. The velocities of stress waves, Hugoniot elastic limit, and the amplitude of shock pressure induced by laser can be obtained from the measurement. In the Kolsky-bar based tests, both methods show validity of processing the longitudinal velocity signal of incident bar, whereas CWT improperly interprets the radial velocity of the shocked sample at the beginning period, indicating the sensitiveness of the CWT to the background noise. STFT is relatively robust in extracting waveforms of low signal-to-noise ratio. Data processing method greatly affects the temporal resolution and velocity resolution of a given fringe signal, usually CWT demonstrates a better local temporal resolution and velocity resolution, due to its adaptability to the local frequency, also due to the finer time-frequency product according to the uncertainty principle.

  11. Late Quaternary climate-change velocity: Implications for modern distributions and communities

    DEFF Research Database (Denmark)

    Sandel, Brody Steven; Dalsgaard, Bo; Arge, Lars Allan

    a global map of climate-change velocity since the Last Glacial Maximum and used this measure of climate instability to address a number of classic hypotheses. Results/Conclusions We show that historical climate-change velocity is related to a wide range of characteristics of modern distributions...

  12. Non-linear effects in vortex viscous flow in superconductors-role of finite heat removal velocity

    International Nuclear Information System (INIS)

    Bezuglyj, A.I.; Shklovskij, V.A.

    1991-01-01

    The role of finite heat removal velocity in experiments on non-linear effects in vortex viscous flow in superconducting films near critical temperature was investigated. It was shown that the account of thermal effects permits to explain the experimentally observed dependence of electron energy relaxation time and current break-down in voltage-current characteristic from magnetic field value. 5 refs.; 1 fig. (author)

  13. A generalized formulation for noise-based seismic velocity change measurements

    Science.gov (United States)

    Gómez-García, C.; Brenguier, F.; Boué, P.; Shapiro, N.; Droznin, D.; Droznina, S.; Senyukov, S.; Gordeev, E.

    2017-12-01

    The observation of continuous seismic velocity changes is a powerful tool for detecting seasonal variations in crustal structure, volcanic unrest, co- and post-seismic evolution of stress in fault areas or the effects of fluid injection. The standard approach for measuring such velocity changes relies on comparison of travel times in the coda of a set of seismic signals, usually noise-based cross-correlations retrieved at different dates, and a reference trace, usually a averaged function over dates. A good stability in both space and time of the noise sources is then the main assumption for reliable measurements. Unfortunately, these conditions are often not fulfilled, as it happens when ambient-noise sources are non-stationary, such as the emissions of low-frequency volcanic tremors.We propose a generalized formulation for retrieving continuous time series of noise-based seismic velocity changes without any arbitrary reference cross-correlation function. We set up a general framework for future applications of this technique performing synthetic tests. In particular, we study the reliability of the retrieved velocity changes in case of seasonal-type trends, transient effects (similar to those produced as a result of an earthquake or a volcanic eruption) and sudden velocity drops and recoveries as the effects of transient local source emissions. Finally, we apply this approach to a real dataset of noise cross-correlations. We choose the Klyuchevskoy volcanic group (Kamchatka) as a case study where the recorded wavefield is hampered by loss of data and dominated by strongly localized volcanic tremor sources. Despite the mentioned wavefield contaminations, we retrieve clear seismic velocity drops associated with the eruptions of the Klyuchevskoy an the Tolbachik volcanoes in 2010 and 2012, respectively.

  14. Accounting for multiple climate components when estimating climate change exposure and velocity

    Science.gov (United States)

    Nadeau, Christopher P.; Fuller, Angela K.

    2015-01-01

    The effect of anthropogenic climate change on organisms will likely be related to climate change exposure and velocity at local and regional scales. However, common methods to estimate climate change exposure and velocity ignore important components of climate that are known to affect the ecology and evolution of organisms.We develop a novel index of climate change (climate overlap) that simultaneously estimates changes in the means, variation and correlation between multiple weather variables. Specifically, we estimate the overlap between multivariate normal probability distributions representing historical and current or projected future climates. We provide methods for estimating the statistical significance of climate overlap values and methods to estimate velocity using climate overlap.We show that climates have changed significantly across 80% of the continental United States in the last 32 years and that much of this change is due to changes in the variation and correlation between weather variables (two statistics that are rarely incorporated into climate change studies). We also show that projected future temperatures are predicted to be locally novel (using climate overlap compared to 1·4 km yr−1 when estimated using traditional methods.Our results suggest that accounting for changes in the means, variation and correlation between multiple weather variables can dramatically affect estimates of climate change exposure and velocity. These climate components are known to affect the ecology and evolution of organisms, but are ignored by most measures of climate change. We conclude with a set of future directions and recommend future work to determine which measures of climate change exposure and velocity are most related to biological responses to climate change.

  15. Biotic and Climatic Velocity Identify Contrasting Areas of Vulnerability to Climate Change

    Science.gov (United States)

    Carroll, Carlos; Lawler, Joshua J.; Roberts, David R.; Hamann, Andreas

    2015-01-01

    Metrics that synthesize the complex effects of climate change are essential tools for mapping future threats to biodiversity and predicting which species are likely to adapt in place to new climatic conditions, disperse and establish in areas with newly suitable climate, or face the prospect of extirpation. The most commonly used of such metrics is the velocity of climate change, which estimates the speed at which species must migrate over the earth’s surface to maintain constant climatic conditions. However, “analog-based” velocities, which represent the actual distance to where analogous climates will be found in the future, may provide contrasting results to the more common form of velocity based on local climate gradients. Additionally, whereas climatic velocity reflects the exposure of organisms to climate change, resultant biotic effects are dependent on the sensitivity of individual species as reflected in part by their climatic niche width. This has motivated development of biotic velocity, a metric which uses data on projected species range shifts to estimate the velocity at which species must move to track their climatic niche. We calculated climatic and biotic velocity for the Western Hemisphere for 1961–2100, and applied the results to example ecological and conservation planning questions, to demonstrate the potential of such analog-based metrics to provide information on broad-scale patterns of exposure and sensitivity. Geographic patterns of biotic velocity for 2954 species of birds, mammals, and amphibians differed from climatic velocity in north temperate and boreal regions. However, both biotic and climatic velocities were greatest at low latitudes, implying that threats to equatorial species arise from both the future magnitude of climatic velocities and the narrow climatic tolerances of species in these regions, which currently experience low seasonal and interannual climatic variability. Biotic and climatic velocity, by approximating

  16. Observation and analysis of abrupt changes in the interplanetary plasma velocity and magnetic field.

    Science.gov (United States)

    Martin, R. N.; Belcher, J. W.; Lazarus, A. J.

    1973-01-01

    This paper presents a limited study of the physical nature of abrupt changes in the interplanetary plasma velocity and magnetic field based on 19 day's data from the Pioneer 6 spacecraft. The period was chosen to include a high-velocity solar wind stream and low-velocity wind. Abrupt events were accepted for study if the sum of the energy density in the magnetic field and velocity changes was above a specified minimum. A statistical analysis of the events in the high-velocity solar wind stream shows that Alfvenic changes predominate. This conclusion is independent of whether steady state requirements are imposed on conditions before and after the event. Alfvenic changes do not dominate in the lower-speed wind. This study extends the plasma field evidence for outwardly propagating Alfvenic changes to time scales as small as 1 min (scale lengths on the order of 20,000 km).

  17. Mean Velocity vs. Mean Propulsive Velocity vs. Peak Velocity: Which Variable Determines Bench Press Relative Load With Higher Reliability?

    Science.gov (United States)

    García-Ramos, Amador; Pestaña-Melero, Francisco L; Pérez-Castilla, Alejandro; Rojas, Francisco J; Gregory Haff, G

    2018-05-01

    García-Ramos, A, Pestaña-Melero, FL, Pérez-Castilla, A, Rojas, FJ, and Haff, GG. Mean velocity vs. mean propulsive velocity vs. peak velocity: which variable determines bench press relative load with higher reliability? J Strength Cond Res 32(5): 1273-1279, 2018-This study aimed to compare between 3 velocity variables (mean velocity [MV], mean propulsive velocity [MPV], and peak velocity [PV]): (a) the linearity of the load-velocity relationship, (b) the accuracy of general regression equations to predict relative load (%1RM), and (c) the between-session reliability of the velocity attained at each percentage of the 1-repetition maximum (%1RM). The full load-velocity relationship of 30 men was evaluated by means of linear regression models in the concentric-only and eccentric-concentric bench press throw (BPT) variants performed with a Smith machine. The 2 sessions of each BPT variant were performed within the same week separated by 48-72 hours. The main findings were as follows: (a) the MV showed the strongest linearity of the load-velocity relationship (median r = 0.989 for concentric-only BPT and 0.993 for eccentric-concentric BPT), followed by MPV (median r = 0.983 for concentric-only BPT and 0.980 for eccentric-concentric BPT), and finally PV (median r = 0.974 for concentric-only BPT and 0.969 for eccentric-concentric BPT); (b) the accuracy of the general regression equations to predict relative load (%1RM) from movement velocity was higher for MV (SEE = 3.80-4.76%1RM) than for MPV (SEE = 4.91-5.56%1RM) and PV (SEE = 5.36-5.77%1RM); and (c) the PV showed the lowest within-subjects coefficient of variation (3.50%-3.87%), followed by MV (4.05%-4.93%), and finally MPV (5.11%-6.03%). Taken together, these results suggest that the MV could be the most appropriate variable for monitoring the relative load (%1RM) in the BPT exercise performed in a Smith machine.

  18. Velocity-changing collisional effects in nonlinear atomic spectroscopy and photon echo decay in gases

    Science.gov (United States)

    Herman, R. M.

    1983-01-01

    A general theory of atomic dipole coherence under the influence of collisional phase changes, inelastic effects and optically active atom velocity changes, including those due to anisotropic interactions is presented. Velocity change effects are obtained in closed form. Line shapes appear as convolutions of standard pressure broadening contours with velocity-change contours. Width and shift parameters for the He-broadened Na D lines at 2 m bar pressure, 380 K are calculated, as are He-induced photon echo decay rates for these lines. Overall agreement with xperiment is reasonably good.

  19. High-velocity frictional properties of gabbro

    Science.gov (United States)

    Tsutsumi, Akito; Shimamoto, Toshihiko

    High-velocity friction experiments have been performed on a pair of hollow-cylindrical specimens of gabbro initially at room temperature, at slip rates from 7.5 mm/s to 1.8 m/s, with total circumferential displacements of 125 to 174 m, and at normal stresses to 5 MPa, using a rotary-shear high-speed friction testing machine. Steady-state friction increases slightly with increasing slip rate at slip rates to about 100 mm/s (velocity strengthening) and it decreases markedly with increasing slip rate at higher velocities (velocity weakening). Steady-state friction in the velocity weakening regime is lower for the non-melting case than the frictional melting case, due perhaps to severe thermal fracturing. A very large peak friction is always recognized upon the initiation of visible frictional melting, presumably owing to the welding of fault surfaces upon the solidification of melt patches. Frictional properties thus change dramatically with increasing displacement at high velocities, and such a non-linear effect must be incorporated into the analysis of earthquake initiation processes.

  20. Lane-changing behavior and its effect on energy dissipation using full velocity difference model

    Science.gov (United States)

    Wang, Jian; Ding, Jian-Xun; Shi, Qin; Kühne, Reinhart D.

    2016-07-01

    In real urban traffic, roadways are usually multilane with lane-specific velocity limits. Most previous researches are derived from single-lane car-following theory which in the past years has been extensively investigated and applied. In this paper, we extend the continuous single-lane car-following model (full velocity difference model) to simulate the three-lane-changing behavior on an urban roadway which consists of three lanes. To meet incentive and security requirements, a comprehensive lane-changing rule set is constructed, taking safety distance and velocity difference into consideration and setting lane-specific speed restriction for each lane. We also investigate the effect of lane-changing behavior on distribution of cars, velocity, headway, fundamental diagram of traffic and energy dissipation. Simulation results have demonstrated asymmetric lane-changing “attraction” on changeable lane-specific speed-limited roadway, which leads to dramatically increasing energy dissipation.

  1. Linear and nonlinear studies of velocity shear driven three dimensional electron-magnetohydrodynamics instability

    International Nuclear Information System (INIS)

    Gaur, Gurudatt; Das, Amita

    2012-01-01

    The study of electron velocity shear driven instability in electron magnetohydrodynamics (EMHD) regime in three dimensions has been carried out. It is well known that the instability is non-local in the plane defined by the flow direction and that of the shear, which is the usual Kelvin-Helmholtz mode, often termed as the sausage mode in the context of EMHD. On the other hand, a local instability with perturbations in the plane defined by the shear and the magnetic field direction exists which is termed as kink mode. The interplay of these two modes for simple sheared flow case as well as that when an external magnetic field exists has been studied extensively in the present manuscript in both linear and nonlinear regimes. Finally, these instability processes have been investigated for the exact 2D dipole solutions of EMHD equations [M. B. Isichenko and A. N. Marnachev, Sov. Phys. JETP 66, 702 (1987)] for which the electron flow velocity is sheared. It has been shown that dipoles are very robust and stable against the sausage mode as the unstable wavelengths are typically longer than the dipole size. However, we observe that they do get destabilized by the local kink mode.

  2. Evaluation of force-velocity and power-velocity relationship of arm muscles.

    Science.gov (United States)

    Sreckovic, Sreten; Cuk, Ivan; Djuric, Sasa; Nedeljkovic, Aleksandar; Mirkov, Dragan; Jaric, Slobodan

    2015-08-01

    A number of recent studies have revealed an approximately linear force-velocity (F-V) and, consequently, a parabolic power-velocity (P-V) relationship of multi-joint tasks. However, the measurement characteristics of their parameters have been neglected, particularly those regarding arm muscles, which could be a problem for using the linear F-V model in both research and routine testing. Therefore, the aims of the present study were to evaluate the strength, shape, reliability, and concurrent validity of the F-V relationship of arm muscles. Twelve healthy participants performed maximum bench press throws against loads ranging from 20 to 70 % of their maximum strength, and linear regression model was applied on the obtained range of F and V data. One-repetition maximum bench press and medicine ball throw tests were also conducted. The observed individual F-V relationships were exceptionally strong (r = 0.96-0.99; all P stronger relationships. The reliability of parameters obtained from the linear F-V regressions proved to be mainly high (ICC > 0.80), while their concurrent validity regarding directly measured F, P, and V ranged from high (for maximum F) to medium-to-low (for maximum P and V). The findings add to the evidence that the linear F-V and, consequently, parabolic P-V models could be used to study the mechanical properties of muscular systems, as well as to design a relatively simple, reliable, and ecologically valid routine test of the muscle ability of force, power, and velocity production.

  3. Effect of Non-linear Velocity Loss Changes in Pumping Stage of Hydraulic Ram Pumps on Pumping Discharge Rate

    Directory of Open Access Journals (Sweden)

    Reza Fatahialkouhi

    2018-03-01

    Full Text Available The ram pump is a device which pumps a portion of input discharge to the pumping system in a significant height by using renewable energy of water hammer. The complexities of flow hydraulic on one hand and on the other hand the use of simplifying assumptions in ram pumps have caused errors in submitted analytical models for analyzing running cycle of these pumps. In this study it has been tried to modify the governing analytical model on hydraulic performance of these pumps in pumping stage. In this study by creating a logical division, the cycle of the ram pump was divided into three stages of acceleration, pumping and recoil and the governing equations on each stage of cycling are presented by using method of characteristics. Since the closing of impulse valve is nonlinear, velocity loss in pumping stage is considered nonlinearly. Also the governing equations in pumping stage were modified by considering disc elasticity of impulse valve and changing volume of the pump body when the water hammer phenomenon is occurred. In order to evaluate results and determine empirical factors of the proposed analytical model, a physical model of the ram pump is made with internal diameter of 51 mm. Results of this study are divided into several parts. In the first part, loss coefficients of the impulse valve were measured experimentally and empirical equations of drag coefficient and friction coefficient of the impulse valve were submitted by using nonlinear regression. In the second part, results were evaluated by using experimental data taken from this study. Evaluation of statistical error functions showed that the proposed model has good accuracy for predicting experimental observations. In the third part, in order to validate the results in pumping stage, the analytical models of Lansford and Dugan (1941 and Tacke (1988 were used and the error functions resulted from prediction of experimental observations were investigated through analytical models of

  4. Predicting vertical jump height from bar velocity.

    Science.gov (United States)

    García-Ramos, Amador; Štirn, Igor; Padial, Paulino; Argüelles-Cienfuegos, Javier; De la Fuente, Blanca; Strojnik, Vojko; Feriche, Belén

    2015-06-01

    The objective of the study was to assess the use of maximum (Vmax) and final propulsive phase (FPV) bar velocity to predict jump height in the weighted jump squat. FPV was defined as the velocity reached just before bar acceleration was lower than gravity (-9.81 m·s(-2)). Vertical jump height was calculated from the take-off velocity (Vtake-off) provided by a force platform. Thirty swimmers belonging to the National Slovenian swimming team performed a jump squat incremental loading test, lifting 25%, 50%, 75% and 100% of body weight in a Smith machine. Jump performance was simultaneously monitored using an AMTI portable force platform and a linear velocity transducer attached to the barbell. Simple linear regression was used to estimate jump height from the Vmax and FPV recorded by the linear velocity transducer. Vmax (y = 16.577x - 16.384) was able to explain 93% of jump height variance with a standard error of the estimate of 1.47 cm. FPV (y = 12.828x - 6.504) was able to explain 91% of jump height variance with a standard error of the estimate of 1.66 cm. Despite that both variables resulted to be good predictors, heteroscedasticity in the differences between FPV and Vtake-off was observed (r(2) = 0.307), while the differences between Vmax and Vtake-off were homogenously distributed (r(2) = 0.071). These results suggest that Vmax is a valid tool for estimating vertical jump height in a loaded jump squat test performed in a Smith machine. Key pointsVertical jump height in the loaded jump squat can be estimated with acceptable precision from the maximum bar velocity recorded by a linear velocity transducer.The relationship between the point at which bar acceleration is less than -9.81 m·s(-2) and the real take-off is affected by the velocity of movement.Mean propulsive velocity recorded by a linear velocity transducer does not appear to be optimal to monitor ballistic exercise performance.

  5. VALIDITY OF A COMMERCIAL LINEAR ENCODER TO ESTIMATE BENCH PRESS 1 RM FROM THE FORCE-VELOCITY RELATIONSHIP

    Directory of Open Access Journals (Sweden)

    Laurent Bosquet

    2010-09-01

    Full Text Available The aim of this study was to assess the validity and accuracy of a commercial linear encoder (Musclelab, Ergotest, Norway to estimate Bench press 1 repetition maximum (1RM from the force - velocity relationship. Twenty seven physical education students and teachers (5 women and 22 men with a heterogeneous history of strength training participated in this study. They performed a 1 RM test and a force - velocity test using a Bench press lifting task in a random order. Mean 1 RM was 61.8 ± 15.3 kg (range: 34 to 100 kg, while 1 RM estimated by the Musclelab's software from the force-velocity relationship was 56.4 ± 14.0 kg (range: 33 to 91 kg. Actual and estimated 1 RM were very highly correlated (r = 0.93, p<0.001 but largely different (Bias: 5.4 ± 5.7 kg, p < 0.001, ES = 1.37. The 95% limits of agreement were ±11.2 kg, which represented ±18% of actual 1 RM. It was concluded that 1 RM estimated from the force-velocity relationship was a good measure for monitoring training induced adaptations, but also that it was not accurate enough to prescribe training intensities. Additional studies are required to determine whether accuracy is affected by age, sex or initial level.

  6. Fault tolerant linear actuator

    Science.gov (United States)

    Tesar, Delbert

    2004-09-14

    In varying embodiments, the fault tolerant linear actuator of the present invention is a new and improved linear actuator with fault tolerance and positional control that may incorporate velocity summing, force summing, or a combination of the two. In one embodiment, the invention offers a velocity summing arrangement with a differential gear between two prime movers driving a cage, which then drives a linear spindle screw transmission. Other embodiments feature two prime movers driving separate linear spindle screw transmissions, one internal and one external, in a totally concentric and compact integrated module.

  7. P-wave velocity changes in freezing hard low-porosity rocks: a laboratory-based time-average model

    Directory of Open Access Journals (Sweden)

    D. Draebing

    2012-10-01

    Full Text Available P-wave refraction seismics is a key method in permafrost research but its applicability to low-porosity rocks, which constitute alpine rock walls, has been denied in prior studies. These studies explain p-wave velocity changes in freezing rocks exclusively due to changing velocities of pore infill, i.e. water, air and ice. In existing models, no significant velocity increase is expected for low-porosity bedrock. We postulate, that mixing laws apply for high-porosity rocks, but freezing in confined space in low-porosity bedrock also alters physical rock matrix properties. In the laboratory, we measured p-wave velocities of 22 decimetre-large low-porosity (< 10% metamorphic, magmatic and sedimentary rock samples from permafrost sites with a natural texture (> 100 micro-fissures from 25 °C to −15 °C in 0.3 °C increments close to the freezing point. When freezing, p-wave velocity increases by 11–166% perpendicular to cleavage/bedding and equivalent to a matrix velocity increase from 11–200% coincident to an anisotropy decrease in most samples. The expansion of rigid bedrock upon freezing is restricted and ice pressure will increase matrix velocity and decrease anisotropy while changing velocities of the pore infill are insignificant. Here, we present a modified Timur's two-phase-equation implementing changes in matrix velocity dependent on lithology and demonstrate the general applicability of refraction seismics to differentiate frozen and unfrozen low-porosity bedrock.

  8. Non-invasive Estimation of Pressure Changes using 2-D Vector Velocity Ultrasound: An Experimental Study with In-Vivo Examples

    DEFF Research Database (Denmark)

    Olesen, Jacob Bjerring; Villagómez Hoyos, Carlos Armando; Møller, Niclas Dechau

    2018-01-01

    and at the aortic valve of two healthy volunteers. Ultrasound measurements were performed using the experimental scanner SARUS, in combination with an 8MHz linear array transducer for experimental scans and a carotid scan, whereas a 3.5MHz phased array probe was employed for a scan of an aortic valve. Measured 2-D......A non-invasive method for estimating intravascular pressure changes using 2-D vector velocity is presented. The method was first validated on computational fluid dynamics (CFD) data, and with catheter measurements on phantoms. Hereafter, the method was tested in-vivo at the carotid bifurcation...

  9. Angle-domain Migration Velocity Analysis using Wave-equation Reflection Traveltime Inversion

    KAUST Repository

    Zhang, Sanzong

    2012-11-04

    The main difficulty with an iterative waveform inversion is that it tends to get stuck in a local minima associated with the waveform misfit function. This is because the waveform misfit function is highly non-linear with respect to changes in the velocity model. To reduce this nonlinearity, we present a reflection traveltime tomography method based on the wave equation which enjoys a more quasi-linear relationship between the model and the data. A local crosscorrelation of the windowed downgoing direct wave and the upgoing reflection wave at the image point yields the lag time that maximizes the correlation. This lag time represents the reflection traveltime residual that is back-projected into the earth model to update the velocity in the same way as wave-equation transmission traveltime inversion. The residual movemout analysis in the angle-domain common image gathers provides a robust estimate of the depth residual which is converted to the reflection traveltime residual for the velocity inversion. We present numerical examples to demonstrate its efficiency in inverting seismic data for complex velocity model.

  10. Kinematics of a Fluid Ellipse in a Linear Flow

    Directory of Open Access Journals (Sweden)

    Jonathan M. Lilly

    2018-02-01

    Full Text Available A four-parameter kinematic model for the position of a fluid parcel in a time-varying ellipse is introduced. For any ellipse advected by an arbitrary linear two-dimensional flow, the rates of change of the ellipse parameters are uniquely determined by the four parameters of the velocity gradient matrix, and vice versa. This result, termed ellipse/flow equivalence, provides a stronger version of the well-known result that a linear velocity field maps an ellipse into another ellipse. Moreover, ellipse/flow equivalence is shown to be a manifestation of Stokes’ theorem. This is done by deriving a matrix-valued extension of the classical Stokes’ theorem that involves a spatial integral over the velocity gradient tensor, thus accounting for the two strain terms in addition to the divergence and vorticity. General expressions for various physical properties of an elliptical ring of fluid are also derived. The ellipse kinetic energy is found to be composed of three portions, associated respectively with the circulation, the rate of change of the moment of inertia, and the variance of parcel angular velocity around the ellipse. A particular innovation is the use of four matrices, termed the I J K L basis, that greatly facilitate the required calculations.

  11. Temperature effects on sinking velocity of different Emiliania huxleyi strains.

    Science.gov (United States)

    Rosas-Navarro, Anaid; Langer, Gerald; Ziveri, Patrizia

    2018-01-01

    The sinking properties of three strains of Emiliania huxleyi in response to temperature changes were examined. We used a recently proposed approach to calculate sinking velocities from coccosphere architecture, which has the advantage to be applicable not only to culture samples, but also to field samples including fossil material. Our data show that temperature in the sub-optimal range impacts sinking velocity of E. huxleyi. This response is widespread among strains isolated in different locations and moreover comparatively predictable, as indicated by the similar slopes of the linear regressions. Sinking velocity was positively correlated to temperature as well as individual cell PIC/POC over the sub-optimum to optimum temperature range in all strains. In the context of climate change our data point to an important influence of global warming on sinking velocities. It has recently been shown that seawater acidification has no effect on sinking velocity of a Mediterranean E. huxleyi strain, while nutrient limitation seems to have a small negative effect on sinking velocity. Given that warming, acidification, and lowered nutrient availability will occur simultaneously under climate change scenarios, the question is what the net effect of different influential factors will be. For example, will the effects of warming and nutrient limitation cancel? This question cannot be answered conclusively but analyses of field samples in addition to laboratory culture studies will improve predictions because in field samples multi-factor influences and even evolutionary changes are not excluded. As mentioned above, the approach of determining sinking rate followed here is applicable to field samples. Future studies could use it to analyse not only seasonal and geographic patterns but also changes in sinking velocity over geological time scales.

  12. Critical velocities in He II for independently varied superfluid and normal fluid velocities

    International Nuclear Information System (INIS)

    Baehr, M.L.

    1984-01-01

    Experiments were performed to measure the critical velocity in pure superflow and compare to the theoretical prediction; to measure the first critical velocity for independently varied superfluid and normal fluid velocities; and to investigate the propagation of the second critical velocity from the thermal counterflow line through the V/sub n/,-V/sub s/ quadrant. The experimental apparatus employed a thermal counterflow heater to adjust the normal fluid velocity, a fountain pump to vary the superfluid velocity, and a level sensing capacitor to measure the superfluid velocity. The results of the pure superfluid critical velocity measurements indicate that this velocity is temperature independent contrary to Schwarz's theory. It was found that the first critical velocity for independently varied V/sub n/ and V/sub s/ could be described by a linear function of V/sub n/ and was otherwise temperature independent. It was found that the second critical velocity could only be distinguished near the thermal counterflow line

  13. Precursory changes in seismic velocity for the spectrum of earthquake failure modes

    Science.gov (United States)

    Scuderi, M.M.; Marone, C.; Tinti, E.; Di Stefano, G.; Collettini, C.

    2016-01-01

    Temporal changes in seismic velocity during the earthquake cycle have the potential to illuminate physical processes associated with fault weakening and connections between the range of fault slip behaviors including slow earthquakes, tremor and low frequency earthquakes1. Laboratory and theoretical studies predict changes in seismic velocity prior to earthquake failure2, however tectonic faults fail in a spectrum of modes and little is known about precursors for those modes3. Here we show that precursory changes of wave speed occur in laboratory faults for the complete spectrum of failure modes observed for tectonic faults. We systematically altered the stiffness of the loading system to reproduce the transition from slow to fast stick-slip and monitored ultrasonic wave speed during frictional sliding. We find systematic variations of elastic properties during the seismic cycle for both slow and fast earthquakes indicating similar physical mechanisms during rupture nucleation. Our data show that accelerated fault creep causes reduction of seismic velocity and elastic moduli during the preparatory phase preceding failure, which suggests that real time monitoring of active faults may be a means to detect earthquake precursors. PMID:27597879

  14. Effects of collisions on linear and non-linear spectroscopic line shapes

    International Nuclear Information System (INIS)

    Berman, P.R.

    1978-01-01

    A fundamental physical problem is the determination of atom-atom, atom-molecule and molecule-molecule differential and total scattering cross sections. In this work, a technique for studying atomic and molecular collisions using spectroscopic line shape analysis is discussed. Collisions occurring within an atomic or molecular sample influence the sample's absorptive or emissive properties. Consequently the line shapes associated with the linear or non-linear absorption of external fields by an atomic system reflect the collisional processes occurring in the gas. Explicit line shape expressions are derived characterizing linear or saturated absorption by two-or three-level 'active' atoms which are undergoing collisions with perturber atoms. The line shapes may be broadened, shifted, narrowed, or distorted as a result of collisions which may be 'phase-interrupting' or 'velocity-changing' in nature. Systematic line shape studies can be used to obtain information on both the differential and total active atom-perturber scattering cross sections. (Auth.)

  15. Non-linear elastic thermal stress analysis with phase changes

    International Nuclear Information System (INIS)

    Amada, S.; Yang, W.H.

    1978-01-01

    The non-linear elastic, thermal stress analysis with temperature induced phase changes in the materials is presented. An infinite plate (or body) with a circular hole (or tunnel) is subjected to a thermal loading on its inner surface. The peak temperature around the hole reaches beyond the melting point of the material. The non-linear diffusion equation is solved numerically using the finite difference method. The material properties change rapidly at temperatures where the change of crystal structures and solid-liquid transition occur. The elastic stresses induced by the transient non-homogeneous temperature distribution are calculated. The stresses change remarkably when the phase changes occur and there are residual stresses remaining in the plate after one cycle of thermal loading. (Auth.)

  16. Streaming Velocities and the Baryon Acoustic Oscillation Scale.

    Science.gov (United States)

    Blazek, Jonathan A; McEwen, Joseph E; Hirata, Christopher M

    2016-03-25

    At the epoch of decoupling, cosmic baryons had supersonic velocities relative to the dark matter that were coherent on large scales. These velocities subsequently slow the growth of small-scale structure and, via feedback processes, can influence the formation of larger galaxies. We examine the effect of streaming velocities on the galaxy correlation function, including all leading-order contributions for the first time. We find that the impact on the baryon acoustic oscillation (BAO) peak is dramatically enhanced (by a factor of ∼5) over the results of previous investigations, with the primary new effect due to advection: if a galaxy retains memory of the primordial streaming velocity, it does so at its Lagrangian, rather than Eulerian, position. Since correlations in the streaming velocity change rapidly at the BAO scale, this advection term can cause a significant shift in the observed BAO position. If streaming velocities impact tracer density at the 1% level, compared to the linear bias, the recovered BAO scale is shifted by approximately 0.5%. This new effect, which is required to preserve Galilean invariance, greatly increases the importance of including streaming velocities in the analysis of upcoming BAO measurements and opens a new window to the astrophysics of galaxy formation.

  17. Spatiotemporal seismic velocity change in the Earth's subsurface associated with large earthquake: contribution of strong ground motion and crustal deformation

    Science.gov (United States)

    Sawazaki, K.

    2016-12-01

    It is well known that seismic velocity of the subsurface medium changes after a large earthquake. The cause of the velocity change is roughly attributed to strong ground motion (dynamic strain change), crustal deformation (static strain change), and fracturing around the fault zone. Several studies have revealed that the velocity reduction down to several percent concentrates at the depths shallower than several hundred meters. The amount of velocity reduction correlates well with the intensity of strong ground motion, which indicates that the strong motion is the primary cause of the velocity reduction. Although some studies have proposed contributions of coseismic static strain change and fracturing around fault zone to the velocity change, separation of their contributions from the site-related velocity change is usually difficult. Velocity recovery after a large earthquake is also widely observed. The recovery process is generally proportional to logarithm of the lapse time, which is similar to the behavior of "slow dynamics" recognized in laboratory experiments. The time scale of the recovery is usually months to years in field observations, while it is several hours in laboratory experiments. Although the factor that controls the recovery speed is not well understood, cumulative strain change due to post-seismic deformation, migration of underground water, mechanical and chemical reactions on the crack surface could be the candidate. In this study, I summarize several observations that revealed spatiotemporal distribution of seismic velocity change due to large earthquakes; especially I focus on the case of the M9.0 2011 Tohoku earthquake. Combining seismograms of Hi-net (high-sensitivity) and KiK-net (strong motion), geodetic records of GEONET and the seafloor GPS/Acoustic ranging, I investigate contribution of the strong ground motion and crustal deformation to the velocity change associated with the Tohoku earthquake, and propose a gross view of

  18. Optimal velocity difference model for a car-following theory

    International Nuclear Information System (INIS)

    Peng, G.H.; Cai, X.H.; Liu, C.Q.; Cao, B.F.; Tuo, M.X.

    2011-01-01

    In this Letter, we present a new optimal velocity difference model for a car-following theory based on the full velocity difference model. The linear stability condition of the new model is obtained by using the linear stability theory. The unrealistically high deceleration does not appear in OVDM. Numerical simulation of traffic dynamics shows that the new model can avoid the disadvantage of negative velocity occurred at small sensitivity coefficient λ in full velocity difference model by adjusting the coefficient of the optimal velocity difference, which shows that collision can disappear in the improved model. -- Highlights: → A new optimal velocity difference car-following model is proposed. → The effects of the optimal velocity difference on the stability of traffic flow have been explored. → The starting and braking process were carried out through simulation. → The effects of the optimal velocity difference can avoid the disadvantage of negative velocity.

  19. Seismic velocities and attenuation in an underground granitic waste repository subjected to heating

    International Nuclear Information System (INIS)

    Paulsson, B.N.P.; King, M.S.

    1984-03-01

    The behavior of a granitic rock mass subjected to thermal load has been studied by an acoustic cross-hole technique between four boreholes, over a period of some two years. Velocities between boreholes were obtained from the times-of-flight of pulses of acoustic waves between transducers clamped to the borehole wall. The attenuation was obtained by a spectral ratios technique. When the heater was turned on, the velocities increased rapidly to an asymptotic value. When the heater was turned off, the velocities decreased rapidly to their original values or below. Velocities along a particular profile were found to increase linearly with the mean temperature in the profile tested. The attenuation showed little correlation with changes in temperature or the associated thermal stresses, but there was a good correlation of attenuation with water content and the related changes in pore pressure. 18 references, 7 figures

  20. Depth-dependence of time-lapse seismic velocity change detected by a joint interferometric analysis of vertical array data

    Science.gov (United States)

    Sawazaki, K.; Saito, T.; Ueno, T.; Shiomi, K.

    2015-12-01

    In this study, utilizing depth-sensitivity of interferometric waveforms recorded by co-located Hi-net and KiK-net sensors, we separate the responsible depth of seismic velocity change associated with the M6.3 earthquake occurred on November 22, 2014, in central Japan. The Hi-net station N.MKGH is located about 20 km northeast from the epicenter, where the seismometer is installed at the 150 m depth. At the same site, the KiK-net has two strong motion seismometers installed at the depths of 0 and 150 m. To estimate average velocity change around the N.MKGH station, we apply the stretching technique to auto-correlation function (ACF) of ambient noise recorded by the Hi-net sensor. To evaluate sensitivity of the Hi-net ACF to velocity change above and below the 150 m depth, we perform a numerical wave propagation simulation using 2-D FDM. To obtain velocity change above the 150 m depth, we measure response waveform from the depths of 150 m to 0 m by computing deconvolution function (DCF) of earthquake records obtained by the two KiK-net vertical array sensors. The background annual velocity variation is subtracted from the detected velocity change. From the KiK-net DCF records, the velocity reduction ratio above the 150 m depth is estimated to be 4.2 % and 3.1 % in the periods of 1-7 days and 7 days - 4 months after the mainshock, respectively. From the Hi-net ACF records, the velocity reduction ratio is estimated to be 2.2 % and 1.8 % in the same time periods, respectively. This difference in the estimated velocity reduction ratio is attributed to depth-dependence of the velocity change. By using the depth sensitivity obtained from the numerical simulation, we estimate the velocity reduction ratio below the 150 m depth to be lower than 1.0 % for both time periods. Thus the significant velocity reduction and recovery are observed above the 150 m depth only, which may be caused by strong ground motion of the mainshock and following healing in the shallow ground.

  1. Confirmation of a change in the global shear velocity pattern at around 1000 km depth

    Science.gov (United States)

    Durand, S.; Debayle, E.; Ricard, Y.; Zaroli, C.; Lambotte, S.

    2017-12-01

    In this study, we confirm the existence of a change in the shear velocity spectrum around 1000 km depth based on a new shear velocity tomographic model of the Earth's mantle, SEISGLOB2. This model is based on Rayleigh surface wave phase velocities, self- and cross-coupling structure coefficients of spheroidal normal modes and body wave traveltimes which are, for the first time, combined in a tomographic inversion. SEISGLOB2 is developed up to spherical harmonic degree 40 and in 21 radial spline functions. The spectrum of SEISGLOB2 is the flattest (i.e. richest in 'short' wavelengths corresponding to spherical harmonic degrees greater than 10) around 1000 km depth and this flattening occurs between 670 and 1500 km depth. We also confirm various changes in the continuity of slabs and mantle plumes all around 1000 km depth where we also observed the upper boundary of Large Low Shear Velocity Provinces. The existence of a flatter spectrum, richer in short-wavelength heterogeneities, in a region of the mid-mantle can have great impacts on our understanding of the mantle dynamics and should thus be better understood in the future. Although a viscosity increase, a phase change or a compositional change can all concur to induce this change of pattern, its precise origin is still very uncertain.

  2. Change in muzzle velocity due to freezing and water immersion of .22, long rifle, K.F. cartridges.

    Science.gov (United States)

    Jauhari, M; Chatterjee, S M; Ghosh, P K

    1975-01-01

    A study of change in muzzle velocity due to freezing and water immersion of .22, long rifle, K. F. cartridges has been presented. A statistical criterion has been formulated to ascertain whether or not a cartridge undergoes a change in muzzle velocity due to a particular treatment. The muzzle velocity data of .22, long rifle, K. F. cartridges, obtained by an electronic timer before and after the various treatments, have been analyzed in the light of this criterion. These cartridges have generally been found to suffer considerable loss in muzzle velocity when immersed in water for three weeks and also when immersed in water for three days and simultaneously cooled to 0 degrees C. The forensic significance of this loss in muzzle velocity has been discussed.

  3. Ultrasonic velocity measurements in expanded liquid mercury

    International Nuclear Information System (INIS)

    Suzuki, K.; Inutake, M.; Fujiwaka, S.

    1977-10-01

    In this paper we present the first results of the sound velocity measurements in expanded liquid mercury. The measurements were made at temperatures up to 1600 0 C and pressures up to 1700 kg/cm 2 by means of an ultrasonic pulse transmission/echo technique which was newly developed for such high temperature/pressure condition. When the density is larger than 9 g/cm 3 , the observed sound velocity decreases linearly with decreasing density. At densities smaller than 9 g/cm 3 , the linear dependence on the density is no longer observed. The observed sound velocity approaches a minimum near the liquid-gas critical point (rho sub(cr) asymptotically equals 5.5 g/cm 3 ). The existing theories for sound velocity in liquid metals fail to explain the observed results. (auth.)

  4. Observation of E×B Flow Velocity Profile Change Using Doppler Reflectometry in HL-2A

    Institute of Scientific and Technical Information of China (English)

    XIAO Wei-Wen; ZOU Xiao-Lan; DING Xuan-Tong; DONG Jia-Qi; LIU Ze-Tian; SONG Shao-Dong; GAO Ya-Dong; YAO Liang-Hua; FENG Bei-Bin; SONG Xian-Ming; CHEN Cheng-Yuan; SUN Hong-Juan; LI Yong-Gao; YANG Qing-Wei; YAN Long-Wen; LIU Yi; DUAN Xu-Ru; PAN Chuan-Hong; LIU Yong

    2009-01-01

    A broadband,O-mode sweeping Doppler reflectometry designed for measuring plasma E×B flow velocity profiles is operated in HL-2A.The main feature of the Doppler reflectometry is its capability to be tuned to any selected frequency in total waveband from 26-40 GHz.This property enables us to probe several plasma layers within a short time interval during a discharge,permitting the characterization of the radial distribution of plasma fluctuations.The system allows us to extract important information about the velocity change layer,namely its spatial localization.In purely Ohmic discharge a change of the E×B flow velocity profiles has been observed in the region for 28 < r < 30cm if only the line average density exceeds 2.2×1019 m-3.The density gradient change is measured in the same region,too.

  5. Non-Linear Dynamics of Saturn's Rings

    Science.gov (United States)

    Esposito, L. W.

    2016-12-01

    Non-linear processes can explain why Saturn's rings are so active and dynamic. Ring systems differ from simple linear systems in two significant ways: 1. They are systems of granular material: where particle-to-particle collisions dominate; thus a kinetic, not a fluid description needed. Stresses are strikingly inhomogeneous and fluctuations are large compared to equilibrium. 2. They are strongly forced by resonances: which drive a non-linear response, that push the system across thresholds that lead to persistent states. Some of this non-linearity is captured in a simple Predator-Prey Model: Periodic forcing from the moon causes streamline crowding; This damps the relative velocity. About a quarter phase later, the aggregates stir the system to higher relative velocity and the limit cycle repeats each orbit, with relative velocity ranging from nearly zero to a multiple of the orbit average. Summary of Halo Results: A predator-prey model for ring dynamics produces transient structures like `straw' that can explain the halo morphology and spectroscopy: Cyclic velocity changes cause perturbed regions to reach higher collision speeds at some orbital phases, which preferentially removes small regolith particles; surrounding particles diffuse back too slowly to erase the effect: this gives the halo morphology; this requires energetic collisions (v ≈ 10m/sec, with throw distances about 200km, implying objects of scale R ≈ 20km).Transform to Duffing Eqn : With the coordinate transformation, z = M2/3, the Predator-Prey equations can be combined to form a single second-order differential equation with harmonic resonance forcing.Ring dynamics and history implications: Moon-triggered clumping explains both small and large particles at resonances. We calculate the stationary size distribution using a cell-to-cell mapping procedure that converts the phase-plane trajectories to a Markov chain. Approximating it as an asymmetric random walk with reflecting boundaries

  6. Changes in seismic velocity during the first 14 months of the 2004–2008 eruption of Mount St. Helens, Washington

    Science.gov (United States)

    Hotovec-Ellis, A.J.; Vidale, J.E.; Gomberg, Joan S.; Thelen, Weston A.; Moran, Seth C.

    2015-01-01

    Mount St. Helens began erupting in late 2004 following an 18 year quiescence. Swarms of repeating earthquakes accompanied the extrusion of a mostly solid dacite dome over the next 4 years. In some cases the waveforms from these earthquakes evolved slowly, likely reflecting changes in the properties of the volcano that affect seismic wave propagation. We use coda-wave interferometry to quantify small changes in seismic velocity structure (usually <1%) between two similar earthquakes and employed waveforms from several hundred families of repeating earthquakes together to create a continuous function of velocity change observed at permanent stations operated within 20 km of the volcano. The high rate of earthquakes allowed tracking of velocity changes on an hourly time scale. Changes in velocity were largest near the newly extruding dome and likely related to shallow deformation as magma first worked its way to the surface. We found strong correlation between velocity changes and the inverse of real-time seismic amplitude measurements during the first 3 weeks of activity, suggesting that fluctuations of pressure in the shallow subsurface may have driven both seismicity and velocity changes. Velocity changes during the remainder of the eruption likely result from a complex interplay of multiple effects and are not well explained by any single factor alone, highlighting the need for complementary geophysical data when interpreting velocity changes.

  7. Analytical and numerical studies of approximate phase velocity matching based nonlinear S0 mode Lamb waves for the detection of evenly distributed microstructural changes

    International Nuclear Information System (INIS)

    Wan, X; Xu, G H; Tao, T F; Zhang, Q; Tse, P W

    2016-01-01

    Most previous studies on nonlinear Lamb waves are conducted using mode pairs that satisfying strict phase velocity matching and non-zero power flux criteria. However, there are some limitations in existence. First, strict phase velocity matching is not existed in the whole frequency bandwidth; Second, excited center frequency is not always exactly equal to the true phase-velocity-matching frequency; Third, mode pairs are isolated and quite limited in number; Fourth, exciting a single desired primary mode is extremely difficult in practice and the received signal is quite difficult to process and interpret. And few attention has been paid to solving these shortcomings. In this paper, nonlinear S0 mode Lamb waves at low-frequency range satisfying approximate phase velocity matching is proposed for the purpose of overcoming these limitations. In analytical studies, the secondary amplitudes with the propagation distance considering the fundamental frequency, the maximum cumulative propagation distance (MCPD) with the fundamental frequency and the maximum linear cumulative propagation distance (MLCPD) using linear regression analysis are investigated. Based on analytical results, approximate phase velocity matching is quantitatively characterized as the relative phase velocity deviation less than a threshold value of 1%. Numerical studies are also conducted using tone burst as the excitation signal. The influences of center frequency and frequency bandwidth on the secondary amplitudes and MCPD are investigated. S1–S2 mode with the fundamental frequency at 1.8 MHz, the primary S0 mode at the center frequencies of 100 and 200 kHz are used respectively to calculate the ratios of nonlinear parameter of Al 6061-T6 to Al 7075-T651. The close agreement of the computed ratios to the actual value verifies the effectiveness of nonlinear S0 mode Lamb waves satisfying approximate phase velocity matching for characterizing the material nonlinearity. Moreover, the ratios derived

  8. Changes in speed skating velocity in relation to push-off effectiveness.

    Science.gov (United States)

    Noordhof, Dionne A; Foster, Carl; Hoozemans, Marco J M; de Koning, Jos J

    2013-03-01

    Speed skating posture, or technique, is characterized by the push-off angle or effectiveness (e), determined as the angle between the push-off leg and the ice; the preextension knee angle (θ(0)); and the trunk angle (θ(1)). Together with muscle-power output and environmental conditions, skating posture, or technique, determines velocity (v). To gain insight into technical variables that are important to skate efficiently and perform well, e, θ(0), θ(1), and skating v were determined every lap during a 5000-m World Cup. Second, the authors evaluated if changes (Δ) in e, θ(0), and θ(1) are associated with Δv. One camera filmed the skaters from a frontal view, from which e was determined. Another camera filmed the skaters from a sagittal view, from which θ(0) and θ(1) were determined. Radio-frequency identification tags around the ankles of the skaters measured v. During the race, e progressively increased and v progressively decreased, while θ(0) and θ(1) showed a less consistent pattern of change. Generalized estimating equations showed that Δe is significantly associated with Δv over the midsection of the race (β = -0.10, P < .001) and that Δθ(0) and Δθ(1) are not significantly associated with Δv. The decrease in skating v over the race is not due to increases in power losses to air friction, as knee and trunk angle were not significantly associated with changes in velocity. The decrease in velocity can be partly ascribed to the decrease in effectiveness, which reflects a decrease in power production associated with fatigue.

  9. Time-lapse changes in velocity and anisotropy in Japan's near surface after the 2011 Tohoku earthquake

    Science.gov (United States)

    Snieder, R.; Nakata, N.

    2012-12-01

    A strong-motion recording network, KiK-net, helps us to monitor temporal changes in the near surface in Japan. Each KiK-net station has two seismometers at the free surface and in a borehole a few hundred meters deep, and we can retrieve a traveling wave from the borehole receiver to the surface receiver by applying deconvolution based seismic interferometry. KiK-net recorded the 2011 Tohoku earthquake, which is one of the largest earthquakes in recent history, and seismicity around the time of the main shock. Using records of these seismicity and computing mean values of near-surface shear-wave velocities in the periods of January 1--March 10 and March 12--May 26 in 2011, we detect about a 5% reduction in the velocity after the Tohoku earthquake. The area of the velocity reduction is about 1,200 km wide, which is much wider than earlier studies reporting velocity reductions after larger earthquakes. The reduction partly recovers with time. We can also estimate the azimuthal anisotropy by detecting shear-wave splitting after applying seismic interferometry. Estimating mean values over the same periods as the velocity, we find the strength of anisotropy increased in most parts of northeastern Japan, but fast shear-wave polarization directions in the near surface did not significantly change. The changes in anisotropy and velocity are generally correlated, especially in the northeastern Honshu (the main island in Japan).

  10. Dynamics and acceleration in linear structures

    International Nuclear Information System (INIS)

    Le Duff, J.

    1985-06-01

    Basic methods of linear acceleration are reviewed. Both cases of non relativistic and ultra relativistic particles are considered. Induction linac, radiofrequency quadrupole are mentioned. Fundamental parameters of accelerating structures are recalled; they are transit time factor, shunt impedance, quality factor and stored energy, phase velocity and group velocity, filling time, space harmonics in loaded waveguides. Energy gain in linear accelerating structures is considered through standing wave structures and travelling wave structures. Then particle dynamics in linear accelerators is studied: longitudinal motion, transverse motion and dynamics in RFQ

  11. The Effects of Hemodynamic Changes on Pulse Wave Velocity in Cardiothoracic Surgical Patients

    Directory of Open Access Journals (Sweden)

    Yurie Obata

    2016-01-01

    Full Text Available The effect of blood pressure on pulse wave velocity (PWV is well established. However, PWV variability with acute hemodynamic changes has not been examined in the clinical setting. The aim of the present study is to investigate the effect of hemodynamic changes on PWV in patients who undergo cardiothoracic surgery. Using data from 25 patients, we determined blood pressure (BP, heart rate (HR, and the left ventricular outflow tract (LVOT velocity-time integral. By superimposing the radial arterial waveform on the continuous wave Doppler waveform of the LVOT, obtained by transesophageal echo, we were able to determine pulse transit time and to calculate PWV, stroke volume (SV, cardiac output (CO, and systemic vascular resistance (SVR. Increases in BP, HR, and SVR were associated with higher values for PWV. In contrast increases in SV were associated with decreases in PWV. Changes in CO were not significantly associated with PWV.

  12. Temporal change in shallow subsurface P- and S-wave velocities and S-wave anisotropy inferred from coda wave interferometry

    Science.gov (United States)

    Yamamoto, M.; Nishida, K.; Takeda, T.

    2012-12-01

    Recent progresses in theoretical and observational researches on seismic interferometry reveal the possibility to detect subtle change in subsurface seismic structure. This high sensitivity of seismic interferometry to the medium properties may thus one of the most important ways to directly observe the time-lapse behavior of shallow crustal structure. Here, using the coda wave interferometry, we show the co-seismic and post-seismic changes in P- and S-wave velocities and S-wave anisotropy associated with the 2011 off the Pacific coast of Tohoku earthquake (M9.0). In this study, we use the acceleration data recorded at KiK-net stations operated by NIED, Japan. Each KiK-net station has a borehole whose typical depth is about 100m, and two three-component accelerometers are installed at the top and bottom of the borehole. To estimate the shallow subsurface P- and S-wave velocities and S-wave anisotropy between two sensors and their temporal change, we select about 1000 earthquakes that occurred between 2004 and 2012, and extract body waves propagating between borehole sensors by computing the cross-correlation functions (CCFs) of 3 x 3 component pairs. We use frequency bands of 2-4, 4-8, 8-16 Hz in our analysis. Each averaged CCF shows clear wave packets traveling between borehole sensors, and their travel times are almost consistent with those of P- and S-waves calculated from the borehole log data. Until the occurrence of the 2011 Tohoku earthquake, the estimated travel time at each station is rather stable with time except for weak seasonal/annual variation. On the other hand, the 2011 Tohoku earthquake and its aftershocks cause sudden decrease in the S-wave velocity at most of the KiK-net stations in eastern Japan. The typical value of S-wave velocity changes, which are measured by the time-stretching method, is about 5-15%. After this co-seismic change, the S-wave velocity gradually recovers with time, and the recovery continues for over one year following the

  13. Reliability of force-velocity relationships during deadlift high pull.

    Science.gov (United States)

    Lu, Wei; Boyas, Sébastien; Jubeau, Marc; Rahmani, Abderrahmane

    2017-11-13

    This study aimed to evaluate the within- and between-session reliability of force, velocity and power performances and to assess the force-velocity relationship during the deadlift high pull (DHP). Nine participants performed two identical sessions of DHP with loads ranging from 30 to 70% of body mass. The force was measured by a force plate under the participants' feet. The velocity of the 'body + lifted mass' system was calculated by integrating the acceleration and the power was calculated as the product of force and velocity. The force-velocity relationships were obtained from linear regression of both mean and peak values of force and velocity. The within- and between-session reliability was evaluated by using coefficients of variation (CV) and intraclass correlation coefficients (ICC). Results showed that DHP force-velocity relationships were significantly linear (R² > 0.90, p  0.94), mean and peak velocities showed a good agreement (CV reliable and can therefore be utilised as a tool to characterise individuals' muscular profiles.

  14. Validation of a Video Analysis Software Package for Quantifying Movement Velocity in Resistance Exercises.

    Science.gov (United States)

    Sañudo, Borja; Rueda, David; Pozo-Cruz, Borja Del; de Hoyo, Moisés; Carrasco, Luis

    2016-10-01

    Sañudo, B, Rueda, D, del Pozo-Cruz, B, de Hoyo, M, and Carrasco, L. Validation of a video analysis software package for quantifying movement velocity in resistance exercises. J Strength Cond Res 30(10): 2934-2941, 2016-The aim of this study was to establish the validity of a video analysis software package in measuring mean propulsive velocity (MPV) and the maximal velocity during bench press. Twenty-one healthy males (21 ± 1 year) with weight training experience were recruited, and the MPV and the maximal velocity of the concentric phase (Vmax) were compared with a linear position transducer system during a standard bench press exercise. Participants performed a 1 repetition maximum test using the supine bench press exercise. The testing procedures involved the simultaneous assessment of bench press propulsive velocity using 2 kinematic (linear position transducer and semi-automated tracking software) systems. High Pearson's correlation coefficients for MPV and Vmax between both devices (r = 0.473 to 0.993) were observed. The intraclass correlation coefficients for barbell velocity data and the kinematic data obtained from video analysis were high (>0.79). In addition, the low coefficients of variation indicate that measurements had low variability. Finally, Bland-Altman plots with the limits of agreement of the MPV and Vmax with different loads showed a negative trend, which indicated that the video analysis had higher values than the linear transducer. In conclusion, this study has demonstrated that the software used for the video analysis was an easy to use and cost-effective tool with a very high degree of concurrent validity. This software can be used to evaluate changes in velocity of training load in resistance training, which may be important for the prescription and monitoring of training programmes.

  15. Monitoring Seismic Velocity Change to Explore the Earthquake Seismogenic Structures

    Science.gov (United States)

    Liao, C. F.; Wen, S.; Chen, C.

    2017-12-01

    Studying spatial-temporal variations of subsurface velocity structures is still a challenge work, but it can provide important information not only on geometry of a fault, but also the rheology change induced from the strong earthquake. In 1999, a disastrous Chi-Chi earthquake (Mw7.6; Chi-Chi EQ) occurred in central Taiwan and caused great impacts on Taiwan's society. Therefore, the major objective of this research is to investigate whether the rheology change of fault can be associated with seismogenic process before strong earthquake. In addition, after the strike of the Chi-Chi EQ, whether the subsurface velocity structure resumes to its steady state is another issue in this study. Therefore, for the above purpose, we have applied a 3D tomographic technique to obtain P- and S-wave velocity structures in central Taiwan using travel time data provided by the Central Weather Bureau (CWB). One major advantage of this method is that we can include out-of-network data to improve the resolution of velocity structures at deeper depths in our study area. The results show that the temporal variations of Vp are less significant than Vs (or Vp/Vs ratio), and Vp is not prominent perturbed before and after the occurrence of the Chi-Chi EQ. However, the Vs (or Vp/Vs ratio) structure in the source area demonstrates significant spatial-temporal difference before and after the mainshock. From the results, before the mainshock, Vs began to decrease (Vp/Vs ratio was increased as well) at the hanging wall of Chelungpu fault, which may be induced by the increasing density of microcracks and fluid. But in the vicinities of Chi-Chi Earthquake's source area, Vs was increasing (Vp/Vs ratio was also decreased). This phenomenon may be owing to the closing of cracks or migration of fluid. Due to the different physical characteristics around the source area, strong earthquake may be easily nucleated at the junctional zone. Our findings suggest that continuously monitoring the Vp and Vs (or

  16. Analysis of flexible-membrane aerofoils by a method of velocity singularities

    International Nuclear Information System (INIS)

    Mateescu, D.; Newman, B.G.

    1985-01-01

    Two dimensional sails were originally treated as flexible, impervious, inextensible membranes. These methods are developed in the context of thin aerofoil theory, the membrane being replaced by a vortex sheet and the boundary conditions satisfied at the corresponding positions on the aerofoil chord. The present present methos is developed as a linear potential theory, although it may be further extended to include non-linear and viscous effects. The new analysis is based on the method of velocity singularities associated with the changes in aerofoil slope developed for rigid aerofoils; it eliminates the need of formally solving an integral equation

  17. Superhilac real-time velocity measurements

    International Nuclear Information System (INIS)

    Feinberg, B.; Meaney, D.; Thatcher, R.; Timossi, C.

    1987-03-01

    Phase probes have been placed in several external beam lines at the LBL heavy ion linear accelerator (SuperHILAC) to provide non-destructive velocity measurements independent of the ion being accelerated. The existing system has been improved to provide the following features: a display refresh rate better than twice per second, a sensitive pseudo-correlation technique to pick out the signal from the noise, simultaneous measurements of up to four ion velocities when more than one beam is being accelerated, and a touch-screen operator interface. These improvements allow the system to be used as a routine tuning aid and beam velocity monitor

  18. Collective cell migration without proliferation: density determines cell velocity and wave velocity

    Science.gov (United States)

    Tlili, Sham; Gauquelin, Estelle; Li, Brigitte; Cardoso, Olivier; Ladoux, Benoît; Delanoë-Ayari, Hélène; Graner, François

    2018-05-01

    Collective cell migration contributes to embryogenesis, wound healing and tumour metastasis. Cell monolayer migration experiments help in understanding what determines the movement of cells far from the leading edge. Inhibiting cell proliferation limits cell density increase and prevents jamming; we observe long-duration migration and quantify space-time characteristics of the velocity profile over large length scales and time scales. Velocity waves propagate backwards and their frequency depends only on cell density at the moving front. Both cell average velocity and wave velocity increase linearly with the cell effective radius regardless of the distance to the front. Inhibiting lamellipodia decreases cell velocity while waves either disappear or have a lower frequency. Our model combines conservation laws, monolayer mechanical properties and a phenomenological coupling between strain and polarity: advancing cells pull on their followers, which then become polarized. With reasonable values of parameters, this model agrees with several of our experimental observations. Together, our experiments and model disantangle the respective contributions of active velocity and of proliferation in monolayer migration, explain how cells maintain their polarity far from the moving front, and highlight the importance of strain-polarity coupling and density in long-range information propagation.

  19. Post-seismic velocity changes following the 2010 Mw 7.1 Darfield earthquake, New Zealand, revealed by ambient seismic field analysis

    Science.gov (United States)

    Heckels, R. EG; Savage, M. K.; Townend, J.

    2018-05-01

    Quantifying seismic velocity changes following large earthquakes can provide insights into fault healing and reloading processes. This study presents temporal velocity changes detected following the 2010 September Mw 7.1 Darfield event in Canterbury, New Zealand. We use continuous waveform data from several temporary seismic networks lying on and surrounding the Greendale Fault, with a maximum interstation distance of 156 km. Nine-component, day-long Green's functions were computed for frequencies between 0.1 and 1.0 Hz for continuous seismic records from immediately after the 2010 September 04 earthquake until 2011 January 10. Using the moving-window cross-spectral method, seismic velocity changes were calculated. Over the study period, an increase in seismic velocity of 0.14 ± 0.04 per cent was determined near the Greendale Fault, providing a new constraint on post-seismic relaxation rates in the region. A depth analysis further showed that velocity changes were confined to the uppermost 5 km of the subsurface. We attribute the observed changes to post-seismic relaxation via crack healing of the Greendale Fault and throughout the surrounding region.

  20. Determination of hydrologic properties needed to calculate average linear velocity and travel time of ground water in the principal aquifer underlying the southeastern part of Salt Lake Valley, Utah

    Science.gov (United States)

    Freethey, G.W.; Spangler, L.E.; Monheiser, W.J.

    1994-01-01

    A 48-square-mile area in the southeastern part of the Salt Lake Valley, Utah, was studied to determine if generalized information obtained from geologic maps, water-level maps, and drillers' logs could be used to estimate hydraulic conduc- tivity, porosity, and slope of the potentiometric surface: the three properties needed to calculate average linear velocity of ground water. Estimated values of these properties could be used by water- management and regulatory agencies to compute values of average linear velocity, which could be further used to estimate travel time of ground water along selected flow lines, and thus to determine wellhead protection areas around public- supply wells. The methods used to estimate the three properties are based on assumptions about the drillers' descriptions, the depositional history of the sediments, and the boundary con- ditions of the hydrologic system. These assump- tions were based on geologic and hydrologic infor- mation determined from previous investigations. The reliability of the estimated values for hydro- logic properties and average linear velocity depends on the accuracy of these assumptions. Hydraulic conductivity of the principal aquifer was estimated by calculating the thickness- weighted average of values assigned to different drillers' descriptions of material penetrated during the construction of 98 wells. Using these 98 control points, the study area was divided into zones representing approximate hydraulic- conductivity values of 20, 60, 100, 140, 180, 220, and 250 feet per day. This range of values is about the same range of values used in developing a ground-water flow model of the principal aquifer in the early 1980s. Porosity of the principal aquifer was estimated by compiling the range of porosity values determined or estimated during previous investigations of basin-fill sediments, and then using five different values ranging from 15 to 35 percent to delineate zones in the study area that were assumed to

  1. Transition of unsteady velocity profiles with reverse flow

    Science.gov (United States)

    Das, Debopam; Arakeri, Jaywant H.

    1998-11-01

    This paper deals with the stability and transition to turbulence of wall-bounded unsteady velocity profiles with reverse flow. Such flows occur, for example, during unsteady boundary layer separation and in oscillating pipe flow. The main focus is on results from experiments in time-developing flow in a long pipe, which is decelerated rapidly. The flow is generated by the controlled motion of a piston. We obtain analytical solutions for laminar flow in the pipe and in a two-dimensional channel for arbitrary piston motions. By changing the piston speed and the length of piston travel we cover a range of values of Reynolds number and boundary layer thickness. The velocity profiles during the decay of the flow are unsteady with reverse flow near the wall, and are highly unstable due to their inflectional nature. In the pipe, we observe from flow visualization that the flow becomes unstable with the formation of what appears to be a helical vortex. The wavelength of the instability [simeq R: similar, equals]3[delta] where [delta] is the average boundary layer thickness, the average being taken over the time the flow is unstable. The time of formation of the vortices scales with the average convective time scale and is [simeq R: similar, equals]39/([Delta]u/[delta]), where [Delta]u=(umax[minus sign]umin) and umax, umin and [delta] are the maximum velocity, minimum velocity and boundary layer thickness respectively at each instant of time. The time to transition to turbulence is [simeq R: similar, equals]33/([Delta]u/[delta]). Quasi-steady linear stability analysis of the velocity profiles brings out two important results. First that the stability characteristics of velocity profiles with reverse flow near the wall collapse when scaled with the above variables. Second that the wavenumber corresponding to maximum growth does not change much during the instability even though the velocity profile does change substantially. Using the results from the experiments and the

  2. Changes in muscle fiber conduction velocity indicate recruitment of distinct motor unit populations.

    Science.gov (United States)

    Houtman, C J; Stegeman, D F; Van Dijk, J P; Zwarts, M J

    2003-09-01

    To obtain more insight into the changes in mean muscle fiber conduction velocity (MFCV) during sustained isometric exercise at relatively low contraction levels, we performed an in-depth study of the human tibialis anterior muscle by using multichannel surface electromyogram. The results show an increase in MFCV after an initial decrease of MFCV at 30 or 40% maximum voluntary contraction in all of the five subjects studied. With a peak velocity analysis, we calculated the distribution of conduction velocities of action potentials in the bipolar electromyogram signal. It shows two populations of peak velocities occurring simultaneously halfway through the exercise. The MFCV pattern implies the recruitment of two different populations of motor units. Because of the lowering of MFCV of the first activated population of motor units, the newly recruited second population of motor units becomes visible. It is most likely that the MFCV pattern can be ascribed to the fatiguing of already recruited predominantly type I motor units, followed by the recruitment of fresh, predominantly type II, motor units.

  3. Linear Motor With Air Slide

    Science.gov (United States)

    Johnson, Bruce G.; Gerver, Michael J.; Hawkey, Timothy J.; Fenn, Ralph C.

    1993-01-01

    Improved linear actuator comprises air slide and linear electric motor. Unit exhibits low friction, low backlash, and more nearly even acceleration. Used in machinery in which positions, velocities, and accelerations must be carefully controlled and/or vibrations must be suppressed.

  4. Dynamics of the solar magnetic field. V. Velocities associated with changing magnetic fields

    International Nuclear Information System (INIS)

    Levine, R.H.; Nakagawa, Y.

    1975-01-01

    Methods of determining horizontal velocities from the magnetic induction equation on the basis of a time series of magnetogram observations are discussed. For the flare of 1972 August 7, it is shown that a previously developed method of predicting positions of likely flare activity provides reasonable agreement with observations. Limitations to this type of solution of the magnetic induction equation are pointed out, and unambiguous solutions, corresponding to phenomenological determinations of velocity patterns under various physical circumstances, are presented for simple magnetic configurations. Implications for the analysis of changes in a series of magnetogram observations are discussed

  5. Monitoring changes in seismic velocity related to an ongoing rapid inflation event at Okmok volcano, Alaska

    Science.gov (United States)

    Bennington, Ninfa; Haney, Matt; De Angelis, Silvio; Thurber, Clifford; Freymueller, Jeff

    2015-01-01

    Okmok is one of the most active volcanoes in the Aleutian Arc. In an effort to improve our ability to detect precursory activity leading to eruption at Okmok, we monitor a recent, and possibly ongoing, GPS-inferred rapid inflation event at the volcano using ambient noise interferometry (ANI). Applying this method, we identify changes in seismic velocity outside of Okmok’s caldera, which are related to the hydrologic cycle. Within the caldera, we observe decreases in seismic velocity that are associated with the GPS-inferred rapid inflation event. We also determine temporal changes in waveform decorrelation and show a continual increase in decorrelation rate over the time associated with the rapid inflation event. Themagnitude of relative velocity decreases and decorrelation rate increases are comparable to previous studies at Piton de la Fournaise that associate such changes with increased production of volatiles and/ormagmatic intrusion within the magma reservoir and associated opening of fractures and/or fissures. Notably, the largest decrease in relative velocity occurs along the intrastation path passing nearest to the center of the caldera. This observation, along with equal amplitude relative velocity decreases revealed via analysis of intracaldera autocorrelations, suggests that the inflation sourcemay be located approximately within the center of the caldera and represent recharge of shallow magma storage in this location. Importantly, there is a relative absence of seismicity associated with this and previous rapid inflation events at Okmok. Thus, these ANI results are the first seismic evidence of such rapid inflation at the volcano.

  6. Cognitive regulation of saccadic velocity by reward prospect.

    Science.gov (United States)

    Chen, Lewis L; Hung, Leroy Y; Quinet, Julie; Kosek, Kevin

    2013-08-01

    It is known that expectation of reward speeds up saccades. Past studies have also shown the presence of a saccadic velocity bias in the orbit, resulting from a biomechanical regulation over varying eccentricities. Nevertheless, whether and how reward expectation interacts with the biomechanical regulation of saccadic velocities over varying eccentricities remains unknown. We addressed this question by conducting a visually guided double-step saccade task. The role of reward expectation was tested in monkeys performing two consecutive horizontal saccades, one associated with reward prospect and the other not. To adequately assess saccadic velocity and avoid adaptation, we systematically varied initial eye positions, saccadic directions and amplitudes. Our results confirmed the existence of a velocity bias in the orbit, i.e., saccadic peak velocity decreased linearly as the initial eye position deviated in the direction of the saccade. The slope of this bias increased as saccadic amplitudes increased. Nevertheless, reward prospect facilitated velocity to a greater extent for saccades away from than for saccades toward the orbital centre, rendering an overall reduction in the velocity bias. The rate (slope) and magnitude (intercept) of reward modulation over this velocity bias were linearly correlated with amplitudes, similar to the amplitude-modulated velocity bias without reward prospect, which presumably resulted from a biomechanical regulation. Small-amplitude (≤ 5°) saccades received little modulation. These findings together suggest that reward expectation modulated saccadic velocity not as an additive signal but as a facilitating mechanism that interacted with the biomechanical regulation. © 2013 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  7. Wave Tank Studies of Phase Velocities of Short Wind Waves

    Science.gov (United States)

    Ermakov, S.; Sergievskaya, I.; Shchegolkov, Yu.

    Wave tank studies of phase velocities of short wind waves have been carried out using Ka-band radar and an Optical Spectrum Analyser. The phase velocities were retrieved from measured radar and optical Doppler shifts, taking into account measurements of surface drift velocities. The dispersion relationship was studied in centimetre (cm)- and millimetre(mm)-scale wavelength ranges at different fetches and wind speeds, both for a clean water surface and for water covered with surfactant films. It is ob- tained that the phase velocities do not follow the dispersion relation of linear capillary- gravity waves, increasing with fetch and, therefore, depending on phase velocities of dominant decimetre (dm)-centimetre-scale wind waves. One thus can conclude that nonlinear cm-mm-scale harmonics bound to the dominant wind waves and propagat- ing with the phase velocities of the decimetric waves are present in the wind wave spectrum. The resulting phase velocities of short wind waves are determined by re- lation between free and bound waves. The relative intensity of the bound waves in the spectrum of short wind waves is estimated. It is shown that this relation depends strongly on the surfactant concentration, because the damping effect due to films is different for free and bound waves; this results to changes of phase velocities of wind waves in the presence of surfactant films. This work was supported by MOD, UK via DERA Winfrith (Project ISTC 1774P) and by RFBR (Project 02-05-65102).

  8. Motor unit recruitment patterns 1: responses to changes in locomotor velocity and incline.

    Science.gov (United States)

    Hodson-Tole, Emma F; Wakeling, James M

    2008-06-01

    Mammalian skeletal muscles are composed of a mixture of motor unit types, which contribute a range of mechanical and physiological properties to the muscle. For a muscle to effectively contribute to smooth, co-ordinated movement it must activate an appropriate number and combination of motor units to generate the required force over a suitable time period. Much evidence exists indicating that motor units are activated in an orderly fashion, from the slowest through to the fastest. A growing body of evidence, however, indicates that such a recruitment strategy does not always hold true. Here we investigate how motor unit recruitment patterns were influenced by changes in locomotor velocity and incline. Kinematics data and myoelectric signals were collected from three rat ankle extensor muscles during running on a treadmill at nine velocity and incline combinations. Wavelet and principal component analysis were used to simultaneously decompose the signals into time and frequency space. The relative frequency components of the signals were quantified during 20 time windows of a stride from each locomotor condition. Differences in signal frequency components existed between muscles and locomotor conditions. Faster locomotor velocities led to a relative increase in high frequency components, whereas greater inclines led to a relative increase in the low frequency components. These data were interpreted as representing changes in motor unit recruitment patterns in response to changes in the locomotor demand. Motor units were not always recruited in an orderly manner, indicating that recruitment is a multi-factorial phenomenon that is not yet fully understood.

  9. Will nonlinear peculiar velocity and inhomogeneous reionization spoil 21 cm cosmology from the epoch of reionization?

    Science.gov (United States)

    Shapiro, Paul R; Mao, Yi; Iliev, Ilian T; Mellema, Garrelt; Datta, Kanan K; Ahn, Kyungjin; Koda, Jun

    2013-04-12

    The 21 cm background from the epoch of reionization is a promising cosmological probe: line-of-sight velocity fluctuations distort redshift, so brightness fluctuations in Fourier space depend upon angle, which linear theory shows can separate cosmological from astrophysical information. Nonlinear fluctuations in ionization, density, and velocity change this, however. The validity and accuracy of the separation scheme are tested here for the first time, by detailed reionization simulations. The scheme works reasonably well early in reionization (≲40% ionized), but not late (≳80% ionized).

  10. Muscle Force-Velocity Relationships Observed in Four Different Functional Tests.

    Science.gov (United States)

    Zivkovic, Milena Z; Djuric, Sasa; Cuk, Ivan; Suzovic, Dejan; Jaric, Slobodan

    2017-02-01

    The aims of the present study were to investigate the shape and strength of the force-velocity relationships observed in different functional movement tests and explore the parameters depicting force, velocity and power producing capacities of the tested muscles. Twelve subjects were tested on maximum performance in vertical jumps, cycling, bench press throws, and bench pulls performed against different loads. Thereafter, both the averaged and maximum force and velocity variables recorded from individual trials were used for force-velocity relationship modeling. The observed individual force-velocity relationships were exceptionally strong (median correlation coefficients ranged from r = 0.930 to r = 0.995) and approximately linear independently of the test and variable type. Most of the relationship parameters observed from the averaged and maximum force and velocity variable types were strongly related in all tests (r = 0.789-0.991), except for those in vertical jumps (r = 0.485-0.930). However, the generalizability of the force-velocity relationship parameters depicting maximum force, velocity and power of the tested muscles across different tests was inconsistent and on average moderate. We concluded that the linear force-velocity relationship model based on either maximum or averaged force-velocity data could provide the outcomes depicting force, velocity and power generating capacity of the tested muscles, although such outcomes can only be partially generalized across different muscles.

  11. Development of coaxial ultrasonic probe for fatty liver diagnostic system using ultrasonic velocity change

    Science.gov (United States)

    Hori, Makoto; Yokota, Daiki; Aotani, Yuhei; Kumagai, Yuta; Wada, Kenji; Matsunaka, Toshiyuki; Morikawa, Hiroyasu; Horinaka, Hiromichi

    2017-07-01

    A diagnostic system for fatty liver at an early stage is needed because fatty liver is linked to metabolic syndrome. We have already proposed a fatty liver diagnosis method based on the temperature coefficient of ultrasonic velocity. In this study, we fabricated a coaxial ultrasonic probe by integrating two kinds of transducers for warming and signal detection. The diagnosis system equipped with the coaxial probe was applied to tissue-mimicking phantoms including the fat area. The fat content rates corresponding to the set rates of the phantoms were estimated by the ultrasonic velocity-change method.

  12. Evolution of microstructure and elastic wave velocities in dehydrated gypsum samples

    Science.gov (United States)

    Milsch, Harald; Priegnitz, Mike

    2012-12-01

    We report on changes in P and S-wave velocities and rock microstructure induced by devolatilization reactions using gypsum as a reference analog material. Cylindrical samples of natural alabaster were dehydrated in air, at ambient pressure, and temperatures between 378 and 423 K. Dehydration did not proceed homogeneously but via a reaction front moving sample inwards separating an outer highly porous rim from the remaining gypsum which, above approximately 393 (±5) K, concurrently decomposed into hemihydrate. Overall porosity was observed to continuously increase with reaction progress from approximately 2% for fully hydrated samples to 30% for completely dehydrated ones. Concurrently, P and S-wave velocities linearly decreased with porosity from 5.2 and 2.7 km/s to 1.0 and 0.7 km/s, respectively. It is concluded that a linearized empirical Raymer-type model extended by a critical porosity term and based on the respective time dependent mineral and pore volumes reasonably replicates the P and S-wave data in relation to reaction progress and porosity.

  13. About the existing linear relation between the material velocity and the shock wave velocity propagating inside a metal; Au sujet de la relation lineaire existant entre la vitesse materielle et la vitesse de l'onde de choc se propageant dans un metal

    Energy Technology Data Exchange (ETDEWEB)

    Berger, Jean; Joigneau, Suzanne [Commissariat a l' energie atomique et aux energies alternatives - CEA (France)

    1960-07-01

    It was found that, for solids and more particularly for metals, in huge fields of shock pressure, the wave velocity is a linear function of the material velocity. A theoretical calculation allows to demonstrate this linear law and to calculate its parameters which are compared to experimental data. Reprint of a paper published in Comptes rendus des seances de l'Academie des Sciences, t. 249, p. 2506-2508, sitting of 9 December 1959 [French] Il a ete constate que, pour les solides et plus particulierement pour les metaux, dans de larges domaines de pression de choc, la vitesse de l'onde etait une fonction lineaire de la vitesse materielle. Un calcul theorique nous permet de retrouver cette loi lineaire et d'en calculer les parametres; ceux-ci sont alors compares aux donnees experimentales. Reproduction d'un article publie dans les Comptes rendus des seances de l'Academie des Sciences, t. 249, p. 2506-2508, seance du 9 decembre 1959.

  14. Characteristic wave velocities in spherical electromagnetic cloaks

    International Nuclear Information System (INIS)

    Yaghjian, A D; Maci, S; Martini, E

    2009-01-01

    We investigate the characteristic wave velocities in spherical electromagnetic cloaks, namely, phase, ray, group and energy-transport velocities. After deriving explicit expressions for the phase and ray velocities (the latter defined as the phase velocity along the direction of the Poynting vector), special attention is given to the determination of group and energy-transport velocities, because a cursory application of conventional formulae for local group and energy-transport velocities can lead to a discrepancy between these velocities if the permittivity and permeability dyadics are not equal over a frequency range about the center frequency. In contrast, a general theorem can be proven from Maxwell's equations that the local group and energy-transport velocities are equal in linear, lossless, frequency dispersive, source-free bianisotropic material. This apparent paradox is explained by showing that the local fields of the spherical cloak uncouple into an E wave and an H wave, each with its own group and energy-transport velocities, and that the group and energy-transport velocities of either the E wave or the H wave are equal and thus satisfy the general theorem.

  15. The species velocity of trees in Alaska

    Science.gov (United States)

    Morrison, B. D.; Napier, J.; de Lafontaine, G.; Heath, K.; Li, B.; Hu, F.; Greenberg, J. A.

    2017-12-01

    Anthropogenic climate change has motivated interest in the paleo record to enhance our knowledge about past vegetation responses to climate change and help understand potential responses in the future. Additionally, polar regions currently experience the most rapid rates of climate change globally, prompting concern over changes in the ecological composition of high latitude ecosystems. Recent analyses have attempted to construct methods to estimate a species' ability to track climate change by computing climate velocity; a measure of the rate of climate displacement across a landscape which may indicate the speed an organism must migrate to keep pace with climate change. However, a challenge to using climate velocity in understanding range shifts is a lack of species-specificity in the velocity calculations: climate velocity does not actually use any species data in its analysis. To solve the shortcomings of climate velocity in estimating species displacement rates, we computed the "species velocity" of white spruce, green and grey alder populations across the state of Alaska from the Last Glacial Maximum (LGM) to today. Species velocity represents the rate and direction a species is required to migrate to keep pace with a changing climate following the LGM. We used a species distribution model to determine past and present white spruce and alder distributions using statistically downscaled climate data at 60m. Species velocity was then derived from the change in species distribution per year by the change in distribution over Alaska (km/yr). High velocities indicate locations where the species environmental envelope is changing drastically and must disperse rapidly to survive climate change. As a result, high velocity regions are more vulnerable to distribution shifts and higher risk of local extinction. Conversely, low species velocities indicate locations where the local climate envelope is shifting relatively slowly, reducing the stress to disperse quickly

  16. Acoustic and streaming velocity components in a resonant waveguide at high acoustic levels.

    Science.gov (United States)

    Daru, Virginie; Reyt, Ida; Bailliet, Hélène; Weisman, Catherine; Baltean-Carlès, Diana

    2017-01-01

    Rayleigh streaming is a steady flow generated by the interaction between an acoustic wave and a solid wall, generally assumed to be second order in a Mach number expansion. Acoustic streaming is well known in the case of a stationary plane wave at low amplitude: it has a half-wavelength spatial periodicity and the maximum axial streaming velocity is a quadratic function of the acoustic velocity amplitude at antinode. For higher acoustic levels, additional streaming cells have been observed. Results of laser Doppler velocimetry measurements are here compared to direct numerical simulations. The evolution of axial and radial velocity components for both acoustic and streaming velocities is studied from low to high acoustic amplitudes. Two streaming flow regimes are pointed out, the axial streaming dependency on acoustics going from quadratic to linear. The evolution of streaming flow is different for outer cells and for inner cells. Also, the hypothesis of radial streaming velocity being of second order in a Mach number expansion, is not valid at high amplitudes. The change of regime occurs when the radial streaming velocity amplitude becomes larger than the radial acoustic velocity amplitude, high levels being therefore characterized by nonlinear interaction of the different velocity components.

  17. Sound velocity in potassium hydroxide aqueous solution

    International Nuclear Information System (INIS)

    Tsapuryan, Kh.D.; Aleksandrov, A.A.; Kochetkov, A.I.

    1992-01-01

    Measurements of ultrasonic velocities in potassium hydroxide aqueous solutions are carried out within the frames of studies on improvement of water chemistry in NPP cooling systems. Method of echo pulses superposition with acoustic path length of 41.447 mm is used for measurements. The measurements are performed at 2.6 MHz frequency. Complex temperature dependence of ultrasonic velocity is determined. Ultrasonic velocity dependence on pressure is close to linear one. The formula for calculation of thermodynamic properties of the studied solutions on the basis of experimental data obtained is proposed

  18. Shuttlecock Velocity of a Badminton Drop Shot

    Directory of Open Access Journals (Sweden)

    Ampharin Ongvises

    2013-01-01

    Full Text Available In a badminton ‘drop shot’, the shuttlecock is struck by a non-rotating racquet at low speed. In this investigation, a shuttlecock was hit by a badminton racquet in a linear collision, simulating a drop shot. The collision was recorded with high-speed video and the velocities of the racquet and shuttlecock determined. The relationship between the impact velocity of the racquet and the velocity of the shuttlecock as it leaves the badminton racquet after collision was found to be proportional over the range tested.

  19. Shuttlecock Velocity of a Badminton Drop Shot

    Directory of Open Access Journals (Sweden)

    Ampharin Ongvises

    2013-12-01

    Full Text Available In a badminton ‘drop shot’, the shuttlecock is struck by a non-rotating racquet at low speed. In this investigation, a shuttlecock was hit by a badminton racquet in a linear collision, simulating a drop shot. The collision was recorded with high-speed video and the velocities of the racquet and shuttlecock determined. The relationship between the impact velocity of the racquet and the velocity of the shuttlecock as it leaves the badminton racquet after collision was found to be proportional over the range tested.

  20. Computing discharge using the index velocity method

    Science.gov (United States)

    Levesque, Victor A.; Oberg, Kevin A.

    2012-01-01

    Application of the index velocity method for computing continuous records of discharge has become increasingly common, especially since the introduction of low-cost acoustic Doppler velocity meters (ADVMs) in 1997. Presently (2011), the index velocity method is being used to compute discharge records for approximately 470 gaging stations operated and maintained by the U.S. Geological Survey. The purpose of this report is to document and describe techniques for computing discharge records using the index velocity method. Computing discharge using the index velocity method differs from the traditional stage-discharge method by separating velocity and area into two ratings—the index velocity rating and the stage-area rating. The outputs from each of these ratings, mean channel velocity (V) and cross-sectional area (A), are then multiplied together to compute a discharge. For the index velocity method, V is a function of such parameters as streamwise velocity, stage, cross-stream velocity, and velocity head, and A is a function of stage and cross-section shape. The index velocity method can be used at locations where stage-discharge methods are used, but it is especially appropriate when more than one specific discharge can be measured for a specific stage. After the ADVM is selected, installed, and configured, the stage-area rating and the index velocity rating must be developed. A standard cross section is identified and surveyed in order to develop the stage-area rating. The standard cross section should be surveyed every year for the first 3 years of operation and thereafter at a lesser frequency, depending on the susceptibility of the cross section to change. Periodic measurements of discharge are used to calibrate and validate the index rating for the range of conditions experienced at the gaging station. Data from discharge measurements, ADVMs, and stage sensors are compiled for index-rating analysis. Index ratings are developed by means of regression

  1. CFORM- LINEAR CONTROL SYSTEM DESIGN AND ANALYSIS: CLOSED FORM SOLUTION AND TRANSIENT RESPONSE OF THE LINEAR DIFFERENTIAL EQUATION

    Science.gov (United States)

    Jamison, J. W.

    1994-01-01

    CFORM was developed by the Kennedy Space Center Robotics Lab to assist in linear control system design and analysis using closed form and transient response mechanisms. The program computes the closed form solution and transient response of a linear (constant coefficient) differential equation. CFORM allows a choice of three input functions: the Unit Step (a unit change in displacement); the Ramp function (step velocity); and the Parabolic function (step acceleration). It is only accurate in cases where the differential equation has distinct roots, and does not handle the case for roots at the origin (s=0). Initial conditions must be zero. Differential equations may be input to CFORM in two forms - polynomial and product of factors. In some linear control analyses, it may be more appropriate to use a related program, Linear Control System Design and Analysis (KSC-11376), which uses root locus and frequency response methods. CFORM was written in VAX FORTRAN for a VAX 11/780 under VAX VMS 4.7. It has a central memory requirement of 30K. CFORM was developed in 1987.

  2. Wave Velocity Estimation in Heterogeneous Media

    KAUST Repository

    Asiri, Sharefa M.; Laleg-Kirati, Taous-Meriem

    2016-01-01

    In this paper, modulating functions-based method is proposed for estimating space-time dependent unknown velocity in the wave equation. The proposed method simplifies the identification problem into a system of linear algebraic equations. Numerical

  3. Temperature Control of Heating Zone for Drying Process: Effect of Air Velocity Change

    Directory of Open Access Journals (Sweden)

    Wutthithanyawat Chananchai

    2016-01-01

    Full Text Available This paper proposes a temperature control technique to adjust air temperature in a heating zone for drying process. The controller design is achieved by using an internal model control (IMC approach. When the IMC controller parameters were designed by calculating from an actual process transfer function estimated through an open-loop step response with input step change from 50% to 60% at a reference condition at air velocity of 1.20 m/s, the performance of temperature controller was experimentally tested by varying an air velocity between 1.32 m/s and 1.57 m/s, respectively. The experimental results showed that IMC controller had a high competency for controlling the drying temperature.

  4. Locomotion on the water surface: hydrodynamic constraints on rowing velocity require a gait change

    Science.gov (United States)

    Suter; Wildman

    1999-10-01

    Fishing spiders, Dolomedes triton (Araneae, Pisauridae), propel themselves across the water surface using two gaits: they row with four legs at sustained velocities below 0.2 m s(-)(1) and they gallop with six legs at sustained velocities above 0.3 m s(-)(1). Because, during rowing, most of the horizontal thrust is provided by the drag of the leg and its associated dimple as both move across the water surface, the integrity of the dimple is crucial. We used a balance, incorporating a biaxial clinometer as the transducer, to measure the horizontal thrust forces on a leg segment subjected to water moving past it in non-turbulent flow. Changes in the horizontal forces reflected changes in the status of the dimple and showed that a stable dimple could exist only under conditions that combined low flow velocity, shallow leg-segment depth and a long perimeter of the interface between the leg segment and the water. Once the dimple disintegrated, leaving the leg segment submerged, less drag was generated. Therefore, the disintegration of the dimple imposes a limit on the efficacy of rowing with four legs. The limited degrees of freedom in the leg joints (the patellar joints move freely in the vertical plane but allow only limited flexion in other planes) impose a further constraint on rowing by restricting the maximum leg-tip velocity (to approximately 33 % of that attained by the same legs during galloping). This confines leg-tip velocities to a range at which maintenance of the dimple is particularly important. The weight of the spider also imposes constraints on the efficacy of rowing: because the drag encountered by the leg-cum-dimple is proportional to the depth of the dimple and because dimple depth is proportional to the supported weight, only spiders with a mass exceeding 0.48 g can have access to the full range of hydrodynamically possible dimple depths during rowing. Finally, the maximum velocity attainable during rowing is constrained by the substantial drag

  5. Improvement of the thermal behavior of linear motors through insulation layer

    International Nuclear Information System (INIS)

    Eun, I. U.; Lee, C. M.; Chung, W. J.; Choi, Y. H.

    2001-01-01

    Linear motors can drive a linear motion without intermediate gears, screws or crank shafts. Linear motors can successfully replace ball lead screw in machine tools, because they have a high velocity, acceleration and good positioning accuracy. On the other hand, linear motors emit large amounts of heat and have low efficiency. In this paper, heat sources of a synchronous linear motor with high velocity and force are measured and analyzed. To improve the thermal stiffness of the linear motor, an insulation layer with low thermal conductivity is inserted between cooler and machine table. Some effects of the insulation layer are presented

  6. Retrieving robust noise-based seismic velocity changes from sparse data sets: synthetic tests and application to Klyuchevskoy volcanic group (Kamchatka)

    Science.gov (United States)

    Gómez-García, C.; Brenguier, F.; Boué, P.; Shapiro, N. M.; Droznin, D. V.; Droznina, S. Ya; Senyukov, S. L.; Gordeev, E. I.

    2018-05-01

    Continuous noise-based monitoring of seismic velocity changes provides insights into volcanic unrest, earthquake mechanisms and fluid injection in the sub-surface. The standard monitoring approach relies on measuring travel time changes of late coda arrivals between daily and reference noise cross-correlations, usually chosen as stacks of daily cross-correlations. The main assumption of this method is that the shape of the noise correlations does not change over time or, in other terms, that the ambient-noise sources are stationary through time. These conditions are not fulfilled when a strong episodic source of noise, such as a volcanic tremor for example, perturbs the reconstructed Green's function. In this paper we propose a general formulation for retrieving continuous time series of noise-based seismic velocity changes without the requirement of any arbitrary reference cross-correlation function. Instead, we measure the changes between all possible pairs of daily cross-correlations and invert them using different smoothing parameters to obtain the final velocity change curve. We perform synthetic tests in order to establish a general framework for future applications of this technique. In particular, we study the reliability of velocity change measurements versus the stability of noise cross-correlation functions. We apply this approach to a complex dataset of noise cross-correlations at Klyuchevskoy volcanic group (Kamchatka), hampered by loss of data and the presence of highly non-stationary seismic tremors.

  7. EFFECTS OF RUN-UP VELOCITY ON PERFORMANCE, KINEMATICS, AND ENERGY EXCHANGES IN THE POLE VAULT

    Directory of Open Access Journals (Sweden)

    Nicholas P. Linthorne

    2012-06-01

    Full Text Available This study examined the effect of run-up velocity on the peak height achieved by the athlete in the pole vault and on the corresponding changes in the athlete's kinematics and energy exchanges. Seventeen jumps by an experienced male pole vaulter were video recorded in the sagittal plane and a wide range of run-up velocities (4.5-8.5 m/s was obtained by setting the length of the athlete's run-up (2-16 steps. A selection of performance variables, kinematic variables, energy variables, and pole variables were calculated from the digitized video data. We found that the athlete's peak height increased linearly at a rate of 0.54 m per 1 m/s increase in run-up velocity and this increase was achieved through a combination of a greater grip height and a greater push height. At the athlete's competition run-up velocity (8.4 m/s about one third of the rate of increase in peak height arose from an increase in grip height and about two thirds arose from an increase in push height. Across the range of run-up velocities examined here the athlete always performed the basic actions of running, planting, jumping, and inverting on the pole. However, he made minor systematic changes to his jumping kinematics, vaulting kinematics, and selection of pole characteristics as the run-up velocity increased. The increase in run-up velocity and changes in the athlete's vaulting kinematics resulted in substantial changes to the magnitudes of the energy exchanges during the vault. A faster run-up produced a greater loss of energy during the take-off, but this loss was not sufficient to negate the increase in run-up velocity and the increase in work done by the athlete during the pole support phase. The athlete therefore always had a net energy gain during the vault. However, the magnitude of this gain decreased slightly as run-up velocity increased

  8. VELOCITY EVOLUTION AND THE INTRINSIC COLOR OF TYPE Ia SUPERNOVAE

    International Nuclear Information System (INIS)

    Foley, Ryan J.; Sanders, Nathan E.; Kirshner, Robert P.

    2011-01-01

    To understand how best to use observations of Type Ia supernovae (SNe Ia) to obtain precise and accurate distances, we investigate the relations between spectra of SNe Ia and their intrinsic colors. Using a sample of 1630 optical spectra of 255 SNe, based primarily on data from the CfA Supernova Program, we examine how the velocity evolution and line strengths of Si II λ6355 and Ca II H and K are related to the B – V color at peak brightness. We find that the maximum-light velocity of Si II λ6355 and Ca II H and K and the maximum-light pseudo-equivalent width of Si II λ6355 are correlated with intrinsic color, with intrinsic color having a linear relation with the Si II λ6355 measurements. Ca II H and K does not have a linear relation with intrinsic color, but lower-velocity SNe tend to be intrinsically bluer. Combining the spectroscopic measurements does not improve intrinsic color inference. The intrinsic color scatter is larger for higher-velocity SNe Ia—even after removing a linear trend with velocity—indicating that lower-velocity SNe Ia are more 'standard crayons'. Employing information derived from SN Ia spectra has the potential to improve the measurements of extragalactic distances and the cosmological properties inferred from them.

  9. Linear and kernel methods for multivariate change detection

    DEFF Research Database (Denmark)

    Canty, Morton J.; Nielsen, Allan Aasbjerg

    2012-01-01

    ), as well as maximum autocorrelation factor (MAF) and minimum noise fraction (MNF) analyses of IR-MAD images, both linear and kernel-based (nonlinear), may further enhance change signals relative to no-change background. IDL (Interactive Data Language) implementations of IR-MAD, automatic radiometric...... normalization, and kernel PCA/MAF/MNF transformations are presented that function as transparent and fully integrated extensions of the ENVI remote sensing image analysis environment. The train/test approach to kernel PCA is evaluated against a Hebbian learning procedure. Matlab code is also available...... that allows fast data exploration and experimentation with smaller datasets. New, multiresolution versions of IR-MAD that accelerate convergence and that further reduce no-change background noise are introduced. Computationally expensive matrix diagonalization and kernel image projections are programmed...

  10. Linear stability analysis of supersonic axisymmetric jets

    Directory of Open Access Journals (Sweden)

    Zhenhua Wan

    2014-01-01

    Full Text Available Stabilities of supersonic jets are examined with different velocities, momentum thicknesses, and core temperatures. Amplification rates of instability waves at inlet are evaluated by linear stability theory (LST. It is found that increased velocity and core temperature would increase amplification rates substantially and such influence varies for different azimuthal wavenumbers. The most unstable modes in thin momentum thickness cases usually have higher frequencies and azimuthal wavenumbers. Mode switching is observed for low azimuthal wavenumbers, but it appears merely in high velocity cases. In addition, the results provided by linear parabolized stability equations show that the mean-flow divergence affects the spatial evolution of instability waves greatly. The most amplified instability waves globally are sometimes found to be different from that given by LST.

  11. Experimental Investigation of Sandstone under Cyclic Loading: Damage Assessment Using Ultrasonic Wave Velocities and Changes in Elastic Modulus

    Directory of Open Access Journals (Sweden)

    Sen Yang

    2018-01-01

    Full Text Available This laboratory study investigated the damage evolution of sandstone specimens under two types of cyclic loading by monitoring and analyzing changes in the elastic moduli and the ultrasonic velocities during loading. During low-level cyclic loading, the stiffness degradation method was unable to describe the damage accumulations but the ultrasonic velocity measurements clearly reflected the damage development. A crack density parameter is introduced in order to interpret the changes in the tangential modulus and the ultrasonic velocities. The results show the following. (1 Low-level cyclic loading enhanced the anisotropy of the cracks. This results from the compression of intergranular clay minerals and fatigue failure. (2 Irreversible damage accumulations during cyclic loading with an increasing upper stress limit are the consequence of brittle failure in the sandstone’s microstructure.

  12. Relative velocity of dark matter and baryonic fluids and the formation of the first structures

    International Nuclear Information System (INIS)

    Tseliakhovich, Dmitriy; Hirata, Christopher

    2010-01-01

    At the time of recombination, baryons and photons decoupled and the sound speed in the baryonic fluid dropped from relativistic, ∼c/√(3), to the thermal velocities of the hydrogen atoms, ∼2x10 -5 c. This is less than the relative velocities of baryons and dark matter computed via linear perturbation theory, so we infer that there are supersonic coherent flows of the baryons relative to the underlying potential wells created by the dark matter. As a result, the advection of small-scale perturbations (near the baryonic Jeans scale) by large-scale velocity flows is important for the formation of the first structures. This effect involves a quadratic term in the cosmological perturbation theory equations and hence has not been included in studies based on linear perturbation theory. We show that the relative motion suppresses the abundance of the first bound objects, even if one only investigates dark matter haloes, and leads to qualitative changes in their spatial distribution, such as introducing scale-dependent bias and stochasticity. We further discuss the possible observable implications of this effect for high-redshift galaxy clustering and reionization.

  13. Design changes of device to investigation of alloys linear contraction and shrinkage stresses

    Directory of Open Access Journals (Sweden)

    J. Mutwil

    2009-07-01

    Full Text Available Some design changes in device elaborated by author to examination of linear contraction and shrinkage stresses progress of metals and alloys during– and after solidification have been described. The introduced changes have been focused on design of closing of shrinkage test rod mould. The introduced changes have been allowed to simplify a mounting procedure of thermocouples measuring a temperature of the shrinkage rod casting (in 6 points. Exemplary investigation results of linear contraction and shrinkage stresses development in Al-Si13.5% alloy have been presented.

  14. Non-Linear Structural Dynamics Characterization using a Scanning Laser Vibrometer

    Science.gov (United States)

    Pai, P. F.; Lee, S.-Y.

    2003-01-01

    This paper presents the use of a scanning laser vibrometer and a signal decomposition method to characterize non-linear dynamics of highly flexible structures. A Polytec PI PSV-200 scanning laser vibrometer is used to measure transverse velocities of points on a structure subjected to a harmonic excitation. Velocity profiles at different times are constructed using the measured velocities, and then each velocity profile is decomposed using the first four linear mode shapes and a least-squares curve-fitting method. From the variations of the obtained modal \\ielocities with time we search for possible non-linear phenomena. A cantilevered titanium alloy beam subjected to harmonic base-excitations around the second. third, and fourth natural frequencies are examined in detail. Influences of the fixture mass. gravity. mass centers of mode shapes. and non-linearities are evaluated. Geometrically exact equations governing the planar, harmonic large-amplitude vibrations of beams are solved for operational deflection shapes using the multiple shooting method. Experimental results show the existence of 1:3 and 1:2:3 external and internal resonances. energy transfer from high-frequency modes to the first mode. and amplitude- and phase- modulation among several modes. Moreover, the existence of non-linear normal modes is found to be questionable.

  15. Velocity and Motion Control of a Self-Balancing Vehicle Based on a Cascade Control Strategy

    Directory of Open Access Journals (Sweden)

    Miguel Velazquez

    2016-06-01

    Full Text Available This paper presents balancing, velocity and motion control of a self-balancing vehicle. A cascade controller is implemented for both balancing control and angular velocity control. This controller is tested in simulations using a proposed mathematical model of the system. Motion control is achieved based on the kinematics of the robot. Control hardware is designed and integrated to implement the proposed controllers. Pitch is kept under 1° from the equilibrium position with no external disturbances. The linear cascade control is able to handle slight changes in the system dynamics, such as in the centre of mass and the slope on an inclined surface.

  16. Virtual work and shape change in solid mechanics

    CERN Document Server

    Frémond, Michel

    2017-01-01

    This book provides novel insights into two basic subjects in solid mechanics: virtual work and shape change. When we move a solid, the work we expend in moving it is used to modify both its shape and its velocity. This observation leads to the Principle of Virtual Work. Virtual work depends linearly on virtual velocities, which are velocities we may think of. The virtual work of the internal forces accounts for the changes in shape. Engineering provides innumerable examples of shape changes, i.e., deformations, and of velocities of deformation. This book presents examples of usual and unusual shape changes, providing with the Principle of Virtual Work various and sometimes new equations of motion for smooth and non-smooth (i.e., with collisions) motions: systems of disks, systems of balls, classical and non-classical small deformation theories, systems involving volume and surface damage, systems with interactions at a distance (e.g., solids reinforced by fibers), systems involving porosity, beams with third ...

  17. Design and construction of an electromechanical velocity modulator for Moessbauer spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Velasquez, A. A., E-mail: avelas26@eafit.edu.co; Carmona, A. [Universidad EAFIT, Grupo de Electromagnetismo Aplicado (Colombia); Velasquez, D.; Angel, L. [Universidad EAFIT, Grupo de Optica Aplicada (Colombia)

    2011-11-15

    In this paper we report the design, construction and characterization of an electromechanical velocity modulator for application in Moessbauer spectroscopy. The modulator was constructed with copper coils, Neodymium magnets, steel cores and polymeric membranes. The magnetic field in the driving and velocity sensing stages was analyzed by the finite element method, which showed a linear relation between the magnetic field in the region of motion of both coils and the position of the coils within the steel cores. The results obtained by computational simulation allowed us to optimize geometries and dimensions of the elements of the system. The modulator presented its first resonance frequency at 16.7 Hz, this value was in good agreement with that predicted by a second order model, which showed a resonant frequency of 16.8 Hz. The linearity of the velocity signal of the modulator was analyzed through an optical method, based on a Michelson-Morley interferometer, in which the modulator moved one of the mirrors. Results showed a satisfactory linearity of the velocity signal obtained in the sensing coil, whose correlation with a straight line was around 0.99987 for a triangular reference waveform.

  18. Primordial black holes in linear and non-linear regimes

    Energy Technology Data Exchange (ETDEWEB)

    Allahyari, Alireza; Abolhasani, Ali Akbar [Department of Physics, Sharif University of Technology, Tehran (Iran, Islamic Republic of); Firouzjaee, Javad T., E-mail: allahyari@physics.sharif.edu, E-mail: j.taghizadeh.f@ipm.ir [School of Astronomy, Institute for Research in Fundamental Sciences (IPM), P.O. Box 19395-5531, Tehran (Iran, Islamic Republic of)

    2017-06-01

    We revisit the formation of primordial black holes (PBHs) in the radiation-dominated era for both linear and non-linear regimes, elaborating on the concept of an apparent horizon. Contrary to the expectation from vacuum models, we argue that in a cosmological setting a density fluctuation with a high density does not always collapse to a black hole. To this end, we first elaborate on the perturbation theory for spherically symmetric space times in the linear regime. Thereby, we introduce two gauges. This allows to introduce a well defined gauge-invariant quantity for the expansion of null geodesics. Using this quantity, we argue that PBHs do not form in the linear regime irrespective of the density of the background. Finally, we consider the formation of PBHs in non-linear regimes, adopting the spherical collapse picture. In this picture, over-densities are modeled by closed FRW models in the radiation-dominated era. The difference of our approach is that we start by finding an exact solution for a closed radiation-dominated universe. This yields exact results for turn-around time and radius. It is important that we take the initial conditions from the linear perturbation theory. Additionally, instead of using uniform Hubble gauge condition, both density and velocity perturbations are admitted in this approach. Thereby, the matching condition will impose an important constraint on the initial velocity perturbations δ {sup h} {sub 0} = −δ{sub 0}/2. This can be extended to higher orders. Using this constraint, we find that the apparent horizon of a PBH forms when δ > 3 at turn-around time. The corrections also appear from the third order. Moreover, a PBH forms when its apparent horizon is outside the sound horizon at the re-entry time. Applying this condition, we infer that the threshold value of the density perturbations at horizon re-entry should be larger than δ {sub th} > 0.7.

  19. Characterization of a signal recording system for accurate velocity estimation using a VISAR

    Science.gov (United States)

    Rav, Amit; Joshi, K. D.; Singh, Kulbhushan; Kaushik, T. C.

    2018-02-01

    The linearity of a signal recording system (SRS) in time as well as in amplitude are important for the accurate estimation of the free surface velocity history of a moving target during shock loading and unloading when measured using optical interferometers such as a velocity interferometer system for any reflector (VISAR). Signal recording being the first step in a long sequence of signal processes, the incorporation of errors due to nonlinearity, and low signal-to-noise ratio (SNR) affects the overall accuracy and precision of the estimation of velocity history. In shock experiments the small duration (a few µs) of loading/unloading, the reflectivity of moving target surface, and the properties of optical components, control the amount of input of light to the SRS of a VISAR and this in turn affects the linearity and SNR of the overall measurement. These factors make it essential to develop in situ procedures for (i) minimizing the effect of signal induced noise and (ii) determine the linear region of operation for the SRS. Here we report on a procedure for the optimization of SRS parameters such as photodetector gain, optical power, aperture etc, so as to achieve a linear region of operation with a high SNR. The linear region of operation so determined has been utilized successfully to estimate the temporal history of the free surface velocity of the moving target in shock experiments.

  20. Fractals control in particle's velocity

    International Nuclear Information System (INIS)

    Zhang Yongping; Liu Shutang; Shen Shulan

    2009-01-01

    Julia set, a fractal set of the literature of nonlinear physics, has significance for the engineering applications. For example, the fractal structure characteristics of the generalized M-J set could visually reflect the change rule of particle's velocity. According to the real world requirement, the system need show various particle's velocity in some cases. Thus, the control of the nonlinear behavior, i.e., Julia set, has attracted broad attention. In this work, an auxiliary feedback control is introduced to effectively control the Julia set that visually reflects the change rule of particle's velocity. It satisfies the performance requirement of the real world problems.

  1. Force-Velocity Relationship of Upper Body Muscles: Traditional Versus Ballistic Bench Press.

    Science.gov (United States)

    García-Ramos, Amador; Jaric, Slobodan; Padial, Paulino; Feriche, Belén

    2016-04-01

    This study aimed to (1) evaluate the linearity of the force-velocity relationship, as well as the reliability of maximum force (F0), maximum velocity (V0), slope (a), and maximum power (P0); (2) compare these parameters between the traditional and ballistic bench press (BP); and (3) determine the correlation of F0 with the directly measured BP 1-repetition maximum (1RM). Thirty-two men randomly performed 2 sessions of traditional BP and 2 sessions of ballistic BP during 2 consecutive weeks. Both the maximum and mean values of force and velocity were recorded when loaded by 20-70% of 1RM. All force-velocity relationships were strongly linear (r > .99). While F0 and P0 were highly reliable (ICC: 0.91-0.96, CV: 3.8-5.1%), lower reliability was observed for V0 and a (ICC: 0.49-0.81, CV: 6.6-11.8%). Trivial differences between exercises were found for F0 (ES: velocity relationship is useful to assess the upper body maximal capabilities to generate force, velocity, and power.

  2. Studying the formation of non-linear bursts in fully turbulent channel flows

    Science.gov (United States)

    Encinar, Miguel P.; Jimenez, Javier

    2017-11-01

    Linear transient growth has been suggested as a possible explanation for the intermittent behaviour, or `bursting', in shear flows with a stable mean velocity profile. Analysing fully non-linear DNS databases yields a similar Orr+lift-up mechanism, but acting on spatially localised wave packets rather than on monochromatic infinite wavetrains. The Orr mechanism requires the presence of backwards-leaning wall-normal velocity perturbations as initial condition, but the linear theory fails to clarify how these perturbations are formed. We investigate the latter in a time-resolved wavelet-filtered turbulent channel database, which allows us to assign an amplitude and an inclination angle to a flow region of selected size. This yields regions that match the dynamics of linear Orr for short times. We find that a short streamwise velocity (u) perturbation (i.e. a streak meander) consistently appears before the burst, but disappears before the burst reaches its maximum amplitude. Lift-up then generates a longer streamwise velocity perturbation. The initial streamwise velocity is also found to be backwards-leaning, contrary to the averaged energy-containing scales, which are known to be tilted forward. Funded by the ERC COTURB project.

  3. Velocity Memory Effect for polarized gravitational waves

    Science.gov (United States)

    Zhang, P.-M.; Duval, C.; Gibbons, G. W.; Horvathy, P. A.

    2018-05-01

    Circularly polarized gravitational sandwich waves exhibit, as do their linearly polarized counterparts, the Velocity Memory Effect: freely falling test particles in the flat after-zone fly apart along straight lines with constant velocity. In the inside zone their trajectories combine oscillatory and rotational motions in a complicated way. For circularly polarized periodic gravitational waves some trajectories remain bounded, while others spiral outward. These waves admit an additional "screw" isometry beyond the usual five. The consequences of this extra symmetry are explored.

  4. POLARIZED LINE FORMATION IN NON-MONOTONIC VELOCITY FIELDS

    Energy Technology Data Exchange (ETDEWEB)

    Sampoorna, M.; Nagendra, K. N., E-mail: sampoorna@iiap.res.in, E-mail: knn@iiap.res.in [Indian Institute of Astrophysics, Koramangala, Bengaluru 560034 (India)

    2016-12-10

    For a correct interpretation of the observed spectro-polarimetric data from astrophysical objects such as the Sun, it is necessary to solve the polarized line transfer problems taking into account a realistic temperature structure, the dynamical state of the atmosphere, a realistic scattering mechanism (namely, the partial frequency redistribution—PRD), and the magnetic fields. In a recent paper, we studied the effects of monotonic vertical velocity fields on linearly polarized line profiles formed in isothermal atmospheres with and without magnetic fields. However, in general the velocity fields that prevail in dynamical atmospheres of astrophysical objects are non-monotonic. Stellar atmospheres with shocks, multi-component supernova atmospheres, and various kinds of wave motions in solar and stellar atmospheres are examples of non-monotonic velocity fields. Here we present studies on the effect of non-relativistic non-monotonic vertical velocity fields on the linearly polarized line profiles formed in semi-empirical atmospheres. We consider a two-level atom model and PRD scattering mechanism. We solve the polarized transfer equation in the comoving frame (CMF) of the fluid using a polarized accelerated lambda iteration method that has been appropriately modified for the problem at hand. We present numerical tests to validate the CMF method and also discuss the accuracy and numerical instabilities associated with it.

  5. Age-related changes in spatiotemporal characteristics of gait accompany ongoing lower limb linear growth in late childhood and early adolescence.

    Science.gov (United States)

    Froehle, Andrew W; Nahhas, Ramzi W; Sherwood, Richard J; Duren, Dana L

    2013-05-01

    Walking gait is generally held to reach maturity, including walking at adult-like velocities, by 7-8 years of age. Lower limb length, however, is a major determinant of gait, and continues to increase until 13-15 years of age. This study used a sample from the Fels Longitudinal Study (ages 8-30 years) to test the hypothesis that walking with adult-like velocity on immature lower limbs results in the retention of immature gait characteristics during late childhood and early adolescence. There was no relationship between walking velocity and age in this sample, whereas the lower limb continued to grow, reaching maturity at 13.2 years in females and 15.6 years in males. Piecewise linear mixed models regression analysis revealed significant age-related trends in normalized cadence, initial double support time, single support time, base of support, and normalized step length in both sexes. Each trend reached its own, variable-specific age at maturity, after which the gait variables' relationships with age reached plateaus and did not differ significantly from zero. Offsets in ages at maturity occurred among the gait variables, and between the gait variables and lower limb length. The sexes also differed in their patterns of maturation. Generally, however, immature walkers of both sexes took more frequent and relatively longer steps than did mature walkers. These results support the hypothesis that maturational changes in gait accompany ongoing lower limb growth, with implications for diagnosing, preventing, and treating movement-related disorders and injuries during late childhood and early adolescence. Copyright © 2012 Elsevier B.V. All rights reserved.

  6. A new car-following model considering velocity anticipation

    International Nuclear Information System (INIS)

    Jun-Fang, Tian; Bin, Jia; Xin-Gang, Li; Zi-You, Gao

    2010-01-01

    The full velocity difference model proposed by Jiang et al. [2001 Phys. Rev. E 64 017101] has been improved by introducing velocity anticipation. Velocity anticipation means the follower estimates the future velocity of the leader. The stability condition of the new model is obtained by using the linear stability theory. Theoretical results show that the stability region increases when we increase the anticipation time interval. The mKdV equation is derived to describe the kink–antikink soliton wave and obtain the coexisting stability line. The delay time of car motion and kinematic wave speed at jam density are obtained in this model. Numerical simulations exhibit that when we increase the anticipation time interval enough, the new model could avoid accidents under urgent braking cases. Also, the traffic jam could be suppressed by considering the anticipation velocity. All results demonstrate that this model is an improvement on the full velocity difference model. (general)

  7. On the persistence of unstable bump-on-tail electron velocity distributions in the earth's foreshock

    International Nuclear Information System (INIS)

    Klimas, A.J.; Fitzenreiter, R.J.

    1988-01-01

    Further evidence for the persistence of bump-on-tail unstable reduced velocity distribution in the Earth's electron foreshock is presented. This persistence contradicts our understanding of quasi-linear saturation of the bump-on-tail instability; the distributions should be stabilized through velocity space diffusion too quickly to allow an observation of their unstable form. A modified theory for the saturation of the bump-on-tail instability in the Earth's foreshock is proposed and examined using numerical simulation and quasi-linear theoretical techniques. It is argued the mechanism due to Filbert and Kellogg and to Cairns which is responsible for the creation of the bump-on-tail velocity distribution in the foreshock is still operative during the evolution of the bump-on-tail instability. The saturated state of the plasma must represent a balance between this creation mechanism and velocity space diffusion; the saturated state is not determined by velocity space diffusion alone. Thus the velocity distribution of the saturated stat may still appear bump-on-tail unstable to standard linear analysis which does not take the creation mechanism into account. The bump-on-tail velocity distributions in the foreshock would then represent the state of the plasma after saturation of the bump-on-tail instability, not before

  8. Linearity and Non-linearity of Photorefractive effect in Materials ...

    African Journals Online (AJOL)

    In this paper we have studied the Linearity and Non-linearity of Photorefractive effect in materials using the band transport model. For low light beam intensities the change in the refractive index is proportional to the electric field for linear optics while for non- linear optics the change in refractive index is directly proportional ...

  9. Simultaneous travel time tomography for updating both velocity and reflector geometry in triangular/tetrahedral cell model

    Science.gov (United States)

    Bai, Chao-ying; He, Lei-yu; Li, Xing-wang; Sun, Jia-yu

    2018-05-01

    To conduct forward and simultaneous inversion in a complex geological model, including an irregular topography (or irregular reflector or velocity anomaly), we in this paper combined our previous multiphase arrival tracking method (referred as triangular shortest-path method, TSPM) in triangular (2D) or tetrahedral (3D) cell model and a linearized inversion solver (referred to as damped minimum norms and constrained least squares problem solved using the conjugate gradient method, DMNCLS-CG) to formulate a simultaneous travel time inversion method for updating both velocity and reflector geometry by using multiphase arrival times. In the triangular/tetrahedral cells, we deduced the partial derivative of velocity variation with respective to the depth change of reflector. The numerical simulation results show that the computational accuracy can be tuned to a high precision in forward modeling and the irregular velocity anomaly and reflector geometry can be accurately captured in the simultaneous inversion, because the triangular/tetrahedral cell can be easily used to stitch the irregular topography or subsurface interface.

  10. Longitudinal changes of nerve conduction velocity, distal motor latency, compound motor action potential duration, and skin temperature during prolonged exposure to cold in a climate chamber.

    Science.gov (United States)

    Maetzler, Walter; Klenk, Jochen; Becker, Clemens; Zscheile, Julia; Gabor, Kai-Steffen; Lindemann, Ulrich

    2012-09-01

    Changes of nerve conduction velocity (NCV), distal motor latency (DML), compound motor action potential (CMAP) duration, and skin temperature with regard to cold have been investigated by use of ice packs or cold water baths, but not after cooling of environmental temperature which has higher ecological validity. The aim of this study was to investigate these parameters during cooled room temperature. NCV, DML, and CMAP duration of the common fibular nerve, and skin temperature were measured in 20 healthy young females during exposure to 15°C room temperature, coming from 25°C room. We found that NCV decreased and DML increased linearly during 45 min observation time, in contrast to CMAP duration and skin temperature which changes followed an exponential curve. To the best of our knowledge, this is the first study investigating changes of these parameters during exposure to environmental cold. The results may pilot some new hypotheses and studies on physiological and pathological changes of the peripheral nervous system and skin to environmental cold, e.g., in elderly with peripheral neuropathies.

  11. Velocity ratio measurement using the frequency of gyro backward wave

    International Nuclear Information System (INIS)

    Muggli, P.; Tran, M.Q.; Tran, T.M.

    1990-10-01

    The operating diagram of a low quality factor, 8GHz TE 01 0 gyrotron exhibits oscillations between 6.8 and 7.3GHz. These oscillations are identified as the backward wave component of the TE 21 0 traveling mode. As the resonance condition of this mode depends on the average parallel velocity [ > of the beam electrons (ω BW ≅Ω C /γ - k [ [ >), the measurement of ω BW for given Ω C and γ, is used as a diagnostic for the beam electrons velocity ratio α= / [ >. The values of α, deduced from ω BW through the linear dispersion relation for the electron cyclotron instability in an infinite waveguide, are unrealistic. A non-linear simulation code gives α values which are in very good agreement with the ones predicted by a particle trajectory code (+10% to +20%). We find numerically that the particles' velocity dispersion in vperpendicular and v [ increases ω BW . This effect explains part of the discrepancy between the values of α inferred from ω BW without velocity dispersion and the expected values. (author) 10 refs., 6 figs., 1 tab

  12. Design and construction of an electromechanical velocity modulator for Mössbauer spectroscopy

    International Nuclear Information System (INIS)

    Velásquez, A. A.; Carmona, A.; Velásquez, D.; Ángel, L.

    2011-01-01

    In this paper we report the design, construction and characterization of an electromechanical velocity modulator for application in Mössbauer spectroscopy. The modulator was constructed with copper coils, Neodymium magnets, steel cores and polymeric membranes. The magnetic field in the driving and velocity sensing stages was analyzed by the finite element method, which showed a linear relation between the magnetic field in the region of motion of both coils and the position of the coils within the steel cores. The results obtained by computational simulation allowed us to optimize geometries and dimensions of the elements of the system. The modulator presented its first resonance frequency at 16.7 Hz, this value was in good agreement with that predicted by a second order model, which showed a resonant frequency of 16.8 Hz. The linearity of the velocity signal of the modulator was analyzed through an optical method, based on a Michelson–Morley interferometer, in which the modulator moved one of the mirrors. Results showed a satisfactory linearity of the velocity signal obtained in the sensing coil, whose correlation with a straight line was around 0.99987 for a triangular reference waveform.

  13. Non-linear temperature-dependent curvature of a phase change composite bimorph beam

    Science.gov (United States)

    Blonder, Greg

    2017-06-01

    Bimorph films curl in response to temperature. The degree of curvature typically varies in proportion to the difference in thermal expansion of the individual layers, and linearly with temperature. In many applications, such as controlling a thermostat, this gentle linear behavior is acceptable. In other cases, such as opening or closing a valve or latching a deployable column into place, an abrupt motion at a fixed temperature is preferred. To achieve this non-linear motion, we describe the fabrication and performance of a new bilayer structure we call a ‘phase change composite bimorph (PCBM)’. In a PCBM, one layer in the bimorph is a composite containing small inclusions of phase change materials. When the inclusions melt, their large (generally positive and  >1%) expansion coefficient induces a strong, reversible step function jump in bimorph curvature. The measured jump amplitude and thermal response is consistent with theory, and can be harnessed by a new class of actuators and sensors.

  14. Dynamics of the standard deviations of three wind velocity components from the data of acoustic sounding

    Science.gov (United States)

    Krasnenko, N. P.; Kapegesheva, O. F.; Shamanaeva, L. G.

    2017-11-01

    Spatiotemporal dynamics of the standard deviations of three wind velocity components measured with a mini-sodar in the atmospheric boundary layer is analyzed. During the day on September 16 and at night on September 12 values of the standard deviation changed for the x- and y-components from 0.5 to 4 m/s, and for the z-component from 0.2 to 1.2 m/s. An analysis of the vertical profiles of the standard deviations of three wind velocity components for a 6-day measurement period has shown that the increase of σx and σy with altitude is well described by a power law dependence with exponent changing from 0.22 to 1.3 depending on the time of day, and σz depends linearly on the altitude. The approximation constants have been found and their errors have been estimated. The established physical regularities and the approximation constants allow the spatiotemporal dynamics of the standard deviation of three wind velocity components in the atmospheric boundary layer to be described and can be recommended for application in ABL models.

  15. Zero sound velocity in π, ρ mesons at different temperatures

    International Nuclear Information System (INIS)

    Dey, J.; Dey, M.; Tomio, L.; Araujo, C.F. de Jr.

    1994-07-01

    Sharp transitions are perhaps absent in QCD, so that one looks for physical quantities which may reflect the phase change. One such quantity is the sound velocity which was shown in lattice theory to become zero at the transition point for pure glue. We show that even in a simple bag model the sound velocity goes to zero at temperature T=T ν ≠ 0 and that the numerical value of this T ν depends on the nature of the meson. The average thermal energy of mesons go linearly with T near T ν , with much smaller slope for the pion. The T ν - s can be connected with the Boltzmann temperatures obtained from transverse momentum spectrum of these mesons in heavy ion collision at mid-rapidity. It would be interesting to check the presence of different T ν - s in present day finite T lattice theory. (author). 22 refs, 1 fig., 2 tabs

  16. On the relationship between finger width, velocity, and fluxes in thermohaline convection

    Science.gov (United States)

    Sreenivas, K. R.; Singh, O. P.; Srinivasan, J.

    2009-02-01

    Double-diffusive finger convection occurs in many natural processes. The theories for double-diffusive phenomena that exist at present consider systems with linear stratification in temperature and salinity. The double-diffusive systems with step change in salinity and temperature are, however, not amenable to simple stability analysis. Hence factors that control the width of the finger, velocity, and fluxes in systems that have step change in temperature and salinity have not been understood so far. In this paper we provide new physical insight regarding factors that influence finger convection in two-layer double-diffusive system through two-dimensional numerical simulations. Simulations have been carried out for density stability ratios (Rρ) from 1.5 to 10. For each density stability ratio, the thermal Rayleigh number (RaT) has been systematically varied from 7×103 to 7×108. Results from these simulations show how finger width, velocity, and flux ratios in finger convection are interrelated and the influence of governing parameters such as density stability ratio and the thermal Rayleigh number. The width of the incipient fingers at the time of onset of instability has been shown to vary as RaT-1/3. Velocity in the finger varies as RaT1/3/Rρ. Results from simulation agree with the scale analysis presented in the paper. Our results demonstrate that wide fingers have lower velocities and flux ratios compared to those in narrow fingers. This result contradicts present notions about the relation between finger width and flux ratio. A counterflow heat-exchanger analogy is used in understanding the dependence of flux ratio on finger width and velocity.

  17. Microstructural changes and strain hardening effects in abrasive contacts at different relative velocities and temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Rojacz, H., E-mail: rojacz@ac2t.at [AC2T research GmbH, Viktor-Kaplan-Straße 2C, 2700 Wiener Neustadt (Austria); Mozdzen, G. [Aerospace & Advanced Composites GmbH, Viktor-Kaplan-Straße 2F, 2700 Wiener Neustadt (Austria); Weigel, F.; Varga, M. [AC2T research GmbH, Viktor-Kaplan-Straße 2C, 2700 Wiener Neustadt (Austria)

    2016-08-15

    Strain hardening is commonly used to reach the full potential of materials and can be beneficial in tribological contacts. 2-body abrasive wear was simulated in a scratch test, aimed at strain hardening effects in various steels. Different working conditions were examined at various temperatures and velocities. Strain hardening effects and microstructural changes were analysed with high resolution scanning electron microscopy (HRSEM), electron backscatter diffraction (EBSD), micro hardness measurements and nanoindentation. Statistical analysing was performed quantifying the influence of different parameters on microstructures. Results show a crucial influence of temperature and velocity on the strain hardening in tribological contacts. Increased velocity leads to higher deformed microstructures and higher increased surface hardness at a lower depth of the deformed zones at all materials investigated. An optimised surface hardness can be achieved knowing the influence of velocity (strain rate) and temperature for a “tailor-made” surface hardening in tribological systems aimed at increased wear resistance. - Highlights: •Hardening mechanisms and their intensity in tribological contacts are dependent on relative velocity and temperature. •Beneficial surface hardened zones are formed at certain running-in conditions; the scientific background is presented here. •Ferritic-pearlitic steels strain hardens via grain size reduction and decreasing interlamellar distances in pearlite. •Austenitic steels show excellent surface hardening (120% hardness increase) by twinning and martensitic transformation. •Ferritic steels with hard phases harden in the ferrite phase as per Hall-Petch equation and degree of deformation.

  18. Microstructural changes and strain hardening effects in abrasive contacts at different relative velocities and temperatures

    International Nuclear Information System (INIS)

    Rojacz, H.; Mozdzen, G.; Weigel, F.; Varga, M.

    2016-01-01

    Strain hardening is commonly used to reach the full potential of materials and can be beneficial in tribological contacts. 2-body abrasive wear was simulated in a scratch test, aimed at strain hardening effects in various steels. Different working conditions were examined at various temperatures and velocities. Strain hardening effects and microstructural changes were analysed with high resolution scanning electron microscopy (HRSEM), electron backscatter diffraction (EBSD), micro hardness measurements and nanoindentation. Statistical analysing was performed quantifying the influence of different parameters on microstructures. Results show a crucial influence of temperature and velocity on the strain hardening in tribological contacts. Increased velocity leads to higher deformed microstructures and higher increased surface hardness at a lower depth of the deformed zones at all materials investigated. An optimised surface hardness can be achieved knowing the influence of velocity (strain rate) and temperature for a “tailor-made” surface hardening in tribological systems aimed at increased wear resistance. - Highlights: •Hardening mechanisms and their intensity in tribological contacts are dependent on relative velocity and temperature. •Beneficial surface hardened zones are formed at certain running-in conditions; the scientific background is presented here. •Ferritic-pearlitic steels strain hardens via grain size reduction and decreasing interlamellar distances in pearlite. •Austenitic steels show excellent surface hardening (120% hardness increase) by twinning and martensitic transformation. •Ferritic steels with hard phases harden in the ferrite phase as per Hall-Petch equation and degree of deformation.

  19. Design and performance testing of an ultrasonic linear motor with dual piezoelectric actuators.

    Science.gov (United States)

    Smithmaitrie, Pruittikorn; Suybangdum, Panumas; Laoratanakul, Pitak; Muensit, Nantakan

    2012-05-01

    In this work, design and performance testing of an ultrasonic linear motor with dual piezoelectric actuator patches are studied. The motor system consists of a linear stator, a pre-load weight, and two piezoelectric actuator patches. The piezoelectric actuators are bonded with the linear elastic stator at specific locations. The stator generates propagating waves when the piezoelectric actuators are subjected to harmonic excitations. Vibration characteristics of the linear stator are analyzed and compared with finite element and experimental results. The analytical, finite element, and experimental results show agreement. In the experiments, performance of the ultrasonic linear motor is tested. Relationships between velocity and pre-load weight, velocity and applied voltage, driving force and applied voltage, and velocity and driving force are reported. The design of the dual piezoelectric actuators yields a simpler structure with a smaller number of actuators and lower stator stiffness compared with a conventional design of an ultrasonic linear motor with fully laminated piezoelectric actuators.

  20. Applicability of linear and non-linear potential flow models on a Wavestar float

    DEFF Research Database (Denmark)

    Bozonnet, Pauline; Dupin, Victor; Tona, Paolino

    2017-01-01

    as a model based on non-linear potential flow theory and weakscatterer hypothesis are successively considered. Simple tests, such as dip tests, decay tests and captive tests enable to highlight the improvements obtained with the introduction of nonlinearities. Float motion under wave actions and without...... control action, limited to small amplitude motion with a single float, is well predicted by the numerical models, including the linear one. Still, float velocity is better predicted by accounting for non-linear hydrostatic and Froude-Krylov forces.......Numerical models based on potential flow theory, including different types of nonlinearities are compared and validated against experimental data for the Wavestar wave energy converter technology. Exact resolution of the rotational motion, non-linear hydrostatic and Froude-Krylov forces as well...

  1. Light and velocity curve bumps for BW Vulpeculae

    International Nuclear Information System (INIS)

    Pesnell, W.D.; Cox, A.N.

    1980-01-01

    Bumps in the light and radial velocity curves of the Beta Cephei star BW Vulpeculae were modeled. Two mechanisms, a resonance phenomena and non-linear pulsations, were investigated. The resonance condition was clearly not fulfilled, the calculated period ratio being approximately 0.60, where a value of 0.50 L +- 0.03 is required for resonance. In the non-linear calculation, the bump appears, with the correct phase, but was found at an amplitude that is too large. Further, the light curve does not show any bump-like feature. The cause of the bump is the large spurious boost given the star's velocity field by the solution methods. The calculated periods of the stellar models are shorter than those of previous calculations, enhancing the possibility that these stars pulsate in a radial fundamental mode

  2. Efficient focusing scheme for transverse velocity estimation using cross-correlation

    DEFF Research Database (Denmark)

    Jensen, Jørgen Arendt

    2001-01-01

    simulations with Field II. A 64-elements, 5 MHz linear array was used. A parabolic velocity profile with a peak velocity of 0.5 m/s was considered for different angles between the flow and the ultrasound beam and for different emit foci. At 60 degrees the relative standard deviation was 0.58 % for a transmit...

  3. Collisional Processing of Comet and Asteroid Surfaces: Velocity Effects on Absorption Spectra

    Science.gov (United States)

    Lederer, S. M.; Jensen, E. A.; Wooden, D. H.; Lindsay, S. S.; Smith, D. C.; Nakamura-Messenger, K.; Keller, L. P.; Cintala, M. J.; Zolensky, M. E.

    2012-01-01

    A new paradigm has emerged where 3.9 Gyr ago, a violent reshuffling reshaped the placement of small bodies in the solar system (the Nice model). Surface properties of these objects may have been affected by collisions caused by this event, and by collisions with other small bodies since their emplacement. These impacts affect the spectrographic observations of these bodies today. Shock effects (e.g., planar dislocations) manifest in minerals allowing astronomers to better understand geophysical impact processing that has occurred on small bodies. At the Experimental Impact Laboratory at NASA Johnson Space Center, we have impacted forsterite and enstatite across a range of velocities. We find that the amount of spectral variation, absorption wavelength, and full width half maximum of the absorbance peaks vary non-linearly with the velocity of the impact. We also find that the spectral variation increases with decreasing crystal size (single solid rock versus granular). Future analyses include quantification of the spectral changes with different impactor densities, temperature, and additional impact velocities. Results on diopside, fayalite, and magnesite can be found in Lederer et al., this meeting.

  4. The Local Stellar Velocity Field via Vector Spherical Harmonics

    Science.gov (United States)

    Markarov, V. V.; Murphy, D. W.

    2007-01-01

    We analyze the local field of stellar tangential velocities for a sample of 42,339 nonbinary Hipparcos stars with accurate parallaxes, using a vector spherical harmonic formalism. We derive simple relations between the parameters of the classical linear model (Ogorodnikov-Milne) of the local systemic field and low-degree terms of the general vector harmonic decomposition. Taking advantage of these relationships, we determine the solar velocity with respect to the local stars of (V(sub X), V(sub Y), V(sub Z)) (10.5, 18.5, 7.3) +/- 0.1 km s(exp -1) not corrected for the asymmetric drift with respect to the local standard of rest. If only stars more distant than 100 pc are considered, the peculiar solar motion is (V(sub X), V(sub Y), V(sub Z)) (9.9, 15.6, 6.9) +/- 0.2 km s(exp -1). The adverse effects of harmonic leakage, which occurs between the reflex solar motion represented by the three electric vector harmonics in the velocity space and higher degree harmonics in the proper-motion space, are eliminated in our analysis by direct subtraction of the reflex solar velocity in its tangential components for each star. The Oort parameters determined by a straightforward least-squares adjustment in vector spherical harmonics are A=14.0 +/- 1.4, B=13.1 +/- 1.2, K=1.1 +/- 1.8, and C=2.9 +/- 1.4 km s(exp -1) kpc(exp -1). The physical meaning and the implications of these parameters are discussed in the framework of a general linear model of the velocity field. We find a few statistically significant higher degree harmonic terms that do not correspond to any parameters in the classical linear model. One of them, a third-degree electric harmonic, is tentatively explained as the response to a negative linear gradient of rotation velocity with distance from the Galactic plane, which we estimate at approximately -20 km s(exp -1) kpc(exp -1). A similar vertical gradient of rotation velocity has been detected for more distant stars representing the thick disk (z greater than 1 kpc

  5. Cosmological streaming velocities and large-scale density maxima

    International Nuclear Information System (INIS)

    Peacock, J.A.; Lumsden, S.L.; Heavens, A.F.

    1987-01-01

    The statistical testing of models for galaxy formation against the observed peculiar velocities on 10-100 Mpc scales is considered. If it is assumed that observers are likely to be sited near maxima in the primordial field of density perturbations, then the observed filtered velocity field will be biased to low values by comparison with a point selected at random. This helps to explain how the peculiar velocities (relative to the microwave background) of the local supercluster and the Rubin-Ford shell can be so similar in magnitude. Using this assumption to predict peculiar velocities on two scales, we test models with large-scale damping (i.e. adiabatic perturbations). Allowed models have a damping length close to the Rubin-Ford scale and are mildly non-linear. Both purely baryonic universes and universes dominated by massive neutrinos can account for the observed velocities, provided 0.1 ≤ Ω ≤ 1. (author)

  6. Linear Vlasov plasma oscillations in the Fourier transformed velocity space

    Czech Academy of Sciences Publication Activity Database

    Sedláček, Zdeněk; Nocera, L.

    2002-01-01

    Roč. 296, - (2002), s. 117-124 ISSN 0375-9601 Institutional research plan: CEZ:AV0Z2043910 Keywords : linear Vlasov plasma Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 1.483, year: 2002

  7. Maximum run-up behavior of tsunamis under non-zero initial velocity condition

    Directory of Open Access Journals (Sweden)

    Baran AYDIN

    2018-03-01

    Full Text Available The tsunami run-up problem is solved non-linearly under the most general initial conditions, that is, for realistic initial waveforms such as N-waves, as well as standard initial waveforms such as solitary waves, in the presence of initial velocity. An initial-boundary value problem governed by the non-linear shallow-water wave equations is solved analytically utilizing the classical separation of variables technique, which proved to be not only fast but also accurate analytical approach for this type of problems. The results provide important information on maximum tsunami run-up qualitatively. We observed that, although the calculated maximum run-ups increase significantly, going as high as double that of the zero-velocity case, initial waves having non-zero fluid velocity exhibit the same run-up behavior as waves without initial velocity, for all wave types considered in this study.

  8. Analysis of magnetohydrodynamic flow in linear induction EM pump

    International Nuclear Information System (INIS)

    Geun Jong Yoo; Choi, H.K.; Eun, J.J.; Bae, Y.S.

    2005-01-01

    Numerical analysis is performed for magnetic and magnetohydrodynamic (MHD) flow fields in linear induction type electromagnetic (EM) pump. A finite volume method is applied to solve magnetic field governing equations and the Navier-Stokes equations. Vector and scalar potential methods are adopted to obtain the electric and magnetic fields and the resulting Lorentz force in solving Maxwell equations. The magnetic field and velocity distributions are found to be influenced by the phase of applied electric current. Computational results indicate that the magnetic flux distribution with changing phase of input electric current is characterized by pairs of counter-rotating closed loops. The velocity distributions are affected by the intensity of Lorentz force. The governing equations for the magnetic and flow fields are only semi-coupled in this study, therefore, further study with fully-coupled governing equations are required. (authors)

  9. Seismic Linear Noise Attenuation with Use of Radial Transform

    Science.gov (United States)

    Szymańska-Małysa, Żaneta

    2018-03-01

    One of the goals of seismic data processing is to attenuate the recorded noise in order to enable correct interpretation of the image. Radial transform has been used as a very effective tool in the attenuation of various types of linear noise, both numerical and real (such as ground roll, direct waves, head waves, guided waves etc). The result of transformation from offset - time (X - T) domain into apparent velocity - time (R - T) domain is frequency separation between reflections and linear events. In this article synthetic and real seismic shot gathers were examined. One example was targeted at far offset area of dataset where reflections and noise had similar apparent velocities and frequency bands. Another example was a result of elastic modelling where linear artefacts were produced. Bandpass filtering and scaling operation executed in radial domain attenuated all discussed types of linear noise very effectively. After noise reduction all further processing steps reveal better results, especially velocity analysis, migration and stacking. In all presented cases signal-to-noise ratio was significantly increased and reflections covered previously by noise were revealed. Power spectra of filtered seismic records preserved real dynamics of reflections.

  10. Diastolic coronary artery pressure-flow velocity relationships in conscious man.

    Science.gov (United States)

    Dole, W P; Richards, K L; Hartley, C J; Alexander, G M; Campbell, A B; Bishop, V S

    1984-09-01

    We characterised the diastolic pressure-flow velocity relationship in the normal left coronary artery of conscious man before and after vasodilatation with angiographic contrast medium. Phasic coronary artery pressure and flow velocity were measured in ten patients during individual diastoles (0.5 to 1.0 s) using a 20 MHz catheter-tipped, pulsed Doppler transducer. All pressure-flow velocity curves were linear over the diastolic pressure range of 110 +/- 15 (SD) mmHg to 71 +/- 7 mmHg (r = 0.97 +/- 0.01). In the basal state, values for slope and extrapolated zero flow pressure intercept averaged 0.35 +/- 0.12 cm X s-1 X mmHg-1 and 51.7 +/- 8.6 mmHg, respectively. Vasodilatation resulted in a 2.5 +/- 0.5 fold increase in mean flow velocity. The diastolic pressure-flow velocity relationship obtained during peak vasodilatation compared to that during basal conditions was characterised by a steeper slope (0.80 +/- 0.48 cm X s-1 X mmHg-1, p less than 0.001) and lower extrapolated zero flow pressure intercept (37.9 +/- 9.8 mmHg, p less than 0.05). Mean right atrial pressure for the group averaged 4.4 +/- 1.7 mmHg, while left ventricular end-diastolic pressure averaged 8.7 +/- 2.8 mmHg. These observations in man are similar to data reported in the canine coronary circulation which are consistent with a vascular waterfall model of diastolic flow regulation. In this model, coronary blood flow may be regulated by changes in diastolic zero flow pressure as well as in coronary resistance.

  11. Analysis of two-phase flow instability in vertical boiling channels I: development of a linear model for the inlet velocity perturbation

    International Nuclear Information System (INIS)

    Hwang, D.H.; Yoo, Y.J.; Kim, K.K.

    1998-08-01

    A linear model, named ALFS, is developed for the analysis of two-phase flow instabilities caused by density wave oscillation and flow excursion in a vertical boiling channel with constant pressure drop conditions. The ALFS code can take into account the effect of the phase velocity difference and the thermally non-equilibrium phenomena, and the neutral boundary of the two-phase flow instability was analyzed by D-partition method. Three representative two-phase flow models ( i.e. HEM, DEM, and DNEM) were examined to investigate the effects on the stability analysis. As the results, it reveals that HEM shows the most conservative prediction of heat flux at the onset of flow instability. three linear models, Ishiis DEM, Sahas DNEM, and ALFS model, were applied to Sahas experimental data of density wave oscillation, and as the result, the mean and standard deviation of the predicted-to-measured heat flux at the onset of instability were calculated as 0.93/0.162, 0.79/0.112, and 0.95/0.143, respectively. For the long test section, however, ALFS model tends to predict the heat fluxes about 30 % lower than the measured values. (author). 14 refs

  12. Climate change velocity since the Last Glacial Maximum and its importance for patterns of species richness and range size

    DEFF Research Database (Denmark)

    Sandel, Brody Steven; Arge, Lars Allan; Svenning, J.-C.

    to fully occupy suitable habitat, or when local diversification rates are depressed by local population extinctions and changing selective regimes. Locations with long-term climate instability should therefore show reduced species richness with small-ranged species particularly missing from the community...... these predictions using global data on mammal and amphibian distributions. Consistent with our predictions, richness of small-ranged species of both groups was negatively associated with velocity. Velocity generally explained more variation in richness than did the simple climate anomaly. Climate velocity appears...... to capture an important historical signal on current mammal and amphibian distributions....

  13. Wave Velocity Estimation in Heterogeneous Media

    KAUST Repository

    Asiri, Sharefa M.

    2016-03-21

    In this paper, modulating functions-based method is proposed for estimating space-time dependent unknown velocity in the wave equation. The proposed method simplifies the identification problem into a system of linear algebraic equations. Numerical simulations on noise-free and noisy cases are provided in order to show the effectiveness of the proposed method.

  14. Investigations into the Effect of Current Velocity on Amidoxime-Based Polymeric Uranium Adsorbent Performance

    Energy Technology Data Exchange (ETDEWEB)

    Gill, Gary A. [Pacific Northwest National Lab. (PNNL), Sequim, WA (United States). Marine Sciences Lab.; Kuo, Li-Jung [Pacific Northwest National Lab. (PNNL), Sequim, WA (United States). Marine Sciences Lab.; Strivens, Jonathan E. [Pacific Northwest National Lab. (PNNL), Sequim, WA (United States). Marine Sciences Lab.; Wood, Jordana R. [Pacific Northwest National Lab. (PNNL), Sequim, WA (United States). Marine Sciences Lab.; Schlafer, Nicholas J. [Pacific Northwest National Lab. (PNNL), Sequim, WA (United States). Marine Sciences Lab.; Tsouris, Costas [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Environmental Sciences Division; Ladshaw, Austin [Georgia Inst. of Technology, Atlanta, GA (United States); Yiacoumi, Sotira [Georgia Inst. of Technology, Atlanta, GA (United States)

    2015-12-01

    The Fuel Resources Program at the U.S. Department of Energy’s (DOE), Office of Nuclear Energy (DOE-NE) is developing adsorbent technology to extract uranium from seawater. This technology is being developed to provide a sustainable and economically viable supply of uranium fuel for nuclear reactors (DOE, 2010). Among the key environmental variables to understand for adsorbent deployment in the coastal ocean is what effect flow-rates or linear velocity has on uranium adsorption capacity. The goal is to find a flow conditions that optimize uranium adsorption capacity in the shortest exposure time. Understanding these criteria will be critical in choosing a location for deployment of a marine adsorbent farm. The objective of this study was to identify at what linear velocity the adsorption kinetics for uranium extraction starts to drop off due to limitations in mass transport of uranium to the surface of the adsorbent fibers. Two independent laboratory-based experimental approaches using flow-through columns and recirculating flumes for adsorbent exposure were used to assess the effect of flow-rate (linear velocity) on the kinetic uptake of uranium on amidoxime-based polymeric adsorbent material. Time series observations over a 56 day period were conducted with flow-through columns over a 35-fold range in linear velocity from 0.29 to 10.2 cm/s, while the flume study was conducted over a narrower 11-fold range, from 0.48 to 5.52 cm/s. These ranges were specifically chosen to focus on the lower end of oceanic currents and expand above and below the linear velocity of ~ 2.5 cm/s adopted for marine testing of adsorbent material at PNNL.

  15. Cerebral blood flow velocity changes during upright positioning in bed after acute stroke : An observational study

    NARCIS (Netherlands)

    Aries, Marcel J; Elting, Jan Willem; Stewart, Roy; De Keyser, Jacques; Kremer, Berry; Vroomen, Patrick

    2013-01-01

    Objectives: National guidelines recommend mobilisation in bed as early as possible after acute stroke. Little is known about the influence of upright positioning on real-time cerebral flow variables in patients with stroke. We aimed to assess whether cerebral blood flow velocity (CBFV) changes

  16. The association between changes in speed skating technique and changes in skating velocity.

    Science.gov (United States)

    Noordhof, Dionne A; Foster, Carl; Hoozemans M, J M; de Koning, Jos J

    2014-01-01

    A meaningful association between changes (Δ) in push-off angle or effectiveness (e) and changes in skating velocity (v) has been found during 5000-m races, although no significant association was found between changes in knee (θ0) and trunk angle (θ1) and Δv. It might be that speed skating event, sex, and performance level influence these associations. To study the effect of skating event, sex, and performance level on the association between Δe and Δv and between Δθ0 and Δθ1 and Δv. Video recordings were made from frontal (e) and sagittal views (θ0 and θ1) during 1500- and 5000-m men's and women's World Cup races. Radio-frequency identification tags provided data of v. Skating event influenced the association between Δe and Δv, which resulted in a significant association between Δe and Δv for the 5000-m (β = -0.069, 95% confidence interval [-0.11, -0.030]) but not for the 1500-m (β = -0.011 [-0.032, 0.010]). The association between Δθ0 and Δθ1 and Δv was not significantly influenced by skating event. Sex and performance level did not substantially affect the association between Δe and Δv and between Δθ0 and Δθ1 and Δv. Skating event significantly influenced the association between Δe and Δv; a 1° change in e results in a 0.011-m/s decrease in v during the 1500-m and a 0.069-m/s decrease in v during the 5000-m. Thus, it seems especially important to maintain a small e during the 5000-m.

  17. Linear modeling of turbulent skin-friction reduction due to spanwise wall motion

    Science.gov (United States)

    Duque-Daza, Carlos; Baig, Mirza; Lockerby, Duncan; Chernyshenko, Sergei; Davies, Christopher; University of Warwick Team; Imperial College Team; Cardiff University Team

    2012-11-01

    We present a study on the effect of streamwise-travelling waves of spanwise wall velocity on the growth of near-wall turbulent streaks using a linearized formulation of the Navier-Stokes equations. The changes in streak amplification due to the travelling waves induced by the wall velocity are compared to published results of direct numerical simulation (DNS) predictions of the turbulent skin-friction reduction over a range of parameters; a clear correlation between these two sets of results is observed. Additional linearized simulations but at a much higher Reynolds numbers, more relevant to aerospace applications, produce results that show no marked differences to those obtained at low Reynolds number. It is also observed that a close correlation exists between DNS data of drag reduction and a very simple characteristic of the ``generalized'' Stokes layer generated by the streamwise-travelling waves. Carlos.Duque-Daza@warwick.ac.uk - School of Engineering, University of Warwick, Coventry CV4 7AL, UK caduqued@unal.edu.co - Department of Mechanical and Mechatronics Engineering, Universidad Nacional de Colombia.

  18. Pre-stack estimation of time-lapse seismic velocity changes : an example from the Sleipner CO2-sequestration project

    International Nuclear Information System (INIS)

    Ghaderi, A.; Landro, M.; Ghaderi, A.

    2005-01-01

    Carbon dioxide (CO 2 ) is being injected into a shallow sand formation at around a 1,000 metre depth at the Sleipner Field located in the North Sea. It is expected that the CO 2 injected in the bottom of the formation, will form a plume consisting of CO 2 accumulating in thin lenses during migration up through the reservoir. Several studies have been published using stacked seismic data from 1994, 1999, 2001 and 2002. A thorough analysis of post-stack seismic data from the Sleipner CO2-Sequestration Pilot Project was conducted. Interpretation of seismic data is usually done on post-stack data. For a given subsurface reflection point, seismic data are acquired for various incidence angles, typically 40 angles. These 40 seismic signals are stacked together in order to reduce noise. The term pre-stack refers to seismic data prior to this step. For hydrocarbon-related 4-dimensional seismic studies, travel time shift estimations have been used. This paper compared pre-stack and post-stack estimation of average velocity changes based on measured 4-dimensional travel time shifts. It is more practical to compare estimated velocity changes than the actual travel time changes, since the time shifts vary with offset for pre-stack time-lapse seismic analysis. It was concluded that the pre-stack method gives smaller velocity changes when estimated between two key horizons. Therefore, pre-stack travel time analysis in addition to conventional post-stack analysis is recommended. 6 refs., 12 figs

  19. Velocity estimation of an airplane through a single satellite image

    Institute of Scientific and Technical Information of China (English)

    Zhuxin Zhao; Gongjian Wen; Bingwei Hui; Deren Li

    2012-01-01

    The motion information of a moving target can be recorded in a single image by a push-broom satellite. A push-broom satellite image is composed of many image lines sensed at different time instants. A method to estimate the velocity of a flying airplane from a single image based on the imagery model of the linear push-broom sensor is proposed. Some key points on the high-resolution image of the plane are chosen to determine the velocity (speed and direction). The performance of the method is tested and verified by experiments using a WorldView-1 image.%The motion information of a moving target can be recorded in a single image by a push-broom satellite.A push-broom satellite image is composed of many image lines sensed at different time instants.A method to estimate the velocity of a flying airplane from a single image based on the imagery model of the linear push-broom sensor is proposed.Some key points on the high-resolution image of the plane are chosen to determine the velocity (speed and direction).The performance of the method is tested and verified by experiments using a WorldView-1 image.

  20. Velocity distribution in snow avalanches

    Science.gov (United States)

    Nishimura, K.; Ito, Y.

    1997-12-01

    In order to investigate the detailed structure of snow avalanches, we have made snow flow experiments at the Miyanomori ski jump in Sapporo and systematic observations in the Shiai-dani, Kurobe Canyon. In the winter of 1995-1996, a new device to measure static pressures was used to estimate velocities in the snow cloud that develops above the flowing layer of avalanches. Measurements during a large avalanche in the Shiai-dani which damaged and destroyed some instruments indicate velocities increased rapidly to more than 50 m/s soon after the front. Velocities decreased gradually in the following 10 s. Velocities of the lower flowing layer were also calculated by differencing measurement of impact pressure. Both recordings in the snow cloud and in the flowing layer changed with a similar trend and suggest a close interaction between the two layers. In addition, the velocity showed a periodic change. Power spectrum analysis of the impact pressure and the static pressure depression showed a strong peak at a frequency between 4 and 6 Hz, which might imply the existence of either ordered structure or a series of surges in the flow.

  1. Effects of heat treatment to the sound velocity and microstructural changes of ASTM A516 steels

    International Nuclear Information System (INIS)

    Norasiah Abdul Kasim; Azali Muhammad; Amry Amin Abas; Zaiton Selamat

    2010-01-01

    Full-text: The used of ultrasonic testing as a thickness measurement for structural components (pipeline and pressure vessel) is among the popular inspection tool widely use in the industrial power plant such as at petrochemical and nuclear power plant. Currently, there are cases where the thickness grows and the result will affect the reliability of the test. There are many factors that can affect the reliability of measurement. One of it is the material under test itself. In the Malaysian Nuclear Agency, initial efforts are underway to study the understanding on the effects of heat treatment to the sound velocity and microstructure changes of ASTM A516 steel. Few samples of thin square shaped prepared were heat treated under the following conditions: austenitization at 9800 degree Celsius - 2 hours, quenching; tempering at various temperature 4000, 5000, 6000 and 7000 degree Celsius. The results show that the microstructure changes and samples exhibit different sound velocity at different heat treatment. (author)

  2. Maximal intended velocity training induces greater gains in bench press performance than deliberately slower half-velocity training.

    Science.gov (United States)

    González-Badillo, Juan José; Rodríguez-Rosell, David; Sánchez-Medina, Luis; Gorostiaga, Esteban M; Pareja-Blanco, Fernando

    2014-01-01

    The purpose of this study was to compare the effect on strength gains of two isoinertial resistance training (RT) programmes that only differed in actual concentric velocity: maximal (MaxV) vs. half-maximal (HalfV) velocity. Twenty participants were assigned to a MaxV (n = 9) or HalfV (n = 11) group and trained 3 times per week during 6 weeks using the bench press (BP). Repetition velocity was controlled using a linear velocity transducer. A complementary study (n = 10) aimed to analyse whether the acute metabolic (blood lactate and ammonia) and mechanical response (velocity loss) was different between the MaxV and HalfV protocols used. Both groups improved strength performance from pre- to post-training, but MaxV resulted in significantly greater gains than HalfV in all variables analysed: one-repetition maximum (1RM) strength (18.2 vs. 9.7%), velocity developed against all (20.8 vs. 10.0%), light (11.5 vs. 4.5%) and heavy (36.2 vs. 17.3%) loads common to pre- and post-tests. Light and heavy loads were identified with those moved faster or slower than 0.80 m · s(-1) (∼ 60% 1RM in BP). Lactate tended to be significantly higher for MaxV vs. HalfV, with no differences observed for ammonia which was within resting values. Both groups obtained the greatest improvements at the training velocities (≤ 0.80 m · s(-1)). Movement velocity can be considered a fundamental component of RT intensity, since, for a given %1RM, the velocity at which loads are lifted largely determines the resulting training effect. BP strength gains can be maximised when repetitions are performed at maximal intended velocity.

  3. Inference regarding multiple structural changes in linear models with endogenous regressors

    NARCIS (Netherlands)

    Boldea, O.; Hall, A.R.; Han, S.

    2012-01-01

    This paper considers the linear model with endogenous regressors and multiple changes in the parameters at unknown times. It is shown that minimization of a Generalized Method of Moments criterion yields inconsistent estimators of the break fractions, but minimization of the Two Stage Least Squares

  4. Temporal Changes of the Photospheric Velocity Fields

    Czech Academy of Sciences Publication Activity Database

    Klvaňa, Miroslav; Švanda, Michal; Bumba, Václav

    2005-01-01

    Roč. 29, č. 1 (2005), s. 89-98 ISSN 0351-2657. [Hvar astrophysical colloquium /7./: Solar activity cycle and global phenomena. Hvar, 20.09.2004-24.09.2004] R&D Projects: GA ČR GA205/04/2129 Institutional research plan: CEZ:AV0Z10030501 Keywords : Solar photosphere * velocity fields * tidal waves Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics

  5. A linear accelerator for simulated micrometeors.

    Science.gov (United States)

    Slattery, J. C.; Becker, D. G.; Hamermesh, B.; Roy, N. L.

    1973-01-01

    Review of the theory, design parameters, and construction details of a linear accelerator designed to impart meteoric velocities to charged microparticles in the 1- to 10-micron diameter range. The described linac is of the Sloan Lawrence type and, in a significant departure from conventional accelerator practice, is adapted to single particle operation by employing a square wave driving voltage with the frequency automatically adjusted from 12.5 to 125 kHz according to the variable velocity of each injected particle. Any output velocity up to about 30 km/sec can easily be selected, with a repetition rate of approximately two particles per minute.

  6. ROTATIONAL VELOCITIES FOR M DWARFS

    International Nuclear Information System (INIS)

    Jenkins, J. S.; Ramsey, L. W.; Jones, H. R. A.; Pavlenko, Y.; Barnes, J. R.; Pinfield, D. J.; Gallardo, J.

    2009-01-01

    We present spectroscopic rotation velocities (v sin i) for 56 M dwarf stars using high-resolution Hobby-Eberly Telescope High Resolution Spectrograph red spectroscopy. In addition, we have also determined photometric effective temperatures, masses, and metallicities ([Fe/H]) for some stars observed here and in the literature where we could acquire accurate parallax measurements and relevant photometry. We have increased the number of known v sin i values for mid M stars by around 80% and can confirm a weakly increasing rotation velocity with decreasing effective temperature. Our sample of v sin is peak at low velocities (∼3 km s -1 ). We find a change in the rotational velocity distribution between early M and late M stars, which is likely due to the changing field topology between partially and fully convective stars. There is also a possible further change in the rotational distribution toward the late M dwarfs where dust begins to play a role in the stellar atmospheres. We also link v sin i to age and show how it can be used to provide mid-M star age limits. When all literature velocities for M dwarfs are added to our sample, there are 198 with v sin i ≤ 10 km s -1 and 124 in the mid-to-late M star regime (M3.0-M9.5) where measuring precision optical radial velocities is difficult. In addition, we also search the spectra for any significant Hα emission or absorption. Forty three percent were found to exhibit such emission and could represent young, active objects with high levels of radial-velocity noise. We acquired two epochs of spectra for the star GJ1253 spread by almost one month and the Hα profile changed from showing no clear signs of emission, to exhibiting a clear emission peak. Four stars in our sample appear to be low-mass binaries (GJ1080, GJ3129, Gl802, and LHS3080), with both GJ3129 and Gl802 exhibiting double Hα emission features. The tables presented here will aid any future M star planet search target selection to extract stars with low v

  7. Downward velocity distribution of free surface vortex in a cylindrical vessel

    International Nuclear Information System (INIS)

    Ohguri, Youhei; Monji, Hideaki; Kamide, Hideki

    2008-01-01

    The aim of this study is to reveal the basic flow characteristics, especially downward velocity, of the free surface vortex. The flow field at the vertical cross section in a cylindrical vessel was measured by using PIV. The measurement results showed the inclined vortex center due to the un-axisymmetric structure of the vessel. Therefore, the maximum downward velocity on the cross section was discussed with the depth. The relation between the maximum downward velocity and the depth showed the tendency where the downward velocity increased with the depth non-linearly. By using dye, the downward velocity was also measured but its results showed a little difference from that by PIV. (author)

  8. Comparison of different methods for the determination of dynamic characteristics of low velocity anemometers

    DEFF Research Database (Denmark)

    Melikov, Arsen Krikor; Popiolek, Z.

    2004-01-01

    Three methods for determining the dynamic characteristics of low velocity thermal anemometers were compared. They were: step-up velocity change and step-down velocity change methods and a method based on sinusoidal type velocity fluctuations. Two low velocity thermal anemometers with omnidirectio......Three methods for determining the dynamic characteristics of low velocity thermal anemometers were compared. They were: step-up velocity change and step-down velocity change methods and a method based on sinusoidal type velocity fluctuations. Two low velocity thermal anemometers...... with omnidirectional velocity sensors were tested. The results identify differences in frequency response of low velocity anemometers determined by the three methods. The time constant and the response time determined by the step-up velocity change method and the step-down velocity change method may be substantially...... different and insufficient for describing the frequency response of all low velocity thermal anemometers. Therefore the upper frequency, determined in tests with sinusoidal velocity fluctuations, is recommended to be used in indoor climate standards as a single parameter describing the dynamic...

  9. In-situ changes in the elastic wave velocity of rock with increasing temperature using high-resolution coda wave interferometry

    Science.gov (United States)

    Griffiths, Luke; Heap, Michael; Lengliné, Olivier; Schmittbuhl, Jean; Baud, Patrick

    2017-04-01

    Rock undergoes fluctuations in temperature in various settings in Earth's crust, including areas of volcanic or geothermal activity, or industrial environments such as hydrocarbon or geothermal reservoirs. Changes in temperature can cause thermal stresses that can result in the formation of microcracks, which affect the mechanical, physical, and transport properties of rocks. Of the affected physical properties, the elastic wave velocity of rock is particularly sensitive to microcracking. Monitoring the evolution of elastic wave velocity during the thermal stressing of rock therefore provides valuable insight into thermal cracking processes. One monitoring technique is Coda Wave Interferometry (CWI), which infers high-resolution changes in the medium from changes in multiple-scattered elastic waves. We have designed a new experimental setup to perform CWI whilst cyclically heating and cooling samples of granite (cylinders of 20 mm diameter and 40 mm length). In our setup, the samples are held between two pistons within a tube furnace and are heated and cooled at a rate of 1 °C/min to temperatures of up to 300 °C. Two high temperature piezo-transducers are each in contact with an opposing face of the rock sample. The servo-controlled uniaxial press compensates for the thermal expansion and contraction of the pistons and the sample, keeping the coupling between the transducers and the sample, and the axial force acting on the sample, constant throughout. Our setup is designed for simultaneous acoustic emission monitoring (AE is commonly used as a proxy for microcracking), and so we can follow thermal microcracking precisely by combining the AE and CWI techniques. We find that during the first heating/cooling cycle, the onset of thermal microcracking occurs at a relatively low temperature of around 65 °C. The CWI shows that elastic wave velocity decreases with increasing temperature and increases during cooling. Upon cooling, back to room temperature, there is an

  10. The influence of continuous historical velocity difference information on micro-cooperative driving stability

    Science.gov (United States)

    Yang, Liang-Yi; Sun, Di-Hua; Zhao, Min; Cheng, Sen-Lin; Zhang, Geng; Liu, Hui

    2018-03-01

    In this paper, a new micro-cooperative driving car-following model is proposed to investigate the effect of continuous historical velocity difference information on traffic stability. The linear stability criterion of the new model is derived with linear stability theory and the results show that the unstable region in the headway-sensitivity space will be shrunk by taking the continuous historical velocity difference information into account. Through nonlinear analysis, the mKdV equation is derived to describe the traffic evolution behavior of the new model near the critical point. Via numerical simulations, the theoretical analysis results are verified and the results indicate that the continuous historical velocity difference information can enhance the stability of traffic flow in the micro-cooperative driving process.

  11. Electrostatic Comb-Drive Actuator with High In-Plane Translational Velocity

    Directory of Open Access Journals (Sweden)

    Yomna M. Eltagoury

    2016-10-01

    Full Text Available This work reports the design and opto-mechanical characterization of high velocity comb-drive actuators producing in-plane motion and fabricated using the technology of deep reactive ion etching (DRIE of silicon-on-insulator (SOI substrate. The actuators drive vertical mirrors acting on optical beams propagating in-plane with respect to the substrate. The actuator-mirror device is a fabrication on an SOI wafer with 80 μm etching depth, surface roughness of about 15 nm peak to valley and etching verticality that is better than 0.1 degree. The travel range of the actuators is extracted using an optical method based on optical cavity response and accounting for the diffraction effect. One design achieves a travel range of approximately 9.1 µm at a resonance frequency of approximately 26.1 kHz, while the second design achieves about 2 µm at 93.5 kHz. The two specific designs reported achieve peak velocities of about 1.48 and 1.18 m/s, respectively, which is the highest product of the travel range and frequency for an in-plane microelectromechanical system (MEMS motion under atmospheric pressure, to the best of the authors’ knowledge. The first design possesses high spring linearity over its travel range with about 350 ppm change in the resonance frequency, while the second design achieves higher resonance frequency on the expense of linearity. The theoretical predications and the experimental results show good agreement.

  12. Changes in Ultrasonic Velocity from Fluid Substitution, Calculated with Laboratory Methods, Digital Rock Physics, and Biot Theory

    Science.gov (United States)

    Goldfarb, E. J.; Ikeda, K.; Tisato, N.

    2017-12-01

    Seismic and ultrasonic velocities of rocks are function of several variables including fluid saturation and type. Understanding the effect of each variable on elastic waves can be valuable when using seismic methods for subsurface modeling. Fluid type and saturation are of specific interest to volcanology, water, and hydrocarbon exploration. Laboratory testing is often employed to understand the effects of fluids on elastic waves. However, laboratory testing is expensive and time consuming. It normally requires cutting rare samples into regular shapes. Fluid injection can also destroy specimens as removing the fluid after testing can prove difficult. Another option is theoretical modeling, which can be used to predict the effect of fluids on elastic properties, but it is often inaccurate. Alternatively, digital rock physics (DRP) can be used to investigate the effect of fluid substitution. DRP has the benefit of being non invasive, as it does not require regular sample shapes or fluid injection. Here, we compare the three methods for dry and saturated Berea sandstone to test the reliability of DRP. First, ultrasonic velocities were obtained from laboratory testing. Second, for comparison, we used a purely theoretical approach - i.e., Hashin-Shtrikman and Biot theory - to estimate the wave speeds at dry and wet conditions. Third, we used DRP. The dry sample was scanned with micro Computed Tomography (µCT), and a three dimensional (3D) array was recorded. We employed a segmentation-less method to convert each 3D array value to density, porosity, elastic moduli, and wave speeds. Wave propagation was simulated numerically at similar frequency as the laboratory. To simulate fluid substitution, we numerically substituted air values for water and repeated the simulation. The results from DRP yielded similar velocities to the laboratory, and accurately predicted the velocity change from fluid substitution. Theoretical modeling could not accurately predict velocity, and

  13. Aharonov-Casher phase shift and the change in velocity of a moving magnet traversing an electric field

    International Nuclear Information System (INIS)

    March, N.H.

    2006-08-01

    Motivated by the theoretical work of Boyer [J. Phys. A: Math. Gen. 39 (2006) 3455] plus the quite recent interferometric experiment of Shinohara, Aoki and Morinaga [Phys. Rev. A66 (2002) 042106] in which the scalar Aharonov-Bohm effect was studied, we re-open the extension to neutral particles carrying a magnetic moment and passing through a region of intense electric field, treated theoretically by Aharonov and Casher (AC) and independently by Anandan. An alternative interpretation of results on (a) neutrons and (b) TlF molecules to that afforded by AC is shown to involve only (i) the de Broglie wavelength of matter waves and (ii) the prediction from Maxwell's equations for the change in velocity of a neutral moving magnet as it enters or leaves an electric field. The exquisite sensitivity of experiment (b) allows a fractional change in velocity of order 10 -15 to be quantitatively determined. (author)

  14. Two-velocity elasticity theory and facet growth

    OpenAIRE

    Andreev, A. F.; Melnikovsky, L. A.

    2002-01-01

    We explain the linear growth of smooth solid helium facets by the presence of lattice point defects. To implement this task, the framework of very general two-velocity elasticity theory equations is developed. Boundary conditions for these equations for various surface types are derived. We also suggest additional experiments to justify the concept.

  15. A Linear-Elasticity Solver for Higher-Order Space-Time Mesh Deformation

    Science.gov (United States)

    Diosady, Laslo T.; Murman, Scott M.

    2018-01-01

    A linear-elasticity approach is presented for the generation of meshes appropriate for a higher-order space-time discontinuous finite-element method. The equations of linear-elasticity are discretized using a higher-order, spatially-continuous, finite-element method. Given an initial finite-element mesh, and a specified boundary displacement, we solve for the mesh displacements to obtain a higher-order curvilinear mesh. Alternatively, for moving-domain problems we use the linear-elasticity approach to solve for a temporally discontinuous mesh velocity on each time-slab and recover a continuous mesh deformation by integrating the velocity. The applicability of this methodology is presented for several benchmark test cases.

  16. Scale-dependent complementarity of climatic velocity and environmental diversity for identifying priority areas for conservation under climate change.

    Science.gov (United States)

    Carroll, Carlos; Roberts, David R; Michalak, Julia L; Lawler, Joshua J; Nielsen, Scott E; Stralberg, Diana; Hamann, Andreas; Mcrae, Brad H; Wang, Tongli

    2017-11-01

    As most regions of the earth transition to altered climatic conditions, new methods are needed to identify refugia and other areas whose conservation would facilitate persistence of biodiversity under climate change. We compared several common approaches to conservation planning focused on climate resilience over a broad range of ecological settings across North America and evaluated how commonalities in the priority areas identified by different methods varied with regional context and spatial scale. Our results indicate that priority areas based on different environmental diversity metrics differed substantially from each other and from priorities based on spatiotemporal metrics such as climatic velocity. Refugia identified by diversity or velocity metrics were not strongly associated with the current protected area system, suggesting the need for additional conservation measures including protection of refugia. Despite the inherent uncertainties in predicting future climate, we found that variation among climatic velocities derived from different general circulation models and emissions pathways was less than the variation among the suite of environmental diversity metrics. To address uncertainty created by this variation, planners can combine priorities identified by alternative metrics at a single resolution and downweight areas of high variation between metrics. Alternately, coarse-resolution velocity metrics can be combined with fine-resolution diversity metrics in order to leverage the respective strengths of the two groups of metrics as tools for identification of potential macro- and microrefugia that in combination maximize both transient and long-term resilience to climate change. Planners should compare and integrate approaches that span a range of model complexity and spatial scale to match the range of ecological and physical processes influencing persistence of biodiversity and identify a conservation network resilient to threats operating at

  17. Design and experiments of a linear piezoelectric motor driven by a single mode.

    Science.gov (United States)

    Liu, Zhen; Yao, Zhiyuan; Li, Xiang; Fu, Qianwei

    2016-11-01

    In this contribution, we propose a novel linear piezoelectric motor with a compact stator that is driven by a single mode. The linear piezoelectric motor can realize bidirectional motion by changing the vibration modes of the stator. Finite element analysis is performed to determine the required vibration mode of the stator and obtain the optimal stator structure and dimensions. Furthermore, the trajectories of the driving foot are analyzed with and without consideration of the mechanical contact with the slider. It is shown that the trajectory of the driving foot is an oblique line when disregarding the contact, and the trajectory becomes an oblique ellipse while taking into account the contact. Finally, a prototype of the motor is fabricated based on the results of finite element analysis. The optimization results show that the motor reaches its maximum thrust force of 4.0 kg, maximum thrust-weight ratio of 33.3, maximum unloaded velocity of 385 mm/s under the excitation of Mode-B, and maximum unloaded velocity of 315 mm/s under the excitation of Mode-L.

  18. Changes in inferior vena cava blood flow velocity and diameter during breathing movements in the human fetus

    NARCIS (Netherlands)

    T. Huisman (T.); S. van den Eijnde (Stefan); P.A. Stewart (Patricia); J.W. Wladimiroff (Juriy)

    1993-01-01

    textabstractBreathing movements in the human fetus cause distinct changes in Doppler flow velocity measurements at arterial, venous and cardiac levels. In adults, breathing movements result in a momentary inspiratory collapse of the inferior vena cava vessel wall. The study objective was to quantify

  19. Air-water flow in a vertical pipe with sudden changes of superficial water velocity

    International Nuclear Information System (INIS)

    Horst-Michael Prasser; Eckhard Krepper; Thomas Frank

    2005-01-01

    Full text of publication follows: For further model development and the validation of CFD codes for two-phase flow applications experiments were carried out with a sudden change of the superficial velocity of water. The tests were performed in a vertical pipe of 51.2 mm diameter. The gas was injected through 19 capillaries of 0.8 mm inner diameter equally distributed over the cross section of the pipe. Measurements were taken by two wire-mesh sensors (24 x 24 points, 2500 Hz) mounted in a short distance (16 mm) behind each other. This sensor assembly was placed 3030 mm downstream of the gas injection. The change of the superficial water velocity was produced by a butterfly valve, the flap of which was perforated. In this way, a rapid closure of the valve caused a jump-like reduction of the liquid flow rate. The valve was located upstream of the gas injection. In a second series of tests a jump-like increase of the water flow rate was studied. Time sequences of the gas fraction profile were calculated from the wire-mesh sensor data over sampling periods of 0.2 s per profile. To increase the statistical reliability of the data, the transient was repeated several times and the data superposed (ensemble averaging). Gas velocity distributions were determined by correlation of the signals with the measurements of the second sensor. The tests enable the observation of the restructuring process of bubbly flow between two steady state conditions. The process is subdivided into three main stages: (1) the undisturbed flow before the velocity jump, (2) the passage of the bubbly flow formed under initial conditions, but travelling with the new velocity and (3) the bubbly flow generated under the new boundary conditions. Transient behaviour between these stages is reflected by the measured data. Special attention was paid to stage 2, where the radial gas fraction profiles change shape due to the excitation of the force balance acting on the bubbles. The experimental results for

  20. Preliminary evaluation of vector flow and spectral velocity estimation

    DEFF Research Database (Denmark)

    Pedersen, Mads Møller; Pihl, Michael Johannes; Haugaard, Per

    Spectral estimation is considered as the golden standard in ultrasound velocity estimation. For spectral velocity estimation the blood flow angle is set by the ultrasound operator. Vector flow provides temporal and spatial estimates of the blood flow angle and velocity. A comparison of vector flow...... line covering the vessel diameter. A commercial ultrasound scanner (ProFocus 2202, BK Medical, Denmark) and a 7.6 MHz linear transducer was used (8670, BK Medical). The mean vector blood flow angle estimations were calculated {52(18);55(23);60(16)}°. For comparison the fixed angles for spectral...... estimation were obtained {52;56;52}°. The mean vector velocity estimates at PS {76(15);95(17);77(16)}cm/s and at end diastole (ED) {17(6);18(6);24(6)}cm/s were calculated. For comparison spectral velocity estimates at PS {77;110;76}cm/s and ED {18;18;20}cm/s were obtained. The mean vector angle estimates...

  1. Velocity and stress distributions of deep seismic zone under Izu-Bonin, Japan

    Science.gov (United States)

    Jiang, Guoming; Zhang, Guibin; Jia, Zhengyuan

    2017-04-01

    Deep earthquakes can provide the deep information of the Earth directly. We have collected the waveform data from 77 deep earthquakes with depth greater than 300 km under Izu-Bonin in Japan. To obtain the velocity structures of P- and S-wave, we have inversed the double-differences of travel times from deep event-pairs. These velocity anomalies can further yield the Poisson's ratio and the porosity. Our results show that the average P-wave velocity anomaly is lower 6%, however the S-wave anomaly is higher 2% than the iasp91 model. The corresponding Poisson's ratio and porosity anomaly are -24% and -4%, respectively, which suggest that the possibility of water in the deep seismic zone is very few and the porosity might be richer. To obtain the stress distribution, we have used the ISOLA method to analyse the non-double-couple components of moment tensors of 77 deep earthquakes. The focal mechanism results show that almost half of all earthquakes have larger double-couple (DC) components, but others have clear isotropic (ISO) or compensated linear vector dipole (CLVD) components. The non-double-couple components (ISO and CLVD) seem to represent the volume around a deep earthquake changes as it occurs, which could be explained the metastable olivine phase transition. All results indicate that the metastable olivine wedge (MOW) might exist in the Pacific slab under the Izu-Bonin region and the deep earthquakes might be induced by the phase change of metastable olivine.

  2. A linear maglev guide for machine tools

    Energy Technology Data Exchange (ETDEWEB)

    Tieste, K D [Inst. of Mechanics, Univ. of Hannover (Germany); Popp, K [Inst. of Mechanics, Univ. of Hannover (Germany)

    1996-12-31

    Machine tools require linear guides with high slide velocity and very high position accuracy. The three tasks of a linear guide - supporting, guiding and driving - shall be realised by means of active magnetic bearings (AMB). The resulting linear magnetically levitated (maglev) guide has to accomplish the following characteristics: High stiffness, good damping and low noise as well as low heat production. First research on a one degree-of-freedom (DOF) support magnet unit aimed at the development of components and efficient control strategies for the linear maglev guide. The actual research is directed to realise a five DOF linear maglev guide for machine tools without drive to answer the question whether the maglev principle can be used for a linear axis in a machine tool. (orig.)

  3. Linearized spectrum correlation analysis for line emission measurements.

    Science.gov (United States)

    Nishizawa, T; Nornberg, M D; Den Hartog, D J; Sarff, J S

    2017-08-01

    A new spectral analysis method, Linearized Spectrum Correlation Analysis (LSCA), for charge exchange and passive ion Doppler spectroscopy is introduced to provide a means of measuring fast spectral line shape changes associated with ion-scale micro-instabilities. This analysis method is designed to resolve the fluctuations in the emission line shape from a stationary ion-scale wave. The method linearizes the fluctuations around a time-averaged line shape (e.g., Gaussian) and subdivides the spectral output channels into two sets to reduce contributions from uncorrelated fluctuations without averaging over the fast time dynamics. In principle, small fluctuations in the parameters used for a line shape model can be measured by evaluating the cross spectrum between different channel groupings to isolate a particular fluctuating quantity. High-frequency ion velocity measurements (100-200 kHz) were made by using this method. We also conducted simulations to compare LSCA with a moment analysis technique under a low photon count condition. Both experimental and synthetic measurements demonstrate the effectiveness of LSCA.

  4. Sway Area and Velocity Correlated With MobileMat Balance Error Scoring System (BESS) Scores.

    Science.gov (United States)

    Caccese, Jaclyn B; Buckley, Thomas A; Kaminski, Thomas W

    2016-08-01

    The Balance Error Scoring System (BESS) is often used for sport-related concussion balance assessment. However, moderate intratester and intertester reliability may cause low initial sensitivity, suggesting that a more objective balance assessment method is needed. The MobileMat BESS was designed for objective BESS scoring, but the outcome measures must be validated with reliable balance measures. Thus, the purpose of this investigation was to compare MobileMat BESS scores to linear and nonlinear measures of balance. Eighty-eight healthy collegiate student-athletes (age: 20.0 ± 1.4 y, height: 177.7 ± 10.7 cm, mass: 74.8 ± 13.7 kg) completed the MobileMat BESS. MobileMat BESS scores were compared with 95% area, sway velocity, approximate entropy, and sample entropy. MobileMat BESS scores were significantly correlated with 95% area for single-leg (r = .332) and tandem firm (r = .474), and double-leg foam (r = .660); and with sway velocity for single-leg (r = .406) and tandem firm (r = .601), and double-leg (r = .575) and single-leg foam (r = .434). MobileMat BESS scores were not correlated with approximate or sample entropy. MobileMat BESS scores were low to moderately correlated with linear measures, suggesting the ability to identify changes in the center of mass-center of pressure relationship, but not higher-order processing associated with nonlinear measures. These results suggest that the MobileMat BESS may be a clinically-useful tool that provides objective linear balance measures.

  5. Equivalent linear damping characterization in linear and nonlinear force-stiffness muscle models.

    Science.gov (United States)

    Ovesy, Marzieh; Nazari, Mohammad Ali; Mahdavian, Mohammad

    2016-02-01

    In the current research, the muscle equivalent linear damping coefficient which is introduced as the force-velocity relation in a muscle model and the corresponding time constant are investigated. In order to reach this goal, a 1D skeletal muscle model was used. Two characterizations of this model using a linear force-stiffness relationship (Hill-type model) and a nonlinear one have been implemented. The OpenSim platform was used for verification of the model. The isometric activation has been used for the simulation. The equivalent linear damping and the time constant of each model were extracted by using the results obtained from the simulation. The results provide a better insight into the characteristics of each model. It is found that the nonlinear models had a response rate closer to the reality compared to the Hill-type models.

  6. Velocity of large bubble in liquid-solid mixture in a vertical tube

    International Nuclear Information System (INIS)

    Hamaguchi, H.; Sakaguchi, T.

    1995-01-01

    The upward movement of a large bubble in a stationary mixture of liquid and solid is one of the most fundamental phenomena of gas-liquid-solid three phase slug flow in a vertical tube. The purpose of this study is to make clear the characteristic of the rising velocity of this fundamental flow experimentally. The rising velocity of a large bubble V in a liquid-solid mixture was measured and compared with the velocity V o in a liquid (without solid). The experimental results were correlated using a non-dimensional velocity V * (=V/V o ), and the following results were obtained. It was found that the characteristic of the rising velocity differs according to the tube diameter and the liquid viscosity, or the Galileo number in the non-dimensional expression. It can be classified into two regimes. (i) When the liquid viscosity is large (or the tube diameter is small), V * decreases linearly against the volumetric solid fraction ε of the mixture. (ii) When the viscosity is small, on the other hand, the relation between V * and ε is not linear. This classification can be explained by the results in the previous papers by the authors dealing with a large bubble in a liquid

  7. Velocity of large bubble in liquid-solid mixture in a vertical tube

    Energy Technology Data Exchange (ETDEWEB)

    Hamaguchi, H.; Sakaguchi, T. [Kobe Univ., Kobe (Japan)

    1995-09-01

    The upward movement of a large bubble in a stationary mixture of liquid and solid is one of the most fundamental phenomena of gas-liquid-solid three phase slug flow in a vertical tube. The purpose of this study is to make clear the characteristic of the rising velocity of this fundamental flow experimentally. The rising velocity of a large bubble V in a liquid-solid mixture was measured and compared with the velocity V{sub o} in a liquid (without solid). The experimental results were correlated using a non-dimensional velocity V{sup *}(=V/V{sub o}), and the following results were obtained. It was found that the characteristic of the rising velocity differs according to the tube diameter and the liquid viscosity, or the Galileo number in the non-dimensional expression. It can be classified into two regimes. (i) When the liquid viscosity is large (or the tube diameter is small), V{sup *} decreases linearly against the volumetric solid fraction {epsilon} of the mixture. (ii) When the viscosity is small, on the other hand, the relation between V{sup *} and {epsilon} is not linear. This classification can be explained by the results in the previous papers by the authors dealing with a large bubble in a liquid.

  8. On the Validity of the Streaming Model for the Redshift-Space Correlation Function in the Linear Regime

    Science.gov (United States)

    Fisher, Karl B.

    1995-08-01

    The relation between the galaxy correlation functions in real-space and redshift-space is derived in the linear regime by an appropriate averaging of the joint probability distribution of density and velocity. The derivation recovers the familiar linear theory result on large scales but has the advantage of clearly revealing the dependence of the redshift distortions on the underlying peculiar velocity field; streaming motions give rise to distortions of θ(Ω0.6/b) while variations in the anisotropic velocity dispersion yield terms of order θ(Ω1.2/b2). This probabilistic derivation of the redshift-space correlation function is similar in spirit to the derivation of the commonly used "streaming" model, in which the distortions are given by a convolution of the real-space correlation function with a velocity distribution function. The streaming model is often used to model the redshift-space correlation function on small, highly nonlinear, scales. There have been claims in the literature, however, that the streaming model is not valid in the linear regime. Our analysis confirms this claim, but we show that the streaming model can be made consistent with linear theory provided that the model for the streaming has the functional form predicted by linear theory and that the velocity distribution is chosen to be a Gaussian with the correct linear theory dispersion.

  9. The Measurement of cloud velocity using the pulsed laser and image tracking technique

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, Seong-Ouk; Baik, Seung-Hoon; Park, Seung-Kyu; Park, Nak-Gyu; Kim, Dong-lyul; Ahn, Yong-Jin [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-05-15

    The height of the clouds is also important for the three dimensional radiative interaction of aerosols and clouds, since the radiative effects vary strongly depending whether the cloud is above, below or even embedded in an aerosol layer. Clouds play an important role in climate change, in the prediction of local weather, and also in aviation safety when instrument assisted flying is unavailable. Presently, various ground-based instruments used for the measurements of the cloud base height or velocity. Lidar techniques are powerful and have many applications in climate studies, including the clouds' temperature measurement, the aerosol particle properties, etc. Otherwise, it is very circumscribed in cloud velocity measurements In this paper, we propose a new method to measure the cloud velocity. In this paper, we presented a method for the measurement of the cloud altitude and velocity using lidar's range detection and the tracking system. For the lidar system, we used an injection-seeded pulsed Nd:YAG laser as the transmitter to measure the distance to the target clouds. We used the DIC system to track the cloud image and calculate the actual displacement per unit time. The configured lidar system acquired the lidar signal of clouds at a distance of about 4 km. The developed fast correlation algorithm of the tracking, which is used to track the fast moving cloud relatively, was efficient for measuring the cloud velocity in real time. The measurement values had a linear distribution.

  10. HOW THE DENSITY ENVIRONMENT CHANGES THE INFLUENCE OF THE DARK MATTER–BARYON STREAMING VELOCITY ON COSMOLOGICAL STRUCTURE FORMATION

    Energy Technology Data Exchange (ETDEWEB)

    Ahn, Kyungjin, E-mail: kjahn@chosun.ac.kr [Department of Earth Sciences, Chosun University, Gwangju 61452 (Korea, Republic of)

    2016-10-20

    We study the dynamical effect of the relative velocity between dark matter and baryonic fluids, which remained supersonic after the epoch of recombination. The impact of this supersonic motion on the formation of cosmological structures was first formulated by Tseliakhovich and Hirata, in terms of the linear theory of small-scale fluctuations coupled to large-scale, relative velocities in mean-density regions. In their formalism, they limited the large-scale density environment to be that of the global mean density. We improve on their formulation by allowing variation in the density environment as well as the relative velocities. This leads to a new type of coupling between large-scale and small-scale modes. We find that the small-scale fluctuation grows in a biased way: faster in the overdense environment and slower in the underdense environment. We also find that the net effect on the global power spectrum of the density fluctuation is to boost its overall amplitude from the prediction by Tseliakhovich and Hirata. Correspondingly, the conditional mass function of cosmological halos and the halo bias parameter are both affected in a similar way. The discrepancy between our prediction and that of Tseliakhovich and Hirata is significant, and therefore, the related cosmology and high-redshift astrophysics should be revisited. The mathematical formalism of this study can be used for generating cosmological initial conditions of small-scale perturbations in generic, overdense (underdense) background patches.

  11. Changes in cerebral artery blood flow velocity after intermittent cerebrospinal fluid drainage.

    OpenAIRE

    Kempley, S T; Gamsu, H R

    1993-01-01

    Doppler ultrasound was used to measure blood flow velocity in the anterior cerebral artery of six premature infants with posthaemorrhagic hydrocephalus, before and after intermittent cerebrospinal fluid (CSF) drainage, on 23 occasions. There was a significant increase in mean blood flow velocity after the drainage procedures (+5.6 cm/s, 95% confidence interval +2.9 to +8.3 cm/s), which was accompanied by a decrease in velocity waveform pulsatility. CSF pressure also fell significantly. In pat...

  12. The effect of angular velocity and cycle on the dissipative properties of the knee during passive cyclic stretching: a matter of viscosity or solid friction.

    Science.gov (United States)

    Nordez, A; McNair, P J; Casari, P; Cornu, C

    2009-01-01

    The mechanisms behind changes in mechanical parameters following stretching are not understood clearly. This study assessed the effects of joint angular velocity on the immediate changes in passive musculo-articular properties induced by cyclic stretching allowing an appreciation of viscosity and friction, and their contribution to changes in torque that occur. Ten healthy subjects performed five passive knee extension/flexion cycles on a Biodex dynamometer at five preset angular velocities (5-120 deg/s). The passive torque and knee angle were measured, and the potential elastic energy stored during the loading and the dissipation coefficient were calculated. As the stretching velocity increased, so did stored elastic energy and the dissipation coefficient. The slope of the linear relationship between the dissipation coefficient and the angular velocity was unchanged across repetitions indicating that viscosity was unlikely to be affected. A difference in the y-intercept across repetitions 1 and 5 was indicative of a change in processes associated with solid friction. Electromyographical responses to stretching were low across all joint angular velocities. Torque changes during cyclic motion may primarily involve solid friction which is more indicative of rearrangement/slipping of collagen fibers rather than the redistribution of fluid and its constituents within the muscle. The findings also suggest that it is better to stretch slowly initially to reduce the amount of energy absorption required by tissues, but thereafter higher stretching speeds can be undertaken.

  13. Towards a new technique to construct a 3D shear-wave velocity model based on converted waves

    Science.gov (United States)

    Hetényi, G.; Colavitti, L.

    2017-12-01

    A 3D model is essential in all branches of solid Earth sciences because geological structures can be heterogeneous and change significantly in their lateral dimension. The main target of this research is to build a crustal S-wave velocity structure in 3D. The currently popular methodologies to construct 3D shear-wave velocity models are Ambient Noise Tomography (ANT) and Local Earthquake Tomography (LET). Here we propose a new technique to map Earth discontinuities and velocities at depth based on the analysis of receiver functions. The 3D model is obtained by simultaneously inverting P-to-S converted waveforms recorded at a dense array. The individual velocity models corresponding to each trace are extracted from the 3D initial model along ray paths that are calculated using the shooting method, and the velocity model is updated during the inversion. We consider a spherical approximation of ray propagation using a global velocity model (iasp91, Kennett and Engdahl, 1991) for the teleseismic part, while we adopt Cartesian coordinates and a local velocity model for the crust. During the inversion process we work with a multi-layer crustal model for shear-wave velocity, with a flexible mesh for the depth of the interfaces. The RFs inversion represents a complex problem because the amplitude and the arrival time of different phases depend in a non-linear way on the depth of interfaces and the characteristics of the velocity structure. The solution we envisage to manage the inversion problem is the stochastic Neighbourhood Algorithm (NA, Sambridge, 1999), whose goal is to find an ensemble of models that sample the good data-fitting regions of a multidimensional parameter space. Depending on the studied area, this method can accommodate possible independent and complementary geophysical data (gravity, active seismics, LET, ANT, etc.), helping to reduce the non-linearity of the inversion. Our first focus of application is the Central Alps, where a 20-year long dataset of

  14. Marine traffic model based on cellular automaton: Considering the change of the ship's velocity under the influence of the weather and sea

    Science.gov (United States)

    Qi, Le; Zheng, Zhongyi; Gang, Longhui

    2017-10-01

    It was found that the ships' velocity change, which is impacted by the weather and sea, e.g., wind, sea wave, sea current, tide, etc., is significant and must be considered in the marine traffic model. Therefore, a new marine traffic model based on cellular automaton (CA) was proposed in this paper. The characteristics of the ship's velocity change are taken into account in the model. First, the acceleration of a ship was divided into two components: regular component and random component. Second, the mathematical functions and statistical distribution parameters of the two components were confirmed by spectral analysis, curve fitting and auto-correlation analysis methods. Third, by combining the two components, the acceleration was regenerated in the update rules for ships' movement. To test the performance of the model, the ship traffic flows in the Dover Strait, the Changshan Channel and the Qiongzhou Strait were studied and simulated. The results show that the characteristics of ships' velocities in the simulations are consistent with the measured data by Automatic Identification System (AIS). Although the characteristics of the traffic flow in different areas are different, the velocities of ships can be simulated correctly. It proves that the velocities of ships under the influence of weather and sea can be simulated successfully using the proposed model.

  15. Illumination Profile & Dispersion Variation Effects on Radial Velocity Measurements

    Science.gov (United States)

    Grieves, Nolan; Ge, Jian; Thomas, Neil B.; Ma, Bo; Li, Rui; SDSS-III

    2015-01-01

    The Multi-object APO Radial-Velocity Exoplanet Large-Area Survey (MARVELS) measures radial velocities using a fiber-fed dispersed fixed-delay interferometer (DFDI) with a moderate dispersion spectrograph. This setup allows a unique insight into the 2D illumination profile from the fiber on to the dispersion grating. Illumination profile investigations show large changes in the profile over time and fiber location. These profile changes are correlated with dispersion changes and long-term radial velocity offsets, a major problem within the MARVELS radial velocity data. Characterizing illumination profiles creates a method to both detect and correct radial velocity offsets, allowing for better planet detection. Here we report our early results from this study including improvement of radial velocity data points from detected giant planet candidates. We also report an illumination profile experiment conducted at the Kitt Peak National Observatory using the EXPERT instrument, which has a DFDI mode similar to MARVELS. Using profile controlling octagonal-shaped fibers, long term offsets over a 3 month time period were reduced from ~50 m/s to within the photon limit of ~4 m/s.

  16. Variations and healing of the seismic velocity (Beno Gutenberg Medal Lecture)

    Science.gov (United States)

    Snieder, Roel

    2016-04-01

    Scattering of waves leads to a complexity of waveforms that is often seen by seismologists as a nuisance. And indeed, the complicated wave paths of multiple scattered waves makes it difficult to use these waves for imaging. Yet, the long wave paths of multiple scattered waves makes these waves an ideal tool for measuring minute velocity changes. This has led to the development of coda wave interferometry as a tool for measuring small velocity changes in the laboratory and with field data. Combined with the use of noise cross correlations - seismic interferometry - this method is even more useful because it follows for a quasi-continuous measurement of velocity changes. I will show examples of detecting velocity changes in the laboratory, the earth's near surface, and in engineered structures. Perhaps surprisingly, the seismic velocity is not constant at all, and varies with the seasons, temperature, precipitation, as the weather does. In addition, the seismic velocity usually drops as a result of deformation. Most of these changes likely occur in the near surface or the region of deformation, and a drawback of using strongly scattered waves is that it is difficult to localize the spatial area of the velocity change. I will present laboratory measurements that show that a certain spatial localization of the velocity change can be achieved. One of the intriguing observations is that after deformation the seismic velocity recovers logarithmically with time. The reason for this particular time-dependence is the presence of healing mechanisms that operate at different time scales. Since this is feature of many physical systems, the logarithmic healing is a widespread behavior and is akin in its generality to the Gutenberg-Richter law.

  17. A Dynamic Linear Modeling Approach to Public Policy Change

    DEFF Research Database (Denmark)

    Loftis, Matthew; Mortensen, Peter Bjerre

    2017-01-01

    Theories of public policy change, despite their differences, converge on one point of strong agreement. The relationship between policy and its causes can and does change over time. This consensus yields numerous empirical implications, but our standard analytical tools are inadequate for testing...... them. As a result, the dynamic and transformative relationships predicted by policy theories have been left largely unexplored in time-series analysis of public policy. This paper introduces dynamic linear modeling (DLM) as a useful statistical tool for exploring time-varying relationships in public...... policy. The paper offers a detailed exposition of the DLM approach and illustrates its usefulness with a time series analysis of U.S. defense policy from 1957-2010. The results point the way for a new attention to dynamics in the policy process and the paper concludes with a discussion of how...

  18. Instability of shallow open channel flow with lateral velocity gradients

    Energy Technology Data Exchange (ETDEWEB)

    Lima, A C; Izumi, N, E-mail: adriano@eng.hokudai.ac.jp, E-mail: nizumi@eng.hokudai.ac.jp [River and Watershed Engineering Laboratory, Hokkaido University, Sapporo, 060-8628 (Japan)

    2011-12-22

    The turbulent flow in a wide rectangular open channel partially covered with vegetation is studied using linear stability analysis. In the base state normal flow condition, the water depth is constant and the transverse velocity vanishes, while there is a lateral gradient in the streamwise velocity with an inflexion point at the boundary between the vegetated zone and the main channel. The Reynolds stress is expressed by introducing the eddy viscosity, which is obtained from assuming a logarithmic distribution of the velocity near the bed. Perturbation expansions are introduced to the streamwise and transverse velocities, as well as to the water depth. The system of governing equations was solved in order to determine the maximum growth rate of the perturbations as a function of parameters which describe physical characteristics of the channel and the flow.

  19. Changing Artificial Playback Speed and Real Movement Velocity Do Not Differentially Influence the Excitability of Primary Motor Cortex during Observation of a Repetitive Finger Movement

    Directory of Open Access Journals (Sweden)

    Takefumi Moriuchi

    2017-11-01

    Full Text Available Action observation studies have investigated whether changing the speed of the observed movement affects the action observation network. There are two types of speed-changing conditions; one involves “changes in actual movement velocity,” and the other is “manipulation of video speed.” Previous studies have investigated the effects of these conditions separately, but to date, no study has directly investigated the differences between the effects of these conditions. In the “movement velocity condition,” increased velocity is associated with increased muscle activity; however, this change of muscle activities is not shown in the “video speed condition.” Therefore, a difference in the results obtained under these conditions could be considered to reflect a difference in muscle activity of actor in the video. The aim of the present study was to investigate the effects of different speed-changing conditions and spontaneous movement tempo (SMT on the excitability of primary motor cortex (M1 during action observation, as assessed by motor-evoked potentials (MEPs amplitudes induced by transcranial magnetic stimulation (TMS. A total of 29 healthy subjects observed a video clip of a repetitive index or little finger abduction movement under seven different speed conditions. The video clip in the movement velocity condition showed repetitive finger abduction movements made in time with an auditory metronome, at frequencies of 0.5, 1, 2, and 3 Hz. In the video speed condition, playback of the 1-Hz movement velocity condition video clip was modified to show movement frequencies of 0.5, 2, or 3 Hz (Hz-Fake. TMS was applied at the time of maximal abduction and MEPs were recorded from two right-hand muscles. There were no differences in M1 excitability between the movement velocity and video speed conditions. Moreover, M1 excitability did not vary across the speed conditions for either presentation condition. Our findings suggest that changing

  20. Reconstructing the velocity field beyond the local universe

    CSIR Research Space (South Africa)

    Johnston, R

    2014-10-01

    Full Text Available an estimate of the velocity field derived from the galaxy over-density d(sub g) and the second makes use of the matter linear density power spectrum P(sub k). Using N-body simulations we find, with an SDSS-like sample (N(sub gal) 33 per deg(sup 2...

  1. The influence of slip velocity and temperature on permeability during and after high-velocity fault slip

    Science.gov (United States)

    Tanikawa, W.; Mukoyoshi, H.; Tadai, O.; Hirose, T.; Lin, W.

    2011-12-01

    Fluid transport properties in fault zones play an important role in dynamic processes during large earthquakes. If the permeability in a fault zone is low, high pore-fluid pressures caused by thermal pressurization (Sibson, 1973) or shear-induced compaction (Blanpied et al., 1992) can lead to an apparent reduction of fault strength. Changes in porosity and permeability of fault rocks within a fault zone during earthquakes and the subsequent progressive recovery of these properties may have a large influence on earthquake recurrence (Sleep and Blanpied, 1992). A rotary shear apparatus was used to investigate changes of fluid transport properties in a fault zone by real-time measurement of gas flow rates during and after shearing of hollow sandstone and granite cylinders at various slip rates. Our apparatus measures permeability parallel to the slip plane in both the slip zone and wall rocks. In all cases, permeability decreased rapidly with an increase of friction, but recovered soon after slip, reaching a steady state within several tens of minutes. The rate of reduction of permeability increased with increasing slip velocity. Permeability did not recover to pre-slip levels after low-velocity tests but recovered to exceed them after high-velocity tests. Frictional heating of gases at the slip surface increased gas viscosity, which increased gas flow rate to produce an apparent permeability increase. The irreversible permeability changes of the low-velocity tests were caused by gouge formation due to wearing and smoothing of the slip surface. The increase of permeability after high-velocity tests was caused by mesoscale fracturing in response to rapid temperature rise. Changes of pore fluid viscosity contributed more to changes of flow rate than did permeability changes caused by shear deformation, although test results from different rocks and pore fluids might be different. References Blanpied, M.L., Lockner, D.A., Byerlee, J.D., 1992. An earthquake mechanism

  2. Velocity-gauge real-time TDDFT within a numerical atomic orbital basis set

    Science.gov (United States)

    Pemmaraju, C. D.; Vila, F. D.; Kas, J. J.; Sato, S. A.; Rehr, J. J.; Yabana, K.; Prendergast, David

    2018-05-01

    The interaction of laser fields with solid-state systems can be modeled efficiently within the velocity-gauge formalism of real-time time dependent density functional theory (RT-TDDFT). In this article, we discuss the implementation of the velocity-gauge RT-TDDFT equations for electron dynamics within a linear combination of atomic orbitals (LCAO) basis set framework. Numerical results obtained from our LCAO implementation, for the electronic response of periodic systems to both weak and intense laser fields, are compared to those obtained from established real-space grid and Full-Potential Linearized Augmented Planewave approaches. Potential applications of the LCAO based scheme in the context of extreme ultra-violet and soft X-ray spectroscopies involving core-electronic excitations are discussed.

  3. Calculation of cell face velocity of non-staggered grid system

    KAUST Repository

    Li, Wang; Yu, Bo; Wang, Xinran; Sun, Shuyu

    2012-01-01

    In this paper, the cell face velocities in the discretization of the continuity equation, the momentum equation, and the scalar equation of a non-staggered grid system are calculated and discussed. Both the momentum interpolation and the linear

  4. The Relationship between Running Velocity and the Energy Cost of Turning during Running

    Science.gov (United States)

    Hatamoto, Yoichi; Yamada, Yosuke; Sagayama, Hiroyuki; Higaki, Yasuki; Kiyonaga, Akira; Tanaka, Hiroaki

    2014-01-01

    Ball game players frequently perform changes of direction (CODs) while running; however, there has been little research on the physiological impact of CODs. In particular, the effect of running velocity on the physiological and energy demands of CODs while running has not been clearly determined. The purpose of this study was to examine the relationship between running velocity and the energy cost of a 180°COD and to quantify the energy cost of a 180°COD. Nine male university students (aged 18–22 years) participated in the study. Five shuttle trials were performed in which the subjects were required to run at different velocities (3, 4, 5, 6, 7, and 8 km/h). Each trial consisted of four stages with different turn frequencies (13, 18, 24 and 30 per minute), and each stage lasted 3 minutes. Oxygen consumption was measured during the trial. The energy cost of a COD significantly increased with running velocity (except between 7 and 8 km/h, p = 0.110). The relationship between running velocity and the energy cost of a 180°COD is best represented by a quadratic function (y = −0.012+0.066x +0.008x2, [r = 0.994, p = 0.001]), but is also well represented by a linear (y = −0.228+0.152x, [r = 0.991, prunning velocities have relatively high physiological demands if the COD frequency increases, and that running velocities affect the physiological demands of CODs. These results also showed that the energy expenditure of COD can be evaluated using only two data points. These results may be useful for estimating the energy expenditure of players during a match and designing shuttle exercise training programs. PMID:24497913

  5. Non-linear models for the detection of impaired cerebral blood flow autoregulation.

    Science.gov (United States)

    Chacón, Max; Jara, José Luis; Miranda, Rodrigo; Katsogridakis, Emmanuel; Panerai, Ronney B

    2018-01-01

    The ability to discriminate between normal and impaired dynamic cerebral autoregulation (CA), based on measurements of spontaneous fluctuations in arterial blood pressure (BP) and cerebral blood flow (CBF), has considerable clinical relevance. We studied 45 normal subjects at rest and under hypercapnia induced by breathing a mixture of carbon dioxide and air. Non-linear models with BP as input and CBF velocity (CBFV) as output, were implemented with support vector machines (SVM) using separate recordings for learning and validation. Dynamic SVM implementations used either moving average or autoregressive structures. The efficiency of dynamic CA was estimated from the model's derived CBFV response to a step change in BP as an autoregulation index for both linear and non-linear models. Non-linear models with recurrences (autoregressive) showed the best results, with CA indexes of 5.9 ± 1.5 in normocapnia, and 2.5 ± 1.2 for hypercapnia with an area under the receiver-operator curve of 0.955. The high performance achieved by non-linear SVM models to detect deterioration of dynamic CA should encourage further assessment of its applicability to clinical conditions where CA might be impaired.

  6. A TECHNIQUE OF EXPERIMENTAL INVESTIGATIONS OF LINEAR IMPULSE ELECTROMECHANICAL CONVERTERS

    Directory of Open Access Journals (Sweden)

    V.F. Bolyukh

    2017-04-01

    Full Text Available Purpose. Development of a technique of experimental studies linear pulse electromechanical converters parameters, which are used as shock-power devices and electromechanical accelerators, and comparing the experimental results with the calculated indices obtained using the mathematical model. Methodology. Method of experimental investigations of linear electromechanical converter is that the electrical parameters are recorded simultaneously (inductor winding current and mechanical parameters characterizing the power and speed indicators of the joke with actuator. Power indicators are primarily important for shock-power devices, and high velocity - for electromechanical accelerators. Power indices were investigated using piezoelectric sensors, a system of strain sensors, pressure pulsation sensor and high-speed videorecording. Velocity indicators were investigated using a resistive movement sensor which allows to record character of the armature movement with actuating element in each moment. Results. The technique of experimental research, which is the simultaneous recording of electrical and mechanical power and velocity parameters of the linear electromechanical converter pulse, is developed. In the converter as a shock-power device power indicators are recorded using a piezoelectric transducer, strain sensors system, pressure pulsation sensor and high-speed video. The parameters of the inductor winding current pulse, the time lag of mechanical processes in relation to the time of occurrence of the inductor winding current, the average speed of the joke, the magnitude and momentum of electrodynamics forces acting on the plate strikes are experimentally determined. In the converter as an electromechanical accelerator velocity performance recorded using resistive displacement sensors. It is shown that electromechanical converter processes have complex spatial-temporal character. The experimental results are in good agreement with the calculated

  7. A metronome for controlling the mean velocity during the bench press exercise.

    Science.gov (United States)

    Moras, Gerard; Rodríguez-Jiménez, Sergio; Busquets, Albert; Tous-Fajardo, Julio; Pozzo, Marco; Mujika, Iñigo

    2009-05-01

    Lifting velocity may have a great impact on strength training-induced adaptations. The purpose of this study was to validate a method including a metronome and a measurement tape as inexpensive tools for the estimation of mean lifting velocity during the bench press exercise. Fifteen subjects participated in this study. After determining their one repetition maximum (1RM) load, we estimated the maximum metronome rhythm (R) that each subject could maintain in the concentric phase for loads of 40 and 60% of 1RM. To estimate R, the 3 repetitions with highest concentric power, as measured by means of a linear encoder, were selected, and their average duration was calculated and converted to lifting rhythm in beats per minute (bpm) for each subject. The range of motion was measured using a regular tape and kept constant during all exercises. Subjects were instructed to begin with the barbell at arm lengths and lower it in correspondence with the metronome beep. They subsequently performed 5 repetitions at 3 different rhythms relative to R (50, 70, and 90% R) for each training load (40 and 60% of 1RM). A linear encoder was attached to the bar and used as a criterion to measure the vertical displacement over time. For each rhythm, the mean velocity was calculated with the metronome (time) and the reference distance and compared with that recorded by the linear encoder. The SEM for velocity between both testing methods ranged from 0.02 to 0.05 m.s (coefficient of variation, 4.0-6.4%; Pearson's correlation, 0.8-0.95). The present results showed that the use of a metronome and a measurement tape may be a valid method to estimate the mean velocity of execution during the bench press exercise. This simple method could help coaches and athletes achieve their strength training goals, which are partly determined by lifting velocity.

  8. Review and statistical analysis of the ultrasonic velocity method for estimating the porosity fraction in polycrystalline materials

    International Nuclear Information System (INIS)

    Roth, D.J.; Swickard, S.M.; Stang, D.B.; Deguire, M.R.

    1990-03-01

    A review and statistical analysis of the ultrasonic velocity method for estimating the porosity fraction in polycrystalline materials is presented. Initially, a semi-empirical model is developed showing the origin of the linear relationship between ultrasonic velocity and porosity fraction. Then, from a compilation of data produced by many researchers, scatter plots of velocity versus percent porosity data are shown for Al2O3, MgO, porcelain-based ceramics, PZT, SiC, Si3N4, steel, tungsten, UO2,(U0.30Pu0.70)C, and YBa2Cu3O(7-x). Linear regression analysis produced predicted slope, intercept, correlation coefficient, level of significance, and confidence interval statistics for the data. Velocity values predicted from regression analysis for fully-dense materials are in good agreement with those calculated from elastic properties

  9. Dietary arginine and linear growth

    DEFF Research Database (Denmark)

    van Vught, Anneke J A H; Dagnelie, Pieter C; Arts, Ilja C W

    2013-01-01

    Child Intervention Study during 2001-2 (baseline), and at 3-year and 7-year follow-up, were used. Arginine intake was estimated via a 7 d precoded food diary at baseline and 3-year follow-up. Data were analysed in a multilevel structure in which children were embedded within schools. Random intercept......The amino acid arginine is a well-known growth hormone (GH) stimulator and GH is an important modulator of linear growth. The aim of the present study was to investigate the effect of dietary arginine on growth velocity in children between 7 and 13 years of age. Data from the Copenhagen School...... and slopes were defined to estimate the association between arginine intake and growth velocity, including the following covariates: sex; age; baseline height; energy intake; puberty stage at 7-year follow-up and intervention/control group. The association between arginine intake and growth velocity...

  10. Validity of the Water Hammer Formula for Determining Regional Aortic Pulse Wave Velocity: Comparison of One-Point and Two-Point (Foot-to-Foot) Measurements Using a Multisensor Catheter in Human.

    Science.gov (United States)

    Hanya, Shizuo

    2013-01-01

    Lack of high-fidelity simultaneous measurements of pressure and flow velocity in the aorta has impeded the direct validation of the water-hammer formula for estimating regional aortic pulse wave velocity (AO-PWV1) and has restricted the study of the change of beat-to-beat AO-PWV1 under varying physiological conditions in man. Aortic pulse wave velocity was derived using two methods in 15 normotensive subjects: 1) the conventional two-point (foot-to-foot) method (AO-PWV2) and 2) a one-point method (AO-PWV1) in which the pressure velocity-loop (PV-loop) was analyzed based on the water hammer formula using simultaneous measurements of flow velocity (Vm) and pressure (Pm) at the same site in the proximal aorta using a multisensor catheter. AO-PWV1 was calculated from the slope of the linear regression line between Pm and Vm where wave reflection (Pb) was at a minimum in early systole in the PV-loop using the water hammer formula, PWV1 = (Pm/Vm)/ρ, where ρ is the blood density. AO-PWV2 was calculated using the conventional two-point measurement method as the distance/traveling time of the wave between 2 sites for measuring P in the proximal aorta. Beat-to-beat alterations of AO-PWV1 in relationship to aortic pressure and linearity of the initial part of the PV-loop during a Valsalva maneuver were also assessed in one subject. The initial part of the loop became steeper in association with the beat-to-beat increase in diastolic pressure in phase 4 during the Valsalva maneuver. The linearity of the initial part of the PV-loop was maintained consistently during the maneuver. Flow velocity vs. pressure in the proximal aorta was highly linear during early systole, with Pearson's coefficients ranging from 0.9954 to 0.9998. The average values of AO-PWV1 and AO-PWV2 were 6.3 ± 1.2 and 6.7 ± 1.3 m/s, respectively. The regression line of AO-PWV1 on AO-PWV2 was y = 0.95x + 0.68 (r = 0.93, p <0.001). This study concluded that the water-hammer formula (one-point method) provides

  11. The association of brain structure with gait velocity in older adults: a quantitative volumetric analysis of brain MRI

    Energy Technology Data Exchange (ETDEWEB)

    Ezzati, Ali [Albert Einstein College of Medicine of Yeshiva University, Saul B. Korey Department of Neurology, Bronx, NY (United States); Montefiore Medical Center, Department of Neurology, Bronx, NY (United States); Katz, Mindy J. [Albert Einstein College of Medicine of Yeshiva University, Saul B. Korey Department of Neurology, Bronx, NY (United States); Lipton, Michael L. [Albert Einstein College of Medicine of Yeshiva University, The Gruss Magnetic Resonance Research Center and Departments of Radiology, Psychiatry and Behavioral Sciences and the Dominick P. Purpura Department of Neuroscience, Bronx, NY (United States); Montefiore Medical Center, The Department of Radiology, Bronx, NY (United States); Lipton, Richard B. [Albert Einstein College of Medicine of Yeshiva University, Saul B. Korey Department of Neurology, Bronx, NY (United States); Albert Einstein College of Medicine of Yeshiva University, Department of Epidemiology and Population Health, Bronx, NY (United States); Verghese, Joe [Albert Einstein College of Medicine of Yeshiva University, Saul B. Korey Department of Neurology, Bronx, NY (United States); Albert Einstein College of Medicine, Division of Cognitive and Motor Aging, Bronx, NY (United States)

    2015-08-15

    While cortical processes play an important role in controlling locomotion, the underlying structural brain changes associated with slowing of gait in aging are not yet fully established. Our study aimed to examine the relationship between cortical gray matter volume (GM), white matter volume (WM), ventricular volume (VV), hippocampal and hippocampal subfield volumes, and gait velocity in older adults free of dementia. Gait and cognitive performance was tested in 112 community-residing adults, age 70 years and over, participating in the Einstein Aging Study. Gait velocity (cm/s) was obtained using an instrumented walkway. Volumetric MRI measures were estimated using a FreeSurfer software. We examined the cross-sectional relationship of GM, WM, VV, and hippocampal total and subfield volumes and gait velocity using linear regression models. In complementary models, the effect of memory performance on the relationship between gait velocity and regional volumes was evaluated. Slower gait velocity was associated with smaller cortical GM and total hippocampal volumes. There was no association between gait velocity and WM or VV. Among hippocampal subfields, only smaller presubiculum volume was significantly associated with decrease in gait velocity. Addition of the memory performance to the models attenuated the association between gait velocity and all volumetric measures. Our findings indicate that total GM and hippocampal volumes as well as specific hippocampal subfield volumes are inversely associated with locomotor function. These associations are probably affected by cognitive status of study population. (orig.)

  12. The association of brain structure with gait velocity in older adults: a quantitative volumetric analysis of brain MRI

    International Nuclear Information System (INIS)

    Ezzati, Ali; Katz, Mindy J.; Lipton, Michael L.; Lipton, Richard B.; Verghese, Joe

    2015-01-01

    While cortical processes play an important role in controlling locomotion, the underlying structural brain changes associated with slowing of gait in aging are not yet fully established. Our study aimed to examine the relationship between cortical gray matter volume (GM), white matter volume (WM), ventricular volume (VV), hippocampal and hippocampal subfield volumes, and gait velocity in older adults free of dementia. Gait and cognitive performance was tested in 112 community-residing adults, age 70 years and over, participating in the Einstein Aging Study. Gait velocity (cm/s) was obtained using an instrumented walkway. Volumetric MRI measures were estimated using a FreeSurfer software. We examined the cross-sectional relationship of GM, WM, VV, and hippocampal total and subfield volumes and gait velocity using linear regression models. In complementary models, the effect of memory performance on the relationship between gait velocity and regional volumes was evaluated. Slower gait velocity was associated with smaller cortical GM and total hippocampal volumes. There was no association between gait velocity and WM or VV. Among hippocampal subfields, only smaller presubiculum volume was significantly associated with decrease in gait velocity. Addition of the memory performance to the models attenuated the association between gait velocity and all volumetric measures. Our findings indicate that total GM and hippocampal volumes as well as specific hippocampal subfield volumes are inversely associated with locomotor function. These associations are probably affected by cognitive status of study population. (orig.)

  13. The effect of small streamwise velocity distortion on the boundary layer flow over a thin flat plate with application to boundary layer stability theory

    Science.gov (United States)

    Goldstein, M. E.; Leib, S. J.; Cowley, S. J.

    1990-01-01

    Researchers show how an initially linear spanwise disturbance in the free stream velocity field is amplified by leading edge bluntness effects and ultimately leads to a small amplitude but linear spanwise motion far downstream from the edge. This spanwise motion is imposed on the boundary layer flow and ultimately causes an order-one change in its profile shape. The modified profiles are highly unstable and can support Tollmein-Schlichting wave growth well upstream of the theoretical lower branch of the neutral stability curve for a Blasius boundary layer.

  14. Velocity-dependent changes of rotational axes in the non-visual control of unconstrained 3D arm motions.

    Science.gov (United States)

    Isableu, B; Rezzoug, N; Mallet, G; Bernardin, D; Gorce, P; Pagano, C C

    2009-12-29

    We examined the roles of inertial (e(3)), shoulder-centre of mass (SH-CM) and shoulder-elbow articular (SH-EL) rotation axes in the non-visual control of unconstrained 3D arm rotations. Subjects rotated the arm in elbow configurations that yielded either a constant or variable separation between these axes. We hypothesized that increasing the motion frequency and the task complexity would result in the limbs' rotational axis to correspond to e(3) in order to minimize rotational resistances. Results showed two velocity-dependent profiles wherein the rotation axis coincided with the SH-EL axis for S and I velocities and then in the F velocity shifted to either a SH-CM/e(3) trade-off axis for one profile, or to no preferential axis for the other. A third profile was velocity-independent, with the SH-CM/e(3) trade-off axis being adopted. Our results are the first to provide evidence that the rotational axis of a multi-articulated limb may change from a geometrical axis of rotation to a mass or inertia based axis as motion frequency increases. These findings are discussed within the framework of the minimum inertia tensor model (MIT), which shows that rotations about e(3) reduce the amount of joint muscle torque that must be produced by employing the interaction torque to assist movement.

  15. Fourier imaging of non-linear structure formation

    Energy Technology Data Exchange (ETDEWEB)

    Brandbyge, Jacob; Hannestad, Steen, E-mail: jacobb@phys.au.dk, E-mail: sth@phys.au.dk [Department of Physics and Astronomy, University of Aarhus, Ny Munkegade 120, DK-8000 Aarhus C (Denmark)

    2017-04-01

    We perform a Fourier space decomposition of the dynamics of non-linear cosmological structure formation in ΛCDM models. From N -body simulations involving only cold dark matter we calculate 3-dimensional non-linear density, velocity divergence and vorticity Fourier realizations, and use these to calculate the fully non-linear mode coupling integrals in the corresponding fluid equations. Our approach allows for a reconstruction of the amount of mode coupling between any two wavenumbers as a function of redshift. With our Fourier decomposition method we identify the transfer of power from larger to smaller scales, the stable clustering regime, the scale where vorticity becomes important, and the suppression of the non-linear divergence power spectrum as compared to linear theory. Our results can be used to improve and calibrate semi-analytical structure formation models.

  16. Fourier imaging of non-linear structure formation

    International Nuclear Information System (INIS)

    Brandbyge, Jacob; Hannestad, Steen

    2017-01-01

    We perform a Fourier space decomposition of the dynamics of non-linear cosmological structure formation in ΛCDM models. From N -body simulations involving only cold dark matter we calculate 3-dimensional non-linear density, velocity divergence and vorticity Fourier realizations, and use these to calculate the fully non-linear mode coupling integrals in the corresponding fluid equations. Our approach allows for a reconstruction of the amount of mode coupling between any two wavenumbers as a function of redshift. With our Fourier decomposition method we identify the transfer of power from larger to smaller scales, the stable clustering regime, the scale where vorticity becomes important, and the suppression of the non-linear divergence power spectrum as compared to linear theory. Our results can be used to improve and calibrate semi-analytical structure formation models.

  17. Simultaneous inversion of the background velocity and the perturbation in full-waveform inversion

    KAUST Repository

    Wu, Zedong

    2015-09-02

    The gradient of standard full-waveform inversion (FWI) attempts to map the residuals in the data to perturbations in the model. Such perturbations may include smooth background updates from the transmission components and high wavenumber updates from the reflection components. However, if we fix the reflection components using imaging, the gradient of what is referred to as reflected-waveform inversion (RWI) admits mainly transmission background-type updates. The drawback of existing RWI methods is that they lack an optimal image capable of producing reflections within the convex region of the optimization. Because the influence of velocity on the data was given mainly by its background (propagator) and perturbed (reflectivity) components, we have optimized both components simultaneously using a modified objective function. Specifically, we used an objective function that combined the data generated from a source using the background velocity, and that by the perturbed velocity through Born modeling, to fit the observed data. When the initial velocity was smooth, the data modeled from the source using the background velocity will mainly be reflection free, and most of the reflections were obtained from the image (perturbed velocity). As the background velocity becomes more accurate and can produce reflections, the role of the image will slowly diminish, and the update will be dominated by the standard FWI gradient to obtain high resolution. Because the objective function was quadratic with respect to the image, the inversion for the image was fast. To update the background velocity smoothly, we have combined different components of the gradient linearly through solving a small optimization problem. Application to the Marmousi model found that this method converged starting with a linearly increasing velocity, and with data free of frequencies below 4 Hz. Application to the 2014 Chevron Gulf of Mexico imaging challenge data set demonstrated the potential of the

  18. Time-dependent coolant velocity measurements in an operating BWR

    International Nuclear Information System (INIS)

    Luebbesmeyer, D.; Crowe, R.D.

    1980-01-01

    A method to measure time-dependent fluid velocities in BWR-bundle elements by noise analysis of the incore-neutron-detector signals is shown. Two application examples of the new method are given. The time behaviour of the fluid velocity in the bundle element during a scheduled power excursion of the plant. The change of power was performed by changing the coolant flow through the core The apparent change of the fluid velocity due to thermal elongation of the helix-drive of the TIP-system. A simplified mathematical model was derived for this elongation to use as a reference to check the validity of the new method. (author)

  19. Determination of velocity vector angles using the directional cross-correlation method

    DEFF Research Database (Denmark)

    Kortbek, Jacob; Jensen, Jørgen Arendt

    2005-01-01

    and then select the angle with the highest normalized correlation between directional signals. The approach is investigated using Field II simulations and data from the experimental ultrasound scanner RASMUS and with a parabolic flow having a peak velocity of 0.3 m/s. A 7 MHz linear array transducer is used......A method for determining both velocity magnitude and angle in any direction is suggested. The method uses focusing along the velocity direction and cross-correlation for finding the correct velocity magnitude. The angle is found from beamforming directional signals in a number of directions......-time ) between signals to correlate, and a proper choice varies with flow angle and flow velocity. One performance example is given with a fixed value of k tprf for all flow angles. The angle estimation on measured data for flow at 60 ◦ to 90 ◦ , yields a probability of valid estimates between 68% and 98...

  20. Estimation of velocity vector angles using the directional cross-correlation method

    DEFF Research Database (Denmark)

    Kortbek, Jacob; Jensen, Jørgen Arendt

    2006-01-01

    and then select the angle with the highest normalized correlation between directional signals. The approach is investigated using Field II simulations and data from the experimental ultrasound scanner RASMUS and a circulating flow rig with a parabolic flow having a peak velocity of 0.3 m/s. A 7 MHz linear array......A method for determining both velocity magnitude and angle in any direction is suggested. The method uses focusing along the velocity direction and cross-correlation for finding the correct velocity magnitude. The angle is found from beamforming directional signals in a number of directions...... transducer is used with a normal transmission of a focused ultrasound field. In the simulations the relative standard deviation of the velocity magnitude is between 0.7% and 7.7% for flow angles between 45 deg and 90 deg. The study showed that angle estimation by directional beamforming can be estimated...

  1. On the persistence of unstable bump-on-tail electron velocity distributions in the earth's foreshock

    Science.gov (United States)

    Klimas, Alexander J.; Fitzenreiter, Richard J.

    1988-01-01

    This paper presents further evidence for the persistence of bump-on-tail unstable reduced velocity distributions in the earth's electron foreshock, which contradicts the understanding of quasi-linear saturation of the bump-on-tail instability. A modified theory for the saturation of the bump-on-tail instability in the earth's foreshock is proposed to explain the mechanism of this persistence, and the predictions are compared to the results of a numerical simulation of the electron plasma in the foreshock. The results support the thesis that quasi-linear saturation of the bump-on-tail instability is modified in the foreshock, due to the driven nature of the region, so that at saturation the stabilized velocity distribution still appears bump-on-tail unstable to linear plasma analysis.

  2. Cosmological large-scale structures beyond linear theory in modified gravity

    Energy Technology Data Exchange (ETDEWEB)

    Bernardeau, Francis; Brax, Philippe, E-mail: francis.bernardeau@cea.fr, E-mail: philippe.brax@cea.fr [CEA, Institut de Physique Théorique, 91191 Gif-sur-Yvette Cédex (France)

    2011-06-01

    We consider the effect of modified gravity on the growth of large-scale structures at second order in perturbation theory. We show that modified gravity models changing the linear growth rate of fluctuations are also bound to change, although mildly, the mode coupling amplitude in the density and reduced velocity fields. We present explicit formulae which describe this effect. We then focus on models of modified gravity involving a scalar field coupled to matter, in particular chameleons and dilatons, where it is shown that there exists a transition scale around which the existence of an extra scalar degree of freedom induces significant changes in the coupling properties of the cosmic fields. We obtain the amplitude of this effect for realistic dilaton models at the tree-order level for the bispectrum, finding them to be comparable in amplitude to those obtained in the DGP and f(R) models.

  3. Linear switched reluctance motor control with PIC18F452 microcontroller

    OpenAIRE

    DURSUN, Mahir; KOÇ, Fatmagül

    2014-01-01

    This paper presents the simulation, control, and experimental results of the velocity of a double-sided, 6/4-poled, 3-phased, 8 A, 24 V, 250 W, and 250 N pull force linear switched reluctance motor (LSRM). In the simulation and experimental study, the reference velocity is constant depending on the position and time. The velocity versus the position of the translator was controlled with fuzzy logic control (FLC) and proportional-integral (PI) control techniques. The motor was control...

  4. Velocity dependence of enhanced dynamic hyperfine field for Pd ions swiftly recoiling in magnetized Fe

    International Nuclear Information System (INIS)

    Stuchbery, A.E.; Ryan, G.C.; Bolotin, H.H.; Sie, S.H.

    1980-01-01

    The velocity-dependence of the magnitude of the enchanced dynamic hyperfine magnetic field (EDF) manifest at nuclei of 108 Pd ions swiftly recoiling through thin magnetized Fe has been investigated at ion velocities higher than have heretofore been examined for the heavier nuclides (i.e., at initial recoil velocities (v/Zv 0 )=0.090 and 0.160, v 0 =c/137). These results for 108 Pd, when taken in conjunction with those of prior similar measurements for 106 Pd at lower velocities, and fitted to a velocity dependence for the EDF, give for the Pd isotopes over the extended velocity range 1.74 0 )<=7.02, p=0.41+-0.15; a result incompatible with previous attributions of a linear velocity dependence for the field

  5. Distinguishing zero-group-velocity modes in photonic crystals

    International Nuclear Information System (INIS)

    Ghebrebrhan, M.; Ibanescu, M.; Johnson, Steven G.; Soljacic, M.; Joannopoulos, J. D.

    2007-01-01

    We examine differences between various zero-group-velocity modes in photonic crystals, including those that arise from Bragg diffraction, anticrossings, and band repulsion. Zero-group velocity occurs at points where the group velocity changes sign, and therefore is conceptually related to 'left-handed' media, in which the group velocity is opposite to the phase velocity. We consider this relationship more quantitatively in terms of the Fourier decomposition of the modes, by defining a measure of how much the ''average'' phase velocity is parallel to the group velocity--an anomalous region is one in which they are mostly antiparallel. We find that this quantity can be used to qualitatively distinguish different zero-group-velocity points. In one dimension, such anomalous regions are found never to occur. In higher dimensions, they are exhibited around certain zero-group-velocity points, and lead to unusual enhanced confinement behavior in microcavities

  6. Exhalation velocity of radon-222 of Dutch building materials and the influence of paint systems

    International Nuclear Information System (INIS)

    Dijk, W. van; Jong, P. de

    1989-02-01

    In order to achieve a better insight concerning the source terms of radon in the Dutch dwelling in the framework of the RENA-programme an investigation has been performed into the exhalation velocity of radon-222 from building materials. From this investigation it turned out that the ventilation factor does not have any influence upon the exhalation velocity, neither an influence of alteration of air pressure could be demonstrated. The influence of air humidity upon the exhalation velocity showed a twofold picture; for gypsum a linear increase of the exhalation velocity with vapour pressure was found, while for concrete a linear decrease with vapour pressure was observed. Further it has been investigated in how far paint systems diminish the exhalation velocity of the Rn-222 from gypsum and concrete. Acryl paints, mostly used in the Dutch dwelling, did not show a decrease of the exhalation velocity and structure paints did even cause an increase of the exhalation velocity. Other types of paint based on chlorous rubber, epoxy resins and poly-urethane, in contrast, showed a clear reduction. From these those based on poly-urethane showed the largest reduction (60-75%) at a double sided treatment of the wall. With the help of a mathematical modelling of the exhalation estimations have been made of the exhalation velocity of Rn-222 at single sided treatment of a wall and for the exhalation velocity of Rn-220. For the fore mentioned poly-urethane-paints this yelds, at an estimate, a reduction of respectively 90-95% and 100%. (author). 40 refs.; 15 figs.; 8 tabs

  7. Beneficial effect of physical activity on linear growth rate of ...

    African Journals Online (AJOL)

    It is not known if nutritional and/or other interventions could improve linear growth in adolescents. The purpose of this study was to assess the role of physical activity in promoting linear growth velocity of black adolescents in a low-income shanty town in South Africa. Two schools in a disadvantaged shanty town participated ...

  8. LINEAR2007, Linear-Linear Interpolation of ENDF Format Cross-Sections

    International Nuclear Information System (INIS)

    2007-01-01

    1 - Description of program or function: LINEAR converts evaluated cross sections in the ENDF/B format into a tabular form that is subject to linear-linear interpolation in energy and cross section. The code also thins tables of cross sections already in that form. Codes used subsequently need thus to consider only linear-linear data. IAEA1311/15: This version include the updates up to January 30, 2007. Changes in ENDF/B-VII Format and procedures, as well as the evaluations themselves, make it impossible for versions of the ENDF/B pre-processing codes earlier than PREPRO 2007 (2007 Version) to accurately process current ENDF/B-VII evaluations. The present code can handle all existing ENDF/B-VI evaluations through release 8, which will be the last release of ENDF/B-VI. Modifications from previous versions: - Linear VERS. 2007-1 (JAN. 2007): checked against all ENDF/B-VII; increased page size from 60,000 to 600,000 points 2 - Method of solution: Each section of data is considered separately. Each section of File 3, 23, and 27 data consists of a table of cross section versus energy with any of five interpolation laws. LINEAR will replace each section with a new table of energy versus cross section data in which the interpolation law is always linear in energy and cross section. The histogram (constant cross section between two energies) interpolation law is converted to linear-linear by substituting two points for each initial point. The linear-linear is not altered. For the log-linear, linear-log and log- log laws, the cross section data are converted to linear by an interval halving algorithm. Each interval is divided in half until the value at the middle of the interval can be approximated by linear-linear interpolation to within a given accuracy. The LINEAR program uses a multipoint fractional error thinning algorithm to minimize the size of each cross section table

  9. Measurement of sound velocity profiles in fluids for process monitoring

    International Nuclear Information System (INIS)

    Wolf, M; Kühnicke, E; Lenz, M; Bock, M

    2012-01-01

    In ultrasonic measurements, the time of flight to the object interface is often the only information that is analysed. Conventionally it is only possible to determine distances or sound velocities if the other value is known. The current paper deals with a novel method to measure the sound propagation path length and the sound velocity in media with moving scattering particles simultaneously. Since the focal position also depends on sound velocity, it can be used as a second parameter. Via calibration curves it is possible to determine the focal position and sound velocity from the measured time of flight to the focus, which is correlated to the maximum of averaged echo signal amplitude. To move focal position along the acoustic axis, an annular array is used. This allows measuring sound velocity locally resolved without any previous knowledge of the acoustic media and without a reference reflector. In previous publications the functional efficiency of this method was shown for media with constant velocities. In this work the accuracy of these measurements is improved. Furthermore first measurements and simulations are introduced for non-homogeneous media. Therefore an experimental set-up was created to generate a linear temperature gradient, which also causes a gradient of sound velocity.

  10. Magnetic linear accelerator (MAGLAC) for hypervelocity acceleration in impact fusion (IF)

    International Nuclear Information System (INIS)

    Chen, K.W.

    1980-01-01

    This paper presents considerations on the design of a magnetic linear accelerator suitable as driver for impact fusion. We argue that the proposed approach offers an attractive option to accelerate macroscopic matter to centiluminal velocity suitable for fusion applications. The design goal is to attain a velocity approaching 200 km/sec. Recent results in suitable target design suggest that a velocity in the range of 40-100 km/sec might be sufficient to include fusion. An accelerator in this velocity range can be constructed with current-day technology. We present both design and practical engineering considerations. Future work are outlined and recommended. (orig.)

  11. Circulatory and muscle metabolic responses to draught work compared to increasing trotting velocities.

    Science.gov (United States)

    Gottlieb, M; Essén-Gustavsson, B; Lindholm, A; Persson, S G

    1988-11-01

    Circulatory and muscle metabolic responses were studied in 10 horses which all performed incremental draught work at a low trotting speed on a treadmill (D-test) and also exercise with gradually increasing velocities (S-test). Exercise was continued until the horses could no longer maintain the weights above the floor or maintain speed trotting without changing gait to a gallop. Muscle biopsies were taken from the gluteus and the semitendinosus muscles before, and immediately after, exercise. The heart rate (HR) increased linearly with both increasing draught resistance and velocity and reached mean values of 212 and 203 beats/min, respectively. Blood lactate levels increased exponentially to mean values of 12.9 and 7.9 mmol/litre in the two tests. Both HR and blood lactate levels were significantly higher at the cessation of work in the D-test compared to the S-test. The relationship between HR and blood lactate response in the S-test was similar to that in the D-test. The red cell volume was determined after a standardised exercise tolerance test and was significantly correlated both to the weightloading and to the velocity, producing a HR of 200 beats/min. The changes seen in muscle glycogen and glucose-6-phosphate were similar in the two tests, whereas significantly higher lactate levels and lower creatine phosphate and adenosine triphosphate levels were seen in the D-test compared to the S-test. It was concluded that high oxidative capacity is of importance both for fast trotting and for draught work.(ABSTRACT TRUNCATED AT 250 WORDS)

  12. FORMALIZATION OF DIESEL ENGINE OPERATION CONSIDERING THE EVALUATION OF VELOCITY DURING THE COMBUSTION PROCESSES

    Directory of Open Access Journals (Sweden)

    V. P. Litvinenko

    2015-10-01

    Full Text Available Purpose. Under modern conditions the applying methods and design models as well as the evaluation of the operational characteristics of diesel engines do not completely take into consideration the specifics of the combustion processes. In part, such situation is characterized by the complexity of considering of varied by its nature processes that haven’t been completely investigated. In this context it is necessary to find the new methods and models which would provide relatively simple solutions through the use of integrated factors based on the analysis of parameters of diesel engines. Methodology. The proposed algorithms for the estimating of the combustion process in the form of volumetric and linear velocities is based on the well-known parameters of power and mean effective pressure and allows to compare the efficiency of their behavior in various versions of diesel engines. Findings. The author specified that the volumetric / linear velocity ratio is characterized by some strength and depends on the geometric dimensions of the cylinder-piston group. Due to the assumptions it has become possible to consider the operation of a diesel engine as a system comprising: 1 the subsystem that provides the possibility of obtaining the thermal energy; 2 the subsystem providing the thermal energy transformation; 3 the subsystem that provides the necessary diesel engine power depending on terms of combustion of air-fuel mixture. Originality. The author of the paper proposed the indices of volumetric and linear combustion velocity of air-fuel mixture in the engine cylinder, that allow to obtain the comparative value in different modifications taking into account the possible choice of optimum ratio. Practical value. The usage of indices of volumetric and linear velocities of the combustion processes in the engine cylinder combined with a mathematical model will simplify the method of diesels calculating. Parametric indices of the mentioned velocities

  13. Modulational Instability in Linearly Coupled Asymmetric Dual-Core Fibers

    Directory of Open Access Journals (Sweden)

    Arjunan Govindarajan

    2017-06-01

    Full Text Available We investigate modulational instability (MI in asymmetric dual-core nonlinear directional couplers incorporating the effects of the differences in effective mode areas and group velocity dispersions, as well as phase- and group-velocity mismatches. Using coupled-mode equations for this system, we identify MI conditions from the linearization with respect to small perturbations. First, we compare the MI spectra of the asymmetric system and its symmetric counterpart in the case of the anomalous group-velocity dispersion (GVD. In particular, it is demonstrated that the increase of the inter-core linear-coupling coefficient leads to a reduction of the MI gain spectrum in the asymmetric coupler. The analysis is extended for the asymmetric system in the normal-GVD regime, where the coupling induces and controls the MI, as well as for the system with opposite GVD signs in the two cores. Following the analytical consideration of the MI, numerical simulations are carried out to explore nonlinear development of the MI, revealing the generation of periodic chains of localized peaks with growing amplitudes, which may transform into arrays of solitons.

  14. Equivalent linearization method for limit cycle flutter analysis of plate-type structure in axial flow

    International Nuclear Information System (INIS)

    Lu Li; Yang Yiren

    2009-01-01

    The responses and limit cycle flutter of a plate-type structure with cubic stiffness in viscous flow were studied. The continuous system was dispersed by utilizing Galerkin Method. The equivalent linearization concept was performed to predict the ranges of limit cycle flutter velocities. The coupled map of flutter amplitude-equivalent linear stiffness-critical velocity was used to analyze the stability of limit cycle flutter. The theoretical results agree well with the results of numerical integration, which indicates that the equivalent linearization concept is available to the analysis of limit cycle flutter of plate-type structure. (authors)

  15. Laminar Flame Velocity and Temperature Exponent of Diluted DME-Air Mixture

    Science.gov (United States)

    Naseer Mohammed, Abdul; Anwar, Muzammil; Juhany, Khalid A.; Mohammad, Akram

    2017-03-01

    In this paper, the laminar flame velocity and temperature exponent diluted dimethyl ether (DME) air mixtures are reported. Laminar premixed mixture of DME-air with volumetric dilutions of carbon dioxides (CO2) and nitrogen (N2) are considered. Experiments were conducted using a preheated mesoscale high aspect-ratio diverging channel with inlet dimensions of 25 mm × 2 mm. In this method, flame velocities are extracted from planar flames that were stabilized near adiabatic conditions inside the channel. The flame velocities are then plotted against the ratio of mixture temperature and the initial reference temperature. A non-linear power law regression is observed suitable. This regression analysis gives the laminar flame velocity at the initial reference temperature and temperature exponent. Decrease in the laminar flame velocity and increase in temperature exponent is observed for CO2 and N2 diluted mixtures. The addition of CO2 has profound influence when compared to N2 addition on both flame velocity and temperature exponent. Numerical prediction of the similar mixture using a detailed reaction mechanism is obtained. The computational mechanism predicts higher magnitudes for laminar flame velocity and smaller magnitudes of temperature exponent compared to experimental data.

  16. Improving sub-pixel imperviousness change prediction by ensembling heterogeneous non-linear regression models

    Science.gov (United States)

    Drzewiecki, Wojciech

    2016-12-01

    In this work nine non-linear regression models were compared for sub-pixel impervious surface area mapping from Landsat images. The comparison was done in three study areas both for accuracy of imperviousness coverage evaluation in individual points in time and accuracy of imperviousness change assessment. The performance of individual machine learning algorithms (Cubist, Random Forest, stochastic gradient boosting of regression trees, k-nearest neighbors regression, random k-nearest neighbors regression, Multivariate Adaptive Regression Splines, averaged neural networks, and support vector machines with polynomial and radial kernels) was also compared with the performance of heterogeneous model ensembles constructed from the best models trained using particular techniques. The results proved that in case of sub-pixel evaluation the most accurate prediction of change may not necessarily be based on the most accurate individual assessments. When single methods are considered, based on obtained results Cubist algorithm may be advised for Landsat based mapping of imperviousness for single dates. However, Random Forest may be endorsed when the most reliable evaluation of imperviousness change is the primary goal. It gave lower accuracies for individual assessments, but better prediction of change due to more correlated errors of individual predictions. Heterogeneous model ensembles performed for individual time points assessments at least as well as the best individual models. In case of imperviousness change assessment the ensembles always outperformed single model approaches. It means that it is possible to improve the accuracy of sub-pixel imperviousness change assessment using ensembles of heterogeneous non-linear regression models.

  17. Critical velocity and anaerobic paddling capacity determined by different mathematical models and number of predictive trials in canoe slalom.

    Science.gov (United States)

    Messias, Leonardo H D; Ferrari, Homero G; Reis, Ivan G M; Scariot, Pedro P M; Manchado-Gobatto, Fúlvia B

    2015-03-01

    The purpose of this study was to analyze if different combinations of trials as well as mathematical models can modify the aerobic and anaerobic estimates from critical velocity protocol applied in canoe slalom. Fourteen male elite slalom kayakers from Brazilian canoe slalom team (K1) were evaluated. Athletes were submitted to four predictive trials of 150, 300, 450 and 600 meters in a lake and the time to complete each trial was recorded. Critical velocity (CV-aerobic parameter) and anaerobic paddling capacity (APC-anaerobic parameter) were obtained by three mathematical models (Linear1=distance-time; Linear 2=velocity-1/time and Non-Linear = time-velocity). Linear 1 was chosen for comparison of predictive trials combinations. Standard combination (SC) was considered as the four trials (150, 300, 450 and 600 m). High fits of regression were obtained from all mathematical models (range - R² = 0.96-1.00). Repeated measures ANOVA pointed out differences of all mathematical models for CV (p = 0.006) and APC (p = 0.016) as well as R² (p = 0.033). Estimates obtained from the first (1) and the fourth (4) predictive trials (150 m = lowest; and 600 m = highest, respectively) were similar and highly correlated (r=0.98 for CV and r = 0.96 for APC) with the SC. In summary, methodological aspects must be considered in critical velocity application in canoe slalom, since different combinations of trials as well as mathematical models resulted in different aerobic and anaerobic estimates. Key pointsGreat attention must be given for methodological concerns regarding critical velocity protocol applied on canoe slalom, since different estimates were obtained depending on the mathematical model and the predictive trials used.Linear 1 showed the best fits of regression. Furthermore, to the best of our knowledge and considering practical applications, this model is the easiest one to calculate the estimates from critical velocity protocol. Considering this, the abyss between science

  18. Climate Velocity Can Inform Conservation in a Warming World.

    Science.gov (United States)

    Brito-Morales, Isaac; García Molinos, Jorge; Schoeman, David S; Burrows, Michael T; Poloczanska, Elvira S; Brown, Christopher J; Ferrier, Simon; Harwood, Tom D; Klein, Carissa J; McDonald-Madden, Eve; Moore, Pippa J; Pandolfi, John M; Watson, James E M; Wenger, Amelia S; Richardson, Anthony J

    2018-06-01

    Climate change is shifting the ranges of species. Simple predictive metrics of range shifts such as climate velocity, that do not require extensive knowledge or data on individual species, could help to guide conservation. We review research on climate velocity, describing the theory underpinning the concept and its assumptions. We highlight how climate velocity has already been applied in conservation-related research, including climate residence time, climate refugia, endemism, historic and projected range shifts, exposure to climate change, and climate connectivity. Finally, we discuss ways to enhance the use of climate velocity in conservation through tailoring it to be more biologically meaningful, informing design of protected areas, conserving ocean biodiversity in 3D, and informing conservation actions. Copyright © 2018 Elsevier Ltd. All rights reserved.

  19. Low-velocity superconducting accelerating structures

    International Nuclear Information System (INIS)

    Delayen, J.R.

    1990-01-01

    The present paper reviews the status of RF superconductivity as applied to low-velocity accelerating properties. Heavy-ion accelerators must accelerate efficiently particles which travel at a velocity much smaller than that of light particles, whose velocity changes along accelerator, and also different particles which have different velocity profiles. Heavy-ion superconducting accelerators operate at frequencies which are lower than high-energy superconducting accelerators. The present paper first discusses the basic features of heavy-ion superconducting structures and linacs. Design choices are then addressed focusing on structure geometry, materials, frequency, phase control, and focusing. The report also gives an outline of the status of superconducting booster projects currently under way at the Argonne National Laboratory, SUNY Stony Brook, Weizmann Institute, University of Washington, Florida State, Saclay, Kansas State, Daresbury, Japanese Atomic Energy Research Institute, Legnaro, Bombay, Sao Paulo, ANU (Canberra), and Munich. Recent developments and future prospects are also described. (N.K.) 68 refs

  20. Compliance of the normal-sized aorta in adolescents with Marfan syndrome: comparison of MR measurements of aortic distensibility and pulse wave velocity

    International Nuclear Information System (INIS)

    Eichhorn, J.G.; Ruediger, H.J.; Gorenflo, M.; Khalil, M.; Ulmer, H.; Krissak, R.; Kauczor, H.U.; Ley, S.; Universitaetsklinik Heidelberg; Arnold, R.; Universitaetskinderklinik Freiburg; Boese, J.; Siemens AG, Medical Solutions, Forchheim; Krug, R.; Fink, C.

    2007-01-01

    Purpose: To compare the aortic compliance of the normal-sized aorta of adolescents with Marfan syndrome and healthy controls using MR measurements of the aortic distensibility and pulse wave velocity. Materials and Methods: Fourteen patients (median age: 15 [9-21] years) and 11 healthy subjects (23 [12-32] years) were examined at 1.5 T. The MR protocol included 2D steady-state free precession (SSFP)-CINE MRI of the aortic distensibility and PC-MRI of the pulse wave velocity. All measurements were positioned perpendicular to the descending aorta at the level of the diaphragm for assessing the changes in the aortic cross-sectional areas and additionally above and below this plane for assessing the pulse wave velocity. In addition contrast-enhanced 3D-MR angiography was performed in adolescents with Marfan syndrome to exclude morphologic changes and to prove normal-sized aorta. Results: Compared with control subjects, adolescents with Marfan syndrome had significantly decreased distensibility and significantly increased pulse wave velocity (χ 2 -test, p = 0.0002) using an age-related non-linear regression analysis. The related aortic compliance was significantly decreased (χ 2 -test, p = 0.0002). There was a good correlation between the two methods (r = 0.86). A low intraobserver variability was found for both methods (≤ 2 %). (orig.)

  1. A nonlinear inversion for the velocity background and perturbation models

    KAUST Repository

    Wu, Zedong

    2015-08-19

    Reflected waveform inversion (RWI) provides a method to reduce the nonlinearity of the standard full waveform inversion (FWI) by inverting for the single scattered wavefield obtained using an image. However, current RWI methods usually neglect diving waves, which is an important source of information for extracting the long wavelength components of the velocity model. Thus, we propose a new optimization problem through breaking the velocity model into the background and the perturbation in the wave equation directly. In this case, the perturbed model is no longer the single scattering model, but includes all scattering. We optimize both components simultaneously, and thus, the objective function is nonlinear with respect to both the background and perturbation. The new introduced w can absorb the non-smooth update of background naturally. Application to the Marmousi model with frequencies that start at 5 Hz shows that this method can converge to the accurate velocity starting from a linearly increasing initial velocity. Application to the SEG2014 demonstrates the versatility of the approach.

  2. Three-dimensional simulation of the motion of a single particle under a simulated turbulent velocity field

    Science.gov (United States)

    Moreno-Casas, P. A.; Bombardelli, F. A.

    2015-12-01

    A 3D Lagrangian particle tracking model is coupled to a 3D channel velocity field to simulate the saltation motion of a single sediment particle moving in saltation mode. The turbulent field is a high-resolution three dimensional velocity field that reproduces a by-pass transition to turbulence on a flat plate due to free-stream turbulence passing above de plate. In order to reduce computational costs, a decoupled approached is used, i.e., the turbulent flow is simulated independently from the tracking model, and then used to feed the 3D Lagrangian particle model. The simulations are carried using the point-particle approach. The particle tracking model contains three sub-models, namely, particle free-flight, a post-collision velocity and bed representation sub-models. The free-flight sub-model considers the action of the following forces: submerged weight, non-linear drag, lift, virtual mass, Magnus and Basset forces. The model also includes the effect of particle angular velocity. The post-collision velocities are obtained by applying conservation of angular and linear momentum. The complete model was validated with experimental results from literature within the sand range. Results for particle velocity time series and distribution of particle turbulent intensities are presented.

  3. The universal sound velocity formula for the strongly interacting unitary Fermi gas

    International Nuclear Information System (INIS)

    Liu Ke; Chen Ji-Sheng

    2011-01-01

    Due to the scale invariance, the thermodynamic laws of strongly interacting limit unitary Fermi gas can be similar to those of non-interacting ideal gas. For example, the virial theorem between pressure and energy density of the ideal gas P = 2E/3V is still satisfied by the unitary Fermi gas. This paper analyses the sound velocity of unitary Fermi gases with the quasi-linear approximation. For comparison, the sound velocities for the ideal Boltzmann, Bose and Fermi gas are also given. Quite interestingly, the sound velocity formula for the ideal non-interacting gas is found to be satisfied by the unitary Fermi gas in different temperature regions. (general)

  4. Non-Linear Dynamics of Saturn’s Rings

    Science.gov (United States)

    Esposito, Larry W.

    2015-11-01

    Non-linear processes can explain why Saturn’s rings are so active and dynamic. Ring systems differ from simple linear systems in two significant ways: 1. They are systems of granular material: where particle-to-particle collisions dominate; thus a kinetic, not a fluid description needed. We find that stresses are strikingly inhomogeneous and fluctuations are large compared to equilibrium. 2. They are strongly forced by resonances: which drive a non-linear response, pushing the system across thresholds that lead to persistent states.Some of this non-linearity is captured in a simple Predator-Prey Model: Periodic forcing from the moon causes streamline crowding; This damps the relative velocity, and allows aggregates to grow. About a quarter phase later, the aggregates stir the system to higher relative velocity and the limit cycle repeats each orbit.Summary of Halo Results: A predator-prey model for ring dynamics produces transient structures like ‘straw’ that can explain the halo structure and spectroscopy: This requires energetic collisions (v ≈ 10m/sec, with throw distances about 200km, implying objects of scale R ≈ 20km).Transform to Duffing Eqn : With the coordinate transformation, z = M2/3, the Predator-Prey equations can be combined to form a single second-order differential equation with harmonic resonance forcing.Ring dynamics and history implications: Moon-triggered clumping at perturbed regions in Saturn’s rings creates both high velocity dispersion and large aggregates at these distances, explaining both small and large particles observed there. We calculate the stationary size distribution using a cell-to-cell mapping procedure that converts the phase-plane trajectories to a Markov chain. Approximating the Markov chain as an asymmetric random walk with reflecting boundaries allows us to determine the power law index from results of numerical simulations in the tidal environment surrounding Saturn. Aggregates can explain many dynamic aspects

  5. Premotor neurons encode torsional eye velocity during smooth-pursuit eye movements

    Science.gov (United States)

    Angelaki, Dora E.; Dickman, J. David

    2003-01-01

    Responses to horizontal and vertical ocular pursuit and head and body rotation in multiple planes were recorded in eye movement-sensitive neurons in the rostral vestibular nuclei (VN) of two rhesus monkeys. When tested during pursuit through primary eye position, the majority of the cells preferred either horizontal or vertical target motion. During pursuit of targets that moved horizontally at different vertical eccentricities or vertically at different horizontal eccentricities, eye angular velocity has been shown to include a torsional component the amplitude of which is proportional to half the gaze angle ("half-angle rule" of Listing's law). Approximately half of the neurons, the majority of which were characterized as "vertical" during pursuit through primary position, exhibited significant changes in their response gain and/or phase as a function of gaze eccentricity during pursuit, as if they were also sensitive to torsional eye velocity. Multiple linear regression analysis revealed a significant contribution of torsional eye movement sensitivity to the responsiveness of the cells. These findings suggest that many VN neurons encode three-dimensional angular velocity, rather than the two-dimensional derivative of eye position, during smooth-pursuit eye movements. Although no clear clustering of pursuit preferred-direction vectors along the semicircular canal axes was observed, the sensitivity of VN neurons to torsional eye movements might reflect a preservation of similar premotor coding of visual and vestibular-driven slow eye movements for both lateral-eyed and foveate species.

  6. Linearity and Non-linearity of Photorefractive effect in Materials ...

    African Journals Online (AJOL)

    Linearity and Non-linearity of Photorefractive effect in Materials using the Band transport ... For low light beam intensities the change in the refractive index is ... field is spatially phase shifted by /2 relative to the interference fringe pattern, which ...

  7. Validity and reliability of simple measurement device to assess the velocity of the barbell during squats.

    Science.gov (United States)

    Lorenzetti, Silvio; Lamparter, Thomas; Lüthy, Fabian

    2017-12-06

    The velocity of a barbell can provide important insights on the performance of athletes during strength training. The aim of this work was to assess the validity and reliably of four simple measurement devices that were compared to 3D motion capture measurements during squatting. Nine participants were assessed when performing 2 × 5 traditional squats with a weight of 70% of the 1 repetition maximum and ballistic squats with a weight of 25 kg. Simultaneously, data was recorded from three linear position transducers (T-FORCE, Tendo Power and GymAware), an accelerometer based system (Myotest) and a 3D motion capture system (Vicon) as the Gold Standard. Correlations between the simple measurement devices and 3D motion capture of the mean and the maximal velocity of the barbell, as well as the time to maximal velocity, were calculated. The correlations during traditional squats were significant and very high (r = 0.932, 0.990, p squats and was less accurate. All the linear position transducers were able to assess squat performance, particularly during traditional squats and especially in terms of mean velocity and time to maximal velocity.

  8. Linear and kernel methods for multi- and hypervariate change detection

    DEFF Research Database (Denmark)

    Nielsen, Allan Aasbjerg; Canty, Morton J.

    2010-01-01

    . Principal component analysis (PCA) as well as maximum autocorrelation factor (MAF) and minimum noise fraction (MNF) analyses of IR-MAD images, both linear and kernel-based (which are nonlinear), may further enhance change signals relative to no-change background. The kernel versions are based on a dual...... formulation, also termed Q-mode analysis, in which the data enter into the analysis via inner products in the Gram matrix only. In the kernel version the inner products of the original data are replaced by inner products between nonlinear mappings into higher dimensional feature space. Via kernel substitution......, also known as the kernel trick, these inner products between the mappings are in turn replaced by a kernel function and all quantities needed in the analysis are expressed in terms of the kernel function. This means that we need not know the nonlinear mappings explicitly. Kernel principal component...

  9. Time-averaged second-order pressure and velocity measurements in a pressurized oscillating flow prime mover

    Energy Technology Data Exchange (ETDEWEB)

    Paridaens, Richard [DynFluid, Arts et Metiers, 151 boulevard de l' Hopital, Paris (France); Kouidri, Smaine [LIMSI-CNRS, Orsay Cedex (France)

    2016-11-15

    Nonlinear phenomena in oscillating flow devices cause the appearance of a relatively minor secondary flow known as acoustic streaming, which is superimposed on the primary oscillating flow. Knowledge of control parameters, such as the time-averaged second-order velocity and pressure, would elucidate the non-linear phenomena responsible for this part of the decrease in the system's energetic efficiency. This paper focuses on the characterization of a travelling wave oscillating flow engine by measuring the time-averaged second order pressure and velocity. Laser Doppler velocimetry technique was used to measure the time-averaged second-order velocity. As streaming is a second-order phenomenon, its measurement requires specific settings especially in a pressurized device. Difficulties in obtaining the proper settings are highlighted in this study. The experiments were performed for mean pressures varying from 10 bars to 22 bars. Non-linear effect does not constantly increase with pressure.

  10. Relative Seismic Velocity Variations Correlate with Deformation at Kīlauea Volcano.

    Science.gov (United States)

    Donaldson, C.; Caudron, C.; Green, R. G.; White, R. S.

    2016-12-01

    Passive interferometry using ambient seismic noise is an appealing monitoring tool at volcanoes. The continuous nature of seismic noise provides better temporal resolution than earthquake interferometry and ambient noise may be sensitive to changes at depths that do not deform the volcano surface. Despite this, to our knowledge, no studies have yet comprehensively compared deformation and velocity at a volcano over a significant length of time. We use a volcanic tremor source (approximately 0.3 - 1.0 Hz) at Kīlauea volcano as a source for interferometry to measure relative velocity changes with time. The tremor source that dominates the cross correlations is located under the Halema'uma'u caldera at Kīlauea summit. By cross-correlating the vertical component of day-long seismic records between 200 pairs of stations, we extract coherent and temporally consistent coda wave signals with time lags of up to 70 seconds. Our resulting time series of relative velocity shows a remarkable correlation with the tilt record measured at Kīlauea summit. Kīlauea summit is continually inflating and deflating as the level of the lava lake rises and falls. During these deflation-inflation (DI) events the tilt increases (inflation), as the velocity increases, on the scale of days to weeks. In contrast, we also detect a longer-term velocity decrease between 2011-2015 as the volcano slowly inflates. We suggest that variations in velocity result from opening and closing cracks and pores due to changes in magma pressurization. Early modeling results indicate that pressurizing magma reservoirs at different depths can result in opposite changes in compression/extension at the surface. The consistent correlation of relative velocity and deformation in this study provides an opportunity to better understand the mechanism causing velocity changes, which currently limits the scope of passive interferometry as a monitoring tool.

  11. Calculation of cell face velocity of non-staggered grid system

    KAUST Repository

    Li, Wang

    2012-07-28

    In this paper, the cell face velocities in the discretization of the continuity equation, the momentum equation, and the scalar equation of a non-staggered grid system are calculated and discussed. Both the momentum interpolation and the linear interpolation are adopted to evaluate the coefficients in the discretized momentum and scalar equations. Their performances are compared. When the linear interpolation is used to calculate the coefficients, the mass residual term in the coefficients must be dropped to maintain the accuracy and convergence rate of the solution. © Shanghai University and Springer-Verlag Berlin Heidelberg 2012.

  12. A new virtual instrument for estimating punch velocity in combat sports.

    Science.gov (United States)

    Urbinati, K S; Scheeren, E; Nohama, P

    2013-01-01

    For improving the performance in combat sport, especially percussion, it is necessary achieving high velocity in punches and kicks. The aim of this study was to evaluate the applicability of 3D accelerometry in a Virtual Instrumentation System (VIS) designed for estimating punch velocity in combat sports. It was conducted in two phases: (1) integration of the 3D accelerometer with the communication interface and software for processing and visualization, and (2) applicability of the system. Fifteen karate athletes performed five gyaku zuki type punches (with reverse leg) using the accelerometer on the 3rd metacarpal on the back of the hand. It was performed nonparametric Mann-Whitney U-test to determine differences in the mean linear velocity among three punches performed sequentially (p sport.

  13. Estimates of vertical velocities and eddy coefficients in the Bay of Bengal

    Digital Repository Service at National Institute of Oceanography (India)

    Varkey, M.J.; Sastry, J.S.

    Vertical velocities and eddy coefficients in the intermediate depths of the Bay of Bengal are calculated from mean hydrographic data for 300 miles-squares. The linear current density (sigma- O) versus log-depth plots show steady balance between...

  14. Predicting the Maximum Dynamic Strength in Bench Press: The High Precision of the Bar Velocity Approach.

    Science.gov (United States)

    Loturco, Irineu; Kobal, Ronaldo; Moraes, José E; Kitamura, Katia; Cal Abad, César C; Pereira, Lucas A; Nakamura, Fábio Y

    2017-04-01

    Loturco, I, Kobal, R, Moraes, JE, Kitamura, K, Cal Abad, CC, Pereira, LA, and Nakamura, FY. Predicting the maximum dynamic strength in bench press: the high precision of the bar velocity approach. J Strength Cond Res 31(4): 1127-1131, 2017-The aim of this study was to determine the force-velocity relationship and test the possibility of determining the 1 repetition maximum (1RM) in "free weight" and Smith machine bench presses. Thirty-six male top-level athletes from 3 different sports were submitted to a standardized 1RM bench press assessment (free weight or Smith machine, in randomized order), following standard procedures encompassing lifts performed at 40-100% of 1RM. The mean propulsive velocity (MPV) was measured in all attempts. A linear regression was performed to establish the relationships between bar velocities and 1RM percentages. The actual and predicted 1RM for each exercise were compared using a paired t-test. Although the Smith machine 1RM was higher (10% difference) than the free weight 1RM, in both cases the actual and predicted values did not differ. In addition, the linear relationship between MPV and percentage of 1RM (coefficient of determination ≥95%) allow determination of training intensity based on the bar velocity. The linear relationships between the MPVs and the relative percentages of 1RM throughout the entire range of loads enable coaches to use the MPV to accurately monitor their athletes on a daily basis and accurately determine their actual 1RM without the need to perform standard maximum dynamic strength assessments.

  15. On the linearity of cross-correlation delay times

    Science.gov (United States)

    Mercerat, E. D.; Nolet, G.

    2012-12-01

    We investigate the question whether a P-wave delay time Δ T estimated by locating the maximum of the cross-correlation function between data d(t) and a predicted test function s(t): γ (t) = ∫ t1t_2 s(τ ) d(τ -t) \\ {d}τ, provides an estimate of the Delta T that is (quasi-)linear with the relative velocity perturbation deltaln V_P}. Such linearity is intuitive if the data d(t) is an undeformed but delayed replica of the test signal, i.e. if d(t)=s(t-Delta T). Then the maximum of gamma (t) is shifted exactly by the delay Delta T, and linearity holds even for Delta T very large. In this case, we say that the body waves are in the ray theoretical regime and their delays, because of Fermat's Principle, depend quasi-linearly on the relative velocity (or slowness) perturbations deltaln V_P in the model. However, even if we correct for dispersion induced by the instrument response and by attenuation, body waves may show frequency dependent delay times that are caused by diffraction effects around lateral heterogeneities. It is not a-priori clear that linearity holds for Delta T, as is assumed in finite-frequency theory, if the waveforms of d(t) and s(t) differ substantially because of such dispersion. To test the linearity, we generate synthetic seismograms between two boreholes, and between the boreholes and the surface, in a 3D box of 200 × 120 × 120 m. The heterogeneity is a checkerboard with cubic anomalies of size 12 × 12 × 12 m. We test two different anomaly amplitudes: ± 2% and ± 5%, and measure Delta T using a test seismogram s(t) computed for an homogeneous medium. We also predict the delays for the 5% model from those in the 2% model by multiplying with 5/2. These predictions are in error by 10-20% of the delay, which is usually acceptable for tomography when compared with actual data errors. A slight bias in the prediction indicates that the Wielandt effect - the fact that negative delays suffer less wavefront healing than positive delays - is a

  16. Automatic Wave Equation Migration Velocity Analysis by Focusing Subsurface Virtual Sources

    KAUST Repository

    Sun, Bingbing

    2017-11-03

    Macro velocity model building is important for subsequent pre-stack depth migration and full waveform inversion. Wave equation migration velocity analysis (WEMVA) utilizes the band-limited waveform to invert for the velocity. Normally, inversion would be implemented by focusing the subsurface offset common image gathers (SOCIGs). We re-examine this concept with a different perspective: In subsurface offset domain, using extended Born modeling, the recorded data can be considered as invariant with respect to the perturbation of the position of the virtual sources and velocity at the same time. A linear system connecting the perturbation of the position of those virtual sources and velocity is derived and solved subsequently by Conjugate Gradient method. In theory, the perturbation of the position of the virtual sources is given by the Rytov approximation. Thus, compared to the Born approximation, it relaxes the dependency on amplitude and makes the proposed method more applicable for real data. We demonstrate the effectiveness of the approach by applying the proposed method on both isotropic and anisotropic VTI synthetic data. A real dataset example verifies the robustness of the proposed method.

  17. Automatic Wave Equation Migration Velocity Analysis by Focusing Subsurface Virtual Sources

    KAUST Repository

    Sun, Bingbing; Alkhalifah, Tariq Ali

    2017-01-01

    Macro velocity model building is important for subsequent pre-stack depth migration and full waveform inversion. Wave equation migration velocity analysis (WEMVA) utilizes the band-limited waveform to invert for the velocity. Normally, inversion would be implemented by focusing the subsurface offset common image gathers (SOCIGs). We re-examine this concept with a different perspective: In subsurface offset domain, using extended Born modeling, the recorded data can be considered as invariant with respect to the perturbation of the position of the virtual sources and velocity at the same time. A linear system connecting the perturbation of the position of those virtual sources and velocity is derived and solved subsequently by Conjugate Gradient method. In theory, the perturbation of the position of the virtual sources is given by the Rytov approximation. Thus, compared to the Born approximation, it relaxes the dependency on amplitude and makes the proposed method more applicable for real data. We demonstrate the effectiveness of the approach by applying the proposed method on both isotropic and anisotropic VTI synthetic data. A real dataset example verifies the robustness of the proposed method.

  18. Linear trend and abrupt changes of climate indices in the arid region of northwestern China

    Science.gov (United States)

    Wang, Huaijun; Pan, Yingping; Chen, Yaning; Ye, Zhengwei

    2017-11-01

    In recent years, climate extreme events have caused increasing direct economic and social losses in the arid region of northwestern China. Based on daily temperature and precipitation data from 1960 to 2010, this paper discussed the linear trend and abrupt changes of climate indices. The general evolution was obtained by the empirical orthogonal function (EOF), the Mann-Kendall test, and the distribution-free cumulative sum chart (CUSUM) test. The results are as follows: (1) climate showed a warming trend at annual and seasonal scale, with all temperature indices exhibiting statistically significant changes. The warm indices have increased, with 1.37%days/decade of warm days (TX90p), 0.17 °C/decade of warmest days (TXx) and 1.97 days/decade of warm spell duration indicator (WSDI), respectively. The cold indices have decreased, with - 1.89%days/decade, 0.65 °C/decade and - 0.66 days/decade for cold nights (TN10p), coldest nights (TNn) and cold spell duration indicator (CSDI), respectively. The precipitation indices have also increased significantly, coupled with the changes of magnitude (max 1-day precipitation amount (RX1day)), frequency (rain day (R0.1)), and duration (consecutive dry days (CDD)). (2) Abrupt changes of the annual regional precipitation indices and the minimum temperature indices were observed around 1986, and that of the maximum temperature indices were observed in 1996. (3) The EOF1 indicated the overall coherent distribution for the whole study area, and its principal component (PC1) was also observed, showing a significant linear trend with an abrupt change, which were in accordance with the regional observation results. EOF2 and EOF3 show contrasts between the southern and northern study areas, and between the eastern and western study areas, respectively, whereas no significant tendency was observed for their PCs. Hence, the climate indices have changed significantly, with linear trends and abrupt changes noted for all climate indices

  19. Reliability and Validity Assessment of a Linear Position Transducer

    Science.gov (United States)

    Garnacho-Castaño, Manuel V.; López-Lastra, Silvia; Maté-Muñoz, José L.

    2015-01-01

    The objectives of the study were to determine the validity and reliability of peak velocity (PV), average velocity (AV), peak power (PP) and average power (AP) measurements were made using a linear position transducer. Validity was assessed by comparing measurements simultaneously obtained using the Tendo Weightlifting Analyzer Systemi and T-Force Dynamic Measurement Systemr (Ergotech, Murcia, Spain) during two resistance exercises, bench press (BP) and full back squat (BS), performed by 71 trained male subjects. For the reliability study, a further 32 men completed both lifts using the Tendo Weightlifting Analyzer Systemz in two identical testing sessions one week apart (session 1 vs. session 2). Intraclass correlation coefficients (ICCs) indicating the validity of the Tendo Weightlifting Analyzer Systemi were high, with values ranging from 0.853 to 0.989. Systematic biases and random errors were low to moderate for almost all variables, being higher in the case of PP (bias ±157.56 W; error ±131.84 W). Proportional biases were identified for almost all variables. Test-retest reliability was strong with ICCs ranging from 0.922 to 0.988. Reliability results also showed minimal systematic biases and random errors, which were only significant for PP (bias -19.19 W; error ±67.57 W). Only PV recorded in the BS showed no significant proportional bias. The Tendo Weightlifting Analyzer Systemi emerged as a reliable system for measuring movement velocity and estimating power in resistance exercises. The low biases and random errors observed here (mainly AV, AP) make this device a useful tool for monitoring resistance training. Key points This study determined the validity and reliability of peak velocity, average velocity, peak power and average power measurements made using a linear position transducer The Tendo Weight-lifting Analyzer Systemi emerged as a reliable system for measuring movement velocity and power. PMID:25729300

  20. Unified Impact Theory for Velocity-Changing Effects and Speed Dependencies in Neutral Species Lineshapes

    International Nuclear Information System (INIS)

    Herman, R.M.

    2011-01-01

    A dole correlation function which incorporates velocity-changing (motional narrowing) effects and the effects of speed-dependent Lorentz relaxation rates into otherwise Voigt profile correlation functions is developed, based partly upon previous work by the author. For the first time simple closed expressions, which lend themselves to elementary calculation beginning only with the relevant parts of intermolecular interaction energies, are developed for the cubic time-dependent term within the exponent describing the decay of the correlation function. This term is of first order in perturbers number density, as are the Lorentz parameters, and is complex, thereby allowing for narrowing, changing in shape and asymmetry in the line profile. Soft and hard collisions play no explicit role, though both are variously present for each line. Quartic time dependencies are also discussed, though they are thought to be negligible in non hydrogen molecular spectroscopy. Finally, some comments are added about a relevant technique for hydrogen spectra

  1. Variation of the solar wind velocity following solar flares

    International Nuclear Information System (INIS)

    Huang, Y.; Lee, Y.

    1975-01-01

    By use of the superposed epoch method, changes in the solar wind velocity following solar flares have been investigated by using the solar wind velocity data obtained by Pioneer 6 and 7 and Vela 3, 4, and 5 satellites. A significant increase of the solar wind velocity has been found on the second day following importance 3 solar flares and on the third day following importance 2 solar flares. No significant increase of the solar wind velocity has been found for limb flares. (auth)

  2. New Developments in Vector Velocity Imaging using the Transverse Oscillation Approach

    DEFF Research Database (Denmark)

    Jensen, Jørgen Arendt; Pihl, Michael Johannes; Olesen, Jacob Bjerring

    2013-01-01

    Vector velocity imaging using the Transverse Oscillation (TO) approach has recently been FDA approved for linear array transducers on a commercial platform. It can now be used clinically for studying the complex flow at e.g. bifurcations, valves, and the heart in real time. Several clinical...

  3. Linear stability of liquid films with phase change at the interface

    International Nuclear Information System (INIS)

    Spindler, Bertrand

    1980-01-01

    The objective of this research thesis is to study the linear stability of the flow of a liquid film on an inclined plane with a heat flow on the wall and an interfacial phase change, and to highlight the influence of the phase change on the flow stability. In order to do so, the author first proposed a rational simplification of equations by studying the order of magnitude of different terms, and based on some simple hypotheses regarding flow physics. Two stability studies are then addressed, one regarding a flow with a pre-existing film, and the other regarding the flow of a condensation film. In both cases, it is assumed that there is no imposed heat flow, but that the driving effect of vapour by the liquid film is taken into account [fr

  4. Microseismic Velocity Imaging of the Fracturing Zone

    Science.gov (United States)

    Zhang, H.; Chen, Y.

    2015-12-01

    Hydraulic fracturing of low permeability reservoirs can induce microseismic events during fracture development. For this reason, microseismic monitoring using sensors on surface or in borehole have been widely used to delineate fracture spatial distribution and to understand fracturing mechanisms. It is often the case that the stimulated reservoir volume (SRV) is determined solely based on microseismic locations. However, it is known that for some fracture development stage, long period long duration events, instead of microseismic events may be associated. In addition, because microseismic events are essentially weak and there exist different sources of noise during monitoring, some microseismic events could not be detected and thus located. Therefore the estimation of the SRV is biased if it is solely determined by microseismic locations. With the existence of fluids and fractures, the seismic velocity of reservoir layers will be decreased. Based on this fact, we have developed a near real time seismic velocity tomography method to characterize velocity changes associated with fracturing process. The method is based on double-difference seismic tomography algorithm to image the fracturing zone where microseismic events occur by using differential arrival times from microseismic event pairs. To take into account varying data distribution for different fracking stages, the method solves the velocity model in the wavelet domain so that different scales of model features can be obtained according to different data distribution. We have applied this real time tomography method to both acoustic emission data from lab experiment and microseismic data from a downhole microseismic monitoring project for shale gas hydraulic fracturing treatment. The tomography results from lab data clearly show the velocity changes associated with different rock fracturing stages. For the field data application, it shows that microseismic events are located in low velocity anomalies. By

  5. Energy balance in a system with quasispherical linear compression

    International Nuclear Information System (INIS)

    Es'kov, A.G.; Kozlov, N.P.; Kurtmullaev, R.K.; Semenov, V.N.; Khvesyuk, V.I.; Yaminskii, A.V.

    1983-01-01

    This letter reports the resists of some experimental studies and a numerical simulation of the Tor-linear fusion system, 1 in which a heavy plasma shell with a closed magnetic structure is compressed in a quasispherical manner. The parameters of the Tor-Linear, at the Kurchatov Institute of Atomic Energy in Moscow are as follows: The energy stored in the system which accelerates the linear is E = 0.5 MJ; the linear mass is m = 0.2 kg; the working volume of the linear module is 1.5 x 10 -3 m 3 ; the linear velocity is approx.10 3 m/s; the guiding field in the toriod in the linear is 1--10 x 10 21 m -3 ; and the intial volume of the plasma in the linear chamber is 2.5 x 10 -4 m 3 . In this series of experiments, new solutions were developed for all the systems of the plasma--linear complex of the Tor-Linear: to produce a plasma toroid, to transport it, and to trap it in the linear cavity

  6. Linearly decoupled energy-stable numerical methods for multi-component two-phase compressible flow

    KAUST Repository

    Kou, Jisheng

    2017-12-06

    In this paper, for the first time we propose two linear, decoupled, energy-stable numerical schemes for multi-component two-phase compressible flow with a realistic equation of state (e.g. Peng-Robinson equation of state). The methods are constructed based on the scalar auxiliary variable (SAV) approaches for Helmholtz free energy and the intermediate velocities that are designed to decouple the tight relationship between velocity and molar densities. The intermediate velocities are also involved in the discrete momentum equation to ensure a consistency relationship with the mass balance equations. Moreover, we propose a component-wise SAV approach for a multi-component fluid, which requires solving a sequence of linear, separate mass balance equations. We prove that the methods have the unconditional energy-dissipation feature. Numerical results are presented to verify the effectiveness of the proposed methods.

  7. Thermoconvective flow velocity in a high-speed magnetofluid seal after it has stopped

    OpenAIRE

    Krakov, M. S.; Nikiforov, I. V.

    2012-01-01

    Convective flow is investigated in the high-speed (linear velocity of the shaft seal is more than 1 m/s) magnetofluid shaft seal after it has been stopped. Magnetic fluid is preliminarily heated due to viscous friction in the moving seal. After the shaft has been stopped, nonuniform heated fluid remains under the action of a high-gradient magnetic field. Numerical analysis has revealed that in this situation, intense thermomagnetic convection is initiated. The velocity of magnetic fluid depen...

  8. Evolution of semilocal string networks. II. Velocity estimators

    Science.gov (United States)

    Lopez-Eiguren, A.; Urrestilla, J.; Achúcarro, A.; Avgoustidis, A.; Martins, C. J. A. P.

    2017-07-01

    We continue a comprehensive numerical study of semilocal string networks and their cosmological evolution. These can be thought of as hybrid networks comprised of (nontopological) string segments, whose core structure is similar to that of Abelian Higgs vortices, and whose ends have long-range interactions and behavior similar to that of global monopoles. Our study provides further evidence of a linear scaling regime, already reported in previous studies, for the typical length scale and velocity of the network. We introduce a new algorithm to identify the position of the segment cores. This allows us to determine the length and velocity of each individual segment and follow their evolution in time. We study the statistical distribution of segment lengths and velocities for radiation- and matter-dominated evolution in the regime where the strings are stable. Our segment detection algorithm gives higher length values than previous studies based on indirect detection methods. The statistical distribution shows no evidence of (anti)correlation between the speed and the length of the segments.

  9. Frame sequences analysis technique of linear objects movement

    Science.gov (United States)

    Oshchepkova, V. Y.; Berg, I. A.; Shchepkin, D. V.; Kopylova, G. V.

    2017-12-01

    Obtaining data by noninvasive methods are often needed in many fields of science and engineering. This is achieved through video recording in various frame rate and light spectra. In doing so quantitative analysis of movement of the objects being studied becomes an important component of the research. This work discusses analysis of motion of linear objects on the two-dimensional plane. The complexity of this problem increases when the frame contains numerous objects whose images may overlap. This study uses a sequence containing 30 frames at the resolution of 62 × 62 pixels and frame rate of 2 Hz. It was required to determine the average velocity of objects motion. This velocity was found as an average velocity for 8-12 objects with the error of 15%. After processing dependencies of the average velocity vs. control parameters were found. The processing was performed in the software environment GMimPro with the subsequent approximation of the data obtained using the Hill equation.

  10. Study of load change control in PWRs using the methods of linear optimal control

    International Nuclear Information System (INIS)

    Yang, T.

    1983-01-01

    This thesis investigates the application of modern control theory to the problem of controlling load changes in PWR power plants. A linear optimal state feedback scheme resulting from linear optimal control theory with a quadratic cost function is reduced to a partially decentralized control system using mode preservation techniques. Minimum information transfer among major components of the plant is investigated to provide an adequate coordination, simple implementation, and a reliable control system. Two control approaches are proposed: servo and model following. Each design considers several information structures for performance comparison. Integrated output error has been included in the control systems to accommodate external and plant parameter disturbances. In addition, the cross limit feature, specific to certain modern reactor control systems, is considered in the study to prevent low pressure reactor trip conditions. An 11th order nonlinear model for the reactor and boiler is derived based on theoretical principles, and simulation tests are performed for 10% load change as an illustration of system performance

  11. Remote determination of the velocity index and mean streamwise velocity profiles

    Science.gov (United States)

    Johnson, E. D.; Cowen, E. A.

    2017-09-01

    When determining volumetric discharge from surface measurements of currents in a river or open channel, the velocity index is typically used to convert surface velocities to depth-averaged velocities. The velocity index is given by, k=Ub/Usurf, where Ub is the depth-averaged velocity and Usurf is the local surface velocity. The USGS (United States Geological Survey) standard value for this coefficient, k = 0.85, was determined from a series of laboratory experiments and has been widely used in the field and in laboratory measurements of volumetric discharge despite evidence that the velocity index is site-specific. Numerous studies have documented that the velocity index varies with Reynolds number, flow depth, and relative bed roughness and with the presence of secondary flows. A remote method of determining depth-averaged velocity and hence the velocity index is developed here. The technique leverages the findings of Johnson and Cowen (2017) and permits remote determination of the velocity power-law exponent thereby, enabling remote prediction of the vertical structure of the mean streamwise velocity, the depth-averaged velocity, and the velocity index.

  12. Luminosity-velocity diagrams for Virgo Cluster spirals. I - Inner rotation curves

    Science.gov (United States)

    Woods, David; Fahlman, Gregory G.; Madore, Barry F.

    1990-01-01

    Optical rotation curves are presented for the innermost portions of nine spiral galaxies in the Virgo Cluster. The emission-line (H-alpha and forbidden N II) velocity data are to be used in combination with new CCD photometry to construct luminosity-velocity diagrams, in a continuing investigation of an apparent initial linear branch and its potential as a distance indicator. Compared to recent H I data, the present optical rotation curves generally show systematically steeper inner gradients. This effect is ascribed to the poorer resolution of the H I data and/or to holes in the gas distribution.

  13. Boltzmann Solver with Adaptive Mesh in Velocity Space

    International Nuclear Information System (INIS)

    Kolobov, Vladimir I.; Arslanbekov, Robert R.; Frolova, Anna A.

    2011-01-01

    We describe the implementation of direct Boltzmann solver with Adaptive Mesh in Velocity Space (AMVS) using quad/octree data structure. The benefits of the AMVS technique are demonstrated for the charged particle transport in weakly ionized plasmas where the collision integral is linear. We also describe the implementation of AMVS for the nonlinear Boltzmann collision integral. Test computations demonstrate both advantages and deficiencies of the current method for calculations of narrow-kernel distributions.

  14. MR flow velocity measurement using 2D phase contrast, assessment of imaging parameters

    International Nuclear Information System (INIS)

    Akata, Soichi; Fukushima, Akihiro; Abe, Kimihiko; Darkanzanli, A.; Gmitro, A.F.; Unger, E.C.; Capp, M.P.

    1999-01-01

    The two-dimensional (2D) phase contrast technique using balanced gradient pulses is utilized to measure flow velocities of cerebrospinal fluid and blood. Various imaging parameters affect the accuracy of flow velocity measurements to varying degrees. Assessment of the errors introduced by changing the imaging parameters are presented and discussed in this paper. A constant flow phantom consisting of a pump, a polyethylene tube and a flow meter was assembled. A clinical 1.5 Tesla MR imager was used to perform flow velocity measurements. The phase contrast technique was used to estimate the flow velocity of saline through the phantom. The effects of changes in matrix size, flip angle, flow compensation, and velocity encoding (VENC) value were tested in the pulse sequence. Gd-DTPA doped saline was used to study the effect of changing T1 on the accuracy of flow velocity measurement. Matrix size (within practical values), flip angle, and flow compensation had minimum impact on flow velocity measurements. T1 of the solution also had no effect on the accuracy of measuring the flow velocity. On the other hand, it was concluded that errors as high as 20% can be expected in the flow velocity measurements if the VENC value is not properly chosen. (author)

  15. MR flow velocity measurement using 2D phase contrast, assessment of imaging parameters

    Energy Technology Data Exchange (ETDEWEB)

    Akata, Soichi; Fukushima, Akihiro; Abe, Kimihiko [Tokyo Medical Coll. (Japan); Darkanzanli, A.; Gmitro, A.F.; Unger, E.C.; Capp, M.P.

    1999-11-01

    The two-dimensional (2D) phase contrast technique using balanced gradient pulses is utilized to measure flow velocities of cerebrospinal fluid and blood. Various imaging parameters affect the accuracy of flow velocity measurements to varying degrees. Assessment of the errors introduced by changing the imaging parameters are presented and discussed in this paper. A constant flow phantom consisting of a pump, a polyethylene tube and a flow meter was assembled. A clinical 1.5 Tesla MR imager was used to perform flow velocity measurements. The phase contrast technique was used to estimate the flow velocity of saline through the phantom. The effects of changes in matrix size, flip angle, flow compensation, and velocity encoding (VENC) value were tested in the pulse sequence. Gd-DTPA doped saline was used to study the effect of changing T1 on the accuracy of flow velocity measurement. Matrix size (within practical values), flip angle, and flow compensation had minimum impact on flow velocity measurements. T1 of the solution also had no effect on the accuracy of measuring the flow velocity. On the other hand, it was concluded that errors as high as 20% can be expected in the flow velocity measurements if the VENC value is not properly chosen. (author)

  16. Impact of climate change on Taiwanese power market determined using linear complementarity model

    International Nuclear Information System (INIS)

    Tung, Ching-Pin; Tseng, Tze-Chi; Huang, An-Lei; Liu, Tzu-Ming; Hu, Ming-Che

    2013-01-01

    Highlights: ► Impact of climate change on average temperature is estimated. ► Temperature elasticity of demand is measured. ► Impact of climate change on Taiwanese power market determined. -- Abstract: The increase in the greenhouse gas concentration in the atmosphere causes significant changes in climate patterns. In turn, this climate change affects the environment, ecology, and human behavior. The emission of greenhouse gases from the power industry has been analyzed in many studies. However, the impact of climate change on the electricity market has received less attention. Hence, the purpose of this research is to determine the impact of climate change on the electricity market, and a case study involving the Taiwanese power market is conducted. First, the impact of climate change on temperature is estimated. Next, because electricity demand can be expressed as a function of temperature, the temperature elasticity of demand is measured. Then, a linear complementarity model is formulated to simulate the Taiwanese power market and climate change scenarios are discussed. Therefore, this paper establishes a simulation framework for calculating the impact of climate change on electricity demand change. In addition, the impact of climate change on the Taiwanese market is examined and presented.

  17. The application of a Bessel transform to the determination of stellar rotational velocities

    International Nuclear Information System (INIS)

    Deeming, T.J.

    1977-01-01

    A method for analysing line profiles by means of a transform using Bessel functions is described. This yields the stellar rotational velocity γ sin i, to an accuracy of about +-1 km s -1 for rotational velocities greater than about 5 km s -1 , provided that rotation is the major source of line broadening. The theory of the method is a special case of a general theory of linear transforms in data analysis, which is outlined in an appendix. (Auth.)

  18. Rotating Hele-Shaw cell with a time-dependent angular velocity

    Science.gov (United States)

    Anjos, Pedro H. A.; Alvarez, Victor M. M.; Dias, Eduardo O.; Miranda, José A.

    2017-12-01

    Despite the large number of existing studies of viscous flows in rotating Hele-Shaw cells, most investigations analyze rotational motion with a constant angular velocity, under vanishing Reynolds number conditions in which inertial effects can be neglected. In this work, we examine the linear and weakly nonlinear dynamics of the interface between two immiscible fluids in a rotating Hele-Shaw cell, considering the action of a time-dependent angular velocity, and taking into account the contribution of inertia. By using a generalized Darcy's law, we derive a second-order mode-coupling equation which describes the time evolution of the interfacial perturbation amplitudes. For arbitrary values of viscosity and density ratios, and for a range of values of a rotational Reynolds number, we investigate how the time-dependent angular velocity and inertia affect the important finger competition events that traditionally arise in rotating Hele-Shaw flows.

  19. Effects of the concentration of emulsion of oil-in-water on the propagation velocity and attenuation

    International Nuclear Information System (INIS)

    Silva, L S F; Bibiano, D S; Figueiredo, M K K; Costa-Félix, R P B

    2015-01-01

    Soybean oil is an important feedstock for production of biodiesel that generates about 20 % of oily effluents. This paper studied the effect of concentration of soybean oil-inwater emulsions, in the range from 6 000 to 14 000 ppm, on the propagation velocity and ultrasonic attenuation. The Emission-Reception method has shown that the propagation velocity depends linearly on the concentration. The behavior of attenuation is similar to the velocity. Thus, both parameters can be used to measure oils and greases content in water

  20. Estimation of seismic velocity changes at different depths associated with the 2014 Northern Nagano Prefecture earthquake, Japan ( M W 6.2) by joint interferometric analysis of NIED Hi-net and KiK-net records

    Science.gov (United States)

    Sawazaki, Kaoru; Saito, Tatsuhiko; Ueno, Tomotake; Shiomi, Katsuhiko

    2016-12-01

    To estimate the seismic velocity changes at different depths associated with a large earthquake, we apply passive image interferometry to two types of seismograms: KiK-net vertical pairs of earthquake records and Hi-net continuous borehole data. We compute the surface/borehole deconvolution waveform (DCW) of seismograms recorded by a KiK-net station and the autocorrelation function (ACF) of ambient noise recorded by a collocated Hi-net station, 26 km from the epicenter of the 2014 Northern Nagano Prefecture earthquake, Japan ( M W 6.2). Because the deeper KiK-net sensor and the Hi-net sensor are collocated at 150 m depth, and another KiK-net sensor is located at the surface directly above the borehole sensors, we can measure shallow (150 m depth) velocity changes separately. The sensitivity of the ACF to the velocity changes in the deeper zone is evaluated by a numerical wave propagation simulation. We detect relative velocity changes of -3.1 and -1.4% in the shallow and deep zones, respectively, within 1 week of the mainshock. The relative velocity changes recover to -1.9 and -1.1%, respectively, during the period between 1 week and 4 months after the mainshock. The observed relative velocity reductions can be attributed to dynamic strain changes due to the strong ground motion, rather than static strain changes due to coseismic deformation by the mainshock. The speed of velocity recovery may be faster in the shallow zone than in the deep zone because the recovery speed is controlled by initial damage in the medium. This recovery feature is analogous to the behavior of slow dynamics observed in rock experiments.

  1. Calibrated Tully-fisher Relations For Improved Photometric Estimates Of Disk Rotation Velocities

    NARCIS (Netherlands)

    Reyes, Reinabelle; Mandelbaum, R.; Gunn, J. E.; Pizagno II, Jim

    We present calibrated scaling relations (also referred to as Tully-Fisher relations or TFRs) between rotation velocity and photometric quantities-- absolute magnitude, stellar mass, and synthetic magnitude (a linear combination of absolute magnitude and color)-- of disk galaxies at z 0.1. First, we

  2. Differences in the size-internal velocity relation of galactic and extragalactic HII regions

    International Nuclear Information System (INIS)

    Odell, C.R.

    1990-01-01

    The nature of the size-internal velocity relation in extragalactic HII regions is examined in order to improve their use as distance determinants. The relation between the linear size and the internal velocity was compared for HII regions in the Galaxy and in external galaxies. Data for the former are from the researcher's own studies at high spatial resolution, while the latter have been the subject of spectroscopy that includes almost the entire objects. The Galactic HII regions are corrected to values of the internal velocity that would be observed if they were at extragalactic distances. A very different size-internal velocity relation was found for the two types of objects in the sense that the extragalactic objects are some ten times larger at the same internal velocity. This is interpreted to mean that the extragalactic HII regions are actually complexes of small HII regions comparable in size to their Galactic counterparts

  3. Experimental investigation of the effect of air velocity on a unit cooler under frosting condition: a case study

    Science.gov (United States)

    Bayrak, Ergin; Çağlayan, Akın; Konukman, Alp Er S.

    2017-10-01

    Finned tube evaporators are used in a wide range of applications such as commercial and industrial cold/freezed storage rooms with high traffic loading under frosting conditions. In this case study, an evaporator with an integrated fan was manufactured and tested under frosting conditions by only changing the air flow rate in an ambient balanced type test laboratory compared to testing in a wind tunnel with a more uniform flow distribution in order to detect the effect of air flow rate on frosting. During the test, operation was performed separately based on three different air flow rates. The parameters concerning test operation such as the changes of air temperature, air relative humidity, surface temperature, air-side pressure drop and refrigerant side capacity etc. were followed in detail for each air flow rate. At the same time, digital images were captured in front of the evaporator; thus, frost thicknesses and blockage ratios at the course of fan stall were determined by using an image-processing technique. Consequently, the test and visual results showed that the trendline of air-side pressure drop increased slowly at the first stage of test operations, then increased linearly up to a top point and then the linearity was disrupted instantly. This point speculated the beginning of defrost operation for each case. In addition, despite detecting a velocity that needs to be avoided, a test applied at minimum air velocity is superior to providing minimum capacity in terms of loss of capacity during test operations.

  4. Radio-frequency quadrupole: a new linear accelerator

    International Nuclear Information System (INIS)

    Stokes, R.H.; Wangler, T.P.; Crandall, K.R.

    1981-01-01

    In many Laboratories, great emphasis now is placed on the development of linear accelerators with very large ion currents. To achieve this goal, a primary concern must be the low-velocity part of the accelerator, where the current limit is determined and where most of the emittance growth occurs. The use of magnetic focusing, the conflicting requirements in the choice of linac frequency, and the limitations of high-voltage dc injectors, have tended to produce low-velocity designs that limit overall performance. The radio-frequency quadrupole (RFQ) linear accelerator, invented in the Soviet Union and developed at Los Alamos, offers an attractive solution to many of these low-velocity problems. In the RFQ, the use of RF electric fields for radial focusing, combined with special programming of the bunching, allows high-current dc beams to be captured and accelerated with only small beam loss and low radial emittance growth. Advantages of the RFQ linac include a low injection energy (20 to 50 keV for protons) and a final energy high enough so the beam can be further accelerated with high efficiency in a Wideroee or Alvarez linac. These properties have been confirmed at Los Alamos in a highly successful experimental test performed during the past year. The success of this test and the advances in RFQ design procedures have led to the adoption of this linac for a wide range of applications. The beam-dynamics parameters of three RFQ systems are described. These are the final design for the protytype test of the Fusion Materials Irradiation Test (FMIT) accelerator, the final design for the prototype test of the Pion Generator for Medical Irradiations (PIGMI), and an improved low-velocity linac for heavy ion fusion

  5. Constraining the optical depth of galaxies and velocity bias with cross-correlation between the kinetic Sunyaev-Zeldovich effect and the peculiar velocity field

    Science.gov (United States)

    Ma, Yin-Zhe; Gong, Guo-Dong; Sui, Ning; He, Ping

    2018-03-01

    We calculate the cross-correlation function between the kinetic Sunyaev-Zeldovich (kSZ) effect and the reconstructed peculiar velocity field using linear perturbation theory, with the aim of constraining the optical depth τ and peculiar velocity bias of central galaxies with Planck data. We vary the optical depth τ and the velocity bias function bv(k) = 1 + b(k/k0)n, and fit the model to the data, with and without varying the calibration parameter y0 that controls the vertical shift of the correlation function. By constructing a likelihood function and constraining the τ, b and n parameters, we find that the quadratic power-law model of velocity bias, bv(k) = 1 + b(k/k0)2, provides the best fit to the data. The best-fit values are τ = (1.18 ± 0.24) × 10-4, b=-0.84^{+0.16}_{-0.20} and y0=(12.39^{+3.65}_{-3.66})× 10^{-9} (68 per cent confidence level). The probability of b > 0 is only 3.12 × 10-8 for the parameter b, which clearly suggests a detection of scale-dependent velocity bias. The fitting results indicate that the large-scale (k ≤ 0.1 h Mpc-1) velocity bias is unity, while on small scales the bias tends to become negative. The value of τ is consistent with the stellar mass-halo mass and optical depth relationship proposed in the literature, and the negative velocity bias on small scales is consistent with the peak background split theory. Our method provides a direct tool for studying the gaseous and kinematic properties of galaxies.

  6. On-line velocity measurements using phase probes at the SuperHILAC

    International Nuclear Information System (INIS)

    Feinberg, B.; Meaney, D.; Thatcher, R.; Timossi, C.

    1987-12-01

    Phase probes have been placed in several external beam lines at the LBL heavy ion linear accelerator (SuperHILAC) to provide non- destructive velocity measurements independent of the ion being accelerated. The system uses three probes in each line to obtain accurate velocity measurements at all beam energies. Automatic gain control and signal analysis are performed so that the energy/nucleon along with up to three probe signals are displayed on a vector graphics display with a refresh rate better than twice per second. The system uses a sensitive pseudo-correlation technique to pick out the signal from the noise, features simultaneous measurements of up to four ion velocities when more than one beam is being accelerated, and is controlled by a touch-screen operator interface. It is accurate to within /+-/0.25% and has provisions for on-line calibration tests. The phase probes thus provide a velocity measurement independent of the mass defect associated with the use of crystal detectors, which can become significant for heavy elements. They are now used as a routine tuning aid to ensure proper bunch structure, and as a beam velocity monitor. 3 refs., 5 figs

  7. Non-linear laws of echoic memory and auditory change detection in humans.

    Science.gov (United States)

    Inui, Koji; Urakawa, Tomokazu; Yamashiro, Koya; Otsuru, Naofumi; Nishihara, Makoto; Takeshima, Yasuyuki; Keceli, Sumru; Kakigi, Ryusuke

    2010-07-03

    The detection of any abrupt change in the environment is important to survival. Since memory of preceding sensory conditions is necessary for detecting changes, such a change-detection system relates closely to the memory system. Here we used an auditory change-related N1 subcomponent (change-N1) of event-related brain potentials to investigate cortical mechanisms underlying change detection and echoic memory. Change-N1 was elicited by a simple paradigm with two tones, a standard followed by a deviant, while subjects watched a silent movie. The amplitude of change-N1 elicited by a fixed sound pressure deviance (70 dB vs. 75 dB) was negatively correlated with the logarithm of the interval between the standard sound and deviant sound (1, 10, 100, or 1000 ms), while positively correlated with the logarithm of the duration of the standard sound (25, 100, 500, or 1000 ms). The amplitude of change-N1 elicited by a deviance in sound pressure, sound frequency, and sound location was correlated with the logarithm of the magnitude of physical differences between the standard and deviant sounds. The present findings suggest that temporal representation of echoic memory is non-linear and Weber-Fechner law holds for the automatic cortical response to sound changes within a suprathreshold range. Since the present results show that the behavior of echoic memory can be understood through change-N1, change-N1 would be a useful tool to investigate memory systems.

  8. 2 ~ 5 times tunable repetition-rate multiplication of a 10 GHz pulse source using a linearly tunable, chirped fiber Bragg grating.

    Science.gov (United States)

    Lee, Ju Han; Chang, You; Han, Young-Geun; Kim, Sang; Lee, Sang

    2004-08-23

    We experimentally demonstrate a simple scheme for the tunable pulse repetition-rate multiplication based on the fractional Talbot effect in a linearly tunable, chirped fiber Bragg grating (FBG). The key component in this scheme is our linearly tunable, chirped FBG with no center wavelength shift, which was fabricated with the S-bending method using a uniform FBG. By simply tuning the group velocity dispersion of the chirped FBG, we readily multiply an original 8.5 ps, 10 GHz soliton pulse train by a factor of 2 ~ 5 to obtain high quality pulses at repetition-rates of 20 ~ 50 GHz without significantly changing the system configuration.

  9. Diurnal Dynamics of Standard Deviations of Three Wind Velocity Components in the Atmospheric Boundary Layer

    Science.gov (United States)

    Shamanaeva, L. G.; Krasnenko, N. P.; Kapegesheva, O. F.

    2018-04-01

    Diurnal dynamics of the standard deviation (SD) of three wind velocity components measured with a minisodar in the atmospheric boundary layer is analyzed. Statistical analysis of measurement data demonstrates that the SDs for x- and y-components σx and σy lie in the range from 0.2 to 4 m/s, and σz = 0.1-1.2 m/s. The increase of σx and σy with the altitude is described sufficiently well by a power law with exponent changing from 0.22 to 1.3 depending on time of day, and σz increases by a linear law. Approximation constants are determined and errors of their application are estimated. It is found that the maximal diurnal spread of SD values is 56% for σx and σy and 94% for σz. The established physical laws and the obtained approximation constants allow the diurnal dynamics of the SDs for three wind velocity components in the atmospheric boundary layer to be determined and can be recommended for application in models of the atmospheric boundary layer.

  10. Linear hypergeneralization of learned dynamics across movement speeds reveals anisotropic, gain-encoding primitives for motor adaptation.

    Science.gov (United States)

    Joiner, Wilsaan M; Ajayi, Obafunso; Sing, Gary C; Smith, Maurice A

    2011-01-01

    The ability to generalize learned motor actions to new contexts is a key feature of the motor system. For example, the ability to ride a bicycle or swing a racket is often first developed at lower speeds and later applied to faster velocities. A number of previous studies have examined the generalization of motor adaptation across movement directions and found that the learned adaptation decays in a pattern consistent with the existence of motor primitives that display narrow Gaussian tuning. However, few studies have examined the generalization of motor adaptation across movement speeds. Following adaptation to linear velocity-dependent dynamics during point-to-point reaching arm movements at one speed, we tested the ability of subjects to transfer this adaptation to short-duration higher-speed movements aimed at the same target. We found near-perfect linear extrapolation of the trained adaptation with respect to both the magnitude and the time course of the velocity profiles associated with the high-speed movements: a 69% increase in movement speed corresponded to a 74% extrapolation of the trained adaptation. The close match between the increase in movement speed and the corresponding increase in adaptation beyond what was trained indicates linear hypergeneralization. Computational modeling shows that this pattern of linear hypergeneralization across movement speeds is not compatible with previous models of adaptation in which motor primitives display isotropic Gaussian tuning of motor output around their preferred velocities. Instead, we show that this generalization pattern indicates that the primitives involved in the adaptation to viscous dynamics display anisotropic tuning in velocity space and encode the gain between motor output and motion state rather than motor output itself.

  11. A two-layer linear piezoelectric micromotor.

    Science.gov (United States)

    Li, Xiaotian; Ci, Penghong; Liu, Guoxi; Dong, Shuxiang

    2015-03-01

    A first bending (B1) mode two-layer piezoelectric ultrasonic linear micromotor has been developed for microoptics driving applications. The piezo-vibrator of the micromotor was composed of two small Pb(Zr,Ti)O3 (PZT-5) plates, with overall dimensions and mass of only 2.0 × 2.0 × 5.0 mm(3) and 0.2 g, respectively. The proposed micromotor could operate either in single-phase voltage (standing wave) mode or two-phase voltage (traveling wave) mode to drive a slider via friction force to provide bidirectional linear motion. A large thrust of up to 0.30 N, which corresponds to a high unit volume direct driving force of 15 mN/mm(3), and a linear movement velocity of up to 230 mm/s were obtained under an applied voltage of 80 Vpp at the B1 mode resonance frequency of 174 kHz.

  12. Piecewise Linear-Linear Latent Growth Mixture Models with Unknown Knots

    Science.gov (United States)

    Kohli, Nidhi; Harring, Jeffrey R.; Hancock, Gregory R.

    2013-01-01

    Latent growth curve models with piecewise functions are flexible and useful analytic models for investigating individual behaviors that exhibit distinct phases of development in observed variables. As an extension of this framework, this study considers a piecewise linear-linear latent growth mixture model (LGMM) for describing segmented change of…

  13. Reliability of performance velocity for jump squats under feedback and nonfeedback conditions.

    Science.gov (United States)

    Randell, Aaron D; Cronin, John B; Keogh, Justin Wl; Gill, Nicholas D; Pedersen, Murray C

    2011-12-01

    Randell, AD, Cronin, JB, Keogh, JWL, Gill, ND, and Pedersen, MC. Reliability of performance velocity for jump squats under feedback and nonfeedback conditions. J Strength Cond Res 25(12): 3514-3518, 2011-Advancements in the monitoring of kinematic and kinetic variables during resistance training have resulted in the ability to continuously monitor performance and provide feedback during training. If equipment and software can provide reliable instantaneous feedback related to the variable of interest during training, it is thought that this may result in goal-oriented movement tasks that increase the likelihood of transference to on-field performance or at the very least improve the mechanical variable of interest. The purpose of this study was to determine the reliability of performance velocity for jump squats under feedback and nonfeedback conditions over 3 consecutive training sessions. Twenty subjects were randomly allocated to a feedback or nonfeedback group, and each group performed a total of 3 "jump squat" training sessions with the velocity of each repetition measured using a linear position transducer. There was less change in mean velocities between sessions 1-2 and sessions 2-3 (0.07 and 0.02 vs. 0.13 and -0.04 m·s), less random variation (TE = 0.06 and 0.06 vs. 0.10 and 0.07 m·s) and greater consistency (intraclass correlation coefficient = 0.83 and 0.87 vs. 0.53 and 0.74) between sessions for the feedback condition as compared to the nonfeedback condition. It was concluded that there is approximately a 50-50 probability that the provision of feedback was beneficial to the performance in the squat jump over multiple sessions. It is suggested that this has the potential for increasing transference to on-field performance or at the very least improving the mechanical variable of interest.

  14. Development of an optimal velocity selection method with velocity obstacle

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Min Geuk; Oh, Jun Ho [KAIST, Daejeon (Korea, Republic of)

    2015-08-15

    The Velocity obstacle (VO) method is one of the most well-known methods for local path planning, allowing consideration of dynamic obstacles and unexpected obstacles. Typical VO methods separate a velocity map into a collision area and a collision-free area. A robot can avoid collisions by selecting its velocity from within the collision-free area. However, if there are numerous obstacles near a robot, the robot will have very few velocity candidates. In this paper, a method for choosing optimal velocity components using the concept of pass-time and vertical clearance is proposed for the efficient movement of a robot. The pass-time is the time required for a robot to pass by an obstacle. By generating a latticized available velocity map for a robot, each velocity component can be evaluated using a cost function that considers the pass-time and other aspects. From the output of the cost function, even a velocity component that will cause a collision in the future can be chosen as a final velocity if the pass-time is sufficiently long enough.

  15. A baseline for upper crustal velocity variations along the East Pacific Rise at 13 deg N

    Science.gov (United States)

    Kappus, Mary E.; Harding, Alistair J.; Orcutt, John A.

    1995-04-01

    A wide aperture profile of the East Pacific Rise at 13 deg N provides data necessary to make a high-resolution seismic velocity profile of the uppermost crust along a 52-km segment of ridge crest. Automated and objective processing steps, including r-p analysis and waveform inversion, allow the construction of models in a consistent way so that comparisons are meaningful. A continuous profile is synthesized from 70 independent one-dimensional models spaced at 750-km intervals along the ridge. The resulting seismic velocity structure of the top 500 m of crust is remarkable in its lack of variability. The main features are a thin low-velocity layer 2A at the top with a steep gradient to layer 2B. The seafloor velocity is nearly constant at 2.45 km/s +/- 3% along the entire ridge. The velocity at the top of layer 2B is 5.0 km/s +/- 10%. The depth to the 4 km/s isovelocity contour within layer 2A is 130 +/- 20 m from 13 deg to 13 deg 20 min N, north of which it increases to 180 m. The increase in thickness is coincident with a deviation from axial linearity (DEVAL) noted by both a slight change in axis depth and orientation and in geochemistry. The waveform inversion, providing more details plus velocity gradient information, shows a layer 2A with about 80 m of constant-velocity material underlain by 150 m of high velocity gradient material, putting the base of layer 2A at approximately 230 m depth south of 13 deg 20 min N and about 50 m thicker north of the DEVAL. The overall lack of variability, combined with other recent measurements of layer 2A thickness along and near the axis, indicates that the thickness of volcanic extrusives is controlled not by levels of volcanic productivity, but the dynamics of emplacement. The homogeneity along axis also provides a baseline of inherent variability in crustal structure of about 10% against which other observed variations in similar regimes can be compared.

  16. Shear wave velocity structure of northern and North-Eastern Ethiopia

    International Nuclear Information System (INIS)

    Kebede, F.; Mammo, T.; Panza, G.F.; Vuan, A.; Costa, G.

    1995-10-01

    The non-linear inversion technique known as hedgehog is utilized to define the average crustal structure of North and North-Eastern Ethiopia. To accomplish the task a two dimensional frequency-time analysis is performed to obtain Rayleigh wave group velocity dispersion curves. Six earthquakes recorded by the broad-band digital seismograph installed at the Geophysical Observatory of Addis Ababa University are utilized. The crustal structure between the Gulf of Tadjura (western Gulf of Aden) and Addis Ababa crossing southern Afar (path I) can be approximated by a total thickness of about 22 km with average S-wave velocity in the range 2.3 - 3.9 km/s. The crust-mantle transition is poorly developed at greater depths and the shear wave velocity ranges from 4.0 km/s to 4.3 km/s. If the effect of the plateau part is taken into account the average total crustal thickness is found to be less than 18 km and the average S-wave velocity varies in the range 2.4 - 3.9 km/s. The low shear wave velocity under the Afar crust is consistent with the result of other geophysical studies. For path II, which passes through the border of the Western Ethiopian plateau, the average crustal structure is found to be approximated by a thickness of about 40 km and average S-wave velocity between 3.0 km/s and 3.9 km/s. The crust overlies a lithospheric mantle with a shear wave velocity in the range 4.1-4.4 km/s. (author). 37 refs, 11 figs, 4 tabs

  17. Comparison of DMSP cross-track ion drifts and SuperDARN line-of-sight velocities

    Directory of Open Access Journals (Sweden)

    R. A. Drayton

    2005-10-01

    Full Text Available Cross-track ion drifts measured by the DMSP satellites are compared with line-of-sight SuperDARN HF velocities in approximately the same directions. Good overall agreement is found for a data set comprising of 209 satellite passes over the field of view of nine SuperDARN radars in both the Northern and Southern Hemispheres. The slope of the best linear fit line relating the SuperDARN and DMSP velocities is of the order of 0.7 with a tendency for SuperDARN velocities to be smaller. The agreement implies that the satellite and radar data can be merged into a common set provided that spatial and temporal variations of the velocity as measured by both instruments are smooth.

    Keywords. Ionosphere (Ionospheric irregularities; Plasma convection; Auroral ionosphere

  18. Linear interaction of gravitational waves

    International Nuclear Information System (INIS)

    Ciubotariu, C.D.

    1992-01-01

    Starting with the linearized Einstein equations written in the same form as Maxwell equations, a damping term is found in the wave equation. The analogy with the propagation of the electromagnetic wave in ohmic media is obvious if we introduce an 'ohmic relation' for gravitational interaction. The possibility of the amplification of gravitational waves by a suitable choice of the velocity field of a dust ('dust with negative viscosity'), for example by the use of the free-electron laser principle, is indicated. (Author)

  19. Adrenergic regulation of conduction velocity in cultures of immature cardiomyocytes

    NARCIS (Netherlands)

    de Boer, T. P.; van Rijen, H. V. M.; van der Heyden, M. A. G.; de Bakker, J. M. T.; van Veen, T. A. B.

    2008-01-01

    During cardiac maturation, increased exposure of the heart to circulating catecholamines correlates with increased conduction velocity and growth of the heart. We used an in vitro approach to study the underlying mechanisms of adrenergic stimulation induced changes in conduction velocity. By

  20. The linear potential propagator via wave function expansion

    International Nuclear Information System (INIS)

    Nassar, Antonio B.; Cattani, Mauro S.D.

    2002-01-01

    We evaluate the quantum propagator for the motion of a particle in a linear potential via a recently developed formalism [A.B. Nassar et al., Phys. Rev. E56, 1230, (1997)]. In this formalism, the propagator comes about as a type of expansion of the wave function over the space of the initial velocities. (author)

  1. Design of two-dimensional channels with prescribed velocity distributions along the channel walls

    Science.gov (United States)

    Stanitz, John D

    1953-01-01

    A general method of design is developed for two-dimensional unbranched channels with prescribed velocities as a function of arc length along the channel walls. The method is developed for both compressible and incompressible, irrotational, nonviscous flow and applies to the design of elbows, diffusers, nozzles, and so forth. In part I solutions are obtained by relaxation methods; in part II solutions are obtained by a Green's function. Five numerical examples are given in part I including three elbow designs with the same prescribed velocity as a function of arc length along the channel walls but with incompressible, linearized compressible, and compressible flow. One numerical example is presented in part II for an accelerating elbow with linearized compressible flow, and the time required for the solution by a Green's function in part II was considerably less than the time required for the same solution by relaxation methods in part I.

  2. Velocity feedback control with a flywheel proof mass actuator

    Science.gov (United States)

    Kras, Aleksander; Gardonio, Paolo

    2017-08-01

    This paper presents four new proof mass actuators to be used in velocity feedback control systems for the control of vibrations of machines and flexible structures. A classical proof mass actuator is formed by a coil-magnet linear motor, with either the magnet or the armature-coil proof mass suspended on soft springs. This arrangement produces a net force effect at frequencies above the fundamental resonance frequency of the springs-proof mass system. Thus, it can be used to implement point velocity feedback loops, although the dynamic response and static deflection of the springs-proof mass system poses some stability and control performance limitations. The four proof mass actuators presented in this study include a flywheel element, which is used to augment the inertia effect of the suspended proof mass. The paper shows that the flywheel element modifies both the dynamic response and static deflection of the springs-proof mass system in such a way as the stability and control performance of velocity feedback loops using these actuators are significantly improved.

  3. Should tsunami simulations include a nonzero initial horizontal velocity?

    Science.gov (United States)

    Lotto, Gabriel C.; Nava, Gabriel; Dunham, Eric M.

    2017-08-01

    Tsunami propagation in the open ocean is most commonly modeled by solving the shallow water wave equations. These equations require initial conditions on sea surface height and depth-averaged horizontal particle velocity or, equivalently, horizontal momentum. While most modelers assume that initial velocity is zero, Y.T. Song and collaborators have argued for nonzero initial velocity, claiming that horizontal displacement of a sloping seafloor imparts significant horizontal momentum to the ocean. They show examples in which this effect increases the resulting tsunami height by a factor of two or more relative to models in which initial velocity is zero. We test this claim with a "full-physics" integrated dynamic rupture and tsunami model that couples the elastic response of the Earth to the linearized acoustic-gravitational response of a compressible ocean with gravity; the model self-consistently accounts for seismic waves in the solid Earth, acoustic waves in the ocean, and tsunamis (with dispersion at short wavelengths). Full-physics simulations of subduction zone megathrust ruptures and tsunamis in geometries with a sloping seafloor confirm that substantial horizontal momentum is imparted to the ocean. However, almost all of that initial momentum is carried away by ocean acoustic waves, with negligible momentum imparted to the tsunami. We also compare tsunami propagation in each simulation to that predicted by an equivalent shallow water wave simulation with varying assumptions regarding initial velocity. We find that the initial horizontal velocity conditions proposed by Song and collaborators consistently overestimate the tsunami amplitude and predict an inconsistent wave profile. Finally, we determine tsunami initial conditions that are rigorously consistent with our full-physics simulations by isolating the tsunami waves from ocean acoustic and seismic waves at some final time, and backpropagating the tsunami waves to their initial state by solving the

  4. Non-linear laws of echoic memory and auditory change detection in humans

    Directory of Open Access Journals (Sweden)

    Takeshima Yasuyuki

    2010-07-01

    Full Text Available Abstract Background The detection of any abrupt change in the environment is important to survival. Since memory of preceding sensory conditions is necessary for detecting changes, such a change-detection system relates closely to the memory system. Here we used an auditory change-related N1 subcomponent (change-N1 of event-related brain potentials to investigate cortical mechanisms underlying change detection and echoic memory. Results Change-N1 was elicited by a simple paradigm with two tones, a standard followed by a deviant, while subjects watched a silent movie. The amplitude of change-N1 elicited by a fixed sound pressure deviance (70 dB vs. 75 dB was negatively correlated with the logarithm of the interval between the standard sound and deviant sound (1, 10, 100, or 1000 ms, while positively correlated with the logarithm of the duration of the standard sound (25, 100, 500, or 1000 ms. The amplitude of change-N1 elicited by a deviance in sound pressure, sound frequency, and sound location was correlated with the logarithm of the magnitude of physical differences between the standard and deviant sounds. Conclusions The present findings suggest that temporal representation of echoic memory is non-linear and Weber-Fechner law holds for the automatic cortical response to sound changes within a suprathreshold range. Since the present results show that the behavior of echoic memory can be understood through change-N1, change-N1 would be a useful tool to investigate memory systems.

  5. Temporal variation of floc size and settling velocity in the Dollard estuary

    Science.gov (United States)

    Van der Lee, Willem T. B.

    2000-09-01

    Temporal changes in floc size and settling velocity were measured in the Dollard estuary with an under water video camera. The results show that the flocs in the Dollard are very heterogeneous and that larger flocs have much lower effective densities than smaller flocs. Due to this density decrease, floc settling velocities show only a minor increase with increasing floc size. Floc sizes and settling velocities correlate with the suspended sediment concentration (SSC) on a tidal time scale, but not on a seasonal time scale. On a seasonal time scale floc sizes depend on the binding properties of the sediment, while floc settling velocities show hardly any variation, as an increase in floc size is mainly counterbalanced by a decrease in floc density. Tidal variations in settling velocity occur but cannot be modeled solely as a function of SSC, as the relation between floc size/settling velocity and SSC constantly changes in time and space. Settling velocity variations throughout the tide can however be expressed as a function of tidal phase.

  6. A Sawmill Manager Adapts To Change With Linear Programming

    Science.gov (United States)

    George F. Dutrow; James E. Granskog

    1973-01-01

    Linear programming provides guidelines for increasing sawmill capacity and flexibility and for determining stumpagepurchasing strategy. The operator of a medium-sized sawmill implemented improvements suggested by linear programming analysis; results indicate a 45 percent increase in revenue and a 36 percent hike in volume processed.

  7. Differences in the Load-Velocity Profile Between 4 Bench-Press Variants.

    Science.gov (United States)

    García-Ramos, Amador; Pestaña-Melero, Francisco Luis; Pérez-Castilla, Alejandro; Rojas, Francisco Javier; Haff, Guy Gregory

    2018-03-01

    To compare the load-velocity relationship between 4 variants of the bench-press (BP) exercise. The full load-velocity relationship of 30 men was evaluated by means of an incremental loading test starting at 17 kg and progressing to the individual 1-repetition maximum (1RM) in 4 BP variants: concentric-only BP, concentric-only BP throw (BPT), eccentric-concentric BP, and eccentric-concentric BPT. A strong and fairly linear relationship between mean velocity (MV) and %1RM was observed for the 4 BP variants (r 2  > .96 for pooled data and r 2  > .98 for individual data). The MV associated with each %1RM was significantly higher in the eccentric-concentric technique than in the concentric-only technique. The only significant difference between the BP and BPT variants was the higher MV with the light to moderate loads (20-70%1RM) in the BPT using the concentric-only technique. MV was significantly and positively correlated between the 4 BP variants (r = .44-.76), which suggests that the subjects with higher velocities for each %1RM in 1 BP variant also tend to have higher velocities for each %1RM in the 3 other BP variants. These results highlight the need for obtaining specific equations for each BP variant and the existence of individual load-velocity profiles.

  8. Detection of kinetic change points in piece-wise linear single molecule motion

    Science.gov (United States)

    Hill, Flynn R.; van Oijen, Antoine M.; Duderstadt, Karl E.

    2018-03-01

    Single-molecule approaches present a powerful way to obtain detailed kinetic information at the molecular level. However, the identification of small rate changes is often hindered by the considerable noise present in such single-molecule kinetic data. We present a general method to detect such kinetic change points in trajectories of motion of processive single molecules having Gaussian noise, with a minimum number of parameters and without the need of an assumed kinetic model beyond piece-wise linearity of motion. Kinetic change points are detected using a likelihood ratio test in which the probability of no change is compared to the probability of a change occurring, given the experimental noise. A predetermined confidence interval minimizes the occurrence of false detections. Applying the method recursively to all sub-regions of a single molecule trajectory ensures that all kinetic change points are located. The algorithm presented allows rigorous and quantitative determination of kinetic change points in noisy single molecule observations without the need for filtering or binning, which reduce temporal resolution and obscure dynamics. The statistical framework for the approach and implementation details are discussed. The detection power of the algorithm is assessed using simulations with both single kinetic changes and multiple kinetic changes that typically arise in observations of single-molecule DNA-replication reactions. Implementations of the algorithm are provided in ImageJ plugin format written in Java and in the Julia language for numeric computing, with accompanying Jupyter Notebooks to allow reproduction of the analysis presented here.

  9. Thermoconvective flow velocity in a high-speed magnetofluid seal after it has stopped

    Science.gov (United States)

    Krakov, M. S.; Nikiforov, I. V.

    2012-09-01

    Convective flow is investigated in the high-speed (linear velocity of the shaft seal is more than 1 m/s) magnetofluid shaft seal after it has been stopped. Magnetic fluid is preliminarily heated due to viscous friction in the moving seal. After the shaft has been stopped, nonuniform heated fluid remains under the action of a high-gradient magnetic field. Numerical analysis has revealed that in this situation, intense thermomagnetic convection is initiated. The velocity of magnetic fluid depends on its viscosity. For the fluid with viscosity of 2 × 10-4 m2/s the maximum flow velocity within the volume of magnetic fluid with a characteristic size of 1 mm can attain a value of 10 m/s.

  10. Cyclone–anticyclone vortex asymmetry mechanism and linear Ekman friction

    Energy Technology Data Exchange (ETDEWEB)

    Chefranov, S. G., E-mail: schefranov@mail.ru [Russian Academy of Sciences, Obukhov Institute of Atmospheric Physics (Russian Federation)

    2016-04-15

    Allowance for the linear Ekman friction has been found to ensure a threshold (in rotation frequency) realization of the linear dissipative–centrifugal instability and the related chiral symmetry breaking in the dynamics of Lagrangian particles, which leads to the cyclone–anticyclone vortex asymmetry. An excess of the fluid rotation rate ω{sub 0} over some threshold value determined by the fluid eigenfrequency ω (i.e., ω{sub 0} > ω) is shown to be a condition for the realization of such an instability. A new generalization of the solution of the Karman problem to determine the steady-state velocity field in a viscous incompressible fluid above a rotating solid disk of large radius, in which the linear Ekman friction was additionally taken into account, has been obtained. A correspondence of this solution and the conditions for the realization of the dissipative–centrifugal instability of a chiral-symmetric vortex state and the corresponding cyclone–anticyclone vortex asymmetry has been shown. A generalization of the well-known spiral velocity distribution in an “Ekman layer” near a solid surface has been established for the case where the fluid rotation frequency far from the disk ω differs from the disk rotation frequency ω{sub 0}.

  11. Stress wave propagation in linear viscoelasticity

    International Nuclear Information System (INIS)

    Asada, Kazuo; Fukuoka, Hidekazu.

    1992-01-01

    Decreasing characteristics of both stress and stress gradient with propagation distance at a 2-dimensional linear viscoelasticity wavefront are derived by using our 3-dimensional theoretical equation for particle velocity discontinuities. By finite-element method code DYNA3D, stress at a noncurvature dilatation wavefront of linear viscoelasticity is shown to decrease exponentially. This result is in good accordance with our theory. By dynamic photoelasticity experiment, stress gradients of urethane rubber plates at 3 types of wavefronts are shown to decrease exponentially at a noncurvature wavefront and are shown to be a decreasing function of (1/√R) exp (α 1 2 /(2α 0 3 ξ)) at a curvature wavefront. These experiment results are in good accordance with our theory. (author)

  12. Inference regarding multiple structural changes in linear models with endogenous regressors☆

    Science.gov (United States)

    Hall, Alastair R.; Han, Sanggohn; Boldea, Otilia

    2012-01-01

    This paper considers the linear model with endogenous regressors and multiple changes in the parameters at unknown times. It is shown that minimization of a Generalized Method of Moments criterion yields inconsistent estimators of the break fractions, but minimization of the Two Stage Least Squares (2SLS) criterion yields consistent estimators of these parameters. We develop a methodology for estimation and inference of the parameters of the model based on 2SLS. The analysis covers the cases where the reduced form is either stable or unstable. The methodology is illustrated via an application to the New Keynesian Phillips Curve for the US. PMID:23805021

  13. A fast iterative scheme for the linearized Boltzmann equation

    Science.gov (United States)

    Wu, Lei; Zhang, Jun; Liu, Haihu; Zhang, Yonghao; Reese, Jason M.

    2017-06-01

    Iterative schemes to find steady-state solutions to the Boltzmann equation are efficient for highly rarefied gas flows, but can be very slow to converge in the near-continuum flow regime. In this paper, a synthetic iterative scheme is developed to speed up the solution of the linearized Boltzmann equation by penalizing the collision operator L into the form L = (L + Nδh) - Nδh, where δ is the gas rarefaction parameter, h is the velocity distribution function, and N is a tuning parameter controlling the convergence rate. The velocity distribution function is first solved by the conventional iterative scheme, then it is corrected such that the macroscopic flow velocity is governed by a diffusion-type equation that is asymptotic-preserving into the Navier-Stokes limit. The efficiency of this new scheme is assessed by calculating the eigenvalue of the iteration, as well as solving for Poiseuille and thermal transpiration flows. We find that the fastest convergence of our synthetic scheme for the linearized Boltzmann equation is achieved when Nδ is close to the average collision frequency. The synthetic iterative scheme is significantly faster than the conventional iterative scheme in both the transition and the near-continuum gas flow regimes. Moreover, due to its asymptotic-preserving properties, the synthetic iterative scheme does not need high spatial resolution in the near-continuum flow regime, which makes it even faster than the conventional iterative scheme. Using this synthetic scheme, with the fast spectral approximation of the linearized Boltzmann collision operator, Poiseuille and thermal transpiration flows between two parallel plates, through channels of circular/rectangular cross sections and various porous media are calculated over the whole range of gas rarefaction. Finally, the flow of a Ne-Ar gas mixture is solved based on the linearized Boltzmann equation with the Lennard-Jones intermolecular potential for the first time, and the difference

  14. Non-linear regime shifts in Holocene Asian monsoon variability: potential impacts on cultural change and migratory patterns

    Science.gov (United States)

    Donges, J. F.; Donner, R. V.; Marwan, N.; Breitenbach, S. F. M.; Rehfeld, K.; Kurths, J.

    2015-05-01

    The Asian monsoon system is an important tipping element in Earth's climate with a large impact on human societies in the past and present. In light of the potentially severe impacts of present and future anthropogenic climate change on Asian hydrology, it is vital to understand the forcing mechanisms of past climatic regime shifts in the Asian monsoon domain. Here we use novel recurrence network analysis techniques for detecting episodes with pronounced non-linear changes in Holocene Asian monsoon dynamics recorded in speleothems from caves distributed throughout the major branches of the Asian monsoon system. A newly developed multi-proxy methodology explicitly considers dating uncertainties with the COPRA (COnstructing Proxy Records from Age models) approach and allows for detection of continental-scale regime shifts in the complexity of monsoon dynamics. Several epochs are characterised by non-linear regime shifts in Asian monsoon variability, including the periods around 8.5-7.9, 5.7-5.0, 4.1-3.7, and 3.0-2.4 ka BP. The timing of these regime shifts is consistent with known episodes of Holocene rapid climate change (RCC) and high-latitude Bond events. Additionally, we observe a previously rarely reported non-linear regime shift around 7.3 ka BP, a timing that matches the typical 1.0-1.5 ky return intervals of Bond events. A detailed review of previously suggested links between Holocene climatic changes in the Asian monsoon domain and the archaeological record indicates that, in addition to previously considered longer-term changes in mean monsoon intensity and other climatic parameters, regime shifts in monsoon complexity might have played an important role as drivers of migration, pronounced cultural changes, and the collapse of ancient human societies.

  15. Linear resonance acceleration of pellets

    International Nuclear Information System (INIS)

    Mills, R.G.

    1978-01-01

    A possible requirement for the acceleration of macroscopic pellets to velocities exceeding 10 4 meters per second implies the development of new apparatus. A satisfactory approach might be the linear resonance accelerator. Such apparatus would require the charging of pellets to very high values not yet demonstrated. The incompatibility of phase stability with radial stability in these machines may require abandoning phase stability and adopting feedback control of the accelerating voltage to accommodate statistical fluctuations in the charge to mass ratio of successive pellets

  16. Analyzing angular distributions for two-step dissociation mechanisms in velocity map imaging.

    Science.gov (United States)

    Straus, Daniel B; Butler, Lynne M; Alligood, Bridget W; Butler, Laurie J

    2013-08-15

    Increasingly, velocity map imaging is becoming the method of choice to study photoinduced molecular dissociation processes. This paper introduces an algorithm to analyze the measured net speed, P(vnet), and angular, β(vnet), distributions of the products from a two-step dissociation mechanism, where the first step but not the second is induced by absorption of linearly polarized laser light. Typically, this might be the photodissociation of a C-X bond (X = halogen or other atom) to produce an atom and a momentum-matched radical that has enough internal energy to subsequently dissociate (without the absorption of an additional photon). It is this second step, the dissociation of the unstable radicals, that one wishes to study, but the measured net velocity of the final products is the vector sum of the velocity imparted to the radical in the primary photodissociation (which is determined by taking data on the momentum-matched atomic cophotofragment) and the additional velocity vector imparted in the subsequent dissociation of the unstable radical. The algorithm allows one to determine, from the forward-convolution fitting of the net velocity distribution, the distribution of velocity vectors imparted in the second step of the mechanism. One can thus deduce the secondary velocity distribution, characterized by a speed distribution P(v1,2°) and an angular distribution I(θ2°), where θ2° is the angle between the dissociating radical's velocity vector and the additional velocity vector imparted to the product detected from the subsequent dissociation of the radical.

  17. Real-time Non-linear Target Tracking Control of Wheeled Mobile Robots

    Institute of Scientific and Technical Information of China (English)

    YU Wenyong

    2006-01-01

    A control strategy for real-time target tracking for wheeled mobile robots is presented. Using a modified Kalman filter for environment perception, a novel tracking control law derived from Lyapunov stability theory is introduced. Tuning of linear velocity and angular velocity with mechanical constraints is applied. The proposed control system can simultaneously solve the target trajectory prediction, real-time tracking, and posture regulation problems of a wheeled mobile robot. Experimental results illustrate the effectiveness of the proposed tracking control laws.

  18. Longitudinal and radial MHD linear induction accelerator with hot conducting plasma core

    International Nuclear Information System (INIS)

    Denno, K.

    1985-01-01

    Conceptual design of linear induction accelerator is presented using for the core continuum a highly conductive plasma with sustained pumping velocity. Karlovitz criterion of boundary theory is employed in the process of design

  19. Dense velocity reconstruction from tomographic PTV with material derivatives

    Science.gov (United States)

    Schneiders, Jan F. G.; Scarano, Fulvio

    2016-09-01

    A method is proposed to reconstruct the instantaneous velocity field from time-resolved volumetric particle tracking velocimetry (PTV, e.g., 3D-PTV, tomographic PTV and Shake-the-Box), employing both the instantaneous velocity and the velocity material derivative of the sparse tracer particles. The constraint to the measured temporal derivative of the PTV particle tracks improves the consistency of the reconstructed velocity field. The method is christened as pouring time into space, as it leverages temporal information to increase the spatial resolution of volumetric PTV measurements. This approach becomes relevant in cases where the spatial resolution is limited by the seeding concentration. The method solves an optimization problem to find the vorticity and velocity fields that minimize a cost function, which includes next to instantaneous velocity, also the velocity material derivative. The velocity and its material derivative are related through the vorticity transport equation, and the cost function is minimized using the limited-memory Broyden-Fletcher-Goldfarb-Shanno (L-BFGS) algorithm. The procedure is assessed numerically with a simulated PTV experiment in a turbulent boundary layer from a direct numerical simulation (DNS). The experimental validation considers a tomographic particle image velocimetry (PIV) experiment in a similar turbulent boundary layer and the additional case of a jet flow. The proposed technique (`vortex-in-cell plus', VIC+) is compared to tomographic PIV analysis (3D iterative cross-correlation), PTV interpolation methods (linear and adaptive Gaussian windowing) and to vortex-in-cell (VIC) interpolation without the material derivative. A visible increase in resolved details in the turbulent structures is obtained with the VIC+ approach, both in numerical simulations and experiments. This results in a more accurate determination of the turbulent stresses distribution in turbulent boundary layer investigations. Data from a jet

  20. Non-linear sliding mode control of the lower extremity exoskeleton based on human–robot cooperation

    Directory of Open Access Journals (Sweden)

    Shiqiang Zhu

    2016-10-01

    Full Text Available This article presents a human–robot cooperation controller towards the lower extremity exoskeleton which aims to improve the tracking performance of the exoskeleton and reduce the human–robot interaction force. Radial basis function neural network is introduced to model the human–machine interaction which can better approximate the non-linear relationship than the general impedance model. A new method to calculate the inverse Jacobian matrix is presented. Compared to traditional damped least squares method, the novel method is proved to be able to avoid the orientation change of the velocity of the human–robot interaction point by the simulation result. This feature is very important in human–robot system. Then, an improved non-linear robust sliding mode controller is designed to promote the tracking performance considering system uncertainties and model errors, where a new non-linear integral sliding surface is given. The stability analysis of the proposed controller is performed using Lyapunov stability theory. Finally, the novel methods are applied to the swing leg control of the lower extremity exoskeleton, its effectiveness is validated by simulation and comparative experiments.

  1. A Fabry-Perot interferometer system for high-speed velocity measurement

    NARCIS (Netherlands)

    Cheng, L.K.; Bruinsma, A.J.A.; Prinse, W.C.; Smorenburg, C.

    1997-01-01

    The Fabry-Perot Velocity Interferometer System (F-PVIS) is designed and built for measuring the Doppler shift of light by recording positional changes in the interferometric pattern behind the Fabry-Perot interferometer. The velocity of a surface can be deduced from the Doppler shift which is caused

  2. Deriving mass-energy equivalence and mass-velocity relation without light

    Science.gov (United States)

    Dai, Youshan; Dai, Liang

    2018-04-01

    Relativity requires that a particle's momentum and energy are the same functions of the particle's velocity in all inertial frames. Using the fact that momentum and energy must transform linearly between reference frames, we present a novel derivation of the mass-energy equivalence, namely, the relation that the energy is proportional to the moving mass, with no postulate about the existence of light or its properties. We further prove the mass-velocity relation without relying on momentum and energy conservation or on the Lorentz transformation. It is demonstrated that neither conservation laws nor the Lorentz transformation are necessary to establish those relations, and that those relations have a wider scope of validity than that of the conservation laws and the invariance of the speed of light.

  3. Constraining the depth of the time-lapse changes of P- and S-wave velocities in the first year after the 2011 Tohoku earthquake, Japan

    Science.gov (United States)

    Sawazaki, K.; Kimura, H.; Uchida, N.; Takagi, R.; Snieder, R.

    2012-12-01

    Using deconvolutions of vertical array of KiK-net (nationwide strong-motion seismograph digital network in Japan) records and applying coda wave interferometry (CWI) to Hi-net (high-sensitivity seismograph network in Japan; collocated with a borehole receiver of KiK-net) borehole records, we constrain the responsible depth of the medium changes associated with the 2011 Tohoku earthquake (MW9.0). There is a systematic reduction in VS up to 6% in the shallow subsurface which experienced strong dynamic strain by the Tohoku earthquake. In contrast, both positive and negative changes are observed for VP, which are less than 2% for both directions. We propose that this discrepancy between the changes of VS and VP is explained by the behavior of shear and bulk moduli of a porous medium exposed to an increase of excess pore fluid pressure. At many stations, VS recovers proportional to logarithm of the lapse time after the mainshock, and mostly recovers to the reference value obtained before the mainshock in one year. However, some stations that have been exposed by additional strong motions of aftershocks and/or other earthquakes take much longer time for the recovery. The CWI technique applied to horizontal components of S-coda reveals a velocity reduction up to 0.2% widely along the coastline of northeastern Japan. For the vertical component of P-coda, however, the velocity change is mostly less than 0.1% at the same region. From single scattering model including P-S and S-P conversion scatterings, we verify that both components are sensitive to VS change around the source, but the vertical component of P-coda is sensitive to VP change around the receiver. Consequently, the difference in velocity changes revealed from the horizontal and vertical components represents the difference of VS and VP changes near the receiver. As the conclusion, VS reduction ratio in the deep lithosphere is smaller than that at the shallow ground by 1 to 2 orders.

  4. Linear filters as a method of real-time prediction of geomagnetic activity

    International Nuclear Information System (INIS)

    McPherron, R.L.; Baker, D.N.; Bargatze, L.F.

    1985-01-01

    Important factors controlling geomagnetic activity include the solar wind velocity, the strength of the interplanetary magnetic field (IMF), and the field orientation. Because these quantities change so much in transit through the solar wind, real-time monitoring immediately upstream of the earth provides the best input for any technique of real-time prediction. One such technique is linear prediction filtering which utilizes past histories of the input and output of a linear system to create a time-invariant filter characterizing the system. Problems of nonlinearity or temporal changes of the system can be handled by appropriate choice of input parameters and piecewise approximation in various ranges of the input. We have created prediction filters for all the standard magnetic indices and tested their efficiency. The filters show that the initial response of the magnetosphere to a southward turning of the IMF peaks in 20 minutes and then again in 55 minutes. After a northward turning, auroral zone indices and the midlatitude ASYM index return to background within 2 hours, while Dst decays exponentially with a time constant of about 8 hours. This paper describes a simple, real-time system utilizing these filters which could predict a substantial fraction of the variation in magnetic activity indices 20 to 50 minutes in advance

  5. Polaron effects on the linear and the nonlinear optical absorption coefficients and refractive index changes in cylindrical quantum dots with applied magnetic field

    International Nuclear Information System (INIS)

    Wu Qingjie; Guo Kangxian; Liu Guanghui; Wu Jinghe

    2013-01-01

    Polaron effects on the linear and the nonlinear optical absorption coefficients and refractive index changes in cylindrical quantum dots with the radial parabolic potential and the z-direction linear potential with applied magnetic field are theoretically investigated. The optical absorption coefficients and refractive index changes are presented by using the compact-density-matrix approach and iterative method. Numerical calculations are presented for GaAs/AlGaAs. It is found that taking into account the electron-LO-phonon interaction, not only are the linear, the nonlinear and the total optical absorption coefficients and refractive index changes enhanced, but also the total optical absorption coefficients are more sensitive to the incident optical intensity. It is also found that no matter whether the electron-LO-phonon interaction is considered or not, the absorption coefficients and refractive index changes above are strongly dependent on the radial frequency, the magnetic field and the linear potential coefficient.

  6. Drift velocity monitoring of the CMS muon drift chambers

    CERN Document Server

    Sonnenschein, Lars

    2010-01-01

    The drift velocity in drift tubes of the CMS muon chambers is a key parameter for the muon track reconstruction and trigger. It needs to be monitored precisely in order to detect any deviation from its nominal value. A change in absolute pressure, a variation of the gas admixture or a contamination of the chamber gas by air affect the drift velocity. Furthermore the temperature and magnetic field influence its value. First data, taken with a dedicated Velocity Drift Chamber (VDC) built by RWTH Aachen IIIA are presented.

  7. A simple algorithm improves mass accuracy to 50-100 ppm for delayed extraction linear MALDI-TOF mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Hack, Christopher A.; Benner, W. Henry

    2001-10-31

    A simple mathematical technique for improving mass calibration accuracy of linear delayed extraction matrix assisted laser desorption ionization time-of-flight mass spectrometry (DE MALDI-TOF MS) spectra is presented. The method involves fitting a parabola to a plot of Dm vs. mass data where Dm is the difference between the theoretical mass of calibrants and the mass obtained from a linear relationship between the square root of m/z and ion time of flight. The quadratic equation that describes the parabola is then used to correct the mass of unknowns by subtracting the deviation predicted by the quadratic equation from measured data. By subtracting the value of the parabola at each mass from the calibrated data, the accuracy of mass data points can be improved by factors of 10 or more. This method produces highly similar results whether or not initial ion velocity is accounted for in the calibration equation; consequently, there is no need to depend on that uncertain parameter when using the quadratic correction. This method can be used to correct the internally calibrated masses of protein digest peaks. The effect of nitrocellulose as a matrix additive is also briefly discussed, and it is shown that using nitrocellulose as an additive to a CHCA matrix does not significantly change initial ion velocity but does change the average position of ions relative to the sample electrode at the instant the extraction voltage is applied.

  8. PIV measurements of velocities and accelerations under breaking waves on a slope

    DEFF Research Database (Denmark)

    Vested, Malene Hovgaard; Carstensen, Stefan; Christensen, Erik Damgaard

    2017-01-01

    waves. In this study, we have investigated the wave kinematics under steep and breaking waves on a laboratory beach with a slope of 1/25. The velocity field was measured by use of Particle Image Velocimetry (PIV) at a sample rate of 96Hz. The high sample rate allowed for the accelerations...... to be determined directly from the sampled velocities. It was found that both velocities and accelerations differ from the ones predicted from common wave theories such as streamfunction theory. This was especially evident at the top part of the wave close to the surface. This was not surprising, since...... the breaking event is a highly non-linear process. The results presented here may facilitate computations of the impact force on offshore structures and furthermore be used for validation of CFD models while altogether shedding light on the mechanisms behind breaking waves....

  9. Beyer's non-linearity parameter (B/A) in benzylidene aniline Schiff base liquid crystalline systems

    International Nuclear Information System (INIS)

    Nagi Reddy, M.V.V.; Pisipati, V.G.K.M.; Madhavi Latha, D.; Datta Prasad, P.V.

    2011-01-01

    The non-linearity parameter B/A is estimated for a number of liquid crystal materials of the type N-(p-n-alkoxy benzylidene)-p-n-alkyl anilines, popularly known as nO.m, where n and m are the aliphatic chains on either side of the rigid core, which can be varied from 1 to 18 to realize a number of LC materials with a variety LC phase variants. The B/A values are computed from both density and sound velocity data following standard relations reported in literature. This systematic study in a homologous series provides an opportunity to study how this parameter behaves with (1) either the alkoxy and/or alkyl chain number, (2) with the total chain number (n+m), (3) with increase in molecular weight and (4) whether the linear relations reported in literature either with αT [thermal expansion coefficient (α) and temperature (T)] and sound velocity (u) will hold good or not and if so to what extent. The results are discussed with the body of data available in literature on liquids, liquid mixtures and other LC materials. -- Research highlights: → The Bayer's non-linearity parameter (B/A) is estimated for the first time for a number liquid crystal materials of the type N-(p-n-alkoxy benzylidene)-p-nalkyl anilines. → The magnitude of B/A estimated from sound velocity data is higher compared to that estimated thermal expansion data. → The B/A value decreases with increase in molecular weight with an even odd fashion and reaches a minimum value and saturates. → These studies reveal that both the thermal expansion coefficient and sound velocity are the tools to estimate the non-linear parameter B/A in the case of liquid crystals.

  10. Reactivity-induced time-dependencies of EBR-II linear and non-linear feedbacks

    International Nuclear Information System (INIS)

    Grimm, K.N.; Meneghetti, D.

    1988-01-01

    Time-dependent linear feedback reactivities are calculated for stereotypical subassemblies in the EBR-II reactor. These quantities are calculated from nodal reactivities obtained from a kinetic code analysis of an experiment in which the change in power resulted from the dropping of a control rod. Shown with these linear reactivities are the reactivity associated with the control-rod shaft contraction and also time-dependent non-linear (mainly bowing) component deduced from the inverse kinetics of the experimentally measured fission power and the calculated linear reactivities. (author)

  11. Simultaneous Determination of Source Wavelet and Velocity Profile Using Impulsive Point-Source Reflections from a Layered Fluid

    National Research Council Canada - National Science Library

    Bube, K; Lailly, P; Sacks, P; Santosa, F; Symes, W. W

    1987-01-01

    .... We show that a quasi-impulsive, isotropic point source may be recovered simultaneously with the velocity profile from reflection data over a layered fluid, in linear (perturbation) approximation...

  12. Magnetic and Velocity Field Variations in the Active Regions NOAA ...

    Indian Academy of Sciences (India)

    Abstract. We study the magnetic and velocity field evolution in the two magnetically complex active regions NOAA 10486 and NOAA 10488 observed during October–November 2003. We have used the available data to examine net flux and Doppler velocity time profiles to identify changes associated with evolutionary and ...

  13. Study on velocity field in a wire wrapped fuel pin bundle of sodium cooled reactor. Detailed velocity distribution in a subchannel

    International Nuclear Information System (INIS)

    Sato, Hiroyuki; Kobayashi, Jun; Miyakoshi, Hiroyuki; Kamide, Hideki

    2009-01-01

    A sodium cooled fast reactor is designed to attain a high burn-up core in a feasibility study on commercialized fast reactor cycle systems. In high burn-up fuel subassemblies, deformation of fuel pin due to the swelling and thermal bowing may decrease local flow velocity via change of flow area in the subassembly and influence the heat removal capability. Therefore, it is of importance to obtain the flow velocity distribution in a wire wrapped pin bundle. A 2.5 times enlarged 7-pin bundle water model was applied to investigate the detailed velocity distribution in an inner subchannel surrounded by 3 pins with wrapping wire. The test section consisted of a hexagonal acrylic duct tube and fluorinated resin pins which had nearly the same refractive index with that of water and a high light transmission rate. The velocity distribution in an inner subchannel with the wrapping wire was measured by PIV (Particle Image Velocimetry) through the front and lateral sides of the duct tube. In the vertical velocity distribution in a narrow space between the pins, the wrapping wire decreased the velocity downstream of the wire and asymmetric flow distribution was formed between the pin and wire. In the horizontal velocity distribution, swirl flow around the wrapping wire was obviously observed. The measured velocity data are useful for code validation of pin bundle thermalhydraulics. (author)

  14. Videometrics-based Detection of Vibration Linearity in MEMS Gyroscope

    Directory of Open Access Journals (Sweden)

    Yong Zhou

    2011-05-01

    Full Text Available MEMS gyroscope performs as a sort of sensor to detect angular velocity, with diverse applications in engineering including vehicle and intelligent traffic etc. A balanced vibration of driving module excited by electrostatic driving signal is the base MEMS gyroscope's performance. In order to analyze the linear property of vibration in MEMS Gyroscope, a method of computer vision measuring is applied with the help of high-speed vidicon to obtain video of linear vibration of driving module in gyroscope, under the driving voltage signal of inherent frequency and amplitude linearly increasing. By means of image processing, target identifying, and motion parameter extracting from the obtained video, vibration curve with time variation is acquired. And then, linearity of this vibration system can be analyzed by focusing on the amplitude value of vibration responding to the amplitude variation of driving voltage signal.

  15. Distinguished hyperbolic trajectories in time-dependent fluid flows: analytical and computational approach for velocity fields defined as data sets

    Directory of Open Access Journals (Sweden)

    K. Ide

    2002-01-01

    Full Text Available In this paper we develop analytical and numerical methods for finding special hyperbolic trajectories that govern geometry of Lagrangian structures in time-dependent vector fields. The vector fields (or velocity fields may have arbitrary time dependence and be realized only as data sets over finite time intervals, where space and time are discretized. While the notion of a hyperbolic trajectory is central to dynamical systems theory, much of the theoretical developments for Lagrangian transport proceed under the assumption that such a special hyperbolic trajectory exists. This brings in new mathematical issues that must be addressed in order for Lagrangian transport theory to be applicable in practice, i.e. how to determine whether or not such a trajectory exists and, if it does exist, how to identify it in a sequence of instantaneous velocity fields. We address these issues by developing the notion of a distinguished hyperbolic trajectory (DHT. We develop an existence criteria for certain classes of DHTs in general time-dependent velocity fields, based on the time evolution of Eulerian structures that are observed in individual instantaneous fields over the entire time interval of the data set. We demonstrate the concept of DHTs in inhomogeneous (or "forced" time-dependent linear systems and develop a theory and analytical formula for computing DHTs. Throughout this work the notion of linearization is very important. This is not surprising since hyperbolicity is a "linearized" notion. To extend the analytical formula to more general nonlinear time-dependent velocity fields, we develop a series of coordinate transforms including a type of linearization that is not typically used in dynamical systems theory. We refer to it as Eulerian linearization, which is related to the frame independence of DHTs, as opposed to the Lagrangian linearization, which is typical in dynamical systems theory, which is used in the computation of Lyapunov exponents. We

  16. Constitutive Curve and Velocity Profile in Entangled Polymers during Start-Up of Steady Shear Flow

    KAUST Repository

    Hayes, Keesha A.; Buckley, Mark R.; Qi, Haibo; Cohen, Itai; Archer, Lynden A.

    2010-01-01

    -4]. Surprisingly, we find that even polymer systems which exhibit transient, nonmonotonic shear stress-shear rate relationships in bulk rheology experiments manifest time-dependent velocity profiles that are decidedly linear and show no evidence of unstable flow

  17. Kinematic Modeling of Normal Voluntary Mandibular Opening and Closing Velocity-Initial Study.

    Science.gov (United States)

    Gawriołek, Krzysztof; Gawriołek, Maria; Komosa, Marek; Piotrowski, Paweł R; Azer, Shereen S

    2015-06-01

    Determination and quantification of voluntary mandibular velocity movement has not been a thoroughly studied parameter of masticatory movement. This study attempted to objectively define kinematics of mandibular movement based on numerical (digital) analysis of the relations and interactions of velocity diagram records in healthy female individuals. Using a computerized mandibular scanner (K7 Evaluation Software), 72 diagrams of voluntary mandibular velocity movements (36 for opening, 36 for closing) for women with clinically normal motor and functional activities of the masticatory system were recorded. Multiple measurements were analyzed focusing on the curve for maximum velocity records. For each movement, the loop of temporary velocities was determined. The diagram was then entered into AutoCad calculation software where movement analysis was performed. The real maximum velocity values on opening (Vmax ), closing (V0 ), and average velocity values (Vav ) as well as movement accelerations (a) were recorded. Additionally, functional (A1-A2) and geometric (P1-P4) analysis of loop constituent phases were performed, and the relations between the obtained areas were defined. Velocity means and correlation coefficient values for various velocity phases were calculated. The Wilcoxon test produced the following maximum and average velocity results: Vmax = 394 ± 102, Vav = 222 ± 61 for opening, and Vmax = 409 ± 94, Vav = 225 ± 55 mm/s for closing. Both mandibular movement range and velocity change showed significant variability achieving the highest velocity in P2 phase. Voluntary mandibular velocity presents significant variations between healthy individuals. Maximum velocity is obtained when incisal separation is between 12.8 and 13.5 mm. An improved understanding of the patterns of normal mandibular movements may provide an invaluable diagnostic aid to pathological changes within the masticatory system. © 2014 by the American College of Prosthodontists.

  18. Recoil velocity at second post-Newtonian order for spinning black hole binaries

    International Nuclear Information System (INIS)

    Racine, Etienne; Buonanno, Alessandra; Kidder, Larry

    2009-01-01

    We compute the flux of linear momentum carried by gravitational waves emitted from spinning binary black holes at second post-Newtonian (2PN) order for generic orbits. In particular we provide explicit expressions of three new types of terms, namely, next-to-leading order spin-orbit terms at 1.5 post-Newtonian (1.5PN) order, spin-orbit tail terms at 2PN order, and spin-spin terms at 2PN order. Restricting ourselves to quasicircular orbits, we integrate the linear-momentum flux over time to obtain the recoil velocity as function of orbital frequency. We find that in the so-called superkick configuration the higher-order spin corrections can increase the recoil velocity up to a factor ∼3 with respect to the leading-order PN prediction. Whereas the recoil velocity computed in PN theory within the adiabatic approximation can accurately describe the early inspiral phase, we find that its fast increase during the late inspiral and plunge, and the arbitrariness in determining until when it should be trusted, makes the PN predictions for the total recoil not very accurate and robust. Nevertheless, the linear-momentum flux at higher PN orders can be employed to build more reliable resummed expressions aimed at capturing the nonperturbative effects until merger. Furthermore, we provide expressions valid for generic orbits, and accurate at 2PN order, for the energy and angular momentum carried by gravitational waves emitted from spinning binary black holes. Specializing to quasicircular orbits we compute the spin-spin terms at 2PN order in the expression for the evolution of the orbital frequency and found agreement with Mikoczi, Vasuth, and Gergely. We also verified that in the limit of extreme mass ratio our expressions for the energy and angular momentum fluxes match the ones of Tagoshi, Shibata, Tanaka, and Sasaki obtained in the context of black hole perturbation theory.

  19. Auditory velocity discrimination in the horizontal plane at very high velocities.

    Science.gov (United States)

    Frissen, Ilja; Féron, François-Xavier; Guastavino, Catherine

    2014-10-01

    We determined velocity discrimination thresholds and Weber fractions for sounds revolving around the listener at very high velocities. Sounds used were a broadband white noise and two harmonic sounds with fundamental frequencies of 330 Hz and 1760 Hz. Experiment 1 used velocities ranging between 288°/s and 720°/s in an acoustically treated room and Experiment 2 used velocities between 288°/s and 576°/s in a highly reverberant hall. A third experiment addressed potential confounds in the first two experiments. The results show that people can reliably discriminate velocity at very high velocities and that both thresholds and Weber fractions decrease as velocity increases. These results violate Weber's law but are consistent with the empirical trend observed in the literature. While thresholds for the noise and 330 Hz harmonic stimulus were similar, those for the 1760 Hz harmonic stimulus were substantially higher. There were no reliable differences in velocity discrimination between the two acoustical environments, suggesting that auditory motion perception at high velocities is robust against the effects of reverberation. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Linear Parametric Sensitivity Analysis of the Constraint Coefficient Matrix in Linear Programs

    OpenAIRE

    Zuidwijk, Rob

    2005-01-01

    textabstractSensitivity analysis is used to quantify the impact of changes in the initial data of linear programs on the optimal value. In particular, parametric sensitivity analysis involves a perturbation analysis in which the effects of small changes of some or all of the initial data on an optimal solution are investigated, and the optimal solution is studied on a so-called critical range of the initial data, in which certain properties such as the optimal basis in linear programming are ...

  1. Conduction velocity is regulated by sodium channel inactivation in unmyelinated axons innervating the rat cranial meninges.

    Science.gov (United States)

    De Col, Roberto; Messlinger, Karl; Carr, Richard W

    2008-02-15

    Axonal conduction velocity varies according to the level of preceding impulse activity. In unmyelinated axons this typically results in a slowing of conduction velocity and a parallel increase in threshold. It is currently held that Na(+)-K(+)-ATPase-dependent axonal hyperpolarization is responsible for this slowing but this has long been equivocal. We therefore examined conduction velocity changes during repetitive activation of single unmyelinated axons innervating the rat cranial meninges. In direct contradiction to the currently accepted postulate, Na(+)-K(+)-ATPase blockade actually enhanced activity-induced conduction velocity slowing, while the degree of velocity slowing was curtailed in the presence of lidocaine (10-300 microm) and carbamazepine (30-500 microm) but not tetrodotoxin (TTX, 10-80 nm). This suggests that a change in the number of available sodium channels is the most prominent factor responsible for activity-induced changes in conduction velocity in unmyelinated axons. At moderate stimulus frequencies, axonal conduction velocity is determined by an interaction between residual sodium channel inactivation following each impulse and the retrieval of channels from inactivation by a concomitant Na(+)-K(+)-ATPase-mediated hyperpolarization. Since the process is primarily dependent upon sodium channel availability, tracking conduction velocity provides a means of accessing relative changes in the excitability of nociceptive neurons.

  2. Total-variation based velocity inversion with Bregmanized operator splitting algorithm

    Science.gov (United States)

    Zand, Toktam; Gholami, Ali

    2018-04-01

    Many problems in applied geophysics can be formulated as a linear inverse problem. The associated problems, however, are large-scale and ill-conditioned. Therefore, regularization techniques are needed to be employed for solving them and generating a stable and acceptable solution. We consider numerical methods for solving such problems in this paper. In order to tackle the ill-conditioning of the problem we use blockiness as a prior information of the subsurface parameters and formulate the problem as a constrained total variation (TV) regularization. The Bregmanized operator splitting (BOS) algorithm as a combination of the Bregman iteration and the proximal forward backward operator splitting method is developed to solve the arranged problem. Two main advantages of this new algorithm are that no matrix inversion is required and that a discrepancy stopping criterion is used to stop the iterations, which allow efficient solution of large-scale problems. The high performance of the proposed TV regularization method is demonstrated using two different experiments: 1) velocity inversion from (synthetic) seismic data which is based on Born approximation, 2) computing interval velocities from RMS velocities via Dix formula. Numerical examples are presented to verify the feasibility of the proposed method for high-resolution velocity inversion.

  3. Non-linear thermal convection in a

    Directory of Open Access Journals (Sweden)

    Sachin Shaw

    2016-06-01

    Full Text Available Casson fluid flow has many practical applications such as food processing, metallurgy, drilling operations and bio-engineering operations. In this paper, we study Casson fluid flow through a plate with a convective boundary condition at the surface and quantify the effects of suction/injection, velocity ratio, and Soret and Dufour effects. Firstly we used a similarity transformation to change the governing equations to ordinary differential equations which were then solved numerically. The effect of the rheological parameters on the velocity, temperature, and concentration with skin friction, and heat and mass transfer are shown graphically and discussed briefly. It is observed that the velocity of the fluid at the surface decreases with increase of the velocity ratio while the nature of the flow is in opposite characteristics. The local Nusselt number decreases with increase in the velocity ratio. Skin friction at the surface is enhanced by buoyancy ratio and Casson number. Due to injection of the fluid in the system, the mass transfer rate at the surface increases while it decreases with the velocity ratio parameter.

  4. A piezoelectric ultrasonic linear micromotor using a slotted stator.

    Science.gov (United States)

    Yun, Cheol-Ho; Watson, Brett; Friend, James; Yeo, Leslie

    2010-08-01

    A novel ultrasonic micro linear motor that uses 1st longitudinal and 2nd bending modes, derived from a bartype stator with a rectangular slot cut through the stator length, has been proposed and designed for end-effect devices of microrobotics and bio-medical applications. The slot structure plays an important role in the motor design, and can be used not only to tune the resonance frequency of the two vibration modes but also to reduce the undesirable longitudinal coupling displacement caused by bending vibration at the end of the stator. By using finite element analysis, the optimal slot dimension to improve the driving tip motion was determined, resulting in the improvement of the motor performance. The trial linear motor, with a weight of 1.6 g, gave a maximum driving velocity of 1.12 m/s and a maximum driving force of 3.4 N. A maximum mechanical output power of 1.1 W was obtained at force of 1.63 N and velocity of 0.68 m/s. The output mechanical power per unit weight was 688 W/kg.

  5. Temporal Variability in Seismic Velocity at the Salton Sea Geothermal Field

    Science.gov (United States)

    Taira, T.; Nayak, A.; Brenguier, F.

    2015-12-01

    We characterize the temporal variability of ambient noise wavefield and search for velocity changes associated with activities of the geothermal energy development at the Salton Sea Geothermal Field. The noise cross-correlations (NCFs) are computed for ~6 years of continuous three-component seismic data (December 2007 through January 2014) collected at 8 sites from the CalEnergy Subnetwork (EN network) with MSNoise software (Lecocq et al., 2014, SRL). All seismic data are downloaded from the Southern California Earthquake Data Center. Velocity changes (dv/v) are obtained by measuring time delay between 5-day stacks of NCFs and the reference NCF (average over the entire 6 year period). The time history of dv/v is determined by averaging dv/v measurements over all station/channel pairs (252 combinations). Our preliminary dv/v measurement suggests a gradual increase in dv/v over the 6-year period in a frequency range of 0.5-8.0 Hz. The resultant increase rate of velocity is about 0.01%/year. We also explore the frequency-dependent velocity change at the 5 different frequency bands (0.5-2.0 Hz, 0.75-3.0 Hz, 1.0-4.0 Hz, 1.5-6.0 Hz, and 2.0-8.0 Hz) and find that the level of this long-term dv/v variability is increased with increase of frequency (i.e., the highest increase rate of ~0.15%/year at the 0.5-2.0 Hz band). This result suggests that the velocity changes were mostly occurred in a depth of ~500 m assuming that the coda parts of NCFs (~10-40 s depending on station distances) are predominantly composed of scattered surface waves, with the SoCal velocity model (Dreger and Helmberger, 1993, JGR). No clear seasonal variation of dv/v is observed in the frequency band of 0.5-8.0 Hz.

  6. In-vivo studies of new vector velocity and adaptive spectral estimators in medical ultrasound

    DEFF Research Database (Denmark)

    Hansen, Kristoffer Lindskov

    In this PhD project new ultrasound techniques for blood flow measurements have been investigated in-vivo. The focus has mainly been on vector velocity techniques and four different approaches have been examined: Transverse Oscillation, Synthetic Transmit Aperture, Directional Beamforming and Plane...... in conventional Doppler ultrasound. That is angle dependency, reduced temporal resolution and low frame rate. Transverse Oscillation, Synthetic Transmit Aperture and Directional Beamforming can estimate the blood velocity angle independently. The three methods were validated in-vivo against magnetic resonance...... phase contrast angiography when measuring stroke volumes in simple vessel geometry on 11 volunteers. Using linear regression and Bland-Altman analyses good agreements were found, indicating that vector velocity methods can be used for quantitative blood flow measurements. Plane Wave Excitation can...

  7. The electromagnetic rocket gun - a means to reach ultrahigh velocities

    International Nuclear Information System (INIS)

    Winterberg, F.

    1983-01-01

    A novel kind of electromagnetic launcher for the acceleration of multigram-size macroparticles, up to velocities required for impact fusion, is proposed. The novel launcher concept combines the efficiency of a gun with the much higher velocities attainable by a rocket. In the proposed concept a rocket-like projectile is launched inside a gun barrel, drawing its energy from a travelling magnetic wave. The travelling magnetic wave heats and ionizes the exhaust jet of the rocket. As a result, the projectile i propelled both by the recoil from the jet and the magnetic pressure of the travelling magnetic wave. In comparison to magnetic linear accelerators, accelerating either superconducting or ferromagnetic projectiles, the proposed concept has several important advantages. First, the exhaust jet is much longer than the rocket-like projectile and which permits a much longer switching time to turn on the travelling magnetic wave. Second, the proposed concept does not require superconducting projectiles, or projectiles made from expensive ferromagnetic material. Third, unlike in railgun accelerators, the projectile can be kept away from the wall, and thereby can reach much larger velocities. (orig.)

  8. Determination of strength exercise intensities based on the load-power-velocity relationship.

    Science.gov (United States)

    Jandačka, Daniel; Beremlijski, Petr

    2011-06-01

    The velocity of movement and applied load affect the production of mechanical power output and subsequently the extent of the adaptation stimulus in strength exercises. We do not know of any known function describing the relationship of power and velocity and load in the bench press exercise. The objective of the study is to find a function modeling of the relationship of relative velocity, relative load and mechanical power output for the bench press exercise and to determine the intensity zones of the exercise for specifically focused strength training of soccer players. Fifteen highly trained soccer players at the start of a competition period were studied. The subjects of study performed bench presses with the load of 0, 10, 30, 50, 70 and 90% of the predetermined one repetition maximum with maximum possible speed of movement. The mean measured power and velocity for each load (kg) were used to develop a multiple linear regression function which describes the quadratic relationship between the ratio of power (W) to maximum power (W) and the ratios of the load (kg) to one repetition maximum (kg) and the velocity (m•s(-1)) to maximal velocity (m•s(-1)). The quadratic function of two variables that modeled the searched relationship explained 74% of measured values in the acceleration phase and 75% of measured values from the entire extent of the positive power movement in the lift. The optimal load for reaching maximum power output suitable for the dynamics effort strength training was 40% of one repetition maximum, while the optimal mean velocity would be 75% of maximal velocity. Moreover, four zones: maximum power, maximum velocity, velocity-power and strength-power were determined on the basis of the regression function.

  9. Effects of closed immersion filtered water flow velocity on the ablation threshold of bisphenol A polycarbonate during excimer laser machining

    International Nuclear Information System (INIS)

    Dowding, Colin; Lawrence, Jonathan

    2010-01-01

    A closed flowing thick film filtered water immersion technique ensures a controlled geometry for both the optical interfaces of the flowing liquid film and allows repeatable control of flow-rate during machining. This has the action of preventing splashing, ensures repeatable machining conditions and allows control of liquid flow velocity. To investigate the impact of this technique on ablation threshold, bisphenol A polycarbonate samples have been machined using KrF excimer laser radiation passing through a medium of filtered water flowing at a number of flow velocities, that are controllable by modifying the liquid flow-rates. An average decrease in ablation threshold of 7.5% when using turbulent flow velocity regime closed thick film filtered water immersed ablation, compared to ablation using a similar beam in ambient air; however, the use of laminar flow velocities resulted in negligible differences between closed flowing thick film filtered water immersion and ambient air. Plotting the recorded threshold fluence achieved with varying flow velocity showed that an optimum flow velocity of 3.00 m/s existed which yielded a minimum ablation threshold of 112 mJ/cm 2 . This is attributed to the distortion of the ablation plume effected by the flowing immersion fluid changing the ablation mechanism: at laminar flow velocities Bremsstrahlung attenuation decreases etch rate, at excessive flow velocities the plume is completely destroyed, removing the effect of plume etching. Laminar flow velocity regime ablation is limited by slow removal of debris causing a non-linear etch rate over 'n' pulses which is a result of debris produced by one pulse remaining suspended over the feature for the next pulse. The impact of closed thick film filtered water immersed ablation is dependant upon beam fluence: high fluence beams achieved greater etch efficiency at high flow velocities as the effect of Bremsstrahlung attenuation is removed by the action of the fluid on the plume; low

  10. Carbon isotope evidence for the latitudinal distribution and wind speed dependence of the air-sea gas transfer velocity

    International Nuclear Information System (INIS)

    Krakauer, Nir Y.

    2006-01-01

    The air-sea gas transfer velocity is an important determinant of the exchange of gases, including CO 2 , between the atmosphere and ocean, but the magnitude of the transfer velocity and what factors control it remains poorly known. Here, we use oceanic and atmospheric observations of 14 C and 13 C to constrain the global mean gas transfer velocity as well as the exponent of its wind speed dependence, utilizing the distinct signatures left by the air-sea exchange of 14 CO 2 and 13 CO 2 . While the atmosphere and ocean inventories of 14 CO 2 and 13 CO 2 constrain the mean gas transfer velocity, the latitudinal pattern in the atmospheric and oceanic 14 C and 13 C distributions contain information about the wind speed dependence. We computed the uptake of bomb 14 C by the ocean for different transfer velocity patterns using pulse response functions from an ocean general circulation model, and evaluated the match between the predicted bomb 14 C concentrations and observationally based estimates for the 1970s-1990s. Using a wind speed climatology based on satellite measurements, we solved either for the best-fit global relationship between gas exchange and mean wind speed or for the mean gas transfer velocity over each of 11 ocean regions. We also compared the predicted consequences of different gas exchange relationships on the rate of change and interhemisphere gradient of 14 C in atmospheric CO 2 with tree-ring and atmospheric measurements. Our results suggest that globally, the dependence of the air-sea gas transfer velocity on wind speed is close to linear, with an exponent of 0.5 ± 0.4, and that the global mean gas transfer velocity at a Schmidt number of 660 is 20 ± 3 cm/hr, similar to the results of previous analyses. We find that the air-sea flux of 13 C estimated from atmosphere and ocean observations also suggests a lower than quadratic dependence of gas exchange on wind speed

  11. Waveform inversion of lateral velocity variation from wavefield source location perturbation

    KAUST Repository

    Choi, Yun Seok

    2013-09-22

    It is challenge in waveform inversion to precisely define the deep part of the velocity model compared to the shallow part. The lateral velocity variation, or what referred to as the derivative of velocity with respect to the horizontal distance, with well log data can be used to update the deep part of the velocity model more precisely. We develop a waveform inversion algorithm to obtain the lateral velocity variation by inverting the wavefield variation associated with the lateral shot location perturbation. The gradient of the new waveform inversion algorithm is obtained by the adjoint-state method. Our inversion algorithm focuses on resolving the lateral changes of the velocity model with respect to a fixed reference vertical velocity profile given by a well log. We apply the method on a simple-dome model to highlight the methods potential.

  12. Study on laminar burning velocity of syngas-air premixed flames in various mixing conditions

    International Nuclear Information System (INIS)

    Lee, Kee Man; Jeong, Byeong Gyu; Lee, Seung Ro

    2015-01-01

    The laminar burning velocity of syngas-air premixed flames was measured with various equivalence ratios from 0.5 to 5.0 and a mole fraction of H 2 from 0.05 to 0.75. The laminar burning velocity was experimentally determined using a Bunsen flame according to the cone angle and surface area methods. A premixed code with a USC-II detailed reaction mechanism was used for the numerical calculations to predict the laminar burning velocity and to examine the relationship between the burning velocity enhancement and the hydrogen-related reactions. The results indicate that an appropriate method for the measurement of laminar burning velocity is necessary in the H 2 /CO/air syngas premixed flame. In addition, the burning velocity linearly increased with the increase of the H 2 mole fraction in the syngas mixture, although the burning velocity of H 2 was 10 times larger than that of CO. This result is attributed to the rapid production of H-radicals at the early stage of combustion. Furthermore, the predicted mole fractions of H and OH radicals increased with the increase of H 2 mole fraction for a lean syngas mixture. However, the mole fraction of OH radicals, an indicator of heat release rate, decreased for rich syngas mixture, resulting in a reduction of the laminar burning velocity, even with an increase of the H 2 mole fraction.

  13. EVOLUTION OF ROTATIONAL VELOCITIES OF A-TYPE STARS

    International Nuclear Information System (INIS)

    Yang Wuming; Bi Shaolan; Tian Zhijia; Meng Xiangcun

    2013-01-01

    The equatorial velocity of A-type stars undergoes an acceleration in the first third of the main sequence (MS) stage, but the velocity decreases as if the stars were not undergoing any redistribution of angular momentum in the external layers in the last stage of the MS phase. Our calculations show that the acceleration and the decrease of the equatorial velocity can be reproduced by the evolution of the differential rotation zero-age MS model with the angular momentum transport caused by hydrodynamic instabilities during the MS stage. The acceleration results from the fact that the angular momentum stored in the interiors of the stars is transported outward. In the last stage, the core and the radiative envelope are uncoupling, and the rotation of the envelope is a quasi-solid rotation; the uncoupling and the expansion of the envelope indicate that the decrease of the equatorial velocity approximately follows the slope for the change in the equatorial velocity of the model without any redistribution of angular momentum. When the fractional age 0.3 ∼ MS ∼< 0.5, the equatorial velocity remains almost constant for stars whose central density increases with age in the early stage of the MS phase, while the velocity decreases with age for stars whose central density decreases with age in the early stage of the MS phase.

  14. Superconducting RF for Low-Velocity and Intermediate-Velocity Beams

    CERN Document Server

    Grimm, Terry L

    2005-01-01

    Existing superconducting radio frequency (SRF) linacs are used to accelerate ions (protons through uranium) with velocities less than about 15% the speed of light, or electrons with velocities approximately equal to the speed of light. In the last ten years, prototype SRF cavities have completely covered the remaining range of velocities. They have demonstrated that SRF linacs will be capable of accelerating electrons from rest up to the speed of light, and ions from less than 1% up to the speed of light. When the Spallation Neutron Source is operational, SRF ion linacs will have covered the full range of velocities except for v/c ~ 0.15 to v/c ~ 0.5. A number of proposed projects (RIA, EURISOL) would span the latter range of velocities. Future SRF developments will have to address the trade-offs associated with a number of issues, including high gradient operation, longitudinal and transverse acceptance, microphonics, Lorentz detuning, operating temperature, cryogenic load, number of gaps or cells per cavity...

  15. Radio frequency focused interdigital linear accelerator

    Science.gov (United States)

    Swenson, Donald A.; Starling, W. Joel

    2006-08-29

    An interdigital (Wideroe) linear accelerator employing drift tubes, and associated support stems that couple to both the longitudinal and support stem electromagnetic fields of the linac, creating rf quadrupole fields along the axis of the linac to provide transverse focusing for the particle beam. Each drift tube comprises two separate electrodes operating at different electrical potentials as determined by cavity rf fields. Each electrode supports two fingers, pointing towards the opposite end of the drift tube, forming a four-finger geometry that produces an rf quadrupole field distribution along its axis. The fundamental periodicity of the structure is equal to one half of the particle wavelength .beta..lamda., where .beta. is the particle velocity in units of the velocity of light and .lamda. is the free space wavelength of the rf. Particles are accelerated in the gaps between drift tubes. The particle beam is focused in regions inside the drift tubes.

  16. Statistical scaling of pore-scale Lagrangian velocities in natural porous media.

    Science.gov (United States)

    Siena, M; Guadagnini, A; Riva, M; Bijeljic, B; Pereira Nunes, J P; Blunt, M J

    2014-08-01

    We investigate the scaling behavior of sample statistics of pore-scale Lagrangian velocities in two different rock samples, Bentheimer sandstone and Estaillades limestone. The samples are imaged using x-ray computer tomography with micron-scale resolution. The scaling analysis relies on the study of the way qth-order sample structure functions (statistical moments of order q of absolute increments) of Lagrangian velocities depend on separation distances, or lags, traveled along the mean flow direction. In the sandstone block, sample structure functions of all orders exhibit a power-law scaling within a clearly identifiable intermediate range of lags. Sample structure functions associated with the limestone block display two diverse power-law regimes, which we infer to be related to two overlapping spatially correlated structures. In both rocks and for all orders q, we observe linear relationships between logarithmic structure functions of successive orders at all lags (a phenomenon that is typically known as extended power scaling, or extended self-similarity). The scaling behavior of Lagrangian velocities is compared with the one exhibited by porosity and specific surface area, which constitute two key pore-scale geometric observables. The statistical scaling of the local velocity field reflects the behavior of these geometric observables, with the occurrence of power-law-scaling regimes within the same range of lags for sample structure functions of Lagrangian velocity, porosity, and specific surface area.

  17. The effects of oestrogens on linear bone growth

    DEFF Research Database (Denmark)

    Juul, A

    2001-01-01

    Regulation of linear bone growth in children and adolescents comprises a complex interaction of hormones and growth factors. Growth hormone (GH) is considered to be the key hormone regulator of linear growth in childhood. The pubertal increase in growth velocity associated with GH has traditionally...... been attributed to testicular androgen secretion in boys, and to oestrogens or adrenal androgen secretion in girls. Research data indicating that oestrogen may be the principal hormone stimulating the pubertal growth spurt in boys as well as girls is reviewed. Such an action is mediated by oestrogen...... female growth spurt despite lack of androgen action. Oestrogens may also influence linear bone growth indirectly via modulation of the GH-insulin-like growth factor-I (IGF-I) axis. Thus, ER blockade diminishes endogenous GH secretion, androgen receptor (AR) blockade increases GH secretion in peripubertal...

  18. A Low Mass Translation Mechanism for Planetary FTIR Spectrometry using an Ultrasonic Piezo Linear Motor

    Science.gov (United States)

    Heverly, Matthew; Dougherty, Sean; Toon, Geoffrey; Soto, Alejandro; Blavier, Jean-Francois

    2004-01-01

    One of the key components of a Fourier Transform Infrared Spectrometer (FTIR) is the linear translation stage used to vary the optical path length between the two arms of the interferometer. This translation mechanism must produce extremely constant velocity motion across its entire range of travel to allow the instrument to attain high signal-to-noise ratio and spectral resolving power. A new spectrometer is being developed at the Jet Propulsion Laboratory under NASA s Planetary Instrument Definition and Development Program (PIDDP). The goal of this project is to build upon existing spaceborne FTIR spectrometer technology to produce a new instrument prototype that has drastically superior spectral resolution and substantially lower mass, making it feasible for planetary exploration. In order to achieve these goals, Alliance Spacesystems, Inc. (ASI) has developed a linear translation mechanism using a novel ultrasonic piezo linear motor in conjunction with a fully kinematic, fault tolerant linear rail system. The piezo motor provides extremely smooth motion, is inherently redundant, and is capable of producing unlimited travel. The kinematic rail uses spherical Vespel(R). rollers and bushings, which eliminates the need for wet lubrication, while providing a fault tolerant platform for smooth linear motion that will not bind under misalignment or structural deformation. This system can produce velocities from 10 - 100 mm/s with less than 1% velocity error over the entire 100-mm length of travel for a total mechanism mass of less than 850 grams. This system has performed over half a million strokes under vacuum without excessive wear or degradation in performance. This paper covers the design, development, and testing of this linear translation mechanism as part of the Planetary Atmosphere Occultation Spectrometer (PAOS) instrument prototype development program.

  19. Dynamics of elliptic breathers in saturable nonlinear media with linear anisotropy

    International Nuclear Information System (INIS)

    Liang, Guo; Guo, Qi; Shou, Qian; Ren, Zhanmei

    2014-01-01

    We have introduced a class of dynamic elliptic breathers in saturable nonlinear media with linear anisotropy. Two kinds of evolution behavior for the dynamic breathers, rotations and molecule-like librations, are both predicted by the variational approach, and confirmed in numerical simulations. The dynamic elliptic breathers can rotate even though they have no initial orbital angular momentum (OAM). As the media are linear anisotropic, OAM is no longer conserved, and hence the angular velocity is not constant but a periodic function of the propagation distance. When the linear anisotropy is large enough, the dynamic elliptic breathers librate like molecules. The dynamic elliptic breathers are present in media with not only saturable nonlinearity but also nonlocal nonlinearity; indeed, they are universal in nonlinear media with linear anisotropy. (paper)

  20. Indentation of aluminium foam at low velocity

    Directory of Open Access Journals (Sweden)

    Shi Xiaopeng

    2015-01-01

    Full Text Available The indentation behaviour of aluminium foams at low velocity (10 m/s ∼ 30 m/s was investigated both in experiments and numerical simulation in this paper. A flat-ended indenter was used and the force-displacement history was recorded. The Split Hopkinson Pressure bar was used to obtain the indentation velocity and forces in the dynamic experiments. Because of the low strength of the aluminium foam, PMMA bar was used, and the experimental data were corrected using Bacon's method. The energy absorption characteristics varying with impact velocity were then obtained. It was found that the energy absorption ability of aluminium foam gradually increases in the quasi-static regime and shows a significant increase at ∼10 m/s velocity. Numerical simulation was also conducted to investigate this process. A 3D Voronoi model was used and models with different relative densities were investigated as well as those with different failure strain. The indentation energy increases with both the relative density and failure strain. The analysis of the FE model implies that the significant change in energy absorption ability of aluminium foam in indentation at ∼10 m/s velocity may be caused by plastic wave effect.

  1. Surface waves tomography and non-linear inversion in the southeast Carpathians

    International Nuclear Information System (INIS)

    Raykova, R.B.; Panza, G.F.

    2005-11-01

    A set of shear-wave velocity models of the lithosphere-asthenosphere system in the southeast Carpathians is determined by the non-linear inversion of surface wave group velocity data, obtained from a tomographic analysis. The local dispersion curves are assembled for the period range 7 s - 150 s, combining regional group velocity measurements and published global Rayleigh wave dispersion data. The lithosphere-asthenosphere velocity structure is reliably reconstructed to depths of about 250 km. The thickness of the lithosphere in the region varies from about 120 km to 250 km and the depth of the asthenosphere between 150 km and 250 km. Mantle seismicity concentrates where the high velocity lid is detected just below the Moho. The obtained results are in agreement with recent seismic refraction, receiver function, and travel time P-wave tomography investigations in the region. The similarity among the results obtained from different kinds of structural investigations (including the present work) highlights some new features of the lithosphere-asthenosphere system in southeast Carpathians, as the relatively thin crust under Transylvania basin and Vrancea zone. (author)

  2. Frictional Characteristics of a Small Aerostatic Linear Bearing

    Directory of Open Access Journals (Sweden)

    Ryosuke Araki

    2015-04-01

    Full Text Available Frictional characteristics of a small aerostatic linear bearing are accurately evaluated by means of a method, in which the force acting on the moving part of the bearing is measured as the inertial force. An optical interferometer is newly developed to measure the Doppler shift frequency of the laser light reflected on the small moving part. From the measured time-varying Doppler shift frequency, the velocity, the position, the acceleration and the inertial force of the moving part are numerically calculated. It is confirmed that the dynamic frictional force acting inside the bearing is almost proportional to the velocity of the moving part and is similar to the theoretical value calculated under the assumption that the flow inside the bearing is the Couette flow.

  3. Linear and nonlinear modeling of light propagation in hollow-core photonic crystal fiber

    DEFF Research Database (Denmark)

    Roberts, John; Lægsgaard, Jesper

    2009-01-01

    Hollow core photonic crystal fibers (HC-PCFs) find applications which include quantum and non-linear optics, gas detection and short high-intensity laser pulse delivery. Central to most applications is an understanding of the linear and nonlinear optical properties. These require careful modeling....... The intricacies of modeling various forms of HC-PCF are reviewed. An example of linear dispersion engineering, aimed at reducing and flattening the group velocity dispersion, is then presented. Finally, a study of short high intensity pulse delivery using HC-PCF in both dispersive and nonlinear (solitonic...

  4. Basic linear algebra

    CERN Document Server

    Blyth, T S

    2002-01-01

    Basic Linear Algebra is a text for first year students leading from concrete examples to abstract theorems, via tutorial-type exercises. More exercises (of the kind a student may expect in examination papers) are grouped at the end of each section. The book covers the most important basics of any first course on linear algebra, explaining the algebra of matrices with applications to analytic geometry, systems of linear equations, difference equations and complex numbers. Linear equations are treated via Hermite normal forms which provides a successful and concrete explanation of the notion of linear independence. Another important highlight is the connection between linear mappings and matrices leading to the change of basis theorem which opens the door to the notion of similarity. This new and revised edition features additional exercises and coverage of Cramer's rule (omitted from the first edition). However, it is the new, extra chapter on computer assistance that will be of particular interest to readers:...

  5. Ballistic transport through graphene nanostructures of velocity and potential barriers

    International Nuclear Information System (INIS)

    Krstajic, P M; Vasilopoulos, P

    2011-01-01

    We investigate the electronic properties of graphene nanostructures when the Fermi velocity and the electrostatic potential vary in space. First, we consider the transmission T and conductance G through single and double barriers. We show that G for velocity barriers differs markedly from that for potential barriers for energies below the height of the latter and it exhibits periodic oscillations as a function of the energy for strong velocity modulation. Special attention is given to superlattices (SLs). It is shown that an applied bias can efficiently widen or shrink the allowed minibands of velocity-modulated SLs. The spectrum in the Kronig-Penney limit is periodic in the strength of the barriers. Collimation of an electron beam incident on an SL with velocity and potential barriers is present but it disappears when the potential barriers are absent. The number of additional Dirac points may change considerably if barriers and wells have sufficiently different Fermi velocities.

  6. Monitoring a temporal change of seismic velocity in a geothermal reservoir; Chinetsu choryuso hendo ni tomonau jishinha sokudo henka kenshutsu no kokoromi

    Energy Technology Data Exchange (ETDEWEB)

    Sugihara, M; Nishi, Y; Tosha, T [Geological Survey of Japan, Tsukuba (Japan)

    1997-10-22

    Data derived at the Kakkonda geothermal area were used to discuss functions of monitoring a temporal change of seismic velocity in geothermal reservoir. The data were selected from about 50 microtremors generated in the vicinity of the area during one year in 1986. Two out of the selected microtremors were earthquakes with a magnitude of 2.7 both accompanying small precursor events. The magnitude of 2.7 may be small under normal definition, but the earthquakes are thought relatively strong because the degree of fracture adjacent to the reservoir is concentrated in a small space. This condition could be a cause of expansion of the fracture zone. The analysis was carried out according what is described by Ratdomopurbo and Poupinet. More specifically, certain time sections were taken on each certain time to fit it with the initial movement time of P-waves on two similar earthquakes, cross spectra were calculated, and phase difference in the two earthquakes was evaluated from the phase spectra. As a result, no distinct change was detected in the velocity. 5 figs.

  7. Intrinsic suppression of turbulence in linear plasma devices

    Science.gov (United States)

    Leddy, J.; Dudson, B.

    2017-12-01

    Plasma turbulence is the dominant transport mechanism for heat and particles in magnetised plasmas in linear devices and tokamaks, so the study of turbulence is important in limiting and controlling this transport. Linear devices provide an axial magnetic field that serves to confine a plasma in cylindrical geometry as it travels along the magnetic field from the source to the strike point. Due to perpendicular transport, the plasma density and temperature have a roughly Gaussian radial profile with gradients that drive instabilities, such as resistive drift-waves and Kelvin-Helmholtz. If unstable, these instabilities cause perturbations to grow resulting in saturated turbulence, increasing the cross-field transport of heat and particles. When the plasma emerges from the source, there is a time, {τ }\\parallel , that describes the lifetime of the plasma based on parallel velocity and length of the device. As the plasma moves down the device, it also moves azimuthally according to E × B and diamagnetic velocities. There is a balance point in these parallel and perpendicular times that sets the stabilisation threshold. We simulate plasmas with a variety of parallel lengths and magnetic fields to vary the parallel and perpendicular lifetimes, respectively, and find that there is a clear correlation between the saturated RMS density perturbation level and the balance between these lifetimes. The threshold of marginal stability is seen to exist where {τ }\\parallel ≈ 11{τ }\\perp . This is also associated with the product {τ }\\parallel {γ }* , where {γ }* is the drift-wave linear growth rate, indicating that the instability must exist for roughly 100 times the growth time for the instability to enter the nonlinear growth phase. We explore the root of this correlation and the implications for linear device design.

  8. Evaluation of performance of Son Tek Argonaut acoustic doppler velocity log in tow tank and sea

    Digital Repository Service at National Institute of Oceanography (India)

    Joseph, A; Madhan, R.; Mascarenhas, A.A; Desai, R.G.P.; VijayKumar, K.; Dias, M.; Tengali, S.; Methar, A

    Performance of a 500-kHz, 3-beam downward-looking Sontex Argonaut acoustic Doppler velocity log (DVL) based on measurements at tow-tank and sea is addressed. Its accuracy and linearity under tow-tank measurements were largely scattered...

  9. Dark matter direct detection with non-Maxwellian velocity structure

    International Nuclear Information System (INIS)

    Kuhlen, Michael; Weiner, Neal; Diemand, Jürg; Moore, Ben; Potter, Doug; Stadel, Joachim; Madau, Piero; Zemp, Marcel

    2010-01-01

    The velocity distribution function of dark matter particles is expected to show significant departures from a Maxwell-Boltzmann distribution. This can have profound effects on the predicted dark matter - nucleon scattering rates in direct detection experiments, especially for dark matter models in which the scattering is sensitive to the high velocity tail of the distribution, such as inelastic dark matter (iDM) or light (few GeV) dark matter (LDM), and for experiments that require high energy recoil events, such as many directionally sensitive experiments. Here we determine the velocity distribution functions from two of the highest resolution numerical simulations of Galactic dark matter structure (Via Lactea II and GHALO), and study the effects for these scenarios. For directional detection, we find that the observed departures from Maxwell-Boltzmann increase the contrast of the signal and change the typical direction of incoming DM particles. For iDM, the expected signals at direct detection experiments are changed dramatically: the annual modulation can be enhanced by more than a factor two, and the relative rates of DAMA compared to CDMS can change by an order of magnitude, while those compared to CRESST can change by a factor of two. The spectrum of the signal can also change dramatically, with many features arising due to substructure. For LDM the spectral effects are smaller, but changes do arise that improve the compatibility with existing experiments. We find that the phase of the modulation can depend upon energy, which would help discriminate against background should it be found

  10. Characterizing Hypervelocity Impact (HVI-Induced Pitting Damage Using Active Guided Ultrasonic Waves: From Linear to Nonlinear

    Directory of Open Access Journals (Sweden)

    Menglong Liu

    2017-05-01

    Full Text Available Hypervelocity impact (HVI, ubiquitous in low Earth orbit with an impacting velocity in excess of 1 km/s, poses an immense threat to the safety of orbiting spacecraft. Upon penetration of the outer shielding layer of a typical two-layer shielding system, the shattered projectile, together with the jetted materials of the outer shielding material, subsequently impinge the inner shielding layer, to which pitting damage is introduced. The pitting damage includes numerous craters and cracks disorderedly scattered over a wide region. Targeting the quantitative evaluation of this sort of damage (multitudinous damage within a singular inspection region, a characterization strategy, associating linear with nonlinear features of guided ultrasonic waves, is developed. Linear-wise, changes in the signal features in the time domain (e.g., time-of-flight and energy dissipation are extracted, for detecting gross damage whose characteristic dimensions are comparable to the wavelength of the probing wave; nonlinear-wise, changes in the signal features in the frequency domain (e.g., second harmonic generation, which are proven to be more sensitive than their linear counterparts to small-scale damage, are explored to characterize HVI-induced pitting damage scattered in the inner layer. A numerical simulation, supplemented with experimental validation, quantitatively reveals the accumulation of nonlinearity of the guided waves when the waves traverse the pitting damage, based on which linear and nonlinear damage indices are proposed. A path-based rapid imaging algorithm, in conjunction with the use of the developed linear and nonlinear indices, is developed, whereby the HVI-induced pitting damage is characterized in images in terms of the probability of occurrence.

  11. Flow velocity change in the cortical vein during motor activation and its effect on functional brain MRI

    Energy Technology Data Exchange (ETDEWEB)

    Nakajima, Kazuhiro [Kyoto Prefectural Univ. of Medicine (Japan)

    1998-06-01

    On the brain functional magnetic resonance imaging (fMRI) using the gradient-recalled echo technique with clinical MR scanner, the activated areas nearly correspond with the cortical veins. This suggests that the fMRI signal mainly originates from the cortical veins. In this study, we analyzed the flow velocity in the cortical vein quantitatively during brain activation and resting status using 2 dimensional time-of-flight cine MR venography (2D-TOF-cine-MRV) and 2 dimensional phase contrast MRV (2D-PC-MRV) techniques, and demonstrated that the flow velocity increased in the cortical vein corresponding to the activated area during activation status. The increase of flow velocity was calculated to be about 20%. The reason for the increased flow velocity is probably due to the increased regional cerebral blood flow and volume in the activated area. We should be careful to analyze the data of the fMRI because the flow velocity affects the fMRI signal such as the inflow effect and the oblique flow effect. When using the gradient echo method, the effect of the flow velocity is one of the important factors of the fMRI signal. (author)

  12. The influence of interstitial water velocity on the migration of 85Sr and 137Cs in an aerated sandy soil layer

    International Nuclear Information System (INIS)

    Ohnuki, Toshihiko; Takebe, Shinichi; Yamamoto, Tadatoshi; Wadachi, Yoshiki

    1983-01-01

    The influence of interstitial water velocity on the migration of Sr-85 and Cs-137 in an aerated sandy soil layer was studied at different feed water velocities and feed times. As well known, it was found that Sr-85 migrated with interstitial water, but Cs-137 little migrated with interstitial water. The apparent migration velocity for each fraction corresponding to three concentrations (2 x 10 -2 , 1 x 10 -2 and 5 x 10 -3 μCi/g) of Sr-85 was further investigated. At constant interstitial water velocity (1cm/ min), different values were given for the apparent migration velocity of three fractions, and the fraction with thin concentration migrated faster. At constant feeding time (100hr), there was a linear relationship between apparent migration velocity of three fractions and interstitial water velocity, in the range of slow water velocity ( -2 and 5 x 10 -3 μCi/g) and interstitial water velocity, in the range of fast water velocity (> 1cm/min). (author)

  13. Diffraction imaging and velocity analysis using oriented velocity continuation

    KAUST Repository

    Decker, Luke

    2014-08-05

    We perform seismic diffraction imaging and velocity analysis by separating diffractions from specular reflections and decomposing them into slope components. We image slope components using extrapolation in migration velocity in time-space-slope coordinates. The extrapolation is described by a convection-type partial differential equation and implemented efficiently in the Fourier domain. Synthetic and field data experiments show that the proposed algorithm is able to detect accurate time-migration velocities by automatically measuring the flatness of events in dip-angle gathers.

  14. Velocity loss as an indicator of neuromuscular fatigue during resistance training.

    Science.gov (United States)

    Sánchez-Medina, Luis; González-Badillo, Juan José

    2011-09-01

    This study aimed to analyze the acute mechanical and metabolic response to resistance exercise protocols (REP) differing in the number of repetitions (R) performed in each set (S) with respect to the maximum predicted number (P). Over 21 exercise sessions separated by 48-72 h, 18 strength-trained males (10 in bench press (BP) and 8 in squat (SQ)) performed 1) a progressive test for one-repetition maximum (1RM) and load-velocity profile determination, 2) tests of maximal number of repetitions to failure (12RM, 10RM, 8RM, 6RM, and 4RM), and 3) 15 REP (S × R[P]: 3 × 6[12], 3 × 8[12], 3 × 10[12], 3 × 12[12], 3 × 6[10], 3 × 8[10], 3 × 10[10], 3 × 4[8], 3 × 6[8], 3 × 8[8], 3 × 3[6], 3 × 4[6], 3 × 6[6], 3 × 2[4], 3 × 4[4]), with 5-min interset rests. Kinematic data were registered by a linear velocity transducer. Blood lactate and ammonia were measured before and after exercise. Mean repetition velocity loss after three sets, loss of velocity pre-post exercise against the 1-m·s load, and countermovement jump height loss (SQ group) were significant for all REP and were highly correlated to each other (r = 0.91-0.97). Velocity loss was significantly greater for BP compared with SQ and strongly correlated to peak postexercise lactate (r = 0.93-0.97) for both SQ and BP. Unlike lactate, ammonia showed a curvilinear response to loss of velocity, only increasing above resting levels when R was at least two repetitions higher than 50% of P. Velocity loss and metabolic stress clearly differs when manipulating the number of repetitions actually performed in each training set. The high correlations found between mechanical (velocity and countermovement jump height losses) and metabolic (lactate, ammonia) measures of fatigue support the validity of using velocity loss to objectively quantify neuromuscular fatigue during resistance training.

  15. Daily rhythm of cerebral blood flow velocity

    Directory of Open Access Journals (Sweden)

    Spielman Arthur J

    2005-03-01

    Full Text Available Abstract Background CBFV (cerebral blood flow velocity is lower in the morning than in the afternoon and evening. Two hypotheses have been proposed to explain the time of day changes in CBFV: 1 CBFV changes are due to sleep-associated processes or 2 time of day changes in CBFV are due to an endogenous circadian rhythm independent of sleep. The aim of this study was to examine CBFV over 30 hours of sustained wakefulness to determine whether CBFV exhibits fluctuations associated with time of day. Methods Eleven subjects underwent a modified constant routine protocol. CBFV from the middle cerebral artery was monitored by chronic recording of Transcranial Doppler (TCD ultrasonography. Other variables included core body temperature (CBT, end-tidal carbon dioxide (EtCO2, blood pressure, and heart rate. Salivary dim light melatonin onset (DLMO served as a measure of endogenous circadian phase position. Results A non-linear multiple regression, cosine fit analysis revealed that both the CBT and CBFV rhythm fit a 24 hour rhythm (R2 = 0.62 and R2 = 0.68, respectively. Circadian phase position of CBT occurred at 6:05 am while CBFV occurred at 12:02 pm, revealing a six hour, or 90 degree difference between these two rhythms (t = 4.9, df = 10, p Conclusion In conclusion, time of day variations in CBFV have an approximately 24 hour rhythm under constant conditions, suggesting regulation by a circadian oscillator. The 90 degree-phase angle difference between the CBT and CBFV rhythms may help explain previous findings of lower CBFV values in the morning. The phase difference occurs at a time period during which cognitive performance decrements have been observed and when both cardiovascular and cerebrovascular events occur more frequently. The mechanisms underlying this phase angle difference require further exploration.

  16. Analyzing the Velocity of Vegetation Phenology Over the Tibetan Plateau Using Gimms NDVI3g Data

    Science.gov (United States)

    Zhou, Y. K.

    2018-05-01

    Global environmental change is rapidly altering the dynamics of terrestrial vegetation, and phenology is a classic proxy to detect the response of vegetation to the changes. On the Tibetan Plateau, the earlier spring and delayed autumn vegetation phenology is widely reported. Remotely sensed NDVI can serve as a good data source for vegetation phenology study. Here GIMMS NDVI3g data was used to detect vegetation phenology status on the Tibetan Plateau. The spatial and temporal gradients are combined to depict the velocity of vegetation expanding process. This velocity index represents the instantaneous local velocity along the Earth's surface needed to maintain constant vegetation condition. This study found that NDVI velocity show a complex spatial pattern. A considerable number of regions display a later starting of growing season (SOS) and earlier end of growing season (EOS) reflected by the velocity change, particularly in the central part of the plateau. Nearly 74 % vegetation experienced a shortened growing season length. Totally, the magnitude of the phenology velocity is at a small level that reveals there is not a significant variation of vegetation phenology under the climate change context.

  17. Measurement of LBE flow velocity profile by UDVP

    International Nuclear Information System (INIS)

    Kikuchi, Kenji; Takeda, Yasushi; Obayashi, Hiroo; Tezuka, Masao; Sato, Hiroshi

    2006-01-01

    Measurements of liquid metal lead-bismuth eutectic (LBE), flow velocity profile were realized in the spallation neutron source target model by the ultrasonic Doppler velocity profiler (UVDP) technique. So far, it has not been done well, because both of poor wetting property of LBE with stainless steels and poor performance of supersonic probes at high temperatures. The measurement was made for a return flow in the target model, which has coaxially arranged annular and tube channels, in the JAEA Lead Bismuth Loop-2 (JLBL-2). The surface treatment of LBE container was examined. It was found that the solder coating was effective to enhance an intensity of reflected ultrasonic wave. This treatment has been applied to the LBE loop, which was operated up to 150 deg. C. The electro magnetic pump generates LBE flow and the flow rate was measured by the electro magnetic flow meter. By changing the flow rate of LBE, velocity profiles in the target were measured. It was confirmed that the maximum velocity in the time-averaged velocity distribution on the target axis was proportional to the flow rate measured by the electro magnetic flow meter

  18. Ion velocities in a micro-cathode arc thruster

    International Nuclear Information System (INIS)

    Zhuang Taisen; Shashurin, Alexey; Keidar, Michael; Beilis, Isak

    2012-01-01

    Ion velocities in the plasma jet generated by the micro-cathode arc thruster are studied by means of time-of-flight method using enhanced ion detection system (EIDS). The EIDS triggers perturbations (spikes) on arc current waveform, and the larger current in the spike generates denser plasma bunches propagating along with the mainstream plasma. The EIDS utilizes double electrostatic probes rather than single probes. The average Ti ion velocity is measured to be around 2×10 4 m/s without a magnetic field. It was found that the application of a magnetic field does not change ion velocities in the interelectrode region while leads to ion acceleration in the free expanding plasma plume by a factor of about 2. Ion velocities of about 3.5×10 4 m/s were detected for the magnetic field of about 300 mT at distance of about 100–200 mm from the cathode. It is proposed that plasma is accelerated due to Lorentz force. The average thrust is calculated using the ion velocity measurements and the cathode mass consumption rate, and its increase with the magnetic field is demonstrated.

  19. rf coaxial couplers for high-intensity linear accelerators

    International Nuclear Information System (INIS)

    Manca, J.J.; Knapp, E.A.

    1980-02-01

    Two rf coaxial couplers that are particularly suitable for intertank connection of the disk-and-washer accelerating structure for use in high-intensity linear accelerators have been developed. These devices have very high coupling to the accelerating structure and very low rf power loss at the operating frequency, and they can be designed for any relative particle velocity β > 0.4. Focusing and monitoring devices can be located inside these couplers

  20. Predicting Longitudinal Change in Language Production and Comprehension in Individuals with Down Syndrome: Hierarchical Linear Modeling.

    Science.gov (United States)

    Chapman, Robin S.; Hesketh, Linda J.; Kistler, Doris J.

    2002-01-01

    Longitudinal change in syntax comprehension and production skill, measured over six years, was modeled in 31 individuals (ages 5-20) with Down syndrome. The best fitting Hierarchical Linear Modeling model of comprehension uses age and visual and auditory short-term memory as predictors of initial status, and age for growth trajectory. (Contains…

  1. Effect of emplaced nZVI mass and groundwater velocity on PCE dechlorination and hydrogen evolution in water-saturated sand

    International Nuclear Information System (INIS)

    Kim, Hye-Jin; Leitch, Megan; Naknakorn, Bhanuphong; Tilton, Robert D.; Lowry, Gregory V.

    2017-01-01

    Highlights: • Reactivity of nZVI increased linearly with nZVI concentration above 10 g/L, but was non-linear below 10 g/L. • nZVI reactivity with PCE is more sensitive to solution redox potential than solution pH. • Mass transfer limits the reactivity of emplaced nZVI under typical groundwater flow velocity. • Lowering pH increases H_2 evolution from nZVI more than reactivity with PCE. • Design of nZVI remediation strategies should consider mass loading and flow velocity on performance and lifetime. - Abstract: The effect of nZVI mass loading and groundwater velocity on the tetrachloroethylene (PCE) dechlorination rate and the hydrogen evolution rate for poly(maleic acid-co-olefin) (MW = 12 K) coated nZVI was examined. In batch reactors, the PCE reaction rate constant (3.7 × 10"−"4 L hr"−"1 m"−"2) and hydrogen evolution rate constant (1.4 nanomol L hr"−"1 m"−"2) were independent of nZVI concentration above 10 g/L, but the PCE dechlorination rate decreased and the hydrogen evolution rate increased for nZVI concentration below 10 g/L. The nonlinearity between nZVI mass loading and PCE dechlorination and H_2 evolution was explained by differences in pH and E_h at each nZVI mass loading; PCE reactivity increased when solution E_h decreased, and the H_2 evolution rate increased with decreasing pH. Thus, nZVI mass loading of <5 g/L yields lower reactivity with PCE and lower efficiency of Fe° utilization than for higher nZVI mass loading. The PCE dechlorination rate increased with increasing pore-water velocity, suggesting that mass transfer limits the reaction at low porewater velocity. Overall, this work suggests that design of nZVI-based reactive barriers for groundwater treatment should consider the non-linear effects of both mass loading and flow velocity on performance and expected reactive lifetime.

  2. Effect of emplaced nZVI mass and groundwater velocity on PCE dechlorination and hydrogen evolution in water-saturated sand

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hye-Jin [Civil & Environmental Engineering, Carnegie Mellon University, Pittsburgh, PA 15213-3890 (United States); Chemical Research Division, Environmental Health Research Department, National Institute of Environmental Research, Incheon 404-708 (Korea, Republic of); Leitch, Megan [Civil & Environmental Engineering, Carnegie Mellon University, Pittsburgh, PA 15213-3890 (United States); Center for Environmental Implications of Nanotechnology, Carnegie Mellon University, Pittsburgh, PA 15213-3890 (United States); Naknakorn, Bhanuphong [Civil & Environmental Engineering, Carnegie Mellon University, Pittsburgh, PA 15213-3890 (United States); Tilton, Robert D. [Chemical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213-3890 (United States); Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213-3890 (United States); Center for Environmental Implications of Nanotechnology, Carnegie Mellon University, Pittsburgh, PA 15213-3890 (United States); Lowry, Gregory V., E-mail: glowry@cmu.edu [Civil & Environmental Engineering, Carnegie Mellon University, Pittsburgh, PA 15213-3890 (United States); Chemical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213-3890 (United States); Center for Environmental Implications of Nanotechnology, Carnegie Mellon University, Pittsburgh, PA 15213-3890 (United States)

    2017-01-15

    Highlights: • Reactivity of nZVI increased linearly with nZVI concentration above 10 g/L, but was non-linear below 10 g/L. • nZVI reactivity with PCE is more sensitive to solution redox potential than solution pH. • Mass transfer limits the reactivity of emplaced nZVI under typical groundwater flow velocity. • Lowering pH increases H{sub 2} evolution from nZVI more than reactivity with PCE. • Design of nZVI remediation strategies should consider mass loading and flow velocity on performance and lifetime. - Abstract: The effect of nZVI mass loading and groundwater velocity on the tetrachloroethylene (PCE) dechlorination rate and the hydrogen evolution rate for poly(maleic acid-co-olefin) (MW = 12 K) coated nZVI was examined. In batch reactors, the PCE reaction rate constant (3.7 × 10{sup −4} L hr{sup −1} m{sup −2}) and hydrogen evolution rate constant (1.4 nanomol L hr{sup −1} m{sup −2}) were independent of nZVI concentration above 10 g/L, but the PCE dechlorination rate decreased and the hydrogen evolution rate increased for nZVI concentration below 10 g/L. The nonlinearity between nZVI mass loading and PCE dechlorination and H{sub 2} evolution was explained by differences in pH and E{sub h} at each nZVI mass loading; PCE reactivity increased when solution E{sub h} decreased, and the H{sub 2} evolution rate increased with decreasing pH. Thus, nZVI mass loading of <5 g/L yields lower reactivity with PCE and lower efficiency of Fe° utilization than for higher nZVI mass loading. The PCE dechlorination rate increased with increasing pore-water velocity, suggesting that mass transfer limits the reaction at low porewater velocity. Overall, this work suggests that design of nZVI-based reactive barriers for groundwater treatment should consider the non-linear effects of both mass loading and flow velocity on performance and expected reactive lifetime.

  3. Development and validity of a scale of perception of velocity in resistance exercise.

    Science.gov (United States)

    Bautista, Iker J; Chirosa, Ignacio J; Chirosa, Luis J; Martín, Ignacio; González, Andrés; Robertson, Robert J

    2014-09-01

    This aims of this study were twofold; 1) to development a new scale of perceived velocity in the bench press exercise and 2) to examine the scales concurrent validity. Twenty one physically active males with mean ±SD age, height and weights of: 27.5 ± 4.7 years, 1.77 ± 0.07 m, and 79.8 ± 10.3 kg respectively, took part in the study. The criterion variable used to test the validity of the new scale was the mean execution velocity (Velreal) of the bench press exercise. Three intensities (light loads [ 70% 1RM]) were measured randomly during 5 days of testing. Perceived velocity (Velscale) was measured immediately after each exercise set using the new scale. A positive linear correlation (r range = 0.69 to 0.81) was found in all three intensities, analyzed individually, between the Velreal and Velscale. Pearson correlations showed a greater frequency of scale use resulted higher correlation values (range r = 0.88 to 0.96). This study provides evidence of the concurrent validity of a new scale of perceived velocity in the bench press exercise in trained adult males. These results suggest the exercise intensity of the bench press can be quantified quickly and effective using this new scale of perceived velocity, particularly when training for maximum power. Key PointsMeasurement of perception of velocity can complement other scales of perception such as the 15 category Borg scale or the OMNI-RES.The results obtained in this study show that there was a positive correlation between the perceived velocity measured by the scale and actual velocityRegular use of the new scale of perceived velocity in external resistance training provides athletes with continuous feedback of execution velocity in each repetition and set, especially with high power loads.

  4. Study on laminar burning velocity of syngas-air premixed flames in various mixing conditions

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Kee Man; Jeong, Byeong Gyu [Sunchon National University, Suncheon (Korea, Republic of); Lee, Seung Ro [Chonbuk National University, Jeonju (Korea, Republic of)

    2015-07-15

    The laminar burning velocity of syngas-air premixed flames was measured with various equivalence ratios from 0.5 to 5.0 and a mole fraction of H{sub 2} from 0.05 to 0.75. The laminar burning velocity was experimentally determined using a Bunsen flame according to the cone angle and surface area methods. A premixed code with a USC-II detailed reaction mechanism was used for the numerical calculations to predict the laminar burning velocity and to examine the relationship between the burning velocity enhancement and the hydrogen-related reactions. The results indicate that an appropriate method for the measurement of laminar burning velocity is necessary in the H{sub 2}/CO/air syngas premixed flame. In addition, the burning velocity linearly increased with the increase of the H{sub 2} mole fraction in the syngas mixture, although the burning velocity of H{sub 2} was 10 times larger than that of CO. This result is attributed to the rapid production of H-radicals at the early stage of combustion. Furthermore, the predicted mole fractions of H and OH radicals increased with the increase of H{sub 2} mole fraction for a lean syngas mixture. However, the mole fraction of OH radicals, an indicator of heat release rate, decreased for rich syngas mixture, resulting in a reduction of the laminar burning velocity, even with an increase of the H{sub 2} mole fraction.

  5. Increase in Leg Stiffness Reduces Joint Work During Backpack Carriage Running at Slow Velocities.

    Science.gov (United States)

    Liew, Bernard; Netto, Kevin; Morris, Susan

    2017-10-01

    Optimal tuning of leg stiffness has been associated with better running economy. Running with a load is energetically expensive, which could have a significant impact on athletic performance where backpack carriage is involved. The purpose of this study was to investigate the impact of load magnitude and velocity on leg stiffness. We also explored the relationship between leg stiffness and running joint work. Thirty-one healthy participants ran overground at 3 velocities (3.0, 4.0, 5.0 m·s -1 ), whilst carrying 3 load magnitudes (0%, 10%, 20% weight). Leg stiffness was derived using the direct kinetic-kinematic method. Joint work data was previously reported in a separate study. Linear models were used to establish relationships between leg stiffness and load magnitude, velocity, and joint work. Our results found that leg stiffness did not increase with load magnitude. Increased leg stiffness was associated with reduced total joint work at 3.0 m·s -1 , but not at faster velocities. The association between leg stiffness and joint work at slower velocities could be due to an optimal covariation between skeletal and muscular components of leg stiffness, and limb attack angle. When running at a relatively comfortable velocity, greater leg stiffness may reflect a more energy efficient running pattern.

  6. Ion-acoustic cnoidal wave and associated non-linear ion flux in dusty plasma

    Energy Technology Data Exchange (ETDEWEB)

    Jain, S. L. [Poornima Group of Institution, Sitapura, Jaipur 302022 (India); Tiwari, R. S. [Regional College for Education, Research and Technology, Jaipur 302022 (India); Mishra, M. K. [Department of Physics, University of Rajasthan, Jaipur 302004 (India)

    2012-10-15

    Using reductive perturbation method with appropriate boundary conditions, coupled evolution equations for first and second order potentials are derived for ion-acoustic waves in a collisionless, un-magnetized plasma consisting of hot isothermal electrons, cold ions, and massive mobile charged dust grains. The boundary conditions give rise to renormalization term, which enable us to eliminate secular contribution in higher order terms. Determining the non secular solution of these coupled equations, expressions for wave phase velocity and averaged non-linear ion flux associated with ion-acoustic cnoidal wave are obtained. Variation of the wave phase velocity and averaged non-linear ion flux as a function of modulus (k{sup 2}) dependent wave amplitude are numerically examined for different values of dust concentration, charge on dust grains, and mass ratio of dust grains with plasma ions. It is found that for a given amplitude, the presence of positively (negatively) charged dust grains in plasma decreases (increases) the wave phase velocity. This behavior is more pronounced with increase in dust concentrations or increase in charge on dust grains or decrease in mass ratio of dust grains. The averaged non-linear ion flux associated with wave is positive (negative) for negatively (positively) charged dust grains in the plasma and increases (decreases) with modulus (k{sup 2}) dependent wave amplitude. For given amplitude, it increases (decreases) as dust concentration or charge of negatively (positively) charged dust grains increases in the plasma.

  7. Spacecraft attitude and velocity control system

    Science.gov (United States)

    Paluszek, Michael A. (Inventor); Piper, Jr., George E. (Inventor)

    1992-01-01

    A spacecraft attitude and/or velocity control system includes a controller which responds to at least attitude errors to produce command signals representing a force vector F and a torque vector T, each having three orthogonal components, which represent the forces and torques which are to be generated by the thrusters. The thrusters may include magnetic torquer or reaction wheels. Six difference equations are generated, three having the form ##EQU1## where a.sub.j is the maximum torque which the j.sup.th thruster can produce, b.sub.j is the maximum force which the j.sup.th thruster can produce, and .alpha..sub.j is a variable representing the throttling factor of the j.sup.th thruster, which may range from zero to unity. The six equations are summed to produce a single scalar equation relating variables .alpha..sub.j to a performance index Z: ##EQU2## Those values of .alpha. which maximize the value of Z are determined by a method for solving linear equations, such as a linear programming method. The Simplex method may be used. The values of .alpha..sub.j are applied to control the corresponding thrusters.

  8. The effect of non-zero radial velocity on the impulse and circulation of starting jets

    Science.gov (United States)

    Krieg, Michael; Mohseni, Kamran

    2011-11-01

    Vortex ring formation dynamics are generally studied using two basic types of vortex generators. Piston cylinder vortex generators eject fluid through a long tube which ensures a purely axial jet; whereas, vortex ring generators which expel fluid through a flat plate with a circular orifice produce 2-D jets (non-zero radial velocity). At the nozzle exit plane of the orifice type vortex generator the radial component of velocity is linearly proportional to the radial distance from the axis of symmetry, reaching a maximum at the edge of the orifice with a magnitude around 10 % of the piston velocity (the ratio of the volume flux and the nozzle area). As the jet advances downstream the radial velocity quickly dissipates, and becomes purely axial less than a diameter away from the nozzle exit plane. The radial velocity gradient in the axial direction plays a key role in the rate at which circulation and impulse are ejected from the vortex generator. Though the radial component of velocity is small compared to the axial velocity, it has a significant effect on both the circulation and impulse of the starting jet because of this gradient. The extent of circulation and impulse enhancement is investigated through experimental DPIV data showing that the orifice device produces nearly double both circulation and energy (with identical piston velocity and stroke ratios).

  9. Cross-beam energy transfer: On the accuracy of linear stationary models in the linear kinetic regime

    Science.gov (United States)

    Debayle, A.; Masson-Laborde, P.-E.; Ruyer, C.; Casanova, M.; Loiseau, P.

    2018-05-01

    We present an extensive numerical study by means of particle-in-cell simulations of the energy transfer that occurs during the crossing of two laser beams. In the linear regime, when ions are not trapped in the potential well induced by the laser interference pattern, a very good agreement is obtained with a simple linear stationary model, provided the laser intensity is sufficiently smooth. These comparisons include different plasma compositions to cover the strong and weak Landau damping regimes as well as the multispecies case. The correct evaluation of the linear Landau damping at the phase velocity imposed by the laser interference pattern is essential to estimate the energy transfer rate between the laser beams, once the stationary regime is reached. The transient evolution obtained in kinetic simulations is also analysed by means of a full analytical formula that includes 3D beam energy exchange coupled with the ion acoustic wave response. Specific attention is paid to the energy transfer when the laser presents small-scale inhomogeneities. In particular, the energy transfer is reduced when the laser inhomogeneities are comparable with the Landau damping characteristic length of the ion acoustic wave.

  10. Linear estimation of coherent structures in wall-bounded turbulence at Re τ = 2000

    Science.gov (United States)

    Oehler, S.; Garcia–Gutiérrez, A.; Illingworth, S.

    2018-04-01

    The estimation problem for a fully-developed turbulent channel flow at Re τ = 2000 is considered. Specifically, a Kalman filter is designed using a Navier–Stokes-based linear model. The estimator uses time-resolved velocity measurements at a single wall-normal location (provided by DNS) to estimate the time-resolved velocity field at other wall-normal locations. The estimator is able to reproduce the largest scales with reasonable accuracy for a range of wavenumber pairs, measurement locations and estimation locations. Importantly, the linear model is also able to predict with reasonable accuracy the performance that will be achieved by the estimator when applied to the DNS. A more practical estimation scheme using the shear stress at the wall as measurement is also considered. The estimator is still able to estimate the largest scales with reasonable accuracy, although the estimator’s performance is reduced.

  11. How preservation time changes the linear viscoelastic properties of porcine liver.

    Science.gov (United States)

    Wex, C; Stoll, A; Fröhlich, M; Arndt, S; Lippert, H

    2013-01-01

    The preservation time of a liver graft is one of the crucial factors for the success of a liver transplantation. Grafts are kept in a preservation solution to delay cell destruction and cellular edema and to maximize organ function after transplantation. However, longer preservation times are not always avoidable. In this paper we focus on the mechanical changes of porcine liver with increasing preservation time, in order to establish an indicator for the quality of a liver graft dependent on preservation time. A time interval of 26 h was covered and the rheological properties of liver tissue studied using a stress-controlled rheometer. For samples of 1 h preservation time 0.8% strain was found as the limit of linear viscoelasticity. With increasing preservation time a decrease in the complex shear modulus as an indicator for stiffness was observed for the frequency range from 0.1 to 10 Hz. A simple fractional derivative representation of the Kelvin Voigt model was applied to gain further information about the changes of the mechanical properties of liver with increasing preservation time. Within the small shear rate interval of 0.0001-0.01 s⁻¹ the liver showed Newtonian-like flow behavior.

  12. Referencing geostrophic velocities using ADCP data Referencing geostrophic velocities using ADCP data

    Directory of Open Access Journals (Sweden)

    Isis Comas-Rodríguez

    2010-06-01

    Full Text Available Acoustic Doppler Current Profilers (ADCPs have proven to be a useful oceanographic tool in the study of ocean dynamics. Data from D279, a transatlantic hydrographic cruise carried out in spring 2004 along 24.5°N, were processed, and lowered ADCP (LADCP bottom track data were used to assess the choice of reference velocity for geostrophic calculations. The reference velocities from different combinations of ADCP data were compared to one another and a reference velocity was chosen based on the LADCP data. The barotropic tidal component was subtracted to provide a final reference velocity estimated by LADCP data. The results of the velocity fields are also shown. Further studies involving inverse solutions will include the reference velocity calculated here.

  13. An experimental study of the velocity-forced flame response of a lean-premixed multi-nozzle can combustor for gas turbines

    Science.gov (United States)

    Szedlmayer, Michael Thomas

    are plotted versus Strouhal number, vortical structures are thought to have a strong influence on the response of this multi-nozzle configuration. The structure of heat release rate fluctuations throughout the flame is analyzed using CH* chemiluminescence acquired with a high speed camera. Flames with a similar level of flame transfer function gain are found to exhibit similarity in the spatial distribution of their heat release rate fluctuations, regardless of the operating condition. Flames with high gain are found to have high amplitude fluctuations near the downstream end of the flame, with weak fluctuations near the flame base. The phase of the downstream fluctuations changes minimally across the downstream region, indicating that they occur inphase. Flames with low gain exhibit stronger fluctuations near the flame base, but weak fluctuations in the downstream region. The phase of the fluctuations near the flame base changes continuously along the flame axis, indicating that parts of the flame will fluctuate out-of-phase. Accordingly, from a global perspective, destructive interference between heat release rate fluctuations in different parts of the flame can be expected. The behavior observed in the flame is ascribed to the interaction of acoustic velocity fluctuations, vortical disturbances and swirl fluctuations. The response of the multi-nozzle flame to high amplitude velocity fluctuations was tested for a single operating condition. Based on the global flame response, most frequencies responded linearly over the tested range of amplitudes. Nonlinear effects were found to occur at three frequencies. The behaviors observed at these frequencies matched those observed in the literature and included flame response saturation and mode triggering. For conditions which responded linearly at all amplitudes, the structure of heat release rate fluctuations was found to remain nearly constant. For conditions with nonlinear behavior, the structure of the fluctuations was

  14. Free-surface velocity measurements using an optically recording velocity interferometer

    International Nuclear Information System (INIS)

    Lu Jianxin; Wang Zhao; Liang Jing; Shan Yusheng; Zhou Chuangzhi; Xiang Yihuai; Lu Ze; Tang Xiuzhang

    2006-01-01

    An optically recording velocity interferometer system (ORVIS) was developed for the free-surface velocity measurements in the equation of state experiments. The time history of free-surface velocity could be recorded by the electronic streak camera. In the experiments, ORVIS got a 179 ps time resolution, and a higher time resolution could be got by minimizing the delay time. The equation of state experiments were carried out on the high power excimer laser system called 'Heaven I' with laser wavelength of 248.4 nm, pulse duration of 25 ns and maximum energy 158 J. Free-surface velocity of 20 μm thick iron got 3.86 km/s with laser intensity of 6.24 x 10 11 W·cm -2 , and free-surface velocity of 100 μm thick aluminum with 100 μm CH foil at the front got 2.87 km/s with laser intensity 7.28 x 10 11 W·cm -2 . (authors)

  15. Oxandrolone Improves Height Velocity and BMI in Patients with Cystic Fibrosis

    Directory of Open Access Journals (Sweden)

    Seffrood ErinE

    2009-01-01

    Full Text Available Objective. To evaluate the effectiveness of oxandrolone in improving the nutritional status and linear growth of pediatric patients with cystic fibrosis (CF. Methods. Medical records of patients with CF treated with oxandrolone were reviewed for height z score, height velocity (HV, BMI z score, weight velocity (WV, Tanner stage, pulmonary function, liver enzyme levels, and any reported adverse events. Data were compared before (pre-Ox and after (Ox oxandrolone using a paired t-test. Results. 5 subjects (ages 8.5–14.5 years were treated with oxandrolone 2.5 mg daily for 8–38 months. After 8–12 months of treatment, there was a statistically significant improvement in HV (  cm/yr,  cm/yr, and BMI z score ( , , . Both height z score ( , , and WV (  kg/yr, Ox  kg/yr, showed beneficial trends that did not reach statistical significance. No adverse events were reported. Conclusions. In this brief clinical report, oxandrolone improved the HV and BMI z score in patients with CF. Larger studies are needed to determine if oxandrolone is an effective, safe, and affordable option to stimulate appetite, improve weight gain, and promote linear growth in patients with CF.

  16. Coding of Velocity Storage in the Vestibular Nuclei

    Directory of Open Access Journals (Sweden)

    Sergei B. Yakushin

    2017-08-01

    Full Text Available Semicircular canal afferents sense angular acceleration and output angular velocity with a short time constant of ≈4.5 s. This output is prolonged by a central integrative network, velocity storage that lengthens the time constants of eye velocity. This mechanism utilizes canal, otolith, and visual (optokinetic information to align the axis of eye velocity toward the spatial vertical when head orientation is off-vertical axis. Previous studies indicated that vestibular-only (VO and vestibular-pause-saccade (VPS neurons located in the medial and superior vestibular nucleus could code all aspects of velocity storage. A recently developed technique enabled prolonged recording while animals were rotated and received optokinetic stimulation about a spatial vertical axis while upright, side-down, prone, and supine. Firing rates of 33 VO and 8 VPS neurons were studied in alert cynomolgus monkeys. Majority VO neurons were closely correlated with the horizontal component of velocity storage in head coordinates, regardless of head orientation in space. Approximately, half of all tested neurons (46% code horizontal component of velocity in head coordinates, while the other half (54% changed their firing rates as the head was oriented relative to the spatial vertical, coding the horizontal component of eye velocity in spatial coordinates. Some VO neurons only coded the cross-coupled pitch or roll components that move the axis of eye rotation toward the spatial vertical. Sixty-five percent of these VO and VPS neurons were more sensitive to rotation in one direction (predominantly contralateral, providing directional orientation for the subset of VO neurons on either side of the brainstem. This indicates that the three-dimensional velocity storage integrator is composed of directional subsets of neurons that are likely to be the bases for the spatial characteristics of velocity storage. Most VPS neurons ceased firing during drowsiness, but the firing

  17. Response of partially premixed flames to acoustic velocity and equivalence ratio perturbations

    Energy Technology Data Exchange (ETDEWEB)

    Kim, K.T.; Lee, J.G.; Quay, B.D.; Santavicca, D.A. [Center for Advanced Power Generation, Department of Mechanical and Nuclear Engineering, The Pennsylvania State University, University Park, PA (United States)

    2010-09-15

    This article describes an experimental investigation of the forced response of a swirl-stabilized partially premixed flame when it is subjected to acoustic velocity and equivalence ratio fluctuations. The flame's response is analyzed using phase-resolved CH{sup *} chemiluminescence images and flame transfer function (FTF) measurements, and compared with the response of a perfectly premixed flame under acoustic perturbations. The nonlinear response of the partially premixed flame is manifested by a partial extinction of the reaction zone, leading to rapid reduction of flame surface area. This nonlinearity, however, is observed only when the phase difference between the acoustic velocity and the equivalence ratio at the combustor inlet is close to zero. The condition, {delta}{phi}{sub {phi}}'-V'{approx}0 , indicates that reactant mixtures with high equivalence ratio impinge on the flame front with high velocity, inducing large fluctuations of the rate of heat release. It is found that the phase difference between the acoustic velocity and equivalence ratio nonuniformities is a key parameter governing the linear/nonlinear response of a partially premixed flame, and it is a function of modulation frequency, inlet velocity, fuel injection location, and fuel injector impedance. The results presented in this article will provide insight into the response of a partially premixed flame, which has not been well explored to date. (author)

  18. Changes in Blow-Off Velocity Observed in Two Explosives at the Threshold for Sustained Ignition Using the Modified Gap Test

    Science.gov (United States)

    Lee, R. J.; Forbes, J. W.; Tasker, D. G.; Orme, R. S.

    2009-12-01

    The Modified Gap Test was used to quantify different levels of partial reaction for various input stresses. This test configuration has been historically useful in highlighting thresholds for first reaction, sustained ignition, and detonation. Two different HMX based compositions were studied; a cast-cured composition with 87% HMX and a pressed composition with 92% HMX. Each explosive was prepared from large industrially produced batches consisting of different unreactive polymeric binder systems. Short samples (50.8 mm in diameter and 12.7 mm thick) were shock loaded using the standard large-scale gap test donor system. Product-cloud blow-off velocities at the opposite end of the sample were measured using a high-speed digital-camera. Velocity versus input pres sure plots provided changes in reactivity that had developed by the 12.7 mm run distance. Results appear consistent for the lower input stresses. In contrast, the results varied widely in a range of input stresses around the transition to detonation in both explosives. These results indicate that both explosives are subject to large variation in blow-off velocity in a range of input stresses near the threshold for prompt detonation. This is explained by localized variations of HMX particle size and density in industrially prepared samples. Approved for public release, Distribution unlimited, IHDIV Log No. 09-108.

  19. Efficient Non Linear Loudspeakers

    DEFF Research Database (Denmark)

    Petersen, Bo R.; Agerkvist, Finn T.

    2006-01-01

    Loudspeakers have traditionally been designed to be as linear as possible. However, as techniques for compensating non linearities are emerging, it becomes possible to use other design criteria. This paper present and examines a new idea for improving the efficiency of loudspeakers at high levels...... by changing the voice coil layout. This deliberate non-linear design has the benefit that a smaller amplifier can be used, which has the benefit of reducing system cost as well as reducing power consumption....

  20. SLIP VELOCITY IN PULSED DISC AND DOUGHNUT EXTRACTION COLUMN

    Directory of Open Access Journals (Sweden)

    Mohammad Outokesh

    2011-09-01

    Full Text Available In the present work, slip velocity has been measured in a 76 mm diameter pulsed disc and doughnut extraction column for four different liquid-liquid systems. The effects of operating variables including pulsation intensity and dispersed and continuous phase flow rates on slip velocity have been investigated. The existence of three different operational regimes, namely mixersettler, transition, and emulsion regimes, was observed when the energy input was changed. Empirical correlations are derived for prediction of the slip velocity in terms of operating variables, physical properties of the liquid systems, and column geometry for different regimes. Good agreement between prediction and experiments was found for all operating conditions that were investigated.

  1. Determination of the filtration velocities and mean velocity in ground waters using radiotracers

    International Nuclear Information System (INIS)

    Duran P, Oscar; Diaz V, Francisco; Heresi M, Nelida

    1994-01-01

    An experimental method to determine filtration, or, Darcy velocity and mean velocity in underground waters using radiotracers, is described. After selecting the most appropriate tracers, from 6 chemical compounds, to measure water velocity, a method to measure filtration velocity was developed. By fully labelling the water column with 2 radioisotopes, Br and tritium, almost identical values were obtained for the aquifer filtration velocity in the sounding S1. This value was 0.04 m/d. Field porosity was calculated at 11% and mean velocity at 0.37 m.d. With the filtration velocity value and knowing the hydraulic variation between the soundings S1 and S2 placed at 10 meters, field permeability was estimated at 2.4 x 10 m/s. (author)

  2. Analysis of the efficiency of the linearization techniques for solving multi-objective linear fractional programming problems by goal programming

    Directory of Open Access Journals (Sweden)

    Tunjo Perić

    2017-01-01

    Full Text Available This paper presents and analyzes the applicability of three linearization techniques used for solving multi-objective linear fractional programming problems using the goal programming method. The three linearization techniques are: (1 Taylor’s polynomial linearization approximation, (2 the method of variable change, and (3 a modification of the method of variable change proposed in [20]. All three linearization techniques are presented and analyzed in two variants: (a using the optimal value of the objective functions as the decision makers’ aspirations, and (b the decision makers’ aspirations are given by the decision makers. As the criteria for the analysis we use the efficiency of the obtained solutions and the difficulties the analyst comes upon in preparing the linearization models. To analyze the applicability of the linearization techniques incorporated in the linear goal programming method we use an example of a financial structure optimization problem.

  3. Metastable structure formation during high velocity grinding

    International Nuclear Information System (INIS)

    Samarin, A.N.; Klyuev, M.M.

    1984-01-01

    Metastable structures in surface layers of samples are; investigated during force high-velocity abrasive grinding. Samples of martensitic (40Kh13), austenitic (12Kh18N10T), ferritic (05Kh23Yu5) steels and some alloys, in particular KhN77TYuR (EhI437B), were grinded for one pass at treatment depth from 0.17 up to 2.6 mm. It is established that processes of homogenizing, recrystallization and coagulation are; developed during force high-velocity grinding along with polymorphic transformations in the zone of thermomechanical effect, that leads to changes of physical and mechanical properties of the surface

  4. Cosmic clocks: a tight radius-velocity relationship for H I-selected galaxies

    Science.gov (United States)

    Meurer, Gerhardt R.; Obreschkow, Danail; Wong, O. Ivy; Zheng, Zheng; Audcent-Ross, Fiona M.; Hanish, D. J.

    2018-05-01

    H I-selected galaxies obey a linear relationship between their maximum detected radius Rmax and rotational velocity. This result covers measurements in the optical, ultraviolet, and H I emission in galaxies spanning a factor of 30 in size and velocity, from small dwarf irregulars to the largest spirals. Hence, galaxies behave as clocks, rotating once a Gyr at the very outskirts of their discs. Observations of a large optically selected sample are consistent, implying this relationship is generic to disc galaxies in the low redshift Universe. A linear radius-velocity relationship is expected from simple models of galaxy formation and evolution. The total mass within Rmax has collapsed by a factor of 37 compared to the present mean density of the Universe. Adopting standard assumptions, we find a mean halo spin parameter λ in the range 0.020-0.035. The dispersion in λ, 0.16 dex, is smaller than expected from simulations. This may be due to the biases in our selection of disc galaxies rather than all haloes. The estimated mass densities of stars and atomic gas at Rmax are similar (˜0.5 M⊙ pc-2), indicating outer discs are highly evolved. The gas consumption and stellar population build time-scales are hundreds of Gyr, hence star formation is not driving the current evolution of outer discs. The estimated ratio between Rmax and disc scalelength is consistent with long-standing predictions from monolithic collapse models. Hence, it remains unclear whether disc extent results from continual accretion, a rapid initial collapse, secular evolution, or a combination thereof.

  5. Linear disturbances on discontinuous permafrost: implications for thaw-induced changes to land cover and drainage patterns

    International Nuclear Information System (INIS)

    Williams, Tyler J; Quinton, William L; Baltzer, Jennifer L

    2013-01-01

    Within the zone of discontinuous permafrost, linear disturbances such as winter roads and seismic lines severely alter the hydrology, ecology, and ground thermal regime. Continued resource exploration in this environment has created a need to better understand the processes causing permafrost thaw and concomitant changes to the terrain and ground cover, in order to efficiently reduce the environmental impact of future exploration through the development of best management practices. In a peatland 50 km south of Fort Simpson, NWT, permafrost thaw and the resulting ground surface subsidence have produced water-logged linear disturbances that appear not to be regenerating permafrost, and in many cases have altered the land cover type to resemble that of a wetland bog or fen. Subsidence alters the hydrology of plateaus, developing a fill and spill drainage pattern that allows some disturbances to be hydrologically connected with adjacent wetlands via surface flow paths during periods of high water availability. The degree of initial disturbance is an important control on the extent of permafrost thaw and thus the overall potential recovery of the linear disturbance. Low impact techniques that minimize ground surface disturbance and maintain original surface topography by eliminating windrows are needed to minimize the impact of these linear disturbances. (letter)

  6. Radial velocity asymmetries from jets with variable velocity profiles

    International Nuclear Information System (INIS)

    Cerqueira, A. H.; Vasconcelos, M. J.; Velazquez, P. F.; Raga, A. C.; De Colle, F.

    2006-01-01

    We have computed a set of 3-D numerical simulations of radiatively cooling jets including variabilities in both the ejection direction (precession) and the jet velocity (intermittence), using the Yguazu-a code. In order to investigate the effects of jet rotation on the shape of the line profiles, we also introduce an initial toroidal rotation velocity profile. Since the Yguazu-a code includes an atomic/ionic network, we are able to compute the emission coefficients for several emission lines, and we generate line profiles for the Hα, [O I]λ6300, [S II]λ6716 and [N II]λ6548 lines. Using initial parameters that are suitable for the DG Tau microjet, we show that the computed radial velocity shift for the medium-velocity component of the line profile as a function of distance from the jet axis is strikingly similar for rotating and non-rotating jet models

  7. A nonlinear plate control without linearization

    Directory of Open Access Journals (Sweden)

    Yildirim Kenan

    2017-03-01

    Full Text Available In this paper, an optimal vibration control problem for a nonlinear plate is considered. In order to obtain the optimal control function, wellposedness and controllability of the nonlinear system is investigated. The performance index functional of the system, to be minimized by minimum level of control, is chosen as the sum of the quadratic 10 functional of the displacement. The velocity of the plate and quadratic functional of the control function is added to the performance index functional as a penalty term. By using a maximum principle, the nonlinear control problem is transformed to solving a system of partial differential equations including state and adjoint variables linked by initial-boundary-terminal conditions. Hence, it is shown that optimal control of the nonlinear systems can be obtained without linearization of the nonlinear term and optimal control function can be obtained analytically for nonlinear systems without linearization.

  8. Permafrost Hazards and Linear Infrastructure

    Science.gov (United States)

    Stanilovskaya, Julia; Sergeev, Dmitry

    2014-05-01

    The international experience of linear infrastructure planning, construction and exploitation in permafrost zone is being directly tied to the permafrost hazard assessment. That procedure should also consider the factors of climate impact and infrastructure protection. The current global climate change hotspots are currently polar and mountain areas. Temperature rise, precipitation and land ice conditions change, early springs occur more often. The big linear infrastructure objects cross the territories with different permafrost conditions which are sensitive to the changes in air temperature, hydrology, and snow accumulation which are connected to climatic dynamics. One of the most extensive linear structures built on permafrost worldwide are Trans Alaskan Pipeline (USA), Alaska Highway (Canada), Qinghai-Xizang Railway (China) and Eastern Siberia - Pacific Ocean Oil Pipeline (Russia). Those are currently being influenced by the regional climate change and permafrost impact which may act differently from place to place. Thermokarst is deemed to be the most dangerous process for linear engineering structures. Its formation and development depend on the linear structure type: road or pipeline, elevated or buried one. Zonal climate and geocryological conditions are also of the determining importance here. All the projects are of the different age and some of them were implemented under different climatic conditions. The effects of permafrost thawing have been recorded every year since then. The exploration and transportation companies from different countries maintain the linear infrastructure from permafrost degradation in different ways. The highways in Alaska are in a good condition due to governmental expenses on annual reconstructions. The Chara-China Railroad in Russia is under non-standard condition due to intensive permafrost response. Standards for engineering and construction should be reviewed and updated to account for permafrost hazards caused by the

  9. A comprehensive study on the effect of cavitation on injection velocity in diesel nozzles

    International Nuclear Information System (INIS)

    Javier López, J.; Salvador, F.J.; Garza, Oscar A. de la; Arrègle, Jean

    2012-01-01

    Highlights: ► Cavitation has an indirect effect on the effective injection velocity. ► Cavitation in the injector hole reduces locally the fluid viscosity. ► A lower viscosity leads to a more turbulent velocity profile. ► The more turbulent velocity profile justifies the increase in effective velocity. - Abstract: Results when testing cavitating injection nozzles show a strong reduction in mass flow rate when cavitation appears (the flow is choked), while the momentum flux is reduced to a lesser extent, resulting in an increase in effective injection velocity. So as to better understand the origin of this increase in effective injection velocity, the basic equations for mass and momentum conservation were applied to an injection nozzle in simplified conditions. The study demonstrated that the increase in injection velocity provoked by cavitation is not a direct effect of the latter, but an indirect effect. In fact, the vapor appearance inside the injection hole produces a decrease in the viscosity of the fluid near the wall. This leads to lower momentum flux losses and to a change in the velocity profile, transforming it into a more “top hat” profile type. This change in the profile shape allows explaining why the momentum flux reduction is not so important compared to that of the mass flow rate, thus explaining why the effective injection velocity increases.

  10. Linear perturbations of a self-similar solution of hydrodynamics with non-linear heat conduction

    International Nuclear Information System (INIS)

    Dubois-Boudesocque, Carine

    2000-01-01

    The stability of an ablative flow, where a shock wave is located upstream a thermal front, is of importance in inertial confinement fusion. The present model considers an exact self-similar solution to the hydrodynamic equations with non-linear heat conduction for a semi-infinite slab. For lack of an analytical solution, a high resolution numerical procedure is devised, which couples a finite difference method with a relaxation algorithm using a two-domain pseudo-spectral method. Stability of this solution is studied by introducing linear perturbation method within a Lagrangian-Eulerian framework. The initial and boundary value problem is solved by a splitting of the equations between a hyperbolic system and a parabolic equation. The boundary conditions of the hyperbolic system are treated, in the case of spectral methods, according to Thompson's approach. The parabolic equation is solved by an influence matrix method. These numerical procedures have been tested versus exact solutions. Considering a boundary heat flux perturbation, the space-time evolution of density, velocity and temperature are shown. (author) [fr

  11. Propagation velocities of laser-produced plasmas from copper wire targets and water droplets

    Science.gov (United States)

    Song, Kyo-Dong; Alexander, Dennis R.

    1994-01-01

    Experiments were performed to determine the plasma propagation velocities resulting from KrF laser irradiation of copper wire target (75 microns diameter) and water droplets (75 microns diameter) at irradiance levels ranging from 25 to 150 GW/sq cm. Plasma propagation velocities were measured using a streak camera system oriented orthogonally to the high-energy laser propagation axis. Plasma velocities were studied as a function of position in the focused beam. Results show that both the shape of the plasma formation and material removal from the copper wire are different and depend on whether the targets are focused or slightly defocused (approximately = 0.5 mm movement in the beam axis). Plasma formation and its position relative to the target is an important factor in determining the practical focal point during high-energy laser interaction with materials. At irradiance of 100 GW/sq cm, the air plasma has two weak-velocity components which propagate toward and away from the incident laser while a strong-velocity component propagates away from the laser beam as a detonation wave. Comparison of the measured breakdown velocities (in the range of 2.22-2.27 x 10(exp 5) m/s) for air and the value calculated by the nonlinear breakdown wave theory at irradiance of 100 GW/sq cm showed a quantitative agreement within approximately 50% while the linear theory and Gaussian pulse theory failed. The detonation wave velocities of plasma generated from water droplets and copper wire targets for different focused cases were measured and analyzed theoretically. The propagation velocities of laser-induced plasma liquid droplets obtained by previous research are compared with current work.

  12. The role of intrinsic muscle properties for stable hopping-stability is achieved by the force-velocity relation

    International Nuclear Information System (INIS)

    Haeufle, D F B; Grimmer, S; Seyfarth, A

    2010-01-01

    A reductionist approach was presented to investigate which level of detail of the physiological muscle is required for stable locomotion. Periodic movements of a simplified one-dimensional hopping model with a Hill-type muscle (one contractile element, neither serial nor parallel elastic elements) were analyzed. Force-length and force-velocity relations of the muscle were varied in three levels of approximation (constant, linear and Hill-shaped nonlinear) resulting in nine different hopping models of different complexity. Stability of these models was evaluated by return map analysis and the performance by the maximum hopping height. The simplest model (constant force-length and constant force-velocity relations) outperformed all others in the maximum hopping height but was unstable. Stable hopping was achieved with linear and Hill-shaped nonlinear characteristic of the force-velocity relation. The characteristics of the force-length relation marginally influenced hopping stability. The results of this approach indicate that the intrinsic properties of the contractile element are responsible for stabilization of periodic movements. This connotes that (a) complex movements like legged locomotion could benefit from stabilizing effects of muscle properties, and (b) technical systems could benefit from the emerging stability when implementing biological characteristics into artificial muscles.

  13. Impaired Velocity Processing Reveals an Agnosia for Motion in Depth.

    Science.gov (United States)

    Barendregt, Martijn; Dumoulin, Serge O; Rokers, Bas

    2016-11-01

    Many individuals with normal visual acuity are unable to discriminate the direction of 3-D motion in a portion of their visual field, a deficit previously referred to as a stereomotion scotoma. The origin of this visual deficit has remained unclear. We hypothesized that the impairment is due to a failure in the processing of one of the two binocular cues to motion in depth: changes in binocular disparity over time or interocular velocity differences. We isolated the contributions of these two cues and found that sensitivity to interocular velocity differences, but not changes in binocular disparity, varied systematically with observers' ability to judge motion direction. We therefore conclude that the inability to interpret motion in depth is due to a failure in the neural mechanisms that combine velocity signals from the two eyes. Given these results, we argue that the deficit should be considered a prevalent but previously unrecognized agnosia specific to the perception of visual motion. © The Author(s) 2016.

  14. Velocity of lordosis angle during spinal flexion and extension.

    Directory of Open Access Journals (Sweden)

    Tobias Consmüller

    Full Text Available The importance of functional parameters for evaluating the severity of low back pain is gaining clinical recognition, with evidence suggesting that the angular velocity of lordosis is critical for identification of musculoskeletal deficits. However, there is a lack of data regarding the range of functional kinematics (RoKs, particularly which include the changing shape and curvature of the spine. We address this deficit by characterising the angular velocity of lordosis throughout the thoracolumbar spine according to age and gender. The velocity of lumbar back shape changes was measured using Epionics SPINE during maximum flexion and extension activities in 429 asymptomatic volunteers. The difference between maximum positive and negative velocities represented the RoKs. The mean RoKs for flexion decreased with age; 114°/s (20-35 years, 100°/s (36-50 years and 83°/s (51-75 years. For extension, the corresponding mean RoKs were 73°/s, 57°/s and 47°/s. ANCOVA analyses revealed that age and gender had the largest influence on the RoKs (p<0.05. The Epionics SPINE system allows the rapid assessment of functional kinematics in the lumbar spine. The results of this study now serve as normative data for comparison to patients with spinal pathology or after surgical treatment.

  15. Relationship of 133Xe cerebral blood flow to middle cerebral arterial flow velocity in men at rest

    Science.gov (United States)

    Clark, J. M.; Skolnick, B. E.; Gelfand, R.; Farber, R. E.; Stierheim, M.; Stevens, W. C.; Beck, G. Jr; Lambertsen, C. J.

    1996-01-01

    Cerebral blood flow (CBF) was measured by 133Xe clearance simultaneously with the velocity of blood flow through the left middle cerebral artery (MCA) over a wide range of arterial PCO2 in eight normal men. Average arterial PCO2, which was varied by giving 4% and 6% CO2 in O2 and by controlled hyperventilation on O2, ranged from 25.3 to 49.9 mm Hg. Corresponding average values of global CBF15 were 27.2 and 65.0 ml 100 g min-1, respectively, whereas MCA blood-flow velocity ranged from 42.8 to 94.2 cm/s. The relationship of CBF to MCA blood-flow velocity over the imposed range of arterial PCO2 was described analytically by a parabola with the equation: CBF = 22.8 - 0.17 x velocity + 0.006 x velocity2 The observed data indicate that MCA blood-flow velocity is a useful index of CBF response to change in arterial PCO2 during O2 breathing at rest. With respect to baseline values measured while breathing 100% O2 spontaneously, percent changes in velocity were significantly smaller than corresponding percent changes in CBF at increased levels of arterial PCO2 and larger than CBF changes at the lower arterial PCO2. These observed relative changes are consistent with MCA vasodilation at the site of measurement during exposure to progressive hypercapnia and also during extreme hyperventilation hypocapnia.

  16. Stability analysis of confined V-shaped flames in high-velocity streams.

    Science.gov (United States)

    El-Rabii, Hazem; Joulin, Guy; Kazakov, Kirill A

    2010-06-01

    The problem of linear stability of confined V-shaped flames with arbitrary gas expansion is addressed. Using the on-shell description of flame dynamics, a general equation governing propagation of disturbances of an anchored flame is obtained. This equation is solved analytically for V-flames anchored in high-velocity channel streams. It is demonstrated that dynamics of the flame disturbances in this case is controlled by the memory effects associated with vorticity generated by the perturbed flame. The perturbation growth rate spectrum is determined, and explicit analytical expressions for the eigenfunctions are given. It is found that the piecewise linear V structure is unstable for all values of the gas expansion coefficient. Despite the linearity of the basic pattern, however, evolutions of the V-flame disturbances are completely different from those found for freely propagating planar flames or open anchored flames. The obtained results reveal strong influence of the basic flow and the channel walls on the stability properties of confined V-flames.

  17. Characterization of the alumina-zirconia ceramic system by ultrasonic velocity measurements

    International Nuclear Information System (INIS)

    Carreon, Hector; Ruiz, Alberto; Medina, Ariosto; Barrera, Gerardo; Zarate, Juan

    2009-01-01

    In this work an alumina-zirconia ceramic composites have been prepared with α-Al 2 O 3 contents from 10 to 95 wt.%. The alumina-zirconia ceramic system was characterized by means of precise ultrasonic velocity measurements. In order to find out the factors affecting the variation in wave velocity, the ceramic composite have been examined by X-ray diffraction (XRD) and (SEM) scanning electron microscopy. It was found that the ultrasonic velocity measurements changed considerably with respect to the ceramic composite composition. In particular, we studied the behavior of the physical material property hardness, an important parameter of the ceramic composite mechanical properties, with respect to the variation in the longitudinal and shear wave velocities. Shear wave velocities exhibited a stronger interaction with microstructural and sub-structural features as compared to that of longitudinal waves. In particular, this phenomena was observed for the highest α-Al 2 O 3 content composite. Interestingly, an excellent correlation between ultrasonic velocity measurements and ceramic composite hardness was observed.

  18. On the linear stability of sheared and magnetized jets without current sheets - relativistic case

    Science.gov (United States)

    Kim, Jinho; Balsara, Dinshaw S.; Lyutikov, Maxim; Komissarov, Serguei S.

    2018-03-01

    In our prior series of papers, we studied the non-relativistic and relativistic linear stability analysis of magnetized jets that do not have current sheets. In this paper, we extend our analysis to relativistic jets with a velocity shear and a similar current sheet free structure. The jets that we study are realistic because we include a velocity shear, a current sheet free magnetic structure, a relativistic velocity and a realistic thermal pressure so as to achieve overall pressure balance in the unperturbed jet. In order to parametrize the velocity shear, we apply a parabolic profile to the jets' 4-velocity. We find that the velocity shear significantly improves the stability of relativistic magnetized jets. This fact is completely consistent with our prior stability analysis of non-relativistic, sheared jets. The velocity shear mainly plays a role in stabilizing the short wavelength unstable modes for the pinch as well as the kink instability modes. In addition, it also stabilizes the long wavelength fundamental pinch instability mode. We also visualize the pressure fluctuations of each unstable mode to provide a better physical understanding of the enhanced stabilization by the velocity shear. Our overall conclusion is that combining velocity shear with a strong and realistic magnetic field makes relativistic jets even more stable.

  19. Multi-dimensional spectrum analysis for 2-D vector velocity estimation

    DEFF Research Database (Denmark)

    Oddershede, Niels; Løvstakken, Lasse; Torp, Hans

    2007-01-01

    Fourier space, which is found through the 3-D Fourier transform of the data matrix, and that the plane is tilted according to the axial and lateral velocity components. Two estimators are derived for finding the plane in the 3-D Fourier space, where the integrated power spectrum is largest. The first uses...... the 3-D Fourier transform to find the power spectrum, while the second uses a minimum variance approach. Based on this plane, the axial and lateral velocity components are estimated. A number of phantom How measurements, for flow-to-beam angles of 60, 75, and 90 degrees, were performed to test...... the estimator. The data were collected using our RASMUS experimental ultrasound scanner and a 128 element commercial linear array transducer. The receive apodization function was manipulated, creating an oscillation in the lateral direction, and multiple parallel lines were beamformed simultaneously. The two...

  20. Linear zonal atmospheric prediction for adaptive optics

    Science.gov (United States)

    McGuire, Patrick C.; Rhoadarmer, Troy A.; Coy, Hanna A.; Angel, J. Roger P.; Lloyd-Hart, Michael

    2000-07-01

    We compare linear zonal predictors of atmospheric turbulence for adaptive optics. Zonal prediction has the possible advantage of being able to interpret and utilize wind-velocity information from the wavefront sensor better than modal prediction. For simulated open-loop atmospheric data for a 2- meter 16-subaperture AO telescope with 5 millisecond prediction and a lookback of 4 slope-vectors, we find that Widrow-Hoff Delta-Rule training of linear nets and Back- Propagation training of non-linear multilayer neural networks is quite slow, getting stuck on plateaus or in local minima. Recursive Least Squares training of linear predictors is two orders of magnitude faster and it also converges to the solution with global minimum error. We have successfully implemented Amari's Adaptive Natural Gradient Learning (ANGL) technique for a linear zonal predictor, which premultiplies the Delta-Rule gradients with a matrix that orthogonalizes the parameter space and speeds up the training by two orders of magnitude, like the Recursive Least Squares predictor. This shows that the simple Widrow-Hoff Delta-Rule's slow convergence is not a fluke. In the case of bright guidestars, the ANGL, RLS, and standard matrix-inversion least-squares (MILS) algorithms all converge to the same global minimum linear total phase error (approximately 0.18 rad2), which is only approximately 5% higher than the spatial phase error (approximately 0.17 rad2), and is approximately 33% lower than the total 'naive' phase error without prediction (approximately 0.27 rad2). ANGL can, in principle, also be extended to make non-linear neural network training feasible for these large networks, with the potential to lower the predictor error below the linear predictor error. We will soon scale our linear work to the approximately 108-subaperture MMT AO system, both with simulations and real wavefront sensor data from prime focus.

  1. Lithospheric shear velocity structure of South Island, New Zealand, from amphibious Rayleigh wave tomography

    Science.gov (United States)

    Ball, Justin S.; Sheehan, Anne F.; Stachnik, Joshua C.; Lin, Fan-Chi; Yeck, William L.; Collins, John A.

    2016-05-01

    We present a crust and mantle 3-D shear velocity model extending well offshore of New Zealand's South Island, imaging the lithosphere beneath the South Island as well as the Campbell and Challenger Plateaus. Our model is constructed via linearized inversion of both teleseismic (18-70 s period) and ambient noise-based (8-25 s period) Rayleigh wave dispersion measurements. We augment an array of 4 land-based and 29 ocean bottom instruments deployed off the South Island's east and west coasts in 2009-2010 by the Marine Observations of Anisotropy Near Aotearoa experiment with 28 land-based seismometers from New Zealand's permanent GeoNet array. Major features of our shear wave velocity (Vs) model include a low-velocity (Vs 50 km) beneath the central South Island exhibits strong spatial correlation with upper mantle earthquake hypocenters beneath the Alpine Fault. The ~400 km long low-velocity zone we image beneath eastern South Island and the inner Bounty Trough underlies Cenozoic volcanics and the locations of mantle-derived helium measurements, consistent with asthenospheric upwelling in the region.

  2. Velocity dependence of transient hyperfine field at Pt ions rapidly recoiling through magnetized Fe

    International Nuclear Information System (INIS)

    Stuchbery, A.E.; Ryan, C.G.; Bolotin, H.H.

    1981-01-01

    The velocity-dependence of the transient hyperfine magnetic field acting at nuclei of 196 Pt ions rapidly recoiling through thin magnetized Fe was investigated at a number of recoil velocities. The state of interest (2 1 + ) was populated by Coulomb excitation using beams of 80- and 120-MeV 32 S and 150- and 220-MeV 58 Ni ions. The 2 1 + →0 1 + γ-ray angular distribution precession measurements were carried out in coincidence with backscattered projectiles. From these results, the strength of the transient field acting on Pt ions recoiling through magnetized Fe with average velocities in the extended range 2.14<=v/vsub(o)<=4.82 (vsub(o) = c/137) was found to be consistent with a linear velocity dependence and to be incompatible with the specific vsup(0.45+-0.18) dependence which has been previously reported to account well for all ions in the mass range from oxygen through samarium. This seemingly singular behaviour for Pt and other ions in the Pt mass vicinity is discussed

  3. Detection of bump-on-tail reduced electron velocity distributions at the electron foreshock boundary

    International Nuclear Information System (INIS)

    Fitzenreiter, R.J.; Klimas, A.J.; Scudder, J.D.

    1984-02-01

    Reduced velocity distributions are derived from three-dimensional measurements of the velocity distribution of electrons in the 7 to 500 eV range in the electron foreshock. Bump-on-tail reduced distributions are presented for the first time at the foreshock boundary consistent with Filbert and Kellogg's proposed time-of-flight mechanism for generating the electron beams. In a significant number of boundary crossings, bump-on-tail reduced distributions were found in consecutive 3 sec measurements made 9 sec apart. It is concluded that, although the beams are linearly unstable to plasma waves according to the Penrose criterion, they persist on a time scale of 3 to 15 sec

  4. Propagation of the Semidiurnal Internal Tide: Phase Velocity Versus Group Velocity

    Science.gov (United States)

    Zhao, Zhongxiang

    2017-12-01

    The superposition of two waves of slightly different wavelengths has long been used to illustrate the distinction between phase velocity and group velocity. The first-mode M2 and S2 internal tides exemplify such a two-wave model in the natural ocean. The M2 and S2 tidal frequencies are 1.932 and 2 cycles per day, respectively, and their superposition forms a spring-neap cycle in the semidiurnal band. The spring-neap cycle acts like a wave, with its frequency, wave number, and phase being the differences of the M2 and S2 internal tides. The spring-neap cycle and energy of the semidiurnal internal tide propagate at the group velocity. Long-range propagation of M2 and S2 internal tides in the North Pacific is observed by satellite altimetry. Along a 3,400 km beam spanning 24°-54°N, the M2 and S2 travel times are 10.9 and 11.2 days, respectively. For comparison, it takes the spring-neap cycle 21.1 days to travel over this distance. Spatial maps of the M2 phase velocity, the S2 phase velocity, and the group velocity are determined from phase gradients of the corresponding satellite observed internal tide fields. The observed phase and group velocities agree with theoretical values estimated using the World Ocean Atlas 2013 annual-mean ocean stratification.

  5. Improved harmonic balance approach to periodic solutions of non-linear jerk equations

    International Nuclear Information System (INIS)

    Wu, B.S.; Lim, C.W.; Sun, W.P.

    2006-01-01

    An analytical approximate approach for determining periodic solutions of non-linear jerk equations involving third-order time-derivative is presented. This approach incorporates salient features of both Newton's method and the method of harmonic balance. By appropriately imposing the method of harmonic balance to the linearized equation, the approach requires only one or two iterations to predict very accurate analytical approximate solutions for a large range of initial velocity amplitude. One typical example is used to verify and illustrate the usefulness and effectiveness of the proposed approach

  6. Combination probe for optically assisted ultrasonic velocity-change imaging aimed at detecting unstable blood vessel plaque

    Science.gov (United States)

    Tanigawa, Shohei; Mano, Kazune; Wada, Kenji; Matsunaka, Toshiyuki; Horinaka, Hiromichi

    2016-04-01

    Blood vessel plaque with a large lipid core is at risk of becoming thrombus and is likely to induce acute heart disease. To prevent this, it is necessary to determine not only the plaque's size but also its chemical composition. We, therefore, made the prototype of a combination probe to diagnose carotid artery plaque. It is used to differentiate propagation characteristics between light spectra and ultrasonic images. By propagating light and ultrasound along a common direction, it is possible to effectively warm the diagnosis domain. Moreover, the probe is thought to be compact and be easy to use for diagnosing human carotid artery plaque. We applied the combination probe to a carotid artery phantom with a lipid area and obtained an image of the ultrasonic velocity change in the fatty area.

  7. Traveling waves in an optimal velocity model of freeway traffic

    Science.gov (United States)

    Berg, Peter; Woods, Andrew

    2001-03-01

    Car-following models provide both a tool to describe traffic flow and algorithms for autonomous cruise control systems. Recently developed optimal velocity models contain a relaxation term that assigns a desirable speed to each headway and a response time over which drivers adjust to optimal velocity conditions. These models predict traffic breakdown phenomena analogous to real traffic instabilities. In order to deepen our understanding of these models, in this paper, we examine the transition from a linear stable stream of cars of one headway into a linear stable stream of a second headway. Numerical results of the governing equations identify a range of transition phenomena, including monotonic and oscillating travelling waves and a time- dependent dispersive adjustment wave. However, for certain conditions, we find that the adjustment takes the form of a nonlinear traveling wave from the upstream headway to a third, intermediate headway, followed by either another traveling wave or a dispersive wave further downstream matching the downstream headway. This intermediate value of the headway is selected such that the nonlinear traveling wave is the fastest stable traveling wave which is observed to develop in the numerical calculations. The development of these nonlinear waves, connecting linear stable flows of two different headways, is somewhat reminiscent of stop-start waves in congested flow on freeways. The different types of adjustments are classified in a phase diagram depending on the upstream and downstream headway and the response time of the model. The results have profound consequences for autonomous cruise control systems. For an autocade of both identical and different vehicles, the control system itself may trigger formations of nonlinear, steep wave transitions. Further information is available [Y. Sugiyama, Traffic and Granular Flow (World Scientific, Singapore, 1995), p. 137].

  8. Group Velocity for Leaky Waves

    Science.gov (United States)

    Rzeznik, Andrew; Chumakova, Lyubov; Rosales, Rodolfo

    2017-11-01

    In many linear dispersive/conservative wave problems one considers solutions in an infinite medium which is uniform everywhere except for a bounded region. In general, localized inhomogeneities of the medium cause partial internal reflection, and some waves leak out of the domain. Often one only desires the solution in the inhomogeneous region, with the exterior accounted for by radiation boundary conditions. Formulating such conditions requires definition of the direction of energy propagation for leaky waves in multiple dimensions. In uniform media such waves have the form exp (d . x + st) where d and s are complex and related by a dispersion relation. A complex s is required since these waves decay via radiation to infinity, even though the medium is conservative. We present a modified form of Whitham's Averaged Lagrangian Theory along with modulation theory to extend the classical idea of group velocity to leaky waves. This allows for solving on the bounded region by representing the waves as a linear combination of leaky modes, each exponentially decaying in time. This presentation is part of a joint project, and applications of these results to example GFD problems will be presented by L. Chumakova in the talk ``Leaky GFD Problems''. This work is partially supported by NSF Grants DMS-1614043, DMS-1719637, and 1122374, and by the Hertz Foundation.

  9. Measurement for the MLC leaf velocity profile by considering the leaf leakage using a radiographic film

    International Nuclear Information System (INIS)

    Chow, James C L; Grigorov, Grigor N

    2006-01-01

    A method to measure the velocity profile of a multi-leaf collimator (MLC) leaf along its travel range using a radiographic film is reported by considering the intra-leaf leakage. A specific dynamic MLC field with leaves travelling from the field edge to the isocentre line was designed. The field was used to expose a radiographic film, which was then scanned, and the dose profile along the horizontal leaf axis was measured. The velocity at a sampling point on the film can be calculated by considering the horizontal distance between the sampling point and the isocentre line, dose at the sampling point, dose rate of the linear accelerator, the total leaf travel time from the field edge to isocentre line and the pre-measured dose rate of leaf leakage. With the leaf velocities and velocity profiles for all MLC leaves measured routinely, a comprehensive and simple QA for the MLC can be set up to test the consistency of the leaf velocity performance which is essential to the IMRT delivery using a sliding window technique. (note)

  10. Universal Linear Motor Driven Leg Press Dynamometer and Concept of Serial Stretch Loading.

    Science.gov (United States)

    Hamar, Dušan

    2015-08-24

    Paper deals with backgrounds and principles of universal linear motor driven leg press dynamometer and concept of serial stretch loading. The device is based on two computer controlled linear motors mounted to the horizontal rails. As the motors can keep either constant resistance force in selected position or velocity in both directions, the system allows simulation of any mode of muscle contraction. In addition, it also can generate defined serial stretch stimuli in a form of repeated force peaks. This is achieved by short segments of reversed velocity (in concentric phase) or acceleration (in eccentric phase). Such stimuli, generated at the rate of 10 Hz, have proven to be a more efficient means for the improvement of rate of the force development. This capability not only affects performance in many sports, but also plays a substantial role in prevention of falls and their consequences. Universal linear motor driven and computer controlled dynamometer with its unique feature to generate serial stretch stimuli seems to be an efficient and useful tool for enhancing strength training effects on neuromuscular function not only in athletes, but as well as in senior population and rehabilitation patients.

  11. Gas density fluctuations in the Perseus Cluster: clumping factor and velocity power spectrum

    Energy Technology Data Exchange (ETDEWEB)

    Zhuravleva, I.; Churazov, E.; Arevalo, P.; Schekochihin, A. A.; Allen, S. W.; Fabian, A. C.; Forman, W. R.; Sanders, J. S.; Simionescu, A.; Sunyaev, R.; Vikhlinin, A.; Werner, N.

    2015-05-20

    X-ray surface brightness fluctuations in the core of the Perseus Cluster are analysed, using deep observations with the Chandra observatory. The amplitude of gas density fluctuations on different scales is measured in a set of radial annuli. It varies from 7 to 12 per cent on scales of ~10–30 kpc within radii of 30–220 kpc from the cluster centre. Using a statistical linear relation between the observed amplitude of density fluctuations and predicted velocity, the characteristic velocity of gas motions on each scale is calculated. The typical amplitudes of the velocity outside the central 30 kpc region are 90–140 km s-1 on ~20–30 kpc scales and 70–100 km s-1 on smaller scales ~7–10 kpc. The velocity power spectrum (PS) is consistent with cascade of turbulence and its slope is in a broad agreement with the slope for canonical Kolmogorov turbulence. The gas clumping factor estimated from the PS of the density fluctuations is lower than 7–8 per cent for radii ~30–220 kpc from the centre, leading to a density bias of less than 3–4 per cent in the cluster core. Uncertainties of the analysis are examined and discussed. Future measurements of the gas velocities with the Astro-H, Athena and Smart-X observatories will directly measure the gas density–velocity perturbation relation and further reduce systematic uncertainties in this analysis.

  12. Determination of velocity correction factors for real-time air velocity monitoring in underground mines.

    Science.gov (United States)

    Zhou, Lihong; Yuan, Liming; Thomas, Rick; Iannacchione, Anthony

    2017-12-01

    When there are installations of air velocity sensors in the mining industry for real-time airflow monitoring, a problem exists with how the monitored air velocity at a fixed location corresponds to the average air velocity, which is used to determine the volume flow rate of air in an entry with the cross-sectional area. Correction factors have been practically employed to convert a measured centerline air velocity to the average air velocity. However, studies on the recommended correction factors of the sensor-measured air velocity to the average air velocity at cross sections are still lacking. A comprehensive airflow measurement was made at the Safety Research Coal Mine, Bruceton, PA, using three measuring methods including single-point reading, moving traverse, and fixed-point traverse. The air velocity distribution at each measuring station was analyzed using an air velocity contour map generated with Surfer ® . The correction factors at each measuring station for both the centerline and the sensor location were calculated and are discussed.

  13. Reliability of power and velocity variables collected during the traditional and ballistic bench press exercise.

    Science.gov (United States)

    García-Ramos, Amador; Haff, G Gregory; Padial, Paulino; Feriche, Belén

    2018-03-01

    This study aimed to examine the reliability of different power and velocity variables during the Smith machine bench press (BP) and bench press throw (BPT) exercises. Twenty-two healthy men conducted four testing sessions after a preliminary BP one-repetition maximum (1RM) test. In a counterbalanced order, participants performed two sessions of BP in one week and two sessions of BPT in another week. Mean propulsive power, peak power, mean propulsive velocity, and peak velocity at each tenth percentile (20-70% of 1RM) were recorded by a linear transducer. The within-participants coefficient of variation (CV) was higher for the load-power relationship compared to the load-velocity relationship in both the BP (5.3% vs. 4.1%; CV ratio = 1.29) and BPT (4.7% vs. 3.4%; CV ratio = 1.38). Mean propulsive variables showed lower reliability than peak variables in both the BP (5.4% vs. 4.0%, CV ratio = 1.35) and BPT (4.8% vs. 3.3%, CV ratio = 1.45). All variables were deemed reliable, with the peak velocity demonstrating the lowest within-participants CV. Based upon these findings, the peak velocity should be chosen for the accurate assessment of BP and BPT performance.

  14. Portable Conduction Velocity Experiments Using Earthworms for the College and High School Neuroscience Teaching Laboratory

    Science.gov (United States)

    Shannon, Kyle M.; Gage, Gregory J.; Jankovic, Aleksandra; Wilson, W. Jeffrey; Marzullo, Timothy C.

    2014-01-01

    The earthworm is ideal for studying action potential conduction velocity in a classroom setting, as its simple linear anatomy allows easy axon length measurements and the worm's sparse coding allows single action potentials to be easily identified. The earthworm has two giant fiber systems (lateral and medial) with different conduction velocities…

  15. The relationship between VHF radar auroral backscatter amplitude and Doppler velocity: a statistical study

    Directory of Open Access Journals (Sweden)

    B. A. Shand

    Full Text Available A statistical investigation of the relationship between VHF radar auroral backscatter intensity and Doppler velocity has been undertaken with data collected from 8 years operation of the Wick site of the Sweden And Britain Radar-auroral Experiment (SABRE. The results indicate three different regimes within the statistical data set; firstly, for Doppler velocities <200 m s–1, the backscatter intensity (measured in decibels remains relatively constant. Secondly, a linear relationship is observed between the backscatter intensity (in decibels and Doppler velocity for velocities between 200 m s–1 and 700 m s–1. At velocities greater than 700 m s–1 the backscatter intensity saturates at a maximum value as the Doppler velocity increases. There are three possible geophysical mechanisms for the saturation in the backscatter intensity at high phase speeds: a saturation in the irregularity turbulence level, a maximisation of the scattering volume, and a modification of the local ambient electron density. There is also a difference in the dependence of the backscatter intensity on Doppler velocity for the flow towards and away from the radar. The results for flow towards the radar exhibit a consistent relationship between backscatter intensity and measured velocities throughout the solar cycle. For flow away from the radar, however, the relationship between backscatter intensity and Doppler velocity varies during the solar cycle. The geometry of the SABRE system ensures that flow towards the radar is predominantly associated with the eastward electrojet, and flow away is associated with the westward electrojet. The difference in the backscatter intensity variation as a function of Doppler velocity is attributed to asymmetries between the eastward and westward electrojets and the geophysical parameters controlling the backscatter amplitude.

  16. The relationship between VHF radar auroral backscatter amplitude and Doppler velocity: a statistical study

    Directory of Open Access Journals (Sweden)

    B. A. Shand

    1996-08-01

    Full Text Available A statistical investigation of the relationship between VHF radar auroral backscatter intensity and Doppler velocity has been undertaken with data collected from 8 years operation of the Wick site of the Sweden And Britain Radar-auroral Experiment (SABRE. The results indicate three different regimes within the statistical data set; firstly, for Doppler velocities <200 m s–1, the backscatter intensity (measured in decibels remains relatively constant. Secondly, a linear relationship is observed between the backscatter intensity (in decibels and Doppler velocity for velocities between 200 m s–1 and 700 m s–1. At velocities greater than 700 m s–1 the backscatter intensity saturates at a maximum value as the Doppler velocity increases. There are three possible geophysical mechanisms for the saturation in the backscatter intensity at high phase speeds: a saturation in the irregularity turbulence level, a maximisation of the scattering volume, and a modification of the local ambient electron density. There is also a difference in the dependence of the backscatter intensity on Doppler velocity for the flow towards and away from the radar. The results for flow towards the radar exhibit a consistent relationship between backscatter intensity and measured velocities throughout the solar cycle. For flow away from the radar, however, the relationship between backscatter intensity and Doppler velocity varies during the solar cycle. The geometry of the SABRE system ensures that flow towards the radar is predominantly associated with the eastward electrojet, and flow away is associated with the westward electrojet. The difference in the backscatter intensity variation as a function of Doppler velocity is attributed to asymmetries between the eastward and westward electrojets and the geophysical parameters controlling the backscatter amplitude.

  17. A phenomenological retention tank model using settling velocity distributions.

    Science.gov (United States)

    Maruejouls, T; Vanrolleghem, P A; Pelletier, G; Lessard, P

    2012-12-15

    Many authors have observed the influence of the settling velocity distribution on the sedimentation process in retention tanks. However, the pollutants' behaviour in such tanks is not well characterized, especially with respect to their settling velocity distribution. This paper presents a phenomenological modelling study dealing with the way by which the settling velocity distribution of particles in combined sewage changes between entering and leaving an off-line retention tank. The work starts from a previously published model (Lessard and Beck, 1991) which is first implemented in a wastewater management modelling software, to be then tested with full-scale field data for the first time. Next, its performance is improved by integrating the particle settling velocity distribution and adding a description of the resuspension due to pumping for emptying the tank. Finally, the potential of the improved model is demonstrated by comparing the results for one more rain event. Copyright © 2011 Elsevier Ltd. All rights reserved.

  18. Modified ocean circulation, albedo instability and ice-flow instability. Risks of non-linear climate change

    Energy Technology Data Exchange (ETDEWEB)

    Ham, J. van; Beer, R.J. van; Builtjes, P.J.H.; Roemer, M.G.M. [TNO Inst. of Environmental Sciences, Delft (Netherlands); Koennen, G.P. [KNMI, Royal Netherlands Meteorological Inst., de Bilt (Netherlands); Oerlemans, J. [Utrecht Univ. (Netherlands). Inst. for Meteorological and Atmospheric Research

    1995-12-31

    In this presentation part of an investigation is described into risks for climate change which are presently not adequately covered in General Circulation Models. In the concept of climate change as a result of the enhanced greenhouse effect it is generally assumed that the radiative forcings from increased concentrations of greenhouse gases (GHG) will result in a proportional or quasilinear global warming. Though correlations of this kind are known from palaeoclimate research, the variability of the climate seems to prevent the direct proof of a causal relation between recent greenhouse gas concentrations and temperature observations. In order to resolve the issue the use of General Circulation Models (GCMs), though still inadequate at present, is indispensable. Around the world some 10 leading GCMs exist which have been the subject of evaluation and intercomparison in a number of studies. Their results are regularly assessed in the IPCC process. A discussion on their performance in simulating present or past climates and the causes of their weak points shows that the depiction of clouds is a major weakness of GCMs. A second element which is virtually absent in GCMs are the feedbacks from natural biogeochemical cycles. These cycles are influenced by man in a number of ways. GCMs have a limited performance in simulating regional effects on climate. Moreover, albedo instability, in part due to its interaction with cloudiness, is only roughly represented. Apparently, not all relevant processes have been included in the GCMs. That situation constitutes a risk, since it cannot be ruled out that a missing process could cause or trigger a non-linear climate change. In the study non-linear climate change is connected with those processes which could provide feedbacks with a risk for non-monotonous or discontinuous behaviour of the climate system, or which are unpredictable or could cause rapid transitions

  19. Modified ocean circulation, albedo instability and ice-flow instability. Risks of non-linear climate change

    Energy Technology Data Exchange (ETDEWEB)

    Ham, J van; Beer, R.J. van; Builtjes, P J.H.; Roemer, M G.M. [TNO Inst. of Environmental Sciences, Delft (Netherlands); Koennen, G P [KNMI, Royal Netherlands Meteorological Inst., de Bilt (Netherlands); Oerlemans, J [Utrecht Univ. (Netherlands). Inst. for Meteorological and Atmospheric Research

    1996-12-31

    In this presentation part of an investigation is described into risks for climate change which are presently not adequately covered in General Circulation Models. In the concept of climate change as a result of the enhanced greenhouse effect it is generally assumed that the radiative forcings from increased concentrations of greenhouse gases (GHG) will result in a proportional or quasilinear global warming. Though correlations of this kind are known from palaeoclimate research, the variability of the climate seems to prevent the direct proof of a causal relation between recent greenhouse gas concentrations and temperature observations. In order to resolve the issue the use of General Circulation Models (GCMs), though still inadequate at present, is indispensable. Around the world some 10 leading GCMs exist which have been the subject of evaluation and intercomparison in a number of studies. Their results are regularly assessed in the IPCC process. A discussion on their performance in simulating present or past climates and the causes of their weak points shows that the depiction of clouds is a major weakness of GCMs. A second element which is virtually absent in GCMs are the feedbacks from natural biogeochemical cycles. These cycles are influenced by man in a number of ways. GCMs have a limited performance in simulating regional effects on climate. Moreover, albedo instability, in part due to its interaction with cloudiness, is only roughly represented. Apparently, not all relevant processes have been included in the GCMs. That situation constitutes a risk, since it cannot be ruled out that a missing process could cause or trigger a non-linear climate change. In the study non-linear climate change is connected with those processes which could provide feedbacks with a risk for non-monotonous or discontinuous behaviour of the climate system, or which are unpredictable or could cause rapid transitions

  20. Velocities of Subducted Sediments and Continents

    Science.gov (United States)

    Hacker, B. R.; van Keken, P. E.; Abers, G. A.; Seward, G.

    2009-12-01

    The growing capability to measure seismic velocities in subduction zones has led to unusual observations. For example, although most minerals have VP/ VS ratios around 1.77, ratios 1.8 have been observed. Here we explore the velocities of subducted sediments and continental crust from trench to sub-arc depths using two methods. (1) Mineralogy was calculated as a function of P & T for a range of subducted sediment compositions using Perple_X, and rock velocities were calculated using the methodology of Hacker & Abers [2004]. Calculated slab-top temperatures have 3 distinct depth intervals with different dP/dT gradients that are determined by how coupling between the slab and mantle wedge is modeled. These three depth intervals show concomitant changes in VP and VS: velocities initially increase with depth, then decrease beyond the modeled decoupling depth where induced flow in the wedge causes rapid heating, and increase again at depth. Subducted limestones, composed chiefly of aragonite, show monotonic increases in VP/ VS from 1.63 to 1.72. Cherts show large jumps in VP/ VS from 1.55-1.65 to 1.75 associated with the quartz-coesite transition. Terrigenous sediments dominated by quartz and mica show similar, but more-subdued, transitions from ~1.67 to 1.78. Pelagic sediments dominated by mica and clinopyroxene show near-monotonic increases in VP/ VS from 1.74 to 1.80. Subducted continental crust that is too dry to transform to high-pressure minerals has a VP/ VS ratio of 1.68-1.70. (2) Velocity anisotropy calculations were made for the same P-T dependent mineralogies using the Christoffel equation and crystal preferred orientations measured via electron-backscatter diffraction for typical constituent phases. The calculated velocity anisotropies range from 5-30%. For quartz-rich rocks, the calculated velocities show a distinct depth dependence because crystal slip systems and CPOs change with temperature. In such rocks, the fast VP direction varies from slab-normal at

  1. Uncertainty assessment of 3D instantaneous velocity model from stack velocities

    Science.gov (United States)

    Emanuele Maesano, Francesco; D'Ambrogi, Chiara

    2015-04-01

    3D modelling is a powerful tool that is experiencing increasing applications in data analysis and dissemination. At the same time the need of quantitative uncertainty evaluation is strongly requested in many aspects of the geological sciences and by the stakeholders. In many cases the starting point for 3D model building is the interpretation of seismic profiles that provide indirect information about the geology of the subsurface in the domain of time. The most problematic step in the 3D modelling construction is the conversion of the horizons and faults interpreted in time domain to the depth domain. In this step the dominant variable that could lead to significantly different results is the velocity. The knowledge of the subsurface velocities is related mainly to punctual data (sonic logs) that are often sparsely distributed in the areas covered by the seismic interpretation. The extrapolation of velocity information to wide extended horizons is thus a critical step to obtain a 3D model in depth that can be used for predictive purpose. In the EU-funded GeoMol Project, the availability of a dense network of seismic lines (confidentially provided by ENI S.p.A.) in the Central Po Plain, is paired with the presence of 136 well logs, but few of them have sonic logs and in some portion of the area the wells are very widely spaced. The depth conversion of the 3D model in time domain has been performed testing different strategies for the use and the interpolation of velocity data. The final model has been obtained using a 4 layer cake 3D instantaneous velocity model that considers both the initial velocity (v0) in every reference horizon and the gradient of velocity variation with depth (k). Using this method it is possible to consider the geological constraint given by the geometries of the horizons and the geo-statistical approach to the interpolation of velocities and gradient. Here we present an experiment based on the use of set of pseudo-wells obtained from the

  2. Linearized supergravity with a dynamical preferred frame

    CERN Document Server

    Marakulin, Arthur

    2016-01-01

    We study supersymmetric extension of the Einstein-aether gravitational model where local Lorentz invariance is broken down to the subgroup of spatial rotations by a vacuum expectation value of a timelike vector field. By restricting to the level of linear perturbations around Lorentz-violating vacuum and using the superfield formalism we construct the most general action invariant under the linearized supergravity transformations. We show that, unlike its non-supersymmetric counterpart, the model contains only a single free dimensionless parameter, besides the usual dimensionful gravitational coupling. This makes the model highly predictive. An analysis of the spectrum of physical excitations reveal superluminal velocity of gravitons. The latter property leads to the extension of the gravitational multiplet by additional fermonic and bosonic states with helicities $\\pm 3/2$ and $\\pm 1$. We outline the observational constraints on the model following from its low-energy phenomenology.

  3. Simultaneous velocity and pressure quantification using pressure-sensitive flow tracers in air

    Science.gov (United States)

    Zhang, Peng; Peterson, Sean; Porfiri, Maurizio

    2017-11-01

    Particle-based measurement techniques for assessing the velocity field of a fluid have advanced rapidly over the past two decades. Full-field pressure measurement techniques have remained elusive, however. In this work, we aim to demonstrate the possibility of direct simultaneous planar velocity and pressure measurement of a high speed aerodynamic flow by employing novel pressure-sensitive tracer particles for particle image velocimetry (PIV). Specifically, the velocity and pressure variations of an airflow through a converging-diverging channel are studied. Polystyrene microparticles embedded with a pressure-sensitive phosphorescent dye-platinum octaethylporphyrin (PtOEP)-are used as seeding particles. Due to the oxygen quenching effect, the emission lifetime of PtOEP is highly sensitive to the oxygen concentration, that is, the partial pressure of oxygen, in the air. Since the partial pressure of oxygen is linearly proportional to the air pressure, we can determine the air pressure through the phosphorescence emission lifetime of the dye. The velocity field is instead obtained using traditional PIV methods. The particles have a pressure resolution on the order of 1 kPa, which may be improved by optimizing the particle size and dye concentration to suit specific flow scenarios. This work was supported by the National Science Foundation under Grant Number CBET-1332204.

  4. Calibrated Tully-fisher Relations For Improved Photometric Estimates Of Disk Rotation Velocities

    Science.gov (United States)

    Reyes, Reinabelle; Mandelbaum, R.; Gunn, J. E.; Pizagno, J.

    2011-01-01

    We present calibrated scaling relations (also referred to as Tully-Fisher relations or TFRs) between rotation velocity and photometric quantities-- absolute magnitude, stellar mass, and synthetic magnitude (a linear combination of absolute magnitude and color)-- of disk galaxies at z 0.1. First, we selected a parent disk sample of 170,000 galaxies from SDSS DR7, with redshifts between 0.02 and 0.10 and r band absolute magnitudes between -18.0 and -22.5. Then, we constructed a child disk sample of 189 galaxies that span the parameter space-- in absolute magnitude, color, and disk size-- covered by the parent sample, and for which we have obtained kinematic data. Long-slit spectroscopy were obtained from the Dual Imaging Spectrograph (DIS) at the Apache Point Observatory 3.5 m for 99 galaxies, and from Pizagno et al. (2007) for 95 galaxies (five have repeat observations). We find the best photometric estimator of disk rotation velocity to be a synthetic magnitude with a color correction that is consistent with the Bell et al. (2003) color-based stellar mass ratio. The improved rotation velocity estimates have a wide range of scientific applications, and in particular, in combination with weak lensing measurements, they enable us to constrain the ratio of optical-to-virial velocity in disk galaxies.

  5. Velocity Feedback Experiments

    Directory of Open Access Journals (Sweden)

    Chiu Choi

    2017-02-01

    Full Text Available Transient response such as ringing in a control system can be reduced or removed by velocity feedback. It is a useful control technique that should be covered in the relevant engineering laboratory courses. We developed velocity feedback experiments using two different low cost technologies, viz., operational amplifiers and microcontrollers. These experiments can be easily integrated into laboratory courses on feedback control systems or microcontroller applications. The intent of developing these experiments was to illustrate the ringing problem and to offer effective, low cost solutions for removing such problem. In this paper the pedagogical approach for these velocity feedback experiments was described. The advantages and disadvantages of the two different implementation of velocity feedback were discussed also.

  6. Analytical solution of velocity for ammonia-water horizontal falling-film flow

    International Nuclear Information System (INIS)

    Zhang, Qiang; Gao, Yide

    2016-01-01

    Highlights: • We built a new falling-film flow model that analyzed the film flow characteristics. • We have obtained a new formula of film thickness over the horizontal tube. • We derived analysis solution to analyze the effect of inertial force to velocity in the entrance region of liquid film. • It described the characters of the ammonia-waterfalling-film film over the horizontal tube. • It is good for falling-film absorption, generation and evaporation to optimizing the design parameters and further improving the capabilities. - Abstract: A new horizontal tube falling film velocity model was built and calculated to analyze the problem of film flow conditions. This model also analyzed the film thickness distribution in horizontal tube falling film flow and considered the effect of the inertial force on velocity. The film thickness and velocity profile can be obtained based on the principle of linear superposition, a method of separation of variables that introduces the effect of variable inertial force on the velocity profile in the process of falling-film absorption. The film flow condition and the film thickness distribution at different fluid Reynolds numbers (Re) and tube diameters were calculated and compared with the results of the Crank–Nicolson numerical solution under the same conditions. The results show that the film flow condition out of a horizontal tube and that the film thickness increases with the fluid Re. At a specific Re and suitable tube diameter, the horizontal tube reaches a more uniform film. Finally, the analysis results have similar trend with the experimental and numerical predicted data in literature.

  7. Transformations between inertial and linearly accelerated frames of reference

    International Nuclear Information System (INIS)

    Ashworth, D.G.

    1983-01-01

    Transformation equations between inertial and linearly accelerated frames of reference are derived and these transformation equations are shown to be compatible, where applicable, with those of special relativity. The physical nature of an accelerated frame of reference is unambiguously defined by means of an equation which relates the velocity of all points within the accelerated frame of reference to measurements made in an inertial frame of reference. (author)

  8. Nonlinear Mirror and Weibel modes: peculiarities of quasi-linear dynamics

    Directory of Open Access Journals (Sweden)

    O. A. Pokhotelov

    2010-12-01

    Full Text Available A theory for nonlinear evolution of the mirror modes near the instability threshold is developed. It is shown that during initial stage the major instability saturation is provided by the flattening of the velocity distribution function in the vicinity of small parallel ion velocities. The relaxation scenario in this case is accompanied by rapid attenuation of resonant particle interaction which is replaced by a weaker adiabatic interaction with mirror modes. The saturated plasma state can be considered as a magnetic counterpart to electrostatic BGK modes. After quasi-linear saturation a further nonlinear scenario is controlled by the mode coupling effects and nonlinear variation of the ion Larmor radius. Our analytical model is verified by relevant numerical simulations. Test particle and PIC simulations indeed show that it is a modification of distribution function at small parallel velocities that results in fading away of free energy driving the mirror mode. The similarity with resonant Weibel instability is discussed.

  9. The effect of changes in sea surface temperature on linear growth of Porites coral in Ambon Bay

    International Nuclear Information System (INIS)

    Corvianawatie, Corry; Putri, Mutiara R.; Cahyarini, Sri Y.

    2015-01-01

    Coral is one of the most important organisms in the coral reef ecosystem. There are several factors affecting coral growth, one of them is changes in sea surface temperature (SST). The purpose of this research is to understand the influence of SST variability on the annual linear growth of Porites coral taken from Ambon Bay. The annual coral linear growth was calculated and compared to the annual SST from the Extended Reconstructed Sea Surface Temperature version 3b (ERSST v3b) model. Coral growth was calculated by using Coral X-radiograph Density System (CoralXDS) software. Coral sample X-radiographs were used as input data. Chronology was developed by calculating the coral’s annual growth bands. A pair of high and low density banding patterns observed in the coral’s X-radiograph represent one year of coral growth. The results of this study shows that Porites coral extents from 2001-2009 and had an average growth rate of 1.46 cm/year. Statistical analysis shows that the annual coral linear growth declined by 0.015 cm/year while the annual SST declined by 0.013°C/year. SST and the annual linear growth of Porites coral in the Ambon Bay is insignificantly correlated with r=0.304 (n=9, p>0.05). This indicates that annual SST variability does not significantly influence the linear growth of Porites coral from Ambon Bay. It is suggested that sedimentation load, salinity, pH or other environmental factors may affect annual linear coral growth

  10. The effect of changes in sea surface temperature on linear growth of Porites coral in Ambon Bay

    Energy Technology Data Exchange (ETDEWEB)

    Corvianawatie, Corry, E-mail: corvianawatie@students.itb.ac.id; Putri, Mutiara R., E-mail: mutiara.putri@fitb.itb.ac.id [Oceanography Study Program, Bandung Institute of Technology (ITB), Jl. Ganesha 10 Bandung (Indonesia); Cahyarini, Sri Y., E-mail: yuda@geotek.lipi.go.id [Research Center for Geotechnology, Indonesian Institute of Sciences (LIPI), Bandung (Indonesia)

    2015-09-30

    Coral is one of the most important organisms in the coral reef ecosystem. There are several factors affecting coral growth, one of them is changes in sea surface temperature (SST). The purpose of this research is to understand the influence of SST variability on the annual linear growth of Porites coral taken from Ambon Bay. The annual coral linear growth was calculated and compared to the annual SST from the Extended Reconstructed Sea Surface Temperature version 3b (ERSST v3b) model. Coral growth was calculated by using Coral X-radiograph Density System (CoralXDS) software. Coral sample X-radiographs were used as input data. Chronology was developed by calculating the coral’s annual growth bands. A pair of high and low density banding patterns observed in the coral’s X-radiograph represent one year of coral growth. The results of this study shows that Porites coral extents from 2001-2009 and had an average growth rate of 1.46 cm/year. Statistical analysis shows that the annual coral linear growth declined by 0.015 cm/year while the annual SST declined by 0.013°C/year. SST and the annual linear growth of Porites coral in the Ambon Bay is insignificantly correlated with r=0.304 (n=9, p>0.05). This indicates that annual SST variability does not significantly influence the linear growth of Porites coral from Ambon Bay. It is suggested that sedimentation load, salinity, pH or other environmental factors may affect annual linear coral growth.

  11. DVL Velocity Aiding in the HUGIN 1000 Integrated Inertial Navigation System

    Directory of Open Access Journals (Sweden)

    Bjørn Jalving

    2004-10-01

    Full Text Available The RDI WHN-600 Doppler Velocity Log (DVL is a key navigation sensor for the HUG1N 1000 Autonomous Underwater Vehicle (AUV. HUGIN 1000 is designed for autonomous submerged operation for long periods of time. This is facilitated by a low drift velocity aided Inertial Navigation System (INS. Major factors determining the position error growth are the IMU and DVL error characteristics and the mission plan pattern_ For instance, low frequency DVL errors cause an approximately linear drift in a straight-line trajectory, while these errors tend to be cancelled out by a lawn mower pattern_ The paper focuses on the accuracy offered by the DVL. HUGIN 1000 is a permanent organic mine countermeasure (MCM capacity on the Royal Norwegian Navy MCM vessel KNM Karmoy. HUGIN 1000 will be part of the NATO force MCMFORNORTH in fall 2004.

  12. Velocity and phase distribution measurements in vertical air-water annular flows

    International Nuclear Information System (INIS)

    Vassallo, P.

    1997-07-01

    Annular flow topology for three air-water conditions in a vertical duct is investigated through the use of a traversing double-sensor hot-film anemometry probe and differential pressure measurements. Near wall measurements of mean and fluctuating velocities, as well as local void fraction, are taken in the liquid film, with the highest turbulent fluctuations occurring for the flow condition with the largest pressure drop. A modified law-of-the-wall formulation for wall shear is presented which, using near wall values of mean velocity and kinetic energy, agrees reasonably well with the average stress obtained from direct pressure drop measurements. The linear profile using wall coordinates in the logarithmic layer is preserved in annular flow; however, the slope and intercept of the profile differ from the single-phase values for the annular flow condition which has a thicker, more turbulent, liquid film

  13. Evaluation of arterial propagation velocity based on the automated analysis of the Pulse Wave Shape

    International Nuclear Information System (INIS)

    Clara, F M; Scandurra, A G; Meschino, G J; Passoni, L I

    2011-01-01

    This paper proposes the automatic estimation of the arterial propagation velocity from the pulse wave raw records measured in the region of the radial artery. A fully automatic process is proposed to select and analyze typical pulse cycles from the raw data. An adaptive neuro-fuzzy inference system, together with a heuristic search is used to find a functional approximation of the pulse wave. The estimation of the propagation velocity is carried out via the analysis of the functional approximation obtained with the fuzzy model. The analysis of the pulse wave records with the proposed methodology showed small differences compared with the method used so far, based on a strong interaction with the user. To evaluate the proposed methodology, we estimated the propagation velocity in a population of healthy men from a wide range of ages. It has been found in these studies that propagation velocity increases linearly with age and it presents a considerable dispersion of values in healthy individuals. We conclude that this process could be used to evaluate indirectly the propagation velocity of the aorta, which is related to physiological age in healthy individuals and with the expectation of life in cardiovascular patients.

  14. Self-Similar Nonlinear Dynamical Solutions for One-Component Nonneutral Plasma in a Time-Dependent Linear Focusing Field

    International Nuclear Information System (INIS)

    Qin, Hong; Davidson, Ronald C.

    2011-01-01

    In a linear trap confining a one-component nonneutral plasma, the external focusing force is a linear function of the configuration coordinates and/or the velocity coordinates. Linear traps include the classical Paul trap and the Penning trap, as well as the newly proposed rotating-radio- frequency traps and the Mobius accelerator. This paper describes a class of self-similar nonlinear solutions of nonneutral plasma in general time-dependent linear focusing devices, with self-consistent electrostatic field. This class of nonlinear solutions includes many known solutions as special cases.

  15. Linear Parametric Sensitivity Analysis of the Constraint Coefficient Matrix in Linear Programs

    NARCIS (Netherlands)

    R.A. Zuidwijk (Rob)

    2005-01-01

    textabstractSensitivity analysis is used to quantify the impact of changes in the initial data of linear programs on the optimal value. In particular, parametric sensitivity analysis involves a perturbation analysis in which the effects of small changes of some or all of the initial data on an

  16. Magnetohydrodynamic flow of Carreau fluid over a convectively heated surface in the presence of non-linear radiation

    Energy Technology Data Exchange (ETDEWEB)

    Khan, Masood [Department of Mathematics, Quaid-i-Azam University, Islamabad 44000 (Pakistan); Hashim, E-mail: hashim_alik@yahoo.com [Department of Mathematics, Quaid-i-Azam University, Islamabad 44000 (Pakistan); Hussain, M. [Department of Sciences and Humanities, National University of Computer and Emerging Sciences, Islamabad 44000 (Pakistan); Azam, M. [Department of Mathematics, Quaid-i-Azam University, Islamabad 44000 (Pakistan)

    2016-08-15

    This paper presents a study of the magnetohydrodynamic (MHD) boundary layer flow of a non-Newtonian Carreau fluid over a convectively heated surface. The analysis of heat transfer is further performed in the presence of non-linear thermal radiation. The appropriate transformations are employed to bring the governing equations into dimensionless form. The numerical solutions of the partially coupled non-linear ordinary differential equations are obtained by using the Runge-Kutta Fehlberg integration scheme. The influence of non-dimensional governing parameters on the velocity, temperature, local skin friction coefficient and local Nusselt number is studied and discussed with the help of graphs and tables. Results proved that there is significant decrease in the velocity and the corresponding momentum boundary layer thickness with the growth in the magnetic parameter. However, a quite the opposite is true for the temperature and the corresponding thermal boundary layer thickness. - Highlights: • We investigated the Magnetohydrodynamic flow of Carreau constitutive fluid model. • Impact of non-linear thermal radiation is further taken into account. • Runge-Kutta Fehlberg method is employed to obtain the numerical solutions. • Fluid velocity is higher in case of hydromagnetic flow in comparison with hydrodynamic flow. • The local Nusselt number is a decreasing function of the thermal radiation parameter.

  17. A Velocity-Aware Handover Trigger in Two-Tier Heterogeneous Networks

    Directory of Open Access Journals (Sweden)

    Asmae Ait Mansour

    2018-01-01

    Full Text Available The unexpected change in user equipment (UE velocity is recognized as the primary explanation for poor handover quality. In order to resolve this issue, while limiting ping-pong (PP events we carefully and dynamically optimized handover parameters for each UE unit according to its velocity and the coverage area of the access point (AP. In order to recognize any variations in velocity, we applied Allan variance (AVAR to the received signal strength (RSS from the serving AP. To assess our approach, it was essential to configure a heterogeneous network context (LTE-WiFi and interconnect Media-Independent Handover (MIH and Proxy Mobile IPv6 (PMIPv6 for seamless handover. Reproduction demonstrated that our approach does not only result in a gain in relatively accurate velocity but in addition reduces the number of PP and handover failures (HOFs.

  18. Force-velocity properties' contribution to bilateral deficit during ballistic push-off.

    Science.gov (United States)

    Samozino, Pierre; Rejc, Enrico; di Prampero, Pietro Enrico; Belli, Alain; Morin, Jean-Benoît

    2014-01-01

    The objective of this study is to quantify the contribution of the force-velocity (F-v) properties to bilateral force deficit (BLD) in ballistic lower limb push-off and to relate it to individual F-v mechanical properties of the lower limbs. The F-v relation was individually assessed from mechanical measurements for 14 subjects during maximal ballistic lower limb push-offs; its contribution to BLD was then investigated using a theoretical macroscopic approach, considering both the mechanical constraints of movement dynamics and the maximal external capabilities of the lower limb neuromuscular system. During ballistic lower limb push-off, the maximum force each lower limb can produce was lower during bilateral than unilateral actions, thus leading to a BLD of 36.7% ± 5.7%. The decrease in force due to the F-v mechanical properties amounted to 19.9% ± 3.6% of the force developed during BL push-offs, which represents a nonneural contribution to BLD of 43.5% ± 9.1%. This contribution to BLD that cannot be attributed to changes in neural features was negatively correlated to the maximum unloaded extension velocity of the lower limb (r = -0.977, P push-off, BLD is due to both neural alterations and F-v mechanical properties, the latter being associated with the change in movement velocity between bilateral and unilateral actions. The level of the contribution of the F-v properties depends on the individual F-v mechanical profile of the entire lower limb neuromuscular system: the more the F-v profile is oriented toward velocity capabilities, the lower the loss of force from unilateral to bilateral push-offs due to changes in movement velocity.

  19. Optimized linear motor and digital PID controller setup used in Mössbauer spectrometer

    Science.gov (United States)

    Kohout, Pavel; Kouřil, Lukáš; Navařík, Jakub; Novák, Petr; Pechoušek, Jiří

    2014-10-01

    Optimization of a linear motor and digital PID controller setup used in a Mössbauer spectrometer is presented. Velocity driving system with a digital PID feedback subsystem was developed in the LabVIEW graphical environment and deployed on the sbRIO real-time hardware device (National Instruments). The most important data acquisition processes are performed as real-time deterministic tasks on an FPGA chip. Velocity transducer of a double loudspeaker type with a power amplifier circuit is driven by the system. Series of calibration measurements were proceeded to find the optimal setup of the P, I, D parameters together with velocity error signal analysis. The shape and given signal characteristics of the velocity error signal are analyzed in details. Remote applications for controlling and monitoring the PID system from computer or smart phone, respectively, were also developed. The best setup and P, I, D parameters were set and calibration spectrum of α-Fe sample with an average nonlinearity of the velocity scale below 0.08% was collected. Furthermore, the width of the spectral line below 0.30 mm/s was observed. Powerful and complex velocity driving system was designed.

  20. Compressive and Shear Wave Velocity Profiles using Seismic Refraction Technique

    International Nuclear Information System (INIS)

    Aziman, M; Hazreek, Z A M; Azhar, A T S; Haimi, D S

    2016-01-01

    Seismic refraction measurement is one of the geophysics exploration techniques to determine soil profile. Meanwhile, the borehole technique is an established way to identify the changes of soil layer based on number of blows penetrating the soil. Both techniques are commonly adopted for subsurface investigation. The seismic refraction test is a non-destructive and relatively fast assessment compared to borehole technique. The soil velocities of compressive wave and shear wave derived from the seismic refraction measurements can be directly utilised to calculate soil parameters such as soil modulus and Poisson’s ratio. This study investigates the seismic refraction techniques to obtain compressive and shear wave velocity profile. Using the vertical and horizontal geophones as well as vertical and horizontal strike directions of the transient seismic source, the propagation of compressive wave and shear wave can be examined, respectively. The study was conducted at Sejagung Sri Medan. The seismic velocity profile was obtained at a depth of 20 m. The velocity of the shear wave is about half of the velocity of the compression wave. The soil profiles of compressive and shear wave velocities were verified using the borehole data and showed good agreement with the borehole data. (paper)

  1. The velocity of sound

    International Nuclear Information System (INIS)

    Beyer, R.T.

    1985-01-01

    The paper reviews the work carried out on the velocity of sound in liquid alkali metals. The experimental methods to determine the velocity measurements are described. Tables are presented of reported data on the velocity of sound in lithium, sodium, potassium, rubidium and caesium. A formula is given for alkali metals, in which the sound velocity is a function of shear viscosity, atomic mass and atomic volume. (U.K.)

  2. Minimizers with discontinuous velocities for the electromagnetic variational method

    International Nuclear Information System (INIS)

    De Luca, Jayme

    2010-01-01

    The electromagnetic two-body problem has neutral differential delay equations of motion that, for generic boundary data, can have solutions with discontinuous derivatives. If one wants to use these neutral differential delay equations with arbitrary boundary data, solutions with discontinuous derivatives must be expected and allowed. Surprisingly, Wheeler-Feynman electrodynamics has a boundary value variational method for which minimizer trajectories with discontinuous derivatives are also expected, as we show here. The variational method defines continuous trajectories with piecewise defined velocities and accelerations, and electromagnetic fields defined by the Euler-Lagrange equations on trajectory points. Here we use the piecewise defined minimizers with the Lienard-Wierchert formulas to define generalized electromagnetic fields almost everywhere (but on sets of points of zero measure where the advanced/retarded velocities and/or accelerations are discontinuous). Along with this generalization we formulate the generalized absorber hypothesis that the far fields vanish asymptotically almost everywhere and show that localized orbits with far fields vanishing almost everywhere must have discontinuous velocities on sewing chains of breaking points. We give the general solution for localized orbits with vanishing far fields by solving a (linear) neutral differential delay equation for these far fields. We discuss the physics of orbits with discontinuous derivatives stressing the differences to the variational methods of classical mechanics and the existence of a spinorial four-current associated with the generalized variational electrodynamics.

  3. Velocity Drives Greater Power Observed During Back Squat Using Cluster Sets.

    Science.gov (United States)

    Oliver, Jonathan M; Kreutzer, Andreas; Jenke, Shane C; Phillips, Melody D; Mitchell, Joel B; Jones, Margaret T

    2016-01-01

    This investigation compared the kinetics and kinematics of cluster sets (CLU) and traditional sets (TRD) during back squat in trained (RT) and untrained (UT) men. Twenty-four participants (RT = 12, 25 ± 1 year, 179.1 ± 2.2 cm, 84.6 ± 2.1 kg; UT = 12, 25 ± 1 year, 180.1 ± 1.8 cm, 85.4 ± 3.8 kg) performed TRD (4 × 10, 120-second rest) and CLU (4 × (2 × 5) 30 seconds between clusters; 90 seconds between sets) with 70% one repetition maximum, randomly. Kinematics and kinetics were sampled through force plate and linear position transducers. Resistance-trained produced greater overall force, velocity, and power; however, similar patterns were observed in all variables when comparing conditions. Cluster sets produced significantly greater force in isolated repetitions in sets 1-3, while consistently producing greater force due to a required reduction in load during set 4 resulting in greater total volume load (CLU, 3302.4 ± 102.7 kg; TRD, 3274.8 ± 102.8 kg). Velocity loss was lessened in CLU resulting in significantly higher velocities in sets 2 through 4. Furthermore, higher velocities were produced by CLU during later repetitions of each set. Cluster sets produced greater power output for an increasing number of repetitions in each set (set 1, 5 repetitions; sets 2 and 3, 6 repetitions; set 4, 8 repetitions), and the difference between conditions increased over subsequent sets. Time under tension increased over each set and was greater in TRD. This study demonstrates greater power output is driven by greater velocity when back squatting during CLU; therefore, velocity may be a useful measure by which to assess power.

  4. Possible Different Rifting Mechanisms Between South and North Part of the Fenhe-Weihe Rift Zone Revealed by Shear Velocity Structures

    Science.gov (United States)

    Ai, S.; Zheng, Y.

    2017-12-01

    As an active intraplate continental rift, FWR plays an important role in accommodating the trans-tension in the Trans North China Craton (TNCO). Velocity field derived from GPS measurements reveals that the northern part of FWR is still under extension in N105°E direction at a rate of 4±2 mm/yr [Shen et al., 2000]. Actually, the FWR has been the most seismically active region in NCC. Bouguer gravity profile and seismic sounding lines [Xu and Ma, 1992] revealed a 2-3 km uplift of Moho depth beneath Taiyuan basin and 5-6 km beneath the Southwestern rift zone, those geophysical observations give clues to the un-evenly upwelling of the asthenosphere beneath the rift system and the different rifting process of the FWR. Therefore, studying the extension process of FWR is meaningful to understanding the NCC geodynamics associated with rifting tectonism. Using vertical continuous waveforms recorded during 2014 from CEarray, we construct a reliable and detailed 3-D crustal and uppermost mantle S-wave velocity structure of FWR, using a Bayesian Monte-Carlo method to jointly interpret teleseismic P-wave receiver functions and Rayleigh wave dispersions [Shen et al., 2013]. In the upmost crust, FWR appear as awful low velocity anomaly zone (LVZ), while the Taihang and Lvliang mountain ranges are imaged as strong high velocity anomaly zones(HVZ). In the middle crust, the low velocity zones still keep their LVZ features Additionally, nearly the whole FWR appears as a linearly LVZ line separating Taihang Uplift and Lvliang Uplift, except beneath Shilingguan and Linshi blocks that separate the Xinxian, Taiyuan and Linfen Basins, consisting with the high seismicity there. The velocity of the lower crust beneath Taiyuan and Weihe Basin are relatively higher than the rest rift regions, we interpret them as the limited mafic underplating beneath the TNCO. From the lower crust to upper mantle, the Datong volcanic zone display robust low velocity features, though the lowest velocity

  5. Improving sub-pixel imperviousness change prediction by ensembling heterogeneous non-linear regression models

    Directory of Open Access Journals (Sweden)

    Drzewiecki Wojciech

    2016-12-01

    Full Text Available In this work nine non-linear regression models were compared for sub-pixel impervious surface area mapping from Landsat images. The comparison was done in three study areas both for accuracy of imperviousness coverage evaluation in individual points in time and accuracy of imperviousness change assessment. The performance of individual machine learning algorithms (Cubist, Random Forest, stochastic gradient boosting of regression trees, k-nearest neighbors regression, random k-nearest neighbors regression, Multivariate Adaptive Regression Splines, averaged neural networks, and support vector machines with polynomial and radial kernels was also compared with the performance of heterogeneous model ensembles constructed from the best models trained using particular techniques.

  6. Development and Validity of a Scale of Perception of Velocity in Resistance Exercise

    Directory of Open Access Journals (Sweden)

    Iker J. Bautista

    2014-09-01

    Full Text Available This aims of this study were twofold; 1 to development a new scale of perceived velocity in the bench press exercise and 2 to examine the scales concurrent validity. Twenty one physically active males with mean ±SD age, height and weights of: 27.5 ± 4.7 years, 1.77 ± 0.07 m, and 79.8 ± 10.3 kg respectively, took part in the study. The criterion variable used to test the validity of the new scale was the mean execution velocity (Velreal of the bench press exercise. Three intensities (light loads [ 70% 1RM] were measured randomly during 5 days of testing. Perceived velocity (Velscale was measured immediately after each exercise set using the new scale. A positive linear correlation (r range = 0.69 to 0.81 was found in all three intensities, analyzed individually, between the Velreal and Velscale. Pearson correlations showed a greater frequency of scale use resulted higher correlation values (range r = 0.88 to 0.96. This study provides evidence of the concurrent validity of a new scale of perceived velocity in the bench press exercise in trained adult males. These results suggest the exercise intensity of the bench press can be quantified quickly and effective using this new scale of perceived velocity, particularly when training for maximum power.

  7. Velocity locking and pulsed invasions of fragmented habitats with seasonal growth

    Science.gov (United States)

    Korolev, Kirill; Wang, Ching-Hao

    From crystal growth to epidemics, spatial spreading is a common mechanism of change in nature. Typically, spreading results from two processes: growth and dispersal in ecology or chemical reactions and diffusion in physics. These two processes combine to produce a reaction-diffusion wave, an invasion front advancing at a constant velocity. We show that the properties of these waves are remarkably different depending whether space and time are continuous, as they are for a chemical reaction, or discrete, as they are for a pest invading a patchy habitat in seasonal climates. For discrete space and time, we report a new type of expansions with velocities that can lock into specific values and become insensitive to changes in dispersal and growth, i.e. the dependence of the velocity on model parameters exhibits plateaus or pauses. As a result, the evolution and response to perturbations in locked expansions can be markedly different compared to the expectations based on continuous models. The phenomenon of velocity locking requires cooperative growth and does not occur when per capita growth rate decline monotonically with population density. We obtain both numerical and analytical results describing highly non-analytic properties of locked expansions.

  8. The load-velocity profile differs more between men and women than between individuals with different strength levels.

    Science.gov (United States)

    Torrejón, Alejandro; Balsalobre-Fernández, Carlos; Haff, G Gregory; García-Ramos, Amador

    2018-03-21

    This study aimed to determine the suitability of the load-velocity relationship to prescribe the relative load (%1RM) in women, as well as to compare the load-velocity profile between sexes and participants with different strength levels. The load-velocity relationship of 14 men (1RM: 1.17 ± 0.19) and 14 women (1RM: 0.66 ± 0.13) were evaluated in the bench press exercise. The main findings revealed that: (I) the load-velocity relationship was always strong and linear (R 2 range: 0.987-0.993), (II) a steeper load-velocity profile was observed in men compared to women (Effect size [ES]: 1.09), with men showing higher velocities for light loads (ES: - 0.81 and - 0.40 for the y-intercept and 30%1RM, respectively), but women reporting higher velocities for the heavy loads (ES: 1.14 and 1.50 at 90%1RM and 100%1RM, respectively); and (III) while the slope of the load-velocity profile was moderately steeper for weak men compared to their strong counterpart (ES: 1.02), small differences were observed between strong and weak women (ES: - 0.39). While these results support the use of the individual load-velocity relationship to prescribe the %1RM in the bench press exercise for women, they also highlight the large disparities in their load-velocity profile compared to men.

  9. On-chip bio-analyte detection utilizing the velocity of magnetic microparticles in a fluid

    KAUST Repository

    Giouroudi, Ioanna; van den Driesche, Sander; Kosel, Jü rgen; Grössinger, Roland; Vellekoop, Michael J.

    2011-01-01

    change when analyte is attached to their surface via antibody–antigen binding. When the magnetic microparticles are attracted by a magnetic field within a microfluidic channel their velocity depends on the presence of analyte. Specifically, their velocity

  10. A velocity-amplified electromagnetic energy harvester for small amplitude vibration

    Science.gov (United States)

    Klein, J.; Zuo, L.

    2017-09-01

    Dedicated, self-powered wireless sensors are widely being studied for use throughout many industries to monitor everyday operations, maintain safety, and report performance characteristics. To enable sensors to power themselves, harvesting energy from machine vibration has been studied, however, its overall effectiveness can be hampered due to small vibration amplitudes and thus limited harvestable energy density. This paper addresses the issue by proposing a novel vibration energy harvester architecture in which a compliant mechanism and proof mass system is used to amplify the vibrational velocity of machine vibration for a linear electromagnetic generator. A prototype has been fabricated and experimentally characterized to verify its effectiveness. When operating at its natural frequency in a low base amplitude, 0.001 inch (25.4 μm) at 19.4 Hz, during lab tests, the harvester has been shown to produce up to 0.91 V AC open voltage, and a maximum power of 2 mW, amplifying the relative proof mass velocity by approximately 5.4 times. This method of locally increasing the machine vibrational velocity has been shown to be a viable option for increasing the potential power output of an energy harvester. In addition, a mathematical model is created based on pseudo-rigid-body dynamics and the analysis matches closely with experiments.

  11. Specialization in plant-hummingbird networks is associated with species richness, contemporary precipitation and quaternary climate-change velocity

    DEFF Research Database (Denmark)

    Dalsgaard, Bo; Magård, Else; Fjeldså, Jon

    2011-01-01

    patterns of contemporary biotic specialization and its drivers, we use network analysis to determine the degree of specialization in plant-hummingbird mutualistic networks sampled at 31 localities, spanning a wide range of climate regimes across the Americas. We found greater biotic specialization at lower...... latitudes, with latitude explaining 20-22% of the spatial variation in plant-hummingbird specialization. Potential drivers of specialization--contemporary climate, Quaternary climate-change velocity, and species richness--had superior explanatory power, together explaining 53-64% of the variation...... specialization. These results suggest that both ecological and evolutionary processes at Quaternary time scales can be important in driving large-scale geographical patterns of contemporary biotic specialization, at least for co-evolved systems such as plant-hummingbird networks....

  12. Selective effects of different fatigue protocols on the function of upper body muscles assessed through the force-velocity relationship.

    Science.gov (United States)

    García-Ramos, Amador; Torrejón, Alejandro; Feriche, Belén; Morales-Artacho, Antonio J; Pérez-Castilla, Alejandro; Padial, Paulino; Jaric, Slobodan

    2018-02-01

    This study explored the feasibility of the force-velocity relationship (F-V) to detect the acute effects of different fatigue protocols on the selective changes of the maximal capacities of upper body muscles to produce force, velocity, and power. After determining the bench press one-repetition maximum (1RM), participants' F-V relationships were assessed during the bench press throw exercise on five separate sessions after performing one of the following fatiguing protocols: 60%1RM failure, 60%1RM non-failure, 80%1RM failure, 80%1RM non-failure, and no-fatigue. In the non-failure protocols, participants performed half the maximum number of repetitions than in their respective failure protocols. The main findings revealed that (1) all F-V relationships were highly linear (median r = 0.997 and r = 0.982 for averaged across participants and individual data, respectively), (2) the fatiguing protocols were ranked based on the magnitude of power loss as follows: 60%1RM failure > 80%1RM failure > 60%1RM non-failure > 80%1RM non-failure, while (3) the assessed maximum force and velocity outputs showed a particularly prominent reduction in the protocols based on the lowest and highest levels of fatigue (i.e., 80%1RM non-failure and 60%1RM failure), respectively. The results support the use of F-V to assess the effects of fatigue on the distinctive capacities of the muscles to produce force, velocity, and power output while performing multi-joint tasks, while the assessed maximum force and velocity capacities showed a particularly prominent reduction in the protocols based on the lowest and highest levels of fatigue (i.e., 80%1RM non-failure and 60%1RM failure), respectively.

  13. Variation of Quench Propagation Velocities in YBCO Cables

    CERN Document Server

    Härö, E.; Stenvall, A.; 10.1007/s10948-015-2976-y

    2015-01-01

    changes during the quench. Due to the large temperature margin between the operation and the current sharing temperatures, the normal zone does not propagate with the temperature front. This means that the temperature will rise in a considerably larger volume when compared to the quenched volume. Thus, the evolution of the temperature distribution below current sharing temperature Tcs after the quench onset affects the normal zone propagation velocity in HTS more than in LTS coils. This can be seen as an acceleration of the quench propagation velocities while the quench evolves when margin to Tcs is high. In this paper we scrutinize quench propagation in a stack of YBCO cables with an in-house finite element method software which solves the heat diffusion equation. We compute the longitudinal and transverse normal zone propagation velocities at various distances from the hot spot to demonstrate the distance-variation...

  14. Lunar near-surface shear wave velocities at the Apollo landing sites as inferred from spectral amplitude ratios

    Science.gov (United States)

    Horvath, P.; Latham, G. V.; Nakamura, Y.; Dorman, H. J.

    1980-01-01

    The horizontal-to-vertical amplitude ratios of the long-period seismograms are reexamined to determine the shear wave velocity distributions at the Apollo 12, 14, 15, and 16 lunar landing sites. Average spectral ratios, computed from a number of impact signals, were compared with spectral ratios calculated for the fundamental mode Rayleigh waves in media consisting of homogeneous, isotropic, horizontal layers. The shear velocities of the best fitting models at the different sites resemble each other and differ from the average for all sites by not more than 20% except for the bottom layer at station 14. The shear velocities increase from 40 m/s at the surface to about 400 m/s at depths between 95 and 160 m at the various sites. Within this depth range the velocity-depth functions are well represented by two piecewise linear segments, although the presence of first-order discontinuities cannot be ruled out.

  15. Determination of the effect of wind velocity and direction changes on turbidity removal in rectangular sedimentation tanks.

    Science.gov (United States)

    Khezri, Seyed Mostafa; Biati, Aida; Erfani, Zeynab

    2012-01-01

    In the present study, a pilot-scale sedimentation tank was used to determine the effect of wind velocity and direction on the removal efficiency of particles. For this purpose, a 1:20 scale pilot simulated according to Frude law. First, the actual efficiency of total suspended solids (TSS) removal was calculated in no wind condition. Then, the wind was blown in the same and the opposite directions of water flow. At each direction TSS removal was calculated at three different velocities from 2.5 to 7 m/s. Results showed that when the wind was in the opposite direction of water flow, TSS removal efficiency initially increased with the increase of wind velocity from 0 to 2.5 m/s, then it decreased with the increase of velocity to 5 m/s. This mainly might happen because the opposite direction of wind can increase particles' retention time in the sedimentation tank. However, higher wind velocities (i.e. 3.5 and 5.5 m/s) could not increase TSS removal efficiency. Thus, if sedimentation tanks are appropriately exposed to the wind, TSS removal efficiency increases by approximately 6%. Therefore, energy consumption will be reduced by a proper site selection for sedimentation tank unit in water and waste water treatment plants.

  16. Agradient velocity, vortical motion and gravity waves in a rotating shallow-water model

    Science.gov (United States)

    Sutyrin Georgi, G.

    2004-07-01

    A new approach to modelling slow vortical motion and fast inertia-gravity waves is suggested within the rotating shallow-water primitive equations with arbitrary topography. The velocity is exactly expressed as a sum of the gradient wind, described by the Bernoulli function,B, and the remaining agradient part, proportional to the velocity tendency. Then the equation for inverse potential vorticity,Q, as well as momentum equations for agradient velocity include the same source of intrinsic flow evolution expressed as a single term J (B, Q), where J is the Jacobian operator (for any steady state J (B, Q) = 0). Two components of agradient velocity are responsible for the fast inertia-gravity wave propagation similar to the traditionally used divergence and ageostrophic vorticity. This approach allows for the construction of balance relations for vortical dynamics and potential vorticity inversion schemes even for moderate Rossby and Froude numbers assuming the characteristic value of |J(B, Q)| = to be small. The components of agradient velocity are used as the fast variables slaved to potential vorticity that allows for diagnostic estimates of the velocity tendency, the direct potential vorticity inversion with the accuracy of 2 and the corresponding potential vorticity-conserving agradient velocity balance model (AVBM). The ultimate limitations of constructing the balance are revealed in the form of the ellipticity condition for balanced tendency of the Bernoulli function which incorporates both known criteria of the formal stability: the gradient wind modified by the characteristic vortical Rossby wave phase speed should be subcritical. The accuracy of the AVBM is illustrated by considering the linear normal modes and coastal Kelvin waves in the f-plane channel with topography.

  17. On a relation of geomagnetic activity, solar wind velocity and irregularity of daily rotation of the Earth

    International Nuclear Information System (INIS)

    Kalinin, Yu.D.; Kiselev, V.M.

    1980-01-01

    A possibility of the presence of statistic relation between the changes of the Earth rotation regime and the mean velocity of solar wind is discussed. The ratio between the solar wind velocity observed and planetary index of geomagnetic activity am is used to determine the annual average values of solar wind velocity beyond the twentieth cycle of solar activity. The restored changes of solar wind velocity are compared with solar conditioned variations of the Earth day duration and it is shown that the correspondence takes place only at frequencies lower the frequency of 11-year cycle [ru

  18. Nerve conduction velocity

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/article/003927.htm Nerve conduction velocity To use the sharing features on this page, please enable JavaScript. Nerve conduction velocity (NCV) is a test to see ...

  19. TYPE Ia SUPERNOVA COLORS AND EJECTA VELOCITIES: HIERARCHICAL BAYESIAN REGRESSION WITH NON-GAUSSIAN DISTRIBUTIONS

    International Nuclear Information System (INIS)

    Mandel, Kaisey S.; Kirshner, Robert P.; Foley, Ryan J.

    2014-01-01

    We investigate the statistical dependence of the peak intrinsic colors of Type Ia supernovae (SNe Ia) on their expansion velocities at maximum light, measured from the Si II λ6355 spectral feature. We construct a new hierarchical Bayesian regression model, accounting for the random effects of intrinsic scatter, measurement error, and reddening by host galaxy dust, and implement a Gibbs sampler and deviance information criteria to estimate the correlation. The method is applied to the apparent colors from BVRI light curves and Si II velocity data for 79 nearby SNe Ia. The apparent color distributions of high-velocity (HV) and normal velocity (NV) supernovae exhibit significant discrepancies for B – V and B – R, but not other colors. Hence, they are likely due to intrinsic color differences originating in the B band, rather than dust reddening. The mean intrinsic B – V and B – R color differences between HV and NV groups are 0.06 ± 0.02 and 0.09 ± 0.02 mag, respectively. A linear model finds significant slopes of –0.021 ± 0.006 and –0.030 ± 0.009 mag (10 3 km s –1 ) –1 for intrinsic B – V and B – R colors versus velocity, respectively. Because the ejecta velocity distribution is skewed toward high velocities, these effects imply non-Gaussian intrinsic color distributions with skewness up to +0.3. Accounting for the intrinsic-color-velocity correlation results in corrections to A V extinction estimates as large as –0.12 mag for HV SNe Ia and +0.06 mag for NV events. Velocity measurements from SN Ia spectra have the potential to diminish systematic errors from the confounding of intrinsic colors and dust reddening affecting supernova distances

  20. Estimation of blood velocity vectors using transverse ultrasound beam focusing and cross-correlation

    DEFF Research Database (Denmark)

    Jensen, Jørgen Arendt; Lacasa, Isabel Rodriguez

    1999-01-01

    program. Simulations are shown for a parabolic velocity profile for flow-to-beam angles of 30, 45, 60, and 90 degrees using a 64 elements linear array with a center frequency of 3 MHz, a pitch of 0.3 mm, and an element height of 5 mm. The peak velocity in the parabolic flow was 0.5 m/s, and the pulse...... repetition frequency was 3.5 kHz. Using four pulse-echo lines, the parabolic flow profile was found with a standard deviation of 0.028 m/s at 60 degrees and 0.092 m/s at 90 degrees (transverse to the ultrasound beam), corresponding to accuracies of 5.6% and 18.4%. Using ten lines gave standard deviations...

  1. Turbulent Motion of Liquids in Hydraulic Resistances with a Linear Cylindrical Slide-Valve

    Directory of Open Access Journals (Sweden)

    C. Velescu

    2015-01-01

    Full Text Available We analyze the motion of viscous and incompressible liquids in the annular space of controllable hydraulic resistances with a cylindrical linear slide-valve. This theoretical study focuses on the turbulent and steady-state motion regimes. The hydraulic resistances mentioned above are the most frequent type of hydraulic resistances used in hydraulic actuators and automation systems. To study the liquids’ motion in the controllable hydraulic resistances with a linear cylindrical slide-valve, the report proposes an original analytic method. This study can similarly be applied to any other type of hydraulic resistance. Another purpose of this study is to determine certain mathematical relationships useful to approach the theoretical functionality of hydraulic resistances with magnetic controllable fluids as incompressible fluids in the presence of a controllable magnetic field. In this report, we established general analytic equations to calculate (i velocity and pressure distributions, (ii average velocity, (iii volume flow rate of the liquid, (iv pressures difference, and (v radial clearance.

  2. Fish oil supplementation prevents diabetes-induced nerve conduction velocity and neuroanatomical changes in rats.

    Science.gov (United States)

    Gerbi, A; Maixent, J M; Ansaldi, J L; Pierlovisi, M; Coste, T; Pelissier, J F; Vague, P; Raccah, D

    1999-01-01

    Diabetic neuropathy has been associated with a decrease in nerve conduction velocity, Na,K-ATPase activity and characteristic histological damage of the sciatic nerve. The aim of this study was to evaluate the potential effect of a dietary supplementation with fish oil [(n-3) fatty acids] on the sciatic nerve of diabetic rats. Diabetes was induced by intravenous streptozotocin injection. Diabetic animals (n = 20) were fed a nonpurified diet supplemented with either olive oil (DO) or fish oil (DM), and control animals (n = 10) were fed a nonpurified diet supplemented with olive oil at a daily dose of 0.5 g/kg by gavage for 8 wk. Nerves were characterized by their conduction velocity, morphometric analysis and membrane Na, K-ATPase activity. Nerve conduction velocity, as well as Na,K-ATPase activity, was improved by fish oil treatment. A correlation was found between these two variables (R = 0.999, P < 0.05). Moreover, a preventive effect of fish oil was observed on nerve histological damage [endoneurial edema, axonal degeneration (by 10-15%) with demyelination]. Moreover, the normal bimodal distribution of the internal diameter of myelinated fibers was absent in the DO group and was restored in the DM group. These data suggest that fish oil therapy may be effective in the prevention of diabetic neuropathy.

  3. Age related neuromuscular changes in sEMG of m. Tibialis Anterior using higher order statistics (Gaussianity & linearity test).

    Science.gov (United States)

    Siddiqi, Ariba; Arjunan, Sridhar P; Kumar, Dinesh K

    2016-08-01

    Age-associated changes in the surface electromyogram (sEMG) of Tibialis Anterior (TA) muscle can be attributable to neuromuscular alterations that precede strength loss. We have used our sEMG model of the Tibialis Anterior to interpret the age-related changes and compared with the experimental sEMG. Eighteen young (20-30 years) and 18 older (60-85 years) performed isometric dorsiflexion at 6 different percentage levels of maximum voluntary contractions (MVC), and their sEMG from the TA muscle was recorded. Six different age-related changes in the neuromuscular system were simulated using the sEMG model at the same MVCs as the experiment. The maximal power of the spectrum, Gaussianity and Linearity Test Statistics were computed from the simulated and experimental sEMG. A correlation analysis at α=0.05 was performed between the simulated and experimental age-related change in the sEMG features. The results show the loss in motor units was distinguished by the Gaussianity and Linearity test statistics; while the maximal power of the PSD distinguished between the muscular factors. The simulated condition of 40% loss of motor units with halved the number of fast fibers best correlated with the age-related change observed in the experimental sEMG higher order statistical features. The simulated aging condition found by this study corresponds with the moderate motor unit remodelling and negligible strength loss reported in literature for the cohorts aged 60-70 years.

  4. Linear wind generator

    International Nuclear Information System (INIS)

    Kozarov, A.; Petrov, O.; Antonov, J.; Sotirova, S.; Petrova, B.

    2006-01-01

    The purpose of the linear wind-power generator described in this article is to decrease the following disadvantages of the common wind-powered turbine: 1) large bending and twisting moments to the blades and the shaft, especially when strong winds and turbulence exist; 2) significant values of the natural oscillation period of the construction result in the possibility of occurrence of destroying resonance oscillations; 3) high velocity of the peripheral parts of the rotor creating a danger for birds; 4) difficulties, connected with the installation and the operation on the mountain ridges and passages where the wind energy potential is the largest. The working surfaces of the generator in questions driven by the wind are not connected with a joint shaft but each moves along a railway track with few oscillations. So the sizes of each component are small and their number can be rather large. The mechanical trajectory is not a circle but a closed outline in a vertical plain, which consists of two rectilinear sectors, one above the other, connected in their ends by semi-circumferences. The mechanical energy of each component turns into electrical on the principle of the linear electrical generator. A regulation is provided when the direction of the wind is perpendicular to the route. A possibility of effectiveness is shown through aiming of additional quantities of air to the movable components by static barriers

  5. Determination of velocity correction factors for real-time air velocity monitoring in underground mines

    OpenAIRE

    Zhou, Lihong; Yuan, Liming; Thomas, Rick; Iannacchione, Anthony

    2017-01-01

    When there are installations of air velocity sensors in the mining industry for real-time airflow monitoring, a problem exists with how the monitored air velocity at a fixed location corresponds to the average air velocity, which is used to determine the volume flow rate of air in an entry with the cross-sectional area. Correction factors have been practically employed to convert a measured centerline air velocity to the average air velocity. However, studies on the recommended correction fac...

  6. Velocities of gas and plasmas from real time holographic interferograms

    International Nuclear Information System (INIS)

    Deason, V.A.; Reynolds, L.D.; McIlwain, M.E.

    1985-01-01

    A truly noninvasive measurement technique for plasma velocity has not been demonstrated. Plasma velocities have been inferred using laser Doppler anemometry or photographic analysis of the position of smoke or small particles. This paper describes an alternate method based on the refractive index change created in a plasma by a gaseous probe material injected into the plasma. This disturbance of the refractive index can be monitored using interferometry. A multipass real time holographic interferometry system was used to follow the changes of the interferometric pattern, and the data was recorded using high speed cinematography. A transparent model of an industrial plasma torch was employed in these studies, and a number of different types of trace gas materials were used to track the plasma flow. Using a combination of multipass interferometry and a laser line absorbing gas, sufficient interferometric sensitivity was obtained to determine plasma velocities in the 100 m/s range. Based on these results, a working plasma torch was constructed. Further studies are planned using this torch and actual plasmas

  7. Dynamic response of SWEMAAIR 300 thermal anemometer with SWA-01 velocity transducer

    Energy Technology Data Exchange (ETDEWEB)

    Melikov, A K; Popiolek, Z

    1996-06-01

    The objective of this study is to identify the dynamic response of the SwemaAir 300 thermal anemometer to downward airflow with different amplitude and frequency of the velocity fluctuations and changing direction. An important aim is to find to what extend the accuracy of the velocity measurements is effected at the above described conditions. (au)

  8. Ultrasonic velocity measurements- a potential sensor for intelligent processing of austenitic stainless steels

    International Nuclear Information System (INIS)

    Venkadesan, S.; Palanichamy, P.; Vasudevan, M.; Baldev Raj

    1996-01-01

    Development of sensors based on Non-Destructive Evaluation (NDE) techniques for on-line sensing of microstructure and properties requires a thorough knowledge on the relation between the sensing mechanism/measurement of an NDE technique and the microstructure. As a first step towards developing an on-line sensor for studying the dynamic microstructural changes during processing of austenitic stainless steels, ultrasonic velocity measurements have been carried out to study the microstructural changes after processing. Velocity measurements could follow the progress of annealing starting from recovery, onset and completion of recrystallization, sense the differences in the microstructure obtained after hot deformation and estimate the grain size. This paper brings out the relation between the sensing method based on ultrasonic velocity measurements and the microstructure in austenitic stainless steel. (author)

  9. Radio-frequency quadrupole linear accelerator

    International Nuclear Information System (INIS)

    Wangler, T.P.; Stokes, R.H.

    1980-01-01

    The radio-frequency quadrupole (RFQ) is a new linear accelerator concept in which rf electric fields are used to focus, bunch, and accelerate the beam. Because the RFQ can provide strong focusing at low velocities, it can capture a high-current dc ion beam from a low-voltage source and accelerate it to an energy of 1 MeV/nucleon within a distance of a few meters. A recent experimental test at the Los Alamos Scientific Laboratory (LASL) has confirmed the expected performance of this structure and has stimulated interest in a wide variety of applications. The general properties of the RFQ are reviewed and examples of applications of this new accelerator are presented

  10. Non-linear dielectric signatures of entropy changes in liquids subject to time dependent electric fields

    Energy Technology Data Exchange (ETDEWEB)

    Richert, Ranko [School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287-1604 (United States)

    2016-03-21

    A model of non-linear dielectric polarization is studied in which the field induced entropy change is the source of polarization dependent retardation time constants. Numerical solutions for the susceptibilities of the system are obtained for parameters that represent the dynamic and thermodynamic behavior of glycerol. The calculations for high amplitude sinusoidal fields show a significant enhancement of the steady state loss for frequencies below that of the low field loss peak. Also at relatively low frequencies, the third harmonic susceptibility spectrum shows a “hump,” i.e., a maximum, with an amplitude that increases with decreasing temperature. Both of these non-linear effects are consistent with experimental evidence. While such features have been used to conclude on a temperature dependent number of dynamically correlated particles, N{sub corr}, the present result demonstrates that the third harmonic susceptibility display a peak with an amplitude that tracks the variation of the activation energy in a model that does not involve dynamical correlations or spatial scales.

  11. Simplified equations for the rotational speed response to inflow velocity variation in fixed-pitch small wind turbines

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, H; Hasegawa, Y, E-mail: hsuzuki@nitech.ac.jp [Graduate School of Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466-8555 (Japan)

    2015-02-01

    We propose simplified equations for the rotational speed response to inflow velocity variation in fixed-pitch small wind turbines. The present formulation is derived by introducing a series expansion for the torque coefficient at the constant tip-speed ratio. By focusing on the first- and second-order differential coefficients of the torque coefficient, we simplify the original differential equation. The governing equation based only on the first-order differential coefficient is found to be linear, whereas the second-order differential coefficient introduces nonlinearity. We compare the numerical solutions of the three governing equations for rotational speed in response to sinusoidal and normal-random variations of inflow velocity. The linear equation gives accurate solutions of amplitude and phase lag. Nonlinearity occurs in the mean value of rotational speed variation. We also simulate the rotational speed in response to a step input of inflow velocity using the conditions of two previous studies, and note that the form of this rotational speed response is a system of first-order time lag. We formulate the gain and time constant for this rotational speed response. The magnitude of the gain is approximately three when the wind turbine is operated at optimal tip-speed ratio. We discuss the physical meaning of the derived time constant. (paper)

  12. Critical Velocity for Shear Localization in A Mature Mylonitic Rock Analogue

    Science.gov (United States)

    Takahashi, M.; van den Ende, M.; Niemeijer, A. R.; Spiers, C. J.

    2016-12-01

    Highly localized slip zones, seen within ductile shear zones developed in nature, such as pseudotachylite bands occurring within mylonites, are widely recognized as evidence for earthquake nucleation and/or propagation within and overprinting the ductile regime. To understand brittle/frictional localization processes in ductile shear zones and to connect these to earthquake nucleation and propagation processes, we performed large velocity step-change tests on a brine-saturated, 80:20 (wt. %) halite and muscovite gouge mixture, after forming a mature mylonitic structure through pressure solution creep at low-velocity. The sharp increase in sliding strength that occurs in response to an instantaneous upward velocity-step (direct effect) is an important parameter in determining the potential for and nature of seismic rupture nucleation. We obtained reproducible results regarding low velocity mechanical behavior compared with previous work of Niemeijer and Spiers, [2006], but also obtained new insights into the effects of sudden increases in slip velocity on localization and strength evolution, at velocities above a specific critical velocity Vc ( 20 μm/sec). We found that once a ductile, mylonitic structure has developed in a shear zone, subsequent cataclastic deformation at high velocity (> Vc) is consistently localized in a narrow zone characterized by fine grains of halite aligned in arrays between foliated muscovite Due to this intense localization, structures presumably developed under low velocity conditions were still preserved in large parts of the gouge body. This switch to localized deformation is controlled by the imposed velocity, and becomes most apparent at velocities over Vc. In addition, the direct effect a decreases rapidly when the velocity exceeds Vc. This implies that slip can localize and accelerate towards seismic velocities more or less instantly once Vc is exceeded. Obtaining a measure for Vc in natural faults is therefore of key importance

  13. High Frame-Rate Blood Vector Velocity Imaging Using Plane Waves: Simulations and Preliminary Experiments

    DEFF Research Database (Denmark)

    Udesen, Jesper; Gran, Fredrik; Hansen, Kristoffer Lindskov

    2008-01-01

    ) The ultrasound is not focused during the transmissions of the ultrasound signals; 2) A 13-bit Barker code is transmitted simultaneously from each transducer element; and 3) The 2-D vector velocity of the blood is estimated using 2-D cross-correlation. A parameter study was performed using the Field II program......, and performance of the method was investigated when a virtual blood vessel was scanned by a linear array transducer. An improved parameter set for the method was identified from the parameter study, and a flow rig measurement was performed using the same improved setup as in the simulations. Finally, the common...... carotid artery of a healthy male was scanned with a scan sequence that satisfies the limits set by the Food and Drug Administration. Vector velocity images were obtained with a frame-rate of 100 Hz where 40 speckle images are used for each vector velocity image. It was found that the blood flow...

  14. Near-surface fault detection by migrating back-scattered surface waves with and without velocity profiles

    KAUST Repository

    Yu, Han

    2016-04-26

    We demonstrate that diffraction stack migration can be used to discover the distribution of near-surface faults. The methodology is based on the assumption that near-surface faults generate detectable back-scattered surface waves from impinging surface waves. We first isolate the back-scattered surface waves by muting or FK filtering, and then migrate them by diffraction migration using the surface wave velocity as the migration velocity. Instead of summing events along trial quasi-hyperbolas, surface wave migration sums events along trial quasi-linear trajectories that correspond to the moveout of back-scattered surface waves. We have also proposed a natural migration method that utilizes the intrinsic traveltime property of the direct and the back-scattered waves at faults. For the synthetic data sets and the land data collected in Aqaba, where surface wave velocity has unexpected perturbations, we migrate the back-scattered surface waves with both predicted velocity profiles and natural Green\\'s function without velocity information. Because the latter approach avoids the need for an accurate velocity model in event summation, both the prestack and stacked migration images show competitive quality. Results with both synthetic data and field records validate the feasibility of this method. We believe applying this method to global or passive seismic data can open new opportunities in unveiling tectonic features.

  15. A numerical analysis for non-linear radiation in MHD flow around a cylindrical surface with chemically reactive species

    Directory of Open Access Journals (Sweden)

    Junaid Ahmad Khan

    2018-03-01

    Full Text Available Boundary layer flow around a stretchable rough cylinder is modeled by taking into account boundary slip and transverse magnetic field effects. The main concern is to resolve heat/mass transfer problem considering non-linear radiative heat transfer and temperature/concentration jump aspects. Using conventional similarity approach, the equations of motion and heat transfer are converted into a boundary value problem whose solution is computed by shooting method for broad range of slip coefficients. The proposed numerical scheme appears to improve as the strengths of magnetic field and slip coefficients are enhanced. Axial velocity and temperature are considerably influenced by a parameter M which is inversely proportional to the radius of cylinder. A significant change in temperature profile is depicted for growing wall to ambient temperature ratio. Relevant physical quantities such as wall shear stress, local Nusselt number and local Sherwood number are elucidated in detail. Keywords: Stretchable boundary, Thermal radiation, Chemical reaction, Mathematical modeling, Non-linear differential system, Mass transfer

  16. Improving 1D Site Specific Velocity Profiles for the Kik-Net Network

    Science.gov (United States)

    Holt, James; Edwards, Benjamin; Pilz, Marco; Fäh, Donat; Rietbrock, Andreas

    2017-04-01

    Ground motion predication equations (GMPEs) form the cornerstone of modern seismic hazard assessments. When produced to a high standard they provide reliable estimates of ground motion/spectral acceleration for a given site and earthquake scenario. This information is crucial for engineers to optimise design and for regulators who enforce legal minimum safe design capacities. Classically, GMPEs were built upon the assumption that variability around the median model could be treated as aleatory. As understanding improved, it was noted that the propagation could be segregated into the response of the average path from the source and the response of the site. This is because the heterogeneity of the near-surface lithology is significantly different from that of the bulk path. It was then suggested that the semi-ergodic approach could be taken if the site response could be determined, moving uncertainty away from aleatory to epistemic. The determination of reliable site-specific response models is therefore becoming increasingly critical for ground motion models used in engineering practice. Today it is common practice to include proxies for site response within the scope of a GMPE, such as Vs30 or site classification, in an effort to reduce the overall uncertainty of the predication at a given site. However, these proxies are not always reliable enough to give confident ground motion estimates, due to the complexity of the near-surface. Other approaches of quantifying the response of the site include detailed numerical simulations (1/2/3D - linear, EQL, non-linear etc.). However, in order to be reliable, they require highly detailed and accurate velocity and, for non-linear analyses, material property models. It is possible to obtain this information through invasive methods, but is expensive, and not feasible for most projects. Here we propose an alternative method to derive reliable velocity profiles (and their uncertainty), calibrated using almost 20 years of

  17. Non-linear Q-clouds around Kerr black holes

    International Nuclear Information System (INIS)

    Herdeiro, Carlos; Radu, Eugen; Rúnarsson, Helgi

    2014-01-01

    Q-balls are regular extended ‘objects’ that exist for some non-gravitating, self-interacting, scalar field theories with a global, continuous, internal symmetry, on Minkowski spacetime. Here, analogous objects are also shown to exist around rotating (Kerr) black holes, as non-linear bound states of a test scalar field. We dub such configurations Q-clouds. We focus on a complex massive scalar field with quartic plus hexic self-interactions. Without the self-interactions, linear clouds have been shown to exist, in synchronous rotation with the black hole horizon, along 1-dimensional subspaces – existence lines – of the Kerr 2-dimensional parameter space. They are zero modes of the superradiant instability. Non-linear Q-clouds, on the other hand, are also in synchronous rotation with the black hole horizon; but they exist on a 2-dimensional subspace, delimited by a minimal horizon angular velocity and by an appropriate existence line, wherein the non-linear terms become irrelevant and the Q-cloud reduces to a linear cloud. Thus, Q-clouds provide an example of scalar bound states around Kerr black holes which, generically, are not zero modes of the superradiant instability. We describe some physical properties of Q-clouds, whose backreaction leads to a new family of hairy black holes, continuously connected to the Kerr family

  18. Role of Slip Velocity in a Magneto-Micropolar Fluid Flow from a Radiative Surface with Variable Permeability: A Numerical Study

    Directory of Open Access Journals (Sweden)

    Sharma B.K.

    2017-08-01

    Full Text Available An analysis is presented to describe the hydromagnetic mixed convection flow of an electrically conducting micropolar fluid past a vertical plate through a porous medium with radiation and slip flow regime. A uniform magnetic field has been considered in the study which absorbs the micropolar fluid with a varying suction velocity and acts perpendicular to the porous surface of the above plate. The governing non-linear partial differential equations have been transformed into linear partial differential equations, which are solved numerically by applying the explicit finite difference method. The numerical results are presented graphically in the form of velocity, micro-rotation, concentration and temperature profiles, the skin-friction coefficient, the couple stress coefficient, the rate of heat and mass transfers at the wall for different material parameters.

  19. The influence of time dependent flight and maneuver velocities and elastic or viscoelastic flexibilities on aerodynamic and stability derivatives

    Energy Technology Data Exchange (ETDEWEB)

    Cochrane, Alexander P. [Aerospace Engineering Department, University of Glasgow, University Avenue, Glasgow, Lanarkshire (United Kingdom); Merrett, Craig G. [Mechanical and Aerospace Engineering Department, Carleton Univ., 1125 Col. By Dr., Ottawa, ON (Canada); Hilton, Harry H. [Aerospace Engineering Department in the College of Engineering and Private Sector Program Division at the National Center for Supercomputing Applications, University of Illinois at Urbana-Champaign, 104 South Wright Street, Urbana, IL 61801 (United States)

    2014-12-10

    The advent of new structural concepts employing composites in primary load carrying aerospace structures in UAVs, MAVs, Boeing 787s, Airbus A380s, etc., necessitates the inclusion of flexibility as well as viscoelasticity in static structural and aero-viscoelastic analyses. Differences and similarities between aeroelasticity and aero-viscoelasticity have been investigated in [2]. An investigation is undertaken as to the dependence and sensitivity of aerodynamic and stability derivatives to elastic and viscoelastic structural flexibility and as to time dependent flight and maneuver velocities. Longitudinal, lateral and directional stabilities are investigated. It has been a well established fact that elastic lifting surfaces are subject to loss of control effectiveness and control reversal at certain flight speeds, which depend on aerodynamic, structural and material properties [5]. Such elastic analyses are extended to linear viscoelastic materials under quasi-static, dynamic, and sudden and gradual loading conditions. In elastic wings one of the critical static parameters is the velocity at which control reversal takes place (V{sub REV}{sup E}). Since elastic formulations constitute viscoelastic initial conditions, viscoelastic reversal may occur at speeds V{sub REV<}{sup ≧}V{sub REV}{sup E}, but furthermore does so in time at 0 < t{sub REV} ≤ ∞. The influence of the twin effects of viscoelastic and elastic materials and of variable flight velocities on longitudinal, lateral, directional and spin stabilities are also investigated. It has been a well established fact that elastic lifting surfaces are subject to loss of control effectiveness and control reversal at certain flight speeds, which depend on aerodynamic, structural and material properties [5]. Such elastic analyses are here extended to linear viscoelastic materials under quasi-static, dynamic, and sudden and gradual loading conditions. In elastic wings the critical parameter is the velocity at

  20. The influence of time dependent flight and maneuver velocities and elastic or viscoelastic flexibilities on aerodynamic and stability derivatives

    International Nuclear Information System (INIS)

    Cochrane, Alexander P.; Merrett, Craig G.; Hilton, Harry H.

    2014-01-01

    The advent of new structural concepts employing composites in primary load carrying aerospace structures in UAVs, MAVs, Boeing 787s, Airbus A380s, etc., necessitates the inclusion of flexibility as well as viscoelasticity in static structural and aero-viscoelastic analyses. Differences and similarities between aeroelasticity and aero-viscoelasticity have been investigated in [2]. An investigation is undertaken as to the dependence and sensitivity of aerodynamic and stability derivatives to elastic and viscoelastic structural flexibility and as to time dependent flight and maneuver velocities. Longitudinal, lateral and directional stabilities are investigated. It has been a well established fact that elastic lifting surfaces are subject to loss of control effectiveness and control reversal at certain flight speeds, which depend on aerodynamic, structural and material properties [5]. Such elastic analyses are extended to linear viscoelastic materials under quasi-static, dynamic, and sudden and gradual loading conditions. In elastic wings one of the critical static parameters is the velocity at which control reversal takes place (V REV E ). Since elastic formulations constitute viscoelastic initial conditions, viscoelastic reversal may occur at speeds V REV< ≧ V REV E , but furthermore does so in time at 0 < t REV ≤ ∞. The influence of the twin effects of viscoelastic and elastic materials and of variable flight velocities on longitudinal, lateral, directional and spin stabilities are also investigated. It has been a well established fact that elastic lifting surfaces are subject to loss of control effectiveness and control reversal at certain flight speeds, which depend on aerodynamic, structural and material properties [5]. Such elastic analyses are here extended to linear viscoelastic materials under quasi-static, dynamic, and sudden and gradual loading conditions. In elastic wings the critical parameter is the velocity at which control reversal takes place