WorldWideScience

Sample records for linear temperature gradient

  1. Studies of the trapped particle and ion temperature gradient instabilities in the Columbia Linear Machine

    International Nuclear Information System (INIS)

    Mathey, O.H.

    1989-01-01

    In the first part of the work, the effects of weak Coulomb and neutral collisions on the collisionless curvature driven trapped particle mode are studied in the Columbia Linear Machine (CLM) [Phys. Rev. Lett. 57, 1729, (1986)]. Low Coulomb collisionality yields a small stabilizing correction to the magnetohydrodynamic (MHD) collisionless mode, which scales as v, using the Krook model, and ν ec 1/2 using a Lorentz pitch angle operator. In higher collisionality regimes, both models tend to yield similar scalings. In view of relative high neutral collisionality in CLM, both types of collisionality are then combined, modeling neutral collisions with the conserving Krook and Coulomb collisions with a Lorentz model. The dispersion relation is then integrated over velocity space. This combination yields results in very good accord with the available experimental data. The Ion Temperature Gradient Instability is then investigated. It is shown that anisotropy in gradient has a substantial effect on the ion temperature gradient driven mode. A gradient in the parallel temperature is needed for an instability to occur, and a gradient in the perpendicular temperature gradient further enhances the instability indirectly as long as the frequency of the mode is near ion resonance. The physical reason for this important role difference is presented. The Columbia Linear Machine is being redesigned to produce and identify the ion temperature gradient driven η i mode. Using the expected parameters, the author has developed detailed predictions of the mode characteristics in the CLM. Strong multi mode instabilities are expected. As the ion parallel and perpendicular ion temperature gradients are expected to differ significantly, we differentiate between η i parallel and ν i perpendicular and explore the physical differences between them, which leads to a scheme for stabilization of the mode

  2. Linear and nonlinear dynamics of electron temperature gradient mode in non-Maxwellian plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Zakir, U.; Qamar, A. [Institute of Physics and Electronics, University of Peshawar, Peshawar (Pakistan); Haque, Q. [Theoretical Plasma Physics Division, PINSTECH, Islamabad (Pakistan); National Centre for Physics, Islamabad (Pakistan)

    2013-05-15

    The effect of non-Maxwellian distributed ions on electron temperature gradient mode is investigated. The linear dispersion relation of η{sub e}−mode is obtained which shows that the behavior of this mode changes in the presence of superthermal ions. The growth rate of η{sub e}−mode driven linear instability is found and is observed to modify due to nonthermal ions. However, it is found that this leaves the electron energy transport coefficient unchanged. In the nonlinear regime, a dipolar vortex solution is derived which indicates that the dynamic behavior of the vortices changes with the inclusion of kappa distributed ions. The importance of present study with respect to space and laboratory plasmas is also pointed out.

  3. Gradient-driven flux-tube simulations of ion temperature gradient turbulence close to the non-linear threshold

    Energy Technology Data Exchange (ETDEWEB)

    Peeters, A. G.; Rath, F.; Buchholz, R.; Grosshauser, S. R.; Strintzi, D.; Weikl, A. [Physics Department, University of Bayreuth, Universitätsstrasse 30, Bayreuth (Germany); Camenen, Y. [Aix Marseille Univ, CNRS, PIIM, UMR 7345, Marseille (France); Candy, J. [General Atomics, PO Box 85608, San Diego, California 92186-5608 (United States); Casson, F. J. [CCFE, Culham Science Centre, Abingdon OX14 3DB, Oxon (United Kingdom); Hornsby, W. A. [Max Planck Institut für Plasmaphysik, Boltzmannstrasse 2 85748 Garching (Germany)

    2016-08-15

    It is shown that Ion Temperature Gradient turbulence close to the threshold exhibits a long time behaviour, with smaller heat fluxes at later times. This reduction is connected with the slow growth of long wave length zonal flows, and consequently, the numerical dissipation on these flows must be sufficiently small. Close to the nonlinear threshold for turbulence generation, a relatively small dissipation can maintain a turbulent state with a sizeable heat flux, through the damping of the zonal flow. Lowering the dissipation causes the turbulence, for temperature gradients close to the threshold, to be subdued. The heat flux then does not go smoothly to zero when the threshold is approached from above. Rather, a finite minimum heat flux is obtained below which no fully developed turbulent state exists. The threshold value of the temperature gradient length at which this finite heat flux is obtained is up to 30% larger compared with the threshold value obtained by extrapolating the heat flux to zero, and the cyclone base case is found to be nonlinearly stable. Transport is subdued when a fully developed staircase structure in the E × B shearing rate forms. Just above the threshold, an incomplete staircase develops, and transport is mediated by avalanche structures which propagate through the marginally stable regions.

  4. Ion temperature gradient instability

    International Nuclear Information System (INIS)

    1989-01-01

    Anomalous ion thermal conductivity remains an open physics issue for the present generation of high temperature Tokamaks. It is generally believed to be due to Ion Temperature Gradient Instability (η i mode). However, it has been difficult, if not impossible to identify this instability and study the anomalous transport due to it, directly. Therefore the production and identification of the mode is pursued in the simpler and experimentally convenient configuration of the Columbia Linear Machine (CLM). CLM is a steady state machine which already has all the appropriate parameters, except η i . This parameter is being increased to the appropriate value of the order of 1 by 'feathering' a tungsten screen located between the plasma source and the experimental cell to flatten the density profile and appropriate redesign of heating antennas to steepen the ion temperature profile. Once the instability is produced and identified, a thorough study of the characteristics of the mode can be done via a wide range of variation of all the critical parameters: η i , parallel wavelength, etc

  5. Temperature Gradient in Hall Thrusters

    International Nuclear Information System (INIS)

    Staack, D.; Raitses, Y.; Fisch, N.J.

    2003-01-01

    Plasma potentials and electron temperatures were deduced from emissive and cold floating probe measurements in a 2 kW Hall thruster, operated in the discharge voltage range of 200-400 V. An almost linear dependence of the electron temperature on the plasma potential was observed in the acceleration region of the thruster both inside and outside the thruster. This result calls into question whether secondary electron emission from the ceramic channel walls plays a significant role in electron energy balance. The proportionality factor between the axial electron temperature gradient and the electric field is significantly smaller than might be expected by models employing Ohmic heating of electrons

  6. Combining Step Gradients and Linear Gradients in Density.

    Science.gov (United States)

    Kumar, Ashok A; Walz, Jenna A; Gonidec, Mathieu; Mace, Charles R; Whitesides, George M

    2015-06-16

    Combining aqueous multiphase systems (AMPS) and magnetic levitation (MagLev) provides a method to produce hybrid gradients in apparent density. AMPS—solutions of different polymers, salts, or surfactants that spontaneously separate into immiscible but predominantly aqueous phases—offer thermodynamically stable steps in density that can be tuned by the concentration of solutes. MagLev—the levitation of diamagnetic objects in a paramagnetic fluid within a magnetic field gradient—can be arranged to provide a near-linear gradient in effective density where the height of a levitating object above the surface of the magnet corresponds to its density; the strength of the gradient in effective density can be tuned by the choice of paramagnetic salt and its concentrations and by the strength and gradient in the magnetic field. Including paramagnetic salts (e.g., MnSO4 or MnCl2) in AMPS, and placing them in a magnetic field gradient, enables their use as media for MagLev. The potential to create large steps in density with AMPS allows separations of objects across a range of densities. The gradients produced by MagLev provide resolution over a continuous range of densities. By combining these approaches, mixtures of objects with large differences in density can be separated and analyzed simultaneously. Using MagLev to add an effective gradient in density also enables tuning the range of densities captured at an interface of an AMPS by simply changing the position of the container in the magnetic field. Further, by creating AMPS in which phases have different concentrations of paramagnetic ions, the phases can provide different resolutions in density. These results suggest that combining steps in density with gradients in density can enable new classes of separations based on density.

  7. High gradient accelerators for linear light sources

    International Nuclear Information System (INIS)

    Barletta, W.A.

    1988-01-01

    Ultra-high gradient radio frequency linacs powered by relativistic klystrons appear to be able to provide compact sources of radiation at XUV and soft x-ray wavelengths with a duration of 1 picosecond or less. This paper provides a tutorial review of the physics applicable to scaling the present experience of the accelerator community to the regime applicable to compact linear light sources. 22 refs., 11 figs., 21 tabs

  8. Considerations of ion temperature gradient driven turbulence

    International Nuclear Information System (INIS)

    Cowley, S.C.; Kulsrud, R.M.

    1991-02-01

    The ion temperature gradient driven instability is considered in this paper. Physical pictures are presented to clarify the nature of the instability. The saturation of a single eddy is modeled by a simple nonlinear equation. We show that eddies which are elongated in the direction of the temperature gradient are the most unstable and have the highest saturation amplitudes. In a sheared magnetic field, such elongated eddies twist with the field lines. This structure is shown to be alternative to the usual Fourier mode picture in which the mode is localized around the surface where k parallel = 0. We show how these elongated twisting eddies, which are an integral part of the ''ballooning mode'' structure, could survive in a torus. The elongated eddies are shown to be unstable to secondary instabilities that are driven by the large gradients in the long eddy. We argue that this mechanism isotropizes ion temperature gradient turbulence. We further argue that the ''mixing length'' is set by this nonlinear process, not by a linear eigenmode width. 17 refs., 6 figs

  9. High-gradient compact linear accelerator

    Science.gov (United States)

    Carder, Bruce M.

    1998-01-01

    A high-gradient linear accelerator comprises a solid-state stack in a vacuum of five sets of disc-shaped Blumlein modules each having a center hole through which particles are sequentially accelerated. Each Blumlein module is a sandwich of two outer conductive plates that bracket an inner conductive plate positioned between two dielectric plates with different thicknesses and dielectric constants. A third dielectric core in the shape of a hollow cylinder forms a casing down the series of center holes, and it has a dielectric constant different that the two dielectric plates that sandwich the inner conductive plate. In operation, all the inner conductive plates are charged to the same DC potential relative to the outer conductive plates. Next, all the inner conductive plates are simultaneously shorted to the outer conductive plates at the outer diameters. The signal short will propagate to the inner diameters at two different rates in each Blumlein module. A faster wave propagates quicker to the third dielectric core across the dielectric plates with the closer spacing and lower dielectric constant. When the faster wave reaches the inner extents of the outer and inner conductive plates, it reflects back outward and reverses the field in that segment of the dielectric core. All the field segments in the dielectric core are then in unipolar agreement until the slower wave finally propagates to the third dielectric core across the dielectric plates with the wider spacing and higher dielectric constant. During such unipolar agreement, particles in the core are accelerated with gradients that exceed twenty megavolts per meter.

  10. Gradient remediability in linear distributed parabolic systems ...

    African Journals Online (AJOL)

    The aim of this paper is the introduction of a new concept that concerned the analysis of a large class of distributed parabolic systems. It is the general concept of gradient remediability. More precisely, we study with respect to the gradient observation, the existence of an input operator (gradient efficient actuators) ensuring ...

  11. Thermal conduction down steep temperature gradients

    International Nuclear Information System (INIS)

    Bell, A.R.; Evans, R.G.; Nicholas, D.J.

    1980-08-01

    The Fokker-Planck equation has been solved numerically in one spatial and two velocity dimensions in order to study thermal conduction in large temperature gradients. An initially cold plasma is heated at one end of the spatial grid producing temperature gradients with scale lengths of a few times the electron mean free path. The heat flow is an order of magnitude smaller than that predicted by the classical theory which is valid in the limit of small temperature gradients. (author)

  12. Sound beam manipulation based on temperature gradients

    Energy Technology Data Exchange (ETDEWEB)

    Qian, Feng [Key Laboratory of Modern Acoustics, Institute of Acoustics and School of Physics, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093 (China); School of Physics & Electronic Engineering, Changshu Institute of Technology, Changshu 215500 (China); Quan, Li; Liu, Xiaozhou, E-mail: xzliu@nju.edu.cn; Gong, Xiufen [Key Laboratory of Modern Acoustics, Institute of Acoustics and School of Physics, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093 (China)

    2015-10-28

    Previous research with temperature gradients has shown the feasibility of controlling airborne sound propagation. Here, we present a temperature gradients based airborne sound manipulation schemes: a cylindrical acoustic omnidirectional absorber (AOA). The proposed AOA has high absorption performance which can almost completely absorb the incident wave. Geometric acoustics is used to obtain the refractive index distributions with different radii, which is then utilized to deduce the desired temperature gradients. Since resonant units are not applied in the scheme, its working bandwidth is expected to be broadband. The scheme is temperature-tuned and easy to realize, which is of potential interest to fields such as noise control or acoustic cloaking.

  13. Ponderomotive force effects on temperature-gradient-driven instabilities

    International Nuclear Information System (INIS)

    Sundaram, A.K.; Hershkowitz, N.

    1992-01-01

    The modification of temperature-gradient-driven instabilities due to the presence of nonuniform radio-frequency fields near the ion cyclotron frequency is investigated in the linear regime. Employing the fluid theory, it is shown that the induced field line compression caused by ion cyclotron range of frequencies (ICRF) fields makes the net parallel compressibility positive, and thus provides a stabilizing influence on the ion-temperature-gradient-driven mode for an appropriately tailored profile of radio-frequency (rf) pressure. Concomitantly, the radial ponderomotive force generates an additional contribution via coupling between the perturbed fluid motion and the equilibrium ponderomotive force and this effect plays the role of dissipation to enhance or decrease the growth of temperature-gradient-driven modes depending upon the sign of rf pressure gradients. For decreased growth of temperature-gradient-driven instabilities, the plasma density gradients and rf pressure gradients must have opposite signs while enhancement in growth arises when both gradients have the same sign. Finally, the kinetic effects associated with these modes are briefly discussed

  14. Tolman temperature gradients in a gravitational field

    OpenAIRE

    Santiago, Jessica; Visser, Matt

    2018-01-01

    Tolman's relation for the temperature gradient in an equilibrium self-gravitating general relativistic fluid is broadly accepted within the general relativity community. However, the concept of temperature gradients in thermal equilibrium continues to cause confusion in other branches of physics, since it contradicts naive versions of the laws of classical thermodynamics. In this paper we discuss the crucial role of the universality of free fall, and how thermodynamics emphasises the great di...

  15. High gradient tests of SLAC Linear Collider Accelerator Structures

    International Nuclear Information System (INIS)

    Wang, J.W.; Deruyter, H.; Eichner, J.; Fant, K.H.; Hoag, H.A.; Koontz, R.F.; Lavine, T.; Loew, G.A.; Loewen, R.; Menegat, L.

    1994-08-01

    This paper describes the current SLAC R ampersand D program to develop room temperature accelerator structures for the Next Linear Collider (NLC). The structures are designed to operate at 11.4 GHz at an accelerating gradient in the range of 50 to 100 MV/m. In the past year a 26 cm constant-impedance traveling-wave section, a 75 cm constant-impedance traveling-wave section, and a 1.8 m traveling-wave section with detuned deflecting modes have been high-power tested. The paper presents a brief description of the RF test setup, the design and manufacturing details of the structures, and a discussion of test results including field emission, RF processing, dark current spectrum and RF breakdown

  16. A feasible DY conjugate gradient method for linear equality constraints

    Science.gov (United States)

    LI, Can

    2017-09-01

    In this paper, we propose a feasible conjugate gradient method for solving linear equality constrained optimization problem. The method is an extension of the Dai-Yuan conjugate gradient method proposed by Dai and Yuan to linear equality constrained optimization problem. It can be applied to solve large linear equality constrained problem due to lower storage requirement. An attractive property of the method is that the generated direction is always feasible and descent direction. Under mild conditions, the global convergence of the proposed method with exact line search is established. Numerical experiments are also given which show the efficiency of the method.

  17. COMPARISON OF GKS CALCULATED CRITICAL ION TEMPERATURE GRADIENTS AND ITG GROWTH RATES TO DIII-D MEASURED GRADIENTS AND DIFFUSIVITIES

    International Nuclear Information System (INIS)

    BAKER, DR; STAEBLER, GM; PETTY, CC; GREENFIELD, CM; LUCE, TC

    2003-01-01

    OAK-B135 The gyrokinetic equations predict that various drift type waves or modes can be unstable in a tokamak. For some of these modes, such as the ion temperature gradient (ITG) mode and the electron temperature gradient mode, there exists a critical gradient, above which the mode is unstable. Since the existence of unstable modes can cause increased transport, plasmas which are centrally heated tend to increase in temperature gradient until the modes become unstable. Under some conditions the increased transport can fix the gradient at the critical value. here they present a comparison between the measured ion temperature gradients and the critical gradient as calculated by a gyrokinetic linear stability (GKS) code. They also present the maximum linear growth rate as calculated by this code for comparison to experimentally derived transport coefficients. The results show that for low confinement mode (L-mode) discharges, the measured ion temperature gradient is significantly greater than the GKS calculated critical gradient over a large region of the plasma. This is the same region of the plasma where the ion thermal diffusivity is large. For high confinement mode (H-mode) discharges the ion temperature gradient is closer to the critical gradient, but often still greater than the critical gradient over some region. For the best H-mode discharges, the ion temperature is less than or equal to the critical gradient over the whole plasma. In general they find that the position in the plasma where the ion thermal diffusivity starts to increase rapidly is where the maximum linear growth rate is greater than the E x B shearing rate

  18. Air temperature gradient in large industrial hall

    Science.gov (United States)

    Karpuk, Michał; Pełech, Aleksander; Przydróżny, Edward; Walaszczyk, Juliusz; Szczęśniak, Sylwia

    2017-11-01

    In the rooms with dominant sensible heat load, volume airflow depends on many factors incl. pre-established temperature difference between exhaust and supply airflow. As the temperature difference is getting higher, airflow volume drops down, consequently, the cost of AHU is reduced. In high industrial halls with air exhaust grids located under the ceiling additional temperature gradient above working zone should be taken into consideration. In this regard, experimental research of the vertical air temperature gradient in high industrial halls were carried out for the case of mixing ventilation system The paper presents the results of air temperature distribution measurements in high technological hall (mechanically ventilated) under significant sensible heat load conditions. The supply airflow was delivered to the hall with the help of the swirl diffusers while exhaust grids were located under the hall ceiling. Basing on the air temperature distribution measurements performed on the seven pre-established levels, air temperature gradient in the area between 2.0 and 7.0 m above the floor was calculated and analysed.

  19. Voltammetry under a Controlled Temperature Gradient

    Directory of Open Access Journals (Sweden)

    Jan Krejci, Jr.

    2010-07-01

    Full Text Available Electrochemical measurements are generally done under isothermal conditions. Here we report on the application of a controlled temperature gradient between the working electrode surface and the solution. Using electrochemical sensors prepared on ceramic materials with extremely high specific heat conductivity, the temperature gradient between the electrode and solution was applied here as a second driving force. This application of the Soret phenomenon increases the mass transfer in the Nernst layer and enables more accurate control of the electrode response enhancement by a combination of diffusion and thermal diffusion. We have thus studied the effect of Soret phenomenon by cyclic voltammetry measurements in ferro/ferricyanide. The time dependence of sensor response disappears when applying the Soret phenomenon, and the complicated shape of the cyclic voltammogram is replaced by a simple exponential curve. We have derived the Cotrell-Soret equation describing the steady-state response with an applied temperature difference.

  20. Is the temperature gradient or the derivative of the density gradient responsible for drift solitons?

    International Nuclear Information System (INIS)

    Salat, A.

    1990-01-01

    In conventional drift wave theory the density gradient κ n =d lnn/dχ determines the linear phase velocity, and the (electron) temperature gradient κ T =d lnT/dχ gives rise to a nonlinear term which leads to the existence of soliton-type solutions and solitary waves. LAKHIN, MIKHAILOVSKI and ONISHCHENKO, Phys. Lett. A 119, 348 (1987) and Plasma Phys. and Contr. Fus. 30, 457 (1988), recently claimed that it is not κ T but essentially the derivative of the density gradient, dκ n /dχ, that is relevant. This claim is refuted by means of an expansion scheme in ε=eΦ/T≤1, where Φ is the drift wave potential. (orig.)

  1. Ion temperature gradient mode driven solitons and shocks

    Science.gov (United States)

    Zakir, U.; Adnan, Muhammad; Haque, Q.; Qamar, Anisa; Mirza, Arshad M.

    2016-04-01

    Ion temperature gradient (ITG) driven solitons and shocks are studied in a plasma having gradients in the equilibrium number density and equilibrium ion temperature. In the linear regime, it is found that the ion temperature and the ratio of the gradient scale lengths, ηi=Ln/LT , affect both the real frequency and the growth rate of the ITG driven wave instability. In the nonlinear regime, for the first time we derive a Korteweg de Vries-type equation for the ITG mode, which admits solitary wave solution. It is found that the ITG mode supports only compressive solitons. Further, it is noticed that the soliton amplitude and width are sensitive to the parameter ηi=Ln/LT . Second, in the presence of dissipation in the system, we obtain a Burger type equation, which admits the shock wave solution. This work may be useful to understand the low frequency electrostatic modes in inhomogeneous electron-ion plasma having density and ion temperature gradients. For illustration, the model has been applied to tokamak plasma.

  2. Coupled ion temperature gradient and trapped electron mode to electron temperature gradient mode gyrokinetic simulations

    International Nuclear Information System (INIS)

    Waltz, R. E.; Candy, J.; Fahey, M.

    2007-01-01

    Electron temperature gradient (ETG) transport is conventionally defined as the electron energy transport at high wave number (high-k) where ions are adiabatic and there can be no ion energy or plasma transport. Previous gyrokinetic simulations have assumed adiabatic ions (ETG-ai) and work on the small electron gyroradius scale. However such ETG-ai simulations with trapped electrons often do not have well behaved nonlinear saturation unless fully kinetic ions (ki) and proper ion scale zonal flow modes are included. Electron energy transport is separated into ETG-ki at high-k and ion temperature gradient-trapped electron mode (ITG/TEM) at low-k. Expensive (more computer-intensive), high-resolution, large-ion-scale flux-tube simulations coupling ITG/TEM and ETG-ki turbulence are presented. These require a high effective Reynolds number R≡[k(max)/k(min)] 2 =μ 2 , where μ=[ρ si /ρ si ] is the ratio of ion to electron gyroradii. Compute times scale faster than μ 3 . By comparing the coupled expensive simulations with (1) much cheaper (less compute-intensive), uncoupled, high-resolution, small, flux-tube ETG-ki and with (2) uncoupled low-resolution, large, flux-tube ITG/TEM simulations, and also by artificially turning ''off'' the low-k or high-k drives, it appears that ITG/TEM and ETG-ki transport are not strongly coupled so long as ETG-ki can access some nonadiabatic ion scale zonal flows and both high-k and low-k are linearly unstable. However expensive coupled simulations are required for physically accurate k-spectra of the transport and turbulence. Simulations with μ≥30 appear to represent the physical range μ>40. ETG-ki transport measured in ion gyro-Bohm units is weakly dependent on μ. For the mid-radius core tokamak plasma parameters studied, ETG-ki is about 10% of the electron energy transport, which in turn is about 30% of the total energy transport (with negligible ExB shear). However at large ExB shear sufficient to quench the low-k ITG

  3. Local beam angle optimization with linear programming and gradient search

    International Nuclear Information System (INIS)

    Craft, David

    2007-01-01

    The optimization of beam angles in IMRT planning is still an open problem, with literature focusing on heuristic strategies and exhaustive searches on discrete angle grids. We show how a beam angle set can be locally refined in a continuous manner using gradient-based optimization in the beam angle space. The gradient is derived using linear programming duality theory. Applying this local search to 100 random initial angle sets of a phantom pancreatic case demonstrates the method, and highlights the many-local-minima aspect of the BAO problem. Due to this function structure, we recommend a search strategy of a thorough global search followed by local refinement at promising beam angle sets. Extensions to nonlinear IMRT formulations are discussed. (note)

  4. Calculation of Vertical Temperature Gradients in Heated Rooms

    DEFF Research Database (Denmark)

    Overby, H.; Steen-Thøde, Mogens

    This paper deals with a simple model which predicts the vertical temperature gradient in a heated room. The gradient is calculated from a dimensionless temperature profile which is determined by two room air temperatures only, the mean temperature in the occupied zone and the mean temperature...

  5. Temperature-gradient instability induced by conducting end walls

    International Nuclear Information System (INIS)

    Berk, H.L.; Ryutov, D.D.; Tsidulko, Yu.A.

    1990-04-01

    A new rapidly growing electron temperature gradient instability is found for a plasma in contact with a conducting wall. The linear instability analysis is presented and speculations are given for its nonlinear consequences. This instability illustrates that conducting walls can produce effects that are detrimental to plasma confinement. This mode should be of importance in open-ended systems including astrophysical plasmas, mirror machines and at the edge of tokamaks where field lines are open and are connected to limiters or divertors. 16 refs., 2 figs

  6. Ion temperature gradient modes in toroidal helical systems

    Energy Technology Data Exchange (ETDEWEB)

    Kuroda, T. [Graduate University for Advanced Studies, Toki, Gifu (Japan); Sugama, H.; Kanno, R.; Okamoto, M.

    2000-04-01

    Linear properties of ion temperature gradient (ITG) modes in helical systems are studied. The real frequency, growth rate, and eigenfunction are obtained for both stable and unstable cases by solving a kinetic integral equation with proper analytic continuation performed in the complex frequency plane. Based on the model magnetic configuration for toroidal helical systems like the Large Helical Device (LHD), dependences of the ITG mode properties on various plasma equilibrium parameters are investigated. Particularly, relative effects of {nabla}B-curvature drifts driven by the toroidicity and by the helical ripples are examined in order to compare the ITG modes in helical systems with those in tokamaks. (author)

  7. Ion temperature gradient modes in toroidal helical systems

    International Nuclear Information System (INIS)

    Kuroda, T.; Sugama, H.; Kanno, R.; Okamoto, M.

    2000-04-01

    Linear properties of ion temperature gradient (ITG) modes in helical systems are studied. The real frequency, growth rate, and eigenfunction are obtained for both stable and unstable cases by solving a kinetic integral equation with proper analytic continuation performed in the complex frequency plane. Based on the model magnetic configuration for toroidal helical systems like the Large Helical Device (LHD), dependences of the ITG mode properties on various plasma equilibrium parameters are investigated. Particularly, relative effects of ∇B-curvature drifts driven by the toroidicity and by the helical ripples are examined in order to compare the ITG modes in helical systems with those in tokamaks. (author)

  8. Mechanisms of detonation formation due to a temperature gradient

    Science.gov (United States)

    Kapila, A. K.; Schwendeman, D. W.; Quirk, J. J.; Hawa, T.

    2002-12-01

    Emergence of a detonation in a homogeneous, exothermically reacting medium can be deemed to occur in two phases. The first phase processes the medium so as to create conditions ripe for the onset of detonation. The actual events leading up to preconditioning may vary from one experiment to the next, but typically, at the end of this stage the medium is hot and in a state of nonuniformity. The second phase consists of the actual formation of the detonation wave via chemico-gasdynamic interactions. This paper considers an idealized medium with simple, rate-sensitive kinetics for which the preconditioned state is modelled as one with an initially prescribed linear gradient of temperature. Accurate and well-resolved numerical computations are carrried out to determine the mode of detonation formation as a function of the size of the initial gradient. For shallow gradients, the result is a decelerating supersonic reaction wave, a weak detonation, whose trajectory is dictated by the initial temperature profile, with only weak intervention from hydrodynamics. If the domain is long enough, or the gradient less shallow, the wave slows down to the Chapman-Jouguet speed and undergoes a swift transition to the ZND structure. For sharp gradients, gasdynamic nonlinearity plays a much stronger role. Now the path to detonation is through an accelerating pulse that runs ahead of the reaction wave and rearranges the induction-time distribution there to one that bears little resemblance to that corresponding to the initial temperature gradient. The pulse amplifies and steepens, transforming itself into a complex consisting of a lead shock, an induction zone, and a following fast deflagration. As the pulse advances, its three constituent entities attain progressively higher levels of mutual coherence, to emerge as a ZND detonation. For initial gradients that are intermediate in size, aspects of both the extreme scenarios appear in the path to detonation. The novel aspect of this study

  9. Density Gradient Stabilization of Electron Temperature Gradient Driven Turbulence in a Spherical Tokamak

    International Nuclear Information System (INIS)

    Ren, Y.; Kaye, S.M.; Mazzucato, E.; Guttenfelder, W.; Bell, R.E.; Domier, C.W.; LeBlanc, B.P.; Lee, K.C.; Luhmann, N.C. Jr.; Smith, D.R.; Yuh, H.

    2011-01-01

    In this letter we report the first clear experimental observation of density gradient stabilization of electron temperature gradient driven turbulence in a fusion plasma. It is observed that longer wavelength modes, k (perpendicular) ρ s ∼< 10, are most stabilized by density gradient, and the stabilization is accompanied by about a factor of two decrease in the plasma effective thermal diffusivity.

  10. Solving large mixed linear models using preconditioned conjugate gradient iteration.

    Science.gov (United States)

    Strandén, I; Lidauer, M

    1999-12-01

    Continuous evaluation of dairy cattle with a random regression test-day model requires a fast solving method and algorithm. A new computing technique feasible in Jacobi and conjugate gradient based iterative methods using iteration on data is presented. In the new computing technique, the calculations in multiplication of a vector by a matrix were recorded to three steps instead of the commonly used two steps. The three-step method was implemented in a general mixed linear model program that used preconditioned conjugate gradient iteration. Performance of this program in comparison to other general solving programs was assessed via estimation of breeding values using univariate, multivariate, and random regression test-day models. Central processing unit time per iteration with the new three-step technique was, at best, one-third that needed with the old technique. Performance was best with the test-day model, which was the largest and most complex model used. The new program did well in comparison to other general software. Programs keeping the mixed model equations in random access memory required at least 20 and 435% more time to solve the univariate and multivariate animal models, respectively. Computations of the second best iteration on data took approximately three and five times longer for the animal and test-day models, respectively, than did the new program. Good performance was due to fast computing time per iteration and quick convergence to the final solutions. Use of preconditioned conjugate gradient based methods in solving large breeding value problems is supported by our findings.

  11. Impedance Characterization and Modeling of Lithium-Ion Batteries Considering the Internal Temperature Gradient

    Directory of Open Access Journals (Sweden)

    Haifeng Dai

    2018-01-01

    Full Text Available Battery impedance is essential to the management of lithium-ion batteries for electric vehicles (EVs, and impedance characterization can help to monitor and predict the battery states. Many studies have been undertaken to investigate impedance characterization and the factors that influence impedance. However, few studies regarding the influence of the internal temperature gradient, which is caused by heat generation during operation, have been presented. We have comprehensively studied the influence of the internal temperature gradient on impedance characterization and the modeling of battery impedance, and have proposed a discretization model to capture battery impedance characterization considering the temperature gradient. Several experiments, including experiments with artificial temperature gradients, are designed and implemented to study the influence of the internal temperature gradient on battery impedance. Based on the experimental results, the parameters of the non-linear impedance model are obtained, and the relationship between the parameters and temperature is further established. The experimental results show that the temperature gradient will influence battery impedance and the temperature distribution can be considered to be approximately linear. The verification results indicate that the proposed discretization model has a good performance and can be used to describe the actual characterization of the battery with an internal temperature gradient.

  12. Theory of neoclassical ion temperature-gradient-driven turbulence

    Science.gov (United States)

    Kim, Y. B.; Diamond, P. H.; Biglari, H.; Callen, J. D.

    1991-02-01

    The theory of collisionless fluid ion temperature-gradient-driven turbulence is extended to the collisional banana-plateau regime. Neoclassical ion fluid evolution equations are developed and utilized to investigate linear and nonlinear dynamics of negative compressibility ηi modes (ηi≡d ln Ti/d ln ni). In the low-frequency limit (ωB2p. As a result of these modifications, growth rates are dissipative, rather than sonic, and radial mode widths are broadened [i.e., γ˜k2∥c2s(ηi -(2)/(3) )/μi, Δx˜ρs(Bt/Bp) (1+ηi)1/2, where k∥, cs, and ρs are the parallel wave number, sound velocity, and ion gyroradius, respectively]. In the limit of weak viscous damping, enhanced neoclassical polarization persists and broadens radial mode widths. Linear mixing length estimates and renormalized turbulence theory are used to determine the ion thermal diffusivity in both cases. In both cases, a strong favorable dependence of ion thermal diffusivity on Bp (and hence plasma current) is exhibited. Furthermore, the ion thermal diffusivity for long wavelength modes exhibits favorable density scaling. The possible role of neoclassical ion temperature-gradient-driven modes in edge fluctuations and transport in L-phase discharges and the L to H transition is discussed.

  13. Self-induced temperature gradients in Brownian dynamics

    Science.gov (United States)

    Devine, Jack; Jack, M. W.

    2017-12-01

    Brownian systems often surmount energy barriers by absorbing and emitting heat to and from their local environment. Usually, the temperature gradients created by this heat exchange are assumed to dissipate instantaneously. Here we relax this assumption to consider the case where Brownian dynamics on a time-independent potential can lead to self-induced temperature gradients. In the same way that externally imposed temperature gradients can cause directed motion, these self-induced gradients affect the dynamics of the Brownian system. The result is a coupling between the local environment and the Brownian subsystem. We explore the resulting dynamics and thermodynamics of these coupled systems and develop a robust method for numerical simulation. In particular, by focusing on one-dimensional situations, we show that self-induced temperature gradients reduce barrier-crossing rates. We also consider a heat engine and a heat pump based on temperature gradients induced by a Brownian system in a nonequilibrium potential.

  14. An optimized resistor pattern for temperature gradient control in microfluidics

    Science.gov (United States)

    Selva, Bertrand; Marchalot, Julien; Jullien, Marie-Caroline

    2009-06-01

    In this paper, we demonstrate the possibility of generating high-temperature gradients with a linear temperature profile when heating is provided in situ. Thanks to improved optimization algorithms, the shape of resistors, which constitute the heating source, is optimized by applying the genetic algorithm NSGA-II (acronym for the non-dominated sorting genetic algorithm) (Deb et al 2002 IEEE Trans. Evol. Comput. 6 2). Experimental validation of the linear temperature profile within the cavity is carried out using a thermally sensitive fluorophore, called Rhodamine B (Ross et al 2001 Anal. Chem. 73 4117-23, Erickson et al 2003 Lab Chip 3 141-9). The high level of agreement obtained between experimental and numerical results serves to validate the accuracy of this method for generating highly controlled temperature profiles. In the field of actuation, such a device is of potential interest since it allows for controlling bubbles or droplets moving by means of thermocapillary effects (Baroud et al 2007 Phys. Rev. E 75 046302). Digital microfluidics is a critical area in the field of microfluidics (Dreyfus et al 2003 Phys. Rev. Lett. 90 14) as well as in the so-called lab-on-a-chip technology. Through an example, the large application potential of such a technique is demonstrated, which entails handling a single bubble driven along a cavity using simple and tunable embedded resistors.

  15. An optimized resistor pattern for temperature gradient control in microfluidics

    International Nuclear Information System (INIS)

    Selva, Bertrand; Marchalot, Julien; Jullien, Marie-Caroline

    2009-01-01

    In this paper, we demonstrate the possibility of generating high-temperature gradients with a linear temperature profile when heating is provided in situ. Thanks to improved optimization algorithms, the shape of resistors, which constitute the heating source, is optimized by applying the genetic algorithm NSGA-II (acronym for the non-dominated sorting genetic algorithm) (Deb et al 2002 IEEE Trans. Evol. Comput. 6 2). Experimental validation of the linear temperature profile within the cavity is carried out using a thermally sensitive fluorophore, called Rhodamine B (Ross et al 2001 Anal. Chem. 73 4117–23, Erickson et al 2003 Lab Chip 3 141–9). The high level of agreement obtained between experimental and numerical results serves to validate the accuracy of this method for generating highly controlled temperature profiles. In the field of actuation, such a device is of potential interest since it allows for controlling bubbles or droplets moving by means of thermocapillary effects (Baroud et al 2007 Phys. Rev. E 75 046302). Digital microfluidics is a critical area in the field of microfluidics (Dreyfus et al 2003 Phys. Rev. Lett. 90 14) as well as in the so-called lab-on-a-chip technology. Through an example, the large application potential of such a technique is demonstrated, which entails handling a single bubble driven along a cavity using simple and tunable embedded resistors

  16. Calculation of the interfacial tension of the methane-water system with the linear gradient theory

    DEFF Research Database (Denmark)

    Schmidt, Kurt A. G.; Folas, Georgios; Kvamme, Bjørn

    2007-01-01

    The linear gradient theory (LGT) combined with the Soave-Redlich-Kwong (SRK EoS) and the Peng-Robinson (PR EoS) equations of state has been used to correlate the interfacial tension data of the methane-water system. The pure component influence parameters and the binary interaction coefficient...... for the mixture influence parameter have been obtained for this system. The model was successfully applied to correlate the interfacial tension data set to within 2.3% for the linear gradient theory and the SRK EoS (LGT-SRK) and 2.5% for the linear gradient theory and PE EoS (LGT-PR). A posteriori comparison...... of data not used in the parameterisation were to within 3.2% for the LGT-SRK model and 2.7% for the LGT-PR model. An exhaustive literature review resulted in a large database for the investigation which covers a wide range of temperature and pressures. The results support the success of the linear...

  17. PROPERTIES OF INTERSTELLAR TURBULENCE FROM GRADIENTS OF LINEAR POLARIZATION MAPS

    International Nuclear Information System (INIS)

    Burkhart, Blakesley; Lazarian, A.; Gaensler, B. M.

    2012-01-01

    Faraday rotation of linearly polarized radio signals provides a very sensitive probe of fluctuations in the interstellar magnetic field and ionized gas density resulting from magnetohydrodynamic (MHD) turbulence. We used a set of statistical tools to analyze images of the spatial gradient of linearly polarized radio emission (|∇P|) for both observational data from a test image of the Southern Galactic Plane Survey (SGPS) and isothermal three-dimensional simulations of MHD turbulence. Visually, in both observations and simulations, a complex network of filamentary structures is seen. Our analysis shows that the filaments in |∇P| can be produced both by interacting shocks and random fluctuations characterizing the non-differentiable field of MHD turbulence. The latter dominates for subsonic turbulence, while the former is only present in supersonic turbulence. We show that supersonic and subsonic turbulence exhibit different distributions as well as different morphologies in the maps of |∇P|. Particularly, filaments produced by shocks show a characteristic 'double jump' profile at the sites of shock fronts resulting from delta function-like increases in the density and/or magnetic field, while those produced by subsonic turbulence show a single jump profile. In order to quantitatively characterize these differences, we use the topology tool known as the genus curve as well as the probability distribution function moments of the image distribution. We find that higher values for the moments correspond to cases of |∇P| with larger sonic Mach numbers. The genus analysis of the supersonic simulations of |∇P| reveals a 'swiss cheese' topology, while the subsonic cases have characteristics of a 'clump' topology. Based on the analysis of the genus and the higher order moments, the SGPS test region data have a distribution and morphology that match subsonic- to transonic-type turbulence, which confirms what is now expected for the warm ionized medium.

  18. PROPERTIES OF INTERSTELLAR TURBULENCE FROM GRADIENTS OF LINEAR POLARIZATION MAPS

    Energy Technology Data Exchange (ETDEWEB)

    Burkhart, Blakesley; Lazarian, A. [Astronomy Department, University of Wisconsin, Madison, 475 N. Charter St., WI 53711 (United States); Gaensler, B. M. [Sydney Institute for Astronomy, School of Physics, University of Sydney, NSW 2006 (Australia)

    2012-04-20

    Faraday rotation of linearly polarized radio signals provides a very sensitive probe of fluctuations in the interstellar magnetic field and ionized gas density resulting from magnetohydrodynamic (MHD) turbulence. We used a set of statistical tools to analyze images of the spatial gradient of linearly polarized radio emission (|{nabla}P|) for both observational data from a test image of the Southern Galactic Plane Survey (SGPS) and isothermal three-dimensional simulations of MHD turbulence. Visually, in both observations and simulations, a complex network of filamentary structures is seen. Our analysis shows that the filaments in |{nabla}P| can be produced both by interacting shocks and random fluctuations characterizing the non-differentiable field of MHD turbulence. The latter dominates for subsonic turbulence, while the former is only present in supersonic turbulence. We show that supersonic and subsonic turbulence exhibit different distributions as well as different morphologies in the maps of |{nabla}P|. Particularly, filaments produced by shocks show a characteristic 'double jump' profile at the sites of shock fronts resulting from delta function-like increases in the density and/or magnetic field, while those produced by subsonic turbulence show a single jump profile. In order to quantitatively characterize these differences, we use the topology tool known as the genus curve as well as the probability distribution function moments of the image distribution. We find that higher values for the moments correspond to cases of |{nabla}P| with larger sonic Mach numbers. The genus analysis of the supersonic simulations of |{nabla}P| reveals a 'swiss cheese' topology, while the subsonic cases have characteristics of a 'clump' topology. Based on the analysis of the genus and the higher order moments, the SGPS test region data have a distribution and morphology that match subsonic- to transonic-type turbulence, which confirms what is now

  19. A general strategy for performing temperature-programming in high performance liquid chromatography--prediction of segmented temperature gradients.

    Science.gov (United States)

    Wiese, Steffen; Teutenberg, Thorsten; Schmidt, Torsten C

    2011-09-28

    In the present work it is shown that the linear elution strength (LES) model which was adapted from temperature-programming gas chromatography (GC) can also be employed to predict retention times for segmented-temperature gradients based on temperature-gradient input data in liquid chromatography (LC) with high accuracy. The LES model assumes that retention times for isothermal separations can be predicted based on two temperature gradients and is employed to calculate the retention factor of an analyte when changing the start temperature of the temperature gradient. In this study it was investigated whether this approach can also be employed in LC. It was shown that this approximation cannot be transferred to temperature-programmed LC where a temperature range from 60°C up to 180°C is investigated. Major relative errors up to 169.6% were observed for isothermal retention factor predictions. In order to predict retention times for temperature gradients with different start temperatures in LC, another relationship is required to describe the influence of temperature on retention. Therefore, retention times for isothermal separations based on isothermal input runs were predicted using a plot of the natural logarithm of the retention factor vs. the inverse temperature and a plot of the natural logarithm of the retention factor vs. temperature. It could be shown that a plot of lnk vs. T yields more reliable isothermal/isocratic retention time predictions than a plot of lnk vs. 1/T which is usually employed. Hence, in order to predict retention times for temperature-gradients with different start temperatures in LC, two temperature gradient and two isothermal measurements have been employed. In this case, retention times can be predicted with a maximal relative error of 5.5% (average relative error: 2.9%). In comparison, if the start temperature of the simulated temperature gradient is equal to the start temperature of the input data, only two temperature-gradient

  20. Near-surface temperature gradient in a coastal upwelling regime

    Science.gov (United States)

    Maske, H.; Ochoa, J.; Almeda-Jauregui, C. O.; Ruiz-de la Torre, M. C.; Cruz-López, R.; Villegas-Mendoza, J. R.

    2014-08-01

    In oceanography, a near homogeneous mixed layer extending from the surface to a seasonal thermocline is a common conceptual basis in physics, chemistry, and biology. In a coastal upwelling region 3 km off the coast in the Mexican Pacific, we measured vertical density gradients with a free-rising CTD and temperature gradients with thermographs at 1, 3, and 5 m depths logging every 5 min during more than a year. No significant salinity gradient was observed down to 10 m depth, and the CTD temperature and density gradients showed no pronounced discontinuity that would suggest a near-surface mixed layer. Thermographs generally logged decreasing temperature with depth with gradients higher than 0.2 K m-1 more than half of the time in the summer between 1 and 3 m, 3 and 5 m and in the winter between 1 and 3 m. Some negative temperature gradients were present and gradients were generally highly variable in time with high peaks lasting fractions of hours to hours. These temporal changes were too rapid to be explained by local heating or cooling. The pattern of positive and negative peaks might be explained by vertical stacks of water layers of different temperatures and different horizontal drift vectors. The observed near-surface gradient has implications for turbulent wind energy transfer, vertical exchange of dissolved and particulate water constituents, the interpretation of remotely sensed SST, and horizontal wind-induced transport.

  1. Subsurface temperatures and geothermal gradients on the North Slope, Alaska

    Science.gov (United States)

    Collett, Timothy S.; Bird, Kenneth J.; Magoon, Leslie B.

    1989-01-01

    Geothermal gradients as interpreted from a series of high-resolution stabilized well-bore-temperature surveys from 46 North Slope, Alaska, wells vary laterally and vertically throughout the near-surface sediment (0-2,000 m). The data from these surveys have been used in conjunction with depths of ice-bearing permafrost, as interpreted from 102 well logs, to project geothermal gradients within and below the ice-bearing permafrost sequence. The geothermal gradients calculated from the projected temperature profiles are similar to the geothermal gradients measured in the temperature surveys. Measured and projected geothermal gradients in the ice-bearing permafrost sequence range from 1.5??C/100m in the Prudhoe Bay area to 5.1??C/100m in the National Petroleum Reserve in Alaska (NPRA).

  2. A linear temperature-to-frequency converter

    DEFF Research Database (Denmark)

    Løvborg, Leif

    1965-01-01

    , and that the maximum value of the temperature-frequency coefficient beta in this point is-1/3 alpha, where a is the temperature coefficient of the thermistor at the corresponding temperature. Curves showing the range in which the converter is expected to be linear to within plusmn0.1 degC are given. A laboratory......-built converter having beta = 1.0% degC-1 at 25degC is found to be linear to within plusmn0. 1 degC from 10 to 40degC....

  3. Theory of ion-temperature-gradient-driven turbulence in tokamaks

    International Nuclear Information System (INIS)

    Lee, G.S.; Diamond, P.H.

    1986-01-01

    An analytic theory of ion-temperature-gradient-driven turbulence in tokamaks is presented. Energy-conserving, renormalized spectrum equations are derived and solved in order to obtain the spectra of stationary ion-temperature-gradient-driven turbulence. Corrections to mixing-length estimates are calculated explicitly. The resulting anomalous ion thermal diffusivity chi/sub i/ = 0.4[(π/2)ln(1 + eta/sub i/)] 2 [(1 + eta/sub i/)/tau] 2 rho/sub s/ 2 c/sub s//L/sub s/ is derived and is found to be consistent with experimentally-deduced thermal diffusivities. The associated electron thermal diffusivity and particle and heat-pinch velocities are also calculated. The effect of impurity gradients on saturated ion-temperature-gradient-driven turbulence is discussed and a related explanation of density profile steepening during Z-mode operation is proposed. 35 refs., 4 figs

  4. Identifying Time Periods of Minimal Thermal Gradient for Temperature-Driven Structural Health Monitoring.

    Science.gov (United States)

    Reilly, John; Glisic, Branko

    2018-03-01

    Temperature changes play a large role in the day to day structural behavior of structures, but a smaller direct role in most contemporary Structural Health Monitoring (SHM) analyses. Temperature-Driven SHM will consider temperature as the principal driving force in SHM, relating a measurable input temperature to measurable output generalized strain (strain, curvature, etc.) and generalized displacement (deflection, rotation, etc.) to create three-dimensional signatures descriptive of the structural behavior. Identifying time periods of minimal thermal gradient provides the foundation for the formulation of the temperature-deformation-displacement model. Thermal gradients in a structure can cause curvature in multiple directions, as well as non-linear strain and stress distributions within the cross-sections, which significantly complicates data analysis and interpretation, distorts the signatures, and may lead to unreliable conclusions regarding structural behavior and condition. These adverse effects can be minimized if the signatures are evaluated at times when thermal gradients in the structure are minimal. This paper proposes two classes of methods based on the following two metrics: (i) the range of raw temperatures on the structure, and (ii) the distribution of the local thermal gradients, for identifying time periods of minimal thermal gradient on a structure with the ability to vary the tolerance of acceptable thermal gradients. The methods are tested and validated with data collected from the Streicker Bridge on campus at Princeton University.

  5. Temperature dependency of silicon structures for magnetic field gradient sensing

    Science.gov (United States)

    Dabsch, Alexander; Rosenberg, Christoph; Stifter, Michael; Keplinger, Franz

    2018-02-01

    This work describes the temperature dependence of two sensors for magnetic field gradient sensors and demonstrates a structure to compensate for the drift of resonance frequency over a wide temperature range. The temperature effect of the sensing element is based on internal stresses induced by the thermal expansion of material, therefore FEM is used to determine the change of the eigenvalues of the sensing structure. The experimental setup utilizes a Helmholtz coil system to generate the magnetic field and to excite the MEMS structure with Lorentz forces. The MEMS structure is placed on a plate heated with resistors and cooled by a Peltier element to control the plate temperature. In the second part, we describe how one can exploit temperature sensitivity for temperature measurements and we show the opportunity to include the temperature effect to increase the sensitivity of single-crystal silicon made flux density gradient sensors.

  6. Geothermal gradients in Iraqi Kurdistan deduced from bottom hole temperatures

    OpenAIRE

    Abdula, Rzger A.

    2016-01-01

    Bottom hole temperature (BHT) data from 12 oil wells in Iraqi Kurdistan were used to obtain the thermal trend of Iraqi Kurdistan. Due to differences in thermal conductivity of rocks and groundwater movement, variations in geothermal gradients were observed. The highest geothermal gradient (29.2 °C/km) was found for well Taq Taq-8 in the Low Folded Zone (central part of the area). The lowest geothermal gradients (14.9 °C/km) were observed for well Bekhme-1 in the High Folded Zone (northern and...

  7. Identifying Time Periods of Minimal Thermal Gradient for Temperature-Driven Structural Health Monitoring

    Directory of Open Access Journals (Sweden)

    John Reilly

    2018-03-01

    Full Text Available Temperature changes play a large role in the day to day structural behavior of structures, but a smaller direct role in most contemporary Structural Health Monitoring (SHM analyses. Temperature-Driven SHM will consider temperature as the principal driving force in SHM, relating a measurable input temperature to measurable output generalized strain (strain, curvature, etc. and generalized displacement (deflection, rotation, etc. to create three-dimensional signatures descriptive of the structural behavior. Identifying time periods of minimal thermal gradient provides the foundation for the formulation of the temperature–deformation–displacement model. Thermal gradients in a structure can cause curvature in multiple directions, as well as non-linear strain and stress distributions within the cross-sections, which significantly complicates data analysis and interpretation, distorts the signatures, and may lead to unreliable conclusions regarding structural behavior and condition. These adverse effects can be minimized if the signatures are evaluated at times when thermal gradients in the structure are minimal. This paper proposes two classes of methods based on the following two metrics: (i the range of raw temperatures on the structure, and (ii the distribution of the local thermal gradients, for identifying time periods of minimal thermal gradient on a structure with the ability to vary the tolerance of acceptable thermal gradients. The methods are tested and validated with data collected from the Streicker Bridge on campus at Princeton University.

  8. A penalized linear and nonlinear combined conjugate gradient method for the reconstruction of fluorescence molecular tomography.

    Science.gov (United States)

    Shang, Shang; Bai, Jing; Song, Xiaolei; Wang, Hongkai; Lau, Jaclyn

    2007-01-01

    Conjugate gradient method is verified to be efficient for nonlinear optimization problems of large-dimension data. In this paper, a penalized linear and nonlinear combined conjugate gradient method for the reconstruction of fluorescence molecular tomography (FMT) is presented. The algorithm combines the linear conjugate gradient method and the nonlinear conjugate gradient method together based on a restart strategy, in order to take advantage of the two kinds of conjugate gradient methods and compensate for the disadvantages. A quadratic penalty method is adopted to gain a nonnegative constraint and reduce the illposedness of the problem. Simulation studies show that the presented algorithm is accurate, stable, and fast. It has a better performance than the conventional conjugate gradient-based reconstruction algorithms. It offers an effective approach to reconstruct fluorochrome information for FMT.

  9. Conjugate gradient type methods for linear systems with complex symmetric coefficient matrices

    Science.gov (United States)

    Freund, Roland

    1989-01-01

    We consider conjugate gradient type methods for the solution of large sparse linear system Ax equals b with complex symmetric coefficient matrices A equals A(T). Such linear systems arise in important applications, such as the numerical solution of the complex Helmholtz equation. Furthermore, most complex non-Hermitian linear systems which occur in practice are actually complex symmetric. We investigate conjugate gradient type iterations which are based on a variant of the nonsymmetric Lanczos algorithm for complex symmetric matrices. We propose a new approach with iterates defined by a quasi-minimal residual property. The resulting algorithm presents several advantages over the standard biconjugate gradient method. We also include some remarks on the obvious approach to general complex linear systems by solving equivalent real linear systems for the real and imaginary parts of x. Finally, numerical experiments for linear systems arising from the complex Helmholtz equation are reported.

  10. Characterisation of temperature gradient driven turbulence and transport

    International Nuclear Information System (INIS)

    Ottaviani, M.A.

    2002-01-01

    We report on extensive numerical studies aimed at characterising various aspects of temperature gradient driven turbulence. We specifically discuss results from 3D fluid models of ETG and of ITG turbulence, and results from a 2D+2D gyrokinetic model of trapped ion turbulence. Global transport exhibits gyro-Bohm scaling in both the ETG and the ITG model. The conductivity of the ETG model decreases weakly with beta. The heat transport is due to the EXB advection, the effect of the magnetic flutter is negligible. However the transport level is much lower than experimentally observed. In both 3D models the correlation lengths scale with the gyroradius, but they are typically a factor 10 larger. Vortices are elongated but their aspect ratio is independent of the gyroradius. Their radial size is limited by LD. The trapped ion model gives larger vortices due to the absence of LD from passing ions. Avalanches are observed in all the models, the weakest occurring in the ITG system. Their range increases with gyroradius, but more weakly than linearly. Finally, ZFs can limit the range of the avalanches, which explains why avalanches are weaker in the ITG model which is more sensitive to ZFs. (author)

  11. Increase of volume swelling by a temperature gradient

    International Nuclear Information System (INIS)

    Herschbach, K.; Schneider, W.; Stober, T.

    1996-11-01

    The temperature gradient in the cladding of a Fast Reactor fuel pin leads to increased dilatation compared to material irradiations. Investigations of a specially designed fuel pin reached the conclusion that the cause is enhanced volume swelling. It is induced by He-bubbles, which migrate upwards the temperature gradient and coalesce. The critical size of nuclei for void swelling is thus reached much faster. Consequently, the p in deformation is larger than expected from materials irradiations, in the present case (DIN 1.4981 sa) by about 50%. (orig.) [de

  12. Anomalous plasma transport due to electron temperature gradient instability

    International Nuclear Information System (INIS)

    Tokuda, Sinji; Ito, Hiroshi; Kamimura, Tetsuo.

    1979-01-01

    The collisionless drift wave instability driven by an electron temperature inhomogeneity (electron temperature gradient instability) and the enhanced transport processes associated with it are studied using a two-and-a-half dimensional particle simulation code. The simulation results show that quasilinear diffusion in phase space is an important mechanism for the saturation of the electron temperature gradient instability. Also, the instability yields particle fluxes toward the hot plasma regions. The heat conductivity of the electron temperature perpendicular to the magnetic field, T sub(e'), is not reduced by magnetic shear but remains high, whereas the heat conductivity of the parallel temperature, T sub(e''), is effectively reduced, and the instability stabilized. (author)

  13. Geothermal gradients in Iraqi Kurdistan deduced from bottom hole temperatures

    Directory of Open Access Journals (Sweden)

    Rzger A. Abdula

    2017-09-01

    Full Text Available Bottom hole temperature (BHT data from 12 oil wells in Iraqi Kurdistan were used to obtain the thermal trend of Iraqi Kurdistan. Due to differences in thermal conductivity of rocks and groundwater movement, variations in geothermal gradients were observed. The highest geothermal gradient (29.2 °C/km was found for well Taq Taq-8 in the Low Folded Zone (central part of the area. The lowest geothermal gradients (14.9 °C/km were observed for well Bekhme-1 in the High Folded Zone (northern and northeastern parts of the area. The average regional geothermal gradient for Iraqi Kurdistan is 21 °C/km.

  14. High gradient experiment by accelerator test facility for Japan Linear Collider

    International Nuclear Information System (INIS)

    Takeda, Seishi; Akemoto, Mitsuo; Hayano, Hitoshi; Naito, Takashi; Matsumoto, Hiroshi

    1991-01-01

    For the e + e - linear colliders in TeV energy region such as the Japan Linear Collider (JLC), the accelerating gradient will be one of the important parameters affecting the over all design of main linacs. The gradient determines the accelerating structures, RF frequencies, peak power, AC power, total length and cost. High gradient experiment by using a traveling wave structure in S-band frequencies is presented. Discussions are given about the dependence of dark current and structure length. As one of the parameters indicating the quality of the structure, the multiplication factor η has been proposed

  15. Saturation mechanism of decaying ion temperature gradient driven turbulence with kinetic electrons

    International Nuclear Information System (INIS)

    Idomura, Yasuhiro

    2016-01-01

    We present full-f gyrokinetic simulations of the ion temperature gradient driven (ITG) turbulence including kinetic electrons. By comparing decaying ITG turbulence simulations with adiabatic and kinetic electron models, an impact of kinetic electrons on the ITG turbulence is investigated. It is found that significant electron transport occurs even in the ITG turbulence, and both ion and electron temperature profiles are relaxed. In steady states, both cases show upshifts of nonlinear critical ion temperature gradients from linear ones, while their saturation mechanisms are qualitatively different. In the adiabatic electron case, the ITG mode is stabilized by turbulence driven zonal flows. On the other hand, in the kinetic electron case, passing electrons transport shows fine resonant structures at mode rational surfaces, which generate corrugated density profiles. Such corrugated density profiles lead to fine radial electric fields following the neoclassical force balance relation. The resulting E × B shearing rate greatly exceeds the linear growth rate of the ITG mode. (author)

  16. Variability in estuarine water temperature gradients and influence on ...

    African Journals Online (AJOL)

    Structure and variability of water temperature gradients and potential influence on distribution of two tropical zooplankters (the mysid Mesopodopsis africana and the copepod Acartia natalensis) and their temperate congenerics (M. wooldridgei and A. longipatella) was investigated over a 10-year period in the Mgazi Estuary, ...

  17. Light Ray Displacements due to Air Temperature Gradient

    CERN Document Server

    Teymurazyan, A; CERN. Geneva

    2000-01-01

    Abstract In the optical monitoring systems suggested to control the geometry of tracking spectrometers, light beams serve as reference frames for the measurement of the tracking chamber displacements and deformations. It is shown that air temperature gradients can induce systematic errors which considerably exceed the intrinsic resolution of the monitoring system.

  18. Relation between 1m depth temperature and average geothermal gradient at 75cm depth in geothermal fields

    OpenAIRE

    江原, 幸雄

    2009-01-01

    Shallow ground temperatures such as 1m depth temperature have been measured to delineate thermal anomalies of geothermal fields and also to estimate heat discharge rates from geothermal fields. As a result, a close linear relation between 1m depth temperature and average geothermal gradient at 75cm depth has been recognized in many geothermal fields and was used to estimate conductive heat discharge rates. However, such a linear relation may show that the shallow thermal regime in geothermal ...

  19. Temperature gradient driven electron transport in NSTX and Tore Supra

    International Nuclear Information System (INIS)

    Horton, W.; Wong, H.V.; Morrison, P.J.; Wurm, A.; Kim, J.H.; Perez, J.C.; Pratt, J.; Hoang, G.T.; LeBlanc, B.P.; Ball, R.

    2005-01-01

    Electron thermal fluxes are derived from the power balance for Tore Supra (TS) and NSTX discharges with centrally deposited fast wave electron heating. Measurements of the electron temperature and density profiles, combined with ray tracing computations of the power absorption profiles, allow detailed interpretation of the thermal flux versus temperature gradient. Evidence supporting the occurrence of electron temperature gradient turbulent transport in the two confinement devices is found. With control of the magnetic rotational transform profile and the heating power, internal transport barriers are created in TS and NSTX discharges. These partial transport barriers are argued to be a universal feature of transport equations in the presence of invariant tori that are intrinsic to non-monotonic rotational transforms in dynamical systems

  20. Boundary value problems of the circular cylinders in the strain-gradient theory of linear elasticity

    International Nuclear Information System (INIS)

    Kao, B.G.

    1979-11-01

    Three boundary value problems in the strain-gradient theory of linear elasticity are solved for circular cylinders. They are the twisting of circular cylinder, uniformly pressuring of concentric circular cylinder, and pure-bending of simply connected cylinder. The comparisons of these solutions with the solutions in classical elasticity and in couple-stress theory reveal the differences in the stress fields as well as the apparent stress fields due to the influences of the strain-gradient. These aspects of the strain-gradient theory could be important in modeling the failure behavior of structural materials

  1. Charge imbalance induced by a temperature gradient in superconducting aluminum

    International Nuclear Information System (INIS)

    Mamin, H.J.; Clarke, J.; Van Harlingen, D.J.

    1984-01-01

    The quasiparticle transport current induced in a superconducting aluminum film by a temperature gradient has been measured by means of the spatially decaying charge imbalance generated near the end of the sample where the current is divergent. The magnitude and decay length of the charge imbalance are in good agreement with the predictions of a simple model that takes into account the nonuniformity of the temperature gradient. The inferred value of the thermopower in the superconducting state agrees reasonably well with the value measured in the normal state. Measurements of the decay length of charge imbalance induced by current injection yield a value of the inelastic relaxation time tau/sub E/ of about 2 ns. This value is substantially smaller than that obtained from other measurements for reasons that are not known

  2. The impact of edge gradients in the pressure, density, ion temperature, and electron temperature on edge-localized modes

    International Nuclear Information System (INIS)

    Kleva, Robert G.; Guzdar, Parvez N.

    2011-01-01

    The magnitude of the energy and particle fluxes in simulations of edge-localized modes (ELMs) is determined by the edge gradients in the pressure, density, ion temperature, and electron temperature. The total edge pressure gradient is the dominant influence on ELMs by far. An increase (decrease) of merely 2% in the pressure gradient results in an increase (decrease) of more than a factor of ten in the size of the ELM bursts. At a fixed pressure gradient, the size of the ELM bursts decreases as the density gradient increases, while the size of the bursts increases as the electron temperature gradient or, especially, the ion temperature gradient increases.

  3. Presence and significance of temperature gradients among different ovarian tissues

    DEFF Research Database (Denmark)

    Hunter, Ronald Henry Fraser; Einer-Jensen, Niels; Greve, Torben

    2006-01-01

    also be involved. Temperature gradients would be maintained locally by counter-current heat exchange mechanisms and, in this context, the microvasculature and lymphatic flow of individual follicles were found to be appropriate. Observations on the temperature of preovulatory follicles appear relevant......, and cow, and generally fell in the range of 1.3-1.7 degrees C: follicles were always cooler than stroma. Measurements were made principally by means of a thermo-sensing camera at midventral laparotomy, but also using microelectrodes or thermistor probes sited in the follicular antrum of rabbits and pigs...

  4. Sentinel Gap basalt reacted in a temperature gradient

    International Nuclear Information System (INIS)

    Charles, R.W.; Bayhurst, G.K.

    1983-01-01

    Six basalt prisms were reacted in a controlled temperature gradient hydrothermal circulation system for two months. The prisms were centered at 72, 119, 161, 209, 270, and 310 0 C. Total pressure was 1/3 kbar. All prisms showed large weight loss: 5.5% to 14.9%. The matrix micropegmatite and natural nontronitic alteration reacted readily to clays at all temperatures. The first four prisms were coated with a calcium smectite, and the last two prisms were covered with discrete patches of potassium-rich phengite and alkali feldspar. The results indicated that clays may act as adsorbers of various ions

  5. Sentinel Gap basalt reacted in a temperature gradient

    International Nuclear Information System (INIS)

    Charles, R.W.; Bayhurst, G.K.

    1982-01-01

    Six basalt prisms were reacted in a controlled temperature gradient hydrothermal circulation system for two months. The prisms are centered at 72, 119, 161, 209, 270, and 310 0 C. Total pressure is 1/3 kbar. All prisms show large weight loss: 5.5% to 14.9%. The matrix micropegmatite and natural nontronitic alteration readily reacts to clays at all temperatures. The first four prisms are coated with a Ca-smectite while the last two prisms are covered with discrete patches of K rich phengite and alkali feldspar. The clays may act as adsorbers of various ions

  6. Estimates of the temperature flux-temperature gradient relation above a sea floor

    NARCIS (Netherlands)

    Cimatoribus, A.; van Haren, H.

    2016-01-01

    The relation between the ux of temperature (or buoyancy), the verti-cal temperature gradient and the height above the bottom, is investigatedin an oceanographic context, using high-resolution temperature measure-ments. The model for the evolution of a strati?ed layer by Balmforthet al. (1998) is

  7. Control of colloids with gravity, temperature gradients, and electric fields

    CERN Document Server

    Sullivan, M; Harrison, C; Austin, R H; Megens, M; Hollingsworth, A; Russel, W B; Cheng Zhen; Mason, T; Chaikin, P M

    2003-01-01

    We have used a variety of different applied fields to control the density, growth, and structure of colloidal crystals. Gravity exerts a body force proportional to the buoyant mass and in equilibrium produces a height-dependent concentration profile. A similar body force can be obtained with electric fields on charged particles (electrophoresis), a temperature gradient on all particles, or an electric field gradient on uncharged particles (dielectrophoresis). The last is particularly interesting since its magnitude and sign can be changed by tuning the applied frequency. We study these effects in bulk (making 'dielectrophoretic bottles' or traps), to control concentration profiles during nucleation and growth and near surfaces. We also study control of non-spherical and optically anisotropic particles with the light field from laser tweezers.

  8. Control of colloids with gravity, temperature gradients, and electric fields

    Energy Technology Data Exchange (ETDEWEB)

    Sullivan, Matt [Department of Physics, Princeton University, Princeton, NJ (United States); Zhao Kun [Department of Physics, Princeton University, Princeton, NJ (United States); Harrison, Christopher [Department of Physics, Princeton University, Princeton, NJ (United States); Austin, Robert H [Department of Physics, Princeton University, Princeton, NJ (United States); Megens, Mischa [Department of Physics, Princeton University, Princeton, NJ (United States); Hollingsworth, Andrew [Department of Chemical Engineering, Princeton University, Princeton, NJ (United States); Russel, William B [Department of Chemical Engineering, Princeton University, Princeton, NJ (United States); Cheng Zhengdong [ExxonMobil Research, Annandale, NJ (United States); Mason, Thomas [ExxonMobil Research, Annandale, NJ (United States); Chaikin, P M [Department of Physics, Princeton University, Princeton, NJ (United States)

    2003-01-15

    We have used a variety of different applied fields to control the density, growth, and structure of colloidal crystals. Gravity exerts a body force proportional to the buoyant mass and in equilibrium produces a height-dependent concentration profile. A similar body force can be obtained with electric fields on charged particles (electrophoresis), a temperature gradient on all particles, or an electric field gradient on uncharged particles (dielectrophoresis). The last is particularly interesting since its magnitude and sign can be changed by tuning the applied frequency. We study these effects in bulk (making 'dielectrophoretic bottles' or traps), to control concentration profiles during nucleation and growth and near surfaces. We also study control of non-spherical and optically anisotropic particles with the light field from laser tweezers.

  9. A reduced model for ion temperature gradient turbulent transport in helical plasmas

    International Nuclear Information System (INIS)

    Nunami, M.; Watanabe, T.-H.; Sugama, H.

    2013-07-01

    A novel reduced model for ion temperature gradient (ITG) turbulent transport in helical plasmas is presented. The model enables one to predict nonlinear gyrokinetic simulation results from linear gyrokinetic analyses. It is shown from nonlinear gyrokinetic simulations of the ITG turbulence in helical plasmas that the transport coefficient can be expressed as a function of the turbulent fluctuation level and the averaged zonal flow amplitude. Then, the reduced model for the turbulent ion heat diffusivity is derived by representing the nonlinear turbulent fluctuations and zonal flow amplitude in terms of the linear growth rate of the ITG instability and the linear response of the zonal flow potentials. It is confirmed that the reduced transport model results are in good agreement with those from nonlinear gyrokinetic simulations for high ion temperature plasmas in the Large Helical Device. (author)

  10. Numerical simulation of ion temperature gradient driven modes in the presence of ion-ion collisions

    International Nuclear Information System (INIS)

    Xu, X.Q.

    1990-08-01

    Ion temperature gradient driven modes in the presence of ion-ion collisions in a toroidal geometry with trapped ions have been studied by using a 1 2/2 d linearized gyro-kinetic particle simulation code in the electrostatic limit. The purpose of the investigation is to try to understand the physics of flat density discharges, in order to test the marginal stability hypothesis. Results giving threshold conditions of L Ti /R 0 , an upper bound on k χ , and linear growth rates and mode frequencies over all wavelengths for the collisionless ion temperature gradient driven modes are obtained. The behavior of ion temperature gradient driven instabilities in the transition from slab to toroidal geometry, with trapped ions, is shown. A Monte Carlo scheme for the inclusion of ion-ion collisions, in which ions can undergo Coulomb collisional dynamical friction, velocity space diffusion and random walk of guiding centers, has been constructed. The effects of ion-ion collisions on the long wave length limit of the ion modes is discussed. 44 refs., 12 figs

  11. Realization of preconditioned Lanczos and conjugate gradient algorithms on optical linear algebra processors.

    Science.gov (United States)

    Ghosh, A

    1988-08-01

    Lanczos and conjugate gradient algorithms are important in computational linear algebra. In this paper, a parallel pipelined realization of these algorithms on a ring of optical linear algebra processors is described. The flow of data is designed to minimize the idle times of the optical multiprocessor and the redundancy of computations. The effects of optical round-off errors on the solutions obtained by the optical Lanczos and conjugate gradient algorithms are analyzed, and it is shown that optical preconditioning can improve the accuracy of these algorithms substantially. Algorithms for optical preconditioning and results of numerical experiments on solving linear systems of equations arising from partial differential equations are discussed. Since the Lanczos algorithm is used mostly with sparse matrices, a folded storage scheme to represent sparse matrices on spatial light modulators is also described.

  12. Electron temperature gradient driven instability in the tokamak boundary plasma

    International Nuclear Information System (INIS)

    Xu, X.Q.; Rosenbluth, M.N.; Diamond, P.H.

    1992-01-01

    A general method is developed for calculating boundary plasma fluctuations across a magnetic separatrix in a tokamak with a divertor or a limiter. The slab model, which assumes a periodic plasma in the edge reaching the divertor or limiter plate in the scrape-off layer(SOL), should provide a good estimate, if the radial extent of the fluctuation quantities across the separatrix to the edge is small compared to that given by finite particle banana orbit. The Laplace transform is used for solving the initial value problem. The electron temperature gradient(ETG) driven instability is found to grow like t -1/2 e γmt

  13. Directed motion of a Brownian motor in a temperature gradient

    Science.gov (United States)

    Liu, Yibing; Nie, Wenjie; Lan, Yueheng

    2017-05-01

    Directed motion of mesoscopic systems in a non-equilibrium environment is of great interest to both scientists and engineers. Here, the translation and rotation of a Brownian motor is investigated under non-equilibrium conditions. An anomalous directed translation is found if the two heads of the Brownian motor are immersed in baths with different particle masses, which is hinted in the analytic computation and confirmed by the numerical simulation. Similar consideration is also used to find the directed movement in the single rotational and translational degree of freedom of the Brownian motor when residing in one thermal bath with a temperature gradient.

  14. Effects of the safety factor on ion temperature gradient modes

    International Nuclear Information System (INIS)

    Wang, A.K.; Dong, J.Q.; Sanuki, H.; Itoh, K.

    2003-01-01

    A model for the ion temperature gradient (ITG) driven instability is derived from Braginskii magnetohydrodynamic equations of ions. The safety factor q in a toroidal plasma is introduced into the model through the current density J parallel . The effects of q or J parallel on both the ITG instability in k perpendicular and k parallel spectra and the critical stability thresholds are studied. It is shown that the current density // J or the safety factor q plays an important role in stabilizing the ITG instability. (author)

  15. Nonlinear theory of trapped electron temperature gradient driven turbulence in flat density H-mode plasmas

    International Nuclear Information System (INIS)

    Hahm, T.S.

    1990-12-01

    Ion temperature gradient turbulence based transport models have difficulties reconciling the recent DIII-D H-mode results where the density profile is flat, but χ e > χ i in the core region. In this work, a nonlinear theory is developed for recently discovered ion temperature gradient trapped electron modes propagating in the electron diamagnetic direction. This instability is predicted to be linearly unstable for L Ti /R approx-lt κ θ ρ s approx-lt (L Ti /R) 1/4 . They are also found to be strongly dispersive even at these long wavelengths, thereby suggesting the importance of the wave-particle-wave interactions in the nonlinear saturation phase. The fluctuation spectrum and anomalous fluxes are calculated. In accordance with the trends observed in DIII-D, the predicted electron thermal diffusivity can be larger than the ion thermal diffusivity. 17 refs., 3 figs

  16. AC susceptibility response of bulk YBCO superconductors in the presence of a temperature gradient

    International Nuclear Information System (INIS)

    Bodi, A.C.; Kirschner, I.

    1997-01-01

    Low-frequency AC susceptibility measurements on ceramic YBCO superconductors carried out at the presence of a quasi-one-dimensional temperature gradient are compared with those made without the temperature gradient. The values of the different characteristic temperatures measured on samples without and with a temperature gradient are identical but in the second case its characteristic temperature is a medium value. When the temperature gradient is constant on the sample the arithmetic medium value of the local temperatures is the effective characteristic temperature different phenomena. (orig.)

  17. Development of high gradient superconducting radio frequency cavities for international linear collider and energy recovery linear accelerator

    International Nuclear Information System (INIS)

    Saito, Kenji; Furuta, Fumio; Saeki, Takayuki

    2009-01-01

    Superconducting radio frequency (SRF) cavities were used for storage rings like TRISTAN at KEK, HERA at DESY and LEP-II at CERN in 1990-2000. This technology has been accepted as a common accelerator technology. In August 2004, ITPR recommended an electron/positron linear collider based on SRF technology for the future high energy physics. ICFA accepted the recommendation and named it ILC (International Linear Collider). SRF cavities have a very unique feature due to its very small surface resistance. Energy recovery is another very exciting application. Many laboratories are proposing ERL (Energy Recovery LINAC) as a next bright photon source. In these accelerators, production of SRF cavities with reliably high performance is the most important issue. In this paper the activities of ILC high gradient cavities will be introduced. ERL activity will be briefly presented. (author)

  18. Development of High Gradient Superconducting Radio Frequency Cavities for International Linear Collider and Energy Recovery Linear Accelerator

    Science.gov (United States)

    Saito, Kenji; Furuta, Fumio; Saeki, Takayuki

    Superconducting radio frequency (SRF) cavities were used for storage rings like TRISTAN at KEK, HERA at DESY and LEP-II at CERN in 1990-2000. This technology has been accepted as a common accelerator technology. In August 2004, ITPR recommended an electron/positron linear collider based on SRF technology for the future high energy physics. ICFA accepted the recommendation and named it ILC (International Linear Collider). SRF cavities have a very unique feature due to its very small surface resistance. Energy recovery is another very exciting application. Many laboratories are proposing ERL (Energy Recovery LINAC) as a next bright photon source. In these accelerators, production of SRF cavities with reliably high performance is the most important issue. In this paper the activities of ILC high gradient cavities will be introduced. ERL activity will be briefly presented.

  19. Assessment of avoidance behaviour by earthworms (Lumbricus rubellus and Octolasion cyaneum) in linear pollution gradients.

    Science.gov (United States)

    Lowe, Christopher N; Butt, Kevin R; Cheynier, Kevin Yves-Marie

    2016-02-01

    Avoidance behaviour by earthworms is recognised as a valuable endpoint in soil quality assessment and has resulted in the development of a standardised test (ISO 17512-1, 2008) providing epigeic earthworms with a choice between test and control soils. This study sought to develop and evaluate an avoidance test utilising soil-dwelling earthworms in linear pollution gradients with Visible Implant Elastomer (VIE) tags used to identify individual organisms. Sequential experiments were established in laboratory-based mesocosms (0.6m×0.13m×0.1m) that determined the relative sensitivities (in terms of associated avoidance behaviour) of Octolasion cyaneum and Lumbricus rubellus at varying levels of polluted soil and also assessed the influence of introduction point on recorded movement within gradients. In an initial gradient (0%, 25%, 50%, 75%, 100% polluted soil), both species exhibited a clear avoidance response with all surviving earthworms retrieved (after 7 days) from the unpolluted soil. In a less polluted gradient (0%, 6.25%, 12.5%, 18.75%, 25%) L. rubellus were retrieved throughout the gradient while O. cyaneum were located within the 0% and 6.25% divisions, suggesting a species-specific response to polluted soil. Results also showed that the use of a linear pollution gradient system has the potential to assess earthworm avoidance behaviour and could provide a more ecologically relevant alternative to the ISO 17512: 2008 avoidance test. However, further work is required to establish the effectiveness of this procedure, specifically in initial chemical screening and assessment of single contaminant bioavailability, where uptake of pollutants by earthworms could be measured and directly related to the point of introduction and retrieval. Copyright © 2015 Elsevier Inc. All rights reserved.

  20. Robust non-gradient C subroutines for non-linear optimization

    DEFF Research Database (Denmark)

    Brock, Pernille; Madsen, Kaj; Nielsen, Hans Bruun

    2004-01-01

    This report presents a package of robust and easy-to-use C subroutines for solving unconstrained and constrained non-linear optimization problems, where gradient information is not required. The intention is that the routines should use the currently best algorithms available. All routines have...... subroutines are obtained by changing 0 to 1. The present report is a new and updated version of a previous report NI-91-04 with the title Non-gradient c Subroutines for Non- Linear Optimization, [16]. Both the previous and the present report describe a collection of subroutines, which have been translated...... from Fortran to C. The reason for writing the present report is that some of the C subroutines have been replaced by more e ective and robust versions translated from the original Fortran subroutines to C by the Bandler Group, see [1]. Also the test examples have been modified to some extent...

  1. A Linear Gradient Theory Model for Calculating Interfacial Tensions of Mixtures

    DEFF Research Database (Denmark)

    Zou, You-Xiang; Stenby, Erling Halfdan

    1996-01-01

    excellent agreement between the predicted and experimental IFTs at high and moderate levels of IFTs, while the agreement is reasonably accurate in the near-critical region as the used equations of state reveal classical scaling behavior. To predict accurately low IFTs (sigma ... with proper scaling behavior at the critical point is at least required.Key words: linear gradient theory; interfacial tension; equation of state; influence parameter; density profile....

  2. The disparate impact of the ion temperature gradient and the density gradient on edge transport and the low-high transition in tokamaks

    International Nuclear Information System (INIS)

    Kleva, Robert G.; Guzdar, Parvez N.

    2009-01-01

    Steepening of the ion temperature gradient in nonlinear fluid simulations of the edge region of a tokamak plasma causes a rapid degradation in confinement. As the density gradient steepens, there is a continuous improvement in confinement analogous to the low (L) to high (H) transition observed in tokamaks. In contrast, as the ion temperature gradient steepens, there is a rapid increase in the particle and energy fluxes and no L-H transition. For a given pressure gradient, confinement always improves when more of the pressure gradient arises from the density gradient, and less of the pressure gradient arises from the ion temperature gradient.

  3. A study of self organized criticality in ion temperature gradient mode driven gyrokinetic turbulence

    Science.gov (United States)

    Mavridis, M.; Isliker, H.; Vlahos, L.; Görler, T.; Jenko, F.; Told, D.

    2014-10-01

    An investigation on the characteristics of self organized criticality (Soc) in ITG mode driven turbulence is made, with the use of various statistical tools (histograms, power spectra, Hurst exponents estimated with the rescaled range analysis, and the structure function method). For this purpose, local non-linear gyrokinetic simulations of the cyclone base case scenario are performed with the GENE software package. Although most authors concentrate on global simulations, which seem to be a better choice for such an investigation, we use local simulations in an attempt to study the locally underlying mechanisms of Soc. We also study the structural properties of radially extended structures, with several tools (fractal dimension estimate, cluster analysis, and two dimensional autocorrelation function), in order to explore whether they can be characterized as avalanches. We find that, for large enough driving temperature gradients, the local simulations exhibit most of the features of Soc, with the exception of the probability distribution of observables, which show a tail, yet they are not of power-law form. The radial structures have the same radial extent at all temperature gradients examined; radial motion (transport) though appears only at large temperature gradients, in which case the radial structures can be interpreted as avalanches.

  4. A study of self organized criticality in ion temperature gradient mode driven gyrokinetic turbulence

    International Nuclear Information System (INIS)

    Mavridis, M.; Isliker, H.; Vlahos, L.; Görler, T.; Jenko, F.; Told, D.

    2014-01-01

    An investigation on the characteristics of self organized criticality (Soc) in ITG mode driven turbulence is made, with the use of various statistical tools (histograms, power spectra, Hurst exponents estimated with the rescaled range analysis, and the structure function method). For this purpose, local non-linear gyrokinetic simulations of the cyclone base case scenario are performed with the GENE software package. Although most authors concentrate on global simulations, which seem to be a better choice for such an investigation, we use local simulations in an attempt to study the locally underlying mechanisms of Soc. We also study the structural properties of radially extended structures, with several tools (fractal dimension estimate, cluster analysis, and two dimensional autocorrelation function), in order to explore whether they can be characterized as avalanches. We find that, for large enough driving temperature gradients, the local simulations exhibit most of the features of Soc, with the exception of the probability distribution of observables, which show a tail, yet they are not of power-law form. The radial structures have the same radial extent at all temperature gradients examined; radial motion (transport) though appears only at large temperature gradients, in which case the radial structures can be interpreted as avalanches

  5. A study of self organized criticality in ion temperature gradient mode driven gyrokinetic turbulence

    Energy Technology Data Exchange (ETDEWEB)

    Mavridis, M.; Isliker, H.; Vlahos, L. [Section of Astrophysics, Astronomy and Mechanics, Department of Physics, Aristotle University of Thessaloniki, GR-54124 Thessaloniki (Greece); Görler, T.; Jenko, F.; Told, D. [Max Planck Institute for Plasma Physics, Boltzmannstr. 2, 85748 Garching (Germany)

    2014-10-15

    An investigation on the characteristics of self organized criticality (Soc) in ITG mode driven turbulence is made, with the use of various statistical tools (histograms, power spectra, Hurst exponents estimated with the rescaled range analysis, and the structure function method). For this purpose, local non-linear gyrokinetic simulations of the cyclone base case scenario are performed with the GENE software package. Although most authors concentrate on global simulations, which seem to be a better choice for such an investigation, we use local simulations in an attempt to study the locally underlying mechanisms of Soc. We also study the structural properties of radially extended structures, with several tools (fractal dimension estimate, cluster analysis, and two dimensional autocorrelation function), in order to explore whether they can be characterized as avalanches. We find that, for large enough driving temperature gradients, the local simulations exhibit most of the features of Soc, with the exception of the probability distribution of observables, which show a tail, yet they are not of power-law form. The radial structures have the same radial extent at all temperature gradients examined; radial motion (transport) though appears only at large temperature gradients, in which case the radial structures can be interpreted as avalanches.

  6. Properties of ion temperature gradient and trapped electron modes in tokamak plasmas with inverted density profiles

    Science.gov (United States)

    Du, Huarong; Jhang, Hogun; Hahm, T. S.; Dong, J. Q.; Wang, Z. X.

    2017-12-01

    We perform a numerical study of linear stability of the ion temperature gradient (ITG) mode and the trapped electron mode (TEM) in tokamak plasmas with inverted density profiles. A local gyrokinetic integral equation is applied for this study. From comprehensive parametric scans, we obtain stability diagrams for ITG modes and TEMs in terms of density and temperature gradient scale lengths. The results show that, for the inverted density profile, there exists a normalized threshold temperature gradient above which the ITG mode and the TEM are either separately or simultaneously unstable. The instability threshold of the TEM for the inverted density profile is substantially different from that for normal and flat density profiles. In addition, deviations are found on the ITG threshold from an early analytic theory in sheared slab geometry with the adiabatic electron response [T. S. Hahm and W. M. Tang, Phys. Fluids B 1, 1185 (1989)]. A possible implication of this work on particle transport in pellet fueled tokamak plasmas is discussed.

  7. Comparisons of theoretically predicted transport from ion temperature gradient instabilities to L-mode tokamak experiments

    International Nuclear Information System (INIS)

    Kotschenreuther, M.; Wong, H.V.; Lyster, P.L.; Berk, H.L.; Denton, R.; Miner, W.H.; Valanju, P.

    1991-12-01

    The theoretical transport from kinetic micro-instabilities driven by ion temperature gradients is a sheared slab is compared to experimentally inferred transport in L-mode tokamaks. Low noise gyrokinetic simulation techniques are used to obtain the ion thermal transport coefficient X. This X is much smaller than in experiments, and so cannot explain L-mode confinement. Previous predictions based on fluid models gave much greater X than experiments. Linear and nonlinear comparisons with the fluid model show that it greatly overestimates transport for experimental parameters. In addition, disagreements among previous analytic and simulation calculations of X in the fluid model are reconciled

  8. Chaos in toroidal ion-temperature-gradient-driven modes in dust-contaminated magnetoplasma

    Energy Technology Data Exchange (ETDEWEB)

    Qamar, Anisa; Atta-Ullah-Shah [Theoretical Plasma Physics Group, Institute of Physics and Electronics, University of Peshawar Khyber Pakhtunkhwa 25000 (Pakistan); Yaqub Khan, M; Ayub, M [Department of Mathematics, Quaid-i-Azam University, Islamabad 45320 (Pakistan); Mirza, Arshad M, E-mail: anisaqamar@gmail.com [Theoretical Plasma Physics Group, Department of Physics, Quaid-i-Azam University, Islamabad 45320 (Pakistan)

    2011-06-01

    A new set of nonlinear equations for toroidal ion-temperature-gradient-driven (ITGD) drift-dissipative waves is derived by using Braginskii's transport model of the ion dynamics and the Boltzmann distribution of electrons in the presence of negatively charged dust grains. The temporal behaviour of the nonlinear ITGD mode is found to be governed by three nonlinear equations for the amplitudes, which is a generalization of Lorenz- and Stenflo-type equations admitting chaotic trajectories. The linear stability analysis has been presented and stationary points for our generalized mode coupling equations are also derived.

  9. Temperature of the Icelandic crust: Inferred from electrical conductivity, temperature surface gradient, and maximum depth of earthquakes

    Science.gov (United States)

    Björnsson, Axel

    2008-02-01

    Two different models of the structure of the Icelandic crust have been presented. One is the thin-crust model with a 10-15 km thick crust beneath the axial rift zones, with an intermediate layer of partially molten basalt at the base of the crust and on the top of an up-domed asthenosphere. The thick-crust model assumes a 40 km thick and relatively cold crust beneath central Iceland. The most important and crucial parameter to distinguish between these different models is the temperature distribution with depth. Three methods are used to estimate the temperature distribution with depth. First, the surface temperature gradient measured in shallow wells drilled outside geothermal areas. Second, the thickness of the seismogenic zone which is associated with a 750 °C isothermal surface. Third, the depth to a layer with high electrical conductivity which is associated with partially molten basalt with temperature around 1100 °C at the base of the crust. Combination of these data shows that the temperature gradient can be assumed to be nearly linear from the surface down to the base of the crust. These results are strongly in favour of the thin-crust model. The scattered deep seismic reflectors interpreted as Moho in the thick-crust model could be caused by phase transitions or reflections from melt pockets in the mantle.

  10. Fluid simulations of toroidal ion temperature gradient turbulence

    International Nuclear Information System (INIS)

    Sandberg, I.; Isliker, H.; Pavlenko, V.P.; Hizanidis, K.; Vlahos, L.

    2006-01-01

    The evolution of the toroidal ion temperature gradient mode instability is numerically studied by using the equations based on the standard reactive fluid model. The long-term dynamics of the instability are investigated using random-phase, small-amplitude fluctuations for initial conditions. The main events during the evolution of the instability that lead to the formation of large-scale coherent structures are described and the role of the dominant nonlinearities is clarified. The polarization drift nonlinearity leads to the inverse energy cascade while the convective ion heat nonlinearity is responsible for the saturation of the instability. Finally, the sensitivity of the saturated state to the initial plasma conditions is examined

  11. Quasi-steady temperature gradient metamorphism in idealized, dry snow

    International Nuclear Information System (INIS)

    Christon, M.

    1994-01-01

    A three-dimensional model for heat and mass transport in microscale ice lattices of dry snow is formulated consistent with conservation laws and solid-vapor interface constraints. A finite element model that employs continuous mesh deformation is developed, and calculation of the effective diffusion rates in snow, metamorphosing under a temperature gradient, is performed. Results of the research provide basic insight into the movement of heat and water vapor in seasonal snowcovers. Agreement between the numerical results and measured data of effective thermal conductivity is excellent. The enhancement to the water vapor diffusion rate in snow is bracketed in the range of 1.05--2.0 times that of water vapor in dry air

  12. Effect of temperature gradient on liquid-liquid phase separation in a polyolefin blend.

    Science.gov (United States)

    Jiang, Hua; Dou, Nannan; Fan, Guoqiang; Yang, Zhaohui; Zhang, Xiaohua

    2013-09-28

    We have investigated experimentally the structure formation processes during phase separation via spinodal decomposition above and below the spinodal line in a binary polymer blend system exposed to in-plane stationary thermal gradients using phase contrast optical microscopy and temperature gradient hot stage. Below the spinodal line there is a coupling of concentration fluctuations and thermal gradient imposed by the temperature gradient hot stage. Also under the thermal gradient annealing phase-separated domains grow faster compared with the system under homogeneous temperature annealing on a zero-gradient or a conventional hot stage. We suggest that the in-plane thermal gradient accelerates phase separation through the enhancement in concentration fluctuations in the early and intermediate stages of spinodal decomposition. In a thermal gradient field, the strength of concentration fluctuation close to the critical point (above the spinodal line) is strong enough to induce phase separation even in one-phase regime of the phase diagram. In the presence of a temperature gradient the equilibrium phase diagrams are no longer valid, and the systems with an upper critical solution temperature can be quenched into phase separation by applying the stationary temperature gradient. The in-plane temperature gradient drives enhanced concentration fluctuations in a binary polymer blend system above and below the spinodal line.

  13. Nonlocal linear theory of the gradient drift instability in the equatorial electrojet

    International Nuclear Information System (INIS)

    Ronchi, C.; Similon, P.L.; Sudan, R.N.

    1989-01-01

    The linear global eigenmodes of the gradient drift instability in the daytime equatorial electrojet are investigated. A main feature of the analysis is the inclusion of ion-neutral and electron-neutral collision frequencies dependent on altitude. It is found that the basic characteristics and localization of the unstable modes are determined mainly by the profiles of the Pedersen and Hall mobilities, which are derived from the Cowling conductivity model and experimental data. The equilibrium density profile is parabolic, which is fairly representative of the actual measurements. The unstable modes are sensitive not to the details of this profile, but only to the average value of the gradient. The results are obtained from a direct numerical integration of nonlocal linearized equations. They are further analyzed through an eikonal analysis, which provides both an interpretation of the transient modes observed by Fu et al. (1986) and some additional physics insight into the linear evolution of the global unstable modes. Finally, it is shown that the previously reported short-wavelength stabilization effect due to velocity shear may be overshadowed by the presence of regions in which the transient modes can develop into absolute instabilities. copyright American Geophysical Union 1989

  14. Determination of sulfonamides and trimethoprim using high temperature HPLC with simultaneous temperature and solvent gradient.

    Science.gov (United States)

    Giegold, Sascha; Teutenberg, Thorsten; Tuerk, Jochen; Kiffmeyer, Thekla; Wenclawiak, Bernd

    2008-10-01

    A fast HPLC method for the analysis of eight selected sulfonamides (SA) and trimethoprim has been developed with the use of high temperature HPLC. The separation could be achieved in less than 1.5 min on a 50 mm sub 2 microm column with simultaneous solvent and temperature gradient programming. Due to the lower viscosity of the mobile phase and the increased mass transfer at higher temperatures, the separation could be performed on a conventional HPLC system obtaining peak widths at half height between 0.6 and 1.3 s.

  15. Electron-temperature-gradient-driven drift waves and anomalous electron energy transport

    International Nuclear Information System (INIS)

    Shukla, P.K.; Murtaza, G.; Weiland, J.

    1990-01-01

    By means of a kinetic description for ions and Braginskii's fluid model for electrons, three coupled nonlinear equations governing the dynamics of low-frequency short-wavelength electrostatic waves in the presence of equilibrium density temperature and magnetic-field gradients in a two-component magnetized plasma are derived. In the linear limit a dispersion relation that admits new instabilities of drift waves is presented. An estimate of the anomalous electron energy transport due to non-thermal drift waves is obtained by making use of the saturated wave potential, which is deduced from the mixing-length hypothesis. Stationary solutions of the nonlinear equations governing the interaction of linearly unstable drift waves are also presented. The relevance of this investigation to wave phenomena in space and laboratory plasmas is pointed out. (author)

  16. Non-linear education gradient across the nutrition transition: mothers’ overweight and the population education transition

    Science.gov (United States)

    Salinas, Daniel; Baker, David P

    2015-01-01

    Objective Previous studies found that developed and developing countries present opposite education-overweight gradients but have not considered the dynamics at different levels of national development. A U-inverted curve is hypothesized to best describe the education-overweight association. It is also hypothesized that as the nutrition transition unfolds within nations the shape of education-overweight curve change. Design Multi-level logistic regression estimates the moderating effect of the nutrition transition at the population level on education-overweight gradient. At the individual level, a non-linear estimate of the education association assesses the optimal functional form of the association across the nutrition transition. Setting Twenty-two administrations of the Demographic and Health Survey, collected at different time points across the nutrition transition in nine Latin American/Caribbean countries. Subjects Mothers of reproductive age (15–49) in each administration (n 143,258). Results In the pooled sample, a non-linear education gradient on mothers‘ overweight is found; each additional year of schooling increases the probability of being overweight up to the end of primary schooling, after which each additional year of schooling decreases the probability of overweight. Also, as access to diets of high animal fats and sweeteners increases over time, the curve‘s critical point moves to lower education levels, the detrimental positive effect of education diminishes, and both occur as the overall risk of overweight increases with greater access to harmful diets. Conclusions Both hypotheses are supported. As the nutrition transition progresses, the education-overweight curve steadily shifts to a negative linear association with higher average risk of overweight; and education, at increasingly lower levels, acts as a “social vaccine” against increasing risk of overweight. These empirical patterns fit the general “population education

  17. Tripolar vortex formation in dense quantum plasma with ion-temperature-gradients

    Science.gov (United States)

    Qamar, Anisa; Ata-ur-Rahman, Mirza, Arshad M.

    2012-05-01

    We have derived system of nonlinear equations governing the dynamics of low-frequency electrostatic toroidal ion-temperature-gradient mode for dense quantum magnetoplasma. For some specific profiles of the equilibrium density, temperature, and ion velocity gradients, the nonlinear equations admit a stationary solution in the form of a tripolar vortex. These results are relevant to understand nonlinear structure formation in dense quantum plasmas in the presence of equilibrium ion-temperature and density gradients.

  18. Tripolar vortex formation in dense quantum plasma with ion-temperature-gradients

    Energy Technology Data Exchange (ETDEWEB)

    Qamar, Anisa; Ata-ur-Rahman [Institute of Physics and Electronics, University of Peshawar, Khyber Pakhtoon Khwa 25000 (Pakistan); National Center for Physics Shahdrah Valley Road, Islamabad 44000 (Pakistan); Mirza, Arshad M. [Theoretical Plasma Physics Group, Physics Department, Quaid-i-Azam University, Islamabad 45320 (Pakistan)

    2012-05-15

    We have derived system of nonlinear equations governing the dynamics of low-frequency electrostatic toroidal ion-temperature-gradient mode for dense quantum magnetoplasma. For some specific profiles of the equilibrium density, temperature, and ion velocity gradients, the nonlinear equations admit a stationary solution in the form of a tripolar vortex. These results are relevant to understand nonlinear structure formation in dense quantum plasmas in the presence of equilibrium ion-temperature and density gradients.

  19. Tripolar vortex formation in dense quantum plasma with ion-temperature-gradients

    International Nuclear Information System (INIS)

    Qamar, Anisa; Ata-ur-Rahman; Mirza, Arshad M.

    2012-01-01

    We have derived system of nonlinear equations governing the dynamics of low-frequency electrostatic toroidal ion-temperature-gradient mode for dense quantum magnetoplasma. For some specific profiles of the equilibrium density, temperature, and ion velocity gradients, the nonlinear equations admit a stationary solution in the form of a tripolar vortex. These results are relevant to understand nonlinear structure formation in dense quantum plasmas in the presence of equilibrium ion-temperature and density gradients.

  20. Thermoelectric properties of high electron concentration materials under large temperature gradients

    International Nuclear Information System (INIS)

    Bulat, L.P.; Stefansky, V.A.

    1994-01-01

    Theoretical methods of investigating of transport properties in solids under large temperature gradients are grounded. The nonlinear and non-local expressions for current density and heat flow are obtained with degenerated of current carriers gas. A number of new effects with large temperature gradients have been tested. Use of large temperature gradients leads to the increasing of the thermoelectric figure of merit. copyright 1995 American Institute of Physics

  1. Instability and transport driven by an electron temperature gradient close to critical

    International Nuclear Information System (INIS)

    Dong, J.Q.; Jian, G.D.; Wang, A.K.; Sanuki, H.; Itoh, K.

    2003-01-01

    Electron temperature gradient (ETG) driven instability in toroidal plasmas is studied with gyrokinetic theory. The full electron kinetics is considered. The upgraded numerical scheme for solving the integral eigenvalue equations allows the study of both growing and damping modes, and thus direct calculation of critical gradient. Algebraic formulas for the critical gradient with respect to ratio of electron temperature over ion temperature and to toroidicity are given. An estimation for turbulence induced transport is presented. (author)

  2. A Projected Non-linear Conjugate Gradient Method for Interactive Inverse Kinematics

    DEFF Research Database (Denmark)

    Engell-Nørregård, Morten; Erleben, Kenny

    2009-01-01

    Inverse kinematics is the problem of posing an articulated figure to obtain a wanted goal, without regarding inertia and forces. Joint limits are modeled as bounds on individual degrees of freedom, leading to a box-constrained optimization problem. We present A projected Non-linear Conjugate...... Gradient optimization method suitable for box-constrained optimization problems for inverse kinematics. We show application on inverse kinematics positioning of a human figure. Performance is measured and compared to a traditional Jacobian Transpose method. Visual quality of the developed method...

  3. ILUBCG2-11: Solution of 11-banded nonsymmetric linear equation systems by a preconditioned biconjugate gradient routine

    Science.gov (United States)

    Chen, Y.-M.; Koniges, A. E.; Anderson, D. V.

    1989-10-01

    The biconjugate gradient method (BCG) provides an attractive alternative to the usual conjugate gradient algorithms for the solution of sparse systems of linear equations with nonsymmetric and indefinite matrix operators. A preconditioned algorithm is given, whose form resembles the incomplete L-U conjugate gradient scheme (ILUCG2) previously presented. Although the BCG scheme requires the storage of two additional vectors, it converges in a significantly lesser number of iterations (often half), while the number of calculations per iteration remains essentially the same.

  4. High-gradient breakdown studies of an X-band Compact Linear Collider prototype structure

    Directory of Open Access Journals (Sweden)

    Xiaowei Wu

    2017-05-01

    Full Text Available A Compact Linear Collider prototype traveling-wave accelerator structure fabricated at Tsinghua University was recently high-gradient tested at the High Energy Accelerator Research Organization (KEK. This X-band structure showed good high-gradient performance of up to 100  MV/m and obtained a breakdown rate of 1.27×10^{−8} per pulse per meter at a pulse length of 250 ns. This performance was similar to that of previous structures tested at KEK and the test facility at the European Organization for Nuclear Research (CERN, thereby validating the assembly and bonding of the fabricated structure. Phenomena related to vacuum breakdown were investigated and are discussed in the present study. Evaluation of the breakdown timing revealed a special type of breakdown occurring in the immediately succeeding pulse after a usual breakdown. These breakdowns tended to occur at the beginning of the rf pulse, whereas usual breakdowns were uniformly distributed in the rf pulse. The high-gradient test was conducted under the international collaboration research program among Tsinghua University, CERN, and KEK.

  5. Non-Linear Nitrogen Cycling and Ecosystem Calcium Depletion Along a Temperate Forest Soil Nitrogen Gradient

    Science.gov (United States)

    Sinkhorn, E. R.; Perakis, S. S.; Compton, J. E.; Cromack, K.; Bullen, T. D.

    2007-12-01

    Understanding how N availability influences base cation stores is critical for assessing long-term ecosystem sustainability. Indices of nitrogen (N) availability and the distribution of nutrients in plant biomass, soil, and soil water were examined across ten Douglas-fir (Pseudotsuga menziesii) stands spanning a three-fold soil N gradient (0-10 cm: 0.21 - 0.69% N, 0-100 cm: 9.2 - 28.8 Mg N ha-1) in the Oregon Coast Range. This gradient is largely the consequence of historical inputs from N2-fixing red alder stands that can add 100-200 kg N ha-1 yr-1 to the ecosystem for decades. Annual net N mineralization and litterfall N return displayed non-linear relationships with soil N, increasing initially, and then decreasing as N-richness increased. In contrast, nitrate leaching from deep soils increased linearly across the soil N gradient and ranged from 0.074 to 30 kg N ha-1 yr-1. Soil exchangeable Ca, Mg, and K pools to 1 m depth were negatively related to nitrate losses across sites. Ca was the only base cation exhibiting concentration decreases in both plant and soil pools across the soil N gradient, and a greater proportion of total available ecosystem Ca was sequestered in aboveground plant biomass at high N, low Ca sites. Our work supports a hierarchical model of coupled N-Ca cycles across gradients of soil N enrichment, with microbial production of mobile nitrate anions leading to depletion of readily available Ca at the ecosystem scale, and plant sequestration promoting Ca conservation as Ca supply diminishes. The preferential storage of Ca in aboveground biomass at high N and low Ca sites, while critical for sustaining plant productivity, may also predispose forests to Ca depletion in areas managed for intensive biomass removal. Long-term N enrichment of temperate forest soils appears capable of sustaining an open N cycle and key symptoms of N-saturation for multiple decades after the cessation of elevated N inputs.

  6. Thermotaxis of human sperm cells in extraordinarily shallow temperature gradients over a wide range.

    Directory of Open Access Journals (Sweden)

    Anat Bahat

    Full Text Available On the basis of the finding that capacitated (ready to fertilize rabbit and human spermatozoa swim towards warmer temperatures by directing their movement along a temperature gradient, sperm thermotaxis has been proposed to be one of the processes guiding these spermatozoa to the fertilization site. Although the molecular mechanism underlying sperm thermotaxis is gradually being revealed, basic questions related to this process are still open. Here, employing human spermatozoa, we addressed the questions of how wide the temperature range of thermotaxis is, whether this range includes an optimal temperature or whether spermatozoa generally prefer swimming towards warmer temperatures, whether or not they can sense and respond to descending temperature gradients, and what the minimal temperature gradient is to which they can thermotactically respond. We found that human spermatozoa can respond thermotactically within a wide temperature range (at least 29-41°C, that within this range they preferentially accumulate in warmer temperatures rather than at a single specific, preferred temperature, that they can respond to both ascending and descending temperature gradients, and that they can sense and thermotactically respond to temperature gradients as low as <0.014°C/mm. This temperature gradient is astonishingly low because it means that as a spermatozoon swims through its entire body length (46 µm it can sense and respond to a temperature difference of <0.0006°C. The significance of this surprisingly high temperature sensitivity is discussed.

  7. Temperature Gradients on the Cell Wall in the Critical Viscosity Experiment

    Science.gov (United States)

    Berg, Robert F.; Moldover, Michael R.

    1993-01-01

    Because of the diverging susceptibility delta rho/delta Tau near the liquid-vapor critical point, temperature gradients must be kept small to maintain adequate sample homogeneity. In our Science Requirements Document we paid particular attention to radial density gradients caused by equilibration of the xenon sample. Axial density gradients were addressed through the requirement that the cell's copper wall have a gradient less than 22 microK/m. This report re-examines the cell wall's temperature distribution in more detail by estimating all known significant contributions to temperature differences on the cell's wall.

  8. Linearly chirped fiber Bragg grating response to thermal gradient: from bench tests to the real-time assessment during in vivo laser ablations of biological tissue

    Science.gov (United States)

    Saccomandi, Paola; Varalda, Ambra; Gassino, Riccardo; Tosi, Daniele; Massaroni, Carlo; Caponero, Michele A.; Pop, Raoul; Korganbayev, Sanzhar; Perrone, Guido; Diana, Michele; Vallan, Alberto; Costamagna, Guido; Marescaux, Jacques; Schena, Emiliano

    2017-09-01

    The response of a fiber optic sensor [linearly chirped fiber Bragg grating (LCFBG)] to a linear thermal gradient applied on its sensing length (i.e., 1.5 cm) has been investigated. After these bench tests, we assessed their feasibility for temperature monitoring during thermal tumor treatment. In particular, we performed experiments during ex vivo laser ablation (LA) in pig liver and in vivo thermal ablation in animal models (pigs). We investigated the following: (i) the relationship between the full width at half maximum of the LCFBG spectrum and the temperature difference among the extremities of the LCFBG and (ii) the relationship between the mean spectrum wavelength and the mean temperature acting on the LCFBG sensing area. These relationships showed a linear trend during both bench tests and LA in animal models. Thermal sensitivity was significant although different values were found with regards to bench tests and animal experiments. The linear trend and significant sensitivity allow hypothesizing a future use of this kind of sensor to monitor both temperature gradient and mean temperature within a tissue undergoing thermal treatment.

  9. Electron thermal energy transport research based on dynamical relationship between heat flux and temperature gradient

    International Nuclear Information System (INIS)

    Notake, Takashi; Inagaki, Shigeru; Tamura, Naoki

    2008-01-01

    In the nuclear fusion plasmas, both of thermal energy and particle transport governed by turbulent flow are anomalously enhanced more than neoclassical levels. Thus, to clarify a relationship between the turbulent flow and the anomalous transports has been the most worthwhile work. There are experimental results that the turbulent flow induces various phenomena on transport processes such as non-linearity, transition, hysteresis, multi-branches and non-locality. We are approaching these complicated problems by analyzing not conventional power balance but these phenomena directly. They are recognized as dynamical trajectories in the flux and gradient space and must be a clue to comprehend a physical mechanism of arcane anomalous transport. Especially, to elucidate the mechanism for electron thermal energy transport is critical in the fusion plasma researches because the burning plasmas will be sustained by alpha-particle heating. In large helical device, the dynamical relationships between electron thermal energy fluxes and electron temperature gradients are investigated by using modulated electron cyclotron resonance heating and modern electron cyclotron emission diagnostic systems. Some trajectories such as hysteresis loop or line segments with steep slope which represent non-linear property are observed in the experiment. (author)

  10. A measurement of the local ion temperature gradient in the PLT tokamak

    International Nuclear Information System (INIS)

    Lovberg, J.A.; Strachan, J.D.; Princeton Univ., NJ

    1989-12-01

    Local ion temperature gradients were measured at two radial positions in the PLT tokamak by counting escaping d(d,p)t protons on orbits at closely spaced intervals. A single surface barrier detector was used to make each gradient measurement, eliminating relative calibration uncertainties. The ion thermal diffusivities inferred through ion energy balance with the measured temperature gradients are within a factor of two of Chang-Hinton neoclassical values for the 3 He-minority ICRH plasmas. 12 refs., 8 figs

  11. Temperature Gradient Effect on Gas Discrimination Power of a Metal-Oxide Thin-Film Sensor Microarray

    Directory of Open Access Journals (Sweden)

    Joachim Goschnick

    2004-05-01

    Full Text Available Abstract: The paper presents results concerning the effect of spatial inhomogeneous operating temperature on the gas discrimination power of a gas-sensor microarray, with the latter based on a thin SnO2 film employed in the KAMINA electronic nose. Three different temperature distributions over the substrate are discussed: a nearly homogeneous one and two temperature gradients, equal to approx. 3.3 oC/mm and 6.7 oC/mm, applied across the sensor elements (segments of the array. The gas discrimination power of the microarray is judged by using the Mahalanobis distance in the LDA (Linear Discrimination Analysis coordinate system between the data clusters obtained by the response of the microarray to four target vapors: ethanol, acetone, propanol and ammonia. It is shown that the application of a temperature gradient increases the gas discrimination power of the microarray by up to 35 %.

  12. Parallelism between gradient temperature raman spectroscopy and differential scanning calorimetry results

    Science.gov (United States)

    Temperature dependent Raman spectroscopy (TDR) applies the temperature gradients utilized in differential scanning calorimetry (DSC) to Raman spectroscopy, providing a straightforward technique to identify molecular rearrangements that occur just prior to phase transitions. Herein we apply TDR and D...

  13. Space charge build-up in XLPE-cable with temperature gradient

    DEFF Research Database (Denmark)

    Holbøll, Joachim; Henriksen, Mogens; Hjerrild, Jesper

    2000-01-01

    and temperatures were applied in the 20 - 80°C range with gradients across the insulation of up to 15°C. In this paper, the observed charge phenomena in the bulk and at the interfaces are related to the external conditions, in particular to the temperature gradient. The measured space charge distributions...

  14. The temperature gradient on section of casting in process of primary crystallization of chromium cast iron

    Directory of Open Access Journals (Sweden)

    A. Studnicki

    2008-08-01

    Full Text Available The methodology of defining in article was introduced the temperature gradient in process of primary crystallization during cooling the casting from chromium cast iron on basis of measurements of thermal field in test DTA-K3. Insert also the preliminary results of investigations of influence temperature gradient on structure of studied wear resistance chromium cast iron.

  15. Experimental study of electron temperature gradient influence on impurity turbulent transport in fusion plasmas

    International Nuclear Information System (INIS)

    Villegas, D.

    2010-01-01

    Understanding impurity transport is a key to an optimal regime for a future fusion device. In this thesis, the theoretical and experimental influence of the electron temperature gradient R/L Te on heavy impurity transport is analyzed both in Tore Supra and ASDEX Upgrade. The electron temperature profile is modified locally by heating the plasma with little ECRH power deposited at two different radii. Experimental results have been obtained with the impurity transport code (ITC) which has been completed with a genetic algorithm allowing to determine the transport coefficient profiles with more accuracy. Transport coefficient profiles obtained by a quasilinear gyrokinetic code named QuaLiKiz are consistent with the experimental ones despite experimental uncertainties on gradients. In the core dominated by electron modes, the lower R/L Te the lower the nickel diffusion coefficient. The latter tends linearly to the neoclassical level when the instability threshold is approached. The experimental threshold is in agreement with the one computed by QuaLiKiz. Further out, where the plasma is dominated by ITG, which are independent of R/L Te , both experimental and simulated results show no modification in the diffusion coefficient profile. Furthermore, the convection velocity profile is not modified. This is attributed to a very small contribution of the thermodiffusion (1/Z dependence) in the total convection. On ASDEX, the preliminary results, very different from the Tore Supra ones, show a internal transport barrier for impurities located at the same radius as the strong ECRH power deposit. (author) [fr

  16. Variable but persistent coexistence of Prochlorococcus ecotypes along temperature gradients in the ocean's surface mixed layer.

    Science.gov (United States)

    Chandler, Jeremy W; Lin, Yajuan; Gainer, P Jackson; Post, Anton F; Johnson, Zackary I; Zinser, Erik R

    2016-04-01

    The vast majority of the phytoplankton communities in surface mixed layer of the oligotrophic ocean are numerically dominated by one of two ecotypes of Prochlorococcus, eMIT9312 or eMED4. In this study, we surveyed large latitudinal transects in the Atlantic and Pacific Ocean to determine if these ecotypes discretely partition the surface mixed layer niche, or if populations exist as a continuum along key environmental gradients, particularly temperature. Transitions of dominance occurred at approximately 19-21°C, with the eMED4 ecotype dominating the colder, and eMIT9312 ecotype dominating the warmer regions. Within these zones of regional dominance, however, the minority ecotype was not competed to extinction. Rather, a robust log-linear relationship between ecotype ratio and temperature characterized this stabilized coexistence: for every 2.5°C increase in temperature, the eMIT9312:eMED4 ratio increased by an order of magnitude. This relationship was observed in both quantitative polymerase chain reaction and in pyrosequencing assays. Water column stratification also contributed to the ecotype ratio along the basin-scale transects, but to a lesser extent. Finally, instances where the ratio of the eMED4 and eMIT9312 abundances did not correlate well with temperature were identified. Such occurrences are likely due to changes in water temperatures outpacing changes in community structure. © 2016 Society for Applied Microbiology and John Wiley & Sons Ltd.

  17. A linear accelerator power amplification system for high gradient structure research

    International Nuclear Information System (INIS)

    Haimson, J.; Mecklenburg, B.

    1999-01-01

    The ongoing development of linear collider high power RF sources and pulse compression systems has resulted in substantial progress towards a goal of providing a peak RF power level of approximately 250 MW at the input of the accelerator structure. While the immediate development and the high power testing of specialized waveguide components required for power transmission at these high levels have proceeded expeditiously due to the availability of resonant ring systems, the testing of high gradient accelerator structures at very high power levels, and the investigation of coupler cavity RF breakdown problems have, typically, been curtailed due to the unavailability of suitable 200 to 300 MW RF test facilities. We describe herein a compact, high peak power amplification system based on a dual hybrid bridge configuration that avoids the need for power splitters at the accelerator dual feed couplers, and also provides a convenient interface for installing high gradient accelerator test structures. Design parameters are presented for a proposed power amplification system that makes use of a 75 MW, 1/2 μs flat-top RF source to produce 280 MW, 1/4 μs flat-top power for testing dual feed TW experimental accelerator sections

  18. Electric field gradient and electronic structure of linear-bonded halide compounds

    International Nuclear Information System (INIS)

    Ellis, D.E.; Guenzburger, D.J.R.; Jansen, H.B.

    1983-01-01

    The importance of covalent metal-ligand interactions in determining hyperfine fields and energy-level structure of MX 2 linear-bonded halide compounds has been studied, using the self-consistent local density molecular orbital approach. Results for FeCl 2 , FeBr 2 and EuCl 2 obtained using the Discrete Variational Method with numerical basis sets are presented. The high spin configuration for the iron compounds, first predicted by Berkowitz, et al., is verified; a successful comparison with gas phase photoelectron spectra is made. Variation of the predicted electric field gradient with bond length R is found to be rapid; the need for an EXAFS measurement of R for the matrix isolated species and experimental determination of the spin of the EFG is seen to be crucial for more accurate determinations of the sub(57) Fe quadrupole moment. (Author) [pt

  19. Threshold temperature gradient effect on migration of brine inclusions in salt

    International Nuclear Information System (INIS)

    Pigford, T.H.

    1987-01-01

    Theories of the migration of brine inclusions in salt were interpreted as simple physical processes, and theories by Russian and US workers were shown to yield the same results. The migration theory was used to predict threshold temperature gradients below which migration of brine inclusions should not occur. The predicted threshold gradients were compared with the temperature gradients expected at the Waste Isolation Pilot Plant in New Mexico. The theory of threshold gradients helps explain the existence of brine inclusions in natural salt deposits

  20. Generation of transverse waves in a liquid layer with insoluble surfactant subjected to temperature gradient

    Energy Technology Data Exchange (ETDEWEB)

    Mikishev, Alexander B; Friedman, Barry A [Department of Physics, Sam Houston State University, Huntsville, TX 77341 (United States); Nepomnyashchy, Alexander A, E-mail: amik@shsu.edu, E-mail: phy_baf@shsu.edu, E-mail: nepom@technion.ac.il [Department of Mathematics, Technion—Israel Institute of Technology, Haifa 32000 (Israel)

    2016-12-15

    The formation of Faraday waves (FWs) at the surfactant-covered free surface of a vertically vibrated liquid layer is considered. The layer is subjected to a vertical temperature gradient. The surfactant is insoluble. Linear stability analysis and the Floquet method are used for disturbances with arbitrary wave numbers to find the regions of critical vibration amplitude where FWs are generated. The problem is considered for the semi-infinite liquid layer, as well as for the layer of a finite depth. It is shown numerically, that in the semi-infinite case the critical tongue of a neutral stability curve corresponding to the lowest value of the forcing amplitude is related to the subharmonic instability mode. It changes to the harmonic one in the case of finite depth. The influence of thermocapillary Marangoni number on the critical amplitude of FWs is studied. The growth of that number stabilizes the system, however, this effect is very weak. (paper)

  1. Nonlinear structure formation in ion-temperature-gradient driven drift waves in pair-ion plasma with nonthermal electron distribution

    Science.gov (United States)

    Razzaq, Javaria; Haque, Q.; Khan, Majid; Bhatti, Adnan Mehmood; Kamran, M.; Mirza, Arshad M.

    2018-02-01

    Nonlinear structure formation in ion-temperature-gradient (ITG) driven waves is investigated in pair-ion plasma comprising ions and nonthermal electrons (kappa, Cairns). By using the transport equations of the Braginskii model, a new set of nonlinear equations are derived. A linear dispersion relation is obtained and discussed analytically as well as numerically. It is shown that the nonthermal population of electrons affects both the linear and nonlinear characteristics of the ITG mode in pair-ion plasma. This work will be useful in tokamaks and stellarators where non-Maxwellian population of electrons may exist due to resonant frequency heating, electron cyclotron heating, runaway electrons, etc.

  2. Extension of Modified Polak-Ribière-Polyak Conjugate Gradient Method to Linear Equality Constraints Minimization Problems

    Directory of Open Access Journals (Sweden)

    Zhifeng Dai

    2014-01-01

    Full Text Available Combining the Rosen gradient projection method with the two-term Polak-Ribière-Polyak (PRP conjugate gradient method, we propose a two-term Polak-Ribière-Polyak (PRP conjugate gradient projection method for solving linear equality constraints optimization problems. The proposed method possesses some attractive properties: (1 search direction generated by the proposed method is a feasible descent direction; consequently the generated iterates are feasible points; (2 the sequences of function are decreasing. Under some mild conditions, we show that it is globally convergent with Armijio-type line search. Preliminary numerical results show that the proposed method is promising.

  3. Response of Soft Continuous Structures and Topological Defects to a Temperature Gradient.

    Science.gov (United States)

    Kurita, Rei; Mitsui, Shun; Tanaka, Hajime

    2017-09-08

    Thermophoresis, which is mass transport induced by a temperature gradient, has recently attracted considerable attention as a new way to transport materials. So far the study has been focused on the transport of discrete structures such as colloidal particles, proteins, and polymers in solutions. However, the response of soft continuous structures such as membranes and gels to a temperature gradient has been largely unexplored. Here we study the behavior of a lamellar phase made of stacked surfactant bilayer membranes under a temperature gradient. We find the migration of membranes towards a low-temperature region, causing the increase in the degree of membrane undulation fluctuations towards that direction. This is contrary to our intuition that the fluctuations are weaker at a lower temperature. We show that this can be explained by temperature-gradient-induced migration of membranes under the topological constraint coming from the connectivity of each membrane. We also reveal that the pattern of an edge dislocation array formed in a wedge-shaped cell can be controlled by a temperature gradient. These findings suggest that application of a temperature gradient provides a novel way to control the organization of soft continuous structures such as membranes, gels, and foams, in a manner essentially different from the other types of fields, and to manipulate topological defects.

  4. Study of the possibility of growing germanium single crystals under low temperature gradients

    Science.gov (United States)

    Moskovskih, V. A.; Kasimkin, P. V.; Shlegel, V. N.; Vasiliev, Y. V.; Gridchin, V. A.; Podkopaev, O. I.; Zhdankov, V. N.

    2014-03-01

    The possibility of growing germanium single crystals under low temperature gradients in order to produce a dislocation-free material has been studied. Germanium crystals with a dislocation density of about 100-200 cm-2 have been grown in a system with a weight control of crystal growth at maximum axial gradients of about 1.5 K/cm.

  5. Global non-linear effect of temperature on economic production.

    Science.gov (United States)

    Burke, Marshall; Hsiang, Solomon M; Miguel, Edward

    2015-11-12

    Growing evidence demonstrates that climatic conditions can have a profound impact on the functioning of modern human societies, but effects on economic activity appear inconsistent. Fundamental productive elements of modern economies, such as workers and crops, exhibit highly non-linear responses to local temperature even in wealthy countries. In contrast, aggregate macroeconomic productivity of entire wealthy countries is reported not to respond to temperature, while poor countries respond only linearly. Resolving this conflict between micro and macro observations is critical to understanding the role of wealth in coupled human-natural systems and to anticipating the global impact of climate change. Here we unify these seemingly contradictory results by accounting for non-linearity at the macro scale. We show that overall economic productivity is non-linear in temperature for all countries, with productivity peaking at an annual average temperature of 13 °C and declining strongly at higher temperatures. The relationship is globally generalizable, unchanged since 1960, and apparent for agricultural and non-agricultural activity in both rich and poor countries. These results provide the first evidence that economic activity in all regions is coupled to the global climate and establish a new empirical foundation for modelling economic loss in response to climate change, with important implications. If future adaptation mimics past adaptation, unmitigated warming is expected to reshape the global economy by reducing average global incomes roughly 23% by 2100 and widening global income inequality, relative to scenarios without climate change. In contrast to prior estimates, expected global losses are approximately linear in global mean temperature, with median losses many times larger than leading models indicate.

  6. Global non-linear effect of temperature on economic production

    Science.gov (United States)

    Burke, Marshall; Hsiang, Solomon M.; Miguel, Edward

    2015-11-01

    Growing evidence demonstrates that climatic conditions can have a profound impact on the functioning of modern human societies, but effects on economic activity appear inconsistent. Fundamental productive elements of modern economies, such as workers and crops, exhibit highly non-linear responses to local temperature even in wealthy countries. In contrast, aggregate macroeconomic productivity of entire wealthy countries is reported not to respond to temperature, while poor countries respond only linearly. Resolving this conflict between micro and macro observations is critical to understanding the role of wealth in coupled human-natural systems and to anticipating the global impact of climate change. Here we unify these seemingly contradictory results by accounting for non-linearity at the macro scale. We show that overall economic productivity is non-linear in temperature for all countries, with productivity peaking at an annual average temperature of 13 °C and declining strongly at higher temperatures. The relationship is globally generalizable, unchanged since 1960, and apparent for agricultural and non-agricultural activity in both rich and poor countries. These results provide the first evidence that economic activity in all regions is coupled to the global climate and establish a new empirical foundation for modelling economic loss in response to climate change, with important implications. If future adaptation mimics past adaptation, unmitigated warming is expected to reshape the global economy by reducing average global incomes roughly 23% by 2100 and widening global income inequality, relative to scenarios without climate change. In contrast to prior estimates, expected global losses are approximately linear in global mean temperature, with median losses many times larger than leading models indicate.

  7. Continuous gradient temperature Raman spectroscopy of oleic and linoleic acids from -100 to 50°C

    Science.gov (United States)

    Gradient Temperature Raman spectroscopy (GTRS) applies the temperature gradients utilized in differential scanning calorimetry (DSC) to Raman spectroscopy, providing a straightforward technique to identify molecular rearrangements that occur near and at phase transitions. Herein we apply GTRS and DS...

  8. Near-field radiative heat transfer under temperature gradients and conductive transfer

    Energy Technology Data Exchange (ETDEWEB)

    Jin, Weiliang; Rodriguez, Alejandro W. [Princeton Univ., NJ (United States). Dept. of Electrical Engineering; Messina, Riccardo [CNRS-Univ. de Montpellier (France). Lab. Charles Coulomb

    2017-05-01

    We describe a recently developed formulation of coupled conductive and radiative heat transfer (RHT) between objects separated by nanometric, vacuum gaps. Our results rely on analytical formulas of RHT between planar slabs (based on the scattering-matrix method) as well as a general formulation of RHT between arbitrarily shaped bodies (based on the fluctuating-volume current method), which fully captures the existence of temperature inhomogeneities. In particular, the impact of RHT on conduction, and vice versa, is obtained via self-consistent solutions of the Fourier heat equation and Maxwell's equations. We show that in materials with low thermal conductivities (e.g. zinc oxides and glasses), the interplay of conduction and RHT can strongly modify heat exchange, exemplified for instance by the presence of large temperature gradients and saturating flux rates at short (nanometric) distances. More generally, we show that the ability to tailor the temperature distribution of an object can modify the behaviour of RHT with respect to gap separations, e.g. qualitatively changing the asymptotic scaling at short separations from quadratic to linear or logarithmic. Our results could be relevant to the interpretation of both past and future experimental measurements of RHT at nanometric distances.

  9. Ecological impacts of invasive alien species along temperature gradients: testing the role of environmental matching.

    Science.gov (United States)

    Iacarella, Josephine C; Dick, Jaimie T A; Alexander, Mhairi E; Ricciardi, Anthony

    2015-04-01

    Invasive alien species (IAS) can cause substantive ecological impacts, and the role of temperature in mediating these impacts may become increasingly significant in a changing climate. Habitat conditions and physiological optima offer predictive information for IAS impacts in novel environments. Here, using meta-analysis and laboratory experiments, we tested the hypothesis that the impacts of IAS in the field are inversely correlated with the difference in their ambient and optimal temperatures. A meta-analysis of 29 studies of consumptive impacts of IAS in inland waters revealed that the impacts of fishes and crustaceans are higher at temperatures that more closely match their thermal growth optima. In particular, the maximum impact potential was constrained by increased differences between ambient and optimal temperatures, as indicated by the steeper slope of a quantile regression on the upper 25th percentile of impact data compared to that of a weighted linear regression on all data with measured variances. We complemented this study with an experimental analysis of the functional response (the relationship between predation rate and prey supply) of two invasive predators (freshwater mysid shrimp, Hemimysis anomala and Mysis diluviana) across. relevant temperature gradients; both of these species have previously been found to exert strong community-level impacts that are corroborated by their functional responses to different prey items. The functional response experiments showed that maximum feeding rates of H. anomala and M. diluviana have distinct peaks near their respective thermal optima. Although variation in impacts may be caused by numerous abiotic or biotic habitat characteristics, both our analyses point to temperature as a key mediator of IAS impact levels in inland waters and suggest that IAS management should prioritize habitats in the invaded range that more closely match the thermal optima of targeted invaders.

  10. Measurement of the vertical temperature gradient at the Saclay Nuclear Research Centre

    International Nuclear Information System (INIS)

    Santelli, F.; Le Quino, R.

    1962-01-01

    A 109 m mast has been erected at the Saclay Nuclear Research Centre for the precise measurement of thermal gradients and gaseous effluents. This note describes the temperature measurement devices (thermocouple and thermo-resistor) and the first results obtained

  11. Estimation of geothermal gradients from single temperature log-field cases

    International Nuclear Information System (INIS)

    Kutasov, I M; Eppelbaum, L V

    2009-01-01

    A geothermal gradient is one of the most frequently used parameters in logging geophysics. However, the drilling process greatly disturbs the temperature of the formations around the wellbore. For this reason, in order to determine with the required accuracy the formation temperatures and geothermal gradients, a certain length of shut-in time is required. It was shown earlier (Kutasov 1968 Freiberger Forshungshefte C 238 55–61, 1987 Geothermics 16 467–72) that at least two transient temperature surveys are needed to determine the geothermal gradient with adequate accuracy. However, in many cases only one temperature log is conducted in a shut-in borehole. For these cases, we propose an approximate method for the estimation of the geothermal gradient. The utilization of this method is demonstrated on four field examples

  12. Gradient temperature Raman spectroscopy identifies flexible sites in proline and alanine peptides

    Science.gov (United States)

    Continuous thermo dynamic Raman spectroscopy (TDRS) applies the temperature gradients utilized in differential scanning calorimetry (DSC) to Raman spectroscopy, providing a straightforward technique to identify molecular rearrangements that occur just prior to phase transitions. Herein we apply TDRS...

  13. Ion-temperature-gradient-driven modes in bi-ion magnetoplasma

    Energy Technology Data Exchange (ETDEWEB)

    Batool, Nazia; Mirza, Arshad M [Theoretical Plasma Physics Group, Department of Physics, Quaid-i-Azam University, Islamabad 45320 (Pakistan); Qamar, Anisa [Department of Physics, Peshawar University, NWFP 25120 (Pakistan)], E-mail: nazia.batool@ncp.edu.pk

    2008-12-15

    The toroidal ion-temperature-gradient (ITG)-driven electrostatic drift waves are investigated for bi-ion plasmas with equilibrium density, temperature and magnetic field gradients. Using Braginskii's transport equations for the ions and Boltzmann distributed electrons, the mode coupling equations are derived. New ITG-driven modes are shown to exist. The results of the present study should be helpful to understand several wave phenomena in space and tokamak plasmas.

  14. A new modified conjugate gradient coefficient for solving system of linear equations

    Science.gov (United States)

    Hajar, N.; ‘Aini, N.; Shapiee, N.; Abidin, Z. Z.; Khadijah, W.; Rivaie, M.; Mamat, M.

    2017-09-01

    Conjugate gradient (CG) method is an evolution of computational method in solving unconstrained optimization problems. This approach is easy to implement due to its simplicity and has been proven to be effective in solving real-life application. Although this field has received copious amount of attentions in recent years, some of the new approaches of CG algorithm cannot surpass the efficiency of the previous versions. Therefore, in this paper, a new CG coefficient which retains the sufficient descent and global convergence properties of the original CG methods is proposed. This new CG is tested on a set of test functions under exact line search. Its performance is then compared to that of some of the well-known previous CG methods based on number of iterations and CPU time. The results show that the new CG algorithm has the best efficiency amongst all the methods tested. This paper also includes an application of the new CG algorithm for solving large system of linear equations

  15. Subsurface temperatures and geothermal gradients on the north slope of Alaska

    Science.gov (United States)

    Collett, T.S.; Bird, K.J.; Magoon, L.B.

    1993-01-01

    On the North Slope of Alaska, geothermal gradient data are available from high-resolution, equilibrated well-bore surveys and from estimates based on well-log identification of the base of ice-bearing permafrost. A total of 46 North Slope wells, considered to be in or near thermal equilibrium, have been surveyed with high-resolution temperatures devices and geothermal gradients can be interpreted directly from these recorded temperature profiles. To augment the limited North Slope temperature data base, a new method of evaluating local geothermal gradients has been developed. In this method, a series of well-log picks for the base of the ice-bearing permafrost from 102 wells have been used, along with regional temperature constants derived from the high-resolution stabilized well-bore temperature surveys, to project geothermal gradients. Geothermal gradients calculated from the high-resolution temperature surveys generally agree with those projected from known ice-bearing permafrost depths over most of the North Slope. Values in the ice-bearing permafrost range from ??? 1.5??C 100 m in the Prudhoe Bay area to ??? 4.5??C 100 m in the east-central portion of the National Petroleum Reserve in Alaska. Geothermal gradients below the ice-bearing permafrost sequence range from ??? 1.6??C 100 m to ??? 5.2??C 100 m. ?? 1993.

  16. Mutation screening of the TP53 gene by temporal temperature gradient gel electrophoresis.

    Science.gov (United States)

    Sørlie, Therese; Johnsen, Hilde; Vu, Phuong; Lind, Guro Elisabeth; Lothe, Ragnhild; Børresen-Dale, Anne-Lise

    2005-01-01

    A protocol for detection of mutations in the TP53 gene using temporal temperature gradient gel electrophoresis (TTGE) is described. TTGE is a mutation detection technique that separates DNA fragments differing by single base pairs according to their melting properties in a denaturing gel. It is based on constant denaturing conditions in the gel combined with a temperature gradient during the electrophoretic run. This method combines some of the advantages of the related techniques denaturing gradient gel electrophoresis (DGGE) and constant denaturant gel electrophoresis (CDGE) and eliminates some of the problems. The result is a rapid and sensitive screening technique that is robust and easily set up in smaller laboratory environments.

  17. Gyrokinetic global analysis of ion temperature gradient driven mode in reversed shear tokamaks

    International Nuclear Information System (INIS)

    Idomura, Y.; Tokuda, S.; Kishimoto, Y.

    2003-01-01

    A new toroidal gyrokinetic particle code has been developed to study the ion temperature gradient driven (ITG) turbulence in reactor relevant tokamak parameters. We use a new method based on a canonical Maxwellian distribution F CM (P φ , ε, μ), which is defined by three constants of motion in the axisymmetric toroidal system, the canonical angular momentum P φ , the energy ε, and the magnetic moment μ. A quasi-ballooning representation enables linear and nonlinear high-m,n global calculations with a good numerical convergence. Conservation properties are improved by using the optimized loading method. From comprehensive linear global analyses over a wide range of an unstable toroidal mode number spectrum (n=0∼100) in large tokamak parameters (a/ρ ti =320∼460), properties of the ITG modes in reversed shear tokamaks are discussed. In the nonlinear simulation, it is found that a new method based on F CM can simulate a zonal flow damping correctly, and spurious zonal flow oscillations, which are observed in a conventional method based on a local Maxwellian distribution F LM (ψ, ε, μ), do not appear in the nonlinear regime. (author)

  18. Gyrokinetic analysis of ion temperature gradient modes in the presence of sheared flows

    International Nuclear Information System (INIS)

    Artun, M.; Tang, W.M.

    1992-01-01

    The linearized gyrokinetic equation governing electrostatic microinstabilities in the presence of sheared equilibrium flow in both the z and y directions has been systematically derived for a sheared slab geometry, where in the large aspect ratio limit z and y directions correspond to the toroidal and poloidal directions respectively. In the familiar long perpendicular wavelength regime (κ perpendicular ρi > 1), the analysis leads to a comprehensive kinetic differential eigenmode equation which is solved numerically. The numerical results have been successfully cross-checked against analytic estimates in the fluid limit. For typical conditions, the Ion Temperature Gradient (ηi) modes are found to be stabilized for y-direction flows with a velocity shear scale comparable to that of the ion temperature gradient and velocities of a few percent of the sound speed. Sheared flows in the z-direction taken along are usually destabilizing, with the effect being independent of the sign of the flow. However, when both types are simultaneously considered, it is found that in the presence of shared z-direction flow, sheared y-direction flow can be either stabilizing or destabilizing depending on the relative sign of these flows. However, for sufficiently large values of υ' y the mode is completely stabilized regardless of the sign of υ' z υ' y . The importance of a proper kinetic treatment of this problem is supported by comparisons with fluid estimates. In particular, when such effects are favorable, significantly smaller values of sheared y-direction flow are required for stability than fluid estimates would indicate

  19. Quantification of local and global elastic anisotropy in ultrafine grained gradient microstructures, produced by linear flow splitting

    DEFF Research Database (Denmark)

    Niehuesbernd, Jörn; Müller, Clemens; Pantleon, Wolfgang

    2013-01-01

    . Consequently, the macroscopic elastic behavior results from the local elastic properties within the gradient. In the present investigation profiles produced by the linear flow splitting process were examined with respect to local and global elastic anisotropy, which develops during the complex forming process...

  20. Non-uniform temperature gradients and thermal stresses produced ...

    Indian Academy of Sciences (India)

    thermally-induced stress distributions in a hollow steel sphere heated by a moving uniform ... models to evaluate temperatures according to the frictional heat generation, ... of these thermal effects include thermal stress, strain and deformation.

  1. Comparison between kinetic and fluid simulations of slab ion temperature gradient driven turbulence

    Energy Technology Data Exchange (ETDEWEB)

    Sugama, H.; Watanabe, T.-H. [National Inst. for Fusion Science, Toki, Gifu (Japan); Horton, W. [University of Texas at Austin, Institute for Fusion Studies, Austin, Texas (United States)

    2002-10-01

    A detailed comparison between kinetic and fluid simulations of collisionless slab ion temperature gradient (ITG) driven turbulence is made. The nondissipative closure model (NCM) for linearly unstable modes, which is presented by Sugama, Watanabe, and Horton [Phys. Plasmas 8, 2617 (2001)], and the dissipative closure model by Hammett and Perkins (HP) [Phys. Rev. Lett. 64, 3019 (1990)] are used in separate fluid simulations. The validity of these closure models for quantitative prediction of the turbulent thermal transport is examined by comparing nonlinear results of the fluid simulations with those of the collisionless kinetic simulation of high accuracy. Simulation results show that, in the saturated turbulent state, the turbulent thermal diffusivity {chi} obtained from the HP model is significantly larger than the {chi} given by the NCM which is closer to {chi} measured in the kinetic simulation. Contrary to the dissipative form of the parallel heat flux closure relation assumed in the HP model, the NCM describes well the exact kinetic simulation, in which for some unstable wave numbers k, the imaginary part of the ratio of the parallel heat flux q{sub k} to the temperature fluctuation T{sub k} is a oscillatory function of time and sometimes takes positive values. The positive values of Im(q{sub k}/T{sub k}), imply the negative parallel heat diffusivity, correlate with the occasional inward heat flux occurring for the wave numbers k, and reduce the total {chi}. (author)

  2. Curvature and temperature gradient driven instabilities in tokomak edge plasmas with SOL

    International Nuclear Information System (INIS)

    Novakovskii, S.V.; Guzdar, P.N.; Drake, J.F.; Liu, C.S.

    1996-01-01

    Curvature driven resistive ballooning modes (RBM) as well as the electron temperature gradient (ETG) modes have been investigated in the tokomak edge region and the SOL, with the help of the numerical code open-quotes 2D-BALLOONclose quotes. This is an initial value code, which determines the stability properties and estimates the quasi-linear transport for given density, temperature, the magnetic and electric field profiles, taking into account the SOL geometry as well as a closed flux region. The results related to the following issues will be presented: (1) Comparative analysis of the ETG and the RBM instabilities in the SOL and their influence on the transport in the edge region (inside the Last Closed Magnetic Surface). (2) The influence of the effective Debye sheath current. (3) Different poloidal positions of the toroidal limiter and their effect on the instabilities. Other aspects of the edge plasma turbulence, such as finite β effects, flow-shear of the poloidal rotation etc. will also be discussed

  3. Comparison between kinetic and fluid simulations of slab ion temperature gradient driven turbulence

    International Nuclear Information System (INIS)

    Sugama, H.; Watanabe, T.-H.; Horton, W.

    2002-10-01

    A detailed comparison between kinetic and fluid simulations of collisionless slab ion temperature gradient (ITG) driven turbulence is made. The nondissipative closure model (NCM) for linearly unstable modes, which is presented by Sugama, Watanabe, and Horton [Phys. Plasmas 8, 2617 (2001)], and the dissipative closure model by Hammett and Perkins (HP) [Phys. Rev. Lett. 64, 3019 (1990)] are used in separate fluid simulations. The validity of these closure models for quantitative prediction of the turbulent thermal transport is examined by comparing nonlinear results of the fluid simulations with those of the collisionless kinetic simulation of high accuracy. Simulation results show that, in the saturated turbulent state, the turbulent thermal diffusivity χ obtained from the HP model is significantly larger than the χ given by the NCM which is closer to χ measured in the kinetic simulation. Contrary to the dissipative form of the parallel heat flux closure relation assumed in the HP model, the NCM describes well the exact kinetic simulation, in which for some unstable wave numbers k, the imaginary part of the ratio of the parallel heat flux q k to the temperature fluctuation T k is a oscillatory function of time and sometimes takes positive values. The positive values of Im(q k /T k ), imply the negative parallel heat diffusivity, correlate with the occasional inward heat flux occurring for the wave numbers k, and reduce the total χ. (author)

  4. Dynamic microscale temperature gradient in a gold nanorod solution measured by diffraction-limited nanothermometry

    Energy Technology Data Exchange (ETDEWEB)

    Li, Chengmingyue; Gan, Xiaosong; Li, Xiangping; Gu, Min, E-mail: mgu@swin.edu.au [Centre for Micro-Photonics, Faculty of Science, Engineering and Technology, Swinburne University of Technology, Hawthorn, Victoria 3122 (Australia)

    2015-09-21

    We quantify the dynamic microscale temperature gradient in a gold nanorod solution using quantum-dot-based microscopic fluorescence nanothermometry. By incorporating CdSe quantum dots into the solution as a nanothermometer, precise temperature mapping with diffraction-limited spatial resolution and sub-degree temperature resolution is achieved. The acquired data on heat generation and dissipation show an excellent agreement with theoretical simulations. This work reveals an effective approach for noninvasive temperature regulation with localized nanoheaters in microfluidic environment.

  5. Formation of tripolar vortices in toroidal ion-temperature-gradient driven modes in the presence of dust contamination

    International Nuclear Information System (INIS)

    Mirza, Arshad M.; Qamar, Anisa; Khan, M. Yaqub; Ayub, M.

    2007-01-01

    A system of nonlinear equations that governs the dynamics of toroidal-ion-temperature-gradient (TITG) driven modes in the presence of dust contamination is presented. In the linear limit, a local dispersion relation is derived and analyzed for a flat density profile case. In the nonlinear case, and by taking some specific profiles of equilibrium density, ion temperature, magnetic field, and sheared plasma flows, the stationary solutions of the nonlinear system can be represented in the form of a tripolar vortex solution. Numerical results obtained in the present study show that the inclusion of dust modifies the nonlinear vortical structures, and the amplitude of the normalized potential is found to be increased in the presence of negatively charged dust grains. The results of our present investigation would be useful to understand some linear as well as nonlinear properties of TITG modes in a dust-contaminated tokamak plasma

  6. Electron temperature gradient mode instability and stationary vortices with elliptic and circular boundary conditions in non-Maxwellian plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Haque, Q. [Theoretical Physics Division, PINSTECH, P.O. Nilore, Islamabad (Pakistan); Zakir, U. [Department of Physics, University of Peshawar, Khyber Pakhtun Khwa 25000 (Pakistan); Department of Physics, University of Malakand, Khyber Pakhtun Khwa 18800 (Pakistan); Qamar, A. [Department of Physics, University of Peshawar, Khyber Pakhtun Khwa 25000 (Pakistan)

    2015-12-15

    Linear and nonlinear dynamics of electron temperature gradient mode along with parallel electron dynamics is investigated by considering hydrodynamic electrons and non-Maxwellian ions. It is noticed that the growth rate of η{sub e}-mode driven linear instability decreases by increasing the value of spectral index and increases by reducing the ion/electron temperature ratio along the magnetic field lines. The eigen mode dispersion relation is also found in the ballooning mode limit. Stationary solutions in the form of dipolar vortices are obtained for both circular and elliptic boundary conditions. It is shown that the dynamics of both circular and elliptic vortices changes with the inclusion of inhomogeneity and non-Maxwellian effects.

  7. Electron temperature gradient mode instability and stationary vortices with elliptic and circular boundary conditions in non-Maxwellian plasmas

    Science.gov (United States)

    Haque, Q.; Zakir, U.; Qamar, A.

    2015-12-01

    Linear and nonlinear dynamics of electron temperature gradient mode along with parallel electron dynamics is investigated by considering hydrodynamic electrons and non-Maxwellian ions. It is noticed that the growth rate of ηe-mode driven linear instability decreases by increasing the value of spectral index and increases by reducing the ion/electron temperature ratio along the magnetic field lines. The eigen mode dispersion relation is also found in the ballooning mode limit. Stationary solutions in the form of dipolar vortices are obtained for both circular and elliptic boundary conditions. It is shown that the dynamics of both circular and elliptic vortices changes with the inclusion of inhomogeneity and non-Maxwellian effects.

  8. Confinement dependent chemotaxis in two-photon polymerized linear migration constructs with highly definable concentration gradients

    DEFF Research Database (Denmark)

    Hjortø, Gertrud Malene; Olsen, Mark Holm; Svane, Inge Marie

    2015-01-01

    Dendritic cell chemotaxis is known to follow chemoattractant concentration gradients through tissue of heterogeneous pore sizes, but the dependence of migration velocity on pore size and gradient steepness is not fully understood. We enabled chemotaxis studies for at least 42 hours at confinement...

  9. The relation between temperature and concentration gradients in superfluid sup 3 He- sup 4 He solutions

    CERN Document Server

    Zadorozhko, A A; Rudavskij, E Y; Chagovets, V K; Sheshin, G A

    2003-01-01

    The temperature and concentration gradients nabla T and nabla x in a superfluid sup 3 He- sup 4 He mixture with an initial concentration 9,8 % of sup 3 He are measured in a temperature range 70-500 mK. The gradients are produced by a steady thermal flow with heating from below. It is shown that the value of nabla x/nabla T observed in the experiment is in good agreement with the theoretical model derived from the temperature and concentration dependences of osmotic pressure. The experimental data permitted us to obtain a thermal diffusion ratio of the solution responsible for the thermal diffusion coefficient.

  10. Parametric analysis of temperature gradient across thermoelectric power generators

    Directory of Open Access Journals (Sweden)

    Khaled Chahine

    2016-06-01

    Full Text Available This paper presents a parametric analysis of power generation from thermoelectric generators (TEGs. The aim of the parametric analysis is to provide recommendations with respect to the applications of TEGs. To proceed, the one-dimensional steady-state solution of the heat diffusion equation is considered with various boundary conditions representing real encountered cases. Four configurations are tested. The first configuration corresponds to the TEG heated with constant temperature at its lower surface and cooled with a fluid at its upper surface. The second configuration corresponds to the TEG heated with constant heat flux at its lower surface and cooled with a fluid at its upper surface. The third configuration corresponds to the TEG heated with constant heat flux at its lower surface and cooled by a constant temperature at its upper surface. The fourth configuration corresponds to the TEG heated by a fluid at its lower surface and cooled by a fluid at its upper surface. It was shown that the most promising configuration is the fourth one and temperature differences up to 70˚C can be achieved at 150˚C heat source. Finally, a new concept is implemented based on configuration four and tested experimentally.

  11. TEMPERATURE SELECTION BY HATCHLING AND YEARLING FLORIDA RED-BELLIED TURTLES (PSEUDEMYS NELSONI) IN THERMAL GRADIENTS

    Science.gov (United States)

    We tested hatchling and yearling Florida red-bellied turtles (Pseudemys nelsoni) in laboratory thermal gradient chambers to determine if they would prefer particular temperatures. Most 1995 hatchlings selected the highest temperature zone of 27degrees C (Test 1) and 30 degrees ...

  12. Observation of refraction and convergence of ion acoustic waves in a plasma with a temperature gradient

    International Nuclear Information System (INIS)

    Nishida, Y.; Hirose, A.

    1977-01-01

    The refraction and convergence of ion acoustic waves are experimentally investigated in a magnetized plasma with an electron temperature gradient. When ion acoustic waves are launched parallel to the field lines the waves converge toward the interior of the plasma column where the electron temperature is lower, in good agreement with theoretical prediction. Wave interference is also observed. (author)

  13. Range-wide latitudinal and elevational temperature gradients for the world's terrestrial birds: implications under global climate change.

    Directory of Open Access Journals (Sweden)

    Frank A La Sorte

    Full Text Available Species' geographical distributions are tracking latitudinal and elevational surface temperature gradients under global climate change. To evaluate the opportunities to track these gradients across space, we provide a first baseline assessment of the steepness of these gradients for the world's terrestrial birds. Within the breeding ranges of 9,014 bird species, we characterized the spatial gradients in temperature along latitude and elevation for all and a subset of bird species, respectively. We summarized these temperature gradients globally for threatened and non-threatened species and determined how their steepness varied based on species' geography (range size, shape, and orientation and projected changes in temperature under climate change. Elevational temperature gradients were steepest for species in Africa, western North and South America, and central Asia and shallowest in Australasia, insular IndoMalaya, and the Neotropical lowlands. Latitudinal temperature gradients were steepest for extratropical species, especially in the Northern Hemisphere. Threatened species had shallower elevational gradients whereas latitudinal gradients differed little between threatened and non-threatened species. The strength of elevational gradients was positively correlated with projected changes in temperature. For latitudinal gradients, this relationship only held for extratropical species. The strength of latitudinal gradients was better predicted by species' geography, but primarily for extratropical species. Our findings suggest threatened species are associated with shallower elevational temperature gradients, whereas steep latitudinal gradients are most prevalent outside the tropics where fewer bird species occur year-round. Future modeling and mitigation efforts would benefit from the development of finer grain distributional data to ascertain how these gradients are structured within species' ranges, how and why these gradients vary among

  14. Measurement and Analysis of the Temperature Gradient of Blackbody Cavities, for Use in Radiation Thermometry

    Science.gov (United States)

    De Lucas, Javier; Segovia, José Juan

    2018-05-01

    Blackbody cavities are the standard radiation sources widely used in the fields of radiometry and radiation thermometry. Its effective emissivity and uncertainty depend to a large extent on the temperature gradient. An experimental procedure based on the radiometric method for measuring the gradient is followed. Results are applied to particular blackbody configurations where gradients can be thermometrically estimated by contact thermometers and where the relationship between both basic methods can be established. The proposed procedure may be applied to commercial blackbodies if they are modified allowing secondary contact temperature measurement. In addition, the established systematic may be incorporated as part of the actions for quality assurance in routine calibrations of radiation thermometers, by using the secondary contact temperature measurement for detecting departures from the real radiometrically obtained gradient and the effect on the uncertainty. On the other hand, a theoretical model is proposed to evaluate the effect of temperature variations on effective emissivity and associated uncertainty. This model is based on a gradient sample chosen following plausible criteria. The model is consistent with the Monte Carlo method for calculating the uncertainty of effective emissivity and complements others published in the literature where uncertainty is calculated taking into account only geometrical variables and intrinsic emissivity. The mathematical model and experimental procedure are applied and validated using a commercial type three-zone furnace, with a blackbody cavity modified to enable a secondary contact temperature measurement, in the range between 400 °C and 1000 °C.

  15. Investigation into boron reaction with titanium at extreme temperature gradients

    International Nuclear Information System (INIS)

    Korchagin, M.A.; Gusenko, S.N.; Aleksandrov, V.V.; Neronov, V.A.

    1981-01-01

    The mechanism of self-propagation high-temperature synthesis of titanium boride is studied using the translucent electron microscopy. Titanium interaction with boron film (approximately 1000 A thick) starts with the metal partial melting. A twozone layer of the reaction products, separating the reagents, is formed. In the zone adjacent to B, Ti 3 B 4 and fusible liquid phases are present. The second zone consists of TiB. The subsequent interaction is realized by Means of the dissolving and absorption by titanium of the layer of products during its continuous increase in boron. TiB 2 formation takes place at subsequent stages of interaction inside Ti liquid particles during their saturation by boron from the products absorbed [ru

  16. Anomalous ion thermal transport in hot ion plasmas by the ion temperature gradient mode

    Energy Technology Data Exchange (ETDEWEB)

    Kim, J.Y.; Horton, W. (Texas Univ., Austin, TX (United States). Inst. for Fusion Studies); Coppi, B. (Massachusetts Inst. of Tech., Cambridge, MA (United States). Research Lab. of Electronics)

    1992-01-01

    Experiments show that the observed radial profiles of the ion thermal conductivity {chi}{sub i} have the opposite shapes with those obtained from the ion temperature gradient mode ({eta}{sub i} mode) turbulence model by the traditional mixing length estimate. In this work, this radial profile problem is reconsidered with an electromagnetic study of the linear stability of the toroidal {eta}{sub i} mode and a new rule for choosing the mixing length. It is first shown that the electromagnetic effect gives a significant stabilizing effect on the toroidal {eta}{sub i} mode, and that the observed reduction of {chi}{sub i}(r) in the core region can be explained by this electromagnetic effect. Secondly, in view of earlier numerical simulations showing the transfer of fluctuation energy to larger scales that those for the fastest growth rate, as well as fluctuation measurements indicating longer radial correlation lengths, a new mixing length formula is proposed to explain the radial increase of the {chi}{sub i}. It is shown the new formula fits well the observed {chi}{sub i}(r) profiles in two TFTR supershot discharges and also gives the scaling law in the current and the magnetic field which agrees better with experiment than the conventional formula.

  17. Anomalous ion thermal transport in hot ion plasmas by the ion temperature gradient mode

    Energy Technology Data Exchange (ETDEWEB)

    Kim, J.Y.; Horton, W. [Texas Univ., Austin, TX (United States). Inst. for Fusion Studies; Coppi, B. [Massachusetts Inst. of Tech., Cambridge, MA (United States). Research Lab. of Electronics

    1992-08-01

    Experiments show that the observed radial profiles of the ion thermal conductivity {chi}{sub i} have the opposite shapes with those obtained from the ion temperature gradient mode ({eta}{sub i} mode) turbulence model by the traditional mixing length estimate. In this work, this radial profile problem is reconsidered with an electromagnetic study of the linear stability of the toroidal {eta}{sub i} mode and a new rule for choosing the mixing length. It is first shown that the electromagnetic effect gives a significant stabilizing effect on the toroidal {eta}{sub i} mode, and that the observed reduction of {chi}{sub i}(r) in the core region can be explained by this electromagnetic effect. Secondly, in view of earlier numerical simulations showing the transfer of fluctuation energy to larger scales that those for the fastest growth rate, as well as fluctuation measurements indicating longer radial correlation lengths, a new mixing length formula is proposed to explain the radial increase of the {chi}{sub i}. It is shown the new formula fits well the observed {chi}{sub i}(r) profiles in two TFTR supershot discharges and also gives the scaling law in the current and the magnetic field which agrees better with experiment than the conventional formula.

  18. Anomalous ion thermal transport in hot ion plasmas by the ion temperature gradient mode

    International Nuclear Information System (INIS)

    Kim, J.Y.; Horton, W.; Coppi, B.

    1992-01-01

    Experiments show that the observed radial profiles of the ion thermal conductivity χ i have the opposite shapes with those obtained from the ion temperature gradient mode (η i mode) turbulence model by the traditional mixing length estimate. In this work, this radial profile problem is reconsidered with an electromagnetic study of the linear stability of the toroidal η i mode and a new rule for choosing the mixing length. It is first shown that the electromagnetic effect gives a significant stabilizing effect on the toroidal η i mode, and that the observed reduction of χ i (r) in the core region can be explained by this electromagnetic effect. Secondly, in view of earlier numerical simulations showing the transfer of fluctuation energy to larger scales that those for the fastest growth rate, as well as fluctuation measurements indicating longer radial correlation lengths, a new mixing length formula is proposed to explain the radial increase of the χ i . It is shown the new formula fits well the observed χ i (r) profiles in two TFTR supershot discharges and also gives the scaling law in the current and the magnetic field which agrees better with experiment than the conventional formula

  19. Weak turbulence theory of ion temperature gradient modes for inverted density plasmas

    International Nuclear Information System (INIS)

    Hahm, T.S.; Tang, W.M.

    1989-09-01

    Typical profiles measured in H-mode (''high confinement'') discharges from tokamaks such as JET and DIII-D suggest that the ion temperature gradient instability threshold parameter η i (≡dlnT i /dlnn i ) could be negative in many cases. Previous linear theoretical calculations have established the onset conditions for these negative η i -modes and the fact that their growth rate is much smaller than their real frequency over a wide range of negative η i values. This has motivated the present nonlinear weak turbulence analysis to assess the relevance of such instabilities for confinement in H-mode plasmas. The nonlinear eigenmode equation indicates that the 3-wave coupling to shorter wavelength modes is the dominant nonlinear saturation mechanism. It is found that both the saturation level for these fluctuations and the magnitude of the associated ion thermal diffusivity are considerably smaller than the strong turbulence mixing length type estimates for the more conventional positive-η i -instabilities. 19 refs., 3 figs

  20. Effects of parallel dynamics on vortex structures in electron temperature gradient driven turbulence

    International Nuclear Information System (INIS)

    Nakata, M.; Watanabe, T.-H.; Sugama, H.; Horton, W.

    2011-01-01

    Vortex structures and related heat transport properties in slab electron temperature gradient (ETG) driven turbulence are comprehensively investigated by means of nonlinear gyrokinetic Vlasov simulations, with the aim of elucidating the underlying physical mechanisms of the transition from turbulent to coherent states. Numerical results show three different types of vortex structures, i.e., coherent vortex streets accompanied with the transport reduction, turbulent vortices with steady transport, and a zonal-flow-dominated state, depending on the relative magnitude of the parallel compression to the diamagnetic drift. In particular, the formation of coherent vortex streets is correlated with the strong generation of zonal flows for the cases with weak parallel compression, even though the maximum growth rate of linear ETG modes is relatively large. The zonal flow generation in the ETG turbulence is investigated by the modulational instability analysis with a truncated fluid model, where the parallel dynamics such as acoustic modes for electrons is incorporated. The modulational instability for zonal flows is found to be stabilized by the effect of the finite parallel compression. The theoretical analysis qualitatively agrees with secondary growth of zonal flows found in the slab ETG turbulence simulations, where the transition of vortex structures is observed.

  1. Temperature gradient measurements by using thermoelectric effect in CNTs-silicone adhesive composite.

    Directory of Open Access Journals (Sweden)

    Muhammad Tariq Saeed Chani

    Full Text Available This work presents the fabrication and investigation of thermoelectric cells based on composite of carbon nanotubes (CNT and silicone adhesive. The composite contains CNT and silicon adhesive 1∶1 by weight. The current-voltage characteristics and dependences of voltage, current and Seebeck coefficient on the temperature gradient of cell were studied. It was observed that with increase in temperature gradient the open circuit voltage, short circuit current and the Seebeck coefficient of the cells increase. Approximately 7 times increase in temperature gradient increases the open circuit voltage and short circuit current up to 40 and 5 times, respectively. The simulation of experimental results is also carried out; the simulated results are well matched with experimental results.

  2. Fluxon dynamics in long Josephson junctions in the presence of a temperature gradient or spatial nonuniformity

    DEFF Research Database (Denmark)

    Krasnov, V.M.; Oboznov, V.A.; Pedersen, Niels Falsig

    1997-01-01

    Fluxon dynamics in nonuniform Josephson junctions was studied both experimentally and theoretically. Two types of nonuniform junctions were considered: the first type had a nonuniform spatial distribution of critical and bias currents and the second had a temperature gradient applied along...... the junction. An analytical expression for the I-V curve in the presence of a temperature gradient or spatial nonuniformity was derived. It was shown that there is no static thermomagnetic Nernst effect due to Josephson fluxon motion despite the existence of a force pushing fluxons in the direction of smaller...

  3. Temperature logging of groundwater in bedrock wells for geothermal gradient characterization in New Hampshire, 2012

    Science.gov (United States)

    Degnan, James; Barker, Gregory; Olson, Neil; Wilder, Leland

    2012-01-01

    The U.S. Geological Survey, in cooperation with the New Hampshire Geological Survey, measured the fluid temperature of groundwater in deep bedrock wells in the State of New Hampshire in order to characterize geothermal gradients in bedrock. All wells selected for the study had low water yields, which correspond to low groundwater flow from fractures. This reduced the potential for flow-induced temperature changes that would mask the natural geothermal gradient in the bedrock. All the wells included in this study were privately owned, and permission to use the wells was obtained from homeowners before logging.

  4. Temperature gradient method for lipid phase diagram construction using time-resolved x-ray diffraction

    International Nuclear Information System (INIS)

    Caffrey, M.; Hing, F.S.

    1987-01-01

    A method that enables temperature-composition phase diagram construction at unprecedented rates is described and evaluated. The method involves establishing a known temperature gradient along the length of a metal rod. Samples of different compositions contained in long, thin-walled capillaries are positioned lengthwise on the rod and equilibrated such that the temperature gradient is communicated into the sample. The sample is then moved through a focused, monochromatic synchrotron-derived x-ray beam and the image-intensified diffraction pattern from the sample is recorded on videotape continuously in live-time as a function of position and, thus, temperature. The temperature at which the diffraction pattern changes corresponds to a phase boundary, and the phase(s) existing (coexisting) on either side of the boundary can be identified on the basis of the diffraction pattern. Repeating the measurement on samples covering the entire composition range completes the phase diagram. These additional samples can be conveniently placed at different locations around the perimeter of the cylindrical rod and rotated into position for diffraction measurement. Temperature-composition phase diagrams for the fully hydrated binary mixtures, dimyristoylphosphatidylcholine (DMPC)/dipalmitoylphosphatidylcholine (DPPC) and dipalmitoylphosphatidylethanolamine (DPPE)/DPPC, have been constructed using the new temperature gradient method. They agree well with and extend the results obtained by other techniques. In the DPPE/DPPC system structural parameters as a function of temperature in the various phases including the subgel phase are reported. The potential limitations of this steady-state method are discussed

  5. Asymptotic analysis to the effect of temperature gradient on the propagation of triple flames

    Science.gov (United States)

    Al-Malki, Faisal

    2018-05-01

    We study asymptotically in this paper the influence of the temperature gradient across the mixing layer on the propagation triple flames formed inside a porous wall channel. The study begins by formulating the problem mathematically using the thermo-diffusive model and then presents a thorough asymptotic analysis of the problem in the limit of large activation energy and thin flames. Analytical formulae for the local burning speed, the flame shape and the propagation speed in terms of the temperature gradient parameter have been derived. It was shown that varying the feed temperatures can significantly enhance the burning of the reactants up to a critical threshold, beyond which no solutions can be obtained. In addition, the study showed that increasing the temperature at the boundaries will modify the usual triple structure of the flame by inverting the upper premixed branch and extending it to the boundary, which may have great implications on the safety of the adopted combustion chambers.

  6. Critical temperature gradient and critical current density in thin films of a type I superconductor

    Energy Technology Data Exchange (ETDEWEB)

    Heubener, R P

    1968-12-16

    Measurements of the critical temperature gradient and the critical current density in superconducting lead films in a transverse magnetic field indicate that the critical current flows predominantly along the surface of the films and that the critical surface currents contribute only very little to the Lorentz force on a fluxoid.

  7. Transition to Collisionless Ion-Temperature-Gradient-Driven Plasma Turbulence: A Dynamical Systems Approach

    International Nuclear Information System (INIS)

    Kolesnikov, R.A.; Krommes, J.A.

    2005-01-01

    The transition to collisionless ion-temperature-gradient-driven plasma turbulence is considered by applying dynamical systems theory to a model with 10 degrees of freedom. The study of a four-dimensional center manifold predicts a 'Dimits shift' of the threshold for turbulence due to the excitation of zonal flows and establishes (for the model) the exact value of that shift

  8. Acoustic emission of quasi-isotropic rock samples initiated by temperature gradients

    Czech Academy of Sciences Publication Activity Database

    Vasin, R.N.; Nikitin, A. N.; Lokajíček, Tomáš; Rudajev, Vladimír

    2006-01-01

    Roč. 42, č. 10 (2006), s. 815-823 ISSN 1069-3513 Institutional research plan: CEZ:AV0Z30460519; CEZ:AV0Z30130516 Keywords : seismoacoustic emission * rock sample * temperature gradient Subject RIV: DB - Geology ; Mineralogy Impact factor: 0.092, year: 2006

  9. A gradient approximation for calculating Debye temperatures from pairwise interatomic potentials

    International Nuclear Information System (INIS)

    Jackson, D.P.

    1975-09-01

    A simple gradient approximation is given for calculating the effective Debye temperature of a cubic crystal from central pairwise interatomic potentials. For examples of the Morse potential applied to cubic metals the results are in generally good agreement with experiment. (author)

  10. The electron temperature gradient instability in presence of a limiter with tilted plates

    International Nuclear Information System (INIS)

    Farina, D.; Pozzoli, R.; Ryutov, D.

    1994-01-01

    The analysis of the electron temperature gradient instability in the scrape-off layer is generalized to the case of non-orthogonal intersections of the magnetic field with the wall surface, a situation which is most typical for a tokamak with a limiter. (orig.)

  11. Ion temperature gradient driven mode in presence of transverse velocity shear in magnetized plasmas

    DEFF Research Database (Denmark)

    Chakrabarti, N.; Juul Rasmussen, J.; Michelsen, Poul

    2005-01-01

    The effect of sheared poloidal flow on the toroidal branch of the ion temperature gradient driven mode of magnetized nonuniform plasma is studied. A novel "nonmodal" calculation is used to analyze the problem. It is shown that the transverse shear flow considerably reduced the growth...

  12. The effects of sea surface temperature gradients on surface turbulent fluxes

    Science.gov (United States)

    Steffen, John

    A positive correlation between sea surface temperature (SST) and wind stress perturbation near strong SST gradients (DeltaSST) has been observed in different parts of the world ocean, such as the Gulf Stream in the North Atlantic and the Kuroshio Extension east of Japan. These changes in winds and SSTs can modify near-surface stability, surface stress, and latent and sensible heat fluxes. In general, these small scale processes are poorly modeled in Numerical Weather Prediction (NWP) and climate models. Failure to account for these air--sea interactions produces inaccurate values of turbulent fluxes, and therefore a misrepresentation of the energy, moisture, and momentum budgets. Our goal is to determine the change in these surface turbulent fluxes due to overlooking the correlated variability in winds, SSTs, and related variables. To model these air--sea interactions, a flux model was forced with and without SST--induced changes to the surface wind fields. The SST modification to the wind fields is based on a baroclinic argument as implemented by the University of Washington Planetary Boundary-Layer (UWPBL) model. Other input parameters include 2-m air temperature, 2-m dew point temperature, surface pressure (all from ERA--interim), and Reynolds Daily Optimum Interpolation Sea Surface Temperature (OISST). Flux model runs are performed every 6 hours starting in December 2002 and ending in November 2003. From these model outputs, seasonal, monthly, and daily means of the difference between DeltaSST and no DeltaSST effects on sensible heat flux (SHF), latent heat flux (LHF), and surface stress are calculated. Since the greatest impacts occur during the winter season, six additional December-January-February (DJF) seasons were analyzed for 1987--1990 and 1999--2002. The greatest differences in surface turbulent fluxes are concentrated near strong SST fronts associated with the Gulf Stream and Kuroshio Extension. On average, 2002---2003 DJF seasonal differences in SHF

  13. Measurement of water vapour transport through a porous non-hygroscopic material in a temperature gradient

    DEFF Research Database (Denmark)

    Hansen, Thor; Padfield, Tim; Hansen, Kurt Kielsgaard

    2014-01-01

    This was an experiment to identify the driving potential for water vapour diffusion through porous materials in a temperature gradient. The specimen of mineral fibre insulation was placed between a space with controlled temperature and relative humidity and a space with a controlled, higher...... temperature, and a measured but not controlled relative humidity (RH). This assembly was allowed to reach equilibrium with no vapour movement between the spaces, as tested by a constant RH on each side and by zero flux of water vapour measured in the cold side chamber. The RH and temperature values were...

  14. Convective cells of internal gravity waves in the earth's atmosphere with finite temperature gradient

    Directory of Open Access Journals (Sweden)

    O. Onishchenko

    2013-03-01

    Full Text Available In this paper, we have investigated vortex structures (e.g. convective cells of internal gravity waves (IGWs in the earth's atmosphere with a finite vertical temperature gradient. A closed system of nonlinear equations for these waves and the condition for existence of solitary convective cells are obtained. In the atmosphere layers where the temperature decreases with height, the presence of IGW convective cells is shown. The typical parameters of such structures in the earth's atmosphere are discussed.

  15. A New Entropy Formula and Gradient Estimates for the Linear Heat Equation on Static Manifold

    Directory of Open Access Journals (Sweden)

    Abimbola Abolarinwa

    2014-08-01

    Full Text Available In this paper we prove a new monotonicity formula for the heat equation via a generalized family of entropy functionals. This family of entropy formulas generalizes both Perelman’s entropy for evolving metric and Ni’s entropy on static manifold. We show that this entropy satisfies a pointwise differential inequality for heat kernel. The consequences of which are various gradient and Harnack estimates for all positive solutions to the heat equation on compact manifold.

  16. Study on the properties of infrared wavefront coding athermal system under several typical temperature gradient distributions

    Science.gov (United States)

    Cai, Huai-yu; Dong, Xiao-tong; Zhu, Meng; Huang, Zhan-hua

    2018-01-01

    Wavefront coding for athermal technique can effectively ensure the stability of the optical system imaging in large temperature range, as well as the advantages of compact structure and low cost. Using simulation method to analyze the properties such as PSF and MTF of wavefront coding athermal system under several typical temperature gradient distributions has directive function to characterize the working state of non-ideal temperature environment, and can effectively realize the system design indicators as well. In this paper, we utilize the interoperability of data between Solidworks and ZEMAX to simplify the traditional process of structure/thermal/optical integrated analysis. Besides, we design and build the optical model and corresponding mechanical model of the infrared imaging wavefront coding athermal system. The axial and radial temperature gradients of different degrees are applied to the whole system by using SolidWorks software, thus the changes of curvature, refractive index and the distance between the lenses are obtained. Then, we import the deformation model to ZEMAX for ray tracing, and obtain the changes of PSF and MTF in optical system. Finally, we discuss and evaluate the consistency of the PSF (MTF) of the wavefront coding athermal system and the image restorability, which provides the basis and reference for the optimal design of the wavefront coding athermal system. The results show that the adaptability of single material infrared wavefront coding athermal system to axial temperature gradient can reach the upper limit of temperature fluctuation of 60°C, which is much higher than that of radial temperature gradient.

  17. Fluid simulation of tokamak ion temperature gradient turbulence with zonal flow closure model

    Energy Technology Data Exchange (ETDEWEB)

    Yamagishi, Osamu, E-mail: yamagisi@nifs.ac.jp; Sugama, Hideo [National Institute for Fusion Science, Toki, Gifu 509-5292 (Japan)

    2016-03-15

    Nonlinear fluid simulation of turbulence driven by ion temperature gradient modes in the tokamak fluxtube configuration is performed by combining two different closure models. One model is a gyrofluid model by Beer and Hammett [Phys. Plasmas 3, 4046 (1996)], and the other is a closure model to reproduce the kinetic zonal flow response [Sugama et al., Phys. Plasmas 14, 022502 (2007)]. By including the zonal flow closure, generation of zonal flows, significant reduction in energy transport, reproduction of the gyrokinetic transport level, and nonlinear upshift on the critical value of gradient scale length are observed.

  18. Experimental evidence of temperature gradients in cavitating microflows seeded with thermosensitive nanoprobes

    Science.gov (United States)

    Ayela, Frédéric; Medrano-Muñoz, Manuel; Amans, David; Dujardin, Christophe; Brichart, Thomas; Martini, Matteo; Tillement, Olivier; Ledoux, Gilles

    2013-10-01

    Thermosensitive fluorescent nanoparticles seeded in deionized water combined with confocal microscopy enables thermal mapping over three dimensions of the liquid phase flowing through a microchannel interrupted by a microdiaphragm. This experiment reveals the presence of a strong thermal gradient up to ˜105 K/m only when hydrodynamic cavitation is present. Here hydrodynamic cavitation is the consequence of high shear rates downstream in the diaphragm. This temperature gradient is located in vortical structures associated with eddies in the shear layers. We attribute such overheating to the dissipation involved by the cavitating flow regime. Accordingly, we demonstrate that the microsizes of the device enhance the intensity of the thermal gap.

  19. On the physics of the pressure and temperature gradients in the edge of tokamak plasmas

    Science.gov (United States)

    Stacey, Weston M.

    2018-04-01

    An extended plasma fluid theory including atomic physics, radiation, electromagnetic and themodynamic forces, external sources of particles, momentum and energy, and kinetic ion orbit loss is employed to derive theoretical expressions that display the role of the various factors involved in the determination of the pressure and temperature gradients in the edge of tokamak plasmas. Calculations for current experiments are presented to illustrate the magnitudes of various effects including strong radiative and atomic physics edge cooling effects and strong reduction in ion particle and energy fluxes due to ion orbit loss in the plasma edge. An important new insight is the strong relation between rotation and the edge pressure gradient.

  20. Spectroscopic analysis of the density and temperature gradients in the laser-heated gas jet

    International Nuclear Information System (INIS)

    Matthews, D.L.; Lee, R.W.; Auerbach, J.M.

    1981-01-01

    We have performed an analysis of the x-ray spectra produced by a 1.0TW, lambda/sub L/-0.53μm laser-irradiated gas jet. Plasmas produced by ionization of neon, argon and N 2 + SF 6 gases were included in those measurements. Plasma electron density and temperature gradients were obtained by comparison of measured spectra with those produced by computer modeling. Density gradients were also obtained using laser interferometry. The limitations of this technique for plasma diagnosis will be discussed

  1. Development of the CARS method for measurement of pressure and temperature gradients in centrifuges

    International Nuclear Information System (INIS)

    Zeltmann, A.H.; Valentini, J.J.

    1983-12-01

    These experiments evaluated the feasibility of applying the CARS technique to the measurement of UF 6 concentrations and pressure gradients in a gas centrifuge. The resultant CARS signals were properly related to system parameters as suggested by theory. The results have been used to guide design of an apparatus for making CARS measurements in a UF 6 gas centrifuge. Ease of measurement is expected for pressures as low as 0.1 torr. Temperature gradients can be measured by this technique with changes in the data acquisition method. 16 references, 8 figures, 2 tables

  2. Fluid simulation of tokamak ion temperature gradient turbulence with zonal flow closure model

    Science.gov (United States)

    Yamagishi, Osamu; Sugama, Hideo

    2016-03-01

    Nonlinear fluid simulation of turbulence driven by ion temperature gradient modes in the tokamak fluxtube configuration is performed by combining two different closure models. One model is a gyrofluid model by Beer and Hammett [Phys. Plasmas 3, 4046 (1996)], and the other is a closure model to reproduce the kinetic zonal flow response [Sugama et al., Phys. Plasmas 14, 022502 (2007)]. By including the zonal flow closure, generation of zonal flows, significant reduction in energy transport, reproduction of the gyrokinetic transport level, and nonlinear upshift on the critical value of gradient scale length are observed.

  3. Modifications of Steepest Descent Method and Conjugate Gradient Method Against Noise for Ill-posed Linear Systems

    Directory of Open Access Journals (Sweden)

    Chein-Shan Liu

    2012-04-01

    Full Text Available It is well known that the numerical algorithms of the steepest descent method (SDM, and the conjugate gradient method (CGM are effective for solving well-posed linear systems. However, they are vulnerable to noisy disturbance for solving ill-posed linear systems. We propose the modifications of SDM and CGM, namely the modified steepest descent method (MSDM, and the modified conjugate gradient method (MCGM. The starting point is an invariant manifold defined in terms of a minimum functional and a fictitious time-like variable; however, in the final stage we can derive a purely iterative algorithm including an acceleration parameter. Through the Hopf bifurcation, this parameter indeed plays a major role to switch the situation of slow convergence to a new situation that the functional is stepwisely decreased very fast. Several numerical examples are examined and compared with exact solutions, revealing that the new algorithms of MSDM and MCGM have good computational efficiency and accuracy, even for the highly ill-conditioned linear equations system with a large noise being imposed on the given data.

  4. Plasma membrane temperature gradients and multiple cell permeabilization induced by low peak power density femtosecond lasers

    Directory of Open Access Journals (Sweden)

    Allen L. Garner

    2016-03-01

    Full Text Available Calculations indicate that selectively heating the extracellular media induces membrane temperature gradients that combine with electric fields and a temperature-induced reduction in the electropermeabilization threshold to potentially facilitate exogenous molecular delivery. Experiments by a wide-field, pulsed femtosecond laser with peak power density far below typical single cell optical delivery systems confirmed this hypothesis. Operating this laser in continuous wave mode at the same average power permeabilized many fewer cells, suggesting that bulk heating alone is insufficient and temperature gradients are crucial for permeabilization. This work suggests promising opportunities for a high throughput, low cost, contactless method for laser mediated exogenous molecule delivery without the complex optics of typical single cell optoinjection, for potential integration into microscope imaging and microfluidic systems.

  5. Ultraviolet irradiation and gradient temperature assisted autolysis for protein recovery from shrimp head waste.

    Science.gov (United States)

    Cao, Wenhong; Tan, Caiyun; Zhan, Xiaojian; Li, Huiyi; Zhang, Chaohua

    2014-12-01

    A novel autolysis method using ultraviolet (UV) irradiation and gradient temperature was investigated to efficiently recover proteins from the head of the shrimp Penaeus vannamei. The proteolytic activity of shrimp head subjected to 30W UV irradiation for 20 min was increased by 62%, compared with that of untreated samples. After irradiation, the enzymes remained active across a wide range of temperatures (45-60°C) and pH (7-10). An orthogonal design was used to optimize autolysis condition. After 5h autolysis, protein recovery from the UV-heat treated samples was up to 92.1%. These results indicate the potential of using UV irradiation in combination with gradient temperatures to improve recovery of proteins from shrimp head waste. Crown Copyright © 2014. Published by Elsevier Ltd. All rights reserved.

  6. PHYSIOLOGICAL RESPONSES OF ECKLONIA RADIATA (LAMINARIALES) TO A LATITUDINAL GRADIENT IN OCEAN TEMPERATURE

    DEFF Research Database (Denmark)

    Stæhr, Peter Anton; Wernberg, Thomas

    2009-01-01

    We tested the ability of sporophytes of a small kelp, Ecklonia radiata (C. Agardh) J. Agardh, to adjust their photosynthesis, respiration, and cellular processes to increasingly warm ocean climates along a latitudinal gradient in ocean temperature (~4°C). Tissue concentrations of pigment and nutr......We tested the ability of sporophytes of a small kelp, Ecklonia radiata (C. Agardh) J. Agardh, to adjust their photosynthesis, respiration, and cellular processes to increasingly warm ocean climates along a latitudinal gradient in ocean temperature (~4°C). Tissue concentrations of pigment...... and nutrients decreased with increasing ocean temperature. Concurrently, a number of gradual changes in the metabolic balance of E. radiata took place along the latitudinal gradient. Warm-acclimatized kelps had 50% lower photosynthetic rates and 90% lower respiration rates at the optimum temperature than did...... cool-acclimatized kelps. A reduction in temperature sensitivity was also observed as a reduction in Q10-values from cool- to warm-acclimatized kelps for gross photosynthesis (Q10: 3.35 to 1.45) and respiration (Q10: 3.82 to 1.65). Respiration rates were more sensitive to increasing experimental...

  7. Self-organized profile relaxation by ion temperature gradient instability in toroidal plasmas

    International Nuclear Information System (INIS)

    Kishimoto, Y.; Tajima, T.; LeBrun, M.J.; Gray, M.G.; Kim, J.Y.; Horton, W.

    1993-02-01

    Toroidal effects on the ion-temperature gradient mode are found to dictate the temperature evolution and the subsequent relaxed profile realization according to our toroidal particle simulation. Both in the strongly unstable fluid regime as well as in the near-marginal kinetic regime we observe that the plasma maintains an exponential temperature profile and forces the heat flux to be radially independent. The self-organized critical relaxed state is sustained slightly above the marginal stability, where the weak wave growth balances the wave decorrelation

  8. Interplay between temperature gradients field and C - E transformation in solidifying rolls

    Directory of Open Access Journals (Sweden)

    W. Wołczyński

    2009-07-01

    Full Text Available At first step of simulation a temperature field for solidifying cast steel and cast iron roll has been performed. The calculation does not take into account the convection in the liquid since convection has no influence on the proposed model for the localization of the C-E (columnar to equiaxed grains transformation. However, it allows to study the dynamics of temperature field temporal behavior in the middle of a mould. It is postulated that for the C-E transition a full accumulation of the heat in the mould has been observed (plateau at the T(t curve. The temporal range of plateau existence corresponds to the incubation time for the full equiaxed grains formation. At the second step of simulation temporal behavior of the temperature gradient field has been studied. Three ranges within temperature gradients field have been distinguished for the operating point situated at the middle of mould: a/ for the formation of columnar grains zone, ( and high temperature gradient 0>>T&0//>>∂∂−∂∂∂∂−∂∂>EttEtrTrT. T - temperature, r - roll radius. It is evident that the heat transfer across the mould decides on the temporal appearance of incubation during which the solidification is significantly arrested and competition between columnar and equiaxed growth occurs. Moreover solidification with positive temperature gradient transforms into solidification with negative temperature gradient (locally after the incubation. A simulation has been performed for the cast steel and cast iron rolls solidifying as in industry condition. Since the incubation divides the roll into to parts (first with columnar structure, second with equiaxed structure some experiments dealing with solidification have been made in laboratory scale. Finally, observations of the macrosegregation or microsegregation and phase or structure appearance in the cast iron ingot / roll (made in laboratory has also been done in order to confront them with theoretical predictions

  9. A dynamic response model for pressure sensors in continuum and high Knudsen number flows with large temperature gradients

    Science.gov (United States)

    Whitmore, Stephen A.; Petersen, Brian J.; Scott, David D.

    1996-01-01

    This paper develops a dynamic model for pressure sensors in continuum and rarefied flows with longitudinal temperature gradients. The model was developed from the unsteady Navier-Stokes momentum, energy, and continuity equations and was linearized using small perturbations. The energy equation was decoupled from momentum and continuity assuming a polytropic flow process. Rarefied flow conditions were accounted for using a slip flow boundary condition at the tubing wall. The equations were radially averaged and solved assuming gas properties remain constant along a small tubing element. This fundamental solution was used as a building block for arbitrary geometries where fluid properties may also vary longitudinally in the tube. The problem was solved recursively starting at the transducer and working upstream in the tube. Dynamic frequency response tests were performed for continuum flow conditions in the presence of temperature gradients. These tests validated the recursive formulation of the model. Model steady-state behavior was analyzed using the final value theorem. Tests were performed for rarefied flow conditions and compared to the model steady-state response to evaluate the regime of applicability. Model comparisons were excellent for Knudsen numbers up to 0.6. Beyond this point, molecular affects caused model analyses to become inaccurate.

  10. Threshold for the destabilisation of the ion-temperature-gradient mode in magnetically confined toroidal plasmas

    Science.gov (United States)

    Zocco, A.; Xanthopoulos, P.; Doerk, H.; Connor, J. W.; Helander, P.

    2018-02-01

    The threshold for the resonant destabilisation of ion-temperature-gradient (ITG) driven instabilities that render the modes ubiquitous in both tokamaks and stellarators is investigated. We discover remarkably similar results for both confinement concepts if care is taken in the analysis of the effect of the global shear . We revisit, analytically and by means of gyrokinetic simulations, accepted tokamak results and discover inadequacies of some aspects of their theoretical interpretation. In particular, for standard tokamak configurations, we find that global shear effects on the critical gradient cannot be attributed to the wave-particle resonance destabilising mechanism of Hahm & Tang (Phys. Plasmas, vol. 1, 1989, pp. 1185-1192), but are consistent with a stabilising contribution predicted by Biglari et al. (Phys. Plasmas, vol. 1, 1989, pp. 109-118). Extensive analytical and numerical investigations show that virtually no previous tokamak theoretical predictions capture the temperature dependence of the mode frequency at marginality, thus leading to incorrect instability thresholds. In the asymptotic limit , where is the rotational transform, and such a threshold should be solely determined by the resonant toroidal branch of the ITG mode, we discover a family of unstable solutions below the previously known threshold of instability. This is true for a tokamak case described by a local local equilibrium, and for the stellarator Wendelstein 7-X, where these unstable solutions are present even for configurations with a small trapped-particle population. We conjecture they are of the Floquet type and derive their properties from the Fourier analysis of toroidal drift modes of Connor & Taylor (Phys. Fluids, vol. 30, 1987, pp. 3180-3185), and to Hill's theory of the motion of the lunar perigee (Acta Math., vol. 8, 1886, pp. 1-36). The temperature dependence of the newly determined threshold is given for both confinement concepts. In the first case, the new temperature-gradient

  11. Temperature gradient scale length measurement: A high accuracy application of electron cyclotron emission without calibration

    Energy Technology Data Exchange (ETDEWEB)

    Houshmandyar, S., E-mail: houshmandyar@austin.utexas.edu; Phillips, P. E.; Rowan, W. L. [Institute for Fusion Studies, The University of Texas at Austin, Austin, Texas 78712 (United States); Yang, Z. J. [Huazhong University of Science and Technology, Wuhan, Hubei 430074 (China); Hubbard, A. E.; Rice, J. E.; Hughes, J. W.; Wolfe, S. M. [Plasma Science and Fusion Center, Massachusetts Institute of Technology, Cambridge, Massachusetts 02129 (United States)

    2016-11-15

    Calibration is a crucial procedure in electron temperature (T{sub e}) inference from a typical electron cyclotron emission (ECE) diagnostic on tokamaks. Although the calibration provides an important multiplying factor for an individual ECE channel, the parameter ΔT{sub e}/T{sub e} is independent of any calibration. Since an ECE channel measures the cyclotron emission for a particular flux surface, a non-perturbing change in toroidal magnetic field changes the view of that channel. Hence the calibration-free parameter is a measure of T{sub e} gradient. B{sub T}-jog technique is presented here which employs the parameter and the raw ECE signals for direct measurement of electron temperature gradient scale length.

  12. Experimental observation of electron-temperature-gradient turbulence in a laboratory plasma.

    Science.gov (United States)

    Mattoo, S K; Singh, S K; Awasthi, L M; Singh, R; Kaw, P K

    2012-06-22

    We report the observation of electron-temperature-gradient (ETG) driven turbulence in the laboratory plasma of a large volume plasma device. The removal of unutilized primary ionizing and nonthermal electrons from uniform density plasma and the imposition and control of the gradient in the electron temperature (T[Symbol: see text] T(e)) are all achieved by placing a large (2 m diameter) magnetic electron energy filter in the middle of the device. In the dressed plasma, the observed ETG turbulence in the lower hybrid range of frequencies ν = (1-80 kHz) is characterized by a broadband with a power law. The mean wave number k perpendicular ρ(e) = (0.1-0.2) satisfies the condition k perpendicular ρ(e) ≤ 1, where ρ(e) is the electron Larmor radius.

  13. Ka-Band Rf Transmission Line Components for a High-Gradient Linear Accelerator. Final report

    International Nuclear Information System (INIS)

    Hirshfield, Jay L.

    2005-01-01

    High-power, high-vacuum prototypes of a variety of components for use at 34 GHz were developed. These include waveguide tapers, right-angle miter bends, windows, mode converters, power combiners, mode launchers, phase shifters, dual directional couplers, and loads. High-power, high-vacuum prototypes of all the components were built and tested up to 45 MW, using the Omega-P 34-GHz magnicon. Peak power limits for the components were determined using a quasi-optical rf pulse compressor, developed under a companion project. The components and the magnicon were configured into a user's facility for research and development by others on high-gradient accelerator structures for a future high-energy electron-positron collider.

  14. Velocity Gradient Across the San Andreas Fault and Changes in Slip Behavior as Outlined by Full non Linear Tomography

    Science.gov (United States)

    Chiarabba, C.; Giacomuzzi, G.; Piana Agostinetti, N.

    2017-12-01

    The San Andreas Fault (SAF) near Parkfield is the best known fault section which exhibit a clear transition in slip behavior from stable to unstable. Intensive monitoring and decades of studies permit to identify details of these processes with a good definition of fault structure and subsurface models. Tomographic models computed so far revealed the existence of large velocity contrasts, yielding physical insight on fault rheology. In this study, we applied a recently developed full non-linear tomography method to compute Vp and Vs models which focus on the section of the fault that exhibit fault slip transition. The new tomographic code allows not to impose a vertical seismic discontinuity at the fault position, as routinely done in linearized codes. Any lateral velocity contrast found is directly dictated by the data themselves and not imposed by subjective choices. The use of the same dataset of previous tomographic studies allows a proper comparison of results. We use a total of 861 earthquakes, 72 blasts and 82 shots and the overall arrival time dataset consists of 43948 P- and 29158 S-wave arrival times, accurately selected to take care of seismic anisotropy. Computed Vp and Vp/Vs models, which by-pass the main problems related to linarized LET algorithms, excellently match independent available constraints and show crustal heterogeneities with a high resolution. The high resolution obtained in the fault surroundings permits to infer lateral changes of Vp and Vp/Vs across the fault (velocity gradient). We observe that stable and unstable sliding sections of the SAF have different velocity gradients, small and negligible in the stable slip segment, but larger than 15 % in the unstable slip segment. Our results suggest that Vp and Vp/Vs gradients across the fault control fault rheology and the attitude of fault slip behavior.

  15. Shear flow effect on ion temperature gradient vortices in plasmas with sheared magnetic field

    DEFF Research Database (Denmark)

    Chakrabarti, N.; Juul Rasmussen, J.

    1999-01-01

    The effect of velocity shear on ion temperature gradient (ITG) driven vortices in a nonuniform plasma in a curved, sheared magnetic field is investigated. In absence of parallel ion dynamics, vortex solutions for the ITG mode are studied analytically. It is shown that under certain conditions...... and ultimately lead to a dominating monopolar form. The effects of magnetic shear indicate it may destroy these structures. (C) 1999 American Institute of Physics....

  16. Unified theory of ballooning instabilities and temperature gradient driven trapped ion modes

    International Nuclear Information System (INIS)

    Xu, X.Q.

    1990-08-01

    A unified theory of temperature gradient driven trapped ion modes and ballooning instabilities is developed using kinetic theory in banana regimes. All known results, such as electrostatic and purely magnetic trapped particle modes and ideal MHD ballooning modes (or shear Alfven waves) are readily derived from our single general dispersion relation. Several new results from ion-ion collision and trapped particle modification of ballooning modes are derived and discussed and the interrelationship between those modes is established. 24 refs

  17. Vortex dynamics equation in type-II superconductors in a temperature gradient

    International Nuclear Information System (INIS)

    Vega Monroy, R.; Sarmiento Castillo, J.; Puerta Torres, D.

    2010-01-01

    In this work we determined a vortex dynamics equation in a temperature gradient in the frame of the time dependent Ginzburg-Landau equation. In this sense, we derived a local solvability condition, which governs the vortex dynamics. Also, we calculated the explicit form for the force coefficients, which are the keys for the understanding of the balance equation due to vortex interactions with the environment. (author)

  18. Vortex dynamics equation in type-II superconductors in a temperature gradient

    Energy Technology Data Exchange (ETDEWEB)

    Vega Monroy, R.; Sarmiento Castillo, J. [Universidad del Atlantico, Barranquilla (Colombia). Facultad de Ciencias Basicas; Puerta Torres, D. [Universidad de Cartagena (Colombia). Facultad de Ciencias Exactas

    2010-12-15

    In this work we determined a vortex dynamics equation in a temperature gradient in the frame of the time dependent Ginzburg-Landau equation. In this sense, we derived a local solvability condition, which governs the vortex dynamics. Also, we calculated the explicit form for the force coefficients, which are the keys for the understanding of the balance equation due to vortex interactions with the environment. (author)

  19. The Transition to Collisionless Ion-temperature-gradient-driven Plasma Turbulence: A Dynamical Systems Approach

    International Nuclear Information System (INIS)

    Kolesnikov, R.A.; Krommes, J.A.

    2004-01-01

    The transition to collisionless ion-temperature-gradient-driven plasma turbulence is considered by applying dynamical systems theory to a model with ten degrees of freedom. Study of a four-dimensional center manifold predicts a ''Dimits shift'' of the threshold for turbulence due to the excitation of zonal flows and establishes the exact value of that shift in terms of physical parameters. For insight into fundamental physical mechanisms, the method provides a viable alternative to large simulations

  20. Vortex breakdown control by adding near-axis swirl and temperature gradients.

    Science.gov (United States)

    Herrada, Miguel Angel; Shtern, Vladimir

    2003-10-01

    Vortex breakdown (VB) is an intriguing effect of practical and fundamental interest, occurring, e.g., in tornadoes, above delta-wing aircraft, and in vortex devices. Depending on application, VB is either beneficiary or harmful and therefore requires a proper control. This study shows that VB can be efficiently controlled by a combination of additional near-axis swirl and heat. To explore the underlying mechanism, we address a flow in a cylindrical container driven by a rotating bottom disk. This model flow has been extensively studied being well suited for understanding both the VB mechanism and its control. Our numerical analysis explains experimentally observed effects of control corotation and counter-rotation (with no temperature gradient) and reveals some flaws of dye visualization. An important feature found is that a moderate negative (positive) axial gradient of temperature can significantly enforce (diminish) the VB enhancement by the counter-rotation. A strong positive temperature gradient stimulates the centrifugal instability and time oscillations in the flow with counter-rotation. An efficient time-evolution code for axisymmetric compressible flows has facilitated the numerical study.

  1. Formation of Linear Gradient of Antibiotics on Microfluidic Chips for High-throughput Antibiotic Susceptibility Testing

    Science.gov (United States)

    Kim, Seunggyu; Lee, Seokhun; Jeon, Jessie S.

    2017-11-01

    To determine the most effective antimicrobial treatments of infectious pathogen, high-throughput antibiotic susceptibility test (AST) is critically required. However, the conventional AST requires at least 16 hours to reach the minimum observable population. Therefore, we developed a microfluidic system that allows maintenance of linear antibiotic concentration and measurement of local bacterial density. Based on the Stokes-Einstein equation, the flow rate in the microchannel was optimized so that linearization was achieved within 10 minutes, taking into account the diffusion coefficient of each antibiotic in the agar gel. As a result, the minimum inhibitory concentration (MIC) of each antibiotic against P. aeruginosa could be immediately determined 6 hours after treatment of the linear antibiotic concentration. In conclusion, our system proved the efficacy of a high-throughput AST platform through MIC comparison with Clinical and Laboratory Standards Institute (CLSI) range of antibiotics. This work was supported by the Climate Change Research Hub (Grant No. N11170060) of the KAIST and by the Brain Korea 21 Plus project.

  2. Generation of charge imbalance in a superconductor by a temperature gradient

    International Nuclear Information System (INIS)

    Entin-Wohlman, O.; Orbach, R.

    1980-01-01

    The charge-imbalance voltage in a superconductor carrying a current in the presence of a temperature gradient is calculated from the Boltzmann equation in the clean limit. We demonstrate why the Green's-function approach in the dirty limit, first performed by Schmid and Schoem, generates the same Boltzmann-like equation for the distribution function. In addition, the charge-imbalance voltage in the absence of an impressed current is calculated. It is shown to depend on del 2 T+(delT) 2 /T, and not solely on (delT) 2 . The calculations are limited to the temperature regime near T/sub c/, such that Δ<< T

  3. Temperature dependence of the electric field gradient in AgPd and AgPt alloys

    International Nuclear Information System (INIS)

    Krolas, K.

    1977-07-01

    The measurements of temperature dependence of the electric field gradient (EFG) on 111 Cd nuclei in AgPd and AgPt alloys were performed using the time dependent perturbed angular correlation method. The EFG caused by impurities distributed in further coordination shells decrease stronaer with increasing temperature than the EFG due to single impurity being the nearest neighbour of the probe atom. These results were explained assuming different modes of thermal vibrations of single impurity atoms and impurity complexes in silver host lattice. (author)

  4. Transverse beam dynamics in non-linear Fixed Field Alternating Gradient accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Haj, Tahar M. [Brookhaven National Lab. (BNL), Upton, NY (United States); Meot, F. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2016-03-02

    In this paper, we present some aspects of the transverse beam dynamics in Fixed Field Ring Accelerators (FFRA): we start from the basic principles in order to derive the linearized transverse particle equations of motion for FFRA, essentially FFAGs and cyclotrons are considered here. This is a simple extension of a previous work valid for linear lattices that we generalized by including the bending terms to ensure its correctness for FFAG lattice. The space charge term (contribution of the internal coulombian forces of the beam) is contained as well, although it is not discussed here. The emphasis is on the scaling FFAG type: a collaboration work is undertaken in view of better understanding the properties of the 150 MeV scaling FFAG at KURRI in Japan, and progress towards high intensity operation. Some results of the benchmarking work between different codes are presented. Analysis of certain type of field imperfections revealed some interesting features about this machine that explain some of the experimental results and generalize the concept of a scaling FFAG to a non-scaling one for which the tune variations obey a well-defined law.

  5. Scaling of spectra in grid turbulence with a mean cross-stream temperature gradient

    Science.gov (United States)

    Bahri, Carla; Arwatz, Gilad; Mueller, Michael E.; George, William K.; Hultmark, Marcus

    2014-11-01

    Scaling of grid turbulence with a constant mean cross-stream temperature gradient is investigated using a combination of theoretical predictions, DNS, and experimental data. Conditions for self-similarity of the governing equations and the scalar spectrum are investigated, which reveals necessary conditions for self-similarity to exist. These conditions provide a theoretical framework for scaling of the temperature spectrum as well as the temperature flux spectrum. One necessary condition, predicted by the theory, is that the characteristic length scale describing the scalar spectrum must vary as √{ t} for a self-similar solution to exist. In order to investigate this, T-NSTAP sensors, specially designed for temperature measurements at high frequencies, were deployed in a heated passive grid turbulence setup together with conventional cold-wires, and complementary DNS calculations were performed to complement and complete the experimental data. These data are used to compare the behavior of different length scales and validate the theoretical predictions.

  6. THE MAXIMUM EFFECT OF DEEP LAKES ON TEMPERATURE PROFILES – DETERMINATION OF THE GEOTHERMAL GRADIENT

    Directory of Open Access Journals (Sweden)

    Eppelbaum L. V.

    2009-07-01

    Full Text Available Understanding the climate change processes on the basis of geothermal observations in boreholes is an important and at the same time high-intricate problem. Many non-climatic effects could cause changes in ground surface temperatures. In this study we investigate the effects of deep lakes on the borehole temperature profilesobserved within or in the vicinity of the lakes. We propose a method based on utilization of Laplace equation with nonuniform boundary conditions. The proposed method makes possible to estimate the maximum effect of deep lakes (here the term "deep lake" means that long term mean annual temperature of bottom sediments can beconsidered as a constant value on the borehole temperature profiles. This method also allows one to estimate an accuracy of the determination of the geothermal gradient.

  7. Low temperature magnetic behaviour of glass-covered magnetic microwires with gradient nanocrystalline microstructure

    Energy Technology Data Exchange (ETDEWEB)

    Serrano, I. G.; Hernando, A.; Marín, P. [Instituto de Magnetismo Aplicado, UCM-ADIF-CSIC, P.O. Box 155 las Rozas, Madrid 28230 (Spain)

    2014-01-21

    Slow nanocrystallization driving dynamics can be affected by the combination of two factors: sample residual stresses and sample geometry. This effect is evidenced at the initial stages of nanocrystallization of amorphous CoFeSiBCuNb magnetic microwires. Transmission electron microscopy observations indicate how crystallization at temperatures between 730 and 780 K results in a graded microstructure where the crystallization at the surface skin of the microwire, which remains almost amorphous, differs from that of the middle, where elongated grains are observed, and inner regions. However, samples annealed at higher temperatures present a homogeneous microstructure. The effect of gradient microstructure on magnetic properties has been also analyzed and a loss of bistable magnetic behaviour at low temperatures, from that obtained in the amorphous and fully nanocrystallized sample, has been observed and ascribed to changes in sign of magnetostriction for measuring temperatures below 100 K.

  8. An Investigation into the Effects of Temperature Gradient on the Soil Water–Salt Transfer with Evaporation

    Directory of Open Access Journals (Sweden)

    Rong Ren

    2017-06-01

    Full Text Available Temperature gradients exist in the field under brackish water irrigation conditions, especially in northern semi–arid areas of China. Although there are many investigators dedicated to studying the mechanism of brackish water irrigation and the effect of brackish water irrigation on crops, there are fewer investigations of the effects of temperature gradient on the water–salt transport. Based on the combination of a physical experiment and a mathematical model, this study was conducted to: (a build a physical model and observe the redistribution of soil water–heat–salt transfer; (b develop a mathematical model focused on the influence of a temperature gradient on soil water and salt redistribution based on the physical model and validate the proposed model using the measured data; and (c analyze the effects of the temperature gradient on the soil water–salt transport by comparing the proposed model with the traditional water–salt model in which the effects of temperature gradient on the soil water–salt transfer are neglected. Results show that the soil temperature gradient has a definite influence on the soil water–salt migration. Moreover, the effect of temperature gradient on salt migration was greater than that of water movement.

  9. A composite step conjugate gradients squared algorithm for solving nonsymmetric linear systems

    Science.gov (United States)

    Chan, Tony; Szeto, Tedd

    1994-03-01

    We propose a new and more stable variant of the CGS method [27] for solving nonsymmetric linear systems. The method is based on squaring the Composite Step BCG method, introduced recently by Bank and Chan [1,2], which itself is a stabilized variant of BCG in that it skips over steps for which the BCG iterate is not defined and causes one kind of breakdown in BCG. By doing this, we obtain a method (Composite Step CGS or CSCGS) which not only handles the breakdowns described above, but does so with the advantages of CGS, namely, no multiplications by the transpose matrix and a faster convergence rate than BCG. Our strategy for deciding whether to skip a step does not involve any machine dependent parameters and is designed to skip near breakdowns as well as produce smoother iterates. Numerical experiments show that the new method does produce improved performance over CGS on practical problems.

  10. Identifying Stream/Aquifer Exchange by Temperature Gradient in a Guarani Aquifer System Outcrop Zone

    Science.gov (United States)

    Wendland, E.; Rosa, D. M. S.; Anache, J. A. A.; Lowry, C.; Lin, Y. F. F.

    2017-12-01

    Recharge of the Guarani Aquifer System (GAS) in South America is supposed to occur mainly in the outcrop zones, where the GAS appears as an unconfined aquifer (10% of the 1.2 Million km2 aquifer extension). Previous evaluations of recharge are based essentially on water balance estimates for the whole aquifer area or water table fluctuations in monitoring wells. To gain a more detailed understanding of the recharge mechanisms the present work aimed to study the stream aquifer interaction in a watershed (Ribeirão da Onça) at an outcrop zone. Two Parshall flumes were installed 1.3 km apart for discharge measurement in the stream. Along this distance an optic fiber cable was deployed to identify stretches with gaining and losing behavior. In order to estimate groundwater discharge in specific locations, 8 temperature sticks were set up along the stream reach to measure continuously the vertical temperature gradient. A temperature probe with 4 thermistors was also used to map the shallow streambed temperature gradient manually along the whole distance. The obtained results show a discharge difference of 250 m3/h between both flumes. Since the last significant rainfall (15 mm) in the watershed occurred 3 months ago, this value can be interpreted as the base flow contribution to the stream during the dry season. Given the temperature difference between groundwater ( 24oC) and surface water ( 17oC) the fiber-optic distributed temperature sensing (FO-DTS) allowed the identification of stretches with gaining behavior. Temperature gradients observed at the streambed varied between 0.67 and 14.33 oC/m. The study demonstrated that heat may be used as natural tracer even in tropical conditions, where the groundwater temperature is higher than the surface water temperature during the winter. The obtained results show that the discharge difference between both flumes can not be extrapolated without detailed analysis. Gaining and loosing stretches have to be identified on order

  11. Large diffusion anisotropy and orientation sorting of phosphorene nanoflakes under a temperature gradient.

    Science.gov (United States)

    Cheng, Yuan; Zhang, Gang; Zhang, Yingyan; Chang, Tienchong; Pei, Qing-Xiang; Cai, Yongqing; Zhang, Yong-Wei

    2018-01-25

    We perform molecular dynamics simulations to investigate the motion of phosphorene nanoflakes on a large graphene substrate under a thermal gradient. It is found that the atomic interaction between the graphene substrate and the phosphorene nanoflake generates distinct rates of motion for phosphorene nanoflakes with different orientations. Remarkably, for square phosphorene nanoflakes, the motion of zigzag-oriented nanoflakes is 2-fold faster than those of armchair-oriented and randomly-oriented nanoflakes. This large diffusion anisotropy suggests that sorting of phosphorene nanoflakes into specific orientations can be realized by a temperature gradient. The findings here provide interesting insights into strong molecular diffusion anisotropy and offer a novel route for manipulating two-dimensional materials.

  12. Evaluating the coefficient of thermal expansion using time periods of minimal thermal gradient for a temperature driven structural health monitoring

    Science.gov (United States)

    Reilly, J.; Abdel-Jaber, H.; Yarnold, M.; Glisic, B.

    2017-04-01

    Structural Health Monitoring aims to characterize the performance of a structure from a combination of recorded sensor data and analytic techniques. Many methods are concerned with quantifying the elastic response of the structure, treating temperature changes as noise in the analysis. While these elastic profiles do demonstrate a portion of structural behavior, thermal loads on a structure can induce comparable strains to elastic loads. Understanding this relationship between the temperature of the structure and the resultant strain and displacement can provide in depth knowledge of the structural condition. A necessary parameter for this form of analysis is the Coefficient of Thermal Expansion (CTE). The CTE of a material relates the amount of expansion or contraction a material undergoes per degree change in temperature, and can be determined from temperature-strain relationship given that the thermal strain can be isolated. Many times with concrete, the actual amount of expansion with temperature in situ varies from the given values for the CTE due to thermally generated elastic strain, which complicates evaluation of the CTE. To accurately characterize the relationship between temperature and strain on a structure, the actual thermal behavior of the structure needs to be analyzed. This rate can vary for different parts of a structure, depending on boundary conditions. In a case of unrestrained structures, the strain in the structure should be linearly related to the temperature change. Thermal gradients in a structure can affect this relationship, as they induce curvature and deplanations in the cross section. This paper proposes a method that addresses these challenges in evaluating the CTE.

  13. Investigation on multilayer failure mechanism of RPV with a high temperature gradient from core meltdown scenario

    Energy Technology Data Exchange (ETDEWEB)

    Jianfeng, Mao, E-mail: jianfeng-mao@163.com [Institute of Process Equipment and Control Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310032 (China); Engineering Research Center of Process Equipment and Remanufacturing, Ministry of Education (China); Xiangqing, Li [Institute of Process Equipment and Control Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310032 (China); Shiyi, Bao, E-mail: bsy@zjut.edu.cn [Institute of Process Equipment and Control Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310032 (China); Engineering Research Center of Process Equipment and Remanufacturing, Ministry of Education (China); Lijia, Luo [Institute of Process Equipment and Control Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310032 (China); Zengliang, Gao [Institute of Process Equipment and Control Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310032 (China); Engineering Research Center of Process Equipment and Remanufacturing, Ministry of Education (China)

    2016-12-15

    Highlights: • The multilayer failure mechanism is investigated for RPV under CHF. • Failure time and location of RPV are predicted under various SA scenarios. • The structural behaviors are analyzed in depth for creep and plasticity. • The effect of internal pressure and temperature gradient is considered. • The structural integrity of RPV is secured within the required 72 creep hours. - Abstract: The Fukushima accident shows that in-vessel retention (IVR) of molten core debris has not been appropriately assessed, and a certain pressure (up to 8.0 MPa) still exists inside the reactor pressure vessel (RPV). In the traditional concept of IVR, the pressure is supposed to successfully be released, and the temperature distributed among the wall thickness is assumed to be uniform. However, this concept is seriously challenged by reality of Fukushima accident with regard to the existence of both internal pressure and high temperature gradient. Therefore, in order to make the IVR mitigation strategy succeed, the numerical investigation of the lower head behavior and its failure has been performed for several internal pressures under high temperature gradient. According to some requirements in severe accident (SA) management of RPV, it should be ensured that the IVR mitigation takes effect in preventing the failure of the structure within a period of 72 h. Subsequently, the failure time and location have to be predicted under the critical heat flux (CHF) loading condition for lower head, since the CHF is limit thermal boundary before the melt-through of RPV. In illustrating the so called ‘multilayer failure mechanism’, the structural behaviors of RPV are analyzed in terms of the stress, creep strain, deformation, damage on selected paths.

  14. Directional solidification of C8-BTBT films induced by temperature gradients and its application for transistors

    Science.gov (United States)

    Fujieda, Ichiro; Iizuka, Naoki; Onishi, Yosuke

    2015-03-01

    Because charge transport in a single crystal is anisotropic in nature, directional growth of single crystals would enhance device performance and reduce its variation among devices. For an organic thin film, a method based on a temperature gradient would offer advantages in throughput and cleanliness. In experiments, a temperature gradient was established in a spin-coated film of 2,7-dioctyl [1]benzothieno[3,2-b]benzothiophene (C8-BTBT) by two methods. First, a sample was placed on a metal plate bridging two heat stages. When one of the heat stages was cooled, the material started to solidify from the colder region. The melt-solid interface proceeded along the temperature gradient. Cracks were formed perpendicular to the solidification direction. Second, a line-shaped region on the film was continuously exposed to the light from a halogen lamp. After the heat stage was cooled, cracks similar to the first experiment were observed, indicating that the melt-solid interface moved laterally. We fabricated top-contact, bottom-gate transistors with these films. Despite the cracks, field-effect mobility of the transistors fabricated with these films was close to 6 cm2 /Vs and 4 cm2 /Vs in the first and second experiment, respectively. Elimination of cracks would improve charge transport and reduce performance variation among devices. It should be noted that the intense light from the halogen lamp did not damage the C8-BTBT films. The vast knowledge on laser annealing is now available for directional growth of this type of materials. The associated cost would be much smaller because an organic thin film melts at a low temperature.

  15. Investigation on multilayer failure mechanism of RPV with a high temperature gradient from core meltdown scenario

    International Nuclear Information System (INIS)

    Jianfeng, Mao; Xiangqing, Li; Shiyi, Bao; Lijia, Luo; Zengliang, Gao

    2016-01-01

    Highlights: • The multilayer failure mechanism is investigated for RPV under CHF. • Failure time and location of RPV are predicted under various SA scenarios. • The structural behaviors are analyzed in depth for creep and plasticity. • The effect of internal pressure and temperature gradient is considered. • The structural integrity of RPV is secured within the required 72 creep hours. - Abstract: The Fukushima accident shows that in-vessel retention (IVR) of molten core debris has not been appropriately assessed, and a certain pressure (up to 8.0 MPa) still exists inside the reactor pressure vessel (RPV). In the traditional concept of IVR, the pressure is supposed to successfully be released, and the temperature distributed among the wall thickness is assumed to be uniform. However, this concept is seriously challenged by reality of Fukushima accident with regard to the existence of both internal pressure and high temperature gradient. Therefore, in order to make the IVR mitigation strategy succeed, the numerical investigation of the lower head behavior and its failure has been performed for several internal pressures under high temperature gradient. According to some requirements in severe accident (SA) management of RPV, it should be ensured that the IVR mitigation takes effect in preventing the failure of the structure within a period of 72 h. Subsequently, the failure time and location have to be predicted under the critical heat flux (CHF) loading condition for lower head, since the CHF is limit thermal boundary before the melt-through of RPV. In illustrating the so called ‘multilayer failure mechanism’, the structural behaviors of RPV are analyzed in terms of the stress, creep strain, deformation, damage on selected paths.

  16. Do Quercus ilex woodlands undergo abrupt non-linear functional changes in response to human disturbance along a climatic gradient?

    Science.gov (United States)

    Bochet, Esther; García-Fayos, Patricio; José Molina, Maria; Moreno de las Heras, Mariano; Espigares, Tíscar; Nicolau, Jose Manuel; Monleon, Vicente

    2017-04-01

    Theoretical models predict that drylands are particularly prone to suffer critical transitions with abrupt non-linear changes in their structure and functions as a result of the existing complex interactions between climatic fluctuations and human disturbances. However, so far, few studies provide empirical data to validate these models. We aim at determining how holm oak (Quercus ilex) woodlands undergo changes in their functions in response to human disturbance along an aridity gradient (from semi-arid to sub-humid conditions), in eastern Spain. For that purpose, we used (a) remote-sensing estimations of precipitation-use-efficiency (PUE) from enhanced vegetation index (EVI) observations performed in 231x231 m plots of the Moderate Resolution Imaging Spectroradiometer (MODIS); (b) biological and chemical soil parameter determinations (extracellular soil enzyme activity, soil respiration, nutrient cycling processes) from soil sampled in the same plots; (c) vegetation parameter determinations (ratio of functional groups) from vegetation surveys performed in the same plots. We analyzed and compared the shape of the functional change (in terms of PUE and soil and vegetation parameters) in response to human disturbance intensity for our holm oak sites along the aridity gradient. Overall, our results evidenced important differences in the shape of the functional change in response to human disturbance between climatic conditions. Semi-arid areas experienced a more accelerated non-linear decrease with an increasing disturbance intensity than sub-humid ones. The proportion of functional groups (herbaceous vs. woody cover) played a relevant role in the shape of the functional response of the holm oak sites to human disturbance.

  17. Simultaneous use of linear and nonlinear gradients for B1+ inhomogeneity correction.

    Science.gov (United States)

    Ertan, Koray; Atalar, Ergin

    2017-09-01

    The simultaneous use of linear spatial encoding magnetic fields (L-SEMs) and nonlinear spatial encoding magnetic fields (N-SEMs) in B 1 + inhomogeneity problems is formulated and demonstrated with both simulations and experiments. Independent excitation k-space variables for N-SEMs are formulated for the simultaneous use of L-SEMs and N-SEMs by assuming a small tip angle. The formulation shows that, when N-SEMs are considered as an independent excitation k-space variable, numerous different k-space trajectories and frequency weightings differing in dimension, length, and energy can be designed for a given target transverse magnetization distribution. The advantage of simultaneous use of L-SEMs and N-SEMs is demonstrated by B 1 + inhomogeneity correction with spoke excitation. To fully utilize the independent k-space formulations, global optimizations are performed for 1D, 2D RF power limited, and 2D RF power unlimited simulations and experiments. Three different cases are compared: L-SEMs alone, N-SEMs alone, and both used simultaneously. In all cases, the simultaneous use of L-SEMs and N-SEMs leads to a decreased standard deviation in the ROI compared with using only L-SEMs or N-SEMs. The simultaneous use of L-SEMs and N-SEMs results in better B 1 + inhomogeneity correction than using only L-SEMs or N-SEMs due to the increased number of degrees of freedom. Copyright © 2017 John Wiley & Sons, Ltd.

  18. The potentially neglected culprit of DC surface flashover: electron migration under temperature gradients.

    Science.gov (United States)

    Li, Chuanyang; Hu, Jun; Lin, Chuanjie; He, Jinliang

    2017-06-12

    This report intends to reveal the role of electron migration and its effects in triggering direct current (DC) surface flashover under temperature gradient conditions when using epoxy-based insulating composites. The surface potential and the surface flashover voltage are both measured using insulators that are bridged between two thermo-regulated electrodes. The space charge injection and migration properties under different temperature are detected. The results show that the surface potential rises significantly because of electron migration near the high voltage (HV) electrode under high temperature conditions, thus creating an "analogous ineffective region". The expansion of this "analogous ineffective region" results in most of the voltage drop occurring near the ground electrode, which serves as an important factor triggering positive streamers across the insulation surface. This work is helpful in understanding of DC surface flashover mechanism from a new perspective and also has important significance in design of a suitable DC insulator to avoid surface flashover problem.

  19. Nonlinear vacuum gas flow through a short tube due to pressure and temperature gradients

    Energy Technology Data Exchange (ETDEWEB)

    Pantazis, Sarantis; Naris, Steryios; Tantos, Christos [Department of Mechanical Engineering, University of Thessaly, Pedion Areos, 38334 Volos (Greece); Valougeorgis, Dimitris, E-mail: diva@mie.uth.gr [Department of Mechanical Engineering, University of Thessaly, Pedion Areos, 38334 Volos (Greece); André, Julien; Millet, Francois; Perin, Jean Paul [Service des Basses Températures, UMR-E CEA/UJF-Grenoble 1, INAC, Grenoble, F-38054 (France)

    2013-10-15

    The flow of a rarefied gas through a tube due to both pressure and temperature gradients has been studied numerically. The main objective is to investigate the performance of a mechanical vacuum pump operating at low temperatures in order to increase the pumped mass flow rate. This type of pump is under development at CEA-Grenoble. The flow is modelled by the Shakhov kinetic model equation, which is solved by the discrete velocity method. Results are presented for certain geometry and flow parameters. Since according to the pump design the temperature driven flow is in the opposite direction than the main pressure driven flow, it has been found that for the operating pressure range studied here the net mass flow rate through the pump may be significantly reduced.

  20. Nonlinear vacuum gas flow through a short tube due to pressure and temperature gradients

    International Nuclear Information System (INIS)

    Pantazis, Sarantis; Naris, Steryios; Tantos, Christos; Valougeorgis, Dimitris; André, Julien; Millet, Francois; Perin, Jean Paul

    2013-01-01

    The flow of a rarefied gas through a tube due to both pressure and temperature gradients has been studied numerically. The main objective is to investigate the performance of a mechanical vacuum pump operating at low temperatures in order to increase the pumped mass flow rate. This type of pump is under development at CEA-Grenoble. The flow is modelled by the Shakhov kinetic model equation, which is solved by the discrete velocity method. Results are presented for certain geometry and flow parameters. Since according to the pump design the temperature driven flow is in the opposite direction than the main pressure driven flow, it has been found that for the operating pressure range studied here the net mass flow rate through the pump may be significantly reduced

  1. A sandwich-designed temperature-gradient incubator for studies of microbial temperature responses

    DEFF Research Database (Denmark)

    Elsgaard, Lars; Jørgensen, L.W.

    2002-01-01

    of 28-ml test tubes. An electric plate heats one end of the TGI end and the other end is cooled by thermoelectric Peltier elements in combination with a liquid cooling system. The TGI is equipped with 24 calibrated Pt-100 temperature sensors and insulated by polyurethane plates. A PC-operated SCADA...

  2. Effect of linear and non-linear components in the temperature dependences of thermoelectric properties on the energy conversion efficiency

    International Nuclear Information System (INIS)

    Yamashita, Osamu

    2009-01-01

    The new thermal rate equations were built up by taking the linear and non-linear components in the temperature dependences of the Seebeck coefficient α, the electrical resistivity ρ and thermal conductivity κ of a thermoelectric (TE) material into the thermal rate equations on the assumption that their temperature dependences are expressed by a quadratic function of temperature T. The energy conversion efficiency η for a single TE element was formulated using the new thermal rate ones proposed here. By applying it to the high-performance half-Heusler compound, the non-linear component in the temperature dependence of α among those of the TE properties has the greatest effect on η, so that η/η 0 was increased by 11% under the condition of T = 510 K and ΔT = 440 K, where η 0 is a well-known conventional energy conversion efficiency. It was thus found that the temperature dependences of TE properties have a significant influence on η. When one evaluates the accurate achievement rate of η exp obtained experimentally for a TE generator, therefore, η exp should be compared with η the estimated from the theoretical expression proposed here, not with η 0 , particularly when there is a strong non-linearity in the temperature dependence of TE properties.

  3. A STUDY OF SOLAR PHOTOSPHERIC TEMPERATURE GRADIENT VARIATION USING LIMB DARKENING MEASUREMENTS

    Energy Technology Data Exchange (ETDEWEB)

    Criscuoli, Serena [National Solar Observatory, Boulder, CO 80303 (United States); Foukal, Peter [192 Willow Road, Nahant, MA 01908 (United States)

    2017-01-20

    The variation in area of quiet magnetic network measured over the sunspot cycle should modulate the spatially averaged photospheric temperature gradient, since temperature declines with optical depth more gradually in magnetic flux tube atmospheres. Yet, limb darkening measurements show no dependence upon activity level, even at an rms precision of 0.04%. We study the sensitivity of limb darkening to changes in area filling factor using a 3D MHD model of the magnetized photosphere. The limb darkening change expected from the measured 11-year area variation lies below the level of measured limb darkening variations, for a reasonable range of magnetic flux in quiet network and internetwork regions. So the remarkably constant limb darkening observed over the solar activity cycle is not inconsistent with the measured 11-year change in area of quiet magnetic network. Our findings offer an independent constraint on photospheric temperature gradient changes reported from measurements of the solar spectral irradiance from the Spectral Irradiance Monitor, and recently, from wavelength-differential spectrophotometry using the Solar Optical Telescope aboard the HINODE spacecraft.

  4. Experimental demonstration of efficient and robust second harmonic generation using the adiabatic temperature gradient method

    Science.gov (United States)

    Dimova, E.; Steflekova, V.; Karatodorov, S.; Kyoseva, E.

    2018-03-01

    We propose a way of achieving efficient and robust second-harmonic generation. The technique proposed is similar to the adiabatic population transfer in a two-state quantum system with crossing energies. If the phase mismatching changes slowly, e.g., due to a temperature gradient along the crystal, and makes the phase match for second-harmonic generation to occur, then the energy would be converted adiabatically to the second harmonic. As an adiabatic technique, the second-harmonic generation scheme presented is stable to variations in the crystal parameters, as well as in the input light, crystal length, input intensity, wavelength and angle of incidence.

  5. Stabilization of ion temperature gradient driven modes by lower hybrid wave in a tokamak

    International Nuclear Information System (INIS)

    Kuley, Animesh; Tripathi, V. K.

    2009-01-01

    A gyrokinetic formalism has been developed to study lower hybrid wave stabilization of ion temperature gradient driven modes, responsible for anomalous ion transport in the inner region of tokamak. The parametric coupling between lower hybrid and drift waves produce lower hybrid sideband waves. The pump and the sidebands exert a ponderomotive force on electrons, modifying the eigenfrequency of the drift wave and influencing the growth rate. The longer wavelength drift waves are destabilized by the lower hybrid wave while the shorter wavelengths are suppressed. The requiste lower hybrid power is in the range of ∼900 kW at 4.6 GHz.

  6. Performance and application of controlled temperature-gradient lamps in atomic absorption spectrometry

    International Nuclear Information System (INIS)

    Gough, D.S.; Sullivan, J.V.

    1981-01-01

    An improved design of controlled temperature-gradient lamp (CTGL) is suitable for arsenic, cadmium, phosphorus, potassium, rubidium, selenium, sodium, sulphur and zinc. Intensity and linewidth measurements indicate that the CTGL is significantly more intense than an electrodeless discharge lamp (EDL) at the same linewidth. CTGL's also compare favourably with EDL's when used as light sources for a.a.s. Arsenic and selenium can be determined at very low concentrations (ng ml -1 ) by the hydride generation technique. Sulphur and phosphorus can be detected in the vacuum ultra-violet region using nitrogen-separated flames; the limits of detection are 13 and 10 μg ml -1 , respectively. (Auth.)

  7. Orbital forcing and role of the latitudinal insolation/temperature gradient

    Energy Technology Data Exchange (ETDEWEB)

    Davis, Basil A.S. [University of Newcastle, School of Geography, Politics and Sociology, Newcastle upon Tyne (United Kingdom); ARVE Group, ISTE, EPFL, Lausanne (Switzerland); Brewer, Simon [CEREGE, Europole de l' Arbois, Aix-en-Provence (France)

    2009-02-15

    Orbital forcing of the climate system is clearly shown in the Earths record of glacial-interglacial cycles, but the mechanism underlying this forcing is poorly understood. Traditional Milankovitch theory suggests that these cycles are driven by changes in high latitude summer insolation, yet this forcing is dominated by precession, and cannot account for the importance of obliquity in the Ice Age record. Here, we investigate an alternative forcing based on the latitudinal insolation gradient (LIG), which is dominated by both obliquity (in summer) and precession (in winter). The insolation gradient acts on the climate system through differential solar heating, which creates the Earths latitudinal temperature gradient (LTG) that drives the atmospheric and ocean circulation. A new pollen-based reconstruction of the LTG during the Holocene is used to demonstrate that the LTG may be much more sensitive to changes in the LIG than previously thought. From this, it is shown how LIG forcing of the LTG may help explain the propagation of orbital signatures throughout the climate system, including the Monsoon, Arctic Oscillation and ocean circulation. These relationships are validated over the last (Eemian) Interglacial, which occurred under a different orbital configuration to the Holocene. We conclude that LIG forcing of the LTG explains many criticisms of classic Milankovitch theory, while being poorly represented in climate models. (orig.)

  8. Effects of finite electron temperature on gradient drift instabilities in partially magnetized plasmas

    Science.gov (United States)

    Lakhin, V. P.; Ilgisonis, V. I.; Smolyakov, A. I.; Sorokina, E. A.; Marusov, N. A.

    2018-01-01

    The gradient-drift instabilities of partially magnetized plasmas in plasma devices with crossed electric and magnetic fields are investigated in the framework of the two-fluid model with finite electron temperature in an inhomogeneous magnetic field. The finite electron Larmor radius (FLR) effects are also included via the gyroviscosity tensor taking into account the magnetic field gradient. This model correctly describes the electron dynamics for k⊥ρe>1 in the sense of Padé approximants (here, k⊥ and ρe are the wavenumber perpendicular to the magnetic field and the electron Larmor radius, respectively). The local dispersion relation for electrostatic plasma perturbations with the frequency in the range between the ion and electron cyclotron frequencies and propagating strictly perpendicular to the magnetic field is derived. The dispersion relation includes the effects of the equilibrium E ×B electron current, finite ion velocity, electron inertia, electron FLR, magnetic field gradients, and Debye length effects. The necessary and sufficient condition of stability is derived, and the stability boundary is found. It is shown that, in general, the electron inertia and FLR effects stabilize the short-wavelength perturbations. In some cases, such effects completely suppress the high-frequency short-wavelength modes so that only the long-wavelength low-frequency (with respect to the lower-hybrid frequency) modes remain unstable.

  9. Effect of ion temperature gradient driven turbulence on the edge-core connection for transient edge temperature sink

    International Nuclear Information System (INIS)

    Miyato, Naoaki

    2014-01-01

    Ion temperature gradient (ITG) driven turbulence simulation for a transient edge temperature sink localized in the poloidal plane is performed using a global Landau-fluid code in the electrostatic limit. Pressure perturbations with (m, n) = (±1, 0) are induced by the edge sink, where m and n are poloidal and toroidal mode numbers, respectively. It was found in the previous simulation that the nonlinear dynamics of these perturbations are responsible for the nonlocal plasma response/transport connecting edge and core in a toroidal plasma. Present simulation shows, however, that the ITG turbulence in the core region dissipates the large-scale (m, n) = (±1, 0) perturbations and weakens the edge-core connection observed in the previous simulation. (author)

  10. Air and ground temperatures along elevation and continentality gradients in Southern Norway

    Science.gov (United States)

    Farbrot, Herman; Hipp, Tobias; Etzelmüller, Bernd; Humlum, Ole; Isaksen, Ketil; Strand Ødegârd, Rune

    2010-05-01

    The modern southern boundary for Scandinavian permafrost is located in the mountains of Southern Norway. Permafrost and seasonal frost are considered key components of the cryosphere, and the climate-permafrost relation has acquired added importance with the increasing awareness and concern of rising air temperatures. The three-year research project CRYOLINK ("Permafrost and seasonal frost in southern Norway") aims at improving knowledge on past and present ground temperatures, seasonal frost, and distribution of mountain permafrost in Southern Norway by addressing the fundamental problem of heat transfer between the atmosphere and the ground surface. Hence, several shallow boreholes have been drilled, and a monitoring program to measure air and ground temperatures was started August 2008. The borehole areas (Juvvass, Jetta and Tron) are situated along a west-east transect and, hence, a continentality gradient, and each area provides boreholes at different elevations. Here we present the first year of air and ground temperatures from these sites and discuss the influence of air temperature and ground surface charcteristics (snow conditions, sediments/bedrock, vegetation) on ground temperatures.

  11. Temperature responses of a coccolithophorid, Cricosphaera carterae, measured in a simple and inexpensive thermal-gradient device

    International Nuclear Information System (INIS)

    Blankley, W.F.; Lewin, R.A.

    1976-01-01

    An illuminated thermal-gradient device is described which is of simple construction, very low cost, and wide adaptability to various culture vessels. It can be readily adapted for use in crossed gradients with temperature along one axis. The thermal gradient produced depends on several factors including the heat source (one or more incandescent lamps), heat sink (cold air in a refrigerated box or room), and type of culture vessel. By use of the device, the temperature range for growth of Cricosphaera carterae was found to be 10-26 degrees C, with a maximal growth rate at 20 degrees C

  12. Linear and quadratic in temperature resistivity from holography

    Energy Technology Data Exchange (ETDEWEB)

    Ge, Xian-Hui [Department of Physics, Shanghai University, Shanghai 200444 (China); Shanghai Key Laboratory of High Temperature Superconductors,Shanghai 200444 (China); Shanghai Key Lab for Astrophysics,100 Guilin Road, 200234 Shanghai (China); Tian, Yu [School of Physics, University of Chinese Academy of Sciences,Beijing, 100049 (China); Shanghai Key Laboratory of High Temperature Superconductors,Shanghai 200444 (China); Wu, Shang-Yu [Department of Electrophysics, National Chiao Tung University,Hsinchu 300 (China); Wu, Shao-Feng [Department of Physics, Shanghai University, Shanghai 200444 (China); Shanghai Key Laboratory of High Temperature Superconductors,Shanghai 200444 (China); Shanghai Key Lab for Astrophysics,100 Guilin Road, 200234 Shanghai (China)

    2016-11-22

    We present a new black hole solution in the asymptotic Lifshitz spacetime with a hyperscaling violating factor. A novel computational method is introduced to compute the DC thermoelectric conductivities analytically. We find that both the linear-T and quadratic-T contributions to the resistivity can be realized, indicating that a more detailed comparison with experimental phenomenology can be performed in this scenario.

  13. The Hengill geothermal area, Iceland: Variation of temperature gradients deduced from the maximum depth of seismogenesis

    Science.gov (United States)

    Foulger, G. R.

    1995-04-01

    Given a uniform lithology and strain rate and a full seismic data set, the maximum depth of earthquakes may be viewed to a first order as an isotherm. These conditions are approached at the Hengill geothermal area S. Iceland, a dominantly basaltic area. The likely strain rate calculated from thermal and tectonic considerations is 10 -15 s -1, and temperature measurements from four drill sites within the area indicate average, near-surface geothermal gradients of up to 150 °C km -1 throughout the upper 2 km. The temperature at which seismic failure ceases for the strain rates likely at the Hengill geothermal area is determined by analogy with oceanic crust, and is about 650 ± 50 °C. The topographies of the top and bottom of the seismogenic layer were mapped using 617 earthquakes located highly accurately by performing a simultaneous inversion for three-dimensional structure and hypocentral parameters. The thickness of the seismogenic layer is roughly constant and about 3 km. A shallow, aseismic, low-velocity volume within the spreading plate boundary that crosses the area occurs above the top of the seismogenic layer and is interpreted as an isolated body of partial melt. The base of the seismogenic layer has a maximum depth of about 6.5 km beneath the spreading axis and deepens to about 7 km beneath a transform zone in the south of the area. Beneath the high-temperature part of the geothermal area, the maximum depth of earthquakes may be as shallow as 4 km. The geothermal gradient below drilling depths in various parts of the area ranges from 84 ± 9 °Ckm -1 within the low-temperature geothermal area of the transform zone to 138 ± 15 °Ckm -1 below the centre of the high-temperature geothermal area. Shallow maximum depths of earthquakes and therefore high average geothermal gradients tend to correlate with the intensity of the geothermal area and not with the location of the currently active spreading axis.

  14. Study of the kinetics of oxygen redistribution in UOsub(2+x) and UCeO2 due to a temperature gradient

    International Nuclear Information System (INIS)

    Ducroux, Rene.

    1979-11-01

    The aim of this work is to study out of pile the oxygen redistrbution in UOsub(2+x) in order to explain the O/U+Pu profiles obtained in quenched mixed oxide fuels. The thermal gradient has been obtained by a 'mirror furnace'. The focal spot (0,5 cm 2 area) is maintained at the top of the cylindrical sample; the cold part of the pellet is in contact with the upper side of a molybdenum furnace. This allows to maintain a solid electrolyte probe at fixed temperature (ThO 2 - Y 2 O 3 ) which contains a Fe/FeO chemical reference. This probe gives continuously the oxygen activity at the cold part of the sample. It has been tested in measuring the oxygen potential of several chemical systems. The experiments have been achieved under argon purified by electrochemical pumps. The linear temperature profile was estimated showing a 300 0 C/cm thermal gradient. The hot side temperature did not exceed 1100 0 C in order to avoid the UO 3 evaporation. The EMF was continuously recorded during the anneal under thermal gradient. After quenching, the sample was cut in five or six slices. In each one, the analysis of the O/U ratio was performed. Though the annealing-times were short and the temperature of the hot side relatively low, the observed oxygen redistributions were found important, showing that the oxygen migrates to the hot part of the sample [fr

  15. Assimilation of temperature and hydraulic gradients for quantifying the spatial variability of streambed hydraulics

    Science.gov (United States)

    Huang, Xiang; Andrews, Charles B.; Liu, Jie; Yao, Yingying; Liu, Chuankun; Tyler, Scott W.; Selker, John S.; Zheng, Chunmiao

    2016-08-01

    Understanding the spatial and temporal characteristics of water flux into or out of shallow aquifers is imperative for water resources management and eco-environmental conservation. In this study, the spatial variability in the vertical specific fluxes and hydraulic conductivities in a streambed were evaluated by integrating distributed temperature sensing (DTS) data and vertical hydraulic gradients into an ensemble Kalman filter (EnKF) and smoother (EnKS) and an empirical thermal-mixing model. The formulation of the EnKF/EnKS assimilation scheme is based on a discretized 1D advection-conduction equation of heat transfer in the streambed. We first systematically tested a synthetic case and performed quantitative and statistical analyses to evaluate the performance of the assimilation schemes. Then a real-world case was evaluated to calculate assimilated specific flux. An initial estimate of the spatial distributions of the vertical hydraulic gradients was obtained from an empirical thermal-mixing model under steady-state conditions using a constant vertical hydraulic conductivity. Then, this initial estimate was updated by repeatedly dividing the assimilated specific flux by estimates of the vertical hydraulic gradients to obtain a refined spatial distribution of vertical hydraulic gradients and vertical hydraulic conductivities. Our results indicate that optimal parameters can be derived with fewer iterations but greater simulation effort using the EnKS compared with the EnKF. For the field application in a stream segment of the Heihe River Basin in northwest China, the average vertical hydraulic conductivities in the streambed varied over three orders of magnitude (5 × 10-1 to 5 × 102 m/d). The specific fluxes ranged from near zero (qz < ±0.05 m/d) to ±1.0 m/d, while the vertical hydraulic gradients were within the range of -0.2 to 0.15 m/m. The highest and most variable fluxes occurred adjacent to a debris-dam and bridge pier. This phenomenon is very likely

  16. Prediction of minimum temperatures in an alpine region by linear and non-linear post-processing of meteorological models

    Directory of Open Access Journals (Sweden)

    R. Barbiero

    2007-05-01

    Full Text Available Model Output Statistics (MOS refers to a method of post-processing the direct outputs of numerical weather prediction (NWP models in order to reduce the biases introduced by a coarse horizontal resolution. This technique is especially useful in orographically complex regions, where large differences can be found between the NWP elevation model and the true orography. This study carries out a comparison of linear and non-linear MOS methods, aimed at the prediction of minimum temperatures in a fruit-growing region of the Italian Alps, based on the output of two different NWPs (ECMWF T511–L60 and LAMI-3. Temperature, of course, is a particularly important NWP output; among other roles it drives the local frost forecast, which is of great interest to agriculture. The mechanisms of cold air drainage, a distinctive aspect of mountain environments, are often unsatisfactorily captured by global circulation models. The simplest post-processing technique applied in this work was a correction for the mean bias, assessed at individual model grid points. We also implemented a multivariate linear regression on the output at the grid points surrounding the target area, and two non-linear models based on machine learning techniques: Neural Networks and Random Forest. We compare the performance of all these techniques on four different NWP data sets. Downscaling the temperatures clearly improved the temperature forecasts with respect to the raw NWP output, and also with respect to the basic mean bias correction. Multivariate methods generally yielded better results, but the advantage of using non-linear algorithms was small if not negligible. RF, the best performing method, was implemented on ECMWF prognostic output at 06:00 UTC over the 9 grid points surrounding the target area. Mean absolute errors in the prediction of 2 m temperature at 06:00 UTC were approximately 1.2°C, close to the natural variability inside the area itself.

  17. Migration of the ThO2 kernels under the influence of a temperature gradient

    International Nuclear Information System (INIS)

    Smith, C.L.

    1977-01-01

    Biso-coated ThO 2 fertile fuel kernels will migrate up the thermal gradients imposed across coated particles during high-temperature gas-cooled reactor (HTGR) operation. Thorium dioxide kernel migration has been studied as a function of temperature (1290 to 1705 0 C) (1563 to 1978 K) and ThO 2 kernel burnup (0.9 to 5.8 percent FIMA) in out-of-pile postirradiation thermal gradient heating experiments. The studies were conducted to obtain descriptions of migration rates that will be used in core design studies to evaluate the impact of ThO 2 migration on fertile fuel performance in an operating HTGR and to define characteristics needed by any comprehensive model describing ThO 2 kernel migration. The kinetics data generated in these postirradiation studies are consistent with in-pile data collected by investigators at Oak Ridge National Laboratory, which supports use of the more precise postirradiation heating results in HTGR core design studies. Observations of intergranular carbon deposits on the cool side of migrating kernels support the assumption that the kinetics of kernel migration are controlled by solid-state diffusion within irradiated ThO 2 kernels. The migration is characterized by a period of no migration (incubation period), followed by migration at the equilibrium rate for ThO 2 . The incubation period decreases with increasing temperature and kernel burnup. The improved understanding of the kinetics of ThO 2 kernel migration provided by this work will contribute to an optimization of HTGR core design and an increased confidence in fuel performance predictions

  18. Lateral Temperature-Gradient Method for High-Throughput Characterization of Material Processing by Millisecond Laser Annealing.

    Science.gov (United States)

    Bell, Robert T; Jacobs, Alan G; Sorg, Victoria C; Jung, Byungki; Hill, Megan O; Treml, Benjamin E; Thompson, Michael O

    2016-09-12

    A high-throughput method for characterizing the temperature dependence of material properties following microsecond to millisecond thermal annealing, exploiting the temperature gradients created by a lateral gradient laser spike anneal (lgLSA), is presented. Laser scans generate spatial thermal gradients of up to 5 °C/μm with peak temperatures ranging from ambient to in excess of 1400 °C, limited only by laser power and materials thermal limits. Discrete spatial property measurements across the temperature gradient are then equivalent to independent measurements after varying temperature anneals. Accurate temperature calibrations, essential to quantitative analysis, are critical and methods for both peak temperature and spatial/temporal temperature profile characterization are presented. These include absolute temperature calibrations based on melting and thermal decomposition, and time-resolved profiles measured using platinum thermistors. A variety of spatially resolved measurement probes, ranging from point-like continuous profiling to large area sampling, are discussed. Examples from annealing of III-V semiconductors, CdSe quantum dots, low-κ dielectrics, and block copolymers are included to demonstrate the flexibility, high throughput, and precision of this technique.

  19. Effects of population density and chemical environment on the behavior of Escherichia coli in shallow temperature gradients

    International Nuclear Information System (INIS)

    Demir, Mahmut; Yoney, Anna; Salman, Hanna; Douarche, Carine; Libchaber, Albert

    2011-01-01

    In shallow temperature gradients, changes in temperature that bacteria experience occur over long time scales. Therefore, slow processes such as adaptation, metabolism, chemical secretion and even gene expression become important. Since these are cellular processes, the cell density is an important parameter that affects the bacteria's response. We find that there are four density regimes with distinct behaviors. At low cell density, bacteria do not cause changes in their chemical environment; however, their response to the temperature gradient is strongly influenced by it. In the intermediate cell-density regime, the consumption of nutrients becomes significant and induces a gradient of nutrients opposing the temperature gradient due to higher consumption rate at the high temperature. This causes the bacteria to drift toward low temperature. In the high cell-density regime, interactions among bacteria due to secretion of an attractant lead to a strong local accumulation of bacteria. This together with the gradient of nutrients, resulted from the differential consumption rate, creates a fast propagating pulse of bacterial density. These observations are a result of classical nonlinear population dynamics. At extremely high cell density, a change in the physiological state of the bacteria is observed. The bacteria, at the individual level, become cold seeking. This appears initially as a result of a change in the methylation level of the two most abundant sensing receptors, Tsr and Tar. It is further enforced at an even higher cell density by a change in the expression level of these receptors. (perspective)

  20. Rapid analysis of charge variants of monoclonal antibodies using non-linear salt gradient in cation-exchange high performance liquid chromatography.

    Science.gov (United States)

    Joshi, Varsha; Kumar, Vijesh; Rathore, Anurag S

    2015-08-07

    A method is proposed for rapid development of a short, analytical cation exchange high performance liquid chromatography method for analysis of charge heterogeneity in monoclonal antibody products. The parameters investigated and optimized include pH, shape of elution gradient and length of the column. It is found that the most important parameter for development of a shorter method is the choice of the shape of elution gradient. In this paper, we propose a step by step approach to develop a non-linear sigmoidal shape gradient for analysis of charge heterogeneity for two different monoclonal antibody products. The use of this gradient not only decreases the run time of the method to 4min against the conventional method that takes more than 40min but also the resolution is retained. Superiority of the phosphate gradient over sodium chloride gradient for elution of mAbs is also observed. The method has been successfully evaluated for specificity, sensitivity, linearity, limit of detection, and limit of quantification. Application of this method as a potential at-line process analytical technology tool has been suggested. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Effects of temperature, temperature gradients, stress, and irradiation on migration of brine inclusions in a salt repository

    International Nuclear Information System (INIS)

    Jenks, G.H.

    1979-07-01

    Available experimental and theoretical information on brine migration in bedded salt are reviewed and analyzed. The effects of temperature, thermal gradients, stress, irradiation, and pressure in a salt repository are among the factors considered. The theoretical and experimental (with KCl) results of Anthony and Cline were used to correlate and explain the available data for rates of brine migration at temperatures up to 250 0 C in naturally occurring crystals of bedded salt from Lyons and Hutchinson, Kansas. Considerations of the effects of stressing crystals of bedded salt on the migratin properties of brine inclusions within the crystals led to the conclusion that the most probable effects are a small fractional increase in the solubility of the salt within the liquid and a concomitant and equal fractional increase in the rate of the thermal gradient-induced migration of the brine. The greatest uncertainty relative to the prediction of rates of migration of brine into a waste emplacement cavity in bedded salt is associated with questions concerning the effects of the grain boundaries (within the aggregates of single crystals which comprise a bedded salt deposit) on brine migration through the deposit. The results of some of the estimates of rates and total amounts of brine inflow to HLW and SURF waste packages emplaced in bedded salt were included to illustrate the inflow volumes which might occur in a repository. The results of the brine inflow estimates for 10-year-old HLW emplaced at 150 kW/acre indicated inflow rates starting at 0.7 liter/year and totaling 12 liters at 30 years after emplacement. The results of the estimates for 10-year-old PWR SURF emplaced at 60 kW/acre indicated a constant inflow of 0.035 liter/year for the first 35 years after emplacement

  2. High gradient RF test results of S-band and C-band cavities for medical linear accelerators

    Science.gov (United States)

    Degiovanni, A.; Bonomi, R.; Garlasché, M.; Verdú-Andrés, S.; Wegner, R.; Amaldi, U.

    2018-05-01

    TERA Foundation has proposed and designed hadrontherapy facilities based on novel linacs, i.e. high gradient linacs which accelerate either protons or light ions. The overall length of the linac, and therefore its cost, is almost inversely proportional to the average accelerating gradient. With the scope of studying the limiting factors for high gradient operation and to optimize the linac design, TERA, in collaboration with the CLIC Structure Development Group, has conducted a series of high gradient experiments. The main goals were to study the high gradient behavior and to evaluate the maximum gradient reached in 3 and 5.7 GHz structures to direct the design of medical accelerators based on high gradient linacs. This paper summarizes the results of the high power tests of 3.0 and 5.7 GHz single-cell cavities.

  3. Invar hardening under keeping of low values of temperature coefficient of linear expansion

    International Nuclear Information System (INIS)

    Bashnin, Yu.A.; Shiryaeva, A.N.; Omel'chenko, A.V.

    1982-01-01

    Complex invar alloying with chromium, zirconium and nitrogen is conducted for increasing hardness and assuring low values of the temperature coefficient of linear expansion. It is shown that alloying with nitride-forming elements-chromium, zirconium and the following high-temperature saturation under high pressure with nitrogen provides the invar hardening at assuring a low temperature coefficient of linear expansion. Saturation with nitrogen under 100 MPa pressure at 1050 deg C during 3 hours permits to prepare an invar containing up to 0.2% N 2 uniformly distributed over the whole cross section of samples with 4 mm diameter. Nitrogen in invar alloys alloyed with chromium and zirconium affects the Curie point similarly to carbon and nickel shifting it towards higher temperatures, it slightly changes the value of the temperature coefficient of linear expansion and provides linear character of thermal expansion dependence on temperature in the +100 deg C - -180 deg C range

  4. Laser-induced cracks in ice due to temperature gradient and thermal stress

    Science.gov (United States)

    Yang, Song; Yang, Ying-Ying; Zhang, Jing-Yuan; Zhang, Zhi-Yan; Zhang, Ling; Lin, Xue-Chun

    2018-06-01

    This work presents the experimental and theoretical investigations on the mechanism of laser-induce cracks in ice. The laser-induced thermal gradient would generate significant thermal stress and lead to the cracking without thermal melting in the ice. The crack density induced by a pulsed laser in the ice critically depends on the laser scanning speed and the size of the laser spot on the surface, which determines the laser power density on the surface. A maximum of 16 cracks within an area of 17 cm × 10 cm can be generated when the laser scanning speed is at 10 mm/s and the focal point of the laser is right on the surface of the ice with a laser intensity of ∼4.6 × 107 W/cm2. By comparing the infrared images of the ice generated at various experimental conditions, it was found that a larger temperature gradient would result in more laser-induced cracks, while there is no visible melting of the ice by the laser beam. The data confirm that the laser-induced thermal stress is the main cause of the cracks created in the ice.

  5. Piezoelectric Non Linear Nanomechanical Temperature and Acceleration Insensitive Clocks (PENNTAC)

    Science.gov (United States)

    2016-07-01

    relationship between the resonator Q and flicker noise when TED is largely mitigated , we measured a total of 25 resonators (11 full-anchor and 14...during this effort demonstrated the first fully integrated oven control system to mitigate the temperature effect on the reference clock. It showed...Reduction in AlN CMRs by Prolonged RF Excitation ............................................................ 13 2.6 Impact of Damping on Flicker

  6. Temperature Regimes Impact Coral Assemblages along Environmental Gradients on Lagoonal Reefs in Belize.

    Directory of Open Access Journals (Sweden)

    Justin H Baumann

    Full Text Available Coral reefs are increasingly threatened by global and local anthropogenic stressors such as rising seawater temperature, nutrient enrichment, sedimentation, and overfishing. Although many studies have investigated the impacts of local and global stressors on coral reefs, we still do not fully understand how these stressors influence coral community structure, particularly across environmental gradients on a reef system. Here, we investigate coral community composition across three different temperature and productivity regimes along a nearshore-offshore gradient on lagoonal reefs of the Belize Mesoamerican Barrier Reef System (MBRS. A novel metric was developed using ultra-high-resolution satellite-derived estimates of sea surface temperatures (SST to classify reefs as exposed to low (lowTP, moderate (modTP, or high (highTP temperature parameters over 10 years (2003 to 2012. Coral species richness, abundance, diversity, density, and percent cover were lower at highTP sites relative to lowTP and modTP sites, but these coral community traits did not differ significantly between lowTP and modTP sites. Analysis of coral life history strategies revealed that highTP sites were dominated by hardy stress-tolerant and fast-growing weedy coral species, while lowTP and modTP sites consisted of competitive, generalist, weedy, and stress-tolerant coral species. Satellite-derived estimates of Chlorophyll-a (chl-a were obtained for 13-years (2003-2015 as a proxy for primary production. Chl-a concentrations were highest at highTP sites, medial at modTP sites, and lowest at lowTP sites. Notably, thermal parameters correlated better with coral community traits between site types than productivity, suggesting that temperature (specifically number of days above the thermal bleaching threshold played a greater role in defining coral community structure than productivity on the MBRS. Dominance of weedy and stress-tolerant genera at highTP sites suggests that corals

  7. On axial temperature gradients due to large pressure drops in dense fluid chromatography.

    Science.gov (United States)

    Colgate, Sam O; Berger, Terry A

    2015-03-13

    The effect of energy degradation (Degradation is the creation of net entropy resulting from irreversibility.) accompanying pressure drops across chromatographic columns is examined with regard to explaining axial temperature gradients in both high performance liquid chromatography (HPLC) and supercritical fluid chromatography (SFC). The observed effects of warming and cooling can be explained equally well in the language of thermodynamics or fluid dynamics. The necessary equivalence of these treatments is reviewed here to show the legitimacy of using whichever one supports the simpler determination of features of interest. The determination of temperature profiles in columns by direct application of the laws of thermodynamics is somewhat simpler than applying them indirectly by solving the Navier-Stokes (NS) equations. Both disciplines show that the preferred strategy for minimizing the reduction in peak quality caused by temperature gradients is to operate columns as nearly adiabatically as possible (i.e. as Joule-Thomson expansions). This useful fact, however, is not widely familiar or appreciated in the chromatography community due to some misunderstanding of the meaning of certain terms and expressions used in these disciplines. In fluid dynamics, the terms "resistive heating" or "frictional heating" have been widely used as synonyms for the dissipation function, Φ, in the NS energy equation. These terms have been widely used by chromatographers as well, but often misinterpreted as due to friction between the mobile phase and the column packing, when in fact Φ describes the increase in entropy of the system (dissipation, ∫TdSuniv>0) due to the irreversible decompression of the mobile phase. Two distinctly different contributions to the irreversibility are identified; (1) ΔSext, viscous dissipation of work done by the external surroundings driving the flow (the pump) contributing to its warming, and (2) ΔSint, entropy change accompanying decompression of

  8. Derivation of the threshold condition for the ion temperature gradient mode with an inverted density profile from a simple physics picture

    Science.gov (United States)

    Jhang, Hogun

    2018-05-01

    We show that the threshold condition for the toroidal ion temperature gradient (ITG) mode with an inverted density profile can be derived from a simple physics argument. The key in this picture is that the density inversion reduces the ion compression due to the ITG mode and the electron drift motion mitigates the poloidal potential build-up. This condition reproduces the same result that has been reported from a linear gyrokinetic calculation [T. S. Hahm and W. M. Tang, Phys. Fluids B 1, 1185 (1989)]. The destabilizing role of trapped electrons in toroidal geometry is easily captured in this picture.

  9. Sintering Characteristics of Multilayered Thermal Barrier Coatings Under Thermal Gradient and Isothermal High Temperature Annealing Conditions

    Science.gov (United States)

    Rai, Amarendra K.; Schmitt, Michael P.; Bhattacharya, Rabi; Zhu, Dongming; Wolfe, Douglas E.

    2014-01-01

    Pyrochlore oxides have most of the relevant attributes for use as next generation thermal barrier coatings such as phase stability, low sintering kinetics and low thermal conductivity. One of the issues with the pyrochlore oxides is their lower toughness and therefore higher erosion rate compared to the current state-of-the-art TBC material, yttria (6 to 8 wt%) stabilized zirconia (YSZ). In this work, sintering characteristics were investigated for novel multilayered coating consisted of alternating layers of pyrochlore oxide viz Gd2Zr2O7 and t' low k (rare earth oxide doped YSZ). Thermal gradient and isothermal high temperature (1316 C) annealing conditions were used to investigate sintering and cracking in these coatings. The results are then compared with that of relevant monolayered coatings and a baseline YSZ coating.

  10. Transport through dissipative trapped electron mode and toroidal ion temperature gradient mode in TEXTOR

    International Nuclear Information System (INIS)

    Rogister, A.; Hasselberg, G.; Waelbroeck, F.; Weiland, J.

    1987-12-01

    A self-consistent transport code is used to evaluate how plasma confinement in tokamaks is influenced by the microturbulent fields which are excited by the dissipative trapped electron (DTE) instability. As shown previously, the saturation theory on which the code is based has been developed from first principles. The toroidal coupling resulting from the ion magnetic drifts is neglected; arguments are presented to justify this approximation. The numerical results reproduce well the neo-Alcator scaling law observed experimentally - e.g. in TEXTOR - in non detached ohmic discharges, the confinement degradation which results when auxiliary heating is applied, as well as a large number of other experimental observations. We also assess the possible impact of the toroidal ion temperature gradient mode on energy confinement by estimating the ion thermal flux with the help of the mixing length approximation. (orig./GG)

  11. Global characteristics of zonal flows generated by ion temperature gradient driven turbulence in tokamak plasmas

    International Nuclear Information System (INIS)

    Miyato, Naoaki; Kishimoto, Yasuaki; Li, Jiquan

    2004-08-01

    Global structure of zonal flows driven by ion temperature gradient driven turbulence in tokamak plasmas is investigated using a global electromagnetic Landau fluid code. Characteristics of the coupled system of the zonal flows and the turbulence change with the safety factor q. In a low q region stationary zonal flows are excited and suppress the turbulence effectively. Coupling between zonal flows and poloidally asymmetric pressure perturbations via a geodesic curvature makes the zonal flows oscillatory in a high q region. Also we identify energy transfer from the zonal flows to the turbulence via the poloidally asymmetric pressure perturbations in the high q region. Therefore in the high q region the zonal flows cannot quench the turbulent transport completely. (author)

  12. TEMPERATURE GRADIENTS IN THE SOLAR ATMOSPHERE AND THE ORIGIN OF CUTOFF FREQUENCY FOR TORSIONAL TUBE WAVES

    International Nuclear Information System (INIS)

    Routh, S.; Musielak, Z. E.; Hammer, R.

    2010-01-01

    Fundamental modes supported by a thin magnetic flux tube embedded in the solar atmosphere are typically classified as longitudinal, transverse, and torsional waves. If the tube is isothermal, then the propagation of longitudinal and transverse tube waves is restricted to frequencies that are higher than the corresponding global cutoff frequency for each wave. However, no such global cutoff frequency exists for torsional tube waves, which means that a thin and isothermal flux tube supports torsional tube waves of any frequency. In this paper, we consider a thin and non-isothermal magnetic flux tube and demonstrate that temperature gradients inside this tube are responsible for the origin of a cutoff frequency for torsional tube waves. The cutoff frequency is used to determine conditions for the wave propagation in the solar atmosphere, and the obtained results are compared to the recent observational data that support the existence of torsional tube waves in the Sun.

  13. Constitutive relationships for ocean sediments subjected to stress and temperature gradients

    International Nuclear Information System (INIS)

    Davies, T.G.; Banerjee, P.K.

    1980-08-01

    The disposal of low-level nuclear wastes by burial in deep sea sediments is an option currently being considered. This report lays the groundwork for an investigation of the stability of canisters containing nuclear wastes against movement due to fluidisation of the surrounding sediments, where such fluidisation may result from thermally induced stresses. The requisite constitutive relationships for ocean sediments under stress and temperature gradients are derived from the theory of critical state soil mechanics. A parametric survey has been made of the behaviour of an element of soil in order to assess various models and the importance of the governing parameters, The formulation of a finite element algorithm is given for the solution of the sediment stability problem. (author)

  14. Calculation of forces acting on an impurity in a metal subjected to a temperature gradient

    International Nuclear Information System (INIS)

    Gerl, M.

    1966-01-01

    In a metal subject to a temperature gradient, an impurity is submitted to both an electrostatic force due to the thermoelectric field and a force due to the scattering of electrons and phonons by this point defect. The scattering of the electrons is treated using a semi-classical approach and a quantum mechanical method. The numerical computation for several impurities in Cu, Ag, and Au requires the knowledge of the resistivity cross-section. and of the thermoelectric power of the impurity in the metal. A tentative estimation of the force due to the phonon-scattering is given for the self-diffusion in Cu. However, the approximations of this calculation do not allow a good comparison with the force due to the electrons. (author) [fr

  15. Regulation of electron temperature gradient turbulence by zonal flows driven by trapped electron modes

    Science.gov (United States)

    Asahi, Y.; Ishizawa, A.; Watanabe, T.-H.; Tsutsui, H.; Tsuji-Iio, S.

    2014-05-01

    Turbulent transport caused by electron temperature gradient (ETG) modes was investigated by means of gyrokinetic simulations. It was found that the ETG turbulence can be regulated by meso-scale zonal flows driven by trapped electron modes (TEMs), which are excited with much smaller growth rates than those of ETG modes. The zonal flows of which radial wavelengths are in between the ion and the electron banana widths are not shielded by trapped ions nor electrons, and hence they are effectively driven by the TEMs. It was also shown that an E × B shearing rate of the TEM-driven zonal flows is larger than or comparable to the growth rates of long-wavelength ETG modes and TEMs, which make a main contribution to the turbulent transport before excitation of the zonal flows.

  16. Migration of ThO2 kernels under the influence of a temperature gradient

    International Nuclear Information System (INIS)

    Smith, C.L.

    1976-11-01

    BISO coated ThO 2 fertile fuel kernels will migrate up the thermal gradients imposed across coated particles during HTGR operation. Thorium dioxide kernel migration has been studied as a function of temperature (1300 to 1700 0 C) and ThO 2 kernel burnup (0.9 to 5.8 percent FIMA) in out-of-pile, postirradiation thermal gradient heating experiments. The studies were conducted to obtain descriptions of migration rates that will be used in core design studies to evaluate the impact of ThO 2 migration on fertile fuel performance in an operating HTGR and to define characteristics needed by any comprehensive model describing ThO 2 kernel migration. The kinetics data generated in these postirradiation studies are consistent with in-pile data collected by investigators at Oak Ridge National Laboratory, which supports use of the more precise postirradiation heating results in HTGR core design studies. Observations of intergranular carbon deposits on the cool side of migrating kernels support the assumption that the kinetics of kernel migration are controlled by solid state diffusion within irradiated ThO 2 kernels. The migration is characterized by a period of no migration (incubation period) followed by migration at the equilibrium rate for ThO 2 . The incubation period decreases with increasing temperature and kernel burnup. The improved understanding of the kinetics of ThO 2 kernel migration provided by this work will contribute to an optimization of HTGR core design and an increased confidence in fuel performance predictions

  17. Increased temperatures negatively affect Juniperus communis seeds: evidence from transplant experiments along a latitudinal gradient.

    Science.gov (United States)

    Gruwez, R; De Frenne, P; Vander Mijnsbrugge, K; Vangansbeke, P; Verheyen, K

    2016-05-01

    With a distribution range that covers most of the Northern hemisphere, common juniper (Juniperus communis) has one of the largest ranges of all vascular plant species. In several regions in Europe, however, populations are decreasing in size and number due to failing recruitment. One of the main causes for this failure is low seed viability. Observational evidence suggests that this is partly induced by climate warming, but our mechanistic understanding of this effect remains incomplete. Here, we experimentally assess the influence of temperature on two key developmental phases during sexual reproduction, i.e. gametogenesis and fertilisation (seed phase two, SP2) and embryo development (seed phase three, SP3). Along a latitudinal gradient from southern France to central Sweden, we installed a transplant experiment with shrubs originating from Belgium, a region with unusually low juniper seed viability. Seeds of both seed phases were sampled during three consecutive years, and seed viability assessed. Warming temperatures negatively affected the seed viability of both SP2 and SP3 seeds along the latitudinal gradient. Interestingly, the effect on embryo development (SP3) only occurred in the third year, i.e. when the gametogenesis and fertilisation also took place in warmer conditions. We found strong indications that this negative influence mostly acts via disrupting growth of the pollen tube, the development of the female gametophyte and fertilisation (SP2). This, in turn, can lead to failing embryo development, for example, due to nutritional problems. Our results confirm that climate warming can negatively affect seed viability of juniper. © 2015 German Botanical Society and The Royal Botanical Society of the Netherlands.

  18. A self-organized criticality model for ion temperature gradient mode driven turbulence in confined plasma

    Science.gov (United States)

    Isliker, H.; Pisokas, Th.; Strintzi, D.; Vlahos, L.

    2010-08-01

    A new self-organized criticality (SOC) model is introduced in the form of a cellular automaton (CA) for ion temperature gradient (ITG) mode driven turbulence in fusion plasmas. Main characteristics of the model are that it is constructed in terms of the actual physical variable, the ion temperature, and that the temporal evolution of the CA, which necessarily is in the form of rules, mimics actual physical processes as they are considered to be active in the system, i.e., a heating process and a local diffusive process that sets on if a threshold in the normalized ITG R /LT is exceeded. The model reaches the SOC state and yields ion temperature profiles of exponential shape, which exhibit very high stiffness, in that they basically are independent of the loading pattern applied. This implies that there is anomalous heat transport present in the system, despite the fact that diffusion at the local level is imposed to be of a normal kind. The distributions of the heat fluxes in the system and of the heat out-fluxes are of power-law shape. The basic properties of the model are in good qualitative agreement with experimental results.

  19. A self-organized criticality model for ion temperature gradient mode driven turbulence in confined plasma

    International Nuclear Information System (INIS)

    Isliker, H.; Pisokas, Th.; Vlahos, L.; Strintzi, D.

    2010-01-01

    A new self-organized criticality (SOC) model is introduced in the form of a cellular automaton (CA) for ion temperature gradient (ITG) mode driven turbulence in fusion plasmas. Main characteristics of the model are that it is constructed in terms of the actual physical variable, the ion temperature, and that the temporal evolution of the CA, which necessarily is in the form of rules, mimics actual physical processes as they are considered to be active in the system, i.e., a heating process and a local diffusive process that sets on if a threshold in the normalized ITG R/L T is exceeded. The model reaches the SOC state and yields ion temperature profiles of exponential shape, which exhibit very high stiffness, in that they basically are independent of the loading pattern applied. This implies that there is anomalous heat transport present in the system, despite the fact that diffusion at the local level is imposed to be of a normal kind. The distributions of the heat fluxes in the system and of the heat out-fluxes are of power-law shape. The basic properties of the model are in good qualitative agreement with experimental results.

  20. Performance Testing of a High Temperature Linear Alternator for Stirling Convertors

    Science.gov (United States)

    Metscher, Jonathan F.; Geng, Steven M.

    2016-01-01

    The NASA Glenn Research Center has conducted performance testing of a high temperature linear alternator (HTLA) in support of Stirling power convertor development for potential future Radioisotope Power Systems (RPS). The high temperature linear alternator is a modified version of that used in Sunpower's Advanced Stirling Convertor (ASC), and is capable of operation at temperatures up to 200 deg. Increasing the temperature capability of the linear alternator could expand the mission set of future Stirling RPS designs. High temperature Neodymium-Iron-Boron (Nd-Fe-B) magnets were selected for the HTLA application, and were fully characterized and tested prior to use. Higher temperature epoxy for alternator assembly was also selected and tested for thermal stability and strength. A characterization test was performed on the HTLA to measure its performance at various amplitudes, loads, and temperatures. HTLA endurance testing at 200 deg is currently underway.

  1. Redox systematics of a magma ocean with variable pressure-temperature gradients and composition.

    Science.gov (United States)

    Righter, K; Ghiorso, M S

    2012-07-24

    Oxygen fugacity in metal-bearing systems controls some fundamental aspects of the geochemistry of the early Earth, such as the FeO and siderophile trace element content of the mantle, volatile species that influence atmospheric composition, and conditions for organic compounds synthesis. Redox and metal-silicate equilibria in the early Earth are sensitive to oxygen fugacity (fO(2)), yet are poorly constrained in modeling and experimentation. High pressure and temperature experimentation and modeling in metal-silicate systems usually employs an approximation approach for estimating fO(2) that is based on the ratio of Fe and FeO [called "ΔIW (ratio)" hereafter]. We present a new approach that utilizes free energy and activity modeling of the equilibrium: Fe + SiO(2) + O(2) = Fe(2)SiO(4) to calculate absolute fO(2) and relative to the iron-wüstite (IW) buffer at pressure and temperature [ΔIW (P,T)]. This equilibrium is considered across a wide range of pressures and temperatures, including up to the liquidus temperature of peridotite (4,000 K at 50 GPa). Application of ΔIW (ratio) to metal-silicate experiments can be three or four orders of magnitude different from ΔIW (P,T) values calculated using free energy and activity modeling. We will also use this approach to consider the variation in oxygen fugacity in a magma ocean scenario for various thermal structures for the early Earth: hot liquidus gradient, 100 °C below the liquidus, hot and cool adiabatic gradients, and a cool subsolidus adiabat. The results are used to assess the effect of increasing P and T, changing silicate composition during accretion, and related to current models for accretion and core formation in the Earth. The fO(2) in a deep magma ocean scenario may become lower relative to the IW buffer at hotter and deeper conditions, which could include metal entrainment scenarios. Therefore, fO(2) may evolve from high to low fO(2) during Earth (and other differentiated bodies) accretion. Any

  2. Kernel reconstruction methods for Doppler broadening — Temperature interpolation by linear combination of reference cross sections at optimally chosen temperatures

    International Nuclear Information System (INIS)

    Ducru, Pablo; Josey, Colin; Dibert, Karia; Sobes, Vladimir; Forget, Benoit; Smith, Kord

    2017-01-01

    This paper establishes a new family of methods to perform temperature interpolation of nuclear interactions cross sections, reaction rates, or cross sections times the energy. One of these quantities at temperature T is approximated as a linear combination of quantities at reference temperatures (T_j). The problem is formalized in a cross section independent fashion by considering the kernels of the different operators that convert cross section related quantities from a temperature T_0 to a higher temperature T — namely the Doppler broadening operation. Doppler broadening interpolation of nuclear cross sections is thus here performed by reconstructing the kernel of the operation at a given temperature T by means of linear combination of kernels at reference temperatures (T_j). The choice of the L_2 metric yields optimal linear interpolation coefficients in the form of the solutions of a linear algebraic system inversion. The optimization of the choice of reference temperatures (T_j) is then undertaken so as to best reconstruct, in the L∞ sense, the kernels over a given temperature range [T_m_i_n,T_m_a_x]. The performance of these kernel reconstruction methods is then assessed in light of previous temperature interpolation methods by testing them upon isotope "2"3"8U. Temperature-optimized free Doppler kernel reconstruction significantly outperforms all previous interpolation-based methods, achieving 0.1% relative error on temperature interpolation of "2"3"8U total cross section over the temperature range [300 K,3000 K] with only 9 reference temperatures.

  3. Insect temperature-body size trends common to laboratory, latitudinal and seasonal gradients are not found across altitudes

    DEFF Research Database (Denmark)

    Horne, Curtis R.; Hirst, Andrew G.; Atkinson, David

    2018-01-01

    Body size affects rates of most biological and ecological processes, from individual performance to ecosystem function, and is fundamentally linked to organism fitness. Within species, size at maturity can vary systematically with environmental temperature in the laboratory and across seasons...... altitude. Although the general direction of body size clines along altitudinal gradients has been examined previously, to our knowledge altitude-body size (A-S) clines have never been synthesised quantitatively, nor compared with temperature-size (T-S) responses measured under controlled laboratory......, as well as over latitudinal gradients. Recent meta-analyses have revealed a close match in the magnitude and direction of these size gradients in various arthropod orders, suggesting that these size responses share common drivers. As with increasing latitude, temperature also decreases with increasing...

  4. Potential uses of high gradient magnetic filtration for high-temperature water purification in boiling water reactors

    International Nuclear Information System (INIS)

    Elliott, H.H.; Holloway, J.H.; Abbott, D.G.

    1979-01-01

    Studies of various high-temperature filter devices indicate a potentially positive impact for high gradient magnetic filtration on boiling water reactor radiation level reduction. Test results on in-plant water composition and impurity crystallography are presented for several typical boiling water reactors (BWRs) on plant streams where high-temperature filtration may be particularly beneficial. An experimental model on the removal of red iron oxide (hematite) from simulated reactor water with a high gradient magnetic filter is presented, as well as the scale-up parameters used to predict the filtration efficiency on various high temperature, in-plant streams. Numerical examples are given to illustrate the crud removal potential of high gradient magnetic filters installed at alternative stream locations under typical, steady-state, plant operating conditions

  5. Temperature sensitivity and enzymatic mechanisms of soil organic matter decomposition along an altitudinal gradient on Mount Kilimanjaro

    Science.gov (United States)

    Blagodatskaya, Еvgenia; Blagodatsky, Sergey; Khomyakov, Nikita; Myachina, Olga; Kuzyakov, Yakov

    2016-02-01

    Short-term acceleration of soil organic matter decomposition by increasing temperature conflicts with the thermal adaptation observed in long-term studies. Here we used the altitudinal gradient on Mt. Kilimanjaro to demonstrate the mechanisms of thermal adaptation of extra- and intracellular enzymes that hydrolyze cellulose, chitin and phytate and oxidize monomers (14C-glucose) in warm- and cold-climate soils. We revealed that no response of decomposition rate to temperature occurs because of a cancelling effect consisting in an increase in half-saturation constants (Km), which counteracts the increase in maximal reaction rates (Vmax with temperature). We used the parameters of enzyme kinetics to predict thresholds of substrate concentration (Scrit) below which decomposition rates will be insensitive to global warming. Increasing values of Scrit, and hence stronger canceling effects with increasing altitude on Mt. Kilimanjaro, explained the thermal adaptation of polymer decomposition. The reduction of the temperature sensitivity of Vmax along the altitudinal gradient contributed to thermal adaptation of both polymer and monomer degradation. Extrapolating the altitudinal gradient to the large-scale latitudinal gradient, these results show that the soils of cold climates with stronger and more frequent temperature variation are less sensitive to global warming than soils adapted to high temperatures.

  6. Effect of temperature gradient and crystallization rate on morphological peculiarities of cellular-dendrite structure in iron-nickel alloys

    International Nuclear Information System (INIS)

    Kralina, A.A.; Vorontsov, V.B.

    1977-01-01

    Cellular and dendritic structure of Fe-Ni single crystals (31 and 45 wt%Ni) grown according to Bridgeman have been studied by metallography. Growth rates at which the crystallization frontier becomes unstable and splits into cells have been determined for three temperature gradients. The transition from cells to dendrites occurs gradually through the changes in the cells regular structure and formation of secondary and tertiary branches. The dependence of cell diameter and distance between dendrites on crystallization rate and temperature gradient are discussed in terms of the admixture substructures development according to the schedule: cells - cellular dendrites - dendrites

  7. Reproductive output of a non-zooxanthellate temperate coral is unaffected by temperature along an extended latitudinal gradient.

    Directory of Open Access Journals (Sweden)

    Valentina Airi

    Full Text Available Global environmental change, in marine ecosystems, is associated with concurrent shifts in water temperature, circulation, stratification, and nutrient input, with potentially wide-ranging biological effects. Variations in seawater temperature might alter physiological functioning, reproductive efficiency, and demographic traits of marine organisms, leading to shifts in population size and abundance. Differences in temperature tolerances between organisms can identify individual and ecological characteristics, which make corals able to persist and adapt in a climate change context. Here we investigated the possible effect of temperature on the reproductive output of the solitary non-zooxanthellate temperate coral Leptopsammia pruvoti, along an 8° latitudinal gradient. Samples have been collected in six populations along the gradient and each polyp was examined using histological and cyto-histometric analyses. We coupled our results with previous studies on the growth, demography, and calcification of L. pruvoti along the same temperature gradient, and compared them with those of another sympatric zooxanthellate coral Balanophyllia europaea to understand which trophic strategy makes the coral more tolerant to increasing temperature. The non-zooxanthellate species seemed to be quite tolerant to temperature increases, probably due to the lack of the symbiosis with zooxanthellae. To our knowledge, this is the first field investigation of the relationship between reproductive output and temperature increase of a temperate asymbiotic coral, providing novel insights into the poorly studied non-zooxanthellate scleractinians.

  8. Reproductive output of a non-zooxanthellate temperate coral is unaffected by temperature along an extended latitudinal gradient.

    Science.gov (United States)

    Airi, Valentina; Prantoni, Selena; Calegari, Marco; Lisini Baldi, Veronica; Gizzi, Francesca; Marchini, Chiara; Levy, Oren; Falini, Giuseppe; Dubinsky, Zvy; Goffredo, Stefano

    2017-01-01

    Global environmental change, in marine ecosystems, is associated with concurrent shifts in water temperature, circulation, stratification, and nutrient input, with potentially wide-ranging biological effects. Variations in seawater temperature might alter physiological functioning, reproductive efficiency, and demographic traits of marine organisms, leading to shifts in population size and abundance. Differences in temperature tolerances between organisms can identify individual and ecological characteristics, which make corals able to persist and adapt in a climate change context. Here we investigated the possible effect of temperature on the reproductive output of the solitary non-zooxanthellate temperate coral Leptopsammia pruvoti, along an 8° latitudinal gradient. Samples have been collected in six populations along the gradient and each polyp was examined using histological and cyto-histometric analyses. We coupled our results with previous studies on the growth, demography, and calcification of L. pruvoti along the same temperature gradient, and compared them with those of another sympatric zooxanthellate coral Balanophyllia europaea to understand which trophic strategy makes the coral more tolerant to increasing temperature. The non-zooxanthellate species seemed to be quite tolerant to temperature increases, probably due to the lack of the symbiosis with zooxanthellae. To our knowledge, this is the first field investigation of the relationship between reproductive output and temperature increase of a temperate asymbiotic coral, providing novel insights into the poorly studied non-zooxanthellate scleractinians.

  9. Empirically Derived and Simulated Sensitivity of Vegetation to Climate Across Global Gradients of Temperature and Precipitation

    Science.gov (United States)

    Quetin, G. R.; Swann, A. L. S.

    2017-12-01

    Successfully predicting the state of vegetation in a novel environment is dependent on our process level understanding of the ecosystem and its interactions with the environment. We derive a global empirical map of the sensitivity of vegetation to climate using the response of satellite-observed greenness and leaf area to interannual variations in temperature and precipitation. Our analysis provides observations of ecosystem functioning; the vegetation interactions with the physical environment, across a wide range of climates and provide a functional constraint for hypotheses engendered in process-based models. We infer mechanisms constraining ecosystem functioning by contrasting how the observed and simulated sensitivity of vegetation to climate varies across climate space. Our analysis yields empirical evidence for multiple physical and biological mediators of the sensitivity of vegetation to climate as a systematic change across climate space. Our comparison of remote sensing-based vegetation sensitivity with modeled estimates provides evidence for which physiological mechanisms - photosynthetic efficiency, respiration, water supply, atmospheric water demand, and sunlight availability - dominate the ecosystem functioning in places with different climates. Earth system models are generally successful in reproducing the broad sign and shape of ecosystem functioning across climate space. However, this general agreement breaks down in hot wet climates where models simulate less leaf area during a warmer year, while observations show a mixed response but overall more leaf area during warmer years. In addition, simulated ecosystem interaction with temperature is generally larger and changes more rapidly across a gradient of temperature than is observed. We hypothesize that the amplified interaction and change are both due to a lack of adaptation and acclimation in simulations. This discrepancy with observations suggests that simulated responses of vegetation to

  10. Evaluation of a Linear Mixing Model to Retrieve Soil and Vegetation Temperatures of Land Targets

    International Nuclear Information System (INIS)

    Yang, Jinxin; Jia, Li; Cui, Yaokui; Zhou, Jie; Menenti, Massimo

    2014-01-01

    A simple linear mixing model of heterogeneous soil-vegetation system and retrieval of component temperatures from directional remote sensing measurements by inverting this model is evaluated in this paper using observations by a thermal camera. The thermal camera was used to obtain multi-angular TIR (Thermal Infra-Red) images over vegetable and orchard canopies. A whole thermal camera image was treated as a pixel of a satellite image to evaluate the model with the two-component system, i.e. soil and vegetation. The evaluation included two parts: evaluation of the linear mixing model and evaluation of the inversion of the model to retrieve component temperatures. For evaluation of the linear mixing model, the RMSE is 0.2 K between the observed and modelled brightness temperatures, which indicates that the linear mixing model works well under most conditions. For evaluation of the model inversion, the RMSE between the model retrieved and the observed vegetation temperatures is 1.6K, correspondingly, the RMSE between the observed and retrieved soil temperatures is 2.0K. According to the evaluation of the sensitivity of retrieved component temperatures on fractional cover, the linear mixing model gives more accurate retrieval accuracies for both soil and vegetation temperatures under intermediate fractional cover conditions

  11. High-temperature stable absorber coatings for linear concentrating solar thermal power plants; Hochtemperaturstabile Absorberschichten fuer linear konzentrierende solarthermische Kraftwerke

    Energy Technology Data Exchange (ETDEWEB)

    Hildebrandt, Christina

    2009-03-23

    This work describes the development of new absorber coatings for different applications - para-bolic trough and linear Fresnel collectors - and operating conditions - absorber in vacuum or in air. The demand for higher efficiencies of solar thermal power plants using parabolic trough technology results in higher temperatures in the collectors and on the absorber tubes. As heat losses increase strongly with increasing temperatures, the need for a lower emissivity of the absorber coating at constant absorptivity arises. The linear Fresnel application envisions ab-sorber tubes stable in air at high temperatures of about 450 C, which are to date commercially not available. This work comprises the theoretical background, the modeling and the fabrication of absorber tubes including the technology transfer to a production-size inline sputter coater. In annealing tests and accompanying optical measurements, degradation processes have been observed and specified more precisely by material characterization techniques. The simulations provided the capability of different materials used as potential IR-reflector. The highest selectivity can be achieved by applying silver which consequently has been chosen for the application in absorber coatings of the parabolic trough technology. Thin silver films how-ever need to be stabilized when used at high temperatures. Appropriate barrier layers as well as process and layer parameters were identified. A high selectivity was achieved and stability of the absorber coating for 1200 h at 500 C in vacuum has been demonstrated. For the application in air, silver was also analyzed as a potential IR-reflector. Even though the stability could be increased considerably, it nevertheless proved to be insufficient. The main factors influencing stability in a positive way are the use of higher quality polishing, additional barrier layers and adequate process parameters. This knowledge was applied for developing coatings which are stable in air at

  12. An investigation of the flow dependence of temperature gradients near large vessels during steady state and transient tissue heating

    International Nuclear Information System (INIS)

    Kolios, M.C.; Worthington, A.E.; Hunt, J.W.; Holdsworth, D.W.; Sherar, M.D.

    1999-01-01

    Temperature distributions measured during thermal therapy are a major prognostic factor of the efficacy and success of the procedure. Thermal models are used to predict the temperature elevation of tissues during heating. Theoretical work has shown that blood flow through large blood vessels plays an important role in determining temperature profiles of heated tissues. In this paper, an experimental investigation of the effects of large vessels on the temperature distribution of heated tissue is performed. The blood flow dependence of steady state and transient temperature profiles created by a cylindrical conductive heat source and an ultrasound transducer were examined using a fixed porcine kidney as a flow model. In the transient experiments, a 20 s pulse of hot water, 30 deg. C above ambient, heated the tissues. Temperatures were measured at selected locations in steps of 0.1 mm. It was observed that vessels could either heat or cool tissues depending on the orientation of the vascular geometry with respect to the heat source and that these effects are a function of flow rate through the vessels. Temperature gradients of 6 deg. C mm -1 close to large vessels were routinely measured. Furthermore, it was observed that the temperature gradients caused by large vessels depended on whether the heating source was highly localized (i.e. a hot needle) or more distributed (i.e. external ultrasound). The gradients measured near large vessels during localized heating were between two and three times greater than the gradients measured during ultrasound heating at the same location, for comparable flows. Moreover, these gradients were more sensitive to flow variations for the localized needle heating. X-ray computed tomography data of the kidney vasculature were in good spatial agreement with the locations of all of the temperature variations measured. The three-dimensional vessel path observed could account for the complex features of the temperature profiles. The flow

  13. Effect of electric field and temperature gradient on orientational dynamics of nematics encapsulated in a hallow cylindrical cavity

    Science.gov (United States)

    Zakharov, A. V.; Maslennikov, P. V.

    2018-05-01

    We have considered a homogeneously oriented liquid crystal (HOLC) microvolume, confined between two infinitely long horizontal coaxial cylinders subjected to both a temperature gradient ∇T and a radially applied electric field E . We have investigated dynamic field pumping, i.e. studied the interactions between director, velocity, electric fields, as well as a radially applied temperature gradient, where the inner cylinder is kept at a lower temperature than the outer one. In order to elucidate the role of ∇T and E in producing hydrodynamic flow, we have carried out a numerical study of a system of hydrodynamic equations including director reorientation, fluid flow, and temperature redistribution across the HOLC cavity. Calculations show that, under the effect of the named perturbations and at high curvature of the inner cylinder, the HOLC microvolume settles down to a nonstandard pumping regime with maximum flow in the vicinity of the cooler inner cylinder.

  14. Perturbative calculations of flow patterns in free convection between coaxial cylinders. Non-linear temperature dependences of the fluid properties

    International Nuclear Information System (INIS)

    Navarro, J. A.; Madariaga, J. A.; Santamaria, C. M.; Saviron, J. M.

    1980-01-01

    10 refs. Flow pattern calculations in natural convection between two vertical coaxial cylinders are reported. It is assumed trough the paper. that fluid properties, viscosity, thermal conductivity and density, depend no-linearly on temperature and that the aspects (height/radius) ratio of the cylinders is high. Velocity profiles are calculated trough a perturbative scheme and analytic results for the three first perturbation orders are presented. We outline also an iterative method to estimate the perturbations on the flow patterns which arise when a radial composition gradient is established by external forces in a two-component fluid. This procedure, based on semiempirical basis, is applied to gaseous convection. The influence of the molecules gas properties on tho flow is also discussed. (Author) 10 refs

  15. Room temperature giant and linear magnetoresistance in topological insulator Bi2Te3 nanosheets.

    Science.gov (United States)

    Wang, Xiaolin; Du, Yi; Dou, Shixue; Zhang, Chao

    2012-06-29

    Topological insulators, a new class of condensed matter having bulk insulating states and gapless metallic surface states, have demonstrated fascinating quantum effects. However, the potential practical applications of the topological insulators are still under exploration worldwide. We demonstrate that nanosheets of a Bi(2)Te(3) topological insulator several quintuple layers thick display giant and linear magnetoresistance. The giant and linear magnetoresistance achieved is as high as over 600% at room temperature, with a trend towards further increase at higher temperatures, as well as being weakly temperature-dependent and linear with the field, without any sign of saturation at measured fields up to 13 T. Furthermore, we observed a magnetic field induced gap below 10 K. The observation of giant and linear magnetoresistance paves the way for 3D topological insulators to be useful for practical applications in magnetoelectronic sensors such as disk reading heads, mechatronics, and other multifunctional electromagnetic applications.

  16. Continuous gradient temperature Raman spectroscopy of n-6 DPA and DHA from -100 C to 20°C

    Science.gov (United States)

    One of the great unanswered questions with respect to biological science in general is the absolute necessity of DHA in fast signal processing tissues. N-6 DPA, with just one less diene, group, is fairly abundant in terrestrial food chains yet cannot substitute for DHA. Gradient Temperature Raman sp...

  17. Sea surface temperature control of taxon specific phytoplankton production along an oligotrophic gradient in the Mediterranean Sea

    NARCIS (Netherlands)

    van de Poll, W.H.V.; Boute, P.G.; Rozema, P.D.; Buma, A.; Kulk, G.; Rijkenberg, M.J.

    2015-01-01

    The current study aimed to assess changes in phytoplankton composition and productivity along an oligotrophic gradient in relation to changes in sea surface temperature (SST). Phytoplankton pigments, nutrients, and physical water column properties were studied along a longitudinal transect in the

  18. Molecular dynamics simulation of Cu/Au thin films under temperature gradient

    International Nuclear Information System (INIS)

    Li, Qibin; Peng, Xianghe; Peng, Tiefeng; Tang, Qizhong; Zhang, Xiaomin; Huang, Cheng

    2015-01-01

    Graphical abstract: Heat transportation in the thin films. - Highlights: • The coherent lattice interface is found at thin films after annealing. • The vacancies are observed clearly in the deposit thin films. • The defect and component will influence the energy transportation in the coatings. • The vacancies and lattice mismatch can enlarge the mobility of atoms. • The phonon transportation in thin films has no apparent rule. - Abstract: Three modulation period thin films, 1.8 nm Cu/3.6 nm Au, 2.7 nm Cu/2.7 nm Au and 3.6 nm Cu/1.8 nm Au, are obtained from deposition method and ideal modeling based on lattice constant, to examine their structures and thermophysical characteristics under temperature gradient. The coherent lattice interface is found both at deposit and ideal thin films after annealing. Also, the vacancies are observed clearly in the deposit thin films. The defect and component of thin films will influence the energy transportation in the coatings. The vacancies and lattice mismatch can enlarge the mobility of atoms and result in the failure of coating under the thermal stress. The power spectrum of atoms’ movement has no apparent rule for phonon transportation in thin films. The results are helpful to reveal the micro-mechanism and provide reasonable basis for the failure of metallic coatings.

  19. Standard Test Method for Measuring Heat Flux Using Flush-Mounted Insert Temperature-Gradient Gages

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2009-01-01

    1.1 This test method describes the measurement of the net heat flux normal to a surface using gages inserted flush with the surface. The geometry is the same as heat-flux gages covered by Test Method E 511, but the measurement principle is different. The gages covered by this standard all use a measurement of the temperature gradient normal to the surface to determine the heat that is exchanged to or from the surface. Although in a majority of cases the net heat flux is to the surface, the gages operate by the same principles for heat transfer in either direction. 1.2 This general test method is quite broad in its field of application, size and construction. Two different gage types that are commercially available are described in detail in later sections as examples. A summary of common heat-flux gages is given by Diller (1). Applications include both radiation and convection heat transfer. The gages used for aerospace applications are generally small (0.155 to 1.27 cm diameter), have a fast time response ...

  20. Molecular dynamics simulation of Cu/Au thin films under temperature gradient

    Energy Technology Data Exchange (ETDEWEB)

    Li, Qibin, E-mail: qibinli@cqu.edu.cn [College of Aerospace Engineering, Chongqing University, Chongqing 400030 (China); State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing 400030 (China); Chongqing Key Laboratory of Heterogeneous Material Mechanics, Chongqing University, Chongqing 400030 (China); Peng, Xianghe [College of Aerospace Engineering, Chongqing University, Chongqing 400030 (China); State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing 400030 (China); Peng, Tiefeng, E-mail: pengtiefeng@cqu.edu.cn [State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing 400030 (China); Tang, Qizhong [College of Aerospace Engineering, Chongqing University, Chongqing 400030 (China); Zhang, Xiaomin [College of Aerospace Engineering, Chongqing University, Chongqing 400030 (China); Chongqing Key Laboratory of Heterogeneous Material Mechanics, Chongqing University, Chongqing 400030 (China); Huang, Cheng [College of Aerospace Engineering, Chongqing University, Chongqing 400030 (China)

    2015-12-01

    Graphical abstract: Heat transportation in the thin films. - Highlights: • The coherent lattice interface is found at thin films after annealing. • The vacancies are observed clearly in the deposit thin films. • The defect and component will influence the energy transportation in the coatings. • The vacancies and lattice mismatch can enlarge the mobility of atoms. • The phonon transportation in thin films has no apparent rule. - Abstract: Three modulation period thin films, 1.8 nm Cu/3.6 nm Au, 2.7 nm Cu/2.7 nm Au and 3.6 nm Cu/1.8 nm Au, are obtained from deposition method and ideal modeling based on lattice constant, to examine their structures and thermophysical characteristics under temperature gradient. The coherent lattice interface is found both at deposit and ideal thin films after annealing. Also, the vacancies are observed clearly in the deposit thin films. The defect and component of thin films will influence the energy transportation in the coatings. The vacancies and lattice mismatch can enlarge the mobility of atoms and result in the failure of coating under the thermal stress. The power spectrum of atoms’ movement has no apparent rule for phonon transportation in thin films. The results are helpful to reveal the micro-mechanism and provide reasonable basis for the failure of metallic coatings.

  1. Bioinspired large-scale aligned porous materials assembled with dual temperature gradients.

    Science.gov (United States)

    Bai, Hao; Chen, Yuan; Delattre, Benjamin; Tomsia, Antoni P; Ritchie, Robert O

    2015-12-01

    Natural materials, such as bone, teeth, shells, and wood, exhibit outstanding properties despite being porous and made of weak constituents. Frequently, they represent a source of inspiration to design strong, tough, and lightweight materials. Although many techniques have been introduced to create such structures, a long-range order of the porosity as well as a precise control of the final architecture remain difficult to achieve. These limitations severely hinder the scale-up fabrication of layered structures aimed for larger applications. We report on a bidirectional freezing technique to successfully assemble ceramic particles into scaffolds with large-scale aligned, lamellar, porous, nacre-like structure and long-range order at the centimeter scale. This is achieved by modifying the cold finger with a polydimethylsiloxane (PDMS) wedge to control the nucleation and growth of ice crystals under dual temperature gradients. Our approach could provide an effective way of manufacturing novel bioinspired structural materials, in particular advanced materials such as composites, where a higher level of control over the structure is required.

  2. Effects of temperature gradient induced nanoparticle motion on conduction and convection of fluid

    International Nuclear Information System (INIS)

    Zhou Leping; Peterson, George P.; Yoda, Minani; Wang Buxuan

    2012-01-01

    The role of temperature gradient induced nanoparticle motion on conduction and convection was investigated. Possible mechanisms for variations resulting from variations in the thermophysical properties are theoretically and experimentally discussed. The effect of the nanoparticle motion on conduction is demonstrated through thermal conductivity measurement of deionized water with suspended CuO nanoparticles (50 nm in diameter) and correlated with the contributions of Brownian diffusion, thermophoresis, etc. The tendencies observed is that the magnitude of and the variation in the thermal conductivity increases with increasing volume fraction for a given temperature, which is due primarily to the Brownian diffusion of the nanoparticles. Using dimensional analysis, the thermal conductivity is correlated and both the interfacial thermal resistance and near-field radiation are found to be essentially negligible. A modification term that incorporates the contributions of Brownian motion and thermophoresis is proposed. The effect of nanoscale convection is illustrated through an experimental investigation that utilized fluorescent polystyrene nanoparticle tracers (200 nm in diameter) and multilayer nanoparticle image velocimetry. The results indicate that both the magnitude and the deviation of the fluid motion increased with increasing heat flux in the near-wall region. Meanwhile, the fluid motion tended to decrease with the off-wall distance for a given heating power. A corresponding numerical study of convection of pure deionized water shows that the velocity along the off-wall direction is several orders of magnitude lower than that of deionized water, which indicates that Brownian motion in the near-wall region is crucial for fluid with suspended nanoparticles in convection.

  3. Biogeography of pelagic bacterioplankton across an antagonistic temperature-salinity gradient in the Red Sea

    KAUST Repository

    Ngugi, David

    2011-12-01

    The Red Sea is a unique marine ecosystem with contrasting gradients of temperature and salinity along its north-to-south axis. It is an extremely oligotrophic environment that is characterized by perpetual year-round water column stratification, high annual solar irradiation, and negligible riverine and precipitation inputs. In this study, we investigated whether the contemporary environmental conditions shape community assemblages by pyrosequencing 16S rRNA genes of bacteria in surface water samples collected from the northeastern half of this water body. A combined total of 1855 operational taxonomic units (OTUs) were recovered from the \\'small-cell\\' and \\'large-cell\\' fractions. Here, a few major OTUs affiliated with Cyanobacteria and Proteobacteria accounted for â93% of all sequences, whereas a tail of \\'rare\\' OTUs represented most of the diversity. OTUs allied to Surface 1a/b SAR11 clades and Prochlorococcus related to the high-light-adapted (HL2) ecotype were the most widespread and predominant sequence types. Interestingly, the frequency of taxa that are typically found in the upper mesopelagic zone was significantly elevated in the northern transects compared with those in the central, presumably as a direct effect of deep convective mixing in the Gulf of Aqaba and water exchange with the northern Red Sea. Although temperature was the best predictor of species richness across all major lineages, both spatial and environmental distances correlated strongly with phylogenetic distances. Our results suggest that the bacterial diversity of the Red Sea is as high as in other tropical seas and provide evidence for fundamental differences in the biogeography of pelagic communities between the northern and central regions. © 2011 Blackwell Publishing Ltd.

  4. Biogeography of pelagic bacterioplankton across an antagonistic temperature-salinity gradient in the Red Sea

    KAUST Repository

    Ngugi, David; Antunes, Andre; Brune, Andreas; Stingl, Ulrich

    2011-01-01

    The Red Sea is a unique marine ecosystem with contrasting gradients of temperature and salinity along its north-to-south axis. It is an extremely oligotrophic environment that is characterized by perpetual year-round water column stratification, high annual solar irradiation, and negligible riverine and precipitation inputs. In this study, we investigated whether the contemporary environmental conditions shape community assemblages by pyrosequencing 16S rRNA genes of bacteria in surface water samples collected from the northeastern half of this water body. A combined total of 1855 operational taxonomic units (OTUs) were recovered from the 'small-cell' and 'large-cell' fractions. Here, a few major OTUs affiliated with Cyanobacteria and Proteobacteria accounted for â93% of all sequences, whereas a tail of 'rare' OTUs represented most of the diversity. OTUs allied to Surface 1a/b SAR11 clades and Prochlorococcus related to the high-light-adapted (HL2) ecotype were the most widespread and predominant sequence types. Interestingly, the frequency of taxa that are typically found in the upper mesopelagic zone was significantly elevated in the northern transects compared with those in the central, presumably as a direct effect of deep convective mixing in the Gulf of Aqaba and water exchange with the northern Red Sea. Although temperature was the best predictor of species richness across all major lineages, both spatial and environmental distances correlated strongly with phylogenetic distances. Our results suggest that the bacterial diversity of the Red Sea is as high as in other tropical seas and provide evidence for fundamental differences in the biogeography of pelagic communities between the northern and central regions. © 2011 Blackwell Publishing Ltd.

  5. The impact of distance and a shifting temperature gradient on genetic connectivity across a heterogeneous landscape

    Directory of Open Access Journals (Sweden)

    Offord Catherine A

    2011-05-01

    Full Text Available Abstract Background Inter-population distance and differences in breeding times are barriers to reproduction that can contribute to genotypic differentiation between populations. Temporal changes in environmental conditions and local selective processes can further contribute to the establishment of reproductive barriers. Telopea speciosissima (Proteaceae is an excellent subject for studying the effect of geographic, edaphic and phenological heterogeneity on genotypic differentiation because previous studies show that these factors are correlated with morphological variation. Molecular, morphological and environmental datasets were combined to characterise the relative influence of these factors on inter-population differentiation, and Bayesian analyses were used to investigate current levels of admixture between differentiated genomes. Results A landscape genetic approach involving molecular and morphological analyses identified three endpoints of differentiated population groups: coastal, upland and southern. The southern populations, isolated from the other populations by an edaphic barrier, show low migration and no evidence of admixture with other populations. Amongst the northern populations, coastal and upland populations are connected along a skewed altitudinal gradient by genetically intermediate populations. The strong association between temperature and flowering time in Telopea speciosissima was shown to maintain a temporally unstable reproductive barrier between coastal and upland populations. Conclusions Substrate-mediated allopatry appears to be responsible for long-term genetic isolation of the southern populations. However, the temperature-dependent reproductive barrier between upland and coastal populations bears the genetic signature of temporal adjustments. The extreme climatic events of the last glacial maximum are likely to have caused more complete allochronic isolation between upland and coastal populations, as well as

  6. The role of the meridional sea surface temperature gradient in controlling the Caribbean low-level jet

    Science.gov (United States)

    Maldonado, Tito; Rutgersson, Anna; Caballero, Rodrigo; Pausata, Francesco S. R.; Alfaro, Eric; Amador, Jorge

    2017-06-01

    The Caribbean low-level jet (CLLJ) is an important modulator of regional climate, especially precipitation, in the Caribbean and Central America. Previous work has inferred, due to their semiannual cycle, an association between CLLJ strength and meridional sea surface temperature (SST) gradients in the Caribbean Sea, suggesting that the SST gradients may control the intensity and vertical shear of the CLLJ. In addition, both the horizontal and vertical structure of the jet have been related to topographic effects via interaction with the mountains in Northern South America (NSA), including funneling effects and changes in the meridional geopotential gradient. Here we test these hypotheses, using an atmospheric general circulation model to perform a set of sensitivity experiments to examine the impact of both SST gradients and topography on the CLLJ. In one sensitivity experiment, we remove the meridional SST gradient over the Caribbean Sea and in the other, we flatten the mountains over NSA. Our results show that the SST gradient and topography have little or no impact on the jet intensity, vertical, and horizontal wind shears, contrary to previous works. However, our findings do not discount a possible one-way coupling between the SST and the wind over the Caribbean Sea through friction force. We also examined an alternative approach based on barotropic instability to understand the CLLJ intensity, vertical, and horizontal wind shears. Our results show that the current hypothesis about the CLLJ must be reviewed in order to fully understand the atmospheric dynamics governing the Caribbean region.

  7. Low temperature geomicrobiology follows host rock composition along a geochemical gradient in Lau Basin

    Directory of Open Access Journals (Sweden)

    Jason B Sylvan

    2013-03-01

    Full Text Available The East Lau Spreading Center (ELSC and Valu Fa Ridge (VFR comprise a ridge segment in the southwest Pacific Ocean where rapid transitions in the underlying mantle chemistry manifest themselves as gradients in seafloor rock geochemistry. We studied the geology and microbial diversity of three silicate rock samples and three inactive sulfide chimney samples collected, from north to south, at the vent fields Kilo Moana, ABE, Tui Malila and Mariner. This is the first study of microbial populations on basaltic andesite, which was sampled at Mariner vent field. Silicate rock geochemistry exhibits clear latitudinal trends that are mirrored by changes in bacterial community composition. α-proteobacteria, ε-proteobacteria and Bacteroidetes are most common on a silicate collected from Kilo Moana and their proportions decrease linearly on silicates collected further south. Conversely, a silicate from Mariner vent field hosts high proportions of a unique lineage of Chloroflexi unrelated (<90% sequence similarity to previously recovered environmental clones or isolates, which decrease at ABE and are absent at Kilo Moana. The exteriors of inactive sulfide structures are dominated by lineages of sulfur oxidizing α-proteobacteria, γ-proteobacteria and ε-proteobacteria while the interior of one chimney is dominated by putative sulfur-reducing δ-proteobacteria. A comparison of bacterial communities on inactive sulfides from this and previous studies reveals the presence of a clade of uncultured Bacteroidetes exclusive to sulfidic environments, and a high degree of heterogeneity in bacterial community composition from one sulfide structure to another. In light of the heterogeneous nature of bacterial communities observed here and in previous studies of both active and inactive hydrothermal sulfide structures, the presence of numerous niches may be detected on these structures in the future by finer scale sampling and analysis.

  8. The non-linear link between electricity consumption and temperature in Europe: A threshold panel approach

    Energy Technology Data Exchange (ETDEWEB)

    Bessec, Marie [CGEMP, Universite Paris-Dauphine, Place du Marechal de Lattre de Tassigny Paris (France); Fouquau, Julien [LEO, Universite d' Orleans, Faculte de Droit, d' Economie et de Gestion, Rue de Blois, BP 6739, 45067 Orleans Cedex 2 (France)

    2008-09-15

    This paper investigates the relationship between electricity demand and temperature in the European Union. We address this issue by means of a panel threshold regression model on 15 European countries over the last two decades. Our results confirm the non-linearity of the link between electricity consumption and temperature found in more limited geographical areas in previous studies. By distinguishing between North and South countries, we also find that this non-linear pattern is more pronounced in the warm countries. Finally, rolling regressions show that the sensitivity of electricity consumption to temperature in summer has increased in the recent period. (author)

  9. Temperature and diet effects on omnivorous fish performance: Implications for the latitudinal diversity gradient in herbivorous fishes

    Science.gov (United States)

    Behrens, M.D.; Lafferty, K.D.

    2007-01-01

    Herbivorous fishes show a clear latitudinal diversity gradient, making up a larger proportion of the fish species in a community in tropical waters than in temperate waters. One proposed mechanism that could drive this gradient is a physiological constraint due to temperature. One prediction based on this mechanism is that if herbivorous fishes could shift their diet to animal material, they would be better able to grow, survive, and reproduce in cold waters. We tested this prediction on the omnivore Girella nigricans under different temperature and diet regimes using RNA-DNA ratios as an indicator of performance. Fish had increased performance (100%) at low temperatures (12??C) when their diet was supplemented with animal material. In contrast, at higher temperatures (17, 22, and 27??C) fish showed no differences between diets. This indicates that omnivorous fishes could increase their performance at low temperatures by consuming more animal matter. This study supports the hypothesis that a relative increase in the nutritional value of plant material at warmer temperatures could drive the latitudinal diversity gradient in herbivorous fishes. ?? 2007 NRC.

  10. Behaviour of a pre-stressed concrete pressure-vessel subjected to a high temperature gradient

    International Nuclear Information System (INIS)

    Dubois, F.

    1965-01-01

    After a review of the problems presented by pressure-vessels for atomic reactors (shape of the vessel, pressures, openings, foundations, etc.) the advantages of pre-stressed concrete vessels with respect to steel ones are given. The use of pre-stressed concrete vessels however presents many difficulties connected with the properties of concrete. Thus, because of the absence of an exact knowledge of the material, it is necessary to place a sealed layer of steel against the concrete, to have a thermal insulator or a cooling circuit for limiting the deformations and stresses, etc. It follows that the study of the behaviour of pre-stressed concrete and of the vessel subjected- to a high temperature gradient can yield useful information. A one-tenth scale model of a pre-stressed concrete cylindrical vessel without any side openings and without a base has been built. Before giving a description of the tests the authors consider some theoretical aspects concerning 'scale model-actual structure' similitude conditions and the calculation of the thermal and mechanical effects. The pre-stressed concrete model was heated internally by a 'pyrotenax' element and cooled externally by a very strong air current. The concrete was pre-stressed using horizontal and vertical cables held at 80 kg/cm 2 ; the thermal gradient was 160 deg. C. During the various tests, measurements were made of the overall and local deformations, the changes in water content, the elasticity modulus, the stress and creep of the cables and the depths of the cracks. The overall deformations observed are in line with thermal deformation theories and the creep of the cables attained 20 to 30 per cent according to their position relative to the internal surface. The dynamic elasticity modulus decreased by half but the concrete keeps its good mechanical properties. Finally, cracks 8 to 12 cm deep and 2 to 3 mms wide appeared in that part of the concrete which was not pre-stressed. The results obtained make it

  11. Link between convection and meridional gradient of sea surface temperature in the Bay of Bengal

    Digital Repository Service at National Institute of Oceanography (India)

    Shankar, D.; Shetye, S.R.; Joseph, P.V.

    of convection occurring without this SST gradient. Long rainfall events (events lasting more than a week) were associated with an SST event (Delta T >= 0.75 degC); rainfall events tended to be short when not associated with an SST event. The SST gradient...

  12. Linear all-fiber temperature sensor based on macro-bent erbium doped fiber

    International Nuclear Information System (INIS)

    Hajireza, P; Cham, C L; Kumar, D; Abdul-Rashid, H A; Emami, S D; Harun, S W

    2010-01-01

    A new all fiber temperature sensor is proposed and demonstrated based on a pair of 1 meter erbium-doped fiber (EDF), which are respectively macro-bent and straight. The sensor has a linear normalized loss (dB) response to temperature at 6.5 mm bending radius and 1580 nm input wavelength. The main advantage of this sensor is high temperature resolution (less than 1°C) and sensitivity (0.03 dB/°C) due to combination of temperature dependence of EDF and bending loss. The proposed silica based sensor, has the potential for wide range and high temperature applications in harsh environments

  13. Equatorial seawater temperatures and latitudinal temperature gradients during the Middle to Late Jurassic: the stable isotope record of brachiopods and oysters from Gebel Maghara, Egypt

    Science.gov (United States)

    Alberti, Matthias; Fürsich, Franz T.; Abdelhady, Ahmed A.; Andersen, Nils

    2017-04-01

    The Jurassic climate has traditionally been described as equable, warmer than today, with weak latitudinal temperature gradients, and no polar glaciations. This view changed over the last decades with studies pointing to distinct climate fluctuations and the occasional presence of polar ice caps. Most of these temperature reconstructions are based on stable isotope analyses of fossil shells from Europe. Additional data from other parts of the world is slowly completing the picture. Gebel Maghara in the northern Sinai Peninsula of Egypt exposes a thick Jurassic succession. After a phase of terrestrial sedimentation in the Early Jurassic, marine conditions dominated since the end of the Aalenian. The stable isotope (δ18O, δ13C) composition of brachiopod and oyster shells was used to reconstruct seawater temperatures from the Bajocian to the Kimmeridgian at a palaeolatitude of ca. 3°N. Throughout this time interval, temperatures were comparatively constant aorund an average of 25.7°C. Slightly warmer conditions existed in the Early Bathonian ( 27.0°C), while the Kimmeridgian shows the lowest temperatures ( 24.3°C). The seasonality has been reconstructed with the help of high-resolution sampling of two oyster shells and was found to be very low (temperature gradients. During the Middle Jurassic, this gradient was much steeper than previously expected and comparable to today. During the Kimmeridgian, temperatures in Europe were generally warmer leading to weaker latitudinal gradients. Based on currently used estimates for the δ18O value of seawater during the Jurassic, reconstructed water temperatures for localities above the thermocline in Egypt and Europe were mostly lower than Recent sea-surface temperatures. These results improve our understanding of the Jurassic climate and its influence on marine faunal diversity patterns.

  14. A discussion of non-linear temperature profiles at six closely spaced heat flow sites, southern Sohm Abyssal Plain, northwest Atlantic Ocean

    Science.gov (United States)

    Burgess, M. M.

    1986-09-01

    Six heat flow measurement sites were occupied in June 1980 in a 10 x 10 km 2 flat area of the southern Sohm Abyssal Plain, western North Atlantic Ocean. Non-linear sediment temperature profiles, measured to depths of 5 m, indicate perturbations in the temperature field in sediments overlying 90 Ma ocean floor. Temperature gradients average 59.0 mK m -1 in the lower half of the profile and decrease by 25% to an average of 44.24 mK m -1 in the upper half. Thermal conductivities of sediment cores down to 12 m ranged from 0.74 to 2.12 W m -1 K -1 and averaged 1.06 W m -1K -1. The non-linearity of sediment temperature profiles cannot be accounted for by the variations in thermal conductivity. Vertical fluid convection in the sediments, with a predominantly downward migration on the order of 5 x 10 -8 ms -1 in the upper 3 m, could explain the perturbations. However, in this study area of high abyssal kinetic energy and abyssal storms, bottom-water temperature fluctuations are the likely source of observed sediment temperature perturbations. A bottom-water temperature change of 50 mK occurring 3 months prior to the cruise could produce sediment temperature perturbations similar to those observed. Heat flow determined from the lower gradient (3-5 m sediment depth interval), assuming the non-linearity in the upper sensors to be principally due to bottom-water temperature fluctuations, averages 59.2 mW m -2, a slightly higher value than that predicted for 90 Ma crust.

  15. Subduction factory in an ampoule: Experiments on sediment-peridotite interaction under temperature gradient conditions

    Science.gov (United States)

    Woodland, A. B.; Bulatov, V. K.; Brey, G. P.; Girnis, A. V.; Höfer, H. E.; Gerdes, A.

    2018-02-01

    To better understand processes above subducted oceanic slabs, we have undertaken experiments with juxtaposed sediment and peridotite layers at pressures of 7.5 and 10.5 GPa at a controlled temperature gradient from ∼100 to ∼500 °C per a sample length of ∼3 mm. The sediment starting material contains H2O (6.9 wt%) and CO2 (5.9 wt%) and has a major-element composition similar to GLOSS (Plank and Langmuir, 1998) doped with trace elements at 10-100 ppm levels. Several experiments were conducted with ∼0.5 wt% Cl or F. The peridotite layer is composed of natural olivine (66 wt%), orthopyroxene (27 wt%) and garnet (7 wt%) mixed with ∼15 wt% graphite. Several experimental configurations were investigated, but the "basic" setup has the sediment layer at the bottom in the cold zone (400-1200 °C) overlain by peridotite at 900-1500 °C. The temperature distribution was determined by two thermocouples and orthopyroxene-garnet thermometry. Features common to many experiments are (1) the development of multiple layers of various lithologies and a pool of hydrous silicate or carbonate-silicate melt in the hottest part of the capsule; (2) replacement of olivine by orthopyroxene in the metaperidotite; (3) preservation and growth of garnet and local development of magnesite in the metaperidotite layer; (4) enrichment in garnet within the metasediment layer at the contact with the metaperidotite; (5) formation of a clinopyroxene-garnet assemblage at the bottom (the coldest part); (6) presence of K-bearing phases (phlogopite or phengite) and carbonates in the metasediment layer only at temperatures Ca are largely retained in the coldest part of the metasediment layer in clinopyroxene, Ca-rich garnet and aragonite. The melt is a product of interaction between partial melt or fluid from the sediment and peridotite. It has a silico-carbonatite composition with variable SiO2, MgO, FeO and CaO contents and low Al2O3. The addition of Cl has almost no effect on element

  16. Crustal temperature structure derived from a ground temperature gradient chart of Hokkaido; Hokkaido no chion kobaizu kara motometa chikakunai ondo kozo

    Energy Technology Data Exchange (ETDEWEB)

    Okubo, Y. [Geological Survey of Japan, Tsukuba (Japan); Akita, F. [Hokkaido Geological Survey, Sapporo (Japan); Nagumo, S. [Oyo Corp., Tokyo (Japan)

    1997-05-27

    The Hokkaido Underground Resources Investigation Institute has prepared in 1995 a detailed temperature gradient chart that shows local anomalies around volcanoes. This paper describes an attempt to derive crustal temperature structure of Hokkaido from the above data. The model was hypothesized as a primary model in which no thermal convection exists. In volcanic and geothermal areas which show a temperature gradient of more than 100 {degree}C km {sup -1}, a solidus temperature is reached at a depth shallower than 10 km. Below the volcanic chain forming the Chishima arc, a partially melted region exists in a width of about 100 km. Most of the areas in the southern Hokkaido have the temperature reached the solidus temperature in the crust. On the other hand, in most of the areas of the forefront side, no solidus temperature is reached in the crust. In the temperature structure of a cross section crossing almost orthogonally with the volcanic front passing through Mt. Daisetsu, a high temperature area reaches to a shallow portion beneath Mt. Daisetsu, where the depth at which the solidus temperature is reached is 10 km or shallower. The range of area where the solidus depth is shallower than 10 km has a south-west width of about 40 km. This means that a partially melted area with a size of 40 km in the horizontal direction exists at a depth of several kilometers. 20 refs., 3 figs.

  17. Definition of the linearity loss of the surface temperature in static tensile tests

    Directory of Open Access Journals (Sweden)

    A. Risitano

    2014-10-01

    Full Text Available Static tensile tests on material for mechanical constructions have pointed out the linearity loss of the surface temperature with the application of load. This phenomenon is due to the heat generation caused by the local microplasticizations which carry the material to deviate from its completely thermoelastic behavior,. The identification of the static load which determines the loss of linearity of the temperature under stress, becomes extremely important to define a first dynamic characterization of the material. The temperature variations that can be recorded during the static test are often very limited (a few tenths of degree for every 100 MPa in steels and they require the use of special sensors able to measure very low temperature variations. The experience acquired in such analysis highlighted that, dealing with highly accurate sensors or with particular materials, the identification of the first linearity loss (often by eye in the temperature curves, can be influenced by the sensibility of the investigator himself and can lead to incorrect estimates. The aim of this work is to validate the above mentioned observations on different steels, by applying the autocorrelation function to the data collected during the application of a static load. This, in order to make the results of the thermal analysis free from the sensitivity of the operator and to make the results as objective as possible, for defining the closest time of the linearity loss in the temperature-time function.

  18. Temperature and sowing date affect the linear increase of sunflower harvest index

    International Nuclear Information System (INIS)

    Bange, M.P.; Hammer, G.L.; Rickert, K.G.

    1998-01-01

    The linearity of daily linear harvest index (HI) increase can provide a simple means to predict grain growth and yield in field crops. However, the stability of the rate of increase across genotypes and environments is uncertain. Data from three field experiments were collated to investigate the phase of linear HI increase of sunflower (Helianthus annuus L.) across environments by changing genotypes, sowing time, N level, and solar irradiation level. Linear increase in HI was similar among different genotypes, N levels, and radiation treatments (mean 0.0125 d-1), but significant differences occurred between sowings. The linear increase in HI was not stable at very low temperatures (down to 9 degrees C) during grain filling, due to possible limitations to biomass accumulation and translocation (mean 0.0091 d-1). Using the linear increase in HI to predict grain yield requires predictions of the duration from an thesis to the onset of linear HI increase (lag phase) and the cessation of linear HI increase. These studies showed that the lag phase differed, and the linear HI increase ceased when 91% of the anthesis to physiological maturity period had been completed

  19. LIAR -- A new program for the modeling and simulation of linear accelerators with high gradients and small emittances

    International Nuclear Information System (INIS)

    Assmann, R.; Adolphsen, C.; Bane, K.; Raubenheimer, T.O.; Siemann, R.; Thompson, K.

    1996-09-01

    Linear accelerators are the central components of the proposed next generation of linear colliders. They need to provide acceleration of up to 750 GeV per beam while maintaining very small normalized emittances. Standard simulation programs, mainly developed for storage rings, do not meet the specific requirements for high energy linear accelerators. The authors present a new program LIAR (LInear Accelerator Research code) that includes wakefield effects, a 4D coupled beam description, specific optimization algorithms and other advanced features. Its modular structure allows to use and to extend it easily for different purposes. They present examples of simulations for SLC and NLC

  20. Spin fluctuations and low temperature features of thermal coefficient of linear expansion of iron monosilicide

    International Nuclear Information System (INIS)

    Volkov, A.G.; Kortov, S.V.; Povzner, A.A.

    1996-01-01

    The low temperature measurements of thermal coefficient of linear expansion of strong paramagnet FeSi are carried out. The results obtained are discussed with in the framework of spin-fluctuation theory. It is shown that electronic part of the thermal coefficient of linear expansion is negative in the range of temperatures lower that of the semiconductor-metal phase transition. In metal phase it becomes positive. This specific features of the thermal coefficient is explained by the spin-fluctuation renormalization of d-electronic states density

  1. Nanoscale steady-state temperature gradients within polymer nanocomposites undergoing continuous-wave photothermal heating from gold nanorods.

    Science.gov (United States)

    Maity, Somsubhra; Wu, Wei-Chen; Tracy, Joseph B; Clarke, Laura I; Bochinski, Jason R

    2017-08-17

    Anisotropically-shaped metal nanoparticles act as nanoscale heaters via excitation of a localized surface plasmon resonance, utilizing a photothermal effect which converts the optical energy into local heat. Steady-state temperatures within a polymer matrix embedded with gold nanorods undergoing photothermal heating using continuous-wave excitation are measured in the immediate spatial vicinity of the nanoparticle (referred to as the local temperature) from observing the rate of physical rotation of the asymmetric nanoparticles within the locally created polymer melt. Average temperatures across the entire (mostly solid) sample (referred to as the global temperature) are simultaneously observed using a fluorescence method from randomly dispersed molecular emitters. Comparing these two independent measurements in films having varying concentrations of nanorods reveals the interplay between the local and global temperatures, clearly demonstrating the capability of these material samples to sustain large steady-state spatial temperature gradients when experiencing continuous-wave excitation photothermal heating. These results are discussed quantitatively. Illustrative imaging studies of nanofibers under photothermal heating also support the presence of a large temperature gradient. Photothermal heating in this manner has potential utility in creating unique thermal processing conditions for outcomes such as driving chemical reactions, inducing crystallinity changes, or enhancing degradation processes in a manner unachievable by conventional heating methods.

  2. Comparative study of the temperature and velocity gradients for the interphases obtained during directional solidification of Al-Cu alloys

    International Nuclear Information System (INIS)

    Ares, Alicia Esther; Gueijman, Sergio Fabian; Schvezov, Carlos E

    2004-01-01

    Previous studies determined that in directionally solidified lead-tin alloys, the position in which the transition occurs from columnar to equiaxial structure depending on the distribution of temperatures in the system, occurs when a minimum and critical thermal gradient value is attained in the liquid before the interphase that separates the (liquid) phase from the (solid + liquid) phase and this critical gradient value is independent from the solute concentration, natural convection, degree of overheating, the mold geometry and the number of columnar and equiaxial grains that form. The study now includes aluminum-copper alloys, for which the temperature gradient test values in the liquid before the (liquid)/(solid + liquid) interphase and the speeds of the (liquid)/(solid+liquid)/(solid) interphases are determined. The values of interphase gradients and velocities contrast with the values predicted by the Hunt model for the same alloy system. The velocities of the interphases are also compared with those calculated with the Lipton equation and used in the Wang and Beckermann model for dendritic equiaxial growth. The results are compared with those obtained previously in the lead-tin system (CW)

  3. Optimizing gradient conditions in online comprehensive two-dimensional reversed-phase liquid chromatography by use of the linear solvent strength model

    DEFF Research Database (Denmark)

    Græsbøll, Rune; Janssen, Hans-Gerd; Christensen, Jan H.

    2017-01-01

    The linear solvent strength model was used to predict coverage in online comprehensive two-dimensional reversed-phase liquid chromatography. The prediction model uses a parallelogram to describe the separation space covered with peaks in a system with limited orthogonality. The corners of the par......The linear solvent strength model was used to predict coverage in online comprehensive two-dimensional reversed-phase liquid chromatography. The prediction model uses a parallelogram to describe the separation space covered with peaks in a system with limited orthogonality. The corners...... of the parallelogram are assumed to behave like chromatographic peaks and the position of these pseudo-compounds was predicted. A mix of 25 polycyclic aromatic compounds were used as a test. The precision of the prediction, span 0-25, was tested by varying input parameters, and was found to be acceptable with root...... factors were low, or when gradient conditions affected parameters not included in the model, e.g. second dimension gradient time affects the second dimension equilibration time. The concept shows promise as a tool for gradient optimization in online comprehensive two-dimensional liquid chromatography...

  4. Prediction of the retention of s-triazines in reversed-phase high-performance liquid chromatography under linear gradient-elution conditions.

    Science.gov (United States)

    D'Archivio, Angelo Antonio; Maggi, Maria Anna; Ruggieri, Fabrizio

    2014-08-01

    In this paper, a multilayer artificial neural network is used to model simultaneously the effect of solute structure and eluent concentration profile on the retention of s-triazines in reversed-phase high-performance liquid chromatography under linear gradient elution. The retention data of 24 triazines, including common herbicides and their metabolites, are collected under 13 different elution modes, covering the following experimental domain: starting acetonitrile volume fraction ranging between 40 and 60% and gradient slope ranging between 0 and 1% acetonitrile/min. The gradient parameters together with five selected molecular descriptors, identified by quantitative structure-retention relationship modelling applied to individual separation conditions, are the network inputs. Predictive performance of this model is evaluated on six external triazines and four unseen separation conditions. For comparison, retention of triazines is modelled by both quantitative structure-retention relationships and response surface methodology, which describe separately the effect of molecular structure and gradient parameters on the retention. Although applied to a wider variable domain, the network provides a performance comparable to that of the above "local" models and retention times of triazines are modelled with accuracy generally better than 7%. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. All-Digital Time-Domain CMOS Smart Temperature Sensor with On-Chip Linearity Enhancement.

    Science.gov (United States)

    Chen, Chun-Chi; Chen, Chao-Lieh; Lin, Yi

    2016-01-30

    This paper proposes the first all-digital on-chip linearity enhancement technique for improving the accuracy of the time-domain complementary metal-oxide semiconductor (CMOS) smart temperature sensor. To facilitate on-chip application and intellectual property reuse, an all-digital time-domain smart temperature sensor was implemented using 90 nm Field Programmable Gate Arrays (FPGAs). Although the inverter-based temperature sensor has a smaller circuit area and lower complexity, two-point calibration must be used to achieve an acceptable inaccuracy. With the help of a calibration circuit, the influence of process variations was reduced greatly for one-point calibration support, reducing the test costs and time. However, the sensor response still exhibited a large curvature, which substantially affected the accuracy of the sensor. Thus, an on-chip linearity-enhanced circuit is proposed to linearize the curve and achieve a new linearity-enhanced output. The sensor was implemented on eight different Xilinx FPGA using 118 slices per sensor in each FPGA to demonstrate the benefits of the linearization. Compared with the unlinearized version, the maximal inaccuracy of the linearized version decreased from 5 °C to 2.5 °C after one-point calibration in a range of -20 °C to 100 °C. The sensor consumed 95 μW using 1 kSa/s. The proposed linearity enhancement technique significantly improves temperature sensing accuracy, avoiding costly curvature compensation while it is fully synthesizable for future Very Large Scale Integration (VLSI) system.

  6. Linear thermal expansion, thermal diffusivity and melting temperature of Am-MOX and Np-MOX

    International Nuclear Information System (INIS)

    Prieur, D.; Belin, R.C.; Manara, D.; Staicu, D.; Richaud, J.-C.; Vigier, J.-F.; Scheinost, A.C.; Somers, J.; Martin, P.

    2015-01-01

    Highlights: • The thermal properties of Np- and Am-MOX solid solutions were investigated. • Np- and Am-MOX solid solutions exhibit the same linear thermal expansion. • The thermal conductivity of Am-MOX is about 10% higher than that of Np-MOX. • The melting temperatures of Np-MOX and Am-MOX are 3020 ± 30 K and 3005 ± 30 K, respectively. - Abstract: The thermal properties of Np- and Am-MOX solid solution materials were investigated. Their linear thermal expansion, determined using high temperature X-ray diffraction from room temperature to 1973 K showed no significant difference between the Np and the Am doped MOX. The thermal conductivity of the Am-MOX is about 10% higher than that of Np-MOX. The melting temperatures of Np-MOX and Am-MOX, measured using a laser heating self crucible arrangement were 3020 ± 30 K and 3005 ± 30 K, respectively

  7. Numerical solution to a multi-dimensional linear inverse heat conduction problem by a splitting-based conjugate gradient method

    International Nuclear Information System (INIS)

    Dinh Nho Hao; Nguyen Trung Thanh; Sahli, Hichem

    2008-01-01

    In this paper we consider a multi-dimensional inverse heat conduction problem with time-dependent coefficients in a box, which is well-known to be severely ill-posed, by a variational method. The gradient of the functional to be minimized is obtained by aids of an adjoint problem and the conjugate gradient method with a stopping rule is then applied to this ill-posed optimization problem. To enhance the stability and the accuracy of the numerical solution to the problem we apply this scheme to the discretized inverse problem rather than to the continuous one. The difficulties with large dimensions of discretized problems are overcome by a splitting method which only requires the solution of easy-to-solve one-dimensional problems. The numerical results provided by our method are very good and the techniques seem to be very promising.

  8. Contact angle hysteresis and motion behaviors of a water nano-droplet on suspended graphene under temperature gradient

    Science.gov (United States)

    Foroutan, Masumeh; Fatemi, S. Mahmood; Esmaeilian, Farshad; Fadaei Naeini, Vahid; Baniassadi, Majid

    2018-05-01

    In the present work, the effect of temperature gradient on the behavior of a water nano-droplet resting on a suspended graphene was studied based on a non-equilibrium molecular dynamics simulation. The acquired results indicate that the applied temperature gradient to the suspended graphene drives the water nano-droplet to the colder region. The droplet accelerates its motion toward the cold reservoir as the temperature gradient is increased. In addition to the translational motion of the nano-droplet, the vortical motion of the water molecules was also observed. Contact angle analysis was also utilized to describe the directional motion of the nano-droplet. The translational motion of the droplet leads to the estimation of contact angle hysteresis through advancing and receding contact angles while the rotational motion resulted in the advancing and receding fronts being switched with one another through the simulation. The average displacement vector of the water molecules shows that parts of the droplet seem to stagnate while other parts rotate around them. The reason behind this particular behavior was studied based on interaction energy contours between a water molecule and the suspended graphene. The obtained data indicate that the rotational motion is in agreement with the migration of the water molecules to low interaction energy regions in order to avoid high interaction energy areas.

  9. How important are internal temperature gradients in french straws during freezing of bovine sperm in nitrogen vapor?

    Science.gov (United States)

    Santos, M V; Sansinena, M; Zaritzky, N; Chirife, J

    2013-01-01

    The subject of present work was to predict internal temperature gradients developed during freezing of bovine sperm diluted in extender, packaged in 0.5 ml French plastic straws and suspended in static liquid nitrogen vapor at -100 degree C. For this purpose, a mathematical heat transfer model previously developed to predict freezing times (phase change was considered) of semen/extender packaged in straw was extended to predict internal temperature gradients during the cooling/freezing process. Results showed maximum temperature differences between the centre and the periphery of semen/extender "liquid" column was 1.5 degree C for an external heat transfer coefficient, h = 15 W per (m(2) K), and only 0.5 degree C for h = 5 W per (m(2) K). It is concluded that if a thermocouple wire were inserted in a 0.5 ml plastic straw to monitor the freezing process in nitrogen vapor, its radial position would have little importance since expected internal gradients may be safely neglected. This finding facilitates the interpretation of freezing rates in 0.5 ml plastic straws immersed in nitrogen vapor over liquid nitrogen, a widely used method for cryopreservation of bovine spermatozoa.

  10. Evaluation of a Linear Mixing Model to Retrieve Soil and Vegetation Temperatures of Land Targets

    NARCIS (Netherlands)

    Yang, J.; Jia, L.; Cui, Y.; Zhou, J.; Menenti, M.

    2014-01-01

    A simple linear mixing model of heterogeneous soil-vegetation system and retrieval of component temperatures from directional remote sensing measurements by inverting this model is evaluated in this paper using observations by a thermal camera. The thermal camera was used to obtain multi-angular TIR

  11. Sign of inverse spin Hall voltages generated by ferromagnetic resonance and temperature gradients in yttrium iron garnet platinum bilayers

    International Nuclear Information System (INIS)

    Schreier, Michael; Lotze, Johannes; Gross, Rudolf; Goennenwein, Sebastian T B; Bauer, Gerrit E W; Uchida, Ken-ichi; Daimon, Shunsuke; Kikkawa, Takashi; Saitoh, Eiji; Vasyuchka, Vitaliy I; Lauer, Viktor; Chumak, Andrii V; Serga, Alexander A; Hillebrands, Burkard; Flipse, Joost; Van Wees, Bart J

    2015-01-01

    We carried out a concerted effort to determine the absolute sign of the inverse spin Hall effect voltage generated by spin currents injected into a normal metal. We focus on yttrium iron garnet (YIG)∣platinum bilayers at room temperature, generating spin currents by microwaves and temperature gradients. We find consistent results for different samples and measurement setups that agree with theory. We suggest a right-hand-rule to define a positive spin Hall angle corresponding to the voltage expected for the simple case of scattering of free electrons from repulsive Coulomb charges. (paper)

  12. Temperature dependence of mode conversion in warm, unmagnetized plasmas with a linear density profile

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Dae Jung; Lee, Dong-Hun [School of Space Research, Kyung Hee University, Yongin (Korea, Republic of); Kim, Kihong [Division of Energy Systems Research, Ajou University, Suwon (Korea, Republic of)

    2013-06-15

    We study theoretically the linear mode conversion between electromagnetic waves and Langmuir waves in warm, stratified, and unmagnetized plasmas, using a numerically precise calculation based on the invariant imbedding method. We verify that the principle of reciprocity for the forward and backward mode conversion coefficients holds precisely regardless of temperature. We also find that the temperature dependence of the mode conversion coefficient is substantially stronger than that previously reported. Depending on the wave frequency and the incident angle, the mode conversion coefficient is found to increase or decrease with the increase of temperature.

  13. Experimental measurements of the SP response to concentration and temperature gradients in sandstones with application to subsurface geophysical monitoring

    Science.gov (United States)

    Leinov, E.; Jackson, M. D.

    2014-09-01

    Exclusion-diffusion potentials arising from temperature gradients are widely neglected in self-potential (SP) surveys, despite the ubiquitous presence of temperature gradients in subsurface settings such as volcanoes and hot springs, geothermal fields, and oil reservoirs during production via water or steam injection. Likewise, with the exception of borehole SP logging, exclusion-diffusion potentials arising from concentration gradients are also neglected or, at best, it is assumed that the diffusion potential dominates. To better interpret these SP sources requires well-constrained measurements of the various coupling terms. We report measurements of thermoelectric and electrochemical exclusion-diffusion potentials across sandstones saturated with NaCl brine and find that electrode effects can dominate the measured voltage. After correcting for these, we find that Hittorf transport numbers are the same within experimental error regardless of whether ion transport occurs in response to temperature or concentration gradients over the range of NaCl concentration investigated that is typical of natural systems. Diffusion potentials dominate only if the pore throat radius is more than approximately 4000 times larger than the diffuse layer thickness. In fine-grained sandstones with small pore throat diameter, this condition is likely to be met only if the saturating brine is of relatively high salinity; thus, in many cases of interest to earth scientists, exclusion-diffusion potentials will comprise significant contributions from both ionic diffusion through, and ionic exclusion from, the pore space of the rock. However, in coarse-grained sandstones, or sandstones saturated with high-salinity brine, exclusion-diffusion potentials can be described using end-member models in which ionic exclusion is neglected. Exclusion-diffusion potentials in sandstones depend upon pore size and salinity in a complex way: they may be positive, negative, or zero depending upon sandstone

  14. Finite difference modelling of the temperature rise in non-linear medical ultrasound fields.

    Science.gov (United States)

    Divall, S A; Humphrey, V F

    2000-03-01

    Non-linear propagation of ultrasound can lead to increased heat generation in medical diagnostic imaging due to the preferential absorption of harmonics of the original frequency. A numerical model has been developed and tested that is capable of predicting the temperature rise due to a high amplitude ultrasound field. The acoustic field is modelled using a numerical solution to the Khokhlov-Zabolotskaya-Kuznetsov (KZK) equation, known as the Bergen Code, which is implemented in cylindrical symmetric form. A finite difference representation of the thermal equations is used to calculate the resulting temperature rises. The model allows for the inclusion of a number of layers of tissue with different acoustic and thermal properties and accounts for the effects of non-linear propagation, direct heating by the transducer, thermal diffusion and perfusion in different tissues. The effect of temperature-dependent skin perfusion and variation in background temperature between the skin and deeper layers of the body are included. The model has been tested against analytic solutions for simple configurations and then used to estimate temperature rises in realistic obstetric situations. A pulsed 3 MHz transducer operating with an average acoustic power of 200 mW leads to a maximum steady state temperature rise inside the foetus of 1.25 degrees C compared with a 0.6 degree C rise for the same transmitted power under linear propagation conditions. The largest temperature rise occurs at the skin surface, with the temperature rise at the foetus limited to less than 2 degrees C for the range of conditions considered.

  15. Design and Application of a High-Temperature Linear Ion Trap Reactor

    Science.gov (United States)

    Jiang, Li-Xue; Liu, Qing-Yu; Li, Xiao-Na; He, Sheng-Gui

    2018-01-01

    A high-temperature linear ion trap reactor with hexapole design was homemade to study ion-molecule reactions at variable temperatures. The highest temperature for the trapped ions is up to 773 K, which is much higher than those in available reports. The reaction between V2O6 - cluster anions and CO at different temperatures was investigated to evaluate the performance of this reactor. The apparent activation energy was determined to be 0.10 ± 0.02 eV, which is consistent with the barrier of 0.12 eV calculated by density functional theory. This indicates that the current experimental apparatus is prospective to study ion-molecule reactions at variable temperatures, and more kinetic details can be obtained to have a better understanding of chemical reactions that have overall barriers. [Figure not available: see fulltext.

  16. Base flow-driven shifts in tropical stream temperature regimes across a mean annual rainfall gradient

    Science.gov (United States)

    Ayron M. Strauch; Richard A. MacKenzie; Ralph W. Tingley

    2017-01-01

    Climate change is expected to affect air temperature and watershed hydrology, but the degree to which these concurrent changes affect stream temperature is not well documented in the tropics. How stream temperature varies over time under changing hydrologic conditions is difficult to isolate from seasonal changes in air temperature. Groundwater and bank storage...

  17. Locomotor Activity and Body Temperature Patterns over a Temperature Gradient in the Highveld Mole-Rat (Cryptomys hottentotus pretoriae).

    Science.gov (United States)

    Haupt, Meghan; Bennett, Nigel C; Oosthuizen, Maria K

    2017-01-01

    African mole-rats are strictly subterranean mammals that live in extensive burrow systems. High humidity levels in the burrows prevent mole-rats from thermoregulating using evaporative cooling. However, the relatively stable environment of the burrows promotes moderate temperatures and small daily temperature fluctuations. Mole-rats therefore display a relatively wide range of thermoregulation abilities. Some species cannot maintain their body temperatures at a constant level, whereas others employ behavioural thermoregulation. Here we test the effect of ambient temperature on locomotor activity and body temperature, and the relationship between the two parameters, in the highveld mole-rat. We exposed mole-rats to a 12L:12D and a DD light cycle at ambient temperatures of 30°C, 25°C and 20°C while locomotor activity and body temperature were measured simultaneously. In addition, we investigated the endogenous rhythms of locomotor activity and body temperature at different ambient temperatures. Mole-rats displayed nocturnal activity at all three ambient temperatures and were most active at 20°C, but least active at 30°C. Body temperature was highest at 30°C and lowest at 20°C, and the daily cycle was highly correlated with locomotor activity. We show that the mole-rats have endogenous rhythms for both locomotor activity and body temperature. However, the endogenous body temperature rhythm appears to be less robust compared to the locomotor activity rhythm. Female mole-rats appear to be more sensitive to temperature changes than males, increased heterothermy is evident at lower ambient temperatures, whilst males show smaller variation in their body temperatures with changing ambient temperatures. Mole-rats may rely more heavily on behavioural thermoregulation as it is more energy efficient in an already challenging environment.

  18. Simulation of C. elegans thermotactic behavior in a linear thermal gradient using a simple phenomenological motility model.

    Science.gov (United States)

    Matsuoka, Tomohiro; Gomi, Sohei; Shingai, Ryuzo

    2008-01-21

    The nematode Caenorhabditis elegans has been reported to exhibit thermotaxis, a sophisticated behavioral response to temperature. However, there appears to be some inconsistency among previous reports. The results of population-level thermotaxis investigations suggest that C. elegans can navigate to the region of its cultivation temperature from nearby regions of higher or lower temperature. However, individual C. elegans nematodes appear to show only cryophilic tendencies above their cultivation temperature. A Monte-Carlo style simulation using a simple individual model of C. elegans provides insight into clarifying apparent inconsistencies among previous findings. The simulation using the thermotaxis model that includes the cryophilic tendencies, isothermal tracking and thermal adaptation was conducted. As a result of the random walk property of locomotion of C. elegans, only cryophilic tendencies above the cultivation temperature result in population-level thermophilic tendencies. Isothermal tracking, a period of active pursuit of an isotherm around regions of temperature near prior cultivation temperature, can strengthen the tendencies of these worms to gather around near-cultivation-temperature regions. A statistical index, the thermotaxis (TTX) L-skewness, was introduced and was useful in analyzing the population-level thermotaxis of model worms.

  19. Linear parameter-varying modeling and control of the steam temperature in a Canadian SCWR

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Peiwei, E-mail: sunpeiwei@mail.xjtu.edu.cn; Zhang, Jianmin; Su, Guanghui

    2017-03-15

    Highlights: • Nonlinearity of Canadian SCWR is analyzed based on step responses and Nyquist plots. • LPV model is derived through Jacobian linearization and curve fitting. • An output feedback H{sub ∞} controller is synthesized for the steam temperature. • The control performance is evaluated by step disturbances and wide range operation. • The controller can stabilize the system and reject the reactor power disturbance. - Abstract: The Canadian direct-cycle Supercritical Water-cooled Reactor (SCWR) is a pressure-tube type SCWR under development in Canada. The dynamics of the steam temperature have a high degree of nonlinearity and are highly sensitive to reactor power disturbances. Traditional gain scheduling control cannot theoretically guarantee stability for all operating regions. The control performance can also be deteriorated when the controllers are switched. In this paper, a linear parameter-varying (LPV) strategy is proposed to solve such problems. Jacobian linearization and curve fitting are applied to derive the LPV model, which is verified using a nonlinear dynamic model and determined to be sufficiently accurate for control studies. An output feedback H{sub ∞} controller is synthesized to stabilize the steam temperature system and reject reactor power disturbances. The LPV steam temperature controller is implemented using a nonlinear dynamic model, and step changes in the setpoints and typical load patterns are carried out in the testing process. It is demonstrated through numerical simulation that the LPV controller not only stabilizes the steam temperature under different disturbances but also efficiently rejects reactor power disturbances and suppresses the steam temperature variation at different power levels. The LPV approach is effective in solving control problems of the steam temperature in the Canadian SCWR.

  20. ZZ POINT-2004, Linearly Interpolable ENDF/B-VI.8 Data for 13 Temperatures

    International Nuclear Information System (INIS)

    Cullen, Dermott E.

    2004-01-01

    A - Description or function: The ENDF/B data library, ENDF/B-VI, Release 8 was processed into the form of temperature dependent cross sections. The original evaluated data include cross sections represented in the form of a combination of resonance parameters and/or tabulated energy dependent cross sections, nominally at 0 Kelvin temperature. For use in applications, these ENDF/B-VI, Release 8 data were processed into the form of temperature dependent cross sections at eight temperatures between 0 and 2100 Kelvin, in steps of 300 Kelvin. It has also been processed to five astrophysics like temperatures, 1, 10, 100 eV, 1 and 10 keV. At each temperature the cross sections are tabulated and linearly interpolable in energy with a tolerance of 0.1 %. POINT2004 contains all of the evaluations in the ENDF/B-VI general purpose library, which contains evaluations for 328 materials (isotopes or naturally occurring elemental mixtures of isotopes). No special purpose ENDF/B-VI libraries, such as fission products, thermal scattering, photon interaction data are included. The majority of these evaluations are complete, in the sense that they include all cross sections over the energy range 10 e-5 eV to at least 20 MeV. B - Methods: The PREPRO2002 code system was used to process the ENDF/B data. Listed below are the steps, including the PREPRO2002 codes, which were used to process the data in the order in which the codes were run. 1) Linearly interpolable, tabulated cross sections (LINEAR); 2) Including the resonance contribution (RECENT); 3) Doppler broaden all cross sections to temperature (SIGMA1); 4) Check data, define redundant cross sections by summation (FIXUP)

  1. A linearization time-domain CMOS smart temperature sensor using a curvature compensation oscillator.

    Science.gov (United States)

    Chen, Chun-Chi; Chen, Hao-Wen

    2013-08-28

    This paper presents an area-efficient time-domain CMOS smart temperature sensor using a curvature compensation oscillator for linearity enhancement with a -40 to 120 °C temperature range operability. The inverter-based smart temperature sensors can substantially reduce the cost and circuit complexity of integrated temperature sensors. However, a large curvature exists on the temperature-to-time transfer curve of the inverter-based delay line and results in poor linearity of the sensor output. For cost reduction and error improvement, a temperature-to-pulse generator composed of a ring oscillator and a time amplifier was used to generate a thermal sensing pulse with a sufficient width proportional to the absolute temperature (PTAT). Then, a simple but effective on-chip curvature compensation oscillator is proposed to simultaneously count and compensate the PTAT pulse with curvature for linearization. With such a simple structure, the proposed sensor possesses an extremely small area of 0.07 mm2 in a TSMC 0.35-mm CMOS 2P4M digital process. By using an oscillator-based scheme design, the proposed sensor achieves a fine resolution of 0.045 °C without significantly increasing the circuit area. With the curvature compensation, the inaccuracy of -1.2 to 0.2 °C is achieved in an operation range of -40 to 120 °C after two-point calibration for 14 packaged chips. The power consumption is measured as 23 mW at a sample rate of 10 samples/s.

  2. Universal linear-temperature resistivity: possible quantum diffusion transport in strongly correlated superconductors.

    Science.gov (United States)

    Hu, Tao; Liu, Yinshang; Xiao, Hong; Mu, Gang; Yang, Yi-Feng

    2017-08-25

    The strongly correlated electron fluids in high temperature cuprate superconductors demonstrate an anomalous linear temperature (T) dependent resistivity behavior, which persists to a wide temperature range without exhibiting saturation. As cooling down, those electron fluids lose the resistivity and condense into the superfluid. However, the origin of the linear-T resistivity behavior and its relationship to the strongly correlated superconductivity remain a mystery. Here we report a universal relation [Formula: see text], which bridges the slope of the linear-T-dependent resistivity (dρ/dT) to the London penetration depth λ L at zero temperature among cuprate superconductor Bi 2 Sr 2 CaCu 2 O 8+δ and heavy fermion superconductors CeCoIn 5 , where μ 0 is vacuum permeability, k B is the Boltzmann constant and ħ is the reduced Planck constant. We extend this scaling relation to different systems and found that it holds for other cuprate, pnictide and heavy fermion superconductors as well, regardless of the significant differences in the strength of electronic correlations, transport directions, and doping levels. Our analysis suggests that the scaling relation in strongly correlated superconductors could be described as a hydrodynamic diffusive transport, with the diffusion coefficient (D) approaching the quantum limit D ~ ħ/m*, where m* is the quasi-particle effective mass.

  3. Temperature-assisted solute focusing with sequential trap/release zones in isocratic and gradient capillary liquid chromatography: Simulation and experiment

    Science.gov (United States)

    Groskreutz, Stephen R.; Weber, Stephen G.

    2016-01-01

    In this work we characterize the development of a method to enhance temperature-assisted on-column solute focusing (TASF) called two-stage TASF. A new instrument was built to implement two-stage TASF consisting of a linear array of three independent, electronically controlled Peltier devices (thermoelectric coolers, TECs). Samples are loaded onto the chromatographic column with the first two TECs, TEC A and TEC B, cold. In the two-stage TASF approach TECs A and B are cooled during injection. TEC A is heated following sample loading. At some time following TEC A’s temperature rise, TEC B’s temperature is increased from the focusing temperature to a temperature matching that of TEC A. Injection bands are focused twice on-column, first on the initial TEC, e.g. single-stage TASF, then refocused on the second, cold TEC. Our goal is to understand the two-stage TASF approach in detail. We have developed a simple yet powerful digital simulation procedure to model the effect of changing temperature in the two focusing zones on retention, band shape and band spreading. The simulation can predict experimental chromatograms resulting from spatial and temporal temperature programs in combination with isocratic and solvent gradient elution. To assess the two-stage TASF method and the accuracy of the simulation well characterized solutes are needed. Thus, retention factors were measured at six temperatures (25–75 °C) at each of twelve mobile phases compositions (0.05–0.60 acetonitrile/water) for homologs of n-alkyl hydroxylbenzoate esters and n-alkyl p-hydroxyphenones. Simulations accurately reflect experimental results in showing that the two-stage approach improves separation quality. For example, two-stage TASF increased sensitivity for a low retention solute by a factor of 2.2 relative to single-stage TASF and 8.8 relative to isothermal conditions using isocratic elution. Gradient elution results for two-stage TASF were more encouraging. Application of two-stage TASF

  4. Growth and demography of the solitary scleractinian coral Leptopsammia pruvoti along a sea surface temperature gradient in the Mediterranean Sea.

    Directory of Open Access Journals (Sweden)

    Erik Caroselli

    Full Text Available The demographic traits of the solitary azooxanthellate scleractinian Leptopsammia pruvoti were determined in six populations on a sea surface temperature (SST gradient along the western Italian coasts. This is the first investigation of the growth and demography characteristics of an azooxanthellate scleractinian along a natural SST gradient. Growth rate was homogeneous across all populations, which spanned 7 degrees of latitude. Population age structures differed between populations, but none of the considered demographic parameters correlated with SST, indicating possible effects of local environmental conditions. Compared to another Mediterranean solitary scleractinian, Balanophyllia europaea, zooxanthellate and whose growth, demography and calcification have been studied in the same sites, L. pruvoti seems more tolerant to temperature increase. The higher tolerance of L. pruvoti, relative to B. europaea, may rely on the absence of symbionts, and thus the lack of an inhibition of host physiological processes by the heat-stressed zooxanthellae. However, the comparison between the two species must be taken cautiously, due to the likely temperature differences between the two sampling depths. Increasing research effort on determining the effects of temperature on the poorly studied azooxanthellate scleractinians may shed light on the possible species assemblage shifts that are likely to occur during the current century as a consequence of global climatic change.

  5. Impact of the temperature gradient between twin inclined jets and an oncoming crossflow on their resulting heat transfer

    International Nuclear Information System (INIS)

    Radhouane, Amina; Mahjoub, Nejla; Mhiri, Hatem; Le Palec, George; Bournot, Philippe

    2009-01-01

    This paper deals with the interaction of twin inclined jets in crossflow. The consideration of this particular configuration is of great interest due to its wide presence in various domains and applications and to its dependence in many parameters. These parameters may be geometric like the jets height, the jet nozzles separating distance, the jet nozzles, exit section, etc... It may also be based upon one of the reigning features like the velocity ratio, the temperature gradient, etc...The gradient between the jets and the crossflow temperatures is precisely the parameter we intend to handle in the present work due to its great relevance in several environmental concerns and in technical constraints as well. The evaluation of this parameter will be carried out numerically on the temperature distribution itself. This evaluation is likely to give a thorough idea about the cooling/heating process resulted from the jets interaction with the oncoming crossflow. Such an understanding is likely to give viable solutions to problems raised by this configuration like the acid rain engendered by too hot fumes or the deterioration of the combustors walls by too high temperature jets, etc...The numerically simulated model is based on the resolution of the Navier-Stokes equations by means of the finite volume method and the RSM second order turbulent model and is validated by confrontation to experimental data depicted on the same geometric replica

  6. Germination responses to current and future temperatures of four seeder shrubs across a latitudinal gradient in western Iberia.

    Science.gov (United States)

    Chamorro, Daniel; Luna, Belén; Moreno, José M

    2017-01-01

    Species differ in their temperature germination niche. Populations of a species may similarly differ across the distribution range of the species. Anticipating the impacts of climate variability and change requires understanding the differential sensitivity to germination temperature among and within species. Here we studied the germination responses of four hard-seeded Cistaceae seeders to a range of current and future temperatures. Seeds were collected at sites across the Iberian Peninsula and exposed or not exposed to a heat shock to break dormancy, then set to germinate under four temperature regimes. Temperatures were varied daily and seasonally, simulating the temperature range across the gradient, plus an increased temperature simulating future climate. Time to germination onset and cumulative germination at the end of each season were analyzed for the effects of temperature treatments, seasons, and local climate (temperature of the germination period, T gp ) at each site. T gp was a significant covariate of germination in all species but Cistus populifolius. Temperature treatments significantly affected Cistus ladanifer, C. salviifolius, and Halimium ocymoides. Germination occurred in simulated autumn conditions, with little germination occurring at later seasons, except in unheated seeds of H. ocymoides. Exposure to a heat shock changed the sensitivity to temperature treatments and the relationships with T gp . Germination responses to temperature differ not only among species but also within species across their latitudinal range. The responses were idiosyncratic and related to the local climate of the population. This germination variability complicates generalizing the impacts of climate variability and climate change. © 2017 Botanical Society of America.

  7. Advanced-fueled fusion reactors suitable for direct energy conversion. Project note: temperature-gradient enhancement of electrical fields in insulators

    International Nuclear Information System (INIS)

    Blum, A.S.; Mancebo, L.

    1976-01-01

    Direct energy converters for use on controlled fusion reactors utilize electrodes operated at elevated voltages and temperatures. The insulating elements that position these electrodes must support large voltages and under some circumstances large thermal gradients. It is shown that even modest thermal gradients can cause major alterations of the electric-field distribution within the insulating element

  8. Linear analysis using secants for materials with temperature dependent nonlinear elastic modulus and thermal expansion properties

    Science.gov (United States)

    Pepi, John W.

    2017-08-01

    Thermally induced stress is readily calculated for linear elastic material properties using Hooke's law in which, for situations where expansion is constrained, stress is proportional to the product of the material elastic modulus and its thermal strain. When material behavior is nonlinear, one needs to make use of nonlinear theory. However, we can avoid that complexity in some situations. For situations in which both elastic modulus and coefficient of thermal expansion vary with temperature, solutions can be formulated using secant properties. A theoretical approach is thus presented to calculate stresses for nonlinear, neo-Hookean, materials. This is important for high acuity optical systems undergoing large temperature extremes.

  9. The Systematic Bias of Ingestible Core Temperature Sensors Requires a Correction by Linear Regression

    Directory of Open Access Journals (Sweden)

    Andrew P. Hunt

    2017-04-01

    Full Text Available An accurate measure of core body temperature is critical for monitoring individuals, groups and teams undertaking physical activity in situations of high heat stress or prolonged cold exposure. This study examined the range in systematic bias of ingestible temperature sensors compared to a certified and traceable reference thermometer. A total of 119 ingestible temperature sensors were immersed in a circulated water bath at five water temperatures (TEMP A: 35.12 ± 0.60°C, TEMP B: 37.33 ± 0.56°C, TEMP C: 39.48 ± 0.73°C, TEMP D: 41.58 ± 0.97°C, and TEMP E: 43.47 ± 1.07°C along with a certified traceable reference thermometer. Thirteen sensors (10.9% demonstrated a systematic bias > ±0.1°C, of which 4 (3.3% were > ± 0.5°C. Limits of agreement (95% indicated that systematic bias would likely fall in the range of −0.14 to 0.26°C, highlighting that it is possible for temperatures measured between sensors to differ by more than 0.4°C. The proportion of sensors with systematic bias > ±0.1°C (10.9% confirms that ingestible temperature sensors require correction to ensure their accuracy. An individualized linear correction achieved a mean systematic bias of 0.00°C, and limits of agreement (95% to 0.00–0.00°C, with 100% of sensors achieving ±0.1°C accuracy. Alternatively, a generalized linear function (Corrected Temperature (°C = 1.00375 × Sensor Temperature (°C − 0.205549, produced as the average slope and intercept of a sub-set of 51 sensors and excluding sensors with accuracy outside ±0.5°C, reduced the systematic bias to < ±0.1°C in 98.4% of the remaining sensors (n = 64. In conclusion, these data show that using an uncalibrated ingestible temperature sensor may provide inaccurate data that still appears to be statistically, physiologically, and clinically meaningful. Correction of sensor temperature to a reference thermometer by linear function eliminates this systematic bias (individualized functions or ensures

  10. Non-linear temperature-dependent curvature of a phase change composite bimorph beam

    Science.gov (United States)

    Blonder, Greg

    2017-06-01

    Bimorph films curl in response to temperature. The degree of curvature typically varies in proportion to the difference in thermal expansion of the individual layers, and linearly with temperature. In many applications, such as controlling a thermostat, this gentle linear behavior is acceptable. In other cases, such as opening or closing a valve or latching a deployable column into place, an abrupt motion at a fixed temperature is preferred. To achieve this non-linear motion, we describe the fabrication and performance of a new bilayer structure we call a ‘phase change composite bimorph (PCBM)’. In a PCBM, one layer in the bimorph is a composite containing small inclusions of phase change materials. When the inclusions melt, their large (generally positive and  >1%) expansion coefficient induces a strong, reversible step function jump in bimorph curvature. The measured jump amplitude and thermal response is consistent with theory, and can be harnessed by a new class of actuators and sensors.

  11. Interactive Influence on Void Swelling in 300 Series Stainless Steels of Coupled Gradients in Temperature and DPA Rate

    International Nuclear Information System (INIS)

    Garner, F.

    2007-01-01

    Full text of publication follows: Recently, experimental evidence has accumulated that demonstrates that the dependence of swelling in austenitic steels on dpa rate has been strongly underestimated. In development of swelling correlations for both fusion and fission reactor applications the dpa rate is frequently but inadvertently incorporated into the temperature dependence. This inability to separate the separate dependencies of dpa rate and temperature is closely associated with the coupling of gradients in neutron flux-spectra and irradiation temperature along the axial length of components, especially for relatively small cores. In order to demonstrate the separate action of dpa rate and temperature, previously unpublished swelling data are presented from hexagonal ducts, fuel pins and pressurized tubes irradiated in EBR-II, all possessing both axial and radial gradients in dpa rate. Annealed AISI 304 components were chosen to avoid complications of precipitation found in other alloys such as AISI 316 or PCA. Since this steel never develops multiple-peak swelling behavior and experiences very little precipitation at high dpa rates, it use in this effort is ideal for separation of environmental variables. It is demonstrated that the transient regime of void selling is increased by increasing dpa rate and by decreasing temperature. It is also shown that the combined effect of dpa rate and temperature distribution along the length of any given structural component produces a well defined, scatter-free 'swelling loop' vs. dpa that uniquely allows estimation and separation of the separate dependencies of swelling on temperature and dpa rate. One consequence of the derived flux dependence is that components subject to a dpa rate gradient in general suffer much less distortion than predicted by equations that do not explicitly incorporate a dependence on dpa rate. It is also shown that over a wide range of irradiation conditions the terminal steady-state swelling

  12. Effect of a temperature gradient on Sphagnum fallax and its associated living microbial communities: a study under controlled conditions.

    Science.gov (United States)

    Jassey, Vincent E J; Gilbert, Daniel; Binet, Philippe; Toussaint, Marie-Laure; Chiapusio, Geneviève

    2011-03-01

    Microbial communities living in Sphagnum are known to constitute early indicators of ecosystem disturbances, but little is known about their response (including their trophic relationships) to climate change. A microcosm experiment was designed to test the effects of a temperature gradient (15, 20, and 25°C) on microbial communities including different trophic groups (primary producers, decomposers, and unicellular predators) in Sphagnum segments (0-3 cm and 3-6 cm of the capitulum). Relationships between microbial communities and abiotic factors (pH, conductivity, temperature, and polyphenols) were also studied. The density and the biomass of testate amoebae in Sphagnum upper segments increased and their community structure changed in heated treatments. The biomass of testate amoebae was linked to the biomass of bacteria and to the total biomass of other groups added and, thus, suggests that indirect effects on the food web structure occurred. Redundancy analysis revealed that microbial assemblages differed strongly in Sphagnum upper segments along a temperature gradient in relation to abiotic factors. The sensitivity of these assemblages made them interesting indicators of climate change. Phenolic compounds represented an important explicative factor in microbial assemblages and outlined the potential direct and (or) indirect effects of phenolics on microbial communities.

  13. Limited tolerance by insects to high temperatures across tropical elevational gradients and the implications of global warming for extinction.

    Science.gov (United States)

    García-Robledo, Carlos; Kuprewicz, Erin K; Staines, Charles L; Erwin, Terry L; Kress, W John

    2016-01-19

    The critical thermal maximum (CTmax), the temperature at which motor control is lost in animals, has the potential to determine if species will tolerate global warming. For insects, tolerance to high temperatures decreases with latitude, suggesting that similar patterns may exist along elevational gradients as well. This study explored how CTmax varies among species and populations of a group of diverse tropical insect herbivores, the rolled-leaf beetles, across both broad and narrow elevational gradients. Data from 6,948 field observations and 8,700 museum specimens were used to map the elevational distributions of rolled-leaf beetles on two mountains in Costa Rica. CTmax was determined for 1,252 individual beetles representing all populations across the gradients. Initial morphological identifications suggested a total of 26 species with populations at different elevations displaying contrasting upper thermal limits. However, compared with morphological identifications, DNA barcodes (cytochrome oxidase I) revealed significant cryptic species diversity. DNA barcodes identified 42 species and haplotypes across 11 species complexes. These 42 species displayed much narrower elevational distributions and values of CTmax than the 26 morphologically defined species. In general, species found at middle elevations and on mountaintops are less tolerant to high temperatures than species restricted to lowland habitats. Species with broad elevational distributions display high CTmax throughout their ranges. We found no significant phylogenetic signal in CTmax, geography, or elevational range. The narrow variance in CTmax values for most rolled-leaf beetles, especially high-elevation species, suggests that the risk of extinction of insects may be substantial under some projected rates of global warming.

  14. Toward the existence of ultrafast diffusion paths in Cu with a gradient microstructure: Room temperature diffusion of Ni

    Science.gov (United States)

    Wang, Z. B.; Lu, K.; Wilde, G.; Divinski, S.

    2008-09-01

    Room temperature diffusion of Ni63 in Cu with a gradient microstructure prepared by surface mechanical attrition treatment (SMAT) was investigated by applying the radiotracer technique. The results reveal significant penetration of Ni into the nanostructured layer. The relevant diffusivity is higher than that along the conventional high-angle grain boundaries by about six orders of magnitude. This behavior is associated with a higher energy state of internal interfaces produced via plastic deformation. The diffusivity in the top surface layer is somewhat smaller than that in the subsurface layer. This fact is related to nanotwin formation in the former during SMAT.

  15. The influence of an interfacial heat release on nonlinear convective regimes under the action of an imposed temperature gradient

    Energy Technology Data Exchange (ETDEWEB)

    Simanovskii, Ilya B, E-mail: cesima@tx.technion.ac.il [Department of Mathematics, Technion—Israel Institute of Technology, 32000 Haifa (Israel)

    2016-12-15

    The influence of an interfacial heat release on nonlinear convective regimes, developed under the action of an imposed temperature gradient in the 47v2 silicone oil–water system, has been studied. Two types of boundary conditions—periodic boundary conditions and rigid heat-insulated lateral walls—have been considered. Transitions between the flows with different spatial structures have been investigated. It is shown that the presence of an interfacial heat release can change the sequence of bifurcations and can lead to the appearance of new oscillatory regimes. The period-three phase trajectory has been found. (paper)

  16. The Systematic Bias of Ingestible Core Temperature Sensors Requires a Correction by Linear Regression.

    Science.gov (United States)

    Hunt, Andrew P; Bach, Aaron J E; Borg, David N; Costello, Joseph T; Stewart, Ian B

    2017-01-01

    An accurate measure of core body temperature is critical for monitoring individuals, groups and teams undertaking physical activity in situations of high heat stress or prolonged cold exposure. This study examined the range in systematic bias of ingestible temperature sensors compared to a certified and traceable reference thermometer. A total of 119 ingestible temperature sensors were immersed in a circulated water bath at five water temperatures (TEMP A: 35.12 ± 0.60°C, TEMP B: 37.33 ± 0.56°C, TEMP C: 39.48 ± 0.73°C, TEMP D: 41.58 ± 0.97°C, and TEMP E: 43.47 ± 1.07°C) along with a certified traceable reference thermometer. Thirteen sensors (10.9%) demonstrated a systematic bias > ±0.1°C, of which 4 (3.3%) were > ± 0.5°C. Limits of agreement (95%) indicated that systematic bias would likely fall in the range of -0.14 to 0.26°C, highlighting that it is possible for temperatures measured between sensors to differ by more than 0.4°C. The proportion of sensors with systematic bias > ±0.1°C (10.9%) confirms that ingestible temperature sensors require correction to ensure their accuracy. An individualized linear correction achieved a mean systematic bias of 0.00°C, and limits of agreement (95%) to 0.00-0.00°C, with 100% of sensors achieving ±0.1°C accuracy. Alternatively, a generalized linear function (Corrected Temperature (°C) = 1.00375 × Sensor Temperature (°C) - 0.205549), produced as the average slope and intercept of a sub-set of 51 sensors and excluding sensors with accuracy outside ±0.5°C, reduced the systematic bias to Correction of sensor temperature to a reference thermometer by linear function eliminates this systematic bias (individualized functions) or ensures systematic bias is within ±0.1°C in 98% of the sensors (generalized function).

  17. Cross-sectional area of the murine aorta linearly increases with increasing core body temperature.

    Science.gov (United States)

    Crouch, A Colleen; Manders, Adam B; Cao, Amos A; Scheven, Ulrich M; Greve, Joan M

    2017-11-06

    The cardiovascular (CV) system plays a vital role in thermoregulation. To date, the response of core vasculature to increasing core temperature has not been adequately studied in vivo. Our objective was to non-invasively quantify the arterial response in murine models due to increases in body temperature, with a focus on core vessels of the torso and investigate whether responses were dependent on sex or age. Male and female, adult and aged mice were anaesthetised and underwent magnetic resonance imaging (MRI). Data were acquired from the circle of Willis (CoW), heart, infrarenal aorta and peripheral arteries at core temperatures of 35, 36, 37 and 38 °C (±0.2 °C). Vessels in the CoW did not change. Ejection fraction decreased and cardiac output (CO) increased with increasing temperature in adult female mice. Cross-sectional area of the aorta increased significantly and linearly with temperature for all groups, but at a diminished rate for aged animals (p temperature are biologically important because they may affect conductive and convective heat transfer. Leveraging non-invasive methodology to quantify sex and age dependent vascular responses due to increasing core temperature could be combined with bioheat modelling in order to improve understanding of thermoregulation.

  18. Scanning tunneling microscope-quartz crystal microbalance study of temperature gradients at an asperity contact.

    Science.gov (United States)

    Pan, L; Krim, J

    2013-01-01

    Investigations of atomic-scale friction frequently involve setups where a tip and substrate are initially at different temperatures. The temperature of the sliding interface upon contact has thus become a topic of interest. A method for detecting initial tip-sample temperature differences at an asperity contact is described, which consists of a scanning tunneling microscope (STM) tip in contact with the surface electrode of a quartz crystal microbalance (QCM). The technique makes use of the fact that a QCM is extremely sensitive to abrupt changes in temperature. In order to demonstrate the technique's capabilities, QCM frequency shifts were recorded for varying initial tip-substrate temperature differences as an STM tip was brought into and out of contact. The results are interpreted within the context of a recent model for thermal heat conduction at an asperity contact, and it is concluded that the transient frequency response is attributable to small changes in temperature close to the region of contact rather than a change in the overall temperature of the QCM itself. For the assumed model parameters, the results moreover reveal substantial temperature discontinuities at the boundary between the tip and the sample, for example, on the order of 10-15 °C for initial temperature differences of 20 °C.

  19. Numerical simulation of bubble behavior in subcooled flow boiling under velocity and temperature gradient

    International Nuclear Information System (INIS)

    Bahreini, Mohammad; Ramiar, Abas; Ranjbar, Ali Akbar

    2015-01-01

    Highlights: • Condensing bubble is numerically investigated using VOF model in OpenFOAM package. • Bubble mass reduces as it goes through condensation and achieves higher velocities. • At a certain time the slope of changing bubble diameter with time, varies suddenly. • Larger bubbles experience more lateral migration to higher velocity regions. • Bubbles migrate back to a lower velocity region for higher liquid subcooling rates. - Abstract: In this paper, numerical simulation of the bubble condensation in the subcooled boiling flow is performed. The interface between two-phase is tracked via the volume of fluid (VOF) method with continuous surface force (CSF) model, implemented in the open source OpenFOAM CFD package. In order to simulate the condensing bubble with the OpenFOAM code, the original energy equation and mass transfer model for phase change have been modified and a new solver is developed. The Newtonian flow is solved using the finite volume scheme based on the pressure implicit with splitting of operators (PISO) algorithm. Comparison of the simulation results with previous experimental data revealed that the model predicted well the behavior of the actual condensing bubble. The bubble lifetime is almost proportional to bubble initial size and is prolonged by increasing the system pressure. In addition, the initial bubble size, subcooling of liquid and velocity gradient play an important role in the bubble deformation behavior. Velocity gradient makes the bubble move to the higher velocity region and the subcooling rate makes it to move back to the lower velocity region.

  20. Numerical simulation of bubble behavior in subcooled flow boiling under velocity and temperature gradient

    Energy Technology Data Exchange (ETDEWEB)

    Bahreini, Mohammad, E-mail: m.bahreini1990@gmail.com; Ramiar, Abas, E-mail: aramiar@nit.ac.ir; Ranjbar, Ali Akbar, E-mail: ranjbar@nit.ac.ir

    2015-11-15

    Highlights: • Condensing bubble is numerically investigated using VOF model in OpenFOAM package. • Bubble mass reduces as it goes through condensation and achieves higher velocities. • At a certain time the slope of changing bubble diameter with time, varies suddenly. • Larger bubbles experience more lateral migration to higher velocity regions. • Bubbles migrate back to a lower velocity region for higher liquid subcooling rates. - Abstract: In this paper, numerical simulation of the bubble condensation in the subcooled boiling flow is performed. The interface between two-phase is tracked via the volume of fluid (VOF) method with continuous surface force (CSF) model, implemented in the open source OpenFOAM CFD package. In order to simulate the condensing bubble with the OpenFOAM code, the original energy equation and mass transfer model for phase change have been modified and a new solver is developed. The Newtonian flow is solved using the finite volume scheme based on the pressure implicit with splitting of operators (PISO) algorithm. Comparison of the simulation results with previous experimental data revealed that the model predicted well the behavior of the actual condensing bubble. The bubble lifetime is almost proportional to bubble initial size and is prolonged by increasing the system pressure. In addition, the initial bubble size, subcooling of liquid and velocity gradient play an important role in the bubble deformation behavior. Velocity gradient makes the bubble move to the higher velocity region and the subcooling rate makes it to move back to the lower velocity region.

  1. Responses of Microbial Community Composition to Temperature Gradient and Carbon Steel Corrosion in Production Water of Petroleum Reservoir

    Directory of Open Access Journals (Sweden)

    Xiao-Xiao Li

    2017-12-01

    Full Text Available Oil reservoir production systems are usually associated with a temperature gradient and oil production facilities frequently suffer from pipeline corrosion failures. Both bacteria and archaea potentially contribute to biocorrosion of the oil production equipment. Here the response of microbial populations from the petroleum reservoir to temperature gradient and corrosion of carbon steel coupons were investigated under laboratory condition. Carbon steel coupons were exposed to production water from a depth of 1809 m of Jiangsu petroleum reservoir (China and incubated for periods of 160 and 300 days. The incubation temperatures were set at 37, 55, and 65°C to monitoring mesophilic, thermophilic and hyperthermophilic microorganisms associated with anaerobic carbon steel corrosion. The results showed that corrosion rate at 55°C (0.162 ± 0.013 mm year-1 and 37°C (0.138 ± 0.008 mm year-1 were higher than that at 65°C (0.105 ± 0.007 mm year-1, and a dense biofilm was observed on the surface of coupons under all biotic incubations. The microbial community analysis suggests a high frequency of bacterial taxa associated with families Porphyromonadaceae, Enterobacteriaceae, and Spirochaetaceae at all three temperatures. While the majority of known sulfate-reducing bacteria, in particular Desulfotignum, Desulfobulbus and Desulfovibrio spp., were predominantly observed at 37°C; Desulfotomaculum spp., Thermotoga spp. and Thermanaeromonas spp. as well as archaeal members closely related to Thermococcus and Archaeoglobus spp. were substantially enriched at 65°C. Hydrogenotrophic methanogens of the family Methanobacteriaceae were dominant at both 37 and 55°C; acetoclastic Methanosaeta spp. and methyltrophic Methanolobus spp. were enriched at 37°C. These observations show that temperature changes significantly alter the microbial community structure in production fluids and also affected the biocorrosion of carbon steel under anaerobic conditions.

  2. Nonlinear features of the electron temperature gradient mode and electron thermal transport in tokamaks

    International Nuclear Information System (INIS)

    Kaw, P.K.; Singh, R.; Weiland, J.G.

    2001-01-01

    Analytical investigations of several linear and nonlinear features of ETG turbulence are reported. The linear theory includes effects such as finite beta induced electromagnetic shielding, coupling to electron magnetohydrodynamic modes like whistlers etc. It is argued that nonlinearly, turbulence and transport are dominated by radially extended modes called 'streamers'. A nonlinear mechanism generating streamers based on a modulational instability theory of the ETG turbulence is also presented. The saturation levels of the streamers using a Kelvin Helmholtz secondary instability mechanism are calculated and levels of the electron thermal transport due to streamers are estimated. (author)

  3. NEW REACTOR DESIGN AND ANALYSIS OF NON LINEAR VIBRATIONS OF DOUBLY CURVED SHALLOW SHELL UNDER A THERMAL GRADIENT

    International Nuclear Information System (INIS)

    Chanda, S.

    2004-01-01

    The present study concerns with the effects of material orthotropy,curvature, shear ratio and circumferential modulus under the influence of a temperature distribution throughout the shell structure. Here analysis is restricted to the study of nonlinear vibration of a doubly curved shell structure considering the periodic response of a simple bending mode due to curtailment of pages. Solutions of the problems with suitable illustrations are also presented

  4. Non-linear extension of FFT-based methods accelerated by conjugate gradients to evaluate the mechanical behavior of composite materials

    International Nuclear Information System (INIS)

    Gelebart, Lionel; Mondon-Cancel, Romain

    2013-01-01

    FFT-based methods are used to solve the problem of a heterogeneous unit-cell submitted to periodic boundary conditions, which is of a great interest in the context of numerical homogenization. Recently (in 2010), Brisard and Zeman proposed simultaneously to use Conjugate Gradient based solvers in order to improve the convergence properties (when compared to the basic scheme, proposed initially in 1994). The purpose of the paper is to extend this idea to the case of non-linear behaviors. The proposed method is based on a Newton-Raphson algorithm and can be applied to various kinds of behaviors (time dependant or independent, with or without internal variables) through a conventional integration procedure as used in finite element codes. It must be pointed out that this approach is fundamentally different from the traditional FFT-based approaches which rely on a fixed-point algorithm (e.g. basic scheme, Eyre and Milton accelerated scheme, Augmented Lagrangian scheme, etc.). The method is compared to the basic scheme on the basis of a simple application (a linear elastic spherical inclusion within a non-linear elastic matrix): a low sensitivity to the reference material and an improved efficiency, for a soft or a stiff inclusion, are observed. At first proposed for a prescribed macroscopic strain, the method is then extended to mixed loadings. (authors)

  5. Measurement of the temperature Gradient in air using Talbot effect and Moire technique

    International Nuclear Information System (INIS)

    Tavassoly, M.T.; Rasouli, S.

    2000-01-01

    In this paper we have exploited the self-imaging or Talbot effect and Moire technique to measure the temperature distribution in the air enclosed between two paral led plates of different temperatures. This study shows that for the plates width of 60 cm a change of 1 d egC in 1 cm can be easily detected

  6. Layout-Driven Post-Placement Techniques for Temperature Reduction and Thermal Gradient Minimization

    DEFF Research Database (Denmark)

    Liu, Wei; Calimera, Andrea; Macii, Alberto

    2013-01-01

    With the continuing scaling of CMOS technology, on-chip temperature and thermal-induced variations have become a major design concern. To effectively limit the high temperature in a chip equipped with a cost-effective cooling system, thermal specific approaches, besides low power techniques, are ...

  7. Ultra-high temperature chirped fiber Bragg gratings produced by gradient stretching of viscoelastic silica.

    Science.gov (United States)

    Gao, Shaorui; Canning, John; Cook, Kevin

    2013-12-15

    By applying a suitable quadratic temperature distribution at a temperature within the viscoelastic softening region for silica, a regenerated chirped grating with bandwidth of 9.8 nm is produced from a uniform grating using post strain-tuning under load. Simulated and experimental results are in good agreement.

  8. Central-peripheral temperature gradient: an early diagnostic sign of late-onset neonatal sepsis in very low birth weight infants.

    Science.gov (United States)

    Leante-Castellanos, José Luis; Lloreda-García, José M; García-González, Ana; Llopis-Baño, Caridad; Fuentes-Gutiérrez, Carmen; Alonso-Gallego, José Ángel; Martínez-Gimeno, Antonio

    2012-04-22

    We assessed central-peripheral temperature gradient alteration for the diagnosis of late-onset neonatal sepsis and compared earliness detection of this sign with altered blood cell count and C-reactive protein. Thirty-one preterm babies (peripheral) temperatures were continuously monitored with a thermal probe (ThermoTracer; Dräger Medical AGF & Co. KgaA, Lübeck, Germany) adjusting incubator air temperature for a thermal gradient peripheral temperature alteration was defined as a thermal gradient >2°C that could not be corrected with protocolized air temperature modifications. Proven (positive blood culture) sepsis and probable late-onset sepsis were recorded. Late-onset sepsis was diagnosed in 11 neonates (proven, 9; probable, 2). Thermal gradient alteration was present in 12 cases, in association with the onset of sepsis in 10 and concomitantly with a ductus arteriosus and stage 1 necrotizing enterocolitis in 2. Thermal gradient alteration had a sensitivity of 90.9% [95% confidence interval (CI), 62.3-98.4] and specificity of 90% (95% CI, 69.9-97.2%), and in 80% of cases, it occurred before abnormal laboratory findings. Central-peripheral temperature gradient monitoring is a feasible, non-invasive, and simple tool easily applicable in daily practice. An increase of >2°C showed a high-sensitivity and specificity for the diagnosis of late-onset sepsis.

  9. Graphical assessment of the linear contact steel on composite material at high temperature and pressure

    Science.gov (United States)

    Rus, Dorin; Florescu, Virgil; Bausic, Florin; Ursache, Robert; Sasu, Anca

    2018-01-01

    In this article we have tried to present a graphical assessment of the dry linear contact for composite materials reinforced with glass fibers as well as of the influence of the sliding speed, load and friction coefficient. Perpendicular loads, the contact temperature and the wear of the metal surface were recorded. The wear volume was calculated using the Archard relationship. Using the Archard relationship, the width of trace can be calculated in 3 locations. Numerous experimental trials were performed in connection to the wear of the metal surface, the contact temperature and the value of the friction coefficient. A connection between the evolution of the wear process and the dependency on the contact temperature and friction coefficient can be observed.

  10. Experimental investigation of linear thermal expansion of pyrolytic graphite at high temperatures

    Science.gov (United States)

    Senchenko, V. N.; Belikov, R. S.

    2017-11-01

    Using the previously described [1] experimental setup for investigation of the thermophysical properties of refractory materials under high pressure and temperature a few experiments with pyrolytic graphite were carried out. The density of the material was equal to 2.18 g/cm3. Experimental data on the linear thermal expansion in the perpendicular and parallel to the basal plane direction were obtained. Thermal expansion in the perpendicular to the basal plane direction during the heating from room temperature up to the melting point was 16.4 ± 1.6%. The results obtained allow calculating the density of pyrolytic graphite in the wide range of high temperatures up to the melting point.

  11. Thermographic visualization of the superficial vein and extravasation using the temperature gradient produced by the injected materials

    Science.gov (United States)

    Nakamura, Katsumasa; Sasaki, Tomonari; Ohga, Saiji; Yoshitake, Tadamasa; Terashima, Kotaro; Asai, Kaori; Matsumoto, Keiji; Shinoto, Makoto; Shioyama, Yoshiyuki; Nishie, Akihoro; Honda, Hiroshi

    2014-11-01

    There are few effective methods to detect or prevent the extravasation of injected materials such as chemotherapeutic agents and radiographic contrast materials. To investigate whether a thermographic camera could visualize the superficial vein and extravasation using the temperature gradient produced by the injected materials, an infrared thermographic camera with a high resolution of 0.04 °C was used. At the room temperature of 26 °C, thermal images and the time course of the temperature changes of a paraffin phantom embedded with rubber tubes (diameter 3.2 mm, wall thickness 0.8 mm) were evaluated after the tubes were filled with water at 15 °C or 25 °C. The rubber tubes were embedded at depths of 0 mm, 1.5 mm, and 3.0 mm from the surface of the phantom. Temperature changes were visualized in the areas of the phantom where the tubes were embedded. In general, changes were more clearly detected when greater temperature differences between the phantom and the water and shallower tube locations were employed. The temperature changes of the surface of a volunteer's arm were also examined after a bolus injection of physiological saline into the dorsal hand vein or the subcutaneous space. The injection of 5 ml room-temperature (26 °C) saline into the dorsal hand vein enabled the visualization of the vein. When 3 ml of room-temperature saline was injected through the vein into the subcutaneous space, extravasation was detected without any visualization of the vein. The subtraction image before and after the injection clearly showed the temperature changes induced by the saline. Thermography may thus be useful as a monitoring system to detect extravasation of the injected materials.

  12. Effect of linear temperature dependence of thermoelectric properties on energy conversion efficiency

    International Nuclear Information System (INIS)

    Yamashita, Osamu

    2008-01-01

    New thermal rate equations were developed by taking the temperature dependences of the electrical resistivity ρ and thermal conductivity κ of the thermoelectric (TE) materials into the thermal rate equations on the assumption that they vary linearly with temperature T. The relative energy conversion efficiency η/η 0 for a single TE element was formulated by approximate analysis, where η and η 0 are the energy conversion efficiencies derived from the new and conventional thermal rate equations, respectively. Applying it to Si-Ge alloys, the temperature dependence of ρ is stronger than that of κ, so the former has a more significant effect on η/η 0 than the latter. However, the degree of contribution from both of them to η/η 0 was a little lower than 1% at the temperature difference ΔT of 600 K. When the temperature dependence of κ was increased to become equal to that of ρ, however, it was found that η/η 0 is increased by about 10% at ΔT = 600 K. It is clarified here that the temperature dependences of ρ and κ are also important factors for an improvement in η

  13. Low temperature diamond growth by linear antenna plasma CVD over large area

    International Nuclear Information System (INIS)

    Izak, Tibor; Babchenko, Oleg; Potocky, Stepan; Kromka, Alexander; Varga, Marian

    2012-01-01

    Recently, there is a great effort to increase the deposition area and decrease the process temperature for diamond growth which will enlarge its applications including use of temperature sensitive substrates. In this work, we report on the large area (20 x 30 cm 2 ) and low temperature (250 C) polycrystalline diamond growth by pulsed linear antenna microwave plasma system. The influence of substrate temperature varied from 250 to 680 C, as controlled by the table heater and/or by microwave power, is studied. It was found that the growth rate, film morphology and diamond to non-diamond phases (sp 3 /sp 2 carbon bonds) are influenced by the growth temperature, as confirmed by SEM and Raman measurements. The surface chemistry and growth processes were studied in terms of activation energies (E a ) calculated from Arrhenius plots. The activation energies of growth processes were very low (1.7 and 7.8 kcal mol -1 ) indicating an energetically favourable growth process from the CO 2 -CH 4 -H 2 gas mixture. In addition, from activation energies two different growth regimes were observed at low and high temperatures, indicating different growth mechanism. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  14. Application of heat pump by using the earth temperature gradient for winter heating and summer cooling

    International Nuclear Information System (INIS)

    Gacevski, Marijan; Tanev, Pepi

    2003-01-01

    Because of the rapid technique development as well as modern human life, in order to satisfy the energy needs it is necessary to use a new apparatus and devices. In this manner, the electric power consumption, especially for heating and cooling, rapidly increases. One of the possible ways to reduce the consumption of electric energy for heating and cooling is that, to use heat pumps. In this paper a heat pump that uses the heat of the earth by a horizontal polyethylene pipe heat exchanger is proposed. Also, all parameters are examined and comparison with already existing ones is done. The heat gradient of the earth in spite of saving electrical energy is analyzed as well. (Original)

  15. Bending of fuel fast reactor fuel elements under action of non-uniform temperature gradients and radiation-induced swelling

    International Nuclear Information System (INIS)

    Kulikov, I.S.; Tverkovkin, B.E.; Karasik, E.A.

    1984-01-01

    The bending of rod fuel elements in gas-cooled fast reactors under the action of temperature gradients radiation-induced swelling non-uniform over the perimeter of fuel cans is evaluated. It is pointed out that the radiation-induced swelling gives the main contribution to the bending of fuel elements. Calculated data on the bending of the corner fuel element in the assembly of the fast reactor with dissociating gas coolant are given. With the growth of temperature difference over the perimeter, the bending moment and deformation increase, resulting in the increase of axial stresses. The obtained data give the basis for accounting the stresses connected with thermal and radiation bending when estimating serviceability of fuel elements in gas cooled fast reactors. Fuel element bending must be also taken into account when estimating the thermal hydrualic properties

  16. Microbiology of Low Temperature Seafloor Deposits Along a Geochemical Gradient in Lau Basin

    Science.gov (United States)

    sylvan, J. B.; Sia, T. Y.; Haddad, A.; Briscoe, L. J.; Girguis, P. R.; Edwards, K. J.

    2011-12-01

    The East Lau Spreading Center (ELSC) and Valu Fa Ridge comprise a ridge segment in the southwest Pacific Ocean where rapid transitions in the underlying mantle lenses manifest themselves by gradients in seafloor rock geochemistry. At the spreading center in the north, basaltic host rock extrudes while the influence of subduction in the south creates mainly basaltic andesite host rock. A contuous gradient between these two end members exists along the spreading center. We studied the geology and microbial diversity of three silicate rock samples and three inactive sulfide chimney samples collected along the ELSC and Valu Fa Ridge by X-ray diffraction, elemental analysis, thin section analysis and construction of bacterial 16S rRNA clone libraries. Here, we discuss the geological and biological differences between the collected rocks. We found that the bacterial community composition changed as the host rock mineralogy and chemistry changed from north to south. Also, the bacterial community composition on the silicates is distinct from those on the inactive chimneys, and the interior conduit of an inactive chimney hosts a very different community from the exterior. Basalt from the northern end of the ELSC had high proportions of Alphaproteobacteria and Bacteroidetes. These proportions decreased on the silicates collected further south. Epsilonproteobacteria were also present on the basalt, decreased further south and were absent on the basaltic andesite. Conversely, basaltic andesite rocks from the southern end had high proportions of Chloroflexi, which decreased further north and were absent on basalt. The exterior of inactive sulfide structures were dominated by lineages of sulfur oxidizing Gammaproteobacteria and Epsilonproteobacteria and were less diverse than those on the silicates. The interior of one chimney was dominated by sulfate-reducing Deltaproteobacteria and was the least diverse of all samples. These results support the Mantle to Microbe hypothesis in

  17. Generation of zonal flows by ion-temperature-gradient and related modes in the presence of neoclassical viscosity

    International Nuclear Information System (INIS)

    Mikhailovskii, A.B.; Smolyakov, A.I.; Kovalishen, E.A.; Shirokov, M.S.; Tsypin, V.S.; Galvao, R.M.O.

    2006-01-01

    Generation of zonal flows by primary waves that are more complex than those considered in the standard drift-wave model is studied. The effects of parallel ion velocity and ion perturbed temperature and the part of the nonlinear mode interaction proportional to the ion pressure are taken into account. This generalization of the standard model allows the analysis of generation of zonal flows by a rather wide variety of primary modes, including ion temperature gradients, ion sound, electron drift, and drift-sound modes. All the listed effects, which are present in the slab geometry model, are complemented by effects of neoclassical viscosity inherent to toroidal geometry. We show that the electrostatic potential of secondary small-scale modes is expressed in terms of a nonlinear shift of the mode frequency and interpret this shift in terms of the perpendicular and parallel Doppler, nonlinear Kelvin-Helmholtz (KH), and nonlinear ion-pressure-gradient effects. A basic assumption of our model is that the primary modes form a nondispersive monochromatic wave packet. The analysis of zonal-flow generation is performed following an approach similar to that of convective-cell theory. Neoclassical zonal-flow instabilities are separated into fast and slow ones, and these are divided into two varieties. The first of them is independent of the nonlinear KH effect, while the second one is sensitive to it

  18. Critical temperature gradient length signatures in heat wave propagation across internal transport barriers in the Joint European Torus

    International Nuclear Information System (INIS)

    Casati, Alessandro; Mantica, P.; Eester, D. van; Hawkes, N.; De Vries, P.; Imbeaux, F.; Joffrin, E.; Marinoni, A.; Ryter, F.; Salmi, A.; Tala, T.

    2007-01-01

    New results on electron heat wave propagation using ion cyclotron resonance heating power modulation in the Joint European Torus (JET) [P. H. Rebut et al., Nucl. Fusion 25, 1011 (1985)] plasmas characterized by internal transport barriers (ITBs) are presented. The heat wave generated outside the ITB, and traveling across it, always experiences a strong damping in the ITB layer, demonstrating a low level of transport and loss of stiffness. In some cases, however, the heat wave is strongly inflated in the region just outside the ITB, showing features of convective-like behavior. In other cases, a second maximum in the perturbation amplitude is generated close to the ITB foot. Such peculiar types of behavior can be explained on the basis of the existence of a critical temperature gradient length for the onset of turbulent transport. Convective-like features appear close to the threshold (i.e., just outside the ITB foot) when the value of the threshold is sufficiently high, with a good match with the theoretical predictions for the trapped electron mode threshold. The appearance of a second maximum is due to the oscillation of the temperature profile across the threshold in the case of a weak ITB. Simulations with an empirical critical gradient length model and with the theory based GLF23 [R. E. Waltz et al., Phys. Plasmas, 4, 2482 (1997)] model are presented. The difference with respect to previous results of cold pulse propagation across JET ITBs is also discussed

  19. ZZ POINT-2007, linearly interpolable ENDF/B-VII.0 data for 14 temperatures

    International Nuclear Information System (INIS)

    Cullen, Dermott E.

    2007-01-01

    A - Description or function: The ENDF/B data library, ENDF/B-VII.0 was processed into the form of temperature dependent cross sections. The original evaluated data include cross sections represented in the form of a combination of resonance parameters and/or tabulated energy dependent cross sections, nominally at 0 Kelvin temperature. For use in applications, these ENDF/B-VII.0 data were processed into the form of temperature dependent cross sections at eight temperatures: 0, 300, 600, 900, 1200, 1500, 1800 and 2100 Kelvin. It has also been processed to six astrophysics like temperatures: 0.1, 1, 10, 100 eV, 1 and 10 keV. At each temperature the cross sections are tabulated and linearly interpolable in energy with a tolerance of 0.1 %. POINT 2007 contains all of the evaluations in the ENDF/B-VII general purpose library, which contains 78 new evaluations + 315 old ones: total 393 nuclides. It also includes 16 new elemental evaluations replaced by isotopic evaluations + 19 old ones. No special purpose ENDF/B-VII libraries, such as fission products, thermal scattering, photon interaction data are included. These evaluations include all cross sections over the energy range 10 e-5 eV to at least 20 MeV. The list of nuclides is indicated. B - Methods: The PREPRO 2007 code system was used to process the ENDF/B data. Listed below are the steps, including the PREPRO2007 codes, which were used to process the data in the order in which the codes were run. 1) Linearly interpolable, tabulated cross sections (LINEAR) 2) Including the resonance contribution (RECENT) 3) Doppler broaden all cross sections to temperature (SIGMA1) 4) Check data, define redundant cross sections by summation (FIXUP) 5) Update evaluation dictionary in MF/MT=1/451 (DICTIN) C - Restrictions: Due to recent changes in ENDF-6 Formats and Procedures only the latest version of the ENDF/B Pre-processing codes, namely PREPRO 2007, can be used to accurately process all current ENDF/B-VII evaluations. The use of

  20. Microzooplankton growth rates examined across a temperature gradient in the Barents Sea.

    Science.gov (United States)

    Franzè, Gayantonia; Lavrentyev, Peter J

    2014-01-01

    Growth rates (µ) of abundant microzooplankton species were examined in field experiments conducted at ambient sea temperatures (-1.8-9.0°C) in the Barents Sea and adjacent waters (70-78.5°N). The maximum species-specific µ of ciliates and athecate dinoflagellates (0.33-1.67 d(-1) and 0.52-1.14 d(-1), respectively) occurred at temperatures below 5°C and exceeded the µmax predicted by previously published, laboratory culture-derived equations. The opposite trend was found for thecate dinoflagellates, which grew faster in the warmer Atlantic Ocean water. Mixotrophic ciliates and dinoflagellates grew faster than their heterotrophic counterparts. At sub-zero temperatures, microzooplankton µmax matched those predicted for phytoplankton by temperature-dependent growth equations. These results indicate that microzooplankton protists may be as adapted to extreme Arctic conditions as their algal prey.

  1. Study on the temperature gradient evolution of large size nonlinear crystal based on the fluid-solid coupling theory

    Science.gov (United States)

    Sun, F. Z.; Zhang, P.; Liang, Y. C.; Lu, L. H.

    2014-09-01

    In the non-critical phase-matching (NCPM) along the Θ =90° direction, ADP and DKDP crystals which have many advantages, including a large effective nonlinear optical coefficient, a small PM angular sensitivity and non beam walk-off, at the non-critical phase-matching become the competitive candidates in the inertial confinement fusion(ICF) facility, so the reasonable temperature control of crystals has become more and more important .In this paper, the fluid-solid coupling models of ADP crystal and DKDP crystal which both have anisotropic thermal conductivity in the states of vacuum and non-vacuum were established firstly, and then simulated using the fluid analysis software Fluent. The results through the analysis show that the crystal surface temperature distribution is a ring shape, the temperature gradients in the direction of the optical axis both the crystals are 0.02°C and 0.01°C due to the air, the lowest temperature points of the crystals are both at the center of surface, and the temperatures are lower than 0.09°C and 0.05°C compared in the vacuum and non-vacuum environment, then propose two designs for heating apparatus.

  2. Magic angle spinning NMR below 6 K with a computational fluid dynamics analysis of fluid flow and temperature gradients

    Science.gov (United States)

    Sesti, Erika L.; Alaniva, Nicholas; Rand, Peter W.; Choi, Eric J.; Albert, Brice J.; Saliba, Edward P.; Scott, Faith J.; Barnes, Alexander B.

    2018-01-01

    We report magic angle spinning (MAS) up to 8.5 kHz with a sample temperature below 6 K using liquid helium as a variable temperature fluid. Cross polarization 13C NMR spectra exhibit exquisite sensitivity with a single transient. Remarkably, 1H saturation recovery experiments show a 1H T1 of 21 s with MAS below 6 K in the presence of trityl radicals in a glassy matrix. Leveraging the thermal spin polarization available at 4.2 K versus 298 K should result in 71 times higher signal intensity. Taking the 1H longitudinal relaxation into account, signal averaging times are therefore predicted to be expedited by a factor of >500. Computer assisted design (CAD) and finite element analysis were employed in both the design and diagnostic stages of this cryogenic MAS technology development. Computational fluid dynamics (CFD) models describing temperature gradients and fluid flow are presented. The CFD models bearing and drive gas maintained at 100 K, while a colder helium variable temperature fluid stream cools the center of a zirconia rotor. Results from the CFD were used to optimize the helium exhaust path and determine the sample temperature. This novel cryogenic experimental platform will be integrated with pulsed dynamic nuclear polarization and electron decoupling to interrogate biomolecular structure within intact human cells.

  3. Solar Wind Proton Temperature Anisotropy: Linear Theory and WIND/SWE Observations

    Science.gov (United States)

    Hellinger, P.; Travnicek, P.; Kasper, J. C.; Lazarus, A. J.

    2006-01-01

    We present a comparison between WIND/SWE observations (Kasper et al., 2006) of beta parallel to p and T perpendicular to p/T parallel to p (where beta parallel to p is the proton parallel beta and T perpendicular to p and T parallel to p are the perpendicular and parallel proton are the perpendicular and parallel proton temperatures, respectively; here parallel and perpendicular indicate directions with respect to the ambient magnetic field) and predictions of the Vlasov linear theory. In the slow solar wind, the observed proton temperature anisotropy seems to be constrained by oblique instabilities, by the mirror one and the oblique fire hose, contrary to the results of the linear theory which predicts a dominance of the proton cyclotron instability and the parallel fire hose. The fast solar wind core protons exhibit an anticorrelation between beta parallel to c and T perpendicular to c/T parallel to c (where beta parallel to c is the core proton parallel beta and T perpendicular to c and T parallel to c are the perpendicular and parallel core proton temperatures, respectively) similar to that observed in the HELIOS data (Marsch et al., 2004).

  4. Temperature and vegetation effects on soil organic carbon quality along a forested mean annual temperature gradient in North America

    Science.gov (United States)

    Cinzia Fissore; Christian P. Giardina; Randall K. Kolka; Carl C. Trettin; Gary M. King; Martin F. Jurgensen; Christopher D. Barton; S. Douglas McDowell

    2008-01-01

    Both climate and plant species are hypothesized to influence soil organic carbon (SOC) quality, but accurate prediction of how SOC process rates respond to global change will require an improved understanding of how SOC quality varies with mean annual temperature (MAT) and forest type. We investigated SOC quality in paired hardwood and pine stands growing in coarse...

  5. Effect of pool rotation on three-dimensional flow in a shallow annular pool of silicon melt with bidirectional temperature gradients

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Quan-Zhuang; Peng, Lan; Liu, Jia [Key Laboratory of Low-grade Energy Utilization Technologies and Systems of Ministry of Education, College of Power Engineering, Chongqing University, Chongqing, 400044 (China); Wang, Fei, E-mail: penglan@cqu.edu.cn [Chongqing Special Equipment Inspection and Research Institute, Chongqing, 401121 (China)

    2016-08-15

    In order to understand the effect of pool rotation on silicon melt flow with the bidirectional temperature gradients, we conducted a series of unsteady three-dimensional (3D) numerical simulations in a shallow annular pool. The bidirectional temperature gradients are produced by the temperature difference between outer and inner walls as well as a constant heat flux at the bottom. Results show that when Marangoni number is small, a 3D steady flow is common without pool rotation. But it bifurcates to a 3D oscillatory flow at a low rotation Reynolds number. Subsequently, the flow becomes steady and axisymmetric at a high rotation Reynolds number. When the Marangoni number is large, pool rotation can effectively suppress the temperature fluctuation on the free surface, meanwhile, it improves the flow stability. The critical heat flux density diagrams are mapped, and the effects of radial and vertical temperature gradients on the flow are discussed. Additionally, the transition process from the flow dominated by the radial temperature gradient to the one dominated by the vertical temperature gradient is presented. (paper)

  6. Thermocapillary migration of liquid droplets in a temperature gradient in a density matched system

    Science.gov (United States)

    Rashidnia, N.; Balasubramaniam, R.

    1991-01-01

    An experimental investigation of thermocapillary flow in droplets of a vegetable oil (partially hydrogenated soybean oil) immersed in silicone oil was conducted in a test cell with a heated top wall and a cooled bottom wall. The liquids are nearly immiscible and have equal densities at a temperature below the room temperature, thus providing a simulation of low-gravity conditions by reducing the buoyancy forces. The interfacial tension between the two oils was measured in the temperature range 20 to 50 C using a capillary tube and (d sigma)/(d T) was determined to be negative. Droplets ranging in sizes from 3 mm to 1 cm diameter were injected into the silicone oil. The vertical temperature profile in the bulk liquid (silicone oil) produces temperature variations along the interface which induce variations in the interfacial tension. The flow inside the droplet driven by the resulting interfacial shear stresses was observed using a laser light-sheet flow visualization technique. The flow direction is consistent with the sign of (d sigma)/(d T). The observed maximum surface velocities are compared to the theoretical predictions of Young et al. (1959).

  7. Skewness of the cosmic microwave background temperature fluctuations due to the non-linear gravitational instability

    International Nuclear Information System (INIS)

    Munshi, D.; Souradeep, T.; Starobinsky, A.A.

    1995-01-01

    The skewness of the temperature fluctuations of the cosmic microwave background (CMB) produced by initially Gaussian adiabatic perturbations with the flat (Harrison-Zeldovich) spectrum, which arises due to non-linear corrections to a gravitational potential at the matter-dominated stage, is calculated quantitatively. For the standard CDM model, the effect appears to be smaller than expected previously and lies below the cosmic variance limit even for small angles. The sign of the skewness is opposite to that of the skewness of density perturbations. (author)

  8. Microbial habitat connectivity across spatial scales and hydrothermal temperature gradients at Guaymas Basin

    Directory of Open Access Journals (Sweden)

    Stefanie eMeyer

    2013-07-01

    Full Text Available The Guaymas Basin (Gulf of California hydrothermal vent area is known as a dynamic and hydrothermally vented sedimentary system, where the advection and production of a variety of different metabolic substrates support a high microbial diversity and activity in the seafloor. The main objective of our study was to explore the role of temperature and other environmental factors on community diversity, such as the presence of microbial mats and seafloor bathymetry within one hydrothermally vented field of 200 × 250 m dimension. In this field, temperature increased strongly with sediment depth reaching the known limit to life within a few decimeters. Potential sulfate reduction rate as a key community activity parameter was strongly affected by in situ temperature and sediment depth, declining from high rates of 1-5 μmol ml-1 d-1 at the surface to the detection limit below 5 cm sediment depth, despite the presence of sulfate and hydrocarbons. Automated Ribosomal Intergenic Spacer Analysis yielded a high-resolution fingerprint of the dominant members of the bacterial community. Our analyses showed strong temperature and sediment depth effects on bacterial cell abundance and Operational Taxonomic Units (OTUs number, both declining by more than one order of magnitude below the top 5 cm of the sediment surface. Another fraction of the variation in diversity and community structure was explained by differences in the local bathymetry and spatial position within the vent field. Nevertheless, more than 80% of all detected OTUs were shared among the different temperature realms and sediment depths, after being classified as cold (T<10°C, medium (10°C≤T<40°C or hot (T≥40°C temperature conditions, with significant OTU overlap with the richer surface communities. Overall, this indicates a high connectivity of benthic bacterial habitats in this dynamic and heterogeneous marine ecosystem influenced by strong hydrothermalism.

  9. Environmental temperature affects prevalence of blood parasites of birds on an elevation gradient: implications for disease in a warming climate.

    Directory of Open Access Journals (Sweden)

    Itzel Zamora-Vilchis

    Full Text Available BACKGROUND: The rising global temperature is predicted to expand the distribution of vector-borne diseases both in latitude and altitude. Many host communities could be affected by increased prevalence of disease, heightening the risk of extinction for many already threatened species. To understand how host communities could be affected by changing parasite distributions, we need information on the distribution of parasites in relation to variables like temperature and rainfall that are predicted to be affected by climate change. METHODOLOGY/PRINCIPAL FINDINGS: We determined relations between prevalence of blood parasites, temperature, and seasonal rainfall in a bird community of the Australian Wet Tropics along an elevation gradient. We used PCR screening to investigate the prevalence and lineage diversity of four genera of blood parasites (Plasmodium, Haemoproteus, Leucocytozoon and Trypanosoma in 403 birds. The overall prevalence of the four genera of blood parasites was 32.3%, with Haemoproteus the predominant genus. A total of 48 unique lineages were detected. Independent of elevation, parasite prevalence was positively and strongly associated with annual temperature. Parasite prevalence was elevated during the dry season. CONCLUSIONS/SIGNIFICANCE: Low temperatures of the higher elevations can help to reduce both the development of avian haematozoa and the abundance of parasite vectors, and hence parasite prevalence. In contrast, high temperatures of the lowland areas provide an excellent environment for the development and transmission of haematozoa. We showed that rising temperatures are likely to lead to increased prevalence of parasites in birds, and may force shifts of bird distribution to higher elevations. We found that upland tropical areas are currently a low-disease habitat and their conservation should be given high priority in management plans under climate change.

  10. THE MAXIMUM EFFECT OF DEEP LAKES ON TEMPERATURE PROFILES – DETERMINATION OF THE GEOTHERMAL GRADIENT

    OpenAIRE

    Eppelbaum L. V.; Kutasov I. M.; Balobaev V. T.

    2009-01-01

    Understanding the climate change processes on the basis of geothermal observations in boreholes is an important and at the same time high-intricate problem. Many non-climatic effects could cause changes in ground surface temperatures. In this study we investigate the effects of deep lakes on the borehole temperature profilesobserved within or in the vicinity of the lakes. We propose a method based on utilization of Laplace equation with nonuniform boundary conditions. The proposed method make...

  11. Heterotrophic respiration in drained tropical peat temperatures influenced by shading gradient

    Science.gov (United States)

    Jauhiainen, Jyrki; Kerojoki, Otto; Silvennoinen, Hanna; Limin, Suwido; Vasander, Harri

    2015-04-01

    Lowland peatlands in Southeast Asia constitute a highly concentrated carbon (C) pool of global significance. These peatlands have formed over periods of several millennia by forest vegetation tolerant to flooding and poor substrates. Uncontrollable drainage and reoccurring wild fires in lack of management after removal of forest cover has impaired the C-storing functions in large reclaimed areas. Intergovernmental Panel on Climate Change (IPCC) reporting sees drained tropical organic soils as one of the largest greenhouse gas emissions releasing terrestrial systems. Vast areas of deforested tropical peatlands do not receive noteworthy shading by vegetation, which increases the amount of solar radiation reaching the peat surface. We studied heterotrophic carbon dioxide (CO2), nitrous oxide (N2O) and methane (CH4) fluxes in tropical peat in conditions, where; (i) peat temperatures were modified by artificial shading (no shade, 28%, 51% and 90% from the full sun exposure), (ii) root respiration was minimized, (iii) nutrient availability for peat decomposer community was changed (NPK fertilization of 0 and 313 kg ha-1). The experiment was repeated at two over 20 years ago drained fallow agricultural- and degraded sites in Central Kalimantan, Indonesia. Enhanced shading created a lasting decrease in peat temperatures, and decreased diurnal temperature fluctuations, in comparison to less shaded plots. The largest peat temperature difference was between the unshaded and 90% shaded peat surface, where the average temperatures within the topmost 50-cm peat profile differed 3 °C, and diurnal temperatures at 5 cm depth varied up to 4.2 °C in the unshaded and 0.4 °C in the 90% shaded conditions. Highest impacts on the heterotrophic CO2 fluxes caused by the treatments were on agricultural land, where 90% shading from the full exposure resulted in a 33% lower CO2 emission average on the unfertilised plots and a 66% lower emission average on the fertilised plots. Correlation

  12. Thermal characterization of European ant communities along thermal gradients and its implications for community resilience to temperature variability

    Directory of Open Access Journals (Sweden)

    Xavier eArnan

    2015-12-01

    Full Text Available Ecologists are increasingly concerned about how climate change will affect biodiversity yet have mostly addressed the issue at the species level. Here, we present a novel framework that accounts for the full range and complementarity of thermal responses present in a community; it may help reveal how biological communities will respond to climatic (i.e., thermal variability. First, we characterized the thermal niches of 147 ant species from 342 communities found along broad temperature gradients in western Europe. Within each community, species’ mean thermal breadth and the difference among species’ thermal optima (thermal complementarity were considered to define community thermal niche breadth—our proxy for community thermal resilience. The greater the range of thermal responses and their complementarity within a community, the greater the likelihood that the community could cope with novel conditions. Second, we used simulations to calculate how robust community thermal resilience was to random species extinctions. Community resilience was considered to be robust when random species extinctions largely failed to constrict initial community thermal breadth. Our results indicate that community thermal resilience was negatively and positively correlated with mean temperature and temperature seasonality, respectively. The pattern was reversed for robustness. While species richness did not directly affect community resilience to thermal variability, it did have a strong indirect effect because it determined community resilience robustness. Consequently, communities in warm, aseasonal regions are the most vulnerable to temperature variability, despite their greater number of species and resultant greater resilience robustness.

  13. Device for the measurement and recording of the vertical temperature gradient close to the ground

    International Nuclear Information System (INIS)

    Chassany, J. Ph.; Cottignies, S.

    1963-01-01

    The temperature measurement device described in this note is made of 2 series of 15 copper-constantan thermocouples each, disposed along a mast at 5 m and 20 m from the ground, respectively. Thermocouples are protected against direct sunlight and connected to a recorder

  14. The influence of temperature gradient on the Strouhal–Reynoldsnumber relationship for water and air

    Czech Academy of Sciences Publication Activity Database

    Vít, T.; Ren, M.; Trávníček, Zdeněk; Maršík, František; Rindt, C.

    2007-01-01

    Roč. 31, - (2007), s. 751-760 ISSN 0894-1777 R&D Projects: GA AV ČR(CZ) IAA200760504 Institutional research plan: CEZ:AV0Z20760514 Keywords : laminar flow * vortex shedding * effective temperature Subject RIV: BK - Fluid Dynamics Impact factor: 0.774, year: 2007

  15. Temperature adaptation of soil bacterial communities along an Antarctic climate gradient: predicting responses to climate warming

    DEFF Research Database (Denmark)

    Rinnan, Riikka; Rousk, Johannes; Yergeau, Etienne

    2009-01-01

     °38'W) and the Falkland Islands (51 °76'S 59 °03'W). At each location, experimental plots were subjected to warming by open top chambers (OTCs) and paired with control plots on vegetated and fell-field habitats. The bacterial communities were adapted to the mean annual temperature of their environment...

  16. Ammonia oxidizer populations vary with nitrogen cycling across a tropical montane mean annual temperature gradient

    Science.gov (United States)

    S. Pierre; I. Hewson; J. P. Sparks; C. M. Litton; C. Giardina; P. M. Groffman; T. J. Fahey

    2017-01-01

    Functional gene approaches have been used to better understand the roles of microbes in driving forest soil nitrogen (N) cycling rates and bioavailability. Ammonia oxidation is a rate limiting step in nitrification, and is a key area for understanding environmental constraints on N availability in forests. We studied how increasing temperature affects the role of...

  17. Linear and nonlinear post-processing of numerically forecasted surface temperature

    Directory of Open Access Journals (Sweden)

    M. Casaioli

    2003-01-01

    Full Text Available In this paper we test different approaches to the statistical post-processing of gridded numerical surface air temperatures (provided by the European Centre for Medium-Range Weather Forecasts onto the temperature measured at surface weather stations located in the Italian region of Puglia. We consider simple post-processing techniques, like correction for altitude, linear regression from different input parameters and Kalman filtering, as well as a neural network training procedure, stabilised (i.e. driven into the absolute minimum of the error function over the learning set by means of a Simulated Annealing method. A comparative analysis of the results shows that the performance with neural networks is the best. It is encouraging for systematic use in meteorological forecast-analysis service operations.

  18. Temperature--pressure compensation for a linear accelerator electron beam dosimeter

    International Nuclear Information System (INIS)

    Hrejsa, A.F.; Soen, J.; Jankowiak, P.

    1985-01-01

    Routine weekly calibration of a Siemens Mevatron 20 linear accelerator with 3-, 5-, 7-, 10-, 12-, 15-, and 18-MeV electron energies demonstrated fluctuations in dose/monitor unit for the electron beam on the order of 3%--6%. Evaluations and study of the problem demonstrated that the electron chamber, which is open to atmosphere, was undergoing significant temperature changes during the course of a treatment day. The inability of the chamber to compensate for these changes in temperature and pressure led to the addition of a compensating circuit by the manufacturer. The results of the addition of this circuit were evaluated for several extended periods throughout the year, and it was found that the changes in dose/monitor were reduced to approximately +- 0.5%

  19. Precipitation and air temperature control the variations of dissolved organic matter along an altitudinal forest gradient, Gongga Mountains, China.

    Science.gov (United States)

    Hu, Zhaoyong; Wang, Genxu; Sun, Xiangyang

    2017-04-01

    Dissolved organic carbon (DOC) and dissolved organic nitrogen (DON) contribute significantly to C and N cycling in forest ecosystems. Little information is available on the variations in the DOC and DON concentrations and depositions in bulk and stand precipitation within forests along an altitudinal gradient. To determine the temporal variations in the DOC and DON concentrations and depositions in different forests and the spatial variations along the elevation gradient, the DOC and DON concentrations and depositions were measured in bulk precipitation, throughfall, and stemflow within three forest types, i.e., broadleaf forest (BLF), broadleaf-coniferous forest (BCF), and coniferous forest (CF), during the wet season (May to October) on Gongga Mountain, China, in 2015. The concentrations of bulk precipitation in BLF, BCF, and CF were 3.92, 4.04, and 2.65 mg L -1 , respectively, for DOC and were 0.38, 0.26, and 0.29 mg L -1 , respectively, for DON. BCF had the highest DOC deposition both in bulk precipitation (45.12 kg ha -1 ) and stand precipitation (98.52 kg ha -1 ), whereas the highest DON deposition was in BLF (3.62 kg ha -1 bulk precipitation and 4.11 kg ha -1 stand precipitation) during the study period. The meteorological conditions of precipitation and air temperature significantly influenced the dissolved organic matter (DOM) depositions along the elevation gradient. The leaf area index did not show any correlation with DOM depositions during the growing season.

  20. Coupling of near-field thermal radiative heating and phonon Monte Carlo simulation: Assessment of temperature gradient in n-doped silicon thin film

    International Nuclear Information System (INIS)

    Wong, Basil T.; Francoeur, Mathieu; Bong, Victor N.-S.; Mengüç, M. Pinar

    2014-01-01

    Near-field thermal radiative exchange between two objects is typically more effective than the far-field thermal radiative exchange as the heat flux can increase up to several orders higher in magnitudes due to tunneling of evanescent waves. Such an interesting phenomenon has started to gain its popularity in nanotechnology, especially in nano-gap thermophotovoltaic systems and near-field radiative cooling of micro-/nano-devices. Here, we explored the existence of thermal gradient within an n-doped silicon thin film when it is subjected to intensive near-field thermal radiative heating. The near-field radiative power density deposited within the film is calculated using the Maxwell equations combined with fluctuational electrodynamics. A phonon Monte Carlo simulation is then used to assess the temperature gradient by treating the near-field radiative power density as the heat source. Results indicated that it is improbable to have temperature gradient with the near-field radiative heating as a continuous source unless the source comprises of ultra-short radiative pulses with a strong power density. - Highlights: • This study investigates temperature distribution in an n-doped silicon thin film. • Near-field radiative heating is treated as a volumetric phenomenon. • The temperature gradient is computed using phonon MC simulation. • Temperature of thin film can be approximated as uniform for radiation calculations. • If heat source is a pulsed radiation, a temperature gradient can be established

  1. Estimating spatially distributed monthly evapotranspiration rates by linear transformations of MODIS daytime land surface temperature data

    Directory of Open Access Journals (Sweden)

    J. Szilagyi

    2009-05-01

    Full Text Available Under simplifying conditions catchment-scale vapor pressure at the drying land surface can be calculated as a function of its watershed-representative temperature (<Ts> by the wet-surface equation (WSE, similar to the wet-bulb equation in meteorology for calculating the dry-bulb thermometer vapor pressure of the Complementary Relationship of evaporation. The corresponding watershed ET rate, , is obtained from the Bowen ratio with the help of air temperature, humidity and percent possible sunshine data. The resulting (<Ts>, pair together with the wet-environment surface temperature (<Tws> and ET rate (ETw, obtained by the Priestley-Taylor equation, define a linear transformation on a monthly basis by which spatially distributed ET rates can be estimated as a sole function of MODIS daytime land surface temperature, Ts, values within the watershed. The linear transformation preserves the mean which is highly desirable. <Tws>, in the lack of significant open water surfaces within the study watershed (Elkhorn, Nebraska, was obtained as the mean of the smallest MODIS Ts values each month. The resulting period-averaged (2000–2007 catchment-scale ET rate of 624 mm/yr is very close to the water-balance derived ET rate of about 617 mm/yr. The latter is a somewhat uncertain value due to the effects of (a observed groundwater depletion of about 1m over the study period caused by extensive irrigation, and; (b the uncertain rate of net regional groundwater supply toward the watershed. The spatially distributed ET rates correspond well with soil/aquifer properties and the resulting land use type (i.e. rangeland versus center-pivot irrigated crops.

  2. Effective temperatures, angular diameters, distances and linear radii for 160 O and B stars

    International Nuclear Information System (INIS)

    Underhill, A.B.; Divan, L.; Prevot-Burnichon, M.L.; Doazan, V.

    1979-01-01

    The significance is explained of the effective temperatures, angular diameters, distances and linear diameters which have been found from published ultraviolet spectrophotometry, visible and near infrared intermediate-band photometry and model-atmosphere fluxes for 160 O and B stars using a method which is fully explained and evaluated in the full paper which is reproduced on Microfiche MN 189/1. An appendix to the full paper presents BCD spectrophotometry for 77 of the program stars. The angular diameters are systematically the same as those measured previously, and the flux effective temperatures of the main-sequence and giant stars reproduce well the relationship established by other authors, for main-sequence and giant O and B stars. The O8 - B9 supergiants have systematically lower temperatures than do main-sequence stars of the same subtype. The Beta Cephei stars and most Be stars have the same effective temperature as normal stars of the same spectral type. The radii of O and B stars increase from main-sequence to supergiant. The late B supergiants are about twice as large as the O9 supergiants. (author)

  3. Local and linear chemical reactivity response functions at finite temperature in density functional theory

    International Nuclear Information System (INIS)

    Franco-Pérez, Marco; Ayers, Paul W.; Gázquez, José L.; Vela, Alberto

    2015-01-01

    We explore the local and nonlocal response functions of the grand canonical potential density functional at nonzero temperature. In analogy to the zero-temperature treatment, local (e.g., the average electron density and the local softness) and nonlocal (e.g., the softness kernel) intrinsic response functions are defined as partial derivatives of the grand canonical potential with respect to its thermodynamic variables (i.e., the chemical potential of the electron reservoir and the external potential generated by the atomic nuclei). To define the local and nonlocal response functions of the electron density (e.g., the Fukui function, the linear density response function, and the dual descriptor), we differentiate with respect to the average electron number and the external potential. The well-known mathematical relationships between the intrinsic response functions and the electron-density responses are generalized to nonzero temperature, and we prove that in the zero-temperature limit, our results recover well-known identities from the density functional theory of chemical reactivity. Specific working equations and numerical results are provided for the 3-state ensemble model

  4. Linearity between temperature peak and bio-energy CO2 emission rates

    International Nuclear Information System (INIS)

    Cherubini, Francesco; Bright, Ryan M.; Stromman, Anders H.; Gasser, Thomas; Ciais, Philippe

    2014-01-01

    Many future energy and emission scenarios envisage an increase of bio-energy in the global primary energy mix. In most climate impact assessment models and policies, bio-energy systems are assumed to be carbon neutral, thus ignoring the time lag between CO 2 emissions from biomass combustion and CO 2 uptake by vegetation. Here, we show that the temperature peak caused by CO 2 emissions from bio-energy is proportional to the maximum rate at which emissions occur and is almost insensitive to cumulative emissions. Whereas the carbon-climate response (CCR) to fossil fuel emissions is approximately constant, the CCR to bio-energy emissions depends on time, biomass turnover times, and emission scenarios. The linearity between temperature peak and bio-energy CO 2 emission rates resembles the characteristic of the temperature response to short-lived climate forcers. As for the latter, the timing of CO 2 emissions from bio-energy matters. Under the international agreement to limit global warming to 2 C by 2100, early emissions from bio-energy thus have smaller contributions on the targeted temperature than emissions postponed later into the future, especially when bio-energy is sourced from biomass with medium (50-60 years) or long turnover times (100 years). (authors)

  5. Coupling of ion temperature gradient and trapped electron modes in the presence of impurities in tokamak plasmas

    Science.gov (United States)

    Du, Huarong; Wang, Zheng-Xiong; Dong, J. Q.; Liu, S. F.

    2014-05-01

    The coupling of ion temperature gradient (ITG or ηi) mode and trapped electron mode (TEM) in the presence of impurity ions is numerically investigated in toroidal collisionless plasmas, using the gyrokinetic integral eigenmode equation. A framework for excitations of the ITG modes and TEMs with respect to their driving sources is formulated first, and then the roles of impurity ions played in are analyzed comprehensively. In particular, the characteristics of the ITG and TEM instabilities in the presence of impurity ions are emphasized for both strong and weak coupling (hybrid and coexistent) cases. It is found that the impurity ions with inwardly (outwardly) peaked density profiles have stabilizing (destabilizing) effects on the hybrid (namely the TE-ITG) modes in consistence with previous works. A new finding of this work is that the impurity ions have stabilizing effects on TEMs in small ηi (ηi≤1) regime regardless of peaking directions of their density profiles whereas the impurity ions with density gradient Lez=Lne/Lnz>1 (LezTEMs in large ηi (ηi≥1) regime. In addition, the dependences of the growth rate, real frequency, eigenmode structure, and wave spectrum on charge concentration, charge number, and mass of impurity ions are analyzed in detail. The necessity for taking impurity ion effects on the features of turbulence into account in future transport experimental data analyses is also discussed.

  6. MHD flow of Kuvshinski fluid through porous medium with temperature gradient heat source

    International Nuclear Information System (INIS)

    Goyal, Mamta; Banshiwal, Anna

    2014-01-01

    MHD free convection time dependent flow of a viscous, dissipative, incompressible, electrically conducting, non Newtonian fluid name as Kuvshinski fluid past an infinite vertical plate is considered The plate is moving with uniform velocity in the direction of flow. Analytical solutions have been obtained for velocity, temperature and concentration using perturbation technique. The effects of governing parameter on flow quantities are discussed with the help of graphs. (author)

  7. Numerical simulations on the temperature gradient and thermal stress of a thermoelectric power generator

    International Nuclear Information System (INIS)

    Wu, Yongjia; Ming, Tingzhen; Li, Xiaohua; Pan, Tao; Peng, Keyuan; Luo, Xiaobing

    2014-01-01

    Highlights: • An appropriate ceramic plate thickness is effective in alleviating the thermal stress. • A smaller distance between thermo-pins can help prolong lifecycle of the TE module. • Either a thicker or a thinner copper conducting strip effectively reduces thermal stress. • A suitable tin soldering thickness will alleviate thermal stress intensity and increase thermal efficiency. - Abstract: Thermoelectric generator is a device taking advantage of the temperature difference in thermoelectric material to generate electric power, where the higher the temperature difference of the hot-cold ends, the higher the efficiency will be. However, higher temperature or higher heat flux upon the hot end will cause strong thermal stress which will negatively influence the lifecycle of the thermoelectric module. This phenomenon is very common in industrial applications but seldom has research work been reported. In this paper, numerical analysis on the thermodynamics and thermal stress performance of the thermoelectric module has been performed, considering the variation on the thickness of materials; the influence of high heat flux on thermal efficiency, power output, and thermal stress has been examined. It is found that under high heat flux imposing upon the hot end, the thermal stress is so strong that it has a decisive effect on the life expectation of the device. To improve the module’s working condition, different geometrical configurations are tested and the optimum sizes are achieved. Besides, the side effects on the efficiency, power output, and open circuit voltage output of the thermoelectric module are taken into consideration

  8. Comparison of Linear Microinstability Calculations of Varying Input Realism

    International Nuclear Information System (INIS)

    Rewoldt, G.

    2003-01-01

    The effect of varying ''input realism'' or varying completeness of the input data for linear microinstability calculations, in particular on the critical value of the ion temperature gradient for the ion temperature gradient mode, is investigated using gyrokinetic and gyrofluid approaches. The calculations show that varying input realism can have a substantial quantitative effect on the results

  9. Comparison of linear microinstability calculations of varying input realism

    International Nuclear Information System (INIS)

    Rewoldt, G.; Kinsey, J.E.

    2004-01-01

    The effect of varying 'input realism' or varying completeness of the input data for linear microinstability calculations, in particular on the critical value of the ion temperature gradient for the ion temperature gradient mode, is investigated using gyrokinetic and gyrofluid approaches. The calculations show that varying input realism can have a substantial quantitative effect on the results

  10. Non-dissipative kinetic simulation and analytical solution of three-mode equations of ion temperature gradient instability

    International Nuclear Information System (INIS)

    Watanabe, T.-H.; Sugama, H.; Sato, T.

    1999-12-01

    A non-dissipative drift kinetic simulation scheme, which rigorously satisfies the time-reversibility, is applied to the three-mode coupling problem of the ion temperature gradient (ITG) instability. It is found from the simulation that the three-mode ITG system repeats growth and decay with a period which shows a logarithmic divergence for infinitesimal initial perturbations. Accordingly, time average of the mode amplitude vanishes, as the initial amplitude approaches to zero. An exact solution is analytically given for a class of initial conditions. An excellent agreement is confirmed between the analytical solution and numerical results. The results obtained here provide a useful reference for basic benchmarking of theories and simulation of the ITG modes. (author)

  11. A map of the large day-night temperature gradient of a super-Earth exoplanet.

    Science.gov (United States)

    Demory, Brice-Olivier; Gillon, Michael; de Wit, Julien; Madhusudhan, Nikku; Bolmont, Emeline; Heng, Kevin; Kataria, Tiffany; Lewis, Nikole; Hu, Renyu; Krick, Jessica; Stamenković, Vlada; Benneke, Björn; Kane, Stephen; Queloz, Didier

    2016-04-14

    Over the past decade, observations of giant exoplanets (Jupiter-size) have provided key insights into their atmospheres, but the properties of lower-mass exoplanets (sub-Neptune) remain largely unconstrained because of the challenges of observing small planets. Numerous efforts to observe the spectra of super-Earths--exoplanets with masses of one to ten times that of Earth--have so far revealed only featureless spectra. Here we report a longitudinal thermal brightness map of the nearby transiting super-Earth 55 Cancri e (refs 4, 5) revealing highly asymmetric dayside thermal emission and a strong day-night temperature contrast. Dedicated space-based monitoring of the planet in the infrared revealed a modulation of the thermal flux as 55 Cancri e revolves around its star in a tidally locked configuration. These observations reveal a hot spot that is located 41 ± 12 degrees east of the substellar point (the point at which incident light from the star is perpendicular to the surface of the planet). From the orbital phase curve, we also constrain the nightside brightness temperature of the planet to 1,380 ± 400 kelvin and the temperature of the warmest hemisphere (centred on the hot spot) to be about 1,300 kelvin hotter (2,700 ± 270 kelvin) at a wavelength of 4.5 micrometres, which indicates inefficient heat redistribution from the dayside to the nightside. Our observations are consistent with either an optically thick atmosphere with heat recirculation confined to the planetary dayside, or a planet devoid of atmosphere with low-viscosity magma flows at the surface.

  12. Thermo-Acoustic Properties of a Burner with Axial Temperature Gradient: Theory and Experiment

    Directory of Open Access Journals (Sweden)

    Béla Kosztin

    2013-03-01

    Full Text Available This paper presents a model for thermo-acoustic effects in a gas turbine combustor. A quarter-wavelength burner with rectangular cross-section has been built and studied from an experimental and theoretical perspective. It has a premixed methane-air flame, which is held by a bluff body, and spans the width of the burner. The flame is compact, i.e. its length is much smaller than that of the burner. The fundamental mode of the burner is unstable; its frequency and pressure distribution have been measured. The complex pressure reflection coefficients at the upstream and downstream end of the burner were also measured. For the theoretical considerations, we divide the burner into three regions (the cold pre-combustion chamber, the flame region and the hot outlet region, and assume one-dimensional acoustic wave propagation in each region. The acoustic pressure and velocity are assumed continuous across the interface between the precombustion chamber and flame region, and across the interface between the flame region and outlet region. The burner ends are modelled by the measured pressure reflection coefficients. The mean temperature is assumed to have the following profile: uniformly cold and uniformly hot in the pre-combustion chamber and outlet region, respectively, and rising continuously from cold to hot in the flame region. For comparison, a discontinuous temperature profile, jumping directly from cold to hot, is also considered. The eigenfrequencies are calculated, and the pressure distribution of the fundamental mode is predicted. There is excellent agreement with the experimental results. The exact profile of the mean temperature in the flame region is found to be unimportant. This study gives us an experimentally validated Green's function, which is a very useful tool for further theoretical studies.

  13. Dependence of trapped-flux-induced surface resistance of a large-grain Nb superconducting radio-frequency cavity on spatial temperature gradient during cooldown through Tc

    Science.gov (United States)

    Huang, Shichun; Kubo, Takayuki; Geng, R. L.

    2016-08-01

    Recent studies by Romanenko et al. revealed that cooling down a superconducting cavity under a large spatial temperature gradient decreases the amount of trapped flux and leads to reduction of the residual surface resistance. In the present paper, the flux expulsion ratio and the trapped-flux-induced surface resistance of a large-grain cavity cooled down under a spatial temperature gradient up to 80 K /m are studied under various applied magnetic fields from 5 to 20 μ T . We show the flux expulsion ratio improves as the spatial temperature gradient increases, independent of the applied magnetic field: our results support and enforce the previous studies. We then analyze all rf measurement results obtained under different applied magnetic fields together by plotting the trapped-flux-induced surface resistance normalized by the applied magnetic field as a function of the spatial temperature gradient. All the data can be fitted by a single curve, which defines an empirical formula for the trapped-flux-induced surface resistance as a function of the spatial temperature gradient and applied magnetic field. The formula can fit not only the present results but also those obtained by Romanenko et al. previously. The sensitivity rfl of surface resistance from trapped magnetic flux of fine-grain and large-grain niobium cavities and the origin of d T /d s dependence of Rfl/Ba are also discussed.

  14. Temperature effect on proximal to distal gradient of quantal release of acetylcholine at frog endplate

    Czech Academy of Sciences Publication Activity Database

    Samigullin, D.; Bukharaeva, E.; Nikolsky, E.; Vyskočil, František

    2003-01-01

    Roč. 28, 3-4 (2003), s. 507-514 ISSN 0364-3190 R&D Projects: GA AV ČR IAA7011902; GA ČR GA305/02/1333; GA ČR GA202/02/1213 Grant - others:RFBR(RU) 02/04/48901 Institutional research plan: CEZ:AV0Z5011922; CEZ:MSM 113100003 Keywords : neuromuscular junction * acetylcholine release * temperature Subject RIV: ED - Physiology Impact factor: 1.511, year: 2003

  15. Behaviour of F82H mod. stainless steel in lead-bismuth under temperature gradient

    Science.gov (United States)

    Gómez Briceño, D.; Martín Muñoz, F. J.; Soler Crespo, L.; Esteban, F.; Torres, C.

    2001-07-01

    Austenitic steels can be used in a hybrid system in contact with liquid lead-bismuth eutectic if the region of operating temperatures is not beyond 400°C. For higher temperatures, martensitic steels are recommended. However, at long times, the interaction between the structural material and the eutectic leads to the dissolution of some elements of the steel (Ni, Cr and Fe, mainly) in the liquid metal. In a non-isothermal lead-bismuth loop, the material dissolution takes place at the hot leg of the circuit and, due to the mass transfer, deposition occurs at the cold leg. One of the possible ways to improve the performance of structural materials in lead-bismuth is the creation of an oxide layer. Tests have been performed in a small natural convection loop built of austenitic steel (316L) that has been operating for 3000 h. This loop contains a test area in which several samples of F82Hmod. martensitic steel have been tested at different times. A gas with an oxygen content of 10 ppm was bubbled in the hot area of the circuit during the operation time. The obtained results show that an oxide layer is formed on the samples introduced in the loop at the beginning of the operation and this layer increases with time. However, the samples introduced at different times during the loop operation, are not protected by oxide layers and present material dissolution in some cases.

  16. Behaviour of F82H mod. stainless steel in lead-bismuth under temperature gradient

    International Nuclear Information System (INIS)

    Gomez Briceno, D.; Martin Munoz, F.J.; Soler Crespo, L.; Esteban, F.; Torres, C.

    2001-01-01

    Austenitic steels can be used in a hybrid system in contact with liquid lead-bismuth eutectic if the region of operating temperatures is not beyond 400 deg. C. For higher temperatures, martensitic steels are recommended. However, at long times, the interaction between the structural material and the eutectic leads to the dissolution of some elements of the steel (Ni, Cr and Fe, mainly) in the liquid metal. In a non-isothermal lead-bismuth loop, the material dissolution takes place at the hot leg of the circuit and, due to the mass transfer, deposition occurs at the cold leg. One of the possible ways to improve the performance of structural materials in lead-bismuth is the creation of an oxide layer. Tests have been performed in a small natural convection loop built of austenitic steel (316L) that has been operating for 3000 h. This loop contains a test area in which several samples of F82Hmod. martensitic steel have been tested at different times. A gas with an oxygen content of 10 ppm was bubbled in the hot area of the circuit during the operation time. The obtained results show that an oxide layer is formed on the samples introduced in the loop at the beginning of the operation and this layer increases with time. However, the samples introduced at different times during the loop operation, are not protected by oxide layers and present material dissolution in some cases

  17. Absolute and convective instability of a liquid sheet with transverse temperature gradient

    International Nuclear Information System (INIS)

    Fu, Qing-Fei; Yang, Li-Jun; Tong, Ming-Xi; Wang, Chen

    2013-01-01

    Highlights: • The spatial–temporal instability of a liquid sheet with thermal effects was studied. • The flow can transit to absolutely unstable with certain flow parameters. • The effects of non-dimensional parameters on the transition were studied. -- Abstract: The spatial–temporal instability behavior of a viscous liquid sheet with temperature difference between the two surfaces was investigated theoretically. The practical situation motivating this investigation is liquid sheet heated by ambient gas, usually encountered in industrial heat transfer and liquid propellant rocket engines. The existing dispersion relation was used, to explore the spatial–temporal instability of viscous liquid sheets with a nonuniform temperature profile, by setting both the wave number and frequency complex. A parametric study was performed in both sinuous and varicose modes to test the influence of dimensionless numbers on the transition between absolute and convective instability of the flow. For a small value of liquid Weber number, or a great value of gas-to-liquid density ratio, the flow was found to be absolutely unstable. The absolute instability was enhanced by increasing the liquid viscosity. It was found that variation of the Marangoni number hardly influenced the absolute instability of the sinuous mode of oscillations; however it slightly affected the absolute instability in the varicose mode

  18. Phenotypic Plasticity of Leaf Shape along a Temperature Gradient in Acer rubrum

    Science.gov (United States)

    Royer, Dana L.; Meyerson, Laura A.; Robertson, Kevin M.; Adams, Jonathan M.

    2009-01-01

    Both phenotypic plasticity and genetic determination can be important for understanding how plants respond to environmental change. However, little is known about the plastic response of leaf teeth and leaf dissection to temperature. This gap is critical because these leaf traits are commonly used to reconstruct paleoclimate from fossils, and such studies tacitly assume that traits measured from fossils reflect the environment at the time of their deposition, even during periods of rapid climate change. We measured leaf size and shape in Acer rubrum derived from four seed sources with a broad temperature range and grown for two years in two gardens with contrasting climates (Rhode Island and Florida). Leaves in the Rhode Island garden have more teeth and are more highly dissected than leaves in Florida from the same seed source. Plasticity in these variables accounts for at least 6–19 % of the total variance, while genetic differences among ecotypes probably account for at most 69–87 %. This study highlights the role of phenotypic plasticity in leaf-climate relationships. We suggest that variables related to tooth count and leaf dissection in A. rubrum can respond quickly to climate change, which increases confidence in paleoclimate methods that use these variables. PMID:19893620

  19. Molecular identification of the microbiota of French sourdough using temporal temperature gradient gel electrophoresis.

    Science.gov (United States)

    Ferchichi, Mounir; Valcheva, Rosica; Prévost, Hervé; Onno, Bernard; Dousset, Xavier

    2007-01-01

    The microbiota of four industrial French sourdoughs (BF, GO, VB and RF) was characterized by PCR temporal temperature gel electrophoresis (TTGE). The TTGE technique reveals differences in the 16S rDNA V6-V8 regions of these bacteria. DNA was extracted directly from sourdough samples. A specific TTGE fingerprint was determined for 30 bacterial species, including members of the genera Lactobacillus, Leuconostoc and Weissella, all known to be present in sourdough. These sourdoughs contain different species of lactic acid bacteria (LAB) depending on ecological conditions prevailing in the different sourdough fermentations. Only a few LAB species were found to be competitive and became dominant. Lactobacillus sanfranciscensis was observed as the most frequently found species. In sourdough GO, L. sanfranciscensis, Lactobacillus panis and two new species, Lactobacillus nantensis and Lactobacillus hammesii, were detected. Sourdough BF contain L. sanfranciscensis, Lactobacillus spicheri and Lactobacillus pontis. In sourdough VB, which differed in the process temperature, we identified exclusively L. sanfranciscensis and Leuconostoc mesenteroïdes subsp. mesenteroïdes. Lactobacillus frumenti, L. hammesii and Lacobacillus paralimentarius became the predominant species in sourdough RF. Compared with conventional bacteriological methods, the use of this new molecular approach to analyze the sourdough ecosystem should therefore allow a more complete and rapid assessment of its specific microbiota.

  20. Ion temperature gradient driven transport in a density modification experiment on the TFTR tokamak

    International Nuclear Information System (INIS)

    Horton, W.; Lindberg, D.; Kim, J.Y.; Dong, J.Q.; Hammett, G.W.; Scott, S.D.; Zarnstorff, M.C.; Hamaguchi, S.

    1991-07-01

    TFTR profiles from a supershot density-modification experiment are analyzed for their local and ballooning stability to toroidal η i -modes in order to understand the initially puzzling results showing no increase in X i when a pellet is used to produce an abrupt and large increase in the η i parameter. The local stability analysis assumes that k parallel = 1/qR and ignores the effects of shear, but makes no assumption on the magnitude of k parallel v ti /ω. The ballooning stability analysis determines a self-consistent linear spectrum of k parallel's including the effect of shear and toroidicity, but it expands in k parallel v ti /ω ≤ 1, which is a marginal assumption for this experiment. Nevertheless, the two approaches agree well and show that the mixing length estimate of the transport rate does not change appreciably during the density-modification and has a value close to or less than the observed X i , in contrast to most previous theories which predicted X i 's which were over an order-of-magnitude too large. However, we are still unable to explain the observed increase X i (r) with minor radius by adding the effects of the finite beta drift - MHD mode coupling, the slab-like mode, or the trapped electron response. The experimental tracking 0.2 e /X i i and trapped-electron driving mechanisms are operating. 4 refs., 5 figs., 5 tabs

  1. Electron-temperature-gradient-induced instability in tokamak scrape-off layers

    International Nuclear Information System (INIS)

    Berk, H.L.; Ryutov, D.D.; Tsidulko, Y.A.; Xu, X.Q.

    1992-08-01

    An electron temperature instability driven by the Kunkel-Guillory sheath impedance, has been applied to the scrape-off layer of tokamaks. The formalism has been generalized to more fully account for parallel wavelength dynamics, to differentiate between electromagnetic and electrostatic perturbations and to account for particle recycling effects. It is conjectured that this conducting wall instability leads to edge fluctuations in tokamaks that produce scrape-off widths of many ion Larmor radii ≅10. The predicted instability characteristics correlate somewhat with DIII-D edge fluctuation data, and the scrape-off layer width in the DIII-D experiment agrees with theoretical estimates that can be derived from mixing lenght theory

  2. Experimental measurement of variation of heat transfer coefficient and temperature gradients in 16'' deep fluidised beds

    International Nuclear Information System (INIS)

    Blacker, P.T.; McLain, D.R.

    1962-04-01

    The object of the experiments was to choose suitable particulate materials for a fluidised bed cooler, to test a deep fluidised bed for uniformity of heat transfer coefficient, and to explore the temperature distribution in a centrally heated annular fluidised bed. This memorandum records the techniques used and some of the practical aspects involved, together with the performance results obtained, for the assistance of other experimenters who may wish to use fluidised beds as a laboratory technique. Mathematical correlation of the results has not been attempted since some of the properties of the bed material were not known and to determine them was beyond the scope of the work programme. Rather, we have compared our results with those of other experimenters. Graphite tubes, for use in steady state thermal stress experiments, are to be heated by a graphite radiant heater situated in the bore and cooled on the outer surface. The tubes are 2 cm. bore, 8 cm. outside diameter and 48 cm. long. The outside temperature of the tubes is to be between 500 deg. C. and 1500 deg. C. It is estimated that the heat transfer rate required for fracture at the outer surface is 30 watts/cm 2 . This could readily be achieved by cooling with liquid metals, water or high velocity gas. However, serious problems of either materials compatibility or mechanical complexity make these undesirable. A water-cooled fluidised bed of compatible solids fluidised with nitrogen gas can overcome most of these problems and give heat transfer coefficients close to that required, vis. about 0.1 w/cm C . A coolant bed about 20'' long would be required and an annulus of about 2'' radial width round the specimen was considered to be practicable

  3. Experimental measurement of variation of heat transfer coefficient and temperature gradients in 16'' deep fluidised beds

    Energy Technology Data Exchange (ETDEWEB)

    Blacker, P T; McLain, D R [Reactor Development Division, Atomic Energy Establishment, Winfrith, Dorchester, Dorset (United Kingdom)

    1962-04-15

    The object of the experiments was to choose suitable particulate materials for a fluidised bed cooler, to test a deep fluidised bed for uniformity of heat transfer coefficient, and to explore the temperature distribution in a centrally heated annular fluidised bed. This memorandum records the techniques used and some of the practical aspects involved, together with the performance results obtained, for the assistance of other experimenters who may wish to use fluidised beds as a laboratory technique. Mathematical correlation of the results has not been attempted since some of the properties of the bed material were not known and to determine them was beyond the scope of the work programme. Rather, we have compared our results with those of other experimenters. Graphite tubes, for use in steady state thermal stress experiments, are to be heated by a graphite radiant heater situated in the bore and cooled on the outer surface. The tubes are 2 cm. bore, 8 cm. outside diameter and 48 cm. long. The outside temperature of the tubes is to be between 500 deg. C. and 1500 deg. C. It is estimated that the heat transfer rate required for fracture at the outer surface is 30 watts/cm{sup 2}. This could readily be achieved by cooling with liquid metals, water or high velocity gas. However, serious problems of either materials compatibility or mechanical complexity make these undesirable. A water-cooled fluidised bed of compatible solids fluidised with nitrogen gas can overcome most of these problems and give heat transfer coefficients close to that required, vis. about 0.1 w/cm C . A coolant bed about 20'' long would be required and an annulus of about 2'' radial width round the specimen was considered to be practicable.

  4. A selective and sensitive optical sensor for dissolved ammonia detection via agglomeration of fluorescent Ag nanoclusters and temperature gradient headspace single drop microextraction.

    Science.gov (United States)

    Dong, Jiang Xue; Gao, Zhong Feng; Zhang, Ying; Li, Bang Lin; Li, Nian Bing; Luo, Hong Qun

    2017-05-15

    In this paper, a simple sensor platform is presented for highly selective and sensitive detection of dissolved ammonia in aqueous solutions without pretreatment based on temperature gradient headspace single drop microextraction (HS-SDME) technique, and fluorescence and UV-vis spectrophotometry are utilized with the Ag nanoclusters (Ag NCs) functioned by citrate and glutathione as the probe. The sensing mechanism is based on the volatility of ammonia gas and the active response of Ag NCs to pH change caused by the introduction of ammonia. High pH can make the Ag NCs agglomerate and lead to the obvious decrease of fluorescence intensity and absorbance of Ag NCs solution. Moreover, the presented method exhibits a remarkably high selectivity toward dissolved ammonia over most of inorganic ions and amino acid, and shows a good linear range of 10-350μM (0.14-4.9mgNL -1 ) with a low detection limit of 336nM (4.70μgNL -1 ) at a signal-to-noise ratio of 3. In addition, the practical applications of the sensor have been successfully demonstrated by detecting dissolved ammonia in real samples. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Application of accelerated evaluation method of alteration temperature and constant dose rate irradiation on bipolar linear regulator LM317

    International Nuclear Information System (INIS)

    Deng Wei; Wu Xue; Wang Xin; Zhang Jinxin; Zhang Xiaofu; Zheng Qiwen; Ma Wuying; Lu Wu; Guo Qi; He Chengfa

    2014-01-01

    With different irradiation methods including high dose rate irradiation, low dose rate irradiation, alteration temperature and constant dose rate irradiation, and US military standard constant high temperature and constant dose rate irradiation, the ionizing radiation responses of bipolar linear regulator LM317 from three different companies were investigated under the operating and zero biases. The results show that compared with constant high temperature and constant dose rate irradiation method, the alteration temperature and constant dose rate irradiation method can not only very rapidly and accurately evaluate the dose rate effect of three bipolar linear regulators, but also well simulate the damage of low dose rate irradiation. Experiment results make the alteration temperature and constant dose rate irradiation method successfully apply to bipolar linear regulator. (authors)

  6. The Hengill geothermal area, Iceland: variation of temperature gradients deduced from the maximum depth of seismogenesis

    Science.gov (United States)

    Foulger, G.R.

    1995-01-01

    Given a uniform lithology and strain rate and a full seismic data set, the maximum depth of earthquakes may be viewed to a first order as an isotherm. These conditions are approached at the Hengill geothermal area, S. Iceland, a dominantly basaltic area. The temperature at which seismic failure ceases for the strain rates likely at the Hengill geothermal area is determined by analogy with oceanic crust, and is about 650 ?? 50??C. The topographies of the top and bottom of the seismogenic layer were mapped using 617 earthquakes. The thickness of the seismogenic layer is roughly constant and about 3 km. A shallow, aseismic, low-velocity volume within the spreading plate boundary that crosses the area occurs above the top of the seismogenic layer and is interpreted as an isolated body of partial melt. The base of the seismogenic layer has a maximum depth of about 6.5 km beneath the spreading axis and deepens to about 7 km beneath a transform zone in the south of the area. -from Author

  7. [Gradient elevation of temperature startup experiment of thermophilic ASBR treating thermal-hydrolyzed sewage sludge].

    Science.gov (United States)

    Ouyang, Er-Ming; Wang, Wei; Long, Neng; Li, Huai

    2009-04-15

    Startup experiment was conducted for thermophilic anaerobic sequencing batch reactor (ASBR) treating thermal-hydrolyzed sewage sludge using the strategy of the step-wise temperature increment: 35 degrees C-->40 degrees C-->47 degrees C-->53 degrees C. The results showed that the first step-increase (from 35 degrees C to 40 degrees C) and final step-increase (from 47 degrees C to 53 degrees C) had only a slight effect on the digestion process. The second step-increase (from 40 degrees C to 47 degrees C) resulted in a severe disturbance: the biogas production, methane content, CODeffluent and microorganism all have strong disturbance. At the steady stage of thermophilic ASBR treating thermal-hydrolyzed sewage sludge, the average daily gas production, methane content, specific methane production (CH4/CODinfluent), TCOD removal rate and SCOD removal rate were 2.038 L/d, 72.0%, 188.8 mL/g, 63.8%, 83.3% respectively. The results of SEM and DGGE indicated that the dominant species are obviously different at early stage and steady stage.

  8. On The Stress Free Deformation Of Linear FGM Interface Under Constant Temperature

    Directory of Open Access Journals (Sweden)

    Ganczarski Artur

    2015-09-01

    Full Text Available This paper demonstrates the stress free thermo-elastic problem of the FGM thick plate. Existence of such a purely thermal deformation is proved in two ways. First proof is based on application of the Iljushin thermo-elastic potential to displacement type system of equations. This reduces 3D problem to the plane stress state problem. Next it is shown that the unique solution fulfils conditions of simultaneous constant temperature and linear gradation of thermal expansion coefficient. Second proof is based directly on stress type system of equations which straightforwardly reduces to compatibility equations for purely thermal deformation. This occurs if only stress field is homogeneous in domain and at boundary. Finally an example of application to an engineering problem is presented.

  9. Novel, cyclic heat dissipation method for the correction of natural temperature gradients in sap flow measurements. Part 2. Laboratory validation.

    Science.gov (United States)

    Reyes-Acosta, J Leonardo; Vandegehuchte, Maurits W; Steppe, Kathy; Lubczynski, Maciek W

    2012-07-01

    Sap flow measurements conducted with thermal dissipation probes (TDPs) are vulnerable to natural temperature gradient (NTG) bias. Few studies, however, attempted to explain the dynamics underlying the NTG formation and its influence on the sensors' signal. This study focused on understanding how the TDP signals are affected by negative and positive temperature influences from NTG and tested the novel cyclic heat dissipation (CHD) method to filter out the NTG bias. A series of three experiments were performed in which gravity-driven water flow was enforced on freshly cut stem segments of Fagus sylvatica L., while an artificial temperature gradient (ATG) was induced. The first experiment sought to confirm the incidence of the ATG on sensors. The second experiment established the mis-estimations caused by the biasing effect of the ATG on standard TDP measurements. The third experiment tested the accuracy of the CHD method to account for the ATG biasing effect, as compared with other cyclic correction methods. During experiments, sap flow measured by TDP was assessed against gravimetric measurements. The results show that negative and positive ATGs were comparable in pattern but substantially larger than field NTGs. Second, the ATG bias caused an overestimation of the standard TDP sap flux density of ∼17 cm(3) cm(-2) h(-1) by 76%, and the sap flux density of ∼2 cm(3) cm(-2) h(-1) by over 800%. Finally, the proposed CHD method successfully reduced the max. ATG bias to 25% at ∼11 cm(3) cm(-2) h(-1) and to 40% at ∼1 cm(3) cm(-2) h(-1). We concluded that: (i) the TDP method is susceptible to NTG especially at low flows; (ii) the CHD method successfully corrected the TDP signal and resulted in generally more accurate sap flux density estimates (mean absolute percentage error ranging between 11 and 21%) than standard constant power TDP method and other cyclic power methods; and (iii) the ATG enforcing system is a suitable way of re-creating NTG for future tests.

  10. Chemical composition separation of a propylene-ethylene random copolymer by high temperature solvent gradient interaction chromatography.

    Science.gov (United States)

    Liu, Yonggang; Phiri, Mohau Justice; Ndiripo, Anthony; Pasch, Harald

    2017-11-03

    A propylene-ethylene random copolymer was fractionated by preparative temperature rising elution fractionation (TREF). The structural heterogeneity of the bulk sample and its TREF fractions was studied by high temperature liquid chromatography with a solvent gradient elution from 1-decanol to 1,2,4-trichlorobenzene. HPLC alone cannot resolve those propylene-ethylene copolymers with high ethylene content in the bulk sample, due to their low weight fractions in the bulk sample and a small response factor of these components in the ELSD detector, as well as their broad chemical composition distribution. These components can only be detected after being separated and enriched by TREF followed by HPLC analysis. Chemical composition separations were achieved for TREF fractions with average ethylene contents between 2.1 and 22.0mol%, showing that copolymers with higher ethylene contents were adsorbed stronger in the Hypercarb column and eluted later. All TREF fractions, except the 40°C fraction, were relatively homogeneous in both molar mass and chemical composition. The 40°C fraction was rather broad in both molar mass and chemical composition distributions. 2D HPLC showed that the molar masses of the components containing more ethylene units were getting lower for the 40°C fraction. HPLC revealed and confirmed that co-crystallization influences the separation in TREF of the studied propylene-ethylene copolymer. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Extensive phenotypic plasticity of a Red Sea coral over a strong latitudinal temperature gradient suggests limited acclimatization potential to warming

    KAUST Repository

    Sawall, Yvonne

    2015-03-10

    Global warming was reported to cause growth reductions in tropical shallow water corals in both, cooler and warmer, regions of the coral species range. This suggests regional adaptation with less heat-tolerant populations in cooler and more thermo-tolerant populations in warmer regions. Here, we investigated seasonal changes in the in situ metabolic performance of the widely distributed hermatypic coral Pocillopora verrucosa along 12° latitudes featuring a steep temperature gradient between the northern (28.5°N, 21-27°C) and southern (16.5°N, 28-33°C) reaches of the Red Sea. Surprisingly, we found little indication for regional adaptation, but strong indications for high phenotypic plasticity: Calcification rates in two seasons (winter, summer) were found to be highest at 28-29°C throughout all populations independent of their geographic location. Mucus release increased with temperature and nutrient supply, both being highest in the south. Genetic characterization of the coral host revealed low inter-regional variation and differences in the Symbiodinium clade composition only at the most northern and most southern region. This suggests variable acclimatization potential to ocean warming of coral populations across the Red Sea: high acclimatization potential in northern populations, but limited ability to cope with ocean warming in southern populations already existing at the upper thermal margin for corals.

  12. Extensive phenotypic plasticity of a Red Sea coral over a strong latitudinal temperature gradient suggests limited acclimatization potential to warming

    KAUST Repository

    Sawall, Yvonne; Al-Sofyani, Abdulmoshin; Hohn, Sö nke; Banguera Hinestroza, Eulalia; Voolstra, Christian R.; Wahl, Martin

    2015-01-01

    Global warming was reported to cause growth reductions in tropical shallow water corals in both, cooler and warmer, regions of the coral species range. This suggests regional adaptation with less heat-tolerant populations in cooler and more thermo-tolerant populations in warmer regions. Here, we investigated seasonal changes in the in situ metabolic performance of the widely distributed hermatypic coral Pocillopora verrucosa along 12° latitudes featuring a steep temperature gradient between the northern (28.5°N, 21-27°C) and southern (16.5°N, 28-33°C) reaches of the Red Sea. Surprisingly, we found little indication for regional adaptation, but strong indications for high phenotypic plasticity: Calcification rates in two seasons (winter, summer) were found to be highest at 28-29°C throughout all populations independent of their geographic location. Mucus release increased with temperature and nutrient supply, both being highest in the south. Genetic characterization of the coral host revealed low inter-regional variation and differences in the Symbiodinium clade composition only at the most northern and most southern region. This suggests variable acclimatization potential to ocean warming of coral populations across the Red Sea: high acclimatization potential in northern populations, but limited ability to cope with ocean warming in southern populations already existing at the upper thermal margin for corals.

  13. New insights into soil temperature time series modeling: linear or nonlinear?

    Science.gov (United States)

    Bonakdari, Hossein; Moeeni, Hamid; Ebtehaj, Isa; Zeynoddin, Mohammad; Mahoammadian, Abdolmajid; Gharabaghi, Bahram

    2018-03-01

    Soil temperature (ST) is an important dynamic parameter, whose prediction is a major research topic in various fields including agriculture because ST has a critical role in hydrological processes at the soil surface. In this study, a new linear methodology is proposed based on stochastic methods for modeling daily soil temperature (DST). With this approach, the ST series components are determined to carry out modeling and spectral analysis. The results of this process are compared with two linear methods based on seasonal standardization and seasonal differencing in terms of four DST series. The series used in this study were measured at two stations, Champaign and Springfield, at depths of 10 and 20 cm. The results indicate that in all ST series reviewed, the periodic term is the most robust among all components. According to a comparison of the three methods applied to analyze the various series components, it appears that spectral analysis combined with stochastic methods outperformed the seasonal standardization and seasonal differencing methods. In addition to comparing the proposed methodology with linear methods, the ST modeling results were compared with the two nonlinear methods in two forms: considering hydrological variables (HV) as input variables and DST modeling as a time series. In a previous study at the mentioned sites, Kim and Singh Theor Appl Climatol 118:465-479, (2014) applied the popular Multilayer Perceptron (MLP) neural network and Adaptive Neuro-Fuzzy Inference System (ANFIS) nonlinear methods and considered HV as input variables. The comparison results signify that the relative error projected in estimating DST by the proposed methodology was about 6%, while this value with MLP and ANFIS was over 15%. Moreover, MLP and ANFIS models were employed for DST time series modeling. Due to these models' relatively inferior performance to the proposed methodology, two hybrid models were implemented: the weights and membership function of MLP and

  14. Non-linear quantization error reduction for the temperature measurement subsystem on-board LISA Pathfinder

    Science.gov (United States)

    Sanjuan, J.; Nofrarias, M.

    2018-04-01

    Laser Interferometer Space Antenna (LISA) Pathfinder is a mission to test the technology enabling gravitational wave detection in space and to demonstrate that sub-femto-g free fall levels are possible. To do so, the distance between two free falling test masses is measured to unprecedented sensitivity by means of laser interferometry. Temperature fluctuations are one of the noise sources limiting the free fall accuracy and the interferometer performance and need to be known at the ˜10 μK Hz-1/2 level in the sub-millihertz frequency range in order to validate the noise models for the future space-based gravitational wave detector LISA. The temperature measurement subsystem on LISA Pathfinder is in charge of monitoring the thermal environment at key locations with noise levels of 7.5 μK Hz-1/2 at the sub-millihertz. However, its performance worsens by one to two orders of magnitude when slowly changing temperatures are measured due to errors introduced by analog-to-digital converter non-linearities. In this paper, we present a method to reduce this effect by data post-processing. The method is applied to experimental data available from on-ground validation tests to demonstrate its performance and the potential benefit for in-flight data. The analog-to-digital converter effects are reduced by a factor between three and six in the frequencies where the errors play an important role. An average 2.7 fold noise reduction is demonstrated in the 0.3 mHz-2 mHz band.

  15. Linear and nonlinear optical properties of multilayered spherical quantum dots: Effects of geometrical size, hydrogenic impurity, hydrostatic pressure and temperature

    International Nuclear Information System (INIS)

    Karimi, M.J.; Rezaei, G.; Nazari, M.

    2014-01-01

    Based on the effective mass and parabolic one band approximations, simultaneous effects of the geometrical size, hydrogenic impurity, hydrostatic pressure, and temperature on the intersubband optical absorption coefficients and refractive index changes in multilayered spherical quantum dots are studied. Energy eigenvalues and eigenvectors are calculated using the fourth-order Runge–Kutta method and optical properties are obtained using the compact density matrix approach. The results indicate that the hydrogenic impurity, hydrostatic pressure, temperature and geometrical parameters such as the well and barrier widths have a great influence on the linear, the third-order nonlinear and the total optical absorption coefficients and refractive index changes. -- Highlights: • Hydrogenic impurity effects on the optical properties of a MSQD are investigated. • Hydrostatic pressure and temperature effects are also studied. • Hydrogenic impurity has a great influence on the linear and nonlinear ACs and RICs. • Hydrostatic pressure and temperature change the linear and nonlinear ACs and RICs

  16. Evaluation of Candidate Linear Variable Displacement Transducers for High Temperature Irradiations in the Advanced Test Reactor

    International Nuclear Information System (INIS)

    Knudson, D.L.; Rempe, J.L.; Daw, J.E.

    2009-01-01

    The United States (U.S.) Department of Energy (DOE) designated the Advanced Test Reactor (ATR) as a National Scientific User Facility (NSUF) in April 2007 to promote nuclear science and technology in the U.S. Given this designation, the ATR is supporting new users from universities, laboratories, and industry as they conduct basic and applied nuclear research and development to advance the nation's energy security needs. A fundamental component of the ATR NSUF program is to develop in-pile instrumentation capable of providing real-time measurements of key parameters during irradiation experiments. Dimensional change is a key parameter that must be monitored during irradiation of new materials being considered for fuel, cladding, and structures in next generation and existing nuclear reactors. Such materials can experience significant changes during high temperature irradiation. Currently, dimensional changes are determined by repeatedly irradiating a specimen for a defined period of time in the ATR and then removing it from the reactor for evaluation. The time and labor to remove, examine, and return irradiated samples for each measurement makes this approach very expensive. In addition, such techniques provide limited data (i.e., only characterizing the end state when samples are removed from the reactor) and may disturb the phenomena of interest. To address these issues, the Idaho National Laboratory (INL) recently initiated efforts to evaluate candidate linear variable displacement transducers (LVDTs) for use during high temperature irradiation experiments in typical ATR test locations. Two nuclear grade LVDT vendor designs were identified for consideration - a smaller diameter design qualified for temperatures up to 350 C and a larger design with capabilities to 500 C. Initial evaluation efforts include collecting calibration data as a function of temperature, long duration testing of LVDT response while held at high temperature, and the assessment of changes

  17. Indirect effects of impoundment on migrating fish: temperature gradients in fish ladders slow dam passage by adult Chinook salmon and steelhead.

    Directory of Open Access Journals (Sweden)

    Christopher C Caudill

    Full Text Available Thermal layering in reservoirs upstream from hydroelectric dams can create temperature gradients in fishways used by upstream migrating adults. In the Snake River, Washington, federally-protected adult salmonids (Oncorhynchus spp. often encounter relatively cool water in dam tailraces and lower ladder sections and warmer water in the upstream portions of ladders. Using radiotelemetry, we examined relationships between fish passage behavior and the temperature difference between the top and bottom of ladders (∆T at four dams over four years. Some spring Chinook salmon (O. tshawytscha experienced ∆T ≥ 0.5 °C. Many summer and fall Chinook salmon and summer steelhead (O. mykiss experienced ∆T ≥ 1.0 °C, and some individuals encountered ΔT > 4.0°C. As ΔT increased, migrants were consistently more likely to move down fish ladders and exit into dam tailraces, resulting in upstream passage delays that ranged from hours to days. Fish body temperatures equilibrated to ladder temperatures and often exceeded 20°C, indicating potential negative physiological and fitness effects. Collectively, the results suggest that gradients in fishway water temperatures present a migration obstacle to many anadromous migrants. Unfavorable temperature gradients may be common at reservoir-fed fish passage facilities, especially those with seasonal thermal layering or stratification. Understanding and managing thermal heterogeneity at such sites may be important for ensuring efficient upstream passage and minimizing stress for migratory, temperature-sensitive species.

  18. Non-linear statistical downscaling of present and LGM precipitation and temperatures over Europe

    Directory of Open Access Journals (Sweden)

    M. Vrac

    2007-12-01

    Full Text Available Local-scale climate information is increasingly needed for the study of past, present and future climate changes. In this study we develop a non-linear statistical downscaling method to generate local temperatures and precipitation values from large-scale variables of a Earth System Model of Intermediate Complexity (here CLIMBER. Our statistical downscaling scheme is based on the concept of Generalized Additive Models (GAMs, capturing non-linearities via non-parametric techniques. Our GAMs are calibrated on the present Western Europe climate. For this region, annual GAMs (i.e. models based on 12 monthly values per location are fitted by combining two types of large-scale explanatory variables: geographical (e.g. topographical information and physical (i.e. entirely simulated by the CLIMBER model.

    To evaluate the adequacy of the non-linear transfer functions fitted on the present Western European climate, they are applied to different spatial and temporal large-scale conditions. Local projections for present North America and Northern Europe climates are obtained and compared to local observations. This partially addresses the issue of spatial robustness of our transfer functions by answering the question "does our statistical model remain valid when applied to large-scale climate conditions from a region different from the one used for calibration?". To asses their temporal performances, local projections for the Last Glacial Maximum period are derived and compared to local reconstructions and General Circulation Model outputs.

    Our downscaling methodology performs adequately for the Western Europe climate. Concerning the spatial and temporal evaluations, it does not behave as well for Northern America and Northern Europe climates because the calibration domain may be too different from the targeted regions. The physical explanatory variables alone are not capable of downscaling realistic values. However, the inclusion of

  19. Continuous gradient temperature Raman spectroscopy and differential scanning calorimetry of N-3DPA and DHA from -100 to 10°C

    Science.gov (United States)

    Docosahexaenoic acid (DHA, 22:6n-3) is exclusively utilized in fast signal processing tissues such as retinal, neural and cardiac. N-3 docosapentaenoic acid (n-3DPA, 22:5n-3), with just one less double bond, is also found in the marine food chain yet cannot substitute for DHA. Gradient Temperature R...

  20. Influence of natural temperature gradients on measurements of xylem sap flow with thermal dissipation probes. 1. Field observations and possible remedies.

    Science.gov (United States)

    Do, F; Rocheteau, A

    2002-06-01

    The thermal dissipation method is simple and widely used for measuring sap flow in large stems. As with several other thermal methods, natural temperature gradients are assumed to be negligible in the sapwood being measured. We studied the magnitude and variability of natural temperature gradients in sapwood of Acacia trees growing in the Sahelian zone of Senegal, analyzed their effects on sap flow measurements, and investigated possible solutions. A new measurement approach employing cyclic heating (45 minutes of heating and 15 minutes of cooling; 45/15) was also tested. Three-day measurement sequences that included 1 day without heating, a second day with continuous heating and a third day with cyclic heating were recorded during a 6.5-month period using probes installed at three azimuths in a tree trunk. Natural temperature gradients between the two probes of the sensor unit, spaced 8 to 10 cm vertically, were rarely negligible (i.e., solar radiation and low sap flow rate. However, for all applications of the thermal dissipation method, it is wise to check regularly for natural temperature gradients by switching off the heater.

  1. Total C and N Pools and fluxes vary with time, soil temperature, and moisture along an elevation, precipitation, and vegetation gradient in southern Appalachian Forests

    Science.gov (United States)

    Jennifer D. Knoepp; Craig R. See; James M. Vose; Chelcy F. Miniat; James S. Clark

    2018-01-01

    The interactions of terrestrial C pools and fluxes with spatial and temporal variation in climate are not well understood. We conducted this study in the southern Appalachian Mountains where complex topography provides variability in temperature, precipitation, and forest communities. In 1990, we established five large plots across an elevation gradient...

  2. Effects of an experimental increase of temperature and drought on the photosynthetic performance of two ericaceous shrub species along a north-south European gradient

    DEFF Research Database (Denmark)

    Llorens, L.; Penuelas, J.; Beier, C.

    2004-01-01

    ericaceous shrubs (Erica multiflora and Calluna vulgaris) along a European gradient of temperature and precipitation (UK, Denmark, The Netherlands, and Spain). At each site, a passive warming treatment was applied during the night throughout the whole year, whereas the drought treatment excluded rain events...

  3. Forest biomass density across large climate gradients in northern South America is related to water availability but not with temperature.

    Science.gov (United States)

    Álvarez-Dávila, Esteban; Cayuela, Luis; González-Caro, Sebastián; Aldana, Ana M; Stevenson, Pablo R; Phillips, Oliver; Cogollo, Álvaro; Peñuela, Maria C; von Hildebrand, Patricio; Jiménez, Eliana; Melo, Omar; Londoño-Vega, Ana Catalina; Mendoza, Irina; Velásquez, Oswaldo; Fernández, Fernando; Serna, Marcela; Velázquez-Rua, Cesar; Benítez, Doris; Rey-Benayas, José M

    2017-01-01

    Understanding and predicting the likely response of ecosystems to climate change are crucial challenges for ecology and for conservation biology. Nowhere is this challenge greater than in the tropics as these forests store more than half the total atmospheric carbon stock in their biomass. Biomass is determined by the balance between biomass inputs (i.e., growth) and outputs (mortality). We can expect therefore that conditions that favor high growth rates, such as abundant water supply, warmth, and nutrient-rich soils will tend to correlate with high biomass stocks. Our main objective is to describe the patterns of above ground biomass (AGB) stocks across major tropical forests across climatic gradients in Northwestern South America. We gathered data from 200 plots across the region, at elevations ranging between 0 to 3400 m. We estimated AGB based on allometric equations and values for stem density, basal area, and wood density weighted by basal area at the plot-level. We used two groups of climatic variables, namely mean annual temperature and actual evapotranspiration as surrogates of environmental energy, and annual precipitation, precipitation seasonality, and water availability as surrogates of water availability. We found that AGB is more closely related to water availability variables than to energy variables. In northwest South America, water availability influences carbon stocks principally by determining stand structure, i.e. basal area. When water deficits increase in tropical forests we can expect negative impact on biomass and hence carbon storage.

  4. Experimental observation of transient δ18O interaction between snow and advective airflow under various temperature gradient conditions

    Directory of Open Access Journals (Sweden)

    P. P. Ebner

    2017-07-01

    Full Text Available Stable water isotopes (δ18O obtained from snow and ice samples of polar regions are used to reconstruct past climate variability, but heat and mass transport processes can affect the isotopic composition. Here we present an experimental study on the effect of airflow on the snow isotopic composition through a snow pack in controlled laboratory conditions. The influence of isothermal and controlled temperature gradient conditions on the δ18O content in the snow and interstitial water vapour is elucidated. The observed disequilibrium between snow and vapour isotopes led to the exchange of isotopes between snow and vapour under non-equilibrium processes, significantly changing the δ18O content of the snow. The type of metamorphism of the snow had a significant influence on this process. These findings are pertinent to the interpretation of the records of stable isotopes of water from ice cores. These laboratory measurements suggest that a highly resolved climate history is relevant for the interpretation of the snow isotopic composition in the field.

  5. Mean Annual Temperature Drives Microbial Nitrogen Cycling and Fine Root Nutrient Foraging Across a Tropical Montane Wet Forest Elevation Gradient

    Science.gov (United States)

    Pierre, S.; Litton, C. L. M.; Giardina, C. P.; Sparks, J. P.; Groffman, P. M.; Hewson, I.; Fahey, T. J.

    2017-12-01

    Mean annual temperature (MAT) is positively correlated with rates of primary production and carbon (C) turnover in forests globally, but the underlying biotic drivers of these relationships remain poorly resolved. We hypothesized that (1) MAT increases nitrifier abundance and thereby nitrate (NO-) bioavailability in soils and (2) increased NO- bioavailability reduces fine root nitrogen (N) demand. We used an ecologically well-constrained natural elevation gradient (13˚C -18˚C) in a tropical wet motane forest on the Island of Hawaii to study to role of MAT in situ. Our previous work showed that MAT drives increased soil NO- bioavailability in situ (r²=0.79, P=0.003), and indicated that the abundance of ammonia oxidizing archaea is strongly and positively correlated with MAT in situ (r²=0.34, Preduce fine root foraging effort. Further, higher MAT and greater N fertility in soils may reduce the C limitation of AM fungal colonization. We conclude that MAT drives N-rich conditions, which allow for lower N foraging effort, but greater C investment in P acquisition through AM fine root colonization.

  6. Measuring significant inhomogeneity and anisotropy in indoor convective air turbulence in the presence of 2D temperature gradient

    International Nuclear Information System (INIS)

    Razi, E Mohammady; Rasouli, Saifollah

    2014-01-01

    Using a novel set up, experimental study of the statistical properties of a light beam propagating horizontally through indoor convective air turbulence in the presence of a 2D temperature gradient (TG) is presented. A laser beam enters a telescope from its back focal point by virtue of an optical fiber and is expanded and recollimated by it and then passes through the turbulent area. Then the beam enters another telescope’s aperture. A mask consisting of four similar widely separated small subapertures was installed in front of the second telescope’s aperture. The subapertures were equidistant from the optical axis of the telescope and located at the corners of a square. A flat plane heater is used to produce a vertical TG in the medium. Due to the limited width of the heater, a horizontal component for the TG appeared. Near the focal plane of the second telescope, four distinct images of the source are formed and recorded by a CCD camera. Due to the turbulence all the images (spots) in the successive frames fluctuate. Using the four spot displacements we have calculated the fluctuations of the angle of arrival (AA) over the subapertures. The statistical properties of the optical turbulence are investigated using variance analysis of the AA component fluctuations at horizontal and vertical directions over the subapertures for different temperatures of the heater at different heights of the beam path from the heater. Experimental results show that when the heater is turned off, the variances of horizontal and vertical components of the AA fluctuations are approximately equal to zero over all the subapertures. When it is turned on, the variance of the horizontal component of the AA fluctuations over all of the subapertures are larger than those from the vertical one. In addition, in this case, we find a significant dependence of the variance of the AA components on the height from the heater. (paper)

  7. Non-linear dynamo waves in an incompressible medium when the turbulence dissipative coefficients depend on temperature

    Directory of Open Access Journals (Sweden)

    A. D. Pataraya

    1997-01-01

    Full Text Available Non-linear α-ω; dynamo waves existing in an incompressible medium with the turbulence dissipative coefficients depending on temperature are studied in this paper. We investigate of α-ω solar non-linear dynamo waves when only the first harmonics of magnetic induction components are included. If we ignore the second harmonics in the non-linear equation, the turbulent magnetic diffusion coefficient increases together with the temperature, the coefficient of turbulent viscosity decreases, and for an interval of time the value of dynamo number is greater than 1. In these conditions a stationary solution of the non-linear equation for the dynamo wave's amplitude exists; meaning that the magnetic field is sufficiently excited. The amplitude of the dynamo waves oscillates and becomes stationary. Using these results we can explain the existence of Maunder's minimum.

  8. Behaviour of a pre-stressed concrete pressure-vessel subjected to a high temperature gradient; Comportement d'un caisson en beton precontraint soumis a un gradient de temperature eleve

    Energy Technology Data Exchange (ETDEWEB)

    Dubois, F [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires; Bonvalet, Ch; Dawance, G; Marechal, J C [Centre Experimental de Recherches et d' Etudes du Batiment et des Travaux Publics (CEBTP), 76 - Harfleur (France)

    1965-07-01

    After a review of the problems presented by pressure-vessels for atomic reactors (shape of the vessel, pressures, openings, foundations, etc.) the advantages of pre-stressed concrete vessels with respect to steel ones are given. The use of pre-stressed concrete vessels however presents many difficulties connected with the properties of concrete. Thus, because of the absence of an exact knowledge of the material, it is necessary to place a sealed layer of steel against the concrete, to have a thermal insulator or a cooling circuit for limiting the deformations and stresses, etc. It follows that the study of the behaviour of pre-stressed concrete and of the vessel subjected- to a high temperature gradient can yield useful information. A one-tenth scale model of a pre-stressed concrete cylindrical vessel without any side openings and without a base has been built. Before giving a description of the tests the authors consider some theoretical aspects concerning 'scale model-actual structure' similitude conditions and the calculation of the thermal and mechanical effects. The pre-stressed concrete model was heated internally by a 'pyrotenax' element and cooled externally by a very strong air current. The concrete was pre-stressed using horizontal and vertical cables held at 80 kg/cm{sup 2}; the thermal gradient was 160 deg. C. During the various tests, measurements were made of the overall and local deformations, the changes in water content, the elasticity modulus, the stress and creep of the cables and the depths of the cracks. The overall deformations observed are in line with thermal deformation theories and the creep of the cables attained 20 to 30 per cent according to their position relative to the internal surface. The dynamic elasticity modulus decreased by half but the concrete keeps its good mechanical properties. Finally, cracks 8 to 12 cm deep and 2 to 3 mms wide appeared in that part of the concrete which was not pre-stressed. The results obtained make it

  9. Behaviour of a pre-stressed concrete pressure-vessel subjected to a high temperature gradient; Comportement d'un caisson en beton precontraint soumis a un gradient de temperature eleve

    Energy Technology Data Exchange (ETDEWEB)

    Dubois, F. [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires; Bonvalet, Ch.; Dawance, G.; Marechal, J.C. [Centre Experimental de Recherches et d' Etudes du Batiment et des Travaux Publics (CEBTP), 76 - Harfleur (France)

    1965-07-01

    After a review of the problems presented by pressure-vessels for atomic reactors (shape of the vessel, pressures, openings, foundations, etc.) the advantages of pre-stressed concrete vessels with respect to steel ones are given. The use of pre-stressed concrete vessels however presents many difficulties connected with the properties of concrete. Thus, because of the absence of an exact knowledge of the material, it is necessary to place a sealed layer of steel against the concrete, to have a thermal insulator or a cooling circuit for limiting the deformations and stresses, etc. It follows that the study of the behaviour of pre-stressed concrete and of the vessel subjected- to a high temperature gradient can yield useful information. A one-tenth scale model of a pre-stressed concrete cylindrical vessel without any side openings and without a base has been built. Before giving a description of the tests the authors consider some theoretical aspects concerning 'scale model-actual structure' similitude conditions and the calculation of the thermal and mechanical effects. The pre-stressed concrete model was heated internally by a 'pyrotenax' element and cooled externally by a very strong air current. The concrete was pre-stressed using horizontal and vertical cables held at 80 kg/cm{sup 2}; the thermal gradient was 160 deg. C. During the various tests, measurements were made of the overall and local deformations, the changes in water content, the elasticity modulus, the stress and creep of the cables and the depths of the cracks. The overall deformations observed are in line with thermal deformation theories and the creep of the cables attained 20 to 30 per cent according to their position relative to the internal surface. The dynamic elasticity modulus decreased by half but the concrete keeps its good mechanical properties. Finally, cracks 8 to 12 cm deep and 2 to 3 mms wide appeared in that part of the concrete which was not pre-stressed. The

  10. Trend analysis by a piecewise linear regression model applied to surface air temperatures in Southeastern Spain (1973–2014)

    OpenAIRE

    Campra, Pablo; Morales, Maria

    2016-01-01

    The magnitude of the trends of environmental and climatic changes is mostly derived from the slopes of the linear trends using ordinary least-square fitting. An alternative flexible fitting model, piecewise regression, has been applied here to surface air temperature records in southeastern Spain for the recent warming period (1973–2014) to gain accuracy in the description of the inner structure of change, dividing the time series into linear segments with different slopes. Breakpoint y...

  11. Effects of non-uniform temperature gradients on surface tension driven two component magneto convection in a porous- fluid system

    Science.gov (United States)

    Manjunatha, N.; Sumithra, R.

    2018-04-01

    The problem of surface tension driven two component magnetoconvection is investigated in a Porous-Fluid system, consisting of anincompressible two component electrically conducting fluid saturatedporous layer above which lies a layer of the same fluid in the presence of a uniform vertical magnetic field. The lower boundary of the porous layeris rigid and the upper boundary of the fluid layer is free with surfacetension effects depending on both temperature and concentration, boththese boundaries are insulating to heat and mass. At the interface thevelocity, shear and normal stress, heat and heat flux, mass and mass fluxare assumed to be continuous suitable for Darcy-Brinkman model. Theeigenvalue problem is solved in linear, parabolic and inverted parabolictemperature profiles and the corresponding Thermal Marangoni Numberis obtained for different important physical parameters.

  12. Thermal dependence of sprint performance in the lizard Psammodromus algirus along a 2200-meter elevational gradient: Cold-habitat lizards do not perform better at low temperatures.

    Science.gov (United States)

    Zamora-Camacho, Francisco Javier; Rubiño-Hispán, María Virtudes; Reguera, Senda; Moreno-Rueda, Gregorio

    2015-08-01

    Sprint speed has a capital relevance in most animals' fitness, mainly for fleeing from predators. Sprint performance is maximal within a certain range of body temperatures in ectotherms, whose thermal upkeep relies on exogenous thermal sources. Ectotherms can respond to diverse thermal environments either by shifting their thermal preferences or maintaining them through different adaptive mechanisms. Here, we tested whether maximum sprint speed of a lizard that shows conservative thermal ecology along a 2200-meter elevational gradient differs with body temperature in lizards from different elevations. Lizards ran faster at optimum than at suboptimum body temperature. Notably, high-elevation lizards were not faster than mid- and low-elevation lizards at suboptimum body temperature, despite their low-quality thermal environment. This result suggests that both preferred body temperature and thermal dependence of speed performance are co-adapted along the elevational gradient. High-elevation lizards display a number of thermoregulatory strategies that allow them to achieve high optimum body temperatures in a low thermal-quality habitat and thus maximize speed performance. As for reproductive condition, we did not find any effect of it on sprint speed, or any significant interaction with elevation or body temperature. However, strikingly, gravid females were significantly slower than males and non-gravid females at suboptimum temperature, but performed similarly well at optimal temperature. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Thermal conduction and linear expansion of sintered rhenium and tungsten-rhenium alloys at a temperature up to 1000 K

    International Nuclear Information System (INIS)

    Pozdnyak, N.Z.; Belyaev, R.A.; Vavilov, Yu.V.; Vinogradov, Yu.G.; Serykh, G.M.

    1978-01-01

    Preparation technology (by powder metallurgy methods) of sintered rhenium and tungsten-rhenium VR-5, VR-10, and VR-20 alloys is described. Thermal conduction of rhenium and VR-20 alloy has been measured in the temperature range from 300 to 1000 K. The value obtained turned out to be considerably less than those published elsewhere, this testifies to the great thermal contact resistance between the material grains. Also measured is the mean linear expansion coefficient for the mentioned above materials in the same temperature range. Linear expansion increases with rhenium content increase

  14. Linear mode conversion of Langmuir/z-mode waves to radiation: Scalings of conversion efficiencies and propagation angles with temperature and magnetic field orientation

    International Nuclear Information System (INIS)

    Schleyer, F.; Cairns, Iver H.; Kim, E.-H.

    2013-01-01

    Linear mode conversion (LMC) is the linear transfer of energy from one wave mode to another in an inhomogeneous plasma. It is relevant to laboratory plasmas and multiple solar system radio emissions, such as continuum radiation from planetary magnetospheres and type II and III radio bursts from the solar corona and solar wind. This paper simulates LMC of waves defined by warm, magnetized fluid theory, specifically the conversion of Langmuir/z-mode waves to electromagnetic (EM) radiation. The primary focus is the calculation of the energy and power conversion efficiencies for LMC as functions of the angle of incidence θ of the Langmuir/z-mode wave, temperature β=T e /m e c 2 , adiabatic index γ, and orientation angle φ between the ambient density gradient ∇N 0 and ambient magnetic field B 0 in a warm, unmagnetized plasma. The ratio of these efficiencies is found to agree well as a function of θ, γ, and β with an analytical relation that depends on the group speeds of the Langmuir/z and EM wave modes. The results demonstrate that the energy conversion efficiency ε is strongly dependent on γβ, φ and θ, with ε∝(γβ) 1/2 and θ∝(γβ) 1/2 . The power conversion efficiency ε p , on the other hand, is independent of γβ but does vary significantly with θ and φ. The efficiencies are shown to be maximum for approximately perpendicular density gradients (φ≈90°) and minimal for parallel orientation (φ=0°) and both the energy and power conversion efficiencies peak at the same θ.

  15. High-gradient near-quench-limit operation of superconducting Tesla-type cavities in scope of the International Linear Collider

    Directory of Open Access Journals (Sweden)

    Mathieu Omet

    2014-07-01

    Full Text Available We report the successful demonstration of an ILC-like high-gradient near-quench-limit operation at the Superconducting RF Test Facility at the High Energy Accelerator Research Organization (KEK in Japan. Preparation procedures necessary for the accelerator operation were conducted, such as rf phase calibration, beam-based gradient calibration, and automated beam compensation. Test runs were performed successfully for nominal operation, high-loaded Q (Q_{L} operation, and automated P_{k}Q_{L} operation. The results are described in terms of the achieved precision and stabilities of gradients and phases.

  16. How do two Lupinus species respond to temperature along an altitudinal gradient in the Venezuelan Andes? ¿Cómo responden dos especies de Lupinus a la temperatura en un gradiente altitudinal en los Andes venezolanos?

    Directory of Open Access Journals (Sweden)

    FERMÍN RADA

    2008-09-01

    Full Text Available Temperature determines plant formations and species distribution along altitudinal gradients. Plants in the tropical high Andes, through different physiological and morphological characteristics, respond to freezing night temperatures and high daytime energy inputs which occur anytime of the year. The main objective of this study was to characterize day and night temperature related responses of two Lupinus species with different altitudinal ranges (L. meridanus, 1,800-3,600 and L. eromonomos, 3,700-4,300 m of altitude. Are there differences in night low temperature resistance mechanisms between the species along the gradient? How do these species respond, in terms of optimum temperature for photosynthesis, to increasing altitude? Lupinus meridanus shows frost avoidance, in contrast to L. eromonomos, which tolerates freezing at higher altitudes. Optimum temperature for photosynthesis decreases along the gradient for both species. Maximum C0(2 assimilation rates were higher in L. meridanus, while L. eromonomos showed decreasing C0(2 assimilation rates at the higher altitude. In most cases, measured daily leaf temperature is always within the 80 % of optimum for photosynthesis. L. meridanus7 upper distribution limit seems to be restricted by cold resistance mechanisms, while L. eromonomos7 to a combination of both cold resistance and to C0(2 assimilation responses at higher altitudes.La temperatura determina las formaciones vegetales y la distribución de especies a lo largo de gradientes altitudinales. Las plantas en los altos Andes tropicales, a través de diferentes características morfológicas y fisiológicas, responden a temperaturas congelantes nocturnas y altas entradas energéticas durante el día en cualquier momento del año. El objetivo principal de este estudio fue caracterizar las respuestas relacionadas con temperaturas diurnas y nocturnas en dos especies de Lupinus con diferente distribución altitudinal (L. meridanus, 1

  17. Using the Weak-Temperature Gradient Approximation to Evaluate Parameterizations: An Example of the Transition From Suppressed to Active Convection

    Science.gov (United States)

    Daleu, C. L.; Plant, R. S.; Woolnough, S. J.

    2017-10-01

    Two single-column models are fully coupled via the weak-temperature gradient approach. The coupled-SCM is used to simulate the transition from suppressed to active convection under the influence of an interactive large-scale circulation. The sensitivity of this transition to the value of mixing entrainment within the convective parameterization is explored. The results from these simulations are compared with those from equivalent simulations using coupled cloud-resolving models. Coupled-column simulations over nonuniform surface forcing are used to initialize the simulations of the transition, in which the column with suppressed convection is forced to undergo a transition to active convection by changing the local and/or remote surface forcings. The direct contributions from the changes in surface forcing are to induce a weakening of the large-scale circulation which systematically modulates the transition. In the SCM, the contributions from the large-scale circulation are dominated by the heating effects, while in the CRM the heating and moistening effects are about equally divided. A transition time is defined as the time when the rain rate in the dry column is halfway to the value at equilibrium after the transition. For the control value of entrainment, the order of the transition times is identical to that obtained in the CRM, but the transition times are markedly faster. The locally forced transition is strongly delayed by a higher entrainment. A consequence is that for a 50% higher entrainment the transition times are reordered. The remotely forced transition remains fast while the locally forced transition becomes slow, compared to the CRM.

  18. Spatio-temporal analyses of Symbiodinium physiology of the coral Pocillopora verrucosa along large-scale nutrient and temperature gradients in the Red Sea.

    Science.gov (United States)

    Sawall, Yvonne; Al-Sofyani, Abdulmohsin; Banguera-Hinestroza, Eulalia; Voolstra, Christian R

    2014-01-01

    Algal symbionts (zooxanthellae, genus Symbiodinium) of scleractinian corals respond strongly to temperature, nutrient and light changes. These factors vary greatly along the north-south gradient in the Red Sea and include conditions, which are outside of those typically considered optimal for coral growth. Nevertheless, coral communities thrive throughout the Red Sea, suggesting that zooxanthellae have successfully acclimatized or adapted to the harsh conditions they experience particularly in the south (high temperatures and high nutrient supply). As such, the Red Sea is a region, which may help to better understand how zooxanthellae and their coral hosts successfully acclimatize or adapt to environmental change (e.g. increased temperatures and localized eutrophication). To gain further insight into the physiology of coral symbionts in the Red Sea, we examined the abundance of dominant Symbiodinium types associated with the coral Pocillopora verrucosa, and measured Symbiodinium physiological characteristics (i.e. photosynthetic processes, cell density, pigmentation, and protein composition) along the latitudinal gradient of the Red Sea in summer and winter. Despite the strong environmental gradients from north to south, our results demonstrate that Symbiodinium microadriaticum (type A1) was the predominant species in P. verrucosa along the latitudinal gradient. Furthermore, measured physiological characteristics were found to vary more with prevailing seasonal environmental conditions than with region-specific differences, although the measured environmental parameters displayed much higher spatial than temporal variability. We conclude that our findings might present the result of long-term acclimatization or adaptation of S. microadriaticum to regionally specific conditions within the Red Sea. Of additional note, high nutrients in the South correlated with high zooxanthellae density indicating a compensation for a temperature-driven loss of photosynthetic

  19. Spatio-temporal analyses of Symbiodinium physiology of the coral Pocillopora verrucosa along large-scale nutrient and temperature gradients in the Red Sea.

    Directory of Open Access Journals (Sweden)

    Yvonne Sawall

    Full Text Available Algal symbionts (zooxanthellae, genus Symbiodinium of scleractinian corals respond strongly to temperature, nutrient and light changes. These factors vary greatly along the north-south gradient in the Red Sea and include conditions, which are outside of those typically considered optimal for coral growth. Nevertheless, coral communities thrive throughout the Red Sea, suggesting that zooxanthellae have successfully acclimatized or adapted to the harsh conditions they experience particularly in the south (high temperatures and high nutrient supply. As such, the Red Sea is a region, which may help to better understand how zooxanthellae and their coral hosts successfully acclimatize or adapt to environmental change (e.g. increased temperatures and localized eutrophication. To gain further insight into the physiology of coral symbionts in the Red Sea, we examined the abundance of dominant Symbiodinium types associated with the coral Pocillopora verrucosa, and measured Symbiodinium physiological characteristics (i.e. photosynthetic processes, cell density, pigmentation, and protein composition along the latitudinal gradient of the Red Sea in summer and winter. Despite the strong environmental gradients from north to south, our results demonstrate that Symbiodinium microadriaticum (type A1 was the predominant species in P. verrucosa along the latitudinal gradient. Furthermore, measured physiological characteristics were found to vary more with prevailing seasonal environmental conditions than with region-specific differences, although the measured environmental parameters displayed much higher spatial than temporal variability. We conclude that our findings might present the result of long-term acclimatization or adaptation of S. microadriaticum to regionally specific conditions within the Red Sea. Of additional note, high nutrients in the South correlated with high zooxanthellae density indicating a compensation for a temperature-driven loss of

  20. Spatio-Temporal Analyses of Symbiodinium Physiology of the Coral Pocillopora verrucosa along Large-Scale Nutrient and Temperature Gradients in the Red Sea

    KAUST Repository

    Sawall, Yvonne

    2014-08-19

    Algal symbionts (zooxanthellae, genus Symbiodinium) of scleractinian corals respond strongly to temperature, nutrient and light changes. These factors vary greatly along the north-south gradient in the Red Sea and include conditions, which are outside of those typically considered optimal for coral growth. Nevertheless, coral communities thrive throughout the Red Sea, suggesting that zooxanthellae have successfully acclimatized or adapted to the harsh conditions they experience particularly in the south (high temperatures and high nutrient supply). As such, the Red Sea is a region, which may help to better understand how zooxanthellae and their coral hosts successfully acclimatize or adapt to environmental change (e. g. increased temperatures and localized eutrophication). To gain further insight into the physiology of coral symbionts in the Red Sea, we examined the abundance of dominant Symbiodinium types associated with the coral Pocillopora verrucosa, and measured Symbiodinium physiological characteristics (i.e. photosynthetic processes, cell density, pigmentation, and protein composition) along the latitudinal gradient of the Red Sea in summer and winter. Despite the strong environmental gradients from north to south, our results demonstrate that Symbiodinium microadriaticum (type A1) was the predominant species in P. verrucosa along the latitudinal gradient. Furthermore, measured physiological characteristics were found to vary more with prevailing seasonal environmental conditions than with region-specific differences, although the measured environmental parameters displayed much higher spatial than temporal variability. We conclude that our findings might present the result of long-term acclimatization or adaptation of S. microadriaticum to regionally specific conditions within the Red Sea. Of additional note, high nutrients in the South correlated with high zooxanthellae density indicating a compensation for a temperature-driven loss of photosynthetic

  1. Molding of plasmonic resonances in metallic nanostructures: Dependence of the non-linear electric permittivity on system size and temperature

    KAUST Repository

    Alabastri, A.; Tuccio, S.; Giugni, A.; Toma, A.; Liberale, Carlo; Das, G.; Angelis, F.D.; Fabrizio, E.D.; Zaccaria, R.P.

    2013-01-01

    In this paper, we review the principal theoretical models through which the dielectric function of metals can be described. Starting from the Drude assumptions for intraband transitions, we show how this model can be improved by including interband absorption and temperature effect in the damping coefficients. Electronic scattering processes are described and included in the dielectric function, showing their role in determining plasmon lifetime at resonance. Relationships among permittivity, electric conductivity and refractive index are examined. Finally, a temperature dependent permittivity model is presented and is employed to predict temperature and non-linear field intensity dependence on commonly used plasmonic geometries, such as nanospheres. 2013 by the authors; licensee MDPI, Basel, Switzerland.

  2. Theoretical study of temperature dependent acoustic attenuation and non-linearity parameters in alkali metal hydride and deuteride

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Rishi Pal [Department of Physics, Banaras Hindu University, Varanasi 221005 (India); Singh, Rajendra Kumar, E-mail: rksingh_17@rediffmail.com [Department of Physics, Banaras Hindu University, Varanasi 221005 (India)

    2010-11-01

    Temperature dependence of acoustic attenuation and non-linearity parameters in lithium hydride and lithium deuteride have been studied for longitudinal and shear modes along various crystallographic directions of propagation in a wide temperature range. Lattice parameter and repulsive parameters have been used as input data and interactions up to next nearest neighbours have been considered to calculate second and third order elastic constants which in turn have been used for evaluating acoustic attenuation and related parameters. The results have been discussed and compared with available data. It is hoped that the present results will serve to stimulate the determination of the acoustic attenuation of these compounds at different temperatures.

  3. Molding of plasmonic resonances in metallic nanostructures: Dependence of the non-linear electric permittivity on system size and temperature

    KAUST Repository

    Alabastri, A.

    2013-10-25

    In this paper, we review the principal theoretical models through which the dielectric function of metals can be described. Starting from the Drude assumptions for intraband transitions, we show how this model can be improved by including interband absorption and temperature effect in the damping coefficients. Electronic scattering processes are described and included in the dielectric function, showing their role in determining plasmon lifetime at resonance. Relationships among permittivity, electric conductivity and refractive index are examined. Finally, a temperature dependent permittivity model is presented and is employed to predict temperature and non-linear field intensity dependence on commonly used plasmonic geometries, such as nanospheres. 2013 by the authors; licensee MDPI, Basel, Switzerland.

  4. A linear regression model for predicting PNW estuarine temperatures in a changing climate

    Science.gov (United States)

    Pacific Northwest coastal regions, estuaries, and associated ecosystems are vulnerable to the potential effects of climate change, especially to changes in nearshore water temperature. While predictive climate models simulate future air temperatures, no such projections exist for...

  5. Modeling the influence of a reduced equator-to-pole sea surface temperature gradient on the distribution of water isotopes in the Early/Middle Eocene

    Science.gov (United States)

    Speelman, Eveline N.; Sewall, Jacob O.; Noone, David; Huber, Matthew; von der Heydt, Anna; Damsté, Jaap Sinninghe; Reichart, Gert-Jan

    2010-09-01

    Proxy-based climate reconstructions suggest the existence of a strongly reduced equator-to-pole temperature gradient during the Azolla interval in the Early/Middle Eocene, compared to modern. Changes in the hydrological cycle, as a consequence of a reduced temperature gradient, are expected to be reflected in the isotopic composition of precipitation (δD, δ 18O). The interpretation of water isotopic records to quantitatively reconstruct past precipitation patterns is, however, hampered by a lack of detailed information on changes in their spatial and temporal distribution. Using the isotope-enabled version of the National Center for Atmospheric Research (NCAR) atmospheric general circulation model, Community Atmosphere Model v.3 (isoCAM3), relationships between water isotopes and past climates can be simulated. Here we examine the influence of an imposed reduced meridional sea surface temperature gradient on the spatial distribution of precipitation and its isotopic composition in an Early/Middle Eocene setting. As a result of the applied forcings, the Eocene simulation predicts the occurrence of less depleted high latitude precipitation, with δD values ranging only between 0 and -140‰ (compared to Present-day 0 to -300‰). Comparison with Early/Middle Eocene-age isotopic proxy data shows that the simulation accurately captures the main features of the spatial distribution of the isotopic composition of Early/Middle Eocene precipitation over land in conjunction with the aspects of the modeled Early/Middle Eocene climate. Hence, the included stable isotope module quantitatively supports the existence of a reduced meridional temperature gradient during this interval.

  6. Vapor flux and recrystallization during dry snow metamorphism under a steady temperature gradient as observed by time-lapse micro-tomography

    Directory of Open Access Journals (Sweden)

    B. R. Pinzer

    2012-10-01

    Full Text Available Dry snow metamorphism under an external temperature gradient is the most common type of recrystallization of snow on the ground. The changes in snow microstructure modify the physical properties of snow, and therefore an understanding of this process is essential for many disciplines, from modeling the effects of snow on climate to assessing avalanche risk. We directly imaged the microstructural changes in snow during temperature gradient metamorphism (TGM under a constant gradient of 50 K m−1, using in situ time-lapse X-ray micro-tomography. This novel and non-destructive technique directly reveals the amount of ice that sublimates and is deposited during metamorphism, in addition to the exact locations of these phase changes. We calculated the average time that an ice volume stayed in place before it sublimated and found a characteristic residence time of 2–3 days. This means that most of the ice changes its phase from solid to vapor and back many times in a seasonal snowpack where similar temperature conditions can be found. Consistent with such a short timescale, we observed a mass turnover of up to 60% of the total ice mass per day. The concept of hand-to-hand transport for the water vapor flux describes the observed changes very well. However, we did not find evidence for a macroscopic vapor diffusion enhancement. The picture of {temperature gradient metamorphism} produced by directly observing the changing microstructure sheds light on the micro-physical processes and could help to improve models that predict the physical properties of snow.

  7. Temperature Distribution in a Displacement Ventilated Room

    DEFF Research Database (Denmark)

    Nielsen, Peter V.

    The vertical temperature gradient is normally given as a linear temperature distribution between a minimum temperature close to the floor and a maximum temperature close to the ceiling. The minimum temperature can either be a constant fraction of a load dependent difference or it can be connected...

  8. Linear thermal expansion coefficient (at temperatures from 130 to 800 K) of borosilicate glasses applicable for coupling with silicon in microelectronics

    OpenAIRE

    Sinev, Leonid S.; Petrov, Ivan D.

    2017-01-01

    Processing results of measurements of linear thermal expansion coefficients and linear thermal expansion of two brands of borosilicate glasses --- LK5 and Borofloat 33 --- are presented. The linear thermal expansion of glass samples have been determined in the temperature range 130 to 800 K (minus 143 to 526 $\\deg$C) using thermomechanical analyzer TMA7100. Relative imprecision of indirectly measured linear thermal expansion coefficients and linear thermal expansion of both glass brands is le...

  9. Experimental study on the cracking behavior of reinforced concrete hollow cylinders subjected to temperature gradient and the assessment of decrease in flexural rigidity due to cracking

    International Nuclear Information System (INIS)

    Aoyagi, Yukio; Onuma, Hiroshi; Okazawa, Takao

    1976-01-01

    Altough the consideration of thermal stress constitutes one of the primary factors governing the design of the hollow cylindrical structures made of reinforced concrete and subjected to temperature gradient, such as radiation-shielding walls and reactor containment vessels, the method of rationally evaluating the safety to such stress has not been established so far. The purposes of this study are to investigate the conditions under which cracks initiate in reinforced concrete structures due to temperature gradient, and to evaluate the decreases in the flexural rigidity after cracking, mainly on the basis of experiment. Three hollow cylinders with top and bottom slabs, 120 cm height and 100 cm outside diameter, were tested. The cylinders were externally cooled by being immersed in water, and internally heated by circulating hot water through the cavities. The maximum temperature difference of 65 deg C was attained. The strain was measured, and the crack patterns were observed. A reinforced concrete beam of 3.8 m length was subjected to temperature difference of 65 deg C. Horizontal cracks appeared first at 27 deg C, and vertical cracks followed at 31 deg C difference at the middle of cylindrical walls. It was assumed that the first cracks appear at the tensile strain of 100 x 10 -6 , and the calculated result was agreed fairly well with the observed temperature difference. The rational method for evaluating the decrease in flexural rigidity due to cracking was proposed by the authors. (Kako, I.)

  10. Modeling the influence of a reduced equator-to-pole sea surface temperature gradient on the distribution of water isotopes in the Eocene

    Science.gov (United States)

    Speelman, E. N.; Sewall, J. O.; Noone, D. C.; Huber, M.; Sinninghe Damsté, J. S.; Reichart, G.

    2009-12-01

    Proxy-based climate reconstructions suggest the existence of a strongly reduced equator-to-pole temperature gradient during most of the Early Eocene. With the realization that the Eocene Arctic Ocean was covered with enormous quantities of the free floating freshwater fern Azolla, new questions related to Eocene (global) hydrological cycling facilitating these blooms arose. Changes in hydrological cycling, as a consequence of a reduced temperature gradient, are expected to be most clearly reflected in the isotopic composition (D, 18O) of precipitation. The interpretation of water isotopic records to quantitatively estimate past precipitation patterns is, however, hampered by the lack of detailed information on changes in their spatial and temporal distribution. Using the isotope-enabled global circulation model, Community Atmosphere Model v.3 (isoCAM3), relationships between water isotopes and past climates can be simulated. Here we examine the influence of a reduced meridional sea surface temperature gradient on the spatial distribution of precipitation and its isotopic composition in an Eocene setting. Overall, our combination of Eocene climate forcings, with superimposed TEX86-derived SST estimates and elevated pCO2 concentrations, produces a climate that agrees well with proxy data in locations around the globe. It shows the presence of an intensified hydrological cycle with precipitation exceeding evaporation in the Arctic region. The Eocene model runs with a significantly reduced equator-to-pole temperature gradient in a warmer more humid world predict occurrence of less depleted precipitation, with δD values ranging only between 0 and -140‰ (as opposed to the present-day range of 0 to -300‰). Combining new results obtained from compound specific isotope analyses on terrestrially derived n-alkanes extracted from Eocene sediments, and model calculations, shows that the model not only captures the main features, but reproduces isotopic values

  11. EUROMECH colloquium 377. Stability and control of shear flows with strong temperature or density gradients. Book of abstracts

    International Nuclear Information System (INIS)

    1998-10-01

    The topics discussed comprise the onset of instability in heated free jets and jets with density gradients, flow past heated/cooled boundaries, atmospheric shear flow, and mathematical modeling of laminar-turbulent transition phenomena. Three contributions have been input to INIS. (P.A.)

  12. Unprecedented quality factors at accelerating gradients up to 45 MVm-1 in niobium superconducting resonators via low temperature nitrogen infusion

    Science.gov (United States)

    Grassellino, A.; Romanenko, A.; Trenikhina, Y.; Checchin, M.; Martinello, M.; Melnychuk, O. S.; Chandrasekaran, S.; Sergatskov, D. A.; Posen, S.; Crawford, A. C.; Aderhold, S.; Bice, D.

    2017-09-01

    We report the finding of new surface treatments that permits one to manipulate the niobium resonator nitrogen content in the first few nanometers in a controlled way, and the resonator fundamental Mattis-Bardeen surface resistance and residual resistance accordingly. In particular, we find surface ‘infusion’ conditions that systematically (a) increase the quality factor of these 1.3 GHz superconducting radio frequency (SRF) bulk niobium resonators, up to very high gradients; (b) increase the achievable accelerating gradient of the cavity compared to its own baseline with state-of-the-art surface processing. Cavities subject to the new surface process have more than two times the state-of-the-art Q at 2 K for accelerating fields >35 MVm-1. Moreover, very high accelerating gradients ˜45 MVm-1 are repeatedly reached, which correspond to peak magnetic surface fields of 190 mT, among the highest measured for bulk niobium cavities. These findings open the opportunity to tailor the surface impurity content distribution to maximize performance in Q and gradients, and have therefore very important implications on future performance and cost of SRF based accelerators. They also help deepen the understanding of the physics of the RF niobium cavity surface.

  13. The effect of transition metals additions on the temperature coefficient of linear expansion of titanium and vanadium

    International Nuclear Information System (INIS)

    Lesnaya, M.I.; Volokitin, G.G.; Kashchuk, V.A.

    1976-01-01

    Results are reported of an experimental research into the influence of small additions of α-transition metals on the temperature coefficient of linear expansion of titanium and vanadium. Using the configuration model of substance as the basis, expeained are the lowering of the critical liquefaction temperature or the melting point of vanadium and the raising of it, as caused by the addition of metals of the 6 group of the periodic chart and by the addition of metals of the 8 group, respectively, and also a shift in the temperature of the polymorphic α-β-transformation of titanium. Suggested as the best alloying metal for vanadium are tungsten and tantalum; for titaniums is vanadium whose admixtures lower the melting point and shift the polymorphic transformation temperature by as much as 100 to 120 degrees

  14. Simple and accurate solution for convective-radiative fin with temperature dependent thermal conductivity using double optimal linearization

    International Nuclear Information System (INIS)

    Bouaziz, M.N.; Aziz, Abdul

    2010-01-01

    A novel concept of double optimal linearization is introduced and used to obtain a simple and accurate solution for the temperature distribution in a straight rectangular convective-radiative fin with temperature dependent thermal conductivity. The solution is built from the classical solution for a pure convection fin of constant thermal conductivity which appears in terms of hyperbolic functions. When compared with the direct numerical solution, the double optimally linearized solution is found to be accurate within 4% for a range of radiation-conduction and thermal conductivity parameters that are likely to be encountered in practice. The present solution is simple and offers superior accuracy compared with the fairly complex approximate solutions based on the homotopy perturbation method, variational iteration method, and the double series regular perturbation method. The fin efficiency expression resembles the classical result for the constant thermal conductivity convecting fin. The present results are easily usable by the practicing engineers in their thermal design and analysis work involving fins.

  15. A temperature and mass dependence of the linear Boltzmann collision operator from group theory point of view

    International Nuclear Information System (INIS)

    Saveliev, V.

    1996-01-01

    The Lie group of the transformations affecting the parameters of the linear Boltzmann collision operator such as temperature of background gas and ratio of masses of colliding particles and molecules is discovered. The group also describes the conservation laws for collisions and main symmetries of the collision operator. New algebraic properties of the collision operator are derived. Transformations acting on the variables and parameters and leaving the linear Boltzmann kinetic equation invariant are found. For the constant collision frequency the integral representation of solutions for nonuniform case in terms of the distribution function of particles drifting in a gas with zero temperature is deduced. The new exact relaxation solutions are obtained too. copyright 1996 American Institute of Physics

  16. The effect of changes in sea surface temperature on linear growth of Porites coral in Ambon Bay

    International Nuclear Information System (INIS)

    Corvianawatie, Corry; Putri, Mutiara R.; Cahyarini, Sri Y.

    2015-01-01

    Coral is one of the most important organisms in the coral reef ecosystem. There are several factors affecting coral growth, one of them is changes in sea surface temperature (SST). The purpose of this research is to understand the influence of SST variability on the annual linear growth of Porites coral taken from Ambon Bay. The annual coral linear growth was calculated and compared to the annual SST from the Extended Reconstructed Sea Surface Temperature version 3b (ERSST v3b) model. Coral growth was calculated by using Coral X-radiograph Density System (CoralXDS) software. Coral sample X-radiographs were used as input data. Chronology was developed by calculating the coral’s annual growth bands. A pair of high and low density banding patterns observed in the coral’s X-radiograph represent one year of coral growth. The results of this study shows that Porites coral extents from 2001-2009 and had an average growth rate of 1.46 cm/year. Statistical analysis shows that the annual coral linear growth declined by 0.015 cm/year while the annual SST declined by 0.013°C/year. SST and the annual linear growth of Porites coral in the Ambon Bay is insignificantly correlated with r=0.304 (n=9, p>0.05). This indicates that annual SST variability does not significantly influence the linear growth of Porites coral from Ambon Bay. It is suggested that sedimentation load, salinity, pH or other environmental factors may affect annual linear coral growth

  17. The effect of changes in sea surface temperature on linear growth of Porites coral in Ambon Bay

    Energy Technology Data Exchange (ETDEWEB)

    Corvianawatie, Corry, E-mail: corvianawatie@students.itb.ac.id; Putri, Mutiara R., E-mail: mutiara.putri@fitb.itb.ac.id [Oceanography Study Program, Bandung Institute of Technology (ITB), Jl. Ganesha 10 Bandung (Indonesia); Cahyarini, Sri Y., E-mail: yuda@geotek.lipi.go.id [Research Center for Geotechnology, Indonesian Institute of Sciences (LIPI), Bandung (Indonesia)

    2015-09-30

    Coral is one of the most important organisms in the coral reef ecosystem. There are several factors affecting coral growth, one of them is changes in sea surface temperature (SST). The purpose of this research is to understand the influence of SST variability on the annual linear growth of Porites coral taken from Ambon Bay. The annual coral linear growth was calculated and compared to the annual SST from the Extended Reconstructed Sea Surface Temperature version 3b (ERSST v3b) model. Coral growth was calculated by using Coral X-radiograph Density System (CoralXDS) software. Coral sample X-radiographs were used as input data. Chronology was developed by calculating the coral’s annual growth bands. A pair of high and low density banding patterns observed in the coral’s X-radiograph represent one year of coral growth. The results of this study shows that Porites coral extents from 2001-2009 and had an average growth rate of 1.46 cm/year. Statistical analysis shows that the annual coral linear growth declined by 0.015 cm/year while the annual SST declined by 0.013°C/year. SST and the annual linear growth of Porites coral in the Ambon Bay is insignificantly correlated with r=0.304 (n=9, p>0.05). This indicates that annual SST variability does not significantly influence the linear growth of Porites coral from Ambon Bay. It is suggested that sedimentation load, salinity, pH or other environmental factors may affect annual linear coral growth.

  18. Pt/ZnO nanoarray nanogenerator as self-powered active gas sensor with linear ethanol sensing at room temperature.

    Science.gov (United States)

    Zhao, Yayu; Lai, Xuan; Deng, Ping; Nie, Yuxin; Zhang, Yan; Xing, Lili; Xue, Xinyu

    2014-03-21

    A self-powered gas sensor that can actively detect ethanol at room temperature has been realized from a Pt/ZnO nanoarray nanogenerator. Pt nanoparticles are uniformly distributed on the whole surface of ZnO nanowires. The piezoelectric output of Pt/ZnO nanoarrays can act not only as a power source, but also as a response signal to ethanol at room temperature. Upon exposure to dry air and 1500 ppm ethanol at room temperature, the piezoelectric output of the device under the same compressive strain is 0.672 and 0.419 V, respectively. Moreover, a linear dependence of the sensitivity on the ethanol concentration is observed. Such a linear ethanol sensing at room temperature can be attributed to the atmosphere-dependent variety of the screen effect on the piezoelectric output of ZnO nanowires, the catalytic properties of Pt nanoparticles, and the Schottky barriers at Pt/ZnO interfaces. The present results can stimulate research in the direction of designing new material systems for self-powered room-temperature gas sensing.

  19. Simultaneous interferometric measurement of linear coefficient of thermal expansion and temperature-dependent refractive index coefficient of optical materials.

    Science.gov (United States)

    Corsetti, James A; Green, William E; Ellis, Jonathan D; Schmidt, Greg R; Moore, Duncan T

    2016-10-10

    Characterizing the thermal properties of optical materials is necessary for understanding how to design an optical system for changing environmental conditions. A method is presented for simultaneously measuring both the linear coefficient of thermal expansion and the temperature-dependent refractive index coefficient of a sample interferometrically in air. Both the design and fabrication of the interferometer is presented as well as a discussion of the results of measuring both a steel and a CaF2 sample.

  20. Suggestions for the interpretation of temperature noise measurements in a heated linear bundle in a water loop

    International Nuclear Information System (INIS)

    Schwalm, D.

    1975-09-01

    A concept is described how to use temperature noise for the detection and identification of a simulated malfunction (e.g. a blockage) in a heated linear bundle in the preboiling state. At first, methods are proposed how to find an optimal detector position down stream from the bundle exit in such a way that the detector sees the total bundle cross section. In addition some methods are proposed for the identification of the malfunction by making use of random data analysis

  1. CPDES2: A preconditioned conjugate gradient solver for linear asymmetric matrix equations arising from coupled partial differential equations in two dimensions

    Science.gov (United States)

    Anderson, D. V.; Koniges, A. E.; Shumaker, D. E.

    1988-11-01

    Many physical problems require the solution of coupled partial differential equations on two-dimensional domains. When the time scales of interest dictate an implicit discretization of the equations a rather complicated global matrix system needs solution. The exact form of the matrix depends on the choice of spatial grids and on the finite element or finite difference approximations employed. CPDES2 allows each spatial operator to have 5 or 9 point stencils and allows for general couplings between all of the component PDE's and it automatically generates the matrix structures needed to perform the algorithm. The resulting sparse matrix equation is solved by either the preconditioned conjugate gradient (CG) method or by the preconditioned biconjugate gradient (BCG) algorithm. An arbitrary number of component equations are permitted only limited by available memory. In the sub-band representation used, we generate an algorithm that is written compactly in terms of indirect indices which is vectorizable on some of the newer scientific computers.

  2. Investigation of microstructure and V-defect formation inInxGa1-xN/GaN MQW grown using temperature-gradient MOCVD

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, M.C.; Liliental-Weber, Z.; Zakharov, D.N.; McCready,D.E.; Jorgenson, R.J.; Wu, J.; Shan, W.; Bourret-Courchesne, E.D.

    2004-11-19

    Temperature-gradient Metalorganic Chemical Vapor Deposition was used to deposit In{sub x}Ga{sub 1-x}N/GaN multiple quantum well structures with a concentration gradient of indium across the wafer. These multiple quantum well structures were deposited on low defect density (2 x 10{sup 8} cm{sup -2}) GaN template layers for investigation of microstructural properties and V-defect (pinhole) formation. Room temperature photoluminescence and photomodulated transmission were used for optical characterization which show a systematic decrease in emission energy for a decrease in growth temperature. Triple-axis X-ray diffraction, scanning electron microscopy and cross-section transmission electron microscopy were used to obtain microstructural properties of different regions across the wafer. Results show that there is a decrease in crystal quality and an increase in V-defect formation with increasing indium concentration. A direct correlation was found between V-defect density and growth temperature due to increased strain and indium segregation for increasing indium concentration.

  3. Measurement of Linear Coefficient of Thermal Expansion and Temperature-Dependent Refractive Index Using Interferometric System

    Science.gov (United States)

    Corsetti, James A.; Green, William E.; Ellis, Jonathan D.; Schmidt, Greg R.; Moore, Duncan T.

    2017-01-01

    A system combining an interferometer with an environmental chamber for measuring both coefficient of thermal expansion (CTE) and temperature-dependent refractive index (dn/dT) simultaneously is presented. The operation and measurement results of this instrument are discussed.

  4. Modeling and simulation of protein elution in linear pH and salt gradients on weak, strong and mixed cation exchange resins applying an extended Donnan ion exchange model.

    Science.gov (United States)

    Wittkopp, Felix; Peeck, Lars; Hafner, Mathias; Frech, Christian

    2018-04-13

    Process development and characterization based on mathematic modeling provides several advantages and has been applied more frequently over the last few years. In this work, a Donnan equilibrium ion exchange (DIX) model is applied for modelling and simulation of ion exchange chromatography of a monoclonal antibody in linear chromatography. Four different cation exchange resin prototypes consisting of weak, strong and mixed ligands are characterized using pH and salt gradient elution experiments applying the extended DIX model. The modelling results are compared with the results using a classic stoichiometric displacement model. The Donnan equilibrium model is able to describe all four prototype resins while the stoichiometric displacement model fails for the weak and mixed weak/strong ligands. Finally, in silico chromatogram simulations of pH and pH/salt dual gradients are performed to verify the results and to show the consistency of the developed model. Copyright © 2018 Elsevier B.V. All rights reserved.

  5. Application of linear pH gradients for the modeling of ion exchange chromatography: Separation of monoclonal antibody monomer from aggregates.

    Science.gov (United States)

    Kluters, Simon; Wittkopp, Felix; Jöhnck, Matthias; Frech, Christian

    2016-02-01

    The mobile phase pH is a key parameter of every ion exchange chromatography process. However, mechanistic insights into the pH influence on the ion exchange chromatography equilibrium are rare. This work describes a mechanistic model capturing salt and pH influence in ion exchange chromatography. The pH dependence of the characteristic protein charge and the equilibrium constant is introduced to the steric mass action model based on a protein net charge model considering the number of amino acids interacting with the stationary phase. This allows the description of the adsorption equilibrium of the chromatographed proteins as a function of pH. The model parameters were determined for a monoclonal antibody monomer, dimer, and a higher aggregated species based on a manageable set of pH gradient experiments. Without further modification of the model parameters the transfer to salt gradient elution at fixed pH is demonstrated. A lumped rate model was used to predict the separation of the monoclonal antibody monomer/aggregate mixture in pH gradient elution and for a pH step elution procedure-also at increased protein loadings up to 48 g/L packed resin. The presented model combines both salt and pH influence and may be useful for the development and deeper understanding of an ion exchange chromatography separation. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Linear local stability of electrostatic drift modes in helical systems

    International Nuclear Information System (INIS)

    Yamagishi, O.; Nakajima, N.; Sugama, H.; Nakamura, Y.

    2003-01-01

    We investigate the stability of the drift wave in helical systems. For this purpose, we solve the linear local gyrokinetic-Poisson equation, in the electrostatic regime. As a model of helical plasmas, Large helical Device (LHD) is considered. The equation we apply is rather exact in the framework of linear gyrokinetic theory, where only the approximation is the ballooning representation. In this paper, we consider only collisionless cases. All the frequency regime can be naturally reated without any assumptions, and in such cases, ion temperature gradient modes (ITG), trapped electron modes (TEM), and electron temperature gradient modes (ETG) are expected to become unstable linearly independently. (orig.)

  7. The Fermion boson interaction within the linear sigma model at finite temperature

    International Nuclear Information System (INIS)

    Caldas, H.C.G.

    2000-01-01

    We study the interaction of massless bosons at finite temperature. Specifically, we calculate the self-energy of massless fermions due to interaction with massless bosons at high temperature, which is the region where thermal effects are maximal. The calculations are concentrated in the limit of vanishing fermion three momentum and after considering the effective boson dressed mass, we obtain the damping rate of the fermion. It is shown that in the limit k O 2 T + g 3 T. (author)

  8. ANALYSIS OF MARANGONI CONVECTION OF NON-NEWTONIAN POWER LAW FLUIDS WITH LINEAR TEMPERATURE DISTRIBUTION

    Directory of Open Access Journals (Sweden)

    Yan Zhang

    2011-01-01

    Full Text Available The problem of steady, laminar, thermal Marangoni convection flow of non-Newtonian power law fluid along a horizontal surface with variable surface temperature is studied. The partial differential equations are transformed into ordinary differential equations by using a suitable similarity transformation and analytical approximate solutions are obtained by an efficient transformation, asymptotic expansion and Padé approximants technique. The effects of power law index and Marangoni number on velocity and temperature profiles are examined and discussed.

  9. The green alga Dictyosphaerium chlorelloides biomass and polysaccharides production determined using cultivation in crossed gradients of temperature and light

    Czech Academy of Sciences Publication Activity Database

    Kumar, D.; Kvíderová, J.; Kaštánek, P.; Lukavský, Jaromír

    2017-01-01

    Roč. 17, č. 9 (2017), s. 1030-1038 ISSN 1618-0240 R&D Projects: GA TA ČR TE01020080 Institutional support: RVO:67985939 Keywords : Dictyosphaerium chlorelloides * Biomass * Crossed gradients Subject RIV: EI - Biotechnology ; Bionics OBOR OECD: Bioproducts (products that are manufactured using biological material as feedstock) biomaterials, bioplastics, biofuels, bioderived bulk and fine chemicals, bio-derived novel materials Impact factor: 1.698, year: 2016

  10. Optical performance of the SO/PHI full disk telescope due to temperature gradients effect on the heat rejection entrance window

    Science.gov (United States)

    Garranzo, D.; Núñez, A.; Zuluaga-Ramírez, P.; Barandiarán, J.; Fernández-Medina, A.; Belenguer, T.; Álvarez-Herrero, A.

    2017-11-01

    The Polarimetric Helioseismic Imager for Solar Orbiter (SO/PHI) is an instrument on board in the Solar Orbiter mission. The Full Disk Telescope (FDT) will have the capability of providing images of the solar disk in all orbital faces with an image quality diffraction-limited. The Heat Rejection Entrance Window (HREW) is the first optical element of the instrument. Its function is to protect the instrument by filtering most of the Solar Spectrum radiation. The HREW consists of two parallel-plane plates made from Suprasil and each surface has a coating with a different function: an UV shield coating, a low pass band filter coating, a high pass band filter coating and an IR shield coating, respectively. The temperature gradient on the HREW during the mission produces a distortion of the transmitted wave-front due to the dependence of the refractive index with the temperature (thermo-optic effect) mainly. The purpose of this work is to determine the capability of the PHI/FDT refocusing system to compensate this distortion. A thermal gradient profile has been considered for each surface of the plates and a thermal-elastic analysis has been done by Finite Element Analysis to determine the deformation of the optical elements. The Optical Path Difference (OPD) between the incident and transmitted wavefronts has been calculated as a function of the ray tracing and the thermo-optic effect on the optical properties of Suprasil (at the work wavelength of PHI) by means of mathematical algorithms based on the 3D Snell Law. The resultant wavefronts have been introduced in the optical design of the FDT to evaluate the performance degradation of the image at the scientific focal plane and to estimate the capability of the PHI refocusing system for maintaining the image quality diffraction-limited. The analysis has been carried out considering two different situations: thermal gradients due to on axis attitude of the instrument and thermal gradients due to 1° off pointing attitude

  11. Fast ion stabilization of the ion temperature gradient driven modes in the Joint European Torus hybrid-scenario plasmas: a trigger mechanism for internal transport barrier formation

    Energy Technology Data Exchange (ETDEWEB)

    Romanelli, M; Zocco, A [Euratom/CCFE Fusion Association, Culham Science Centre, Abingdon, Oxon, OX14 3DB (United Kingdom); Crisanti, F, E-mail: Michele.Romanelli@ccfe.ac.u [Associazione Euratom-ENEA sulla Fusione, C.R. Frascati, Frascati (Italy)

    2010-04-15

    Understanding and modelling turbulent transport in thermonuclear fusion plasmas are crucial for designing and optimizing the operational scenarios of future fusion reactors. In this context, plasmas exhibiting state transitions, such as the formation of an internal transport barrier (ITB), are particularly interesting since they can shed light on transport physics and offer the opportunity to test different turbulence suppression models. In this paper, we focus on the modelling of ITB formation in the Joint European Torus (JET) [1] hybrid-scenario plasmas, where, due to the monotonic safety factor profile, magnetic shear stabilization cannot be invoked to explain the transition. The turbulence suppression mechanism investigated here relies on the increase in the plasma pressure gradient in the presence of a minority of energetic ions. Microstability analysis of the ion temperature gradient driven modes (ITG) in the presence of a fast-hydrogen minority shows that energetic ions accelerated by the ion cyclotron resonance heating (ICRH) system (hydrogen, n{sub H,fast}/n{sub D,thermal} up to 10%, T{sub H,fast}/T{sub D,thermal} up to 30) can increase the pressure gradient enough to stabilize the ITG modes driven by the gradient of the thermal ions (deuterium). Numerical analysis shows that, by increasing the temperature of the energetic ions, electrostatic ITG modes are gradually replaced by nearly electrostatic modes with tearing parity at progressively longer wavelengths. The growth rate of the microtearing modes is found to be lower than that of the ITG modes and comparable to the local E x B-velocity shearing rate. The above mechanism is proposed as a possible trigger for the formation of ITBs in this type of discharges.

  12. High Precision Piezoelectric Linear Motors for Operations at Cryogenic Temperatures and Vacuum

    Science.gov (United States)

    Wong, D.; Carman, G.; Stam, M.; Bar-Cohen, Y.; Sen, A.; Henry, P.; Bearman, G.; Moacanin, J.

    1995-01-01

    The Jet Propulsion Laboratory evaluated the use of an electromechanical device for optically positioning a mirror system during the pre-project phase of the Pluto-Fast-Flyby (PFF) mission. The device under consideration was a piezoelectric driven linear motor functionally dependent upon a time varying electric field which induces displacements ranging from submicrons to millimeters with positioning accuracy within nanometers. Using a control package, the mirror system provides image motion compensation and mosaicking capabilities. While this device offers unique advantages, there were concerns pertaining to its operational capabilities for the PFF mission. The issues include irradiation effects and thermal concerns. A literature study indicated that irradiation effects will not significantly impact the linear motor's operational characteristics. On the other hand, thermal concerns necessitated an in depth study.

  13. The emissions and soil concentrations of N2O and CH4 from natural soil temperature gradients in a volcanic area in southwest Iceland

    Science.gov (United States)

    Maljanen, Marja; Yli-Moijala, Heli; Leblans, Niki I. W.; De Boeck, Hans J.; Bjarnadóttir, Brynhildur; Sigurdsson, Bjarni D.

    2016-04-01

    We studied nitrous oxide (N2O) and methane (CH4) emissions along three natural geothermal soil temperature (Ts) gradients in a volcanic area in southwest Iceland. Two of the gradients (on a grassland and a forest site, respectively) were recently formed (in May 2008). The third gradient, a grassland site, had been subjected to long-term soil warming (over 30 years, and probably centuries). Nitrous oxide and methane emissions were measured along the temperature gradients using the static chamber method and also soil gas concentrations were studied. With a moderate soil temperature increase (up to +5 °C) there were no significant increase in gas flux rates in any of the sites but an increase of 20 to 45 °C induced an increase in both N2O and CH4 emissions. The measured N2O emissions (up to 2600 μg N2O m-2 h-1) from the warmest plots were about two magnitudes higher compared with the coolest plots (less than 20 μg N2O m-2 h-1). While a net uptake of CH4 was measured in the coolest plots (up to -0.15 mg CH4 m-2 h-1), a net emission of CH4 was measured from the warmest plots (up to 1.3 mg CH4 m-2 h-1). Soil CH4 concentrations decreased first with a moderate (up to +5 °C) increase in Ts, but above that threshold increased significantly. The soil N2O concentration at depths from 5 to 20 cm increased with increasing Ts, indicating enhanced N-turnover. Further, there was a clear decrease in soil organic matter (SOM), C- and N concentration with increasing Ts at all sites. One should note, however, that a part of the N2O emitted from the warmest plots may be partly geothermally derived, as was revealed by 15N2O isotope studies. These natural Ts gradients show that the emission of N2O and CH4 can increase significantly when Ts increases considerably. This implies that these geothermally active sites can act as local hot spots for CH4 and N2O emissions.

  14. The Fermion boson interaction within the linear sigma model at finite temperature

    Energy Technology Data Exchange (ETDEWEB)

    Caldas, H.C.G. [Fundacao de Ensino Superior de Sao Joao del Rei (FUNREI), MG (Brazil). Dept. de Ciencias Naturais (DCNAT)

    2000-07-01

    We study the interaction of massless bosons at finite temperature. Specifically, we calculate the self-energy of massless fermions due to interaction with massless bosons at high temperature, which is the region where thermal effects are maximal. The calculations are concentrated in the limit of vanishing fermion three momentum and after considering the effective boson dressed mass, we obtain the damping rate of the fermion. It is shown that in the limit k{sub O} <

  15. Hourly predictive Levenberg-Marquardt ANN and multi linear regression models for predicting of dew point temperature

    Science.gov (United States)

    Zounemat-Kermani, Mohammad

    2012-08-01

    In this study, the ability of two models of multi linear regression (MLR) and Levenberg-Marquardt (LM) feed-forward neural network was examined to estimate the hourly dew point temperature. Dew point temperature is the temperature at which water vapor in the air condenses into liquid. This temperature can be useful in estimating meteorological variables such as fog, rain, snow, dew, and evapotranspiration and in investigating agronomical issues as stomatal closure in plants. The availability of hourly records of climatic data (air temperature, relative humidity and pressure) which could be used to predict dew point temperature initiated the practice of modeling. Additionally, the wind vector (wind speed magnitude and direction) and conceptual input of weather condition were employed as other input variables. The three quantitative standard statistical performance evaluation measures, i.e. the root mean squared error, mean absolute error, and absolute logarithmic Nash-Sutcliffe efficiency coefficient ( {| {{{Log}}({{NS}})} |} ) were employed to evaluate the performances of the developed models. The results showed that applying wind vector and weather condition as input vectors along with meteorological variables could slightly increase the ANN and MLR predictive accuracy. The results also revealed that LM-NN was superior to MLR model and the best performance was obtained by considering all potential input variables in terms of different evaluation criteria.

  16. Effect of temperature and pressure on non-linear conduction in GeTeSe chalcogenide glass

    International Nuclear Information System (INIS)

    El-Mansy, M.K.

    1998-01-01

    The I-V characteristic curves were studied in the temperature range 301-359 K and pressure range up to 7.15 x 10 9 Pa which illustrate a non-linear behaviour below (high-resistance region) and beyond (negative-resistance region) a breakdown point characterising Ge 27 Te 62 Se 11 chalcogenide glasses. The general behaviour is shifted towards lower voltage and higher current when the ambient temperature and/or the applied pressure were increased. The non-linear behaviour in the pre breakdown region is discussed according to the Poole-Frenkel field emission of electrons from deep traps located at a depth equal to 0.372eV. The analysis of the effect of field on the non-linear conduction in Ge 27 Te 62 Se 11 chalcogenide glass suggests a modification of the energy difference between filled and empty sites, where the effect of pressure suggests a reduction of the energy gap width. The analysis based on simple thermal effects in the region closer to the breakdown point implies the electrothermal process initiating the negative resistance region. The results of post breakdown region (negative-resistance region) imply the electron hopping between filled and empty localised states at Fermi level. The density of localised states is estimated which lies in the range 5.7 x 10 16 -1.84 x 10 18 cm -3 /eV

  17. Modeling the effects of the vertical temperature gradient in the furnace in an edge-defined film-fed growth technique

    International Nuclear Information System (INIS)

    Epure, S.; Braescu, L.; Balint, St.

    2006-01-01

    In this paper, the mathematical model for the growth of cylindrical bars described elsewhere is considered. Using MathCAD 11 Enterprise Edition and mathematical tools, the asymptotically stable steady-states (r*, h*) of the nonlinear system of differential equations which governs the evolution of the bar radius r=r(t) and the meniscus height h=h(t), for different values of the pulling rate v, the melt temperature T 0 at the meniscus basis and the vertical temperature gradient k in the furnace, respectively, are found. For a given k, the range of the stable growth regions in the (v, T 0 ) plane (i.e. those couples (v, T 0 ) for which (r*, h*) has physical sense) are determined. The effects of the changes of the vertical temperature gradient k are investigated and it is shown that if v and T 0 are constant, and k increases, then the bar radius r increases and the meniscus height h decreases. Numerical results are given for the silicon bar grown in an edge-defined film-fed growth (E.F.G.) system with a die radius r 0e =20(cmx10 -2 )

  18. On a non-linear problem posed by the temperature determination in an electrically heated plate

    International Nuclear Information System (INIS)

    Gerber, R.

    1958-01-01

    Let us consider a flat plate, electrically heated, with one face thermally insulated and the other face isothermal. It is shown that a two-dimensional perturbation of the insulated face has no influence on the temperature of this face. (author) [fr

  19. A non-linear steady state characteristic performance curve for medium temperature solar energy collectors

    Science.gov (United States)

    Eames, P. C.; Norton, B.

    A numerical simulation model was employed to investigate the effects of ambient temperature and insolation on the efficiency of compound parabolic concentrating solar energy collectors. The limitations of presently-used collector performance characterization curves were investigated and a new approach proposed.

  20. Effect of temperature gradient in the solution on spiral growth of YBa2Cu3O7-x bulk single crystals

    International Nuclear Information System (INIS)

    Kanamori, Y.; Shiohara, Y.

    1996-01-01

    Bulk single crystals of Y123 are required to clarify the superconductivity phenomena and develop electronic devices using unique superconductive properties. Only the Solute Rich Liquid endash Crystal Pulling (SRL-CP) method has succeeded in continuous growth of the Y123 single crystal. In this paper, we investigated the growth of Y123 single crystals under different temperature gradients in the solution in order to understand the growth mechanism of Y123. It was revealed that Y123 single crystals grow with a spiral growth mode, which is in good agreement with the BCF theory. copyright 1996 Materials Research Society

  1. Microstructure and high temperature oxidation resistance of Ti-Ni gradient coating on TA2 titanium alloy fabricated by laser cladding

    Science.gov (United States)

    Liu, Fencheng; Mao, Yuqing; Lin, Xin; Zhou, Baosheng; Qian, Tao

    2016-09-01

    To improve the high temperature oxidation resistance of TA2 titanium alloy, a gradient Ni-Ti coating was laser cladded on the surface of the TA2 titanium alloy substrate, and the microstructure and oxidation behavior of the laser cladded coating were investigated experimentally. The gradient coating with a thickness of about 420-490 μm contains two different layers, e.g. a bright layer with coarse equiaxed grain and a dark layer with fine and columnar dendrites, and a transition layer with a thickness of about 10 μm exists between the substrate and the cladded coating. NiTi, NiTi2 and Ni3Ti intermetallic compounds are the main constructive phases of the laser cladded coating. The appearance of these phases enhances the microhardness, and the dense structure of the coating improves its oxidation resistance. The solidification procedure of the gradient coating is analyzed and different kinds of solidification processes occur due to the heat dissipation during the laser cladding process.

  2. CPDES3: A preconditioned conjugate gradient solver for linear asymmetric matrix equations arising from coupled partial differential equations in three dimensions

    Science.gov (United States)

    Anderson, D. V.; Koniges, A. E.; Shumaker, D. E.

    1988-11-01

    Many physical problems require the solution of coupled partial differential equations on three-dimensional domains. When the time scales of interest dictate an implicit discretization of the equations a rather complicated global matrix system needs solution. The exact form of the matrix depends on the choice of spatial grids and on the finite element or finite difference approximations employed. CPDES3 allows each spatial operator to have 7, 15, 19, or 27 point stencils and allows for general couplings between all of the component PDE's and it automatically generates the matrix structures needed to perform the algorithm. The resulting sparse matrix equation is solved by either the preconditioned conjugate gradient (CG) method or by the preconditioned biconjugate gradient (BCG) algorithm. An arbitrary number of component equations are permitted only limited by available memory. In the sub-band representation used, we generate an algorithm that is written compactly in terms of indirect induces which is vectorizable on some of the newer scientific computers.

  3. A non-linear, finite element, heat conduction code to calculate temperatures in solids of arbitrary geometry

    International Nuclear Information System (INIS)

    Tayal, M.

    1987-01-01

    Structures often operate at elevated temperatures. Temperature calculations are needed so that the design can accommodate thermally induced stresses and material changes. A finite element computer called FEAT has been developed to calculate temperatures in solids of arbitrary shapes. FEAT solves the classical equation for steady state conduction of heat. The solution is obtained for two-dimensional (plane or axisymmetric) or for three-dimensional problems. Gap elements are use to simulate interfaces between neighbouring surfaces. The code can model: conduction; internal generation of heat; prescribed convection to a heat sink; prescribed temperatures at boundaries; prescribed heat fluxes on some surfaces; and temperature-dependence of material properties like thermal conductivity. The user has a option of specifying the detailed variation of thermal conductivity with temperature. For convenience to the nuclear fuel industry, the user can also opt for pre-coded values of thermal conductivity, which are obtained from the MATPRO data base (sponsored by the U.S. Nuclear Regulatory Commission). The finite element method makes FEAT versatile, and enables it to accurately accommodate complex geometries. The optional link to MATPRO makes it convenient for the nuclear fuel industry to use FEAT, without loss of generality. Special numerical techniques make the code inexpensive to run, for the type of material non-linearities often encounter in the analysis of nuclear fuel. The code, however, is general, and can be used for other components of the reactor, or even for non-nuclear systems. The predictions of FEAT have been compared against several analytical solutions. The agreement is usually better than 5%. Thermocouple measurements show that the FEAT predictions are consistent with measured changes in temperatures in simulated pressure tubes. FEAT was also found to predict well, the axial variations in temperatures in the end-pellets(UO 2 ) of two fuel elements irradiated

  4. Thermal-gradient migration of brine inclusions in salt crystals

    International Nuclear Information System (INIS)

    Yagnik, S.K.

    1982-09-01

    It has been proposed that high-level nuclear waste be disposed in a geologic repository. Natural-salt deposits, which are being considered for this purpose, contain a small volume fraction of water in the form of brine inclusions distributed throughout the salt. Radioactive-decay heating of the nuclear wastes will impose a temperature gradient on the surrounding salt which mobilizes the brine inclusions. Inclusions filled completely with brine migrate up the temperature gradient and eventually accumulate brine near the buried waste forms. The brine may slowly corrode or degrade the waste forms which is undesirable. In this work, thermal gradient migration of both all-liquid and gas-liquid inclusions was experimentally studied in synthetic single crystals of NaCl and KCl using a hot-stage attachment to an optical microscope which was capable of imposing temperature gradients and axial compressive loads on the crystals. The migration velocities of the inclusions were found to be dependent on temperature, temperature gradient, and inclusion shape and size. The velocities were also dictated by the interfacial mass transfer resistance at brine/solid interface. This interfacial resistance depends on the dislocation density in the crystal, which in turn, depends on the axial compressive loading of the crystal. At low axial loads, the dependence between the velocity and temperature gradient is non-linear.At high axial loads, however, the interfacial resistance is reduced and the migration velocity depends linearly on the temperature gradient. All-liquid inclusions filled with mixed brines were also studied. For gas-liquid inclusions, three different gas phases (helium, air and argon) were compared. Migration studies were also conducted on single crystallites of natural salt as well as in polycrystalline natural salt samples. The behavior of the inclusions at large angle grain boundaries was observed. 35 figures, 3 tables

  5. Solar wind proton temperature anisotropy: Linear theory and WIND/SWE observations

    Czech Academy of Sciences Publication Activity Database

    Hellinger, Petr; Trávníček, Pavel; Kasper, J. C.; Lazarus, A. J.

    2006-01-01

    Roč. 33, č. 9 (2006), L09101/1-L09101/4 ISSN 0094-8276 R&D Projects: GA AV ČR(CZ) IAA3042403 Grant - others:ESA(XE) PECS 98024; NASA (US) NAG-10915 Institutional research plan: CEZ:AV0Z30420517 Keywords : proton temperature anisotropy * solar wind * in situ observations Subject RIV: DG - Athmosphere Sciences, Meteorology Impact factor: 2.602, year: 2006

  6. Study of the O(N) linear σ model at finite temperature using the 2PPI expansion

    International Nuclear Information System (INIS)

    Verschelde, H.; De Pessemier, J.

    2002-01-01

    We show that a new expansion, which sums seagull and bubble graphs to all orders, can be applied to the O(N) linear σ-model at finite temperature. We prove that this expansion can be renormalized with the usual counterterms in a mass independent scheme and that Goldstone's theorem is satisfied at each order. At the one loop order of this expansion, the Hartree result for the effective potential (daisy and superdaisy graphs) is recovered. We show that at one loop 2PPI order, the self-energy of the σ-meson can be calculated exactly and that diagrams are summed beyond the Hartree approximation. (orig.)

  7. Hatching response to temperature along a latitudinal gradient by the fairy shrimp Branchinecta lindahli (Crustacea; Branchiopoda; Anostraca in culture conditions

    Directory of Open Access Journals (Sweden)

    D. Christopher Rogers

    2014-08-01

    Full Text Available Branchinecta lindahli is a broadly distributed fairy shrimp, reported from a range of temporary wetland habitat types in arid western North America. This species’ eggs hatch after the habitat dries, refills from seasonal rain, and receives a strong cold shock during the winter low temperatures. I studied phenotypic variation in temperature responses in cultures collected from four populations across 8° of latitude with low average temperatures ranging from -8 to 8°C. Time to maturation, mature body size and first clutch size decreased, as temperature increased, with only minor body size variability at mortality, regardless of culture origin. No variation in individual egg size was observed, demonstrating that body size is sacrificed to produce at least a few normal eggs during unfavourable years. Latitudinal variation in hatching temperature demonstrated a pattern of adaptive significance, with some overlap between regional temperature hatching cues.  Phenotypic hatching temperature and growth rate responses may cause genetic segregation, selecting one cohort for warmer, dryer years and one cohort for cooler, wetter years.  Drier year selected cohorts can exploit habitats that have shorter hydroperiods even in wet years. This may lead to population specialisation and speciation by adapting to more extreme habitats

  8. An analytical interpretation of the high temperature linear contact between composite materials reinforced with glass fibers and steel

    Science.gov (United States)

    Rus, Dorin; Florescu, Virgil; Bausic, Florin; Ursache, Robert; Sasu, Anca

    2018-01-01

    In this paper we have tried to present the influence of the metal surface wear and of the contact temperature on the evolution of the sliding speed, of the normal load and of the friction coefficient. We have performed numerous experimental trials that have highlighted the dependency between load and wear in relation to the friction coefficient. A dry linear friction couple was used with a large range of loads and speeds, simulating real-life working conditions: temperature, sliding speed, contact pressure. We have made a connection between the theoretical case and the experimental results arising from the use of the “wear imprint method” for the volume and depth of wear.

  9. DIRECTLY DETERMINED LINEAR RADII AND EFFECTIVE TEMPERATURES OF EXOPLANET HOST STARS

    International Nuclear Information System (INIS)

    Van Belle, Gerard T.; Von Braun, Kaspar

    2009-01-01

    We present interferometric angular sizes for 12 stars with known planetary companions, for comparison with 28 additional main-sequence stars not known to host planets. For all objects we estimate bolometric fluxes and reddenings through spectral-energy distribution (SED) fits, and in conjunction with the angular sizes, measurements of effective temperature. The angular sizes of these stars are sufficiently small that the fundamental resolution limits of our primary instrument, the Palomar Testbed Interferometer, are investigated at the sub-milliarcsecond level and empirically established based upon known performance limits. We demonstrate that the effective temperature scale as a function of dereddened (V - K) 0 color is statistically identical for stars with and without planets. A useful byproduct of this investigation is a direct calibration of the T EFF scale for solarlike stars, as a function of both spectral type and (V - K) 0 color. Additionally, in an Appendix we provide SED fits for the 166 stars with known planets which have sufficient photometry available in the literature for such fits; this derived 'XO-Rad' database includes homogeneous estimates of bolometric flux, reddening, and angular size.

  10. Design of Annular Linear Induction Pump for High Temperature Liquid Lead Transportation

    Energy Technology Data Exchange (ETDEWEB)

    Kwak, Jae Sik; Kim, Hee Reyoung [Ulsan National Institute of Science and Technology, Ulsan (Korea, Republic of)

    2014-05-15

    EM(Electro Magnetic) Pump is divided into two parts, which consisted of the primary one with electromagnetic core and exciting coils, and secondary one with liquid lead flow. The main geometrical variables of the pump included core length, inner diameter and flow gap while the electromagnetic ones covered pole pitch, turns of coil, number of pole pairs, input current and input frequency. The characteristics of design variables are analyzed by electrical equivalent circuit method taking into account hydraulic head loss in the narrow annular channel of the ALIP. The design program, which was composed by using MATLAB language, was developed to draw pump design variables according to input requirements of the flow rate, developing pressure and operation temperature from the analyses. The analysis on the design of ALIP for high temperature liquid lead transportation was carried for the produce of ALIP designing program based on MATLAB. By the using of ALIP designing program, we don't have to bother about geometrical relationship between each component during detail designing process because code calculate automatically. And prediction of outputs about designing pump can be done easily before manufacturing. By running the code, we also observe and analysis change of outputs caused by changing of pump factors. It will be helpful for the research about optimization of pump outputs.

  11. Heating/ethanol-response of poly methyl methacrylate (PMMA) with gradient pre-deformation and potential temperature sensor and anti-counterfeit applications

    International Nuclear Information System (INIS)

    Lu, Haibao; Huang, Wei Min; Ge, Yu Chun; Zhang, Fan; Zhao, Yong; Wu, Xue Lian; Geng, Junfeng

    2014-01-01

    In this paper, the heating/ethanol-response of a commercial poly methyl methacrylate (PMMA) is investigated. All PMMA samples are pre-deformed by means of impression (surface compression with a mold) to introduce a gradient pre-strain/stress field. Two types of molds are applied in impression. One is a Singaporean coin and the other is a particularly designed mold with a variable protrusive feature on top. Two potential applications—temperature sensors to monitor overheating temperatures and anti-counterfeit labels with a water-mark that appears only upon heating to a particular temperature—are demonstrated. Since the heating-responsive shape memory effect (SME) is an intrinsic feature of almost all polymers, other conventional polymers may be used in such applications as well. (technical note)

  12. Performance of a high-work, low-aspect-ratio turbine stator tested with a realistic inlet radial temperature gradient

    Science.gov (United States)

    Stabe, Roy G.; Schwab, John R.

    1991-01-01

    A 0.767-scale model of a turbine stator designed for the core of a high-bypass-ratio aircraft engine was tested with uniform inlet conditions and with an inlet radial temperature profile simulating engine conditions. The principal measurements were radial and circumferential surveys of stator-exit total temperature, total pressure, and flow angle. The stator-exit flow field was also computed by using a three-dimensional Navier-Stokes solver. Other than temperature, there were no apparent differences in performance due to the inlet conditions. The computed results compared quite well with the experimental results.

  13. Continuous epitaxial growth of extremely strong Cu6Sn5 textures at liquid-Sn/(111)Cu interface under temperature gradient

    Science.gov (United States)

    Zhong, Y.; Zhao, N.; Liu, C. Y.; Dong, W.; Qiao, Y. Y.; Wang, Y. P.; Ma, H. T.

    2017-11-01

    As the diameter of solder interconnects in three-dimensional integrated circuits (3D ICs) downsizes to several microns, how to achieve a uniform microstructure with thousands of interconnects on stacking chips becomes a critical issue in 3D IC manufacturing. We report a promising way for fabricating fully intermetallic interconnects with a regular grain morphology and a strong texture feature by soldering single crystal (111) Cu/Sn/polycrystalline Cu interconnects under the temperature gradient. Continuous epitaxial growth of η-Cu6Sn5 at cold end liquid-Sn/(111)Cu interfaces has been demonstrated. The resultant η-Cu6Sn5 grains show faceted prism textures with an intersecting angle of 60° and highly preferred orientation with their ⟨ 11 2 ¯ 0 ⟩ directions nearly paralleling to the direction of the temperature gradient. These desirable textures are maintained even after soldering for 120 min. The results pave the way for controlling the morphology and orientation of interfacial intermetallics in 3D packaging technologies.

  14. Continuous gradient temperature Raman spectroscopy and differential scanning calorimetry of N-3DPA and DHA from -100 to 10°C.

    Science.gov (United States)

    Broadhurst, C Leigh; Schmidt, Walter F; Nguyen, Julie K; Qin, Jianwei; Chao, Kuanglin; Aubuchon, Steven R; Kim, Moon S

    2017-04-01

    Docosahexaenoic acid (DHA, 22:6n-3) is exclusively utilized in fast signal processing tissues such as retinal, neural and cardiac. N-3 docosapentaenoic acid (n-3DPA, 22:5n-3), with just one less double bond, is also found in the marine food chain yet cannot substitute for DHA. Gradient temperature Raman spectroscopy (GTRS) applies the temperature gradients utilized in differential scanning calorimetry (DSC) to Raman spectroscopy, providing a straightforward technique to identify molecular rearrangements that occur near and at phase transitions. Herein we apply GTRS and both conventional and modulated DSC to n-3DPA and DHA from -100 to 20°C. Three-dimensional data arrays with 0.2°C increments and first derivatives allowed complete assignment of solid, liquid and transition state vibrational modes. Melting temperatures n-3DPA (-45°C) and DHA (-46°C) are similar and show evidence for solid-state phase transitions not seen in n-6DPA (-27°C melt). The C6H2 site is an elastic marker for temperature perturbation of all three lipids, each of which has a distinct three dimensional structure. N-3 DPA shows the spectroscopic signature of saturated fatty acids from C1 to C6. DHA does not have three aliphatic carbons in sequence; n-6DPA does but they occur at the methyl end, and do not yield the characteristic signal. DHA appears to have uniform twisting from C6H2 to C12H2 to C18H2 whereas n-6DPA bends from C12 to C18, centered at C15H2. For n-3DPA, twisting is centered at C6H2 adjacent to the C2-C3-C4-C5 aliphatic moiety. These molecular sites are the most elastic in the solid phase and during premelting. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Thermoelectric potential in UO2 and (U,Pu)O2 and its influence on oxygen migration in presence of a temperature gradient

    International Nuclear Information System (INIS)

    D'Annucci, F.

    1979-09-01

    Measurement of the thermoelectric power have been carried out in sintered pellets of uranium-oxide and uranium-plutonium mixed oxides up to 1800 K. For the thermal treatment an inducting furnace is used. The temperatures and the thermoelectric potential are measured with two thermocouples wich are contained in two holes in the lower end of the pellet. During the experiments a temperature difference of 80 K is maintained between the two measuring points. The Seebeck coefficients are calculated from the EMF measurements as a function of temperature and of the O/M ratio. The results show that these oxides have the typical electric properties of a classic semiconductor. The conductivity is of p-type up to a defined temperature wich is a function of the stoichiometry. The Seebeck coefficients are characterized by a defined energy of activation wich is independent from the stochiometry in the regions of hypo- and hyperstochiometric oxides. The thermoelectric forces and the lattice forces drive ions along the temperature gradients. Both forces can be described by the heat of transport of oxygen ions wich contains a thermoelectric and a thermal part. The thermoelectric part of the heat of transport is calculated with the values of the Seebeck coefficients and the contribution to the total heat of transport is discussed. (orig.) [de

  16. Influence of Crucible Support Rod on the Growth Rate and Temperature Gradient in a Bridgman Growth of Tin Crystal

    OpenAIRE

    IMASHIMIZU, Yuji; MIURA, Koji; KAMATA, Masaki; WATANABE, Jiro

    2003-01-01

    Bridgman growth of tincrystal was carried out in a graphite crucible that was fixed on a quartz support rod or a copper one. The growth rate and axial temperature distribution were examined by recording the temperature variation with time at each of four prescribed positions in the solid-liquidsystem during solidification, l) Actual growth rate of crystal increased with progress of solidification while the furnace elevated at a constant rate, but the tendency was different depending on the ty...

  17. A methodology for on-line calculation of temperature and thermal stress under non-linear boundary conditions

    International Nuclear Information System (INIS)

    Botto, D.; Zucca, S.; Gola, M.M.

    2003-01-01

    In the literature many works have been written dealing with the task of on-line calculation of temperature and thermal stress for machine components and structures, in order to evaluate fatigue damage accumulation and estimate residual life. One of the most widespread methodologies is the Green's function technique (GFT), by which machine parameters such as fluid temperatures, pressures and flow rates are converted into metal temperature transients and thermal stresses. However, since the GFT is based upon the linear superposition principle, it cannot be directly used in the case of varying heat transfer coefficients. In the present work, a different methodology is proposed, based upon CMS for temperature transient calculation and upon the GFT for the related thermal stress evaluation. This new approach allows variable heat transfer coefficients to be accounted for. The methodology is applied for two different case studies, taken from the literature: a thick pipe and a nozzle connected to a spherical head, both subjected to multiple convective boundary conditions

  18. Large eddy simulation of the low temperature ignition and combustion processes on spray flame with the linear eddy model

    Science.gov (United States)

    Wei, Haiqiao; Zhao, Wanhui; Zhou, Lei; Chen, Ceyuan; Shu, Gequn

    2018-03-01

    Large eddy simulation coupled with the linear eddy model (LEM) is employed for the simulation of n-heptane spray flames to investigate the low temperature ignition and combustion process in a constant-volume combustion vessel under diesel-engine relevant conditions. Parametric studies are performed to give a comprehensive understanding of the ignition processes. The non-reacting case is firstly carried out to validate the present model by comparing the predicted results with the experimental data from the Engine Combustion Network (ECN). Good agreements are observed in terms of liquid and vapour penetration length, as well as the mixture fraction distributions at different times and different axial locations. For the reacting cases, the flame index was introduced to distinguish between the premixed and non-premixed combustion. A reaction region (RR) parameter is used to investigate the ignition and combustion characteristics, and to distinguish the different combustion stages. Results show that the two-stage combustion process can be identified in spray flames, and different ignition positions in the mixture fraction versus RR space are well described at low and high initial ambient temperatures. At an initial condition of 850 K, the first-stage ignition is initiated at the fuel-lean region, followed by the reactions in fuel-rich regions. Then high-temperature reaction occurs mainly at the places with mixture concentration around stoichiometric mixture fraction. While at an initial temperature of 1000 K, the first-stage ignition occurs at the fuel-rich region first, then it moves towards fuel-richer region. Afterwards, the high-temperature reactions move back to the stoichiometric mixture fraction region. For all of the initial temperatures considered, high-temperature ignition kernels are initiated at the regions richer than stoichiometric mixture fraction. By increasing the initial ambient temperature, the high-temperature ignition kernels move towards richer

  19. Compact very low temperature scanning tunneling microscope with mechanically driven horizontal linear positioning stage.

    Science.gov (United States)

    Suderow, H; Guillamon, I; Vieira, S

    2011-03-01

    We describe a scanning tunneling microscope for operation in a dilution refrigerator with a sample stage which can be moved macroscopically in a range up to a cm and with an accuracy down to the tens of nm. The position of the tip over the sample as set at room temperature does not change more than a few micrometers when cooling down. This feature is particularly interesting for work on micrometer sized samples. Nanostructures can be also localized and studied, provided they are repeated over micrometer sized areas. The same stage can be used to approach a hard single crystalline sample to a knife and cleave it, or break it, in situ. In situ positioning is demonstrated with measurements at 0.1 K in nanofabricated samples. Atomic resolution down to 0.1 K and in magnetic fields of 8 T is demonstrated in NbSe(2). No heat dissipation nor an increase in mechanical noise has been observed at 0.1 K when operating the slider.

  20. A TLBO based gradient descent learning-functional link higher order ANN: An efficient model for learning from non-linear data

    Directory of Open Access Journals (Sweden)

    Bighnaraj Naik

    2018-01-01

    Full Text Available All the higher order ANNs (HONNs including functional link ANN (FLANN are sensitive to random initialization of weight and rely on the learning algorithms adopted. Although a selection of efficient learning algorithms for HONNs helps to improve the performance, on the other hand, initialization of weights with optimized weights rather than random weights also play important roles on its efficiency. In this paper, the problem solving approach of the teaching learning based optimization (TLBO along with learning ability of the gradient descent learning (GDL is used to obtain the optimal set of weight of FLANN learning model. TLBO does not require any specific parameters rather it requires only some of the common independent parameters like number of populations, number of iterations and stopping criteria, thereby eliminating the intricacy in selection of algorithmic parameters for adjusting the set of weights of FLANN model. The proposed TLBO-FLANN is implemented in MATLAB and compared with GA-FLANN, PSO-FLANN and HS-FLANN. The TLBO-FLANN is tested on various 5-fold cross validated benchmark data sets from UCI machine learning repository and analyzed under the null-hypothesis by using Friedman test, Holm’s procedure and post hoc ANOVA statistical analysis (Tukey test & Dunnett test.