WorldWideScience

Sample records for linear thermal expansion

  1. Linear expansion of products out of thermal splitting graphite

    International Nuclear Information System (INIS)

    Tishina, E.A.; Kurnevich, G.I.

    1994-01-01

    Linear expansion of thermally split graphite in the form of foil and pressed items of different density was studied. It is ascertained that the extreme character of temperature dependence of linear expansion factor of pressed samples of thermally split graphite is determined by the formation of closed pores containing air in the course of their production. 3 refs., 2 figs

  2. Linear thermal expansion measurements on silicon from 6 to 340 K

    International Nuclear Information System (INIS)

    Lyon, K.G.; Salinger, G.L.; Swenson, C.A.; White, G.K.

    1977-01-01

    Linear thermal expansion measurements have been carried out from 6 to 340 K on a high-purity silicon sample using a linear absolute capacitance dilatometer. The accuracy of the measurements varies from +- 0.01 x 10 -8 K -1 at the lowest temperatures to +- 0.1 x 10 -8 K -1 or 0.1%, whichever is greater, near room temperature, and is sufficient to establish silicon as a thermal expansion standard for these temperatures. The agreement with previous data is satisfactory at low temperatures and excellent above room temperature where laser-interferometry data of comparable accuracy exist. Thermal expansions calculated from ultrasonic and heat-capacity data are preferred below 13 K where experimental problems occurred

  3. Linear thermal expansion, thermal diffusivity and melting temperature of Am-MOX and Np-MOX

    International Nuclear Information System (INIS)

    Prieur, D.; Belin, R.C.; Manara, D.; Staicu, D.; Richaud, J.-C.; Vigier, J.-F.; Scheinost, A.C.; Somers, J.; Martin, P.

    2015-01-01

    Highlights: • The thermal properties of Np- and Am-MOX solid solutions were investigated. • Np- and Am-MOX solid solutions exhibit the same linear thermal expansion. • The thermal conductivity of Am-MOX is about 10% higher than that of Np-MOX. • The melting temperatures of Np-MOX and Am-MOX are 3020 ± 30 K and 3005 ± 30 K, respectively. - Abstract: The thermal properties of Np- and Am-MOX solid solution materials were investigated. Their linear thermal expansion, determined using high temperature X-ray diffraction from room temperature to 1973 K showed no significant difference between the Np and the Am doped MOX. The thermal conductivity of the Am-MOX is about 10% higher than that of Np-MOX. The melting temperatures of Np-MOX and Am-MOX, measured using a laser heating self crucible arrangement were 3020 ± 30 K and 3005 ± 30 K, respectively

  4. Linear thermal expansion coefficient of MgAl2O4(s)

    International Nuclear Information System (INIS)

    Dash, A.; Samui, P.; Naik, Y.P.; Chaudhary, Z.S.

    2011-01-01

    The coefficient of linear thermal expansion (α av ) of MgAl 2 O 4 (s) has been determined using a Netzsch 402 PC dilatometer with Al 2 O 3 (s) as the push-rod. The change in length per unit length was recorded as a function of temperature between room temperature to 1273 K at a heating rate of 8 K.min /1 , in argon flowing atmosphere. The average of three measurements was quoted as the α av for MgAl 2 O 4 (s). The linear thermal expansion was measured to an accuracy of ±3%. (author)

  5. Linear thermal expansion coefficient (at temperatures from 130 to 800 K) of borosilicate glasses applicable for coupling with silicon in microelectronics

    OpenAIRE

    Sinev, Leonid S.; Petrov, Ivan D.

    2017-01-01

    Processing results of measurements of linear thermal expansion coefficients and linear thermal expansion of two brands of borosilicate glasses --- LK5 and Borofloat 33 --- are presented. The linear thermal expansion of glass samples have been determined in the temperature range 130 to 800 K (minus 143 to 526 $\\deg$C) using thermomechanical analyzer TMA7100. Relative imprecision of indirectly measured linear thermal expansion coefficients and linear thermal expansion of both glass brands is le...

  6. Investigation of Thermal Expansion of a Glass Ceramic Material with an Extra-Low Thermal Linear Expansion Coefficient

    Science.gov (United States)

    Kompan, T. A.; Korenev, A. S.; Lukin, A. Ya.

    2008-10-01

    The artificial material sitall CO-115M was developed purposely as a material with an extra-low thermal expansion. The controlled crystallization of an aluminosilicate glass melt leads to the formation of a mixture of β-spodumen, β-eucryptite, and β-silica anisotropic microcrystals in a matrix of residual glass. Due to the small size of the microcrystals, the material is homogeneous and transparent. Specific lattice anharmonism of these microcrystal materials results in close to zero average thermal linear expansion coefficient (TLEC) of the sitall material. The thermal expansion coefficient of this material was measured using an interferometric method in line with the classical approach of Fizeau. To obtain the highest accuracy, the registration of light intensity of the total interference field was used. Then, the parameters of the interference pattern were calculated. Due to the large amount of information in the interference pattern, the error of the calculated fringe position was less than the size of a pixel of the optical registration system. The thermal expansion coefficient of the sitall CO-115M and its temperature dependence were measured. The TLEC value of about 3 × 10-8 K-1 to 5 × 10-8 K-1 in the temperature interval from -20 °C to +60 °C was obtained. A special investigation was carried out to show the homogeneity of the material.

  7. Negative thermal expansion materials: technological key for control of thermal expansion

    OpenAIRE

    Koshi Takenaka

    2012-01-01

    Most materials expand upon heating. However, although rare, some materials contract upon heating. Such negative thermal expansion (NTE) materials have enormous industrial merit because they can control the thermal expansion of materials. Recent progress in materials research enables us to obtain materials exhibiting negative coefficients of linear thermal expansion over −30 ppm K−1. Such giant NTE is opening a new phase of control of thermal expansion in composites. Specifically examining pra...

  8. Low-temperature thermal expansion

    International Nuclear Information System (INIS)

    Collings, E.W.

    1986-01-01

    This chapter discusses the thermal expansion of insulators and metals. Harmonicity and anharmonicity in thermal expansion are examined. The electronic, magnetic, an other contributions to low temperature thermal expansion are analyzed. The thermodynamics of the Debye isotropic continuum, the lattice-dynamical approach, and the thermal expansion of metals are discussed. Relative linear expansion at low temperatures is reviewed and further calculations of the electronic thermal expansion coefficient are given. Thermal expansions are given for Cu, Al and Ti. Phenomenologic thermodynamic relationships are also discussed

  9. Giant negative linear compression positively coupled to massive thermal expansion in a metal-organic framework.

    Science.gov (United States)

    Cai, Weizhao; Katrusiak, Andrzej

    2014-07-04

    Materials with negative linear compressibility are sought for various technological applications. Such effects were reported mainly in framework materials. When heated, they typically contract in the same direction of negative linear compression. Here we show that this common inverse relationship rule does not apply to a three-dimensional metal-organic framework crystal, [Ag(ethylenediamine)]NO3. In this material, the direction of the largest intrinsic negative linear compression yet observed in metal-organic frameworks coincides with the strongest positive thermal expansion. In the perpendicular direction, the large linear negative thermal expansion and the strongest crystal compressibility are collinear. This seemingly irrational positive relationship of temperature and pressure effects is explained and the mechanism of coupling of compressibility with expansivity is presented. The positive coupling between compression and thermal expansion in this material enhances its piezo-mechanical response in adiabatic process, which may be used for designing new artificial composites and ultrasensitive measuring devices.

  10. Spin fluctuations and low temperature features of thermal coefficient of linear expansion of iron monosilicide

    International Nuclear Information System (INIS)

    Volkov, A.G.; Kortov, S.V.; Povzner, A.A.

    1996-01-01

    The low temperature measurements of thermal coefficient of linear expansion of strong paramagnet FeSi are carried out. The results obtained are discussed with in the framework of spin-fluctuation theory. It is shown that electronic part of the thermal coefficient of linear expansion is negative in the range of temperatures lower that of the semiconductor-metal phase transition. In metal phase it becomes positive. This specific features of the thermal coefficient is explained by the spin-fluctuation renormalization of d-electronic states density

  11. With respect to coefficient of linear thermal expansion, bacterial vegetative cells and spores resemble plastics and metals, respectively.

    Science.gov (United States)

    Nakanishi, Koichi; Kogure, Akinori; Fujii, Takenao; Kokawa, Ryohei; Deuchi, Keiji; Kuwana, Ritsuko; Takamatsu, Hiromu

    2013-10-09

    If a fixed stress is applied to the three-dimensional z-axis of a solid material, followed by heating, the amount of thermal expansion increases according to a fixed coefficient of thermal expansion. When expansion is plotted against temperature, the transition temperature at which the physical properties of the material change is at the apex of the curve. The composition of a microbial cell depends on the species and condition of the cell; consequently, the rate of thermal expansion and the transition temperature also depend on the species and condition of the cell. We have developed a method for measuring the coefficient of thermal expansion and the transition temperature of cells using a nano thermal analysis system in order to study the physical nature of the cells. The tendency was seen that among vegetative cells, the Gram-negative Escherichia coli and Pseudomonas aeruginosa have higher coefficients of linear expansion and lower transition temperatures than the Gram-positive Staphylococcus aureus and Bacillus subtilis. On the other hand, spores, which have low water content, overall showed lower coefficients of linear expansion and higher transition temperatures than vegetative cells. Comparing these trends to non-microbial materials, vegetative cells showed phenomenon similar to plastics and spores showed behaviour similar to metals with regards to the coefficient of liner thermal expansion. We show that vegetative cells occur phenomenon of similar to plastics and spores to metals with regard to the coefficient of liner thermal expansion. Cells may be characterized by the coefficient of linear expansion as a physical index; the coefficient of linear expansion may also characterize cells structurally since it relates to volumetric changes, surface area changes, the degree of expansion of water contained within the cell, and the intensity of the internal stress on the cellular membrane. The coefficient of linear expansion holds promise as a new index for

  12. Negative thermal expansion materials: technological key for control of thermal expansion.

    Science.gov (United States)

    Takenaka, Koshi

    2012-02-01

    Most materials expand upon heating. However, although rare, some materials contract upon heating. Such negative thermal expansion (NTE) materials have enormous industrial merit because they can control the thermal expansion of materials. Recent progress in materials research enables us to obtain materials exhibiting negative coefficients of linear thermal expansion over -30 ppm K -1 . Such giant NTE is opening a new phase of control of thermal expansion in composites. Specifically examining practical aspects, this review briefly summarizes materials and mechanisms of NTE as well as composites containing NTE materials, based mainly on activities of the last decade.

  13. Negative thermal expansion materials: technological key for control of thermal expansion

    Directory of Open Access Journals (Sweden)

    Koshi Takenaka

    2012-01-01

    Full Text Available Most materials expand upon heating. However, although rare, some materials contract upon heating. Such negative thermal expansion (NTE materials have enormous industrial merit because they can control the thermal expansion of materials. Recent progress in materials research enables us to obtain materials exhibiting negative coefficients of linear thermal expansion over −30 ppm K−1. Such giant NTE is opening a new phase of control of thermal expansion in composites. Specifically examining practical aspects, this review briefly summarizes materials and mechanisms of NTE as well as composites containing NTE materials, based mainly on activities of the last decade.

  14. Negative thermal expansion materials: technological key for control of thermal expansion

    International Nuclear Information System (INIS)

    Takenaka, Koshi

    2012-01-01

    Most materials expand upon heating. However, although rare, some materials contract upon heating. Such negative thermal expansion (NTE) materials have enormous industrial merit because they can control the thermal expansion of materials. Recent progress in materials research enables us to obtain materials exhibiting negative coefficients of linear thermal expansion over −30 ppm K −1 . Such giant NTE is opening a new phase of control of thermal expansion in composites. Specifically examining practical aspects, this review briefly summarizes materials and mechanisms of NTE as well as composites containing NTE materials, based mainly on activities of the last decade. (topical review)

  15. Densities, isobaric thermal expansion coefficients and isothermal compressibilities of linear alkylbenzene

    International Nuclear Information System (INIS)

    Zhou, X; Zhang, Z Y; Zhang, Q M; Liu, Q; Ding, Y Y; Zhou, L; Cao, J

    2015-01-01

    We report the measurements of the densities of linear alkylbenzene at three temperatures over 4 to 23 °C with pressures up to 10 MPa. The measurements have been analysed to yield the isobaric thermal expansion coefficients and, so far for the first time, isothermal compressibilities of linear alkylbenzene. Relevance of results for current generation (i.e., Daya Bay) and next generation (i.e. JUNO) large liquid scintillator neutrino detectors are discussed. (paper)

  16. Thermal linear expansion coefficient of structural graphites

    International Nuclear Information System (INIS)

    Virgil'ev, Yu.S.

    1995-01-01

    The data now available on radiation induced changes of linear thermal expansion coefficients (CTE) for native structural carbon materials (SCM) irradiated with high fluences are summarized. For different types of native and foreign SCM dose dependences of CTE changes in the temperature range of 300...1600 K and at fluences up to (2...3)x10 22 n/cm 2 (E>0.18 meV) are compared. On the base of this comparison factors defined the CTE changes under neutron irradiation are revealed and the explanation of observed phenomena is offered. Large number of the factors revealed does not allowed to calculate CTE radiation induced changes. 39 refs.; 16 figs.; 5 tabs

  17. Unimode metamaterials exhibiting negative linear compressibility and negative thermal expansion

    International Nuclear Information System (INIS)

    Dudek, Krzysztof K; Attard, Daphne; Caruana-Gauci, Roberto; Grima, Joseph N; Wojciechowski, Krzysztof W

    2016-01-01

    Unimode metamaterials made from rotating rigid triangles are analysed mathematically for their mechanical and thermal expansion properties. It is shown that these unimode systems exhibit positive Poisson’s ratios irrespective of size, shape and angle of aperture, with the Poisson’s ratio exhibiting giant values for certain conformations. When the Poisson’s ratio in one loading direction is larger than +1, the systems were found to exhibit the anomalous property of negative linear compressibility along this direction, that is, the systems expand in this direction when hydrostatically compressed. Also discussed are the thermal expansion properties of these systems under the assumption that the units exhibit increased rotational agitation once subjected to an increase in temperature. The effect of the geometric parameters on the aforementioned thermo-mechanical properties of the system, are discussed, with the aim of identifying negative behaviour. (paper)

  18. Negative linear compressibility and massive anisotropic thermal expansion in methanol monohydrate.

    Science.gov (United States)

    Fortes, A Dominic; Suard, Emmanuelle; Knight, Kevin S

    2011-02-11

    The vast majority of materials shrink in all directions when hydrostatically compressed; exceptions include certain metallic or polymer foam structures, which may exhibit negative linear compressibility (NLC) (that is, they expand in one or more directions under hydrostatic compression). Materials that exhibit this property at the molecular level--crystalline solids with intrinsic NLC--are extremely uncommon. With the use of neutron powder diffraction, we have discovered and characterized both NLC and extremely anisotropic thermal expansion, including negative thermal expansion (NTE) along the NLC axis, in a simple molecular crystal (the deuterated 1:1 compound of methanol and water). Apically linked rhombuses, which are formed by the bridging of hydroxyl-water chains with methyl groups, extend along the axis of NLC/NTE and lead to the observed behavior.

  19. Linear thermal expansion coefficient measurement technology in hot cell

    International Nuclear Information System (INIS)

    Park, Dae Gyu; Choo, Yong Sun; Ahn, Sang Bok; Hong, Kwon Pyo; Lee, K. S.

    1998-06-01

    To establish linear thermal expansion coefficient measurement technology in hot cell, we reviewed and evaluated various measuring technology by paper and these were compared with the data produced with pre-installed dilatometer in hot cell. Detailed contents are as follows; - The theory of test. - Review of characteristics for various measurement technology and compatibility with hot cell. - Review of standard testing regulations(ASTM). - System calibration of pre-installed dilatometer. - Performance test of pre-installed dilatometer. (author). 12 refs., 15 tabs., 8 figs

  20. Experimental investigation of linear thermal expansion of pyrolytic graphite at high temperatures

    Science.gov (United States)

    Senchenko, V. N.; Belikov, R. S.

    2017-11-01

    Using the previously described [1] experimental setup for investigation of the thermophysical properties of refractory materials under high pressure and temperature a few experiments with pyrolytic graphite were carried out. The density of the material was equal to 2.18 g/cm3. Experimental data on the linear thermal expansion in the perpendicular and parallel to the basal plane direction were obtained. Thermal expansion in the perpendicular to the basal plane direction during the heating from room temperature up to the melting point was 16.4 ± 1.6%. The results obtained allow calculating the density of pyrolytic graphite in the wide range of high temperatures up to the melting point.

  1. Engineered high expansion glass-ceramics having near linear thermal strain and methods thereof

    Energy Technology Data Exchange (ETDEWEB)

    Dai, Steve Xunhu; Rodriguez, Mark A.; Lyon, Nathanael L.

    2018-01-30

    The present invention relates to glass-ceramic compositions, as well as methods for forming such composition. In particular, the compositions include various polymorphs of silica that provide beneficial thermal expansion characteristics (e.g., a near linear thermal strain). Also described are methods of forming such compositions, as well as connectors including hermetic seals containing such compositions.

  2. Ultra-low thermal expansion realized in giant negative thermal expansion materials through self-compensation

    Science.gov (United States)

    Shen, Fei-Ran; Kuang, Hao; Hu, Feng-Xia; Wu, Hui; Huang, Qing-Zhen; Liang, Fei-Xiang; Qiao, Kai-Ming; Li, Jia; Wang, Jing; Liu, Yao; Zhang, Lei; He, Min; Zhang, Ying; Zuo, Wen-Liang; Sun, Ji-Rong; Shen, Bao-Gen

    2017-10-01

    Materials with zero thermal expansion (ZTE) or precisely tailored thermal expansion are in urgent demand of modern industries. However, the overwhelming majority of materials show positive thermal expansion. To develop ZTE or negative thermal expansion (NTE) materials as compensators has become an important challenge. Here, we present the evidence for the realization of ultra-low thermal expansion in Mn-Co-Ge-In particles. The bulk with the Ni2In-type hexagonal structure undergoes giant NTE owing to a martensitic magnetostructural transition. The major finding is that the thermal expansion behavior can be totally controlled by modulating the crystallinity degree and phase transition from atomic scale. Self-compensation effect leads to ultra-low thermal expansion with a linear expansion coefficient as small as +0.68 × 10-6/K over a wide temperature range around room temperature. The present study opens an avenue to reach ZTE particularly from the large class of giant NTE materials based on phase transition.

  3. Ultra-low thermal expansion realized in giant negative thermal expansion materials through self-compensation

    Directory of Open Access Journals (Sweden)

    Fei-Ran Shen

    2017-10-01

    Full Text Available Materials with zero thermal expansion (ZTE or precisely tailored thermal expansion are in urgent demand of modern industries. However, the overwhelming majority of materials show positive thermal expansion. To develop ZTE or negative thermal expansion (NTE materials as compensators has become an important challenge. Here, we present the evidence for the realization of ultra-low thermal expansion in Mn–Co–Ge–In particles. The bulk with the Ni2In-type hexagonal structure undergoes giant NTE owing to a martensitic magnetostructural transition. The major finding is that the thermal expansion behavior can be totally controlled by modulating the crystallinity degree and phase transition from atomic scale. Self-compensation effect leads to ultra-low thermal expansion with a linear expansion coefficient as small as +0.68 × 10−6/K over a wide temperature range around room temperature. The present study opens an avenue to reach ZTE particularly from the large class of giant NTE materials based on phase transition.

  4. Thermal expansion of beryllium oxide

    International Nuclear Information System (INIS)

    Solodukhin, A.V.; Kruzhalov, A.V.; Mazurenko, V.G.; Maslov, V.A.; Medvedev, V.A.; Polupanova, T.I.

    1987-01-01

    Precise measurements of temperature dependence of the coefficient of linear expansion in the 22-320 K temperature range on beryllium oxide monocrystals are conducted. A model of thermal expansion is suggested; the range of temperature dependence minimum of the coefficient of thermal expansion is well described within the frames of this model. The results of the experiment may be used for investigation of thermal stresses in crystals

  5. Critical linear thermal expansion in the smectic-A phase near the nematic-smectic phase transition.

    Science.gov (United States)

    Anesta, E; Iannacchione, G S; Garland, C W

    2004-10-01

    Recent high-resolution x-ray investigations of the smectic- A (SmA) phase near the nematic-to-SmA transition provide information about the critical behavior of the linear thermal expansion coefficient alpha// parallel to the director. Combining such data with available volume thermal expansion alpha(V) data yields the in-plane linear expansion coefficient alpha(perpendicular) . The critical behaviors of alpha// and alpha(perpendicular) are the same as those for alpha(V) and the heat capacity Cp. However, for any given liquid crystal, alpha//(crit) and alpha(perpendicular)(crit) differ in sign. Furthermore, the quantity alpha// (crit) is positive for SmAd partial bilayer smectics, while it is negative for nonpolar SmAm monomeric smectics. This feature is discussed in terms of the molecular structural aspects of these smectic phases.

  6. Isotropic Negative Thermal Expansion Metamaterials.

    Science.gov (United States)

    Wu, Lingling; Li, Bo; Zhou, Ji

    2016-07-13

    Negative thermal expansion materials are important and desirable in science and engineering applications. However, natural materials with isotropic negative thermal expansion are rare and usually unsatisfied in performance. Here, we propose a novel method to achieve two- and three-dimensional negative thermal expansion metamaterials via antichiral structures. The two-dimensional metamaterial is constructed with unit cells that combine bimaterial strips and antichiral structures, while the three-dimensional metamaterial is fabricated by a multimaterial 3D printing process. Both experimental and simulation results display isotropic negative thermal expansion property of the samples. The effective coefficient of negative thermal expansion of the proposed models is demonstrated to be dependent on the difference between the thermal expansion coefficient of the component materials, as well as on the circular node radius and the ligament length in the antichiral structures. The measured value of the linear negative thermal expansion coefficient of the three-dimensional sample is among the largest achieved in experiments to date. Our findings provide an easy and practical approach to obtaining materials with tunable negative thermal expansion on any scale.

  7. Thermal expansion studies on Hafnium titanate (HfTiO4)

    International Nuclear Information System (INIS)

    Panneerselvam, G.; Subramanian, G.G.S.; Antony, M.P.

    2006-01-01

    The lattice thermal expansion characteristics of hafnium titanate (HfTiO 4 ) have been studied by measuring the lattice parameter as a function of temperature by high temperature X-ray diffraction technique (HT-XRD) in the temperature range 298-1973K. Percentage linear thermal expansion and mean linear thermal expansion coefficients were computed from the lattice parameter data. The thermal expansion of HfTiO 4 is highly anisotropic. The expansivity along 'a' axis is large; as compared to the expansivity along 'b' axis which is negative below 1073 K. The percentage linear thermal expansion in the temperature range 298-1973 K along a, b and c axis are 2.74, 0.901 and 1.49 respectively. Thermal expansion values obtained in the present study are in reasonable agreement with the existing thermal expansion data. (author)

  8. Thermal expansion: Metallic elements and alloys. [Handbook

    Science.gov (United States)

    Touloukian, Y. S.; Kirby, R. K.; Taylor, R. E.; Desai, P. D.

    1975-01-01

    The introductory sections of the work are devoted to the theory of thermal expansion of solids and to methods for the measurement of the linear thermal expansion of solids (X-ray methods, high speed methods, interferometry, push-rod dilatometry, etc.). The bulk of the work is devoted to numerical data on the thermal linear expansion of all the metallic elements, a large number of intermetallics, and a large number of binary alloy systems and multiple alloy systems. A comprehensive bibliography is provided along with an index to the materials examined.

  9. Thermal and Hygric Expansion of High Performance Concrete

    Directory of Open Access Journals (Sweden)

    J. Toman

    2001-01-01

    Full Text Available The linear thermal expansion coefficient of two types of high performance concrete was measured in the temperature range from 20 °C to 1000 °C, and the linear hygric expansion coefficient was determined in the moisture range from dry material to saturation water content. Comparative methods were applied for measurements of both coefficients. The experimental results show that both the effect of temperature on the values of linear thermal expansion coefficients and the effect of moisture on the values of linear hygric expansion coefficients are very significant and cannot be neglected in practical applications.

  10. Thermal expansion in small metallic particles

    International Nuclear Information System (INIS)

    Ivanov, A.S.

    1985-01-01

    An anomalously low thermal expansion observable in small particles is attributed to extending effect of the shell. It is shown that the coefficient of thermal expansion of the oxide-film-coated aluminium particles calculated using elastic constants and coefficients of thermal expansion of massive materials agres well with those measured experimentally. The linear dilatation of the shell, its stress to rupture and the values of the structural tension are estimated vs the temperature

  11. Thermal and Hygric Expansion of High Performance Concrete

    OpenAIRE

    J. Toman; R. Černý

    2001-01-01

    The linear thermal expansion coefficient of two types of high performance concrete was measured in the temperature range from 20 °C to 1000 °C, and the linear hygric expansion coefficient was determined in the moisture range from dry material to saturation water content. Comparative methods were applied for measurements of both coefficients. The experimental results show that both the effect of temperature on the values of linear thermal expansion coefficients and the effect of moisture on th...

  12. Extrusion-formed uranium-2.4 wt. % article with decreased linear thermal expansion and method for making the same

    International Nuclear Information System (INIS)

    Anderson, R.C.; Jones, J.M.; Kollie, T.G.

    1982-01-01

    The present invention is directed to the fabrication of an article of uranium-2.4 wt. % niobium alloy in which the linear thermal expansion in the direction transverse to the extrusion direction is less than about 0.98% between 22 0 C and 600 0 C which corresponds to a value greater than the 1.04% provided by previous extrusion operations over the same temperature range. The article with the improved thermal expansion possesses a yield strength at 0.2% offset of at least 400 mpa, an ultimate tensile strength of 1050 mpa, a compressive yield strength of at least 2% offset of at least 675 mpa, and an elongation of at lea 25% over 25.4 mm/sec. To provide this article with the improv thermal expansion, the uranium alloy billet is heated to 630 0 C and extruded in the alpha phase through a die with a reduction ratio of at least 8.4:1 at a ram speed no greater than 6.8 mm/sec. These critical extrusion parameters provide the article with the desired decrease in the linear thermal expansion while maintaining the selected mechanical properties without encountering crystal disruption in the article

  13. Linear thermal expansion data for tuffs from the unsaturated zone at Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Schwartz, B.M.; Chocas, C.S.

    1992-07-01

    Experiment results are presented for linear thermal expansion measurements on tuffaceous rocks from the unsaturated < one at Yucca Mountain, Nevada. Data were obtained both with and without confining pressure. The accuracy of the unconfined data collected between 50 and 250 degrees C is better than 1.8 percent, with the precision better than 4.5;percent. The accuracy of the unconfined data collected between ambient temperature and 50 degrees C and is approximately 11 percent deviation from the true value, with a precision of 12 percent of the mean value. Because of experiment design and the lack of information related calibrations, the accuracy and precision of the confined thermal expansion measurements could not be determined

  14. Linear thermal expansion of SrTiO3

    International Nuclear Information System (INIS)

    Tsunekawa, S.; Watanabe, H.F.J.; Takei, H.

    1984-01-01

    The linear thermal expansion of SrTiO 3 in the temperature range 10 to 150 K is measured with a relative accuracy of 5 x 10 -7 by using a three-terminal capacitance dilatometer. The dilation ΔL/L of a single-domain crystal is converted to the ratio of the pseudo-cubic cell constants a(T)/a(T/sub a/) by the equation a(T)/a(T/sub a/) = [1 + (ΔL/L)/sub T/]/[1 + (ΔL/L)/sub T//sub a/], where L is the specimen length, T/sub a/ is the cubic-to-tetragonal transition temperature and T 6 octahedra around the [001] axis. The temperature at which the dilation shows a minimum, 37.5 K, is very close to the transition point T/sub c/ = (32 +- 5) K predicted by Cowley. (author)

  15. Thermal expansion studies on europium titanate (Eu2TiO5)

    International Nuclear Information System (INIS)

    Panneerselvam, G.; Subramanian, G.G.S.; Antony, M.P.

    2008-01-01

    The lattice thermal expansion characteristics of europium titanate (Eu 2 TiO 5 ) have been studied by measuring the lattice parameter by high temperature X-ray diffraction technique (HT-XRD) in the temperature range 298-1573K. Percentage linear thermal expansion and mean linear thermal expansion coefficients were computed from the lattice parameter data. The percentage linear thermal expansion in the temperature range 298-1573 K along a, b and c axes are 1.05, 1.15 and 0.95 respectively. (author)

  16. Linear analysis using secants for materials with temperature dependent nonlinear elastic modulus and thermal expansion properties

    Science.gov (United States)

    Pepi, John W.

    2017-08-01

    Thermally induced stress is readily calculated for linear elastic material properties using Hooke's law in which, for situations where expansion is constrained, stress is proportional to the product of the material elastic modulus and its thermal strain. When material behavior is nonlinear, one needs to make use of nonlinear theory. However, we can avoid that complexity in some situations. For situations in which both elastic modulus and coefficient of thermal expansion vary with temperature, solutions can be formulated using secant properties. A theoretical approach is thus presented to calculate stresses for nonlinear, neo-Hookean, materials. This is important for high acuity optical systems undergoing large temperature extremes.

  17. Thermal conduction and linear expansion of sintered rhenium and tungsten-rhenium alloys at a temperature up to 1000 K

    International Nuclear Information System (INIS)

    Pozdnyak, N.Z.; Belyaev, R.A.; Vavilov, Yu.V.; Vinogradov, Yu.G.; Serykh, G.M.

    1978-01-01

    Preparation technology (by powder metallurgy methods) of sintered rhenium and tungsten-rhenium VR-5, VR-10, and VR-20 alloys is described. Thermal conduction of rhenium and VR-20 alloy has been measured in the temperature range from 300 to 1000 K. The value obtained turned out to be considerably less than those published elsewhere, this testifies to the great thermal contact resistance between the material grains. Also measured is the mean linear expansion coefficient for the mentioned above materials in the same temperature range. Linear expansion increases with rhenium content increase

  18. The effects of the physical states of a simulated fission product on the linear thermal expansion of (U0.924Ce0.076)O2

    International Nuclear Information System (INIS)

    Kim, Dong-Joo; Kim, Yong-Soo; Yang, Jae-Ho; Kim, Si-Hyung; Lee, Young-Woo; Kim, Han-Soo

    2006-01-01

    The linear thermal expansions of an (U 0.924 Ce 0.076 )O 2 pellet, doped a simulated fission product (Nd 2 O 3 or Ru), were measured from room temperature to 1673 K in a flowing argon atmosphere using TMA. Nd 2 O 3 and Ru represent the physical states of a fission product, a dissolved oxide and a metallic precipitate, respectively. Using the measured data, the mean coefficients of a linear thermal expansion was obtained as a function of the temperature, and the effects of the physical states of a simulated fission product on the thermal expansion were investigated. In the case of the Nd 2 O 3 forming a dissolved oxide, the thermal expansion of the sample increased and the increment was proportional to the Nd contents, because the melting point of the Nd 2 O 3 was lower than that of UO 2 and although the metallic precipitate hardly affected the crystal structure, the linear thermal expansion also increased with an increasing Ru contents

  19. Extrusion-formed uranium-2. 4 wt % article with decreased linear thermal expansion and method for making the same. [Patent application

    Science.gov (United States)

    Anderson, R.C.; Jones, J.M.; Kollie, T.G.

    1982-05-24

    The present invention is directed to the fabrication of an article of uranium-2.4 wt % niobium alloy in which the linear thermal expansion in the direction transverse to the extrusion direction is less than about 0.98% between 22 and 600/sup 0/C which corresponds to a value greater than the 1.04% provided by previous extrusion operations over the same temperature range. The article with the improved thermal expansion possesses a yield strength at 0.2% offset of at least 400 MPa, an ultimate tensile strength of 1050 MPa, a compressive yield strength of at least 0.2% offset of at least 675 MPa, and an elongation of at least 25% over 25.4 mm/s. To provide this article with the improved thermal expansion, the uranium alloy billet is heated to 630/sup 0/C and extruded in the alpha phase through a die with a reduction ratio of at least 8.4:1 at a ram speed no greater than 6.8 mm/s. These critical extrusion parameters provide the article with a desired decrease in the linear thermal expansion while maintaining the selected mechanical properties without encountering crystal disruption in the article.

  20. Thermal Coefficient of Linear Expansion Modified by Dendritic Segregation in Nickel-Iron Alloys

    Science.gov (United States)

    Ogorodnikova, O. M.; Maksimova, E. V.

    2018-05-01

    The paper presents investigations of thermal properties of Fe-Ni and Fe-Ni-Co casting alloys affected by the heterogeneous distribution of their chemical elements. It is shown that nickel dendritic segregation has a negative effect on properties of studied invars. A mathematical model is proposed to explore the influence of nickel dendritic segregation on the thermal coefficient of linear expansion (TCLE) of the alloy. A computer simulation of TCLE of Fe-Ni-Co superinvars is performed with regard to a heterogeneous distribution of their chemical elements over the whole volume. The ProLigSol computer software application is developed for processing the data array and results of computer simulation.

  1. Negative thermal expansion in Sc2(WO4)3

    International Nuclear Information System (INIS)

    Evans, J.S.O.; Mary, T.A.; Sleight, A.W.

    1998-01-01

    Sc 2 (WO 4 ) 3 has been found to show the highly unusual property of negative thermal expansion over a temperature range of 10 to 1,073 K. Powder neutron diffraction data from 10 to 450 K shows an essentially linear decrease in cell volume as a function of temperature. The intrinsic linear coefficient of thermal expansion from this data is -2.2 x 10 -6 K -1 . The linear coefficient of thermal expansion measured on a ceramic bar of Sc 2 (WO 4 ) 3 can be as negative as -11 x 10 -6 K -1 due to microstructure changes as a function of temperature. Rietveld refinement as a function of temperature suggests that the intrinsic negative thermal expansion can be related to transverse vibrations of bridging oxygen atoms in the structure. The anharmonic nature of these vibrations leads to a coupled tilting of the quasi-rigid framework polyhedra. This tilting in turn causes the structure to become more dense with increasing temperature

  2. Linear Coefficient of Thermal Expansion of Porous Anodic Alumina Thin Films from Atomic Force Microscopy

    OpenAIRE

    Zhang, Richard X; Fisher, Timothy; Raman, Arvind; Sands, Timothy D

    2009-01-01

    In this article, a precise and convenient technique based on the atomic force microscope (AFM) is developed to measure the linear coefficient of thermal expansion of a porous anodic alumina thin film. A stage was used to heat the sample from room temperature up to 450 K. Thermal effects on AFM probes and different operation modes at elevated temperatures were also studied, and a silicon AFM probe in the tapping mode was chosen for the subsequent measurements due to its temperature insensitivi...

  3. Thermal expansion of UO2 and simulated DUPIC fuel

    International Nuclear Information System (INIS)

    Ho Kang, Kweon; Jin Ryu, Ho; Chan Song, Kee; Seung Yang, Myung

    2002-01-01

    The lattice parameters of simulated DUPIC fuel and UO 2 were measured from room temperature to 1273 K using neutron diffraction to investigate the thermal expansion and density variation with temperature. The lattice parameter of simulated DUPIC fuel is lower than that of UO 2 , and the linear thermal expansion of simulated DUPIC fuel is higher than that of UO 2 . For the temperature range from 298 to 1273 K, the average linear thermal expansion coefficients for UO 2 and simulated DUPIC fuel are 10.471x10 -6 and 10.751x10 -6 K -1 , respectively

  4. Peculiarities of linear thermal expansion of CuInS2 single crystal

    International Nuclear Information System (INIS)

    Akira, Nagaoka; Kenji, Yoshino; Hideto, Miyake

    2010-01-01

    Full text : I-III-VI 2 chalcopyrire semiconductors have made rapid progress in recent years. In addition chalcopyrite semiconductors show unique thermal properties. Usually, liner thermal expansion in semiconductors increases with increasing temperature. However, liner thermal expansion of most chalcopyrite semiconductors decreases at low temperature. For example, AgGaSe 2 shows decreasing the liner thermal expansion below 100 K 1 , 2). It is well known that high-quality single crystals of the I-III-VI 2 compounds are difficult to grow because most of the compounds grow through a peritectic reaction or a solid state transition during the cooling process. CuInS 2 single crystal can be grown by traveling heater method (THM), which is one of the solution growth techniques. Advantages of the THM growth are following that growth temperature is low compared with that of the other melt growth and larger crystals can be grown compared with a conventional solution growth. In a previous study, CuGaS 2 , CuGaSe 2 , CuGaTe 2 , CuInSe 2 ternary compounds have been obtained by the THM technique. In this work, it is investigated a liner thermal expansion of single crystal CuInS 2 by using X-ray diffraction. Measurement temperature was changed from 10 K to 300 K. From results of XRD measurement, it is calculated lattice constants of a and c axes and the liner thermal expansion. As a result, lattice constants of a axis increase with increasing temperature, that of c axis decreases with increasing temperature. The liner thermal expansion decreases for T 2 single crystal at low temperature

  5. Thermal expansion of two-dimensional itinerant nearly ferromagnetic metal

    International Nuclear Information System (INIS)

    Konno, R; Hatayama, N; Takahashi, Y; Nakano, H

    2009-01-01

    Thermal expansion of two-dimensional itinerant nearly ferromagnetic metal is investigated according to the recent theoretical development of magneto-volume effect for the three-dimensional weak ferromagnets. We particularly focus on the T 2 -linear thermal expansion of magnetic origin at low temperatures, so far disregarded by conventional theories. As the effect of thermal spin fluctuations we have found that the T-linear thermal expansion coefficient shows strong enhancement by assuming the double Lorentzian form of the non-interacting dynamical susceptibility justified in the small wave-number and low frequency region. It grows faster in proportional to y -1/2 as we approach the magnetic instability point than two-dimensional nearly antiferromagnetic metals with ln(1/y s ) dependence, where y and y s are the inverses of the reduced uniform and staggered magnetic susceptibilities, respectively. Our result is consistent with the Grueneisen's relation between the thermal expansion coefficient and the specific heat at low temperatures. In 2-dimensional electron gas we find that the thermal expansion coefficient is divergent with a finite y when the higher order term of non-interacting dynamical susceptibility is taken into account.

  6. Thermal expansion study of simulated DUPIC fuel using neutron diffraction

    International Nuclear Information System (INIS)

    Kang, Kweon Ho; Ryu, H. J.; Bae, J. H.; Kim, H. S.; Song, K. C.; Yang, M. S.; Choi, Y. N.; Han, Y. S.; Oh, H. S.

    2001-07-01

    The lattice parameters of simulated DUPIC fuel and UO2 were measured from room temperature to 1273 K using neutron diffraction to investigate the thermal expansion and density variation with temperature. The lattice parameter of simulated DUPIC fuel is lower than that of UO2 and the linear thermal expansion of simulated DUPIC fuel is higher than that of UO2. For the temperature range from 298 to 1273 K, the average linear thermal expansion coefficients for UO2 and simulated DUPIC fuel are 10.471 ''10-6 and 10.751 ''10-6 K-1, respectively

  7. Relationship between thermal expansion coefficient and glass transition temperature in metallic glasses

    International Nuclear Information System (INIS)

    Kato, H.; Chen, H.-S.; Inoue, A.

    2008-01-01

    The thermal expansion coefficients of 13 metallic glasses were measured using a thermo-mechanical analyser. A unique correlation was found between the linear thermal expansion coefficient and the glass transition temperature-their product is nearly constant ∼8.24 x 10 -3 . If one assumes the Debye expression for thermal activation, the total linear thermal expansion up to glass transition temperature (T g ) is reduced to 6 x 10 -3 , nearly 25% of that at the fusion of pure metals

  8. Low-temperature thermal expansion measurements in PrV2Al20

    International Nuclear Information System (INIS)

    Magata, A.; Matsumoto, Y.; Tsujimoto, M.; Tomita, T.; Sakai, A.; Nakatsuji, S.; Kiichler, R.

    2016-01-01

    We have measured thermal expansion of PrV 2 Al 20 and LaV 2 Al 20 from room temperature down to 2 K, using a capacitance dilatometer. Linear thermal expansion ΔL/L along [111] direction decreases monotonically on cooling in both materials. The extracted 4ƒ electrons contribution of the linear thermal expansion coefficient a clearly shows a broad peak at ∼ 30 K which may correspond to the crystal electric field excited state at 40 K suggested in the previous specific heat study. (paper)

  9. Thermal expansion accompanying the glass-liquid transition and crystallization

    Directory of Open Access Journals (Sweden)

    M. Q. Jiang

    2015-12-01

    Full Text Available We report the linear thermal expansion behaviors of a Zr-based (Vitreloy 1 bulk metallic glass in its as-cast, annealed and crystallized states. Accompanying the glass-liquid transition, the as-cast Vitreloy 1 shows a continuous decrease in the thermal expansivity, whereas the annealed glass shows a sudden increase. The crystallized Vitreloy 1 exhibits an almost unchanged thermal expansivity prior to its melting. Furthermore, it is demonstrated that the nucleation of crystalline phases can induce a significant thermal shrinkage of the supercooled liquid, but with the growth of these nuclei, the thermal expansion again dominates. These results are explained in the framework of the potential energy landscape, advocating that the configurational and vibrational contributions to the thermal expansion of the glass depend on both, structure and temperature.

  10. The Thermal Expansion Of Feldspars

    Science.gov (United States)

    Hovis, G. L.; Medford, A.; Conlon, M.

    2009-12-01

    Hovis and others (1) investigated the thermal expansion of natural and synthetic AlSi3 feldspars and demonstrated that the coefficient of thermal expansion (α) decreases significantly, and linearly, with increasing room-temperature volume (VRT). In all such feldspars, therefore, chemical expansion limits thermal expansion. The scope of this work now has been broadened to include plagioclase and Ba-K feldspar crystalline solutions. X-ray powder diffraction data have been collected between room temperature and 925 °C on six plagioclase specimens ranging in composition from anorthite to oligoclase. When combined with thermal expansion data for albite (2,3,4) a steep linear trend of α as a function of VRT emerges, reflecting how small changes in composition dramatically affect expansion behavior. The thermal expansion data for five synthetic Ba-K feldspars ranging in composition from 20 to 100 mole percent celsian, combined with data for pure K-feldspar (3,4), show α-VRT relationships similar in nature to the plagioclase series, but with a slope and intercept different from the latter. Taken as a group all Al2Si2 feldspars, including anorthite and celsian from the present study along with Sr- (5) and Pb-feldspar (6) from other workers, show very limited thermal expansion that, unlike AlSi3 feldspars, has little dependence on the divalent-ion (or M-) site occupant. This apparently is due to the necessitated alternation of Al and Si in the tetrahedral sites of these minerals (7), which in turn locks the tetrahedral framework and makes the M-site occupant nearly irrelevant to expansion behavior. Indeed, in feldspar series with coupled chemical substitution it is the change away from a 1:1 Al:Si ratio that gives feldspars greater freedom to expand. Overall, the relationships among α, chemical composition, and room-temperature volume provide useful predictive tools for estimating feldspar thermal expansion and give insight into the controls of expansion behavior in

  11. Setting time and thermal expansion of two endodontic cements.

    Science.gov (United States)

    Santos, Alailson D; Araújo, Eudes B; Yukimitu, Keizo; Barbosa, José C; Moraes, João C S

    2008-09-01

    The purpose of this study was to evaluate the setting time and the thermal expansion coefficient of 2 endodontic cements, MTA-Angelus and a novel cement called CER. The setting time was determined in accordance to ANSI/ADA specifications no. 57. Three samples of 10 mm diameter and 2 mm thickness were prepared for each cement. The thermal expansion measurements were performed by strain gauge technique. Four samples of each cement were prepared using silicone rings of 5 mm diameter and 2 mm thickness. The data were analyzed statistically using the Student t test. The setting time obtained for the MTA-Angelus and CER cements was 15 (SD 1) min and 7 (SD 1) min, respectively. The linear coefficient of thermal expansion was 8.86 (SD 0.28) microstrain/ degrees C for MTA-Angelus and 11.76 (SD 1.20) microstrain/ degrees C for CER. The statistical analysis showed significant difference (P linear coefficient of thermal expansion between the 2 cements. The CER cement has a coefficient of expansion similar to dentin, which could contribute to a decrease of microleakage degree.

  12. Phase relations and linear thermal expansion of cubic solid solutions in the Th1-xMxO2-x/2 (M=Eu, Gd, Dy) systems

    International Nuclear Information System (INIS)

    Mathews, M.D.; Ambekar, B.R.; Tyagi, A.K.

    2005-01-01

    Cell parameters and linear thermal expansion studies of the Th-M oxide systems with general compositions Th 1-x M x O 2-x/2 (M=Eu 3+ , Gd 3+ and Dy 3+ , 0.0= 1.5 in the ThO 2 lattice. The upper solid solubility limits of EuO 1.5 , GdO 1.5 and DyO 1.5 in the ThO 2 lattice under conditions of slow cooling from 1673K are represented as Th 0.50 Eu 0.50 O 1.75 , Th 0.60 Gd 0.40 O 1.80 and Th 0.85 Dy 0.15 O 1.925 , respectively. The linear thermal expansion (293-1123K) of MO 1.5 and their single-phase solid solutions with thoria were investigated by dilatometery. The average linear thermal expansion coefficients (α-bar ) of the compounds decrease on going from EuO 1.5 to DyO 1.5 . The values of α-bar for EuO 1.5 , GdO 1.5 and DyO 1.5 containing solid solutions showed a downward trend as a function of the dopant concentration. The linear thermal expansion (293-1473K) of the solid solutions investigated by high-temperature XRD also showed a similar trend

  13. Thermal expansion anomaly and thermal conductivity of U3O8

    International Nuclear Information System (INIS)

    Schulz, B.

    1975-01-01

    The anomaly in the thermal expansion of U 3 O 8 and results of the thermal conductivity of this compound are described. U 3 O 8 powder heat treated at 1,223 K was consolidated by pressing and sintering in air at 1,223 and 1,373 K to a density of 66% and 80.8% TD. The O/U ratio was 2.67 and 2.63 respectively, the crystal structure being orthorhombic in both cases. For UOsub(2.63) the thermal linear expansion was measured in the temperature range 293 K-1,063 K in pressing direction and normal to it, while for UOsub(2.67) measurements were done parallel to the pressing direction. The curves of the linear thermal expansion from 373 K up to 623 K show negative values and above positive for the three curves. The results are related to known data of phase-transition-temperatures of the orthorhombic U 3 O 8 . Measurements of the thermal conductivity were done on UOsub(2.67). Because of the high porosity of the samples, known relationships for the porosity correction of the thermal conductivity were proved on alumina with 34 % porosity. The values of the thermal conductivity of UOsub(2.67) (corrected to zero porosity) show a very slight temperature dependence, they are about three times lower than those of the stoichiometric uranium dioxide in the same temperature range

  14. X-ray diffraction measurement of the linear thermal expansion coefficients of WCoB in the range 300 to 973 K

    International Nuclear Information System (INIS)

    Petrov, K.; Will, G.

    1981-01-01

    High-temperature treatment of tungsten carbide-cobalt hard alloys in TiB 2 media leads to the formation of a surface diffusion coating which contains orthorhombic WCoB. The function of this compound in enhancing wear resistance of cutting tools, is discussed. The thermal expansion of WCoB is of primary interest, since the wear resistance of the coating reflects the degree of matching of the thermal expansion coefficients of the different phases. Preparation of the samples is described and experimental details of the X-ray diffraction measurements are given. The temperature dependence of the lattice parameters for the range 300 to 973 K, and the corresponding linear thermal expansion coefficients along the three principal crystallographic directions, are given. The results are discussed in terms of the bonding features of the solid. (U.K.)

  15. In2Mo3O12: A low negative thermal expansion compound

    International Nuclear Information System (INIS)

    Marinkovic, Bojan A.; Ari, Monica; Jardim, Paula Mendes; Avillez, Roberto R. de; Rizzo, Fernando; Ferreira, Fabio Furlan

    2010-01-01

    Orthorhombic In 2 Mo 3 O 12 has low negative linear coefficient of thermal expansion (α l = -1.85 x 10 -6 o C -1 ) as evaluated by X-ray powder diffraction using a synchrotron facility. The linear coefficient of thermal expansion for orthorhombic In 2 Mo 3 O 12 is directly dependent on the inherent volume distortion parameter (υ) of InO 6 . This finding strongly corroborates the recently proposed relationship between the linear coefficient of thermal expansion in A 2 M 3 O 12 compounds (α l ) and the distortion level of AO 6 polyhedra. With the increase of inherent distortion parameter (υ) of AO 6 polyhedra, the linear coefficient of thermal expansion becomes more negative. Another important feature of AO 6 polyhedra, including InO 6 , is that their distortion increases as a function of temperature. Orthorhombic In 2 Mo 3 O 12 is stable in the studied temperature range, 370-760 o C.

  16. Self-Consistency Method to Evaluate a Linear Expansion Thermal Coefficient of Composite with Dispersed Inclusions

    Directory of Open Access Journals (Sweden)

    V. S. Zarubin

    2015-01-01

    Full Text Available The rational use of composites as structural materials, while perceiving the thermal and mechanical loads, to a large extent determined by their thermoelastic properties. From the presented review of works devoted to the analysis of thermoelastic characteristics of composites, it follows that the problem of estimating these characteristics is important. Among the thermoelastic properties of composites occupies an important place its temperature coefficient of linear expansion.Along with fiber composites are widely used in the technique of dispersion hardening composites, in which the role of inclusions carry particles of high-strength and high-modulus materials, including nanostructured elements. Typically, the dispersed particles have similar dimensions in all directions, which allows the shape of the particles in the first approximation the ball.In an article for the composite with isotropic spherical inclusions of a plurality of different materials by the self-produced design formulas relating the temperature coefficient of linear expansion with volume concentration of inclusions and their thermoelastic characteristics, as well as the thermoelastic properties of the matrix of the composite. Feature of the method is the self-accountability thermomechanical interaction of a single inclusion or matrix particles with a homogeneous isotropic medium having the desired temperature coefficient of linear expansion. Averaging over the volume of the composite arising from such interaction perturbation strain and stress in the inclusions and the matrix particles and makes it possible to obtain such calculation formulas.For the validation of the results of calculations of the temperature coefficient of linear expansion of the composite of this type used two-sided estimates that are based on the dual variational formulation of linear thermoelasticity problem in an inhomogeneous solid containing two alternative functional (such as Lagrange and Castigliano

  17. Anisotropic thermal expansion behaviors of copper matrix in β-eucryptite/copper composite

    International Nuclear Information System (INIS)

    Wang Lidong; Xue Zongwei; Qiao Yingjie; Fei, W.D.

    2012-01-01

    Highlights: ► The thermal expansion behaviors of Cu matrix were studied by in situ XRD. ► The expansion of Cu{1 1 1} plane is linear, that of Cu{2 0 0} is nonlinear. ► The anisotropic thermal expansion of Cu is related to the twinning of Cu matrix. ► The twinning of Cu matrix makes the CTE of the composite increasing. - Abstract: A β-eucryptite/copper composite was fabricated by spark plasma sintering process. The thermal expansion behaviors of Cu matrix of the composite were studied by in situ X-ray diffraction during heating process. The results show that Cu matrix exhibits anisotropic thermal expansion behaviors for different crystallographic directions, the expansion of Cu{1 1 1} plane is linear in the temperature range from 20 °C to 300 °C and the expansion of Cu{2 0 0} is nonlinear with a inflection at about 180 °C. The microstructures of Cu matrix before and after thermal expansion testing were investigated using transmission electronic microscope. The anisotropic thermal expansion behavior is related to the deformation twinning formed in the matrix during heating process. At the same time, the deformation twinning of Cu matrix makes the average coefficient of thermal expansion of the composite increase.

  18. Young's Modulus and Coefficient of Linear Thermal Expansion of ZnO Conductive and Transparent Ultra-Thin Films

    Directory of Open Access Journals (Sweden)

    Naoki Yamamoto

    2011-01-01

    Full Text Available A new technique for measuring Young's modulus of an ultra-thin film, with a thickness in the range of about 10 nm, was developed by combining an optical lever technique for measuring the residual stress and X-ray diffraction for measuring the strain in the film. The new technique was applied to analyze the mechanical properties of Ga-doped ZnO (GZO films, that have become the focus of significant attention as a substitute material for indium-tin-oxide transparent electrodes. Young's modulus of the as-deposited GZO films decreased with thickness; the values for 30 nm and 500 nm thick films were 205 GPa and 117 GPa, respectively. The coefficient of linear thermal expansion of the GZO films was measured using the new technique in combination with in-situ residual stress measurement during heat-cycle testing. GZO films with 30–100 nm thickness had a coefficient of linear thermal expansion in the range of 4.3 × 10−6 – 5.6 × 10−6 °C−1.

  19. Heat conduction coefficient and coefficient of linear thermal expansion of electric insulation materials for superconducting magnetic system

    International Nuclear Information System (INIS)

    Deev, V.I.; Sobolev, V.P.; Kruglov, A.B.; Pridantsev, A.I.

    1984-01-01

    Results of experimental investigation of heat conduction coefficient and coefficient of linear thermal expansion and thermal shrinkages of the STEF-1 textolite-glass widely used in superconducting magnetic systems as electric insulating and structural material are presented. Samples of two types have been died: sample axisa is perpendicular to a plae of fiberglass layers ad sample axis is parallel to a plane of fiberglass layers. Heat conduction coefficient was decreased almost a five times with temperature decrease from 300 up to 5K and was slightly dependent on a sample type. Temperature variation of linear dimensions in a sample of the first type occurs in twice as fast as compared to the sample of the second type

  20. Colossal negative thermal expansion in BiNiO3 induced by intermetallic charge transfer.

    Science.gov (United States)

    Azuma, Masaki; Chen, Wei-tin; Seki, Hayato; Czapski, Michal; Olga, Smirnova; Oka, Kengo; Mizumaki, Masaichiro; Watanuki, Tetsu; Ishimatsu, Naoki; Kawamura, Naomi; Ishiwata, Shintaro; Tucker, Matthew G; Shimakawa, Yuichi; Attfield, J Paul

    2011-06-14

    The unusual property of negative thermal expansion is of fundamental interest and may be used to fabricate composites with zero or other controlled thermal expansion values. Here we report that colossal negative thermal expansion (defined as linear expansion linear expansion coefficient for Bi(0.95)La(0.05)NiO(3) is -137×10(-6) K(-1) and a value of -82×10(-6) K(-1) is observed between 320 and 380 K from a dilatometric measurement on a ceramic pellet. Colossal negative thermal expansion materials operating at ambient conditions may also be accessible through metal-insulator transitions driven by other phenomena such as ferroelectric orders.

  1. Hygroscopicity and bulk thermal expansion in Y2W3O12

    International Nuclear Information System (INIS)

    Sumithra, S.; Umarji, A.M.

    2005-01-01

    Negative thermal expansion material, Y 2 W 3 O 12 has been synthesized by the solid-state method and bulk thermal expansion of the material has been investigated from 300 to 1100 K. The material reversibly forms a trihydrate composition whose X-ray diffraction pattern can be indexed to an orthorhombic unit cell with a = 10.098(1) A, b = 13.315(3) A, c = 9.691(4) A. The cell volume of the hydrated pattern is 7% smaller than the unhydrated cell volume. According to the dilatometric studies, the material shows a 3-6% increase in the linear strain at about 400 K, which can be attributed to the removal of water. Sintering the material at 1473 K leads to large grain size of >100 μm, which results in a large hysteresis in the bulk thermal expansion behavior. Hot pressing at 1273 K under a uniaxial pressure of 25 MPa results in a fine-grained (2-5 μm) ceramic. Glazing the ceramic prevents moisture pick up and a linear thermal expansion over the entire temperature range 1100-300 K and an average linear thermal expansion co-efficient of -9.65 x 10 -6 /K is observed. The effect of water on the thermal expansion behavior of this system is discussed

  2. Thermal expansion and thermal diffusivity properties of Co-Si solid solutions and intermetallic compounds

    International Nuclear Information System (INIS)

    Ruan, Ying; Li, Liuhui; Gu, Qianqian; Zhou, Kai; Yan, Na; Wei, Bingbo

    2016-01-01

    Highlights: • Length change difference between rapidly and slowly solidified Co-Si alloy occurs at high temperature. • Generally CTE increases with an increasing Si content. • The thermal diffusion abilities are CoSi 2 > Co 95 Si 5 > Co 90 Si 10 > Co 2 Si > CoSi if T exceeds 565 K. • All the CTE and thermal diffusivity variations with T satisfy linear or polynomial relations. - Abstract: The thermal expansion of Co-Si solid solutions and intermetallic compounds was measured via dilatometric method, compared with the results of first-principles calculations, and their thermal diffusivities were investigated using laser flash method. The length changes of rapidly solidified Co-Si alloys are larger than those of slowly solidified alloys when temperature increases to around 1000 K due to the more competitive atom motion. The coefficient of thermal expansion (α) of Co-Si alloy increases with an increasing Si content, except that the coefficient of thermal expansion of Co 95 Si 5 influenced by both metastable structure and allotropic transformation is lower than that of Co 90 Si 10 at a higher temperature. The thermal expansion abilities of Co-Si intermetallic compounds satisfy the relationship of Co 2 Si > CoSi > CoSi 2 , and the differences of the coefficients of thermal expansion between them increase with the rise of temperature. The thermal diffusivity of CoSi 2 is evidently larger than the values of other Co-Si alloys. If temperature exceeds 565 K, their thermal diffusion abilities are CoSi 2 > Co 95 Si 5 > Co 90 Si 10 > Co 2 Si > CoSi. All the coefficient of thermal expansion and thermal diffusivity variations with temperature satisfy linear or polynomial relations.

  3. Thermal expansion

    International Nuclear Information System (INIS)

    Yun, Y.

    2015-01-01

    Thermal expansion of fuel pellet is an important property which limits the lifetime of the fuels in reactors, because it affects both the pellet and cladding mechanical interaction and the gap conductivity. By fitting a number of available measured data, recommended equations have been presented and successfully used to estimate thermal expansion coefficient of the nuclear fuel pellet. However, due to large scatter of the measured data, non-consensus data have been omitted in formulating the equations. Also, the equation is strongly governed by the lack of appropriate experimental data. For those reasons, it is important to develop theoretical methodologies to better describe thermal expansion behaviour of nuclear fuel. In particular, first-principles and molecular dynamics simulations have been certainly contributed to predict reliable thermal expansion without fitting the measured data. Furthermore, the two theoretical techniques have improved on understanding the change of fuel dimension by describing the atomic-scale processes associated with lattice expansion in the fuels. (author)

  4. Negative thermal expansion induced by intermetallic charge transfer.

    Science.gov (United States)

    Azuma, Masaki; Oka, Kengo; Nabetani, Koichiro

    2015-06-01

    Suppression of thermal expansion is of great importance for industry. Negative thermal expansion (NTE) materials which shrink on heating and expand on cooling are therefore attracting keen attention. Here we provide a brief overview of NTE induced by intermetallic charge transfer in A-site ordered double perovskites SaCu 3 Fe 4 O 12 and LaCu 3 Fe 4- x Mn x O 12 , as well as in Bi or Ni substituted BiNiO 3 . The last compound shows a colossal dilatometric linear thermal expansion coefficient exceeding -70 × 10 -6 K -1 near room temperature, in the temperature range which can be controlled by substitution.

  5. Structure and thermal expansion of NbC complex carbides

    International Nuclear Information System (INIS)

    Khatsinskaya, I.M.; Chaporova, I.N.; Cheburaeva, R.F.; Samojlov, A.I.; Logunov, A.V.; Ignatova, I.A.; Dodonova, L.P.

    1983-01-01

    Alloying dependences of the crystal lattice parameters at indoor temperature and coefficient of thermal linear exspansion within a 373-1273 K range are determined for complex NbC-base carbides by the method of mathematical expemental design. It is shown that temperature changes in the linear expansion coefficient of certain complex carbides as distinct from NbC have an anomaly (minimum) within 773-973 K caused by occurring reversible phase transformations. An increase in the coefficient of thermal linear expansion and a decrease in hardness of NbC-base tungsten-, molybdenum-, vanadium- and hafnium-alloyed carbides show a weakening of a total chemical bond in the complex carbides during alloying

  6. Thermal expansion of crystals of the N2 type

    International Nuclear Information System (INIS)

    Tolkachev, A.M.; Manzhelii, V.G.; Azarenkov, V.P.; Jezowski, A.; Kosobutskaya, E.A.

    1981-01-01

    Linear expansion coefficients of low temperature crystals with linear molecules and Pa3 lattice N 2 (2-21 K), CO(2-28 K), CO 2 (2-25 K), N 2 O(2-90 K) were measured. A version of the law of corresponding states to describe the translational component of the thermal expansion of the substances studied and other low temperature crystals with close-packed lattices is proposed. In the thermal properties of crystals consisting of molecules without inversion centre, we have found anomalies interpreted as the evidence of a partial dipole ordering. (orig.)

  7. Lattice thermal expansions of NpN, PuN and AmN

    International Nuclear Information System (INIS)

    Takano, Masahide; Akabori, Mitsuo; Arai, Yasuo; Minato, Kazuo

    2008-01-01

    Lattice parameters of NpN, PuN and AmN were measured by a high temperature X-ray diffraction method from room temperature up to 1478 K. Linear thermal expansions of these TRU nitrides were determined as a function of temperature. The average coefficients of linear thermal expansion from 293 to 1273 K were 8.8, 11.1 and 11.2 x 10 -6 K -1 for NpN, PuN and AmN, respectively. The instantaneous coefficient of thermal expansion either at 293 or at 1273 K against the reciprocal decomposition temperature under 1 atm of nitrogen showed a linear relationship for TiN, ZrN, HfN, UN, NpN and PuN. Based on this relationship, the decomposition temperature of AmN was roughly predicted to be 2700 K

  8. Uniaxial negative thermal expansion facilitated by weak host-guest interactions.

    Science.gov (United States)

    Engel, Emile R; Smith, Vincent J; Bezuidenhout, Charl X; Barbour, Leonard J

    2014-04-25

    A nitromethane solvate of 18-crown-6 was investigated by means of variable-temperature single-crystal X-ray diffraction in response to a report of abnormal unit cell contraction. Exceptionally large positive thermal expansion in two axial directions and negative thermal expansion along the third was confirmed. The underlying mechanism relies exclusively on weak electrostatic interactions to yield a linear thermal expansion coefficient of -129 × 10(-6) K(-1), the largest negative value yet observed for an organic inclusion compound.

  9. Simultaneous interferometric measurement of linear coefficient of thermal expansion and temperature-dependent refractive index coefficient of optical materials.

    Science.gov (United States)

    Corsetti, James A; Green, William E; Ellis, Jonathan D; Schmidt, Greg R; Moore, Duncan T

    2016-10-10

    Characterizing the thermal properties of optical materials is necessary for understanding how to design an optical system for changing environmental conditions. A method is presented for simultaneously measuring both the linear coefficient of thermal expansion and the temperature-dependent refractive index coefficient of a sample interferometrically in air. Both the design and fabrication of the interferometer is presented as well as a discussion of the results of measuring both a steel and a CaF2 sample.

  10. Thermal Expansion of Ni3Al Intermetallic Compound: Experiment and Simulation

    International Nuclear Information System (INIS)

    Wang Hai-Peng; Lü Peng; Zhou Kai; Wei Bing-Bo

    2016-01-01

    The thermal expansion of Ni 3 Al intermetallic compound is determined by a thermal dilatometer and simulated by the molecular dynamics method. The results of the linear thermal expansion coefficients are presented from 200 K up to the maximum temperature of 1600 K. The single phase of Ni 3 Al intermetallic compound is confirmed by x-ray diffraction together with DSC melting and solidification peaks, from which the solidus and the liquidus temperatures are obtained to be 1660 and 1695 K, respectively. The measured linear thermal expansion coefficient increases from 1.5 × 10 −5 to 2.7 × 10 −5 K −1 in the experimental temperature range, in good agreement with the data obtained by the molecular dynamics simulation, just a slight difference from the temperature dependence coefficient. Furthermore, the atomic structure and position are presented to reveal the atom distribution change during thermal expansion of Ni 3 Al compound. (paper)

  11. Colossal negative thermal expansion in reduced layered ruthenate.

    Science.gov (United States)

    Takenaka, Koshi; Okamoto, Yoshihiko; Shinoda, Tsubasa; Katayama, Naoyuki; Sakai, Yuki

    2017-01-10

    Large negative thermal expansion (NTE) has been discovered during the last decade in materials of various kinds, particularly materials associated with a magnetic, ferroelectric or charge-transfer phase transition. Such NTE materials have attracted considerable attention for use as thermal-expansion compensators. Here, we report the discovery of giant NTE for reduced layered ruthenate. The total volume change related to NTE reaches 6.7% in dilatometry, a value twice as large as the largest volume change reported to date. We observed a giant negative coefficient of linear thermal expansion α=-115 × 10 -6  K -1 over 200 K interval below 345 K. This dilatometric NTE is too large to be attributable to the crystallographic unit-cell volume variation with temperature. The highly anisotropic thermal expansion of the crystal grains might underlie giant bulk NTE via microstructural effects consuming open spaces in the sintered body on heating.

  12. Low temperature thermal expansion of liquid Helium-4

    International Nuclear Information System (INIS)

    Berthold, J.E.

    1976-01-01

    Results of a measurement of the thermal expansion of liquid He-4 are presented along the saturated vapor pressure curve at low temperatures (0.1 - 0.6 0 K). The thermal expansion is related to the low momentum region of the He-4 excitation spectrum, and the results of this measurement are analyzed to gain information concerning deviations from linearity in the phonon region of the spectrum. The data is also compared with theoretical predictions of Alrich and Bhatt and McMillan and with the thermal expansion measurement of Van Degrift. In addition a discussion of previous experimental evidence on the shape of the low momentum region of the dispersion relation is presented

  13. Thermal expansion of U.S. and Australian SYNROC B

    International Nuclear Information System (INIS)

    Kase, H.R.; Case, E.D.; Tesk, J.A.

    1985-01-01

    For the safe disposal of nuclear waste, a synthetic rock (SYNROC) was developed. Continuing research in this field has led to US and Australian versions of SYNROC B. For both materials, the thermal expansion and expansivity have been determined by the temperature range from 296 to 1100 K. Although both versions of SYNROC B have basically the same composition and agree in the major constituent phases, the U.S. version expands slightly more than the Australian one. With increasing temperature, the difference becomes greater and runs up to 3.5% at 1100 K. Because of the good linearity in the temperature dependence of the relative thermal expansion (ΔL/L /sub o/ ), a linear regression was made and the resulting equations determined

  14. The thermal expansion of austenitic manganese and manganese-chromium steels

    International Nuclear Information System (INIS)

    Richter, F.

    1977-01-01

    The linear coefficient of thermal expansion was determined by dilatometer for 5 Mn steels and 6 Mn-Cr steels between -196 and +500 0 C. Because of the antiferromagnetic properties, the thermal expansion of austenitic Mn and Mn-Cr steels is determined by the position of the magnetic changeover temperature (Neel temperature), which depends on the chemical composition of the steel. Below the Neel temperature, the thermal coefficient of expansion is greatly reduced by volumetric magnetostriction (Invar effect). For this reason, one can only give approximate values for thermal expansion for all Mn and Mn-Cr steels in the temperature range of -100 0 C to about +100 0 C. (GSC) [de

  15. Zero thermal expansion in NaZn13-type La(Fe,Si)13 compounds.

    Science.gov (United States)

    Wang, Wei; Huang, Rongjin; Li, Wen; Tan, Jie; Zhao, Yuqiang; Li, Shaopeng; Huang, Chuanjun; Li, Laifeng

    2015-01-28

    A zero thermal expansion material in a pure form of NaZn13-type La(Fe,Si)13 was fabricated. Through optimizing the chemical composition, an isotropic zero thermal expansion material is achieved. The obtained materials exhibit a low expansion of |α| linear thermal expansion) over a broad temperature range (15-150 K). The present study indicates that the thermal expansion behavior of the NaZn13-type La(Fe,Si)13 compounds depends mainly on the content of Si element. This new material is desirable in many fields of industry as a reliable and low-cost zero thermal expansion material.

  16. Residual stress of particulate polymer composites with reduced thermal expansion

    International Nuclear Information System (INIS)

    Nishino, T; Kotera, M; Sugiura, Y

    2009-01-01

    Thermal expansion behavior was investigated for tangusten zirconium phosphate (Zr 2 (WO 4 )(PO 4 ) 2 (ZWP)) particulate filled poly(ether ether ketone) (PEEK) composite. ZWP is known as ceramic filler with a negative thermal expansion. By incorporating ZWP with 40 volume %, the linear thermal expansion coefficient of the PEEK composite was reduced to almost same value (2.53 X 10 -5 K -1 ) with that of aluminum. This decrease was found to be quite effective for the decrease of the residual stress at the interface between aluminum plate and the composite.

  17. Thermal expansion studies on Inconel-600[reg] by high temperature X-ray diffraction

    International Nuclear Information System (INIS)

    Raju, S.; Sivasubramanian, K.; Divakar, R.; Panneerselvam, G.; Banerjee, A.; Mohandas, E.; Antony, M.P.

    2004-01-01

    The lattice thermal expansion characteristics of Inconel-600[reg] have been studied by high temperature X-ray diffraction (HT-XRD) technique in the temperature range 298-1200 K. Altogether four experimental runs were conducted on thin foils of about 75-100 μm thickness. The diffraction profiles have been accurately calibrated to offset the shift in 2θ values introduced by sample buckling at elevated temperatures. The corrected lattice parameter data have been used to estimate the instantaneous and mean linear thermal expansion coefficients as a function of temperature. The thermal expansion values estimated in the present study show a fair degree of agreement with other existing dilatometer based bulk thermal expansion estimates. The lattice parameter for this alloy at 300 K is found to be 0.3549(1) nm. The mean linear thermal expansivity is found to be 11.4 x 10 -6 K -1

  18. Negative thermal expansion materials

    International Nuclear Information System (INIS)

    Evans, J.S.O.

    1997-01-01

    The recent discovery of negative thermal expansion over an unprecedented temperature range in ZrW 2 O 8 (which contracts continuously on warming from below 2 K to above 1000 K) has stimulated considerable interest in this unusual phenomenon. Negative and low thermal expansion materials have a number of important potential uses in ceramic, optical and electronic applications. We have now found negative thermal expansion in a large new family of materials with the general formula A 2 (MO 4 ) 3 . Chemical substitution dramatically influences the thermal expansion properties of these materials allowing the production of ceramics with negative, positive or zero coefficients of thermal expansion, with the potential to control other important materials properties such as refractive index and dielectric constant. The mechanism of negative thermal expansion and the phase transitions exhibited by this important new class of low-expansion materials will be discussed. (orig.)

  19. Thermal expansion of ThO2-2 wt% UO2 by HT-XRD

    International Nuclear Information System (INIS)

    Tyagi, A.K.; Mathews, M.D.

    2000-01-01

    The linear thermal expansion of polycrystalline ThO 2 -2 wt% UO 2 has been investigated from room temperature to 1473 K in flowing helium atmosphere using high temperature X-ray diffractometry. ThO 2 -2 wt% UO 2 shows a marginally higher linear thermal expansion as compared to pure ThO 2 . The average linear and volume thermal expansion coefficients of ThO 2 -2 wt% UO 2 are found to be α-bar a =9.74x10 -6 K -1 and α-bar v =29.52x10 -6 K -1 (298-1473 K). This study will be useful in designing the nuclear reactor fuel assembly based on ThO 2

  20. Phase transitions and thermal expansion in Ni51- x Mn36 + x Sn13 alloys

    Science.gov (United States)

    Kaletina, Yu. V.; Gerasimov, E. G.; Kazantsev, V. A.; Kaletin, A. Yu.

    2017-10-01

    Thermal expansion and structural and magnetic phase transitions in alloys of the Ni-Mn-Sn system have been investigated. The spontaneous martensitic transformation in Ni51-xMn36 + xSn13 (0 ≤ x ≤ 3) alloys is found to be accompanied by high jumps in the temperature dependences of the linear thermal expansion. The relative change in the linear sizes of these alloys at the martensitic transformation is 1.5 × 10-3. There are no anomalies in the magnetic-ordering temperature range in the temperature dependences of the coefficient of linear thermal expansion. The differences in the behavior of linear thermal expansion at the martensitic transformation in Ni51-xMn36 + xSn13 (0 ≤ x ≤ 3) and Ni47Mn40Sn13( x = 4) alloys have been established.

  1. Effect of pressure on thermal expansion of UNiGa

    International Nuclear Information System (INIS)

    Honda, F.; Andreev, A.V.; Havela, L.; Prokes, K.; Sechovsky, V.

    1997-01-01

    The thermal expansion of single crystalline UNiGa has been measured along the crystallographic axes (a and c) under pressures up to 1.1 GPa. The linear thermal expansion both in the paramagnetic and antiferromagnetic ranges is strongly anisotropic. The antiferromagnetic ordering is accompanied by considerable (10 -4 ) linear spontaneous magnetostrictions (along the a- and c-axis) of different signs (-0.8 x 10 -4 and 1.8 x 10 -4 ). The mutual compensation of these two effects causes the volume effect to be rather small (∝10 -5 ). Two of the four magnetic phase transitions in UNiGa indicated by the expansion anomalies under ambient pressure are suppressed by pressures above 0.5 GPa. Results of our experiments allow to construct a pressure-temperature (p-T) magnetic phase diagram. (orig.)

  2. Thermal expansion of diamond at low temperatures.

    Science.gov (United States)

    Stoupin, Stanislav; Shvyd'ko, Yuri V

    2010-02-26

    Temperature variation of a lattice parameter of a synthetic diamond crystal (type IIa) was measured using high-energy-resolution x-ray Bragg diffraction in backscattering. A 2 order of magnitude improvement in the measurement accuracy allowed us to directly probe the linear thermal expansion coefficient at temperatures below 100 K. The lowest value measured was 2x10{-9} K-1. It was found that the coefficient deviates from the expected Debye law (T3) while no negative thermal expansion was observed. The anomalous behavior might be attributed to tunneling states due to low concentration impurities.

  3. Ultra-low thermal expansion realized in giant negative thermal expansion materials through self-compensation

    OpenAIRE

    Fei-Ran Shen; Hao Kuang; Feng-Xia Hu; Hui Wu; Qing-Zhen Huang; Fei-Xiang Liang; Kai-Ming Qiao; Jia Li; Jing Wang; Yao Liu; Lei Zhang; Min He; Ying Zhang; Wen-Liang Zuo; Ji-Rong Sun

    2017-01-01

    Materials with zero thermal expansion (ZTE) or precisely tailored thermal expansion are in urgent demand of modern industries. However, the overwhelming majority of materials show positive thermal expansion. To develop ZTE or negative thermal expansion (NTE) materials as compensators has become an important challenge. Here, we present the evidence for the realization of ultra-low thermal expansion in Mn–Co–Ge–In particles. The bulk with the Ni2In-type hexagonal structure undergoes giant NTE o...

  4. Thermal expansion measurements on boron carbide and europium sesquioxide by laser interferometry

    International Nuclear Information System (INIS)

    Preston, S.D.

    1980-01-01

    A laser interferometer technique for measuring the absolute linear thermal expansion of small annular specimens is described. Results are presented for unirradiated boron carbide (B 4 C) and europia (Eu 2 O 3 ) up to 1000 0 C. Both compounds are neutron-absorbing materials of potential use in fast-reactor control rods and data on their thermophysical properties, in particular linear thermal expansion, are essential to the control rod designers. (author)

  5. The Linear Thermal Expansion of Bulk Nanocrystalline Ingot Iron from Liquid Nitrogen to 300 K.

    Science.gov (United States)

    Wang, S G; Mei, Y; Long, K; Zhang, Z D

    2009-09-17

    The linear thermal expansions (LTE) of bulk nanocrystalline ingot iron (BNII) at six directions on rolling plane and conventional polycrystalline ingot iron (CPII) at one direction were measured from liquid nitrogen temperature to 300 K. Although the volume fraction of grain boundary and residual strain of BNII are larger than those of CPII, LTE of BNII at the six measurement directions were less than those of CPII. This phenomenon could be explained with Morse potential function and the crystalline structure of metals. Our LTE results ruled out that the grain boundary and residual strain of BNII did much contribution to its thermal expansion. The higher interaction potential energy of atoms, the less partial derivative of interaction potential energy with respect to temperature T and the porosity free at the grain boundary of BNII resulted in less LTE in comparison with CPII from liquid nitrogen temperature to 300 K. The higher LTE of many bulk nanocrystalline materials resulted from the porosity at their grain boundaries. However, many authors attributed the higher LTE of many nanocrystalline metal materials to their higher volume fraction of grain boundaries.

  6. The Linear Thermal Expansion of Bulk Nanocrystalline Ingot Iron from Liquid Nitrogen to 300 K

    Directory of Open Access Journals (Sweden)

    Mei Y

    2009-01-01

    Full Text Available Abstract The linear thermal expansions (LTE of bulk nanocrystalline ingot iron (BNII at six directions on rolling plane and conventional polycrystalline ingot iron (CPII at one direction were measured from liquid nitrogen temperature to 300 K. Although the volume fraction of grain boundary and residual strain of BNII are larger than those of CPII, LTE of BNII at the six measurement directions were less than those of CPII. This phenomenon could be explained with Morse potential function and the crystalline structure of metals. Our LTE results ruled out that the grain boundary and residual strain of BNII did much contribution to its thermal expansion. The higher interaction potential energy of atoms, the less partial derivative of interaction potential energy with respect to temperature T and the porosity free at the grain boundary of BNII resulted in less LTE in comparison with CPII from liquid nitrogen temperature to 300 K. The higher LTE of many bulk nanocrystalline materials resulted from the porosity at their grain boundaries. However, many authors attributed the higher LTE of many nanocrystalline metal materials to their higher volume fraction of grain boundaries.

  7. Effect of graphene nanoplatelets on coefficient of thermal expansion of polyetherimide composite

    International Nuclear Information System (INIS)

    Wu, Huang; Drzal, Lawrence T.

    2014-01-01

    Thermal expansion is one of the major concerns for polymer composites. In this research, graphene nanoplatelets (GNPs) were added to polyetherimide (PEId) thermoplastic polymer in order to reduce the coefficient of thermal expansion (CTE) of the injection molded composite. First, the coefficient of linear thermal expansion (LTE) was measured in three directions in the anisotropic coupon: 0°, 90° and the out of plane Z direction. It is found that the GNP particles are very effective in terms of reducing the LTE in 0° direction due to high degree of alignment. After annealing above glass transition temperature, significant increase of 0° LTE and decrease of Z° LTE were observed. The bulk CTE was calculated by adding up the LTEs in all three directions and is found to be independent of annealing. Second, several models were applied to predict both CTE and LTE. It is found that Schapery's lower limit model fits the experimental CTE very well. Chow's model was applied for LTEs in three directions. The behavior of GNP-5/PEId composites is explained by the combination of Chow's model and morphology obtained by scanning electron microscope (SEM). - Highlights: • Coefficient of thermal expansion (CTE) of polymer composite is characterized. • Reduction of linear thermal expansion depends on filler orientation. • Filler orientation is characterized based on the location of the specimen. • Filler orientation is changed by annealing, causing subsequent change in CTE. • CTE and linear thermal expansion coefficient are modeled

  8. Absolute linear thermal-expansion measurements on copper and aluminum from 5 to 320 K

    International Nuclear Information System (INIS)

    Kroeger, F.R.; Swenson, C.A.

    1977-01-01

    A linear absolute dilatometer based on a three-terminal parallel-plate capacitor design has been used to obtain thermal expansion data for high-purity copper and aluminum from 5 to 320 K. These data have an absolute accuracy of +- 0.1% above 20 K for copper and above 30 K for aluminum, and agree well with published data at the higher temperatures. The disagreement which exists with other data below 5 K for copper and below 15 K for aluminum is believed to be sample dependent, but the mechanism is not known. The aluminum results in this region depend on the state of annealing of the sample

  9. Preliminary thermal expansion screening data for tuffs

    International Nuclear Information System (INIS)

    Lappin, A.R.

    1980-03-01

    A major variable in evaluating the potential of silicic tuffs for use in geologic disposal of heat-producing nuclear wastes is thermal expansion. Results of ambient-pressure linear expansion measurements on a group of tuffs that vary treatly in porosity and mineralogy are presente here. Thermal expansion of devitrified welded tuffs is generally linear with increasing temperature and independent of both porosity and heating rate. Mineralogic factors affecting behavior of these tuffs are limited to the presence or absence of cristobalite and altered biotite. The presence of cristobalite results in markedly nonlinear expansion above 200 0 C. If biotite in biotite-hearing rocks alters even slightly to expandable clays, the behavior of these tuffs near the boiling point of water can be dominated by contraction of the expandable phase. Expansion of both high- and low-porosity tuffs containing hydrated silicic glass and/or expandable clays is complex. The behavior of these rocks appears to be completely dominated by dehydration of hydrous phases and, hence, should be critically dependent on fluid pressure. Valid extrapolation of the ambient-pressure results presented here to depths of interest for construction of a nuclear-waste repository will depend on a good understanding of the interaction of dehydration rates and fluid pressures, and of the effects of both micro- and macrofractures on the response of tuff masss

  10. Heat capacity and thermal expansion of the itinerant helimagnet MnSi

    International Nuclear Information System (INIS)

    Stishov, S M; Petrova, A E; Khasanov, S; Panova, G Kh; Shikov, A A; Lashley, J C; Wu, D; Lograsso, T A

    2008-01-01

    The heat capacity and thermal expansion of a high quality single crystal of MnSi were measured at ambient pressure at zero and high magnetic fields. The calculated magnetic entropy change in the temperature range 0-30 K is less than 0.1R, a low value that emphasizes the itinerant nature of magnetism in MnSi. A linear temperature term dominates the thermal expansion coefficient in the range 30-150 K, which correlates with an enhancement of the linear electronic term in the heat capacity. A surprising similarity among the variations of the heat capacity, thermal expansion coefficient and temperature derivative of the resistivity is observed through the phase transition in MnSi. Specific forms of the heat capacity, thermal expansion coefficient and temperature derivative of resistivity at the phase transition to a helical magnetic state near 29 K are interpreted as the combination of sharp first-order features and broad peaks or shallow valleys of as yet unknown origin. The appearance of these broad satellites probably hints at a frustrated magnetic state slightly above the transition temperature in MnSi

  11. The thermal expansion of hard magnetic materials of the Nd-Fe-B system

    Science.gov (United States)

    Savchenko, Igor; Kozlovskii, Yurii; Samoshkin, Dmitriy; Yatsuk, Oleg

    2017-10-01

    The results of dilatometric measurement of the thermal expansion of hard magnetic materials brands N35M, N35H and N35SH containing as a main component the crystalline phase of Nd2Fe14B type are presented. The temperature range from 200 to 750 K has been investigated by the method of dilatometry with an error of 1.5-2×10-7 K-1. The approximation dependences of the linear thermal expansion coefficient have been obtained. The character of changes of the thermal coefficient of linear expansion in the region of the Curie point has been specified, its critical indices and critical amplitudes have been defined.

  12. Achieving dynamic behaviour and thermal expansion in the organic solid state via co-crystallization.

    Science.gov (United States)

    Hutchins, Kristin M; Groeneman, Ryan H; Reinheimer, Eric W; Swenson, Dale C; MacGillivray, Leonard R

    2015-08-01

    Thermal expansion involves a response of a material to an external stimulus that typically involves an increase in a crystallographic axis (positive thermal expansion (PTE)), although shrinking with applied heat (negative thermal expansion (NTE)) is known in rarer cases. Here, we demonstrate a means to achieve dynamic molecular motion and thermal expansions in organic solids via co-crystallizations. One co-crystal component is known to exhibit dynamic behaviour in the solid state while the second, when varied systematically, affords co-crystals with linear thermal expansion coefficients that range from colossal to nearly zero. Two co-crystals exhibit rare NTE. We expect the approach to guide the design of molecular solids that enable predesigned motion related to thermal expansion processes.

  13. Diamond Thermal Expansion Measurement Using Transmitted X-ray Back-diffraction.

    OpenAIRE

    Giles, Carlos; Adriano, Cris; Lubambo, Adriana Freire; Cusatis, Cesar; Mazzaro, Irineu; Hönnicke, Marcelo Goncalves

    2015-01-01

    The linear thermal expansion coefficient of diamond has been measured using forward-diffracted profiles in X-ray backscattering. This experimental technique is presented as an alternative way of measuring thermal expansion coefficients of solids in the high-resolution Bragg backscattering geometry without the intrinsic difficulty of detecting the reflected beam. The temperature dependence of the lattice parameter is obtained from the high sensitivity of the transmitted profiles to the Bragg a...

  14. Laboratory measurements of the coefficient of thermal expansion of Olkiluoto drill core samples

    International Nuclear Information System (INIS)

    Aakesson, U.

    2012-04-01

    The coefficient of thermal expansion and the wet density has been determined on 22 specimens from the ONKALO drillholes ONK-PP167, ONK-PP199, ONK-PP224, ONK-PP225 and ONK-PP226, Olkiluoto, Finland. The coefficient of thermal expansion has been determined in the temperature interval 20-60 deg C. The results indicated that the thermal expansion was almost linear, and the coefficient of thermal expansion for the investigated specimens range between 3.2 and 14.4 x 10 -6 mm/mm deg C, and the wet density between 2,610 and 2,820 kg/m 3 . The granite pegmatite has slightly lower coefficient of thermal expansion and wet density than gneissic rocks. (orig.)

  15. Low-temperature thermal expansion of metastable intermetallic Fe-Cr phases

    International Nuclear Information System (INIS)

    Gorbunoff, A.; Levin, A.A.; Meyer, D.C.

    2009-01-01

    The thermal expansion coefficients (TEC) of metastable disordered intermetallic Fe-Cr phases formed in thin Fe-Cr alloy films prepared by an extremely non-equilibrium method of the pulsed laser deposition are studied. The lattice parameters of the alloys calculated from the low-temperature wide-angle X-ray diffraction (WAXRD) patterns show linear temperature dependencies in the temperature range 143-293 K and a deviation from the linearity at lower temperatures. The linear thermal expansion coefficients determined from the slopes of the linear portions of the temperature-lattice parameter dependencies differ significantly from phase to phase and from the values expected for the body-centered cubic (b.c.c.) Fe 1-x Cr x solid solutions. Strain-crystallite size analysis of the samples is performed. Predictions about the Debye temperature and the mechanical properties of the alloys are made.

  16. Linear expansion, specific heat and thermodynamic properties of the CdTl2Te4 compound

    International Nuclear Information System (INIS)

    Karimov, S.K.

    1979-01-01

    Presented are the results of studying temperature dependence of the thermal expansion coefficient for poly- and monocrystalline samples of CdTl 2 Te 4 . The coefficient of linear expansion in a perpendicular direction to the axis of growth (0010) is shown to be larger than the coefficient of linear expansion along the axis. Temperature dependence of thermal capacity (Csub(p)(T)) has been obtained, which is used to plot tables of adjusted values of Csub(p)(T); the values of entropy and enthalpy are calculated. Standard values of these parameters are as follows: Csub(p)=42.90 cal/molxgrad; Ssub(298.15K)sup(.)=78.95+-0.32 cal/mol, and Δsub(298.15K)sup(.)=10629+-31 cal/mol. Lattice contribution and thermal expansion contribution into thermal capacity are calculated. Determined are Debye characteristic temperature, isothermal coefficient of compressibility, and Grueneisen constant. The calculations testify to the prevalence of the repulsive force along the axis (0010) over the attractive force

  17. Synthesis, characterization and thermal expansion studies on thorium-praseodymium mixed oxide solid solutions

    International Nuclear Information System (INIS)

    Panneerselvam, G.; Antony, M.P.; Srinivasan, T.G.; Vasudeva Rao, P.R.

    2010-01-01

    Full text: Thorium-praseodymium mixed oxide solid solutions containing 15, 25, 40 and 55 mole percent of praseodymia were synthesized by mixing the solutions of thorium nitrate in water and praseodymium oxide (Pr 6 O 11 ) in conc. HNO 3 . Subsequently, their hydroxides were co-precipitated by the addition of aqueous ammonia. Further the precipitate was dried at 50 deg C, calcined at 600 deg C for 4 hours and sintered at 1200 deg C for 6 h in air. X-ray diffraction measurements were performed for phase identification and lattice parameter derivation. Single-phase fluorite structure was observed for all the compositions. Bulk and theoretical densities of solid solutions were also determined by immersion and X-ray techniques. Thermal expansion coefficients and percentage linear thermal expansion of the solid solutions were determined using high temperature X-ray diffraction technique in the temperature range 300 to 1700 K for the first time. The room temperature lattice constants estimated for above compositions are 0.5578, 0.5565, 0.5545 and 0.5526 nm, respectively. The mean linear thermal expansion coefficients for the solid solutions are 15.48 x 10 -6 K -1 , 18.35 x 10 -6 K -1 , 22.65 x 10 -6 K -1 and 26.95 x 10 -6 K -1 , respectively. The percentage linear thermal expansions in this temperature range are 1.68, 1.89, 2.21 and 2.51 respectively. It is seen that the solid solutions are stable up to 1700 K. It is also seen that the effect and nature of the dopant are the important parameters influencing the thermal expansion of the ThO 2 . The lattice parameter of the solid solutions exhibited a decreasing trend with respect to praseodymia addition. The percentage linear thermal expansion of the solid solutions increases steadily with increasing temperature

  18. Linear Thermal Expansion Measurements of Lead Magnesium Niobate (PMN) Electroceramic Material for the Terrestrial Planet Finder Coronagraph

    Science.gov (United States)

    Karlmann, Paul B.; Halverson, Peter G.; Peters, Robert D.; Levine, Marie B.; VanBuren, David; Dudik, Matthew J.

    2005-01-01

    Linear thermal expansion measurements of nine samples of Lead Magnesium Niobate (PMN) electroceramic material were recently performed in support of NASA's Terrestrial Planet Finder Coronagraph (TPF-C) mission. The TPF-C mission is a visible light coronagraph designed to look at roughly 50 stars pre- selected as good candidates for possessing earth-like planets. Upon detection of an earth-like planet, TPF-C will analyze the visible-light signature of the planet's atmosphere for specific spectroscopic indicators that life may exist there. With this focus, the project's primary interest in PMN material is for use as a solid-state actuator for deformable mirrors or compensating optics. The nine test samples were machined from three distinct boules of PMN ceramic manufactured by Xinetics Inc. Thermal expansion measurements were performed in 2005 at NASA Jet Propulsion Laboratory (JPL) in their Cryogenic Dilatometer Facility. All measurements were performed in vacuum with sample temperature actively controlled over the range of 270K to 3 10K. Expansion and contraction of the test samples with temperature was measured using a JPL developed interferometric system capable of sub-nanometer accuracy. Presented in this paper is a discussion of the sample configuration, test facilities, test method, data analysis, test results, and future plans.

  19. The thermal expansion of hard magnetic materials of the Nd-Fe-B system

    Directory of Open Access Journals (Sweden)

    Savchenko Igor

    2017-01-01

    Full Text Available The results of dilatometric measurement of the thermal expansion of hard magnetic materials brands N35M, N35H and N35SH containing as a main component the crystalline phase of Nd2Fe14B type are presented. The temperature range from 200 to 750 K has been investigated by the method of dilatometry with an error of 1.5-2×10-7 K-1. The approximation dependences of the linear thermal expansion coefficient have been obtained. The character of changes of the thermal coefficient of linear expansion in the region of the Curie point has been specified, its critical indices and critical amplitudes have been defined.

  20. Thermal expansion coefficient determination of polylactic acid using digital image correlation

    Directory of Open Access Journals (Sweden)

    Botean Adrian - Ioan

    2018-01-01

    Full Text Available This paper aims determining the linear thermal expansion coefficient (CTE of polylactic acid (PLA using an optical method for measuring deformations called digital image correlation method (DIC. Because PLA is often used in making many pieces with 3D printing technology, it is opportune to know this coefficient to obtain a higher degree of precision in the construction of parts and to monitor deformations when these parts are subjected to a thermal gradient. Are used two PLA discs with 20 and 40% degree of filling. In parallel with this approach was determined the linear thermal expansion coefficient (CTE for the copper cylinder on the surface of which are placed the two discs of PLA.

  1. Thermal expansion coefficient determination of polylactic acid using digital image correlation

    Science.gov (United States)

    Botean, Adrian-Ioan

    2018-02-01

    This paper aims determining the linear thermal expansion coefficient (CTE) of polylactic acid (PLA) using an optical method for measuring deformations called digital image correlation method (DIC). Because PLA is often used in making many pieces with 3D printing technology, it is opportune to know this coefficient to obtain a higher degree of precision in the construction of parts and to monitor deformations when these parts are subjected to a thermal gradient. Are used two PLA discs with 20 and 40% degree of filling. In parallel with this approach was determined the linear thermal expansion coefficient (CTE) for the copper cylinder on the surface of which are placed the two discs of PLA.

  2. Heat capacity and thermal expansion of the itinerant helimagnet MnSi.

    Science.gov (United States)

    Stishov, S M; Petrova, A E; Khasanov, S; Kh Panova, G; Shikov, A A; Lashley, J C; Wu, D; Lograsso, T A

    2008-06-11

    The heat capacity and thermal expansion of a high quality single crystal of MnSi were measured at ambient pressure at zero and high magnetic fields. The calculated magnetic entropy change in the temperature range 0-30 K is less than 0.1R, a low value that emphasizes the itinerant nature of magnetism in MnSi. A linear temperature term dominates the thermal expansion coefficient in the range 30-150 K, which correlates with an enhancement of the linear electronic term in the heat capacity. A surprising similarity among the variations of the heat capacity, thermal expansion coefficient and temperature derivative of the resistivity is observed through the phase transition in MnSi. Specific forms of the heat capacity, thermal expansion coefficient and temperature derivative of resistivity at the phase transition to a helical magnetic state near 29 K are interpreted as the combination of sharp first-order features and broad peaks or shallow valleys of as yet unknown origin. The appearance of these broad satellites probably hints at a frustrated magnetic state slightly above the transition temperature in MnSi.

  3. Spring-like motion caused large anisotropic thermal expansion in nonporous M(eim)2 (M = Zn, Cd).

    Science.gov (United States)

    Liu, Zhanning; Liu, Chenxi; Li, Qiang; Chen, Jun; Xing, Xianran

    2017-09-20

    Two nonporous coordination polymers were found to possess large anisotropic thermal expansion, which was derived from the flexible structures. A "spring-like" thermal motion was proposed to illustrate the mechanism. Compound Cd(eim) 2 (eim = 2-ethylimidazole) possesses large linear and reversible thermal expansion properties and the emission intensity shows a linear decrease with temperature, making it a candidate for thermo-responsive materials.

  4. Thermal expansion of granite rocks

    International Nuclear Information System (INIS)

    Stephansson, O.

    1978-04-01

    The thermal expansion of rocks is strongly controlled by the thermal expansion of the minerals. The theoretical thermal expansion of the Stripa Granite is gound to be 21 . 10 -6 [deg C] -1 at 25 deg C and 38 . 10 -6 [deg C] -1 at 400 deg C. The difference in expansion for the rock forming minerals causes micro cracking at heating. The expansion due to micro cracks is found to be of the same order as the mineral expansion. Most of the micro cracks will close at pressures of the order of 10 - 20 MPa. The thermal expansion of a rock mass including the effect of joints is determined in the pilot heater test in the Stripa Mine

  5. Design and development of a linear thermal actuator

    Science.gov (United States)

    Bush, G.; Osborne, D.

    1985-01-01

    The design and development of a linear thermal actuator (LTA) for space applications is described. The actuator is driven by thermal energy and utilizes the property of thermal expansion to do work. Equations to predict performance are developed and used to optimize the design of the development model LTA. Design details and test results are presented and discussed.

  6. Thermal expansion of UO2-Gd2O3 fuel pellets

    International Nuclear Information System (INIS)

    Une, Katsumi

    1986-01-01

    In recent years, more consideration has been given to the application of UO 2 -Gd 2 O 3 burnable poison fuel to LWRs in order to improve the core physics and to extend the burnup. It has been known that UO 2 forms a single phase cubic fluorite type solid solution with Gd 2 O 3 up to 20 - 30 wt.% above 1300 K. The addition of Gd 2 O 3 to UO 2 lattices changes the properties of the fuel pellets. The limited data on the thermal expansion of UO 2 -Gd 2 O 3 fuel exist, but those are inconsistent. UO 2 -Gd 2 O 3 fuel pellets were fabricated, and the linear thermal expansion of UO 2 and UO 2 -(5, 8 and 10 wt.%)Gd 2 O 3 fuel pellets was measured with a differential dilatometer over the temperature range of 298 - 1973 K. A sapphire rod of 6 mm diameter and 15.5 mm length was used as the reference material. After the preheating cycle, the measurement was performed in argon atmosphere. The results for UO 2 pellets showed excellent agreement with the data in literatures. The linear thermal expansion of UO 2 -Gd 2 O 3 fuel pellets showed the increase with increasing the Gd 2 O 3 content. Consideration must be given to this excessive expansion in the fuel design of UO 2 -Gd 2 O 3 pellets. The equations for the linear thermal expansion and density of UO 2 -Gd 2 O 3 fuel pellets were derived by the method of least squares. (Kako, I.)

  7. Phases, lattice parameters and thermal expansion of HoNi5-xAlx, 3≥x≥0

    International Nuclear Information System (INIS)

    Grzeta, B.; Sorgic, B.; Blazina, Z.

    1998-01-01

    The phases, lattice parameters and linear coefficient of thermal expansion were determined by X-ray powder diffraction between room temperature and 873 K for the system HoNi 5-x Al x (3 ≥ x ≥ 0). Alloys were hexagonal, in the space group P6/mmm; for 2 ≥ x ≥ 0 they were isostructural with CaCu 5 , and for 3 ≥ x ≥ 2 they were isostructural with YCo 3 Ga 2 . In both cases, the unit-cell parameters a and c increased as the Al content increased. The linear thermal expansion coefficient was composition dependent. Each of the investigated alloys exhibited an anisotropy in thermal expansion, the linear expansion coefficient along the a axis being larger than along the c axis. (orig.)

  8. Thermal Expansion of Vacuum Plasma Sprayed Coatings

    Science.gov (United States)

    Raj, S V.; Palczer, A. R.

    2010-01-01

    Metallic Cu-8%Cr, Cu-26%Cr, Cu-8%Cr-1%Al, NiAl and NiCrAlY monolithic coatings were fabricated by vacuum plasma spray deposition processes for thermal expansion property measurements between 293 and 1223 K. The corrected thermal expansion, (DL/L(sub 0) varies with the absolute temperature, T, as (DL/L(sub 0) = A(T - 293)(sup 3) + BIT - 293)(sup 2) + C(T - 293) + D, where, A, B, C and D are thermal, regression constants. Excellent reproducibility was observed for all of the coatings except for data obtained on the Cu-8%Cr and Cu-26%Cr coatings in the first heat-up cycle, which deviated from those determined in the subsequent cycles. This deviation is attributed to the presence of residual stresses developed during the spraying of the coatings, which are relieved after the first heat-up cycle. In the cases of Cu-8%Cr and NiAl, the thermal expansion data were observed to be reproducible for three specimens. The linear expansion data for Cu-8% Cr and Cu-26%Cr agree extremely well with rule of mixture (ROM) predictions. Comparison of the data for the Cu-8%Cr coating with literature data for Cr and Cu revealed that the thermal expansion behavior of this alloy is determined by the Cu-rich matrix. The data for NiAl and NiCrAlY are in excellent agreement with published results irrespective of composition and the methods used for processing the materials. The implications of these results on coating GRCop-84 copper alloy combustor liners for reusable launch vehicles are discussed.

  9. Thermal expansion and phase transitions of α-AlF{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Morelock, Cody R.; Hancock, Justin C. [School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA 30332-0400 (United States); Wilkinson, Angus P., E-mail: angus.wilkinson@chemistry.gatech.edu [School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA 30332-0400 (United States); School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA 30332-0245 (United States)

    2014-11-15

    ReO{sub 3}-type materials are of interest for their potential low or negative thermal expansion. Many metal trifluorides MF{sub 3} adopt the cubic form of this structure at elevated temperatures, which rhombohedrally distorts upon cooling. The rhombohedral form displays strong positive volume thermal expansion, but cubic MF{sub 3} display much lower and sometimes negative thermal expansion. The expansion behavior of α-AlF{sub 3} was characterized via synchrotron powder diffraction between 323 and 1177 K. α-AlF{sub 3} is rhombohedral at ambient conditions and displays strongly anisotropic thermal expansion. The volume coefficient of thermal expansion (CTE), α{sub V}, at 500 K is ∼86 ppm K{sup −1}, but the linear CTE along the c-axis, α{sub c}, is close to zero. α-AlF{sub 3} becomes cubic on heating to ∼713 K and continues to show positive thermal expansion above the phase transition (α{sub V}(900 K) ∼25 ppm K{sup −1}). - Graphical abstract: α-AlF{sub 3} has a rhombohedrally distorted ReO{sub 3}-type structure at ambient conditions and displays strongly positive volume thermal expansion that is highly anisotropic; the material becomes cubic on heating above ∼713 K and continues to show positive thermal expansion. - Highlights: • ReO{sub 3}-type α-AlF{sub 3} displays strongly anisotropic thermal expansion below 713 K. • α-AlF{sub 3} is cubic above 713 K and maintains positive (isotropic) thermal expansion. • The volume CTE changes from ∼86 to ∼25 ppm K{sup −1} on heating from 500 to 900 K. • The PTE of cubic α-AlF{sub 3} may be due to the presence of local octahedral tilts.

  10. Standard test method for linear thermal expansion of glaze frits and ceramic whiteware materials by the interferometric method

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    1995-01-01

    1.1 This test method covers the interferometric determination of linear thermal expansion of premelted glaze frits and fired ceramic whiteware materials at temperatures lower than 1000°C (1830°F). 1.2 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

  11. Thermal expansion of the superconducting ferromagnet UCoGe

    NARCIS (Netherlands)

    Gasparini, A.; Huang, Y.K.; Hartbaum, J.; v. Löhneysen, H.; de Visser, A.

    2010-01-01

    We report measurements of the coefficient of linear thermal expansion, α(T), of the superconducting ferromagnet UCoGe. The data taken on a single-crystalline sample along the orthorhombic crystal axes reveal a pronounced anisotropy with the largest length changes along the b axis. The large values

  12. Giant Thermal Expansion in 2D and 3D Cellular Materials.

    Science.gov (United States)

    Zhu, Hanxing; Fan, Tongxiang; Peng, Qing; Zhang, Di

    2018-03-25

    When temperature increases, the volume of an object changes. This property was quantified as the coefficient of thermal expansion only a few hundred years ago. Part of the reason is that the change of volume due to the variation of temperature is in general extremely small and imperceptible. Here, abnormal giant linear thermal expansions in different types of two-ingredient microstructured hierarchical and self-similar cellular materials are reported. The cellular materials can be 2D or 3D, and isotropic or anisotropic, with a positive or negative thermal expansion due to the convex or/and concave shape in their representative volume elements respectively. The magnitude of the thermal expansion coefficient can be several times larger than the highest value reported in the literature. This study suggests an innovative approach to develop temperature-sensitive functional materials and devices. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. An anisotropic linear thermo-viscoelastic constitutive law - Elastic relaxation and thermal expansion creep in the time domain

    Science.gov (United States)

    Pettermann, Heinz E.; DeSimone, Antonio

    2017-09-01

    A constitutive material law for linear thermo-viscoelasticity in the time domain is presented. The time-dependent relaxation formulation is given for full anisotropy, i.e., both the elastic and the viscous properties are anisotropic. Thereby, each element of the relaxation tensor is described by its own and independent Prony series expansion. Exceeding common viscoelasticity, time-dependent thermal expansion relaxation/creep is treated as inherent material behavior. The pertinent equations are derived and an incremental, implicit time integration scheme is presented. The developments are implemented into an implicit FEM software for orthotropic material symmetry under plane stress assumption. Even if this is a reduced problem, all essential features are present and allow for the entire verification and validation of the approach. Various simulations on isotropic and orthotropic problems are carried out to demonstrate the material behavior under investigation.

  14. Flow and linear coefficient of thermal expansion of four types of Base Plate waxes compared with ADA standard

    Directory of Open Access Journals (Sweden)

    Monzavi A

    2002-07-01

    Full Text Available Waxes have a lot of applications in dentistry. Such materials are of thermoplastic type that undergoes deformation in different temperatures. Two important properties of base plate waxes are flow and their coefficient of linear thermal expansion. Recently, different institutions, inside the country, produce dentistry waxes, while they have not been standardized. Consequently, consumers' dissatisfaction are observed. In this research, the two above- mentioned factors were compared between three kinds of Iranian waxes with Cavex that is foreign production, based on test number 24 of ADA. To measure the flow rate in the temperatures of 23, 37 and 45°c, Wilcoxon statistical analysis was used. The results showed that in 23°c, the flow rate of Cavex and Azardent waxes met ADA standards; however, it was not true for two others types. In 37°c, the flow of none of the waxes was standardized and in 45°c their flow was acceptable, moreover, thermal expansion coefficient, for Cavex and Azardent types, was based on ADA standard.

  15. Principles of Thermal Expansion in Feldspars

    Science.gov (United States)

    Hovis, Guy; Medford, Aaron; Conlon, Maricate; Tether, Allison; Romanoski, Anthony

    2010-05-01

    bridging Al-O-Si oxygens, (C) plagioclase (11,12,13) and (D) Ba-K feldspars (12) where coupled substitution across the series produces expansion behavior that rapidly transitions from one control to the other. Generally, thermal expansion coefficients vary linearly as functions of room-temperature volume between the relevant end members. Thus, the thermal expansion of any feldspar can be estimated simply from knowledge of its chemical system and room-temperature volume. References cited: (1) Hovis, Morabito, Spooner, Mott, Person, Henderson, Roux & Harlov (2008) American Mineralogist 93, 1568-1573. (2) Hovis & Graeme-Barber (1997) American Mineralogist 82, 158-164. (3) Hovis, Brennan, Keohane & Crelling (1999) The Canadian Mineralogist 37, 701-709. (4) Henderson (1984) Progress in Experimental Petrology, N.E.R.C. Report 6, 78-83. (5) Benna, Tribaudino & Bruno (1999) American Mineralogist 84, 120-129. (6) Lowenstein (1954) American Mineralogist 39, 92 -96. (7) Megaw, Kempster & Radosolovich (1962) Acta Crystallographica 15, 1017-1035. (8) Newham & Megaw (1960) Acta Crystallographica 13, 303-312. (9) Pauling (1929) Journal of the American Chemical Society 51, 1010-1026. (10) Gibbs, Rosso, Cox & Boisen (2003) Physics and Chemistry of Minerals 30, 317-320. (11) Grundy & Brown (1974) In The Feldspars, Eds. MacKenzie & Zussman, 163-173. (12) Hovis, Medford, Conlon, Tether & Romanoski (in review) American Mineralogist. (13) Tribaudino, Angel, Camara, Nestola, Pasqual, & Margiolaki (in review) Contributions to Mineralogy and Petrology.

  16. Invar hardening under keeping of low values of temperature coefficient of linear expansion

    International Nuclear Information System (INIS)

    Bashnin, Yu.A.; Shiryaeva, A.N.; Omel'chenko, A.V.

    1982-01-01

    Complex invar alloying with chromium, zirconium and nitrogen is conducted for increasing hardness and assuring low values of the temperature coefficient of linear expansion. It is shown that alloying with nitride-forming elements-chromium, zirconium and the following high-temperature saturation under high pressure with nitrogen provides the invar hardening at assuring a low temperature coefficient of linear expansion. Saturation with nitrogen under 100 MPa pressure at 1050 deg C during 3 hours permits to prepare an invar containing up to 0.2% N 2 uniformly distributed over the whole cross section of samples with 4 mm diameter. Nitrogen in invar alloys alloyed with chromium and zirconium affects the Curie point similarly to carbon and nickel shifting it towards higher temperatures, it slightly changes the value of the temperature coefficient of linear expansion and provides linear character of thermal expansion dependence on temperature in the +100 deg C - -180 deg C range

  17. Temperature dependence of the thermal expansion of neutron-irradiated pyrolytic carbon and graphite

    International Nuclear Information System (INIS)

    Matsuo, Hideto

    1988-01-01

    The effects of neutron irradiation and annealing on the temperature dependence of the linear thermal expansion of pyrolytic carbon and graphite were investigated after irradiation at 930-1280 0 C to a maximum neutron fluence of 2.84 x 10 25 m -2 (E > 29 fJ). After irradiation, little change in the thermal expansion of pyrolytic graphite was observed. However, as-deposited pyrolytic carbon showed an increase in thermal expansion in the perpendicular direction, a decrease in the direction parallel to the deposition plane, and also an increase in the anisotropy of the thermal expansion. Annealing at 2000 0 C did not cause any effective changes for irradiated specimens of either as-deposited pyrolytic carbon or pyrolytic graphite. (author)

  18. Studies on thermal expansion and XPS of urania-thoria solid solutions

    International Nuclear Information System (INIS)

    Anthonysamy, S.; Panneerselvam, G.; Bera, Santanu; Narasimhan, S.V.; Vasudeva Rao, P.R.

    2000-01-01

    The thermal expansion characteristics of polycrystalline (U y Th 1-y )O 2 solid solutions with y=0.13, 0.55 and 0.91 were determined in the temperature range from 298 to 1973 K by means of X-ray diffraction technique. For these temperatures, the average linear thermal expansion coefficients for (U 0.13 Th 0.87 )O 2 , (U 0.55 Th 0.45 )O 2 and (U 0.91 Th 0.09 )O 2 are 1.033x10 -5 , 1.083x10 -5 and 1.145x10 -5 K -1 , respectively. The measured thermal expansion values were compared with those calculated by applying the equations for linear thermal expansion of pure urania and thoria. It was shown that the stoichiometric (U, Th)O 2 solid solutions are almost ideal at least up to 2000 K. The binding energies of U 4f 7/2 and Th 4f 7/2 electrons of (U 0.1 Th 0.9 )O 2 , (U 0.25 Th 0.75 )O 2 , (U 0.50 Th 0.50 )O 2 , (U 0.75 Th 0.25 )O 2 and (U 0.90 Th 0.10 )O 2 were experimentally determined by X-ray photoelectron spectroscopy. The result showed the presence of only U 4+ and Th 4+ chemical states in the stoichiometric urania-thoria solid solutions

  19. Bearing-Mounting Concept Accommodates Thermal Expansion

    Science.gov (United States)

    Nespodzany, Robert; Davis, Toren S.

    1995-01-01

    Pins or splines allow radial expansion without slippage. Design concept for mounting rotary bearing accommodates differential thermal expansion between bearing and any structure(s) to which bearing connected. Prevents buildup of thermal stresses by allowing thermal expansion to occur freely but accommodating expansion in such way not to introduce looseness. Pin-in-slot configuration also maintains concentricity.

  20. Thermal expansion at low temperatures of glass-ceramics and glasses

    Energy Technology Data Exchange (ETDEWEB)

    White, G K [National Measurement Lab., Sydney (Australia)

    1976-08-01

    The linear thermal expansion coefficient, ..cap alpha.., has been measured from 2 to 32 K and from 55 to 90 K for a machineable glass-ceramic, an 'ultra-low expansion' titanium silicate glass (Corning ULE), and ceramic glasses (Cer-Vit and Zerodur), and for glassy carbon. ..cap alpha.. is negative for the ultra-low expansion materials below 100 K, as for pure vitreous silica. Comparative data are reported for ..cap alpha..-quartz , ..cap alpha..-cristobalite, common opal, and vitreous silica.

  1. Thermal expansion of NZP-family alkali-metal (Na, K) zirconium phosphates

    International Nuclear Information System (INIS)

    Orlova, A.I.; Kemenov, D.V.; Pet'kov, V.I.; Samojlov, S.G.; Kazantsev, G.N.

    2000-01-01

    By means of high-temperature X-ray diffraction one investigated into thermal expansion of alkali-zirconium phosphates crystallizing in NaZr 2 (PO 4 ) 3 structure type within 20-700 deg C temperature range. One synthesized phosphates of A x Zr 2.25-0.25x (PO 4 ) 3 type two series where A-Na (x = 0.5; 1.0; 2.0; 3.0; 4.0; 5.0) and K (x = 1.0; 3.0; 5.0). One calculated for them a and c parameters of the elementary cells and α a and α c linear expansion temperature coefficients. Anisotropy of thermal expansion the maximum one for AZr 2 (PO 4 ) 3 and Na 5 Zr(PO 4 ) 3 phosphates was determined. K 5 Zr(PO 4 ) 3 compound was characterized by the minimum thermal expansion at the near-zero anisotropy of Na 5 Zr(PO 4 ) 3 [ru

  2. Novel quantum criticality in CeRu2Si2 near absolute zero observed by thermal expansion and magnetostriction.

    Science.gov (United States)

    Yoshida, J; Abe, S; Takahashi, D; Segawa, Y; Komai, Y; Tsujii, H; Matsumoto, K; Suzuki, H; Onuki, Y

    2008-12-19

    We report linear thermal expansion and magnetostriction measurements for CeRu2Si2 in magnetic fields up to 52.6 mT and at temperatures down to 1 mK. At high temperatures, this compound showed Landau-Fermi-liquid behavior: The linear thermal expansion coefficient and the magnetostriction coefficient were proportional to the temperature and magnetic field, respectively. In contrast, a pronounced non-Fermi-liquid effect was found below 50 mK. The negative contribution of thermal expansion and magnetostriction suggests the existence of an additional quantum critical point.

  3. Anomalous thermal expansion, negative linear compressibility, and high-pressure phase transition in ZnAu2(CN) 4 : Neutron inelastic scattering and lattice dynamics studies

    Science.gov (United States)

    Gupta, Mayanak K.; Singh, Baltej; Mittal, Ranjan; Zbiri, Mohamed; Cairns, Andrew B.; Goodwin, Andrew L.; Schober, Helmut; Chaplot, Samrath L.

    2017-12-01

    We present temperature-dependent inelastic-neutron-scattering measurements, accompanied by ab initio calculations of the phonon spectra and elastic properties as a function of pressure to quantitatively explain an unusual combination of negative thermal expansion and negative linear compressibility behavior of ZnAu2(CN) 4 . The mechanism of the negative thermal expansion is identified in terms of specific anharmonic phonon modes that involve bending of the -Zn-NC-Au-CN-Zn- linkage. The soft phonon at the L point at the Brillouin zone boundary quantitatively relates to the high-pressure phase transition at about 2 GPa. The ambient pressure structure is also found to be close to an elastic instability that leads to a weakly first-order transition.

  4. Using a Michelson Interferometer to Measure Coefficient of Thermal Expansion of Copper

    Science.gov (United States)

    Scholl, Ryan; Liby, Bruce W.

    2009-01-01

    When most materials are heated they expand. This concept is usually demonstrated using some type of mechanical measurement of the linear expansion of a metal rod. We have developed an alternative laboratory method for measuring thermal expansion by using a Michelson interferometer. Using the method presented, interference, interferometry, and the…

  5. The thermal expansion of a highly crystalline hexagonal BC2N compound synthesized under high temperature and pressure

    International Nuclear Information System (INIS)

    Wu Qinghua; Liu Zhongyuan; Hu Qianku; Li Hui; He Julong; Yu Dongli; Li Dongchun; Tian Yongjun

    2006-01-01

    The thermal expansion has been investigated for a highly crystalline hexagonal BC 2 N compound synthesized by the compression of a turbostratic B-C-N precursor with iron catalyst at the high temperature of 1500 deg. C and the high pressure of 5.5 GPa. The thermal expansion in the c direction is large and linear with an expansion coefficient of 35.86 x 10 -6 K -1 up to 1000 deg. C, while in the basal plane, the a dimension displays a slight linear contraction up to 750 deg. C with a contraction coefficient of -8.76 x 10 -7 K -1 , but above 750 deg. C a linear expansion is observed with a larger expansion coefficient of 1.52 x 10 -6 K -1

  6. The characterisation of VSe2: a study of the thermal expansion

    International Nuclear Information System (INIS)

    Wiegers, G.A.

    1981-01-01

    The thermal expansion of VSe 2 from 40-1175 K has been determined by x-ray diffraction. The lattice expansion is linear with temperature from 40 to about 300 K with αsub(a) = 18.6 x 10 -6 K -1 and αsub(c) = 9.8 x 10 -6 K -1 . The behaviour αsub(a) > αsub(c) is anomalous for a layer compound. From the relation between the thermal expansion and the elastic constants it follows that either the elastic constants of VSe 2 are anomalous for a layer compound or the elastic constants are normal but there is a large anisotropy in the Gruneisen functions γsub(a) and γsub(c) (γsub(a) > γsub(c)) together with a relatively large value of the cross compliance constant s 13 . The latter possibility is probably true. The physical origin lies in the electronic structure; the exceptionally high ratio c/a (1.823 at 40 K, 1.818 at 300 K) due to a band Jahn-Teller type distortion, decreases at increasing temperature. The expansion above about 300 K is no longer linear; with increasing temperature the expansion of the a axis increases while that of the c axis becomes almost zero. The non-linear behaviour is ascribed to the formation of Frenkel defects: intrasandwich vanadium is transferred to the interstitial sites in the Van der Waals gap. (author)

  7. Anisotropic thermal expansion in a metal-organic framework.

    Science.gov (United States)

    Madsen, Solveig Røgild; Lock, Nina; Overgaard, Jacob; Iversen, Bo Brummerstedt

    2014-06-01

    Ionothermal reaction between Mn(II)(acetate)2·4H2O and 1,3,5-benzenetricarboxylic acid (H3BTC) in either of the two ionic liquids 1-ethyl-3-methylimidazolium bromide (EMIMBr) and 1-ethyl-3-methylimidazolium tosylate (EMIMOTs) resulted in the formation of the new metal-organic framework (MOF) EMIM[Mn(II)BTC] (BTC = 1,3,5-benzenetricarboxylate). The compound crystallizes in the orthorhombic space group Pbca with unit-cell parameters of a = 14.66658 (12), b = 12.39497 (9), c = 16.63509 (14) Å at 100 K. Multi-temperature single-crystal (15-340 K) and powder X-ray diffraction studies (100-400 K) reveal strongly anisotropic thermal expansion properties. The linear thermal expansion coefficients, αL(l), attain maximum values at 400 K along the a- and b-axis, with αL(a) = 115 × 10(-6) K(-1) and αL(b) = 75 × 10(-6) K(-1). At 400 K a negative thermal expansion coefficient of -40 × 10(-6) K(-1) is observed along the c-axis. The thermal expansion is coupled to a continuous deformation of the framework, which causes the structure to expand in two directions. Due to the rigidity of the linker, the expansion in the ab plane causes the network to contract along the c-axis. Hirshfeld surface analysis has been used to describe the interaction between the framework structure and the EMIM cation that resides within the channel. This reveals a number of rather weak interactions and one governing hydrogen-bonding interactions.

  8. Thermal expansion of TRU nitride solid solutions as fuel materials for transmutation of minor actinides

    International Nuclear Information System (INIS)

    Takano, Masahide; Akabori, Mitsuo; Arai, Yasuo; Minato, Kazuo

    2009-01-01

    The lattice thermal expansion of the transuranium nitride solid solutions was measured to investigate the composition dependence. The single-phase solid solution samples of (Np 0.55 Am 0.45 )N, (Pu 0.59 Am 0.41 )N, (Np 0.21 Pu 0.52 Am 0.22 Cm 0.05 )N and (Pu 0.21 Am 0.18 Zr 0.61 )N were prepared by carbothermic nitridation of the respective transuranium dioxides and nitridation of Zr metal through hydride. The lattice parameters were measured by the high temperature X-ray diffraction method from room temperature up to 1478 K. The linear thermal expansion of each sample was determined as a function of temperature. The average thermal expansion coefficients over the temperature range of 293-1273 K for the solid solution samples were 10.1, 11.5, 10.8 and 8.8 x 10 -6 K -1 , respectively. Comparison of these values with those for the constituent nitrides showed that the average thermal expansion coefficients of the solid solution samples could be approximated by the linear mixture rule within the error of 2-3%.

  9. Effect of plastic deformation on the niobium thermal expansion

    International Nuclear Information System (INIS)

    Savitskij, E.M.; Bychkova, M.I.; Kanikovskij, V.B.

    1978-01-01

    Using dilatometric method the effect of plastic deformation on change of thermal expansion coefficient (TEC) of niobium of different purity was studied. It was shown that deformation affected the TEC in different ways. At first the deformation degree rising causes linear decrease of the TEC and then linear increase. Carbon intensifies the TEC decrease of deformed niobium. The linear correlation was established between the TEC and the value of macroscopic stresses in plastic deformed niobium. The expression indicating the metal TEC change under loading was defined for case of strain hardening

  10. Abnormal thermal expansion properties of cubic NaZn13-type La(Fe,Al)13 compounds.

    Science.gov (United States)

    Li, Wen; Huang, Rongjin; Wang, Wei; Zhao, Yuqiang; Li, Shaopeng; Huang, Chuanjun; Li, Laifeng

    2015-02-28

    The cubic NaZn13-type La(Fe,Al)13 compounds were synthesized, and their linear thermal expansion properties were investigated in the temperature range of 4.2-300 K. It was found that these compounds exhibit abnormal thermal expansion behavior, i.e., pronounced negative thermal expansion (NTE) or zero thermal expansion (ZTE) behavior, below the Curie temperature due to the magnetovolume effect (MVE). Moreover, in the La(Fe,Al)13 compounds, the modification of the coefficient of thermal expansion (CTE) as well as the abnormal thermal expansion (ATE) temperature-window is achieved through optimizing the proportion of Fe and Al. Typically, the average CTE of the LaFe13-xAlx compounds with x = 1.8 reaches as large as -10.47 × 10(-6) K(-1) between 100 and 225 K (ΔT = 125 K). Also, the ZTE temperature-window of the LaFe13-xAlx compounds with x = 2.5 and x = 2.7 could be broadened to 245 K (from 5 to 250 K). Besides, the magnetic properties of these compounds were measured and correlated with the abnormal thermal expansion behavior. The present results highlight the potential application of such La(Fe,Al)13 compounds with abnormal thermal expansion properties in cryogenic engineering.

  11. Thermal expansion of doped lanthanum gallates

    Indian Academy of Sciences (India)

    Administrator

    Since the components are in intimate mechanical contact, any stress generated due to their thermal expansion mis- match during thermal cycling could lead to catastrophic failure of the cell. The functional materials must have similar thermal expansions to avoid mechanical stresses. Hence it is useful to study the thermal ...

  12. A Simple Method for Determining Thermal Expansion Coefficient of Solid Materials with a Computer-aided Electromagnetic Dilatometer Measuring System

    Directory of Open Access Journals (Sweden)

    Z. EZZOUINE

    2015-07-01

    Full Text Available In this study, we present a newly designed electromagnetic dilatometer with micrometer accuracy for the measurement of the coefficient of thermal expansion of a solid in the 30 °C – 96 °C temperature range .The device has a graphical user interface to view real time data measurement. Iron and copper were subjected to temperature change in the thermal expansion experiment causing them to expand linearly. The voltage delivered in the electromagnetic dilatometer system, which includes the information about linear expansion and temperature change were transferred to a computer via a data acquisition card, presented by a program created in the LabVIEW environment, and the amount of linear expansion was detected in real time. The minimal change in length of the sample that can be resolved is 5µm, which yields the sensitivity comprised between 10-4 µm and 10-5 µm. In order to calibrate the electromagnetic dilatometer, thermal expansion coefficients of copper and Iron have been measured. By this technique, the thermal expansion coefficient can be determined with an acceptable accuracy. The present results appear also to agree well with those reported previously in the literature.

  13. Prediction of the thermal expansion coefficients of bio diesels from several sources through the application of linear regression; Predicao dos coeficientes de expansao termica de biodieseis de diversas origens atraves da aplicacao da regressa linear

    Energy Technology Data Exchange (ETDEWEB)

    Canciam, Cesar Augusto [Universidade Tecnologica Federal do Parana (UTFPR), Campus Ponta Grossa, PR (Brazil)], e-mail: canciam@utfpr.edu.br

    2012-07-01

    When evaluating the consumption of bio fuels, the knowledge of the density is of great importance for rectify the effect of temperature. The thermal expansion coefficient is a thermodynamic property that provides a measure of the density variation in response to temperature variation, keeping the pressure constant. This study aimed to predict the thermal expansion coefficients of ethyl bio diesels from castor beans, soybeans, sunflower seeds and Mabea fistulifera Mart. oils and of methyl bio diesels from soybeans, sunflower seeds, souari nut, cotton, coconut, castor beans and palm oils, from beef tallow, chicken fat and hydrogenated vegetable fat residual. For this purpose, there was a linear regression analysis of the density of each bio diesel a function of temperature. These data were obtained from other works. The thermal expansion coefficients for bio diesels are between 6.3729x{sup 10-4} and 1.0410x10{sup -3} degree C-1. In all the cases, the correlation coefficients were over 0.99. (author)

  14. Thermal expansivity of highly-stretched linear polyethylene with extended chains irradiated with different doses of γ-rays

    International Nuclear Information System (INIS)

    Turetskij, A.A.; Chvalun, S.N.; Zubov, Yu.A.; Bakeev, N.F.

    1993-01-01

    Temperature begavior of crystal lattice parameters of highly-stretched samples of linear polyethylene with extended chains irradiated with different doses of γ-rays was studied. It was found that transverse vibrations of macromolecular chains are excited at irradiation doses D≥500 Mrad and temperatures close to the melting temperature of the crystallites. These vibrations cause a sharp increase in the latiice parameter a. But no phase transition to the hexagonal packing occurs. It was shown that the thermal expansivity of the lattice parameter c changes its sign at high irradiation doses. These results are explained by the presence in the crystallites of samples irradiated with large doses of a considerable number of intermolecular chemical bonds

  15. Thermal stability, thermal expansion and grain-growth in exchange-coupled Fe-Pt-Ag-B bulk nanocomposite magnets

    International Nuclear Information System (INIS)

    Nicula, R.; Crisan, O.; Crisan, A.D.; Mercioniu, I.; Stir, M.; Vasiliu, F.

    2015-01-01

    Highlights: • Formation of the L10 FePt hard-magnetic phase (>90%) directly in the as-cast state. • Specific alternating hard/soft nanostructure is stable to 600 °C without grain growth. • Anisotropic and non-linear thermal expansion effects. • The FePtAgB alloy behaves like a single magnetic phase (full exchange coupling). - Abstract: Rare-earth free (RE-free) exchange coupling nanocomposite magnets are intensively studied nowadays due to their potential use in applications demanding stable high-temperature operation and corrosion resistance. In this respect, the FePt alloy system is one of the most actively addressed potential permanent magnet solutions. In FePt alloys, promising magnetic features arise from the co-existence of hard magnetic L1 0 FePt and soft magnetic L1 2 Fe 3 Pt phases emerged from the same metastable precursor. The present work deals with an in-situ temperature-resolved synchrotron radiation study of the thermal stability, thermal expansion and microstructure evolution in exchange-coupled FePtAgB alloys. The as-cast microstructural state as well as the optimized magnetic behavior are given as reference and correlated to the observed microstructural evolution with temperature. The melt-spun Fe 48 Pt 28 Ag 6 B 18 alloy ribbons were examined in situ by synchrotron X-ray powder diffraction from ambient temperature up to 600 °C. The FePt-Fe 3 Pt exchange-coupled microstructure achieved by rapid solidification is not significantly altered during the high temperature exposure. The thermal expansion of the FePt L1 0 unit cell has been found to be strongly anisotropic, being essentially an in-plane expansion which may be seen as an anisotropic invar effect. For the FePt L1 0 phase, a significant deviation from linear thermal expansion is observed at the Curie temperature T C = 477 °C. This non-linear behavior above T C is tentatively linked to a diffusion/segregation mechanism of Ag. The promising hard magnetic properties as well as the

  16. Thermal expansion and spontaneous magnetostriction of R2Co7 intermetallic compounds

    International Nuclear Information System (INIS)

    Andreev, A.V.; Bartashevich, M.I.; Deryagin, A.V.; Zadvorkin, S.M.; Tarasov, E.N.

    1988-01-01

    Thermal expansion of R 2 Co 7 (R=Y, Nd, Gd, Tb) single crystals was invesigated by the method of X-ray dilatometry. Anomalous of thermal expansion, taking place during magnetic ordering and spin reorientation were used to determine linear and volumetric magnetistriction deformations. Constants of anisotropic magnetostriction of all R 2 Co 7 compounds with nonzero orbital moment of rare earth ion were calculated on the basis of single-ion model according to deformation values and with account of temperature dependences of the magnitude and direction of magnetic moment

  17. Thermal Expansion and Magnetostriction Measurements at Cryogenic Temperature Using the Strain Gauge Method.

    Science.gov (United States)

    Wang, Wei; Liu, Huiming; Huang, Rongjin; Zhao, Yuqiang; Huang, Chuangjun; Guo, Shibin; Shan, Yi; Li, Laifeng

    2018-01-01

    Thermal expansion and magnetostriction, the strain responses of a material to temperature and a magnetic field, especially properties at low temperature, are extremely useful to study electronic and phononic properties, phase transitions, quantum criticality, and other interesting phenomena in cryogenic engineering and materials science. However, traditional dilatometers cannot provide magnetic field and ultra-low temperature (thermal expansion and magnetostriction at cryogenic temperature using the strain gauge method based on a Physical Properties Measurements System (PPMS). The interfacing software and automation were developed using LabVIEW. The sample temperature range can be tuned continuously between 1.8 and 400 K. With this PPMS-aided measuring system, we can observe temperature and magnetic field dependence of the linear thermal expansion of different solid materials easily and accurately.

  18. Negative thermal expansion in functional materials: controllable thermal expansion by chemical modifications.

    Science.gov (United States)

    Chen, Jun; Hu, Lei; Deng, Jinxia; Xing, Xianran

    2015-06-07

    Negative thermal expansion (NTE) is an intriguing physical property of solids, which is a consequence of a complex interplay among the lattice, phonons, and electrons. Interestingly, a large number of NTE materials have been found in various types of functional materials. In the last two decades good progress has been achieved to discover new phenomena and mechanisms of NTE. In the present review article, NTE is reviewed in functional materials of ferroelectrics, magnetics, multiferroics, superconductors, temperature-induced electron configuration change and so on. Zero thermal expansion (ZTE) of functional materials is emphasized due to the importance for practical applications. The NTE functional materials present a general physical picture to reveal a strong coupling role between physical properties and NTE. There is a general nature of NTE for both ferroelectrics and magnetics, in which NTE is determined by either ferroelectric order or magnetic one. In NTE functional materials, a multi-way to control thermal expansion can be established through the coupling roles of ferroelectricity-NTE, magnetism-NTE, change of electron configuration-NTE, open-framework-NTE, and so on. Chemical modification has been proved to be an effective method to control thermal expansion. Finally, challenges and questions are discussed for the development of NTE materials. There remains a challenge to discover a "perfect" NTE material for each specific application for chemists. The future studies on NTE functional materials will definitely promote the development of NTE materials.

  19. Thermal expansion in 3d-metal Prussian Blue Analogs-A survey study

    International Nuclear Information System (INIS)

    Adak, Sourav; Daemen, Luke L.; Hartl, Monika; Williams, Darrick; Summerhill, Jennifer; Nakotte, Heinz

    2011-01-01

    We present a comprehensive study of the structural properties and the thermal expansion behavior of 17 different Prussian Blue Analogs (PBAs) with compositions M II 3 [(M') III (CN) 6 ] 2 .nH 2 O and M II 2 [Fe II (CN) 6 ].nH 2 O, where M II =Mn, Fe, Co, Ni, Cu and Zn, (M') III =Co, Fe and n is the number of water molecules, which range from 5 to 18 for these compounds. The PBAs were synthesized via standard chemical precipitation methods, and temperature-dependent X-ray diffraction studies were performed in the temperature range between -150 deg. C (123 K) and room-temperature. The vast majority of the studied PBAs were found to crystallize in cubic structures of space groups Fm3-bar m, F4-bar 3m and Pm3-bar m. The temperature dependence of the lattice parameters was taken to compute an average coefficient of linear thermal expansion in the studied temperature range. Of the 17 compounds, 9 display negative values for the average coefficient of linear thermal expansion, which can be as large as 39.7x 1 0 -6 K -1 for Co 3 [Co(CN) 6 ] 2 .12H 2 O. All of the M II 3 [Co III (CN) 6 ] 2 .nH 2 O compounds show negative thermal expansion behavior, which correlates with the Irving-Williams series for metal complex stability. The thermal expansion behavior for the PBAs of the M II 3 [Fe III (CN) 6 ] 2 .nH 2 O family are found to switch between positive (for M=Mn, Co, Ni) and negative (M=Cu, Zn) behavior, depending on the choice of the metal cation (M). On the other hand, all of the M II 2 [Fe II (CN) 6 ].nH 2 O compounds show positive thermal expansion behavior. - Graphical Abstract: The structure of Prussian Blue analogs (PBAs) consists of two types of metal centered octahedral units connected by cyanide ligand. Lattice and interstitial water molecules are present in these framework structures. All the PBAs of the M 3 [Co(CN) 6 ] 2 .nH 2 O family show negative thermal expansion (NTE) behavior. The lattice parameters and magnitude of NTE correlates inversely with the Irving

  20. Lattice parameters and thermal expansion of delta-VNsub(1-x) from 298-1000 K

    International Nuclear Information System (INIS)

    Lengauer, W.; Ettmayer, P.

    1986-01-01

    The thermal expansion of VNsub(1-x) was determined from measurements of the lattice parameters in the temperature range of 298-1000 K and in the composition range of VNsub(0.707) - VNsub(0.996). Within the accuracy of the results the expansion of the lattice parameter with temperature is not dependent on the composition. The lattice parameter as a function of composition ([N]/[V] = 0.707-0.996) and temperature (198-1000 K) is given by a([N]/[V], T) = 0.38872+0.02488 ([N]/[V]) - (1.083+-0.021) x 10 -4 Tsup(1/2) + (6.2+-0.1) x 10 - sup6T. The coefficient of linear thermal expansion as a function of temperature (in the same range) is given by α(T) = a([N]/[V], T) -1 [(-5.04+-0.01) x 10 -5 Tsup(1/2) + (6.2+-0.1) x 10 -6 ]. The average linear thermal expansion coefficient is αsub(av) = 9.70 +- 0.15 x 10 -6 K -1 (298-1000 K). The data are compared with those of several fcc transition metal nitrides collected and evaluated from the literature. (Author)

  1. The effect of linear imperfection in [001] direction on the thermal properties of silver crystal

    Directory of Open Access Journals (Sweden)

    J Davoodi

    2013-09-01

    Full Text Available  The aim of this investigation was to calculate the thermal properties of silver crystal in the presence of linear imperfection. The simulations were performed by molecular dynamics simulation technique in NPT as well as NVT ensemble based on quantum Sutton-Chen many body potential. The thermal properties including cohesive energy, melting temperature, isobaric heat capacity and thermal expansion of imperfect silver crystal were calculated and compared to those of the perfect crystal. Moreover, the quantities such as radial distribution function, order parameter and lindemann index were calculated in order to obtain information on crystal structure and disorder in atoms. All calculations were done both with liner imperfection in [001] direction and without imperfection at different temperature. The simulation results show that cohesive energy, linear thermal expansion coefficient increase and melting temperature, latent heat of fusion decrease with increasing linear imperfection. Also, the results show that linear imperfection has no effect on the heat capacity.

  2. Low thermal expansion glass ceramics

    CERN Document Server

    1995-01-01

    This book is one of a series reporting on international research and development activities conducted by the Schott group of companies With the series, Schott aims to provide an overview of its activities for scientists, engineers, and managers from all branches of industry worldwide where glasses and glass ceramics are of interest Each volume begins with a chapter providing a general idea of the current problems, results, and trends relating to the subjects treated This volume describes the fundamental principles, the manufacturing process, and applications of low thermal expansion glass ceramics The composition, structure, and stability of polycrystalline materials having a low thermal expansion are described, and it is shown how low thermal expansion glass ceramics can be manufactured from appropriately chosen glass compositions Examples illustrate the formation of this type of glass ceramic by utilizing normal production processes together with controlled crystallization Thus glass ceramics with thermal c...

  3. Linear Thermal Expansion Measurements with Sub-Atomic Resolution for the Study of Phase Transitions in Novel Condensed Matter Systems. Final Report

    International Nuclear Information System (INIS)

    Neumeier, John J.

    2010-01-01

    This grant has involved numerous projects focusing on further development of thermal expansion measurement technology. Significant improvements to our novel quartz thermal expansion cell have been realized. We have developed an absolute method for measuring the thermal expansion of materials under consideration for use in thermal expansion cell construction. The work associated with this grant has significantly expanded the capabilities and infrastructure for the measurement of the thermal expansion of solids at Montana State University. The techniques we develop have been transferred to students and postdocs through the training they receive. The National High Magnetic Field Laboratory (NHMFL) in Los Alamos has collaborated with the PI to import our quartz thermal expansion cells for measurements in pulsed-magnetic field as part of their user program. The significant progress made with our technology is expected to impact important problems in materials physics. Collaborations with LANL, ANL, BNL and ORNL formed a significant portion of the scientific work. Numerous scientific investigations associated with this grant have already appeared in the archival literature, or have been submitted. Some other work is still in progress, and will be the subject of future grant proposals and publications.

  4. Coherent phonon excitation and linear thermal expansion in structural dynamics and ultrafast electron diffraction of laser-heated metals.

    Science.gov (United States)

    Tang, Jau

    2008-04-28

    In this study, we examine the ultrafast structural dynamics of metals induced by a femtosecond laser-heating pulse as probed by time-resolved electron diffraction. Using the two-temperature model and the Grüneisen relationship we calculate the electron temperature, phonon temperature, and impulsive force at each atomic site in the slab. Together with the Fermi-Pasta-Ulam anharmonic chain model we calculate changes of bond distance and the peak shift of Bragg spots or Laue rings. A laser-heated thin slab is shown to exhibit "breathing" standing-wave behavior, with a period equal to the round-trip time for sound wave and a wavelength twice the slab thickness. The peak delay time first increases linearly with the thickness (linear thermal expansion due to lattice temperature jump are shown to contribute to the overall structural changes. Differences between these two mechanisms and their dependence on film thickness and other factors are discussed.

  5. Thermal expansion coefficient measurement from electron diffraction of amorphous films in a TEM.

    Science.gov (United States)

    Hayashida, Misa; Cui, Kai; Malac, Marek; Egerton, Ray

    2018-05-01

    We measured the linear thermal expansion coefficients of amorphous 5-30 nm thick SiN and 17 nm thick Formvar/Carbon (F/C) films using electron diffraction in a transmission electron microscope. Positive thermal expansion coefficient (TEC) was observed in SiN but negative coefficients in the F/C films. In case of amorphous carbon (aC) films, we could not measure TEC because the diffraction radii required several hours to stabilize at a fixed temperature. Crown Copyright © 2018. Published by Elsevier B.V. All rights reserved.

  6. The part of acoustic phonons in the negative thermal expansion of the layered structures and nanotubes based on them

    International Nuclear Information System (INIS)

    Eremenko, V.V.; Sirenko, V.A.; Dolbin, A.V.; Gospodarev, I.A.; Syrkin, E.S.; Feodos'ev, S.B.; Bondar', I.S.; Sirenko, A.F.; Minakova, K.A.

    2016-01-01

    A negative linear thermal expansion observed experimentally in a number of crystalline compounds with a complicated lattice and anisotropic interaction between atoms. The nature of negative linear thermal expansion along a number of directions is explained on the basis of calculations which were carried out at a microscopic level. We analyze anomalies in the temperature dependence of the coefficients of linear thermal expansion (the LTEC) along different directions: in layered crystals, formed as a monoatomic layers (graphite and carbon nanofilms) and multilayer ''sand-wiches'' (dichalcogenides of transition metals); in multilayer crystal structures such as high-temperature superconductors in which the anisotropy of the interatomic interaction is not saved in the long-range order; in carbon nanotubes. The results of theoretical calculations are compared with the data of x-ray, neutron diffraction and dilatometric measurements.

  7. Fabrication of epoxy composites with large-pore sized mesoporous silica and investigation of their thermal expansion.

    Science.gov (United States)

    Suzuki, Norihiro; Kiba, Shosuke; Yamauchi, Yusuke

    2012-02-01

    We fabricate epoxy composites with low thermal expansion by using mesoporous silica particles with a large pore diameter (around 10 nm) as inorganic fillers. From a simple calculation, almost all the mesopores are estimated to be completely filled with the epoxy polymer. The coefficient of linear thermal expansion (CTE) values of the obtained epoxy composites proportionally decrease with the increase of the mesoporous silica content.

  8. First-principles study of thermal expansion and thermomechanics of single-layer black and blue phosphorus

    International Nuclear Information System (INIS)

    Sun, Hongyi; Liu, Gang; Li, Qingfang; Wan, X.G.

    2016-01-01

    The linear thermal expansion coefficients (LTEC) and thermomechanics of single-layer black and blue phosphorus are systematically studied using first-principles based on quasiharmonic approximation. We find the thermal expansion of black phosphorus is very anisotropic. The LTEC along zigzag direction has a turning from negative to positive at around 138 K, while the LTEC along armchair direction is positive (except below 8 K) and about 2.5 times larger than that along zigzag direction at 300 K. For blue phosphorus, the LTEC is negative in the temperature range from 0 to 350 K. In addition, we find that the Young's modulus and Poisson's ratio of black phosphorus along zigzag direction are 4 to 5 times larger than those along armchair direction within considered temperature range, showing a remarkable anisotropic in-plane thermomechanics property. The mechanisms of these peculiar thermal properties are also explored. This work provides a theoretical understanding of the thermal expansion and thermomechanics of this single layer phosphorus family, which will be useful in nanodevices. - Highlights: • The thermal properties of black and blue phosphorus are studied. • Black phosphorus shows remarkable anisotropic thermal expansion and thermomechanics properties. • Blue phosphorus shows novel negative thermal expansion. • The thermal expansion properties are well analyzed by grüneisen theory.

  9. Thermal Expansion Anomaly Regulated by Entropy

    Science.gov (United States)

    Liu, Zi-Kui; Wang, Yi; Shang, Shunli

    2014-11-01

    Thermal expansion, defined as the temperature dependence of volume under constant pressure, is a common phenomenon in nature and originates from anharmonic lattice dynamics. However, it has been poorly understood how thermal expansion can show anomalies such as colossal positive, zero, or negative thermal expansion (CPTE, ZTE, or NTE), especially in quantitative terms. Here we show that changes in configurational entropy due to metastable micro(scopic)states can lead to quantitative prediction of these anomalies. We integrate the Maxwell relation, statistic mechanics, and first-principles calculations to demonstrate that when the entropy is increased by pressure, NTE occurs such as in Invar alloy (Fe3Pt, for example), silicon, ice, and water, and when the entropy is decreased dramatically by pressure, CPTE is expected such as in anti-Invar cerium, ice and water. Our findings provide a theoretic framework to understand and predict a broad range of anomalies in nature in addition to thermal expansion, which may include gigantic electrocaloric and electromechanical responses, anomalously reduced thermal conductivity, and spin distributions.

  10. Thermal conductivity, diffusivity and expansion of Avery Island salt at pressure and temperature

    International Nuclear Information System (INIS)

    Durham, W.B.; Abey, A.E.; Trimmer, D.A.

    1981-01-01

    Preliminary data on the thermal propertes of a course-grained rock salt from Avery Island, Louisiana, indicate that hydrostatic pressure to 50 MPa has little effect on the thermal conductivity, diffusivity and linear expansion at temperatures from 300 to 573 K. The measurements were made in a new apparatus under conditions of true hydrostatic loading. At room temperature and effective confining pressure increasing from 10 to 50 MPa, thermal conductivity and diffusivity are constant at roughly 7 W/mK and 3.6 x 10 -6 m 2 /s, respectively. At 50 MPa and temperature increasing from 300 to 573 K, both conductivity and diffusivity drop by a factor of 2. Thermal linear expansion at 0 MPa matches that at 50 MPa, increasing from roughly 4.2 x 10 -5 /K at 300 K to 5.5 x 10 -5 /K at 573 K. The lack of a pressure effect on all three properties is confirmed by previous work. Simple models of microcracking suggest that among common geological materials the lack of pressure dependence is unique to rock salt

  11. Thermal conductivity, diffusivity and expansion of Avery Island salt at pressure and temperature

    International Nuclear Information System (INIS)

    Durham, W.B.; Abey, A.E.; Trimmer, D.A.

    1980-01-01

    Preliminary data on the thermal properties of a coarse-grained rock salt from Avery Island, Louisiana, indicates that hydrostatic pressure to 50 MPa has little effect on the thermal conductivity, diffusivity and linear expansion at temperatures from 300 to 573 K. The measurements were made in a new apparatus under conditions of true hydrostatic loading. At room temperature and effective confining pressure increasing from 10 to 50 MPa, thermal conductivity and diffusivity are constant at roughly 7W/mK and 3.6 x 10 -6 m 2 /s, respectively. At 50 MPa and temperature increasing from 300 to 573K, both conductivity and diffusivity drop by a factor of 2. Thermal linear expansion at 0 MPa matches that at 50 MPa, increasing from roughly 4.2 x 10 -5 /K at 300 K to 5.5 x 10 -5 at 573 K. The lack of a pressure effect on all three properties is confirmed by previous work. Simple models of microcracking suggest that among common geological materials the lack of pressure dependence is unique to rock salt

  12. Stability Evaluation of Buildings in Urban Area Using Persistent Scatterer Interfometry -Focused on Thermal Expansion Effect

    Science.gov (United States)

    Choi, J. H.; Kim, S. W.; Won, J. S.

    2017-12-01

    The objective of this study is monitoring and evaluating the stability of buildings in Seoul, Korea. This study includes both algorithm development and application to a case study. The development focuses on improving the PSI approach for discriminating various geophysical phase components and separating them from the target displacement phase. A thermal expansion is one of the key components that make it difficult for precise displacement measurement. The core idea is to optimize the thermal expansion factor using air temperature data and to model the corresponding phase by fitting the residual phase. We used TerraSAR-X SAR data acquired over two years from 2011 to 2013 in Seoul, Korea. The temperature fluctuation according to seasons is considerably high in Seoul, Korea. Other problem is the highly-developed skyscrapers in Seoul, which seriously contribute to DEM errors. To avoid a high computational burden and unstable solution of the nonlinear equation due to unknown parameters (a thermal expansion parameter as well as two conventional parameters: linear velocity and DEM errors), we separate a phase model into two main steps as follows. First, multi-baseline pairs with very short time interval in which deformation components and thermal expansion can be negligible were used to estimate DEM errors first. Second, single-baseline pairs were used to estimate two remaining parameters, linear deformation rate and thermal expansion. The thermal expansion of buildings closely correlate with the seasonal temperature fluctuation. Figure 1 shows deformation patterns of two selected buildings in Seoul. In the figures of left column (Figure 1), it is difficult to observe the true ground subsidence due to a large cyclic pattern caused by thermal dilation of the buildings. The thermal dilation often mis-leads the results into wrong conclusions. After the correction by the proposed method, true ground subsidence was able to be precisely measured as in the bottom right figure

  13. Thermal Expansion and Magnetostriction Measurements at Cryogenic Temperature Using the Strain Gauge Method

    Directory of Open Access Journals (Sweden)

    Wei Wang

    2018-03-01

    Full Text Available Thermal expansion and magnetostriction, the strain responses of a material to temperature and a magnetic field, especially properties at low temperature, are extremely useful to study electronic and phononic properties, phase transitions, quantum criticality, and other interesting phenomena in cryogenic engineering and materials science. However, traditional dilatometers cannot provide magnetic field and ultra-low temperature (<77 K environment easily. This paper describes the design and test results of thermal expansion and magnetostriction at cryogenic temperature using the strain gauge method based on a Physical Properties Measurements System (PPMS. The interfacing software and automation were developed using LabVIEW. The sample temperature range can be tuned continuously between 1.8 and 400 K. With this PPMS-aided measuring system, we can observe temperature and magnetic field dependence of the linear thermal expansion of different solid materials easily and accurately.

  14. Thermal expansion and magnetostriction measurements at cryogenic temperature using the strain gage method

    Science.gov (United States)

    Wang, Wei; Liu, Huiming; Huang, Rongjin; Zhao, Yuqiang; Huang, Chuangjun; Guo, Shibin; Shan, Yi; Li, Laifeng

    2018-03-01

    Thermal expansion and magnetostriction, the strain responses of a material to temperature and a magnetic field, especially properties at low temperature, are extremely useful to study electronic and phononic properties, phase transitions, quantum criticality, and other interesting phenomena in cryogenic engineering and materials science. However, traditional dilatometers cannot provide magnetic field and ultra low temperature (<77 K) environment easily. This paper describes the design and test results of thermal expansion and magnetostriction at cryogenic temperature using the strain gage method based on a Physical Properties Measurements System (PPMS). The interfacing software and automation were developed using LabVIEW. The sample temperature range can be tuned continuously between 1.8 K and 400 K. With this PPMS-aided measuring system, we can observe temperature and magnetic field dependence of the linear thermal expansion of different solid materials easily and accurately.

  15. PSA-2, Stress Analysis, Thermal Expansion and Loads in Multi Anchor Piping System

    Energy Technology Data Exchange (ETDEWEB)

    Nickols, A N [Codes Coordinator, Atomics International, P. O. Box 309, Canoga Park, California 91304 (United States)

    1975-03-01

    1 - Description of problem or function: PSA2 computes the reactions and stresses caused by thermal expansion and loads in a multi-anchor piping system which may contain loops and may be partially restrained at any point in any direction. 2 - Method of solution: The linear equations for the statically indeterminate pipe system are set up by a generalization of Brock's matrix method. By a systematic use of linear transforms, the matrix of the system of linear equations can be obtained by incidence algebra in the form of a symmetric banded matrix. 2 - Restrictions on the complexity of the problem - Maximum of: 36 sections. 3 - Unusual features of the program - PSA2 takes into account: (a) elasticity of the attachment of the pipe to the foundation, (b) restraints on pipe displacements by anchors and intermediate partial constraints of linear type, (c) given constant forces and moments acting upon the pipe system, (d) thermal expansion, (e) any geometrical structure of the pipe system, (f) several cases of stressing per pipe system, and (g) both metric and English units.

  16. PSA-2, Stress Analysis, Thermal Expansion and Loads in Multi Anchor Piping System

    International Nuclear Information System (INIS)

    Nickols, A.N.

    1975-01-01

    1 - Description of problem or function: PSA2 computes the reactions and stresses caused by thermal expansion and loads in a multi-anchor piping system which may contain loops and may be partially restrained at any point in any direction. 2 - Method of solution: The linear equations for the statically indeterminate pipe system are set up by a generalization of Brock's matrix method. By a systematic use of linear transforms, the matrix of the system of linear equations can be obtained by incidence algebra in the form of a symmetric banded matrix. 2 - Restrictions on the complexity of the problem - Maximum of: 36 sections. 3 - Unusual features of the program - PSA2 takes into account: (a) elasticity of the attachment of the pipe to the foundation, (b) restraints on pipe displacements by anchors and intermediate partial constraints of linear type, (c) given constant forces and moments acting upon the pipe system, (d) thermal expansion, (e) any geometrical structure of the pipe system, (f) several cases of stressing per pipe system, and (g) both metric and English units

  17. Origami structures for tunable thermal expansion

    Science.gov (United States)

    Boatti, Elisa; Bertoldi, Katia

    Materials with engineered thermal expansion, capable of achieving targeted and extreme area/volume changes in response to variations in temperature, are important for a number of aerospace, optical, energy, and microelectronic applications. While most of the proposed structures with tunable coefficient of thermal expansion consist of bi-material 2D or 3D lattices, here we propose a periodic metastructure based on a bilayer Miura-Ori origami fold. We combine experiments and simulations to demonstrate that by tuning the geometrical and mechanical parameters an extremely broad range of thermal expansion coefficients can be obtained, spanning both negative and positive values. Additionally, the thermal properties along different directions can be adjusted independently. Differently from all previously reported systems, the proposed structure is non-porous.

  18. Synthesis, characterization and thermal expansion studies on ThO2-SmO1.5 solid solutions

    International Nuclear Information System (INIS)

    Panneerselvam, G.; Antony, M.P.

    2008-01-01

    Full text: A highly homogeneous Th 1-x Sm x O 2 ; 0 ≤ x ≤ 0.8 solid solutions were synthesized by co-precipitation technique and the co-precipitated samples were sintered at 1473 K. Compositions of the solid solutions were characterized by standard wet-chemical analysis. X-ray diffraction measurements were performed in the sintered pellets for structural analysis, lattice parameter calculation and determination of solid solubility of SmO 1.5 in ThO 2 matrix. Bulk and theoretical densities of solid solutions were also determined. A fluorite structure was observed for ThO 2 -SmO 1.5 solid solutions with 0-55.2 mol % SmO 1.5 . Their thermal expansion coefficients were measured using high temperature X-ray diffraction technique. The mean linear thermal expansivity, αm for ThO 2 -SmO 1.5 solid solutions containing 17.9, 41.7 and 52.0 mole percent of SmO 1.5 were determined in the temperature range 298 to 2000 K for the first time. The mean linear thermal expansion coefficients for ThO 2 -SmO 1.5 solid solutions are 10.47x10 -6 K -1 , 11.16x10 -6 K -1 and 11.45x10 -6 K -1 , respectively. The percentage linear thermal expansion in this temperature range, for ThO 2 -SmO 1.5 solid solutions containing 17.9, 41.7 and 52.0 mol % SmO 1.5 are 1.82,1.94 and 1.99 respectively. It is suggested that the solid solutions are stable up to 2000 K. It is also suggested that the effect and nature of the dopant are the important parameters influenced in the thermal expansion of the ThO 2

  19. Synthesis, Structure, and Rigid Unit Mode-like Anisotropic Thermal Expansion of BaIr2In9.

    Science.gov (United States)

    Calta, Nicholas P; Han, Fei; Kanatzidis, Mercouri G

    2015-09-08

    This Article reports the synthesis of large single crystals of BaIr2In9 using In flux and their characterization by variable-temperature single-crystal and synchrotron powder X-ray diffraction, resistivity, and magnetization measurements. The title compound adopts the BaFe2Al9-type structure in the space group P6/mmm with room temperature unit cell parameters a = 8.8548(6) Å and c = 4.2696(4) Å. BaIr2In9 exhibits anisotropic thermal expansion behavior with linear expansion along the c axis more than 3 times larger than expansion in the ab plane between 90 and 400 K. This anisotropic expansion originates from a rigid unit mode-like mechanism similar to the mechanism of zero and negative thermal expansion observed in many anomalous thermal expansion materials such as ZrW2O8 and ScF3.

  20. Thermal expansion of L-ascorbic acid

    Science.gov (United States)

    Nicolaï, B.; Barrio, M.; Tamarit, J.-Ll.; Céolin, R.; Rietveld, I. B.

    2017-04-01

    The specific volume of vitamin C has been investigated by X-ray powder diffraction as a function of temperature from 110 K up to complete degradation around 440 K. Its thermal expansion is relatively small in comparison with other organic compounds with an expansivity α v of 1.2(3) × 10-4 K-1. The structure consists of strongly bound molecules in the ac plane through a dense network of hydrogen bonds. The thermal expansion is anisotropic. Along the b axis, the expansion has most leeway and is about 10 times larger than in the other directions.

  1. Thermal expansivity and bulk modulus of ZnO with NaCl-type cubic structure at high pressures and temperatures

    International Nuclear Information System (INIS)

    Sun Xiaowei; Liu Zijiang; Chen Qifeng; Chu Yandong; Wang Chengwei

    2006-01-01

    The thermal expansivity and bulk modulus of ZnO with NaCl-type cubic structure were estimated by using the constant temperature and pressure molecular dynamics technique with effective pair potentials which consist of the Coulomb, dispersion, and repulsion interaction at high pressures and temperatures. It is shown that the calculated thermodynamic parameters including linear thermal expansion coefficient, isothermal bulk modulus and its pressure derivative are in good agreement with the available experimental data and the latest theoretical results. At an extended pressure and temperature ranges, linear thermal expansion coefficient and isothermal bulk modus have also been predicted. The thermodynamic properties of ZnO with NaCl-type cubic structure are summarized in the pressure 0-150 GPa ranges and the temperature up to 3000 K

  2. The rate of thermal expansion of a thin metallic slab of arbitrary shape.

    Science.gov (United States)

    Lee, Y C

    2009-08-12

    In a previous paper the rate of thermal expansion of a long, slender insulating bar has been worked out. Our present aim is to extend that work to the thermal expansion rate of not only a long metallic bar, but to further generalize it to a thin metallic slab of arbitrary shape. Assuming that the thickness of the slab is small compared to the linear dimension of its area we again take advantage of the two distinct, disparate timescales to turn the familiar problem of thermal expansion into a time-dependent problem of the rate of the expansion. Based on the previously established finite physical momentum of an acoustic phonon when translational invariance is broken, we show that the combined pressure of the phonons and the free electrons due to their outward momenta would suffer a Doppler reduction as the specimen expands upon heating. This Doppler reduction gives rise to damping of the expanding motion, thus yielding as a first result the time of thermal expansion of a long slender metal bar. The generalization to the important case of a thin metallic slab of any shape is then worked out in detail before a concluding section containing a long physical discussion and summary.

  3. Linear thermal expansivity and Cp measurements for LuHx and LuDx (x=0.005 and 0.053) single crystals

    International Nuclear Information System (INIS)

    Swenson, C.A.

    1996-01-01

    Linear thermal expansivity (α) measurements from 1 to 300 K and heat capacity (C p ) measurements from 1 to 110 K are reported for single crystals of the α-Lu hexagonal alloys LuH x and LuD x (x=0.005 and 0.053). The C p data confirm and extend to 110 K earlier 1 to 20 K measurements on LuH x alloys, and show that isotope effects, if any, are small. The small x dependences of the C p close-quote s above 8 K can be associated with small increases in the Debye temperature Θ 0 . This latter interpretation, which is consistent with ultrasonic and other results for these alloys, is valid only if C p is expressed as mJ/gmolK (essentially, per mole of Lu ions). Results are in agreement with the previous conclusion from more extensive polycrystalline LuH x data that the shape of the low-temperature C p vs T relation for x≤0.015 is qualitatively different from that for x≥0.032. The linear thermal expansivities of the c-axis alloys, even for x=0.005, are significantly smaller (by from 3% to 20%) than those for the pure crystals, with large isotope effects and a large, nonlinear x dependence for the low-temperature expansivity data. Other types of data have shown a feature near 170 K which is associated with the completion of pairing of the hydrogens along the c axis in next-nearest-neighbor tetrahedral sites. A distinct (approximately 15 K wide) change in α which is observed near this temperature for each alloy, except for a-axis LuD 0.005 , provides the most direct evidence of such a transition. The temperature of the c-axis discontinuity is slightly isotope and x dependent, and scales approximately with x [+24% on warming for LuH(or D) 0.053 ]. (Abstract Truncated)

  4. Controlling Thermal Expansion: A Metal-Organic Frameworks Route.

    Science.gov (United States)

    Balestra, Salvador R G; Bueno-Perez, Rocio; Hamad, Said; Dubbeldam, David; Ruiz-Salvador, A Rabdel; Calero, Sofia

    2016-11-22

    Controlling thermal expansion is an important, not yet resolved, and challenging problem in materials research. A conceptual design is introduced here, for the first time, for the use of metal-organic frameworks (MOFs) as platforms for controlling thermal expansion devices that can operate in the negative, zero, and positive expansion regimes. A detailed computer simulation study, based on molecular dynamics, is presented to support the targeted application. MOF-5 has been selected as model material, along with three molecules of similar size and known differences in terms of the nature of host-guest interactions. It has been shown that adsorbate molecules can control, in a colligative way, the thermal expansion of the solid, so that changing the adsorbate molecules induces the solid to display positive, zero, or negative thermal expansion. We analyze in depth the distortion mechanisms, beyond the ligand metal junction, to cover the ligand distortions, and the energetic and entropic effect on the thermo-structural behavior. We provide an unprecedented atomistic insight on the effect of adsorbates on the thermal expansion of MOFs as a basic tool toward controlling the thermal expansion.

  5. Controlling Thermal Expansion: A Metal–Organic Frameworks Route

    Science.gov (United States)

    2016-01-01

    Controlling thermal expansion is an important, not yet resolved, and challenging problem in materials research. A conceptual design is introduced here, for the first time, for the use of metal–organic frameworks (MOFs) as platforms for controlling thermal expansion devices that can operate in the negative, zero, and positive expansion regimes. A detailed computer simulation study, based on molecular dynamics, is presented to support the targeted application. MOF-5 has been selected as model material, along with three molecules of similar size and known differences in terms of the nature of host–guest interactions. It has been shown that adsorbate molecules can control, in a colligative way, the thermal expansion of the solid, so that changing the adsorbate molecules induces the solid to display positive, zero, or negative thermal expansion. We analyze in depth the distortion mechanisms, beyond the ligand metal junction, to cover the ligand distortions, and the energetic and entropic effect on the thermo-structural behavior. We provide an unprecedented atomistic insight on the effect of adsorbates on the thermal expansion of MOFs as a basic tool toward controlling the thermal expansion. PMID:28190918

  6. Unravelling the fundamentals of thermal and chemical expansion of BaCeO3 from first principles phonon calculations.

    Science.gov (United States)

    Løken, Andreas; Haugsrud, Reidar; Bjørheim, Tor S

    2016-11-16

    Differentiating chemical and thermal expansion is virtually impossible to achieve experimentally. While thermal expansion stems from a softening of the phonon spectra, chemical expansion depends on the chemical composition of the material. In the present contribution, we, for the first time, completely decouple thermal and chemical expansion through first principles phonon calculations on BaCeO 3 , providing new fundamental insights to lattice expansion. We assess the influence of defects on thermal expansion, and how this in turn affects the interpretation of chemical expansion and defect thermodynamics. The calculations reveal that the linear thermal expansion coefficient is lowered by the introduction of oxygen vacancies being 10.6 × 10 -6 K -1 at 300 K relative to 12.2 × 10 -6 K -1 for both the protonated and defect-free bulk lattice. We further demonstrate that the chemical expansion coefficient upon hydration varies with temperature, ranging from 0.070 to 0.115 per mole oxygen vacancy. Ultimately, we find that, due to differences in the thermal expansion coefficients under dry and wet conditions, the chemical expansion coefficients determined experimentally are grossly underestimated - around 55% lower in the case of 10 mol% acceptor doped BaCeO 3 . Lastly, we evaluate the effect of these volume changes on the vibrational thermodynamics.

  7. A study on the thermal expansion characteristics of simulated spent fuel and simulated DUPIC fuel

    International Nuclear Information System (INIS)

    Kang, Kweon Ho; Ryu, H. J.; Kim, H. S.; Song, K. C.; Yang, M. S.

    2001-10-01

    Thermal expansions of simulated spent PWR fuel and simulated DUPIC fuel were studied using a dilatometer in the temperature range from 298 to 1900 K. The densities of simulated spent PWR fuel and simulated DUPIC fuel used in the measurement were 10.28 g/cm3 (95.35 % of TD) and 10.26 g/cm3 (95.14 % of TD), respectively. Their linear thermal expansions of simulated fuels are higher than that of UO2, and the difference between these fuels and UO2 increases progressively as temperature increases. However, the difference between simulated spent PWR fuel and simulated DUPIC fuel can hardly be observed. For the temperature range from 298 to 1900 K, the values of the average linear thermal expansion coefficients for simulated spent PWR fuel and simulated DUPIC fuel are 1.391 10-5 and 1.393 10-5 K-1, respectively. As temperature increases to 1900 K, the relative densities of simulated spent PWR fuel and simulated DUPIC fuel decrease to 93.81 and 93.76 % of initial densities at 298 K, respectively

  8. Measurement of Linear Coefficient of Thermal Expansion and Temperature-Dependent Refractive Index Using Interferometric System

    Science.gov (United States)

    Corsetti, James A.; Green, William E.; Ellis, Jonathan D.; Schmidt, Greg R.; Moore, Duncan T.

    2017-01-01

    A system combining an interferometer with an environmental chamber for measuring both coefficient of thermal expansion (CTE) and temperature-dependent refractive index (dn/dT) simultaneously is presented. The operation and measurement results of this instrument are discussed.

  9. Low Thermal Expansion Glass Ceramics

    CERN Document Server

    Bach, Hans

    2005-01-01

    This book appears in the authoritative series reporting the international research and development activities conducted by the Schott group of companies. This series provides an overview of Schott's activities for scientists, engineers, and managers from all branches of industry worldwide in which glasses and glass ceramics are of interest. Each volume begins with a chapter providing a general idea of the current problems, results, and trends relating to the subjects treated. This new extended edition describes the fundamental principles, the manufacturing process, and applications of low thermal expansion glass ceramics. The composition, structure, and stability of polycrystalline materials having a low thermal expansion are described, and it is shown how low thermal expansion glass ceramics can be manufactured from appropriately chosen glass compositions. Examples illustrate the formation of this type of glass ceramic by utilizing normal production processes together with controlled crystallization. Thus g...

  10. Thermal expansion of quaternary nitride coatings

    Science.gov (United States)

    Tasnádi, Ferenc; Wang, Fei; Odén, Magnus; Abrikosov, Igor A.

    2018-04-01

    The thermal expansion coefficient of technologically relevant multicomponent cubic nitride alloys are predicted using the Debye model with ab initio elastic constants calculated at 0 K and an isotropic approximation for the Grüneisen parameter. Our method is benchmarked against measured thermal expansion of TiN and Ti(1-x)Al x N as well as against results of molecular dynamics simulations. We show that the thermal expansion coefficients of Ti(1-x-y)X y Al x N (X  =  Zr, Hf, Nb, V, Ta) solid solutions monotonously increase with the amount of alloying element X at all temperatures except for Zr and Hf, for which they instead decrease for y≳ 0.5 .

  11. Synthesis, microstructure and thermal expansion studies

    Indian Academy of Sciences (India)

    Abstract. We report on the synthesis, microstructure and thermal expansion studies on Ca0.5+/2Sr0.5+/2Zr4P6−2Si2O24 ( = 0.00 to 1.00) system which belongs to NZP family of low thermal expansion ceramics. The ceramics synthesized by co-precipitation method at lower calcination and the sintering temperatures ...

  12. Anisotropic thermal expansion in flexible materials

    Science.gov (United States)

    Romao, Carl P.

    2017-10-01

    A definition of the Grüneisen parameters for anisotropic materials is derived based on the response of phonon frequencies to uniaxial stress perturbations. This Grüneisen model relates the thermal expansion in a given direction (αi i) to one element of the elastic compliance tensor, which corresponds to the Young's modulus in that direction (Yi i). The model is tested through ab initio prediction of thermal expansion in zinc, graphite, and calcite using density functional perturbation theory, indicating that it could lead to increased accuracy for structurally complex systems. The direct dependence of αi i on Yi i suggests that materials which are flexible along their principal axes but rigid in other directions will generally display both positive and negative thermal expansion.

  13. Thermal expansion and volumetric changes during indium phosphide melting

    International Nuclear Information System (INIS)

    Glazov, V.M.; Davletov, K.; Nashel'skij, A.Ya.; Mamedov, M.M.

    1977-01-01

    The results of the measurements of a thermal expansion were summed up at various temperatures as a diagram in coordinates (Δ 1/1) approximately F(t). It was shown that an appreciable deviation of the relationship (Δ1/1) approximately f(t) from the linear law corresponded to a temperature of 500-550 deg C. It was noted that the said deviation was related to an appreciable thermal decomposition of indium phosphide as temperature increased. The strength of the inter-atomic bond of indium phosphide was calculated. Investigated were the volumetric changes of indium phosphide on melting. The resultant data were analyzed with the aid of the Clausius-Clapeyron equation

  14. Thermal expansion absorbing structure for pipeline

    International Nuclear Information System (INIS)

    Nagata, Takashi; Yamashita, Takuya.

    1995-01-01

    A thermal expansion absorbing structure for a pipeline is disposed to the end of pipelines to form a U-shaped cross section connecting a semi-circular torus shell and a short double-walled cylindrical tube. The U-shaped longitudinal cross-section is deformed in accordance with the shrinking deformation of the pipeline and absorbs thermal expansion. Namely, since the central lines of the outer and inner tubes of the double-walled cylindrical tube deform so as to incline, when the pipeline is deformed by thermal expansion, thermal expansion can be absorbed by a simple configuration thereby enabling to contribute to ensure the safety. Then, the entire length of the pipeline can greatly be shortened by applying it to the pipeline disposed in a high temperature state compared with a method of laying around a pipeline using only elbows, which has been conducted so far. Especially, when it is applied to a pipeline for an FBR-type reactor, the cost for the construction of a facility of a primary systems can greater be reduced. In addition, it can be applied to a pipeline for usual chemical plants and any other structures requiring absorption of deformation. (N.H.)

  15. Thermal expansion of fibre-reinforced composites

    International Nuclear Information System (INIS)

    Schneider, B.

    1991-07-01

    The integral thermal expansion and the coefficient of thermal expansion (CTE) of carbon and Kevlar fibre-reinforced composites were measured with high accuracy from 5 K to room temperature. For this, a laser dilatometer and a sophisticated measuring procedure were used. CTE dependence on the orientation angle ω of angle-ply laminates was determined for samples with 5 different fibre alignments (UD 0deg, +/-30deg, +/-45deg, +/-60deg and UD 90deg). A high variability of the CTE with the orientation angle was shown. At angles of approximately +/-30deg even negative CTEs were found. With suitable reinforcing fibres being selected, their absolute values rose up to 30-100% of the positive CTEs of metals. Hence, composites of this type would be suitable as compensating materials in metal constructions where little thermal expansion is desired. To check the lamination theory, theoretical computations of the CTE- ω -dependence were compared with the measured values. An excellent agreement was found. Using the lamination theory, predictions about the expansion behaviour of angle-ply laminates can be made now, if the thermal and mechanical properties of the unidirectional (UD) laminate are known. Furthermore, it is possible to carry out simulation computations aimed at investigating the influence of a single parameter of the UD-laminate (e.g. shear modulus) on the expansion of the angle-ply laminate. (orig.) [de

  16. Anisotropic thermal expansion of SnSe from first-principles calculations based on Grüneisen's theory.

    Science.gov (United States)

    Liu, Gang; Zhou, Jian; Wang, Hui

    2017-06-14

    Based on Grüneisen's theory, the elastic properties and thermal expansion of bulk SnSe with the Pnma phase are investigated by using first-principles calculations. Our numerical results indicate that the linear thermal expansion coefficient along the a direction is smaller than the one along the b direction, while the one along the c direction shows a significant negative value, even at high temperature. The numerical results are in good accordance with experimental results. In addition, generalized and macroscopic Grüneisen parameters are also presented. It is also found that SnSe possesses negative Possion's ratio. The contributions of different phonon modes to NTE along the c direction are investigated, and it is found that the two modes which make the most important contributions to NTE are transverse vibrations perpendicular to the c direction. Finally, we analyze the relation of elastic constants to negative thermal expansion, and demonstrate that negative thermal expansion can also occur even with all positive macroscopic Grüneisen parameters.

  17. Thermal expansion behavior in fabricated cellular structures

    International Nuclear Information System (INIS)

    Oruganti, R.K.; Ghosh, A.K.; Mazumder, J.

    2004-01-01

    Thermal expansion behavior of cellular structures is of interest in applications where undesirable deformation and failure are caused by thermal expansion mismatch. This report describes the role of processing-induced effects and metallurgical aspects of melt-processed cellular structures, such as a bi-material structure designed to contract on heating, as well as uni-material structures of regular and stochastic topology. This bi-material structure utilized the principle of internal geometric constraints to alter the expansion behavior of the internal ligaments to create overall contraction of the structure. Homogenization design method was used to design the structure, and fabrication was by direct metal deposition by laser melting of powder in another part of a joint effort. The degree of porosity and grain size in the fabricated structure are characterized and related to the laser deposition parameters. The structure was found to contract upon heating over a short range of temperature subsequent to which normal expansion ensued. Also examined in this report are uni-material cellular structures, in which internal constraints arise from residual stress variations caused by the fabrication process, and thereby alter their expansion characteristics. A simple analysis of thermal strain of this material supports the observed thermal expansion behavior

  18. Controlled Thermal Expansion Alloys

    Data.gov (United States)

    National Aeronautics and Space Administration — There has always been a need for controlled thermal expansion alloys suitable for mounting optics and detectors in spacecraft applications.  These alloys help...

  19. Thermal expansion and phase transformations of nitrogen-expanded austenite studied with in situ synchrotron X-ray diffraction

    DEFF Research Database (Denmark)

    Brink, Bastian; Ståhl, Kenny; Christiansen, Thomas Lundin

    2014-01-01

    Nitrogen-expanded austenite, _N, with high and low nitrogen contents was produced from AISI 316 grade stainless steel powder by gaseous nitriding in ammonia/hydrogen gas mixtures. In situ synchrotron X-ray diffraction was applied to investigate the thermal expansion and thermal stability...... as a fitting parameter. The stacking fault density is constant for temperatures up to 680 K, whereafter it decreases to nil. Surprisingly, a transition phase with composition M4N (M = Fe, Cr, Ni, Mo) appears for temperatures above 770 K. The linear coefficient of thermal expansion depends on the nitrogen...

  20. Review of thermal expansion and density of uranium and plutonium carbides

    International Nuclear Information System (INIS)

    Andrew, J.F.; Latimer, T.W.

    1975-07-01

    The published literature on linear thermal expansion and density of uranium and plutonium carbide nuclear fuels, including UC, PuC, (U,Pu)C, U 2 C 3 , Pu 2 C 3 , and (U,Pu) 2 C 3 , is critically reviewed. Recommended values are given in tabular form and additional experimental studies needed for completeness are outlined. 16 tables, 52 references

  1. Effect of irradiation on thermal expansion of SiCf/SiC composites

    International Nuclear Information System (INIS)

    Senor, D.J.; Trimble, D.J.; Woods, J.J.

    1996-06-01

    Linear thermal expansion was measured on five different SiC-fiber-reinforced/SiC-matrix (SiC f /SiC) composite types in the unirradiated and irradiated conditions. Two matrices were studied in combination with Nicalon CG reinforcement and a 150 nm PyC fiber/matrix interface: chemical vapor infiltrated (CVI) SiC and liquid-phase polymer impregnated precursor (PIP) SiC. Composites of PIP SiC with Tyranno and HPZ fiber reinforcement and a 150 nm PyC interface were also tested, as were PIP SiC composites with Nicalon CG reinforcement and a 150 nm BN fiber/matrix interface. The irradiation was conducted in the Experimental Breeder Reactor-II at a nominal temperature of 1,000 C to doses of either 33 or 43 dpa-SiC. Irradiation caused complete fiber/matrix debonding in the CVI SiC composites due to a dimensional stability mismatch between fiber and matrix, while the PIP SiC composites partially retained their fiber/matrix interface after irradiation. However, the thermal expansion of all the materials tested was found to be primarily dependent on the matrix and independent of either the fiber or the fiber/matrix interface. Further, irradiation had no significant effect on thermal expansion for either the CVI SiC or PIP SiC composites. In general, the thermal expansion of the CVI SiC composites exceeded that of the PIP SiC composites, particularly at elevated temperatures, but the expansion of both matrix types was less than chemical vapor deposited (CVD) β-SiC at all temperatures

  2. Fuel Thermal Expansion (FTHEXP)

    International Nuclear Information System (INIS)

    Reymann, G.A.

    1978-07-01

    A model is presented which deals with dimensional changes in LWR fuel pellets caused by changes in temperature. It is capable of dealing with any combination of UO 2 and PuO 2 in solid, liquid or mixed phase states, and includes expansion due to the solid-liquid phase change. The function FTHEXP models fuel thermal expansion as a function of temperature, fraction of PuO 2 , and the fraction of fuel which is molten

  3. Crystal structure and thermal expansion of Mn(1-x)Fe(x)Ge.

    Science.gov (United States)

    Dyadkin, Vadim; Grigoriev, Sergey; Ovsyannikov, Sergey V; Bykova, Elena; Dubrovinsky, Leonid; Tsvyashchenko, Anatoly; Fomicheva, L N; Chernyshov, Dmitry

    2014-08-01

    A series of temperature-dependent single-crystal and powder diffraction experiments has been carried out using synchrotron radiation in order to characterize the monogermanides of Mn, Fe and their solid solutions. The MnGe single crystal is found to be enantiopure and we report the absolute structure determination. The thermal expansion, parametrized with the Debye model, is discussed from the temperature-dependent powder diffraction measurements for Mn(1-x)Fe(x)Ge (x = 0, 0.1, 0.2, 0.25, 0.3, 0.4, 0.5, 0.6, 0.7, 0.75, 0.8, 0.9). Whereas the unit-cell dimension and the Debye temperature follow a linear trend as a function of composition, the thermal expansion coefficient deviates from linear dependence with increasing Mn content. No structural phase transformations have been observed for any composition in the temperature range 80-500 K for both single-crystal and powder diffraction, indicating that the phase transition previously observed with neutron powder diffraction most probably has a magnetic origin.

  4. Thermal expansion of Ti-substituted barium hexaferrite

    NARCIS (Netherlands)

    Hernandez-Gomez, P.; Francisco, de C.; Brabers, V.A.M.; Dalderop, J.H.J.

    2000-01-01

    Thermal expansion measurements in the range of 20–500 °C were carried out on both poly- and single crystalline samples of the hexagonal magnetoplumbite ferrite with composition BaTiFe11O19. The continuous scanning of the thermal expansion reveals the existence of a -type anomaly near the Curie

  5. Dendritic solidification and thermal expansion of refractory Nb-Zr alloys investigated by electrostatic levitation

    Energy Technology Data Exchange (ETDEWEB)

    Yang, S.J.; Hu, L.; Wang, L.; Wei, B. [Northwestern Polytechnical University, Department of Applied Physics, Xi' an (China)

    2017-05-15

    The dendritic growth and thermal expansion of isomorphous refractory Nb-5%Zr, Nb-10%Zr, and Nb-15%Zr alloys were studied by electrostatic levitation technique. The obtained maximum undercoolings for the three alloys were 534 (0.2T{sub L}), 498 (0.19T{sub L}), and 483 K (0.18T{sub L}), respectively. Within these undercooling ranges, the dendritic growth velocities of the three alloys all exhibited power laws, and achieved 38.5, 34.0, and 27.1 m s{sup -1} at each maximum undercooling. The microstructures were characterized by coarse dendrites at small undercooling, while they transformed into refined dendrites under large undercooling condition. In addition, the measured thermal expansion coefficients of solid Nb-Zr alloys increased linearly with temperature. The values at liquid state were more than double of those at solid state, which also displayed linear dependence on temperature. (orig.)

  6. Asymptotic expansions for high-contrast linear elasticity

    KAUST Repository

    Poveda, Leonardo A.; Huepo, Sebastian; Calo, Victor M.; Galvis, Juan

    2015-01-01

    We study linear elasticity problems with high contrast in the coefficients using asymptotic limits recently introduced. We derive an asymptotic expansion to solve heterogeneous elasticity problems in terms of the contrast in the coefficients. We study the convergence of the expansion in the H1 norm. © 2015 Elsevier B.V.

  7. Asymptotic expansions for high-contrast linear elasticity

    KAUST Repository

    Poveda, Leonardo A.

    2015-03-01

    We study linear elasticity problems with high contrast in the coefficients using asymptotic limits recently introduced. We derive an asymptotic expansion to solve heterogeneous elasticity problems in terms of the contrast in the coefficients. We study the convergence of the expansion in the H1 norm. © 2015 Elsevier B.V.

  8. Nanoscale Electromechanics To Measure Thermal Conductivity, Expansion, and Interfacial Losses.

    Science.gov (United States)

    Mathew, John P; Patel, Raj; Borah, Abhinandan; Maliakkal, Carina B; Abhilash, T S; Deshmukh, Mandar M

    2015-11-11

    We study the effect of localized Joule heating on the mechanical properties of doubly clamped nanowires under tensile stress. Local heating results in systematic variation of the resonant frequency; these frequency changes result from thermal stresses that depend on temperature dependent thermal conductivity and expansion coefficient. The change in sign of the linear expansion coefficient of InAs is reflected in the resonant response of the system near a bath temperature of 20 K. Using finite element simulations to model the experimentally observed frequency shifts, we show that the thermal conductivity of a nanowire can be approximated in the 10-60 K temperature range by the empirical form κ = bT W/mK, where the value of b for a nanowire was found to be b = 0.035 W/mK(2), significantly lower than bulk values. Also, local heating allows us to independently vary the temperature of the nanowire relative to the clamping points pinned to the bath temperature. We suggest a loss mechanism (dissipation ~10(-4)-10(-5)) originating from the interfacial clamping losses between the metal and the semiconductor nanostructure.

  9. Thermal expansion model for multiphase electronic packaging materials

    International Nuclear Information System (INIS)

    Allred, B.E.; Warren, W.E.

    1991-01-01

    Control of thermal expansion is often necessary in the design and selection of electronic packages. In some instances, it is desirable to have a coefficient of thermal expansion intermediate between values readily attainable with single or two phase materials. The addition of a third phase in the form of fillers, whiskers, or fibers can be used to attain intermediate expansions. To help design the thermal expansion of multiphase materials for specific applications, a closed form model has been developed that accurately predicts the effective elastic properties of isotropic filled materials and transversely isotropic lamina. Properties of filled matrix materials are used as inputs to the lamina model to obtain the composite elastic properties as a function of the volume fraction of each phase. Hybrid composites with two or more fiber types are easily handled with this model. This paper reports that results for glass, quartz, and Kevlar fibers with beta-eucryptite filled polymer matrices show good agreement with experimental results for X, Y, and Z thermal expansion coefficients

  10. Modeling of Viscosity and Thermal Expansion of Bioactive Glasses

    OpenAIRE

    Farid, Saad B. H.

    2012-01-01

    The behaviors of viscosity and thermal expansion for different compositions of bioactive glasses have been studied. The effect of phosphorous pentoxide as a second glass former in addition to silica was investigated. Consequently, the nonlinear behaviors of viscosity and thermal expansion with respect to the oxide composition have been modeled. The modeling uses published data on bioactive glass compositions with viscosity and thermal expansion. -regression optimization technique has been uti...

  11. Crystal structure and thermal expansion of a CsCe{sub 2}Cl{sub 7} scintillator

    Energy Technology Data Exchange (ETDEWEB)

    Zhuravleva, M., E-mail: mzhuravl@utk.edu [Scintillation Materials Research Center, University of Tennessee, Knoxville, TN (United States); Department of Materials Science and Engineering, University of Tennessee, Knoxville, TN (United States); Lindsey, A. [Scintillation Materials Research Center, University of Tennessee, Knoxville, TN (United States); Department of Materials Science and Engineering, University of Tennessee, Knoxville, TN (United States); Chakoumakos, B.C. [Quantum Condensed Matter Division, Oak Ridge National Laboratory, Oak Ridge, TN 37996 (United States); Custelcean, R. [Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN (United States); Meilleur, F. [Biology and Soft Matter Division, Oak Ridge National Laboratory, Oak Ridge, TN (United States); Hughes, R.W.; Kriven, W.M. [Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL (United States); Melcher, C.L. [Scintillation Materials Research Center, University of Tennessee, Knoxville, TN (United States); Department of Materials Science and Engineering, University of Tennessee, Knoxville, TN (United States)

    2015-07-15

    We used single-crystal X-ray diffraction data to determine crystal structure of CsCe{sub 2}Cl{sub 7}. It crystallizes in a P112{sub 1}/b space group with a=19.352(1) Å, b=19.352(1) Å, c=14.838(1) Å, γ=119.87(2)°, and V=4818.6(5) Å{sup 3}. Differential scanning calorimetry measurements combined with the structural evolution of CsCe{sub 2}Cl{sub 7} via X-ray diffractometry over a temperature range from room temperature to the melting point indicates no obvious intermediate solid–solid phase transitions. The anisotropy in the average linear coefficient of thermal expansion of the a axis (21.3×10{sup –6}/°C) with respect to the b and c axes (27.0×10{sup –6}/°C) was determined through lattice parameter refinement of the temperature dependent diffraction patterns. These findings suggest that the reported cracking behavior during melt growth of CsCe{sub 2}Cl{sub 7} bulk crystals using conventional Bridgman and Czochralski techniques may be largely attributed to the anisotropy in thermal expansion. - Graphical abstract: Three-dimensional quadric surface of thermal expansion coefficient of CsCe{sub 2}Cl{sub 7} at room temperature (sphere – isotropic) and near melting point (ellipsoid – anisotropic). - Highlights: • Crystal structure of CsCe{sub 2}Cl{sub 7} was solved through X-ray diffraction. • Linear coefficients of thermal expansion were determined from in-situ XRD in 25–650 °C. • Anisotropy of the a axis with respect to b and c axes (21.3 vs 27.0×10{sup –6}/°C) was found. • No solid–solid phase transitions were observed via XRD and thermal analysis.

  12. Systematic and controllable negative, zero, and positive thermal expansion in cubic Zr(1-x)Sn(x)Mo2O8.

    Science.gov (United States)

    Tallentire, Sarah E; Child, Felicity; Fall, Ian; Vella-Zarb, Liana; Evans, Ivana Radosavljević; Tucker, Matthew G; Keen, David A; Wilson, Claire; Evans, John S O

    2013-08-28

    We describe the synthesis and characterization of a family of materials, Zr1-xSnxMo2O8 (0 thermal expansion coefficient can be systematically varied from negative to zero to positive values. These materials allow tunable expansion in a single phase as opposed to using a composite system. Linear thermal expansion coefficients, αl, ranging from -7.9(2) × 10(-6) to +5.9(2) × 10(-6) K(-1) (12-500 K) can be achieved across the series; contraction and expansion limits are of the same order of magnitude as the expansion of typical ceramics. We also report the various structures and thermal expansion of "cubic" SnMo2O8, and we use time- and temperature-dependent diffraction studies to describe a series of phase transitions between different ordered and disordered states of this material.

  13. Thermal expansion and density measurements of molten and solid materials at high temperatures by the gamma attenuation technique

    International Nuclear Information System (INIS)

    Drotning, W.D.

    1979-05-01

    An apparatus is described for the measurement of the density and thermal expansion of molten materials to 3200 0 K using the gamma attenuation technique. The precision of the experimental technique was analytically examined for both absolute and relative density determinations. Three analytical expressions used to reduce data for liquid density determinations were evaluated for their precision. Each allows use of a different set of input data parameters, which can be chosen based on experimental considerations. Using experimentally reasonable values for the precision of the parameters yields a similar resultant density precision from the three methods, on the order of 0.2%. The analytical method for measurements of the linear thermal expansion of solids by the gamma method is also described. To demonstrate the use of the technique on reasonably well-characterized systems, data are presented for (1) the density and thermal expansion of molten tin, lead, and aluminum to 1300 0 K, (2) the thermal expansion of solid aluminum to the melting point, and (3) the thermal expansion of a low melting point glass through the transition temperature and melting region. The data agree very well with published results using other methods where such published data exist

  14. Synthesis of Zr2WP2O12/ZrO2 Composites with Adjustable Thermal Expansion

    Directory of Open Access Journals (Sweden)

    Zhiping Zhang

    2017-11-01

    Full Text Available Zr2WP2O12/ZrO2 composites were fabricated by solid state reaction with the goal of tailoring the thermal expansion coefficient. XRD, SEM and TMA were used to investigate the composition, microstructure, and thermal expansion behavior of Zr2WP2O12/ZrO2 composites with different mass ratio. Relative densities of all the resulting Zr2WP2O12/ZrO2 samples were also tested by Archimedes' methods. The obtained Zr2WP2O12/ZrO2 composites were comprised of orthorhombic Zr2WP2O12 and monoclinic ZrO2. As the increase of the Zr2WP2O12, the relative densities of Zr2WP2O12/ZrO2 ceramic composites increased gradually. The coefficient of thermal expansion of the Zr2WP2O12/ZrO2 composites can be tailored from 4.1 × 10−6 K−1 to −3.3 × 10−6 K−1 by changing the content of Zr2WP2O12. The 2:1 Zr2WP2O12/ZrO2 specimen shows close to zero thermal expansion from 25 to 700°C with an average linear thermal expansion coefficient of −0.09 × 10−6 K−1. These adjustable and near zero expansion ceramic composites will have great potential application in many fields.

  15. Synthesis of Zr2WP2O12/ZrO2 Composites with Adjustable Thermal Expansion.

    Science.gov (United States)

    Zhang, Zhiping; Sun, Weikang; Liu, Hongfei; Xie, Guanhua; Chen, Xiaobing; Zeng, Xianghua

    2017-01-01

    Zr 2 WP 2 O 12 /ZrO 2 composites were fabricated by solid state reaction with the goal of tailoring the thermal expansion coefficient. XRD, SEM and TMA were used to investigate the composition, microstructure, and thermal expansion behavior of Zr 2 WP 2 O 12 /ZrO 2 composites with different mass ratio. Relative densities of all the resulting Zr 2 WP 2 O 12 /ZrO 2 samples were also tested by Archimedes' methods. The obtained Zr 2 WP 2 O 12 /ZrO 2 composites were comprised of orthorhombic Zr 2 WP 2 O 12 and monoclinic ZrO 2 . As the increase of the Zr 2 WP 2 O 12 , the relative densities of Zr 2 WP 2 O 12 /ZrO 2 ceramic composites increased gradually. The coefficient of thermal expansion of the Zr 2 WP 2 O 12 /ZrO 2 composites can be tailored from 4.1 × 10 -6 K -1 to -3.3 × 10 -6 K -1 by changing the content of Zr 2 WP 2 O 12 . The 2:1 Zr 2 WP 2 O 12 /ZrO 2 specimen shows close to zero thermal expansion from 25 to 700°C with an average linear thermal expansion coefficient of -0.09 × 10 -6 K -1 . These adjustable and near zero expansion ceramic composites will have great potential application in many fields.

  16. Controlling Thermal Expansion: A Metal?Organic Frameworks Route

    OpenAIRE

    Balestra, Salvador R. G.; Bueno-Perez, Rocio; Hamad, Said; Dubbeldam, David; Ruiz-Salvador, A. Rabdel; Calero, Sofia

    2016-01-01

    Controlling thermal expansion is an important, not yet resolved, and challenging problem in materials research. A conceptual design is introduced here, for the first time, for the use of metal?organic frameworks (MOFs) as platforms for controlling thermal expansion devices that can operate in the negative, zero, and positive expansion regimes. A detailed computer simulation study, based on molecular dynamics, is presented to support the targeted application. MOF-5 has been selected as model m...

  17. Thermal conductivity and thermal expansion of hot-pressed trisodium uranate (Na3UO4)

    International Nuclear Information System (INIS)

    Hofman, G.L.; Bottcher, J.H.; Buzzell, J.A.; Schwartzenberger, G.M.

    1986-01-01

    Thermal conductivity and thermal expansion of Na 3 UO 4 prepared by two different reaction processes were determined over a temperature range of 20-1000 0 C. Compositional differences in the samples resulting from the different reaction processes have a pronounced effect on thermal expansion and on thermal conductivity below 500 0 C. Above 500 0 C, these compositional differences in the thermal conductivities decrease. (orig.)

  18. Modeling of Disordered Binary Alloys Under Thermal Forcing: Effect of Nanocrystallite Dissociation on Thermal Expansion of AuCu3

    Science.gov (United States)

    Kim, Y. W.; Cress, R. P.

    2016-11-01

    Disordered binary alloys are modeled as a randomly close-packed assembly of nanocrystallites intermixed with randomly positioned atoms, i.e., glassy-state matter. The nanocrystallite size distribution is measured in a simulated macroscopic medium in two dimensions. We have also defined, and measured, the degree of crystallinity as the probability of a particle being a member of nanocrystallites. Both the distribution function and the degree of crystallinity are found to be determined by alloy composition. When heated, the nanocrystallites become smaller in size due to increasing thermal fluctuation. We have modeled this phenomenon as a case of thermal dissociation by means of the law of mass action. The crystallite size distribution function is computed for AuCu3 as a function of temperature by solving some 12 000 coupled algebraic equations for the alloy. The results show that linear thermal expansion of the specimen has contributions from the temperature dependence of the degree of crystallinity, in addition to respective thermal expansions of the nanocrystallites and glassy-state matter.

  19. Evaluation of tank thermal expansion data in CALDEX

    International Nuclear Information System (INIS)

    Suda, S.; Weh, R.

    1991-01-01

    A thermal expansion test involving a large annular input reprocessing tank was carried out as a part of the CALDEX Project at the TEKO test facility in Karlsruhe, FRG. The objective of this test was to investigate thermal expansion properties of the tank and effects on various pressure and level measurement instruments used in the determination of liquid volume. In the thermal expansion test, a weak nitric acid solution was heated internally to a temperature of 60 degrees C by means of steam injection through the sparge ring. After heating, the annular tank took about one hour to thermally equilibrate, and it took another hour for the sparge ring and pulsator pipes to fill before thermal effects could be followed. The temperature at the end of the test, after tank and its contents had cooled undisturbed for fifty hours, was 29.9 degrees C. Thirteen instrument readings were obtained during each measurement cycle of roughly 70 seconds for a total of over 2800 readings per instrument. Thermal expansion effects for the CALDEX annular tank were consistent with that reported for cylindrical tanks. Temperature variations effect each type of probe in a way that depends on the properties of the probe and the characteristics of the measurement system. 3 refs., 4 figs., 3 tabs

  20. Thermal expansion and its impacts on thermal transport in the FPU-α-β model

    Directory of Open Access Journals (Sweden)

    Xiaodong Cao

    2015-05-01

    Full Text Available We study the impacts of thermal expansion, arising from the asymmetric interparticle potential, on thermal conductance in the FPU-α-β model. A nonmonotonic dependence of the temperature gradient and thermal conductance on the cubic interaction parameter α are shown, which corresponds to the variation of the coefficient of thermal expansion. Three domains with respect to α can be identified. The results are explained based on the detailed analysis of the asymmetry of the interparticle potential. The self-consistent phonon theory, which can capture the effect of thermal expansion, is developed to support our explanation in a quantitative way. Our result would be helpful to understand the issue that whether there exist normal thermal conduction in the FPU-α-β model.

  1. Thermal expansion of the heavy-fermion compound CeInCu2 at high pressure

    International Nuclear Information System (INIS)

    Kagayama, Tomoko; Oomi, Gendo; Onuki, Yoshichika; Komatsubara, Takemi

    1994-01-01

    The thermal expansion coefficient α of the heavy-fermion compound CeInCu 2 has been measured at high pressure up to 2 GPa in the temperature range from 6 to 300 K. It is found that the linear term in α(T) at low temperature decreases by the application of pressure. ((orig.))

  2. Glass ceramics for sealing to high-thermal-expansion metals

    International Nuclear Information System (INIS)

    Wilder, J.A. Jr.

    1980-10-01

    Glass ceramics were studied, formulated in the Na 2 O CaO.P 2 O 5 , Na 2 O.BaOP 2 O 5 , Na 2 O.Al 2 O 3 .P 2 O 5 , and Li 2 O.BaO.P 2 O 5 systems to establish their suitability for sealing to high thermal expansion metals, e.g. aluminum, copper, and 300 series stainless steels. Glass ceramics in Na 2 O.CaO.P 2 O 5 and Na 2 O.BaO.P 2 O 5 systems have coefficients of thermal expansion in the range 140 x 10 -1 per 0 C less than or equal to α less than or equal to 225 x 10 -7 per 0 C and fracture toughness values generally greater than those of phosphate glasses; they are suitable for fabricating seals to high thermal expansion metals. Crystal phases include NaPo 3 , (NaPO 3 ) 3 , NaBa(PO 3 ) 3 , and NaCa(PO 3 ) 3 . Glass ceramics formed in the Na 2 O.Al 2 O 3 .P 2 O 5 systems have coefficients of thermal expansion greater than 240 x 10 -7 per 0 C, but they have extensive microcracking. Due to their low thermal expansion values (α less than or equal to 120 x 10 -7 per 0 C), glass ceramics in the Li 2 O.BaO.P 2 O 5 system are unsuitable for sealing to high thermal expansion metals

  3. Thermal expansion of coexistence of ferromagnetism and superconductivity

    International Nuclear Information System (INIS)

    Hatayama, Nobukuni; Konno, Rikio

    2010-01-01

    The temperature dependence of thermal expansion of coexistence of ferromag-netism and superconductivity below the superconducting transition temperature T cu of a majority spin conduction band is investigated. Majority spin and minority spin superconducting gaps exist in the coexistent state. We assume that the Curie temperature is much larger than the superconducting transition temperatures. The free energy that Linder et al. [Phys. Rev. B76, 054511 (2007)] derived is used. The thermal expansion of coexistence of ferromagnetism and superconductivity is derived by the application of the method of Takahashi and Nakano [J. Phys.: Condens. Matter 18, 521 (2006)]. We find that we have the anomalies of the thermal expansion in the vicinity of the superconducting transition temperatures.

  4. Magnetocaloric effect and negative thermal expansion in hexagonal Fe doped MnNiGe compounds with a magnetoelastic AFM-FM-like transition.

    Science.gov (United States)

    Xu, Kun; Li, Zhe; Liu, Enke; Zhou, Haichun; Zhang, Yuanlei; Jing, Chao

    2017-01-30

    We report a detailed study of two successive first-order transitions, including a martensitic transition (MT) and an antiferromagnetic (AFM)-ferromagnetic (FM)-like transition, in Mn 1-x Fe x NiGe (x = 0, 0.06, 0.11) alloys by X-ray diffraction, differential scanning calorimetry, magnetization and linear thermal expansion measurements. Such an AFM-FM-like transition occurring in the martensitic state has seldom been observed in the M(T) curves. The results of Arrott plot and linear relationship of the critical temperature with M 2 provide explicit evidence of its first-order magnetoelastic nature. On the other hand, their performances as magnetocaloric and negative thermal expansion materials were characterized. The isothermal entropy change for a field change of 30 kOe reaches an impressive value of -25.8 J/kg K at 203 K for x = 0.11 compared to the other two samples. It demonstrates that the magneto-responsive ability has been significantly promoted since an appropriate amount of Fe doping can break the local Ni-6Mn AFM configuration. Moreover, the Fe-doped samples reveal both the giant negative thermal expansion and near-zero thermal expansion for different temperature ranges. For instance, the average thermal expansion coefficient ā of x = 0.06 reaches -60.7 × 10 -6 /K over T = 231-338 K and 0.6 × 10 -6 /K over T = 175-231 K during cooling.

  5. Thermal Expansion Anomaly and Spontaneous Magnetostriction of Y2Fe14Al3 Compound

    International Nuclear Information System (INIS)

    Yan-Ming, Hao; Xin-Yuan, Jiang; Chun-Jing, Gao; Yan-Zhao, Wu; Yan-Yan, Zhang

    2009-01-01

    The structure and magnetic properties of Y 2 Fe 14 Al 3 compound are investigated by means of x-ray diffraction and magnetization measurements. The Y 2 Fe 14 Al 3 compound has a hexagonal Th 2 Ni 17 -type structure. Negative thermal expansion is found in Y 2 Fe 14 Al 3 compound in the temperature range from 403 to 491K by x-ray dilatometry. The coefficient of the average thermal expansion is α-bar = –2.54 × 10 −5 K −1 . The spontaneous magnetostrictive deformations from 283 to 470K are calculated by means of the differences between the experimental values of the lattice parameters and the corresponding values extrapolated from the paramagnetic range. The result shows that the spontaneous volume magnetostrictive deformation ω S decreases from 5.74 × 10 −3 to nearly zero with temperature increasing from 283 to 470 K, the spontaneous linear magnetostrictive deformation λ c along the c-axis is larger than the spontaneous linear magnetostrictive deformation λ a in basal-plane in the same temperature below 350 K

  6. Thermal expansion and cooling rate dependence of transition temperature in ZrTiO4 single crystal

    International Nuclear Information System (INIS)

    Park, Y.

    1998-01-01

    Thermal expansion in ZrTiO 4 single crystal was investigated in the temperature range covering the normal, incommensurate, and commensurate phases. Remarkable change was found at the normal-incommensurate phase transition (T I ) in all thermal expansion coefficients a, b, and c. The spontaneous strains χ as and χ bs along the a and b axes show linear temperature dependence, while the spontaneous strain χ cs along the c axis shows a nonlinear temperature dependence. Small discontinuity along the c direction was observed at the incommensurate-commensurate transition temperature, T c = 845 C. dT I /dP and dT c /dP depend on the cooling rate

  7. Dolomite addition effects on the thermal expansion of ceramic tiles

    International Nuclear Information System (INIS)

    Marino, Luis Fernando Bruno; Boschi, Anselmo Ortega

    1997-01-01

    The thermal expansion of ceramic tiles is of greater importance in engineering applications because the ceramics are relatively brittle and cannot tolerate large internal strain imposed by thermal expansion. When ceramic bodies are produced for glazed ties the compatibility of this property of the components should be considered to avoid damage in the final products. Carbonates are an important constituent of ceramic wall-title bodies and its presence in formulations and the reactions that occur between them and other components modify body properties. The influence in expansivity by additions of calcium magnesium carbonate in a composition of wall tile bodies has been investigated. The relative content of mineralogical components was determined by X-ray diffraction and thermal expansion by dilatometric measurements. The results was indicated that with the effect of calcium-magnesium phases and porosity on thermal expansion of wall tile bodies. (author)

  8. XRD- and infrared-probed anisotropic thermal expansion properties of an organic semiconducting single crystal.

    Science.gov (United States)

    Mohanraj, J; Capria, E; Benevoli, L; Perucchi, A; Demitri, N; Fraleoni-Morgera, A

    2018-01-17

    The anisotropic thermal expansion properties of an organic semiconducting single crystal constituted by 4-hydroxycyanobenzene (4HCB) have been probed by XRD in the range 120-300 K. The anisotropic thermal expansion coefficients for the three crystallographic axes and for the crystal volume have been determined. A careful analysis of the crystal structure revealed that the two different H-bonds stemming from the two independent, differently oriented 4HCB molecules composing the unit cell have different rearrangement patterns upon temperature variations, in terms of both bond length and bond angle. Linearly Polarized Mid InfraRed (LP-MIR) measurements carried out in the same temperature range, focused on the O-H bond spectral region, confirm this finding. The same LP-MIR measurements, on the basis of a semi-empirical relation and of geometrical considerations and assumptions, allowed calculation of the -CNH-O- hydrogen bond length along the a and b axes of the crystal. In turn, the so-calculated -CNH-O- bond lengths were used to derive the thermal expansion coefficients along the corresponding crystal axes, as well as the volumetric one, using just the LP-MIR data. Reasonable to good agreement with the same values obtained from XRD measurements was obtained. This proof-of-principle opens interesting perspectives about the possible development of a rapid, low cost and industry-friendly assessment of the thermal expansion properties of organic semiconducting single crystals (OSSCs) involving hydrogen bonds.

  9. Contribution of thermal expansion and

    Directory of Open Access Journals (Sweden)

    O.I.Pursky

    2007-01-01

    Full Text Available A theoretical model is developed to describe the experimental results obtained for the isobaric thermal conductivity of rare gas solids (RGS. The isobaric thermal conductivity of RGS has been analysed within Debye approximation with regard to the effect of thermal expansion. The suggested model takes into consideration the fact that thermal conductivity is determined by U-processes while above the phonon mobility edge it is determined by "diffusive" modes migrating randomly from site to site. The mobility edge ω0 is determined from the condition that the phonon mean-free path restricted by the U-processes cannot be smaller than half of the phonon wavelength.

  10. Elucidating the mechanism responsible for anomalous thermal expansion in a metal-organic framework.

    Science.gov (United States)

    van Heerden, Dewald P; Esterhuysen, Catharine; Barbour, Leonard J

    2016-03-14

    The previously reported anisotropic thermal expansion of a three-dimensional metal-organic framework (MOF) is examined by means of theoretical calculations. Inspection of the 100, 190, 280 and 370 K single crystal X-ray diffraction (SCD) structures indicated a concerted change in the coordination sphere of the zinc centre leading to elongation of the coordination helix in the crystallographic c direction (the Zn-O(H)-Zn angle expands), while the largely unaltered ligands (the ZnLZn distance remains constant) are pulled closer together in the ab plane. This study develops and evaluates a mechanistic model at the DFT level of theory that reproduces the convergent expansion of the coordination helix of the material. The linear increase in energy calculated for extension of a model consisting of six zinc centres and truncated ligands compares favourably with results obtained from a periodic DFT evaluation of the SCD structures. It was also found that the anisotropic thermal expansion trend could be reproduced qualitatively by Molecular Dynamics (MD) simulations in the NPT ensemble.

  11. Design of materials with extreme thermal expansion using a three-phase topology optimization method

    DEFF Research Database (Denmark)

    Sigmund, Ole; Torquato, S.

    1997-01-01

    Composites with extremal or unusual thermal expansion coefficients are designed using a three-phase topology optimization method. The composites are made of two different material phases and a void phase. The topology optimization method consists in finding the distribution of material phases...... materials having maximum directional thermal expansion (thermal actuators), zero isotropic thermal expansion, and negative isotropic thermal expansion. It is shown that materials with effective negative thermal expansion coefficients can be obtained by mixing two phases with positive thermal expansion...

  12. Fabrication of mesoporous silica/polymer composites through solvent evaporation process and investigation of their excellent low thermal expansion property.

    Science.gov (United States)

    Suzuki, Norihiro; Kiba, Shosuke; Yamauchi, Yusuke

    2011-03-21

    We fabricate mesoporous silica/epoxy polymer composites through a solvent evaporation process. The easy penetration of the epoxy polymers into mesopores is achieved by using a diluted polymer solution including a volatile organic solvent. After the complete solvent evaporation, around 90% of the mesopores are estimated to be filled with the epoxy polymer chains. Here we carefully investigate the thermal expansion behavior of the obtained mesoporous silica/polymer composites. Thermal mechanical analysis (TMA) charts revealed that coefficient of linear thermal expansion (CTE) gradually decreases, as the amount of the doped mesoporous silica increases. Compared with spherical silica particle without mesopores, mesoporous silica particles show a greater effect on lowering the CTE values. Interestingly, it is found that the CTE values are proportionally decreased with the decrease of the total amount of the polymers outside the mesopores. These data demonstrate that polymers embedded inside the mesopores become thermally stable, and do not greatly contribute to the thermal expansion behavior of the composites.

  13. Prediction and control of the coefficient of thermal expansion of concrete

    International Nuclear Information System (INIS)

    Ziegeldorf, S.; Kleiser, K.; Hilsdorf, H.K.

    1979-01-01

    Prediction and control of the coefficient of thermal expansion of concrete. In this report various procedures for the prediction of the coefficient of thermal expansion of concrete are summarized. The values predicted with these procedures are compared to experimental data. In the experimental investigation the coefficient of thermal expansion of various types of aggregates and types of concrete both in a dry and a moist state in the temperature range RT/180 0 C have been measured. The most significant result obtained is that for equal volume fractions the thermal properties of coarse aggregates have a more pronounced effect upon thermal expansion of concrete than those of fine aggregates. In the analysis an attempt has been made to estimate the thermal expansion of concrete from the properties of the concrete components by means of a finite element procedure. On the basis of the experimental data and of the analysis of internal temperature stresses in the concrete a simple relationship for the determination of the coefficient of thermal expansion of concrete has been deduced. In this relationship different thermal properties of coarse and fine aggregates may be taken into account. Compared to other methods this relationship yields, both for dry and for moist concrete, values which are in good agreement with the experimental data. (orig.) [de

  14. Negative thermal expansion of lithium aluminosilicate ceramics at cryogenic temperatures

    International Nuclear Information System (INIS)

    Garcia-Moreno, Olga; Fernandez, Adolfo; Khainakov, Sergei; Torrecillas, Ramon

    2010-01-01

    Five lithium aluminosilicate compositions of the LAS system have been synthesized and sintered. The coefficient of thermal expansion of the sintered samples has been studied down to cryogenic conditions. The data presented here under cryogenic conditions will be of value in the future design of new composite materials with very low thermal expansion values. The variation in thermal expansion properties with composition and sintering temperature was studied and is discussed in relation to composition and crystal structure.

  15. Negative thermal expansion near two structural quantum phase transitions

    Energy Technology Data Exchange (ETDEWEB)

    Occhialini, Connor A.; Handunkanda, Sahan U.; Said, Ayman; Trivedi, Sudhir; Guzmán-Verri, G. G.; Hancock, Jason N.

    2017-12-01

    Recent experimental work has revealed that the unusually strong, isotropic structural negative thermal expansion in cubic perovskite ionic insulator ScF3 occurs in excited states above a ground state tuned very near a structural quantum phase transition, posing a question of fundamental interest as to whether this special circumstance is related to the anomalous behavior. To test this hypothesis, we report an elastic and inelastic x-ray scattering study of a second system Hg2I2 also tuned near a structural quantum phase transition while retaining stoichiometric composition and high crystallinity. We find similar behavior and significant negative thermal expansion below 100 K for dimensions along the body-centered-tetragonal c axis, bolstering the connection between negative thermal expansion and zero-temperature structural transitions.We identify the common traits between these systems and propose a set of materials design principles that can guide discovery of newmaterials exhibiting negative thermal expansion

  16. Determination of the linear coefficient of thermal expansion in polymer films at the nanoscale: influence of the composition of EVA copolymers and the molecular weight of PMMA.

    Science.gov (United States)

    González-Benito, J; Castillo, E; Cruz-Caldito, J F

    2015-07-28

    Nanothermal-expansion of poly(ethylene-co-vinylacetate), EVA, and poly(methyl methacrylate), PMMA, in the form of films was measured to finally obtain linear coefficients of thermal expansion, CTEs. The simple deflection of a cantilever in an atomic force microscope, AFM, was used to monitor thermal expansions at the nanoscale. The influences of: (a) the structure of EVA in terms of its composition (vinylacetate content) and (b) the size of PMMA chains in terms of the molecular weight were studied. To carry out this, several polymer samples were used, EVA copolymers with different weight percents of the vinylacetate comonomer (12, 18, 25 and 40%) and PMMA polymers with different weight average molecular weights (33.9, 64.8, 75.600 and 360.0 kg mol(-1)). The dependencies of the vinyl acetate weight fraction of EVA and the molecular weight of PMMA on their corresponding CTEs were analyzed to finally explain them using new, intuitive and very simple models based on the rule of mixtures. In the case of EVA copolymers a simple equation considering the weighted contributions of each comonomer was enough to estimate the final CTE above the glass transition temperature. On the other hand, when the molecular weight dependence is considered the free volume concept was used as novelty. The expansion of PMMA, at least at the nanoscale, was well and easily described by the sum of the weighted contributions of the occupied and free volumes, respectively.

  17. Thermal expansion of epoxy-fiberglass composite specimens

    International Nuclear Information System (INIS)

    McElroy, D.L.; Weaver, F.J.; Bridgman, C.

    1986-01-01

    The thermal expansion behavior of three epoxy-fiberglass composite specimens was measured from 20 to 120 0 C (70 to 250 0 F) using a fused quartz push-rod dilatometer. Billets produced by vacuum impregnating layers of two types of fiberglass cloth with an epoxy resin were core-drilled to produce cylindrical specimens. These were used to study expansion perpendicular and parallel to the fiberglass layers. The dilatometer is held at a preselected temperature until steady-state is indicated by stable length and temperature data. Before testing the composite specimens, a reliability check of the dilatometer was performed using a copper secondary standard. This indicated thermal expansion coefficient (α) values within +-2% of expected values from 20 to 200 0 C

  18. Thermal Expansion Behavior of Hot-Pressed Engineered Matrices

    Science.gov (United States)

    Raj, S. V.

    2016-01-01

    Advanced engineered matrix composites (EMCs) require that the coefficient of thermal expansion (CTE) of the engineered matrix (EM) matches those of the fiber reinforcements as closely as possible in order to reduce thermal compatibility strains during heating and cooling of the composites. The present paper proposes a general concept for designing suitable matrices for long fiber reinforced composites using a rule of mixtures (ROM) approach to minimize the global differences in the thermal expansion mismatches between the fibers and the engineered matrix. Proof-of-concept studies were conducted to demonstrate the validity of the concept.

  19. Thermal expansion and structural properties of (CuAlTe2)1-x(CuAlSe2)x solid solutions

    International Nuclear Information System (INIS)

    Korzun, B.V.; Fadzeyeva, A.A.; Bente, K.; Schmitz, W.; Schorr, S.

    2006-01-01

    Investigations of the thermal expansion of (CuAlTe 2 ) 1-x (CuAlSe 2 ) x solid solutions in the temperature range from 100 to 800 K have been carried out for the first time. It has been demonstrated that the thermal expansion coefficient α L grows considerably in the temperature range from 100 to 300 K, whereas the temperature dependence above 300 K is rather weak. The isotherms of composition dependence of the thermal expansion coefficient α L for 100, 293, 500 and 800 K were constructed, and it was found that linear relations could express them. The Debye temperatures θ D , the average mean-square dynamic displacements anti u 2 , the average root-mean-square amplitudes of thermal vibration RMS, the anion position parameter u using S. C. Abrahams and J. L. Bernstein (u AB ) and J. E. Jaffe and A. Zunger (u JZ ) models were calculated. The composition dependence of microhardness H using the phenomenological theory was also calculated, and it was discovered that this dependence has a non-linear character with a maximum of 383 kg/mm 2 at x=0.67. (copyright 2006 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  20. Non-Fermi-Liquid Behavior in CeRu2Si2 at Ultralow Temperatures Studied by Thermal Expansion and Magnetostriction

    Science.gov (United States)

    Inoue, Daiki; Takama, Hiroyuki; Kaidou, Daisuke; Minegishi, Mitsuyuki; Ueno, Keisuke; Matsumoto, Koichi; Abe, Satoshi; Murayama, Shigeyuki

    2017-12-01

    We report the linear thermal expansion and magnetostriction of the heavy-fermion compound CeRu2Si2 along its a- and c-axes at temperatures down to 10 mK and in magnetic fields up to 9 T using a high-precision capacitive dilatometer. From the magnetostriction measurements, a large anisotropy between values for the coefficient of magnetostriction along the a- and c-axes was found in the Landau-Fermi-liquid (LFL) state. Non-Fermi-liquid (NFL) behavior was observed for both the linear thermal expansion below 60 mK for all applied magnetic fields and the linear magnetostriction below 0.5 T and 300 mK. The results suggest the existence of an additional pressure-driven quantum critical point (QCP), and a crossover from the NFL state to the LFL state occurs in CeRu2Si2 at ambient pressure near the QCP.

  1. Evaluating the coefficient of thermal expansion using time periods of minimal thermal gradient for a temperature driven structural health monitoring

    Science.gov (United States)

    Reilly, J.; Abdel-Jaber, H.; Yarnold, M.; Glisic, B.

    2017-04-01

    Structural Health Monitoring aims to characterize the performance of a structure from a combination of recorded sensor data and analytic techniques. Many methods are concerned with quantifying the elastic response of the structure, treating temperature changes as noise in the analysis. While these elastic profiles do demonstrate a portion of structural behavior, thermal loads on a structure can induce comparable strains to elastic loads. Understanding this relationship between the temperature of the structure and the resultant strain and displacement can provide in depth knowledge of the structural condition. A necessary parameter for this form of analysis is the Coefficient of Thermal Expansion (CTE). The CTE of a material relates the amount of expansion or contraction a material undergoes per degree change in temperature, and can be determined from temperature-strain relationship given that the thermal strain can be isolated. Many times with concrete, the actual amount of expansion with temperature in situ varies from the given values for the CTE due to thermally generated elastic strain, which complicates evaluation of the CTE. To accurately characterize the relationship between temperature and strain on a structure, the actual thermal behavior of the structure needs to be analyzed. This rate can vary for different parts of a structure, depending on boundary conditions. In a case of unrestrained structures, the strain in the structure should be linearly related to the temperature change. Thermal gradients in a structure can affect this relationship, as they induce curvature and deplanations in the cross section. This paper proposes a method that addresses these challenges in evaluating the CTE.

  2. Intrinsic thermal expansion of crystal defects

    International Nuclear Information System (INIS)

    Ganne, J.-P.

    1981-02-01

    Although the phenomenon of thermal expansion has long been known, the intrinsic thermal expansion coefficient (ITEC) βsub(d) of a point defect, derived from its formation volume vsub(d), has never been measured directly. The differential dilatometer by interferometry built by ASTY and GILDER is described. It has allowed βsub(d) to be measured for several defects. Vacancies and small interstitial loops were produced in aluminium by low temperature (20 K) fast neutron irradiation followed by an anneal up to the beginning of stage III (160 K). The very high value of the measured ratio βsub(d)/β 0 (12+-4) is comparable with a lattice statics calculated (42) value (11.5 0 [fr

  3. Temperature dependence of thermal expansion of cadmium sulfide in the temperature range 20 - 820 K

    International Nuclear Information System (INIS)

    Oskotskij, V.S.; Kobyakov, I.B.; Solodukhin, A.V.

    1980-01-01

    The linear thermal expansion of cadmium sulfide is measured perpendicularly (α 1 ) and parallelly (α 2 ) to the hexagonal axis in the temperature range from 20 to 820 K. Anisotropy is low at up to 80 K; rises at higher temperatures; at 3OO K α 1 /α 3 ratio is 1.8; at 820 K, 2.4. Heat expansion is negative at temperatures lower than 104.5 K(α 1 ) and 126.0 K(α 2 ). It achieves the minimum at 43.6 K (α 1 ) and 52.5K (α 3 ). The theory of heat expansion is plotted in the Debue, approximation and cadmium sulfide is considered as an isotope crystal with average elastic constants. Two parameters of the theory are determined by the position and value of the minimum of volumetric thermal expansion of the model isotope crystal. The theoretic curve agrees well with the experimental one at temperatures up to 160 K, i.e in the range of applicability of the Debue approximation and the isotropic model

  4. Seal assembly for materials with different coefficients of thermal expansion

    Science.gov (United States)

    Minford, Eric [Laurys Station, PA

    2009-09-01

    Seal assembly comprising (a) two or more seal elements, each element having having a coefficient of thermal expansion; and (b) a clamping element having a first segment, a second segment, and a connecting segment between and attached to the first and second segments, wherein the two or more seal elements are disposed between the first and second segments of the clamping element. The connecting segment has a central portion extending between the first segment of the clamping element and the second segment of the clamping element, and the connecting segment is made of a material having a coefficient of thermal expansion. The coefficient of thermal expansion of the material of the connecting segment is intermediate the largest and smallest of the coefficients of thermal expansion of the materials of the two or more seal elements.

  5. Energy expansion planning by considering electrical and thermal expansion simultaneously

    International Nuclear Information System (INIS)

    Abbasi, Ali Reza; Seifi, Ali Reza

    2014-01-01

    Highlights: • This paper focused on the expansion planning optimization of energy systems. • Employing two form of energy: the expansion of electrical and thermal energies. • The main objective is to minimize the costs. • A new Modified Honey Bee Mating Optimization (MHBMO) algorithm is applied. - Abstract: This study focused on the expansion planning optimization of energy systems employing two forms of energy: the expansion of electrical and thermal energies simultaneously. The main objective of this investigation is confirming network adequacy by adding new equipment to the network, over a given planning horizon. The main objective of the energy expansion planning (EEP) is to minimize the real energy loss, voltage deviation and the total cost of installation equipments. Since the objectives are different and incommensurable, it is difficult to solve the problem by the conventional approaches that may optimize a single objective. So, the meta-heuristic algorithm is applied to this problem. Here, Honey Bee Mating Optimization algorithm (HBMO) as a new evolutionary optimization algorithm is utilized. In order to improve the total ability of HBMO for the global search and exploration, a new modification process is suggested such a way that the algorithm will search the total search space globally. Also, regarding the uncertainties of the new complicated energy systems, in this paper for the first time, the EEP problem is investigated in a stochastic environment by the use of probabilistic load flow technique based on Point Estimate Method (PEM). In order to evaluate the feasibility and effectiveness of the proposed algorithm, two modified test systems are used as case studies

  6. Correlation between metal-ceramic bond strength and coefficient of linear thermal expansion difference

    Directory of Open Access Journals (Sweden)

    Stella Crosara Lopes

    2009-04-01

    Full Text Available The purpose of this study was to evaluate the metal-ceramic bond strength (MCBS of 6 metal-ceramic pairs (2 Ni-Cr alloys and 1 Pd-Ag alloy with 2 dental ceramics and correlate the MCBS values with the differences between the coefficients of linear thermal expansion (CTEs of the metals and ceramics. Verabond (VB Ni-Cr-Be alloy, Verabond II (VB2, Ni-Cr alloy, Pors-on 4 (P, Pd-Ag alloy, and IPS (I and Duceram (D ceramics were used for the MCBS test and dilatometric test. Forty-eight ceramic rings were built around metallic rods (3.0 mm in diameter and 70.0 mm in length made from the evaluated alloys. The rods were subsequently embedded in gypsum cast in order to perform a tensile load test, which enabled calculating the CMBS. Five specimens (2.0 mm in diameter and 12.0 mm in length of each material were made for the dilatometric test. The chromel-alumel thermocouple required for the test was welded into the metal test specimens and inserted into the ceramics. ANOVA and Tukey's test revealed significant differences (p=0.01 for the MCBS test results (MPa, with PI showing higher MCBS (67.72 than the other pairs, which did not present any significant differences. The CTE (10-6 oC-1 differences were: VBI (0.54, VBD (1.33, VB2I (-0.14, VB2D (0.63, PI (1.84 and PD (2.62. Pearson's correlation test (r=0.17 was performed to evaluate of correlation between MCBS and CTE differences. Within the limitations of this study and based on the obtained results, there was no correlation between MCBS and CTE differences for the evaluated metal-ceramic pairs.

  7. Correlation between metal-ceramic bond strength and coefficient of linear thermal expansion difference.

    Science.gov (United States)

    Lopes, Stella Crosara; Pagnano, Valéria Oliveira; Rollo, João Manuel Domingos de Almeida; Leal, Mônica Barbosa; Bezzon, Osvaldo Luiz

    2009-01-01

    The purpose of this study was to evaluate the metal-ceramic bond strength (MCBS) of 6 metal-ceramic pairs (2 Ni-Cr alloys and 1 Pd-Ag alloy with 2 dental ceramics) and correlate the MCBS values with the differences between the coefficients of linear thermal expansion (CTEs) of the metals and ceramics. Verabond (VB) Ni-Cr-Be alloy, Verabond II (VB2), Ni-Cr alloy, Pors-on 4 (P), Pd-Ag alloy, and IPS (I) and Duceram (D) ceramics were used for the MCBS test and dilatometric test. Forty-eight ceramic rings were built around metallic rods (3.0 mm in diameter and 70.0 mm in length) made from the evaluated alloys. The rods were subsequently embedded in gypsum cast in order to perform a tensile load test, which enabled calculating the CMBS. Five specimens (2.0 mm in diameter and 12.0 mm in length) of each material were made for the dilatometric test. The chromel-alumel thermocouple required for the test was welded into the metal test specimens and inserted into the ceramics. ANOVA and Tukey's test revealed significant differences (p=0.01) for the MCBS test results (MPa), with PI showing higher MCBS (67.72) than the other pairs, which did not present any significant differences. The CTE (10(-6) oC(-1)) differences were: VBI (0.54), VBD (1.33), VB2I (-0.14), VB2D (0.63), PI (1.84) and PD (2.62). Pearson's correlation test (r=0.17) was performed to evaluate of correlation between MCBS and CTE differences. Within the limitations of this study and based on the obtained results, there was no correlation between MCBS and CTE differences for the evaluated metal-ceramic pairs.

  8. Analysis of thermal expansivity of solids at extreme compression

    Directory of Open Access Journals (Sweden)

    J. Shanker

    2008-12-01

    Full Text Available Thermodynamics of solids in the limit of infinite pressure formulated by Stacey reveals that the thermal expansivity (alpha of solids tends to zero at infinite pressure. The earlier models for the volume dependence of thermal expansivity do not satisfy the infinite pressure behaviour of thermal expansivity. The expressions for the volume dependence of the isothermal Anderson- Grüneisen parameter (delta T considered in the derivation of earlier formulations for alpha (V have been found to be inadequate. A formulation for the volume dependence of delta T is presented here which is similar to the model due to Burakovsky and Preston for the volume dependence of the Grüneisen parameter. The new formulation for alpha (V reveals that delta T infinity must be greater than zero for satisfying the thermodynamic result according to which alpha tends to zero at infinite pressure. It is found that our model fits well the experimental data on thermal expansivity alpha (V for hcp iron corresponding to a wide range of pressures (0-360 GPa.

  9. Thermal expansion and thermal conductivity characteristics of Cu–Al2O3 nanocomposites

    International Nuclear Information System (INIS)

    Fathy, A.; El-Kady, Omyma

    2013-01-01

    Highlights: ► The copper–alumina composites were prepared by powder metallurgy (P/M) method with nano-Cu/Al 2 O 3 powders. ► The Al 2 O 3 content was added by 2.5, 7.5 and 12.5 wt.% to the Cu matrix to detect its effect on thermal conductivity and thermal expansion behavior of the resultant Cu/Al 2 O 3 nanocomposites. ► The results showed that alumina nanoparticles (30 nm) were distributed in the copper matrix in a homogeneous manner. ► The measured thermal conductivity for the Cu–Al 2 O 3 nanocomposites decreased from 384 to 78.1 W/m K with increasing Al 2 O 3 content from 0 to 12.5 wt.%. ► Accordingly, the coefficient of thermal expansion (CTE) was tailored from 33 × 10 −6 to 17.74 × 10 −6 /K, which is compatible with the CTE of semiconductors in electronic packaging applications. - Abstract: Copper–alumina composites were prepared by powder metallurgy (P/M) technology. Nano-Cu/Al 2 O 3 powders, was deoxidized from CuO/Al 2 O 3 powders which synthesized by thermochemical technique by addition of Cu powder to an aqueous solution of aluminum nitrate. The Al 2 O 3 content was added by 2.5, 7.5 and 12.5 wt.% to the Cu matrix to detect its effect on thermal conductivity and thermal expansion behavior of the resultant Cu/Al 2 O 3 nanocomposites. The results showed that alumina nanoparticles (30 nm) were distributed in the copper matrix in a homogeneous manner. The measured thermal conductivity for the Cu–Al 2 O 3 nanocomposites decreased from 384 to 78.1 W/m K with increasing Al 2 O 3 content from 0 to 12.5 wt.%. The large variation in the thermal conductivities can be related to the microstructural characteristics of the interface between Al 2 O 3 and the Cu-matrix. Accordingly, the coefficient of thermal expansion (CTE) was tailored from 33 × 10 −6 to 17.74 × 10 −6 /K, which is compatible with the CTE of semiconductors in electronic packaging applications. The reduction of thermal conductivity and coefficient of thermal expansion were

  10. The critical thermal expansion of gadolinium

    International Nuclear Information System (INIS)

    Robinson, K.; Lanchester, P.C.

    1978-01-01

    Measurements have been made of the critical thermal expansion of single crystals of gadolinium, prepared by solid state electrotransport processing. Although the expansion data can be fitted to a simple power law with exponents lambda + =-0.25, lambda - =-0.33, these values are not predicted by theory and a discontinuity remains at Tsub(c)=293.620 K. It is suggested that the results relate to a region of crossover to uniaxial dipolar behaviour. (Auth.)

  11. Thermal expansion of spinel-type Si3N4

    DEFF Research Database (Denmark)

    Paszkowics, W.; Minkikayev, R.; Piszora, P.

    2004-01-01

    The lattice parameter and thermal expansion coefficient (TEC) for the spinel-type Si3N4 phase prepared under high-pressure and high-temperature conditions are determined for 14 K......The lattice parameter and thermal expansion coefficient (TEC) for the spinel-type Si3N4 phase prepared under high-pressure and high-temperature conditions are determined for 14 K...

  12. Glass transition and thermal expansivity of polystyrene thin films

    International Nuclear Information System (INIS)

    Inoue, R.; Kanaya, T.; Miyazaki, T.; Nishida, K.; Tsukushi, I.; Shibata, K.

    2006-01-01

    We have studied glass transition temperature and thermal expansivity of polystyrene thin films supported on silicon substrate using X-ray reflectivity and inelastic neutron scattering techniques. In annealing experiments, we have found that the reported apparent negative expansivity of polymer thin films is caused by unrelaxed structure due to insufficient annealing. Using well-annealed films, we have evaluated glass transition temperature T g and thermal expansivity as a function of film thickness. The glass transition temperature decreases with film thickness and is constant below about 10 nm, suggesting the surface glass transition temperature of 355 K, which is lower than that in bulk. We have also found that the thermal expansivity in the glassy state decreases with film thickness even after annealing. The decrease has been attributed to hardening of harmonic force constant arising from chain confinement in a thin film. This idea has been confirmed in the inelastic neutron scattering measurements

  13. Glass transition and thermal expansivity of polystyrene thin films

    Energy Technology Data Exchange (ETDEWEB)

    Inoue, R. [Institute for Chemical Research, Kyoto University, Uji, Kyoto-fu 611-0011 (Japan); Kanaya, T. [Institute for Chemical Research, Kyoto University, Uji, Kyoto-fu 611-0011 (Japan)]. E-mail: kanaya@scl.kyoto-u.ac.jp; Miyazaki, T. [Nitto Denko Corporation, 1-1-2 Shimohozumi, Ibaraki, Osaka-fu 567-8680 (Japan); Nishida, K. [Institute for Chemical Research, Kyoto University, Uji, Kyoto-fu 611-0011 (Japan); Tsukushi, I. [Chiba Institute of Technology, Narashino, Chiba-ken 275-0023 (Japan); Shibata, K. [Japan Atomic Energy Research Institute, Tokai, Ibaraki-ken 319-1195 (Japan)

    2006-12-20

    We have studied glass transition temperature and thermal expansivity of polystyrene thin films supported on silicon substrate using X-ray reflectivity and inelastic neutron scattering techniques. In annealing experiments, we have found that the reported apparent negative expansivity of polymer thin films is caused by unrelaxed structure due to insufficient annealing. Using well-annealed films, we have evaluated glass transition temperature T {sub g} and thermal expansivity as a function of film thickness. The glass transition temperature decreases with film thickness and is constant below about 10 nm, suggesting the surface glass transition temperature of 355 K, which is lower than that in bulk. We have also found that the thermal expansivity in the glassy state decreases with film thickness even after annealing. The decrease has been attributed to hardening of harmonic force constant arising from chain confinement in a thin film. This idea has been confirmed in the inelastic neutron scattering measurements.

  14. Zirconium titanate: stability and thermal expansion; Titanato de circonio: estabilidad termodinamica y expansion termica

    Energy Technology Data Exchange (ETDEWEB)

    Lopez-Lopez, E.; Moreno, R.; Baudin, C.

    2011-07-01

    Zirconium titanate is a well known compound in the field of electro ceramics, although it has also been used in catalyst and sensors applications. The crystallographic thermal expansion anisotropy of this compound makes it a potential candidate as constituent of structural components. In general, to assure the structural integrity and microstructural homogeneity of a ceramic piece, relatively low cooling rates from the fabrication temperature are required. This requirement is essential for zirconium titanate because thermal expansion as well as phase distribution is affected by small variations in the composition and cooling rate. This work reviews the available data on the phase equilibrium relationships in the systems ZrO{sub 2}-TiO{sub 2} and ZrO{sub 2}-TiO{sub 2}-Y{sub 2}O{sub 3}. The main discrepancies as well as the possible origins of them are discussed. Additionally, the crystallographic thermal expansion data in the current literature are reviewed. (Author) 56 refs.

  15. Effect of composition on the degree of anisotropy of thermal expansion and electric resistance of cermet specimens of GeTe

    International Nuclear Information System (INIS)

    Barbakadze, K.G.; Vekua, T.S.; Ioseliani, M.I.; Kvitsiniya, K.M.

    1988-01-01

    A study was made on α temperature coefficient of thermal expansion and ρ specific electric resistance of cermet germanium telluride for alloys close to stoichiometric composition. It is shown that anisotropy of thermal expansion of cermet germanium telluride depends sufficiently on its composition. This dependence is clearly pronounced if tellurium content in alloys equals 50.4-51.2 at.%. The maximal anisotropy is observed in the alloy containing 50.8 at.% of tellurium. The temperature of extreme value of temperature coefficient of linear expansion decreases from 440 down to 373 deg.C for alloys with 49-50.8 at.% of tellurium, and grows from 373 up to 405 deg.C if tellurium content equals 50.8-52 at.%

  16. Thermal expansion and magnetostriction studies on iron pnictides

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Liran

    2010-09-19

    In this work, a 3-terminal capacitance dilatometer was set up and used for measurements of the thermal expansion and magnetostriction of novel superconducting iron pinictides and related materials. In particular, RFeAsO with R = La, Ce, Pr, Sm, Gd, LaFeASO{sub 1-x}F{sub x} and Ca(F{sub 1-c}Co{sub x}){sub 2}As{sub 2} have been investigated. The data on polycrystalline LaFeAsO{sub 1-x} are the first published thermal expansion data on this material. The lattice effects at the structural and the magnetic phase transition have been investigated and the phase diagram upon F-doping has been studied. A main result is the observation of a previously unknown fluctuation regime for the doping level x ≤ 0.04 over a large T range above the structural transition temperature T{sub S}. The absence of any structural anomalies in the normal state of the superconducting LaFeAlO{sub 1-x}F{sub x} samples with x ≥ 0.05 corroborates the discontinuous character of the phase boundary not only for the magnetism but also for the structural degrees of freedom. Similarly, the presence of high-temperature fluctuations is found for all RFeAsO undoped materials under study. The discussion of the probable origin of the fluctuations as well as the definition of the structural transition temperature T{sub S} are done. The low temperature features shown by the thermal expansion data for RFeAsO are caused by the onset of long range magnetic order of the 4f-moments and their different configurations. In particular, PrFeAsO, which has a very pronounced anomaly associated with Pr-ordering exhibits a large magnetostriction at low temperatures. By discussing this effect along with the magnetization, resistivity and other measurements, it is found that this large magneto-elastic effect may originate from the correlations between the momentum from Fe{sup 3+} and Pr{sup 3+}. Last, the thermal expansion of Ca(Fe{sub 1-x}Co{sub x}){sub 2}As{sub 2} 122 single crystals is investigated. Ca(Fe{sub 1-x}Co{sub x

  17. Multifunctional Lattices with Low Thermal Expansion and Low Thermal Conductivity

    Science.gov (United States)

    Xu, Hang; Liu, Lu; Pasini, Damiano

    Systems in space are vulnerable to large temperature changes when travelling into and out of the Earth's shadow. Variations in temperature can lead to undesired geometric changes in susceptible applications requiring very fine precision. In addition, temperature-sensitive electronic equipment hosted in a satellite needs adequate thermal-control to guarantee a moderate ambient temperature. To address these specifications, materials with low coefficient of thermal expansion (CTE) and low coefficient of thermal conductivity (CTC) over a wide range of temperatures are often sought, especially for bearing components in satellites. Besides low CTE and low CTC, these materials should also provide desirable stiffness, strength and extraordinarily low mass. This work presents ultralightweight bi-material lattices with tunable CTE and CTC, besides high stiffness and strength. We show that the compensation of the thermal expansion and joint rotation at the lattice joints can be used as an effective strategy to tailor thermomechanical performance. Proof-of-concept lattices are fabricated from Al and Ti alloy sheets via a simple snap-fit technique and vacuum brazing, and their CTE and CTC are assessed via a combination of experiments and theory. Corresponding Author.

  18. Thermal and hygroscopic expansion characteristics of bamboo

    OpenAIRE

    Huang, Puxi; Chang, Wen-shao; Ansell, Martin P.; Bowen, Chris R.; Chew, John Y. M.; Adamak, Vana i

    2017-01-01

    The expansion and contraction of bamboo caused by temperature and moisture variations must be evaluated\\ud if bamboo is to be utilised as a building material. However, detailed expansion data, especially data in the ascent and\\ud descent processes of temperature and moisture are unexplored. The aim of this study is to investigate the expansion\\ud characteristics of Phyllostachys edulis (Moso bamboo) in ascent and descent processes of temperature and moisture.\\ud The measurement of linear ther...

  19. Thermal expansion data of (Th,U)O2 fuels

    International Nuclear Information System (INIS)

    Sengupta, A.K.; Banerjee, J.; Bhagat, R.K.; Ramachandran, R.; Majumdar, S.; Purushotham, D.S.C.

    2000-04-01

    Thermal expansion data for sintered ThO 2 and ThO 2 containing 2, 4, 6, 10 and 20% UO 2 pellets were measured using a high temperature dilatometer in the temperature range from ambient to 1773 K. The dilatometer was first calibrated using a standard graphite sample as reference material. The reproducibility of the dilatometer was tested by measuring the coefficient of expansion of tungsten (NBS SRM 737) and comparing the data with that recommended by National Bureau of Standard. It was observed that there is close agreement between the experimental and reported data. The coefficient of expansion data of (Th,U)O 2 fuel indicate that out of all the six compositions, ThO 2 +2%UO 2 showed the maximum expansion of around 1.75% at 1773 K. However, the expansion data for all the compositions were very close to each other. Empirical equation correlating thermal expansion and temperature for all six compositions have been generated and reported. (author)

  20. Temperature and orientation dependence of the short-term strength characteristics, Young's modulus, and linear expansion coefficient of ZhS6F alloy single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Svetlov, I L; Sukhanov, N N; Krivko, A I; Roshchina, I N; Khatsinskaia, I M

    1987-01-01

    Experimental data are presented on the temperature dependence of the short- term strength characteristics, Young's modulus, and linear expansion coefficients of single crystals of a nickel alloy, ZhS6F, with crystallographic orientations along the 001, 111, 011, and 112 lines. It is found that the mechanical properties and Young's modulus of the alloy crystals exibit anisotropy in the temperature range 20-900 C. The linear thermal expansion coefficient is isotropic up to 900 C and equal to that of the equiaxed alloy. 10 references.

  1. Measurement of thermal expansion for a Li2TiO3 pebble bed

    International Nuclear Information System (INIS)

    Hisashi Tanigawa; Mikio Enoeda; Masato Akiba

    2006-01-01

    In the current design of the blanket with ceramic breeders, pebbles of breeding materials are packed into a container and used as a pebble bed. Thermal and mechanical conditions externally loaded on the bed affect thermal and mechanical properties of the bed. It is necessary to analyze thermo-mechanical properties of the bed under controlled thermal and mechanical conditions. In the present paper, thermal expansion of a Li 2 TiO 3 pebble bed was investigated. Our apparatus consists of a tensile test-apparatus and a measurement chamber. Pebbles of Li 2 TiO 3 with 2 mm diameter were used. They were packed into a container made of alumina. At first, thermal expansion of the apparatus was calibrated because the measured deformation included thermal expansions of the load rods and the container. Instead of the pebble bed, a column made of copper was installed and thermal expansion of the system was measured for the calibration. Taking into account the estimated thermal expansion of the column, thermal expansion of the rods and the container could be analyzed. Based on the correction, thermal expansion of the pebble bed was measured under compression of 0.1 MPa. Temperature of the bed was regulated from room temperature to 973 K. From the measured expansion of the bed, average thermal expansion coefficient was estimated. For the beds with different packing factors ranging from 65.5 to 68.5 %, thermal expansion coefficients were 1.4 ± 0. 10-5 K -1 . In the first measurement of the beds without pre-loading, expansion coefficients were larger for the cooling process than heating. When the beds were successively heated and cooled, the difference decreased. This means that relocation of the pebbles arises in the first heat treatment and progress of compaction is larger in the cooling process than heating. After a few heat treatments, packing states of the beds reach stable and expansion coefficients for both heat and cooling processes are close. In the case of the beds that

  2. The Study on Thermal Expansion of Ceramic Composites with Addition of ZrW[2]O]8

    OpenAIRE

    Dedova, Elena Sergeevna; Shadrin, V. S.; Petrushina, M. Y.; Kulkov, Sergey Nikolaevich

    2016-01-01

    The studies on structure, phase composition and thermal properties of (Al[2]O[3] - 20 wt% ZrO[2]) - ZrW[2]O[8] ceramic composites obtained using nanosized, initial powders were conducted. Homogeneously distributed white particles on the polished surface of composites were observed. Phase composition of the composites was represented with corundum, monoclinic ZrO[2] and two modifications of ZrW[2]O[8] (tetragonal and cubic). Linear thermal expansion coefficient values of the composites were de...

  3. Linear thermal expansion coefficient of cast Fe-Ni invar and Fe-Ni-Co superinvar alloys

    International Nuclear Information System (INIS)

    Ogorodnikova, O.M.; Chermenskaya, E.V.; Rabinovich, S.V.; Grachev, S.V.

    1999-01-01

    Cast invar alloys Fe-Ni (28-35 wt. % Ni) are investigated using metallography, dilatometry and X-ray methods as soon as the crystallization is completed and again after low-temperature treatment resulting in martensitic transformation in low nickel alloys. Nickel distribution in a cast superinvar Fe-32% Ni-4% Co is studied by means of X-ray spectrum microanalysis. The results obtained permit the correction of model concepts about cast invars and the estimate of a coefficient of linear expansion depending on phase composition and nickel microsegregation [ru

  4. Crystal structure and thermal expansion of CsCaI3:Eu and CsSrBr3:Eu scintillators

    Science.gov (United States)

    Loyd, Matthew; Lindsey, Adam; Patel, Maulik; Koschan, Merry; Melcher, Charles L.; Zhuravleva, Mariya

    2018-01-01

    The distorted-perovskite scintillator materials CsCaI3:Eu and CsSrBr3:Eu prepared as single crystals have shown promising potential for use in radiation detection applications requiring a high light yield and excellent energy resolution. We present a study using high temperature powder X-ray diffraction experiments to examine a deleterious high temperature phase transition. High temperature phases were identified through sequential diffraction pattern Rietveld refinement in GSAS II. We report the linear coefficients of thermal expansion for both high and low temperature phases of each compound. Thermal expansion for both compositions is greatest in the [0 0 1] direction. As a result, Bridgman growth utilizing a seed oriented with the [0 0 1] along the growth direction should be used to mitigate thermal stress.

  5. Thermal expansion of superconducting fulleride and borocarbide compounds

    International Nuclear Information System (INIS)

    Burkhart, G.J.

    1995-08-01

    In order to detact and analyze thermodynamic phase transitions, the investigation of the thermal expansion via capacitance dilatometry is a powerful experimental technique, due to the extremely high resolution (ΔL/L∝10 -8 -10 -10 ). With respect to the air sensitivity of the fullerides a dilatometer operating under inert atmosphere was designed and the thermal expansion of polycrystalline fulleride (Rb 3 C 60 , K 3 C 60 ) and borocarbide (YNi 2 B 2 C, LuNi 2 B 2 C) compounds was determined in the temperature range 5-320 K. Most effort was focused on a quantitative evaluation of the discontinuity in the thermal expansivity α at the superconducting transition. The results are discussed in the context of the Ehrenfest relation, which connects the jump in the thermal expansivity Δα with the pressure dependence of the superconducting transition temperature dT c /dp and the jump in the specific heat Δc p /T c at the superconducting transition. For Rb 3 C 60 and K 3 C 60 the jump in the specific heat can be derived via the Ehrenfest relation using the results of the thermal expansion measurements and the well-known pressure dependence of the superconducting transition temperature. The derived values for Rb 3 C 60 and K 3 Cu 60 are Δc p /T c ∝75mJ/molK 2 and Δc p /T c ∝64 mJ.molK 2 , respectively. The directly measured specific heat jump of K 3 C 60 gives approximately the same value of Δc p /T c , and, therefore, the use of the Ehrenfest relation on fullerides is justified. The specific heat jumps Δc p /T c , determined from theoretically derived values of the density of states at the Fermi level N(E F ) and the McMillan-parameter λ, exceed the experimental results by a factor of 1.5-2. This finding reflects the uncertainty concerning the superconducting parameters N(E F ) and λ. (orig.)

  6. Local behaviour of negative thermal expansion materials

    International Nuclear Information System (INIS)

    Fornasini, P.; Dalba, G.; Grisenti, R.; Purans, J.; Vaccari, M.; Rocca, F.; Sanson, A.

    2006-01-01

    EXAFS can represent a powerful probe of the local behaviour of negative thermal expansion (NTE) materials, thanks to the possibility of measuring the expansion of selected inter-atomic bonds and the perpendicular relative atomic displacements. The effectiveness of EXAFS for NTE studies is illustrated by a comparison of results recently obtained on germanium, CuCl and the cuprites Cu 2 O and Ag 2 O

  7. Effect of light-curing units on the thermal expansion of resin nanocomposites.

    Science.gov (United States)

    Park, Jeong-Kil; Hur, Bock; Ko, Ching-Chang; García-Godoy, Franklin; Kim, Hyung-Il; Kwon, Yong Hoon

    2010-12-01

    To examine the thermal expansion of resin nanocomposites after light-curing using different light-curing units. Four different resin nanocomposites and four different light-curing units [quartz-tungsten-halogen (QTH), light emitting diode (LED), laser, and plasma arc] were chosen. Metal dies were filled with resin to make specimens and light-cured. The light intensity and light-curing time of the QTH and LED light-curing units were 1000 mW/cm2 and 40 seconds, 700 mW/cm2 and 40 seconds for the laser, and 1600 mW/cm2 and 3 seconds for the plasma arc. The coefficient of thermal expansion (CTE) was evaluated using a thermomechanical analyzer (TMA) at temperatures ranging from 30-80 degrees C. The CTE of the resin nanocomposites tested ranged from 28.5 to 65.8 (x 10(-6)/ degrees C), depending on the product and type of light-curing unit used. Among the specimens, Grandio showed the lowest CTE. The specimens cured using the plasma arc unit (Apollo 95E) showed the highest CTE. There was a linear correlation between the CTE and filler content (vol%) (R: -0.94-0.99 depending on the light-curing unit). The results may suggest a careful selection of the light-curing unit because there was more expansion in the specimens cured using the plasma arc unit than those cured by the other units.

  8. Thermal expansion characteristics of Fe–9Cr–0.12C–0.56Mn–0.24V–1.38W–0.06Ta (wt.%) reduced activation ferritic–martensitic steel

    Energy Technology Data Exchange (ETDEWEB)

    Subramanian, Raju, E-mail: sraju@igcar.gov.in [Metallurgy & Materials Group, Indira Gandhi Centre for Atomic Research (IGCAR), Kalpakkam 603102 (India); Tripathy, Haraprasanna; Rai, Arun Kumar; Hajra, Raj Narayan; Saibaba, Saroja; Jayakumar, Tammana [Metallurgy & Materials Group, Indira Gandhi Centre for Atomic Research (IGCAR), Kalpakkam 603102 (India); Rajendra Kumar, Ellappan [TBM Division, Institute for Plasma Research (IPR), Gandhi Nagar (India)

    2015-04-15

    Highlights: • Lattice & bulk thermal expansion of RAFM steel characterized by HTXRD and dilatometry. • Mean thermal expansion of α-ferrite is 1.48 × 10{sup −5} K{sup −1}; that of γ-austenite, 2.4 × 10{sup −5} K{sup −1}. • Magnetism makes a small negative contribution to overall thermal expansion. - Abstract: The lattice and bulk thermal expansion behavior of an Indian version of reduced activation ferritic–martensitic (INRAFM) steel has been quantified using high temperature X-ray diffraction and dilatometry. The lattice parameter of tempered α-ferrite phase exhibited a smooth quadratic increase with temperature, while that of γ-austenite remained fairly linear up to 1273 K. The results suggest that α-ferrite + Carbides → γ-austenite transformation occurs upon continuous heating in the temperature range, 1146 ⩽ T ⩽ 1173 K. Further, this transformation is found to be accompanied by a reduction in average atomic volume. The mean linear thermal expansion coefficients of tempered α-ferrite and γ-austenite phases are estimated to be about 1.48 × 10{sup −5} and 2.4 × 10{sup −5} K{sup −1} respectively. The magnetic contribution to relative thermal dilatation (Δl/l{sub 298}){sub mag} is found to be small and negative, as compared to phonon contribution.

  9. Thermal Expansion Properties of Aerospace Materials

    Science.gov (United States)

    Green, E. F.

    1969-01-01

    Thermal expansion properties of materials used in aerospace systems are compiled into a single handbook. The data, derived from experimental measurements supplemented by information from literature sources, are presented in charts and tables arranged in two sections, covering cryogenic and elevated temperatures.

  10. Porous composite with negative thermal expansion obtained by photopolymer additive manufacturing

    Directory of Open Access Journals (Sweden)

    Akihiro Takezawa

    2015-07-01

    Full Text Available Additive manufacturing (AM could be a novel method of fabricating composite and porous materials having various effective performances based on mechanisms of their internal geometries. Materials fabricated by AM could rapidly be used in industrial application since they could easily be embedded in the target part employing the same AM process used for the bulk material. Furthermore, multi-material AM has greater potential than usual single-material AM in producing materials with effective properties. Negative thermal expansion is a representative effective material property realized by designing a composite made of two materials with different coefficients of thermal expansion. In this study, we developed a porous composite having planar negative thermal expansion by employing multi-material photopolymer AM. After measurement of the physical properties of bulk photopolymers, the internal geometry was designed by topology optimization, which is the most effective structural optimization in terms of both minimizing thermal stress and maximizing stiffness. The designed structure was converted to a three-dimensional stereolithography (STL model, which is a native digital format of AM, and assembled as a test piece. The thermal expansions of the specimens were measured using a laser scanning dilatometer. Negative thermal expansion corresponding to less than −1 × 10−4 K−1 was observed for each test piece of the N = 3 experiment.

  11. Thermal expansion coefficient determination by CBED

    International Nuclear Information System (INIS)

    Angelini, P.; Bentley, J.

    1984-01-01

    The present application of CBED involves measurements of thermal-expansion coefficients by measurement of changes in HOLZ line positions as a function of temperature. Previous work on this subject was performed on Si at a constant accelerating voltage of 100 kV between about 90 and 600 K. Diffraction patterns were recorded and line shifts correlated to lattice parameter changes. Differences were noted between values determined by CBED and accepted thermal expansion values. Significant HOLZ line interactions and splitting occurring in the (111) patterns were noted to contribute to the differences. Preliminary measurements have been made on Al, Al 2 O 3 , and single-crystal tau (Ni/sub 20.3/Ti/sub 2.7/B 6 ). An example of changes in HOLZ lines present in (114) patterns for Al are shown and the effect of temperature on the position of lines in the pattern illustrated

  12. Multiple thermal transitions and anisotropic thermal expansions of vertically aligned carbon nanotubes

    Science.gov (United States)

    Ya'akobovitz, Assaf

    2016-10-01

    Vertically aligned carbon nanotubes (VA-CNTs) hold the potential to play an instrumental role in a wide variety of applications in micro- and nano-devices and composites. However, their successful large-scale implementation in engineering systems requires a thorough understanding of their material properties, including their thermal behavior, which was the focus of the current study. Thus, the thermal expansion of as-grown VA-CNT microstructures was investigated while increasing the temperature from room temperature to 800 °C and then cooling it down. First thermal transition was observed at 191 ± 68 °C during heating, and an additional thermal transition was observed at 523 ± 138 °C during heating and at similar temperatures during cooling. Each thermal transition was characterized by a significant change in the coefficient of thermal expansion (CTE), which can be related to a morphological change in the VA-CNT microstructures. Measurements of the CTEs in the lateral directions revealed differences in the lateral thermal behaviors of the top, middle, and bottom portions of the VA-CNT microstructures, again indicating that their morphology dominates their thermal characteristics. A hysteretic behavior was observed, as the measured values of CTEs were altered due to the applied thermal loads and the height of the microstructures was slightly higher compared to its initial value. These findings provide an insight into the anisotropic thermal behavior of VA-CNT microstructures and shed light on the relationship between their morphology and thermal behavior.

  13. The Heat Resistance of Microbial Cells Represented by D Values Can be Estimated by the Transition Temperature and the Coefficient of Linear Expansion.

    Science.gov (United States)

    Nakanishi, Koichi; Kogure, Akinori; Deuchi, Keiji; Kuwana, Ritsuko; Takamatsu, Hiromu; Ito, Kiyoshi

    2015-01-01

    We previously developed a method for evaluating the heat resistance of microorganisms by measuring the transition temperature at which the coefficient of linear expansion of a cell changes. Here, we performed heat resistance measurements using a scanning probe microscope with a nano thermal analysis system. The microorganisms studied included six strains of the genus Bacillus or related genera, one strain each of the thermophilic obligate anaerobic bacterial genera Thermoanaerobacter and Moorella, two strains of heat-resistant mold, two strains of non-sporulating bacteria, and one strain of yeast. Both vegetative cells and spores were evaluated. The transition temperature at which the coefficient of linear expansion due to heating changed from a positive value to a negative value correlated strongly with the heat resistance of the microorganism as estimated from the D value. The microorganisms with greater heat resistance exhibited higher transition temperatures. There was also a strong negative correlation between the coefficient of linear expansion and heat resistance in bacteria and yeast, such that microorganisms with greater heat resistance showed lower coefficients of linear expansion. These findings suggest that our method could be useful for evaluating the heat resistance of microorganisms.

  14. Form factor expansion for thermal correlators

    NARCIS (Netherlands)

    Pozsgay, B.; Takács, G.

    2010-01-01

    We consider finite temperature correlation functions in massive integrable quantum field theory. Using a regularization by putting the system in finite volume, we develop a novel approach (based on multi-dimensional residues) to the form factor expansion for thermal correlators. The first few terms

  15. Effect of copper content on the thermal conductivity and thermal expansion of Al–Cu/diamond composites

    International Nuclear Information System (INIS)

    Wu, Jianhua; Zhang, Hailong; Zhang, Yang; Li, Jianwei; Wang, Xitao

    2012-01-01

    Highlights: ► Al–Cu/diamond composites have been produced by a squeeze casting method. ► Cu alloying is an effective approach to promoting interface bonding between metal matrix and diamond. ► Alloying Cu to Al matrix improves thermal conductivity and reduces coefficient of thermal expansion of the composites. -- Abstract: Al–Cu matrix composites reinforced with diamond particles (Al–Cu/diamond composites) have been produced by a squeeze casting method. Cu content added to Al matrix was varied from 0 to 3.0 wt.% to detect the effect on thermal conductivity and thermal expansion behavior of the resultant Al–Cu/diamond composites. The measured thermal conductivity for the Al–Cu/diamond composites increased from 210 to 330 W/m/K with increasing Cu content from 0 to 3.0 wt.%. Accordingly, the coefficient of thermal expansion (CTE) was tailored from 13 × 10 −6 to 6 × 10 −6 /K, which is compatible with the CTE of semiconductors in electronic packaging applications. The enhanced thermal conductivity and reduced coefficient of thermal expansion were ascribed to strong interface bonding in the Al–Cu/diamond composites. Cu addition has lowered the melting point and resulted in the formation of Al 2 Cu phase in Al matrix. This is the underlying mechanism responsible for the strengthening of Al–Cu/diamond interface. The results show that Cu alloying is an effective approach to promoting interface bonding between Al and diamond.

  16. Giant thermal expansion and α-precipitation pathways in Ti-alloys.

    Science.gov (United States)

    Bönisch, Matthias; Panigrahi, Ajit; Stoica, Mihai; Calin, Mariana; Ahrens, Eike; Zehetbauer, Michael; Skrotzki, Werner; Eckert, Jürgen

    2017-11-10

    Ti-alloys represent the principal structural materials in both aerospace development and metallic biomaterials. Key to optimizing their mechanical and functional behaviour is in-depth know-how of their phases and the complex interplay of diffusive vs. displacive phase transformations to permit the tailoring of intricate microstructures across a wide spectrum of configurations. Here, we report on structural changes and phase transformations of Ti-Nb alloys during heating by in situ synchrotron diffraction. These materials exhibit anisotropic thermal expansion yielding some of the largest linear expansion coefficients (+ 163.9×10 -6 to -95.1×10 -6  °C -1 ) ever reported. Moreover, we describe two pathways leading to the precipitation of the α-phase mediated by diffusion-based orthorhombic structures, α″ lean and α″ iso . Via coupling the lattice parameters to composition both phases evolve into α through rejection of Nb. These findings have the potential to promote new microstructural design approaches for Ti-Nb alloys and β-stabilized Ti-alloys in general.

  17. Pressure-induced reversal between thermal contraction and expansion in ferroelectric PbTiO3.

    Science.gov (United States)

    Zhu, Jinlong; Zhang, Jianzhong; Xu, Hongwu; Vogel, Sven C; Jin, Changqing; Frantti, Johannes; Zhao, Yusheng

    2014-01-15

    Materials with zero/near zero thermal expansion coefficients are technologically important for applications in thermal management and engineering. To date, this class of materials can only be produced by chemical routes, either by changing chemical compositions or by composting materials with positive and negative thermal expansion. Here, we report for the first time a physical route to achieve near zero thermal expansion through application of pressure. In the stability field of tetragonal PbTiO3 we observed pressure-induced reversals between thermal contraction and expansion between ambient pressure and 0.9 GPa. This hybrid behavior leads to a mathematically infinite number of crossover points in the pressure-volume-temperature space and near-zero thermal expansion coefficients comparable to or even smaller than those attained by chemical routes. The observed pressures for this unusual phenomenon are within a small range of 0.1-0.9 GPa, potentially feasible for designing stress-engineered materials, such as thin films and nano-crystals, for thermal management applications.

  18. Spin crossover-induced colossal positive and negative thermal expansion in a nanoporous coordination framework material.

    Science.gov (United States)

    Mullaney, Benjamin R; Goux-Capes, Laurence; Price, David J; Chastanet, Guillaume; Létard, Jean-François; Kepert, Cameron J

    2017-10-20

    External control over the mechanical function of materials is paramount in the development of nanoscale machines. Yet, exploiting changes in atomic behaviour to produce controlled scalable motion is a formidable challenge. Here, we present an ultra-flexible coordination framework material in which a cooperative electronic transition induces an extreme abrupt change in the crystal lattice conformation. This arises due to a change in the preferred coordination character of Fe(II) sites at different spin states, generating scissor-type flexing of the crystal lattice. Diluting the framework with transition-inactive Ni(II) sites disrupts long-range communication of spin state through the lattice, producing a more gradual transition and continuous lattice movement, thus generating colossal positive and negative linear thermal expansion behaviour, with coefficients of thermal expansion an order of magnitude greater than previously reported. This study has wider implications in the development of advanced responsive structures, demonstrating electronic control over mechanical motion.

  19. Investigation of the thermal expansion of the refractory materials at high temperatures

    Science.gov (United States)

    Kostanovskiy, A.; Kostanovskaya, M.; Zeodinov, M.; Pronkin, A.

    2017-11-01

    We present the experimental investigation of the relative elongation and the coefficient of linear thermal expansion for monocrystaline alumina Al2O3 (1200 K - 1860 K), zirconia ZrO2 (1200 K - 2730 K) and siliconized silicon carbide SiC+Si (1150 K - 2500 K) in the specified range of temperatures. The following approach is used to measure the relative elongation: the through-cylindrical-marks located in the centre of isothermal part of the sample, and the measurement of temperature by two blackbody models, taken out of the area of the sample where the relative elongation is measured.

  20. Structure and thermal expansion of Lu2O3 and Yb2O3 up to the melting points

    Science.gov (United States)

    Pavlik, Alfred; Ushakov, Sergey V.; Navrotsky, Alexandra; Benmore, Chris J.; Weber, Richard J. K.

    2017-11-01

    Knowledge of thermal expansion and high temperature phase transformations is essential for prediction and interpretation of materials behavior under the extreme conditions of high temperature and intense radiation encountered in nuclear reactors. Structure and thermal expansion of Lu2O3 and Yb2O3 were studied in oxygen and argon atmospheres up to their melting temperatures using synchrotron X-ray diffraction on laser heated levitated samples. Both oxides retained the cubic bixbyite C-type structure in oxygen and argon to melting. In contrast to fluorite-type structures, the increase in the unit cell parameter of Yb2O3 and Lu2O3 with temperature is linear within experimental error from room temperature to the melting point, with mean thermal expansion coefficients (8.5 ± 0.6) · 10-6 K-1 and (7.7 ± 0.6) · 10-6 K-1, respectively. There is no indication of a superionic (Bredig) transition in the C-type structure or of a previously suggested Yb2O3 phase transformation to hexagonal phase prior to melting.

  1. Two Decades of Negative Thermal Expansion Research: Where Do We Stand?

    Science.gov (United States)

    Lind, Cora

    2012-01-01

    Negative thermal expansion (NTE) materials have become a rapidly growing area of research over the past two decades. The initial discovery of materials displaying NTE over a large temperature range, combined with elucidation of the mechanism behind this unusual property, was followed by predictions that these materials will find use in various applications through controlled thermal expansion composites. While some patents have been filed and devices built, a number of obstacles have prevented the widespread implementation of NTE materials to date. This paper reviews NTE materials that contract due to transverse atomic vibrations, their potential for use in controlled thermal expansion composites, and known problems that could interfere with such applications. PMID:28817027

  2. Thermal expansion studies on zircaloy-2

    International Nuclear Information System (INIS)

    Sivabharathy, M.; Senthilkumar, A.; Palanichamy, P.; Ramachandran, K.

    2016-01-01

    Zircaloy-2 and Zr-2.5% Nb alloys are widely used in the pressurized heavy water reactors (PHWR) as the material for the pressure tubes. The pressure tube operates at 573 K, 11 MPa internal pressures and is subjected to neutron flux of the order of 1013 n/cm 2 /s. These conditions lead to degradations in the pressure tube with respect to dimensional changes, deterioration in mechanical properties due to irradiation embrittlement, thereby reducing its flaw tolerance, the growth of existing flaws, which were too small or 'insignificant' at the time of installation. Physical and chemical properties of materials are also very essential in nuclear industry and the relations among them is of interest in the selection of materials when they are used in the design and manufacturing of devices particularly for atomic reactors.Studies on the relations between mechanical and thermal properties are of interest to the steel and metal industries as these would give useful information on the relation between hardness and thermal diffusivity (α) of steel. Jayakumar et al have already carried out the ultrasonic and metallographic investigations to see that all the heat-treated specimens retained essentially the martensite structure. In this present work, thermal expansion measurements on useful reactor material, Zircaloy-2 with different sample. Given a β-quenching treatment by heating to 1223 K and holding for 2 h, followed by water quenching. These specimens were then thermally aged for 1 h in the temperature range 473 to 973 K and air-cooled. For all samples, the thermal expansion was carried out and the results are correlated with ultrasonic measurements, metallographic and photoacoustic studies. (author)

  3. Thermal expansion measurements by x-ray scattering and breakdown of Ehrenfest's relation in alloy liquids

    International Nuclear Information System (INIS)

    Gangopadhyay, A. K.; Blodgett, M. E.; Johnson, M. L.; Vogt, A. J.; Mauro, N. A.; Kelton, K. F.

    2014-01-01

    Measurements of sharp diffraction peaks as a function of temperature are routinely used to obtain precise linear expansion coefficients of crystalline solids. In this case, the relation between temperature dependent changes in peak position in momentum transfer (q 1 ) and volume expansion is straightforward (Ehrenfest's relation: q 1  = K(2π/d), where K is a constant and d is the interatomic spacing) and the data obtained are usually in close agreement with more direct measurements. With high intensity synchrotron x-ray and spallation neutron sources, it is also possible to accurately measure the positions of the much broader peaks for liquids and glasses. This has led to a debate on whether linear expansion coefficients derived from these data are an accurate representation of the volume expansion coefficients. We present here volume thermal expansion and x-ray diffraction data for a large number of glass-forming alloy liquids acquired in a containerless environment using the beamline electrostatic levitation technique. The data show a large difference in the values obtained from the two different techniques. Moreover, the position of the first peak (q 1 ) in the scattered intensity in the structure factor (S(q)) and the atomic volume v for all liquids follow a simple relationship, v∝(q 1 ) −ε . The exponent, ε = 2.28 (±0.11), is much different from the expected value of 3 from Ehrenfest's relation and shows no temperature dependence over the temperature range of the data collected

  4. Pressure-induced reversal between thermal contraction and expansion in ferroelectric PbTiO3

    OpenAIRE

    Jinlong Zhu; Jianzhong Zhang; Hongwu Xu; Sven C. Vogel; Changqing Jin; Johannes Frantti; Yusheng Zhao

    2014-01-01

    Materials with zero/near zero thermal expansion coefficients are technologically important for applications in thermal management and engineering. To date, this class of materials can only be produced by chemical routes, either by changing chemical compositions or by composting materials with positive and negative thermal expansion. Here, we report for the first time a physical route to achieve near zero thermal expansion through application of pressure. In the stability field of tetragonal P...

  5. DESIGN OF AN EDUCATIONAL SIMULATION PROGRAM USING DIGITAL VIDEO PROCESSING TO DETERMINE THE THERMAL EXPANSION OF MATERIALS

    Directory of Open Access Journals (Sweden)

    V. Gökhan BÖCEKÇİ

    2013-01-01

    Full Text Available The present report describes the realization of an educational simulation program to determine the amount of linear thermal expansion in experimental materials. An interferogram signal derived from an interferometric measurement system was modeled as a video signal in a computer environment. A simulation program was designed from the model signal in order to detect the amount of expansion in materials. The simulation program determined the amount of to heat by detecting the number of fringes in interferogram video signals of the material. This simulation program facilitated experimental studies n academic institutions which are deprived of interferometric measurement systems.

  6. High thermal expansion, sealing glass

    Science.gov (United States)

    Brow, R.K.; Kovacic, L.

    1993-11-16

    A glass composition is described for hermetically sealing to high thermal expansion materials such as aluminum alloys, stainless steels, copper, and copper/beryllium alloys, which includes between about 10 and about 25 mole percent Na[sub 2]O, between about 10 and about 25 mole percent K[sub 2]O, between about 5 and about 15 mole percent Al[sub 2]O[sub 3], between about 35 and about 50 mole percent P[sub 2]O[sub 5] and between about 5 and about 15 mole percent of one of PbO, BaO, and mixtures thereof. The composition, which may also include between 0 and about 5 mole percent Fe[sub 2]O[sub 3] and between 0 and about 10 mole percent B[sub 2]O[sub 3], has a thermal expansion coefficient in a range of between about 160 and 210[times]10[sup [minus]7]/C and a dissolution rate in a range of between about 2[times]10[sup [minus]7] and 2[times]10[sup [minus]9]g/cm[sup 2]-min. This composition is suitable to hermetically seal to metallic electrical components which will be subjected to humid environments over an extended period of time.

  7. Pressure effects on thermal conductivity and expansion of geologic materials

    International Nuclear Information System (INIS)

    Sweet, J.N.

    1979-02-01

    Through analysis of existing data, an estimate is made of the effect of pressure or depth on the thermal conductivity and expansion of geologic materials which could be present in radioactive waste repositories. In the case of homogeneous dense materials, only small shifts are predicted to occur at depths less than or equal to 3 km, and these shifts will be insignificant as compared with those caused by temperature variations. As the porosity of the medium increases, the variation of conductivity and expansion with pressure becomes greater, with conductivity increasing and expansion decreasing as pressure increases. The pressure dependence of expansion can be found from data on the temperature variation of the isobaric compressibility. In a worst case estimate, a decrease in expansion of approx. 25% is predicted for 5% porous sandstone at a depth of 3 km. The thermal conductivity of a medium with gaseous inclusions increases as the porosity decreases, with the magnitude of the increase being dependent on the details of the porosity collapse. Based on analysis of existing data on tuff and sandstone, a weighted geometric mean formula is recommended for use in calculating the conductivity of porous rock. As a result of this study, it is recommended that measurement of rock porosity versus depth receive increased attention in exploration studies and that the effect of porosity on thermal conductivity and expansion should be examined in more detail

  8. Enhanced thermal expansion control rod drive lines for improving passive safety of fast reactors

    International Nuclear Information System (INIS)

    Edelmann, M.; Baumann, W.; Kuechle, M.; Kussmaul, G.; Vaeth, W.; Bertram, A.

    1992-01-01

    The paper presents a device for increasing the thermal expansion effect of control rod drive lines on negative reactivity feedback in fast reactors. The enhanced thermal expansion of this device can be utilized for both passive rod drop and forced insertion of absorbers in unprotected transients, e.g. ULOF. In this way the reactor is automatically brought into a permanently subcritical state and temperatures are kept well below the boiling point of the coolant. A prototype of such a device called ATHENa (German: Shut-down by THermal Expansion of Na) is presently under construction and will be tested. The paper presents the principle, design features and thermal properties of ATHENs as well as results of reactor dynamics calculations of ULOF's for EFR with enhanced thermal expansion control rod drive lines. (author)

  9. Thermal expansion behavior of fluor-chlorapatite crystalline solutions

    Science.gov (United States)

    Hovis, G.; Harlov, D.; Gottschalk, M.; Hudacek, W.; Wildermuth, S.

    2009-04-01

    Apatite Ca5(PO4)3(F,Cl,OH,CO3) occurs widely as an accessory mineral in many igneous and metamorphic rocks and in nature displays a wide range of F-Cl-OH-CO3 mixtures (e.g., O'Reilly and Griffin, 2000) that have been used to interpret the role of fluids, e.g. Cl, F, and OH activities, during metamorphic and igneous processes (e.g., Harlov and Förster, 2002). It is important, therefore, to understand the thermodynamic behavior of these solid solutions, including their thermal expansion properties. Fluorapatite - chlorapatite samples were synthesized at the GFZ-Potsdam (Hovis, Harlov, Hahn and Steigert, 2007) using an adaptation of the molten flux method of Cherniak (2000). Dry CaF2 and CaCl2 (0.1 mole total) were mixed with Ca3(PO4)2 (0.03 moles), placed in a Pt crucible, equilibrated for 15 hours at 1375 °C, cooled to 1220 °C at 3 °C/hour, removed from the oven and cooled in air. Crystals were separated from the flux by boiling the quenched product in water. F:Cl fractions for each sample were determined via Rietveld refinement of X-ray powder diffraction data. Chemical homogeneity was confirmed by Rietveld refinement and high-contrast back-scattered electron imaging. Room-temperature unit-cell volumes were determined at the GFZ-Potsdam through Rietveld analysis of X-ray powder diffraction data and also at Lafayette College by standard unit-cell refinement techniques (Holland and Redfern, 1997) using NBS/NIST 640a Si as an internal standard. High-temperature unit-cell dimensions were calculated from X-ray powder diffraction data collected at Cambridge University from room temperature to 1000 °C on a Bruker D8 X-ray diffractometer. NBS Si again was utilized as an internal standard; high-temperature Si peak positions were taken from Parrish (1953). Results indicate that despite the considerable size difference between fluorine and chlorine ions, reflected by substantially different unit-cell sizes at room temperature, the coefficient of thermal expansion across

  10. The linear potential propagator via wave function expansion

    International Nuclear Information System (INIS)

    Nassar, Antonio B.; Cattani, Mauro S.D.

    2002-01-01

    We evaluate the quantum propagator for the motion of a particle in a linear potential via a recently developed formalism [A.B. Nassar et al., Phys. Rev. E56, 1230, (1997)]. In this formalism, the propagator comes about as a type of expansion of the wave function over the space of the initial velocities. (author)

  11. A combined stretching-tilting mechanism produces negative, zero and positive linear thermal expansion in a semi-flexible Cd(II)-MOF.

    Science.gov (United States)

    Lama, Prem; Das, Raj Kumar; Smith, Vincent J; Barbour, Leonard J

    2014-06-21

    A novel semi-flexible Cd(II)-MOF has been synthesized and characterized by variable temperature powder and single-crystal X-ray diffraction. The material displays an unusual combination of thermal expansion (TE) i.e. negative, zero and positive, which is an extremely rare finding, especially for metal-organic frameworks as a result of a combined stretching-tilting mechanism.

  12. Thermal expansion of martensitic A15 superconductors: V3Si

    International Nuclear Information System (INIS)

    Finlayson, T.R.; Liu, M.; Smith, T.F.

    1995-01-01

    The martensite phase morphology of V 3 Si has been controlled by the application of appropriate stress fields to a single crystal. With this procedure, it is possible to transform the crystal to a single, tetragonal domain, enabling the thermal expansion coefficients for the tetragonal a and c axes to be measured, using high-resolution, capacitance dilatometry. Expansion anomalies were found at low temperatures, well below the superconducting critical temperature, for both the a and c axes. The tetragonality continues increasing on cooling at low temperatures, which, predicted by theory, should have been inhibited by the onset of superconductivity. In addition, anisotropy in thermal expansion is found up to 50 K, which is well above the conventional M s temperature of 21 K. (orig.)

  13. The role of a chemical bond in thermal expansion of TlIn1-xYbxSe2 solid solutions

    International Nuclear Information System (INIS)

    Zarbaliev, M.M.; Sardarova, N.S.; Mamedov, E.G.; Nagiyev, A.B.

    2008-01-01

    Report focuses on the study of the role of the chemical bond in the thermal expansion of solid solutions TLIn 1 -x Yb x Se 2 (0linear thermal expansion (CTE) has been measured in the temperature range 80-350 K with help of dilatometer with induction registration. It is clear from the temperature dependence that, α(T) for all phases of studies is identical. This behavior α (T) is explained that, all investigated phases are crystallized, as parent compound TLInSe 2 , in the tetragonal system and type of chemical bonds between atoms in a crystal lattice one and the same. It leads to the same temperature changes of enharmonic part of the thermal variations of atoms in the crystal lattice. But the level of anharmonism depends on the character interatomic interaction and temperature, which defined the value of α

  14. Automation of a thermal expansion instrument

    Energy Technology Data Exchange (ETDEWEB)

    Holland, L.L.

    1979-03-01

    Automation of a thermal expansion instrument using a minicomputer system and with analog-to-digital converter inputs and flip-flop relay outputs is described. The necessary hardware link and the software were developed to allow equipment control, data acquisition, data reduction, and report generation by the minicomputer. The design of the automation allows non-programmers to run the experiment, reduce the data, and generate the report.

  15. Thermal expansion properties of Bi-2212 in Ag or an Ag-alloy matrix

    International Nuclear Information System (INIS)

    Tenbrink, J.; Krauth, H.

    1994-01-01

    The thermal expansion properties of polycrystalline Bi 2 Sr 2 Ca 1 Cu 2 O 8+x melt-processed bulk specimens, and Bi 2 Sr 2 Ca 1 Cu 2 O 8+x monocore as well as multifilamentary round wires in Ag or Ag-alloy matrix have been investigated over the temperature range from -150 to 800 degrees C. Although the thermal expansion of Bi 2 Sr 2 Ca 1 Cu 2 O 8+x is distinctly lower compared with Ag, the thermal expansion properties of the Bi 2 Sr 2 Ca 1 Cu 2 O 8+x -Ag or AgNiMg-alloy composite conductors are essentially governed by the matrix material. The thermal expansion of the encountered oxide-dispersion-strengthened AgNiMg alloys is only slightly lower compared with that of pure Ag. Therefore the thermal expansion of all investigated Bi 2 Sr 2 Ca 1 Cu 2 O 8+x -Ag or Ag-alloy composite wires was found to be close to that of pure Ag. The reason for this striking behaviour is shown to be related to a surprisingly low elastic modulus of the polycrystalline Bi-2212 wire cores of the order of 10 to a maximum 40 GPa. (author)

  16. Next generation dilatometer for highest accuracy thermal expansion measurement of ZERODUR®

    Science.gov (United States)

    Jedamzik, Ralf; Engel, Axel; Kunisch, Clemens; Westenberger, Gerhard; Fischer, Peter; Westerhoff, Thomas

    2015-09-01

    In the recent years, the ever tighter tolerance for the Coefficient of thermal expansion (CTE) of IC Lithography component materials is requesting significant progress in the metrology accuracy to determine this property as requested. ZERODUR® is known for its extremely low CTE between 0°C to 50°C. The current measurement of the thermal expansion coefficient is done using push rod dilatometer measurement systems developed at SCHOTT. In recent years measurements have been published showing the excellent CTE homogeneity of ZERODUR® in the one-digit ppb/K range using these systems. The verifiable homogeneity was limited by the CTE(0°C, 50°C) measurement repeatability in the range of ± 1.2 ppb/K of the current improved push rod dilatometer setup using an optical interferometer as detector instead of an inductive coil. With ZERODUR® TAILORED, SCHOTT introduced a low thermal expansion material grade that can be adapted to individual customer application temperature profiles. The basis for this product is a model that has been developed in 2010 for better understanding of the thermal expansion behavior under given temperature versus time conditions. The CTE behavior predicted by the model has proven to be in very good alignment with the data determined in the thermal expansions measurements. The measurements to determine the data feeding the model require a dilatometer setup with excellent stability and accuracy for long measurement times of several days. In the past few years SCHOTT spent a lot of effort to drive a dilatometer measurement technology based on the push rod setup to its limit, to fulfill the continuously demand for higher CTE accuracy and deeper material knowledge of ZERODUR®. This paper reports on the status of the dilatometer technology development at SCHOTT.

  17. Localized Symmetry Breaking for Tuning Thermal Expansion in ScF 3 Nanoscale Frameworks

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Lei [Department of Physical Chemistry, University of Science and Technology Beijing, Beijing 100083, China; Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States; Qin, Feiyu [Department of Physical Chemistry, University of Science and Technology Beijing, Beijing 100083, China; Sanson, Andrea [Department of Physics and Astronomy, University of Padova, Padova I-35131, Italy; Huang, Liang-Feng [Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States; Pan, Zhao [Department of Physical Chemistry, University of Science and Technology Beijing, Beijing 100083, China; Li, Qiang [Department of Physical Chemistry, University of Science and Technology Beijing, Beijing 100083, China; Sun, Qiang [International Laboratory for Quantum Functional Materials of Henan, School of Physics and Engineering, Zhengzhou University, Zhengzhou 450001, China; Wang, Lu [Department of Physical Chemistry, University of Science and Technology Beijing, Beijing 100083, China; Guo, Fangmin [X-Ray Science Division, Argonne National Laboratory, Argonne, Illinois 60439, United States; Aydemir, Umut [Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States; Department of Chemistry, Koc University, Sariyer, Istanbul 34450, Turkey; Ren, Yang [X-Ray Science Division, Argonne National Laboratory, Argonne, Illinois 60439, United States; Sun, Chengjun [X-Ray Science Division, Argonne National Laboratory, Argonne, Illinois 60439, United States; Deng, Jinxia [Department of Physical Chemistry, University of Science and Technology Beijing, Beijing 100083, China; Aquilanti, Giuliana [Elettra Sincrotrone Trieste, Basovizza, Trieste I-34149, Italy; Rondinelli, James M. [Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States; Chen, Jun [Department of Physical Chemistry, University of Science and Technology Beijing, Beijing 100083, China; Xing, Xianran [Department of Physical Chemistry, University of Science and Technology Beijing, Beijing 100083, China

    2018-03-15

    The local symmetry, beyond the averaged crystallographic structure, tends to bring unu-sual performances. Negative thermal expansion is a peculiar physical property of solids. Here, we report the delicate design of the localized symmetry breaking to achieve the controllable thermal expansion in ScF3 nano-scale frameworks. Intriguingly, an isotropic zero thermal expansion is concurrently engi-neered by localized symmetry breaking, with a remarkably low coefficient of thermal expansion of about +4.0×10-8/K up to 675K. This mechanism is investigated by the joint analysis of atomic pair dis-tribution function of synchrotron X-ray total scattering and extended X-ray absorption fine structure spectra. A localized rhombohedral distortion presumably plays a critical role in stiffening ScF3 nano-scale frameworks and concomitantly suppressing transverse thermal vibrations of fluorine atoms. This physical scenario is also theoretically corroborated by the extinction of phonon modes with negative Grüneisen parameters in the rhombohedral ScF3. The present work opens an untraditional chemical modification to achieve controllable thermal expansion by breaking local symmetries of materials.

  18. The intrinsic thermal expansion of point defects in Al

    International Nuclear Information System (INIS)

    Asty, Michel.

    1975-11-01

    The differential length measurement between two specimens, on pure and the other containing point defects, leads to the intrinsic thermal coefficient of expansion β(d) of the defect. A differential dilatometer by Laser interferometry is described operating between 77 and 300 K, with a sensitivity of about 100A on the length difference between an alloy sample and a pure dummy. Concerning substitutional impurities in aluminium between -190 deg C and -90 deg C, the intrinsic thermal coefficient of expansion of the defect β(d) is shown to have an absolute value much larger than the thermal expansion coefficient β 0 of the aluminium matrix: β(d)/β 0 =+3 to +6 for the magnesium impurity, β(d)/β 0 =-3 to -4 for the calcium impurity, and to be independent of the temperature. The existing theoretical models give evaluations for away from modeles theoriques existant sont tres loin d'expliquer les resultats experimentaux. high temperature, the results show that vacancies and divacancies, before collapsing in dislocation loops, form multivacancy clusters with large formation volumes: such a property makes these clusters comparable to cavities where the formation volume per vacancy is equal to the atomic volume of the matrix [fr

  19. Modeling the thermal deformation of TATB-based explosives. Part 1: Thermal expansion of “neat-pressed” polycrystalline TATB

    Energy Technology Data Exchange (ETDEWEB)

    Luscher, Darby J. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2014-05-08

    We detail a modeling approach to simulate the anisotropic thermal expansion of polycrystalline (1,3,5-triamino-2,4,6-trinitrobenzene) TATB-based explosives that utilizes microstructural information including porosity, crystal aspect ratio, and processing-induced texture. This report, the first in a series, focuses on nonlinear thermal expansion of “neat-pressed” polycrystalline TATB specimens which do not contain any binder; additional complexities related to polymeric binder and irreversible ratcheting behavior are briefly discussed, however detailed investigation of these aspects are deferred to subsequent reports. In this work we have, for the first time, developed a mesoscale continuum model relating the thermal expansion of polycrystal TATB specimens to their microstructural characteristics. A self-consistent homogenization procedure is used to relate macroscopic thermoelastic response to the constitutive behavior of single-crystal TATB. The model includes a representation of grain aspect ratio, porosity, and crystallographic texture attributed to the consolidation process. A quantitative model is proposed to describe the evolution of preferred orientation of graphitic planes in TATB during consolidation and an algorithm constructed to develop a discrete representation of the associated orientation distribution function. Analytical and numerical solutions using this model are shown to produce textures consistent with previous measurements and characterization for isostatic and uniaxial “die-pressed” specimens. Predicted thermal strain versus temperature for textured specimens are shown to be in agreement with corresponding experimental measurements. Using the developed modeling approach, several simulations have been run to investigate the influence of microstructure on macroscopic thermal expansion behavior. Results from these simulations are used to identify qualitative trends. Implications of the identified trends are discussed in the context of

  20. Pressure-dependence of the phase transitions and thermal expansion in zirconium and hafnium pyrovanadate

    Energy Technology Data Exchange (ETDEWEB)

    Gallington, Leighanne C.; Hester, Brett R.; Kaplan, Benjamin S. [School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA 30332‐0400 (United States); Wilkinson, Angus P., E-mail: angus.wilkinson@chemistry.gatech.edu [School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA 30332‐0400 (United States); School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA 30332‐0245 (United States)

    2017-05-15

    Low or negative thermal expansion (NTE) has been previously observed in members of the ZrP{sub 2}O{sub 7} family at temperatures higher than their order-disorder phase transitions. The thermoelastic properties and phase behavior of the low temperature superstructure and high temperature negative thermal expansion phases of ZrV{sub 2}O{sub 7} and HfV{sub 2}O{sub 7} were explored via in situ variable temperature/pressure powder x-ray diffraction measurements. The phase transition temperatures of ZrV{sub 2}O{sub 7} and HfV{sub 2}O{sub 7} exhibited a very strong dependence on pressure (∼700 K GPa), with moderate compression suppressing the formation of their NTE phases below 513 K. Compression also reduced the magnitude of the coefficients of thermal expansion in both the positive and negative thermal expansion phases. Additionally, the high temperature NTE phase of ZrV{sub 2}O{sub 7} was found to be twice as stiff as the low temperature positive thermal expansion superstructure (24 and 12 GPa respectively). - Graphical abstract: The temperature at which ZrV{sub 2}O{sub 7} transforms to a phase displaying negative thermal expansion is strongly pressure dependent. The high temperature form of ZrV{sub 2}O{sub 7} is elastically stiffer than the low temperature form. - Highlights: • The order-disorder phase transition temperatures in ZrV{sub 2}O{sub 7} and HfV{sub 2}O{sub 7} are strongly pressure dependent (∼700 K.GPa). • The high temperature (disordered) phase of ZrV{sub 2}O{sub 7} is much stiffer than the ambient temperature (ordered) phase. • Compression reduces the magnitude of the negative thermal expansion in the high temperature phase of ZrV{sub 2}O{sub 7}.

  1. Shape memory effects, thermal expansion and B19' martensite texture in titanium nickelide

    International Nuclear Information System (INIS)

    Zel'dovich, V.I.; Sobyanina, G.A.; Rinkevich, O.S.; Gundyrev, V.M.

    1996-01-01

    The influence of plastic deformation by tension and cold rolling on shape memory effect, reverse shape memory effect, thermal expansion and texture state of martensite in titanium nickelide is under study. The relationship of thermal expansion coefficient to the value of strain during direct and reverse shape memory effect is established

  2. Thermal expansion of amorphous Zr65Al7.5Cu17.5Ni10 in the vicinity of the glass transition

    International Nuclear Information System (INIS)

    Geier, N.; Weiss, M.; Moske, M.; Samwer, K.

    2000-01-01

    The thermal expansion of non-crystalline Zr 65 Al 7.5 Cu 17.5 Ni 10 has been studied in the range of the glass transition and in the undercooled liquid using a dilatometric device. The measuring technique used permits reliable experimental results up to 40 K above the glass transition temperature. The linear thermal expansion coefficient obtained is almost constant in the glassy state with a value of 8.0 x 10 -6 K -1 . It discontinuously increases at the glass transition temperature yielding a value of 20.0 x 10 -6 K -1 in the undercooled liquid. The results are compared with specific heat measurements of the amorphous material in this temperature range and are interpreted in the framework of a cluster model. (orig.)

  3. Thermal expansion of ceramic samples containing natural zeolite

    Science.gov (United States)

    Sunitrová, Ivana; Trník, Anton

    2017-07-01

    In this study the thermal expansion of ceramic samples made from natural zeolite is investigated. Samples are prepared from the two most commonly used materials in ceramic industry (kaolin and illite). The first material is Sedlec kaolin from Czech Republic, which contains more than 90 mass% of mineral kaolinite. The second one is an illitic clay from Tokaj area in Hungary, which contains about 80 mass% of mineral illite. Varying amount of the clay (0 % - 50 %) by a natural zeolite from Nižný Hrabovec (Slovak Republic), containing clinoptilolite as major mineral phase is replaced. The measurements are performed on cylindrical samples with a diameter 14 mm and a length about 35 mm by a horizontal push - rod dilatometer. Samples made from pure kaolin, illite and zeolite are also subjected to this analysis. The temperature regime consists from linear heating rate of 5 °C/min from 30 °C to 1100 °C. The results show that the relative shrinkage of ceramic samples increases with amount of zeolite in samples.

  4. Thermal expansion of Cr2xFe2-2xMo3O12, Al2xFe2-2xMo3O12 and Al2xCr2-2xMo3O12 solid solutions

    International Nuclear Information System (INIS)

    Ari, M.; Jardim, P.M.; Marinkovic, B.A.; Rizzo, F.; Ferreira, F.F.

    2008-01-01

    The transition temperature from monoclinic to orthorhombic and the thermal expansion of the orthorhombic phase were investigated for three systems of the family A 2 M 3 O 12 : Cr 2x Fe 2-2x Mo 3 O 12 , Al 2x Fe 2-2x Mo 3 O 12 and Al 2x Cr 2-2x Mo 3 O 12 . It was possible to obtain a single-phase solid solution in all studied samples (x=0, 0.1, 0.3, 0.5, 0.7, 0.9 and 1). A linear relationship between the transition temperature and the fraction of A 3+ cations (x) was observed for each system. In all orthorhombic solid solutions studied here the observed thermal expansion was anisotropic. These anisotropic thermal expansion properties of crystallographic axes a, b and c result in a low positive or near-zero overall linear coefficient of thermal expansion (α l =α V /3). The relationship between the size of A 3+ cations in A 2 M 3 O 12 and the coefficient of thermal expansion is discussed. Near-zero thermal expansion of Cr 2 Mo 3 O 12 is explained by the behavior of Cr-O and Mo-O bond distances, Cr-Mo non-bond distances and Cr-O-Mo bond angles with increasing temperature, estimated by Rietveld analysis of synchrotron X-ray powder diffraction data. - Graphical abstract: In this figure, all published overall linear coefficients of thermal expansion for orthorhombic A 2 M 3 O 12 family obtained through diffraction methods as a function of A 3+ cation radii size, together with dilatometric results, are plotted. Our results indicate that Cr 2 Mo 3 O 12 does not exactly follow the established relationship

  5. Composites of aluminum alloy and magnesium alloy with graphite showing low thermal expansion and high specific thermal conductivity

    Science.gov (United States)

    Oddone, Valerio; Boerner, Benji; Reich, Stephanie

    2017-12-01

    High thermal conductivity, low thermal expansion and low density are three important features in novel materials for high performance electronics, mobile applications and aerospace. Spark plasma sintering was used to produce light metal-graphite composites with an excellent combination of these three properties. By adding up to 50 vol.% of macroscopic graphite flakes, the thermal expansion coefficient of magnesium and aluminum alloys was tuned down to zero or negative values, while the specific thermal conductivity was over four times higher than in copper. No degradation of the samples was observed after thermal stress tests and thermal cycling. Tensile strength and hardness measurements proved sufficient mechanical stability for most thermal management applications. For the production of the alloys, both prealloyed powders and elemental mixtures were used; the addition of trace elements to cope with the oxidation of the powders was studied.

  6. Simultaneous measurement of thermo-optic and thermal expansion coefficients with a single arm double interferometer.

    Science.gov (United States)

    Domenegueti, Jose Francisco Miras; Andrade, Acacio A; Pilla, Viviane; Zilio, Sergio Carlos

    2017-01-09

    A low-cost single arm double interferometer was developed for the concurrent measurement of linear thermal expansion (α) and thermo-optic (dn/dT) coefficients of transparent samples with plane and parallel surfaces. Owing to its common-path optical arrangement, the device is compact and stable, and allows the simultaneous measurement of interferences arising from a low-finesse Fabry-Perot etalon and from a Mach-Zehnder-type interferometer. The method was demonstrated with measurements of solid (silica, BK7, SF6) and liquid (water, ethanol and acetone) samples.

  7. The effect of gamma irradiation on the thermal expansion behaviour of oriented polypropylene

    International Nuclear Information System (INIS)

    Godjevargov, L.; Novakovic, L.J.; Kostoski, D.

    1991-01-01

    Quenched and air-cooled samples of oriented polypropylene have been irradiated to 300 kGy adsorbed dose in the presence of air. The parallel thermal expansion coefficient decreases and becomes negative with increasing orientation. The effect of adsorbed dose on the thermal expansion behaviour is practically negligible. (author) 4 refs.; 4 figs

  8. Thermal expansion coefficient and thermomechanical properties of SiN(x) thin films prepared by plasma-enhanced chemical vapor deposition.

    Science.gov (United States)

    Tien, Chuen-Lin; Lin, Tsai-Wei

    2012-10-20

    We present a new method based on fast Fourier transform (FFT) for evaluating the thermal expansion coefficient and thermomechanical properties of thin films. The silicon nitride thin films deposited on Corning glass and Si wafers were prepared by plasma-enhanced chemical vapor deposition in this study. The anisotropic residual stress and thermomechanical properties of silicon nitride thin films were studied. Residual stresses in thin films were measured by a modified Michelson interferometer associated with the FFT method under different heating temperatures. We found that the average residual-stress value increases when the temperature increases from room temperature to 100°C. Increased substrate temperature causes the residual stress in SiN(x) film deposited on Si wafers to be more compressive, but the residual stress in SiN(x) film on Corning glass becomes more tensile. The residual-stress versus substrate-temperature relation is a linear correlation after heating. A double substrate technique is used to determine the thermal expansion coefficients of the thin films. The experimental results show that the thermal expansion coefficient of the silicon nitride thin films is 3.27×10(-6)°C(-1). The biaxial modulus is 1125 GPa for SiN(x) film.

  9. Phase transition and thermal expansion studies of alumina thin films prepared by reactive pulsed laser deposition.

    Science.gov (United States)

    Balakrishnan, G; Thirumurugesan, R; Mohandas, E; Sastikumar, D; Kuppusami, P; Songl, J I

    2014-10-01

    Aluminium oxide (Al2O3) thin films were deposited on Si (100) substrates at an optimized oxygen partial pressure of 3 x 10(-3) mbar at room temperature by pulsed laser deposition (PLD). The films were characterized by high temperature X-ray diffraction (HTXRD), field emission scanning electron microscopy (FESEM) and atomic force microscopy (AFM). The HTXRD pattern showed the cubic y-Al2O3 phase in the temperature range 300-973 K. At temperatures ≥ 1073 K, the δ and θ-phases of Al2O3 were observed. The mean linear thermal expansion coefficient and volume thermal expansion coefficient of γ-Al2O3 was found to be 12.66 x 10(-6) K(-1) and 38.87 x 10(-6) K(-1) in the temperature range 300 K-1073 K. The field emission scanning electron microscopy revealed a smooth and structureless morphology of the films deposited on Si (100). The atomic force microscopy study indicated the increased crystallinity and surface roughness of the films after annealing at high temperature.

  10. Magnetic susceptibilities and thermal expansion of artificial graphites

    International Nuclear Information System (INIS)

    Cornuault, P.; Herpin, A.; Hering, H.; Seguin, M.; Commissariat a l'Energie Atomique, Saclay

    1960-01-01

    Starting from measurements of the magnetic susceptibility made in the two principal directions of a graphite bar, the distribution function of the normals to the carbon planes in the crystallites has been evaluated. The effect of different variation in the manufacturing process on this crystalline anisotropy has been studied. From this crystalline anisotropy we have calculated the thermal expansion coefficient possessed by a compact mass of crystallites having exactly the same orientational anisotropy as the porous body consideration. The difference between this and the observed expansion coefficient leads to the determination of the expansion of the non-graphitic part of the mass which turns out to have a negative value and is also anisotropic. We have attempted to draw some conclusions from this result. (author) [fr

  11. History-dependent thermal expansion in NbO{sub 2}F

    Energy Technology Data Exchange (ETDEWEB)

    Wilkinson, Angus P., E-mail: angus.wilkinson@chemistry.gatech.edu [School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA 30332-0400 (United States); School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA 30332-0245 (United States); Josefsberg, Ryan E.; Gallington, Leighanne C.; Morelock, Cody R.; Monaco, Christopher M. [School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA 30332-0400 (United States)

    2014-05-01

    Materials with cubic ReO{sub 3}-type structures are of interest for their low or negative thermal expansion characteristics. TaO{sub 2}F is known to display almost zero thermal expansion over a wide temperature range. On heating NbO{sub 2}F, its volume coefficient of thermal expansion decreases from ∼+45 ppm K{sup −1} at 100 K to almost zero at 400 K. NbO{sub 2}F is cubic between 100 and 500 K. Samples of “NbO{sub 2}F” prepared by the digestion of Nb{sub 2}O{sub 5} in aqueous HF followed by mild drying contain hydroxyl defects and metal vacancies. On heating, they can undergo irreversible chemical changes while maintaining a cubic ReO{sub 3}-type structure. The possibility of hydroxyl defect incorporation should be considered when preparing oxyfluorides for evaluation as battery materials. - Graphical abstract: “NbO{sub 2}F” prepared by the digestion of Nb{sub 2}O{sub 5} in HF contains cation vacancies and hydroxyl groups. It undergoes irreversible changes on heating to low temperatures, unlike NbO{sub 2}F prepared by the solid state reaction of Nb{sub 2}O{sub 5} and NbF{sub 5}. - Highlights: • The digestion of Nb{sub 2}O{sub 5} in aqueous HF followed by mild drying does not produce NbO{sub 2}F. • The ReO{sub 3}-type product from the HF digestion of Nb{sub 2}O{sub 5} contains metal vacancies and hydroxyl. • The thermal expansion coefficient of NbO{sub 2}F decreases on heating and approaches zero at ∼400 K.

  12. COMPACT ATHERMAL OPTICAL WAVEGUIDE USING THERMAL EXPANSION AMPLIFICATION

    DEFF Research Database (Denmark)

    2001-01-01

    A method of temperature stabilising optical waveguides having positive thermal optical path length expansion, in particular fiber Bragg gratings or optical fiber DFB lasers or optical fiber DBR lasers, comprising affixing the optical waveguide to at least two points of a negative expanding fixture...

  13. A Negative Thermal Expansion Material of ZrMgMo3O12

    International Nuclear Information System (INIS)

    Song Wen-Bo; Liang Er-Jun; Liu Xian-Sheng; Li Zhi-Yuan; Yuan Bao-He; Wang Jun-Qiao

    2013-01-01

    A material with the formula ZrMgMo 3 O 12 having negative thermal expansion is presented and characterized. It is shown that ZrMgMo 3 O 12 crystallizes in an orthorhombic symmetry with space group Pnma(62) or Pna2 1 (33) and exhibits negative thermal expansion in a large temperature range (α l = −3.8 × 10 −6 K −1 from 300K to 1000K by x-ray diffraction and α l = −3.73 × 10 −6 K −1 from 295K to 775K by dilatometer). ZrMgMo 3 O 12 remains the orthorhombic structure without phase transition or decomposition at least from 123K to 1200K and is not hygroscopic. These properties make it an excellent material with negative thermal expansion for a variety of applications

  14. Low-temperature thermal expansion of pure and inert gas-doped fullerite C sub 6 sub 0

    CERN Document Server

    Aleksandrovskii, A N; Eselson, V B; Gavrilko, V G; Manzhelii, V G; Udovidchenko, B G; Bakai, A S; Gadd, G E; Moricca, S; Sundqvist, B

    2003-01-01

    The low temperature (2-24 K) thermal expansion of pure (single-crystal and polycrystalline) C sub 6 sub 0 and polycrystalline C sub 6 sub 0 intercalated with He, Ne, Ar, and Kr has been investigated using the high-resolution capacitance dilatometer. The investigation of the time dependence of the sample length variations DELTA L(t) on heating by DELTA T shows that the thermal expansion is determined by the sum of positive and negative contributions, which have different relaxation times. The negative thermal expansion usually prevails at helium temperatures. The positive expansion is connected with the phonon thermalization of the system. The negative expansion is caused by reorientation of the C sub 6 sub 0 molecules. It is assumed that the reorientation is of a quantum character. The inert gas impurities affect the reorientation of the C6 sub sub 0 molecules very strongly, especially at liquid helium temperatures. A temperature hysteresis of the thermal expansion coefficient of Kr- and He-C sub 6 sub 0 solu...

  15. Thermal expansion of organic superconductor κ-(D4-BEDT-TTF)2Cu{N(CN)2}Br. Isotopic effect

    Science.gov (United States)

    Dolbin, A. V.; Khlistuck, M. V.; Eselson, V. B.; Gavrilko, V. G.; Vinnikov, N. A.; Basnukaeva, R. M.; Konstantinov, V. A.; Nakazawa, Y.

    2017-12-01

    Linear thermal expansion coefficient (LTEC) of single crystal κ-(D4-BEDT-TTF)2Cu[N(CN)2]Br was studied across the crystal layers in the temperature range 2-290 K using the method of precise capacitive dilatometry. Below Tc = 11.6 K the LTEC of the sample had a small negative value, which is apparently due to the transition from the paramagnetic metal in the superconducting state. There was a bend of temperature dependence of the LTEC, which shows broad peak around 40 K and can be attributed to the elastic lattice anomaly around the end-point of Mott boundary. A sharp jump in the LTEC values and hysteresis was observed in the area of Tg ˜ 75-77 K, what is likely explained by the transition in a glass-like state. The isotope effect in the thermal expansion is discusses, which manifested itself in a shift of the phase transitions in comparison with fully deuterated BEDT-TTF sample.

  16. Thermal expansion of LATGS crystals

    International Nuclear Information System (INIS)

    Kassem, M.E.; Kandil, S.H.; Hamed, A.E.; Stankowska, J.

    1989-04-01

    The thermal expansion of triglycine sulphate crystals doped with L-α alanine (LATGS) has been studied around the phase transition temperature (30-60 deg. C) using thermomechanical analysis TMA. With increasing the content of admixture, the transition temperature (T c ) was shifted towards higher values, while the relative changes in the dimension of the crystals (ΔL/L 0 ) of the studied directions varied both in the para- and ferroelectric phases. The transition width in the case of doped crystals was found to be broad, and this broadening increases with increasing the content of L-α alanine. (author). 12 refs, 3 figs

  17. Speed of thermal expansion of a long, thin insulating bar and the physical momentum of acoustic phonons

    International Nuclear Information System (INIS)

    Lee, Y C

    2008-01-01

    Thermal expansion is an everyday phenomenon. One would naturally be curious to see how fast the expansion proceeds. While the theory of thermal expansion in statistical thermal equilibrium is well known, the time-dependent process during thermal expansion is a more complex statistical dynamical problem. Contrary to intuitive expectations, it will be seen that the dynamical expansion process is generally different from the process of merely establishing temperature equilibration (thermal-kinetic equilibrium) because two vastly disparate timescales are at work. It will be shown that the finite speed of thermal expansion hinges upon a recently derived result that an acoustic phonon of wavevector q-vector≠0 does carry a finite physical momentum; it arises from anharmonicity, provided translational symmetry is broken. While the eventual mathematical formulation seems pedestrian, it is arrived at after several layers of physical thinking. Our final result shows that the time required for thermal expansion of a thin bar of length L by ΔL due to a given temperature increase ΔT is given by Δt L ∝ (L/ΔL) (L/c s ), where c s is the speed of sound. Its physical origin as well as its classical and quantum limits are fully discussed

  18. Thermal expansion of proton solid electrolytes on the basis of BaCeO3

    International Nuclear Information System (INIS)

    Gorelov, V.P.; Arestova, N.V.; Kurumchin, Eh.Kh.; Vdovin, G.K.

    1995-01-01

    Thermal expansion of BaCeO 3 base ceramics is under study. It is shown that within the range of 600-800 deg C solid electrolytes on barium cerate basis exhibity the anomaly of thermal expansion. This fact makes their application difficult. 9 refs., 3 figs

  19. Ceramic materials with low thermal conductivity and low coefficients of thermal expansion

    Science.gov (United States)

    Brown, Jesse; Hirschfeld, Deidre; Liu, Dean-Mo; Yang, Yaping; Li, Tingkai; Swanson, Robert E.; Van Aken, Steven; Kim, Jin-Min

    1992-01-01

    Compositions having the general formula (Ca.sub.x Mg.sub.1-x)Zr.sub.4 (PO.sub.4).sub.6 where x is between 0.5 and 0.99 are produced by solid state and sol-gel processes. In a preferred embodiment, when x is between 0.5 and 0.8, the MgCZP materials have near-zero coefficients of thermal expansion. The MgCZPs of the present invention also show unusually low thermal conductivities, and are stable at high temperatures. Macrostructures formed from MgCZP are useful in a wide variety of high-temperature applications. In a preferred process, calcium, magnesium, and zirconium nitrate solutions have their pH adjusted to between 7 and 9 either before or after the addition of ammonium dihydrogen phosphate. After dehydration to a gel, and calcination at temperatures in excess of 850.degree. C. for approximately 16 hours, single phase crystalline MgCZP powders with particle sizes ranging from approximately 20 nm to 50 nm result. The MgCZP powders are then sintered at temperatures ranging from 1200.degree. C. to 1350.degree. C. to form solid macrostructures with near-zero bulk coefficients of thermal expansion and low thermal conductivities. Porous macrostructures of the MgCZP powders of the present invention are also formed by combination with a polymeric powder and a binding agent, and sintering at high temperatures. The porosity of the resulting macrostructures can be adjusted by varying the particle size of the polymeric powder used.

  20. Giant negative thermal expansion in NaZn13-type La(Fe, Si, Co)13 compounds.

    Science.gov (United States)

    Huang, Rongjin; Liu, Yanying; Fan, Wei; Tan, Jie; Xiao, Furen; Qian, Lihe; Li, Laifeng

    2013-08-07

    La(Fe, Si)13-based compounds are well-known magnetocaloric materials, which show a pronounced negative thermal expansion (NTE) around the Curie temperature but have not been considered as NTE materials for industrial applications. The NaZn13-type LaFe13-xSix and LaFe11.5-xCoxSi1.5 compounds were synthesized, and their linear NTE properties were investigated. By optimizing the chemical composition, the sharp volume change in La(Fe, Si)13-based compounds was successfully modified into continuous expansion. By increasing the amount of Co dopant in LaFe11.5-xCoxSi1.5, the NTE shifts toward a higher temperature region, and also the NTE operation-temperature window becomes broader. Typically, the linear NTE coefficient identified in the LaFe10.5Co1.0Si1.5 compound reaches as much as -26.1 × 10(-6) K(-1), with an operation-temperature window of 110 K from 240 to 350 K, which includes room temperature. Such control of the specific composition and the NTE properties of La(Fe, Si)13-based compounds suggests their potential application as NTE materials.

  1. Thermal Expansion of Vitrified Blood Vessels Permeated with DP6 and Synthetic Ice Modulators

    Science.gov (United States)

    Eisenberg, David P.; Taylor, Michael J.; Jimenez-Rios, Jorge L.; Rabin, Yoed

    2014-01-01

    This study provides thermal expansion data for blood vessels permeated with the cryoprotective cocktail DP6, when combined with selected synthetic ice modulators (SIMs): 12% polyethylene glycol 400, 6% 1,3-cyclohexanediol, and 6% 2,3-butanediol. The general classification of SIMs includes molecules that modulate ice nucleation and growth, or possess properties of stabilizing the amorphous state, by virtue of their chemical structure and at concentrations that are not explained on a purely colligative basis. The current study is part of an ongoing effort to characterize thermo-mechanical effects on structural integrity of cryopreserved materials, where thermal expansion is the driving mechanism to thermo-mechanical stress. This study focuses on the lower part of the cryogenic temperature range, where the cryoprotective agent (CPA) behaves as a solid for all practical applications. By combining results obtained in the current study with literature data on the thermal expansion in the upper part of the cryogenic temperature range, unified thermal expansion curves are presented. PMID:24769313

  2. Non-linear thermal evolution of the crystal structure and phase transitions of LaFeO3 investigated by high temperature X-ray diffraction

    International Nuclear Information System (INIS)

    Selbach, Sverre M.; Tolchard, Julian R.; Fossdal, Anita; Grande, Tor

    2012-01-01

    The crystal structure, anisotropic thermal expansion and structural phase transition of the perovskite LaFeO 3 has been studied by high-temperature X-ray diffraction from room temperature to 1533 K. The structural evolution of the orthorhombic phase with space group Pbnm and the rhombohedral phase with R3 ¯ c structure of LaFeO 3 is reported in terms of lattice parameters, thermal expansion coefficients, atomic positions, octahedral rotations and polyhedral volumes. Non-linear lattice expansion across the antiferromagnetic to paramagnetic transition of LaFeO 3 at T N =735 K was compared to the corresponding behavior of the ferroelectric antiferromagnet BiFeO 3 to gain insight to the magnetoelectric coupling in BiFeO 3 , which is also multiferroic. The first order phase transition of LaFeO 3 from Pbnm to R3 ¯ c was observed at 1228±9 K, and a subsequent transition to Pm3 ¯ m was extrapolated to occur at 2140±30 K. The stability of the Pbnm and R3 ¯ c polymorphs of LaFeO 3 is discussed in terms of the competing enthalpy and entropy of the two crystal polymorphs and the thermal evolution of the polyhedral volume ratio V A /V B . - Graphical abstract: Aniostropic thermal evolution of the lattice parameters and phase transition of LaFeO 3 . Highlights: ► The crystal structure of LaFeO 3 is studied by HTXRD from RT to 1533 K. ► A non-linear expansion across the Néel temperature is observed for LaFeO 3 . ► The ratio V A /V B is used to rationalize the thermal evolution of the structure.

  3. Thermal Expansivity Between 150 and 800°C of Hydrothermally Altered Conduit Dyke Samples from USDP-4 Drill Core (Mt Unzen, Shimabara, Japan)

    Science.gov (United States)

    Yilmaz, T. I.; Hess, K. U.; Vasseur, J.; Wadsworth, F. B.; Gilg, H. A.; Nakada, S.; Dingwell, D. B.

    2017-12-01

    When hot magma intrudes the crust, the surrounding rocks expand. Similarly, the cooling magma contracts. The expansion and contraction of these multiphase materials is not simple and often requires empirical constraint. Therefore, we constrained the thermal expansivity of Unzen dome and conduit samples using a NETZSCH® DIL 402C. Following experiments, those samples were scanned using a Phoenix v|tome|x m to observe the cracks that may have developed during the heating and cooling. The dome samples do not show petrological or chemical signs of alteration. However, the alteration of the conduit dykes is represented by the occurrence of the main secondary phases such as chlorite, sulfides, carbonates, R1 (Reichweite parameter) illite-smectite, and kaolinite. These alteration products indicate an (I) early weak to moderate argillic magmatic alteration, and a (II) second stage weak to moderate propylitic hydrothermal alteration. The linear thermal expansion coefficient aL of the dome material is K-1 between 150° and 800°C and shows a sharp peak of up to K-1 around the alpha-beta-quartz-transition ( 573°C). In contrast, aL of the hydrothermally altered conduit samples starts to increase around 180° and reaches K-1 at 400°C. We interpret this effect as being due to the water content of the kaolinite and the R1 illite-smectite, which induces larger expansions per degree temperature change. Furthermore, the altered conduit samples show a more pronounced increases of aL between 500 and 650°C of up to peaks at K-1, which is generated by the breakdown of chlorite, iron-rich dolomite solid solutions, calcite, and pyrite. We use a 1D conductive model of heat transfer to explore how the country rock around the Unzen conduit zone would heat up after intrusion. In turn, we convert these temperature profiles to thermal stress profiles, assuming the edifice is largely undeformable. We show that these high linear thermal expansion coefficients of the hydrothermally altered

  4. Improving biomedical information retrieval by linear combinations of different query expansion techniques.

    Science.gov (United States)

    Abdulla, Ahmed AbdoAziz Ahmed; Lin, Hongfei; Xu, Bo; Banbhrani, Santosh Kumar

    2016-07-25

    Biomedical literature retrieval is becoming increasingly complex, and there is a fundamental need for advanced information retrieval systems. Information Retrieval (IR) programs scour unstructured materials such as text documents in large reserves of data that are usually stored on computers. IR is related to the representation, storage, and organization of information items, as well as to access. In IR one of the main problems is to determine which documents are relevant and which are not to the user's needs. Under the current regime, users cannot precisely construct queries in an accurate way to retrieve particular pieces of data from large reserves of data. Basic information retrieval systems are producing low-quality search results. In our proposed system for this paper we present a new technique to refine Information Retrieval searches to better represent the user's information need in order to enhance the performance of information retrieval by using different query expansion techniques and apply a linear combinations between them, where the combinations was linearly between two expansion results at one time. Query expansions expand the search query, for example, by finding synonyms and reweighting original terms. They provide significantly more focused, particularized search results than do basic search queries. The retrieval performance is measured by some variants of MAP (Mean Average Precision) and according to our experimental results, the combination of best results of query expansion is enhanced the retrieved documents and outperforms our baseline by 21.06 %, even it outperforms a previous study by 7.12 %. We propose several query expansion techniques and their combinations (linearly) to make user queries more cognizable to search engines and to produce higher-quality search results.

  5. Thermal expansion of lanthanum silicate oxyapatite (La9.33+2x(SiO4)6O2+3x), lanthanum oxyorthosilicate (La2SiO5) and lanthanum sorosilicate (La2Si2O7)

    International Nuclear Information System (INIS)

    Fukuda, Koichiro; Asaka, Toru; Uchida, Tomohiro

    2012-01-01

    Four types of powder specimens of La 9.33 (SiO 4 ) 6 O 2 (space group P6 3 /m and Z=1), La 9.33+2x (SiO 4 ) 6 O 2+3x with 0.06≤x≤0.13 (P6 3 /m and Z=1), La 2 SiO 5 (P2 1 /c and Z=4) and La 2 Si 2 O 7 (P2 1 /c and Z=4) were examined by high-temperature X-ray powder diffractometry to determine the changes in unit-cell dimensions up to 1473 K. The anisotropy of thermal expansion was demonstrated for the former two crystals to clarify the thermal behaviors of the highly c-axis-oriented polycrystals. With La 9.33 (SiO 4 ) 6 O 2 , the linear expansion coefficient of the a-axis (α a ) was 4.8×10 −6 K −1 and that of the c-axis (α c ) was 1.8×10 −6 K −1 in the temperature range from 298 to 1473 K. The α a - and α c -values of La 9.33+2x (SiO 4 ) 6 O 2+3x (0.06≤x≤0.13) were, respectively, 5.9×10 −6 K −1 and 2.3×10 −6 K −1 . The coefficients of mean linear thermal expansion were 4.9×10 −6 K −1 for La 2 SiO 5 and 6.0×10 −6 K −1 for La 2 Si 2 O 7 , which describe the thermal expansion behaviors of the randomly grain-oriented polycrystalline materials. - Graphical abstarct: Temperature dependence of the coefficients of thermal expansion (CTE). The linear CTE along the a-axes for La 9.33 (SiO 4 ) 6 O 2 and La 9.33+2x (SiO 4 ) 6 O 2+3x with 0.06≤x≤0.13. The mean linear CTE for La 2 SiO 5 and La 2 Si 2 O 7 . Highlights: ► We examined the thermal expansion of La 9.33+2x (SiO 4 ) 6 O 2+3x (x=0 and 0.06≤x≤0.13), La 2 SiO 5 and La 2 Si 2 O 7 ► Unit-cell dimensions were determined up to 1473 K by high-temperature X-ray diffraction ► Anisotropic expansion was clarified for La 9.33+2x (SiO 4 ) 6 O 2+3x (x=0 and 0.06≤x≤0.13) ► Mean linear thermal expansion was determined for La 2 SiO 5 and La 2 Si 2 O 7.

  6. Effect of gamma irradiation on density and thermal expansion changes of uniaxial oriented LLDPE

    International Nuclear Information System (INIS)

    Kacarevic-Popovic, Z.; Kostoski, D.; Novakovic, Lj.

    1998-01-01

    Complete text of publication follows. It is well known that gamma irradiation induces cross-linking in the amorphous phase of isotropic polyethylene, or chain scission in highly oriented fibers and films. Thermomechanical behavior and values of density are the reflection of the changes induced by gamma irradiation. Namely, scission of macromolecules, in general, increases thermal expansion coefficient and decreases density and vice versa. On the other hand, as it is well known, the thermal expansion behavior of oriented polymers shows marked anisotropy. It was found that many highly oriented polymers show a negative coefficient of thermal expansion in the draw direction and a positive coefficient in the transverse direction. It has been suggested that, apart from any intrinsic crystalline contribution, a significant part of the negative thermal expansion coefficients obtained for highly oriented polymers arises from the effect of entropy internal stresses in the amorphous regions. From our previous work, the thermal coefficients in draw direction of irradiated samples rise in the glass transition temperature range and it was related to the effects of cross-linking in the amorphous phase of LDPE. In our present work we observed initial decrease in density with absorbed dose, up to 35 kGy, and subsequent increase up to a dose of 500 kGy. The observed increase in thermal expansion coefficient followed the changes in density and is related to the parallel processes of chain scission and net cross-linking in the amorphous phase of LLDPE, induced by gamma irradiation

  7. Stiffness and thermal expansion of ZrB2: an ab initio study

    International Nuclear Information System (INIS)

    Milman, V; Winkler, B; Probert, M I J

    2005-01-01

    The stiffness and thermal expansion coefficient of ZrB 2 are calculated within the density functional theory formalism. The stiffness tensor obtained here using the static finite strain technique is in good agreement with the results of resonant ultrasonic measurements and points to a possible misinterpretation of the experimentally obtained compression data. The methodology of evaluating thermal expansion coefficients from molecular dynamics simulations for small unit cells is validated for a number of systems: metals, semiconductors and insulators

  8. Compressibility and thermal expansion of cubic silicon nitride

    DEFF Research Database (Denmark)

    Jiang, Jianzhong; Lindelov, H.; Gerward, Leif

    2002-01-01

    The compressibility and thermal expansion of the cubic silicon nitride (c-Si3N4) phase have been investigated by performing in situ x-ray powder-diffraction measurements using synchrotron radiation, complemented with computer simulations by means of first-principles calculations. The bulk...... compressibility of the c-Si3N4 phase originates from the average of both Si-N tetrahedral and octahedral compressibilities where the octahedral polyhedra are less compressible than the tetrahedral ones. The origin of the unit cell expansion is revealed to be due to the increase of the octahedral Si-N and N-N bond...

  9. Thermal expansion characteristics of Fe-9Cr-0.12C-0.56Mn-0.24V-1.38W-0.06Ta (wt.%) reduced activation ferritic-martensitic steel

    Science.gov (United States)

    Subramanian, Raju; Tripathy, Haraprasanna; Rai, Arun Kumar; Hajra, Raj Narayan; Saibaba, Saroja; Jayakumar, Tammana; Rajendra Kumar, Ellappan

    2015-04-01

    The lattice and bulk thermal expansion behavior of an Indian version of reduced activation ferritic-martensitic (INRAFM) steel has been quantified using high temperature X-ray diffraction and dilatometry. The lattice parameter of tempered α-ferrite phase exhibited a smooth quadratic increase with temperature, while that of γ-austenite remained fairly linear up to 1273 K. The results suggest that α-ferrite + Carbides → γ-austenite transformation occurs upon continuous heating in the temperature range, 1146 ⩽ T ⩽ 1173 K. Further, this transformation is found to be accompanied by a reduction in average atomic volume. The mean linear thermal expansion coefficients of tempered α-ferrite and γ-austenite phases are estimated to be about 1.48 × 10-5 and 2.4 × 10-5 K-1 respectively. The magnetic contribution to relative thermal dilatation (Δl/l298)mag is found to be small and negative, as compared to phonon contribution.

  10. Mapping Thermal Expansion Coefficients in Freestanding 2D Materials at the Nanometer Scale

    Science.gov (United States)

    Hu, Xuan; Yasaei, Poya; Jokisaari, Jacob; Öǧüt, Serdar; Salehi-Khojin, Amin; Klie, Robert F.

    2018-02-01

    Two-dimensional materials, including graphene, transition metal dichalcogenides and their heterostructures, exhibit great potential for a variety of applications, such as transistors, spintronics, and photovoltaics. While the miniaturization offers remarkable improvements in electrical performance, heat dissipation and thermal mismatch can be a problem in designing electronic devices based on two-dimensional materials. Quantifying the thermal expansion coefficient of 2D materials requires temperature measurements at nanometer scale. Here, we introduce a novel nanometer-scale thermometry approach to measure temperature and quantify the thermal expansion coefficients in 2D materials based on scanning transmission electron microscopy combined with electron energy-loss spectroscopy to determine the energy shift of the plasmon resonance peak of 2D materials as a function of sample temperature. By combining these measurements with first-principles modeling, the thermal expansion coefficients (TECs) of single-layer and freestanding graphene and bulk, as well as monolayer MoS2 , MoSe2 , WS2 , or WSe2 , are directly determined and mapped.

  11. Phase behaviour, thermal expansion and compressibility of SnMo 2 O 8

    Energy Technology Data Exchange (ETDEWEB)

    Araujo, Luiza R.; Gallington, Leighanne C.; Wilkinson, Angus P.; Evans, John S.O. (Durham); (GIT)

    2018-02-01

    The phase behaviour and thermoelastic properties of SnMo2O8, derived from variable temperature and pressure synchrotron powder diffraction data, are reported. SnMo2O8 is a member of the AM2O8 family of negative thermal expansion (NTE) materials, but unexpectedly, has positive thermal expansion. Over the P-T space explored (298–513 K, ambient to 310 MPa) four different forms of SnMo2O8 are observed: α, β, γ and γ'. The γ to β transition is temperature-, pressure-, and time-dependent. SnMo2O8 is a much softer material (α and γ form have BT = 29 and 26 GPa at 298 K) than other members of the AM2O8 family. Counter-intuitively, its high temperature β phase becomes stiffer with increasing temperature (BT ~36 GPa at 490 K). The pressure dependence of the thermal expansion for each phase is reported.

  12. Temperature and Thermal Expansion Analysis of the Cooling Roller Based on the Variable Heat Flux Boundary Condition

    Science.gov (United States)

    Li, Yongkang; Yang, Yang; He, Changyan

    2018-06-01

    Planar flow casting (PFC) is a primary method for preparing an amorphous ribbon. The qualities of the amorphous ribbon are significantly influenced by the temperature and thermal expansion of the cooling roller. This study proposes a new approach to analyze the three-dimensional temperature and thermal expansion of the cooling roller using variable heat flux that acted on the cooling roller as a boundary condition. First, a simplified two-dimensional model of the PFC is developed to simulate the distribution of the heat flux in the circumferential direction with the software FLUENT. The resulting heat flux is extended to be three-dimensional in the ribbon's width direction. Then, the extended heat flux is imported as the boundary condition by the CFX Expression Language, and the transient temperature of the cooling roller is analyzed in the CFX software. Next, the transient thermal expansion of the cooling roller is simulated through the thermal-structural coupling method. Simulation results show that the roller's temperature and expansion are unevenly distributed, reach the peak value in the middle width direction, and the quasi-steady state of the maximum temperature and thermal expansion are achieved after approximately 50 s and 150 s of casting, respectively. The minimum values of the temperature and expansion are achieved when the roller has a thickness of 45 mm. Finally, the reliability of the approach proposed is verified by measuring the roller's thermal expansion on the spot. This study provides theoretical guidance for the roller's thermal expansion prediction and the gap adjustment in the PFC.

  13. Molecular dynamics calculations of the thermal expansion properties and melting points of Si and Ge

    International Nuclear Information System (INIS)

    Timon, V; Brand, S; Clark, S J; Abram, R A

    2006-01-01

    The thermal expansion properties and melting points of silicon and germanium are calculated using molecular dynamics simulations within the density functional theory framework. An isothermal-isobaric (NPT) ensemble is considered in a periodic system with a relatively small number of particles per unit cell to obtain the thermal expansion data over a range of temperatures, and it is found that the calculated thermal expansion coefficients and bond lengths agree well with experimental data. Also, the positions of discontinuities in the potential energy as a function of temperature are in good agreement with the experimental melting points

  14. Experimental Study on the Tensile Strength and Linear Expansion Coefficient of Air Tunnel Terrazzo Surface

    Directory of Open Access Journals (Sweden)

    Boping Li

    2015-01-01

    Full Text Available At present, studies on the surface tension of air tunnel terrazzo under wind load and how regularly it is affected by temperature are relatively less, and the measured results of the thermal expansion coefficient of terrazzo have not yet been given. In this paper, based on the top terrazzo surface structure of the inner wall of the wind tunnel, the tensile performance tests of terrazzo surface layer are conducted, while the thermal expansion coefficient of the six terrazzo test blocks were tested. The tests and analysis show that the construction of terrazzo surface, based on the proposed construction process, can effectively guarantee the reliable cement performance for the binding layer between mortar and concrete base layer, terrazzo surface layer and the cement mortar layer. And the thermal expansion coefficient of terrazzo can be valued at 1.06e-5/ºC.

  15. Shape, size and temperature dependency of thermal expansion ...

    Indian Academy of Sciences (India)

    M GOYAL

    2018-05-19

    May 19, 2018 ... Oriental J. Chem.32(4), 2193 (2016), is extended in the present study using Qi and Wang model [Mater. Chem. Phys. ... Nanomaterials; shape factor; size effect; thermal expansion; equation of state. ... als are different from that of their bulk material. ..... and 1c along with the present calculated results. It is.

  16. Thermal Expansion Properties of Fe-42Ni-Si Alloy Strips Fabricated by Melt Drag Casting Process

    International Nuclear Information System (INIS)

    Kim, Moo Kyum; Ahn, Yong Sik; Namkung, Jeong; Kim, Moon Chul; Kim, Yong Chan

    2007-01-01

    Thermal expansion property was investigated on Fe-42% Ni alloy strip added by alloying element of Si of 0∼1.5wt.%. The strip was fabricated by a melt drag casting process. Addition of Si enlarged the solid-liquid region and reduced the melting point which leads to the increase of the formability of a strip. The alloy containing 0.6 wt.% Si showed the lowest thermal expansion ratio in the temperature range between 20 to 350 .deg. C. The grain size was increased with reduction ratio and annealing temperature, which resulted in the decrease of the thermal expansion coefficient of strip. Because of grain refining by precipitation of Ni 3 Fe, the alloy strip containing 1.5 wt.% Si showed higher thermal expansion ratio compared with the alloy containing 0.6 wt.% Si

  17. Lithium aluminosilicate reinforced with carbon nanofiber and alumina for controlled-thermal-expansion materials

    Directory of Open Access Journals (Sweden)

    Amparo Borrell, Olga García-Moreno, Ramón Torrecillas, Victoria García-Rocha and Adolfo Fernández

    2012-01-01

    Full Text Available Materials with a very low or tailored thermal expansion have many applications ranging from cookware to the aerospace industry. Among others, lithium aluminosilicates (LAS are the most studied family with low and negative thermal expansion coefficients. However, LAS materials are electrical insulators and have poor mechanical properties. Nanocomposites using LAS as a matrix are promising in many applications where special properties are achieved by the addition of one or two more phases. The main scope of this work is to study the sinterability of carbon nanofiber (CNFs/LAS and CNFs/alumina/LAS nanocomposites, and to adjust the ratio among components for obtaining a near-zero or tailored thermal expansion. Spark plasma sintering of nanocomposites, consisting of commercial CNFs and alumina powders and an ad hoc synthesized β-eucryptite phase, is proposed as a solution to improving mechanical and electrical properties compared with the LAS ceramics obtained under the same conditions. X-ray diffraction results on phase compositions and microstructure are discussed together with dilatometry data obtained in a wide temperature range (−150 to 450 °C. The use of a ceramic LAS phase makes it possible to design a nanocomposite with a very low or tailored thermal expansion coefficient and exceptional electrical and mechanical properties.

  18. Lithium aluminosilicate reinforced with carbon nanofiber and alumina for controlled-thermal-expansion materials

    International Nuclear Information System (INIS)

    Borrell, Amparo; García-Moreno, Olga; Torrecillas, Ramón; García-Rocha, Victoria; Fernández, Adolfo

    2012-01-01

    Materials with a very low or tailored thermal expansion have many applications ranging from cookware to the aerospace industry. Among others, lithium aluminosilicates (LAS) are the most studied family with low and negative thermal expansion coefficients. However, LAS materials are electrical insulators and have poor mechanical properties. Nanocomposites using LAS as a matrix are promising in many applications where special properties are achieved by the addition of one or two more phases. The main scope of this work is to study the sinterability of carbon nanofiber (CNFs)/LAS and CNFs/alumina/LAS nanocomposites, and to adjust the ratio among components for obtaining a near-zero or tailored thermal expansion. Spark plasma sintering of nanocomposites, consisting of commercial CNFs and alumina powders and an ad hoc synthesized β-eucryptite phase, is proposed as a solution to improving mechanical and electrical properties compared with the LAS ceramics obtained under the same conditions. X-ray diffraction results on phase compositions and microstructure are discussed together with dilatometry data obtained in a wide temperature range (−150 to 450 °C). The use of a ceramic LAS phase makes it possible to design a nanocomposite with a very low or tailored thermal expansion coefficient and exceptional electrical and mechanical properties.

  19. Effect of filler geometry on coefficient of thermal expansion in carbon nanofiber reinforced epoxy composites.

    Science.gov (United States)

    Cho, M; Jang, J; Suhr, J

    2011-02-01

    This study involves the investigation of the geometry effect of nano-fillers on thermally induced dimensional stability of epoxy composites by experimentally evaluating the linear coefficient of thermal expansion (CTE). Carbon nanofibers (CNF) were chosen as the filler in epoxy matrix to investigate the effect of an aspect ratio on the CTE of the nanocomposites at three different volume fractions of 0.5, 1, and 2% of the nano-filler. The composites were fabricated using a mechanical mixing method. The CTE values were evaluated by measuring thermal strains of the composites and also compared with a micromechanics model. It was observed that the composites with short CNF (average L/d = 10) show better thermal stability than one of the composites with long CNF (average L/d = 70), and the thermal stability of the composites was proportional to the volume fraction of the filler in each composite. In addition, the CTE of mutliwalled carbon nanotubes (MWNT) reinforced epoxy composites was evaluated and compared with the CTE of the CNF reinforced composites. Interestingly, the MWNT reinforced composites show the greatest thermal stability with an 11.5% reduction in the CTE over the pure epoxy. The experimental data was compared with micromechanics model.

  20. The effects of different expansions of the exit distribution on the extrapolation length for linearly anisotropic scattering

    International Nuclear Information System (INIS)

    Bulut, S.; Guelecyuez, M.C.; Kaskas, A.; Tezcan, C.

    2007-01-01

    H N and singular eigenfunction methods are used to determine the neutron distribution everywhere in a source-free half space with zero incident flux for a linearly anisotropic scattering kernel. The singular eigenfunction expansion of the method of elementary solutions is used. The orthogonality relations of the discrete and continuous eigenfunctions for linearly anisotropic scattering provides the determination of the expansion coefficients. Different expansions of the exit distribution are used: the expansion in powers of μ, the expansion in terms of Legendre polynomials and the expansion in powers of 1/(1+μ). The results are compared to each other. In the second part of our work, the transport equation and the infinite medium Green function are used. The numerical results of the extrapolation length obtained for the different expansions is discussed. (orig.)

  1. Structurally Efficient Three-dimensional Metamaterials with Controllable Thermal Expansion

    Science.gov (United States)

    Xu, Hang; Pasini, Damiano

    2016-01-01

    The coefficient of thermal expansion (CTE) of architected materials, as opposed to that of conventional solids, can be tuned to zero by intentionally altering the geometry of their structural layout. Existing material architectures, however, achieve CTE tunability only with a sacrifice in structural efficiency, i.e. a drop in both their stiffness to mass ratio and strength to mass ratio. In this work, we elucidate how to resolve the trade-off between CTE tunability and structural efficiency and present a lightweight bi-material architecture that not only is stiffer and stronger than other 3D architected materials, but also has a highly tunable CTE. Via a combination of physical experiments on 3D fabricated prototypes and numeric simulations, we demonstrate how two distinct mechanisms of thermal expansion appearing in a tetrahedron, can be exploited in an Octet lattice to generate a large range of CTE values, including negative, zero, or positive, with no loss in structural efficiency. The novelty and simplicity of the proposed design as well as the ease in fabrication, make this bi-material architecture well-suited for a wide range of applications, including satellite antennas, space optical systems, precision instruments, thermal actuators, and MEMS. PMID:27721437

  2. Carbon nanotube-copper exhibiting metal-like thermal conductivity and silicon-like thermal expansion for efficient cooling of electronics.

    Science.gov (United States)

    Subramaniam, Chandramouli; Yasuda, Yuzuri; Takeya, Satoshi; Ata, Seisuke; Nishizawa, Ayumi; Futaba, Don; Yamada, Takeo; Hata, Kenji

    2014-03-07

    Increasing functional complexity and dimensional compactness of electronic devices have led to progressively higher power dissipation, mainly in the form of heat. Overheating of semiconductor-based electronics has been the primary reason for their failure. Such failures originate at the interface of the heat sink (commonly Cu and Al) and the substrate (silicon) due to the large mismatch in thermal expansion coefficients (∼300%) of metals and silicon. Therefore, the effective cooling of such electronics demands a material with both high thermal conductivity and a similar coefficient of thermal expansion (CTE) to silicon. Addressing this demand, we have developed a carbon nanotube-copper (CNT-Cu) composite with high metallic thermal conductivity (395 W m(-1) K(-1)) and a low, silicon-like CTE (5.0 ppm K(-1)). The thermal conductivity was identical to that of Cu (400 W m(-1) K(-1)) and higher than those of most metals (Ti, Al, Au). Importantly, the CTE mismatch between CNT-Cu and silicon was only ∼10%, meaning an excellent compatibility. The seamless integration of CNTs and Cu was achieved through a unique two-stage electrodeposition approach to create an extensive and continuous interface between the Cu and CNTs. This allowed for thermal contributions from both Cu and CNTs, resulting in high thermal conductivity. Simultaneously, the high volume fraction of CNTs balanced the thermal expansion of Cu, accounting for the low CTE of the CNT-Cu composite. The experimental observations were in good quantitative concurrence with the theoretically described 'matrix-bubble' model. Further, we demonstrated identical in-situ thermal strain behaviour of the CNT-Cu composite to Si-based dielectrics, thereby generating the least interfacial thermal strain. This unique combination of properties places CNT-Cu as an isolated spot in an Ashby map of thermal conductivity and CTE. Finally, the CNT-Cu composite exhibited the greatest stability to temperature as indicated by its low

  3. Theory of thermal expansivity and bulk modulus

    International Nuclear Information System (INIS)

    Kumar, Munish

    2005-01-01

    The expression for thermal expansivity and bulk modulus, claimed by Shanker et al. to be new [Physica B 233 (1977) 78; 245 (1998) 190; J. Phys. Chem. Solids 59 (1998) 197] are compared with the theory of high pressure-high temperature reported by Kumar and coworkers. It is concluded that the Shanker formulation and the relations based on this are equal to the approach of Kumar et al. up to second order

  4. Fabrication of low thermal expansion SiC/ZrW{sub 2}O{sub 8} porous ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Poowancum, A; Matsumaru, K; Juarez-Ramirez, I; Ishizaki, K [Department of Mechanical Engineering, Nagaoka University of Technology, 1603-1 Kamitomioka, Nagaoka, Niigata 940-2188 (Japan); Torres-Martinez, L M [Universidad Autonoma de Nuevo Leon, Av. Universidad s/n, San Nicolas de los Garza, NL, C.P. 66451 (Mexico); Fu, Z Y [State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, Hubei, 430070 (China); Lee, S W, E-mail: anurat@ishizaki.nagaokaut.ac.jp [Department of Environment Engineering, Sun Moon University, 100, Kalsan-ri, Tangjeong-myeon, Asan, Chungnam 336-708 (Korea, Republic of)

    2011-03-15

    Low or zero thermal expansion porous ceramics are required for several applications. In this work near zero thermal expansion porous ceramics were fabricated by using SiC and ZrW{sub 2}O{sub 8} as positive and negative thermal expansion materials, respectively, bonded by soda lime glass. The mixture of SiC, ZrW{sub 2}O{sub 8} and soda lime glass was sintered by Pulsed Electric Current Sintering (PECS, or sometimes called Spark Plasma Sintering, SPS) at 700 deg. C. Sintered samples with ZrW{sub 2}O{sub 8} particle size smaller than 25 {mu}m have high thermal expansion coefficient, because ZrW{sub 2}O{sub 8} has the reaction with soda lime glass to form Na{sub 2}ZrW{sub 3}O{sub 12} during sintering process. The reaction between soda lime glass and ZrW{sub 2}O{sub 8} is reduced by increasing particle size of ZrW{sub 2}O{sub 8}. Sintered sample with ZrW{sub 2}O{sub 8} particle size 45-90 {mu}m shows near zero thermal expansion.

  5. Simulation study of negative thermal expansion in yttrium tungstate Y2W3O12.

    Science.gov (United States)

    Rimmer, Leila H N; Dove, Martin T

    2015-05-13

    A simulation study of negative thermal expansion in Y2W3O12 was carried out using calculations of phonon dispersion curves through the application of density functional perturbation theory. The mode eigenvectors were mapped onto flexibility models and results compared with calculations of the mode Grüneisen parameters. It was found that many lower-frequency phonons contribute to negative thermal expansion in Y2W3O12, all of which can be described in terms of rotations of effectively rigid WO4 tetrahedra and Y-O rods. The results are strikingly different from previous phonon studies of higher-symmetry materials that show negative thermal expansion.

  6. Zero thermal expansion and ferromagnetism in cubic Sc(1-x)M(x)F3 (M = Ga, Fe) over a wide temperature range.

    Science.gov (United States)

    Hu, Lei; Chen, Jun; Fan, Longlong; Ren, Yang; Rong, Yangchun; Pan, Zhao; Deng, Jinxia; Yu, Ranbo; Xing, Xianran

    2014-10-01

    The rare physical property of zero thermal expansion (ZTE) is intriguing because neither expansion nor contraction occurs with temperature fluctuations. Most ZTE, however, occurs below room temperature. It is a great challenge to achieve isotropic ZTE at high temperatures. Here we report the unconventional isotropic ZTE in the cubic (Sc1-xMx)F3 (M = Ga, Fe) over a wide temperature range (linear coefficient of thermal expansion (CTE), αl = 2.34 × 10(-7) K(-1), 300-900 K). Such a broad temperature range with a considerably negligible CTE has rarely been documented. The present ZTE property has been designed using the introduction of local distortions in the macroscopic cubic lattice by heterogeneous cation substitution for the Sc site. Even though the macroscopic crystallographic structure of (Sc0.85Ga0.05Fe0.1)F3 adheres to the cubic system (Pm3̅m) according to the results of X-ray diffraction, the local structure exhibits a slight rhombohedral distortion. This is confirmed by pair distribution function analysis of synchrotron radiation X-ray total scattering. This local distortion may weaken the contribution from the transverse thermal vibration of fluorine atoms to negative thermal expansion, and thus may presumably be responsible for the ZTE. In addition, the present ZTE compounds of (Sc1-xMx)F3 can be functionalized to exhibit high-Tc ferromagnetism and a narrow-gap semiconductor feature. The present study shows the possibility of obtaining ZTE materials with multifunctionality in future work.

  7. Thermal expansion coefficients of obliquely deposited MgF2 thin films and their intrinsic stress.

    Science.gov (United States)

    Jaing, Cheng-Chung

    2011-03-20

    This study elucidates the effects of columnar angles and deposition angles on the thermal expansion coefficients and intrinsic stress behaviors of MgF2 films with columnar microstructures. The behaviors associated with temperature-dependent stresses in the MgF2 films are measured using a phase-shifting Twyman-Green interferometer with a heating stage and the application of a phase reduction algorithm. The thermal expansion coefficients of MgF2 films at various columnar angles were larger than those of glass substrates. The intrinsic stress in the MgF2 films with columnar microstructures was compressive, while the thermal stress was tensile. The thermal expansion coefficients of MgF2 films with columnar microstructures and their intrinsic stress evidently depended on the deposition angle and the columnar angle.

  8. Development of Solution-Processable, Optically Transparent Polyimides with Ultra-Low Linear Coefficients of Thermal Expansion

    Directory of Open Access Journals (Sweden)

    Masatoshi Hasegawa

    2017-10-01

    Full Text Available This paper reviews the development of new high-temperature polymeric materials applicable to plastic substrates in image display devices with a focus on our previous results. Novel solution-processable colorless polyimides (PIs with ultra-low linear coefficients of thermal expansion (CTE are proposed in this paper. First, the principles of the coloration of PI films are briefly discussed, including the influence of the processing conditions on the film coloration, as well as the chemical and physical factors dominating the low CTE characteristics of the resultant PI films to clarify the challenges in simultaneously achieving excellent optical transparency, a very high Tg, a very low CTE, and excellent film toughness. A possible approach of achieving these target properties is to use semi-cycloaliphatic PI systems consisting of linear chain structures. However, semi-cycloaliphatic PIs obtained using cycloaliphatic diamines suffer various problems during precursor polymerization, cyclodehydration (imidization, and film preparation. In particular, when using trans-1,4-cyclohexanediamine (t-CHDA as the cycloaliphatic diamine, a serious problem emerges: salt formation in the initial stages of the precursor polymerization, which terminates the polymerization in some cases or significantly extends the reaction period. The system derived from 3,3′,4,4′-biphenyltetracarboxylic dianhydride (s-BPDA and t-CHDA can be polymerized by a controlled heating method and leads to a PI film with relatively good properties, i.e., excellent light transmittance at 400 nm (T400 = ~80%, a high Tg (>300 °C, and a very low CTE (10 ppm·K−1. However, this PI film is somewhat brittle (the maximum elongation at break, εb max is about 10%. On the other hand, the combination of cycloaliphatic tetracarboxylic dianhydrides and aromatic diamines does not result in salt formation. The steric structures of cycloaliphatic tetracarboxylic dianhydrides significantly influence

  9. Application of double modulation for measurement of the thermal expansion coefficient of liquid metals

    International Nuclear Information System (INIS)

    Blagonravov, L A; Karchevskiy, O O; Ivannikov, P V; Soboleva, A V

    2008-01-01

    The first results of the thermal expansion coefficient measurement obtained for liquid conductors using a new modulation method are presented. The method is based on a superposition of two periodical influences on a liquid metal. The thermal expansion coefficient α P is determined by means of measuring the amplitudes of oscillations of electric current power w ∼ and pressure p ∼ . In the present work the K-Na alloy of the eutectic composition was used as a sample. Distinction of the experimental data obtained by authors from the literature data is 30 to 40%. Such a difference is in the range of error of determination of α P from the density data of K-Na alloy. The method allows direct determination of the thermal expansion coefficient of liquid conductors in absolute units

  10. An FBG Optical Approach to Thermal Expansion Measurements under Hydrostatic Pressure.

    Science.gov (United States)

    Rosa, Priscila F S; Thomas, Sean M; Balakirev, Fedor F; Betts, Jon; Seo, Soonbeom; Bauer, Eric D; Thompson, Joe D; Jaime, Marcelo

    2017-11-04

    We report on an optical technique for measuring thermal expansion and magnetostriction at cryogenic temperatures and under applied hydrostatic pressures of 2.0 GPa. Optical fiber Bragg gratings inside a clamp-type pressure chamber are used to measure the strain in a millimeter-sized sample of CeRhIn₅. We describe the simultaneous measurement of two Bragg gratings in a single optical fiber using an optical sensing instrument capable of resolving changes in length [dL/L = (L- L₀)/L₀] on the order of 10 -7 . Our results demonstrate the possibility of performing high-resolution thermal expansion measurements under hydrostatic pressure, a capability previously hindered by the small working volumes typical of pressure cells.

  11. Thermal expansion studies of ThW2O8 and UWO6

    International Nuclear Information System (INIS)

    Keskar, Meera; Krishnan, K.; Sali, S.K.

    2014-01-01

    Thorium and uranium oxysalts with hexavalent cations of elements of VI th group of the periodic table are important from mineralogical, environmental and technological points of view. Several molybdates and tungstates of uranium and thorium are known to have similar structural and thermo-physical properties. Earlier, thermal expansion behavior of ThMo 2 O 8 and UMoO 6 were reported from our laboratory. In the present work, thermal expansion behavior of ThW 2 O 8 and UWO 6 studied under vacuum from ambient to 1000 and 800℃, respectively using high temperature X-ray diffraction (HTXRD) technique is reported

  12. Pulsed-laser time-resolved thermal mirror technique in low-absorbance homogeneous linear elastic materials.

    Science.gov (United States)

    Lukasievicz, Gustavo V B; Astrath, Nelson G C; Malacarne, Luis C; Herculano, Leandro S; Zanuto, Vitor S; Baesso, Mauro L; Bialkowski, Stephen E

    2013-10-01

    A theoretical model for a time-resolved photothermal mirror technique using pulsed-laser excitation was developed for low absorption samples. Analytical solutions to the temperature and thermoelastic deformation equations are found for three characteristic pulse profiles and are compared to finite element analysis methods results for finite samples. An analytical expression for the intensity of the center of a continuous probe laser at the detector plane is derived using the Fresnel diffraction theory, which allows modeling of experimental results. Experiments are performed in optical glasses, and the models are fitted to the data. The parameters of the fit are in good agreement with previous literature data for absorption, thermal diffusion, and thermal expansion of the materials tested. The combined modeling and experimental techniques are shown to be useful for quantitative determination of the physical properties of low absorption homogeneous linear elastic material samples.

  13. Method for measurement of relative differences in thermal expansion coefficients (LWBR development program)

    International Nuclear Information System (INIS)

    Alexander, J.E.

    1978-06-01

    The report describes a test which was conducted to determine the variation in thermal expansion coefficients of specimens from several material heats of Type 304 stainless steel. The purpose of this document is to identify the procedures, equipment, and analysis used in performing this test. From a review of the data which were used in establishing the values given for mean coefficient of thermal expansion in the 1968 ASME Boiler and Pressure Vessel Code, Section III, a +-3.3-percent maximum variation was determined for Type 304 CRES in the temperature range of interest. The results of the test reduced this variation to +-0.53 percent based on a 95/99-percent tolerance interval for the material tested. The testing equipment, procedure, and analysis are not complicated and this type of test is recommended for applications in which the variation in thermal expansion coefficients is desired for a limited number of material heats

  14. Widespread range expansions shape latitudinal variation in insect thermal limits

    Science.gov (United States)

    Lancaster, Lesley T.

    2016-06-01

    Current anthropogenic impacts, including habitat modification and climate change, may contribute to a sixth mass extinction. To mitigate these impacts and slow further losses of biodiversity, we need to understand which species are most at risk and identify the factors contributing to current and future declines. Such information is often obtained through large-scale, comparative and biogeographic analysis of lineages or traits that are potentially sensitive to ongoing anthropogenic change--for instance to predict which regions are most susceptible to climate change-induced biodiversity loss. However, for this approach to be generally successful, the underlying causes of identified geographical trends need to be carefully considered. Here, I augment and reanalyse a global data set of insect thermal tolerances, evaluating the contribution of recent and contemporary range expansions to latitudinal variation in thermal niche breadth. Previous indications that high-latitude ectotherms exhibit broad thermal niches and high warming tolerances held only for species undergoing range expansions or invasions. In contrast, species with stable or declining geographic ranges exhibit latitudinally decreasing absolute thermal tolerances and no latitudinal variation in tolerance breadths. Thus, non-range-expanding species, particularly insular or endemic species, which are often of highest conservation priority, are unlikely to tolerate future climatic warming at high latitudes.

  15. Quantum elasticity of graphene: Thermal expansion coefficient and specific heat

    NARCIS (Netherlands)

    Burmistrov, I.S.; Gornyi, I.V.; Kachorovskii, V.Y.; Katsnelson, M.I.; Mirlin, A.D.

    2016-01-01

    We explore thermodynamics of a quantum membrane, with a particular application to suspended graphene membrane and with a particular focus on the thermal expansion coefficient. We show that an interplay between quantum and classical anharmonicity-controlled fluctuations leads to unusual elastic

  16. Some Additional Remarks on the Cumulant Expansion for Linear Stochastic Differential Equations

    NARCIS (Netherlands)

    Roerdink, J.B.T.M.

    1984-01-01

    We summarize our previous results on cumulant expansions for linear stochastic differential equations with correlated multipliclative and additive noise. The application of the general formulas to equations with statistically independent multiplicative and additive noise is reconsidered in detail,

  17. Effect of high thermal expansion glass infiltration on mechanical ...

    Indian Academy of Sciences (India)

    This work studies the effect on the mechanical properties of alumina-10 wt% zirconia (3 mol% yttria stabilized) composite by infiltrating glass of a higher thermal expansion (soda lime glass) on the surface at high temperature. The glass improved the strength of composite at room temperature as well as at high temperature.

  18. High Density Polyethylene Composites Reinforced with Hybrid Inorganic Fillers: Morphology, Mechanical and Thermal Expansion Performance

    Directory of Open Access Journals (Sweden)

    Birm-June Kim

    2013-09-01

    Full Text Available The effect of individual and combined talc and glass fibers (GFs on mechanical and thermal expansion performance of the filled high density polyethylene (HDPE composites was studied. Several published models were adapted to fit the measured tensile modulus and strength of various composite systems. It was shown that the use of silane-modified GFs had a much larger effect in improving mechanical properties and in reducing linear coefficient of thermal expansion (LCTE values of filled composites, compared with the use of un-modified talc particles due to enhanced bonding to the matrix, larger aspect ratio, and fiber alignment for GFs. Mechanical properties and LCTE values of composites with combined talc and GF fillers varied with talc and GF ratio at a given total filler loading level. The use of a larger portion of GFs in the mix can lead to better composite performance, while the use of talc can help lower the composite costs and increase its recyclability. The use of 30 wt % combined filler seems necessary to control LCTE values of filled HDPE in the data value range generally reported for commercial wood plastic composites. Tensile modulus for talc-filled composite can be predicted with rule of mixture, while a PPA-based model can be used to predict the modulus and strength of GF-filled composites.

  19. High Density Polyethylene Composites Reinforced with Hybrid Inorganic Fillers: Morphology, Mechanical and Thermal Expansion Performance.

    Science.gov (United States)

    Huang, Runzhou; Xu, Xinwu; Lee, Sunyoung; Zhang, Yang; Kim, Birm-June; Wu, Qinglin

    2013-09-17

    The effect of individual and combined talc and glass fibers (GFs) on mechanical and thermal expansion performance of the filled high density polyethylene (HDPE) composites was studied. Several published models were adapted to fit the measured tensile modulus and strength of various composite systems. It was shown that the use of silane-modified GFs had a much larger effect in improving mechanical properties and in reducing linear coefficient of thermal expansion (LCTE) values of filled composites, compared with the use of un-modified talc particles due to enhanced bonding to the matrix, larger aspect ratio, and fiber alignment for GFs. Mechanical properties and LCTE values of composites with combined talc and GF fillers varied with talc and GF ratio at a given total filler loading level. The use of a larger portion of GFs in the mix can lead to better composite performance, while the use of talc can help lower the composite costs and increase its recyclability. The use of 30 wt % combined filler seems necessary to control LCTE values of filled HDPE in the data value range generally reported for commercial wood plastic composites. Tensile modulus for talc-filled composite can be predicted with rule of mixture, while a PPA-based model can be used to predict the modulus and strength of GF-filled composites.

  20. Anomalous thermal expansion in YMn2, Y6Mn23 and YMn12

    International Nuclear Information System (INIS)

    Gratz, E.; Gurjazkas, D.; Mueller, H.; Kottar, A.

    1997-01-01

    The thermal expansion coefficient α(T) of YMn 2 , Y 6 Mn 23 and YMn 12 is presented in the temperature range 4.2-1000 K together with α(T) of YCo 2 and YNi 2 . The strong variation of α(T) of the Y-Mn compounds in their paramagnetic state is discussed under the assumption that there exist Mn atoms with different electronic configurations and therefore with different atomic volumes. Changes of the concentration of these different Mn atoms with temperature reveal this anomalous thermal expansion. (orig.)

  1. The JPL Cryogenic Dilatometer: Measuring the Thermal Expansion Coefficient of Aerospace Materials

    Science.gov (United States)

    Halverson, Peter G.; Dudick, Matthew J.; Karlmann, Paul; Klein, Kerry J.; Levine, Marie; Marcin, Martin; Parker, Tyler J.; Peters, Robert D.; Shaklan, Stuart; VanBuren, David

    2007-01-01

    This slide presentation details the cryogenic dilatometer, which is used by JPL to measure the thermal expansion coefficient of materials used in Aerospace. Included is a system diagram, a picture of the dilatometer chamber and the laser source, a description of the laser source, pictures of the interferometer, block diagrams of the electronics and software and a picture of the electronics, and software. Also there is a brief review of the accurace.error budget. The materials tested are also described, and the results are shown in strain curves, JPL measured strain fits are described, and the coefficient of thermal expansion (CTE) is also shown for the materials tested.

  2. Thermal expansion and thermal stress in the moon and terrestrial planets - Clues to early thermal history

    Science.gov (United States)

    Solomon, S. C.; Chaiken, J.

    1976-01-01

    The paper discusses how features of the surface geology of the moon and also Mars and Mercury impose constraints on the volumetric expansion or contraction of a planet and consequently provide a test of thermal history models. The moon has changed very little in volume over the last 3.8 b.y. Thermal models satisfying this constraint involve early heating and perhaps melting of the outer 200 km of the moon and an initially cold interior. Mercury has contracted by about 2 km in radius since emplacement of its present surface, so core formation must predate that surface. A hot initial temperature distribution is implied.

  3. A discrete element model of brittle damages generated by thermal expansion mismatch of heterogeneous media

    Directory of Open Access Journals (Sweden)

    André Damien

    2017-01-01

    Full Text Available At the macroscopic scale, such media as rocks or ceramics can be seen as homogeneous continuum. However, at the microscopic scale these materials involve sophisticated micro-structures that mix several phases. Generally, these micro-structures are composed by a large amount of inclusions embedded in a brittle matrix that ensures the cohesion of the structure. These materials generally exhibit complex non linear mechanical behaviors that result from the interactions between the different phases. This paper proposes to study the impact of the diffuse damages that result from the thermal expansion mismatch between the phases in presence. The Discrete Element Method (DEM that naturally take into account discontinuities is proposed to study these phenomena.

  4. Thermal expansion of CeCu5.8Ag0.2

    International Nuclear Information System (INIS)

    Kuechler, R.; Gegenwart, P.; Heuser, K.; Scheidt, E.-W.; Stewart, G.R.; Steglich, F.

    2005-01-01

    We present low-temperature thermal expansion measurements on the heavy fermion system CeCu 5.8 Ag 0.2 , which is located at an antiferromagnetic (AF) quantum critical point (QCP). At zero magnetic field, the volume expansion coefficient divided by temperature shows a logarithmic divergence upon cooling below 1K. This temperature dependence is incompatible with the predictions of the itinerant spin-density wave theory for an AF QCP. The application of magnetic fields leads to a cross-over to Landau Fermi liquid behavior as expected for a zero-field QCP

  5. The Thermal Expansion of Ring Particles and the Secular Orbital Evolution of Rings Around Planets and Asteroids

    Science.gov (United States)

    Rubincam, David P.

    2013-01-01

    The thermal expansion and contraction of ring particles orbiting a planet or asteroid can cause secular orbit evolution. This effect, called here the thermal expansion effect, depends on ring particles entering and exiting the shadow of the body they orbit. A particle cools off in the shadow and heats up again in the sunshine, suffering thermal contraction and expansion. The changing cross-section it presents to solar radiation pressure plus time lags due to thermal inertia lead to a net along-track force. The effect causes outward drift for rocky particles. For the equatorial orbits considered here, the thermal expansion effect is larger than Poynting-Robertson drag in the inner solar system for particles in the size range approx. 0.001 - 0.02 m. This leads to a net increase in the semimajor axis from the two opposing effects at rates ranging from approx. 0.1 R per million years for Mars to approx. 1 R per million years for Mercury, for distances approx. 2R from the body, where R is the body's radius. Asteroid 243 Ida has approx. 10 R per million years, while a hypothetical Near-Earth Asteroid (NEA) can have faster rates of approx. 0.5 R per thousand years, due chiefly to its small radius compared to the planets. The thermal expansion effect weakens greatly at Jupiter and is overwhelmed by Poynting-Robertson for icy particles orbiting Saturn. Meteoroids in eccentric orbits about the Sun also suffer the thermal expansion effect, but with only approx. 0.0003e2 AU change in semimajor axis over a million years for a 2 m meteoroid orbiting between Mercury and Earth.

  6. Uniaxial Negative Thermal Expansion, Negative Linear Compressibility, and Negative Poisson's Ratio Induced by Specific Topology in Zn[Au(CN)2]2.

    Science.gov (United States)

    Wang, Lei; Luo, Hubin; Deng, Shenghua; Sun, Ying; Wang, Cong

    2017-12-18

    The well-known idea of "structure determines properties" can be understood profoundly in the case of hexagonal zinc dicyanometalate. Using density functional theory (DFT) calculations, we show the uniaxial negative thermal expansion (NTE) and negative linear compressibility (NLC) properties of Zn[Au(CN) 2 ] 2 . The temperature dependence of phonon frequencies within the quasi-harmonic approximation (QHA) is investigated. The abnormal phonon hardening (frequency increase on heating) is detected in the ranges of 0-225, 320-345, and 410-430 cm -1 , which can be indicative of the unusual physical properties of Zn[Au(CN) 2 ] 2 . Due to the significance of low-energy phonon frequencies in Zn[Au(CN) 2 ] 2 , in this work, the corresponding vibrational mode of the lowest-frequency optical phonon at the zone center is analyzed. The specific topology of a springlike framework that will produce the effects of a compressed spring on heating and an extended spring under hydrostatic pressure is identified and leads to the coexistence of uniaxial-NTE and NLC behaviors in Zn[Au(CN) 2 ] 2 . The distinguishing phonon group velocity along the a axis and c axis facilitates different responses for both the axes under temperature and hydrostatic pressure field. Through an analysis and visualization of the spatial dependence of elastic tensors, it is found that a negative Poisson's ratio (NPR) is presented in all projection planes due to the specific topology.

  7. Thermal conductivity and thermal expansion of stainless steels D9 and HT9

    International Nuclear Information System (INIS)

    Leibowitz, L.; Blomquist, R.A.

    1988-01-01

    Renewed interest in the use of metallic fuels in liquid-metal fast breeder reactors has prompted study of the thermodynamic and transport properties of its materials. Two stainless steels are of particular interest because of their good performance under irradiation. These are D9, an austenitic steel, and HT9, a ferritic steel. Thermal conductivity and thermal expansion data for these alloys are of particular interest in assessing in-reactor behavior. Because literature data were inadequate, measurements of these two properties for the two steels were performed and are reported to 1200 K. Of particular interest is the influence on these properties of a phase transition in HT9

  8. Internal friction and linear expansion coefficient in zirconium and cobalt within the range of phase transitions

    International Nuclear Information System (INIS)

    Boyarskij, S.V.

    1986-01-01

    Experimental results are presented for internal friction and linear expansion coefficient at zirconium and cobalt in the temperature range from 440 K to the point of the phase transition of the first kind (1138 K for Zr and 706 for Co). Anomalous changes of the internal friction and linear expansion coefficient in the phase transition region are found. Theoretical considerations are given to explain the sharp decrease of the internal friction as temperature approaches the phase transition point

  9. 6th International Symposium on Thermal Expansion

    CERN Document Server

    1978-01-01

    This 6th International Symposium on Thermal Expansion, the first outside the USA, was held on August 29-31, 1977 at the Gull Harbour Resort on Hecla Island, Manitoba, Canada. Symposium Chairman was Ian D. Peggs, Atomic Energy of Canada Limited, and our continuing sponsor was CINDAS/Purdue University. We made considerable efforts to broaden the base this year to include more users of expansion data but with little success. We were successful, however, in establishing a session on liquids, an area which is receiving more attention as a logical extension to the high-speed thermophysical property measurements on materials at temperatures close to their melting points. The Symposium had good international representation but the overall attendance was, disappointingly, relatively low. Neverthe­ less, this enhanced the informal atmosphere throughout the meeting with a resultant frank exchange of information and ideas which all attendees appreciated. A totally new item this year was the presentation of a bursary to ...

  10. Isobaric thermal expansivity behaviour against temperature and pressure of associating fluids

    Energy Technology Data Exchange (ETDEWEB)

    Navia, Paloma; Troncoso, Jacobo [Departamento de Fisica Aplicada, Facultad de Ciencias de Ourense, Campus As Lagoas, 32004 Ourense (Spain); Romani, Luis, E-mail: romani@uvigo.e [Departamento de Fisica Aplicada, Facultad de Ciencias de Ourense, Campus As Lagoas, 32004 Ourense (Spain)

    2010-01-15

    In order to study the influence of association on the isobaric thermal expansivity, this magnitude has been experimentally determined for a set of associating fluids within the temperature and pressure intervals (278.15 to 348.15) K and (5 to 55) MPa by means of calorimetric measurements. The 1-alcohol series, from methanol to 1-decanol, 2-pentanol, 3-pentanol, and 1-pentylamine were selected. With a view on checking the quality of the experimental data, they are compared with available literature values; good coherence was obtained for most of the studied liquids. The analysis of the experimental results reveals that the association capability presents a strong influence not only on the value of the isobaric thermal expansivity itself, but also on its behaviour against temperature and pressure.

  11. Isobaric thermal expansivity behaviour against temperature and pressure of associating fluids

    International Nuclear Information System (INIS)

    Navia, Paloma; Troncoso, Jacobo; Romani, Luis

    2010-01-01

    In order to study the influence of association on the isobaric thermal expansivity, this magnitude has been experimentally determined for a set of associating fluids within the temperature and pressure intervals (278.15 to 348.15) K and (5 to 55) MPa by means of calorimetric measurements. The 1-alcohol series, from methanol to 1-decanol, 2-pentanol, 3-pentanol, and 1-pentylamine were selected. With a view on checking the quality of the experimental data, they are compared with available literature values; good coherence was obtained for most of the studied liquids. The analysis of the experimental results reveals that the association capability presents a strong influence not only on the value of the isobaric thermal expansivity itself, but also on its behaviour against temperature and pressure.

  12. Morphology control and negative thermal expansion in cubic ZrWMoO8 powders

    International Nuclear Information System (INIS)

    Liu, Qinqin; Yang, Juan; Sun, Xiujuan; Cheng, Xiaonong

    2008-01-01

    Cubic ZrWMoO 8 powders with rod-like aggregate and thin fasciculus-like and flower-like rod cluster morphologies have been successfully fabricated with different amounts of (NH 4 ) 2 HPO 4 as surfactant using a hydrothermal method. X-ray powder diffraction, scanning electron microscopy, transmission electron microscopy, Fourier transform infrared spectroscopy and differential scanning calorimetry were utilized to investigate the influence of the addition of (NH 4 ) 2 HPO 4 on the crystallization process and crystal morphology of the resulting products. The results show that the purity and the thermal expansion property of the resulting products are not influenced by the addition of (NH 4 ) 2 HPO 4 . The cubic ZrWMoO 8 powders with both rod-like aggregate and flower-like rod cluster morphologies show a positive thermal expansion property in the temperature range from room temperature to 120 C, while they show a negative thermal expansion property in the temperature range from 120 C to 700 C. The abnormal thermal expansion property of cubic ZrWMoO 8 below 120 C is caused by the presence of water molecules. Investigations also show that the essence of the different morphologies of the ZrWMoO 8 particles obtained is the result of the different aggregation modes of the nanorods, which act as nuclei, and the corresponding aggregation process is dominated by the addition of (NH 4 ) 2 HPO 4 and its amount. (copyright 2008 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  13. Homogeneity of the coefficient of linear thermal expansion of ZERODUR: a review of a decade of evaluations

    Science.gov (United States)

    Jedamzik, Ralf; Westerhoff, Thomas

    2017-09-01

    The coefficient of thermal expansion (CTE) and its spatial homogeneity from small to large formats is the most important property of ZERODUR. Since more than a decade SCHOTT has documented the excellent CTE homogeneity. It started with reviews of past astronomical telescope projects like the VLT, Keck and GTC mirror blanks and continued with dedicated evaluations of the production. In recent years, extensive CTE measurements on samples cut from randomly selected single ZERODUR parts in meter size and formats of arbitrary shape, large production boules and even 4 m sized blanks have demonstrated the excellent CTE homogeneity in production. The published homogeneity data shows single ppb/K peak to valley CTE variations on medium spatial scale of several cm down to small spatial scale of only a few mm mostly at the limit of the measurement reproducibility. This review paper summarizes the results also in respect to the increased CTE measurement accuracy over the last decade of ZERODUR production.

  14. Anisotropy of linear thermal expansion and compressibility of Y.sub.2./sub.Fe.sub.17./sub. under pressure and its correlation to magnetic structure

    Czech Academy of Sciences Publication Activity Database

    Arnold, Zdeněk; Kamarád, Jiří; Prokhnenko, Olexandr; Ritter, C.; Eto, T.; Honda, F.; Oomi, G.; Garcia-Landa, B.

    2002-01-01

    Roč. 22, - (2002), s. 175-179 ISSN 0895-7959 R&D Projects: GA ČR GA106/02/0943; GA AV ČR IAA1010018; GA MŠk ME 165 Institutional research plan: CEZ:AV0Z1010914 Keywords : intermetallic compounds * pressure effect * compressibility * thermal expansion * magnetic structure Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 0.414, year: 2002

  15. The influence of the magnetic state on the thermal expansion in 1:2 rare earth intermetallic compounds

    International Nuclear Information System (INIS)

    Gratz, E.; Lindbaum, A.

    1994-01-01

    The attempt is made to demonstrate on some selected rare earth intermetallics the influence of the magnetic state on the thermal expansion. Using the X-ray powder diffraction method we investigated the thermal expansion of some selected nonmagnetic compounds (YAl 2 , YNi 2 and YCo 2 ) and some magnetic RE (rare earth) - cobalt compounds (RCo 2 ) in the temperature range from 4 up to 450 K. All these compounds crystallize in the C15-type structure (cubic Laves phase structure). By comparing the nonmagnetic Y-based compounds we could show that there is an enhanced contribution of the 3d electrons to the thermal expansion in YCo 2 . In the magnetic RCo 2 compounds the induced 3d magnetism gives rise to large volume anomalies at the magnetic ordering temperature T c . Below T c there is in addition a distortion of the cubic unit cell due to the interaction of the magnetically ordered RE ions with the anisotropic crystal field.The thermal expansion of the orthorhombic TmCu 2 , GdCu 2 and YCu 2 compounds has also been investigated for comparison. The influence of the crystal field on the thermal expansion in TmCu 2 in the paramagnetic range (TmCu 2 orders magnetically at T N =6.3 K) has been determined by comparing the thermal expansion of the nonmagnetic YCu 2 with that of TmCu 2 . The data thus obtained are compared with a theoretical model. GdCu 2 , for which the influence of the crystal field can be neglected, has been investigated in order to study the influence of the exchange interaction in the magnetically ordered state (below 42 K). ((orig.))

  16. Non-linear triangle-based polynomial expansion nodal method for hexagonal core analysis

    International Nuclear Information System (INIS)

    Cho, Jin Young; Cho, Byung Oh; Joo, Han Gyu; Zee, Sung Qunn; Park, Sang Yong

    2000-09-01

    This report is for the implementation of triangle-based polynomial expansion nodal (TPEN) method to MASTER code in conjunction with the coarse mesh finite difference(CMFD) framework for hexagonal core design and analysis. The TPEN method is a variation of the higher order polynomial expansion nodal (HOPEN) method that solves the multi-group neutron diffusion equation in the hexagonal-z geometry. In contrast with the HOPEN method, only two-dimensional intranodal expansion is considered in the TPEN method for a triangular domain. The axial dependence of the intranodal flux is incorporated separately here and it is determined by the nodal expansion method (NEM) for a hexagonal node. For the consistency of node geometry of the MASTER code which is based on hexagon, TPEN solver is coded to solve one hexagonal node which is composed of 6 triangular nodes directly with Gauss elimination scheme. To solve the CMFD linear system efficiently, stabilized bi-conjugate gradient(BiCG) algorithm and Wielandt eigenvalue shift method are adopted. And for the construction of the efficient preconditioner of BiCG algorithm, the incomplete LU(ILU) factorization scheme which has been widely used in two-dimensional problems is used. To apply the ILU factorization scheme to three-dimensional problem, a symmetric Gauss-Seidel Factorization scheme is used. In order to examine the accuracy of the TPEN solution, several eigenvalue benchmark problems and two transient problems, i.e., a realistic VVER1000 and VVER440 rod ejection benchmark problems, were solved and compared with respective references. The results of eigenvalue benchmark problems indicate that non-linear TPEN method is very accurate showing less than 15 pcm of eigenvalue errors and 1% of maximum power errors, and fast enough to solve the three-dimensional VVER-440 problem within 5 seconds on 733MHz PENTIUM-III. In the case of the transient problems, the non-linear TPEN method also shows good results within a few minute of

  17. Liquid phase PVTx properties of (water + tert-butanol) binary mixtures at temperatures from 278.15 to 323.15 K and pressures from 0.1 to 100 MPa. II. Molar isothermal compressions, molar isobaric expansions, molar thermal pressure coefficients, and internal pressure

    International Nuclear Information System (INIS)

    Egorov, Gennadiy I.; Makarov, Dmitriy M.; Kolker, Arkadiy M.

    2013-01-01

    Highlights: ► Molar isothermal compressions and molar isobaric expansions were evaluated. ► Coefficients of thermal pressure and internal pressure were obtained. ► Concentration dependences of coefficients under study display extremes. ► Temperature and pressure dependences of internal pressure of the mixture were linear. -- Abstract: Molar isothermal compressions, molar isobaric expansions, molar coefficients of thermal pressure, and internal pressure were calculated over the whole concentration range of {water (1) + tert-butanol (2)} mixture at pressures from 0.1 to 100 MPa and temperatures from 278.15 to 323.15 K. It was revealed that the extremes, observed on concentration dependences of molar isothermal compression K T,m and molar isobaric expansion E P,m of the mixture, became more pronounced with pressure growth and temperature lowering. Values of molar thermal pressure coefficients of the mixture sharply rose at compositions with small TBA mole fraction and then decreased practically linearly with the alcohol content increasing. Temperature and pressure dependences of the mixture internal pressure were almost linear, and at low TBA concentrations changed significantly from the dependences of water, tert-butanol and their mixtures at large alcohol content

  18. Bimetallic low thermal-expansion panels of Co-base and silicide-coated Nb-base alloys for high-temperature structural applications

    International Nuclear Information System (INIS)

    Rhein, R.K.; Novak, M.D.; Levi, C.G.; Pollock, T.M.

    2011-01-01

    Research highlights: → Low net thermal expansion bimetallic structural lattice constructed. → Temperatures on the order of 1000 deg. C reached. → Improved silicide coating for niobium alloy developed. - Abstract: The fabrication and high temperature performance of low thermal expansion bimetallic lattices composed of Co-base and Nb-base alloys have been investigated. A 2D sheet lattice with a coefficient of thermal expansion (CTE) lower than the constituent materials of construction was designed for thermal cycling to 1000 deg. C with the use of elastic-plastic finite element analyses. The low CTE lattice consisted of a continuous network of the Nb-base alloy C-103 with inserts of high CTE Co-base alloy Haynes 188. A new coating approach wherein submicron alumina particles were incorporated into (Nb, Cr, Fe) silicide coatings was employed for oxidation protection of the Nb-base alloy. Thermal gravimetric analysis results indicate that the addition of submicron alumina particles reduced the oxidative mass gain by a factor of four during thermal cycling, increasing lifetime. Bimetallic cells with net expansion of 6 x 10 -6 /deg. C and 1 x 10 -6 /deg. C at 1000 deg. C were demonstrated and their measured thermal expansion characteristics were consistent with analytical models and finite element analysis predictions.

  19. Scaling behavior of ground-state energy cluster expansion for linear polyenes

    Science.gov (United States)

    Griffin, L. L.; Wu, Jian; Klein, D. J.; Schmalz, T. G.; Bytautas, L.

    Ground-state energies for linear-chain polyenes are additively expanded in a sequence of terms for chemically relevant conjugated substructures of increasing size. The asymptotic behavior of the large-substructure limit (i.e., high-polymer limit) is investigated as a means of characterizing the rapidity of convergence and consequent utility of this energy cluster expansion. Consideration is directed to computations via: simple Hückel theory, a refined Hückel scheme with geometry optimization, restricted Hartree-Fock self-consistent field (RHF-SCF) solutions of fixed bond-length Parisier-Parr-Pople (PPP)/Hubbard models, and ab initio SCF approaches with and without geometry optimization. The cluster expansion in what might be described as the more "refined" approaches appears to lead to qualitatively more rapid convergence: exponentially fast as opposed to an inverse power at the simple Hückel or SCF-Hubbard levels. The substructural energy cluster expansion then seems to merit special attention. Its possible utility in making accurate extrapolations from finite systems to extended polymers is noted.

  20. Thermal expansion of coking coals

    Energy Technology Data Exchange (ETDEWEB)

    Orlik, M.; Klimek, J. (Vyzkumny a Zkusebni Ustav Nova Hut, Ostrava (Czechoslovakia))

    1992-12-01

    Analyzes expansion of coal mixtures in coke ovens during coking. Methods for measuring coal expansion on both a laboratory and pilot plant scale are comparatively evaluated. The method, developed, tested and patented in Poland by the Institute for Chemical Coal Processing in Zabrze (Polish standard PN-73/G-04522), is discussed. A laboratory device developed by the Institute for measuring coal expansion is characterized. Expansion of black coal from 10 underground mines in the Ostrava-Karvina coal district and from 9 coal mines in the Upper Silesia basin in Poland is comparatively evaluated. Investigations show that coal expansion reaches a maximum for coal types with a volatile matter ranging from 20 to 25%. With increasing volatile matter in coal, its expansion decreases. Coal expansion increases with increasing swelling index. Coal expansion corresponds with coal dilatation. With increasing coal density its expansion increases. Coal mixtures should be selected in such a way that their expansion does not cause a pressure exceeding 40 MPa. 11 refs.

  1. Thermal expansion behaviour of high performance PEEK matrix composites

    International Nuclear Information System (INIS)

    Goyal, R K; Mulik, U P; Tiwari, A N; Negi, Y S

    2008-01-01

    The thermal expansion behaviour of high performance poly(ether-ether-ketone) (PEEK) composites reinforced with micro- (8 μm) and nano- (39 nm) sized Al 2 O 3 particles was studied. The distribution of Al 2 O 3 in the PEEK matrix was studied by scanning electron microscopy and transmission electron microscopy. The coefficient of thermal expansion (CTE) was reduced from 58 x 10 -6 deg. C -1 for pure PEEK to 22 x 10 -6 deg. C -1 at 43 vol% micro-Al 2 O 3 and to 23 x 10 -6 deg. C -1 at 12 vol% nano-Al 2 O 3 composites. For a given volume fraction, nano-Al 2 O 3 particles are more effective in reducing the CTE of composites than that of micro-Al 2 O 3 particles. This may be attributed to the much higher interfacial area or volume of nanocomposites than that of microcomposites. The upper limit and lower limit of the Schapery model separately fit closely the CTE of the micro- and nano-composites, respectively. Other models such as the rule of mixture and Kerner and Turner models were also correlated with the data

  2. Measurement and Evaluation of Thermal Expansion Coefficients of Micrometer - Sized SiO2 Particle - Reinforced Epoxy Composites

    International Nuclear Information System (INIS)

    Jo, Hyu Sang; Kang, Hee Yong; Lee, Gyo Woo

    2015-01-01

    In this experimental study, the thermal stability values of micrometer-sized silica particle-reinforced epoxy composite specimens were evaluated by measuring their thermal expansion coefficients and Young's moduli. For all specimens used in this study (from the baseline specimen to that containing 70 wt% silica filler), the thermal expansion coefficients and Young's moduli were gradually reduced down to 25% and increased up to 51%, respectively. The results of the experiment were compared with those of certain empirical models. The experimental results of the measurement of thermal expansion coefficients corresponded well with those of Kerner's model, which considers the bulk and shear moduli of the matrix and silica filler. However, the results of the measurement of Young's moduli using the empirical Mori-Tanaka model were observed to match better with those of the experiment. The comparison of the results of the experiment with those of the empirical models demonstrated that a reliable model for measuring the thermal expansion coefficients and Young's moduli of composite specimens needs to consider certain property variations in the composites in addition to volume fraction changes in the filler and matrix

  3. Thermal expansion of superconducting phases Bi2Sr2Can-1CunO2n+2+δ with n=1,2,3

    International Nuclear Information System (INIS)

    Zhurov, V.V.; Ivanov, S.A.; Bush, A.A.; Romanov, B.N.

    1990-01-01

    Consideration is given to results of X-ray diffraction studies of temperature dependences of a 0 ,c 0 sublattice parameters of Bi 2 Sr 2 Ca n-1 Cu n O 2n+2+ δ superconducting phases with n=1,2,3 (2201, 2212, 2223) in 90-1000 K range. The obtained dependences are composed of some temperature linear sections, where values of thermal coefficients of linear expansion α a , α c were determined for all examined phases. During first heating of samples of 2212 phase a 0 (T), c 0 (T) dependences deviate in ≅500-700 K range from linear ones till the occurence of a section with negative a c . After heating of 2212 phase up to T>≅700 K and cooling down to 300 K, a 0 ,c 0 parameters decrease by ≅0.006 and 0.08 A respectively. Data on the effect of preparation method and thermal prehistory of 2212 samples and on relative content of calcium atoms in them for these anomalies were obtained. Some possible reasons of their occurence were analyzed

  4. Investigation of thermal expansion and compressibility of rare-earth orthovanadates using a dielectric chemical bond method.

    Science.gov (United States)

    Zhang, Siyuan; Zhou, Shihong; Li, Huaiyong; Li, Ling

    2008-09-01

    The chemical bond properties, lattice energies, linear expansion coefficients, and mechanical properties of ReVO 4 (Re = La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, Sc, Y) are investigated systematically by the dielectric chemical bond theory. The calculated results show that the covalencies of Re-O bonds are increasing slightly from La to Lu and that the covalencies of V-O bonds in crystals are decreasing slightly from La to Lu. The linear expansion coefficients decrease progressively from LaVO 4 to LuVO 4; on the contrary, the bulk moduli increase progressively. Our calculated results are in good agreement with some experimental values for linear expansion coefficients and bulk moduli.

  5. Operator product expansion and its thermal average

    Energy Technology Data Exchange (ETDEWEB)

    Mallik, S [Saha Inst. of Nuclear Physics, Calcutta (India)

    1998-05-01

    QCD sum rules at finite temperature, like the ones at zero temperature, require the coefficients of local operators, which arise in the short distance expansion of the thermal average of two-point functions of currents. We extend the configuration space method, applied earlier at zero temperature, to the case at finite temperature. We find that, upto dimension four, two new operators arise, in addition to the two appearing already in the vacuum correlation functions. It is argued that the new operators would contribute substantially to the sum rules, when the temperature is not too low. (orig.) 7 refs.

  6. Fabrication of Zr2WP2O12/ZrV0.6P1.4O7 composite with a nearly zero-thermal-expansion property.

    Science.gov (United States)

    Yanase, Ikuo; Sakai, Hiroshi; Kobayashi, Hidehiko

    2017-11-15

    Sintered bodies of Zr 2 WP 2 O 12 (ZWP) and ZrV 0.6 P 1.4 O 7 (ZVP) were fabricated, and their linear thermal expansion coefficients (TEC) were found to be -2.92 × 10 -6 and 3.27 × 10 -6  °C -1 , respectively, in the range 25-500 °C. In an attempt to fabricate composites with a zero-thermal-expansion property, sintered ZWP/ZVP composites with ZVP/ZWP volume ratios of 0.5/0.5, 0.53/0.47, 0.55/0.45, and 0.6/0.4 were fabricated. Scanning electron microscopy revealed that sintering of ZVP/ZWP composites progressed well compared with that of ZWP. A porous ZVP/ZWP composite with a relative density of ca. 83% was fabricated at a ZVP/ZWP volume ratio of 0.53/0.47. X-ray diffractometry and energy dispersive X-ray spectrometry clarified that the ZVP/ZWP composite mainly consisted of ZWP and ZVP grains. Thermomechanical analysis confirmed that the ZVP/ZWP composite exhibited very low thermal expansion with a slight hysteresis with a TEC of -0.29 × 10 -7  °C -1 in the range 25-500 °C.

  7. Improvement of the thermal behavior of linear motors through insulation layer

    International Nuclear Information System (INIS)

    Eun, I. U.; Lee, C. M.; Chung, W. J.; Choi, Y. H.

    2001-01-01

    Linear motors can drive a linear motion without intermediate gears, screws or crank shafts. Linear motors can successfully replace ball lead screw in machine tools, because they have a high velocity, acceleration and good positioning accuracy. On the other hand, linear motors emit large amounts of heat and have low efficiency. In this paper, heat sources of a synchronous linear motor with high velocity and force are measured and analyzed. To improve the thermal stiffness of the linear motor, an insulation layer with low thermal conductivity is inserted between cooler and machine table. Some effects of the insulation layer are presented

  8. Thermal expansion data

    International Nuclear Information System (INIS)

    Taylor, D.

    1984-01-01

    This paper gives regression data for a modified second order polynomial fitted to the expansion data of, and percentage expansions for dioxides with (a) the fluorite and antifluorite structure: AmO 2 , BkO 2 , CeO 2 , CmO 2 , HfO 2 , Li 2 O, NpO 2 , PrO 2 , PuO 2 , ThO 2 , UO 2 , ZrO 2 , and (b) the rutile structure: CrO 2 , GeO 2 , IrO 2 , MnO 2 , NbO 2 , PbO 2 , SiO 2 , SnO 2 , TeO 2 , TiO 2 and VO 2 . Reduced expansion curves for the dioxides showed only partial grouping into iso-electronic series for the fluorite structures and showed that the 'law of corresponding states' did not apply to the rutile structures. (author)

  9. Elastic modulus, thermal expansion, and specific heat at a phase transition

    International Nuclear Information System (INIS)

    Testardi, L.R.

    1975-01-01

    The interrelation of the elastic modulus, thermal-expansion coefficient, and specific heat of a transformed phase relative to the untransformed phase is calculated assuming a particular but useful form of the thermodynamic potential. For second-order phase transitions where this potential applies, measurements of modulus, expansion, and specific heat can yield the general (longitudinal as well as shear) first- and second-order stress (or strain) dependences of the transition temperature and of the order parameter at absolute zero. An exemplary application to one type of phase transition is given

  10. Thermal expansion of the magnetorefrigerant Gd5(Si,Ge)4

    NARCIS (Netherlands)

    Brück, E.H.; Nazih, M.; de Visser, A.; Zhang, L.; Tegus, O.

    2003-01-01

    We report thermal expansion measurements carried out on a single-crystal of the giant magnetocaloric effect material Gd5(Si0.43Ge0.57)4. At the magneto-structural phase transition at T0~240 K, large steps in the relative length change ÄL/L along the principle crystallographic axes are observed. The

  11. Anisotropic thermal expansion of La(n)(Ti,Fe)(n)O(3n + 2) (n = 5 and 6).

    Science.gov (United States)

    Wölfel, Alexander; Dorscht, Philipp; Lichtenberg, Frank; van Smaalen, Sander

    2013-04-01

    Crystal structures are reported for two perovskite-related compounds with nominal compositions La5(Ti(0.8)Fe(0.2))5O17 and La6(Ti(0.67)Fe(0.33))6O20 at seven different temperatures between 90 and 350 K. For both compounds no evidence of a structural phase transition in the investigated range of temperatures was found. The thermal expansions are found to be anisotropic, with the largest thermal expansion along a direction parallel to the slabs of these layered compounds. The origin of this anisotropy is proposed to be a temperature dependence of tilts of the octahedral (Ti,Fe)O6 groups. It is likely that the same mechanism will determine similar anisotropic thermal behaviour of other compounds A(n)B(n)O(3n + 2). The crystal structures have revealed partial chemical order of Ti/Fe over the B sites, with iron concentrated towards the centers of the slabs. Local charge compensation is proposed as the driving force for the chemical order, where the highest-valent cation moves to sites near the oxygen-rich borders of the slabs. A linear dependence on the site occupation fraction by Fe of the computed valences leads to extrapolated valence values close to the formal valence of Ti(4+) for sites fully occupied by Ti, and of Fe(3+) for sites fully occupied by Fe. These results demonstrate the power of the bond-valence method, and they show that refined oxygen positions are the weighted average of oxygen positions in TiO6 and FeO6 octahedral groups.

  12. Improved vertical displacements induced by a refined thermal expansion model and its quantitative analysis in GPS height time series

    Science.gov (United States)

    Wang, Kaihua; Chen, Hua; Jiang, Weiping; Li, Zhao; Ma, Yifang; Deng, Liansheng

    2018-04-01

    There are apparent seasonal variations in GPS height time series, and thermal expansion is considered to be one of the potential geophysical contributors. The displacements introduced by thermal expansion are usually derived without considering the annex height and underground part of the monument (e.g. located on roof or top of the buildings), which may bias the geophysical explanation of the seasonal oscillation. In this paper, the improved vertical displacements are derived by a refined thermal expansion model where the annex height and underground depth of the monument are taken into account, and then 560 IGS stations are adopted to validate the modeled thermal expansion (MTE) displacements. In order to evaluate the impact of thermal expansion on GPS heights, the MTE displacements of 80 IGS stations with less data discontinuities are selected to compare with their observed GPS vertical (OGV) displacements with the modeled surface loading (MSL) displacements removed in advance. Quantitative analysis results show the maximum annual and semiannual amplitudes of the MTE are 6.65 mm (NOVJ) and 0.51 mm (IISC), respectively, and the maximum peak-to-peak oscillation of the MTE displacements can be 19.4 mm. The average annual amplitude reductions are 0.75 mm and 1.05 mm respectively after removing the MTE and MSL displacements from the OGV, indicating the seasonal oscillation induced by thermal expansion is equivalent to >75% of the impact of surface loadings. However, there are rarely significant reductions for the semiannual amplitude. Given the result in this study that thermal expansion can explain 17.3% of the annual amplitude in GPS heights on average, it must be precisely modeled both in GPS precise data processing and GPS time series analysis, especially for those stations located in the middle and high latitudes with larger annual temperature oscillation, or stations with higher monument.

  13. Plastic deformation tests on fragile materials using a thermal expansion machine

    International Nuclear Information System (INIS)

    Orozco, E.; Morales, A.; Mendoza, A.

    1991-01-01

    Applying an electrical current on an iron bar, a thermal expansion can be induced. We have taken advantage of this to deform fragile materials, in order to study their mechanical properties. In this paper we show some gels and high T c oxide superconductors (Author)

  14. Thermal expansion behavior study of Co nanowire array with in situ x-ray diffraction and x-ray absorption fine structure techniques

    Science.gov (United States)

    Mo, Guang; Cai, Quan; Jiang, Longsheng; Wang, Wei; Zhang, Kunhao; Cheng, Weidong; Xing, Xueqing; Chen, Zhongjun; Wu, Zhonghua

    2008-10-01

    In situ x-ray diffraction and x-ray absorption fine structure techniques were used to study the structural change of ordered Co nanowire array with temperature. The results show that the Co nanowires are polycrystalline with hexagonal close packed structure without phase change up until 700 °C. A nonlinear thermal expansion behavior has been found and can be well described by a quadratic equation with the first-order thermal expansion coefficient of 4.3×10-6/°C and the second-order thermal expansion coefficient of 5.9×10-9/°C. The mechanism of this nonlinear thermal expansion behavior is discussed.

  15. Temperature dependence of volume thermal expansion for NaCl and KCl crystals

    International Nuclear Information System (INIS)

    Fang Zhenghua

    2005-01-01

    A new relation for predicting volume thermal expansion of alkali halides at high temperatures is derived based on the assumption that the two different diffusional driving force models presented, respectively, by Sharma and Sharma (Indian J. Pure Appl. Phys. 29 (1991) 637) and Singh (J. Phys. Chem. Solids 63 (2002) 1935) are equivalent. The input parameters needed for the calculation are the volume thermal expansion coefficient and the isothermal Anderson-Gruneisen parameter, both at room temperature and zero pressure, which are available from the literature. The tests on NaCl and KCl crystals demonstrate that the agreement between the calculated results obtained by this relation and the corresponding experimental data is very good. The applicability of the relation as well as some thermodynamic relationships included in its derivation is discussed

  16. Thermal expansion, anharmonicity and temperature-dependent Raman spectra of single- and few-layer MoSe₂ and WSe₂.

    Science.gov (United States)

    Late, Dattatray J; Shirodkar, Sharmila N; Waghmare, Umesh V; Dravid, Vinayak P; Rao, C N R

    2014-06-06

    We report the temperature-dependent Raman spectra of single- and few-layer MoSe2 and WSe2 in the range 77-700 K. We observed linear variation in the peak positions and widths of the bands arising from contributions of anharmonicity and thermal expansion. After characterization using atomic force microscopy and high-resolution transmission electron microscopy, the temperature coefficients of the Raman modes were determined. Interestingly, the temperature coefficient of the A(2)(2u) mode is larger than that of the A(1g) mode, the latter being much smaller than the corresponding temperature coefficients of the same mode in single-layer MoS2 and of the G band of graphene. The temperature coefficients of the two modes in single-layer MoSe2 are larger than those of the same modes in single-layer WSe2. We have estimated thermal expansion coefficients and temperature dependence of the vibrational frequencies of MoS2 and MoSe2 within a quasi-harmonic approximation, with inputs from first-principles calculations based on density functional theory. We show that the contrasting temperature dependence of the Raman-active mode A(1g) in MoS2 and MoSe2 arises essentially from the difference in their strain-phonon coupling. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Determination of coefficient of thermal expansion effects on Louisiana's PCC pavement design.

    Science.gov (United States)

    2011-12-01

    With the development of the Mechanistic Empirical Pavement Design Guide (MEPDG) as a new pavement design tool, the : coefficient of thermal expansion (CTE) is now considered a more important design parameter in estimating pavement : performance inclu...

  18. Measurement and Evaluation of Thermal Expansion Coefficients of Micrometer - Sized SiO{sub 2} Particle - Reinforced Epoxy Composites

    Energy Technology Data Exchange (ETDEWEB)

    Jo, Hyu Sang; Kang, Hee Yong; Lee, Gyo Woo [Chonbuk National University, Jeonju (Korea, Republic of)

    2015-02-15

    In this experimental study, the thermal stability values of micrometer-sized silica particle-reinforced epoxy composite specimens were evaluated by measuring their thermal expansion coefficients and Young's moduli. For all specimens used in this study (from the baseline specimen to that containing 70 wt% silica filler), the thermal expansion coefficients and Young's moduli were gradually reduced down to 25% and increased up to 51%, respectively. The results of the experiment were compared with those of certain empirical models. The experimental results of the measurement of thermal expansion coefficients corresponded well with those of Kerner's model, which considers the bulk and shear moduli of the matrix and silica filler. However, the results of the measurement of Young's moduli using the empirical Mori-Tanaka model were observed to match better with those of the experiment. The comparison of the results of the experiment with those of the empirical models demonstrated that a reliable model for measuring the thermal expansion coefficients and Young's moduli of composite specimens needs to consider certain property variations in the composites in addition to volume fraction changes in the filler and matrix.

  19. Why linear Birch and U/sub s/-U/sub p/ expansions work

    International Nuclear Information System (INIS)

    Grover, R.

    1987-07-01

    The equivalence of the Birch-Murnoghan equation to a linear U/sub s/-U/sub p/ equation was illustrated in the previous paper. Here it is shown in a direct manner how the virial theorem boundary localization of valence electron kinetic energy changes lead to the convergence of the Eulerian strain expansion about the zero-pressure state

  20. Effects of Cr Substitution on Negative Thermal Expansion and Magnetic Properties of Antiperovskite Ga1-x Cr x N0.83Mn3 Compounds.

    Science.gov (United States)

    Guo, Xinge; Tong, Peng; Lin, Jianchao; Yang, Cheng; Zhang, Kui; Lin, Shuai; Song, Wenhai; Sun, Yuping

    2018-01-01

    Negative thermal expansion (NTE) and magnetic properties were investigated for antiperovskite Ga 1- x Cr x N 0.83 Mn 3 compounds. As x increases, the temperature span (Δ T ) of NTE related with Γ 5g antiferromagnetic (AFM) order is expanded and shifted to lower temperatures. At x = 0.1, NTE happens between 256 and 318 K (Δ T = 62 K) with an average linear coefficient of thermal expansion, α L = -46 ppm/K. The Δ T is expanded to 81 K (151-232 K) in x = 0.2 with α L = -22.6 ppm/K. Finally, NTE is no longer visible for x ≥ 0.3. Ferromagnetic order is introduced by Cr doping and continuously strengthened with increasing x , which may impede the AFM ordering and thus account for the broadening of NTE temperature window. Moreover, our specific heat measurement suggests the electronic density of states at the Fermi level is enhanced upon Cr doping, which favors the FM order rather than the AFM one.

  1. Negative thermal expansion up to 1000 C of ZrTiO4-Al2TiO5 ceramics for high-temperature applications

    International Nuclear Information System (INIS)

    Kim, I.J.; Kim, H.C.; Han, I.S.; Aneziris, C.G.

    2005-01-01

    High temperature structural ceramics based on Al 2 TiO 5 -ZrTiO 4 (ZAT) having excellent thermal-shock-resistance were synthesized by a reaction sintering. The ZAT ceramics sintered at 1600 C had a negative thermal expansions up to 1000 C and a much lower thermal expansion coefficient (0.3 ∝ 1.3 x 10 -6 /K) than that of polycrystalline Al 2 TiO 5 (1.5 x 10 -6 /K). These low thermal expansion are apparently due to a combination of microcracking caused by the large thermal expansion anisotropy of the crystal axes of the Al 2 TiO 5 phase. The microstructural degradation of the composites after various thermal treatment for high temperature applications were analyzed by scanning electron microscopy, X-ray diffraction, ultrasonic and dilatometer. (orig.)

  2. Uniaxial Negative Thermal Expansion and Mechanical Properties of a Zinc-Formate Framework

    Directory of Open Access Journals (Sweden)

    Hongqiang Gao

    2017-02-01

    Full Text Available The thermal expansion behavior of a metal-formate framework, Zn(HCOO2·2(H2O (1, has been systematically studied via variable temperature single-crystal X-ray diffraction. Our results demonstrate that this formate exhibits significant negative thermal expansion (NTE, −26(2 MK−1 along its c-axis. Detailed structural analyses reveal that the large NTE response is attributed to the ‘hinge-strut’ like framework motion. In addition, the fundamental mechanical properties of framework 1 have been explored via nanoindentation experiments. The measured elastic modulus and hardness properties on the (00-2/(100/(110 facets are 35.5/35.0/27.1 and 2.04/1.83/0.47 GPa, respectively. The stiffness and hardness anisotropy can be correlated well with the underlying framework structure, like its thermoelastic behavior.

  3. Measurement of thermal expansion coefficient of graphene diaphragm using optical fiber Fabry–Perot interference

    International Nuclear Information System (INIS)

    Li, Cheng; Liu, Qianwen; Peng, Xiaobin; Fan, Shangchun

    2016-01-01

    Application of the Fabry–Perot (FP) interference method for determining the coefficient of thermal expansion (CTE) of a graphene diaphragm is investigated in this paper. A miniature extrinsic FP interferometric (EFPI) sensor was fabricated by using an approximate 8-layer graphene diaphragm. The extremely thin diaphragm was transferred onto the endface of a ferrule with an inner diameter of 125 μ m, and van der Waals interactions between the graphene diaphragm and its substrate created a low finesse FP interferometer with a cavity length of 36.13 μ m. Double reference FP cavities using two cleaved optical fibers as reflectors were also constructed to differentially cancel the thermal expansion effects of the trapped gas and adhesive material. A temperature test demonstrated an approximate cavity length change of 166.1 nm °C −1 caused by film thermal expansion in the range of 20–60 °C. Then along with the established thermal deformation model of the suspended circular diaphragm, the calculated CTE ranging from  −9.98  ×  10 −6 K −1 to  −2.09  ×  10 −6 K −1 conformed well to the previously measured results. The proposed method would be applicable in other types of elastic materials as the sensitive diaphragm of an EFPI sensor over a wide temperature range. (paper)

  4. Mechanical and thermal expansion properties of β-eucryptite prepared by sol-gel methods and hot pressing

    International Nuclear Information System (INIS)

    Xia, L.; Wen, G.W.; Qin, C.L.; Wang, X.Y.; Song, L.

    2011-01-01

    Research highlights: → Dense LAS glass-ceramics were fabricated by sol-gel and hot pressing technique. → The LAS glass-ceramics have relative good mechanical properties. → The negative thermal expansion behavior of LAS glass-ceramics was investigated. -- Abstract: The microstructures, mechanical properties and thermal expansion behavior of monolithic lithium aluminosilicate glass-ceramics, prepared by sol-gel method and hot pressing, were investigated by using X-ray diffraction, scanning and transmission electron microscopies, three-point bend tests and dilatometry. β-eucryptite appeared as main phase in the monolithic lithium aluminosilicate glass-ceramics. The glass ceramics exhibited high relative densities and the average flexural strength and fracture toughness values were 154 MPa and 2.46 MPa m 1/2 , respectively. The lithium aluminosilicate glass-ceramics hot pressed 1300 and 1350 o C demonstrated negative coefficient of thermal expansion, which was affected by amount and type of crystalline phases.

  5. Effects of Brass (Cu3Zn2) as High Thermal Expansion Material on Shrink Disc Performance During High Thermal Loading

    Science.gov (United States)

    Mazlan, MIS; Mohd, SA; Bahar, ND; Aziz, SAA

    2018-03-01

    This research work is focused on shrink disc operation at high temperature. Geometrical and material design selections have been done by taking into consideration the existing shrink disc operating at high temperature condition. The existing shrink disc confronted slip between shaft and shaft sleeve during thermal loading condition. The assessment has been obtained through virtual experiment by using Finite Element Analysis (FEA) -Thermal Transient Stress for 900 seconds with 300 °C of thermal loading. This investigation consists of the current and improved version of shrink disc, where identical geometries and material properties were utilized. High Thermal Expansion (HTE) material has been introduced to overcome the current design of the shrink disc. Brass (Cu3Zn2) has been selected as the HTE material in the improved shrink disc design due to its high thermal expansion properties. The HTE has shown a significant improvement on the total contact area and contact pressure on the shaft and the shaft sleeve. The improved shrink disc embedded with HTE during thermal loading exhibit a minimum of 1244.1 mm2 of the total area on shaft and shaft sleeve which uninfluenced the total contact area at normal condition which is 1254.3 mm2. Meanwhile, the total pressure of improved shrink disc had an increment of 108.1 MPa while existing shrink disc total pressure has lost 17.2 MPa during thermal loading.

  6. Negative and Zero Thermal Expansion NiTi Superelastic Shape Memory Alloy by Microstructure Engineering

    Science.gov (United States)

    Sun, Qingping; Yu, Chao; Kang, Guozheng

    2018-03-01

    We report recent progress in tailoring the thermal expansion (TE) of nanocrystalline (NC) NiTi by microstructure hierarchical design and control without composition change. Fabrication and characterization methods are outlined and preliminary results of both experiment and mechanism-based modeling are presented to understand and get insight into the unusual TE phenomena. The important roles of the intrinsic thermal expansion anisotropy of B19' lattice and the suppression of phase transition by the extrinsic fabricated microstructure (cold rolling and annealing, grain size, defects, textures and volume fractions of nanoscaled B2 and B19' lattices) in the overall macroscopic TE behaviors of the superelastic NC NiTi polycrystal SMAs are emphasized.

  7. Negative and Zero Thermal Expansion NiTi Superelastic Shape Memory Alloy by Microstructure Engineering

    Science.gov (United States)

    Sun, Qingping; Yu, Chao; Kang, Guozheng

    2018-02-01

    We report recent progress in tailoring the thermal expansion (TE) of nanocrystalline (NC) NiTi by microstructure hierarchical design and control without composition change. Fabrication and characterization methods are outlined and preliminary results of both experiment and mechanism-based modeling are presented to understand and get insight into the unusual TE phenomena. The important roles of the intrinsic thermal expansion anisotropy of B19' lattice and the suppression of phase transition by the extrinsic fabricated microstructure (cold rolling and annealing, grain size, defects, textures and volume fractions of nanoscaled B2 and B19' lattices) in the overall macroscopic TE behaviors of the superelastic NC NiTi polycrystal SMAs are emphasized.

  8. Multispectral linear array (MLA) focal plane mechanical and thermal design

    Science.gov (United States)

    Mitchell, A. S.; Kaminski, E. F.

    1982-01-01

    The mechanical and thermal design of an integrated focal plane subsystem of a Multispectral Linear Array (MLA) instrument is discussed in terms of focal-plane alignment, thermoelastic performance, and thermal requirements. The modular construction and thermal control of the focal plane array are discussed.

  9. Nonstoichiometric control of tunnel-filling order, thermal expansion, and dielectric relaxation in tetragonal tungsten Bronzes Ba0.5-xTaO3-x.

    Science.gov (United States)

    Pan, Fengjuan; Li, Xiaohui; Lu, Fengqi; Wang, Xiaoming; Cao, Jiang; Kuang, Xiaojun; Véron, Emmanuel; Porcher, Florence; Suchomel, Matthew R; Wang, Jing; Allix, Mathieu

    2015-09-21

    Ordering of interpolated Ba(2+) chains and alternate Ta-O rows (TaO)(3+) in the pentagonal tunnels of tetragonal tungsten bronzes (TTB) is controlled by the nonstoichiometry in the highly nonstoichiometric Ba0.5-xTaO3-x system. In Ba0.22TaO2.72, the filling of Ba(2+) and (TaO)(3+) groups is partially ordered along the ab-plane of the simple TTB structure, resulting in a √2-type TTB superstructure (Pbmm), while in Ba0.175TaO2.675, the pentagonal tunnel filling is completely ordered along the b-axis of the simple TTB structure, leading to a triple TTB superstructure (P21212). Both superstructures show completely empty square tunnels favoring Ba(2+) conduction and feature unusual accommodation of Ta(5+) cations in the small triangular tunnels. In contrast with stoichiometric Ba6GaTa9O30, which shows linear thermal expansion of the cell parameters and monotonic decrease of permittivity with temperature within 100-800 K, these TTB superstructures and slightly nonstoichiometric simple TTB Ba0.4TaO2.9 display abnormally broad and frequency-dependent extrinsic dielectric relaxations in 10(3)-10(5) Hz above room temperature, a linear deviation of the c-axis thermal expansion around 600 K, and high dielectric permittivity ∼60-95 at 1 MHz at room temperature.

  10. Non-linear elastic thermal stress analysis with phase changes

    International Nuclear Information System (INIS)

    Amada, S.; Yang, W.H.

    1978-01-01

    The non-linear elastic, thermal stress analysis with temperature induced phase changes in the materials is presented. An infinite plate (or body) with a circular hole (or tunnel) is subjected to a thermal loading on its inner surface. The peak temperature around the hole reaches beyond the melting point of the material. The non-linear diffusion equation is solved numerically using the finite difference method. The material properties change rapidly at temperatures where the change of crystal structures and solid-liquid transition occur. The elastic stresses induced by the transient non-homogeneous temperature distribution are calculated. The stresses change remarkably when the phase changes occur and there are residual stresses remaining in the plate after one cycle of thermal loading. (Auth.)

  11. Thermal Expansion of Self-Organized and Shear-Oriented Cellulose Nanocrystal Films

    Science.gov (United States)

    Jairo A. Diaz; Xiawa Wu; Ashlie Martini; Jeffrey P. Youngblood; Robert J. Moon

    2013-01-01

    The coefficient of thermal expansion (CTE) of cellulose nanocrystal (CNC) films was characterized using novel experimental techniques complemented by molecular simulations. The characteristic birefringence exhibited by CNC films was utilized to calculate the in-plane CTE of selforganized and shear-oriented self-standing CNC films from room temperature to 100 °...

  12. Thermal performance analysis of a direct-expansion solar-assisted heat pump water heater

    International Nuclear Information System (INIS)

    Kong, X.Q.; Zhang, D.; Li, Y.; Yang, Q.M.

    2011-01-01

    A direct-expansion solar-assisted heat pump water heater (DX-SAHPWH) is described, which can supply hot water for domestic use during the whole year. The system mainly employs a bare flat-plate collector/evaporator with a surface area of 4.2 m 2 , an electrical rotary-type hermetic compressor, a hot water tank with the volume of 150 L and a thermostatic expansion valve. R-22 is used as working fluid in the system. A simulation model based on lumped and distributed parameter approach is developed to predict the thermal performance of the system. Given the structure parameters, meteorological parameters, time step and final water temperature, the numerical model can output operational parameters, such as heat capacity, system COP and collector efficiency. Comparisons between the simulation results and the experimental measurements show that the model is able to give satisfactory predictions. The effect of various parameters, including solar radiation, ambient temperature, wind speed and compressor speed, has been analyzed on the thermal performance of the system. -- Highlights: ► A direct-expansion solar-assisted heat pump water heater (DX-SAHPWH) is described. ► A simulation model based on lumped and distributed parameter approach is developed to predict the thermal performance of the system. ► The numerical model can output operational parameters, such as heat capacity, system COP and collector efficiency. ► Comparisons between the simulation results and the experimental measurements show that the model is able to give satisfactory predictions. ► The effect of various parameters has been analyzed on the thermal performance of the system.

  13. Measurement of Mechanical Property and Thermal Expansion Coefficient of Carbon-Nano tube-Reinforced Epoxy Composites

    International Nuclear Information System (INIS)

    Ku, Min Ye; Kim, Jung Hyun; Kang, Hee Yong; Lee, Gyo Woo

    2013-01-01

    By using shear mixing and ultrasonication, we fabricated specimens of well-dispersed multi-walled carbon nano tube composites. To confirm the proper dispersion of the filler, we used scanning electron microscopy images for quantitative evaluation and a tensile test for qualitative assessment. Furthermore, the coefficients of thermal expansion of several specimens having different filler contents were calculated from the measured thermal strains and temperatures of the specimens. Based on the microscopy images of the well-dispersed fillers and the small deviations in the measurements of the tensile strength and stiffness, we confirmed the proper dispersion of absentee in the epoxy. As the filler contents were increased, the values of tensile strength increased from 58.33 to 68.81 MPa, and those of stiffness increased from 2.93 to 3.27 GPa. At the same time, the coefficients of thermal expansion decreased. This implies better thermal stability of the specimen

  14. Nickel-base alloys having a low coefficient of thermal expansion

    International Nuclear Information System (INIS)

    Baldwin, J.F.; Maxwell, D.H.

    1975-01-01

    Alloy compositions consisting predominantly of nickel, chromium, molybdenum, carbon, and boron are disclosed. The alloys possess a duplex structure consisting of a nickel--chromium--molybdenum matrix and a semi-continuous network of refractory carbides and borides. A combination of desirable properties is provided by these alloys, including elevated temperature strength, resistance to oxidation and hot corrosion, and a very low coefficient of thermal expansion

  15. Giant negative thermal expansion in bonded MnCoGe-based compounds with Ni2In-type hexagonal structure.

    Science.gov (United States)

    Zhao, Ying-Ying; Hu, Feng-Xia; Bao, Li-Fu; Wang, Jing; Wu, Hui; Huang, Qing-Zhen; Wu, Rong-Rong; Liu, Yao; Shen, Fei-Ran; Kuang, Hao; Zhang, Ming; Zuo, Wen-Liang; Zheng, Xin-Qi; Sun, Ji-Rong; Shen, Bao-Gen

    2015-02-11

    MnCoGe-based compounds undergo a giant negative thermal expansion (NTE) during the martensitic structural transition from Ni2In-type hexagonal to TiNiSi-type orthorhombic structure. High-resolution neutron diffraction experiments revealed that the expansion of unit cell volume can be as large as ΔV/V ∼ 3.9%. The optimized compositions with concurrent magnetic and structural transitions have been studied for magnetocaloric effect. However, these materials have not been considered as NTE materials partially due to the limited temperature window of phase transition. The as-prepared MnCoGe-based compounds are quite brittle and naturally collapse into powders. By using a few percents (3-4%) of epoxy to bond the powders, we introduced residual stress in the bonded samples and thus realized the broadening of structural transition by utilizing the specific characteristics of lattice softening enforced by the stress. As a result, giant NTE (not only the linear NTE coefficient α but also the operation-temperature window) has been achieved. For example, the average α̅ as much as -51.5 × 10(-6)/K with an operating temperature window as wide as 210 K from 122 to 332 K has been observed in a bonded MnCo0.98Cr0.02Ge compound. Moreover, in the region between 250 and 305 K near room temperature, the α value (-119 × 10(-6)/K) remains nearly independent of temperature. Such an excellent performance exceeds that of most other materials reported previously, suggesting it can potentially be used as a NTE material, particularly for compensating the materials with large positive thermal expansions.

  16. Debye temperature, thermal expansion, and heat capacity of TcC up to 100 GPa

    Energy Technology Data Exchange (ETDEWEB)

    Song, T., E-mail: songting@mail.lzjtu.cn [School of Mathematics and Physics, Lanzhou Jiaotong University, Lanzhou 730070 (China); School of Material Science and Engineering, Lanzhou University of Technology, Lanzhou 730050 (China); Ma, Q. [School of Material Science and Engineering, Lanzhou University of Technology, Lanzhou 730050 (China); Tian, J.H. [School of Mathematics and Physics, Lanzhou Jiaotong University, Lanzhou 730070 (China); Liu, X.B. [School of Physics and Information Science, Tianshui Normal University, Tianshui 741000 (China); Ouyang, Y.H.; Zhang, C.L.; Su, W.F. [School of Mathematics and Physics, Lanzhou Jiaotong University, Lanzhou 730070 (China)

    2015-01-15

    Highlights: • A number of thermodynamic properties of rocksalt TcC are investigated for the first time. • The quasi-harmonic Debye model is applied to take into account the thermal effect. • The pressure and temperature up to about 100 GPa and 3000 K, respectively. - Abstract: Debye temperature, thermal expansion coefficient, and heat capacity of ideal stoichiometric TcC in the rocksalt structure have been studied systematically by using ab initio plane-wave pseudopotential density functional theory method within the generalized gradient approximation. Through the quasi-harmonic Debye model, in which the phononic effects are considered, the dependences of Debye temperature, thermal expansion coefficient, constant-volume heat capacity, and constant-pressure heat capacity on pressure and temperature are successfully predicted. All the thermodynamic properties of TcC with rocksalt phase have been predicted in the entire temperature range from 300 to 3000 K and pressure up to 100 GPa.

  17. Non-linear electromagnetic interactions in thermal QED

    International Nuclear Information System (INIS)

    Brandt, F.T.; Frenkel, J.

    1994-08-01

    The behavior of the non-linear interactions between electromagnetic fields at high temperature is examined. It is shown that, in general, the log(T) dependence on the temperature of the Green functions is simply related to their UV behavior at zero-temperature. It is argued that the effective action describing the nonlinear thermal electromagnetic interactions has a finite limit as T -> ∞. This thermal action approaches, in the long wavelength limit, the negative of the corresponding zero-temperature action. (author). 12 refs, 1 fig

  18. Why linear Birch and U/sub s/-U/sub p/ expansions work

    International Nuclear Information System (INIS)

    Grover, R.

    1987-11-01

    The equivalence of the Birch-Murnaghan equation to a linear U/sub s/-U/sub p/ equation was illustrated in the previous paper. Here we show in a direct manner how the virial theorem and the effect of core exclusion on valence electron kinetic energy changes lead to the convergence of the Eulerian strain expansion about the zero-pressure state. 7 refs., 4 tabs

  19. Vibrational and Thermal Properties of Oxyanionic Crystals

    Science.gov (United States)

    Korabel'nikov, D. V.

    2018-03-01

    The vibrational and thermal properties of dolomite and alkali chlorates and perchlorates were studied in the gradient approximation of density functional theory using the method of a linear combination of atomic orbitals (LCAO). Long-wave vibration frequencies, IR and Raman spectra, and mode Gruneisen parameters were calculated. Equation-of-state parameters, thermodynamic potentials, entropy, heat capacity, and thermal expansion coefficient were also determined. The thermal expansion coefficient of dolomite was established to be much lower than for chlorates and perchlorates. The temperature dependence of the heat capacity at T > 200 K was shown to be generally governed by intramolecular vibrations.

  20. HAZARDS OF THERMAL EXPANSION FOR RADIOLOGICAL CONTAINER ENGULFED IN FIRE

    Energy Technology Data Exchange (ETDEWEB)

    Donna Post Guillen

    2013-05-01

    Fire accidents pose a serious threat to nuclear facilities. It is imperative that transport casks or shielded containers designed to transport/contain radiological materials have the ability to withstand a hypothetical fire. A numerical simulation was performed for a shielded container constructed of stainless steel and lead engulfed in a hypothetical fire as outlined by 10 CFR §71.73. The purpose of this analysis was to determine the thermal response of the container during and after the fire. The thermal model shows that after 30 minutes of fire, the stainless steel will maintain its integrity and not melt. However, the lead shielding will melt since its temperature exceeds the melting point. Due to the method of construction of the container under consideration, ample void space must be provided to allow for thermal expansion of the lead upon heating and melting, so as to not overstress the weldment.

  1. Effects of Cr Substitution on Negative Thermal Expansion and Magnetic Properties of Antiperovskite Ga1−xCrxN0.83Mn3 Compounds

    Science.gov (United States)

    Guo, Xinge; Tong, Peng; Lin, Jianchao; Yang, Cheng; Zhang, Kui; Lin, Shuai; Song, Wenhai; Sun, Yuping

    2018-01-01

    Negative thermal expansion (NTE) and magnetic properties were investigated for antiperovskite Ga1−xCrxN0.83Mn3 compounds. As x increases, the temperature span (ΔT) of NTE related with Γ5g antiferromagnetic (AFM) order is expanded and shifted to lower temperatures. At x = 0.1, NTE happens between 256 and 318 K (ΔT = 62 K) with an average linear coefficient of thermal expansion, αL = −46 ppm/K. The ΔT is expanded to 81 K (151–232 K) in x = 0.2 with αL = −22.6 ppm/K. Finally, NTE is no longer visible for x ≥ 0.3. Ferromagnetic order is introduced by Cr doping and continuously strengthened with increasing x, which may impede the AFM ordering and thus account for the broadening of NTE temperature window. Moreover, our specific heat measurement suggests the electronic density of states at the Fermi level is enhanced upon Cr doping, which favors the FM order rather than the AFM one. PMID:29619367

  2. Optical temperature sensor and thermal expansion measurement using a femtosecond micromachined grating in 6H-SiC.

    Science.gov (United States)

    DesAutels, G Logan; Powers, Peter; Brewer, Chris; Walker, Mark; Burky, Mark; Anderson, Gregg

    2008-07-20

    An optical temperature sensor was created using a femtosecond micromachined diffraction grating inside transparent bulk 6H-SiC, and to the best of our knowledge, this is a novel technique of measuring temperature. Other methods of measuring temperature using fiber Bragg gratings have been devised by other groups such as Zhang and Kahrizi [in MEMS, NANO, and Smart Systems (IEEE, 2005)]. This temperature sensor was, to the best of our knowledge, also used for a novel method of measuring the linear and nonlinear coefficients of the thermal expansion of transparent and nontransparent materials by means of the grating first-order diffracted beam. Furthermore the coefficient of thermal expansion of 6H-SiC was measured using this new technique. A He-Ne laser beam was used with the SiC grating to produce a first-order diffracted beam where the change in deflection height was measured as a function of temperature. The grating was micromachined with a 20 microm spacing and has dimensions of approximately 500 microm x 500 microm (l x w) and is roughly 0.5 microm deep into the 6H-SiC bulk. A minimum temperature of 26.7 degrees C and a maximum temperature of 399 degrees C were measured, which gives a DeltaT of 372.3 degrees C. The sensitivity of the technique is DeltaT=5 degrees C. A maximum deflection angle of 1.81 degrees was measured in the first-order diffracted beam. The trend of the deflection with increasing temperature is a nonlinear polynomial of the second-order. This optical SiC thermal sensor has many high-temperature electronic applications such as aircraft turbine and gas tank monitoring for commercial and military applications.

  3. Thermal properties of Avery Island salt to 5730K and 50-MPa confining pressure

    International Nuclear Information System (INIS)

    Durham, W.B.; Abey, A.E.

    1981-01-01

    Thermal conductivity, thermal diffusivity, and thermal linear expansion were measured on two samples of Avery Island rock salt up to simultaneous temperatures and pressures of 573 0 K and 50 MPa. Thermal conductivity at room temperature measured 6.3 +- 0.6 W/mK and decreased monotonically to 3.3 +- 0.4 W/mK at 573 0 K. Thermal diffusivity decreased from 3.0 +- 0.8 x 10 -6 m 2 /s at room temperature to 1.4 +- 0.5 x 10 -6 m 2 /s at 573 0 K. Thermal linear expansivity increased from 4.8 +- 0.3 x 10 -5 K -1 at room temperature to 5.6 +- 0.3 x 10 -5 K -1 at 573 0 K. The thermal properties showed no measurable (+-5%) dependence on confining pressure from 0 to 50 MPa for any temperature tested. The thermal conductivity values were not distinguishable (+-5%) from intrinsic (single crystal) values measured by others. Diffusivity fell about 20% below intrinsic values, and linear expansivity about 20% above intrinsic values. Thermal conductivity values for Avery Island salt measured recently by Morgan are as much as 50% lower than values measured here and were probably strongly affected by sample handling prior to measurement. The pressure independence of the thermal properties measured in our study suggests that thermally-induced microfracturing is nearly nonexistent. This lack of thermal cracking is consistent with the high (cubic) symmetry of halite

  4. Design and thermal performances of a scalable linear Fresnel reflector solar system

    International Nuclear Information System (INIS)

    Zhu, Yanqing; Shi, Jifu; Li, Yujian; Wang, Leilei; Huang, Qizhang; Xu, Gang

    2017-01-01

    Highlights: • A scalable linear Fresnel reflector which can supply different temperatures is proposed. • Inclination design of the mechanical structure is used to reduce the end losses. • The maximum thermal efficiency of 64% is achieved in Guangzhou. - Abstract: This paper proposes a scalable linear Fresnel reflector (SLFR) solar system. The optical mirror field which contains an array of linear plat mirrors closed to each other is designed to eliminate the inter-low shading and blocking. Scalable mechanical mirror support which can place different number of mirrors is designed to supply different temperatures. The mechanical structure can be inclined to reduce the end losses. Finally, the thermal efficiency of the SLFR with two stage mirrors is tested. After adjustment, the maximum thermal efficiency of 64% is obtained and the mean thermal efficiency is higher than that before adjustment. The results indicate that the end losses have been reduced effectively by the inclination design and excellent thermal performance can be obtained by the SLFR after adjustment.

  5. Local structure of perovskites ReO3 and ScF3 with negative thermal expansion: interpretation beyond the quasiharmonic approximation

    International Nuclear Information System (INIS)

    Purans, Juris; Piskunov, Sergei; Bocharov, Dmitry; Kalinko, Aleksandr; Kuzmin, Alexei; Ali, Shehab E.; Rocca, Francesco

    2016-01-01

    We propose an approach beyond the quasiharmonic approximation for interpretation of EXAFS and XRD data and for ab initio calculations of electronic and vibration properties of materials with negative thermal expansion. Ab initio electronic structure and lattice dynamics calculations for cubic and distorted ScF 3 were performed using the linear combination of atomic orbitals (LCAO) method. The band gap obtained in calculations for ScF 3 is equal to 10.54 eV and agree well with the expected value. The calculated infrared spectra of F displaced (FD) cubic ScF 3 allow us to predict that its mean Sc-F-Sc angle within NTE deviates from 180 degree. (paper)

  6. Deformation analysis considering thermal expansion of injection mold

    International Nuclear Information System (INIS)

    Kim, Jun Hyung; Yi, Dae Eun; Jang, Jeong Hui; Lee, Min Seok

    2015-01-01

    In the design of injection molds, the temperature distribution and deformation of the mold is one of the most important parameters that affect the flow characteristics, flash generation, and surface appearance, etc. Plastic injection analyses have been carried out to predict the temperature distribution of the mold and the pressure distribution on the cavity surface. As the input loads, we transfer the temperature and pressure results to the structural analysis. We compare the structural analysis results with the thermal expansion effect using the actual flash and step size of a smartphone cover part. To reduce the flash problem, we proposed a new mold design, and verified the results by performing simulations

  7. Deformation analysis considering thermal expansion of injection mold

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jun Hyung; Yi, Dae Eun; Jang, Jeong Hui; Lee, Min Seok [Samsung Electronics Co., LTD., Seoul (Korea, Republic of)

    2015-09-15

    In the design of injection molds, the temperature distribution and deformation of the mold is one of the most important parameters that affect the flow characteristics, flash generation, and surface appearance, etc. Plastic injection analyses have been carried out to predict the temperature distribution of the mold and the pressure distribution on the cavity surface. As the input loads, we transfer the temperature and pressure results to the structural analysis. We compare the structural analysis results with the thermal expansion effect using the actual flash and step size of a smartphone cover part. To reduce the flash problem, we proposed a new mold design, and verified the results by performing simulations.

  8. The influence of the relative thermal expansion and electric permittivity on phase transitions in the perovskite-type bidimensional layered NH3(CH2)3NH3CdBr4 compound

    Science.gov (United States)

    Staśkiewicz, Beata; Staśkiewicz, Anna

    2017-07-01

    Hydrothermal method has been used to synthesized the layered hybrid compound NH3(CH2)3NH3CdBr4 of perovskite architecture. Structural, dielectric and dilatometric properties of the compound have been analyzed. Negative thermal expansion (NTE) effect in the direction perpendicular to the perovskite plane as well as an unusual phase sequence have been reported based on X-ray diffraction analysis. Electric permittivity measurements evidenced the phase transitions at Tc1=326/328 K and Tc2=368/369 K. Relative linear expansion measurements almost confirmed these temperatures of phase transitions. Anomalies of electric permittivity and expansion behavior connected with the phase transitions are detected at practically the same temperatures as those observed earlier in differential scanning calorimetry (DSC), infrared (IR), far infrared (FIR) and Raman spectroscopy studies. Mechanism of the phase transitions is explained. Relative linear expansion study was prototype to estimate critical exponent value β for continuous phase transition at Tc1. It has been inferred that there is a strong interplay between the distortion of the inorganic network, those hydrogen bonds and the intermolecular interactions of the organic component.

  9. Stochastic-based resource expansion planning for a grid-connected microgrid using interval linear programming

    International Nuclear Information System (INIS)

    Shaban Boloukat, Mohammad Hadi; Akbari Foroud, Asghar

    2016-01-01

    This paper represents a stochastic approach for long-term optimal resource expansion planning of a grid-connected microgrid (MG) containing different technologies as intermittent renewable energy resources, energy storage systems and thermal resources. Maximizing profit and reliability, along with minimizing investment and operation costs, are major objectives which have been considered in this model. Also, the impacts of intermittency and uncertainty in renewable energy resources were investigated. The interval linear programming (ILP) was applied for modelling inherent stochastic nature of the renewable energy resources. ILP presents some superiority in modelling of uncertainties in MG planning. The problem was formulated as a mixed-integer linear programming. It has been demonstrated previously that the benders decomposition (BD) served as an effective tool for solving such problems. BD divides the original problem into a master (investment) problem and operation and reliability subproblems. In this paper a multiperiod MG planning is presented, considering life time, maximum penetration limit of each technology, interest rate, capital recovery factor and investment fund. Real-time energy exchange with the utility is covered, with a consideration of variable tariffs at different load blocks. The presented approach can help MG planners to adopt best decision under various uncertainty levels based on their budgetary policies. - Highlights: • Considering uncertain nature of the renewable resources with applying ILP. • Considering the effect of intermittency of renewable in MG planning. • Multiobjective MG planning problem which covers cost, profit and reliability. • Multiperiod approach for MG planning considering life time and MPL of technologies. • Presenting real-time energy exchange with the utility considering variable tariffs.

  10. Criteria for accepting piping thermal expansion movements during FFTF plant startup

    International Nuclear Information System (INIS)

    Clark, G.L.; Anderson, M.J.

    1981-03-01

    A deflection measurement program was conducted as a final step in the design qualification of the Fast Flux Test Facility liquid sodium piping. Measurements were obtained from the ambient empty position, through the 400 0 F (204 0 C) sodium fill, to an 800 0 F (427 0 C) maximum iso-thermal test condition. The program was designed to confirm that the pipe responded as predicted under both deadweight and thermal expansion loads. This paper describes the design of the test programs; the criteria used to select appropriate measurement locations from the approximately 4000 supports used on this pipe; and the criteria used to accept test results

  11. Characterization of the thermal expansion properties of graphene using molecular dynamics simulations

    International Nuclear Information System (INIS)

    Zahabul Islam, M; Mahboob, Monon; Robert Lowe, L; Stephen Bechtel, E

    2013-01-01

    In the present study, the temperature-dependent coefficient of thermal expansion (CTE) of a graphene sheet (GS) is determined using molecular dynamics (MD) simulations. Our simulations show that the CTE of a GS (i) varies non-linearly with temperature, (ii) is negative over a temperature range of 0–500 K and (iii) differs by no more than 9% in the armchair and zigzag directions. We find good agreement between our MD results and recent experimental data. The present study also investigates the effect of missing atoms (vacancy defects) on the CTE of a GS. In our MD simulations of a 4.9 nm × 4.9 nm GS, we find that the presence of two vacant atoms (about 1.56% by volume) increases the negative CTE by as much as 40%. Correlations between the CTE and the number of missing atoms have been developed based on MD simulation results for a perfect GS and a GS with 1.56% defects by volume. Predictions of the CTE of a defective GS from the correlations compare favourably with MD simulations at 3.13% defects by volume. (paper)

  12. Study of the O(N) linear σ model at finite temperature using the 2PPI expansion

    International Nuclear Information System (INIS)

    Verschelde, H.; De Pessemier, J.

    2002-01-01

    We show that a new expansion, which sums seagull and bubble graphs to all orders, can be applied to the O(N) linear σ-model at finite temperature. We prove that this expansion can be renormalized with the usual counterterms in a mass independent scheme and that Goldstone's theorem is satisfied at each order. At the one loop order of this expansion, the Hartree result for the effective potential (daisy and superdaisy graphs) is recovered. We show that at one loop 2PPI order, the self-energy of the σ-meson can be calculated exactly and that diagrams are summed beyond the Hartree approximation. (orig.)

  13. Inelastic neutron scattering an ab-initio calculation of negative thermal expansion in Ag2O

    International Nuclear Information System (INIS)

    Gupta, M.K.; Mittal, R.; Rols, S.; Chaplot, S.L.

    2012-01-01

    The compound Ag 2 O undergoes large and isotropic negative thermal expansion over 0-500 K. We report temperature dependent inelastic neutron scattering measurements and ab-initio calculations of the phonon spectrum. The temperature dependence of the experimental phonon spectrum shows strong anharmonic nature of phonon modes of energy around 2.4 meV. The ab-initio calculations reveal that the maximum negative Grüneisen parameter, which is a measure of the relevant anharmonicity, occurs for the transverse phonon modes that involve bending motions of the Ag 4 O tetrahedra. The thermal expansion is evaluated from the ab-initio calculation of the pressure dependence of the phonon modes, and found in good agreement with available experimental data.

  14. Measurement of total ultrasonic power using thermal expansion and change in buoyancy of an absorbing target.

    Science.gov (United States)

    Dubey, P K; Kumar, Yudhisther; Gupta, Reeta; Jain, Anshul; Gohiya, Chandrashekhar

    2014-05-01

    The Radiation Force Balance (RFB) technique is well established and most widely used for the measurement of total ultrasonic power radiated by ultrasonic transducer. The technique is used as a primary standard for calibration of ultrasonic transducers with relatively fair uncertainty in the low power (below 1 W) regime. In this technique, uncertainty comparatively increases in the range of few watts wherein the effects such as thermal heating of the target, cavitations, and acoustic streaming dominate. In addition, error in the measurement of ultrasonic power is also caused due to movement of absorber at relatively high radiated force which occurs at high power level. In this article a new technique is proposed which does not measure the balance output during transducer energized state as done in RFB. It utilizes the change in buoyancy of the absorbing target due to local thermal heating. The linear thermal expansion of the target changes the apparent mass in water due to buoyancy change. This forms the basis for the measurement of ultrasonic power particularly in watts range. The proposed method comparatively reduces uncertainty caused by various ultrasonic effects that occur at high power such as overshoot due to momentum of target at higher radiated force. The functionality of the technique has been tested and compared with the existing internationally recommended RFB technique.

  15. Measurement of total ultrasonic power using thermal expansion and change in buoyancy of an absorbing target

    Science.gov (United States)

    Dubey, P. K.; Kumar, Yudhisther; Gupta, Reeta; Jain, Anshul; Gohiya, Chandrashekhar

    2014-05-01

    The Radiation Force Balance (RFB) technique is well established and most widely used for the measurement of total ultrasonic power radiated by ultrasonic transducer. The technique is used as a primary standard for calibration of ultrasonic transducers with relatively fair uncertainty in the low power (below 1 W) regime. In this technique, uncertainty comparatively increases in the range of few watts wherein the effects such as thermal heating of the target, cavitations, and acoustic streaming dominate. In addition, error in the measurement of ultrasonic power is also caused due to movement of absorber at relatively high radiated force which occurs at high power level. In this article a new technique is proposed which does not measure the balance output during transducer energized state as done in RFB. It utilizes the change in buoyancy of the absorbing target due to local thermal heating. The linear thermal expansion of the target changes the apparent mass in water due to buoyancy change. This forms the basis for the measurement of ultrasonic power particularly in watts range. The proposed method comparatively reduces uncertainty caused by various ultrasonic effects that occur at high power such as overshoot due to momentum of target at higher radiated force. The functionality of the technique has been tested and compared with the existing internationally recommended RFB technique.

  16. Measurement of total ultrasonic power using thermal expansion and change in buoyancy of an absorbing target

    International Nuclear Information System (INIS)

    Dubey, P. K.; Kumar, Yudhisther; Gupta, Reeta; Jain, Anshul; Gohiya, Chandrashekhar

    2014-01-01

    The Radiation Force Balance (RFB) technique is well established and most widely used for the measurement of total ultrasonic power radiated by ultrasonic transducer. The technique is used as a primary standard for calibration of ultrasonic transducers with relatively fair uncertainty in the low power (below 1 W) regime. In this technique, uncertainty comparatively increases in the range of few watts wherein the effects such as thermal heating of the target, cavitations, and acoustic streaming dominate. In addition, error in the measurement of ultrasonic power is also caused due to movement of absorber at relatively high radiated force which occurs at high power level. In this article a new technique is proposed which does not measure the balance output during transducer energized state as done in RFB. It utilizes the change in buoyancy of the absorbing target due to local thermal heating. The linear thermal expansion of the target changes the apparent mass in water due to buoyancy change. This forms the basis for the measurement of ultrasonic power particularly in watts range. The proposed method comparatively reduces uncertainty caused by various ultrasonic effects that occur at high power such as overshoot due to momentum of target at higher radiated force. The functionality of the technique has been tested and compared with the existing internationally recommended RFB technique

  17. On the asymptotic expansions of solutions of an nth order linear differential equation with power coefficients

    International Nuclear Information System (INIS)

    Paris, R.B.; Wood, A.D.

    1984-11-01

    The asymptotic expansions of solutions of a class of linear ordinary differential equations of arbitrary order n, containing a factor zsup(m) multiplying the lower order derivatives, are investigated for large values of z in the complex plane. Four classes of solutions are considered which exhibit the following behaviour as /z/ → infinity in certain sectors: (i) solutions whose behaviour is either exponentially large or algebraic (involving p ( < n) algebraic expansions), (ii) solutions which are exponentially small (iii) solutions with a single algebraic expansion and (iv) solutions which are even and odd functions of z whenever n+m is even. The asymptotic expansions of these solutions in a full neigbourhood of the point at infinity are obtained by means of the theory of the solutions in the case m=O developed in a previous paper

  18. Stress and phase changes in a low-thermal-expansion Al-3at.%Ge alloy film on oxidized silicon wafers

    International Nuclear Information System (INIS)

    Tu, K.N.; Rodbell, K.P.; Herd, S.R.; Mikalsen, D.J.

    1993-01-01

    The alloy of Al-3at.%Ge has been found to have a low thermal expansion and contraction in the temperature range of room temperature to 400 C. The reason for the low thermal contraction (or expansion) is the precipitation (or dissolution) of Ge in the alloy. The Ge precipitates have a diamond structure in which each Ge atom occupies a much larger atomic volume than a Ge atom dissolved substitutionally in Al. The volume difference compensates for the effect of thermal expansion and contraction with changing temperature which in turn reduces the thermal stress due to thermal mismatch. The technique of wafer bending was used to determine the stress of the alloy film on oxidized silicon wafers upon thermal cycling; indeed, it is much lower than that of pure Al on identical wafers. The morphology of precipitation and dissolution of Ge in Al has been studied by transmission and scanning electron microscopy. It is found that the precipitation follows a discontinuous mode and occurs predominantly along grain boundaries. In dissolving the Ge precipitates into Al, voids are left behind because of the volume difference. It is proposed that this may explain the enhancement of nucleation of voids in the alloy film upon thermal cycling. (orig.)

  19. Negative Thermal Expansion over a Wide Temperature Range in Fe-Doped MnNiGe Composites.

    Science.gov (United States)

    Zhao, Wenjun; Sun, Ying; Liu, Yufei; Shi, Kewen; Lu, Huiqing; Song, Ping; Wang, Lei; Han, Huimin; Yuan, Xiuliang; Wang, Cong

    2018-01-01

    Fe-doped MnNiGe alloys were successfully synthesized by solid-state reaction. Giant negative thermal expansion (NTE) behaviors with the coefficients of thermal expansion (CTE) of -285.23 × 10 -6 K -1 (192-305 K) and -1167.09 × 10 -6 K -1 (246-305 K) have been obtained in Mn 0.90 Fe 0.10 NiGe and MnNi 0.90 Fe 0.10 Ge, respectively. Furthermore, these materials were combined with Cu in order to control the NTE properties. The results indicate that the absolute value of CTE gradually decreases with increasing Cu contents. In Mn 0.92 Fe 0.08 NiGe/ x %Cu, the CTE gradually changes from -64.92 × 10 -6 K -1 (125-274 K) to -4.73 × 10 -6 K -1 (173-229 K) with increasing value of x from 15 to 70. The magnetic measurements reveal that the NTE behaviors in this work are strongly correlated with the process of the magnetic phase transition and the introduction of Fe atoms could also change the spiral anti-ferromagnetic (s-AFM) state into ferromagnetic (FM) state at low temperature. Our study launches a new candidate for controlling thermal expansion properties of metal matrix materials which could have potential application in variable temperature environment.

  20. Microstructural effects associated to CTE mismatch for enhancing the thermal shock resistance of refractories

    International Nuclear Information System (INIS)

    Huger, M; Tessier-Doyen, N; Michaud, P; Chotard, T; Ota, T

    2011-01-01

    This work is devoted to the study of thermomechanical properties of several industrial and model refractory materials in relation with the evolution of their microstructure during thermal treatments. The aim is, in particular, to highlight the role of thermal expansion mismatches existing between phases which can induce damage at local scale. The resulting network of microcracks is well known to improve thermal shock resistance of materials, since it usually involves a significant decrease in elastic properties. Moreover, this network of microcracks can strongly affect the thermal expansion at low temperature and the stress-strain behaviour in tension. Even if these two last aspects are not so much documented in the literature, they certainly also constitute key points for the improvement of the thermal shock resistance of refractory materials. Evolution of damage during thermal cycling has been monitored by a specific ultrasonic device at high temperature. Beyond its influence on Young's modulus, this damage also allows to decrease the thermal expansion and to improve the non-linear character of the stress-strain curves determined in tension. The large increase in strain to rupture, which results from this non-linearity, is of great interest for thermal shock application.

  1. Determination of coefficient of thermal expansion for Portland Cement Concrete pavements for MEPDG Implementation

    Science.gov (United States)

    2012-10-01

    The Coefficient of Thermal Expansion (CTE) is an important parameter in Portland Cement Concrete (PCC) pavement analysis and design as it is directly proportional to the magnitude of temperature-related pavement deformations throughout the pavement s...

  2. A Noncontact Measurement Technique for the Density and Thermal Expansion Coefficient of Solid and Liquid Materials

    Science.gov (United States)

    Chung, Sang K.; Thiessen, David B.; Rhim, Won-Kyu

    1996-01-01

    A noncontact measurement technique for the density and the thermal expansion refractory materials in their molten as well as solid phases is presented. This technique is based on the video image processing of a levitated sample. Experiments were performed using the high-temperature electrostatic levitator (HTESL) at the Jet Propulsion Laboratory in which 2-3 mm diameter samples can be levitated, melted, and radiatively cooled in a vacuum. Due to the axisymmetric nature of the molten samples when levitated in the HTESL, a rather simple digital image analysis can be employed to accurately measure the volumetric change as a function of temperature. Density and the thermal expansion coefficient measurements were made on a pure nickel sample to test the accuracy of the technique in the temperature range of 1045-1565 C. The result for the liquid phase density can be expressed by p = 8.848 + (6.730 x 10(exp -4)) x T (degC) g/cu cm within 0.8% accuracy, and the corresponding thermal expansion coefficient can be expressed by Beta=(9.419 x 10(exp -5)) - (7.165 x 10(exp -9) x T (degC)/K within 0.2% accuracy.

  3. Zirconium tungstate/epoxy nanocomposites: effect of nanoparticle morphology and negative thermal expansivity.

    Science.gov (United States)

    Wu, Hongchao; Rogalski, Mark; Kessler, Michael R

    2013-10-09

    The ability to tailor the coefficient of thermal expansion (CTE) of a polymer is essential for mitigating thermal residual stress and reducing microcracks caused by CTE mismatch of different components in electronic applications. This work studies the effect of morphology and thermal expansivity of zirconium tungstate nanoparticles on the rheological, thermo-mechanical, dynamic-mechanical, and dielectric properties of ZrW2O8/epoxy nanocomposites. Three types of ZrW2O8 nanoparticles were synthesized under different hydrothermal conditions and their distinct properties were characterized, including morphology, particle size, aspect ratio, surface area, and CTE. Nanoparticles with a smaller particle size and larger surface area led to a more significant reduction in gel-time and glass transition temperature of the epoxy nanocomposites, while a higher initial viscosity and significant shear thinning behavior was found in prepolymer suspensions containing ZrW2O8 with larger particle sizes and aspect ratios. The thermo- and dynamic-mechanical properties of epoxy-based nanocomposites improved with increasing loadings of the three types of ZrW2O8 nanoparticles. In addition, the introduced ZrW2O8 nanoparticles did not negatively affect the dielectric constant or the breakdown strength of the epoxy resin, suggesting potential applications of ZrW2O8/epoxy nanocomposites in the microelectronic insulation industry.

  4. Removal properties of low-thermal-expansion materials with rotating-sphere elastic emission machining

    Directory of Open Access Journals (Sweden)

    Masahiko Kanaoka et al

    2007-01-01

    Full Text Available Optical mirrors used in extreme ultraviolet lithography systems require a figure accuracy and a roughness of about 0.1 nm rms. In addition, mirror substrates must be low-thermal-expansion materials. Thus, in this study, we processed two low-thermal-expansion materials, ULE [K. Hrdina, B. Hanson, P. Fenn, R. Sabia, Proc. SPIE 4688 (2002 454.] (Corning Inc. and Zerodur [I. Mitra, M.J. Davis, J. Alkemper, Rolf Müller, H. Kohlmann, L. Aschke, E. Mörsen, S. Ritter, H. Hack, W. Pannhorst, Proc. SPIE 4688 (2002 462.] (SCHOTT AG, with elastic emission machining (EEM in order to evaluate the removal properties. Consequently, we successfully calculated the respective removal rates, because removal volumes were found to be proportional to process times in EEM. Moreover, we demonstrated that the surface roughness of Zerodur is reduced to 0.1 nm rms in the spatial wavelength range from 100 μm to 1 mm.

  5. Thermal expansion and magnetostriction of clathrate compound Pr3Pd20Ge6

    Science.gov (United States)

    Matsumoto, K.; Sekiguchi, Y.; Iwakami, O.; Ono, T.; Abe, S.; Ano, G.; Akatsu, M.; Mitsumoto, K.; Nemoto, Y.; Goto, T.; Takeda, N.; Kitazawa, H.

    2018-03-01

    In Pr3Pd20Ge6, the Pr ions are located at two different crystallographic sites, 4a and 8c site. Antiferro-quadrupole ordering (AFQ) of the 8c site occurs at 250 mK. Ac susceptibility measurement indicated that antiferromagnetic ordering (AFM) of the 4a site and Hyperfine-enhanced Pr nuclear magnetic ordering of the 8c site occur at 77 and 9 mK, respectively. To clarify the magnetic and quadrupole properties of Pr3Pd20Ge6, thermal expansion and magnetostriction measurements on single crystal sample were carried out along the [001] direction up to 8 T down to 500 μK using a capacitive dilatometer. In zero field, relative length change ΔL/L in [001] direction had a dip at AFQ and abrupt decrease at AFM ordering. From thermal expansion and isothermal magnetostriction measurements, magnetic phase diagram of Pr3Pd20Ge6 along [001] direction was obtained.

  6. Transverse thermal expansion of carbon fiber/epoxy matrix composites

    Science.gov (United States)

    Helmer, J. F.; Diefendorf, R. J.

    1983-01-01

    Thermal expansion coefficients and moduli of elasticity have been determined experimentally for a series of epoxy-matrix composites reinforced with carbon and Kevlar fibers. It is found that in the transverse direction the difference between the properties of the fiber and the matrix is not as pronounced as in the longitudinal direction, where the composite properties are fiber-dominated. Therefore, the pattern of fiber packing tends to affect transverse composite properties. The transverse properties of the composites tested are examined from the standpoint of the concept of homogeneity defined as the variation of packing (or lack thereof) throughout a sample.

  7. Glass-ceramic hermetic seals to high thermal expansion metals

    Science.gov (United States)

    Kramer, D.P.; Massey, R.T.

    1987-04-28

    A process for forming glass-ceramic materials from an alkaline silica-lithia glass composition comprising 60-72 mole-% SiO/sub 2/, 18-27 mole-% Li/sub 2/O, 0-5 mole-% Al/sub 2/O/sub 3/, 0-6 mole-% K/sub 2/O, 0-3 mole-% B/sub 2/O/sub 3/, and 0.5-2.5 mole-% P/sub 2/O/sub 5/, which comprises heating said glass composition at a first temperature within the 950-1050/degree/C range for 5-60 minutes, and then at a devitrification temperature within the 700-900/degree/C range for about 5-300 minutes to obtain a glass-ceramic having a thermal expansion coefficient of up to 210 x 10/sup /minus/7///degree/C. These ceramics form strong, hermetic seals with high expansion metals such as stainless steel alloys. An intermediate nucleation heating step conducted at a temperature within the range of 675-750/degree/C for 10-120 minutes may be employed between the first stage and the devitrification stage. 1 fig., 2 tabs.

  8. Non-linear temperature-dependent curvature of a phase change composite bimorph beam

    Science.gov (United States)

    Blonder, Greg

    2017-06-01

    Bimorph films curl in response to temperature. The degree of curvature typically varies in proportion to the difference in thermal expansion of the individual layers, and linearly with temperature. In many applications, such as controlling a thermostat, this gentle linear behavior is acceptable. In other cases, such as opening or closing a valve or latching a deployable column into place, an abrupt motion at a fixed temperature is preferred. To achieve this non-linear motion, we describe the fabrication and performance of a new bilayer structure we call a ‘phase change composite bimorph (PCBM)’. In a PCBM, one layer in the bimorph is a composite containing small inclusions of phase change materials. When the inclusions melt, their large (generally positive and  >1%) expansion coefficient induces a strong, reversible step function jump in bimorph curvature. The measured jump amplitude and thermal response is consistent with theory, and can be harnessed by a new class of actuators and sensors.

  9. Synthesis and thermal expansion study of (Th1-xGdx)O2-y

    International Nuclear Information System (INIS)

    Keskar, Meera; Sali, S.K.; Dahale, N.D.; Krishnan, K.; Kannan, S.

    2012-01-01

    Thermal expansion of (Th 1-x Gd x )O 2-y (x = 0, 0.15, 0.3, 0.86 and 1) was studied using high temperature X-ray diffraction (HTXRD) technique. Synthesis of the solid solutions was carried out by gel combustion method using citric acid as fuel

  10. Expansion-matched passively cooled heatsinks with low thermal resistance for high-power diode laser bars

    Science.gov (United States)

    Leers, Michael; Scholz, Christian; Boucke, Konstantin; Poprawe, Reinhart

    2006-02-01

    The lifetime of high-power diode lasers, which are cooled by standard copper heatsinks, is limited. The reasons are the aging of the indium solder normally employed as well as the mechanical stress caused by the mismatch between the copper heatsink (16 - 17ppm/K) and the GaAs diode laser bars (6 - 7.5 ppm/K). For micro - channel heatsinks corrosion and erosion of the micro channels limit the lifetime additionally. The different thermal behavior and the resulting stress cannot be compensated totally by the solder. Expansion matched heatsink materials like tungsten-copper or aluminum nitride reduce this stress. A further possible solution is a combination of copper and molybdenum layers, but all these materials have a high thermal resistance in common. For high-power electronic or low cost medical applications novel materials like copper/carbon compound, compound diamond or high-conductivity ceramics were developed during recent years. Based on these novel materials, passively cooled heatsinks are designed, and thermal and mechanical simulations are performed to check their properties. The expansion of the heatsink and the induced mechanical stress between laser bar and heatsink are the main tasks for the simulations. A comparison of the simulation with experimental results for different material combinations illustrates the advantages and disadvantages of the different approaches. Together with the boundary conditions the ideal applications for packaging with these materials are defined. The goal of the development of passively-cooled expansion-matched heatsinks has to be a long-term reliability of several 10.000h and a thermal resistance below 1 K/W.

  11. A model to estimate volume change due to radiolytic gas bubbles and thermal expansion in solution reactors

    International Nuclear Information System (INIS)

    Souto, F.J.; Heger, A.S.

    2001-01-01

    To investigate the effects of radiolytic gas bubbles and thermal expansion on the steady-state operation of solution reactors at the power level required for the production of medical isotopes, a calculational model has been developed. To validate this model, including its principal hypotheses, specific experiments at the Los Alamos National Laboratory SHEBA uranyl fluoride solution reactor were conducted. The following sections describe radiolytic gas generation in solution reactors, the equations to estimate the fuel solution volume change due to radiolytic gas bubbles and thermal expansion, the experiments conducted at SHEBA, and the comparison of experimental results and model calculations. (author)

  12. Anomalous thermal expansion in YMn{sub 2}, Y{sub 6}Mn{sub 23} and YMn{sub 12}

    Energy Technology Data Exchange (ETDEWEB)

    Gratz, E.; Gurjazkas, D.; Mueller, H.; Kottar, A. [Technische Univ., Vienna (Austria). Inst. fuer Experimentalphysik; Dubenko, I.S.; Granovsky, S.A.; Markosyan, A.S. [Faculty of Physics, M.V. Lomonosov Moscow State Univ., Moscow (Russian Federation)

    1997-07-01

    The thermal expansion coefficient {alpha}(T) of YMn{sub 2}, Y{sub 6}Mn{sub 23} and YMn{sub 12} is presented in the temperature range 4.2-1000 K together with {alpha}(T) of YCo{sub 2} and YNi{sub 2}. The strong variation of {alpha}(T) of the Y-Mn compounds in their paramagnetic state is discussed under the assumption that there exist Mn atoms with different electronic configurations and therefore with different atomic volumes. Changes of the concentration of these different Mn atoms with temperature reveal this anomalous thermal expansion. (orig.). 3 refs.

  13. On thermal expansion of RbD2PO4, CsH2PO4 and CsDrPO4 crystals

    International Nuclear Information System (INIS)

    Vlokh, O.G.; Shchur, Ya.I.; Klymiv, I.M.

    1994-01-01

    Thermal expansion of RbD 2 PO 4 , CsH 2 PO 4 , CsD 2 PO 4 crystals in a wide range of temperatures embracing points of phase transitions was studied. An explanation of anomalous behaviour of thermal expansion factor along directions b and c in the course of RbD 2 PO 4 transfer into intermediate phase was suggested. 10 refs., 4 figs

  14. Negative Thermal Expansion over a Wide Temperature Range in Fe-Doped MnNiGe Composites

    Directory of Open Access Journals (Sweden)

    Wenjun Zhao

    2018-02-01

    Full Text Available Fe-doped MnNiGe alloys were successfully synthesized by solid-state reaction. Giant negative thermal expansion (NTE behaviors with the coefficients of thermal expansion (CTE of −285.23 × 10−6 K−1 (192–305 K and −1167.09 × 10−6 K−1 (246–305 K have been obtained in Mn0.90Fe0.10NiGe and MnNi0.90Fe0.10Ge, respectively. Furthermore, these materials were combined with Cu in order to control the NTE properties. The results indicate that the absolute value of CTE gradually decreases with increasing Cu contents. In Mn0.92Fe0.08NiGe/x%Cu, the CTE gradually changes from −64.92 × 10−6 K−1 (125–274 K to −4.73 × 10−6 K−1 (173–229 K with increasing value of x from 15 to 70. The magnetic measurements reveal that the NTE behaviors in this work are strongly correlated with the process of the magnetic phase transition and the introduction of Fe atoms could also change the spiral anti-ferromagnetic (s-AFM state into ferromagnetic (FM state at low temperature. Our study launches a new candidate for controlling thermal expansion properties of metal matrix materials which could have potential application in variable temperature environment.

  15. Numerical investigation of multi-beam laser heterodyne measurement with ultra-precision for linear expansion coefficient of metal based on oscillating mirror modulation

    Science.gov (United States)

    Li, Yan-Chao; Wang, Chun-Hui; Qu, Yang; Gao, Long; Cong, Hai-Fang; Yang, Yan-Ling; Gao, Jie; Wang, Ao-You

    2011-01-01

    This paper proposes a novel method of multi-beam laser heterodyne measurement for metal linear expansion coefficient. Based on the Doppler effect and heterodyne technology, the information is loaded of length variation to the frequency difference of the multi-beam laser heterodyne signal by the frequency modulation of the oscillating mirror, this method can obtain many values of length variation caused by temperature variation after the multi-beam laser heterodyne signal demodulation simultaneously. Processing these values by weighted-average, it can obtain length variation accurately, and eventually obtain the value of linear expansion coefficient of metal by the calculation. This novel method is used to simulate measurement for linear expansion coefficient of metal rod under different temperatures by MATLAB, the obtained result shows that the relative measurement error of this method is just 0.4%.

  16. On the Kumar formulation for the temperature dependence of thermal expansivity

    International Nuclear Information System (INIS)

    Singh, C.P.; Chauhan, R.S.

    2004-01-01

    The expression for interionic separation obtained earlier by Kumar [Physica. B, Condensed Matter 205 (1995) 175] has been corrected so as to make it compatible with the value of the thermal expansivity at the initial temperature. The values of the interionic separations as a function of temperature calculated for NaCl and KCl using the modified formulation are found to present improved agreement with the experimental data at high temperatures up to the melting temperatures

  17. Mechanical, Hygric and Thermal Properties of Flue Gas Desulfurization Gypsum

    Directory of Open Access Journals (Sweden)

    P. Tesárek

    2004-01-01

    Full Text Available The reference measurements of basic mechanical, thermal and hygric parameters of hardened flue gas desulfurization gypsum are carried out. Moisture diffusivity, water vapor diffusion coefficient, thermal conductivity, volumetric heat capacity and linear thermal expansion coefficient are determined with the primary aim of comparison with data obtained for various types of modified gypsum in the future. 

  18. Design of materials with extreme thermal expansion using a three-phase topology optimization method

    DEFF Research Database (Denmark)

    Sigmund, Ole; Torquato, S.

    1997-01-01

    We show how composites with extremal or unusual thermal expansion coefficients can be designed using a numerical topology optimization method. The composites are composed of two different material phases and void. The optimization method is illustrated by designing materials having maximum therma...

  19. Thermal mechanical stress modeling of GCtM seals

    Energy Technology Data Exchange (ETDEWEB)

    Dai, Steve Xunhu [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Chambers, Robert [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States)

    2015-09-01

    Finite-element thermal stress modeling at the glass-ceramic to metal (GCtM) interface was conducted assuming heterogeneous glass-ceramic microstructure. The glass-ceramics were treated as composites consisting of high expansion silica crystalline phases dispersed in a uniform residual glass. Interfacial stresses were examined for two types of glass-ceramics. One was designated as SL16 glass -ceramic, owing to its step-like thermal strain curve with an overall coefficient of thermal expansion (CTE) at 16 ppm/ºC. Clustered Cristobalite is the dominant silica phase in SL16 glass-ceramic. The other, designated as NL16 glass-ceramic, exhibited clusters of mixed Cristobalite and Quartz and showed a near-linear thermal strain curve with a same CTE value.

  20. A Micro-Test Structure for the Thermal Expansion Coefficient of Metal Materials

    Directory of Open Access Journals (Sweden)

    Qingying Ren

    2017-02-01

    Full Text Available An innovative micro-test structure for detecting the thermal expansion coefficient (TEC of metal materials is presented in this work. Throughout this method, a whole temperature sensing moveable structures are supported by four groups of cascaded chevrons beams and packed together. Thermal expansion of the metal material causes the deflection of the cascaded chevrons, which leads to the capacitance variation. By detecting the capacitance value at different temperatures, the TEC value of the metal materials can be calculated. A finite element model has been established to verify the relationship between the TEC of the material and the displacement of the structure on horizontal and vertical directions, thus a function of temperature for different values of TEC can be deduced. In order to verify the analytical model, a suspended-capacitive micro-test structure has been fabricated by MetalMUMPs process and tested in a climate chamber. Test results show that in the temperature range from 30 °C to 80 °C, the TEC of the test material is 13.4 × 10−6 °C−1 with a maximum relative error of 0.8% compared with the given curve of relationship between displacement and temperature.

  1. Models for mean bonding length, melting point and lattice thermal expansion of nanoparticle materials

    International Nuclear Information System (INIS)

    Omar, M.S.

    2012-01-01

    Graphical abstract: Three models are derived to explain the nanoparticles size dependence of mean bonding length, melting temperature and lattice thermal expansion applied on Sn, Si and Au. The following figures are shown as an example for Sn nanoparticles indicates hilly applicable models for nanoparticles radius larger than 3 nm. Highlights: ► A model for a size dependent mean bonding length is derived. ► The size dependent melting point of nanoparticles is modified. ► The bulk model for lattice thermal expansion is successfully used on nanoparticles. -- Abstract: A model, based on the ratio number of surface atoms to that of its internal, is derived to calculate the size dependence of lattice volume of nanoscaled materials. The model is applied to Si, Sn and Au nanoparticles. For Si, that the lattice volume is increases from 20 Å 3 for bulk to 57 Å 3 for a 2 nm size nanocrystals. A model, for calculating melting point of nanoscaled materials, is modified by considering the effect of lattice volume. A good approach of calculating size-dependent melting point begins from the bulk state down to about 2 nm diameter nanoparticle. Both values of lattice volume and melting point obtained for nanosized materials are used to calculate lattice thermal expansion by using a formula applicable for tetrahedral semiconductors. Results for Si, change from 3.7 × 10 −6 K −1 for a bulk crystal down to a minimum value of 0.1 × 10 −6 K −1 for a 6 nm diameter nanoparticle.

  2. Models for mean bonding length, melting point and lattice thermal expansion of nanoparticle materials

    Energy Technology Data Exchange (ETDEWEB)

    Omar, M.S., E-mail: dr_m_s_omar@yahoo.com [Department of Physics, College of Science, University of Salahaddin-Erbil, Arbil, Kurdistan (Iraq)

    2012-11-15

    Graphical abstract: Three models are derived to explain the nanoparticles size dependence of mean bonding length, melting temperature and lattice thermal expansion applied on Sn, Si and Au. The following figures are shown as an example for Sn nanoparticles indicates hilly applicable models for nanoparticles radius larger than 3 nm. Highlights: ► A model for a size dependent mean bonding length is derived. ► The size dependent melting point of nanoparticles is modified. ► The bulk model for lattice thermal expansion is successfully used on nanoparticles. -- Abstract: A model, based on the ratio number of surface atoms to that of its internal, is derived to calculate the size dependence of lattice volume of nanoscaled materials. The model is applied to Si, Sn and Au nanoparticles. For Si, that the lattice volume is increases from 20 Å{sup 3} for bulk to 57 Å{sup 3} for a 2 nm size nanocrystals. A model, for calculating melting point of nanoscaled materials, is modified by considering the effect of lattice volume. A good approach of calculating size-dependent melting point begins from the bulk state down to about 2 nm diameter nanoparticle. Both values of lattice volume and melting point obtained for nanosized materials are used to calculate lattice thermal expansion by using a formula applicable for tetrahedral semiconductors. Results for Si, change from 3.7 × 10{sup −6} K{sup −1} for a bulk crystal down to a minimum value of 0.1 × 10{sup −6} K{sup −1} for a 6 nm diameter nanoparticle.

  3. Characterization of a photovoltaic-thermal module for Fresnel linear concentrator

    International Nuclear Information System (INIS)

    Chemisana, D.; Ibanez, M.; Rosell, J.I.

    2011-01-01

    Highlights: → A combined domed Fresnel lens - CPC PVT system is designed and characterized. → Electrical and thermal experiments have been performed. → CFD analysis has been used to determine thermal characteristic dimensionless numbers. - Abstract: An advanced solar unit is designed to match the needs of building integration and concentrating photovoltaic/thermal generation. The unit proposed accurately combines three elements: a domed linear Fresnel lens as primary concentrator, a compound parabolic reflector as secondary concentrator and a photovoltaic-thermal module. In this work the photovoltaic-thermal generator is built, analysed and characterized. Models for the electrical and thermal behaviour of the module are developed and validated experimentally. Applying a thermal resistances approach the results from both models are combined. Finally, efficiency electrical and thermal curves are derived from theoretical analysis showing good agreement with experimental measurements.

  4. [The measurement of thermal expansion coefficient of Co-Cr alloy fabricated by selective laser melting].

    Science.gov (United States)

    Tian, Xiao-mei; Zeng, Li; Wei, Bin; Huang, Yi-feng

    2015-12-01

    To investigate the thermal expansion coefficient of different processing parameters upon the Co-Cr alloy prepared by selective laser melting (SLM) technique, in order to provide technical support for clinical application of SLM technology. The heating curve of self-made Co-Cr alloy was protracted from room temperature to 980°C centigrade with DIL402PC thermal analysis instrument, keeping temperature rise rate and cooling rate at 5 K/min, and then the thermal expansion coefficient of 9 groups of Co-Cr alloy was measured from 20°C centigrade to 500°C centigrade and 600°C centigrade. The 9 groups thermal expansion coefficient values of Co-Cr alloy heated from 20°C centigrade to 500°C centigrade were 13.9×10(-6)/K,13.6×10(-6)/K,13.9×10(-6)/K,13.7×10(-6)/K,13.5×10(-6)/K,13.8×10(-6)/K,13.7×10(-6)/K,13.7×10(-6)/K,and 13.9×10(-6)/K, respectively; when heated from 20°C centigrade to 600°C centigrade, they were 14.2×10(-6)/K,13.9×10(-6)/K,13.8×10(-6)/K,14.0×10(-6)/K,14.1×10(-6)/K,14.1×10(-6)/K,13.9×10(-6)/K,14.2×10(-6)/K, and 13.7×10(-6)/K, respectively. The results showed that the Co-Cr alloy has good matching with the VITA VMK 95 porcelain powder and can meet the requirement of clinic use.

  5. Thermal expansion and magnetostriction in Pr(n+2)(n+1)Nin(n-1)+2Sin(n+1) compounds

    International Nuclear Information System (INIS)

    Jiles, D.C.; Song, S.H.; Snyder, J.E.; Pecharsky, V.K.; Lograsso, T.A.; Wu, D.; Pecharsky, A.O.; Mudryk, Ya.; Dennis, K.W.; McCallum, R.W.

    2006-01-01

    Thermal expansion and magnetostriction of members of a homologous series of compounds based on the alloy series Pr (n+2)(n+1) Ni n(n-1)+2 Si n(n+1) have been measured. The crystal structures of these compounds are closely interrelated because they form trigonal prismatic columns in which the number of trigonal prisms that form the base of the trigonal columns is determined by the value of n in the chemical formula. Two compositions were investigated, Pr 5 Ni 2 Si 3 and Pr 15 Ni 7 Si 10 , corresponding to n=3 and n=4, respectively. The results were analyzed and used to determine the location of magnetic phase transitions by calculating the magnetic contribution to thermal expansion using the Gruneisen-Debye theory. This allowed more precise determination of the magnetic transition temperatures than could be achieved using the total thermal expansion. The results show two phase transitions in each material, one corresponding to the Curie temperature and the other at a lower temperature exhibiting characteristics of a spin reorientation transition

  6. New calibration methodology for calorimetric determination of isobaric thermal expansivity of liquids as a function of temperature and pressure

    Energy Technology Data Exchange (ETDEWEB)

    Navia, Paloma; Troncoso, Jacobo [Departamento de Fisica Aplicada, Facultad de Ciencias de Ourense, Campus As Lagoas, 32004 Ourense (Spain); Romani, Luis [Departamento de Fisica Aplicada, Facultad de Ciencias de Ourense, Campus As Lagoas, 32004 Ourense (Spain)], E-mail: romani@uvigo.es

    2008-11-15

    A new method for determining isobaric thermal expansivity of liquids as a function of temperature and pressure through calorimetric measurements against pressure is described. It is based on a previously reported measurement technique, but due to the different kind of calorimeter and experimental set up, a new calibration procedure was developed. Two isobaric thermal expansivity standards are needed; in this work, with a view on the quality of the available literature data, hexane and water are chosen. The measurements were carried out in the temperature and pressure intervals (278.15 to 348.15) K and (0.5 to 55) MPa for a set of liquids, and experimental values are compared with the available literature data in order to evaluate the precision of the experimental procedure. The analysis of the results reveals that the proposed methodology is highly accurate for isobaric thermal expansivity determination, and it allows obtaining a precise characterisation of the temperature and pressure dependence of this thermodynamic coefficient.

  7. New calibration methodology for calorimetric determination of isobaric thermal expansivity of liquids as a function of temperature and pressure

    International Nuclear Information System (INIS)

    Navia, Paloma; Troncoso, Jacobo; Romani, Luis

    2008-01-01

    A new method for determining isobaric thermal expansivity of liquids as a function of temperature and pressure through calorimetric measurements against pressure is described. It is based on a previously reported measurement technique, but due to the different kind of calorimeter and experimental set up, a new calibration procedure was developed. Two isobaric thermal expansivity standards are needed; in this work, with a view on the quality of the available literature data, hexane and water are chosen. The measurements were carried out in the temperature and pressure intervals (278.15 to 348.15) K and (0.5 to 55) MPa for a set of liquids, and experimental values are compared with the available literature data in order to evaluate the precision of the experimental procedure. The analysis of the results reveals that the proposed methodology is highly accurate for isobaric thermal expansivity determination, and it allows obtaining a precise characterisation of the temperature and pressure dependence of this thermodynamic coefficient

  8. Mechanical and thermal-expansion characteristics of Ca10(PO46(OH2-Ca3(PO42 composites

    Directory of Open Access Journals (Sweden)

    Ruseska G.

    2006-01-01

    Full Text Available Three types of composites consisting of Ca10(PO46(OH2 and Ca3(PO42 with composition: 75% (wt Ca10(PO46(OH2: 25%(wt Ca3(PO42; 50%(wt Ca10(PO46(OH2: 50%(wtCa3(PO42 and 25 %(wt Ca10(PO46(OH2: 75%(wt Ca3(PO42 were the subject of our investigation. Sintered compacts were in thermal equilibrium, which was proved by the absence of hysteresis effect of the dependence ΔL/L=f(T during heating /cooling in the temperature interval 20-1000-200C. Sintered compacts with the previously mentioned composition possess 26-50% higher values of the E-modulus, G-modulus and K-modulus indicating the presence of a synergism effect. Several proposed model equations for predicting the thermal expansion coefficient in dependence of the thermal and elastic properties of the constitutive phases and their volume fractions, given by: Turner, Kerner, Tummala and Friedberg, Thomas and Taya, were used for making correlations between mechanical and thermal-expansion characteristics of the Ca10(PO46(OH2 - Ca3(PO42 composites. Application of the previously mentioned model equations to all kinds of composites leads to the conclusion that the experimentally obtained results for the thermal expansion coefficient are in an excellent agreement with the theoretical calculated values on account of the volume fraction of each constitutive phase and with all applied model equations, with a coefficient of correlation from 98.16-99.86 %.

  9. Effect of micro-cracking on the thermal conductivity and thermal expansion of tialite (Al2TiO5 ceramics

    Directory of Open Access Journals (Sweden)

    Ramanathan Papitha

    2013-09-01

    Full Text Available The pure and magnesium silicate (Mg2+/Si4+ doped tialite ceramics were prepared from the homogenized mixture of alumina and titania by uniaxial pressing and pressure-less sintering at 1550 °C in air. Thermal conductivity and thermal expansion of the doped and undoped tialite ceramics were measured from 30 to 700 °C. The identical trend in the behaviour of these thermal properties most probably is influenced by the population, size and shape of microcracks present throughout the grain and grain boundaries as complemented by the microstructural observations. The observed decrease in thermal properties of the doped in comparison to the pure tialite can be attributed to the substitutional Mg2+ and Si4+ at Al3+ site in Al2TiO5 which promotes the phonon scattering and causes modifications in micro-crack density and the morphology of the cracks.

  10. Determination of coefficient of thermal expansion effects on Louisiana's PCC pavement design : research project capsule.

    Science.gov (United States)

    2009-01-01

    PROBLEM: The coefficient of thermal expansion (CTE) is a fundamental property of construction : materials such as steel and concrete. Although the CTE of steel is a well-defined : constant, the CTE of concrete varies substantially with aggregate type...

  11. Determination of coefficient of thermal expansion effects on Louisiana's PCC pavement design : technical summary report.

    Science.gov (United States)

    2011-12-01

    The coefficient of thermal expansion (CTE) has been widely considered as a fundamental property of : Portland cement concrete (PCC) pavement but has never played an important role in the thickness design : procedure for PCC pavement until recently. I...

  12. Modeling of thermal expansion coefficient of perovskite oxide for solid oxide fuel cell cathode

    Science.gov (United States)

    Heydari, F.; Maghsoudipour, A.; Alizadeh, M.; Khakpour, Z.; Javaheri, M.

    2015-09-01

    Artificial intelligence models have the capacity to eliminate the need for expensive experimental investigation in various areas of manufacturing processes, including the material science. This study investigates the applicability of adaptive neuro-fuzzy inference system (ANFIS) approach for modeling the performance parameters of thermal expansion coefficient (TEC) of perovskite oxide for solid oxide fuel cell cathode. Oxides (Ln = La, Nd, Sm and M = Fe, Ni, Mn) have been prepared and characterized to study the influence of the different cations on TEC. Experimental results have shown TEC decreases favorably with substitution of Nd3+ and Mn3+ ions in the lattice. Structural parameters of compounds have been determined by X-ray diffraction, and field emission scanning electron microscopy has been used for the morphological study. Comparison results indicated that the ANFIS technique could be employed successfully in modeling thermal expansion coefficient of perovskite oxide for solid oxide fuel cell cathode, and considerable savings in terms of cost and time could be obtained by using ANFIS technique.

  13. Thermal Expansion and Density Data of UO2 and Simulated Fuel for Standard Reference

    International Nuclear Information System (INIS)

    Yang, Jae Hwan; Na, S. H.; Lee, J. W.; Kang, K. H.

    2010-01-01

    Standard Reference Data (SRD) is the scientific, technical data whose reliability and accuracy are evaluated by scientist group. Since SRD has a great impact on the improvement of national competitiveness by stirring up technological innovation in every sector of industries, many countries are making great efforts on establishing SRD in various areas. Data center for nuclear fuel material in Korea Atomic Energy Research Institute plays a role to providing property data of nuclear fuel material at high temperature, pressure, and radiation which are essential for the safety evaluation of nuclear power. In this study, standardization of data on thermal expansion and density of UO 2 were carried out in the temperature range from 300 K to 3100 K via uncertainty evaluation of indirectly produced data. Besides, standardization of data on thermal expansion and density of simulated fuel were also done in the temperature range from 350 K to 1750 K via uncertainty evaluation of directly produced data

  14. Numerical investigation of multi-beam laser heterodyne measurement with ultra-precision for linear expansion coefficient of metal based on oscillating mirror modulation

    International Nuclear Information System (INIS)

    Li Yan-Chao; Wang Chun-Hui; Qu Yang; Gao Long; Cong Hai-Fang; Yang Yan-Ling; Gao Jie; Wang Ao-You

    2011-01-01

    This paper proposes a novel method of multi-beam laser heterodyne measurement for metal linear expansion coefficient. Based on the Doppler effect and heterodyne technology, the information is loaded of length variation to the frequency difference of the multi-beam laser heterodyne signal by the frequency modulation of the oscillating mirror, this method can obtain many values of length variation caused by temperature variation after the multi-beam laser heterodyne signal demodulation simultaneously. Processing these values by weighted-average, it can obtain length variation accurately, and eventually obtain the value of linear expansion coefficient of metal by the calculation. This novel method is used to simulate measurement for linear expansion coefficient of metal rod under different temperatures by MATLAB, the obtained result shows that the relative measurement error of this method is just 0.4%. (electromagnetism, optics, acoustics, heat transfer, classical mechanics, and fluid dynamics)

  15. Linear Discontinuous Expansion Method using the Subcell Balances for Unstructured Geometry SN Transport

    International Nuclear Information System (INIS)

    Hong, Ser Gi; Kim, Jong Woon; Lee, Young Ouk; Kim, Kyo Youn

    2010-01-01

    The subcell balance methods have been developed for one- and two-dimensional SN transport calculations. In this paper, a linear discontinuous expansion method using sub-cell balances (LDEM-SCB) is developed for neutral particle S N transport calculations in 3D unstructured geometrical problems. At present, this method is applied to the tetrahedral meshes. As the name means, this method assumes the linear distribution of the particle flux in each tetrahedral mesh and uses the balance equations for four sub-cells of each tetrahedral mesh to obtain the equations for the four sub-cell average fluxes which are unknowns. This method was implemented in the computer code MUST (Multi-group Unstructured geometry S N Transport). The numerical tests show that this method gives more robust solution than DFEM (Discontinuous Finite Element Method)

  16. Thermal expansion studies on low-dimensional frustrated quantum magnets. The case of κ-(BEDT-TTF)2Cu2(CN)3 and azurite

    International Nuclear Information System (INIS)

    Manna, Rudra Sekhar

    2012-01-01

    Thermal expansion measurements provide a sensitive tool for exploring a material's thermodynamic properties in condensed matter physics as they provide useful information on the electronic, magnetic and lattice properties of a material. In this thesis, thermal expansion measurements have been carried out both at ambient-pressure and under hydrostatic pressure conditions. From the materials point of view, the spin-liquid candidate κ-(BEDT-TTF) 2 Cu 2 (CN) 3 has been studied extensively as a function of temperature and magnetic field. Azurite, Cu 3 (CO 3 ) 2 (OH) 2 - a realization of a one-dimensional distorted Heisenberg chain is also studied both at ambient and hydrostatic pressure to demonstrate the proper functioning of the newly built setup ''thermal expansion under pressure''.

  17. Thermal expansion of slag and fly ash from coal gasification in IGCC power plant

    Energy Technology Data Exchange (ETDEWEB)

    M. Aineto; A. Acosta; J.M.A. Rincon; M. Romero [University of Castilla La Mancha, Ciudad Real (Spain). Laboratory of Applied Mineralogy

    2006-11-15

    Integrated gasification in combined cycle (IGCC) is an electrical power generation system which is characterized to be a clean coal technology different than conventional process in combustible treatment. IGCC process gives rise to inorganic solid wastes in the form of vitreous slag and fly ashes with singular thermal properties. The gasification of the fuel takes place at high temperature and pressure in reducing atmosphere. Under that conditions, gases such as H{sub 2}, N{sub 2} or CO, which are the main components of the gas mixture in the gasifier, show a high solubility in the melt and during the cooling remain enclosed in the vitreous slag. When these wastes are afterward thermal treated in oxidizing conditions, two phenomena occur. The development of a crystalline phase by devitrification of the glassy matrix and the releasing of the enclosed gas, which starts at temperatures nearly to the softening point. At higher temperatures the bubbles with increasing kinetic energy tend to ascend with difficulty through the viscous liquid phase and promotes an expansive reaction, giving rise to a foam glass-ceramic product. This paper has been focused on the study of thermal expansion in slag and fly ash samples from the ELCOGAS IGCC power plant located in Puertollano (Spain). 18 refs., 11 figs., 1 tab.

  18. Mitsui model with diagonal strains: A unified description of external pressure effect and thermal expansion of Rochelle salt NaKC4H4O6·4H2O

    Directory of Open Access Journals (Sweden)

    I.R. Zachek

    2011-12-01

    Full Text Available We elaborate a modification of the deformable two-sublattice Mitsui model of [Levitskii R.R. et al., Phys. Rev. B. 2003, Vol. 67, 174112] and [Levitskii R.R. et al., Condens. Matter Phys., 2005, Vol. 8, 881] that consistently takes into account diagonal components of the strain tensor, arising either due to external pressures or due to thermal expansion. We calculate the related to those strains thermal, piezoelectric, and elastic characteristics of the system. Using the developed fitting procedure, a set of the model parameters is found for the case of Rochelle salt crystals, providing a satisfactory agreement with the available experimental data for the hydrostatic and uniaxial pressure dependences of the Curie temperatures, temperature dependences of spontaneous diagonal strains, linear thermal expansion coefficients, elastic constants cijE and ci4E, piezoelectric coefficients d1i and g1i (i=1,2,3. The hydrostatic pressure variation of dielectric permittivity is described using a derived expression for the permittivity of a partially clamped crystal. The dipole moments and the asymmetry parameter of Rochelle salt are found to increase with hydrostatic pressure.

  19. Thermal expansion and decomposition of jarosite: a high-temperature neutron diffraction study

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Hongwu [Los Alamos National Laboratory; Zhao, Yusheng [Los Alamos National Laboratory; Vogel, Sven C [Los Alamos National Laboratory; Hickmott, Donald D [Los Alamos National Laboratory; Daemen, Luke L [Los Alamos National Laboratory; Hartl, Monika A [Los Alamos National Laboratory

    2009-01-01

    The structure of deuterated jarosite, KFe{sub 3}(SO{sub 4}){sub 2}(OD){sub 6}, was investigated using time-of-flight neutron diffraction up to its dehydroxylation temperature. Rietveld analysis reveals that with increasing temperature, its c dimension expands at a rate {approx}10 times greater than that for a. This anisotropy of thermal expansion is due to rapid increase in the thickness of the (001) sheet of [Fe(O,OH){sub 6}] octahedra and [SO{sub 4}] tetrahedra with increasing temperature. Fitting of the measured cell volumes yields a coefficient of thermal expansion, a = a{sub 0} + a{sub 1} T, where a{sub 0} = 1.01 x 10{sup -4} K{sup -1} and a{sub 1} = -1.15 x 10{sup -7} K{sup -2}. On heating, the hydrogen bonds, O1{hor_ellipsis}D-O3, through which the (001) octahedral-tetrahedral sheets are held together, become weakened, as reflected by an increase in the D{hor_ellipsis}O1 distance and a concomitant decrease in the O3-D distance with increasing temperature. On further heating to 575 K, jarosite starts to decompose into nanocrystalline yavapaiite and hematite (as well as water vapor), a direct result of the breaking of the hydrogen bonds that hold the jarosite structure together.

  20. Molecular dynamics study of the thermal expansion coefficient of silicon

    Energy Technology Data Exchange (ETDEWEB)

    Nejat Pishkenari, Hossein, E-mail: nejat@sharif.edu; Mohagheghian, Erfan; Rasouli, Ali

    2016-12-16

    Due to the growing applications of silicon in nano-scale systems, a molecular dynamics approach is employed to investigate thermal properties of silicon. Since simulation results rely upon interatomic potentials, thermal expansion coefficient (TEC) and lattice constant of bulk silicon have been obtained using different potentials (SW, Tersoff, MEAM, and EDIP) and results indicate that SW has a better agreement with the experimental observations. To investigate effect of size on TEC of silicon nanowires, further simulations are performed using SW potential. To this end, silicon nanowires of different sizes are examined and their TEC is calculated by averaging in different directions ([100], [110], [111], and [112]) and various temperatures. Results show that as the size increases, due to the decrease of the surface effects, TEC approaches its bulk value. - Highlights: • MD simulations of TEC and lattice constant of bulk silicon. • Effects of four potentials on the results. • Comparison to experimental data. • Investigating size effect on TEC of silicon nanowires.

  1. Analysis of equations of state and temperature dependence of thermal expansivity and bulk modulus for silicon

    International Nuclear Information System (INIS)

    Pandya, Tushar C; Bhatt, Apoorva D; Thakar, Nilesh A

    2012-01-01

    In the present paper an attempt has been made for the comparative study of different equations of state for silicon (Phase-1, cubic diamond structure) in the pressure range of 0-11 GPa. We compare the results of different equations of state (EOS) with available experimental data. The Kwon and Kim EOS is found to give far better agreement with the available experimental data. Results obtained by Poirier-Tarantola, Vinet, Tait and Suzuki's equations of state are not giving satisfactory agreement with the available experimental data. In the present study simple methods based on thermodynamic functions are presented to investigate the temperature dependence of thermal expansivity and bulk modulus for silicon. The results are reported for silicon. The calculated values of thermal expansivity are in good agreement with experimental data.

  2. Correlation of physical properties of ceramic materials with resistance to fracture by thermal shock

    Science.gov (United States)

    Lidman, W G; Bobrowsky, A R

    1949-01-01

    An analysis is made to determine which properties of materials affect their resistance to fracture by thermal stresses.From this analysis, a parameter is evaluated that is correlated with the resistance of ceramic materials to fracture by thermal shock as experimentally determined. This parameter may be used to predict qualitatively the resistance of a material to fracture by thermal shock. Resistance to fracture by thermal shock is shown to be dependent upon the following material properties: thermal conductivity, tensile strength, thermal expansion, and ductility modulus. For qualitative prediction of resistance of materials to fracture by thermal shock, the parameter may be expressed as the product of thermal conductivity and tensile strength divided by the product of linear coefficient of thermal expansion and ductility modulus of the specimen.

  3. Confined Water in Layered Silicates: The Origin of Anomalous Thermal Expansion Behavior in Calcium-Silicate-Hydrates

    International Nuclear Information System (INIS)

    Krishnan, N. M. Anoop; Wang, Bu; Falzone, Gabriel; Le Pape, Yann; Neithalath, Narayanan

    2016-01-01

    Water, under conditions of nanoscale confinement, exhibits anomalous dynamics, and enhanced thermal deformations, which may be further enhanced when such water is in contact with hydrophilic surfaces. Such heightened thermal deformations of water could control the volume stability of hydrated materials containing nanoconfined structural water. Understanding and predicting the thermal deformation coefficient (TDC, often referred to as the CTE, coefficient of thermal expansion), which represents volume changes induced in materials under conditions of changing temperature, is of critical importance for hydrated solids including: hydrogels, biological tissues, and calcium silicate hydrates, as changes in their volume can result in stress development, and cracking. By pioneering atomistic simulations, we examine the physical origin of thermal expansion in calcium-silicate-hydrates (C–S–H), the binding agent in concrete that is formed by the reaction of cement with water. We report that the TDC of C–S–H shows a sudden increase when the CaO/SiO_2 (molar ratio; abbreviated as Ca/Si) exceeds 1.5. This anomalous behavior arises from a notable increase in the confinement of water contained in the C–S–H’s nanostructure. We identify that confinement is dictated by the topology of the C–S–H’s atomic network. Altogether, the results suggest that thermal deformations of hydrated silicates can be altered by inducing compositional changes, which in turn alter the atomic topology and the resultant volume stability of the solids.

  4. Confined Water in Layered Silicates: The Origin of Anomalous Thermal Expansion Behavior in Calcium-Silicate-Hydrates.

    Science.gov (United States)

    Krishnan, N M Anoop; Wang, Bu; Falzone, Gabriel; Le Pape, Yann; Neithalath, Narayanan; Pilon, Laurent; Bauchy, Mathieu; Sant, Gaurav

    2016-12-28

    Water, under conditions of nanoscale confinement, exhibits anomalous dynamics, and enhanced thermal deformations, which may be further enhanced when such water is in contact with hydrophilic surfaces. Such heightened thermal deformations of water could control the volume stability of hydrated materials containing nanoconfined structural water. Understanding and predicting the thermal deformation coefficient (TDC, often referred to as the CTE, coefficient of thermal expansion), which represents volume changes induced in materials under conditions of changing temperature, is of critical importance for hydrated solids including: hydrogels, biological tissues, and calcium silicate hydrates, as changes in their volume can result in stress development, and cracking. By pioneering atomistic simulations, we examine the physical origin of thermal expansion in calcium-silicate-hydrates (C-S-H), the binding agent in concrete that is formed by the reaction of cement with water. We report that the TDC of C-S-H shows a sudden increase when the CaO/SiO 2 (molar ratio; abbreviated as Ca/Si) exceeds 1.5. This anomalous behavior arises from a notable increase in the confinement of water contained in the C-S-H's nanostructure. We identify that confinement is dictated by the topology of the C-S-H's atomic network. Taken together, the results suggest that thermal deformations of hydrated silicates can be altered by inducing compositional changes, which in turn alter the atomic topology and the resultant volume stability of the solids.

  5. A multiple objective mixed integer linear programming model for power generation expansion planning

    Energy Technology Data Exchange (ETDEWEB)

    Antunes, C. Henggeler; Martins, A. Gomes [INESC-Coimbra, Coimbra (Portugal); Universidade de Coimbra, Dept. de Engenharia Electrotecnica, Coimbra (Portugal); Brito, Isabel Sofia [Instituto Politecnico de Beja, Escola Superior de Tecnologia e Gestao, Beja (Portugal)

    2004-03-01

    Power generation expansion planning inherently involves multiple, conflicting and incommensurate objectives. Therefore, mathematical models become more realistic if distinct evaluation aspects, such as cost and environmental concerns, are explicitly considered as objective functions rather than being encompassed by a single economic indicator. With the aid of multiple objective models, decision makers may grasp the conflicting nature and the trade-offs among the different objectives in order to select satisfactory compromise solutions. This paper presents a multiple objective mixed integer linear programming model for power generation expansion planning that allows the consideration of modular expansion capacity values of supply-side options. This characteristic of the model avoids the well-known problem associated with continuous capacity values that usually have to be discretized in a post-processing phase without feedback on the nature and importance of the changes in the attributes of the obtained solutions. Demand-side management (DSM) is also considered an option in the planning process, assuming there is a sufficiently large portion of the market under franchise conditions. As DSM full costs are accounted in the model, including lost revenues, it is possible to perform an evaluation of the rate impact in order to further inform the decision process (Author)

  6. Anisotropic elastic and thermal properties of titanium borides by first-principles calculations

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Liang; Gao, Yimin [State Key Laboratory for Mechanical Behavior of Materials, Xi’an Jiaotong University, Xi’an 710049 (China); Xiao, Bing [Department of Physics and Quantum Theory Group, School of Science and Engineering, Tulane University, New Orleans, LA 70118 (United States); Li, Yefei, E-mail: yefeili@126.com [State Key Laboratory for Mechanical Behavior of Materials, Xi’an Jiaotong University, Xi’an 710049 (China); Wang, Guoliang [State Key Laboratory for Mechanical Behavior of Materials, Xi’an Jiaotong University, Xi’an 710049 (China)

    2013-12-05

    Highlights: •Elastic properties of titanium borides are calculated by first principles calculation. •Thermodynamical stability of titanium borides is analyzed. •Heat capacity and thermal expansion coefficient for titanium borides are calculated and compared. •Grüneisen parameters of titanium borides are calculated. -- Abstract: The anisotropic elastic and thermal expansions of the titanium borides (TiB{sub 2}, Ti{sub 3}B{sub 4}, TiB{sub P}nma and TiB{sub F}m3{sup ¯}m) are calculated from first-principles using density functional theory. All borides show different anisotropic elastic properties; the bulk, shear and Young’s moduli are consistent with those determined experimentally. The temperature dependence of thermal expansions is mainly caused by the restoration of thermal energy due to phonon excitations at low temperature. When the temperature is higher than 500 K, the volumetric coefficient is increased linearly by increasing temperature. Meanwhile, the heat capacities of titanium borides are obtained based on the knowledge of thermal expansion coefficient and the elasticity, the calculations are in good agreement with the experiments.

  7. Uncertainty Evaluation of the Thermal Expansion of Gd2O3-ZrO2 with a System Calibration Factor

    International Nuclear Information System (INIS)

    Park, Chang Je; Kang, Kweon Ho; Na, Sang Ho; Song, Kee Chan

    2007-01-01

    Both gadolinia (Gd 2 O 3 ) and zirconia (ZrO 2 ) are widely used in the nuclear industry, including a burnable absorber and additives in the fabrication of a simulated fuel. Thermal expansions of a mixture of gadolinia (Gd 2 O 3 ) 20 mol% and zirconia (ZrO 2 ) 80 mol% were measured by using a dilatometer (DIL402C) from room temperature to 1500 .deg. C. Uncertainties in the measurement should be quantified based on statistics. Referring to the ISO (International Organization for Standardization) guide, the uncertainties of the thermal expansion were quantified for three parts - the initial length, the length variation, and the system calibration factor. The whole system, the dilatometer, is composed of many complex sub-systems and in fact it is difficult to consider all the uncertainties of the sub-systems. Thus, the system calibration factor was introduced with a standard material for the uncertainty evaluation. In this study, a new system calibration factor was formulated in a multiplicative way. Further, the effect of calibration factor with random deviation was investigated for the uncertainty evaluation of a thermal expansion

  8. Thermal expansion and microstructural analysis of experimental metal-ceramic titanium alloys.

    Science.gov (United States)

    Zinelis, Spiros; Tsetsekou, Athena; Papadopoulos, Triantafillos

    2003-10-01

    Statement of problem Low-fusing porcelains for titanium veneering have demonstrated inferior color stability and metal-ceramic longevity compared to conventional porcelains. This study evaluated the microstructure and thermal expansion coefficients of some experimental titanium alloys as alternative metallic substrates for low-fusing conventional porcelain. Commercially pure titanium (CP Ti) and various metallic elements (Al, Co, Sn, Ga, In, Mn) were used to prepare 8 titanium alloys using a commercial 2-chamber electric-arc vacuum/inert gas dental casting machine (Cyclarc). The nominal compositions of these alloys were the following (wt%): I: 80Ti-18Sn-1.5In-0.5Mn; II: 76Ti-12Ga-7Sn-4Al-1Co; III: 87Ti-13Ga; IV: 79Ti-13Ga-7Al-1Co; V: 82Ti-18In; VI: 75.5Ti-18In-5Al-1Co-0.5Mn; VII: 85Ti-10Sn-5Al; VIII: 78Ti-12Co-7Ga-3Sn. Six rectangular wax patterns for each test material (l = 25 mm, w = 3 mm, h = 1 mm) were invested with magnesia-based material and cast with grade II CP Ti (control) and the 8 experimental alloys. The porosity of each casting was evaluated radiographically, and defective specimens were discarded. Two cast specimens from CP Ti and alloys I-VIII were embedded in epoxy resin and, after metallographic grinding and polishing, were studied by means of scanning electron microscopy and wavelength dispersive electron probe microanalysis. One specimen of each material was utilized for the determination of coefficient of thermal expansion (CTE) with a dilatometer operating from room temperature up to 650 degrees C at a heating rate of 5 degrees C/minute. Secondary electron images (SEI) and compositional backscattered electron images (BEI-COMPO) revealed that all cast specimens consisted of a homogeneous matrix except Alloy VIII, which contained a second phase (possibly Ti(2)Co) along with the titanium matrix. The results showed that the coefficient of thermal expansion (CTE) varied from 10.1 to 13.1 x 10(-6)/ degrees C (25 degrees -500 degrees C), depending on

  9. Diffraction phase microscopy imaging and multi-physics modeling of the nanoscale thermal expansion of a suspended resistor.

    Science.gov (United States)

    Wang, Xiaozhen; Lu, Tianjian; Yu, Xin; Jin, Jian-Ming; Goddard, Lynford L

    2017-07-04

    We studied the nanoscale thermal expansion of a suspended resistor both theoretically and experimentally and obtained consistent results. In the theoretical analysis, we used a three-dimensional coupled electrical-thermal-mechanical simulation and obtained the temperature and displacement field of the suspended resistor under a direct current (DC) input voltage. In the experiment, we recorded a sequence of images of the axial thermal expansion of the central bridge region of the suspended resistor at a rate of 1.8 frames/s by using epi-illumination diffraction phase microscopy (epi-DPM). This method accurately measured nanometer level relative height changes of the resistor in a temporally and spatially resolved manner. Upon application of a 2 V step in voltage, the resistor exhibited a steady-state increase in resistance of 1.14 Ω and in relative height of 3.5 nm, which agreed reasonably well with the predicted values of 1.08 Ω and 4.4 nm, respectively.

  10. Collisionless plasma expansion into a vacuum

    International Nuclear Information System (INIS)

    Denavit, J.

    1979-01-01

    Particle simulations of the expansion of a collisionless plasma into vacuum are presented. The cases of a single-electron-temperature plasma and of a two-electron-temperature plasma are considered. The results confirm the existence of an ion front and verify the general features of self-similar solutions behind this front. A cold electron front is clearly observed in the two-electron-temperatures case. The computations also show that for a finite electron-to-ion mass ratio, m/sub e//m/sub i/, the electron thermal velocity in the expansion region is not constant, but decreases approximately linearly with xi 0 -(γ-1) xi/2, and comparison with computer simulation results show that the constant γ-1 is proportional to (Zm/sub e//m/sub i/)atsup 1/2at, where Z is the ion charge number

  11. Investigation of chemical bond characteristics, thermal expansion coefficients and bulk moduli of alpha-R2MoO6 and R2Mo2O7 (R = rare earths) by using a dielectric chemical bond method.

    Science.gov (United States)

    Li, Huaiyong; Zhang, Siyuan; Zhou, Shihong; Cao, Xueqiang

    2009-09-01

    Theoretical researches are performed on the alpha-R2MoO6 (R = Y, Gd, Tb Dy, Ho, Er, Tm and Yb) and pyrochlore-type R2Mo2O7 (R = Y, Nd, Sm, Gd, Tb and Dy) rare earth molybdates by using chemical bond theory of dielectric description. The chemical bonding characteristics and their relationship with thermal expansion property and compressibility are explored. The calculated values of linear thermal expansion coefficient (LTEC) and bulk modulus agree well with the available experimental values. The calculations reveal that the LTECs and the bulk moduli do have linear relationship with the ionic radii of the lanthanides: the LTEC decreases from 6.80 to 6.62 10(-6)/K and the bulk modulus increases from 141 to 154 GPa when R goes in the order Gd, Tb Dy, Ho, Er, Tm, and Yb in the alpha-R2MoO6 series; while in the R2Mo2O7 series, the LTEC ranges from 6.80 to 6.61 10(-6)/K and the bulk modulus ranges from 147 to 163 GPa when R varies in the order Nd, Sm, Gd, Tb and Dy. Copyright 2008 Wiley Periodicals, Inc.

  12. Thermal properties of the Cobourg Limestone

    Science.gov (United States)

    Pitts, Michelle

    The underground storage of used nuclear fuel in Deep Geologic Repositories (DGRs) has been a subject of research in Canada for decades. One important technical aspect of repository design is the accommodation of the mechanical impacts of thermal inputs (heating) from the fuel as it goes through the remainder of its life cycle. Placement room spacing, a major factor in project cost, will be determined by the ability of the host rock to dissipate heat. The thermal conductivity and linear thermal expansion will determine the evolution of the temperature and thermally-induced stress fields. Thermal processes must be well understood to design a successful DGR. This thesis examines the thermal properties of rocks, how they are influenced by factors such as temperature, pressure, mineralogy, porosity, and saturation; and common methods for calculating and/or measuring these properties. A brief overview of thermal and thermally-coupled processes in the context of DGRs demonstrates the degree to which they would impact design, construction, and operation of these critical structures. Several case histories of major in situ heating experiments are reviewed to determine how the lessons learned could be applied to a Canadian Underground Demonstration Facility (UDF). A mineralogy investigation using X-Ray Diffraction (XRD) and Scanning Electron Microscopy (SEM) examines samples of the Cobourg Limestone from the Bowmanville and Bruce sites, and demonstrates geographical variability within the Cobourg Formation. The thermal properties of samples from the Bowmanville site are determined. A divided bar apparatus was constructed and used to measure thermal conductivity. The temperature measurement component of the divided bar apparatus was used to measure linear thermal expansion. Finally, the past investigations into the thermal impact of a DGR are reviewed, and the implications of the laboratory testing results on similar analyses are discussed.

  13. Thermal Expansion and Magnetostriction Measurements at Cryogenic Temperature Using the Strain Gauge Method

    OpenAIRE

    Wei Wang; Wei Wang; Huiming Liu; Rongjin Huang; Rongjin Huang; Yuqiang Zhao; Chuangjun Huang; Shibin Guo; Yi Shan; Laifeng Li; Laifeng Li; Laifeng Li

    2018-01-01

    Thermal expansion and magnetostriction, the strain responses of a material to temperature and a magnetic field, especially properties at low temperature, are extremely useful to study electronic and phononic properties, phase transitions, quantum criticality, and other interesting phenomena in cryogenic engineering and materials science. However, traditional dilatometers cannot provide magnetic field and ultra-low temperature (<77 K) environment easily. This paper describes the design and ...

  14. Thermal expansion and pressure effect in MnWO4

    International Nuclear Information System (INIS)

    Chaudhury, R.P.; Yen, F.; Cruz, C.R. de la; Lorenz, B.; Wang, Y.Q.; Sun, Y.Y.; Chu, C.W.

    2008-01-01

    MnWO 4 has attracted attention because of its ferroelectric property induced by frustrated helical spin order. Strong spin-lattice interaction is necessary to explain ferroelectricity associated with this type of magnetic order. We have conducted thermal expansion measurements along the a, b, c axes revealing the existence of strong anisotropic lattice anomalies at T 1 =7.8 K, the temperature of the magnetic lock-in transition into a commensurate low-temperature (reentrant paraelectric) phase. The effect of hydrostatic pressure up to 1.8 GPa on the FE phase is investigated by measuring the dielectric constant and the FE polarization. The low-temperature commensurate and paraelectric phase is stabilized and the stability range of the ferroelectric phase is diminished under pressure

  15. Point defect weakened thermal contraction in monolayer graphene.

    Science.gov (United States)

    Zha, Xian-Hu; Zhang, Rui-Qin; Lin, Zijing

    2014-08-14

    We investigate the thermal expansion behaviors of monolayer graphene and three configurations of graphene with point defects, namely the replacement of one carbon atom with a boron or nitrogen atom, or of two neighboring carbon atoms by boron-nitrogen atoms, based on calculations using first-principles density functional theory. It is found that the thermal contraction of monolayer graphene is significantly decreased by point defects. Moreover, the corresponding temperature for negative linear thermal expansion coefficient with the maximum absolute value is reduced. The cause is determined to be point defects that enhance the mechanical strength of graphene and then reduce the amplitude and phonon frequency of the out-of-plane acoustic vibration mode. Such defect weakening of graphene thermal contraction will be useful in nanotechnology to diminish the mismatching or strain between the graphene and its substrate.

  16. Thermal expansion and elastic moduli of the silicide based intermetallic alloys Ti5Si3(X) and Nb5Si3

    International Nuclear Information System (INIS)

    Zhang, L.; Wu, J.

    1997-01-01

    Silicides are among those potential candidates for high temperature application because of their high melting temperature, low density and good oxidation resistance. Recent interest is focused on molybdenum silicides and titanium silicides. Extensive investigation has been carried out on MoSi 2 , yet comparatively less work was performed on titanium silicides such as Ti 5 Si 3 and Ti 3 and TiSi 2 which are of lower density than MoSi 2 . Fundamental understanding of the titanium silicides' properties for further evaluation their potential for practical application are thus needed. The thermal expansion coefficients and elastic moduli of intermetallic compounds are two properties important for evaluation as a first step. The thermal expansion determines the possible stress that might arise during cooling for these high melting point compounds, which is crucial to the preparation of defect free specimens; and the elastic moduli are usually reflections of the cohesion in crystal. In Frommeyer's work and some works afterwards, the coefficients of thermal expansion were measured on both polycrystalline and single crystal Ti 5 Si 3 . The elastic modulus of polycrystalline Ti 5 Si 3 was measured by Frommeyer and Rosenkranz. However, in the above works, the referred Ti 5 Si 3 was the binary one, no alloying effect has been reported on this matter. Moreover, the above parameters (coefficient of thermal expansion and elastic modulus) of Nb 5 Si 3 remain unreported so far. In this paper, the authors try to extend the knowledge of alloyed Ti 5 Si 3 compounds with Nb and Cr additions. Results on the coefficients of thermal expansion and elastic moduli of Ti 5 Si 3 compounds and Nb 5 Si 3 are presented and the discussion is focused on the alloying effect

  17. Anisotropic Thermal Behavior of Silicone Polymer, DC 745

    Energy Technology Data Exchange (ETDEWEB)

    Adams, Jillian Cathleen [Univ. of Oregon, Eugene, OR (United States). Dept. of Chemistry; Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Torres, Joseph Angelo [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Volz, Heather Michelle [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Gallegos, Jennifer Marie [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Yang, Dali [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-09-02

    In material applications, it is important to understand how polymeric materials behave in the various environments they may encounter. One factor governing polymer behavior is processing history. Differences in fabrication will result in parts with varied or even unintended properties. In this work, the thermal expansion behavior of silicone DC 745 is studied. Thermomechanical analysis (TMA) is used to determine changes in sample dimension resulting from changes in temperature. This technique can measure thermal events such as the linear coefficient of thermal expansion (CTE), melting, glass transitions, cure shrinkage, and internal relaxations. Using a thermomechanical analyzer (Q400 TMA), it is determined that DC 745 expands anisotropically when heated. This means that the material has a different CTE depending upon which direction is being measured. In this study, TMA experiments were designed in order to confirm anisotropic thermal behavior in multiple DC 745 samples of various ages and lots. TMA parameters such as temperature ramp rate, preload force, and temperature range were optimized in order to ensure the most accurate and useful data. A better understanding of the thermal expansion of DC 745 will allow for more accurate modeling of systems using this material.

  18. Thermal expansion and lattice parameters of shaped metal deposited Ti-6Al-4V

    Energy Technology Data Exchange (ETDEWEB)

    Swarnakar, Akhilesh Kumar; Van der Biest, Omer [Katholieke Universiteit Leuven, MTM, Kasteelpark Arenberg 44, 3001 Leuven (Belgium); Baufeld, Bernd, E-mail: b.baufeld@sheffield.ac.uk [Katholieke Universiteit Leuven, MTM, Kasteelpark Arenberg 44, 3001 Leuven (Belgium)

    2011-02-10

    Research highlights: > Measurement of thermal expansion and of the lattice parameters of Ti-6Al-4V fabricated by shaped metal deposition up to 1100 {sup o}C. > The observation of alpha to beta transformation not reflected in the expansion but in the contraction curve is explained by non-equilibrium alpha phase of the SMD material. > Denuding of the {alpha} phase and enrichment of the {beta} phase of Vanadium due to high temperature experiments. > The unit cell volumes derived from lattice parameters measured by X-ray diffraction are at room temperature larger for the {alpha} than for the {beta} phase. With increasing temperature the unit cell volume of the {beta} phase increases stronger than the one of the {alpha} phase resulting in a similar unit cell volume at the {beta} transus temperature. - Abstract: Thermal expansion and lattice parameters are investigated up to 1100 deg. C for Ti-6Al-4V components, fabricated by shaped metal deposition. This is a novel additive layer manufacturing technique where near net-shape components are built by tungsten inert gas welding. The as-fabricated SMD Ti-6Al-4V components exhibit a constant coefficient of thermal expansion of 1.17 x 10{sup -5} K{sup -1} during heating up to 1100 {sup o}C, not reflecting the {alpha} to {beta} phase transformation. During cooling a stalling of the contraction is observed starting at the {beta} transus temperature. These high temperature experiments denude the {alpha} phase of V and enrich the {beta} phase. The development of the lattice parameters in dependence on temperature are observed with high temperature X-ray diffraction. The unit cell volumes derived from these parameters are at room temperature larger for the {alpha} than for the {beta} phase. With increasing temperature the unit cell volume of the {beta} phase increases stronger than the one of the {alpha} phase resulting in a similar unit cell volume at the {beta} transus temperature. These observations are interpreted as an

  19. Thermal and radiation losses in a linear device

    International Nuclear Information System (INIS)

    Rosenau, P.; Degani, D.

    1980-01-01

    An analysis is presented of the electron temperature in a linear device which includes the effect of thermal conduction, heat flux limit, radiation, and end plugs. It is found that the thermal conduction and the heat flux limit are dominant in the initial phase of cooling, while the later phase is almost completely controlled by radiation that spatially homogenizes the temperature distribution. In the case of bremsstrahlung, within the frame of the present model, the temperature decays to zero in a finite time. This process takes the form of a cooling wave that moves from the ends of the column to the center. Impurities cause a milder, exponential decay, which is still much faster than the algebraic conduction decay. The thermal effectiveness of the end plugs is described by a convective transfer coefficient h/sub p/. Its scaling law (in terms of the coupled plamsa-plug system) reveals that a very high plug-plasma density ratio provides a simple way to significantly retard the cooling

  20. Anisotropic lattice thermal expansion of PbFeBO4: A study by X-ray and neutron diffraction, Raman spectroscopy and DFT calculations

    International Nuclear Information System (INIS)

    Murshed, M. Mangir; Mendive, Cecilia B.; Curti, Mariano; Nénert, Gwilherm; Kalita, Patricia E.; Lipinska, Kris; Cornelius, Andrew L.; Huq, Ashfia; Gesing, Thorsten M.

    2014-01-01

    Highlights: • Mullite-type PbFeBO 4 shows uni-axial negative coefficient of thermal expansion. • Anisotropic thermal expansion of the metric parameters was modeled using modified Grüneisen approximation. • The model includes harmonic, quasi-harmonic and intrinsic anharmonic contributions to the internal energy. • DFT calculation, temperature- and pressure-dependent Raman spectra help understand the phonon decay and associated anharmonicity. - Abstract: The lattice thermal expansion of mullite-type PbFeBO 4 is presented in this study. The thermal expansion coefficients of the metric parameters were obtained from composite data collected from temperature-dependent neutron and X-ray powder diffraction between 10 K and 700 K. The volume thermal expansion was modeled using extended Grüneisen first-order approximation to the zero-pressure equation of state. The additive frame of the model includes harmonic, quasi-harmonic and intrinsic anharmonic potentials to describe the change of the internal energy as a function of temperature. The unit-cell volume at zero-pressure and 0 K was optimized during the DFT simulations. Harmonic frequencies of the optical Raman modes at the Γ-point of the Brillouin zone at 0 K were also calculated by DFT, which help to assign and crosscheck the experimental frequencies. The low-temperature Raman spectra showed significant anomaly in the antiferromagnetic regions, leading to softening or hardening of some phonons. Selected modes were analyzed using a modified Klemens model. The shift of the frequencies and the broadening of the line-widths helped to understand the anharmonic vibrational behaviors of the PbO 4 , FeO 6 and BO 3 polyhedra as a function of temperature

  1. HAYNES 244 alloy – a new 760 ∘C capable low thermal expansion alloy

    Directory of Open Access Journals (Sweden)

    Fahrmann Michael G.

    2014-01-01

    Full Text Available HAYNES® 244TM alloy is a new 760∘C capable, high strength low thermal expansion (CTE alloy. Its nominal chemical composition in weight percent is Ni – 8 Cr – 22.5 Mo – 6 W. Recently, a first mill-scale heat of 244 alloy was melted by Haynes International, and processed to various product forms such as re-forge billet, plate, and sheet. This paper presents key attributes of this new alloy (CTE, strength, low-cycle fatigue performance, oxidation resistance, thermal stability as they pertain to the intended use in rings and seals of advanced gas turbines.

  2. Thermal performance of a linear Fresnel reflector solar concentrator PV/T energy systems

    Energy Technology Data Exchange (ETDEWEB)

    Gomaa, Mohamed R. [State Engineering University of Armenia (Armenia)], E-Mail: Dmoh_elbehary@yahoo.com

    2011-07-01

    This is a report on an investigation of photovoltaic/thermal (PV/T) collectors. Solar energy conversion efficiency was increased by taking advantage of PV/T collectors and low solar concentration technologies, combined into a PV/T system operated at elevated temperature. The main novelty is the coupling of a linear Fresnel mirror reflecting concentrator with a channel PV/T collector. Concentrator PV/T collectors can function at temperatures over 100 degrees celsius, and thus thermal energy can be made to drive processes such as refrigeration, desalination and steam production. Solar system analytical thermal performance gives efficiency values over 60%. Combined electric and thermal (CET) efficiency is high. A combined electric and heat power for the linear fresnel reflector approach that employs high performance CPV technology to produce both electricity and thermal energy at low to medium temperatures is presented. A well-functioning PV/T system can be designed and constructed with low concentration and a total efficiency of nearly 80% can be attained.

  3. Solid and liquid thermal expansion and structural observations in the quasicrystalline Cd84Yb16 compound

    International Nuclear Information System (INIS)

    Kramer, M.J.; Lograsso, T.A.; Sordelet, D.J.

    2010-01-01

    The structure of single-grain Cd 84 Yb 16 samples aligned along the twofold and fivefold axes has been followed from 300 to 1050 K using high-energy synchrotron X-rays. The quasicrystal phase is stable up to its melting temperature of 914 K and has a large linear thermal expansion of 37.1 ppm K -1 over this temperature range. The samples melt congruently over a temperature range of less than 1 K. The liquid is 7% less dense than the solid and, upon cooling from the melt, the quasicrystal phase directly solidifies within a 1 K interval. The amount of undercooling achieved, about 5-25 K, was dependent on the cooling rate. The total scattering function of the liquid is consistent with a dilute liquid Cd structure. These results agree with suggestions that the structure of the liquid must undergo reordering in order to form the solid phases. However, there is no compelling evidence for icosahedral short-range order in the liquid prior to the formation of the quasicrystalline structure.

  4. Phonons and colossal thermal expansion behavior of Ag3Co(CN)6 and Ag3Fe(CN)6.

    Science.gov (United States)

    Mittal, R; Zbiri, M; Schober, H; Achary, S N; Tyagi, A K; Chaplot, S L

    2012-12-19

    Recently colossal volume thermal expansion has been observed in the framework compounds Ag(3)Co(CN)(6) and Ag(3)Fe(CN)(6). We have measured phonon spectra using neutron time-of-flight spectroscopy as a function of temperature and pressure. Ab initio calculations were carried out for the sake of analysis and interpretation. Bonding is found to be very similar in the two compounds. At ambient pressure, modes in the intermediate frequency part of the vibrational spectra in the Co compound are shifted slightly to higher energies as compared to the Fe compound. The temperature dependence of the phonon spectra gives evidence for a large explicit anharmonic contribution to the total anharmonicity for low-energy modes below 5 meV. We have found that modes are mainly affected by the change in size of the unit cell, which in turn changes the bond lengths and vibrational frequencies. Thermal expansion has been calculated via the volume dependence of phonon spectra. Our analysis indicates that Ag phonon modes within the energy range 2-5 meV are strongly anharmonic and major contributors to thermal expansion in both systems. The application of pressure hardens the low-energy part of the phonon spectra involving Ag vibrations and confirms the highly anharmonic nature of these modes.

  5. Resummation of the 1/N-expansion of the non-linear σ-model by Dyson-Schwinger equations

    International Nuclear Information System (INIS)

    Drouffe, J.M.; Flyvbjerg, H.

    1988-02-01

    Dyson-Schwinger equations for the O(N)-symmetric non-linear σ-model are derived and expanded in 1/N. A closed set of equations is obtained by keeping only the leading term and the first correction term in this expansion. These equations are solved numerically in 2 dimensions on square lattices of sizes 50x50 and 100x100. Results for the magnetic susceptibility and the mass gap are compared with predictions of the ordinary 1/N-expansion and with Monte Carlo results. The results obtained with the Dyson-Schwinger equations show the same scaling behavior as found in the Monte Carlo results. This is not the behavior predicted by the perturbative renormalization group. (orig.)

  6. Robust high pressure stability and negative thermal expansion in sodium-rich antiperovskites Na3OBr and Na4OI2

    International Nuclear Information System (INIS)

    Wang, Yonggang; Wen, Ting; Park, Changyong; Kenney-Benson, Curtis; Pravica, Michael; Zhao, Yusheng; Yang, Wenge

    2016-01-01

    The structure stability under high pressure and thermal expansion behavior of Na 3 OBr and Na 4 OI 2 , two prototypes of alkali-metal-rich antiperovskites, were investigated by in situ synchrotron X-ray diffraction techniques under high pressure and low temperature. Both are soft materials with bulk modulus of 58.6 GPa and 52.0 GPa for Na 3 OBr and Na 4 OI 2 , respectively. The cubic Na 3 OBr structure and tetragonal Na 4 OI 2 with intergrowth K 2 NiF 4 structure are stable under high pressure up to 23 GPa. Although being a characteristic layered structure, Na 4 OI 2 exhibits nearly isotropic compressibility. Negative thermal expansion was observed at low temperature range (20–80 K) in both transition-metal-free antiperovskites for the first time. The robust high pressure structure stability was examined and confirmed by first-principles calculations among various possible polymorphisms qualitatively. The results provide in-depth understanding of the negative thermal expansion and robust crystal structure stability of these antiperovskite systems and their potential applications

  7. Thermal Expansion and Luminescent Properties of Triorthogermanates CaLa2- x Eu x Ge3O10 ( x = 0.0-0.6)

    Science.gov (United States)

    Lipina, O. A.; Surat, L. L.; Baklanova, Ya. V.; Berger, I. F.; Tyutyunnik, A. P.; Zubkov, V. G.

    2018-02-01

    Solid solutions CaLa2- x Eu x Ge3O10 ( x = 0.0-0.6, Δ x = 0.1) have been synthesized for the first time. The compounds are isostructural to CaLa2Ge3O10, they crystallize in the monoclinic system, space group P21/ c, Z = 4. The low-temperature X-ray diffraction studies have revealed the strain anisotropy of germanate CaLa2Ge3O10 crystal lattice in the temperature range 80-298 K, and the linear thermal expansion coefficients have been calculated. The optical properties of the activated phases have been studied, and the influence of the dopant concentration and the excitation wavelength on the luminescence characteristics of the synthesized compounds has been established.

  8. Probing thermal expansion of graphene and modal dispersion at low-temperature using graphene nanoelectromechanical systems resonators

    International Nuclear Information System (INIS)

    Singh, Vibhor; Sengupta, Shamashis; Solanki, Hari S; Dhall, Rohan; Allain, Adrien; Dhara, Sajal; Deshmukh, Mandar M; Pant, Prita

    2010-01-01

    We use suspended graphene electromechanical resonators to study the variation of resonant frequency as a function of temperature. Measuring the change in frequency resulting from a change in tension, from 300 to 30 K, allows us to extract information about the thermal expansion of monolayer graphene as a function of temperature, which is critical for strain engineering applications. We find that thermal expansion of graphene is negative for all temperatures between 300 and 30 K. We also study the dispersion, the variation of resonant frequency with DC gate voltage, of the electromechanical modes and find considerable tunability of resonant frequency, desirable for applications like mass sensing and RF signal processing at room temperature. With a lowering of temperature, we find that the positively dispersing electromechanical modes evolve into negatively dispersing ones. We quantitatively explain this crossover and discuss optimal electromechanical properties that are desirable for temperature-compensated sensors.

  9. High-resolution thermal expansion measurements under helium-gas pressure

    Science.gov (United States)

    Manna, Rudra Sekhar; Wolf, Bernd; de Souza, Mariano; Lang, Michael

    2012-08-01

    We report on the realization of a capacitive dilatometer, designed for high-resolution measurements of length changes of a material for temperatures 1.4 K ⩽ T ⩽ 300 K and hydrostatic pressure P ⩽ 250 MPa. Helium (4He) is used as a pressure-transmitting medium, ensuring hydrostatic-pressure conditions. Special emphasis has been given to guarantee, to a good approximation, constant-pressure conditions during temperature sweeps. The performance of the dilatometer is demonstrated by measurements of the coefficient of thermal expansion at pressures P ≃ 0.1 MPa (ambient pressure) and 104 MPa on a single crystal of azurite, Cu3(CO3)2(OH)2, a quasi-one-dimensional spin S = 1/2 Heisenberg antiferromagnet. The results indicate a strong effect of pressure on the magnetic interactions in this system.

  10. Thermal expansion behavior of empressite, AgTe: A structural study by means of in situ high-temperature single-crystal X-ray diffraction

    International Nuclear Information System (INIS)

    Bindi, Luca

    2009-01-01

    The crystal structure of empressite, AgTe, a rare silver telluride, has been investigated by in situ X-ray single-crystal diffraction methods within the temperature range 298-463 K. AgTe remains orthorhombic, space group Pmnb (Pnma as standard), and shows only normal thermal expansion over the entire temperature range. The unit-cell parameters show a gradual increase with the increase of temperature. Slight adjustments in the geometry of Ag-tetrahedra and in the crystal-chemical environment of tellurium atoms occur in a continuous way without abrupt structural changes. The coefficients of thermal expansion along various axes are: α a = 1.5 x 10 -5 K -1 , α b = 3.0 x 10 -5 K -1 , α c = 2.2 x 10 -5 K -1 , and the bulk thermal expansion coefficient α V is 5.4 x 10 -5 K -1 for the temperature range 298-463 K

  11. A Design of a Hybrid Non-Linear Control Algorithm

    Directory of Open Access Journals (Sweden)

    Farinaz Behrooz

    2017-11-01

    Full Text Available One of the high energy consuming devices in the buildings is the air-conditioning system. Designing a proper controller to consider the thermal comfort and simultaneously control the energy usage of the device will impact on the system energy efficiency and its performance. The aim of this study was to design a Multiple-Input and Multiple-Output (MIMO, non-linear, and intelligent controller on direct expansion air-conditioning system The control algorithm uses the Fuzzy Cognitive Map method as a main controller and the Generalized Predictive Control method is used for assigning the initial weights of the main controller. The results of the proposed controller shows that the controller was successfully designed and works in set point tracking and under disturbance rejection tests. The obtained results of the Generalized Predictive Control-Fuzzy Cognitive Map controller are compared with the previous MIMO Linear Quadratic Gaussian control design on the same direct expansion air-conditioning system under the same conditions. The comparative results indicate energy savings would be achieved with the proposed controller with long-term usage. Energy efficiency and thermal comfort conditions are achieved by the proposed controller.

  12. Synthesis and thermal expansion hysteresis of Ca1–xSrxZr4P6O24

    Indian Academy of Sciences (India)

    Unknown

    tural family of new low thermal expansion materials known as ... The members of this family have received .... present work, five different compositions in CSZP were prepared and ... and a Mettler electronic balance with the model AE 240.

  13. Virtual thermal expansion coefficient of Cu precipitated in the Fe95Cu5 alloy

    International Nuclear Information System (INIS)

    Koeszegi, L.; Somogyvari, Z.

    1999-01-01

    Complete text of publication follows. Precipitations on grain boundaries play very important role in the formation of material's characteristics like embrittlement, durability etc. It was already shown [1] that Cu precipitations are under different stress conditions than the bulk material. The situation is more complicated in the case when a construction is exposed to temperature changes as well. In that case not only the residual stresses during the fabrication but the different thermal expansion coefficients can produce additional problems. This situation was modelled using Fe 95 Cu 5 alloy where Cu precipitates on the grain boundaries. The alloy was produced by high-frequency melting and an extra heat treatment was used to produce a quasi-equilibrium state. Pure Cu was also measured to compare the behaviours. Cu(111) Bragg peak was measured at different temperatures by high resolution neutron diffraction. The measurements were carried out on the G5-2 spectrometer at LLB in Saclay. Measurements show that not only residual stress can be recognised on the Cu precipitates but the thermal expansion coefficient of these precipitates definitly differ from the ones of pure Cu. (author)

  14. Beyer's non-linearity parameter (B/A) in benzylidene aniline Schiff base liquid crystalline systems

    International Nuclear Information System (INIS)

    Nagi Reddy, M.V.V.; Pisipati, V.G.K.M.; Madhavi Latha, D.; Datta Prasad, P.V.

    2011-01-01

    The non-linearity parameter B/A is estimated for a number of liquid crystal materials of the type N-(p-n-alkoxy benzylidene)-p-n-alkyl anilines, popularly known as nO.m, where n and m are the aliphatic chains on either side of the rigid core, which can be varied from 1 to 18 to realize a number of LC materials with a variety LC phase variants. The B/A values are computed from both density and sound velocity data following standard relations reported in literature. This systematic study in a homologous series provides an opportunity to study how this parameter behaves with (1) either the alkoxy and/or alkyl chain number, (2) with the total chain number (n+m), (3) with increase in molecular weight and (4) whether the linear relations reported in literature either with αT [thermal expansion coefficient (α) and temperature (T)] and sound velocity (u) will hold good or not and if so to what extent. The results are discussed with the body of data available in literature on liquids, liquid mixtures and other LC materials. -- Research highlights: → The Bayer's non-linearity parameter (B/A) is estimated for the first time for a number liquid crystal materials of the type N-(p-n-alkoxy benzylidene)-p-nalkyl anilines. → The magnitude of B/A estimated from sound velocity data is higher compared to that estimated thermal expansion data. → The B/A value decreases with increase in molecular weight with an even odd fashion and reaches a minimum value and saturates. → These studies reveal that both the thermal expansion coefficient and sound velocity are the tools to estimate the non-linear parameter B/A in the case of liquid crystals.

  15. Thermal behavior of phenol-furfuryl alcohol resin/carbon nanotubes composites

    Science.gov (United States)

    Conejo, L. S.; Costa, M. L.; Oishi, S. S.; Botelho, E. C.

    2018-04-01

    Phenol-furfuryl alcohol resins (PFA) are excellent candidates to replace existing thermoset matrices used in obtaining insulating systems or carbon materials, both in its pure form and reinforced with nanoscale structures. This work had as main purpose synthesize and investigate thermal characterization of PFA resin and its nanostructured composites with different concentrations of carbon nanotubes (0, 0.1, 0.5 and 1.0 wt%). The DSC analysis was performed to estimate the specific heat (cp) of the cured samples and thermomechanical analysis to find the linear thermal expansion coefficient (α). From these results, the cp values found for the PFA system was similar to that described in the literature for the phenolic resin. The cp increased with the increase in the CNT concentration in the system up to 0.5%. The coefficient of linear thermal expansion obtained by TMA technique for PFA sample was 33.10‑6/°C which was close to the α value of phenolic resin (40 to 80.10‑6/°C).

  16. Thermal expansion behavior of empressite, AgTe: A structural study by means of in situ high-temperature single-crystal X-ray diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Bindi, Luca [Museo di Storia Naturale, sez. di Mineralogia, Universita di Firenze, Via La Pira 4, I-50121 Firenze (Italy)], E-mail: luca.bindi@unifi.it

    2009-04-03

    The crystal structure of empressite, AgTe, a rare silver telluride, has been investigated by in situ X-ray single-crystal diffraction methods within the temperature range 298-463 K. AgTe remains orthorhombic, space group Pmnb (Pnma as standard), and shows only normal thermal expansion over the entire temperature range. The unit-cell parameters show a gradual increase with the increase of temperature. Slight adjustments in the geometry of Ag-tetrahedra and in the crystal-chemical environment of tellurium atoms occur in a continuous way without abrupt structural changes. The coefficients of thermal expansion along various axes are: {alpha}{sub a} = 1.5 x 10{sup -5} K{sup -1}, {alpha}{sub b} = 3.0 x 10{sup -5} K{sup -1}, {alpha}{sub c} = 2.2 x 10{sup -5} K{sup -1}, and the bulk thermal expansion coefficient {alpha}{sub V} is 5.4 x 10{sup -5} K{sup -1} for the temperature range 298-463 K.

  17. Acoustic and Thermal Vibrational Behavior of Rare Earth Glasses

    International Nuclear Information System (INIS)

    Senin, H. B.; Kancono, W.; Sidek, H. A. A.

    2007-01-01

    The ultrasonic wave velocity and the thermal expansion of the rare earth glasses have been measured as functions of temperature and pressure to test predictions of the soft potential model for the acoustic and thermal properties. The longitudinal ultrasonic wave velocities increase under pressure. The hydrostatic pressure derivative of the bulk modulus is positive: these glasses show a normal elastic response as compressed. However, the pressure derivative of the shear modulus is negative and small, indicating weak softening of shear modes under pressure. The results found are used to determine the Gruneisen parameters. This is to obtain the acoustic mode contribution to thermal expansion. After subtraction of the relaxation and anharmonic contributions, the temperature dependence of the shear wave ultrasound velocity follows a linear law as predicted by the Soft Potential Model

  18. Zero and low coefficient of thermal expansion polycrystalline oxides

    International Nuclear Information System (INIS)

    Skaggs, S.R.

    1977-09-01

    Polycrystalline oxide systems with zero to low coefficient of thermal expansion (CTE) investigated by the author include hafnia-titania and hafnia. The CTE for 30 to 40 mol% TiO 2 in HfO 2 is less than or equal to 1 x 10 -6 / 0 C, while for other compositions in the range 25 to 60 mol% it is approximately 4 x 10 -6 / 0 C. An investigation of the CTE of 99.999% HfO 2 yielded a value of 4.6 x 10 -6 / 0 C from room temperature to 1000 0 C. Correlation with data on HfO 2 by other investigators shows a definite relationship between the CTE and the amount of ZrO 2 present. Data are listed for comparison of the CTE of several other polycrystalline oxides investigated by Holcombe at Oak Ridge

  19. Zero and low coefficient of thermal expansion polycrystalline oxides

    International Nuclear Information System (INIS)

    Skaggs, S.R.

    1977-01-01

    Polycrystalline oxide systems with zero to low coefficient of thermal expansion (CTE) investigated by the author include hafnia-titania and hafnia. The CTE for 30 to 40 mol percent TiO 2 in HfO 2 is less than or equal to 1 x 10 -6 / 0 C, while for other compositions in the range 25 to 60 mol percent approximately 4 x 10 -6 / 0 C. An investigation of the CTE of 99.999 percent HfO 2 yielded a value of 4.6 x 10 -6 / 0 C from room temperature to 1000 0 C. Correlation with data on HfO 2 by other investigators shows a definite relationship between the CTE and the amount of ZrO 2 present. Data are listed for comparison of the CTE of several other polycrystalline oxides investigated by Holcombe at Oak Ridge

  20. Harmonic and Anharmonic Properties of Diamond Structure Crystals with Application to the Calculation of the Thermal Expansion of Silicon. Ph.D. Thesis. Final Report

    Science.gov (United States)

    Wanser, K. H.

    1981-01-01

    Silicon has interesting harmonic and anharmonic properties such as the low lying transverse acoustic modes at the X and L points of the Brillouin zone, negative Gruneisen parameters, negative thermal expansion and anomalous acoustic attenuation. In an attempt to understand these properties, a lattice dynamical model employing long range, nonlocal, dipole-dipole interactions was developed. Analytic expression for the Gruneisen parameters of several modes are presented. These expressions explain how the negative Gruneisen parameters arise. This model is applied to the calculation of the thermal expansion of silicon from 5K to 1700K. The thermoelastic contribution to the acoustic attenuation of silicon is computed from 1 to 300 K. Strong attenuation anomalies associated with negative thermal expansion are found in the vicinity of 17K and 125K.