WorldWideScience

Sample records for linear system based

  1. Linear systems a measurement based approach

    Bhattacharyya, S P; Mohsenizadeh, D N

    2014-01-01

    This brief presents recent results obtained on the analysis, synthesis and design of systems described by linear equations. It is well known that linear equations arise in most branches of science and engineering as well as social, biological and economic systems. The novelty of this approach is that no models of the system are assumed to be available, nor are they required. Instead, a few measurements made on the system can be processed strategically to directly extract design values that meet specifications without constructing a model of the system, implicitly or explicitly. These new concepts are illustrated by applying them to linear DC and AC circuits, mechanical, civil and hydraulic systems, signal flow block diagrams and control systems. These applications are preliminary and suggest many open problems. The results presented in this brief are the latest effort in this direction and the authors hope these will lead to attractive alternatives to model-based design of engineering and other systems.

  2. Virtual Estimator for Piecewise Linear Systems Based on Observability Analysis

    Morales-Morales, Cornelio; Adam-Medina, Manuel; Cervantes, Ilse; Vela-Valdés and, Luis G.; García Beltrán, Carlos Daniel

    2013-01-01

    This article proposes a virtual sensor for piecewise linear systems based on observability analysis that is in function of a commutation law related with the system's outpu. This virtual sensor is also known as a state estimator. Besides, it presents a detector of active mode when the commutation sequences of each linear subsystem are arbitrary and unknown. For the previous, this article proposes a set of virtual estimators that discern the commutation paths of the system and allow estimating their output. In this work a methodology in order to test the observability for piecewise linear systems with discrete time is proposed. An academic example is presented to show the obtained results. PMID:23447007

  3. Daylighting System Based on Novel Design of Linear Fresnel lens

    Thanh Tuan Pham

    2017-10-01

    Full Text Available In this paper, we present a design and optical simulation of a daylighting system using a novel design of linear Fresnel lens, which is constructed based on the conservation of optical path length and edge ray theorem. The linear Fresnel lens can achieve a high uniformity by using a new idea of design in which each groove of the lens distributes sunlight uniformly over the receiver so that the whole lens also uniformly distributes sunlight over the receiver. In this daylighting system, the novel design of linear Fresnel lens significantly improves the uniformity of collector and distributor. Therefore, it can help to improve the performance of the daylighting system. The structure of the linear Fresnel lenses is designed by using Matlab. Then, the structure of lenses is appreciated by ray tracing in LightToolsTM to find out the optimum lens shape. In addition, the simulation is performed by using LightToolsTM to estimate the efficiency of the daylighting system. The results show that the designed collector can achieve the efficiency of ~80% with the tolerance of ~0.60 and the concentration ratio of 340 times, while the designed distributor can reach a high uniformity of >90%.

  4. Development of a linear induction motor based artificial muscle system.

    Gruber, A; Arguello, E; Silva, R

    2013-01-01

    We present the design of a linear induction motor based on electromagnetic interactions. The engine is capable of producing a linear movement from electricity. The design consists of stators arranged in parallel, which produce a magnetic field sufficient to displace a plunger along its axial axis. Furthermore, the winding has a shell and cap of ferromagnetic material that amplifies the magnetic field. This produces a force along the length of the motor that is similar to that of skeletal muscle. In principle, the objective is to use the engine in the development of an artificial muscle system for prosthetic applications, but it could have multiple applications, not only in the medical field, but in other industries.

  5. On computation of Groebner bases for linear difference systems

    Gerdt, Vladimir P. [Laboratory of Information Technologies, Joint Institute for Nuclear Research, 141980 Dubna (Russian Federation)]. E-mail: gerdt@jinr.ru

    2006-04-01

    In this paper, we present an algorithm for computing Groebner bases of linear ideals in a difference polynomial ring over a ground difference field. The input difference polynomials generating the ideal are also assumed to be linear. The algorithm is an adaptation to difference ideals of our polynomial algorithm based on Janet-like reductions.

  6. On computation of Groebner bases for linear difference systems

    Gerdt, Vladimir P.

    2006-01-01

    In this paper, we present an algorithm for computing Groebner bases of linear ideals in a difference polynomial ring over a ground difference field. The input difference polynomials generating the ideal are also assumed to be linear. The algorithm is an adaptation to difference ideals of our polynomial algorithm based on Janet-like reductions

  7. Data acquisition system for linear PSD based neutron diffractometer

    Pande, S.S.; Borkar, S.P.; Behere, Anita; Ghodgaonkar, M.D.

    2001-01-01

    Single or multi-PSD configurations are used in different neutron diffractometer setups. A data acquisition system is developed to serve the gross requirements of all the diffractometer setups. It is also customized to specific requirements of different setups. The hardware is developed as a Transputer based add-on card. Most of the hardware functionality is handled in the Transputer program thus improving throughput of the system. The card can handle 16 RDCs, a few motor controls and on/off controls. The software comprises of a front-end Windows98 application, a Transputer program and a device driver. The data acquisition system performs data acquisition, analysis, display and storage. Analysis includes converting raw data of linear PSD to equiangular format, merging and clubbing the data to make a continuous equiangular spectrum. Calibration of individual PSD is a crucial activity in correctly merging the data coming from PSDs. (author)

  8. Hyperchaotic encryption based on multi-scroll piecewise linear Systems

    García-Martínez, M.; Ontanon-García, L.J.; Campos-Cantón, E.; Čelikovský, Sergej

    2015-01-01

    Roč. 270, č. 1 (2015), s. 413-424 ISSN 0096-3003 R&D Projects: GA ČR GA13-20433S Institutional support: RVO:67985556 Keywords : Hyperchaotic encryption * Piecewise linear systems * Stream cipher * Pseudo-random bit generator * Chaos theory * Multi-scrollattractors Subject RIV: BC - Control Systems Theory Impact factor: 1.345, year: 2015 http://library.utia.cas.cz/separaty/2015/TR/celikovsky-0446895.pdf

  9. Computer Based Dose Control System on Linear Accelerator

    Taxwim; Djoko-SP; Widi-Setiawan; Agus-Budi Wiyatna

    2000-01-01

    The accelerator technology has been used for radio therapy. DokterKaryadi Hospital in Semarang use electron or X-ray linear accelerator (Linac)for cancer therapy. One of the control parameter of linear accelerator isdose rate. It is particle current or amount of photon rate to the target. Thecontrol of dose rate in linac have been done by adjusting repetition rate ofanode pulse train of electron source. Presently the control is stillproportional control. To enhance the quality of the control result (minimalstationer error, velocity and stability), the dose control system has beendesigned by using the PID (Proportional Integral Differential) controlalgorithm and the derivation of transfer function of control object.Implementation of PID algorithm control system is done by giving an input ofdose error (the different between output dose and dose rate set point). Theoutput of control system is used for correction of repetition rate set pointfrom pulse train of electron source anode. (author)

  10. Dynamic logic architecture based on piecewise-linear systems

    Peng Haipeng; Liu Fei; Li Lixiang; Yang Yixian; Wang Xue

    2010-01-01

    This Letter explores piecewise-linear systems to construct dynamic logic architecture. The proposed schemes can discriminate the two input signals and obtain 16 kinds of logic operations by different combinations of parameters and conditions for determining the output. Each logic cell performs more flexibly, that makes it possible to achieve complex logic operations more simply and construct computing architecture with less logic cells. We also analyze the various performances of our schemes under different conditions and the characteristics of these schemes.

  11. Synchronization of linearly coupled unified chaotic systems based on linear balanced feedback scheme with constraints

    Chen, H.-H.; Chen, C.-S.; Lee, C.-I

    2009-01-01

    This paper investigates the synchronization of unidirectional and bidirectional coupled unified chaotic systems. A balanced coupling coefficient control method is presented for global asymptotic synchronization using the Lyapunov stability theorem and a minimum scheme with no constraints/constraints. By using the result of the above analysis, the balanced coupling coefficients are then designed to achieve the chaos synchronization of linearly coupled unified chaotic systems. The feasibility and effectiveness of the proposed chaos synchronization scheme are verified via numerical simulations.

  12. Robustness-tracking control based on sliding mode and H∞ theory for linear servo system

    TIAN Yan-feng; GUO Qing-ding

    2005-01-01

    A robustness-tracking control scheme based on combining H∞ robust control and sliding mode control is proposed for a direct drive AC permanent-magnet linear motor servo system to solve the conflict between tracking and robustness of the linear servo system. The sliding mode tracking controller is designed to ensure the system has a fast tracking characteristic to the command, and the H∞ robustness controller suppresses the disturbances well within the close loop( including the load and the end effect force of linear motor etc. ) and effectively minimizes the chattering of sliding mode control which influences the steady state performance of the system. Simulation results show that this control scheme enhances the track-command-ability and the robustness of the linear servo system, and in addition, it has a strong robustness to parameter variations and resistance disturbances.

  13. Non linear system become linear system

    Petre Bucur

    2007-01-01

    Full Text Available The present paper refers to the theory and the practice of the systems regarding non-linear systems and their applications. We aimed the integration of these systems to elaborate their response as well as to highlight some outstanding features.

  14. LQR-Based Optimal Distributed Cooperative Design for Linear Discrete-Time Multiagent Systems.

    Zhang, Huaguang; Feng, Tao; Liang, Hongjing; Luo, Yanhong

    2017-03-01

    In this paper, a novel linear quadratic regulator (LQR)-based optimal distributed cooperative design method is developed for synchronization control of general linear discrete-time multiagent systems on a fixed, directed graph. Sufficient conditions are derived for synchronization, which restrict the graph eigenvalues into a bounded circular region in the complex plane. The synchronizing speed issue is also considered, and it turns out that the synchronizing region reduces as the synchronizing speed becomes faster. To obtain more desirable synchronizing capacity, the weighting matrices are selected by sufficiently utilizing the guaranteed gain margin of the optimal regulators. Based on the developed LQR-based cooperative design framework, an approximate dynamic programming technique is successfully introduced to overcome the (partially or completely) model-free cooperative design for linear multiagent systems. Finally, two numerical examples are given to illustrate the effectiveness of the proposed design methods.

  15. Linear Motor Motion Control Experiment System Design Based on LabVIEW

    Cuixian He

    2018-01-01

    Full Text Available In order to meet the needs of experimental training of electrical information industry, a linear motor motion experiment system based on LabVIEW was developed. This system is based on the STM32F103ZET6 system processor controller, a state signal when the motor moves through the grating encoder feedback controller to form a closed loop, through the RS232 serial port communication with the host computer, the host computer is designed in the LabVIEW interactive environment monitoring software. Combined with the modular design concept proposed overall program, given the detailed hardware circuit, targeted for the software function design, to achieve man-machine interface. The system control of high accuracy, good stability, meet the training requirements for laboratory equipment, but also as a reference embodiment of the linear motor monitoring system.

  16. Linear system theory

    Callier, Frank M.; Desoer, Charles A.

    1991-01-01

    The aim of this book is to provide a systematic and rigorous access to the main topics of linear state-space system theory in both the continuous-time case and the discrete-time case; and the I/O description of linear systems. The main thrusts of the work are the analysis of system descriptions and derivations of their properties, LQ-optimal control, state feedback and state estimation, and MIMO unity-feedback systems.

  17. Experimental study of refrigeration performance based on linear Fresnel solar thermal photovoltaic system

    Song, Jinghui; Yuan, Hui; Xia, Yunfeng; Kan, Weimin; Deng, Xiaowen; Liu, Shi; Liang, Wanlong; Deng, Jianhua

    2018-03-01

    This paper introduces the working principle and system constitution of the linear Fresnel solar lithium bromide absorption refrigeration cycle, and elaborates several typical structures of absorption refrigeration cycle, including single-effect, two-stage cycle and double-effect lithium bromide absorption refrigeration cycle A 1.n effect absorption chiller system based on the best parameters was introduced and applied to a linear Fresnel solar absorption chiller system. Through the field refrigerator performance test, the results show: Based on this heat cycle design and processing 1.n lithium bromide absorption refrigeration power up to 35.2KW, It can meet the theoretical expectations and has good flexibility and reliability, provides guidance for the use of solar thermal energy.

  18. Sliding mode control-based linear functional observers for discrete-time stochastic systems

    Singh, Satnesh; Janardhanan, Sivaramakrishnan

    2017-11-01

    Sliding mode control (SMC) is one of the most popular techniques to stabilise linear discrete-time stochastic systems. However, application of SMC becomes difficult when the system states are not available for feedback. This paper presents a new approach to design a SMC-based functional observer for discrete-time stochastic systems. The functional observer is based on the Kronecker product approach. Existence conditions and stability analysis of the proposed observer are given. The control input is estimated by a novel linear functional observer. This approach leads to a non-switching type of control, thereby eliminating the fundamental cause of chatter. Furthermore, the functional observer is designed in such a way that the effect of process and measurement noise is minimised. Simulation example is given to illustrate and validate the proposed design method.

  19. Generation Method of Multipiecewise Linear Chaotic Systems Based on the Heteroclinic Shil’nikov Theorem and Switching Control

    Chunyan Han

    2015-01-01

    Full Text Available Based on the heteroclinic Shil’nikov theorem and switching control, a kind of multipiecewise linear chaotic system is constructed in this paper. Firstly, two fundamental linear systems are constructed via linearization of a chaotic system at its two equilibrium points. Secondly, a two-piecewise linear chaotic system which satisfies the Shil’nikov theorem is generated by constructing heteroclinic loop between equilibrium points of the two fundamental systems by switching control. Finally, another multipiecewise linear chaotic system that also satisfies the Shil’nikov theorem is obtained via alternate translation of the two fundamental linear systems and heteroclinic loop construction of adjacent equilibria for the multipiecewise linear system. Some basic dynamical characteristics, including divergence, Lyapunov exponents, and bifurcation diagrams of the constructed systems, are analyzed. Meanwhile, computer simulation and circuit design are used for the proposed chaotic systems, and they are demonstrated to be effective for the method of chaos anticontrol.

  20. Disturbance attenuation of nonlinear control systems using an observer-based fuzzy feedback linearization control

    Chen, C.-C.; Hsu, C.-H.; Chen, Y.-J.; Lin, Y.-F.

    2007-01-01

    The almost disturbance decoupling and trajectory tracking of nonlinear control systems using an observer-based fuzzy feedback linearization control (FLC) is developed. Because not all of the state variables of the nonlinear dynamic equations are available, a nonlinear state observer is employed to estimate the state variables. The feedback linearization control guarantees the almost disturbance decoupling performance and the uniform ultimate bounded stability of the tracking error system. Once the tracking errors are driven to touch the global final attractor with the desired radius, the fuzzy logic control is immediately applied via human expert's knowledge to improve the convergence rate. One example, which cannot be solved by the first paper on the almost disturbance decoupling problem, is proposed in this paper to exploit the fact that the tracking and the almost disturbance decoupling performances are easily achieved by our proposed approach. In order to demonstrate the practical applicability, the study has investigated a pendulum control system

  1. H-Shaped Multiple Linear Motor Drive Platform Control System Design Based on an Inverse System Method

    Caiyan Qin

    2017-12-01

    Full Text Available Due to its simple mechanical structure and high motion stability, the H-shaped platform has been increasingly widely used in precision measuring, numerical control machining and semiconductor packaging equipment, etc. The H-shaped platform is normally driven by multiple (three permanent magnet synchronous linear motors. The main challenges for H-shaped platform-control include synchronous control between the two linear motors in the Y direction as well as total positioning error of the platform mover, a combination of position deviation in X and Y directions. To deal with the above challenges, this paper proposes a control strategy based on the inverse system method through state feedback and dynamic decoupling of the thrust force. First, mechanical dynamics equations have been deduced through the analysis of system coupling based on the platform structure. Second, the mathematical model of the linear motors and the relevant coordinate transformation between dq-axis currents and ABC-phase currents are analyzed. Third, after the main concept of inverse system method being explained, the inverse system model of the platform control system has been designed after defining relevant system variables. Inverse system model compensates the original nonlinear coupled system into pseudo-linear decoupled linear system, for which typical linear control methods, like PID, can be adopted to control the system. The simulation model of the control system is built in MATLAB/Simulink and the simulation result shows that the designed control system has both small synchronous deviation and small total trajectory tracking error. Furthermore, the control program has been run on NI controller for both fixed-loop-time and free-loop-time modes, and the test result shows that the average loop computation time needed is rather small, which makes it suitable for real industrial applications. Overall, it proves that the proposed new control strategy can be used in

  2. Fast photoacoustic imaging system based on 320-element linear transducer array

    Yin Bangzheng; Xing Da; Wang Yi; Zeng Yaguang; Tan Yi; Chen Qun

    2004-01-01

    A fast photoacoustic (PA) imaging system, based on a 320-transducer linear array, was developed and tested on a tissue phantom. To reconstruct a test tomographic image, 64 time-domain PA signals were acquired from a tissue phantom with embedded light-absorption targets. A signal acquisition was accomplished by utilizing 11 phase-controlled sub-arrays, each consisting of four transducers. The results show that the system can rapidly map the optical absorption of a tissue phantom and effectively detect the embedded light-absorbing target. By utilizing the multi-element linear transducer array and phase-controlled imaging algorithm, we thus can acquire PA tomography more efficiently, compared to other existing technology and algorithms. The methodology and equipment thus provide a rapid and reliable approach to PA imaging that may have potential applications in noninvasive imaging and clinic diagnosis

  3. СREATION OF CORRELATION FUNCTIONS OF LINEAR CONTINUOUS SYSTEMS BASED ON THEIR FUNDAMENTAL MATRICES

    N. A. Vunder

    2015-11-01

    Full Text Available The paper presents a method of creating correlation matrices and functions of the state vectors and outputs of the linear continuous systems functioning under the conditions of stochastic stationary, in a broad sense, effects. Fundamental matrices form the basis of the method. We have shown that for the linear continuous systems with single dimensional input and single dimensional output the correlation output function of such system can be found as the free movement of this system generated by its initial state. This state is constructed from the variance matrix of the state vector and the transposed output matrix. We have elucidated that when a continuous system belongs to a class of multi-dimensional input – multi-dimensional output systems, the following options are available for solving the problem of creation of the correlation function of a linear system. The first option is to partition the system into separate channels. Then the approach developed for systems with onedimensional input and one-dimensional output is applied to each of the separate channels. The second option is used to preserve the vector nature of the stochastic external influence. It consists in partition of output vector to scalar components by separating output matrix into separate rows with subsequent formation of the correlation function according to the scheme for single dimensional input and single dimensional output type systems. The third option is based on the scalarization of matrix correlation output function by applying the singular value decomposition to it. That gives the possibility to form scalar majorant and minorant of correlation output functions. We have established that a key component of a computational procedure of creating the correlation function of continuous linear system is a variance matrix of the system state vector. In the case of functioning under an exogenous stochastic effect like "white noise" the variance matrix is calculated by

  4. Intelligent control of non-linear dynamical system based on the adaptive neurocontroller

    Engel, E.; Kovalev, I. V.; Kobezhicov, V.

    2015-10-01

    This paper presents an adaptive neuro-controller for intelligent control of non-linear dynamical system. The formed as the fuzzy selective neural net the adaptive neuro-controller on the base of system's state, creates the effective control signal under random perturbations. The validity and advantages of the proposed adaptive neuro-controller are demonstrated by numerical simulations. The simulation results show that the proposed controller scheme achieves real-time control speed and the competitive performance, as compared to PID, fuzzy logic controllers.

  5. A data fusion based approach for damage detection in linear systems

    Ernesto Grande

    2014-07-01

    Full Text Available The aim of the present paper is to propose innovative approaches able to improve the capability of classical damage indicators in detecting the damage position in linear systems. In particular, starting from classical indicators based on the change of the flexibility matrix and on the change of the modal strain energy, the proposed approaches consider two data fusion procedures both based on the Dempster-Shafer theory. Numerical applications are reported in the paper in order to assess the reliability of the proposed approaches considering different damage scenarios, different sets of modes of vibration and the presence of errors affecting the accounted modes of vibrations.

  6. Fourier-based linear systems description of free-breathing pulmonary magnetic resonance imaging

    Capaldi, D. P. I.; Svenningsen, S.; Cunningham, I. A.; Parraga, G.

    2015-03-01

    Fourier-decomposition of free-breathing pulmonary magnetic resonance imaging (FDMRI) was recently piloted as a way to provide rapid quantitative pulmonary maps of ventilation and perfusion without the use of exogenous contrast agents. This method exploits fast pulmonary MRI acquisition of free-breathing proton (1H) pulmonary images and non-rigid registration to compensate for changes in position and shape of the thorax associated with breathing. In this way, ventilation imaging using conventional MRI systems can be undertaken but there has been no systematic evaluation of fundamental image quality measurements based on linear systems theory. We investigated the performance of free-breathing pulmonary ventilation imaging using a Fourier-based linear system description of each operation required to generate FDMRI ventilation maps. Twelve subjects with chronic obstructive pulmonary disease (COPD) or bronchiectasis underwent pulmonary function tests and MRI. Non-rigid registration was used to co-register the temporal series of pulmonary images. Pulmonary voxel intensities were aligned along a time axis and discrete Fourier transforms were performed on the periodic signal intensity pattern to generate frequency spectra. We determined the signal-to-noise ratio (SNR) of the FDMRI ventilation maps using a conventional approach (SNRC) and using the Fourier-based description (SNRF). Mean SNR was 4.7 ± 1.3 for subjects with bronchiectasis and 3.4 ± 1.8, for COPD subjects (p>.05). SNRF was significantly different than SNRC (p<.01). SNRF was approximately 50% of SNRC suggesting that the linear system model well-estimates the current approach.

  7. Self-consistent field theory based molecular dynamics with linear system-size scaling

    Richters, Dorothee [Institute of Mathematics and Center for Computational Sciences, Johannes Gutenberg University Mainz, Staudinger Weg 9, D-55128 Mainz (Germany); Kühne, Thomas D., E-mail: kuehne@uni-mainz.de [Institute of Physical Chemistry and Center for Computational Sciences, Johannes Gutenberg University Mainz, Staudinger Weg 7, D-55128 Mainz (Germany); Technical and Macromolecular Chemistry, University of Paderborn, Warburger Str. 100, D-33098 Paderborn (Germany)

    2014-04-07

    We present an improved field-theoretic approach to the grand-canonical potential suitable for linear scaling molecular dynamics simulations using forces from self-consistent electronic structure calculations. It is based on an exact decomposition of the grand canonical potential for independent fermions and does neither rely on the ability to localize the orbitals nor that the Hamilton operator is well-conditioned. Hence, this scheme enables highly accurate all-electron linear scaling calculations even for metallic systems. The inherent energy drift of Born-Oppenheimer molecular dynamics simulations, arising from an incomplete convergence of the self-consistent field cycle, is circumvented by means of a properly modified Langevin equation. The predictive power of the present approach is illustrated using the example of liquid methane under extreme conditions.

  8. Development of an Acoustic Levitation Linear Transportation System Based on a Ring-Type Structure.

    Thomas, Gilles P L; Andrade, Marco A B; Adamowski, Julio Cezar; Silva, Emilio Carlos Nelli

    2017-05-01

    A linear acoustic levitation transportation system based on a ring-type vibrator is presented. The system is composed by two 21-kHz Langevin transducers connected to a ring-shaped structure formed by two semicircular sections and two flat plates. In this system, a flexural standing wave is generated along the ring structure, producing an acoustic standing wave between the vibrating ring and a plane reflector located at a distance of approximately a half wavelength from the ring. The acoustic standing wave in air has a series of pressure nodes, where small particles can be levitated and transported. The ring-type transportation system was designed and analyzed by using the finite element method. Additionally, a prototype was built and the acoustic levitation and transport of a small polystyrene particle was demonstrated.

  9. Spoofing cyber attack detection in probe-based traffic monitoring systems using mixed integer linear programming

    Canepa, Edward S.

    2013-01-01

    Traffic sensing systems rely more and more on user generated (insecure) data, which can pose a security risk whenever the data is used for traffic flow control. In this article, we propose a new formulation for detecting malicious data injection in traffic flow monitoring systems by using the underlying traffic flow model. The state of traffic is modeled by the Lighthill-Whitham- Richards traffic flow model, which is a first order scalar conservation law with concave flux function. Given a set of traffic flow data, we show that the constraints resulting from this partial differential equation are mixed integer linear inequalities for some decision variable. We use this fact to pose the problem of detecting spoofing cyber-attacks in probe-based traffic flow information systems as mixed integer linear feasibility problem. The resulting framework can be used to detect spoofing attacks in real time, or to evaluate the worst-case effects of an attack offline. A numerical implementation is performed on a cyber-attack scenario involving experimental data from the Mobile Century experiment and the Mobile Millennium system currently operational in Northern California. © 2013 IEEE.

  10. Spoofing cyber attack detection in probe-based traffic monitoring systems using mixed integer linear programming

    Canepa, Edward S.

    2013-09-01

    Traffic sensing systems rely more and more on user generated (insecure) data, which can pose a security risk whenever the data is used for traffic flow control. In this article, we propose a new formulation for detecting malicious data injection in traffic flow monitoring systems by using the underlying traffic flow model. The state of traffic is modeled by the Lighthill- Whitham-Richards traffic flow model, which is a first order scalar conservation law with concave flux function. Given a set of traffic flow data generated by multiple sensors of different types, we show that the constraints resulting from this partial differential equation are mixed integer linear inequalities for a specific decision variable. We use this fact to pose the problem of detecting spoofing cyber attacks in probe-based traffic flow information systems as mixed integer linear feasibility problem. The resulting framework can be used to detect spoofing attacks in real time, or to evaluate the worst-case effects of an attack offliine. A numerical implementation is performed on a cyber attack scenario involving experimental data from the Mobile Century experiment and the Mobile Millennium system currently operational in Northern California. © American Institute of Mathematical Sciences.

  11. Data acquisition system for linear position sensitive detector based neutron diffractometer

    Pande, S.S.; Borkar, S.P.; Behere, A.; Prafulla, S.; Srivastava, V.D.; Mukhopadhyaya, P.K.; Ghodgaonkar, M.D.; Kataria, S.K.

    2003-03-01

    This data acquisition system is developed to serve the requirements of various linear 1PSD based neutron diffractometers. A neutron diffractometer uses a neutron beam as a probe to study the crystallographic properties of materials. Presently two multi-PSD and two single-PSD diffractometers are commissioned and a few more are being installed in Dhruva. This data acquisition system is installed at each of these - diffractometers. Different requirements of individual diffractometers were studied and reconciled to design a single data acquisition system, which can be easily configured or customized for individual setups. The charge division in a linear PSD is converted to a position output with the help of an RDC (Ratio ADC). The ftont-end electronics, which consist of preamplifiers and shaping amplifiers, provide an interface between a PSD and an RDC. A PC add-on card is designed around a Transputer. It can interface 16 RDCs, a few motor controls and on/off controls. Data acquisition and other controls are implemented in the Transputer program. A front-end Windows98 application merges the raw data of different RDCs to obtain the equiangular data. Through software the data acquisition system can be configured for diffetent diffractometers. Commercially available hardware is also integrated as,a part of the data acquisition system in some of the setups. The data acquisition system is working reliably as a part of two single PSD and two multi-PSD diffractometers. It can handle data rates upto 15 K/Sec without any loss of counts. It has played a significant role in providing improved throughput and utilization ofvarious diffractometers. The'data acquisition system and its different applications are presented in this report. (author)

  12. Non linear dynamics of memristor based 3rd order oscillatory system

    Talukdar, Abdul Hafiz Ibne

    2012-07-23

    In this paper, we report for the first time the nonlinear dynamics of three memristor based phase shift oscillators, and consider them as a plausible solution for the realization of parametric oscillation as an autonomous linear time variant system. Sustained oscillation is reported through oscillating resistance while time dependent poles are present. The memristor based phase shift oscillator is explored further by varying the parameters so as to present the resistance of the memristor as a time varying parameter, thus potentially eliminating the need of external periodic forces in order for it to oscillate. Multi memristors, used simultaneously with similar and different parameters, are investigated in this paper. Mathematical formulas for analyzing such oscillators are verified with simulation results and are found to be in good agreement. © 2011 Elsevier Ltd. All rights reserved.

  13. Digital base-band rf control system for the superconducting Darmstadt electron linear accelerator

    M. Konrad

    2012-05-01

    Full Text Available The accelerating field in superconducting cavities has to be stabilized in amplitude and phase by a radio-frequency (rf control system. Because of their high loaded quality factor superconducting cavities are very susceptible for microphonics. To meet the increased requirements with respect to accuracy, availability, and diagnostics, the previous analog rf control system of the superconducting Darmstadt electron linear accelerator S-DALINAC has been replaced by a digital rf control system. The new hardware consists of two components: An rf module that converts the signal from the cavity down to the base-band and a field-programmable gate array board including a soft CPU that carries out the signal processing steps of the control algorithm. Different algorithms are used for normal-conducting and superconducting cavities. To improve the availability of the control system, techniques for automatic firmware and software deployment have been implemented. Extensive diagnostic features provide the operator with additional information. The architecture of the rf control system as well as the functionality of its components will be presented along with measurements that characterize the performance of the system, yielding, e.g., an amplitude stabilization down to (ΔA/A_{rms}=7×10^{-5} and a phase stabilization of (Δϕ_{rms}=0.8° for superconducting cavities.

  14. Dose optimization based on linear programming implemented in a system for treatment planning in Monte Carlo

    Ureba, A.; Palma, B. A.; Leal, A.

    2011-01-01

    Develop a more efficient method of optimization in relation to time, based on linear programming designed to implement a multi objective penalty function which also permits a simultaneous solution integrated boost situations considering two white volumes simultaneously.

  15. Feedback linearization based control of a variable air volume air conditioning system for cooling applications.

    Thosar, Archana; Patra, Amit; Bhattacharyya, Souvik

    2008-07-01

    Design of a nonlinear control system for a Variable Air Volume Air Conditioning (VAVAC) plant through feedback linearization is presented in this article. VAVAC systems attempt to reduce building energy consumption while maintaining the primary role of air conditioning. The temperature of the space is maintained at a constant level by establishing a balance between the cooling load generated in the space and the air supply delivered to meet the load. The dynamic model of a VAVAC plant is derived and formulated as a MIMO bilinear system. Feedback linearization is applied for decoupling and linearization of the nonlinear model. Simulation results for a laboratory scale plant are presented to demonstrate the potential of keeping comfort and maintaining energy optimal performance by this methodology. Results obtained with a conventional PI controller and a feedback linearizing controller are compared and the superiority of the proposed approach is clearly established.

  16. Right-Linear Languages Generated in Systems of Knowledge Representation based on LSG

    Daniela Danciulescu

    2017-04-01

    Full Text Available In Tudor (Preda (2010 a method for formal languages generation based on labeled stratified graph representations is sketched. The author proves that the considered method can generate regular languages and context-sensitive languages by considering an exemplification of the proposed method for a particular regular language and another one for a particular contextsensitive language. At the end of the study, the author highlights some open problems for future research among which we remind: (1 The study of the language families that can be generated by means of these structures; (2 The study of the infiniteness of the languages that can be represented in stratified graphs. In this paper, we extend the method presented in Tudor (Preda(2010, by considering the stratified graph formalism in a system of knowledge representation and reasoning. More precisely, we propose a method that can be applied for generating any Right Linear Language construction. Our method is proved and exemplified in several cases.

  17. [A capillary blood flow velocity detection system based on linear array charge-coupled devices].

    Zhou, Houming; Wang, Ruofeng; Dang, Qi; Yang, Li; Wang, Xiang

    2017-12-01

    In order to detect the flow characteristics of blood samples in the capillary, this paper introduces a blood flow velocity measurement system based on field-programmable gate array (FPGA), linear charge-coupled devices (CCD) and personal computer (PC) software structure. Based on the analysis of the TCD1703C and AD9826 device data sheets, Verilog HDL hardware description language was used to design and simulate the driver. Image signal acquisition and the extraction of the real-time edge information of the blood sample were carried out synchronously in the FPGA. Then a series of discrete displacement were performed in a differential operation to scan each of the blood samples displacement, so that the sample flow rate could be obtained. Finally, the feasibility of the blood flow velocity detection system was verified by simulation and debugging. After drawing the flow velocity curve and analyzing the velocity characteristics, the significance of measuring blood flow velocity is analyzed. The results show that the measurement of the system is less time-consuming and less complex than other flow rate monitoring schemes.

  18. Markov Jump Linear Systems-Based Position Estimation for Lower Limb Exoskeletons

    Samuel L. Nogueira

    2014-01-01

    Full Text Available In this paper, we deal with Markov Jump Linear Systems-based filtering applied to robotic rehabilitation. The angular positions of an impedance-controlled exoskeleton, designed to help stroke and spinal cord injured patients during walking rehabilitation, are estimated. Standard position estimate approaches adopt Kalman filters (KF to improve the performance of inertial measurement units (IMUs based on individual link configurations. Consequently, for a multi-body system, like a lower limb exoskeleton, the inertial measurements of one link (e.g., the shank are not taken into account in other link position estimation (e.g., the foot. In this paper, we propose a collective modeling of all inertial sensors attached to the exoskeleton, combining them in a Markovian estimation model in order to get the best information from each sensor. In order to demonstrate the effectiveness of our approach, simulation results regarding a set of human footsteps, with four IMUs and three encoders attached to the lower limb exoskeleton, are presented. A comparative study between the Markovian estimation system and the standard one is performed considering a wide range of parametric uncertainties.

  19. LMI-based gain scheduled controller synthesis for a class of linear parameter varying systems

    Bendtsen, Jan Dimon; Anderson, Brian; Lanzon, Alexander

    2006-01-01

    This paper presents a novel method for constructing controllers for a class of single-input multiple-output (SIMO) linear parameter varying (LPV) systems. This class of systems encompasses many physical systems, in particular systems where individual components vary with time, and is therefore...... of significant practical relevance to control designers. The control design presented in this paper has the properties that the system matrix of the closed loop is multi-affine in the various scalar parameters, and that the resulting controller ensures a certain degree of stability for the closed loop even when...... as a standard linear time-invariant (LTI) design combined with a set of linear matrix inequalities, which can be solved efficiently with software tools. The design procedure is illustrated by a numerical example....

  20. A compact linear accelerator based on a scalable microelectromechanical-system RF-structure

    Persaud, A.; Ji, Q.; Feinberg, E.; Seidl, P. A.; Waldron, W. L.; Schenkel, T.; Lal, A.; Vinayakumar, K. B.; Ardanuc, S.; Hammer, D. A.

    2017-06-01

    A new approach for a compact radio-frequency (RF) accelerator structure is presented. The new accelerator architecture is based on the Multiple Electrostatic Quadrupole Array Linear Accelerator (MEQALAC) structure that was first developed in the 1980s. The MEQALAC utilized RF resonators producing the accelerating fields and providing for higher beam currents through parallel beamlets focused using arrays of electrostatic quadrupoles (ESQs). While the early work obtained ESQs with lateral dimensions on the order of a few centimeters, using a printed circuit board (PCB), we reduce the characteristic dimension to the millimeter regime, while massively scaling up the potential number of parallel beamlets. Using Microelectromechanical systems scalable fabrication approaches, we are working on further reducing the characteristic dimension to the sub-millimeter regime. The technology is based on RF-acceleration components and ESQs implemented in the PCB or silicon wafers where each beamlet passes through beam apertures in the wafer. The complete accelerator is then assembled by stacking these wafers. This approach has the potential for fast and inexpensive batch fabrication of the components and flexibility in system design for application specific beam energies and currents. For prototyping the accelerator architecture, the components have been fabricated using the PCB. In this paper, we present proof of concept results of the principal components using the PCB: RF acceleration and ESQ focusing. Ongoing developments on implementing components in silicon and scaling of the accelerator technology to high currents and beam energies are discussed.

  1. A compact linear accelerator based on a scalable microelectromechanical-system RF-structure.

    Persaud, A; Ji, Q; Feinberg, E; Seidl, P A; Waldron, W L; Schenkel, T; Lal, A; Vinayakumar, K B; Ardanuc, S; Hammer, D A

    2017-06-01

    A new approach for a compact radio-frequency (RF) accelerator structure is presented. The new accelerator architecture is based on the Multiple Electrostatic Quadrupole Array Linear Accelerator (MEQALAC) structure that was first developed in the 1980s. The MEQALAC utilized RF resonators producing the accelerating fields and providing for higher beam currents through parallel beamlets focused using arrays of electrostatic quadrupoles (ESQs). While the early work obtained ESQs with lateral dimensions on the order of a few centimeters, using a printed circuit board (PCB), we reduce the characteristic dimension to the millimeter regime, while massively scaling up the potential number of parallel beamlets. Using Microelectromechanical systems scalable fabrication approaches, we are working on further reducing the characteristic dimension to the sub-millimeter regime. The technology is based on RF-acceleration components and ESQs implemented in the PCB or silicon wafers where each beamlet passes through beam apertures in the wafer. The complete accelerator is then assembled by stacking these wafers. This approach has the potential for fast and inexpensive batch fabrication of the components and flexibility in system design for application specific beam energies and currents. For prototyping the accelerator architecture, the components have been fabricated using the PCB. In this paper, we present proof of concept results of the principal components using the PCB: RF acceleration and ESQ focusing. Ongoing developments on implementing components in silicon and scaling of the accelerator technology to high currents and beam energies are discussed.

  2. Dose linearity and uniformity of a linear accelerator designed for implementation of multileaf collimation system-based intensity modulated radiation therapy

    Saw, Cheng B.; Li Sicong; Ayyangar, Komanduri M.; Yoe-Sein, Maung; Pillai, Susha; Enke, Charles A.; Celi, Juan C.

    2003-01-01

    The dose linearity and uniformity of a linear accelerator designed for multileaf collimation system- (MLC) based IMRT was studied as a part of commissioning and also in response to recently published data. The linear accelerator is equipped with a PRIMEVIEW, a graphical interface and a SIMTEC IM-MAXX, which is an enhanced autofield sequencer. The SIMTEC IM-MAXX sequencer permits the radiation beam to be 'ON' continuously while delivering intensity modulated radiation therapy subfields at a defined gantry angle. The dose delivery is inhibited when the electron beam in the linear accelerator is forced out of phase with the microwave power while the MLC configures the field shape of a subfield. This beam switching mechanism reduces the overhead time and hence shortens the patient treatment time. The dose linearity, reproducibility, and uniformity were assessed for this type of dose delivery mechanism. The subfields with monitor units ranged from 1 MU to 100 MU were delivered using 6 MV and 23 MV photon beams. The doses were computed and converted to dose per monitor unit. The dose linearity was found to vary within 2% for both 6 MV and 23 MV photon beam using high dose rate setting (300 MU/min) except below 2 MU. The dose uniformity was assessed by delivering 4 subfields to a Kodak X-OMAT TL film using identical low monitor units. The optical density was converted to dose and found to show small variation within 3%. Our results indicate that this linear accelerator with SIMTEC IM-MAXX sequencer has better dose linearity, reproducibility, and uniformity than had been reported

  3. An Adaptive Noise Cancellation System Based on Linear and Widely Linear Complex Valued Least Mean Square Algorithms for Removing Electrooculography Artifacts from Electroencephalography Signals

    Engin Cemal MENGÜÇ

    2018-03-01

    Full Text Available In this study, an adaptive noise cancellation (ANC system based on linear and widely linear (WL complex valued least mean square (LMS algorithms is designed for removing electrooculography (EOG artifacts from electroencephalography (EEG signals. The real valued EOG and EEG signals (Fp1 and Fp2 given in dataset are primarily expressed as a complex valued signal in the complex domain. Then, using the proposed ANC system, the EOG artifacts are eliminated in the complex domain from the EEG signals. Expression of these signals in the complex domain allows us to remove EOG artifacts from two EEG channels simultaneously. Moreover, in this study, it has been shown that the complex valued EEG signal exhibits noncircular behavior, and in the case, the WL-CLMS algorithm enhances the performance of the ANC system compared to real-valued LMS and CLMS algorithms. Simulation results support the proposed approach.

  4. Mass Optimization of Battery/Supercapacitors Hybrid Systems Based on a Linear Programming Approach

    Fleury, Benoit; Labbe, Julien

    2014-08-01

    The objective of this paper is to show that, on a specific launcher-type mission profile, a 40% gain of mass is expected using a battery/supercapacitors active hybridization instead of a single battery solution. This result is based on the use of a linear programming optimization approach to perform the mass optimization of the hybrid power supply solution.

  5. Mixed-Integer-Linear-Programming-Based Energy Management System for Hybrid PV-Wind-Battery Microgrids

    Hernández, Adriana Carolina Luna; Aldana, Nelson Leonardo Diaz; Graells, Moises

    2017-01-01

    -side strategy, defined as a general mixed-integer linear programming by taking into account two stages for proper charging of the storage units. This model is considered as a deterministic problem that aims to minimize operating costs and promote self-consumption based on 24-hour ahead forecast data...

  6. Linearization of the Lorenz system

    Li, Chunbiao; Sprott, Julien Clinton; Thio, Wesley

    2015-01-01

    A partial and complete piecewise linearized version of the Lorenz system is proposed. The linearized versions have an independent total amplitude control parameter. Additional further linearization leads naturally to a piecewise linear version of the diffusionless Lorenz system. A chaotic circuit with a single amplitude controller is then implemented using a new switch element, producing a chaotic oscillation that agrees with the numerical calculation for the piecewise linear diffusionless Lorenz system. - Highlights: • A partial and complete piecewise linearized version of the Lorenz system are addressed. • The linearized versions have an independent total amplitude control parameter. • A piecewise linear version of the diffusionless Lorenz system is derived by further linearization. • A corresponding chaotic circuit without any multiplier is implemented for the chaotic oscillation

  7. Linearization of the Lorenz system

    Li, Chunbiao, E-mail: goontry@126.com [School of Electronic & Information Engineering, Nanjing University of Information Science & Technology, Nanjing 210044 (China); Engineering Technology Research and Development Center of Jiangsu Circulation Modernization Sensor Network, Jiangsu Institute of Commerce, Nanjing 211168 (China); Sprott, Julien Clinton [Department of Physics, University of Wisconsin–Madison, Madison, WI 53706 (United States); Thio, Wesley [Department of Electrical and Computer Engineering, The Ohio State University, Columbus, OH 43210 (United States)

    2015-05-08

    A partial and complete piecewise linearized version of the Lorenz system is proposed. The linearized versions have an independent total amplitude control parameter. Additional further linearization leads naturally to a piecewise linear version of the diffusionless Lorenz system. A chaotic circuit with a single amplitude controller is then implemented using a new switch element, producing a chaotic oscillation that agrees with the numerical calculation for the piecewise linear diffusionless Lorenz system. - Highlights: • A partial and complete piecewise linearized version of the Lorenz system are addressed. • The linearized versions have an independent total amplitude control parameter. • A piecewise linear version of the diffusionless Lorenz system is derived by further linearization. • A corresponding chaotic circuit without any multiplier is implemented for the chaotic oscillation.

  8. Distributed Radiation Monitoring System for Linear Accelerators based on CAN Bus

    Kozak, T; Napieralski, A

    2010-01-01

    Abstract—Gamma and neutron radiation is produced during the normal operation of linear accelerators like Free-Electron Laser in Hamburg (FLASH) or X-ray Free Electron Laser (X-FEL). Gamma radiation cause general degeneration of electronics devices and neutron fluence can be a reason of soft error in memories and microcontrollers. X-FEL accelerator will be built only in one tunnel, therefore most of electronic control systems will be placed in radiation environment. Exposing control systems to radiation may lead to many errors and unexpected failure of the whole accelerator system. Thus, the radiation monitoring system able to monitor radiation doses produced near controlling systems is crucial. Knowledge of produced radiation doses allows to detect errors caused by radiation, make plans of essential exchange of control systems and prevent accelerator from serious damages. The paper presents the project of radiation monitoring system able to monitor radiation environment in real time.

  9. Study on sampling of continuous linear system based on generalized Fourier transform

    Li, Huiguang

    2003-09-01

    In the research of signal and system, the signal's spectrum and the system's frequency characteristic can be discussed through Fourier Transform (FT) and Laplace Transform (LT). However, some singular signals such as impulse function and signum signal don't satisfy Riemann integration and Lebesgue integration. They are called generalized functions in Maths. This paper will introduce a new definition -- Generalized Fourier Transform (GFT) and will discuss generalized function, Fourier Transform and Laplace Transform under a unified frame. When the continuous linear system is sampled, this paper will propose a new method to judge whether the spectrum will overlap after generalized Fourier transform (GFT). Causal and non-causal systems are studied, and sampling method to maintain system's dynamic performance is presented. The results can be used on ordinary sampling and non-Nyquist sampling. The results also have practical meaning on research of "discretization of continuous linear system" and "non-Nyquist sampling of signal and system." Particularly, condition for ensuring controllability and observability of MIMO continuous systems in references 13 and 14 is just an applicable example of this paper.

  10. Dynamical systems and linear algebra

    Colonius, Fritz (Prof.)

    2007-01-01

    Dynamical systems and linear algebra / F. Colonius, W. Kliemann. - In: Handbook of linear algebra / ed. by Leslie Hogben. - Boca Raton : Chapman & Hall/CRC, 2007. - S. 56,1-56,22. - (Discrete mathematics and its applications)

  11. Multiple continuous coverage of the earth based on multi-satellite systems with linear structure

    Saulskiy, V. K.

    2009-04-01

    A new and wider definition is given to multi-satellite systems with linear structure (SLS), and efficiency of their application to multiple continuous coverage of the Earth is substantiated. Owing to this widening, SLS have incorporated already well-recognized “polar systems” by L. Rider and W.S. Adams, “kinematically regular systems” by G.V. Mozhaev, and “delta-systems” by J.G. Walker, as well as “near-polar systems” by Yu.P. Ulybyshev, and some other satellite constellations unknown before. A universal method of SLS optimization is presented, valid for any values of coverage multiplicity and the number of satellites in a system. The method uses the criterion of minimum radius of a circle seen from a satellite on the surface of the globe. Among the best SLS found in this way there are both systems representing the well-known classes mentioned above and new orbit constellations of satellites.

  12. Acoustic Biometric System Based on Preprocessing Techniques and Linear Support Vector Machines.

    del Val, Lara; Izquierdo-Fuente, Alberto; Villacorta, Juan J; Raboso, Mariano

    2015-06-17

    Drawing on the results of an acoustic biometric system based on a MSE classifier, a new biometric system has been implemented. This new system preprocesses acoustic images, extracts several parameters and finally classifies them, based on Support Vector Machine (SVM). The preprocessing techniques used are spatial filtering, segmentation-based on a Gaussian Mixture Model (GMM) to separate the person from the background, masking-to reduce the dimensions of images-and binarization-to reduce the size of each image. An analysis of classification error and a study of the sensitivity of the error versus the computational burden of each implemented algorithm are presented. This allows the selection of the most relevant algorithms, according to the benefits required by the system. A significant improvement of the biometric system has been achieved by reducing the classification error, the computational burden and the storage requirements.

  13. Dosimetric commissioning and system for stereotactic radiation treatments based on linear accelerators with dynamic micromultilaminas collimators

    Ascension, Yudy; Alfonso, Rodolfo; Silvestre, Ileana

    2009-01-01

    Once installed and accepted, a system for stereotactic radiosurgery / stereotactic radiotherapy (CERs / RTE) requires, before starting to be used clinically in patients undergoing a process of commissioning dosimetry, which evaluates all geometric parameters, physical, Dosimetric and technical impact on the precision and accuracy of treatment to administer, and therefore its effectiveness. This process includes training and familiarization of the multidisciplinary team (medical physicists, radiation oncologists, neurosurgeons, dosimetrists, biomedical engineers) with the equipment and techniques used, the quality assurance program and special radiation protection standards for this technology. The aim of this work is to prepare the pre-clinical dosimetric conditions to ensure the quality and radiation safety of treatment with CER RTE. Treatment with CER RTE INOR has a linear accelerator equipped with a micro-multileaf collimator dynamic tertiary (dMLC 3Dline). The system aceleradordMLC geometric and dosimetric was calibrated, using ionization chambers miniature, diode and film dosimetry. The immobilization of the patient and location of the lesion is made by both invasive stereotactic frames and relocatable. The computerized planning of the CER / TEN is done with the ERGO system, for which commissioning is designed test cases of increasing complexity, using planes and anthropomorphic dummies, which help assess the accuracy of the dosimetric calculations and accuracy of the system as a whole. We compared the results of the planning system with measurements, showing that the discrepancies are within tolerances, so it is concluded that from the standpoint of physical dosimetry, the system-under-ERGO accelerator MLC is eligible for clinical use. (author)

  14. Study and development of a laser based alignment system for the compact linear collider

    AUTHOR|(CDS)2083149

    The first objective of the PhD thesis is to develop a new type of positioning sensor to align components at micrometre level over 200 m with respect to a laser beam as straight line reference. The second objective is to estimate the measurement accuracy of the total alignment system over 200 m. The context of the PhD thesis is the Compact Linear Collider project, which is a study for a future particle accelerator. The proposed positioning sensor is made of a camera and an open/close shutter. The sensor can measure the position of the laser beam with respect to its own coordinate system. To do a measurement, the shutter closes, a laser spot appears on it, the camera captures a picture of the laser spot and the coordinates of the laser spot centre are reconstructed in the sensor coordinate system with image processing. Such a measurement requires reference targets on the positioning sensor. To reach the rst objective of the PhD thesis, we used laser theory...

  15. FPGA and optical-network-based LLRF distributed control system for TESLA-XFEL linear accelerator

    Pozniak, Krzysztof T.; Romaniuk, Ryszard S.; Czarski, Tomasz; Giergusiewicz, Wojciech; Jalmuzna, Wojciech; Olowski, Krysztof; Perkuszewski, Karol; Zielinski, Jerzy; Simrock, Stefan

    2005-02-01

    The work presents a structural and functional model of a distributed low level radio frequency (LLRF) control system for the TESLA-XFEL accelerator. The design of a system basing on the FPGA chips and multi-gigabit optical network was debated. The system design approach was fully parametric. The major emphasis is put on the methods of the functional and hardware concentration to use fully both: a very big transmission capacity of the optical fiber telemetric channels and very big processing power of the latest series of the, DSP enhanced and optical I/O equipped, FPGA chips. The subject of the work is the design of a universal, laboratory module of the LLRF sub-system. Initial parameters of the system model under the design are presented.

  16. Numerical solution of large sparse linear systems

    Meurant, Gerard; Golub, Gene.

    1982-02-01

    This note is based on one of the lectures given at the 1980 CEA-EDF-INRIA Numerical Analysis Summer School whose aim is the study of large sparse linear systems. The main topics are solving least squares problems by orthogonal transformation, fast Poisson solvers and solution of sparse linear system by iterative methods with a special emphasis on preconditioned conjuguate gradient method [fr

  17. Displacement measurement system for linear array detector

    Zhang Pengchong; Chen Ziyu; Shen Ji

    2011-01-01

    It presents a set of linear displacement measurement system based on encoder. The system includes displacement encoders, optical lens and read out circuit. Displacement read out unit includes linear CCD and its drive circuit, two amplifier circuits, second order Butterworth low-pass filter and the binarization circuit. The coding way is introduced, and various parts of the experimental signal waveforms are given, and finally a linear experimental test results are given. The experimental results are satisfactory. (authors)

  18. CARMEN: a system Monte Carlo based on linear programming from direct openings

    Ureba, A.; Pereira-Barbeiro, A. R.; Jimenez-Ortega, E.; Baeza, J. A.; Salguero, F. J.; Leal, A.

    2013-01-01

    The use of Monte Carlo (MC) has shown an improvement in the accuracy of the calculation of the dose compared to other analytics algorithms installed on the systems of business planning, especially in the case of non-standard situations typical of complex techniques such as IMRT and VMAT. Our treatment planning system called CARMEN, is based on the complete simulation, both the beam transport in the head of the accelerator and the patient, and simulation designed for efficient operation in terms of the accuracy of the estimate and the required computation times. (Author)

  19. Theoretical and Simulations-Based Modeling of Micellization in Linear and Branched Surfactant Systems

    Mendenhall, Jonathan D.

    's and other micellization properties for a variety of linear and branched surfactant chemical architectures which are commonly encountered in practice. Single-component surfactant solutions are investigated, in order to clarify the specific contributions of the surfactant head and tail to the free energy of micellization, a quantity which determines the cmc and all other aspects of micellization. First, a molecular-thermodynamic (MT) theory is presented which makes use of bulk-phase thermodynamics and a phenomenological thought process to describe the energetics related to the formation of a micelle from its constituent surfactant monomers. Second, a combined computer-simulation/molecular-thermodynamic (CSMT) framework is discussed which provides a more detailed quantification of the hydrophobic effect using molecular dynamics simulations. A novel computational strategy to identify surfactant head and tail using an iterative dividing surface approach, along with simulated micelle results, is proposed. Force-field development for novel surfactant structures is also discussed. Third, a statistical-thermodynamic, single-chain, mean-field theory for linear and branched tail packing is formulated, which enables quantification of the specific energetic penalties related to confinement and constraint of surfactant tails within micelles. Finally, these theoretical and simulations-based strategies are used to predict the micellization behavior of 55 linear surfactants and 28 branched surfactants. Critical micelle concentration and optimal micelle properties are reported and compared with experiment, demonstrating good agreement across a range of surfactant head and tail types. In particular, the CSMT framework is found to provide improved agreement with experimental cmc's for the branched surfactants considered. (Copies available exclusively from MIT Libraries, libraries.mit.edu/docs - docs mit.edu)

  20. Feedback systems for linear colliders

    Hendrickson, L; Himel, Thomas M; Minty, Michiko G; Phinney, N; Raimondi, Pantaleo; Raubenheimer, T O; Shoaee, H; Tenenbaum, P G

    1999-01-01

    Feedback systems are essential for stable operation of a linear collider, providing a cost-effective method for relaxing tight tolerances. In the Stanford Linear Collider (SLC), feedback controls beam parameters such as trajectory, energy, and intensity throughout the accelerator. A novel dithering optimization system which adjusts final focus parameters to maximize luminosity contributed to achieving record performance in the 1997-98 run. Performance limitations of the steering feedback have been investigated, and improvements have been made. For the Next Linear Collider (NLC), extensive feedback systems are planned as an intregal part of the design. Feedback requiremetns for JLC (the Japanese Linear Collider) are essentially identical to NLC; some of the TESLA requirements are similar but there are significant differences. For NLC, algorithms which incorporate improvements upon the SLC implementation are being prototyped. Specialized systems for the damping rings, rf and interaction point will operate at hi...

  1. System Reliability of Timber Trusses Based on Non-Linear Structural Modelling

    Hansson, Martin; Ellegaard, Peter

    2006-01-01

    . In this paper, Monte Carlo simulations of a timber W-truss with punched metal plate fasteners (nail plates) are performed. Structural timber displays a significant variability in strength and stiffness both within and between members and is described by a statistic model calibrated against data from Norway......Structural design is today concerned with single component performance where each limit state is related to a single mode of failure of a single component. Further, in limit state codes the strength variables are related to a deterministic value (usually the 5-percentile). However, in a structure...... with a number of elements, two different effects (called system effects) can be found: - The probabilistic system effect that is based on the reduced probability that weak sections coincide with the most stressed sections. - Structural load-sharing that is the ability to redistribute load between members...

  2. Characteristics of a novel treatment system for linear accelerator-based stereotactic radiosurgery.

    Wen, Ning; Li, Haisen; Song, Kwang; Chin-Snyder, Karen; Qin, Yujiao; Kim, Jinkoo; Bellon, Maria; Gulam, Misbah; Gardner, Stephen; Doemer, Anthony; Devpura, Suneetha; Gordon, James; Chetty, Indrin; Siddiqui, Farzan; Ajlouni, Munther; Pompa, Robert; Hammoud, Zane; Simoff, Michael; Kalkanis, Steven; Movsas, Benjamin; Siddiqui, M Salim

    2015-07-08

    The purpose of this study is to characterize the dosimetric properties and accuracy of a novel treatment platform (Edge radiosurgery system) for localizing and treating patients with frameless, image-guided stereotactic radiosurgery (SRS) and stereotactic body radiotherapy (SBRT). Initial measurements of various components of the system, such as a comprehensive assessment of the dosimetric properties of the flattening filter-free (FFF) beams for both high definition (HD120) MLC and conical cone-based treatment, positioning accuracy and beam attenuation of a six degree of freedom (6DoF) couch, treatment head leakage test, and integrated end-to-end accuracy tests, have been performed. The end-to-end test of the system was performed by CT imaging a phantom and registering hidden targets on the treatment couch to determine the localization accuracy of the optical surface monitoring system (OSMS), cone-beam CT (CBCT), and MV imaging systems, as well as the radiation isocenter targeting accuracy. The deviations between the percent depth-dose curves acquired on the new linac-based system (Edge), and the previously published machine with FFF beams (TrueBeam) beyond D(max) were within 1.0% for both energies. The maximum deviation of output factors between the Edge and TrueBeam was 1.6%. The optimized dosimetric leaf gap values, which were fitted using Eclipse dose calculations and measurements based on representative spine radiosurgery plans, were 0.700 mm and 1.000 mm, respectively. For the conical cones, 6X FFF has sharper penumbra ranging from 1.2-1.8 mm (80%-20%) and 1.9-3.8 mm (90%-10%) relative to 10X FFF, which has 1.2-2.2mm and 2.3-5.1mm, respectively. The relative attenuation measurements of the couch for PA, PA (rails-in), oblique, oblique (rails-out), oblique (rails-in) were: -2.0%, -2.5%, -15.6%, -2.5%, -5.0% for 6X FFF and -1.4%, -1.5%, -12.2%, -2.5%, -5.0% for 10X FFF, respectively, with a slight decrease in attenuation versus field size. The systematic

  3. Beyer's non-linearity parameter (B/A) in benzylidene aniline Schiff base liquid crystalline systems

    Nagi Reddy, M.V.V.; Pisipati, V.G.K.M.; Madhavi Latha, D.; Datta Prasad, P.V.

    2011-01-01

    The non-linearity parameter B/A is estimated for a number of liquid crystal materials of the type N-(p-n-alkoxy benzylidene)-p-n-alkyl anilines, popularly known as nO.m, where n and m are the aliphatic chains on either side of the rigid core, which can be varied from 1 to 18 to realize a number of LC materials with a variety LC phase variants. The B/A values are computed from both density and sound velocity data following standard relations reported in literature. This systematic study in a homologous series provides an opportunity to study how this parameter behaves with (1) either the alkoxy and/or alkyl chain number, (2) with the total chain number (n+m), (3) with increase in molecular weight and (4) whether the linear relations reported in literature either with αT [thermal expansion coefficient (α) and temperature (T)] and sound velocity (u) will hold good or not and if so to what extent. The results are discussed with the body of data available in literature on liquids, liquid mixtures and other LC materials. -- Research highlights: → The Bayer's non-linearity parameter (B/A) is estimated for the first time for a number liquid crystal materials of the type N-(p-n-alkoxy benzylidene)-p-nalkyl anilines. → The magnitude of B/A estimated from sound velocity data is higher compared to that estimated thermal expansion data. → The B/A value decreases with increase in molecular weight with an even odd fashion and reaches a minimum value and saturates. → These studies reveal that both the thermal expansion coefficient and sound velocity are the tools to estimate the non-linear parameter B/A in the case of liquid crystals.

  4. Feedback Systems for Linear Colliders

    1999-01-01

    Feedback systems are essential for stable operation of a linear collider, providing a cost-effective method for relaxing tight tolerances. In the Stanford Linear Collider (SLC), feedback controls beam parameters such as trajectory, energy, and intensity throughout the accelerator. A novel dithering optimization system which adjusts final focus parameters to maximize luminosity contributed to achieving record performance in the 1997-98 run. Performance limitations of the steering feedback have been investigated, and improvements have been made. For the Next Linear Collider (NLC), extensive feedback systems are planned as an integral part of the design. Feedback requirements for JLC (the Japanese Linear Collider) are essentially identical to NLC; some of the TESLA requirements are similar but there are significant differences. For NLC, algorithms which incorporate improvements upon the SLC implementation are being prototyped. Specialized systems for the damping rings, rf and interaction point will operate at high bandwidth and fast response. To correct for the motion of individual bunches within a train, both feedforward and feedback systems are planned. SLC experience has shown that feedback systems are an invaluable operational tool for decoupling systems, allowing precision tuning, and providing pulse-to-pulse diagnostics. Feedback systems for the NLC will incorporate the key SLC features and the benefits of advancing technologies

  5. Linear modeling of nonlinear systems using artificial neural networks based on I/O data and its application in power plant boiler modeling

    Ghaffari, A.; Nikkhah Bahrami, M.; Mohammadzaheri, M.

    2005-01-01

    In this paper a new method for linear modeling of nonlinear systems is presented. The method is based on the design of an artificial neural network with two layers. The network is trained only according to the input-output data of the system. The weights of connections in this network, represents the coefficients of the transfer function. For systems with linear behavior the method of least square error represents the best linear model of the system. However, for nonlinear systems, such as some subsystems in power plants boilers LSE does not represent the best linear approximation of the system, necessarily. In this paper a new linear modeling method is presented and applied to some subsystems in a power plant boiler. Comparison between the transfer function obtained in this way and by least square error method,shows that the neural network method gives better linear models for these nonlinear systems

  6. Optimal planning of gas turbine cogeneration system based on linear programming. Paper no. IGEC-1-ID09

    Oh, S.-D.; Kwak, H.-Y.

    2005-01-01

    An optimal planning for gas turbine cogeneration system has been studied. The planning problem considered in this study is to determine the optimal configuration of the system equipments and optimal operational policy of the system when the annual energy demands of electric power, heat and cooling are given a priori. The main benefit of the optimal planning is to minimize operational costs and to save energy by efficient energy utilization. A mixed-integer linear programming and the branch and bound algorithm have been adopted to obtain the optimal solution. Both the optimal configuration of the system equipments and the optimal operation policy has been obtained based on annual cost method. The planning method employed here may be applied to the planning problem of the cogeneration plant to any specific building or hotel. (author)

  7. Window observers for linear systems

    Utkin Vadim

    2000-01-01

    Full Text Available Given a linear system x ˙ = A x + B u with output y = C x and a window function ω ( t , i.e., ∀ t , ω ( t ∈ {0,1 }, and assuming that the window function is Lebesgue measurable, we refer to the following observer, x ˆ = A x + B u + ω ( t L C ( x − x ˆ as a window observer. The stability issue is treated in this paper. It is proven that for linear time-invariant systems, the window observer can be stabilized by an appropriate design under a very mild condition on the window functions, albeit for linear time-varying system, some regularity of the window functions is required to achieve observer designs with the asymptotic stability. The corresponding design methods are developed. An example is included to illustrate the possible applications

  8. Optimization of dose distribution for the system of linear accelerator-based stereotactic radiosurgery

    Suh Taesuk.

    1990-01-01

    This work addresses a method for obtaining an optimal dose distribution of stereotactic radiosurgery. Since stereotactic radiosurgery utilizes multiple noncoplanar arcs and a three-dimensional dose evaluation technique, many beam parameters and complex optimization criteria are included in the dose optimization. Consequently, a lengthy computation time is required to optimize even the simplest case by a trial and error method. The basic approach presented here is to use both an analytical and an experimental optimization to minimize the dose to critical organs while maintaining a dose shaped to the target. The experimental approach is based on shaping the target volumes using multiple isocenters from dose experience, or on field shaping using a beam's eye view technique. The analytical approach is to adapt computer-aided design optimization to find optimum parameters automatically. Three-dimensional approximate dose models are developed to simulate the exact dose model using a spherical or cylindrical coordinate system. Optimum parameters are found much faster with the use of computer-aided design optimization techniques. The implementation of computer-aided design algorithms with the approximate dose model and the application of the algorithms to several cases are discussed. It is shown that the approximate dose model gives dose distributions similar to those of the exact dose model, which makes the approximate dose model an attractive alternative to the exact dose model, and much more efficient in terms of computer-aided design and visual optimization

  9. Diomres (k,m): An efficient method based on Krylov subspaces to solve big, dispersed, unsymmetrical linear systems

    de la Torre Vega, E. [Instituto de Investigaciones Electricas, Cuernavaca (Mexico); Cesar Suarez Arriaga, M. [Universidad Michoacana SNH, Michoacan (Mexico)

    1995-03-01

    In geothermal simulation processes, MULKOM uses Integrated Finite Differences to solve the corresponding partial differential equations. This method requires to resolve efficiently big linear dispersed systems of non-symmetrical nature on each temporal iteration. The order of the system is usually greater than one thousand its solution could represent around 80% of CPU total calculation time. If the elapsed time solving this class of linear systems is reduced, the duration of numerical simulation decreases notably. When the matrix is big (N{ge}500) and with holes, it is inefficient to handle all the system`s elements, because it is perfectly figured out by its elements distinct of zero, quantity greatly minor than N{sup 2}. In this area, iteration methods introduce advantages with respect to gaussian elimination methods, because these last replenish matrices not having any special distribution of their non-zero elements and because they do not make use of the available solution estimations. The iterating methods of the Conjugated Gradient family, based on the subspaces of Krylov, possess the advantage of improving the convergence speed by means of preconditioning techniques. The creation of DIOMRES(k,m) method guarantees the continuous descent of the residual norm, without incurring in division by zero. This technique converges at most in N iterations if the system`s matrix is symmetrical, it does not employ too much memory to converge and updates immediately the approximation by using incomplete orthogonalization and adequate restarting. A preconditioned version of DIOMRES was applied to problems related to unsymmetrical systems with 1000 unknowns and less than five terms per equation. We found that this technique could reduce notably the time needful to find the solution without requiring memory increment. The coupling of this method to geothermal versions of MULKOM is in process.

  10. Neural network modeling of nonlinear systems based on Volterra series extension of a linear model

    Soloway, Donald I.; Bialasiewicz, Jan T.

    1992-01-01

    A Volterra series approach was applied to the identification of nonlinear systems which are described by a neural network model. A procedure is outlined by which a mathematical model can be developed from experimental data obtained from the network structure. Applications of the results to the control of robotic systems are discussed.

  11. Design of a Control System for a Maglev Planar Motor Based on Two-Dimension Linear Interpolation

    Feng Xing

    2017-08-01

    Full Text Available In order to realize the high speed and high-precision control of a maglev planar motor, a high-precision electromagnetic model is needed in the first place, which can also contribute to meeting the real-time running requirements. Traditionally, the electromagnetic model is based on analytical calculations. However, this neglects the model simplification and the manufacturing errors, which may bring certain errors to the model. Aiming to handle this inaccuracy, this paper proposes a novel design method for a maglev planar motor control system based on two-dimensional linear interpolation. First, the magnetic field is divided into several regions according to the symmetry of the Halbach magnetic array, and the uniform grid method is adopted to partition one of these regions. Second, targeting this region, it is possible to sample the electromagnetic forces and torques on each node of the grid and obtain the complete electromagnetic model in this region through the two-dimensional linear interpolation method. Third, the whole electromagnetic model of the maglev planar motor can be derived according to the symmetry of the magnetic field. Finally, the decoupling method and controller are designed according to this electromagnetic model, and thereafter, the control model can be established. The designed control system is demonstrated through simulations and experiments to feature better accuracy and meet the requirements of real-time control.

  12. Optimization of linear consecutive-k-out-of-n system with a Birnbaum importance-based genetic algorithm

    Cai, Zhiqiang; Si, Shubin; Sun, Shudong; Li, Caitao

    2016-01-01

    The optimization of linear consecutive-k-out-of-n (Lin/Con/k/n) is to find an optimal component arrangement where n components are assigned to n positions to maximize the system reliability. With the interchangeability of components in practical systems, the optimization of Lin/Con/k/n systems is becoming widely applied in engineering practice, which is also a typical component assignment problem concerned by many researchers. This paper proposes a Birnbaum importance-based genetic algorithm (BIGA) to search the near global optimal solution for Lin/Con/k/n systems. First, the operation procedures and corresponding execution methods of BIGA are described in detail. Then, comprehensive simulation experiments are implemented on both small and large systems to evaluate the performance of the BIGA by comparing with the Birnbaum importance-based two-stage approach and Birnbaum importance-based genetic local search algorithm. Thirdly, further experiments are provided to discuss the applicability of BIGA for Lin/Con/k/n system with different k and n. Finally, the case study on oil transportation system is implemented to demonstrate the application of BIGA in the optimization of Lin/Con/k/n system. - Highlights: • BIGA integrates BI and GA to solve the Lin/Con/k/n systems optimization problems. • The experiment results show that the BIGA performs well in most conditions. • Suggestions are given for the application of BIGA and BITA with different k and n. • The application procedure of BIGA is demonstrated by the oil transportation system.

  13. Systems of Inhomogeneous Linear Equations

    Scherer, Philipp O. J.

    Many problems in physics and especially computational physics involve systems of linear equations which arise e.g. from linearization of a general nonlinear problem or from discretization of differential equations. If the dimension of the system is not too large standard methods like Gaussian elimination or QR decomposition are sufficient. Systems with a tridiagonal matrix are important for cubic spline interpolation and numerical second derivatives. They can be solved very efficiently with a specialized Gaussian elimination method. Practical applications often involve very large dimensions and require iterative methods. Convergence of Jacobi and Gauss-Seidel methods is slow and can be improved by relaxation or over-relaxation. An alternative for large systems is the method of conjugate gradients.

  14. Spoofing cyber attack detection in probe-based traffic monitoring systems using mixed integer linear programming

    Canepa, Edward S.; Bayen, Alexandre M.; Claudel, Christian G.

    2013-01-01

    Traffic sensing systems rely more and more on user generated (insecure) data, which can pose a security risk whenever the data is used for traffic flow control. In this article, we propose a new formulation for detecting malicious data injection

  15. Linear collider systems and costs

    Loew, G.A.

    1993-05-01

    The purpose of this paper is to examine some of the systems and sub-systems involved in so-called ''conventional'' e + e - linear colliders and to study how their design affects the overall cost of these machines. There are presently a total of at least six 500 GeV c. of m. linear collider projects under study in the world. Aside from TESLA (superconducting linac at 1.3 GHz) and CLIC (two-beam accelerator with main linac at 30GHz), the other four proposed e + e - linear colliders can be considered ''conventional'' in that their main linacs use the proven technique of driving room temperature accelerator sections with pulsed klystrons and modulators. The centrally distinguishing feature between these projects is their main linac rf frequency: 3 GHz for the DESY machine, 11.424 GHz for the SLAC and JLC machines, and 14 GHz for the VLEPP machine. The other systems, namely the electron and positron sources, preaccelerators, compressors, damping rings and final foci, are fairly similar from project to project. Probably more than 80% of the cost of these linear colliders will be incurred in the two main linacs facing each other and it is therefore in their design and construction that major savings or extra costs may be found

  16. Non linear dynamics of memristor based 3rd order oscillatory system

    Talukdar, Abdul Hafiz Ibne; Radwan, Ahmed G.; Salama, Khaled N.

    2012-01-01

    . Sustained oscillation is reported through oscillating resistance while time dependent poles are present. The memristor based phase shift oscillator is explored further by varying the parameters so as to present the resistance of the memristor as a time

  17. Neural feedback linearization adaptive control for affine nonlinear systems based on neural network estimator

    Bahita Mohamed

    2011-01-01

    Full Text Available In this work, we introduce an adaptive neural network controller for a class of nonlinear systems. The approach uses two Radial Basis Functions, RBF networks. The first RBF network is used to approximate the ideal control law which cannot be implemented since the dynamics of the system are unknown. The second RBF network is used for on-line estimating the control gain which is a nonlinear and unknown function of the states. The updating laws for the combined estimator and controller are derived through Lyapunov analysis. Asymptotic stability is established with the tracking errors converging to a neighborhood of the origin. Finally, the proposed method is applied to control and stabilize the inverted pendulum system.

  18. Spoofing cyber attack detection in probe-based traffic monitoring systems using mixed integer linear programming

    Canepa, Edward S.; Claudel, Christian G.

    2013-01-01

    in traffic flow monitoring systems by using the underlying traffic flow model. The state of traffic is modeled by the Lighthill-Whitham- Richards traffic flow model, which is a first order scalar conservation law with concave flux function. Given a set

  19. New Designs of Reduced-Order Observer-Based Controllers for Singularly Perturbed Linear Systems

    Heonjong Yoo

    2017-01-01

    Full Text Available The slow and fast reduced-order observers and reduced-order observer-based controllers are designed by using the two-stage feedback design technique for slow and fast subsystems. The new designs produce an arbitrary order of accuracy, while the previously known designs produce the accuracy of O(ϵ only where ϵ is a small singular perturbation parameter. Several cases of reduced-order observer designs are considered depending on the measured state space variables: only all slow variables are measured, only all fast variables are measured, and some combinations of the slow and fast variables are measured. Since the two-stage methods have been used to overcome the numerical ill-conditioning problem for Cases (III–(V, they have similar procedures. The numerical ill-conditioning problem is avoided so that independent feedback controllers can be applied to each subsystem. The design allows complete time-scale separation for both the reduced-order observer and controller through the complete and exact decomposition into slow and fast time scales. This method reduces both offline and online computations.

  20. Linear response theory for quantum open systems

    Wei, J. H.; Yan, YiJing

    2011-01-01

    Basing on the theory of Feynman's influence functional and its hierarchical equations of motion, we develop a linear response theory for quantum open systems. Our theory provides an effective way to calculate dynamical observables of a quantum open system at its steady-state, which can be applied to various fields of non-equilibrium condensed matter physics.

  1. Enhancing performance of a linear dielectric based concentrating photovoltaic system using a reflective film along the edge

    Baig, Hasan; Sarmah, Nabin; Chemisana, Daniel; Rosell, Joan; Mallick, Tapas K.

    2014-01-01

    In the present study, we model and analyse the performance of a dielectric based linear concentrating photovoltaic system using ray tracing and finite element methods. The results obtained are compared with the experiments. The system under study is a linear asymmetric CPC (Compound Parabolic Concentrator) designed to operate under extreme incident angles of 0° and 55° and have a geometrical concentration ratio of 2.8×. Initial experiments showed a maximum PR (power ratio) of 2.2 compared to a non concentrating counterpart. An improvement to this has been proposed and verified by adding a reflective film along the edges of the concentrator to capture the escaping rays and minimise optical losses. The addition of the reflective film changes the incoming distribution on the solar cell. Results show an increase of 16% in the average power output while using this reflective film. On including the thermal effects it was found that the overall benefit changes to about 6% while using a reflective film. Additionally, the effects of the non-uniformity of the incoming radiation are also analysed and reported for both the cases. It is found that adding the reflective film drops the maximum power at the output by only 0.5% due to the effect of non-uniformity. - Highlights: • Optical, thermal and electrical analysis of a concentrating photovoltaic system. • Improvement in performance by use of reflective film along the edge. • Experimental validation of results. • Effects of non-uniform illumination on the performance of the CPV system. • Impact of temperature profile on the overall performance

  2. Neural network-based robust actuator fault diagnosis for a non-linear multi-tank system.

    Mrugalski, Marcin; Luzar, Marcel; Pazera, Marcin; Witczak, Marcin; Aubrun, Christophe

    2016-03-01

    The paper is devoted to the problem of the robust actuator fault diagnosis of the dynamic non-linear systems. In the proposed method, it is assumed that the diagnosed system can be modelled by the recurrent neural network, which can be transformed into the linear parameter varying form. Such a system description allows developing the designing scheme of the robust unknown input observer within H∞ framework for a class of non-linear systems. The proposed approach is designed in such a way that a prescribed disturbance attenuation level is achieved with respect to the actuator fault estimation error, while guaranteeing the convergence of the observer. The application of the robust unknown input observer enables actuator fault estimation, which allows applying the developed approach to the fault tolerant control tasks. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.

  3. Equivalent model construction for a non-linear dynamic system based on an element-wise stiffness evaluation procedure and reduced analysis of the equivalent system

    Kim, Euiyoung; Cho, Maenghyo

    2017-11-01

    In most non-linear analyses, the construction of a system matrix uses a large amount of computation time, comparable to the computation time required by the solving process. If the process for computing non-linear internal force matrices is substituted with an effective equivalent model that enables the bypass of numerical integrations and assembly processes used in matrix construction, efficiency can be greatly enhanced. A stiffness evaluation procedure (STEP) establishes non-linear internal force models using polynomial formulations of displacements. To efficiently identify an equivalent model, the method has evolved such that it is based on a reduced-order system. The reduction process, however, makes the equivalent model difficult to parameterize, which significantly affects the efficiency of the optimization process. In this paper, therefore, a new STEP, E-STEP, is proposed. Based on the element-wise nature of the finite element model, the stiffness evaluation is carried out element-by-element in the full domain. Since the unit of computation for the stiffness evaluation is restricted by element size, and since the computation is independent, the equivalent model can be constructed efficiently in parallel, even in the full domain. Due to the element-wise nature of the construction procedure, the equivalent E-STEP model is easily characterized by design parameters. Various reduced-order modeling techniques can be applied to the equivalent system in a manner similar to how they are applied in the original system. The reduced-order model based on E-STEP is successfully demonstrated for the dynamic analyses of non-linear structural finite element systems under varying design parameters.

  4. A Fiber Bragg Grating Sensor Interrogation System Based on a Linearly Wavelength-Swept Thermo-Optic Laser Chip

    Lee, Hyung-Seok; Lee, Hwi Don; Kim, Hyo Jin; Cho, Jae Du; Jeong, Myung Yung; Kim, Chang-Seok

    2014-01-01

    A linearized wavelength-swept thermo-optic laser chip was applied to demonstrate a fiber Bragg grating (FBG) sensor interrogation system. A broad tuning range of 11.8 nm was periodically obtained from the laser chip for a sweep rate of 16 Hz. To measure the linear time response of the reflection signal from the FBG sensor, a programmed driving signal was directly applied to the wavelength-swept laser chip. The linear wavelength response of the applied strain was clearly extracted with an R-squared value of 0.99994. To test the feasibility of the system for dynamic measurements, the dynamic strain was successfully interrogated with a repetition rate of 0.2 Hz by using this FBG sensor interrogation system. PMID:25177803

  5. Linear Extended State Observer-Based Motion Synchronization Control for Hybrid Actuation System of More Electric Aircraft

    Xingjian Wang

    2017-10-01

    Full Text Available Moving towards the more electric aircraft (MEA, a hybrid actuator configuration provides an opportunity to introduce electromechanical actuator (EMA into primary flight control. In the hybrid actuation system (HAS, an electro-hydraulic servo actuator (EHSA and an EMA operate on the same control surface. In order to solve force fighting problem in HAS, this paper proposes a novel linear extended state observer (LESO-based motion synchronization control method. To cope with the problem of unavailability of the state signals required by the motion synchronization controller, LESO is designed for EHSA and EMA to observe the state variables. Based on the observed states of LESO, motion synchronization controllers could enable EHSA and EMA to simultaneously track the desired motion trajectories. Additionally, nonlinearities, uncertainties and unknown disturbances as well as the coupling term between EHSA and EMA can be estimated and compensated by using the extended state of the proposed LESO. Finally, comparative simulation results indicate that the proposed LESO-based motion synchronization controller could reduce significant force fighting between EHSA and EMA.

  6. Linear Extended State Observer-Based Motion Synchronization Control for Hybrid Actuation System of More Electric Aircraft

    Liao, Rui; Shi, Cun; Wang, Shaoping

    2017-01-01

    Moving towards the more electric aircraft (MEA), a hybrid actuator configuration provides an opportunity to introduce electromechanical actuator (EMA) into primary flight control. In the hybrid actuation system (HAS), an electro-hydraulic servo actuator (EHSA) and an EMA operate on the same control surface. In order to solve force fighting problem in HAS, this paper proposes a novel linear extended state observer (LESO)-based motion synchronization control method. To cope with the problem of unavailability of the state signals required by the motion synchronization controller, LESO is designed for EHSA and EMA to observe the state variables. Based on the observed states of LESO, motion synchronization controllers could enable EHSA and EMA to simultaneously track the desired motion trajectories. Additionally, nonlinearities, uncertainties and unknown disturbances as well as the coupling term between EHSA and EMA can be estimated and compensated by using the extended state of the proposed LESO. Finally, comparative simulation results indicate that the proposed LESO-based motion synchronization controller could reduce significant force fighting between EHSA and EMA. PMID:29068392

  7. Power System Event Ranking Using a New Linear Parameter-Varying Modeling with a Wide Area Measurement System-Based Approach

    Mohammad Bagher Abolhasani Jabali

    2017-07-01

    Full Text Available Detecting critical power system events for Dynamic Security Assessment (DSA is required for reliability improvement. The approach proposed in this paper investigates the effects of events on dynamic behavior during nonlinear system response while common approaches use steady-state conditions after events. This paper presents some new and enhanced indices for event ranking based on time-domain simulation and polytopic linear parameter-varying (LPV modeling of a power system. In the proposed approach, a polytopic LPV representation is generated via linearization about some points of the nonlinear dynamic behavior of power system using wide-area measurement system (WAMS concepts and then event ranking is done based on the frequency response of the system models on the vertices. Therefore, the nonlinear behaviors of the system in the time of fault occurrence are considered for events ranking. The proposed algorithm is applied to a power system using nonlinear simulation. The comparison of the results especially in different fault conditions shows the advantages of the proposed approach and indices.

  8. Linear operator inequalities for strongly stable weakly regular linear systems

    Curtain, RF

    2001-01-01

    We consider the question of the existence of solutions to certain linear operator inequalities (Lur'e equations) for strongly stable, weakly regular linear systems with generating operators A, B, C, 0. These operator inequalities are related to the spectral factorization of an associated Popov

  9. Disturbance Decoupling of Switched Linear Systems

    Yurtseven, E.; Heemels, W.P.M.H.; Camlibel, M.K.

    2010-01-01

    In this paper we consider disturbance decoupling problems for switched linear systems. We will provide necessary and sufficient conditions for three different versions of disturbance decoupling, which differ based on which signals are considered to be the disturbance. In the first version the

  10. Observer-based distributed adaptive fault-tolerant containment control of multi-agent systems with general linear dynamics.

    Ye, Dan; Chen, Mengmeng; Li, Kui

    2017-11-01

    In this paper, we consider the distributed containment control problem of multi-agent systems with actuator bias faults based on observer method. The objective is to drive the followers into the convex hull spanned by the dynamic leaders, where the input is unknown but bounded. By constructing an observer to estimate the states and bias faults, an effective distributed adaptive fault-tolerant controller is developed. Different from the traditional method, an auxiliary controller gain is designed to deal with the unknown inputs and bias faults together. Moreover, the coupling gain can be adjusted online through the adaptive mechanism without using the global information. Furthermore, the proposed control protocol can guarantee that all the signals of the closed-loop systems are bounded and all the followers converge to the convex hull with bounded residual errors formed by the dynamic leaders. Finally, a decoupled linearized longitudinal motion model of the F-18 aircraft is used to demonstrate the effectiveness. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  11. Linear Fresnel zone plate based two-state alignment system for 0.25 micron x-ray lithography

    Chen, G.

    1993-01-01

    X-ray lithography has proven to be a cost effective and promising technique for fabricating Integrated Circuits (ICs) with minimum feature sizes of less than 0.25 μm. Since IC fabrication is a multilevel process, to preserve the functionality of devices, circuit patterns printed at each lithography level must match existing patterns on the wafer with an accuracy of less than 1/3 ∼ 1/5 of the minimum feature size. An alignment system is used to position the mask relative to the wafer so that mask circuit patterns can be printed on the wafer at the designed position. As the minimum printed feature size shrinks, the overlay requirements of a lithography tool become more stringent. A stepper for 0.25 μm feature device fabrication requires an overlay accuracy of 0.075 μm, of which only 0.05 μm (mean + 3σ) is allocated to its alignment system. This thesis presents the development of a linear Fresnel zone late based two-state alignment (TSA) method for a 0.25 μm x-ray lithography tool. The authors first analyze the overlay requirement in a lithography process and the error allocation to the alignment system for a 0.25 μ feature x-ray lithography tool. They then describe the principle of the two-state alignment, its computer simulation and the optimal alignment mark design. They carried out an optical bench test for the one-axes alignment setup and experimentally evaluated the performance of the system. They developed a three-axes TSA system and integrated the system with the ES-3 x-ray beamline to construct the CXrL aligner, an experimental x-ray exposure system in CXrL. They measured the alignment accuracy of the exposure system to be better than 0.035 μm (3σ) on both metal and dielectric alignment mark substrates. They also studied the effect of processing coatings on the alignment signal with different wafer mark substrates. They successfully printed the 0.5 μm gate level patterns for the first NMOS test chip at CXrL

  12. Linear Regression Based Real-Time Filtering

    Misel Batmend

    2013-01-01

    Full Text Available This paper introduces real time filtering method based on linear least squares fitted line. Method can be used in case that a filtered signal is linear. This constraint narrows a band of potential applications. Advantage over Kalman filter is that it is computationally less expensive. The paper further deals with application of introduced method on filtering data used to evaluate a position of engraved material with respect to engraving machine. The filter was implemented to the CNC engraving machine control system. Experiments showing its performance are included.

  13. MCTP system model based on linear programming optimization of apertures obtained from sequencing patient image data maps

    Ureba, A. [Dpto. Fisiología Médica y Biofísica. Facultad de Medicina, Universidad de Sevilla, E-41009 Sevilla (Spain); Salguero, F. J. [Nederlands Kanker Instituut, Antoni van Leeuwenhoek Ziekenhuis, 1066 CX Ámsterdam, The Nederlands (Netherlands); Barbeiro, A. R.; Jimenez-Ortega, E.; Baeza, J. A.; Leal, A., E-mail: alplaza@us.es [Dpto. Fisiología Médica y Biofísica, Facultad de Medicina, Universidad de Sevilla, E-41009 Sevilla (Spain); Miras, H. [Servicio de Radiofísica, Hospital Universitario Virgen Macarena, E-41009 Sevilla (Spain); Linares, R.; Perucha, M. [Servicio de Radiofísica, Hospital Infanta Luisa, E-41010 Sevilla (Spain)

    2014-08-15

    Purpose: The authors present a hybrid direct multileaf collimator (MLC) aperture optimization model exclusively based on sequencing of patient imaging data to be implemented on a Monte Carlo treatment planning system (MC-TPS) to allow the explicit radiation transport simulation of advanced radiotherapy treatments with optimal results in efficient times for clinical practice. Methods: The planning system (called CARMEN) is a full MC-TPS, controlled through aMATLAB interface, which is based on the sequencing of a novel map, called “biophysical” map, which is generated from enhanced image data of patients to achieve a set of segments actually deliverable. In order to reduce the required computation time, the conventional fluence map has been replaced by the biophysical map which is sequenced to provide direct apertures that will later be weighted by means of an optimization algorithm based on linear programming. A ray-casting algorithm throughout the patient CT assembles information about the found structures, the mass thickness crossed, as well as PET values. Data are recorded to generate a biophysical map for each gantry angle. These maps are the input files for a home-made sequencer developed to take into account the interactions of photons and electrons with the MLC. For each linac (Axesse of Elekta and Primus of Siemens) and energy beam studied (6, 9, 12, 15 MeV and 6 MV), phase space files were simulated with the EGSnrc/BEAMnrc code. The dose calculation in patient was carried out with the BEAMDOSE code. This code is a modified version of EGSnrc/DOSXYZnrc able to calculate the beamlet dose in order to combine them with different weights during the optimization process. Results: Three complex radiotherapy treatments were selected to check the reliability of CARMEN in situations where the MC calculation can offer an added value: A head-and-neck case (Case I) with three targets delineated on PET/CT images and a demanding dose-escalation; a partial breast

  14. MCTP system model based on linear programming optimization of apertures obtained from sequencing patient image data maps

    Ureba, A.; Salguero, F. J.; Barbeiro, A. R.; Jimenez-Ortega, E.; Baeza, J. A.; Leal, A.; Miras, H.; Linares, R.; Perucha, M.

    2014-01-01

    Purpose: The authors present a hybrid direct multileaf collimator (MLC) aperture optimization model exclusively based on sequencing of patient imaging data to be implemented on a Monte Carlo treatment planning system (MC-TPS) to allow the explicit radiation transport simulation of advanced radiotherapy treatments with optimal results in efficient times for clinical practice. Methods: The planning system (called CARMEN) is a full MC-TPS, controlled through aMATLAB interface, which is based on the sequencing of a novel map, called “biophysical” map, which is generated from enhanced image data of patients to achieve a set of segments actually deliverable. In order to reduce the required computation time, the conventional fluence map has been replaced by the biophysical map which is sequenced to provide direct apertures that will later be weighted by means of an optimization algorithm based on linear programming. A ray-casting algorithm throughout the patient CT assembles information about the found structures, the mass thickness crossed, as well as PET values. Data are recorded to generate a biophysical map for each gantry angle. These maps are the input files for a home-made sequencer developed to take into account the interactions of photons and electrons with the MLC. For each linac (Axesse of Elekta and Primus of Siemens) and energy beam studied (6, 9, 12, 15 MeV and 6 MV), phase space files were simulated with the EGSnrc/BEAMnrc code. The dose calculation in patient was carried out with the BEAMDOSE code. This code is a modified version of EGSnrc/DOSXYZnrc able to calculate the beamlet dose in order to combine them with different weights during the optimization process. Results: Three complex radiotherapy treatments were selected to check the reliability of CARMEN in situations where the MC calculation can offer an added value: A head-and-neck case (Case I) with three targets delineated on PET/CT images and a demanding dose-escalation; a partial breast

  15. MCTP system model based on linear programming optimization of apertures obtained from sequencing patient image data maps.

    Ureba, A; Salguero, F J; Barbeiro, A R; Jimenez-Ortega, E; Baeza, J A; Miras, H; Linares, R; Perucha, M; Leal, A

    2014-08-01

    The authors present a hybrid direct multileaf collimator (MLC) aperture optimization model exclusively based on sequencing of patient imaging data to be implemented on a Monte Carlo treatment planning system (MC-TPS) to allow the explicit radiation transport simulation of advanced radiotherapy treatments with optimal results in efficient times for clinical practice. The planning system (called CARMEN) is a full MC-TPS, controlled through aMATLAB interface, which is based on the sequencing of a novel map, called "biophysical" map, which is generated from enhanced image data of patients to achieve a set of segments actually deliverable. In order to reduce the required computation time, the conventional fluence map has been replaced by the biophysical map which is sequenced to provide direct apertures that will later be weighted by means of an optimization algorithm based on linear programming. A ray-casting algorithm throughout the patient CT assembles information about the found structures, the mass thickness crossed, as well as PET values. Data are recorded to generate a biophysical map for each gantry angle. These maps are the input files for a home-made sequencer developed to take into account the interactions of photons and electrons with the MLC. For each linac (Axesse of Elekta and Primus of Siemens) and energy beam studied (6, 9, 12, 15 MeV and 6 MV), phase space files were simulated with the EGSnrc/BEAMnrc code. The dose calculation in patient was carried out with the BEAMDOSE code. This code is a modified version of EGSnrc/DOSXYZnrc able to calculate the beamlet dose in order to combine them with different weights during the optimization process. Three complex radiotherapy treatments were selected to check the reliability of CARMEN in situations where the MC calculation can offer an added value: A head-and-neck case (Case I) with three targets delineated on PET/CT images and a demanding dose-escalation; a partial breast irradiation case (Case II) solved

  16. Development of Propulsion Inverter Control System for High-Speed Maglev based on Long Stator Linear Synchronous Motor

    Jeong-Min Jo

    2017-02-01

    Full Text Available In the case of a long-stator linear drive, unlike rotative drives for which speed or position sensors are a single unit attached to the shaft, these sensors extend along the guideway. The position signals transmitted from a maglev vehicle cannot meet the need of the real-time propulsion control in the on-ground inverter power substations. In this paper the design of the propulsion inverter control system with a position estimator for driving a long-stator synchronous motor in a high-speed maglev train is proposed. The experiments have been carried out at the 150 m long guideway at the O-song test track. To investigate the performance of the position estimator, the propulsion control system with, and without, the position estimator are compared. The result confirms that the proposed strategy can meet the dynamic property needs of the propulsion inverter control system for driving long-stator linear synchronous motors.

  17. Final focus systems for linear colliders

    Helm, R.; Irwin, J.

    1992-08-01

    Final focus systems for linear colliders present many exacting challenges in beam optics, component design, and beam quality. Efforts to resolve these problems as they relate to a new generation of linear colliders are under way at several laboratories around the world. We will outline criteria for final focus systems and discuss the current state of understanding and resolution of the outstanding problems. We will discuss tolerances on alignment, field quality and stability for optical elements, and the implications for beam parameters such as emittance, energy spread, bunch length, and stability in position and energy. Beam-based correction procedures, which in principle can alleviate many of the tolerances, will be described. Preliminary results from the Final Focus Test Beam (FFTB) under construction at SLAC will be given. Finally, we mention conclusions from operating experience at the Stanford Linear Collider (SLC)

  18. Final focus systems for linear colliders

    Helm, R.; Irwing, J.

    1992-01-01

    Final focus systems for linear colliders present many exacting challenges in beam optics, component design, and beam quality. Efforts to resolve these problems as they relate to a new generation of linear colliders are under way at several laboratories around the world. We outline criteria for final focus systems and discuss the current state of understanding and resolution of the outstanding problems. We discuss tolerances on alignment, field quality and stability for optical elements, and the implications for beam parameters such as emittance, energy spread , bunch length, and stability in position and energy. Beam-based correction procedures, which in principle can alleviate many of the tolerances, are described. Preliminary results from the Final Focus Test Beam (FFTB) under construction at SLAC are given. Finally, we mention conclusions from operating experience at the Stanford Linear Collider (SLC). (Author) 16 refs., 4 tabs., 6 figs

  19. A Java-based fMRI processing pipeline evaluation system for assessment of univariate general linear model and multivariate canonical variate analysis-based pipelines.

    Zhang, Jing; Liang, Lichen; Anderson, Jon R; Gatewood, Lael; Rottenberg, David A; Strother, Stephen C

    2008-01-01

    As functional magnetic resonance imaging (fMRI) becomes widely used, the demands for evaluation of fMRI processing pipelines and validation of fMRI analysis results is increasing rapidly. The current NPAIRS package, an IDL-based fMRI processing pipeline evaluation framework, lacks system interoperability and the ability to evaluate general linear model (GLM)-based pipelines using prediction metrics. Thus, it can not fully evaluate fMRI analytical software modules such as FSL.FEAT and NPAIRS.GLM. In order to overcome these limitations, a Java-based fMRI processing pipeline evaluation system was developed. It integrated YALE (a machine learning environment) into Fiswidgets (a fMRI software environment) to obtain system interoperability and applied an algorithm to measure GLM prediction accuracy. The results demonstrated that the system can evaluate fMRI processing pipelines with univariate GLM and multivariate canonical variates analysis (CVA)-based models on real fMRI data based on prediction accuracy (classification accuracy) and statistical parametric image (SPI) reproducibility. In addition, a preliminary study was performed where four fMRI processing pipelines with GLM and CVA modules such as FSL.FEAT and NPAIRS.CVA were evaluated with the system. The results indicated that (1) the system can compare different fMRI processing pipelines with heterogeneous models (NPAIRS.GLM, NPAIRS.CVA and FSL.FEAT) and rank their performance by automatic performance scoring, and (2) the rank of pipeline performance is highly dependent on the preprocessing operations. These results suggest that the system will be of value for the comparison, validation, standardization and optimization of functional neuroimaging software packages and fMRI processing pipelines.

  20. Dynamic linearization system for a radiation gauge

    Panarello, J.A.

    1977-01-01

    The linearization system and process converts a high resolution non-linear analog input signal, representative of the thickness of an object, into a high resolution linear analog output signal suitable for use in driving a variety of output devices. The system requires only a small amount of memory for storing pre-calculated non-linear correction coefficients. The system channels the input signal to separate circuit paths so that it may be used directly to; locate an appropriate correction coefficient; develop a correction term after an appropriate correction coefficient is located; and develop a linearized signal having the same high resolution inherent in the input signal. The system processes the linearized signal to compensate for the possible errors introduced by radiation source noise. The processed linearized signal is the high resolution linear analog output signal which accurately represents the thickness of the object being gauged

  1. Linear quadratic optimization for positive LTI system

    Muhafzan, Yenti, Syafrida Wirma; Zulakmal

    2017-05-01

    Nowaday the linear quadratic optimization subject to positive linear time invariant (LTI) system constitute an interesting study considering it can become a mathematical model of variety of real problem whose variables have to nonnegative and trajectories generated by these variables must be nonnegative. In this paper we propose a method to generate an optimal control of linear quadratic optimization subject to positive linear time invariant (LTI) system. A sufficient condition that guarantee the existence of such optimal control is discussed.

  2. FPGA-based electrocardiography (ECG signal analysis system using least-square linear phase finite impulse response (FIR filter

    Mohamed G. Egila

    2016-12-01

    Full Text Available This paper presents a proposed design for analyzing electrocardiography (ECG signals. This methodology employs highpass least-square linear phase Finite Impulse Response (FIR filtering technique to filter out the baseline wander noise embedded in the input ECG signal to the system. Discrete Wavelet Transform (DWT was utilized as a feature extraction methodology to extract the reduced feature set from the input ECG signal. The design uses back propagation neural network classifier to classify the input ECG signal. The system is implemented on Xilinx 3AN-XC3S700AN Field Programming Gate Array (FPGA board. A system simulation has been done. The design is compared with some other designs achieving total accuracy of 97.8%, and achieving reduction in utilizing resources on FPGA implementation.

  3. Linearization and Control of Series-Series Compensated Inductive Power Transfer System Based on Extended Describing Function Concept

    Kunwar Aditya

    2016-11-01

    Full Text Available The extended describing function (EDF is a well-known method for modelling resonant converters due to its high accuracy. However, it requires complex mathematical formulation effort. This paper presents a simplified non-linear mathematical model of series-series (SS compensated inductive power transfer (IPT system, considering zero-voltage switching in the inverter. This simplified mathematical model permits the user to derive the small-signal model using the EDF method, with less computational effort, while maintaining the accuracy of an actual physical model. The derived model has been verified using a frequency sweep method in PLECS. The small-signal model has been used to design the voltage loop controller for a SS compensated IPT system. The designed controller was implemented on a 3.6 kW experimental setup, to test its robustness.

  4. Implementation of neural network based non-linear predictive

    Sørensen, Paul Haase; Nørgård, Peter Magnus; Ravn, Ole

    1998-01-01

    The paper describes a control method for non-linear systems based on generalized predictive control. Generalized predictive control (GPC) was developed to control linear systems including open loop unstable and non-minimum phase systems, but has also been proposed extended for the control of non......-linear systems. GPC is model-based and in this paper we propose the use of a neural network for the modeling of the system. Based on the neural network model a controller with extended control horizon is developed and the implementation issues are discussed, with particular emphasis on an efficient Quasi......-Newton optimization algorithm. The performance is demonstrated on a pneumatic servo system....

  5. On pole structure assignment in linear systems

    Loiseau, J.-J.; Zagalak, Petr

    2009-01-01

    Roč. 82, č. 7 (2009), s. 1179-1192 ISSN 0020-7179 R&D Projects: GA ČR(CZ) GA102/07/1596 Institutional research plan: CEZ:AV0Z10750506 Keywords : linear systems * linear state feedback * pole structure assignment Subject RIV: BC - Control Systems Theory Impact factor: 1.124, year: 2009 http://library.utia.cas.cz/separaty/2009/AS/zagalak-on pole structure assignment in linear systems.pdf

  6. An Inquiry-Based Linear Algebra Class

    Wang, Haohao; Posey, Lisa

    2011-01-01

    Linear algebra is a standard undergraduate mathematics course. This paper presents an overview of the design and implementation of an inquiry-based teaching material for the linear algebra course which emphasizes discovery learning, analytical thinking and individual creativity. The inquiry-based teaching material is designed to fit the needs of a…

  7. On-line Multiple-model Based Adaptive Control Reconfiguration for a Class of Non-linear Control Systems

    Yang, Z.; Izadi-Zamanabadi, R.; Blanke, Mogens

    2000-01-01

    of LTI models are employed to approximate the faulty, reconfigured and nominal nonlinear systems respectively with respect to the on-line information of the operating system, and a set of compensating modules are proposed and designed so as to make the local LTI model approximating to the reconfigured...... nonlinear system match the corresponding LTI model approximating to the nominal nonlinear system in some optimal sense. The compensating modules are designed by the Pseudo-Inverse Method based on the local LTI models for the nominal and faulty nonlinear systems. Moreover, these modules should update...... corresponding to the updating of local LTI models, which validations are determined by the model approximation errors and the optimal index of local design. The test on a nonlinear ship propulsion system shows the promising potential of this method for system reconfiguration...

  8. Calibration of the degree of linear polarization measurements of the polarized Sun-sky radiometer based on the POLBOX system.

    Li, Zhengqiang; Li, Kaitao; Li, Li; Xu, Hua; Xie, Yisong; Ma, Yan; Li, Donghui; Goloub, Philippe; Yuan, Yinlin; Zheng, Xiaobing

    2018-02-10

    Polarization observation of sky radiation is the frontier approach to improve the remote sensing of atmospheric components, e.g., aerosol and clouds. The polarization calibration of the ground-based Sun-sky radiometer is the basis for obtaining accurate degree of linear polarization (DOLP) measurement. In this paper, a DOLP calibration method based on a laboratory polarized light source (POLBOX) is introduced in detail. Combined with the CE318-DP Sun-sky polarized radiometer, a calibration scheme for DOLP measurement is established for the spectral range of 440-1640 nm. Based on the calibration results of the Sun-sky radiometer observation network, the polarization calibration coefficient and the DOLP calibration residual are analyzed statistically. The results show that the DOLP residual of the calibration scheme is about 0.0012, and thus it can be estimated that the final DOLP calibration accuracy of this method is about 0.005. Finally, it is verified that the accuracy of the calibration results is in accordance with the expected results by comparing the simulated DOLP with the vector radiative transfer calculations.

  9. The established mega watt linear programming-based optimal power flow model applied to the real power 56-bus system in eastern province of Saudi Arabia

    Al-Muhawesh, Tareq A.; Qamber, Isa S.

    2008-01-01

    A current trend in electric power industries is the deregulation around the world. One of the questions arise during any deregulation process is: where will be the future generation expansion? In the present paper, the study is concentrated on the wheeling computational method as a part of mega watt (MW) linear programming-based optimal power flow (LP-based OPF) method. To observe the effects of power wheeling on the power system operations, the paper uses linear interactive and discrete optimizer (LINDO) optimizer software as a powerful tool for solving linear programming problems to evaluate the influence of the power wheeling. As well, the paper uses the optimization tool to solve the economic generation dispatch and transmission management problems. The transmission line flow was taken in consideration with some constraints discussed in this paper. The complete linear model of the MW LP-based OPF, which is used to know the future generation potential areas in any utility is proposed. The paper also explains the available economic load dispatch (ELD) as the basic optimization tool to dispatch the power system. It can be concluded in the present study that accuracy is expensive in terms of money and time and in the competitive market enough accuracy is needed without paying much

  10. A Hybrid Model through the Fusion of Type-2 Fuzzy Logic Systems and Sensitivity-Based Linear Learning Method for Modeling PVT Properties of Crude Oil Systems

    Ali Selamat

    2012-01-01

    Full Text Available Sensitivity-based linear learning method (SBLLM has recently been used as a predictive tool due to its unique characteristics and performance, particularly its high stability and consistency during predictions. However, the generalisation capability of SBLLM is sometimes limited depending on the nature of the dataset, particularly on whether uncertainty is present in the dataset or not. Since it made use of sensitivity analysis in relation to the data sets used, it is surely very prone to being affected by the nature of the dataset. In order to reduce the effects of uncertainties in SBLLM prediction and improve its generalisation ability, this paper proposes a hybrid system through the unique combination of type-2 fuzzy logic systems (type-2 FLSs and SBLLM; thereafter the hybrid system was used to model PVT properties of crude oil systems. Type-2 FLS has been choosen in order to better handle uncertainties existing in datasets beyond the capability of type-1 fuzzy logic systems. In the proposed hybrid, the type-2 FLS is used to handle uncertainties in reservoir data so that the cleaned data from type-2 FLS is then passed to the SBLLM for training and then final prediction using testing dataset follows. Comparative studies have been carried out to compare the performance of the newly proposed T2-SBLLM hybrid system with each of the constituent type-2 FLS and SBLLM. Empirical results from simulation show that the proposed T2-SBLLM hybrid system has greatly improved upon the performance of SBLLM, while also maintaining a better performance above that of the type-2 FLS.

  11. Balanced truncation for linear switched systems

    Petreczky, Mihaly; Wisniewski, Rafal; Leth, John-Josef

    2013-01-01

    In this paper, we present a theoretical analysis of the model reduction algorithm for linear switched systems from Shaker and Wisniewski (2011, 2009) and . This algorithm is a reminiscence of the balanced truncation method for linear parameter varying systems (Wood et al., 1996) [3]. Specifically...

  12. Observability of linear systems with saturated outputs

    Koplon, R.; Sontag, E.D.; Hautus, M.L.J.

    1994-01-01

    We present necessary and sufficient conditions for observability of the class of output-saturated systems. These are linear systems whose output passes through a saturation function before it can be measured.

  13. A systems wide mass spectrometric based linear motif screen to identify dominant in-vivo interacting proteins for the ubiquitin ligase MDM2.

    Nicholson, Judith; Scherl, Alex; Way, Luke; Blackburn, Elizabeth A; Walkinshaw, Malcolm D; Ball, Kathryn L; Hupp, Ted R

    2014-06-01

    Linear motifs mediate protein-protein interactions (PPI) that allow expansion of a target protein interactome at a systems level. This study uses a proteomics approach and linear motif sub-stratifications to expand on PPIs of MDM2. MDM2 is a multi-functional protein with over one hundred known binding partners not stratified by hierarchy or function. A new linear motif based on a MDM2 interaction consensus is used to select novel MDM2 interactors based on Nutlin-3 responsiveness in a cell-based proteomics screen. MDM2 binds a subset of peptide motifs corresponding to real proteins with a range of allosteric responses to MDM2 ligands. We validate cyclophilin B as a novel protein with a consensus MDM2 binding motif that is stabilised by Nutlin-3 in vivo, thus identifying one of the few known interactors of MDM2 that is stabilised by Nutlin-3. These data invoke two modes of peptide binding at the MDM2 N-terminus that rely on a consensus core motif to control the equilibrium between MDM2 binding proteins. This approach stratifies MDM2 interacting proteins based on the linear motif feature and provides a new biomarker assay to define clinically relevant Nutlin-3 responsive MDM2 interactors. Copyright © 2014 Elsevier Inc. All rights reserved.

  14. Distributed-observer-based cooperative control for synchronization of linear discrete-time multi-agent systems.

    Liang, Hongjing; Zhang, Huaguang; Wang, Zhanshan

    2015-11-01

    This paper considers output synchronization of discrete-time multi-agent systems with directed communication topologies. The directed communication graph contains a spanning tree and the exosystem as its root. Distributed observer-based consensus protocols are proposed, based on the relative outputs of neighboring agents. A multi-step algorithm is presented to construct the observer-based protocols. In light of the discrete-time algebraic Riccati equation and internal model principle, synchronization problem is completed. At last, numerical simulation is provided to verify the effectiveness of the theoretical results. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.

  15. Experimental Test and Simulations on a Linear Generator-Based Prototype of a Wave Energy Conversion System Designed with a Reliability-Oriented Approach

    Valeria Boscaino

    2017-01-01

    Full Text Available In this paper, we propose a reliability-oriented design of a linear generator-based prototype of a wave energy conversion (WEC, useful for the production of hydrogen in a sheltered water area like Mediterranean Sea. The hydrogen production has been confirmed by a lot of experimental testing and simulations. The system design is aimed to enhance the robustness and reliability and is based on an analysis of the main WEC failures reported in literature. The results of this analysis led to some improvements that are applied to a WEC system prototype for hydrogen production and storage. The proposed WEC system includes the electrical linear generator, the power conversion system, and a sea-water electrolyzer. A modular architecture is conceived to provide ease of extension of the power capability of the marine plant. The experimental results developed on the permanent magnet linear electric generator have allowed identification of the stator winding typology and, consequently, ability to size the power electronics system. The produced hydrogen has supplied a low-power fuel cell stack directly connected to the hydrogen output from the electrolyzer. The small-scale prototype is designed to be installed, in the near future, into the Mediterranean Sea. As shown by experimental and simulation results, the small-scale prototype is suitable for hydrogen production and storage from sea water in this area.

  16. Technical Note: Evaluation of the systematic accuracy of a frameless, multiple image modality guided, linear accelerator based stereotactic radiosurgery system

    Wen, N., E-mail: nwen1@hfhs.org; Snyder, K. C.; Qin, Y.; Li, H.; Siddiqui, M. S.; Chetty, I. J. [Department of Radiation Oncology, Henry Ford Health System, 2799 West Brand Boulevard, Detroit, Michigan 48202 (United States); Scheib, S. G.; Schmelzer, P. [Varian Medical System, Täfernstrasse 7, Dättwil AG 5405 (Switzerland)

    2016-05-15

    Purpose: To evaluate the total systematic accuracy of a frameless, image guided stereotactic radiosurgery system. Methods: The localization accuracy and intermodality difference was determined by delivering radiation to an end-to-end prototype phantom, in which the targets were localized using optical surface monitoring system (OSMS), electromagnetic beacon-based tracking (Calypso®), cone-beam CT, “snap-shot” planar x-ray imaging, and a robotic couch. Six IMRT plans with jaw tracking and a flattening filter free beam were used to study the dosimetric accuracy for intracranial and spinal stereotactic radiosurgery treatment. Results: End-to-end localization accuracy of the system evaluated with the end-to-end phantom was 0.5 ± 0.2 mm with a maximum deviation of 0.9 mm over 90 measurements (including jaw, MLC, and cone measurements for both auto and manual fusion) for single isocenter, single target treatment, 0.6 ± 0.4 mm for multitarget treatment with shared isocenter. Residual setup errors were within 0.1 mm for OSMS, and 0.3 mm for Calypso. Dosimetric evaluation based on absolute film dosimetry showed greater than 90% pass rate for all cases using a gamma criteria of 3%/1 mm. Conclusions: The authors’ experience demonstrates that the localization accuracy of the frameless image-guided system is comparable to robotic or invasive frame based radiosurgery systems.

  17. Technical Note: Evaluation of the systematic accuracy of a frameless, multiple image modality guided, linear accelerator based stereotactic radiosurgery system

    Wen, N.; Snyder, K. C.; Qin, Y.; Li, H.; Siddiqui, M. S.; Chetty, I. J.; Scheib, S. G.; Schmelzer, P.

    2016-01-01

    Purpose: To evaluate the total systematic accuracy of a frameless, image guided stereotactic radiosurgery system. Methods: The localization accuracy and intermodality difference was determined by delivering radiation to an end-to-end prototype phantom, in which the targets were localized using optical surface monitoring system (OSMS), electromagnetic beacon-based tracking (Calypso®), cone-beam CT, “snap-shot” planar x-ray imaging, and a robotic couch. Six IMRT plans with jaw tracking and a flattening filter free beam were used to study the dosimetric accuracy for intracranial and spinal stereotactic radiosurgery treatment. Results: End-to-end localization accuracy of the system evaluated with the end-to-end phantom was 0.5 ± 0.2 mm with a maximum deviation of 0.9 mm over 90 measurements (including jaw, MLC, and cone measurements for both auto and manual fusion) for single isocenter, single target treatment, 0.6 ± 0.4 mm for multitarget treatment with shared isocenter. Residual setup errors were within 0.1 mm for OSMS, and 0.3 mm for Calypso. Dosimetric evaluation based on absolute film dosimetry showed greater than 90% pass rate for all cases using a gamma criteria of 3%/1 mm. Conclusions: The authors’ experience demonstrates that the localization accuracy of the frameless image-guided system is comparable to robotic or invasive frame based radiosurgery systems.

  18. A Chip-Level BSOR-Based Linear GSIC Multiuser Detector for Long-Code CDMA Systems

    M. Benyoucef

    2008-01-01

    Full Text Available We introduce a chip-level linear group-wise successive interference cancellation (GSIC multiuser structure that is asymptotically equivalent to block successive over-relaxation (BSOR iteration, which is known to outperform the conventional block Gauss-Seidel iteration by an order of magnitude in terms of convergence speed. The main advantage of the proposed scheme is that it uses directly the spreading codes instead of the cross-correlation matrix and thus does not require the calculation of the cross-correlation matrix (requires 2NK2 floating point operations (flops, where N is the processing gain and K is the number of users which reduces significantly the overall computational complexity. Thus it is suitable for long-code CDMA systems such as IS-95 and UMTS where the cross-correlation matrix is changing every symbol. We study the convergence behavior of the proposed scheme using two approaches and prove that it converges to the decorrelator detector if the over-relaxation factor is in the interval ]0, 2[. Simulation results are in excellent agreement with theory.

  19. A Chip-Level BSOR-Based Linear GSIC Multiuser Detector for Long-Code CDMA Systems

    Benyoucef M

    2007-01-01

    Full Text Available We introduce a chip-level linear group-wise successive interference cancellation (GSIC multiuser structure that is asymptotically equivalent to block successive over-relaxation (BSOR iteration, which is known to outperform the conventional block Gauss-Seidel iteration by an order of magnitude in terms of convergence speed. The main advantage of the proposed scheme is that it uses directly the spreading codes instead of the cross-correlation matrix and thus does not require the calculation of the cross-correlation matrix (requires floating point operations (flops, where is the processing gain and is the number of users which reduces significantly the overall computational complexity. Thus it is suitable for long-code CDMA systems such as IS-95 and UMTS where the cross-correlation matrix is changing every symbol. We study the convergence behavior of the proposed scheme using two approaches and prove that it converges to the decorrelator detector if the over-relaxation factor is in the interval ]0, 2[. Simulation results are in excellent agreement with theory.

  20. TU-H-BRA-01: The Physics of High Power Radiofrequency Isolation in a Novel Compact Linear Accelerator Based MRI Guided Radiation Therapy System

    Lamb, J; Low, D [University of California, Los Angeles, Los Angeles, CA (United States); Mutic, S [Washington University School of Medicine, Saint Louis, MO (United States); Shvartsman, S; Chmielewski, T; Fought, G; Sharma, A; Dempsey, J [ViewRay, Inc., Oakwood Village, OH (United States)

    2016-06-15

    Purpose: To develop a method for isolating the radiofrequency waves emanating from linear accelerator components from the magnetic resonance imaging (MRI) system of an integrated MRI-linac. Methods: An MRI-guided radiation therapy system has been designed that integrates a linear accelerator with simultaneous MR imaging. The radiofrequency waves created by the accelerating process would degrade MR image quality, so a method for containing the radiofrequency waves and isolating the MR imager from them was developed. The linear accelerator radiofrequency modulator was placed outside the room, so a filter was designed to eliminate the radiofrequency corresponding to the proton Larmour frequency of 14.7 MHz. Placing the radiofrequency emitting components in a typical Faraday cage would have reduced the radiofrequency emissions, but the design would be susceptible to small gaps in the shield due to the efficiency of the Faraday cage reflecting internal radiofrequency emissions. To reduce internal radiofrequency reflections, the Faraday cage was lined with carbon fiber sheets. Carbon fiber has the property of attenuating the radiofrequency energy so that the overall radiofrequency field inside the Faraday cage is reduced, decreasing any radiofrequency energy emitted from small gaps in the cage walls. Results: Within a 1.2 MHz band centered on the Larmor frequency, the radiofrequency (RF) leakage from the Faraday cage was measured to be −90 dB with no RF on, −40 dB with the RF on and no shield, returning to −90 dB with the RF on and shields in place. The radiofrequency filter attenuated the linear accelerator modulator emissions in the 14.7 MHz band by 70 dB. Conclusions: One of the major challenges in designing a compact linear accelerator based MRI-guided radiation therapy system, that of isolating the high power RF system from the MRI, has been solved. The measured radiofrequency emissions are sufficiently small to enable system integration. This research was

  1. TU-H-BRA-01: The Physics of High Power Radiofrequency Isolation in a Novel Compact Linear Accelerator Based MRI Guided Radiation Therapy System

    Lamb, J; Low, D; Mutic, S; Shvartsman, S; Chmielewski, T; Fought, G; Sharma, A; Dempsey, J

    2016-01-01

    Purpose: To develop a method for isolating the radiofrequency waves emanating from linear accelerator components from the magnetic resonance imaging (MRI) system of an integrated MRI-linac. Methods: An MRI-guided radiation therapy system has been designed that integrates a linear accelerator with simultaneous MR imaging. The radiofrequency waves created by the accelerating process would degrade MR image quality, so a method for containing the radiofrequency waves and isolating the MR imager from them was developed. The linear accelerator radiofrequency modulator was placed outside the room, so a filter was designed to eliminate the radiofrequency corresponding to the proton Larmour frequency of 14.7 MHz. Placing the radiofrequency emitting components in a typical Faraday cage would have reduced the radiofrequency emissions, but the design would be susceptible to small gaps in the shield due to the efficiency of the Faraday cage reflecting internal radiofrequency emissions. To reduce internal radiofrequency reflections, the Faraday cage was lined with carbon fiber sheets. Carbon fiber has the property of attenuating the radiofrequency energy so that the overall radiofrequency field inside the Faraday cage is reduced, decreasing any radiofrequency energy emitted from small gaps in the cage walls. Results: Within a 1.2 MHz band centered on the Larmor frequency, the radiofrequency (RF) leakage from the Faraday cage was measured to be −90 dB with no RF on, −40 dB with the RF on and no shield, returning to −90 dB with the RF on and shields in place. The radiofrequency filter attenuated the linear accelerator modulator emissions in the 14.7 MHz band by 70 dB. Conclusions: One of the major challenges in designing a compact linear accelerator based MRI-guided radiation therapy system, that of isolating the high power RF system from the MRI, has been solved. The measured radiofrequency emissions are sufficiently small to enable system integration. This research was

  2. Leader-Following Consensus Stability of Discrete-Time Linear Multiagent Systems with Observer-Based Protocols

    Bingbing Xu

    2013-01-01

    Full Text Available We consider the leader-following consensus problem of discrete-time multiagent systems on a directed communication topology. Two types of distributed observer-based consensus protocols are considered to solve such a problem. The observers involved in the proposed protocols include full-order observer and reduced-order observer, which are used to reconstruct the state variables. Two algorithms are provided to construct the consensus protocols, which are based on the modified discrete-time algebraic Riccati equation and Sylvester equation. In light of graph and matrix theory, some consensus conditions are established. Finally, a numerical example is provided to illustrate the obtained result.

  3. A Proposed Method for Solving Fuzzy System of Linear Equations

    Reza Kargar

    2014-01-01

    Full Text Available This paper proposes a new method for solving fuzzy system of linear equations with crisp coefficients matrix and fuzzy or interval right hand side. Some conditions for the existence of a fuzzy or interval solution of m×n linear system are derived and also a practical algorithm is introduced in detail. The method is based on linear programming problem. Finally the applicability of the proposed method is illustrated by some numerical examples.

  4. TU-H-BRA-02: The Physics of Magnetic Field Isolation in a Novel Compact Linear Accelerator Based MRI-Guided Radiation Therapy System

    Low, D; Mutic, S; Shvartsman, S; Chmielewski, T; Fought, G; Sharma, A; Dempsey, J

    2016-01-01

    Purpose: To develop a method for isolating the MRI magnetic field from field-sensitive linear accelerator components at distances close to isocenter. Methods: A MRI-guided radiation therapy system has been designed that integrates a linear accelerator with simultaneous MR imaging. In order to accomplish this, the magnetron, port circulator, radiofrequency waveguide, gun driver, and linear accelerator needed to be placed in locations with low magnetic fields. The system was also required to be compact, so moving these components far from the main magnetic field and isocenter was not an option. The magnetic field sensitive components (exclusive of the waveguide) were placed in coaxial steel sleeves that were electrically and mechanically isolated and whose thickness and placement were optimized using E&M modeling software. Six sets of sleeves were placed 60° apart, 85 cm from isocenter. The Faraday effect occurs when the direction of propagation is parallel to the magnetic RF field component, rotating the RF polarization, subsequently diminishing RF power. The Faraday effect was avoided by orienting the waveguides such that the magnetic field RF component was parallel to the magnetic field. Results: The magnetic field within the shields was measured to be less than 40 Gauss, significantly below the amount needed for the magnetron and port circulator. Additional mu-metal was employed to reduce the magnetic field at the linear accelerator to less than 1 Gauss. The orientation of the RF waveguides allowed the RT transport with minimal loss and reflection. Conclusion: One of the major challenges in designing a compact linear accelerator based MRI-guided radiation therapy system, that of creating low magnetic field environments for the magnetic-field sensitive components, has been solved. The measured magnetic fields are sufficiently small to enable system integration. This work supported by ViewRay, Inc.

  5. TU-H-BRA-02: The Physics of Magnetic Field Isolation in a Novel Compact Linear Accelerator Based MRI-Guided Radiation Therapy System

    Low, D [UCLA, Los Angeles, CA (United States); Mutic, S [Washington University School of Medicine, Saint Louis, MO (United States); Shvartsman, S; Chmielewski, T; Fought, G; Sharma, A; Dempsey, J [ViewRay, Inc., Oakwood Village, OH (United States)

    2016-06-15

    Purpose: To develop a method for isolating the MRI magnetic field from field-sensitive linear accelerator components at distances close to isocenter. Methods: A MRI-guided radiation therapy system has been designed that integrates a linear accelerator with simultaneous MR imaging. In order to accomplish this, the magnetron, port circulator, radiofrequency waveguide, gun driver, and linear accelerator needed to be placed in locations with low magnetic fields. The system was also required to be compact, so moving these components far from the main magnetic field and isocenter was not an option. The magnetic field sensitive components (exclusive of the waveguide) were placed in coaxial steel sleeves that were electrically and mechanically isolated and whose thickness and placement were optimized using E&M modeling software. Six sets of sleeves were placed 60° apart, 85 cm from isocenter. The Faraday effect occurs when the direction of propagation is parallel to the magnetic RF field component, rotating the RF polarization, subsequently diminishing RF power. The Faraday effect was avoided by orienting the waveguides such that the magnetic field RF component was parallel to the magnetic field. Results: The magnetic field within the shields was measured to be less than 40 Gauss, significantly below the amount needed for the magnetron and port circulator. Additional mu-metal was employed to reduce the magnetic field at the linear accelerator to less than 1 Gauss. The orientation of the RF waveguides allowed the RT transport with minimal loss and reflection. Conclusion: One of the major challenges in designing a compact linear accelerator based MRI-guided radiation therapy system, that of creating low magnetic field environments for the magnetic-field sensitive components, has been solved. The measured magnetic fields are sufficiently small to enable system integration. This work supported by ViewRay, Inc.

  6. Isolators Including Main Spring Linear Guide Systems

    Goold, Ryan (Inventor); Buchele, Paul (Inventor); Hindle, Timothy (Inventor); Ruebsamen, Dale Thomas (Inventor)

    2017-01-01

    Embodiments of isolators, such as three parameter isolators, including a main spring linear guide system are provided. In one embodiment, the isolator includes first and second opposing end portions, a main spring mechanically coupled between the first and second end portions, and a linear guide system extending from the first end portion, across the main spring, and toward the second end portion. The linear guide system expands and contracts in conjunction with deflection of the main spring along the working axis, while restricting displacement and rotation of the main spring along first and second axes orthogonal to the working axis.

  7. Final focus systems for linear colliders

    Erickson, R.A.

    1987-11-01

    The final focus system of a linear collider must perform two primary functions, it must focus the two opposing beams so that their transverse dimensions at the interaction point are small enough to yield acceptable luminosity, and it must steer the beams together to maintain collisions. In addition, the final focus system must transport the outgoing beams to a location where they can be recycled or safely dumped. Elementary optical considerations for linear collider final focus systems are discussed, followed by chromatic aberrations. The design of the final focus system of the SLAC Linear Collider (SLC) is described. Tuning and diagnostics and steering to collision are discussed. Most of the examples illustrating the concepts covered are drawn from the SLC, but the principles and conclusions are said to be generally applicable to other linear collider designs as well. 26 refs., 17 figs

  8. On deformations of linear differential systems

    Gontsov, R.R.; Poberezhnyi, V.A.; Helminck, G.F.

    2011-01-01

    This article concerns deformations of meromorphic linear differential systems. Problems relating to their existence and classification are reviewed, and the global and local behaviour of solutions to deformation equations in a neighbourhood of their singular set is analysed. Certain classical

  9. Superconducting linear accelerator system for NSC

    59, No. 5. — journal of. November 2002 physics pp. 849–858. Superconducting linear accelerator system for NSC ... cryogenics facility, RF electronics development, facilities for fabricating niobium resonators indige- ... Prototype resonator was.

  10. Linear Temporal Logic-based Mission Planning

    Anil Kumar

    2016-06-01

    Full Text Available In this paper, we describe the Linear Temporal Logic-based reactive motion planning. We address the problem of motion planning for mobile robots, wherein the goal specification of planning is given in complex environments. The desired task specification may consist of complex behaviors of the robot, including specifications for environment constraints, need of task optimality, obstacle avoidance, rescue specifications, surveillance specifications, safety specifications, etc. We use Linear Temporal Logic to give a representation for such complex task specification and constraints. The specifications are used by a verification engine to judge the feasibility and suitability of plans. The planner gives a motion strategy as output. Finally a controller is used to generate the desired trajectory to achieve such a goal. The approach is tested using simulations on the LTLMoP mission planning tool, operating over the Robot Operating System. Simulation results generated using high level planners and low level controllers work simultaneously for mission planning and controlling the physical behavior of the robot.

  11. ROBUST MPC FOR STABLE LINEAR SYSTEMS

    M.A. Rodrigues

    2002-03-01

    Full Text Available In this paper, a new model predictive controller (MPC, which is robust for a class of model uncertainties, is developed. Systems with stable dynamics and time-invariant model uncertainty are treated. The development herein proposed is focused on real industrial systems where the controller is part of an on-line optimization scheme and works in the output-tracking mode. In addition, the system has a time-varying number of degrees of freedom since some of the manipulated inputs may become constrained. Moreover, the number of controlled outputs may also vary during system operation. Consequently, the actual system may show operating conditions with a number of controlled outputs larger than the number of available manipulated inputs. The proposed controller uses a state-space model, which is aimed at the representation of the output-predicted trajectory. Based on this model, a cost function is proposed whereby the output error is integrated along an infinite prediction horizon. It is considered the case of multiple operating points, where the controller stabilizes a set of models corresponding to different operating conditions for the system. It is shown that closed-loop stability is guaranteed by the feasibility of a linear matrix optimization problem.

  12. Fast Solvers for Dense Linear Systems

    Kauers, Manuel [Research Institute for Symbolic Computation (RISC), Altenbergerstrasse 69, A4040 Linz (Austria)

    2008-10-15

    It appears that large scale calculations in particle physics often require to solve systems of linear equations with rational number coefficients exactly. If classical Gaussian elimination is applied to a dense system, the time needed to solve such a system grows exponentially in the size of the system. In this tutorial paper, we present a standard technique from computer algebra that avoids this exponential growth: homomorphic images. Using this technique, big dense linear systems can be solved in a much more reasonable time than using Gaussian elimination over the rationals.

  13. Signals and transforms in linear systems analysis

    Wasylkiwskyj, Wasyl

    2013-01-01

    Signals and Transforms in Linear Systems Analysis covers the subject of signals and transforms, particularly in the context of linear systems theory. Chapter 2 provides the theoretical background for the remainder of the text. Chapter 3 treats Fourier series and integrals. Particular attention is paid to convergence properties at step discontinuities. This includes the Gibbs phenomenon and its amelioration via the Fejer summation techniques. Special topics include modulation and analytic signal representation, Fourier transforms and analytic function theory, time-frequency analysis and frequency dispersion. Fundamentals of linear system theory for LTI analogue systems, with a brief account of time-varying systems, are covered in Chapter 4 . Discrete systems are covered in Chapters 6 and 7.  The Laplace transform treatment in Chapter 5 relies heavily on analytic function theory as does Chapter 8 on Z -transforms. The necessary background on complex variables is provided in Appendix A. This book is intended to...

  14. Linear Temporal Logic-based Mission Planning

    Anil Kumar; Rahul Kala

    2016-01-01

    In this paper, we describe the Linear Temporal Logic-based reactive motion planning. We address the problem of motion planning for mobile robots, wherein the goal specification of planning is given in complex environments. The desired task specification may consist of complex behaviors of the robot, including specifications for environment constraints, need of task optimality, obstacle avoidance, rescue specifications, surveillance specifications, safety specifications, etc. We use Linear Tem...

  15. Dynamics of unsymmetric piecewise-linear/non-linear systems using finite elements in time

    Wang, Yu

    1995-08-01

    The dynamic response and stability of a single-degree-of-freedom system with unsymmetric piecewise-linear/non-linear stiffness are analyzed using the finite element method in the time domain. Based on a Hamilton's weak principle, this method provides a simple and efficient approach for predicting all possible fundamental and sub-periodic responses. The stability of the steady state response is determined by using Floquet's theory without any special effort for calculating transition matrices. This method is applied to a number of examples, demonstrating its effectiveness even for a strongly non-linear problem involving both clearance and continuous stiffness non-linearities. Close agreement is found between available published findings and the predictions of the finite element in time approach, which appears to be an efficient and reliable alternative technique for non-linear dynamic response and stability analysis of periodic systems.

  16. Linear integral equations and soliton systems

    Quispel, G.R.W.

    1983-01-01

    A study is presented of classical integrable dynamical systems in one temporal and one spatial dimension. The direct linearizations are given of several nonlinear partial differential equations, for example the Korteweg-de Vries equation, the modified Korteweg-de Vries equation, the sine-Gordon equation, the nonlinear Schroedinger equation, and the equation of motion for the isotropic Heisenberg spin chain; the author also discusses several relations between these equations. The Baecklund transformations of these partial differential equations are treated on the basis of a singular transformation of the measure (or equivalently of the plane-wave factor) occurring in the corresponding linear integral equations, and the Baecklund transformations are used to derive the direct linearization of a chain of so-called modified partial differential equations. Finally it is shown that the singular linear integral equations lead in a natural way to the direct linearizations of various nonlinear difference-difference equations. (Auth.)

  17. State space model extraction of thermohydraulic systems – Part II: A linear graph approach applied to a Brayton cycle-based power conversion unit

    Uren, Kenneth Richard; Schoor, George van

    2013-01-01

    This second paper in a two part series presents the application of a developed state space model extraction methodology applied to a Brayton cycle-based PCU (power conversion unit) of a PBMR (pebble bed modular reactor). The goal is to investigate if the state space extraction methodology can cope with larger and more complex thermohydraulic systems. In Part I the state space model extraction methodology for the purpose of control was described in detail and a state space representation was extracted for a U-tube system to illustrate the concept. In this paper a 25th order nonlinear state space representation in terms of the different energy domains is extracted. This state space representation is solved and the responses of a number of important states are compared with results obtained from a PBMR PCU Flownex ® model. Flownex ® is a validated thermo fluid simulation software package. The results show that the state space model closely resembles the dynamics of the PBMR PCU. This kind of model may be used for nonlinear MIMO (multi-input, multi-output) type of control strategies. However, there is still a need for linear state space models since many control system design and analysis techniques require a linear state space model. This issue is also addressed in this paper by showing how a linear state space model can be derived from the extracted nonlinear state space model. The linearised state space model is also validated by comparing the state space model to an existing linear Simulink ® model of the PBMR PCU system. - Highlights: • State space model extraction of a pebble bed modular reactor PCU (power conversion unit). • A 25th order nonlinear time varying state space model is obtained. • Linearisation of a nonlinear state space model for use in power output control. • Non-minimum phase characteristic that is challenging in terms of control. • Models derived are useful for MIMO control strategies

  18. STABILITY OF LINEAR SYSTEMS WITH MARKOVIAN JUMPS

    Jorge Enrique Mayta Guillermo

    2016-12-01

    Full Text Available In this work we will analyze the stability of linear systems governed by a Markov chain, this family is known in the specialized literature as linear systems with Markov jumps or by its acronyms in English MJLS as it is denoted in [1]. Linear systems governed by a Markov chain are dynamic systems with abrupt changes. We give some denitions of stability for the MJLS system, where these types of stability are equivalent as long as the state space of the Markov chain is nite. Finally we present a theorem that characterizes the stochastic stability by means of an equation of the Lyapunov type. The result is a generalization of a theorem in classical theory.

  19. [Non-linear System Dynamics Simulation Modeling of Adolescent Obesity: Using Korea Youth Risk Behavior Web-based Survey].

    Lee, Hanna; Park, Eun Suk; Yu, Jae Kook; Yun, Eun Kyoung

    2015-10-01

    The purpose of this study was to develop a system dynamics model for adolescent obesity in Korea that could be used for obesity policy analysis. On the basis of the casual loop diagram, a model was developed by converting to stock and flow diagram. The Vensim DSS 5.0 program was used in the model development. We simulated method of moments to the calibration of this model with data from The Korea Youth Risk Behavior Web-based Survey 2005 to 2013. We ran the scenario simulation. This model can be used to understand the current adolescent obesity rate, predict the future obesity rate, and be utilized as a tool for controlling the risk factors. The results of the model simulation match well with the data. It was identified that a proper model, able to predict obesity probability, was established. These results of stock and flow diagram modeling in adolescent obesity can be helpful in development of obesity by policy planners and other stakeholders to better anticipate the multiple effects of interventions in both the short and the long term. In the future we suggest the development of an expanded model based on this adolescent obesity model.

  20. Correlated Levy Noise in Linear Dynamical Systems

    Srokowski, T.

    2011-01-01

    Linear dynamical systems, driven by a non-white noise which has the Levy distribution, are analysed. Noise is modelled by a specific stochastic process which is defined by the Langevin equation with a linear force and the Levy distributed symmetric white noise. Correlation properties of the process are discussed. The Fokker-Planck equation driven by that noise is solved. Distributions have the Levy shape and their width, for a given time, is smaller than for processes in the white noise limit. Applicability of the adiabatic approximation in the case of the linear force is discussed. (author)

  1. Introduction to linear systems of differential equations

    Adrianova, L Ya

    1995-01-01

    The theory of linear systems of differential equations is one of the cornerstones of the whole theory of differential equations. At its root is the concept of the Lyapunov characteristic exponent. In this book, Adrianova presents introductory material and further detailed discussions of Lyapunov exponents. She also discusses the structure of the space of solutions of linear systems. Classes of linear systems examined are from the narrowest to widest: 1)�autonomous, 2)�periodic, 3)�reducible to autonomous, 4)�nearly reducible to autonomous, 5)�regular. In addition, Adrianova considers the following: stability of linear systems and the influence of perturbations of the coefficients on the stability the criteria of uniform stability and of uniform asymptotic stability in terms of properties of the solutions several estimates of the growth rate of solutions of a linear system in terms of its coefficients How perturbations of the coefficients change all the elements of the spectrum of the system is defin...

  2. Final Focus Systems in Linear Colliders

    Raubenheimer, Tor

    1998-01-01

    In colliding beam facilities, the ''final focus system'' must demagnify the beams to attain the very small spot sizes required at the interaction points. The first final focus system with local chromatic correction was developed for the Stanford Linear Collider where very large demagnifications were desired. This same conceptual design has been adopted by all the future linear collider designs as well as the SuperConducting Supercollider, the Stanford and KEK B-Factories, and the proposed Muon Collider. In this paper, the over-all layout, physics constraints, and optimization techniques relevant to the design of final focus systems for high-energy electron-positron linear colliders are reviewed. Finally, advanced concepts to avoid some of the limitations of these systems are discussed

  3. Generalized Cross-Gramian for Linear Systems

    Shaker, Hamid Reza

    2012-01-01

    The cross-gramian is a well-known matrix with embedded controllability and observability information. The cross-gramian is related to the Hankel operator and the Hankel singular values of a linear square system and it has several interesting properties. These properties make the cross...... square symmetric systems, the ordinary cross-gramian does not exist. To cope with this problem, a new generalized cross-gramian is introduced in this paper. In contrast to the ordinary cross-gramian, the generalized cross-gramian can be easily obtained for general linear systems and therefore can be used...

  4. Linear dynamic coupling in geared rotor systems

    David, J. W.; Mitchell, L. D.

    1986-01-01

    The effects of high frequency oscillations caused by the gear mesh, on components of a geared system that can be modeled as rigid discs are analyzed using linear dynamic coupling terms. The coupled, nonlinear equations of motion for a disc attached to a rotating shaft are presented. The results of a trial problem analysis show that the inclusion of the linear dynamic coupling terms can produce significant changes in the predicted response of geared rotor systems, and that the produced sideband responses are greater than the unbalanced response. The method is useful in designing gear drives for heavy-lift helicopters, industrial speed reducers, naval propulsion systems, and heavy off-road equipment.

  5. On output regulation for linear systems

    Saberi, Ali; Stoorvogel, Antonie Arij; Sannuti, Peddapullaiah

    For both continuous- and discrete-time systems, we revisit the output regulation problem for linear systems. We generalize the problem formulation in order • to expand the class of reference or disturbance signals, • to utilize the derivative or feedforward information of reference signals whenever

  6. When to call a linear system nonnegative

    Nieuwenhuis, J.W.

    1998-01-01

    In this paper we will consider discrete time invariant linear systems that allow for an input-state-output representation with a finite dimensional state space, and that have a finite number of inputs and outputs. The basic issue in this paper is when to call these systems nonnegative. An important

  7. Tikhonov theorem for linear hyperbolic systems

    Tang , Ying; Prieur , Christophe; Girard , Antoine

    2015-01-01

    International audience; A class of linear systems of conservation laws with a small perturbation parameter is introduced. By setting the perturbation parameter to zero, two subsystems, the reduced system standing for the slow dynamics and the boundary-layer system representing the fast dynamics, are computed. It is first proved that the exponential stability of the full system implies the stability of both subsystems. Secondly, a counter example is given to indicate that the converse is not t...

  8. Quasi-minimal active disturbance rejection control of MIMO perturbed linear systems based on differential neural networks and the attractive ellipsoid method.

    Salgado, Iván; Mera-Hernández, Manuel; Chairez, Isaac

    2017-11-01

    This study addresses the problem of designing an output-based controller to stabilize multi-input multi-output (MIMO) systems in the presence of parametric disturbances as well as uncertainties in the state model and output noise measurements. The controller design includes a linear state transformation which separates uncertainties matched to the control input and the unmatched ones. A differential neural network (DNN) observer produces a nonlinear approximation of the matched perturbation and the unknown states simultaneously in the transformed coordinates. This study proposes the use of the Attractive Ellipsoid Method (AEM) to optimize the gains of the controller and the gain observer in the DNN structure. As a consequence, the obtained control input minimizes the convergence zone for the estimation error. Moreover, the control design uses the estimated disturbance provided by the DNN to obtain a better performance in the stabilization task in comparison with a quasi-minimal output feedback controller based on a Luenberger observer and a sliding mode controller. Numerical results pointed out the advantages obtained by the nonlinear control based on the DNN observer. The first example deals with the stabilization of an academic linear MIMO perturbed system and the second example stabilizes the trajectories of a DC-motor into a predefined operation point. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  9. Implementation of neural network based non-linear predictive control

    Sørensen, Paul Haase; Nørgård, Peter Magnus; Ravn, Ole

    1999-01-01

    This paper describes a control method for non-linear systems based on generalized predictive control. Generalized predictive control (GPC) was developed to control linear systems, including open-loop unstable and non-minimum phase systems, but has also been proposed to be extended for the control...... of non-linear systems. GPC is model based and in this paper we propose the use of a neural network for the modeling of the system. Based on the neural network model, a controller with extended control horizon is developed and the implementation issues are discussed, with particular emphasis...... on an efficient quasi-Newton algorithm. The performance is demonstrated on a pneumatic servo system....

  10. ITMETH, Iterative Routines for Linear System

    Greenbaum, A.

    1989-01-01

    1 - Description of program or function: ITMETH is a collection of iterative routines for solving large, sparse linear systems. 2 - Method of solution: ITMETH solves general linear systems of the form AX=B using a variety of methods: Jacobi iteration; Gauss-Seidel iteration; incomplete LU decomposition or matrix splitting with iterative refinement; diagonal scaling, matrix splitting, or incomplete LU decomposition with the conjugate gradient method for the problem AA'Y=B, X=A'Y; bi-conjugate gradient method with diagonal scaling, matrix splitting, or incomplete LU decomposition; and ortho-min method with diagonal scaling, matrix splitting, or incomplete LU decomposition. ITMETH also solves symmetric positive definite linear systems AX=B using the conjugate gradient method with diagonal scaling or matrix splitting, or the incomplete Cholesky conjugate gradient method

  11. Linear polarizers based on oriented polymer blends

    Jagt, H.J.B.; Dirix, Y.J.L.; Hikmet, R.A.M.; Bastiaansen, C.W.M.

    1998-01-01

    Linear sheet polarizers based on the anisotropic scattering of light by drawn polymer blends are introduced here. The proper selection of materials and processing conditions for the production of large-area, flexible films of phase-segregated polymer blends suitable for polarization applications are

  12. Conduction cooling systems for linear accelerator cavities

    Kephart, Robert

    2017-05-02

    A conduction cooling system for linear accelerator cavities. The system conducts heat from the cavities to a refrigeration unit using at least one cavity cooler interconnected with a cooling connector. The cavity cooler and cooling connector are both made from solid material having a very high thermal conductivity of approximately 1.times.10.sup.4 W m.sup.-1 K.sup.-1 at temperatures of approximately 4 degrees K. This allows for very simple and effective conduction of waste heat from the linear accelerator cavities to the cavity cooler, along the cooling connector, and thence to the refrigeration unit.

  13. Rf system specifications for a linear accelerator

    Young, A.; Eaton, L.E.

    1992-01-01

    A linear accelerator contains many systems; however, the most complex and costly is the RF system. The goal of an RF system is usually simply stated as maintaining the phase and amplitude of the RF signal within a given tolerance to accelerate the charged particle beam. An RF system that drives a linear accelerator needs a complete system specification, which should contain specifications for all the subsystems (i.e., high-power RF, low-level RF, RF generation/distribution, and automation control). This paper defines a format for the specifications of these subsystems and discusses each RF subsystem independently to provide a comprehensive understanding of the function of each subsystem. This paper concludes with an example of a specification spreadsheet allowing one to input the specifications of a subsystem. Thus, some fundamental parameters (i.e., the cost and size) of the RF system can be determined

  14. Chaos as an intermittently forced linear system.

    Brunton, Steven L; Brunton, Bingni W; Proctor, Joshua L; Kaiser, Eurika; Kutz, J Nathan

    2017-05-30

    Understanding the interplay of order and disorder in chaos is a central challenge in modern quantitative science. Approximate linear representations of nonlinear dynamics have long been sought, driving considerable interest in Koopman theory. We present a universal, data-driven decomposition of chaos as an intermittently forced linear system. This work combines delay embedding and Koopman theory to decompose chaotic dynamics into a linear model in the leading delay coordinates with forcing by low-energy delay coordinates; this is called the Hankel alternative view of Koopman (HAVOK) analysis. This analysis is applied to the Lorenz system and real-world examples including Earth's magnetic field reversal and measles outbreaks. In each case, forcing statistics are non-Gaussian, with long tails corresponding to rare intermittent forcing that precedes switching and bursting phenomena. The forcing activity demarcates coherent phase space regions where the dynamics are approximately linear from those that are strongly nonlinear.The huge amount of data generated in fields like neuroscience or finance calls for effective strategies that mine data to reveal underlying dynamics. Here Brunton et al.develop a data-driven technique to analyze chaotic systems and predict their dynamics in terms of a forced linear model.

  15. Dual-range linearized transimpedance amplifier system

    Wessendorf, Kurt O.

    2010-11-02

    A transimpedance amplifier system is disclosed which simultaneously generates a low-gain output signal and a high-gain output signal from an input current signal using a single transimpedance amplifier having two different feedback loops with different amplification factors to generate two different output voltage signals. One of the feedback loops includes a resistor, and the other feedback loop includes another resistor in series with one or more diodes. The transimpedance amplifier system includes a signal linearizer to linearize one or both of the low- and high-gain output signals by scaling and adding the two output voltage signals from the transimpedance amplifier. The signal linearizer can be formed either as an analog device using one or two summing amplifiers, or alternately can be formed as a digital device using two analog-to-digital converters and a digital signal processor (e.g. a microprocessor or a computer).

  16. Consys Linear Control System Design Software Package

    Diamantidis, Z.

    1987-01-01

    This package is created in order to help engineers, researchers, students and all who work on linear control systems. The software includes all time and frequency domain analysises, spectral analysises and networks, active filters and regulators design aids. The programmes are written on Hewlett Packard computer in Basic 4.0

  17. Uzawa method for fuzzy linear system

    Ke Wang

    2013-01-01

    An Uzawa method is presented for solving fuzzy linear systems whose coefficient matrix is crisp and the right-hand side column is arbitrary fuzzy number vector. The explicit iterative scheme is given. The convergence is analyzed with convergence theorems and the optimal parameter is obtained. Numerical examples are given to illustrate the procedure and show the effectiveness and efficiency of the method.

  18. Linear time relational prototype based learning.

    Gisbrecht, Andrej; Mokbel, Bassam; Schleif, Frank-Michael; Zhu, Xibin; Hammer, Barbara

    2012-10-01

    Prototype based learning offers an intuitive interface to inspect large quantities of electronic data in supervised or unsupervised settings. Recently, many techniques have been extended to data described by general dissimilarities rather than Euclidean vectors, so-called relational data settings. Unlike the Euclidean counterparts, the techniques have quadratic time complexity due to the underlying quadratic dissimilarity matrix. Thus, they are infeasible already for medium sized data sets. The contribution of this article is twofold: On the one hand we propose a novel supervised prototype based classification technique for dissimilarity data based on popular learning vector quantization (LVQ), on the other hand we transfer a linear time approximation technique, the Nyström approximation, to this algorithm and an unsupervised counterpart, the relational generative topographic mapping (GTM). This way, linear time and space methods result. We evaluate the techniques on three examples from the biomedical domain.

  19. How could Decision Support System Based on Non-Linear Model Help to Interpret Tumor Marker Measurments in Oncology

    Pecen, Ladislav; Eben, Kryštof; Vondráček, Jiří; Holubec, L.; Topolčan, O.; Pikner, R.; Kausitz, J.; Nekulová, M.; Šimíčková, M.

    2002-01-01

    Roč. 23, Suppl.1 (2002), s. 38 ISSN 1010-4283. [Meeting of the International Society for Oncodevelopmental Biology and Medicine /30./. 08.09.2002-12.09.2002, Boston] Institutional research plan: AV0Z1030915 Keywords : tumor markers * decision support systems Subject RIV: BA - General Mathematics

  20. Application of Nearly Linear Solvers to Electric Power System Computation

    Grant, Lisa L.

    To meet the future needs of the electric power system, improvements need to be made in the areas of power system algorithms, simulation, and modeling, specifically to achieve a time frame that is useful to industry. If power system time-domain simulations could run in real-time, then system operators would have situational awareness to implement online control and avoid cascading failures, significantly improving power system reliability. Several power system applications rely on the solution of a very large linear system. As the demands on power systems continue to grow, there is a greater computational complexity involved in solving these large linear systems within reasonable time. This project expands on the current work in fast linear solvers, developed for solving symmetric and diagonally dominant linear systems, in order to produce power system specific methods that can be solved in nearly-linear run times. The work explores a new theoretical method that is based on ideas in graph theory and combinatorics. The technique builds a chain of progressively smaller approximate systems with preconditioners based on the system's low stretch spanning tree. The method is compared to traditional linear solvers and shown to reduce the time and iterations required for an accurate solution, especially as the system size increases. A simulation validation is performed, comparing the solution capabilities of the chain method to LU factorization, which is the standard linear solver for power flow. The chain method was successfully demonstrated to produce accurate solutions for power flow simulation on a number of IEEE test cases, and a discussion on how to further improve the method's speed and accuracy is included.

  1. Collimation systems in the next linear collider

    Merminga, N.; Irwin, J.; Helm, R.; Ruth, R.D.

    1991-02-01

    Experience indicates that beam collimation will be an essential element of the next generation e + E - linear colliders. A proposal for using nonlinear lenses to drive beam tails to large amplitudes was presented in a previous paper. Here we study the optimization of such systems including effects of wakefields and optical aberrations. Protection and design of the scrapers in these systems are discussed. 9 refs., 7 figs

  2. Standard diffusive systems are well-posed linear systems

    Matignon, Denis; Zwart, Heiko J.

    2004-01-01

    The class of well-posed linear systems as introduced by Salamon has become a well-understood class of systems, see e.g. the work of Weiss and the book of Staffans. Many partial partial differential equations with boundary control and point observation can be formulated as a well-posed linear system.

  3. Controller design approach based on linear programming.

    Tanaka, Ryo; Shibasaki, Hiroki; Ogawa, Hiromitsu; Murakami, Takahiro; Ishida, Yoshihisa

    2013-11-01

    This study explains and demonstrates the design method for a control system with a load disturbance observer. Observer gains are determined by linear programming (LP) in terms of the Routh-Hurwitz stability criterion and the final-value theorem. In addition, the control model has a feedback structure, and feedback gains are determined to be the linear quadratic regulator. The simulation results confirmed that compared with the conventional method, the output estimated by our proposed method converges to a reference input faster when a load disturbance is added to a control system. In addition, we also confirmed the effectiveness of the proposed method by performing an experiment with a DC motor. © 2013 ISA. Published by ISA. All rights reserved.

  4. Parameter identifiability of linear dynamical systems

    Glover, K.; Willems, J. C.

    1974-01-01

    It is assumed that the system matrices of a stationary linear dynamical system were parametrized by a set of unknown parameters. The question considered here is, when can such a set of unknown parameters be identified from the observed data? Conditions for the local identifiability of a parametrization are derived in three situations: (1) when input/output observations are made, (2) when there exists an unknown feedback matrix in the system and (3) when the system is assumed to be driven by white noise and only output observations are made. Also a sufficient condition for global identifiability is derived.

  5. Stability problems for linear hyperbolic systems

    Eckhoff, K.S.

    1975-05-01

    The stability properties for the trivial solution of a general linear hyperbolic system of partial differential equations of the first order are studied. It is shown that results may be obtained by studying the stability properties of certain systems of ordinary differential equations which can be constructed from the hyperbolic system (the so-called transport equations). In some cases the associated stability problem for the transport equations can in fact be shown to be equivalent to the stability problem for the hyperbolic system, but in general the transport equations will only give the necessary conditions for stability. (Auth.)

  6. Robust model reference adaptive output feedback tracking for uncertain linear systems with actuator fault based on reinforced dead-zone modification.

    Bagherpoor, H M; Salmasi, Farzad R

    2015-07-01

    In this paper, robust model reference adaptive tracking controllers are considered for Single-Input Single-Output (SISO) and Multi-Input Multi-Output (MIMO) linear systems containing modeling uncertainties, unknown additive disturbances and actuator fault. Two new lemmas are proposed for both SISO and MIMO, under which dead-zone modification rule is improved such that the tracking error for any reference signal tends to zero in such systems. In the conventional approach, adaption of the controller parameters is ceased inside the dead-zone region which results tracking error, while preserving the system stability. In the proposed scheme, control signal is reinforced with an additive term based on tracking error inside the dead-zone which results in full reference tracking. In addition, no Fault Detection and Diagnosis (FDD) unit is needed in the proposed approach. Closed loop system stability and zero tracking error are proved by considering a suitable Lyapunov functions candidate. It is shown that the proposed control approach can assure that all the signals of the close loop system are bounded in faulty conditions. Finally, validity and performance of the new schemes have been illustrated through numerical simulations of SISO and MIMO systems in the presence of actuator faults, modeling uncertainty and output disturbance. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.

  7. Identification of general linear mechanical systems

    Sirlin, S. W.; Longman, R. W.; Juang, J. N.

    1983-01-01

    Previous work in identification theory has been concerned with the general first order time derivative form. Linear mechanical systems, a large and important class, naturally have a second order form. This paper utilizes this additional structural information for the purpose of identification. A realization is obtained from input-output data, and then knowledge of the system input, output, and inertia matrices is used to determine a set of linear equations whereby we identify the remaining unknown system matrices. Necessary and sufficient conditions on the number, type and placement of sensors and actuators are given which guarantee identificability, and less stringent conditions are given which guarantee generic identifiability. Both a priori identifiability and a posteriori identifiability are considered, i.e., identifiability being insured prior to obtaining data, and identifiability being assured with a given data set.

  8. Linear systems optimal and robust control

    Sinha, Alok

    2007-01-01

    Introduction Overview Contents of the Book State Space Description of a Linear System Transfer Function of a Single Input/Single Output (SISO) System State Space Realizations of a SISO System SISO Transfer Function from a State Space Realization Solution of State Space Equations Observability and Controllability of a SISO System Some Important Similarity Transformations Simultaneous Controllability and Observability Multiinput/Multioutput (MIMO) Systems State Space Realizations of a Transfer Function Matrix Controllability and Observability of a MIMO System Matrix-Fraction Description (MFD) MFD of a Transfer Function Matrix for the Minimal Order of a State Space Realization Controller Form Realization from a Right MFD Poles and Zeros of a MIMO Transfer Function Matrix Stability Analysis State Feedback Control and Optimization State Variable Feedback for a Single Input System Computation of State Feedback Gain Matrix for a Multiinput System State Feedback Gain Matrix for a Multi...

  9. Output-only modal parameter estimator of linear time-varying structural systems based on vector TAR model and least squares support vector machine

    Zhou, Si-Da; Ma, Yuan-Chen; Liu, Li; Kang, Jie; Ma, Zhi-Sai; Yu, Lei

    2018-01-01

    Identification of time-varying modal parameters contributes to the structural health monitoring, fault detection, vibration control, etc. of the operational time-varying structural systems. However, it is a challenging task because there is not more information for the identification of the time-varying systems than that of the time-invariant systems. This paper presents a vector time-dependent autoregressive model and least squares support vector machine based modal parameter estimator for linear time-varying structural systems in case of output-only measurements. To reduce the computational cost, a Wendland's compactly supported radial basis function is used to achieve the sparsity of the Gram matrix. A Gamma-test-based non-parametric approach of selecting the regularization factor is adapted for the proposed estimator to replace the time-consuming n-fold cross validation. A series of numerical examples have illustrated the advantages of the proposed modal parameter estimator on the suppression of the overestimate and the short data. A laboratory experiment has further validated the proposed estimator.

  10. A treatment planning comparison between a novel rotating gamma system and robotic linear accelerator based intracranial stereotactic radiosurgery/radiotherapy

    Fareed, Muhammad M.; Eldib, Ahmed; Weiss, Stephanie E.; Hayes, Shelly B.; Li, Jinsheng; C-M Ma, Charlie

    2018-02-01

    To compare the dosimetric parameters of a novel rotating gamma ray system (RGS) with well-established CyberKnife system (CK) for treating malignant brain lesions. RGS has a treatment head of 16 cobalt-60 sources focused to the isocenter, which can rotate 360° on the ring gantry and swing 35° in the superior direction. We compared several dosimetric parameters in 10 patients undergoing brain stereotactic radiosurgery including plan normalization, number of beams and nodes for CK and shots for RGS, collimators used, estimated treatment time, D 2 cm and conformity index (CI) among two modalities. The median plan normalization for RGS was 56.7% versus 68.5% (p  =  0.002) for CK plans. The median number of shots from RGS was 7.5 whereas the median number of beams and nodes for CK was 79.5 and 46. The median collimator’s diameter used was 3.5 mm for RGS as compared to 5 mm for CK (p  =  0.26). Mean D 2 cm was 5.57 Gy for CyberKnife whereas it was 3.11 Gy for RGS (p  =  0.99). For RGS plans, the median CI was 1.4 compared to 1.3 for the CK treatment plans (p  =  0.98). The average minimum and maximum doses to optic chiasm were 21 and 93 cGy for RGS as compared to 32 and 209 cGy for CK whereas these were 0.5 and 364 cGy by RGS and 18 and 399 cGy by CK to brainstem. The mean V12 Gy for brain predicting for radionecrosis with RGS was 3.75 cm3 as compared to 4.09 cm3 with the CK (p  =  0.41). The dosimetric parameters of a novel RGS with a ring type gantry are comparable with CyberKnife, allowing its use for intracranial lesions and is worth exploring in a clinical setting.

  11. Perfect commuting-operator strategies for linear system games

    Cleve, Richard; Liu, Li; Slofstra, William

    2017-01-01

    Linear system games are a generalization of Mermin's magic square game introduced by Cleve and Mittal. They show that perfect strategies for linear system games in the tensor-product model of entanglement correspond to finite-dimensional operator solutions of a certain set of non-commutative equations. We investigate linear system games in the commuting-operator model of entanglement, where Alice and Bob's measurement operators act on a joint Hilbert space, and Alice's operators must commute with Bob's operators. We show that perfect strategies in this model correspond to possibly infinite-dimensional operator solutions of the non-commutative equations. The proof is based around a finitely presented group associated with the linear system which arises from the non-commutative equations.

  12. Applications of equivalent linearization approaches to nonlinear piping systems

    Park, Y.; Hofmayer, C.; Chokshi, N.

    1997-01-01

    The piping systems in nuclear power plants, even with conventional snubber supports, are highly complex nonlinear structures under severe earthquake loadings mainly due to various mechanical gaps in support structures. Some type of nonlinear analysis is necessary to accurately predict the piping responses under earthquake loadings. The application of equivalent linearization approaches (ELA) to seismic analyses of nonlinear piping systems is presented. Two types of ELA's are studied; i.e., one based on the response spectrum method and the other based on the linear random vibration theory. The test results of main steam and feedwater piping systems supported by snubbers and energy absorbers are used to evaluate the numerical accuracy and limitations

  13. Optimization Research of Generation Investment Based on Linear Programming Model

    Wu, Juan; Ge, Xueqian

    Linear programming is an important branch of operational research and it is a mathematical method to assist the people to carry out scientific management. GAMS is an advanced simulation and optimization modeling language and it will combine a large number of complex mathematical programming, such as linear programming LP, nonlinear programming NLP, MIP and other mixed-integer programming with the system simulation. In this paper, based on the linear programming model, the optimized investment decision-making of generation is simulated and analyzed. At last, the optimal installed capacity of power plants and the final total cost are got, which provides the rational decision-making basis for optimized investments.

  14. Lectures on algebraic system theory: Linear systems over rings

    Kamen, E. W.

    1978-01-01

    The presentation centers on four classes of systems that can be treated as linear systems over a ring. These are: (1) discrete-time systems over a ring of scalars such as the integers; (2) continuous-time systems containing time delays; (3) large-scale discrete-time systems; and (4) time-varying discrete-time systems.

  15. Lag synchronization of chaotic systems with time-delayed linear

    In this paper, the lag synchronization of chaotic systems with time-delayed linear terms via impulsive control is investigated. Based on the stability theory of impulsive delayed differential equations, some sufficient conditions are obtained guaranteeing the synchronized behaviours between two delayed chaotic systems.

  16. Flexure Based Linear and Rotary Bearings

    Voellmer, George M. (Inventor)

    2016-01-01

    A flexure based linear bearing includes top and bottom parallel rigid plates; first and second flexures connecting the top and bottom plates and constraining exactly four degrees of freedom of relative motion of the plates, the four degrees of freedom being X and Y axis translation and rotation about the X and Y axes; and a strut connecting the top and bottom plates and further constraining exactly one degree of freedom of the plates, the one degree of freedom being one of Z axis translation and rotation about the Z axis.

  17. Modeling and analysis of linear hyperbolic systems of balance laws

    Bartecki, Krzysztof

    2016-01-01

    This monograph focuses on the mathematical modeling of distributed parameter systems in which mass/energy transport or wave propagation phenomena occur and which are described by partial differential equations of hyperbolic type. The case of linear (or linearized) 2 x 2 hyperbolic systems of balance laws is considered, i.e., systems described by two coupled linear partial differential equations with two variables representing physical quantities, depending on both time and one-dimensional spatial variable. Based on practical examples of a double-pipe heat exchanger and a transportation pipeline, two typical configurations of boundary input signals are analyzed: collocated, wherein both signals affect the system at the same spatial point, and anti-collocated, in which the input signals are applied to the two different end points of the system. The results of this book emerge from the practical experience of the author gained during his studies conducted in the experimental installation of a heat exchange cente...

  18. An injection system for a linear accelerator

    Santos, A.C.R.

    1978-03-01

    An injection system for the Linear Accelerator is developed using the parameters of machines at the Centro Brasileiro de Pesquisas Fisicas and the Instituto Militar de Engenharia. The proposed system consists basically of a prebuncher and a chopper. The pre-buncher is used to improve the energy resolution and also to increase the accelerator target current. The chopper is used to remove from the beam the electrons that have no possibility of attaining the desired energy and that are usually lost in the walls and the cavity tube, thus producing undesirable background. Theoretical development of the chopper is performed in order to obtain its dimensions for future construction. The complete design the pre-buncher and its feed supply system and the experimental verication of its performance are also presented. It is intended to give the necessary information for the design and construction of the complete injection system proposed. (Author) [pt

  19. Operator approach to linear control systems

    Cheremensky, A

    1996-01-01

    Within the framework of the optimization problem for linear control systems with quadratic performance index (LQP), the operator approach allows the construction of a systems theory including a number of particular infinite-dimensional optimization problems with hardly visible concreteness. This approach yields interesting interpretations of these problems and more effective feedback design methods. This book is unique in its emphasis on developing methods for solving a sufficiently general LQP. Although this is complex material, the theory developed here is built on transparent and relatively simple principles, and readers with less experience in the field of operator theory will find enough material to give them a good overview of the current state of LQP theory and its applications. Audience: Graduate students and researchers in the fields of mathematical systems theory, operator theory, cybernetics, and control systems.

  20. Iterative solution of large linear systems

    Young, David Matheson

    1971-01-01

    This self-contained treatment offers a systematic development of the theory of iterative methods. Its focal point resides in an analysis of the convergence properties of the successive overrelaxation (SOR) method, as applied to a linear system with a consistently ordered matrix. The text explores the convergence properties of the SOR method and related techniques in terms of the spectral radii of the associated matrices as well as in terms of certain matrix norms. Contents include a review of matrix theory and general properties of iterative methods; SOR method and stationary modified SOR meth

  1. a Continuous-Time Positive Linear System

    Kyungsup Kim

    2013-01-01

    Full Text Available This paper discusses a computational method to construct positive realizations with sparse matrices for continuous-time positive linear systems with multiple complex poles. To construct a positive realization of a continuous-time system, we use a Markov sequence similar to the impulse response sequence that is used in the discrete-time case. The existence of the proposed positive realization can be analyzed with the concept of a polyhedral convex cone. We provide a constructive algorithm to compute positive realizations with sparse matrices of some positive systems under certain conditions. A sufficient condition for the existence of a positive realization, under which the proposed constructive algorithm works well, is analyzed.

  2. Linear and non-linear energy barriers in systems of interacting single-domain ferromagnetic particles

    Petrila, Iulian; Bodale, Ilie; Rotarescu, Cristian; Stancu, Alexandru

    2011-01-01

    A comparative analysis between linear and non-linear energy barriers used for modeling statistical thermally-excited ferromagnetic systems is presented. The linear energy barrier is obtained by new symmetry considerations about the anisotropy energy and the link with the non-linear energy barrier is also presented. For a relevant analysis we compare the effects of linear and non-linear energy barriers implemented in two different models: Preisach-Neel and Ising-Metropolis. The differences between energy barriers which are reflected in different coercive field dependence of the temperature are also presented. -- Highlights: → The linear energy barrier is obtained from symmetry considerations. → The linear and non-linear energy barriers are calibrated and implemented in Preisach-Neel and Ising-Metropolis models. → The temperature and time effects of the linear and non-linear energy barriers are analyzed.

  3. Design and performance of the Stanford Linear Collider Control System

    Melen, R.E.

    1984-10-01

    The success of the Stanford Linear Collider (SLC) will be dependent upon the implementation of a very large advanced computer-based instrumentation and control system. This paper describes the architectural design of this system as well as a critique of its performance. This critique is based on experience obtained from its use in the control and monitoring of 1/3 of the SLAC linac and in support of an expensive experimental machine physics experimental program. 11 references, 3 figures

  4. New approach to solve symmetric fully fuzzy linear systems

    concepts of fuzzy set theory and then define a fully fuzzy linear system of equations. .... To represent the above problem as fully fuzzy linear system, we represent x .... Fully fuzzy linear systems can be solved by Linear programming approach, ...

  5. Algorithmic Approach to Abstracting Linear Systems by Timed Automata

    Sloth, Christoffer; Wisniewski, Rafael

    2011-01-01

    This paper proposes an LMI-based algorithm for abstracting dynamical systems by timed automata, which enables automatic formal verification of linear systems. The proposed abstraction is based on partitioning the state space of the system using positive invariant sets, generated by Lyapunov...... functions. This partitioning ensures that the vector field of the dynamical system is transversal to all facets of the cells, which induces some desirable properties of the abstraction. The algorithm is based on identifying intersections of level sets of quadratic Lyapunov functions, and determining...

  6. Videometrics-based Detection of Vibration Linearity in MEMS Gyroscope

    Yong Zhou

    2011-05-01

    Full Text Available MEMS gyroscope performs as a sort of sensor to detect angular velocity, with diverse applications in engineering including vehicle and intelligent traffic etc. A balanced vibration of driving module excited by electrostatic driving signal is the base MEMS gyroscope's performance. In order to analyze the linear property of vibration in MEMS Gyroscope, a method of computer vision measuring is applied with the help of high-speed vidicon to obtain video of linear vibration of driving module in gyroscope, under the driving voltage signal of inherent frequency and amplitude linearly increasing. By means of image processing, target identifying, and motion parameter extracting from the obtained video, vibration curve with time variation is acquired. And then, linearity of this vibration system can be analyzed by focusing on the amplitude value of vibration responding to the amplitude variation of driving voltage signal.

  7. The new control system of the Saclay linear accelerator

    Gournay, J.F.; Gourcy, G.; Garreau, F.; Giraud, A.; Rouault, J.

    1985-05-01

    A new control system for the Safety Linear Accelerator is now being designed. The computer control architecture is based on 3 dedicated VME crates with MC68000 micro-processors: one crate with a disk-based operating system will run the high level application programs and the data base management facilities, another one will manage the man-machine communications and the third one will interface the system to the linac equipments. Communications between the VME microcomputers will be done through 16 bit parallel links. The software is modular and organized in specific layers, the data base is fully distributed. About 90% of the code is written in Fortran

  8. Compact Spectrometers Based on Linear Variable Filters

    National Aeronautics and Space Administration — Demonstrate a linear-variable spectrometer with an H2RG array. Linear Variable Filter (LVF) spectrometers provide attractive resource benefits – high optical...

  9. The graphics software of the Saclay linear accelerator control system

    Gournay, J.F.

    1987-06-01

    The Control system of the Saclay Linear Accelerator is based upon modern technology hardware. In the graphic software, pictures are created in exactly the same manner for all the graphic devices supported by the system. The informations used to draw a picture are stored in an array called a graphic segment. Three output primitives are used to add graphic material in a segment. Three coordinate systems are defined

  10. SLAP, Large Sparse Linear System Solution Package

    Greenbaum, A.

    1987-01-01

    1 - Description of program or function: SLAP is a set of routines for solving large sparse systems of linear equations. One need not store the entire matrix - only the nonzero elements and their row and column numbers. Any nonzero structure is acceptable, so the linear system solver need not be modified when the structure of the matrix changes. Auxiliary storage space is acquired and released within the routines themselves by use of the LRLTRAN POINTER statement. 2 - Method of solution: SLAP contains one direct solver, a band matrix factorization and solution routine, BAND, and several interactive solvers. The iterative routines are as follows: JACOBI, Jacobi iteration; GS, Gauss-Seidel Iteration; ILUIR, incomplete LU decomposition with iterative refinement; DSCG and ICCG, diagonal scaling and incomplete Cholesky decomposition with conjugate gradient iteration (for symmetric positive definite matrices only); DSCGN and ILUGGN, diagonal scaling and incomplete LU decomposition with conjugate gradient interaction on the normal equations; DSBCG and ILUBCG, diagonal scaling and incomplete LU decomposition with bi-conjugate gradient iteration; and DSOMN and ILUOMN, diagonal scaling and incomplete LU decomposition with ORTHOMIN iteration

  11. Optimal Control of Switching Linear Systems

    Ali Benmerzouga

    2004-06-01

    Full Text Available A solution to the control of switching linear systems with input constraints was given in Benmerzouga (1997 for both the conventional enumeration approach and the new approach. The solution given there turned out to be not unique. The main objective in this work is to determine the optimal control sequences {Ui(k ,  i = 1,..., M ;  k = 0, 1, ...,  N -1} which transfer the system from a given initial state  X0  to a specific target state  XT  (or to be as close as possible by using the same discrete time solution obtained in Benmerzouga (1997 and minimizing a running cost-to-go function. By using the dynamic programming technique, the optimal solution is found for both approaches given in Benmerzouga (1997. The computational complexity of the modified algorithm is also given.

  12. Well logging system with linearity control

    Jones, J.M.

    1973-01-01

    Apparatus is described for controlling the gain of a nuclear well logging system comprising: (1) means for measuring the energy spectrum of gamma rays produced by earth formation materials surrounding a well borehole; (2) means for measuring the number of counts of a gamma rays having an energy falling within each of at least two predetermined energy band portions of the gamma ray energy spectrum; (3) means for generating a signal proportional to the ratio of the gamma ray counts and for comparing the ratio signal with at least one constant ratio calibration signal; (4) means for generating an error signal representative of the difference of the ratio signal and the constant ratio calibration signal; and (5) means for using the error signal to control the linearity of the well logging system. (author)

  13. Linear concentration system; Sistema de concentracion lineal

    Gonzalez Lugo, J.I; Leon Rovira, N; Aguayo Tellez, H [Instituto Tecnologico y de Estudios Superiores de Monterrey, Monterrey, Nuevo Leon (Mexico)]. E-mails: a00812662@itesm.mx; noel.leon@itesm.mx; haguayo@itesm.mx

    2013-03-15

    Solar linear concentration technologies to generate high temperatures are limited to the ranges of 200 to 500 degrees Celsius. While its performance has been tested through prototypes and pilot plants around the world, there are still areas of opportunity that can be exploited to obtain a linear concentration that achieves temperatures above this range in order to have a better use of the available solar energy. Because of this: It is possible to develop a linear concentration system that can track the sun with minimal movement of the absorber-receiver while maintaining temperatures above 850 degrees Celsius sufficient for industrial processes that require that temperature. The methodology consists of a series of stages (conceptual design, simulation, evaluation, development concept, results and validation) through which concepts are generated that allow design and evaluation of solar concentrator configurations with the help of simulation software. We have designed a linear parabolic concentrating system which comprises a set of mirrors segments with different focal lengths that works within the range of 600 degrees Celsius; however, it is advancing in the development of a double concentration to reach 850 degrees Celsius. [Spanish] Las tecnologias de concentracion lineal solar para generar altas temperaturas se ven limitadas a los rangos de 200 a 500 grados centigrados. Si bien su funcionamiento ha sido probado a traves de prototipos y plantas piloto alrededor del mundo, aun existen areas de oportunidad que pueden ser aprovechadas para obtener un sistema de concentracion lineal que permita alcanzar temperaturas mayores a este rango para asi tener un mejor aprovechamiento de la energia solar disponible. Debido a esto: Es posible desarrollar un sistema de concentracion lineal capaz de seguir la trayectoria del Sol con minimo movimiento del absorbedor-recibidor al mismo tiempo que mantiene temperaturas superiores a los 850 grados centigrados suficientes para

  14. Linear Actuator System for the NASA Docking System

    Dick, Brandon N.; Oesch, Christopher; Rupp, Timothy W.

    2017-01-01

    The Linear Actuator System (LAS) is a major sub-system within the NASA Docking System (NDS). The NDS Block 1 will be used on the Boeing Crew Space Transportation (CST-100) system to achieve docking with the International Space Station. Critical functions in the Soft Capture aspect of docking are performed by the LAS. This paper describes the general function of the LAS, the system's key requirements and technical challenges, and the development and qualification approach for the system.

  15. Relative null controllability of linear systems with multiple delays in ...

    varying multiple delays in state and control are developed. If the uncontrolled system is uniformly asymptotically stable, and if the linear system is controllable, then the linear system is null controllable. Journal of the Nigerian Association of ...

  16. A method for determining the non-existence of a common quadratic Lyapunov function for switched linear systems based on particle swarm optimisation

    Duarte-Mermoud, M.A.; Ordonez-Hurtado, R.H.; Zagalak, Petr

    2012-01-01

    Roč. 43, č. 11 (2012), s. 2015-2029 ISSN 0020-7721 R&D Projects: GA ČR(CZ) GAP103/12/2431 Institutional support: RVO:67985556 Keywords : Switched linear systems * Lyapunov function * particle swarm optimization Subject RIV: BC - Control Systems Theory Impact factor: 1.305, year: 2012 http://library.utia.cas.cz/separaty/2012/AS/zagalak-0382169.pdf

  17. Linear optical response of finite systems using multishift linear system solvers

    Hübener, Hannes; Giustino, Feliciano [Department of Materials, University of Oxford, Oxford OX1 3PH (United Kingdom)

    2014-07-28

    We discuss the application of multishift linear system solvers to linear-response time-dependent density functional theory. Using this technique the complete frequency-dependent electronic density response of finite systems to an external perturbation can be calculated at the cost of a single solution of a linear system via conjugate gradients. We show that multishift time-dependent density functional theory yields excitation energies and oscillator strengths in perfect agreement with the standard diagonalization of the response matrix (Casida's method), while being computationally advantageous. We present test calculations for benzene, porphin, and chlorophyll molecules. We argue that multishift solvers may find broad applicability in the context of excited-state calculations within density-functional theory and beyond.

  18. Control system analysis for the perturbed linear accelerator rf system

    Sung Il Kwon

    2002-01-01

    This paper addresses the modeling problem of the linear accelerator RF system in SNS. Klystrons are modeled as linear parameter varying systems. The effect of the high voltage power supply ripple on the klystron output voltage and the output phase is modeled as an additive disturbance. The cavity is modeled as a linear system and the beam current is modeled as the exogenous disturbance. The output uncertainty of the low level RF system which results from the uncertainties in the RF components and cabling is modeled as multiplicative uncertainty. Also, the feedback loop uncertainty and digital signal processing signal conditioning subsystem uncertainties are lumped together and are modeled as multiplicative uncertainty. Finally, the time delays in the loop are modeled as a lumped time delay. For the perturbed open loop system, the closed loop system performance, and stability are analyzed with the PI feedback controller.

  19. CONTROL SYSTEM ANALYSIS FOR THE PERTURBED LINEAR ACCELERATOR RF SYSTEM

    SUNG-IL KWON; AMY H. REGAN

    2002-01-01

    This paper addresses the modeling problem of the linear accelerator RF system in SNS. Klystrons are modeled as linear parameter varying systems. The effect of the high voltage power supply ripple on the klystron output voltage and the output phase is modeled as an additive disturbance. The cavity is modeled as a linear system and the beam current is modeled as the exogenous disturbance. The output uncertainty of the low level RF system which results from the uncertainties in the RF components and cabling is modeled as multiplicative uncertainty. Also, the feedback loop uncertainty and digital signal processing signal conditioning subsystem uncertainties are lumped together and are modeled as multiplicative uncertainty. Finally, the time delays in the loop are modeled as a lumped time delay. For the perturbed open loop system, the closed loop system performance, and stability are analyzed with the PI feedback controller

  20. Graph-based linear scaling electronic structure theory

    Niklasson, Anders M. N., E-mail: amn@lanl.gov; Negre, Christian F. A.; Cawkwell, Marc J.; Swart, Pieter J.; Germann, Timothy C.; Bock, Nicolas [Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Mniszewski, Susan M.; Mohd-Yusof, Jamal; Wall, Michael E.; Djidjev, Hristo [Computer, Computational, and Statistical Sciences Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Rubensson, Emanuel H. [Division of Scientific Computing, Department of Information Technology, Uppsala University, Box 337, SE-751 05 Uppsala (Sweden)

    2016-06-21

    We show how graph theory can be combined with quantum theory to calculate the electronic structure of large complex systems. The graph formalism is general and applicable to a broad range of electronic structure methods and materials, including challenging systems such as biomolecules. The methodology combines well-controlled accuracy, low computational cost, and natural low-communication parallelism. This combination addresses substantial shortcomings of linear scaling electronic structure theory, in particular with respect to quantum-based molecular dynamics simulations.

  1. Theoretical analysis of balanced truncation for linear switched systems

    Petreczky, Mihaly; Wisniewski, Rafal; Leth, John-Josef

    2012-01-01

    In this paper we present theoretical analysis of model reduction of linear switched systems based on balanced truncation, presented in [1,2]. More precisely, (1) we provide a bound on the estimation error using L2 gain, (2) we provide a system theoretic interpretation of grammians and their singu......In this paper we present theoretical analysis of model reduction of linear switched systems based on balanced truncation, presented in [1,2]. More precisely, (1) we provide a bound on the estimation error using L2 gain, (2) we provide a system theoretic interpretation of grammians...... for showing this independence is realization theory of linear switched systems. [1] H. R. Shaker and R. Wisniewski, "Generalized gramian framework for model/controller order reduction of switched systems", International Journal of Systems Science, Vol. 42, Issue 8, 2011, 1277-1291. [2] H. R. Shaker and R....... Wisniewski, "Switched Systems Reduction Framework Based on Convex Combination of Generalized Gramians", Journal of Control Science and Engineering, 2009....

  2. Linear-array systems for aerospace NDE

    Smith, Robert A.; Willsher, Stephen J.; Bending, Jamie M.

    1999-01-01

    Rapid large-area inspection of composite structures for impact damage and multi-layered aluminum skins for corrosion has been a recognized priority for several years in both military and civil aerospace applications. Approaches to this requirement have followed two clearly different routes: the development of novel large-area inspection systems, and the enhancement of current ultrasonic or eddy-current methods to reduce inspection times. Ultrasonic inspection is possible with standard flaw detection equipment but the addition of a linear ultrasonic array could reduce inspection times considerably. In order to investigate their potential, 9-element and 17-element linear ultrasonic arrays for composites, and 64-element arrays for aluminum skins, have been developed to DERA specifications for use with the ANDSCAN area scanning system. A 5 m 2 composite wing surface has been scanned with a scan resolution of approximately 3 mm in 6 hours. With subsequent software and hardware improvements all four composite wing surfaces (top/bottom, left/right) of a military fighter aircraft can potentially be inspected in less than a day. Array technology has been very widely used in the medical ultrasound field although rarely above 10 MHz, whereas lap-joint inspection requires a pulse center-frequency of 12 to 20 MHz in order to resolve the separate interfaces in the lap joint. A 128 mm-long multi-element array of 5 mmx2 mm ultrasonic elements for use with the ANDSCAN scanning software was produced to a DERA specification by an NDT manufacturer with experience in the medical imaging field. This paper analyses the performance of the transducers that have been produced and evaluates their use in scanning systems of different configurations

  3. Model Predictive Control for Linear Complementarity and Extended Linear Complementarity Systems

    Bambang Riyanto

    2005-11-01

    Full Text Available In this paper, we propose model predictive control method for linear complementarity and extended linear complementarity systems by formulating optimization along prediction horizon as mixed integer quadratic program. Such systems contain interaction between continuous dynamics and discrete event systems, and therefore, can be categorized as hybrid systems. As linear complementarity and extended linear complementarity systems finds applications in different research areas, such as impact mechanical systems, traffic control and process control, this work will contribute to the development of control design method for those areas as well, as shown by three given examples.

  4. A SYSTEMIC VISION OF BIOLOGY: OVERCOMING LINEARITY

    M. Mayer

    2005-07-01

    Full Text Available Many  authors have proposed  that contextualization of reality  is necessary  to teach  Biology, empha- sizing students´ social and  economic realities.   However, contextualization means  more than  this;  it is related  to working with  different kinds of phenomena  and/or objects  which enable  the  expression of scientific concepts.  Thus,  contextualization allows the integration of different contents.  Under this perspective,  the  objectives  of this  work were to articulate different  biology concepts  in order  to de- velop a systemic vision of biology; to establish  relationships with other areas of knowledge and to make concrete the  cell molecular  structure and organization as well as their  implications  on living beings´ environment, using  contextualization.  The  methodology  adopted  in this  work  was based  on three aspects:  interdisciplinarity, contextualization and development of competences,  using energy:  its flux and transformations as a thematic axis and  an approach  which allowed the  interconnection between different situations involving  these  concepts.   The  activities developed  were:  1.   dialectic exercise, involving a movement around  micro and macroscopic aspects,  by using questions  and activities,  sup- ported  by the use of alternative material  (as springs, candles on the energy, its forms, transformations and  implications  in the  biological way (microscopic  concepts;  2, Construction of molecular  models, approaching the concepts of atom,  chemical bonds and bond energy in molecules; 3. Observations de- veloped in Manguezal¨(mangrove swamp  ecosystem (Itapissuma, PE  were used to work macroscopic concepts  (as  diversity  and  classification  of plants  and  animals,  concerning  to  energy  flow through food chains and webs. A photograph register of all activities  along the course plus texts

  5. Thermodynamics of (1-alkanol + linear monoether) systems

    Gonzalez, Juan Antonio; Mozo, Ismael; Garcia de la Fuente, Isaias; Cobos, Jose Carlos; Riesco, Nicolas

    2008-01-01

    Densities, ρ, and speeds of sound, u, of systems formed by 1-heptanol, or 1-octanol, or 1-decanol and dibutylether have been measured at a temperature of (293.15, 298.15, and 303.15) K and atmospheric pressure using a vibrating tube densimeter and sound analyser Anton Paar model DSA-5000. The ρ and u values were used to calculate excess molar volumes, V E , and deviations from the ideal behaviour of the thermal expansion coefficient, Δα p and of the isentropic compressibilities, Δκ S . The available database on molar excess enthalpies, H E , and V E for (1-alkanol + linear monoether) systems was used to investigate interactional and structural effects in such mixtures. The enthalpy of the OH...O bonds is lower for methanol solutions, and for the remainder systems, it is practically independent of the mixture compounds. The V E variation with the chain length of the 1-alkanol points out the existence of structural effects for systems including longer 1-alkanols. The ERAS model is applied to the studied mixtures. ERAS represents quite accurately H E and V E data using parameters which consistently depend on the molecular structure

  6. Linear dynamical quantum systems analysis, synthesis, and control

    Nurdin, Hendra I

    2017-01-01

    This monograph provides an in-depth treatment of the class of linear-dynamical quantum systems. The monograph presents a detailed account of the mathematical modeling of these systems using linear algebra and quantum stochastic calculus as the main tools for a treatment that emphasizes a system-theoretic point of view and the control-theoretic formulations of quantum versions of familiar problems from the classical (non-quantum) setting, including estimation and filtering, realization theory, and feedback control. Both measurement-based feedback control (i.e., feedback control by a classical system involving a continuous-time measurement process) and coherent feedback control (i.e., feedback control by another quantum system without the intervention of any measurements in the feedback loop) are treated. Researchers and graduates studying systems and control theory, quantum probability and stochastics or stochastic control whether from backgrounds in mechanical or electrical engineering or applied mathematics ...

  7. Focal points and principal solutions of linear Hamiltonian systems revisited

    Šepitka, Peter; Šimon Hilscher, Roman

    2018-05-01

    In this paper we present a novel view on the principal (and antiprincipal) solutions of linear Hamiltonian systems, as well as on the focal points of their conjoined bases. We present a new and unified theory of principal (and antiprincipal) solutions at a finite point and at infinity, and apply it to obtain new representation of the multiplicities of right and left proper focal points of conjoined bases. We show that these multiplicities can be characterized by the abnormality of the system in a neighborhood of the given point and by the rank of the associated T-matrix from the theory of principal (and antiprincipal) solutions. We also derive some additional important results concerning the representation of T-matrices and associated normalized conjoined bases. The results in this paper are new even for completely controllable linear Hamiltonian systems. We also discuss other potential applications of our main results, in particular in the singular Sturmian theory.

  8. Identification problems in linear transformation system

    Delforge, Jacques.

    1975-01-01

    An attempt was made to solve the theoretical and numerical difficulties involved in the identification problem relative to the linear part of P. Delattre's theory of transformation systems. The theoretical difficulties are due to the very important problem of the uniqueness of the solution, which must be demonstrated in order to justify the value of the solution found. Simple criteria have been found when measurements are possible on all the equivalence classes, but the problem remains imperfectly solved when certain evolution curves are unknown. The numerical difficulties are of two kinds: a slow convergence of iterative methods and a strong repercussion of numerical and experimental errors on the solution. In the former case a fast convergence was obtained by transformation of the parametric space, while in the latter it was possible, from sensitivity functions, to estimate the errors, to define and measure the conditioning of the identification problem then to minimize this conditioning as a function of the experimental conditions [fr

  9. A METHOD FOR SOLVING LINEAR PROGRAMMING PROBLEMS WITH FUZZY PARAMETERS BASED ON MULTIOBJECTIVE LINEAR PROGRAMMING TECHNIQUE

    M. ZANGIABADI; H. R. MALEKI

    2007-01-01

    In the real-world optimization problems, coefficients of the objective function are not known precisely and can be interpreted as fuzzy numbers. In this paper we define the concepts of optimality for linear programming problems with fuzzy parameters based on those for multiobjective linear programming problems. Then by using the concept of comparison of fuzzy numbers, we transform a linear programming problem with fuzzy parameters to a multiobjective linear programming problem. To this end, w...

  10. Design techniques for large scale linear measurement systems

    Candy, J.V.

    1979-03-01

    Techniques to design measurement schemes for systems modeled by large scale linear time invariant systems, i.e., physical systems modeled by a large number (> 5) of ordinary differential equations, are described. The techniques are based on transforming the physical system model to a coordinate system facilitating the design and then transforming back to the original coordinates. An example of a three-stage, four-species, extraction column used in the reprocessing of spent nuclear fuel elements is presented. The basic ideas are briefly discussed in the case of noisy measurements. An example using a plutonium nitrate storage vessel (reprocessing) with measurement uncertainty is also presented

  11. Linear-constraint wavefront control for exoplanet coronagraphic imaging systems

    Sun, He; Eldorado Riggs, A. J.; Kasdin, N. Jeremy; Vanderbei, Robert J.; Groff, Tyler Dean

    2017-01-01

    A coronagraph is a leading technology for achieving high-contrast imaging of exoplanets in a space telescope. It uses a system of several masks to modify the diffraction and achieve extremely high contrast in the image plane around target stars. However, coronagraphic imaging systems are very sensitive to optical aberrations, so wavefront correction using deformable mirrors (DMs) is necessary to avoid contrast degradation in the image plane. Electric field conjugation (EFC) and Stroke minimization (SM) are two primary high-contrast wavefront controllers explored in the past decade. EFC minimizes the average contrast in the search areas while regularizing the strength of the control inputs. Stroke minimization calculates the minimum DM commands under the constraint that a target average contrast is achieved. Recently in the High Contrast Imaging Lab at Princeton University (HCIL), a new linear-constraint wavefront controller based on stroke minimization was developed and demonstrated using numerical simulation. Instead of only constraining the average contrast over the entire search area, the new controller constrains the electric field of each single pixel using linear programming, which could led to significant increases in speed of the wavefront correction and also create more uniform dark holes. As a follow-up of this work, another linear-constraint controller modified from EFC is demonstrated theoretically and numerically and the lab verification of the linear-constraint controllers is reported. Based on the simulation and lab results, the pros and cons of linear-constraint controllers are carefully compared with EFC and stroke minimization.

  12. System theory as applied differential geometry. [linear system

    Hermann, R.

    1979-01-01

    The invariants of input-output systems under the action of the feedback group was examined. The approach used the theory of Lie groups and concepts of modern differential geometry, and illustrated how the latter provides a basis for the discussion of the analytic structure of systems. Finite dimensional linear systems in a single independent variable are considered. Lessons of more general situations (e.g., distributed parameter and multidimensional systems) which are increasingly encountered as technology advances are presented.

  13. Normal form of linear systems depending on parameters

    Nguyen Huynh Phan.

    1995-12-01

    In this paper we resolve completely the problem to find normal forms of linear systems depending on parameters for the feedback action that we have studied for the special case of controllable linear systems. (author). 24 refs

  14. Negative base encoding in optical linear algebra processors

    Perlee, C.; Casasent, D.

    1986-01-01

    In the digital multiplication by analog convolution algorithm, the bits of two encoded numbers are convolved to form the product of the two numbers in mixed binary representation; this output can be easily converted to binary. Attention is presently given to negative base encoding, treating base -2 initially, and then showing that the negative base system can be readily extended to any radix. In general, negative base encoding in optical linear algebra processors represents a more efficient technique than either sign magnitude or 2's complement encoding, when the additions of digitally encoded products are performed in parallel.

  15. PWR control system design using advanced linear and non-linear methodologies

    Rabindran, N.; Whitmarsh-Everiss, M.J.

    2004-01-01

    Consideration is here given to the methodology deployed for non-linear heuristic analysis in the time domain supported by multi-variable linear control system design methods for the purposes of operational dynamics and control system analysis. This methodology is illustrated by the application of structural singular value μ analysis to Pressurised Water Reactor control system design. (author)

  16. Linear Matrix Inequality Based Fuzzy Synchronization for Fractional Order Chaos

    Bin Wang

    2015-01-01

    Full Text Available This paper investigates fuzzy synchronization for fractional order chaos via linear matrix inequality. Based on generalized Takagi-Sugeno fuzzy model, one efficient stability condition for fractional order chaos synchronization or antisynchronization is given. The fractional order stability condition is transformed into a set of linear matrix inequalities and the rigorous proof details are presented. Furthermore, through fractional order linear time-invariant (LTI interval theory, the approach is developed for fractional order chaos synchronization regardless of the system with uncertain parameters. Three typical examples, including synchronization between an integer order three-dimensional (3D chaos and a fractional order 3D chaos, anti-synchronization of two fractional order hyperchaos, and the synchronization between an integer order 3D chaos and a fractional order 4D chaos, are employed to verify the theoretical results.

  17. Self-Tuning Control of Linear Systems Followed by Deadzones

    K. Kazlauskas

    2014-02-01

    Full Text Available The aim of the present paper is to increase the efficiency of self-tuning generalized minimum variance (GMV control of linear time-invariant (LTI systems followed by deadzone nonlinearities. An approach, based on reordering of observations to be processed for the reconstruction of an unknown internal signal that acts between LTI system and a static nonlinear block of the closed-loop Wiener system, has been developed. The results of GMV self-tuning control of the second order LTI system with an ordinary deadzone are given.

  18. Superconducting linear accelerator system for NSC

    This paper reports the construction of a superconducting linear accelerator as a booster to the 15 UD Pelletron accelerator at Nuclear Science Centre, New Delhi. The LINAC will use superconducting niobium quarter wave resonators as the accelerating element. Construction of the linear accelerator has progressed ...

  19. A systems study of an RF power source for a 1 TeV next linear collider based upon the relativistic-klystron two-beam accelerator

    Yu, S.; Goffeney, N.; Deadrick, F.

    1994-11-01

    A systems study, including physics, engineering and costing, has been conducted to assess the feasibility of a relativistic-klystron two-beam-accelerator (RK-TBA) system as a RF power source candidate for a 1 TeV linear collider. Several key issues associated with a realizable RK-TBA system have been addressed, and corresponding schemes have been developed and examined quantitatively. A point design example has been constructed to present a concrete conceptual design which has acceptable transverse and longitudinal beam stability properties. The overall efficiency of RF production for such a power source is estimated to be 36%, and the cost of the full system is estimated to be less than 1 billion dollars

  20. Coherent versus Measurement Feedback: Linear Systems Theory for Quantum Information

    Naoki Yamamoto

    2014-11-01

    Full Text Available To control a quantum system via feedback, we generally have two options in choosing a control scheme. One is the coherent feedback, which feeds the output field of the system, through a fully quantum device, back to manipulate the system without involving any measurement process. The other one is measurement-based feedback, which measures the output field and performs a real-time manipulation on the system based on the measurement results. Both schemes have advantages and disadvantages, depending on the system and the control goal; hence, their comparison in several situations is important. This paper considers a general open linear quantum system with the following specific control goals: backaction evasion, generation of a quantum nondemolished variable, and generation of a decoherence-free subsystem, all of which have important roles in quantum information science. Some no-go theorems are proven, clarifying that those goals cannot be achieved by any measurement-based feedback control. On the other hand, it is shown that, for each control goal there exists a coherent feedback controller accomplishing the task. The key idea to obtain all the results is system theoretic characterizations of the above three notions in terms of controllability and observability properties or transfer functions of linear systems, which are consistent with their standard definitions.

  1. Symmetric linear systems - An application of algebraic systems theory

    Hazewinkel, M.; Martin, C.

    1983-01-01

    Dynamical systems which contain several identical subsystems occur in a variety of applications ranging from command and control systems and discretization of partial differential equations, to the stability augmentation of pairs of helicopters lifting a large mass. Linear models for such systems display certain obvious symmetries. In this paper, we discuss how these symmetries can be incorporated into a mathematical model that utilizes the modern theory of algebraic systems. Such systems are inherently related to the representation theory of algebras over fields. We will show that any control scheme which respects the dynamical structure either implicitly or explicitly uses the underlying algebra.

  2. Tip-tilt disturbance model identification based on non-linear least squares fitting for Linear Quadratic Gaussian control

    Yang, Kangjian; Yang, Ping; Wang, Shuai; Dong, Lizhi; Xu, Bing

    2018-05-01

    We propose a method to identify tip-tilt disturbance model for Linear Quadratic Gaussian control. This identification method based on Levenberg-Marquardt method conducts with a little prior information and no auxiliary system and it is convenient to identify the tip-tilt disturbance model on-line for real-time control. This identification method makes it easy that Linear Quadratic Gaussian control runs efficiently in different adaptive optics systems for vibration mitigation. The validity of the Linear Quadratic Gaussian control associated with this tip-tilt disturbance model identification method is verified by experimental data, which is conducted in replay mode by simulation.

  3. A control and data processing system for neutron time-of-flight experiments at the Harwell linear accelerator based on a PDP-11/45 mini-computer

    Chapman, W.S.; Boyce, D.A.; Brisland, J.B.; Langman, A.E.; Morris, D.V.; Schomberg, M.G.; Webb, D.A.

    1977-05-01

    The subject is treated in sections, entitled: introduction (experimental method, need for the PDP-11/45 based system); features required in the control and data processing system; description of the selected system configuration (PDP 11/45 mini-computer and RSX-11 D operating system, the single parameter experimental stations (the CAMAC units, the time-of-flight scaler)); description of the applications software; system performance. (U.K.)

  4. Linear Quantum Systems: Non-Classical States and Robust Stability

    2016-06-29

    modulation and entanglement in a compound gradient echo memory, Physical Review A 93(2) 023809 2016. We present a theoretical model for a Kerr...Carvalho, M. Hedges and M R James, Analysis of the operation of gradient echo memories using a quantum input-output model, New Journal of Physics , 15...new structured uncertainty methods that ensure robust stability of quantum systems based on nominal linear models, and (v) physical realizability

  5. A study on switched linear system identification using game ...

    A study on switched linear system identification using game-theoretic strategies and neural computing. ... This study deals with application of game-theoretic strategies and neural computing to switched linear ... AJOL African Journals Online.

  6. Reduction of Linear Functional Systems using Fuhrmann's Equivalence

    Mohamed S. Boudellioua

    2016-11-01

    Full Text Available Functional systems arise in the treatment of systems of partial differential equations, delay-differential equations, multidimensional equations, etc. The problem of reducing a linear functional system to a system containing fewer equations and unknowns was first studied by Serre. Finding an equivalent presentation of a linear functional system containing fewer equations and fewer unknowns can generally simplify both the study of the structural properties of the linear functional system and of different numerical analysis issues, and it can sometimes help in solving the linear functional system. In this paper, Fuhrmann's equivalence is used to present a constructive result on the reduction of under-determined linear functional systems to a single equation involving a single unknown. This equivalence transformation has been studied by a number of authors and has been shown to play an important role in the theory of linear functional systems.

  7. Stochastic techno-economic assessment based on Monte Carlo simulation and the Response Surface Methodology: The case of an innovative linear Fresnel CSP (concentrated solar power) system

    Bendato, Ilaria; Cassettari, Lucia; Mosca, Marco; Mosca, Roberto

    2016-01-01

    Combining technological solutions with investment profitability is a critical aspect in designing both traditional and innovative renewable power plants. Often, the introduction of new advanced-design solutions, although technically interesting, does not generate adequate revenue to justify their utilization. In this study, an innovative methodology is developed that aims to satisfy both targets. On the one hand, considering all of the feasible plant configurations, it allows the analysis of the investment in a stochastic regime using the Monte Carlo method. On the other hand, the impact of every technical solution on the economic performance indicators can be measured by using regression meta-models built according to the theory of Response Surface Methodology. This approach enables the design of a plant configuration that generates the best economic return over the entire life cycle of the plant. This paper illustrates an application of the proposed methodology to the evaluation of design solutions using an innovative linear Fresnel Concentrated Solar Power system. - Highlights: • A stochastic methodology for solar plants investment evaluation. • Study of the impact of new technologies on the investment results. • Application to an innovative linear Fresnel CSP system. • A particular application of Monte Carlo simulation and response surface methodology.

  8. High density linear systems for fusion power

    Ellis, W.R.; Krakowski, R.A.

    1975-01-01

    The physics and technological limitations and uncertainties associated with the linear theta pinch are discussed in terms of a generalized energy balance, which has as its basis the ratio (Q/sub E/) of total electrical energy generated to net electrical energy consumed. Included in this total is the virtual energy of bred fissile fuel, if a hybrid blanket is used, as well as the actual of real energy deposited in the blanket by the fusion neutron. The advantages and disadvantages of the pulsed operation demanded by the linear theta pinch are also discussed

  9. Applied research of quantum information based on linear optics

    Xu, Xiao-Ye

    2016-01-01

    This thesis reports on outstanding work in two main subfields of quantum information science: one involves the quantum measurement problem, and the other concerns quantum simulation. The thesis proposes using a polarization-based displaced Sagnac-type interferometer to achieve partial collapse measurement and its reversal, and presents the first experimental verification of the nonlocality of the partial collapse measurement and its reversal. All of the experiments are carried out in the linear optical system, one of the earliest experimental systems to employ quantum communication and quantum information processing. The thesis argues that quantum measurement can yield quantum entanglement recovery, which is demonstrated by using the frequency freedom to simulate the environment. Based on the weak measurement theory, the author proposes that white light can be used to precisely estimate phase, and effectively demonstrates that the imaginary part of the weak value can be introduced by means of weak measurement evolution. Lastly, a nine-order polarization-based displaced Sagnac-type interferometer employing bulk optics is constructed to perform quantum simulation of the Landau-Zener evolution, and by tuning the system Hamiltonian, the first experiment to research the Kibble-Zurek mechanism in non-equilibrium kinetics processes is carried out in the linear optical system.

  10. Applied research of quantum information based on linear optics

    Xu, Xiao-Ye

    2016-08-01

    This thesis reports on outstanding work in two main subfields of quantum information science: one involves the quantum measurement problem, and the other concerns quantum simulation. The thesis proposes using a polarization-based displaced Sagnac-type interferometer to achieve partial collapse measurement and its reversal, and presents the first experimental verification of the nonlocality of the partial collapse measurement and its reversal. All of the experiments are carried out in the linear optical system, one of the earliest experimental systems to employ quantum communication and quantum information processing. The thesis argues that quantum measurement can yield quantum entanglement recovery, which is demonstrated by using the frequency freedom to simulate the environment. Based on the weak measurement theory, the author proposes that white light can be used to precisely estimate phase, and effectively demonstrates that the imaginary part of the weak value can be introduced by means of weak measurement evolution. Lastly, a nine-order polarization-based displaced Sagnac-type interferometer employing bulk optics is constructed to perform quantum simulation of the Landau-Zener evolution, and by tuning the system Hamiltonian, the first experiment to research the Kibble-Zurek mechanism in non-equilibrium kinetics processes is carried out in the linear optical system.

  11. A parallel solver for huge dense linear systems

    Badia, J. M.; Movilla, J. L.; Climente, J. I.; Castillo, M.; Marqués, M.; Mayo, R.; Quintana-Ortí, E. S.; Planelles, J.

    2011-11-01

    HDSS (Huge Dense Linear System Solver) is a Fortran Application Programming Interface (API) to facilitate the parallel solution of very large dense systems to scientists and engineers. The API makes use of parallelism to yield an efficient solution of the systems on a wide range of parallel platforms, from clusters of processors to massively parallel multiprocessors. It exploits out-of-core strategies to leverage the secondary memory in order to solve huge linear systems O(100.000). The API is based on the parallel linear algebra library PLAPACK, and on its Out-Of-Core (OOC) extension POOCLAPACK. Both PLAPACK and POOCLAPACK use the Message Passing Interface (MPI) as the communication layer and BLAS to perform the local matrix operations. The API provides a friendly interface to the users, hiding almost all the technical aspects related to the parallel execution of the code and the use of the secondary memory to solve the systems. In particular, the API can automatically select the best way to store and solve the systems, depending of the dimension of the system, the number of processes and the main memory of the platform. Experimental results on several parallel platforms report high performance, reaching more than 1 TFLOP with 64 cores to solve a system with more than 200 000 equations and more than 10 000 right-hand side vectors. New version program summaryProgram title: Huge Dense System Solver (HDSS) Catalogue identifier: AEHU_v1_1 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEHU_v1_1.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 87 062 No. of bytes in distributed program, including test data, etc.: 1 069 110 Distribution format: tar.gz Programming language: Fortran90, C Computer: Parallel architectures: multiprocessors, computer clusters Operating system

  12. Optimal linear precoding for indoor visible light communication system

    Sifaou, Houssem

    2017-07-31

    Visible light communication (VLC) is an emerging technique that uses light-emitting diodes (LED) to combine communication and illumination. It is considered as a promising scheme for indoor wireless communication that can be deployed at reduced costs while offering high data rate performance. In this paper, we focus on the design of the downlink of a multi-user VLC system. Inherent to multi-user systems is the interference caused by the broadcast nature of the medium. Linear precoding based schemes are among the most popular solutions that have recently been proposed to mitigate inter-user interference. This paper focuses on the design of the optimal linear precoding scheme that solves the max-min signal-to-interference-plus-noise ratio (SINR) problem. The performance of the proposed precoding scheme is studied under different working conditions and compared with the classical zero-forcing precoding. Simulations have been provided to illustrate the high gain of the proposed scheme.

  13. Analysis of Linear Hybrid Systems in CLP

    Banda, Gourinath; Gallagher, John Patrick

    2009-01-01

    In this paper we present a procedure for representing the semantics of linear hybrid automata (LHAs) as constraint logic programs (CLP); flexible and accurate analysis and verification of LHAs can then be performed using generic CLP analysis and transformation tools. LHAs provide an expressive...

  14. Linear System of Equations, Matrix Inversion, and Linear Programming Using MS Excel

    El-Gebeily, M.; Yushau, B.

    2008-01-01

    In this note, we demonstrate with illustrations two different ways that MS Excel can be used to solve Linear Systems of Equation, Linear Programming Problems, and Matrix Inversion Problems. The advantage of using MS Excel is its availability and transparency (the user is responsible for most of the details of how a problem is solved). Further, we…

  15. Feedback Linearization Controller for a Wind Energy Power System

    Muthana Alrifai

    2016-09-01

    Full Text Available This paper deals with the control of a doubly-fed induction generator (DFIG-based variable speed wind turbine power system. A system of eight ordinary differential equations is used to model the wind energy conversion system. The generator has a wound rotor type with back-to-back three-phase power converter bridges between its rotor and the grid; it is modeled using the direct-quadrature rotating reference frame with aligned stator flux. An input-state feedback linearization controller is proposed for the wind energy power system. The controller guarantees that the states of the system track the desired states. Simulation results are presented to validate the proposed control scheme. Moreover, further simulation results are shown to investigate the robustness of the proposed control scheme to changes in some of the parameters of the system.

  16. Solving Fully Fuzzy Linear System of Equations in General Form

    A. Yousefzadeh

    2012-06-01

    Full Text Available In this work, we propose an approach for computing the positive solution of a fully fuzzy linear system where the coefficient matrix is a fuzzy $nimes n$ matrix. To do this, we use arithmetic operations on fuzzy numbers that introduced by Kaffman in and convert the fully fuzzy linear system into two $nimes n$ and $2nimes 2n$ crisp linear systems. If the solutions of these linear systems don't satisfy in positive fuzzy solution condition, we introduce the constrained least squares problem to obtain optimal fuzzy vector solution by applying the ranking function in given fully fuzzy linear system. Using our proposed method, the fully fuzzy linear system of equations always has a solution. Finally, we illustrate the efficiency of proposed method by solving some numerical examples.

  17. Linear and non-linear systems identification for adaptive control in mechanical applications vibration suppression

    Cazzulani, Gabriele; Resta, Ferruccio; Ripamonti, Francesco

    2012-04-01

    During the last years, more and more mechanical applications saw the introduction of active control strategies. In particular, the need of improving the performances and/or the system health is very often associated to vibration suppression. This goal can be achieved considering both passive and active solutions. In this sense, many active control strategies have been developed, such as the Independent Modal Space Control (IMSC) or the resonant controllers (PPF, IRC, . . .). In all these cases, in order to tune and optimize the control strategy, the knowledge of the system dynamic behaviour is very important and it can be achieved both considering a numerical model of the system or through an experimental identification process. Anyway, dealing with non-linear or time-varying systems, a tool able to online identify the system parameters becomes a key-point for the control logic synthesis. The aim of the present work is the definition of a real-time technique, based on ARMAX models, that estimates the system parameters starting from the measurements of piezoelectric sensors. These parameters are returned to the control logic, that automatically adapts itself to the system dynamics. The problem is numerically investigated considering a carbon-fiber plate model forced through a piezoelectric patch.

  18. The new control system of the Saclay linear accelerator

    Gournay, J.F.

    1985-10-01

    A new control system for the Saclay Linear Accelerator designed during the two past years is now in operation. The computer control architecture is based on 3 dedicated VME crates: one crate with a disk-based operating system runs the high level application programs and the database management facilities, another one manages the man-machine communications and the third one interfaces the system to the linac equipments. At the present time, communications between the VME micro-computers are done through 16 bit parallel links. The software is modular and organized in specific layers, the database is fully distributed. About 90% of the code is written in Fortran. The present status of the system is discussed and the hardware and software developments are described

  19. Effect of conductance linearity and multi-level cell characteristics of TaOx-based synapse device on pattern recognition accuracy of neuromorphic system

    Sung, Changhyuck; Lim, Seokjae; Kim, Hyungjun; Kim, Taesu; Moon, Kibong; Song, Jeonghwan; Kim, Jae-Joon; Hwang, Hyunsang

    2018-03-01

    To improve the classification accuracy of an image data set (CIFAR-10) by using analog input voltage, synapse devices with excellent conductance linearity (CL) and multi-level cell (MLC) characteristics are required. We analyze the CL and MLC characteristics of TaOx-based filamentary resistive random access memory (RRAM) to implement the synapse device in neural network hardware. Our findings show that the number of oxygen vacancies in the filament constriction region of the RRAM directly controls the CL and MLC characteristics. By adopting a Ta electrode (instead of Ti) and the hot-forming step, we could form a dense conductive filament. As a result, a wide range of conductance levels with CL is achieved and significantly improved image classification accuracy is confirmed.

  20. Universal Linear Precoding for NBI-Proof Widely Linear Equalization in MC Systems

    Donatella Darsena

    2007-09-01

    Full Text Available In multicarrier (MC systems, transmitter redundancy, which is introduced by means of finite-impulse response (FIR linear precoders, allows for perfect or zero-forcing (ZF equalization of FIR channels (in the absence of noise. Recently, it has been shown that the noncircular or improper nature of some symbol constellations offers an intrinsic source of redundancy, which can be exploited to design efficient FIR widely-linear (WL receiving structures for MC systems operating in the presence of narrowband interference (NBI. With regard to both cyclic-prefixed and zero-padded transmission techniques, it is shown in this paper that, with appropriately designed precoders, it is possible to synthesize in both cases WL-ZF universal equalizers, which guarantee perfect symbol recovery for any FIR channel. Furthermore, it is theoretically shown that the intrinsic redundancy of the improper symbol sequence also enables WL-ZF equalization, based on the minimum mean output-energy criterion, with improved NBI suppression capabilities. Finally, results of numerical simulations are presented, which assess the merits of the proposed precoding designs and validate the theoretical analysis carried out.

  1. Reliability modelling and simulation of switched linear system ...

    Reliability modelling and simulation of switched linear system control using temporal databases. ... design of fault-tolerant real-time switching systems control and modelling embedded micro-schedulers for complex systems maintenance.

  2. Synchronization and Control of Linearly Coupled Singular Systems

    Fang Qingxiang

    2013-01-01

    Full Text Available The synchronization and control problem of linearly coupled singular systems is investigated. The uncoupled dynamical behavior at each node is general and can be chaotic or, otherwise the coupling matrix is not assumed to be symmetrical. Some sufficient conditions for globally exponential synchronization are derived based on Lyapunov stability theory. These criteria, which are in terms of linear matrix inequality (LMI, indicate that the left and right eigenvectors corresponding to eigenvalue zero of the coupling matrix play key roles in the stability analysis of the synchronization manifold. The controllers are designed for state feedback control and pinning control, respectively. Finally, a numerical example is provided to illustrate the effectiveness of the proposed conditions.

  3. Energy balance in a system with quasispherical linear compression

    Es'kov, A.G.; Kozlov, N.P.; Kurtmullaev, R.K.; Semenov, V.N.; Khvesyuk, V.I.; Yaminskii, A.V.

    1983-01-01

    This letter reports the resists of some experimental studies and a numerical simulation of the Tor-linear fusion system, 1 in which a heavy plasma shell with a closed magnetic structure is compressed in a quasispherical manner. The parameters of the Tor-Linear, at the Kurchatov Institute of Atomic Energy in Moscow are as follows: The energy stored in the system which accelerates the linear is E = 0.5 MJ; the linear mass is m = 0.2 kg; the working volume of the linear module is 1.5 x 10 -3 m 3 ; the linear velocity is approx.10 3 m/s; the guiding field in the toriod in the linear is 1--10 x 10 21 m -3 ; and the intial volume of the plasma in the linear chamber is 2.5 x 10 -4 m 3 . In this series of experiments, new solutions were developed for all the systems of the plasma--linear complex of the Tor-Linear: to produce a plasma toroid, to transport it, and to trap it in the linear cavity

  4. Core reset system design for linear induction accelerator

    Durga Praveen Kumar, D.; Mitra, S.; Sharma, Archana; Nagesh, K.V.; Chakravarthy, D.P.

    2006-01-01

    A repetitive pulsed power system based Linear Induction Accelerator (LIA-200) is being developed at BARC to get an electron beam of 200keV, 5kA, 50ns, 10-100 Hz. Amorphous core is the heart of these accelerators. It serves various functions in different subsystems viz. pulse power modulator, pulse transformer, magnetic switches and induction cavities. One of the factors that make the magnetic components compact is utilization of the total flux swing available in the core. In the present system, magnetic switches, pulse transformers, and induction cavity are designed to avail the full flux swing available in the core. For achieving this objective, flux density in the core has to be kept at the reverse saturation, before the main pulse is applied. The electrical circuit which makes it possible is called the core reset system. In this paper the details of core reset system designed for LIA-200 are described. (author)

  5. Indirect synthesis of multi-degree of freedom transient systems. [linear programming for a kinematically linear system

    Pilkey, W. D.; Chen, Y. H.

    1974-01-01

    An indirect synthesis method is used in the efficient optimal design of multi-degree of freedom, multi-design element, nonlinear, transient systems. A limiting performance analysis which requires linear programming for a kinematically linear system is presented. The system is selected using system identification methods such that the designed system responds as closely as possible to the limiting performance. The efficiency is a result of the method avoiding the repetitive systems analyses accompanying other numerical optimization methods.

  6. Minimal solution of general dual fuzzy linear systems

    Abbasbandy, S.; Otadi, M.; Mosleh, M.

    2008-01-01

    Fuzzy linear systems of equations, play a major role in several applications in various area such as engineering, physics and economics. In this paper, we investigate the existence of a minimal solution of general dual fuzzy linear equation systems. Two necessary and sufficient conditions for the minimal solution existence are given. Also, some examples in engineering and economic are considered

  7. Partial Linearization of Mechanical Systems with Application to Observer Design

    Sarras, Ioannis; Venkatraman, Aneesh; Ortega, Romeo; Schaft, Arjan van der

    2008-01-01

    We consider general mechanical systems and establish a necessary and sufficient condition for the existence of a suitable change in the generalized momentum coordinates such that the new dynamics become linear in the transformed momenta. The class of systems which can be (partially) linearized by

  8. Simultaneous Balancing and Model Reduction of Switched Linear Systems

    Monshizadeh, Nima; Trentelman, Hendrikus; Camlibel, M.K.

    2011-01-01

    In this paper, first, balanced truncation of linear systems is revisited. Then, simultaneous balancing of multiple linear systems is investigated. Necessary and sufficient conditions are introduced to identify the case where simultaneous balancing is possible. The validity of these conditions is not

  9. Identification of Nonlinear Dynamic Systems Possessing Some Non-linearities

    Y. N. Pavlov

    2015-01-01

    Full Text Available The subject of this work is the problem of identification of nonlinear dynamic systems based on the experimental data obtained by applying test signals to the system. The goal is to determinate coefficients of differential equations of systems by experimental frequency hodographs and separate similar, but different, in essence, forces: dissipative forces with the square of the first derivative in the motion equations and dissipative force from the action of dry friction. There was a proposal to use the harmonic linearization method to approximate each of the nonlinearity of "quadratic friction" and "dry friction" by linear friction with the appropriate harmonic linearization coefficient.Assume that a frequency transfer function of the identified system has a known form. Assume as well that there are disturbances while obtaining frequency characteristics of the realworld system. As a result, the points of experimentally obtained hodograph move randomly. Searching for solution of the identification problem was in the hodograph class, specified by the system model, which has the form of the frequency transfer function the same as the form of the frequency transfer function of the system identified. Minimizing a proximity criterion (measure of the experimentally obtained system hodograph and the system hodograph model for all the experimental points described and previously published by one of the authors allowed searching for the unknown coefficients of the frequenc ransfer function of the system model. The paper shows the possibility to identify a nonlinear dynamic system with multiple nonlinearities, obtained on the experimental samples of the frequency system hodograph. The proposed algorithm allows to select the nonlinearity of the type "quadratic friction" and "dry friction", i.e. also in the case where the nonlinearity is dependent on the same dynamic parameter, in particular, on the derivative of the system output value. For the dynamic

  10. Performance of the digene LQ, RH and PS HPVs genotyping systems on clinical samples and comparison with HC2 and PCR-based Linear Array.

    Godínez, Jose M; Tous, Sara; Baixeras, Nuria; Moreno-Crespi, Judith; Alejo, María; Lejeune, Marylène; Bravo, Ignacio G; Bosch, F Xavier; de Sanjosé, Silvia

    2011-11-18

    Certain Human Papillomaviruses (HPVs) are the infectious agents involved in cervical cancer development. Detection of HPVs DNA is part of the cervical cancer screening protocols and HPVs genotyping has been proposed for its inclusion in these preventive programs. The aim of this study was to evaluate three novel genotyping tests, namely Qiagen LQ, RH and PS, in clinical samples with and without abnormalities. For this, 305 cervical samples were processed and the results of the evaluated techniques were compared with those obtained in the HPVs diagnostic process in our lab, by using HC2 and Linear Array (LA) technologies. The concordances and kappa statistics (k) for each technique compared with HC2 were 98.69% (k = 0.94) for LQ, 98.03% (k = 0.91) for RH and 91.80% (k = 0.82) for PS. There was a very good agreement in HPVs type-specific concordance for the most prevalent types HPV16 (kappa range = 0.83-0.90), HPV18 (k.r.= 0.74-0.80) and HPV45 (k.r.= 0.82-0.90). The three tests showed an overall good concordance for HPVs detection when compared with HR-HC2 system. LQ and RH rendered lower detection rate for multiple infections than LA genotyping. However, our understanding of the clinical significance of multiple HPVs infections is still incomplete and therefore the relevance of the lower ability to detect multiple infections needs to be evaluated.

  11. Linear System Control Using Stochastic Learning Automata

    Ziyad, Nigel; Cox, E. Lucien; Chouikha, Mohamed F.

    1998-01-01

    This paper explains the use of a Stochastic Learning Automata (SLA) to control switching between three systems to produce the desired output response. The SLA learns the optimal choice of the damping ratio for each system to achieve a desired result. We show that the SLA can learn these states for the control of an unknown system with the proper choice of the error criteria. The results of using a single automaton are compared to using multiple automata.

  12. Nonlinearity measure and internal model control based linearization in anti-windup design

    Perev, Kamen [Systems and Control Department, Technical University of Sofia, 8 Cl. Ohridski Blvd., 1756 Sofia (Bulgaria)

    2013-12-18

    This paper considers the problem of internal model control based linearization in anti-windup design. The nonlinearity measure concept is used for quantifying the control system degree of nonlinearity. The linearizing effect of a modified internal model control structure is presented by comparing the nonlinearity measures of the open-loop and closed-loop systems. It is shown that the linearization properties are improved by increasing the control system local feedback gain. However, it is emphasized that at the same time the stability of the system deteriorates. The conflicting goals of stability and linearization are resolved by solving the design problem in different frequency ranges.

  13. Practical application of equivalent linearization approaches to nonlinear piping systems

    Park, Y.J.; Hofmayer, C.H.

    1995-01-01

    The use of mechanical energy absorbers as an alternative to conventional hydraulic and mechanical snubbers for piping supports has attracted a wide interest among researchers and practitioners in the nuclear industry. The basic design concept of energy absorbers (EA) is to dissipate the vibration energy of piping systems through nonlinear hysteretic actions of EA exclamation point s under design seismic loads. Therefore, some type of nonlinear analysis needs to be performed in the seismic design of piping systems with EA supports. The equivalent linearization approach (ELA) can be a practical analysis tool for this purpose, particularly when the response approach (RSA) is also incorporated in the analysis formulations. In this paper, the following ELA/RSA methods are presented and compared to each other regarding their practice and numerical accuracy: Response approach using the square root of sum of squares (SRSS) approximation (denoted RS in this paper). Classical ELA based on modal combinations and linear random vibration theory (denoted CELA in this paper). Stochastic ELA based on direct solution of response covariance matrix (denoted SELA in this paper). New algorithms to convert response spectra to the equivalent power spectral density (PSD) functions are presented for both the above CELA and SELA methods. The numerical accuracy of the three EL are studied through a parametric error analysis. Finally, the practicality of the presented analysis is demonstrated in two application examples for piping systems with EA supports

  14. Useful tools for non-linear systems: Several non-linear integral inequalities

    Agahi, H.; Mohammadpour, A.; Mesiar, Radko; Vaezpour, M. S.

    2013-01-01

    Roč. 49, č. 1 (2013), s. 73-80 ISSN 0950-7051 R&D Projects: GA ČR GAP402/11/0378 Institutional support: RVO:67985556 Keywords : Monotone measure * Comonotone functions * Integral inequalities * Universal integral Subject RIV: BA - General Mathematics Impact factor: 3.058, year: 2013 http://library.utia.cas.cz/separaty/2013/E/mesiar-useful tools for non-linear systems several non-linear integral inequalities.pdf

  15. Decentralized linear quadratic power system stabilizers for multi ...

    Introduction. Modern excitation systems considerably enhance the overall transient stability of power systems ..... to the local bus rather than the angle δ measured with respect to the remote bus. ... With this in view, the linear and nonlinear per-.

  16. CARMEN: a system Monte Carlo based on linear programming from direct openings; CARMEN: Un sistema de planficiacion Monte Carlo basado en programacion lineal a partir de aberturas directas

    Ureba, A.; Pereira-Barbeiro, A. R.; Jimenez-Ortega, E.; Baeza, J. A.; Salguero, F. J.; Leal, A.

    2013-07-01

    The use of Monte Carlo (MC) has shown an improvement in the accuracy of the calculation of the dose compared to other analytics algorithms installed on the systems of business planning, especially in the case of non-standard situations typical of complex techniques such as IMRT and VMAT. Our treatment planning system called CARMEN, is based on the complete simulation, both the beam transport in the head of the accelerator and the patient, and simulation designed for efficient operation in terms of the accuracy of the estimate and the required computation times. (Author)

  17. A new active absorption system and its performance to linear and non-linear waves

    Andersen, Thomas Lykke; Clavero, M.; Frigaard, Peter Bak

    2016-01-01

    Highlights •An active absorption system for wavemakers has been developed. •The theory for flush mounted gauges has been extended to cover also small gaps. •The new system has been validated in a wave flume with wavemakers in both ends. •A generation and absorption procedure for highly non-linear...

  18. Linear Titration Curves of Acids and Bases.

    Joseph, N R

    1959-05-29

    The Henderson-Hasselbalch equation, by a simple transformation, becomes pH - pK = pA - pB, where pA and pB are the negative logarithms of acid and base concentrations. Sigmoid titration curves then reduce to straight lines; titration curves of polyelectrolytes, to families of straight lines. The method is applied to the titration of the dipeptide glycyl aminotricarballylic acid, with four titrable groups. Results are expressed as Cartesian and d'Ocagne nomograms. The latter is of a general form applicable to polyelectrolytes of any degree of complexity.

  19. Novel Approach to Linear Accelerator Superconducting Magnet System

    Kashikhin, Vladimir

    2011-01-01

    Superconducting Linear Accelerators include a superconducting magnet system for particle beam transportation that provides the beam focusing and steering. This system consists of a large number of quadrupole magnets and dipole correctors mounted inside or between cryomodules with SCRF cavities. Each magnet has current leads and powered from its own power supply. The paper proposes a novel approach to magnet powering based on using superconducting persistent current switches. A group of magnets is powered from the same power supply through the common, for the group of cryomodules, electrical bus and pair of current leads. Superconducting switches direct the current to the chosen magnet and close the circuit providing the magnet operation in a persistent current mode. Two persistent current switches were fabricated and tested. In the paper also presented the results of magnetic field simulations, decay time constants analysis, and a way of improving quadrupole magnetic center stability. Such approach substantially reduces the magnet system cost and increases the reliability.

  20. On Optimal Feedback Control for Stationary Linear Systems

    Russell, David L.

    2010-01-01

    We study linear-quadratic optimal control problems for finite dimensional stationary linear systems AX+BU=Z with output Y=CX+DU from the viewpoint of linear feedback solution. We interpret solutions in relation to system robustness with respect to disturbances Z and relate them to nonlinear matrix equations of Riccati type and eigenvalue-eigenvector problems for the corresponding Hamiltonian system. Examples are included along with an indication of extensions to continuous, i.e., infinite dimensional, systems, primarily of elliptic type.

  1. An Improved Piecewise Linear Chaotic Map Based Image Encryption Algorithm

    Yuping Hu

    2014-01-01

    Full Text Available An image encryption algorithm based on improved piecewise linear chaotic map (MPWLCM model was proposed. The algorithm uses the MPWLCM to permute and diffuse plain image simultaneously. Due to the sensitivity to initial key values, system parameters, and ergodicity in chaotic system, two pseudorandom sequences are designed and used in the processes of permutation and diffusion. The order of processing pixels is not in accordance with the index of pixels, but it is from beginning or end alternately. The cipher feedback was introduced in diffusion process. Test results and security analysis show that not only the scheme can achieve good encryption results but also its key space is large enough to resist against brute attack.

  2. Conjugate gradient type methods for linear systems with complex symmetric coefficient matrices

    Freund, Roland

    1989-01-01

    We consider conjugate gradient type methods for the solution of large sparse linear system Ax equals b with complex symmetric coefficient matrices A equals A(T). Such linear systems arise in important applications, such as the numerical solution of the complex Helmholtz equation. Furthermore, most complex non-Hermitian linear systems which occur in practice are actually complex symmetric. We investigate conjugate gradient type iterations which are based on a variant of the nonsymmetric Lanczos algorithm for complex symmetric matrices. We propose a new approach with iterates defined by a quasi-minimal residual property. The resulting algorithm presents several advantages over the standard biconjugate gradient method. We also include some remarks on the obvious approach to general complex linear systems by solving equivalent real linear systems for the real and imaginary parts of x. Finally, numerical experiments for linear systems arising from the complex Helmholtz equation are reported.

  3. Performance of the digene LQ, RH and PS HPVs genotyping systems on clinical samples and comparison with HC2 and PCR-based Linear Array

    Godínez Jose M

    2011-11-01

    Full Text Available Abstract Background Certain Human Papillomaviruses (HPVs are the infectious agents involved in cervical cancer development. Detection of HPVs DNA is part of the cervical cancer screening protocols and HPVs genotyping has been proposed for its inclusion in these preventive programs. The aim of this study was to evaluate three novel genotyping tests, namely Qiagen LQ, RH and PS, in clinical samples with and without abnormalities. For this, 305 cervical samples were processed and the results of the evaluated techniques were compared with those obtained in the HPVs diagnostic process in our lab, by using HC2 and Linear Array (LA technologies. Results The concordances and kappa statistics (k for each technique compared with HC2 were 98.69% (k = 0.94 for LQ, 98.03% (k = 0.91 for RH and 91.80% (k = 0.82 for PS. There was a very good agreement in HPVs type-specific concordance for the most prevalent types HPV16 (kappa range = 0.83-0.90, HPV18 (k.r.= 0.74-0.80 and HPV45 (k.r.= 0.82-0.90. Conclusions The three tests showed an overall good concordance for HPVs detection when compared with HR-HC2 system. LQ and RH rendered lower detection rate for multiple infections than LA genotyping. However, our understanding of the clinical significance of multiple HPVs infections is still incomplete and therefore the relevance of the lower ability to detect multiple infections needs to be evaluated.

  4. Gradient remediability in linear distributed parabolic systems ...

    The aim of this paper is the introduction of a new concept that concerned the analysis of a large class of distributed parabolic systems. It is the general concept of gradient remediability. More precisely, we study with respect to the gradient observation, the existence of an input operator (gradient efficient actuators) ensuring ...

  5. Linearization of Nonautonomous Impulsive System with Nonuniform Exponential Dichotomy

    Yongfei Gao

    2014-01-01

    Full Text Available This paper gives a version of Hartman-Grobman theorem for the impulsive differential equations. We assume that the linear impulsive system has a nonuniform exponential dichotomy. Under some suitable conditions, we proved that the nonlinear impulsive system is topologically conjugated to its linear system. Indeed, we do construct the topologically equivalent function (the transformation. Moreover, the method to prove the topological conjugacy is quite different from those in previous works (e.g., see Barreira and Valls, 2006.

  6. Observer-based linear parameter varying H∞ tracking control for hypersonic vehicles

    Yiqing Huang

    2016-11-01

    Full Text Available This article aims to develop observer-based linear parameter varying output feedback H∞ tracking controller for hypersonic vehicles. Due to the complexity of an original nonlinear model of the hypersonic vehicle dynamics, a slow–fast loop linear parameter varying polytopic model is introduced for system stability analysis and controller design. Then, a state observer is developed by linear parameter varying technique in order to estimate the unmeasured attitude angular for slow loop system. Also, based on the designed linear parameter varying state observer, a kind of attitude tracking controller is presented to reduce tracking errors for all bounded reference attitude angular inputs. The closed-loop linear parameter varying system is proved to be quadratically stable by Lypapunov function technique. Finally, simulation results show that the developed linear parameter varying H∞ controller has good tracking capability for reference commands.

  7. On the discretization of linear fractional representations of LPV systems

    Toth, R.; Lovera, M.; Heuberger, P.S.C.; Corno, M.; Hof, Van den P.M.J.

    2012-01-01

    Commonly, controllers for linear parameter-varying (LPV) systems are designed in continuous time using a linear fractional representation (LFR) of the plant. However, the resulting controllers are implemented on digital hardware. Furthermore, discrete-time LPV synthesis approaches require a

  8. Automatic frequency control system for driving a linear accelerator

    Helgesson, A.L.

    1976-01-01

    An automatic frequency control system is described for maintaining the drive frequency applied to a linear accelerator to produce maximum particle output from the accelerator. The particle output amplitude is measured and the frequency of the radio frequency source powering the linear accelerator is adjusted to maximize particle output amplitude

  9. EPMLR: sequence-based linear B-cell epitope prediction method using multiple linear regression.

    Lian, Yao; Ge, Meng; Pan, Xian-Ming

    2014-12-19

    B-cell epitopes have been studied extensively due to their immunological applications, such as peptide-based vaccine development, antibody production, and disease diagnosis and therapy. Despite several decades of research, the accurate prediction of linear B-cell epitopes has remained a challenging task. In this work, based on the antigen's primary sequence information, a novel linear B-cell epitope prediction model was developed using the multiple linear regression (MLR). A 10-fold cross-validation test on a large non-redundant dataset was performed to evaluate the performance of our model. To alleviate the problem caused by the noise of negative dataset, 300 experiments utilizing 300 sub-datasets were performed. We achieved overall sensitivity of 81.8%, precision of 64.1% and area under the receiver operating characteristic curve (AUC) of 0.728. We have presented a reliable method for the identification of linear B cell epitope using antigen's primary sequence information. Moreover, a web server EPMLR has been developed for linear B-cell epitope prediction: http://www.bioinfo.tsinghua.edu.cn/epitope/EPMLR/ .

  10. Fault isolatability conditions for linear systems

    Stoustrup, Jakob; Niemann, Henrik

    2006-01-01

    In this paper, we shall show that an unlimited number of additive single faults can be isolated under mild conditions if a general isolation scheme is applied. Multiple faults are also covered. The approach is algebraic and is based on a set representation of faults, where all faults within a set...... the faults have occurred. The last step is a fault isolation (FI) of the faults occurring in a specific fault set, i.e. equivalent with the standard FI step. A simple example demonstrates how to turn the algebraic necessary and sufficient conditions into explicit algorithms for designing filter banks, which...

  11. Krylov solvers for linear algebraic systems

    Broyden, Charles George

    2004-01-01

    The first four chapters of this book give a comprehensive and unified theory of the Krylov methods. Many of these are shown to be particular examples ofthe block conjugate-gradient algorithm and it is this observation thatpermits the unification of the theory. The two major sub-classes of thosemethods, the Lanczos and the Hestenes-Stiefel, are developed in parallel asnatural generalisations of the Orthodir (GCR) and Orthomin algorithms. Theseare themselves based on Arnoldi's algorithm and a generalised Gram-Schmidtalgorithm and their properties, in particular their stability properties,are det

  12. Feedback linearizing control of a MIMO power system

    Ilyes, Laszlo

    Prior research has demonstrated that either the mechanical or electrical subsystem of a synchronous electric generator may be controlled using single-input single-output (SISO) nonlinear feedback linearization. This research suggests a new approach which applies nonlinear feedback linearization to a multi-input multi-output (MIMO) model of the synchronous electric generator connected to an infinite bus load model. In this way, the electrical and mechanical subsystems may be linearized and simultaneously decoupled through the introduction of a pair of auxiliary inputs. This allows well known, linear, SISO control methods to be effectively applied to the resulting systems. The derivation of the feedback linearizing control law is presented in detail, including a discussion on the use of symbolic math processing as a development tool. The linearizing and decoupling properties of the control law are validated through simulation. And finally, the robustness of the control law is demonstrated.

  13. Efficient Feedforward Linearization Technique Using Genetic Algorithms for OFDM Systems

    García Paloma

    2010-01-01

    Full Text Available Feedforward is a linearization method that simultaneously offers wide bandwidth and good intermodulation distortion suppression; so it is a good choice for Orthogonal Frequency Division Multiplexing (OFDM systems. Feedforward structure consists of two loops, being necessary an accurate adjustment between them along the time, and when temperature, environmental, or operating changes are produced. Amplitude and phase imbalances of the circuit elements in both loops produce mismatched effects that lead to degrade its performance. A method is proposed to compensate these mismatches, introducing two complex coefficients calculated by means of a genetic algorithm. A full study is carried out to choose the optimal parameters of the genetic algorithm applied to wideband systems based on OFDM technologies, which are very sensitive to nonlinear distortions. The method functionality has been verified by means of simulation.

  14. Portable, x-band, linear accelerator systems

    Schonberg, R.G.; Deruyter, H.; Fowkes, W.R.; Johnson, W.A.; Miller, R.H.; Potter, J.M.; Weaver, J.N.

    1985-01-01

    Three light-weight, x-band, electron accelerators have been developed to provide a series of highly portable sources of x-rays and neutrons for nondestructive testing. The 1.5 MeV x-ray unit has a 200 kW magnetron for an RF source and an air-cooled, traveling wave accelerating structure to minimize its weight. The 4 and 6 MeV units share the same drive system which contains a 1.2 MW magnetron. The 4 MeV unit uses a traveling-wave guide to produce x-rays and the 6MeV unit uses a standing-wave guide to produce x-rays or neutrons. The choice of 9.3 GHz was dictated by the availability of a high power coaxial magnetron and by the obvious dimensional and weight advantages of a higher frequency over the more common S-band frequencies around 3 GHz

  15. Structure Learning in Stochastic Non-linear Dynamical Systems

    Morris, R. D.; Smelyanskiy, V. N.; Luchinsky, D. G.

    2005-12-01

    A great many systems can be modeled in the non-linear dynamical systems framework, as x˙ = f(x) + ξ(t), where f(x) is the potential function for the system, and ξ(t) is the driving noise. Modeling the potential using a set of basis functions, we derive the posterior for the basis coefficients. A more challenging problem is to determine the set of basis functions that are required to model a particular system. We show that using the Bayesian Information Criteria (BIC) to rank models, and the beam search technique, that we can accurately determine the structure of simple non-linear dynamical system models, and the structure of the coupling between non-linear dynamical systems where the individual systems are known. This last case has important ecological applications, for example in predator-prey systems, where the very structure of the coupling between predator-prey pairs can have great ecological significance.

  16. Portable, x-band, linear accelerator systems

    Schonberg, R.G.; Deruyter, H.; Fowkes, W.R.; Johnson, W.A.; Miller, R.H.; Potter, J.M.; Weaver, J.N.

    1985-01-01

    Three light-weight, x-band, electron accelerators have been developed to provide a series of highly portable sources of x-rays and neutrons for non-destructive testing. The 1.5 MeV x-ray unit has a 200 kW magnetron for an RF source and an air-cooled, traveling wave accelerating structure to minimize its weight. The 4 and 6 MeV units share the same drive system which contains a 1.2 MW magnetron. The 4 MeV unit uses a traveling-wave guide to produce x-rays and the 6MeV unit uses a standing-wave guide to produce x-rays or neutrons. The choice of 9.3 GHz was dictated by the availability of a high power coaxial magnetron and by the obvious dimensional and weight advantages of a higher frequency over the more common S-band frequencies around 3 GHz

  17. Linear quadratic Gaussian balancing for discrete-time infinite-dimensional linear systems

    Opmeer, MR; Curtain, RF

    2004-01-01

    In this paper, we study the existence of linear quadratic Gaussian (LQG)-balanced realizations for discrete-time infinite-dimensional systems. LQG-balanced realizations are those for which the smallest nonnegative self-adjoint solutions of the control and filter Riccati equations are equal. We show

  18. Final focus system tuning studies towards Compact Linear Collider feasibility

    Marin, E.; Latina, A.; Tomás, R.; Schulte, D.

    2018-01-01

    In this paper we present the latest results regarding the tuning study of the baseline design of the final focus system of the Compact Linear Collider (CLIC-FFS). CLIC aims to provide collisions to the experiments at a luminosity above 1034 c m-2 s-1 . In order to deliver such luminosity in a single pass machine, the vertical beam size at the interaction point (IP) is reduced to about 1 nm, which imposes unprecedented tuning difficulties to the system. In previous studies, 90% of the machines reached 90% of the nominal luminosity at the expense of 18 000 luminosity measurements, when considering beam position monitor errors and transverse misalignments of magnets for a single beam case. In the present study, additional static imperfections as, roll misalignments, strength v2.epss are included. Moreover both e- and e+ beamlines are properly simulated. A new tuning procedure based on linear and nonlinear knobs is implemented to effectively cure the most relevant beam size aberrations at the IP. The obtained results for single and double beam studies under solely static imperfections are presented.

  19. Sparse Linear Solver for Power System Analysis Using FPGA

    Johnson, J. R; Nagvajara, P; Nwankpa, C

    2005-01-01

    .... Numerical solution to load flow equations are typically computed using Newton-Raphson iteration, and the most time consuming component of the computation is the solution of a sparse linear system...

  20. Linear theory for filtering nonlinear multiscale systems with model error.

    Berry, Tyrus; Harlim, John

    2014-07-08

    In this paper, we study filtering of multiscale dynamical systems with model error arising from limitations in resolving the smaller scale processes. In particular, the analysis assumes the availability of continuous-time noisy observations of all components of the slow variables. Mathematically, this paper presents new results on higher order asymptotic expansion of the first two moments of a conditional measure. In particular, we are interested in the application of filtering multiscale problems in which the conditional distribution is defined over the slow variables, given noisy observation of the slow variables alone. From the mathematical analysis, we learn that for a continuous time linear model with Gaussian noise, there exists a unique choice of parameters in a linear reduced model for the slow variables which gives the optimal filtering when only the slow variables are observed. Moreover, these parameters simultaneously give the optimal equilibrium statistical estimates of the underlying system, and as a consequence they can be estimated offline from the equilibrium statistics of the true signal. By examining a nonlinear test model, we show that the linear theory extends in this non-Gaussian, nonlinear configuration as long as we know the optimal stochastic parametrization and the correct observation model. However, when the stochastic parametrization model is inappropriate, parameters chosen for good filter performance may give poor equilibrium statistical estimates and vice versa; this finding is based on analytical and numerical results on our nonlinear test model and the two-layer Lorenz-96 model. Finally, even when the correct stochastic ansatz is given, it is imperative to estimate the parameters simultaneously and to account for the nonlinear feedback of the stochastic parameters into the reduced filter estimates. In numerical experiments on the two-layer Lorenz-96 model, we find that the parameters estimated online , as part of a filtering

  1. A conceptual design of Final Focus Systems for linear colliders

    Brown, K.L.

    1987-06-01

    Linear colliders are a relatively recent development in the evolution of particle accelerators. This report discusses some of the approaches that have been considered for the design of Final Focus Systems to demagnify the beam exiting from a linac to the small size suitable for collisions at the interaction point. The system receiving the most attention is the one adopted for the SLAC Linear Collider. However, the theory and optical techniques discussed should be applicable to the design efforts for future machines

  2. ON THE STABILIZATION OF THE LINEAR HYBRID SYSTEM STRUCTURE

    Kirillov

    2014-11-01

    Full Text Available The linear control hybrid system, consisting of a fi- nite set of subsystems (modes having different dimensions, is considered. The moments of reset time are determined by some complementary function – evolutionary time. This function satisfies the special complementary ordinary differential equation. The mode stabilization problem is solved for some class of piecewise linear controls. The method of stabilization relies on the set of invariant planes, the existence of which is due to the special form of the hybrid system.

  3. Iterative algorithms for large sparse linear systems on parallel computers

    Adams, L. M.

    1982-01-01

    Algorithms for assembling in parallel the sparse system of linear equations that result from finite difference or finite element discretizations of elliptic partial differential equations, such as those that arise in structural engineering are developed. Parallel linear stationary iterative algorithms and parallel preconditioned conjugate gradient algorithms are developed for solving these systems. In addition, a model for comparing parallel algorithms on array architectures is developed and results of this model for the algorithms are given.

  4. Simultaneous Balancing and Model Reduction of Switched Linear Systems

    Monshizadeh, Nima; Trentelman, Hendrikus; Camlibel, M.K.

    2011-01-01

    In this paper, first, balanced truncation of linear systems is revisited. Then, simultaneous balancing of multiple linear systems is investigated. Necessary and sufficient conditions are introduced to identify the case where simultaneous balancing is possible. The validity of these conditions is not limited to a certain type of balancing, and they are applicable for different types of balancing corresponding to different equations, like Lyapunov or Riccati equations. The results obtained are ...

  5. Solar photovoltaic water pumping system using a new linear actuator

    Andrada Gascón, Pedro; Castro, Javier

    2007-01-01

    In this paper a photovoltaic solar pumping system using a new linear actuator is presented. This linear actuator is a double-sided flat two-phase variable-reluctance linear stepper motor that moves a piston-type water pump with the help of a rope, a pulley and a counterweight. The entire actuator pump ensemble is controlled by a simple electronic unit that manages the electric power generated by a photovoltaic array. The proposed system is suitable for rural communities in developing...

  6. Lag synchronization of chaotic systems with time-delayed linear ...

    delayed linear terms via impulsive control is investigated. Based on the stability theory of impulsive delayed differen- tial equations, some sufficient conditions are obtained guaranteeing the synchronized behaviours between two delayed chaotic ...

  7. Phase and amplitude detection system for the Stanford Linear Accelerator

    Fox, J.D.; Schwarz, H.D.

    1983-01-01

    A computer controlled phase and amplitude detection system to measure and stabilize the rf power sources in the Stanford Linear Accelerator is described. This system measures the instantaneous phase and amplitude of a 1 microsecond 2856 MHz rf pulse and will be used for phase feedback control and for amplitude and phase jitter detection. This paper discusses the measurement system performance requirements for the operation of the Stanford Linear Collider, and the design and implementation of the phase and amplitude detection system. The fundamental software algorithms used in the measurement are described, as is the performance of the prototype phase and amplitude detector system

  8. Numerical Study of Concentration Characteristics of Linear Fresnel Reflector System

    Lee, Hyun Jin; Kim, Jong Kyu; Lee, Sang Nam

    2015-01-01

    In this study, we numerically investigated the concentration characteristics of a linear Fresnel reflector system that can drive a solar thermal absorption refrigeration system to be installed in Saudi Arabia. Using an optical modeling program based on the Monte Carlo ray-tracing method, we simulated the concentrated solar flux, concentration efficiency, and concentrated solar energy on four representative days of the year - the vernal equinox, summer solstice, autumnal equinox, and winter solstice. Except the winter solstice, the concentrations were approximately steady from 9 AM to 15 PM, and the concentration efficiencies exceed 70%. Moreover, the maximum solar flux around the solar receiver center changes only within the range of 13.0 - 14.6 kW/m 2 . When we investigated the effects of the receiver installation height, reflector width, and reflector gap, the optimal receiver installation height was found to be 5 m. A smaller reflector width had a greater concentration efficiency. However, the design of the reflector width should be based on the capacity of the refrigeration system because it dominantly affects the concentrated solar energy. The present study was an essential prerequisite for thermal analyses of the solar receiver. Thus, an optical-thermal integration study in the future will assist with the performance prediction and design of the entire system

  9. Numerical Study of Concentration Characteristics of Linear Fresnel Reflector System

    Lee, Hyun Jin [Kookmin Univ., Seoul (Korea, Republic of); Kim, Jong Kyu; Lee, Sang Nam [Korea Institute of Energy Research, Daejeon (Korea, Republic of)

    2015-12-15

    In this study, we numerically investigated the concentration characteristics of a linear Fresnel reflector system that can drive a solar thermal absorption refrigeration system to be installed in Saudi Arabia. Using an optical modeling program based on the Monte Carlo ray-tracing method, we simulated the concentrated solar flux, concentration efficiency, and concentrated solar energy on four representative days of the year - the vernal equinox, summer solstice, autumnal equinox, and winter solstice. Except the winter solstice, the concentrations were approximately steady from 9 AM to 15 PM, and the concentration efficiencies exceed 70%. Moreover, the maximum solar flux around the solar receiver center changes only within the range of 13.0 - 14.6 kW/m{sup 2}. When we investigated the effects of the receiver installation height, reflector width, and reflector gap, the optimal receiver installation height was found to be 5 m. A smaller reflector width had a greater concentration efficiency. However, the design of the reflector width should be based on the capacity of the refrigeration system because it dominantly affects the concentrated solar energy. The present study was an essential prerequisite for thermal analyses of the solar receiver. Thus, an optical-thermal integration study in the future will assist with the performance prediction and design of the entire system.

  10. A virtual linear accelerator for verification of treatment planning systems

    Wieslander, Elinore

    2000-01-01

    A virtual linear accelerator is implemented into a commercial pencil-beam-based treatment planning system (TPS) with the purpose of investigating the possibility of verifying the system using a Monte Carlo method. The characterization set for the TPS includes depth doses, profiles and output factors, which is generated by Monte Carlo simulations. The advantage of this method over conventional measurements is that variations in accelerator output are eliminated and more complicated geometries can be used to study the performance of a TPS. The difference between Monte Carlo simulated and TPS calculated profiles and depth doses in the characterization geometry is less than ±2% except for the build-up region. This is of the same order as previously reported results based on measurements. In an inhomogeneous, mediastinum-like case, the deviations between TPS and simulations are small in the unit-density regions. In low-density regions, the TPS overestimates the dose, and the overestimation increases with increasing energy from 3.5% for 6 MV to 9.5% for 18 MV. This result points out the widely known fact that the pencil beam concept does not handle changes in lateral electron transport, nor changes in scatter due to lateral inhomogeneities. It is concluded that verification of a pencil-beam-based TPS with a Monte Carlo based virtual accelerator is possible, which facilitates the verification procedure. (author)

  11. Characterization of Kerfless Linear Arrays Based on PZT Thick Film.

    Zawada, Tomasz; Bierregaard, Louise Moller; Ringgaard, Erling; Xu, Ruichao; Guizzetti, Michele; Levassort, Franck; Certon, Dominique

    2017-09-01

    Multielement transducers enabling novel cost-effective fabrication of imaging arrays for medical applications have been presented earlier. Due to the favorable low lateral coupling of the screen-printed PZT, the elements can be defined by the top electrode pattern only, leading to a kerfless design with low crosstalk between the elements. The thick-film-based linear arrays have proved to be compatible with a commercial ultrasonic scanner and to support linear array beamforming as well as phased array beamforming. The main objective of the presented work is to investigate the performance of the devices at the transducer level by extensive measurements of the test structures. The arrays have been characterized by several different measurement techniques. First, electrical impedance measurements on several elements in air and liquid have been conducted in order to support material parameter identification using the Krimholtz-Leedom-Matthaei model. It has been found that electromechanical coupling is at the level of 35%. The arrays have also been characterized by a pulse-echo system. The measured sensitivity is around -60 dB, and the fractional bandwidth is close to 60%, while the center frequency is about 12 MHz over the whole array. Finally, laser interferometry measurements have been conducted indicating very good displacement level as well as pressure. The in-depth characterization of the array structure has given insight into the performance parameters for the array based on PZT thick film, and the obtained information will be used to optimize the key parameters for the next generation of cost-effective arrays based on piezoelectric thick film.

  12. Linear Transformer Drivers for Z-pinch Based Propulsion

    Adams, Robert; Seidler, William; Giddens, Patrick; Fabisinski, Leo; Cassibry, Jason

    2017-01-01

    The MSFC/UAH team has been developing of a novel power management and distribution system called a Linear Transformer Driver (LTD). LTD's hold the promise of dramatically reducing the required mass to drive a z-pinch by replacing the capacitor banks which constitute half the mass of the entire system. The MSFC?UAH tea, is developing this technology in hope of integrating it with the Pulsed Fission Fusion (PuFF) propulsion concept. High-Voltage pulsed power systems used for Z-Pinch experimentation have in the past largely been based on Marx Generators. Marx generators deliver the voltage and current required for the Z-Pinch, but suffer from two significant drawbacks when applied to a flight system: they are very massive, consisting of high-voltage capacitor banks insulated in oil-filled tanks and they do not lend themselves to rapid pulsing. The overall goal of Phase 2 is to demonstrate the construction of a higher voltage stack from a number of cavities each of the design proven in Phase 1 and to characterize and understand the techniques for designing the stack. The overall goal of Phase 3 is to demonstrate the feasibility of constructing a higher energy cavity from a number of smaller LTD stacks, to characterize and understand the way in which the constituent stacks combine, and to extend this demonstration LTD to serve as the basis for a 64 kJ pulse generator for Z-Pinch experiments.

  13. Solution of generalized shifted linear systems with complex symmetric matrices

    Sogabe, Tomohiro; Hoshi, Takeo; Zhang, Shao-Liang; Fujiwara, Takeo

    2012-01-01

    We develop the shifted COCG method [R. Takayama, T. Hoshi, T. Sogabe, S.-L. Zhang, T. Fujiwara, Linear algebraic calculation of Green’s function for large-scale electronic structure theory, Phys. Rev. B 73 (165108) (2006) 1–9] and the shifted WQMR method [T. Sogabe, T. Hoshi, S.-L. Zhang, T. Fujiwara, On a weighted quasi-residual minimization strategy of the QMR method for solving complex symmetric shifted linear systems, Electron. Trans. Numer. Anal. 31 (2008) 126–140] for solving generalized shifted linear systems with complex symmetric matrices that arise from the electronic structure theory. The complex symmetric Lanczos process with a suitable bilinear form plays an important role in the development of the methods. The numerical examples indicate that the methods are highly attractive when the inner linear systems can efficiently be solved.

  14. Economic MPC for a linear stochastic system of energy units

    Jørgensen, John Bagterp; Sokoler, Leo Emil; Standardi, Laura

    2016-01-01

    This paper summarizes comprehensively the work in four recent PhD theses from the Technical University of Denmark related to Economic MPC of future power systems. Future power systems will consist of a large number of decentralized power producers and a large number of controllable power consumers...... in addition to stochastic power producers such as wind turbines and solar power plants. Control of such large scale systems requires new control algorithms. In this paper, we formulate the control of such a system as an Economic Model Predictive Control (MPC) problem. When the power producers and controllable...... power consumers have linear dynamics, the Economic MPC may be expressed as a linear program. We provide linear models for a number of energy units in an energy system, formulate an Economic MPC for coordination of such a system. We indicate how advances in computational MPC makes the solutions...

  15. Stability analysis of switched linear systems defined by graphs

    Athanasopoulos, N.; Lazar, M.

    2014-01-01

    We present necessary and sufficient conditions for global exponential stability for switched discrete-time linear systems, under arbitrary switching, which is constrained within a set of admissible transitions. The class of systems studied includes the family of systems under arbitrary switching,

  16. Euclidean null controllability of linear systems with delays in state ...

    Sufficient conditions are developed for the Euclidean controllability of linear systems with delay in state and in control. Namely, if the uncontrolled system is uniformly asymptotically stable and the control equation proper, then the control system is Euclidean null controllable. Journal of the Nigerian Association of ...

  17. Incremental Closed-loop Identification of Linear Parameter Varying Systems

    Bendtsen, Jan Dimon; Trangbæk, Klaus

    2011-01-01

    , closed-loop system identification is more difficult than open-loop identification. In this paper we prove that the so-called Hansen Scheme, a technique known from linear time-invariant systems theory for transforming closed-loop system identification problems into open-loop-like problems, can be extended...

  18. Stability and response bounds of non-conservative linear systems

    Pommer, Christian

    2003-01-01

    For a linear system of second order differential equations the stability is studied by Lyapunov's direct method. The Lyapunov matrix equation is solved and a sufficient condition for stability is expressed by the system matrices. For a system which satisfies the condition for stability the Lyapunov...

  19. Linear Optimization of Frequency Spectrum Assignments Across System

    2016-03-01

    selection tools, frequency allocation, transmission optimization, electromagnetic maneuver warfare, electronic protection, assignment model 15. NUMBER ...Characteristics Modeled ...............................................................29 Table 10.   Antenna Systems Modeled , Number of Systems and...surveillance EW early warning GAMS general algebraic modeling system GHz gigahertz IDE integrated development environment ILP integer linear program

  20. Linear homotopy solution of nonlinear systems of equations in geodesy

    Paláncz, Béla; Awange, Joseph L.; Zaletnyik, Piroska; Lewis, Robert H.

    2010-01-01

    A fundamental task in geodesy is solving systems of equations. Many geodetic problems are represented as systems of multivariate polynomials. A common problem in solving such systems is improper initial starting values for iterative methods, leading to convergence to solutions with no physical meaning, or to convergence that requires global methods. Though symbolic methods such as Groebner bases or resultants have been shown to be very efficient, i.e., providing solutions for determined systems such as 3-point problem of 3D affine transformation, the symbolic algebra can be very time consuming, even with special Computer Algebra Systems (CAS). This study proposes the Linear Homotopy method that can be implemented easily in high-level computer languages like C++ and Fortran that are faster than CAS by at least two orders of magnitude. Using Mathematica, the power of Homotopy is demonstrated in solving three nonlinear geodetic problems: resection, GPS positioning, and affine transformation. The method enlarging the domain of convergence is found to be efficient, less sensitive to rounding of numbers, and has lower complexity compared to other local methods like Newton-Raphson.

  1. A Linear Active Disturbance Rejection Control for a Ball and Rigid Triangle System

    Carlos Aguilar-Ibanez

    2016-01-01

    Full Text Available This paper proposes an application of linear flatness control along with active disturbance rejection control (ADRC for the local stabilization and trajectory tracking problems in the underactuated ball and rigid triangle system. To this end, an observer-based linear controller of the ADRC type is designed based on the flat tangent linearization of the system around its corresponding unstable equilibrium rest position. It was accomplished through two decoupled linear extended observers and a single linear output feedback controller, with disturbance cancelation features. The controller guarantees locally exponentially asymptotic stability for the stabilization problem and practical local stability in the solution of the tracking error. An advantage of combining the flatness and the ADRC methods is that it possible to perform online estimates and cancels the undesirable effects of the higher-order nonlinearities discarded by the linearization approximation. Simulation indicates that the proposed controller behaves remarkably well, having an acceptable domain of attraction.

  2. Compressive System Identification in the Linear Time-Invariant framework

    Toth, Roland

    2011-12-01

    Selection of an efficient model parametrization (model order, delay, etc.) has crucial importance in parametric system identification. It navigates a trade-off between representation capabilities of the model (structural bias) and effects of over-parametrization (variance increase of the estimates). There exists many approaches to this widely studied problem in terms of statistical regularization methods and information criteria. In this paper, an alternative ℓ 1 regularization scheme is proposed for estimation of sparse linear-regression models based on recent results in compressive sensing. It is shown that the proposed scheme provides consistent estimation of sparse models in terms of the so-called oracle property, it is computationally attractive for large-scale over-parameterized models and it is applicable in case of small data sets, i.e., underdetermined estimation problems. The performance of the approach w.r.t. other regularization schemes is demonstrated in an extensive Monte Carlo study. © 2011 IEEE.

  3. Stability analysis of switched linear systems defined by graphs

    Athanasopoulos, Nikolaos; Lazar, Mircea

    2015-01-01

    We present necessary and sufficient conditions for global exponential stability for switched discrete-time linear systems, under arbitrary switching, which is constrained within a set of admissible transitions. The class of systems studied includes the family of systems under arbitrary switching, periodic systems, and systems with minimum and maximum dwell time specifications. To reach the result, we describe the set of rules that define the admissible transitions with a weighted directed gra...

  4. A convex optimization approach for solving large scale linear systems

    Debora Cores

    2017-01-01

    Full Text Available The well-known Conjugate Gradient (CG method minimizes a strictly convex quadratic function for solving large-scale linear system of equations when the coefficient matrix is symmetric and positive definite. In this work we present and analyze a non-quadratic convex function for solving any large-scale linear system of equations regardless of the characteristics of the coefficient matrix. For finding the global minimizers, of this new convex function, any low-cost iterative optimization technique could be applied. In particular, we propose to use the low-cost globally convergent Spectral Projected Gradient (SPG method, which allow us to extend this optimization approach for solving consistent square and rectangular linear system, as well as linear feasibility problem, with and without convex constraints and with and without preconditioning strategies. Our numerical results indicate that the new scheme outperforms state-of-the-art iterative techniques for solving linear systems when the symmetric part of the coefficient matrix is indefinite, and also for solving linear feasibility problems.

  5. FAST modularization framework for wind turbine simulation: full-system linearization

    Jonkman, J. M.; Jonkman, B. J.

    2016-09-01

    The wind engineering community relies on multiphysics engineering software to run nonlinear time-domain simulations e.g. for design-standards-based loads analysis. Although most physics involved in wind energy are nonlinear, linearization of the underlying nonlinear system equations is often advantageous to understand the system response and exploit well- established methods and tools for analyzing linear systems. This paper presents the development and verification of the new linearization functionality of the open-source engineering tool FAST v8 for land-based wind turbines, as well as the concepts and mathematical background needed to understand and apply it correctly.

  6. FAST Modularization Framework for Wind Turbine Simulation: Full-System Linearization: Preprint

    Jonkman, Jason; Jonkman, Bonnie

    2016-11-01

    The wind engineering community relies on multiphysics engineering software to run nonlinear time-domain simulations e.g. for design-standards-based loads analysis. Although most physics involved in wind energy are nonlinear, linearization of the underlying nonlinear system equations is often advantageous to understand the system response and exploit well-established methods and tools for analyzing linear systems. This paper presents the development and verification of the new linearization functionality of the open-source engineering tool FAST v8 for land-based wind turbines, as well as the concepts and mathematical background needed to understand and apply it correctly.

  7. 13th International Conference on Magnetically Levitated Systems and Linear Drives

    1993-01-01

    This report contains short papers on research being conducted throughout the world on magnetically levitated systems, mainly consisting of trains, and magnetic linear drives. These papers have been index separately elsewhere on the data base

  8. 13th International Conference on Magnetically Levitated Systems and Linear Drives

    1993-09-01

    This report contains short papers on research being conducted throughout the world on magnetically levitated systems, mainly consisting of trains, and magnetic linear drives. These papers have been index separately elsewhere on the data base.

  9. A comparison between linear and toroidal Extrap systems

    Lehnert, B.

    1988-09-01

    The Extrap scheme consists of a Z-pinch immersed in an octupole field generated by currents in a set of external conductors. A comparison between linear and toroidal Extrap geometry is made in this paper. As compared to toroidal systems, linear geometry has the advantages of relative simplicity and of a current drive by means of electrodes. Linear devices are convenient for basic studies of Extrap, at moderately high pinch currents and plasma temperatures. Within the parameter ranges of experiments at high pinch currents and plasma temperatures, linear systems have on the other hand some substantial disadvantages, on account of the plasma interaction with the end regions. This results in a limitation of the energy confinement time, and leads in the case of an ohmically heated plasma to excessively high plasma densities and small pinch radii which also complicate the introduction of the external conductors. (author)

  10. Linear local stability of electrostatic drift modes in helical systems

    Yamagishi, O.; Nakajima, N.; Sugama, H.; Nakamura, Y.

    2003-01-01

    We investigate the stability of the drift wave in helical systems. For this purpose, we solve the linear local gyrokinetic-Poisson equation, in the electrostatic regime. As a model of helical plasmas, Large helical Device (LHD) is considered. The equation we apply is rather exact in the framework of linear gyrokinetic theory, where only the approximation is the ballooning representation. In this paper, we consider only collisionless cases. All the frequency regime can be naturally reated without any assumptions, and in such cases, ion temperature gradient modes (ITG), trapped electron modes (TEM), and electron temperature gradient modes (ETG) are expected to become unstable linearly independently. (orig.)

  11. H 2 guaranteed cost control of discrete linear systems

    Colmenares W.

    2000-01-01

    Full Text Available This paper presents necessary and sufficient conditions for the existence of a quadratically stabilizing output feedback controller which also assures H 2 guaranteed cost performance on a discrete linear uncertain system where the uncertainty is of the norm bounded type. The conditions are presented as a collection of linear matrix inequalities.The solution, however requires a search over a scalar parameter space.

  12. Structured Control of Affine Linear Parameter Varying Systems

    Adegas, Fabiano Daher; Stoustrup, Jakob

    2011-01-01

    This paper presents a new procedure to design structured controllers for discrete-time affine linear parametervarying systems (A LPV). The class of control structures includes decentralized of any order, fixed order output feedback, simultaneous plant-control design, among others. A parametervarying...... non-convex condition for an upper bound on the induced L2-norm performance is solved by an iterative linear matrix inequalities (LMI) optimization algorithm. Numerical examples demostrate the effectiveness of the proposed approach....

  13. Direct linear driving systems; Les entrainements lineaires directs

    Favre, E.; Brunner, C.; Piaget, D. [ETEL SA (France)

    1999-11-01

    The linear motor is one of the most important developments in electrical drive technology. However, it only, began to be adopted on a large scale at the beginning of the 1990's and will not be considered a mature technology until well into the next millennium. Actuators based on linear motor technology have a number of technical advantages including high speed, high positional accuracy and fine resolution. They also require fewer component parts. Some precautions are necessary when using linear motors. Care must be taken to avoid overheating and excessive vibration, and the magnetic components must be protected.

  14. Optimal difference-based estimation for partially linear models

    Zhou, Yuejin; Cheng, Yebin; Dai, Wenlin; Tong, Tiejun

    2017-01-01

    Difference-based methods have attracted increasing attention for analyzing partially linear models in the recent literature. In this paper, we first propose to solve the optimal sequence selection problem in difference-based estimation for the linear component. To achieve the goal, a family of new sequences and a cross-validation method for selecting the adaptive sequence are proposed. We demonstrate that the existing sequences are only extreme cases in the proposed family. Secondly, we propose a new estimator for the residual variance by fitting a linear regression method to some difference-based estimators. Our proposed estimator achieves the asymptotic optimal rate of mean squared error. Simulation studies also demonstrate that our proposed estimator performs better than the existing estimator, especially when the sample size is small and the nonparametric function is rough.

  15. Optimal difference-based estimation for partially linear models

    Zhou, Yuejin

    2017-12-16

    Difference-based methods have attracted increasing attention for analyzing partially linear models in the recent literature. In this paper, we first propose to solve the optimal sequence selection problem in difference-based estimation for the linear component. To achieve the goal, a family of new sequences and a cross-validation method for selecting the adaptive sequence are proposed. We demonstrate that the existing sequences are only extreme cases in the proposed family. Secondly, we propose a new estimator for the residual variance by fitting a linear regression method to some difference-based estimators. Our proposed estimator achieves the asymptotic optimal rate of mean squared error. Simulation studies also demonstrate that our proposed estimator performs better than the existing estimator, especially when the sample size is small and the nonparametric function is rough.

  16. On the stability of non-linear systems

    Guelman, M.

    1968-09-01

    A study is made of the absolute stability of nonlinear systems, using Liapounov's second method and taking into account the results obtained from V.M. Popov's work. The results already established are first presented, in particular concerning the frequency domain criterions for absolute stability of automatic control systems containing one single non linearity. The results have been extended to show the existence of a limiting parabola. New use is then made of the methods studied for deriving absolute stability criterions for a system containing a different type of non linearity. Finally, the results obtained are considered from the point of view of Aizerman's conjecture. (author) [fr

  17. State space and input-output linear systems

    Delchamps, David F

    1988-01-01

    It is difficult for me to forget the mild sense of betrayal I felt some ten years ago when I discovered, with considerable dismay, that my two favorite books on linear system theory - Desoer's Notes for a Second Course on Linear Systems and Brockett's Finite Dimensional Linear Systems - were both out of print. Since that time, of course, linear system theory has undergone a transformation of the sort which always attends the maturation of a theory whose range of applicability is expanding in a fashion governed by technological developments and by the rate at which such advances become a part of engineering practice. The growth of the field has inspired the publication of some excellent books; the encyclopedic treatises by Kailath and Chen, in particular, come immediately to mind. Nonetheless, I was inspired to write this book primarily by my practical needs as a teacher and researcher in the field. For the past five years, I have taught a one semester first year gradu­ ate level linear system theory course i...

  18. Unification of three linear models for the transient visual system

    Brinker, den A.C.

    1989-01-01

    Three different linear filters are considered as a model describing the experimentally determined triphasic impulse responses of discs. These impulse responses arc associated with the transient visual system. Each model reveals a different feature of the system. Unification of the models is

  19. Punctuated equilibrium in a non-linear system of action

    J.S. Timmermans (Jos)

    2008-01-01

    textabstractColeman's equilibrium model of social development, the Linear System of Action, is extended to cover the dynamics of societal transitions. The model implemented has the characteristics of a dissipative system. A variation and selection algorithm favoring the retention of relatively

  20. INPUT-OUTPUT STRUCTURE OF LINEAR-DIFFERENTIAL ALGEBRAIC SYSTEMS

    KUIJPER, M; SCHUMACHER, JM

    Systems of linear differential and algebraic equations occur in various ways, for instance, as a result of automated modeling procedures and in problems involving algebraic constraints, such as zero dynamics and exact model matching. Differential/algebraic systems may represent an input-output

  1. Frequency Interval Cross Gramians for Linear and Bilinear Systems

    Jazlan, Ahmad; Sreeram, Victor; Shaker, Hamid Reza

    2017-01-01

    In many control engineering problems, it is desired to analyze the systems at particular frequency intervals of interest. This paper focuses on the development of frequency interval cross gramians for both linear and bilinear systems. New generalized Sylvester equations for calculating the freque...

  2. Switching control of linear systems for generating chaos

    Liu Xinzhi; Teo, Kok-Lay; Zhang Hongtao; Chen Guanrong

    2006-01-01

    In this paper, a new switching method is developed, which can be applied to generating different types of chaos or chaos-like dynamics from two or more linear systems. A numerical simulation is given to illustrate the generated chaotic dynamic behavior of the systems with some variable parameters. Finally, a circuit is built to realize various chaotic dynamical behaviors

  3. New approach to solve symmetric fully fuzzy linear systems

    In this paper, we present a method to solve fully fuzzy linear systems with symmetric coefficient matrix. The symmetric coefficient matrix is decomposed into two systems of equations by using Cholesky method and then a solution can be obtained. Numerical examples are given to illustrate our method.

  4. Criteria for stability of linear dynamical systems with multiple delays ...

    In this study we considered a linear Dynamical system with multiple delays and find suitable conditions on the systems parameters such that for a given initial function, we can define a mapping in a carefully chosen complete metric space on which the mapping has a unique fixed point. An asymptotic stability theory for the ...

  5. A data-acquisition system for high speed linear CCD

    Liu Zhiyan; Chen Xiangcai; Jiang Xiaoshan; Zhang Hongyu; Liang Zhongwang; Xiang Haisheng; Hu Jun

    2010-01-01

    A data-acquisition system for high speed linear CCD (Charge Coupled device) is mainly introduced. The optical fiber transmission technology is used. The data is sent to PC through USB or PCI interface. The construction of the system, the design of the PCI interface hardware, software design and the design of the control program running on host computer are also introduced. (authors)

  6. Partial Synchronization Manifolds for Linearly Time-Delay Coupled Systems

    Steur, Erik; van Leeuwen, Cees; Michiels, Wim

    2014-01-01

    Sometimes a network of dynamical systems shows a form of incomplete synchronization characterized by synchronization of some but not all of its systems. This type of incomplete synchronization is called partial synchronization. Partial synchronization is associated with the existence of partial synchronization manifolds, which are linear invariant subspaces of C, the state space of the network of systems. We focus on partial synchronization manifolds in networks of system...

  7. Global stabilization of linear continuous time-varying systems with bounded controls

    Phat, V.N.

    2004-08-01

    This paper deals with the problem of global stabilization of a class of linear continuous time-varying systems with bounded controls. Based on the controllability of the nominal system, a sufficient condition for the global stabilizability is proposed without solving any Riccati differential equation. Moreover, we give sufficient conditions for the robust stabilizability of perturbation/uncertain linear time-varying systems with bounded controls. (author)

  8. Chicane and wiggler based bunch compressors for future linear colliders

    Raubenheimer, T.O.; Emma, P.; Kheifets, S.

    1993-05-01

    In this paper, we discuss bunch compressors for future linear colliders. In the past, the bunch compression optics has been based upon achromatic cells using strong sextupoles to correct the dispersive and betatron chromaticity. To preserve the very small emittances required in most future collider designs, these schemes tend to have very tight alignment tolerances. Here, we describe bunch compressors based upon magnetic chicanes or wigglers which do need sextupoles to correct the chromatic emittance dilution. The dispersive chromaticity cancels naturally and the betatron chromaticity is not a significant source of emittance dilution. Thus, these schemes allow for substantially reduced alignment tolerances. Finally, we present a detailed design for the NLC linear collider

  9. The linear sizes tolerances and fits system modernization

    Glukhov, V. I.; Grinevich, V. A.; Shalay, V. V.

    2018-04-01

    The study is carried out on the urgent topic for technical products quality providing in the tolerancing process of the component parts. The aim of the paper is to develop alternatives for improving the system linear sizes tolerances and dimensional fits in the international standard ISO 286-1. The tasks of the work are, firstly, to classify as linear sizes the elements additionally linear coordinating sizes that determine the detail elements location and, secondly, to justify the basic deviation of the tolerance interval for the element's linear size. The geometrical modeling method of real details elements, the analytical and experimental methods are used in the research. It is shown that the linear coordinates are the dimensional basis of the elements linear sizes. To standardize the accuracy of linear coordinating sizes in all accuracy classes, it is sufficient to select in the standardized tolerance system only one tolerance interval with symmetrical deviations: Js for internal dimensional elements (holes) and js for external elements (shafts). The main deviation of this coordinating tolerance is the average zero deviation, which coincides with the nominal value of the coordinating size. Other intervals of the tolerance system are remained for normalizing the accuracy of the elements linear sizes with a fundamental change in the basic deviation of all tolerance intervals is the maximum deviation corresponding to the limit of the element material: EI is the lower tolerance for the of the internal elements (holes) sizes and es is the upper tolerance deviation for the outer elements (shafts) sizes. It is the sizes of the material maximum that are involved in the of the dimensional elements mating of the shafts and holes and determine the fits type.

  10. Damped oscillations of linear systems a mathematical introduction

    Veselić, Krešimir

    2011-01-01

    The theory of linear damped oscillations was originally developed more than hundred years ago and is still of vital research interest to engineers, mathematicians and physicists alike. This theory plays a central role in explaining the stability of mechanical structures in civil engineering, but it also has applications in other fields such as electrical network systems and quantum mechanics. This volume gives an introduction to linear finite dimensional damped systems as they are viewed by an applied mathematician. After a short overview of the physical principles leading to the linear system model, a largely self-contained mathematical theory for this model is presented. This includes the geometry of the underlying indefinite metric space, spectral theory of J-symmetric matrices and the associated quadratic eigenvalue problem. Particular attention is paid to the sensitivity issues which influence numerical computations. Finally, several recent research developments are included, e.g. Lyapunov stability and ...

  11. Ultra-high Frequency Linear Fiber Optic Systems

    Lau, Kam

    2011-01-01

    This book provides an in-depth treatment of both linear fiber-optic systems and their key enabling devices. It presents a concise but rigorous treatment of the theory and practice of analog (linear) fiber-optics links and systems that constitute the foundation of Hybrid Fiber Coax infrastructure in present-day CATV distribution and cable modem Internet access. Emerging applications in remote fiber-optic feed for free-space millimeter wave enterprise campus networks are also described. Issues such as dispersion and interferometric noise are treated quantitatively, and means for mitigating them are explained. This broad but concise text will thus be invaluable not only to students of fiber-optics communication but also to practicing engineers. To the second edition of this book important new aspects of linear fiber-optic transmission technologies are added, such as high level system architectural issues, algorithms for deriving the optimal frequency assignment, directly modulated or externally modulated laser t...

  12. Bounded distance decoding of linear error-correcting codes with Gröbner bases

    Bulygin, S.; Pellikaan, G.R.

    2009-01-01

    The problem of bounded distance decoding of arbitrary linear codes using Gröbner bases is addressed. A new method is proposed, which is based on reducing an initial decoding problem to solving a certain system of polynomial equations over a finite field. The peculiarity of this system is that, when

  13. System identication of a linearized hysteretic system using covariance driven stochastic subspace identication

    Bajric, Anela

    A single mass Bouc-Wen oscillator with linear static restoring force contribution is approximated by an equivalent linear system. The aim of the linearized model is to emulate the correct force-displacement response of the Bouc-Wenmodel with characteristic hysteretic behaviour. The linearized mod...

  14. Linearly and nonlinearly bidirectionally coupled synchronization of hyperchaotic systems

    Zhou Jin; Lu Junan; Wu Xiaoqun

    2007-01-01

    To date, there have been many results about unidirectionally coupled synchronization of chaotic systems. However, much less work is reported on bidirectionally-coupled synchronization. In this paper, we investigate the synchronization of two bidirectionally coupled Chen hyperchaotic systems, which are coupled linearly and nonlinearly respectively. Firstly, linearly coupled synchronization of two hyperchaotic Chen systems is investigated, and a theorem on how to choose the coupling coefficients are developed to guarantee the global asymptotical synchronization of two coupled hyperchaotic systems. Analysis shows that the choice of the coupling coefficients relies on the bound of the chaotic system. Secondly, the nonlinearly coupled synchronization is studied; a sufficient condition for the locally asymptotical synchronization is derived, which is independent of the bound of the hyperchaotic system. Finally, numerical simulations are included to verify the effectiveness and feasibility of the developed theorems

  15. Nonautonomous linear system of the terrestrial carbon cycle

    Luo, Y.

    2012-12-01

    Carbon cycle has been studied by uses of observation through various networks, field and laboratory experiments, and simulation models. Much less has been done on theoretical thinking and analysis to understand fundament properties of carbon cycle and then guide observatory, experimental, and modeling research. This presentation is to explore what would be the theoretical properties of terrestrial carbon cycle and how those properties can be used to make observatory, experimental, and modeling research more effective. Thousands of published data sets from litter decomposition and soil incubation studies almost all indicate that decay processes of litter and soil organic carbon can be well described by first order differential equations with one or more pools. Carbon pool dynamics in plants and soil after disturbances (e.g., wildfire, clear-cut of forests, and plows of soil for cropping) and during natural recovery or ecosystem restoration also exhibit characteristics of first-order linear systems. Thus, numerous lines of empirical evidence indicate that the terrestrial carbon cycle can be adequately described as a nonautonomous linear system. The linearity reflects the nature of the carbon cycle that carbon, once fixed by photosynthesis, is linearly transferred among pools within an ecosystem. The linear carbon transfer, however, is modified by nonlinear functions of external forcing variables. In addition, photosynthetic carbon influx is also nonlinearly influenced by external variables. This nonautonomous linear system can be mathematically expressed by a first-order linear ordinary matrix equation. We have recently used this theoretical property of terrestrial carbon cycle to develop a semi-analytic solution of spinup. The new methods have been applied to five global land models, including NCAR's CLM and CABLE models and can computationally accelerate spinup by two orders of magnitude. We also use this theoretical property to develop an analytic framework to

  16. A Spreadsheet-Based, Matrix Formulation Linear Programming Lesson

    Harrod, Steven

    2009-01-01

    The article focuses on the spreadsheet-based, matrix formulation linear programming lesson. According to the article, it makes a higher level of theoretical mathematics approachable by a wide spectrum of students wherein many may not be decision sciences or quantitative methods majors. Moreover...

  17. Refined Fuchs inequalities for systems of linear differential equations

    Gontsov, R R

    2004-01-01

    We refine the Fuchs inequalities obtained by Corel for systems of linear meromorphic differential equations given on the Riemann sphere. Fuchs inequalities enable one to estimate the sum of exponents of the system over all its singular points. We refine these well-known inequalities by considering the Jordan structure of the leading coefficient of the Laurent series for the matrix of the right-hand side of the system in the neighbourhood of a singular point

  18. Stability analysis of linear switching systems with time delays

    Li Ping; Zhong Shouming; Cui Jinzhong

    2009-01-01

    The issue of stability analysis of linear switching system with discrete and distributed time delays is studied in this paper. An appropriate switching rule is applied to guarantee the stability of the whole switching system. Our results use a Riccati-type Lyapunov functional under a condition on the time delay. So, switching systems with mixed delays are developed. A numerical example is given to illustrate the effectiveness of our results.

  19. Chaos synchronization of a unified chaotic system via partial linearization

    Yu Yongguang; Li Hanxiong; Duan Jian

    2009-01-01

    A partial linearization method is proposed for realizing the chaos synchronization of an unified chaotic system. Through synchronizing partial state of the chaotic systems can result in the synchronization of their entire states, and the resulting controller is singularity free. The results can be easily extended to the synchronization of other similar chaotic systems. Simulation results are conducted to show the effectiveness of the method.

  20. Robust output feedback H-infinity control and filtering for uncertain linear systems

    Chang, Xiao-Heng

    2014-01-01

    "Robust Output Feedback H-infinity Control and Filtering for Uncertain Linear Systems" discusses new and meaningful findings on robust output feedback H-infinity control and filtering for uncertain linear systems, presenting a number of useful and less conservative design results based on the linear matrix inequality (LMI) technique. Though primarily intended for graduate students in control and filtering, the book can also serve as a valuable reference work for researchers wishing to explore the area of robust H-infinity control and filtering of uncertain systems. Dr. Xiao-Heng Chang is a Professor at the College of Engineering, Bohai University, China.

  1. SNR Estimation in Linear Systems with Gaussian Matrices

    Suliman, Mohamed Abdalla Elhag; Alrashdi, Ayed; Ballal, Tarig; Al-Naffouri, Tareq Y.

    2017-01-01

    This letter proposes a highly accurate algorithm to estimate the signal-to-noise ratio (SNR) for a linear system from a single realization of the received signal. We assume that the linear system has a Gaussian matrix with one sided left correlation. The unknown entries of the signal and the noise are assumed to be independent and identically distributed with zero mean and can be drawn from any distribution. We use the ridge regression function of this linear model in company with tools and techniques adapted from random matrix theory to achieve, in closed form, accurate estimation of the SNR without prior statistical knowledge on the signal or the noise. Simulation results show that the proposed method is very accurate.

  2. SNR Estimation in Linear Systems with Gaussian Matrices

    Suliman, Mohamed Abdalla Elhag

    2017-09-27

    This letter proposes a highly accurate algorithm to estimate the signal-to-noise ratio (SNR) for a linear system from a single realization of the received signal. We assume that the linear system has a Gaussian matrix with one sided left correlation. The unknown entries of the signal and the noise are assumed to be independent and identically distributed with zero mean and can be drawn from any distribution. We use the ridge regression function of this linear model in company with tools and techniques adapted from random matrix theory to achieve, in closed form, accurate estimation of the SNR without prior statistical knowledge on the signal or the noise. Simulation results show that the proposed method is very accurate.

  3. Experimental quantum computing to solve systems of linear equations.

    Cai, X-D; Weedbrook, C; Su, Z-E; Chen, M-C; Gu, Mile; Zhu, M-J; Li, Li; Liu, Nai-Le; Lu, Chao-Yang; Pan, Jian-Wei

    2013-06-07

    Solving linear systems of equations is ubiquitous in all areas of science and engineering. With rapidly growing data sets, such a task can be intractable for classical computers, as the best known classical algorithms require a time proportional to the number of variables N. A recently proposed quantum algorithm shows that quantum computers could solve linear systems in a time scale of order log(N), giving an exponential speedup over classical computers. Here we realize the simplest instance of this algorithm, solving 2×2 linear equations for various input vectors on a quantum computer. We use four quantum bits and four controlled logic gates to implement every subroutine required, demonstrating the working principle of this algorithm.

  4. Periodic solutions of asymptotically linear Hamiltonian systems without twist conditions

    Cheng Rong [Coll. of Mathematics and Physics, Nanjing Univ. of Information Science and Tech., Nanjing (China); Dept. of Mathematics, Southeast Univ., Nanjing (China); Zhang Dongfeng [Dept. of Mathematics, Southeast Univ., Nanjing (China)

    2010-05-15

    In dynamical system theory, especially in many fields of applications from mechanics, Hamiltonian systems play an important role, since many related equations in mechanics can be written in an Hamiltonian form. In this paper, we study the existence of periodic solutions for a class of Hamiltonian systems. By applying the Galerkin approximation method together with a result of critical point theory, we establish the existence of periodic solutions of asymptotically linear Hamiltonian systems without twist conditions. Twist conditions play crucial roles in the study of periodic solutions for asymptotically linear Hamiltonian systems. The lack of twist conditions brings some difficulty to the study. To the authors' knowledge, very little is known about the case, where twist conditions do not hold. (orig.)

  5. Seismic analysis of equipment system with non-linearities such as gap and friction using equivalent linearization method

    Murakami, H.; Hirai, T.; Nakata, M.; Kobori, T.; Mizukoshi, K.; Takenaka, Y.; Miyagawa, N.

    1989-01-01

    Many of the equipment systems of nuclear power plants contain a number of non-linearities, such as gap and friction, due to their mechanical functions. It is desirable to take such non-linearities into account appropriately for the evaluation of the aseismic soundness. However, in usual design works, linear analysis method with rough assumptions is applied from engineering point of view. An equivalent linearization method is considered to be one of the effective analytical techniques to evaluate non-linear responses, provided that errors to a certain extent are tolerated, because it has greater simplicity in analysis and economization in computing time than non-linear analysis. The objective of this paper is to investigate the applicability of the equivalent linearization method to evaluate the maximum earthquake response of equipment systems such as the CANDU Fuelling Machine which has multiple non- linearities

  6. Adaptive H∞ synchronization of chaotic systems via linear and nonlinear feedback control

    Fu Shi-Hui; Lu Qi-Shao; Du Ying

    2012-01-01

    Adaptive H ∞ synchronization of chaotic systems via linear and nonlinear feedback control is investigated. The chaotic systems are redesigned by using the generalized Hamiltonian systems and observer approach. Based on Lyapunov's stability theory, linear and nonlinear feedback control of adaptive H ∞ synchronization is established in order to not only guarantee stable synchronization of both master and slave systems but also reduce the effect of external disturbance on an H ∞ -norm constraint. Adaptive H ∞ synchronization of chaotic systems via three kinds of control is investigated with applications to Lorenz and Chen systems. Numerical simulations are also given to identify the effectiveness of the theoretical analysis. (general)

  7. A polynomial approach for generating a monoparametric family of chaotic attractors via switched linear systems

    Aguirre-Hernández, B.; Campos-Cantón, E.; López-Renteria, J.A.; Díaz González, E.C.

    2015-01-01

    In this paper, we consider characteristic polynomials of n-dimensional systems that determine a segment of polynomials. One parameter is used to characterize this segment of polynomials in order to determine the maximal interval of dissipativity and unstability. Then we apply this result to the generation of a family of attractors based on a class of unstable dissipative systems (UDS) of type affine linear systems. This class of systems is comprised of switched linear systems yielding strange attractors. A family of these chaotic switched systems is determined by the maximal interval of perturbation of the matrix that governs the dynamics for still having scroll attractors

  8. Decentralized linear quadratic power system stabilizers for multi ...

    Linear quadratic stabilizers are well-known for their superior control capabilities when compared to the conventional lead–lag power system stabilizers. However, they have not seen much of practical importance as the state variables are generally not measurable; especially the generator rotor angle measurement is not ...

  9. Force analysis of linear induction motor for magnetic levitation system

    Kuijpers, A.A.; Nemlioglu, C.; Sahin, F.; Verdel, A.J.D.; Compter, J.C.; Lomonova, E.

    2010-01-01

    This paper presents the analyses of thrust and normal forces of linear induction motor (LIM) segments which are implemented in a rotating ring system. To obtain magnetic levitation in a cost effective and sustainable way, decoupled control of thrust and normal forces is required. This study includes

  10. Input design for linear dynamic systems using maxmin criteria

    Sadegh, Payman; Hansen, Lars H.; Madsen, Henrik

    1998-01-01

    This paper considers the problem of input design for maximizing the smallest eigenvalue of the information matrix for linear dynamic systems. The optimization of the smallest eigenvalue is of interest in parameter estimation and parameter change detection problems. We describe a simple cutting...

  11. Generating Nice Linear Systems for Matrix Gaussian Elimination

    Homewood, L. James

    2004-01-01

    In this article an augmented matrix that represents a system of linear equations is called nice if a sequence of elementary row operations that reduces the matrix to row-echelon form, through matrix Gaussian elimination, does so by restricting all entries to integers in every step. Many instructors wish to use the example of matrix Gaussian…

  12. Robust self-triggered MPC for constrained linear systems

    Brunner, F.D.; Heemels, W.P.M.H.; Allgöwer, F.

    2014-01-01

    In this paper we propose a robust self-triggered model predictive control algorithm for linear systems with additive bounded disturbances and hard constraints on the inputs and state. In self-triggered control, at every sampling instant the time until the next sampling instant is computed online

  13. Stability Analysis for Multi-Parameter Linear Periodic Systems

    Seyranian, A.P.; Solem, Frederik; Pedersen, Pauli

    1999-01-01

    This paper is devoted to stability analysis of general linear periodic systems depending on real parameters. The Floquet method and perturbation technique are the basis of the development. We start out with the first and higher-order derivatives of the Floquet matrix with respect to problem...

  14. Relative controllability and null controllability of linear delay systems ...

    Necessary and sufficient conditions are established for the relative, absolute controllability and null controllability of the generalized linear delay system and its discrete prototype. The paper presents illuminating examples on previous controllability results by Manitius and Olbrot [7] and carries over the results of Onwuatu [8] ...

  15. Time-optimal feedback control for linear systems

    Mirica, S.

    1976-01-01

    The paper deals with the results of qualitative investigations of the time-optimal feedback control for linear systems with constant coefficients. In the first section, after some definitions and notations, two examples are given and it is shown that even the time-optimal control problem for linear systems with constant coefficients which looked like ''completely solved'' requires a further qualitative investigation of the stability to ''permanent perturbations'' of optimal feedback control. In the second section some basic results of the linear time-optimal control problem are reviewed. The third section deals with the definition of Boltyanskii's ''regular synthesis'' and its connection to Filippov's theory of right-hand side discontinuous differential equations. In the fourth section a theorem is proved concerning the stability to perturbations of time-optimal feedback control for linear systems with scalar control. In the last two sections it is proved that, if the matrix which defines the system has only real eigenvalues or is three-dimensional, the time-optimal feedback control defines a regular synthesis and therefore is stable to perturbations. (author)

  16. Stochastic linear hybrid systems: Modeling, estimation, and application

    Seah, Chze Eng

    Hybrid systems are dynamical systems which have interacting continuous state and discrete state (or mode). Accurate modeling and state estimation of hybrid systems are important in many applications. We propose a hybrid system model, known as the Stochastic Linear Hybrid System (SLHS), to describe hybrid systems with stochastic linear system dynamics in each mode and stochastic continuous-state-dependent mode transitions. We then develop a hybrid estimation algorithm, called the State-Dependent-Transition Hybrid Estimation (SDTHE) algorithm, to estimate the continuous state and discrete state of the SLHS from noisy measurements. It is shown that the SDTHE algorithm is more accurate or more computationally efficient than existing hybrid estimation algorithms. Next, we develop a performance analysis algorithm to evaluate the performance of the SDTHE algorithm in a given operating scenario. We also investigate sufficient conditions for the stability of the SDTHE algorithm. The proposed SLHS model and SDTHE algorithm are illustrated to be useful in several applications. In Air Traffic Control (ATC), to facilitate implementations of new efficient operational concepts, accurate modeling and estimation of aircraft trajectories are needed. In ATC, an aircraft's trajectory can be divided into a number of flight modes. Furthermore, as the aircraft is required to follow a given flight plan or clearance, its flight mode transitions are dependent of its continuous state. However, the flight mode transitions are also stochastic due to navigation uncertainties or unknown pilot intents. Thus, we develop an aircraft dynamics model in ATC based on the SLHS. The SDTHE algorithm is then used in aircraft tracking applications to estimate the positions/velocities of aircraft and their flight modes accurately. Next, we develop an aircraft conformance monitoring algorithm to detect any deviations of aircraft trajectories in ATC that might compromise safety. In this application, the SLHS

  17. Iterated non-linear model predictive control based on tubes and contractive constraints.

    Murillo, M; Sánchez, G; Giovanini, L

    2016-05-01

    This paper presents a predictive control algorithm for non-linear systems based on successive linearizations of the non-linear dynamic around a given trajectory. A linear time varying model is obtained and the non-convex constrained optimization problem is transformed into a sequence of locally convex ones. The robustness of the proposed algorithm is addressed adding a convex contractive constraint. To account for linearization errors and to obtain more accurate results an inner iteration loop is added to the algorithm. A simple methodology to obtain an outer bounding-tube for state trajectories is also presented. The convergence of the iterative process and the stability of the closed-loop system are analyzed. The simulation results show the effectiveness of the proposed algorithm in controlling a quadcopter type unmanned aerial vehicle. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.

  18. Dose optimization based on linear programming implemented in a system for treatment planning in Monte Carlo; Optimizacion de dosis basada en programacion lineal implemenetada en un un sistema para la planificacion de tratamiento en Monte Carlo

    Ureba, A.; Palma, B. A.; Leal, A.

    2011-07-01

    Develop a more efficient method of optimization in relation to time, based on linear programming designed to implement a multi objective penalty function which also permits a simultaneous solution integrated boost situations considering two white volumes simultaneously.

  19. Estimation of Physical Parameters in Linear and Nonlinear Dynamic Systems

    Knudsen, Morten

    variance and confidence ellipsoid is demonstrated. The relation is based on a new theorem on maxima of an ellipsoid. The procedure for input signal design and physical parameter estimation is tested on a number of examples, linear as well as nonlinear and simulated as well as real processes, and it appears...

  20. Implementation of software-based sensor linearization algorithms on low-cost microcontrollers.

    Erdem, Hamit

    2010-10-01

    Nonlinear sensors and microcontrollers are used in many embedded system designs. As the input-output characteristic of most sensors is nonlinear in nature, obtaining data from a nonlinear sensor by using an integer microcontroller has always been a design challenge. This paper discusses the implementation of six software-based sensor linearization algorithms for low-cost microcontrollers. The comparative study of the linearization algorithms is performed by using a nonlinear optical distance-measuring sensor. The performance of the algorithms is examined with respect to memory space usage, linearization accuracy and algorithm execution time. The implementation and comparison results can be used for selection of a linearization algorithm based on the sensor transfer function, expected linearization accuracy and microcontroller capacity. Copyright © 2010 ISA. Published by Elsevier Ltd. All rights reserved.

  1. Linearity improvement on wide-range log signal of neutron measurement system for HANARO

    Kim, Young-Ki; Tuetken, Jeffrey S.

    1998-01-01

    This paper discusses engineering activities for improving the linearity characteristics of the Log Power signal from the neutron measurement system for HANARO. This neutron measurement system uses a fission chamber based detector which covers 10.3 decade-wide range from 10 -8 % full power(FP) up to 200%FP, The Log Power signal is designed to control the reactor at low power levels where most of the reactor physics tests are carried out. Therefore, the linearity characteristics of the Log Power signal is the major factor for accurate reactor power control. During the commissioning of the neutron measurement system, it was found that the linearity characteristics of the Log Power signal, especially near 10 -2 %FP, were not accurate enough for controlling the reactor during physics testing. Analysis of the system linearity data directly measured with reactor operating determined that the system was not operating per the design characteristics established from previous installations. The linearity data, which were taken as the reactor was increased in power, were sent to manufacturer's engineering group and a follow-up measures based on the analysis were then fed back to the field. Through step by step trouble-shooting activities, which included minor circuit modifications and alignment procedure changes, the linearity characteristics have been successfully improved and now exceed minimum performance requirements. This paper discusses the trouble-shooting techniques applied, the changes in the linearity characteristics, special circumstances in the HANARO application and the final resolution. (author)

  2. Observability of linear control systems on Lie groups

    Ayala, V.; Hacibekiroglu, A.K.

    1995-01-01

    In this paper, we study the observability problem for a linear control system Σ on a Lie group G. The drift vector field of Σ is an infinitesimal automorphism of G and the control vectors are elements in the Lie algebra of G. We establish algebraic conditions to characterize locally and globally observability for Σ. As in the linear case on R n , these conditions are independent of the control vector. We give an algorithm on the co-tangent bundle of G to calculate the equivalence class of the neutral element. (author). 6 refs

  3. Applied Research of Enterprise Cost Control Based on Linear Programming

    Yu Shuo

    2015-01-01

    This paper researches the enterprise cost control through the linear programming model, and analyzes the restriction factors of the labor of enterprise production, raw materials, processing equipment, sales price, and other factors affecting the enterprise income, so as to obtain an enterprise cost control model based on the linear programming. This model can calculate rational production mode in the case of limited resources, and acquire optimal enterprise income. The production guiding program and scheduling arrangement of the enterprise can be obtained through calculation results, so as to provide scientific and effective guidance for the enterprise production. This paper adds the sensitivity analysis in the linear programming model, so as to learn about the stability of the enterprise cost control model based on linear programming through the sensitivity analysis, and verify the rationality of the model, and indicate the direction for the enterprise cost control. The calculation results of the model can provide a certain reference for the enterprise planning in the market economy environment, which have strong reference and practical significance in terms of the enterprise cost control.

  4. Train Repathing in Emergencies Based on Fuzzy Linear Programming

    Xuelei Meng

    2014-01-01

    Full Text Available Train pathing is a typical problem which is to assign the train trips on the sets of rail segments, such as rail tracks and links. This paper focuses on the train pathing problem, determining the paths of the train trips in emergencies. We analyze the influencing factors of train pathing, such as transferring cost, running cost, and social adverse effect cost. With the overall consideration of the segment and station capability constraints, we build the fuzzy linear programming model to solve the train pathing problem. We design the fuzzy membership function to describe the fuzzy coefficients. Furthermore, the contraction-expansion factors are introduced to contract or expand the value ranges of the fuzzy coefficients, coping with the uncertainty of the value range of the fuzzy coefficients. We propose a method based on triangular fuzzy coefficient and transfer the train pathing (fuzzy linear programming model to a determinate linear model to solve the fuzzy linear programming problem. An emergency is supposed based on the real data of the Beijing-Shanghai Railway. The model in this paper was solved and the computation results prove the availability of the model and efficiency of the algorithm.

  5. Train repathing in emergencies based on fuzzy linear programming.

    Meng, Xuelei; Cui, Bingmou

    2014-01-01

    Train pathing is a typical problem which is to assign the train trips on the sets of rail segments, such as rail tracks and links. This paper focuses on the train pathing problem, determining the paths of the train trips in emergencies. We analyze the influencing factors of train pathing, such as transferring cost, running cost, and social adverse effect cost. With the overall consideration of the segment and station capability constraints, we build the fuzzy linear programming model to solve the train pathing problem. We design the fuzzy membership function to describe the fuzzy coefficients. Furthermore, the contraction-expansion factors are introduced to contract or expand the value ranges of the fuzzy coefficients, coping with the uncertainty of the value range of the fuzzy coefficients. We propose a method based on triangular fuzzy coefficient and transfer the train pathing (fuzzy linear programming model) to a determinate linear model to solve the fuzzy linear programming problem. An emergency is supposed based on the real data of the Beijing-Shanghai Railway. The model in this paper was solved and the computation results prove the availability of the model and efficiency of the algorithm.

  6. Monitoring and control system of the Saclay electron linear accelerator

    Lafontaine, Antoine

    1974-01-01

    A description is given of the automatic monitoring and control system of the 60MeV electron linear accelerator of the Centre d'Etudes Nucleaires de Saclay. The paper is mostly concerned with the programmation of the system. However, in a real time device, there is a very close association between computer and electronics, the latter are therefore described in details and make up most of the paper. [fr

  7. A new timing system for the Stanford Linear Collider

    Paffrath, L.; Bernstein, D.; Kang, H.; Koontz, R.; Leger, G.; Pierce, W.; Ross, M.; Wilmunder, A.

    1985-01-01

    In order to be able to meet the goals of the Stanford Linear Collider, a much more precise timing system had to be implemented. This paper describes the specification and design of this system, and the results obtained from its use on 1/3 of the SLAC linac. The functions of various elements are described, and a programmable delay unit (PDU) is described in detail

  8. Global Linear Representations of Nonlinear Systems and the Adjoint Map

    Banks, S.P.

    1988-01-01

    In this paper we shall study the global linearization of nonlinear systems on a manifold by two methods. The first consists of an expansion of the vector field in the space of square integrable vector fields. In the second method we use the adjoint representation of the Lie algebra vector fields to obtain an infinite-dimensional matrix representation of the system. A connection between the two approaches will be developed.

  9. Comments on new iterative methods for solving linear systems

    Wang Ke

    2017-06-01

    Full Text Available Some new iterative methods were presented by Du, Zheng and Wang for solving linear systems in [3], where it is shown that the new methods, comparing to the classical Jacobi or Gauss-Seidel method, can be applied to more systems and have faster convergence. This note shows that their methods are suitable for more matrices than positive matrices which the authors suggested through further analysis and numerical examples.

  10. A representation theorem for linear discrete-space systems

    Sandberg Irwin W.

    1998-01-01

    Full Text Available The cornerstone of the theory of discrete-time single-input single-output linear systems is the idea that every such system has an input–output map H that can be represented by a convolution or the familiar generalization of a convolution. This thinking involves an oversight which is corrected in this note by adding an additional term to the representation.

  11. A Sparse Approximate Inverse Preconditioner for Nonsymmetric Linear Systems

    Benzi, M.; Tůma, Miroslav

    1998-01-01

    Roč. 19, č. 3 (1998), s. 968-994 ISSN 1064-8275 R&D Projects: GA ČR GA201/93/0067; GA AV ČR IAA230401 Keywords : large sparse systems * interative methods * preconditioning * approximate inverse * sparse linear systems * sparse matrices * incomplete factorizations * conjugate gradient -type methods Subject RIV: BA - General Mathematics Impact factor: 1.378, year: 1998

  12. Evaluation of beach cleanup effects using linear system analysis.

    Kataoka, Tomoya; Hinata, Hirofumi

    2015-02-15

    We established a method for evaluating beach cleanup effects (BCEs) based on a linear system analysis, and investigated factors determining BCEs. Here we focus on two BCEs: decreasing the total mass of toxic metals that could leach into a beach from marine plastics and preventing the fragmentation of marine plastics on the beach. Both BCEs depend strongly on the average residence time of marine plastics on the beach (τ(r)) and the period of temporal variability of the input flux of marine plastics (T). Cleanups on the beach where τ(r) is longer than T are more effective than those where τ(r) is shorter than T. In addition, both BCEs are the highest near the time when the remnants of plastics reach the local maximum (peak time). Therefore, it is crucial to understand the following three factors for effective cleanups: the average residence time, the plastic input period and the peak time. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Fundamentals of linear systems for physical scientists and engineers

    Puri, N N

    2009-01-01

    Thanks to the advent of inexpensive computing, it is possible to analyze, compute, and develop results that were unthinkable in the '60s. Control systems, telecommunications, robotics, speech, vision, and digital signal processing are but a few examples of computing applications. While there are many excellent resources available that focus on one or two topics, few books cover most of the mathematical techniques required for a broader range of applications. Fundamentals of Linear Systems for Physical Scientists and Engineers is such a resource. The book draws from diverse areas of engineering and the physical sciences to cover the fundamentals of linear systems. Assuming no prior knowledge of complex mathematics on the part of the reader, the author uses his nearly 50 years of teaching experience to address all of the necessary mathematical techniques. Original proofs, hundreds of examples, and proven theorems illustrate and clarify the material. An extensive table provides Lyapunov functions for differentia...

  14. A family of quantization based piecewise linear filter networks

    Sørensen, John Aasted

    1992-01-01

    A family of quantization-based piecewise linear filter networks is proposed. For stationary signals, a filter network from this family is a generalization of the classical Wiener filter with an input signal and a desired response. The construction of the filter network is based on quantization...... of the input signal x(n) into quantization classes. With each quantization class is associated a linear filter. The filtering at time n is carried out by the filter belonging to the actual quantization class of x(n ) and the filters belonging to the neighbor quantization classes of x(n) (regularization......). This construction leads to a three-layer filter network. The first layer consists of the quantization class filters for the input signal. The second layer carries out the regularization between neighbor quantization classes, and the third layer constitutes a decision of quantization class from where the resulting...

  15. Linear and nonlinear dynamic systems in financial time series prediction

    Salim Lahmiri

    2012-10-01

    Full Text Available Autoregressive moving average (ARMA process and dynamic neural networks namely the nonlinear autoregressive moving average with exogenous inputs (NARX are compared by evaluating their ability to predict financial time series; for instance the S&P500 returns. Two classes of ARMA are considered. The first one is the standard ARMA model which is a linear static system. The second one uses Kalman filter (KF to estimate and predict ARMA coefficients. This model is a linear dynamic system. The forecasting ability of each system is evaluated by means of mean absolute error (MAE and mean absolute deviation (MAD statistics. Simulation results indicate that the ARMA-KF system performs better than the standard ARMA alone. Thus, introducing dynamics into the ARMA process improves the forecasting accuracy. In addition, the ARMA-KF outperformed the NARX. This result may suggest that the linear component found in the S&P500 return series is more dominant than the nonlinear part. In sum, we conclude that introducing dynamics into the ARMA process provides an effective system for S&P500 time series prediction.

  16. Galerkin projection methods for solving multiple related linear systems

    Chan, T.F.; Ng, M.; Wan, W.L.

    1996-12-31

    We consider using Galerkin projection methods for solving multiple related linear systems A{sup (i)}x{sup (i)} = b{sup (i)} for 1 {le} i {le} s, where A{sup (i)} and b{sup (i)} are different in general. We start with the special case where A{sup (i)} = A and A is symmetric positive definite. The method generates a Krylov subspace from a set of direction vectors obtained by solving one of the systems, called the seed system, by the CG method and then projects the residuals of other systems orthogonally onto the generated Krylov subspace to get the approximate solutions. The whole process is repeated with another unsolved system as a seed until all the systems are solved. We observe in practice a super-convergence behaviour of the CG process of the seed system when compared with the usual CG process. We also observe that only a small number of restarts is required to solve all the systems if the right-hand sides are close to each other. These two features together make the method particularly effective. In this talk, we give theoretical proof to justify these observations. Furthermore, we combine the advantages of this method and the block CG method and propose a block extension of this single seed method. The above procedure can actually be modified for solving multiple linear systems A{sup (i)}x{sup (i)} = b{sup (i)}, where A{sup (i)} are now different. We can also extend the previous analytical results to this more general case. Applications of this method to multiple related linear systems arising from image restoration and recursive least squares computations are considered as examples.

  17. An enstrophy-based linear and nonlinear receptivity theory

    Sengupta, Aditi; Suman, V. K.; Sengupta, Tapan K.; Bhaumik, Swagata

    2018-05-01

    In the present research, a new theory of instability based on enstrophy is presented for incompressible flows. Explaining instability through enstrophy is counter-intuitive, as it has been usually associated with dissipation for the Navier-Stokes equation (NSE). This developed theory is valid for both linear and nonlinear stages of disturbance growth. A previously developed nonlinear theory of incompressible flow instability based on total mechanical energy described in the work of Sengupta et al. ["Vortex-induced instability of an incompressible wall-bounded shear layer," J. Fluid Mech. 493, 277-286 (2003)] is used to compare with the present enstrophy based theory. The developed equations for disturbance enstrophy and disturbance mechanical energy are derived from NSE without any simplifying assumptions, as compared to other classical linear/nonlinear theories. The theory is tested for bypass transition caused by free stream convecting vortex over a zero pressure gradient boundary layer. We explain the creation of smaller scales in the flow by a cascade of enstrophy, which creates rotationality, in general inhomogeneous flows. Linear and nonlinear versions of the theory help explain the vortex-induced instability problem under consideration.

  18. Feedback Linearization Based Arc Length Control for Gas Metal Arc Welding

    Thomsen, Jesper Sandberg

    2005-01-01

    a linear system to be controlled by linear state feedback control. The advantage of using a nonlinear approach as feedback linearization is the ability of this method to cope with nonlinearities and different operating points. However, the model describing the GMAW process is not exact, and therefore......In this paper a feedback linearization based arc length controller for gas metal arc welding (GMAW) is described. A nonlinear model describing the dynamic arc length is transformed into a system where nonlinearities can be cancelled by a nonlinear state feedback control part, and thus, leaving only......, the cancellation of nonlinear terms might give rise to problems with respect to robustness. Robustness of the closed loop system is therefore nvestigated by simulation....

  19. An extended GS method for dense linear systems

    Niki, Hiroshi; Kohno, Toshiyuki; Abe, Kuniyoshi

    2009-09-01

    Davey and Rosindale [K. Davey, I. Rosindale, An iterative solution scheme for systems of boundary element equations, Internat. J. Numer. Methods Engrg. 37 (1994) 1399-1411] derived the GSOR method, which uses an upper triangular matrix [Omega] in order to solve dense linear systems. By applying functional analysis, the authors presented an expression for the optimum [Omega]. Moreover, Davey and Bounds [K. Davey, S. Bounds, A generalized SOR method for dense linear systems of boundary element equations, SIAM J. Comput. 19 (1998) 953-967] also introduced further interesting results. In this note, we employ a matrix analysis approach to investigate these schemes, and derive theorems that compare these schemes with existing preconditioners for dense linear systems. We show that the convergence rate of the Gauss-Seidel method with preconditioner PG is superior to that of the GSOR method. Moreover, we define some splittings associated with the iterative schemes. Some numerical examples are reported to confirm the theoretical analysis. We show that the EGS method with preconditioner produces an extremely small spectral radius in comparison with the other schemes considered.

  20. Essential uncontrollability of discrete linear, time-invariant, dynamical systems

    Cliff, E. M.

    1975-01-01

    The concept of a 'best approximating m-dimensional subspace' for a given set of vectors in n-dimensional whole space is introduced. Such a subspace is easily described in terms of the eigenvectors of an associated Gram matrix. This technique is used to approximate an achievable set for a discrete linear time-invariant dynamical system. This approximation characterizes the part of the state space that may be reached using modest levels of control. If the achievable set can be closely approximated by a proper subspace of the whole space then the system is 'essentially uncontrollable'. The notion finds application in studies of failure-tolerant systems, and in decoupling.

  1. Kalman filtering for time-delayed linear systems

    LU Xiao; WANG Wei

    2006-01-01

    This paper is to study the linear minimum variance estimation for discrete- time systems. A simple approach to the problem is presented by developing re-organized innovation analysis for the systems with instantaneous and double time-delayed measurements. It is shown that the derived estimator involves solving three different standard Kalman filtering with the same dimension as the original system. The obtained results form the basis for solving some complicated problems such as H∞ fixed-lag smoothing, preview control, H∞ filtering and control with time delays.

  2. Fundamental Matrix for a Class of Point Delay Linear Systems

    Sen, M. de la; Alastruey, C. F.

    1998-01-01

    It is difficult to establish explicit analytic forms for fundamental matrices of delayed linear systems. In this paper, an explicit form of exponential type is given for such a matrix in the case of punctual delays. The existence of real and complex fundamental matrices, for the case of real parameterizations of the differential system, is studied and discussed. Some additional commutativity properties involving the matrices parameters and the fundamental matrices as well as explicit expressions for the solution of the delayed differential system are also given. (Author)

  3. Control of Non-linear Marine Cooling System

    Hansen, Michael; Stoustrup, Jakob; Bendtsen, Jan Dimon

    2011-01-01

    We consider the problem of designing control laws for a marine cooling system used for cooling the main engine and auxiliary components aboard several classes of container vessels. We focus on achieving simple set point control for the system and do not consider compensation of the non-linearitie......-linearities, closed circuit flow dynamics or transport delays that are present in the system. Control laws are therefore designed using classical control theory and the performance of the design is illustrated through two simulation examples....

  4. Solution of the fully fuzzy linear systems using iterative techniques

    Dehghan, Mehdi; Hashemi, Behnam; Ghatee, Mehdi

    2007-01-01

    This paper mainly intends to discuss the iterative solution of fully fuzzy linear systems which we call FFLS. We employ Dubois and Prade's approximate arithmetic operators on LR fuzzy numbers for finding a positive fuzzy vector x-tilde which satisfies A-tildex-tilde=b, where A-tilde and b-tilde are a fuzzy matrix and a fuzzy vector, respectively. Please note that the positivity assumption is not so restrictive in applied problems. We transform FFLS and propose iterative techniques such as Richardson, Jacobi, Jacobi overrelaxation (JOR), Gauss-Seidel, successive overrelaxation (SOR), accelerated overrelaxation (AOR), symmetric and unsymmetric SOR (SSOR and USSOR) and extrapolated modified Aitken (EMA) for solving FFLS. In addition, the methods of Newton, quasi-Newton and conjugate gradient are proposed from nonlinear programming for solving a fully fuzzy linear system. Various numerical examples are also given to show the efficiency of the proposed schemes

  5. Solution methods for large systems of linear equations in BACCHUS

    Homann, C.; Dorr, B.

    1993-05-01

    The computer programme BACCHUS is used to describe steady state and transient thermal-hydraulic behaviour of a coolant in a fuel element with intact geometry in a fast breeder reactor. In such computer programmes generally large systems of linear equations with sparse matrices of coefficients, resulting from discretization of coolant conservation equations, must be solved thousands of times giving rise to large demands of main storage and CPU time. Direct and iterative solution methods of the systems of linear equations, available in BACCHUS, are described, giving theoretical details and experience with their use in the programme. Besides use of a method of lines, a Runge-Kutta-method, for solution of the partial differential equation is outlined. (orig.) [de

  6. Nonautonomous linear Hamiltonian systems oscillation, spectral theory and control

    Johnson, Russell; Novo, Sylvia; Núñez, Carmen; Fabbri, Roberta

    2016-01-01

    This monograph contains an in-depth analysis of the dynamics given by a linear Hamiltonian system of general dimension with nonautonomous bounded and uniformly continuous coefficients, without other initial assumptions on time-recurrence. Particular attention is given to the oscillation properties of the solutions as well as to a spectral theory appropriate for such systems. The book contains extensions of results which are well known when the coefficients are autonomous or periodic, as well as in the nonautonomous two-dimensional case. However, a substantial part of the theory presented here is new even in those much simpler situations. The authors make systematic use of basic facts concerning Lagrange planes and symplectic matrices, and apply some fundamental methods of topological dynamics and ergodic theory. Among the tools used in the analysis, which include Lyapunov exponents, Weyl matrices, exponential dichotomy, and weak disconjugacy, a fundamental role is played by the rotation number for linear Hami...

  7. Optimal approximation of linear systems by artificial immune response

    2006-01-01

    This paper puts forward a novel artificial immune response algorithm for optimal approximation of linear systems. A quaternion model of artificial immune response is proposed for engineering computing. The model abstracts four elements, namely, antigen, antibody, reaction rules among antibodies, and driving algorithm describing how the rules are applied to antibodies, to simulate the process of immune response. Some reaction rules including clonal selection rules, immunological memory rules and immune regulation rules are introduced. Using the theorem of Markov chain, it is proofed that the new model is convergent. The experimental study on the optimal approximation of a stable linear system and an unstable one show that the approximate models searched by the new model have better performance indices than those obtained by some existing algorithms including the differential evolution algorithm and the multi-agent genetic algorithm.

  8. Large linear magnetoresistivity in strongly inhomogeneous planar and layered systems

    Bulgadaev, S.A.; Kusmartsev, F.V.

    2005-01-01

    Explicit expressions for magnetoresistance R of planar and layered strongly inhomogeneous two-phase systems are obtained, using exact dual transformation, connecting effective conductivities of in-plane isotropic two-phase systems with and without magnetic field. These expressions allow to describe the magnetoresistance of various inhomogeneous media at arbitrary concentrations x and magnetic fields H. All expressions show large linear magnetoresistance effect with different dependencies on the phase concentrations. The corresponding plots of the x- and H-dependencies of R(x,H) are represented for various values, respectively, of magnetic field and concentrations at some values of inhomogeneity parameter. The obtained results show a remarkable similarity with the existing experimental data on linear magnetoresistance in silver chalcogenides Ag 2+δ Se. A possible physical explanation of this similarity is proposed. It is shown that the random, stripe type, structures of inhomogeneities are the most suitable for a fabrication of magnetic sensors and a storage of information at room temperatures

  9. A Parallel Encryption Algorithm Based on Piecewise Linear Chaotic Map

    Xizhong Wang

    2013-01-01

    Full Text Available We introduce a parallel chaos-based encryption algorithm for taking advantage of multicore processors. The chaotic cryptosystem is generated by the piecewise linear chaotic map (PWLCM. The parallel algorithm is designed with a master/slave communication model with the Message Passing Interface (MPI. The algorithm is suitable not only for multicore processors but also for the single-processor architecture. The experimental results show that the chaos-based cryptosystem possesses good statistical properties. The parallel algorithm provides much better performance than the serial ones and would be useful to apply in encryption/decryption file with large size or multimedia.

  10. Maximization of energy in the output of a linear system

    Dudley, D.G.

    1976-01-01

    A time-limited signal which, when passed through a linear system, maximizes the total output energy is considered. Previous work has shown that the solution is given by the eigenfunction associated with the maximum eigenvalue in a Hilbert-Schmidt integral equation. Analytical results are available for the case where the transfer function is a low-pass filter. This work is extended by obtaining a numerical solution to the integral equation which allows results for reasonably general transfer functions

  11. CHEBYSHEV ACCELERATION TECHNIQUE FOR SOLVING FUZZY LINEAR SYSTEM

    S.H. Nasseri

    2011-07-01

    Full Text Available In this paper, Chebyshev acceleration technique is used to solve the fuzzy linear system (FLS. This method is discussed in details and followed by summary of some other acceleration techniques. Moreover, we show that in some situations that the methods such as Jacobi, Gauss-Sidel, SOR and conjugate gradient is divergent, our proposed method is applicable and the acquired results are illustrated by some numerical examples.

  12. CHEBYSHEV ACCELERATION TECHNIQUE FOR SOLVING FUZZY LINEAR SYSTEM

    S.H. Nasseri

    2009-10-01

    Full Text Available In this paper, Chebyshev acceleration technique is used to solve the fuzzy linear system (FLS. This method is discussed in details and followed by summary of some other acceleration techniques. Moreover, we show that in some situations that the methods such as Jacobi, Gauss-Sidel, SOR and conjugate gradient is divergent, our proposed method is applicable and the acquired results are illustrated by some numerical examples.

  13. Efficient Preconditioning of Sequences of Nonsymmetric Linear Systems

    Duintjer Tebbens, Jurjen; Tůma, Miroslav

    2007-01-01

    Roč. 29, č. 5 (2007), s. 1918-1941 ISSN 1064-8275 R&D Projects: GA AV ČR 1ET400300415; GA AV ČR KJB100300703 Institutional research plan: CEZ:AV0Z10300504 Keywords : preconditioned iterative methods * sparse matrices * sequences of linear algebraic systems * incomplete factorizations * factorization updates * Gauss–Jordan transformations * minimum spanning tree Subject RIV: BA - General Mathematics Impact factor: 1.784, year: 2007

  14. AZTEC: A parallel iterative package for the solving linear systems

    Hutchinson, S.A.; Shadid, J.N.; Tuminaro, R.S. [Sandia National Labs., Albuquerque, NM (United States)

    1996-12-31

    We describe a parallel linear system package, AZTEC. The package incorporates a number of parallel iterative methods (e.g. GMRES, biCGSTAB, CGS, TFQMR) and preconditioners (e.g. Jacobi, Gauss-Seidel, polynomial, domain decomposition with LU or ILU within subdomains). Additionally, AZTEC allows for the reuse of previous preconditioning factorizations within Newton schemes for nonlinear methods. Currently, a number of different users are using this package to solve a variety of PDE applications.

  15. Stochastic Reformulations of Linear Systems: Algorithms and Convergence Theory

    Richtarik, Peter; Taká č, Martin

    2017-01-01

    We develop a family of reformulations of an arbitrary consistent linear system into a stochastic problem. The reformulations are governed by two user-defined parameters: a positive definite matrix defining a norm, and an arbitrary discrete or continuous distribution over random matrices. Our reformulation has several equivalent interpretations, allowing for researchers from various communities to leverage their domain specific insights. In particular, our reformulation can be equivalently seen as a stochastic optimization problem, stochastic linear system, stochastic fixed point problem and a probabilistic intersection problem. We prove sufficient, and necessary and sufficient conditions for the reformulation to be exact. Further, we propose and analyze three stochastic algorithms for solving the reformulated problem---basic, parallel and accelerated methods---with global linear convergence rates. The rates can be interpreted as condition numbers of a matrix which depends on the system matrix and on the reformulation parameters. This gives rise to a new phenomenon which we call stochastic preconditioning, and which refers to the problem of finding parameters (matrix and distribution) leading to a sufficiently small condition number. Our basic method can be equivalently interpreted as stochastic gradient descent, stochastic Newton method, stochastic proximal point method, stochastic fixed point method, and stochastic projection method, with fixed stepsize (relaxation parameter), applied to the reformulations.

  16. Linear circuits, systems and signal processing: theory and application

    Byrnes, C.I.; Saeks, R.E.; Martin, C.F.

    1988-01-01

    In part because of its universal role as a first approximation of more complicated behaviour and in part because of the depth and breadth of its principle paradigms, the study of linear systems continues to play a central role in control theory and its applications. Enhancing more traditional applications to aerospace and electronics, application areas such as econometrics, finance, and speech and signal processing have contributed to a renaissance in areas such as realization theory and classical automatic feedback control. Thus, the last few years have witnessed a remarkable research effort expended in understanding both new algorithms and new paradigms for modeling and realization of linear processes and in the analysis and design of robust control strategies. The papers in this volume reflect these trends in both the theory and applications of linear systems and were selected from the invited and contributed papers presented at the 8th International Symposium on the Mathematical Theory of Networks and Systems held in Phoenix on June 15-19, 1987

  17. Stochastic Reformulations of Linear Systems: Algorithms and Convergence Theory

    Richtarik, Peter

    2017-06-04

    We develop a family of reformulations of an arbitrary consistent linear system into a stochastic problem. The reformulations are governed by two user-defined parameters: a positive definite matrix defining a norm, and an arbitrary discrete or continuous distribution over random matrices. Our reformulation has several equivalent interpretations, allowing for researchers from various communities to leverage their domain specific insights. In particular, our reformulation can be equivalently seen as a stochastic optimization problem, stochastic linear system, stochastic fixed point problem and a probabilistic intersection problem. We prove sufficient, and necessary and sufficient conditions for the reformulation to be exact. Further, we propose and analyze three stochastic algorithms for solving the reformulated problem---basic, parallel and accelerated methods---with global linear convergence rates. The rates can be interpreted as condition numbers of a matrix which depends on the system matrix and on the reformulation parameters. This gives rise to a new phenomenon which we call stochastic preconditioning, and which refers to the problem of finding parameters (matrix and distribution) leading to a sufficiently small condition number. Our basic method can be equivalently interpreted as stochastic gradient descent, stochastic Newton method, stochastic proximal point method, stochastic fixed point method, and stochastic projection method, with fixed stepsize (relaxation parameter), applied to the reformulations.

  18. Stability margin of linear systems with parameters described by fuzzy numbers.

    Husek, Petr

    2011-10-01

    This paper deals with the linear systems with uncertain parameters described by fuzzy numbers. The problem of determining the stability margin of those systems with linear affine dependence of the coefficients of a characteristic polynomial on system parameters is studied. Fuzzy numbers describing the system parameters are allowed to be characterized by arbitrary nonsymmetric membership functions. An elegant solution, graphical in nature, based on generalization of the Tsypkin-Polyak plot is presented. The advantage of the presented approach over the classical robust concept is demonstrated on a control of the Fiat Dedra engine model and a control of the quarter car suspension model.

  19. Advanced Thomson scattering system for high-flux linear plasma generator

    Meiden, van der H.J.; Lof, A.R.; Berg, van den M.A.; Brons, S.; Donné, A.J.H.; Eck, van H.J.N.; Koelman, Peter; Koppers, W.R.; Kruijt, O.G.; Naumenko, N.N.; Oyevaar, T.; Prins, P.R.; Rapp, J.; Scholten, J.; Schram, D.C.; Smeets, P.H.M.; Star, van der G.; Tugarinov, S.N.; Zeijlmans van Emmichoven, P.A.

    2012-01-01

    An advanced Thomson scattering system has been built for a linear plasma generator for plasma surface interaction studies. The Thomson scattering system is based on a Nd:YAG laser operating at the second harmonic and a detection branch featuring a high etendue (f /3) transmission grating

  20. Adaptions of ArcGIS' Linear Referencing System to the Coastal Environment

    Balstrøm, Thomas

    2008-01-01

    For many years it has been problematic to store information for the coastal environment in a GIS. However, a system named "Linear referencing System" based upon a dynamic segmentation principle implemented in ESRIs ArcGIS 9 software has now made it possible to store and analyze information...

  1. Robust Stability and H∞ Control of Uncertain Piecewise Linear Switched Systems with Filippov Solutions

    Ahmadi, Mohamadreza; Mojallali, Hamed; Wisniewski, Rafal

    2012-01-01

    This paper addresses the robust stability and control problem of uncertain piecewise linear switched systems where, instead of the conventional Carathe ́odory solutions, we allow for Filippov solutions. In other words, in contrast to the previous studies, solutions with infinite switching in fini...... algorithm is proposed to surmount the aforementioned matrix inequality conditions....... time along the facets and on faces of arbitrary dimensions are also taken into account. Firstly, based on earlier results, the stability problem of piecewise linear systems with Filippov solutions is translated into a number of linear matrix inequality feasibility tests. Subsequently, a set of matrix...... inequalities are brought forward, which determines the asymptotic stability of the Filippov solutions of a given uncertain piecewise linear system. Afterwards, bilinear matrix inequality conditions for synthesizing a robust controller with a guaranteed H∞ per- formance are formulated. Finally, a V-K iteration...

  2. Linear filtering of systems with memory and application to finance

    2006-01-01

    Full Text Available We study the linear filtering problem for systems driven by continuous Gaussian processes V ( 1 and V ( 2 with memory described by two parameters. The processes V ( j have the virtue that they possess stationary increments and simple semimartingale representations simultaneously. They allow for straightforward parameter estimations. After giving the semimartingale representations of V ( j by innovation theory, we derive Kalman-Bucy-type filtering equations for the systems. We apply the result to the optimal portfolio problem for an investor with partial observations. We illustrate the tractability of the filtering algorithm by numerical implementations.

  3. Parametric Linear Hybrid Automata for Complex Environmental Systems Modeling

    Samar Hayat Khan Tareen

    2015-07-01

    Full Text Available Environmental systems, whether they be weather patterns or predator-prey relationships, are dependent on a number of different variables, each directly or indirectly affecting the system at large. Since not all of these factors are known, these systems take on non-linear dynamics, making it difficult to accurately predict meaningful behavioral trends far into the future. However, such dynamics do not warrant complete ignorance of different efforts to understand and model close approximations of these systems. Towards this end, we have applied a logical modeling approach to model and analyze the behavioral trends and systematic trajectories that these systems exhibit without delving into their quantification. This approach, formalized by René Thomas for discrete logical modeling of Biological Regulatory Networks (BRNs and further extended in our previous studies as parametric biological linear hybrid automata (Bio-LHA, has been previously employed for the analyses of different molecular regulatory interactions occurring across various cells and microbial species. As relationships between different interacting components of a system can be simplified as positive or negative influences, we can employ the Bio-LHA framework to represent different components of the environmental system as positive or negative feedbacks. In the present study, we highlight the benefits of hybrid (discrete/continuous modeling which lead to refinements among the fore-casted behaviors in order to find out which ones are actually possible. We have taken two case studies: an interaction of three microbial species in a freshwater pond, and a more complex atmospheric system, to show the applications of the Bio-LHA methodology for the timed hybrid modeling of environmental systems. Results show that the approach using the Bio-LHA is a viable method for behavioral modeling of complex environmental systems by finding timing constraints while keeping the complexity of the model

  4. Robust linear discriminant analysis with distance based estimators

    Lim, Yai-Fung; Yahaya, Sharipah Soaad Syed; Ali, Hazlina

    2017-11-01

    Linear discriminant analysis (LDA) is one of the supervised classification techniques concerning relationship between a categorical variable and a set of continuous variables. The main objective of LDA is to create a function to distinguish between populations and allocating future observations to previously defined populations. Under the assumptions of normality and homoscedasticity, the LDA yields optimal linear discriminant rule (LDR) between two or more groups. However, the optimality of LDA highly relies on the sample mean and pooled sample covariance matrix which are known to be sensitive to outliers. To alleviate these conflicts, a new robust LDA using distance based estimators known as minimum variance vector (MVV) has been proposed in this study. The MVV estimators were used to substitute the classical sample mean and classical sample covariance to form a robust linear discriminant rule (RLDR). Simulation and real data study were conducted to examine on the performance of the proposed RLDR measured in terms of misclassification error rates. The computational result showed that the proposed RLDR is better than the classical LDR and was comparable with the existing robust LDR.

  5. Comparison of linear and non-linear monotonicity-based shape reconstruction using exact matrix characterizations

    Garde, Henrik

    2018-01-01

    . For a fair comparison, exact matrix characterizations are used when probing the monotonicity relations to avoid errors from numerical solution to PDEs and numerical integration. Using a special factorization of the Neumann-to-Dirichlet map also makes the non-linear method as fast as the linear method...

  6. Demultiplexing of photonic temporal modes by a linear system

    Xu, Shuang; Shen, H. Z.; Yi, X. X.

    2018-03-01

    Temporally and spatially overlapping but field-orthogonal photonic temporal modes (TMs) that intrinsically span a high-dimensional Hilbert space are recently suggested as a promising means of encoding information on photons. Presently, the realization of photonic TM technology, particularly to retrieve the information it carries, i.e., demultiplexing of photonic TMs, is mostly dependent on nonlinear medium and frequency conversion. Meanwhile, its miniaturization, simplification, and optimization remain the focus of research. In this paper, we propose a scheme of TM demultiplexing using linear systems consisting of resonators with linear couplings. Specifically, we examine a unidirectional array of identical resonators with short environment correlations. For both situations with and without tunable couplers, propagation formulas are derived to demonstrate photonic TM demultiplexing capabilities. The proposed scheme, being entirely feasible with current technologies, might find potential applications in quantum information processing.

  7. Linear and Non-Linear Dielectric Response of Periodic Systems from Quantum Monte Carlo

    Umari, Paolo

    2006-03-01

    We present a novel approach that allows to calculate the dielectric response of periodic systems in the quantum Monte Carlo formalism. We employ a many-body generalization for the electric enthalpy functional, where the coupling with the field is expressed via the Berry-phase formulation for the macroscopic polarization. A self-consistent local Hamiltonian then determines the ground-state wavefunction, allowing for accurate diffusion quantum Monte Carlo calculations where the polarization's fixed point is estimated from the average on an iterative sequence. The polarization is sampled through forward-walking. This approach has been validated for the case of the polarizability of an isolated hydrogen atom, and then applied to a periodic system. We then calculate the linear susceptibility and second-order hyper-susceptibility of molecular-hydrogen chains whith different bond-length alternations, and assess the quality of nodal surfaces derived from density-functional theory or from Hartree-Fock. The results found are in excellent agreement with the best estimates obtained from the extrapolation of quantum-chemistry calculations.P. Umari, A.J. Williamson, G. Galli, and N. MarzariPhys. Rev. Lett. 95, 207602 (2005).

  8. 2D non-separable linear canonical transform (2D-NS-LCT) based cryptography

    Zhao, Liang; Muniraj, Inbarasan; Healy, John J.; Malallah, Ra'ed; Cui, Xiao-Guang; Ryle, James P.; Sheridan, John T.

    2017-05-01

    The 2D non-separable linear canonical transform (2D-NS-LCT) can describe a variety of paraxial optical systems. Digital algorithms to numerically evaluate the 2D-NS-LCTs are not only important in modeling the light field propagations but also of interest in various signal processing based applications, for instance optical encryption. Therefore, in this paper, for the first time, a 2D-NS-LCT based optical Double-random- Phase-Encryption (DRPE) system is proposed which offers encrypting information in multiple degrees of freedom. Compared with the traditional systems, i.e. (i) Fourier transform (FT); (ii) Fresnel transform (FST); (iii) Fractional Fourier transform (FRT); and (iv) Linear Canonical transform (LCT), based DRPE systems, the proposed system is more secure and robust as it encrypts the data with more degrees of freedom with an augmented key-space.

  9. Linearization Technologies for Broadband Radio-Over-Fiber Transmission Systems

    Xiupu Zhang

    2014-11-01

    Full Text Available Linearization technologies that can be used for linearizing RoF transmission are reviewed. Three main linearization methods, i.e. electrical analog linearization, optical linearization, and electrical digital linearization are presented and compared. Analog linearization can be achieved using analog predistortion circuits, and can be used for suppression of odd order nonlinear distortion components, such as third and fifth order. Optical linearization includes mixed-polarization, dual-wavelength, optical channelization and the others, implemented in optical domain, to suppress both even and odd order nonlinear distortion components, such as second and third order. Digital predistortion has been a widely used linearization method for RF power amplifiers. However, digital linearization that requires analog to digital converter is severely limited to hundreds of MHz bandwidth. Instead, analog and optical linearization provide broadband linearization with up to tens of GHz. Therefore, for broadband radio over fiber transmission that can be used for future broadband cloud radio access networks, analog and optical linearization are more appropriate than digital linearization. Generally speaking, both analog and optical linearization are able to improve spur-free dynamic range greater than 10 dB over tens of GHz. In order for current digital linearization to be used for broadband radio over fiber transmission, the reduced linearization complexity and increased linearization bandwidth are required. Moreover, some digital linearization methods in which the complexity can be reduced, such as Hammerstein type, may be more promising and require further investigation.

  10. Control of Linear Parameter Varying Systems with Applications

    Mohammadpour, Javad

    2012-01-01

    Control of Linear Parameter Varying Systems with Applications compiles state-of-the-art contributions on novel analytical and computational methods to address system modeling and identification, complexity reduction, performance analysis and control design for time-varying and nonlinear systems in the LPV framework. The book has an interdisciplinary character by emphasizing techniques that can be commonly applied in various engineering fields. It also includes a rich collection of illustrative applications in diverse domains to substantiate the effectiveness of the design methodologies and provide pointers to open research directions. The book is divided into three parts. The first part collects chapters of a more tutorial character on the background of LPV systems modeling and control. The second part gathers chapters devoted to the theoretical advancement of LPV analysis and synthesis methods to cope with the design constraints such as uncertainties and time delay. The third part of the volume showcases con...

  11. Um modelo baseado em programação linear e programação de metas para análise de um sistema de produção e distribuição de suco concentrado congelado de laranja A model based on linear programming and goal programming to analyze a frozen concentrated orange juice production and distribution system

    José Renato Munhoz

    2001-08-01

    Full Text Available Neste trabalho apresenta-se um modelo baseado em programação linear e programação de metas para apoiar decisões no processo de mistura e na distribuição de suco concentrado congelado de laranja. Explora-se a importância das decisões do processo de mistura para a análise da logística de distribuição do suco de laranja, além das decisões de transporte e armazenagem. O modelo utiliza conceitos conhecidos da literatura de problemas de mistura e planejamento da produção com múltiplos produtos, estágios e períodos, e foi resolvido por meio da linguagem de modelagem GAMS (General Algebraic Modeling System. Um estudo de caso foi realizado numa empresa de suco de laranja localizada no interior do estado de São Paulo, e os resultados preliminares obtidos são promissores.This work proposes a model based on linear programming and goal programming to support decisions in the blending process and distribution of frozen concentrated orange juice. This study explores the importance of blending decisions for the logistic analysis of the orange juice distribution, besides transportation and storage decisions. The model utilizes well-known concepts from the literature of blending problems and multistage, multiproduct and multiperiod production planning problems, and it was solved using the GAMS (General Algebraic Modeling System programming language. A case study was developed in an orange juice industry located in São Paulo State, and the preliminary results are promising.

  12. Projective Synchronization of N-Dimensional Chaotic Fractional-Order Systems via Linear State Error Feedback Control

    Baogui Xin

    2012-01-01

    Full Text Available Based on linear feedback control technique, a projective synchronization scheme of N-dimensional chaotic fractional-order systems is proposed, which consists of master and slave fractional-order financial systems coupled by linear state error variables. It is shown that the slave system can be projectively synchronized with the master system constructed by state transformation. Based on the stability theory of linear fractional order systems, a suitable controller for achieving synchronization is designed. The given scheme is applied to achieve projective synchronization of chaotic fractional-order financial systems. Numerical simulations are given to verify the effectiveness of the proposed projective synchronization scheme.

  13. Polycarbonate-Based Blends for Optical Non-linear Applications

    Stanculescu, F.; Stanculescu, A.

    2016-02-01

    This paper presents some investigations on the optical and morphological properties of the polymer (matrix):monomer (inclusion) composite materials obtained from blends of bisphenol A polycarbonate and amidic monomers. For the preparation of the composite films, we have selected monomers characterised by a maleamic acid structure and synthesised them starting from maleic anhydride and aniline derivatives with -COOH, -NO2, -N(C2H5)2 functional groups attached to the benzene ring. The composite films have been deposited by spin coating using a mixture of two solutions, one containing the matrix and the other the inclusion, both components of the composite system being dissolved in the same solvent. The optical transmission and photoluminescence properties of the composite films have been investigated in correlation with the morphology of the films. The scanning electron microscopy and atomic force microscopy have revealed a non-uniform morphology characterised by the development of two distinct phases. We have also investigated the generation of some optical non-linear (ONL) phenomena in these composite systems. The composite films containing as inclusions monomers characterised by the presence of one -COOH or two -NO2 substituent groups to the aromatic nucleus have shown the most intense second-harmonic generation (SHG). The second-order optical non-linear coefficients have been evaluated for these films, and the effect of the laser power on the ONL behaviour of these materials has also been emphasised.

  14. Some computer simulations based on the linear relative risk model

    Gilbert, E.S.

    1991-10-01

    This report presents the results of computer simulations designed to evaluate and compare the performance of the likelihood ratio statistic and the score statistic for making inferences about the linear relative risk mode. The work was motivated by data on workers exposed to low doses of radiation, and the report includes illustration of several procedures for obtaining confidence limits for the excess relative risk coefficient based on data from three studies of nuclear workers. The computer simulations indicate that with small sample sizes and highly skewed dose distributions, asymptotic approximations to the score statistic or to the likelihood ratio statistic may not be adequate. For testing the null hypothesis that the excess relative risk is equal to zero, the asymptotic approximation to the likelihood ratio statistic was adequate, but use of the asymptotic approximation to the score statistic rejected the null hypothesis too often. Frequently the likelihood was maximized at the lower constraint, and when this occurred, the asymptotic approximations for the likelihood ratio and score statistics did not perform well in obtaining upper confidence limits. The score statistic and likelihood ratio statistics were found to perform comparably in terms of power and width of the confidence limits. It is recommended that with modest sample sizes, confidence limits be obtained using computer simulations based on the score statistic. Although nuclear worker studies are emphasized in this report, its results are relevant for any study investigating linear dose-response functions with highly skewed exposure distributions. 22 refs., 14 tabs

  15. A RECIPE FOR LINEAR COLLIDER FINAL FOCUS SYSTEM DESIGN

    Seryi, Andrei

    2003-01-01

    The design of Final Focus systems for linear colliders is challenging because of the large demagnifications needed to produce nanometer-sized beams at the interaction point. Simple first- and second-order matrix matching have proven insufficient for this task, and minimization of third- and higher-order aberrations is essential. An appropriate strategy is required for the latter to be successful. A recipe for Final Focus design, and a set of computational tools used to implement this approach, are described herein. An example of the use of this procedure is given

  16. Periodic orbits from Δ-modulation of stable linear systems

    Xia, X.; Zinober, A.

    2004-01-01

    The �-modulated control of a single input, discrete time, linear stable system is investigated. The modulation direction is given by cTx where c �Rn/{0} is a given, otherwise arbitrary, vector. We obtain necessary and sufficient conditions for the existence of periodic points of a finite order. Some concrete results about the existence of a certain order of periodic points are also derived. We also study the relationship between certain polyhedra and the periodicity of the �-modulated orb...

  17. Probing LINEAR Collider Final Focus Systems in SuperKEKB

    Thrane, Paul Conrad Vaagen

    2017-01-01

    A challenge for future linear collider final focus systems is the large chromaticity produced by the final quadrupoles. SuperKEKB will be correcting high levels of chromaticity using the traditional scheme which has been also proposed for the CLIC FFS. We present early simulation results indicating that lowering β*у in the SuperKEKB Low Energy Ring might be possible given on-axis injection and low bunch current, opening the possibility of testing chromaticity correction beyond FFTB level, similar to ILC and approaching that of CLIC. CLIC – Note – 1077

  18. Optimal Robust Fault Detection for Linear Discrete Time Systems

    Nike Liu

    2008-01-01

    Full Text Available This paper considers robust fault-detection problems for linear discrete time systems. It is shown that the optimal robust detection filters for several well-recognized robust fault-detection problems, such as ℋ−/ℋ∞, ℋ2/ℋ∞, and ℋ∞/ℋ∞ problems, are the same and can be obtained by solving a standard algebraic Riccati equation. Optimal filters are also derived for many other optimization criteria and it is shown that some well-studied and seeming-sensible optimization criteria for fault-detection filter design could lead to (optimal but useless fault-detection filters.

  19. A novel linear switched reluctance motor for railway transportation systems

    Daldaban, Ferhat; Ustkoyuncu, Nurettin

    2010-01-01

    This paper presents the design and realization of a new linear switched reluctance motor (LSRM) structure, especially suitable for high-speed railway systems. The new model has a double active stator configuration and provides high force for many applications with low cost. The characteristics of the LSRM are obtained by using finite element analysis (FEA) and analytical calculations. The results of the FEA and analytical calculations are presented, and compared with experimental results. In addition, a classical double-sided LSRM (DSLSRM) is modeled with the same specifications of the new motor structure and the results are compared.

  20. Considering system non-linearity in transmission pricing

    Oloomi-Buygi, M.; Salehizadeh, M. Reza

    2008-01-01

    In this paper a new approach for transmission pricing is presented. The contribution of a contract on power flow of a transmission line is used as extent-of-use criterion for transmission pricing. In order to determine the contribution of each contract on power flow of each transmission line, first the contribution of each contract on each voltage angle is determined, which is called voltage angle decomposition. To this end, DC power flow is used to compute a primary solution for voltage angle decomposition. To consider the impacts of system non-linearity on voltage angle decomposition, a method is presented to determine the share of different terms of sine argument in sine value. Then the primary solution is corrected in different iterations of decoupled Newton-Raphson power flow using the presented sharing method. The presented approach is applied to a 4-bus test system and IEEE 30-bus test system and the results are analyzed. (author)

  1. Spatial generalised linear mixed models based on distances.

    Melo, Oscar O; Mateu, Jorge; Melo, Carlos E

    2016-10-01

    Risk models derived from environmental data have been widely shown to be effective in delineating geographical areas of risk because they are intuitively easy to understand. We present a new method based on distances, which allows the modelling of continuous and non-continuous random variables through distance-based spatial generalised linear mixed models. The parameters are estimated using Markov chain Monte Carlo maximum likelihood, which is a feasible and a useful technique. The proposed method depends on a detrending step built from continuous or categorical explanatory variables, or a mixture among them, by using an appropriate Euclidean distance. The method is illustrated through the analysis of the variation in the prevalence of Loa loa among a sample of village residents in Cameroon, where the explanatory variables included elevation, together with maximum normalised-difference vegetation index and the standard deviation of normalised-difference vegetation index calculated from repeated satellite scans over time. © The Author(s) 2013.

  2. An Example of Competence-Based Learning: Use of Maxima in Linear Algebra for Engineers

    Diaz, Ana; Garcia, Alfonsa; de la Villa, Agustin

    2011-01-01

    This paper analyses the role of Computer Algebra Systems (CAS) in a model of learning based on competences. The proposal is an e-learning model Linear Algebra course for Engineering, which includes the use of a CAS (Maxima) and focuses on problem solving. A reference model has been taken from the Spanish Open University. The proper use of CAS is…

  3. Econometrics analysis of consumer behaviour: a linear expenditure system applied to energy

    Giansante, C.; Ferrari, V.

    1996-12-01

    In economics literature the expenditure system specification is a well known subject. The problem is to define a coherent representation of consumer behaviour through functional forms easy to calculate. In this work it is used the Stone-Geary Linear Expenditure System and its multi-level decision process version. The Linear Expenditure system is characterized by an easy calculating estimation procedure, and its multi-level specification allows substitution and complementary relations between goods. Moreover, the utility function separability condition on which the Utility Tree Approach is based, justifies to use an estimation procedure in two or more steps. This allows to use an high degree of expenditure categories disaggregation, impossible to reach the Linear Expediture System. The analysis is applied to energy sectors

  4. Feedback-linearization and feedback-feedforward decentralized control for multimachine power system

    De Tuglie, Enrico [Dipartimento di Ingegneria dell' Ambiente, e per lo Sviluppo Sostenibile - DIASS, Politecnico di Bari, Viale del Turismo 8, 74100 Taranto (Italy); Iannone, Silvio Marcello; Torelli, Francesco [Dipartimento di Elettrotecnica, ed Elettronica - DEE, Politecnico di Bari, Via Re David 200, 70125 Bari (Italy)

    2008-03-15

    In this paper a decentralized nonlinear controller for large-scale power systems is investigated. The proposed controller design is based on the input-output feedback linearization methodology. In order to overcome computational difficulties in adopting such methodology, the overall interconnected nonlinear system, given as n-order, is analyzed as a cascade connection of an n{sub 1}-order nonlinear subsystem and an n{sub 2}-order linear subsystem. The controller design is obtained by applying input-output feedback linearization to the nonlinear subsystem and adopting a tracking control scheme, based on feedback-feedforward technique, for the linear subsystem. In the assumed system model, which is characterised by an interconnected structure between generating units, a decentralised adaptive controller is implemented by decentralizing these constraints. The use of a totally decentralised controller implies a system performance decay with respect to performance when the system is equipped with a centralised controller. Fortunately, the robustness of the proposed controller, based on input-output feedback procedure, guarantees good performance in terms of disturbance even when disturbances are caused by decentralization of interconnection constraints. Test results, provided on the IEEE 30 bus test system, demonstrate the effectiveness and practical applicability of proposed methodology. (author)

  5. Linear programming based on neural networks for radiotherapy treatment planning

    Xingen Wu; Limin Luo

    2000-01-01

    In this paper, we propose a neural network model for linear programming that is designed to optimize radiotherapy treatment planning (RTP). This kind of neural network can be easily implemented by using a kind of 'neural' electronic system in order to obtain an optimization solution in real time. We first give an introduction to the RTP problem and construct a non-constraint objective function for the neural network model. We adopt a gradient algorithm to minimize the objective function and design the structure of the neural network for RTP. Compared to traditional linear programming methods, this neural network model can reduce the time needed for convergence, the size of problems (i.e., the number of variables to be searched) and the number of extra slack and surplus variables needed. We obtained a set of optimized beam weights that result in a better dose distribution as compared to that obtained using the simplex algorithm under the same initial condition. The example presented in this paper shows that this model is feasible in three-dimensional RTP. (author)

  6. Local hyperspectral data multisharpening based on linear/linear-quadratic nonnegative matrix factorization by integrating lidar data

    Benhalouche, Fatima Zohra; Karoui, Moussa Sofiane; Deville, Yannick; Ouamri, Abdelaziz

    2015-10-01

    In this paper, a new Spectral-Unmixing-based approach, using Nonnegative Matrix Factorization (NMF), is proposed to locally multi-sharpen hyperspectral data by integrating a Digital Surface Model (DSM) obtained from LIDAR data. In this new approach, the nature of the local mixing model is detected by using the local variance of the object elevations. The hyper/multispectral images are explored using small zones. In each zone, the variance of the object elevations is calculated from the DSM data in this zone. This variance is compared to a threshold value and the adequate linear/linearquadratic spectral unmixing technique is used in the considered zone to independently unmix hyperspectral and multispectral data, using an adequate linear/linear-quadratic NMF-based approach. The obtained spectral and spatial information thus respectively extracted from the hyper/multispectral images are then recombined in the considered zone, according to the selected mixing model. Experiments based on synthetic hyper/multispectral data are carried out to evaluate the performance of the proposed multi-sharpening approach and literature linear/linear-quadratic approaches used on the whole hyper/multispectral data. In these experiments, real DSM data are used to generate synthetic data containing linear and linear-quadratic mixed pixel zones. The DSM data are also used for locally detecting the nature of the mixing model in the proposed approach. Globally, the proposed approach yields good spatial and spectral fidelities for the multi-sharpened data and significantly outperforms the used literature methods.

  7. On modulated complex non-linear dynamical systems

    Mahmoud, G.M.; Mohamed, A.A.; Rauh, A.

    1999-01-01

    This paper is concerned with the development of an approximate analytical method to investigate periodic solutions and their stability in the case of modulated non-linear dynamical systems whose equation of motion is describe. Such differential equations appear, for example, in problems of colliding particle beams in high-energy accelerators or one-mass systems with two or more degrees of freedom, e.g. rotors. The significance of periodic solutions lies on the fact that all non-periodic responses, if convergent, would approach to periodic solutions at the steady-state conditions. The example shows a good agreement between numerical and analytical results for small values of ε. The effect of the periodic modulation on the stability of the 2π-periodic solutions is discussed

  8. Thermodynamic Optimality criteria for biological systems in linear irreversible thermodynamics

    Chimal, J C; Sánchez, N; Ramírez, PR

    2017-01-01

    In this paper the methodology of the so-called Linear Irreversible Thermodynamics (LIT) is applied; although traditionally used locally to study general systems in non-equilibrium states in which it is consider both internal and external contributions to the entropy increments in order to analyze the efficiency of two coupled processes with generalized fluxes J 1 , J 2 and their corresponding forces X 1 , X 2 . We extend the former analysis to takes into account two different operating regimes namely: Omega Function and Efficient Power criterion, respectively. Results show analogies in the optimal performance between and we can say that there exist a criteria of optimization which can be used specially for biological systems where a good design of the biological parameters made by nature at maximum efficient power conditions lead to more efficient engines than those at the maximum power conditions or ecological conditions. (paper)

  9. Linear system identification via backward-time observer models

    Juang, Jer-Nan; Phan, Minh

    1993-01-01

    This paper presents an algorithm to identify a state-space model of a linear system using a backward-time approach. The procedure consists of three basic steps. First, the Markov parameters of a backward-time observer are computed from experimental input-output data. Second, the backward-time observer Markov parameters are decomposed to obtain the backward-time system Markov parameters (backward-time pulse response samples) from which a backward-time state-space model is realized using the Eigensystem Realization Algorithm. Third, the obtained backward-time state space model is converted to the usual forward-time representation. Stochastic properties of this approach will be discussed. Experimental results are given to illustrate when and to what extent this concept works.

  10. Ultra-high Frequency Linear Fiber Optic Systems

    Lau, Kam Y

    2009-01-01

    Designed for a one-semester course on fiber-optics systems and communication links, this book provides a concise but rigorous treatment of the theory and practice of analog (linear) fiber-optics links and systems that constitute the foundation of Hybrid Fiber Coax infrastructure in present-day CATV distribution and cable modem Internet access. Emerging applications in remote fiber-optic feed for free-space millimeter wave enterprise campus networks are also described. Issues such as dispersion and interferometric noise are treated quantitatively, and means for mitigating them are explained. This broad but concise text will thus be invaluable not only to students of fiber-optics communication but also to practicing engineers.

  11. Non-linear second-order periodic systems with non-smooth potential

    In this paper we study second order non-linear periodic systems driven by the ordinary vector -Laplacian with a non-smooth, locally Lipschitz potential function. Our approach is variational and it is based on the non-smooth critical point theory. We prove existence and multiplicity results under general growth conditions on ...

  12. Non-linear second-order periodic systems with non-smooth potential

    R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22

    Abstract. In this paper we study second order non-linear periodic systems driven by the ordinary vector p-Laplacian with a non-smooth, locally Lipschitz potential function. Our approach is variational and it is based on the non-smooth critical point theory. We prove existence and multiplicity results under general growth ...

  13. A block Krylov subspace time-exact solution method for linear ordinary differential equation systems

    Bochev, Mikhail A.

    2013-01-01

    We propose a time-exact Krylov-subspace-based method for solving linear ordinary differential equation systems of the form $y'=-Ay+g(t)$ and $y"=-Ay+g(t)$, where $y(t)$ is the unknown function. The method consists of two stages. The first stage is an accurate piecewise polynomial approximation of

  14. State space model extraction of thermohydraulic systems – Part I: A linear graph approach

    Uren, K.R.; Schoor, G. van

    2013-01-01

    Thermohydraulic simulation codes are increasingly making use of graphical design interfaces. The user can quickly and easily design a thermohydraulic system by placing symbols on the screen resembling system components. These components can then be connected to form a system representation. Such system models may then be used to obtain detailed simulations of the physical system. Usually this kind of simulation models are too complex and not ideal for control system design. Therefore, a need exists for automated techniques to extract lumped parameter models useful for control system design. The goal of this first paper, in a two part series, is to propose a method that utilises a graphical representation of a thermohydraulic system, and a lumped parameter modelling approach, to extract state space models. In this methodology each physical domain of the thermohydraulic system is represented by a linear graph. These linear graphs capture the interaction between all components within and across energy domains – hydraulic, thermal and mechanical. These linear graphs are analysed using a graph-theoretic approach to derive reduced order state space models. These models capture the dominant dynamics of the thermohydraulic system and are ideal for control system design purposes. The proposed state space model extraction method is demonstrated by considering a U-tube system. A non-linear state space model is extracted representing both the hydraulic and thermal domain dynamics of the system. The simulated state space model is compared with a Flownex ® model of the U-tube. Flownex ® is a validated systems thermal-fluid simulation software package. - Highlights: • A state space model extraction methodology based on graph-theoretic concepts. • An energy-based approach to consider multi-domain systems in a common framework. • Allow extraction of transparent (white-box) state space models automatically. • Reduced order models containing only independent state

  15. A Novel Method of Robust Trajectory Linearization Control Based on Disturbance Rejection

    Xingling Shao

    2014-01-01

    Full Text Available A novel method of robust trajectory linearization control for a class of nonlinear systems with uncertainties based on disturbance rejection is proposed. Firstly, on the basis of trajectory linearization control (TLC method, a feedback linearization based control law is designed to transform the original tracking error dynamics to the canonical integral-chain form. To address the issue of reducing the influence made by uncertainties, with tracking error as input, linear extended state observer (LESO is constructed to estimate the tracking error vector, as well as the uncertainties in an integrated manner. Meanwhile, the boundedness of the estimated error is investigated by theoretical analysis. In addition, decoupled controller (which has the characteristic of well-tuning and simple form based on LESO is synthesized to realize the output tracking for closed-loop system. The closed-loop stability of the system under the proposed LESO-based control structure is established. Also, simulation results are presented to illustrate the effectiveness of the control strategy.

  16. Robust control of uncertain dynamic systems a linear state space approach

    Yedavalli, Rama K

    2014-01-01

    This textbook aims to provide a clear understanding of the various tools of analysis and design for robust stability and performance of uncertain dynamic systems. In model-based control design and analysis, mathematical models can never completely represent the “real world” system that is being modeled, and thus it is imperative to incorporate and accommodate a level of uncertainty into the models. This book directly addresses these issues from a deterministic uncertainty viewpoint and focuses on the interval parameter characterization of uncertain systems. Various tools of analysis and design are presented in a consolidated manner. This volume fills a current gap in published works by explicitly addressing the subject of control of dynamic systems from linear state space framework, namely using a time-domain, matrix-theory based approach. This book also: Presents and formulates the robustness problem in a linear state space model framework Illustrates various systems level methodologies with examples and...

  17. Transferring Instantly the State of Higher-Order Linear Descriptor (Regular Differential Systems Using Impulsive Inputs

    Athanasios D. Karageorgos

    2009-01-01

    Full Text Available In many applications, and generally speaking in many dynamical differential systems, the problem of transferring the initial state of the system to a desired state in (almost zero-time time is desirable but difficult to achieve. Theoretically, this can be achieved by using a linear combination of Dirac -function and its derivatives. Obviously, such an input is physically unrealizable. However, we can think of it approximately as a combination of small pulses of very high magnitude and infinitely small duration. In this paper, the approximation process of the distributional behaviour of higher-order linear descriptor (regular differential systems is presented. Thus, new analytical formulae based on linear algebra methods and generalized inverses theory are provided. Our approach is quite general and some significant conditions are derived. Finally, a numerical example is presented and discussed.

  18. Linear analysis of rotationally invariant, radially variant tomographic imaging systems

    Huesmann, R.H.

    1990-01-01

    This paper describes a method to analyze the linear imaging characteristics of rotationally invariant, radially variant tomographic imaging systems using singular value decomposition (SVD). When the projection measurements from such a system are assumed to be samples from independent and identically distributed multi-normal random variables, the best estimate of the emission intensity is given by the unweighted least squares estimator. The noise amplification of this estimator is inversely proportional to the singular values of the normal matrix used to model projection and backprojection. After choosing an acceptable noise amplification, the new method can determine the number of parameters and hence the number of pixels that should be estimated from data acquired from an existing system with a fixed number of angles and projection bins. Conversely, for the design of a new system, the number of angles and projection bins necessary for a given number of pixels and noise amplification can be determined. In general, computing the SVD of the projection normal matrix has cubic computational complexity. However, the projection normal matrix for this class of rotationally invariant, radially variant systems has a block circulant form. A fast parallel algorithm to compute the SVD of this block circulant matrix makes the singular value analysis practical by asymptotically reducing the computation complexity of the method by a multiplicative factor equal to the number of angles squared

  19. Discovery of Boolean metabolic networks: integer linear programming based approach.

    Qiu, Yushan; Jiang, Hao; Ching, Wai-Ki; Cheng, Xiaoqing

    2018-04-11

    Traditional drug discovery methods focused on the efficacy of drugs rather than their toxicity. However, toxicity and/or lack of efficacy are produced when unintended targets are affected in metabolic networks. Thus, identification of biological targets which can be manipulated to produce the desired effect with minimum side-effects has become an important and challenging topic. Efficient computational methods are required to identify the drug targets while incurring minimal side-effects. In this paper, we propose a graph-based computational damage model that summarizes the impact of enzymes on compounds in metabolic networks. An efficient method based on Integer Linear Programming formalism is then developed to identify the optimal enzyme-combination so as to minimize the side-effects. The identified target enzymes for known successful drugs are then verified by comparing the results with those in the existing literature. Side-effects reduction plays a crucial role in the study of drug development. A graph-based computational damage model is proposed and the theoretical analysis states the captured problem is NP-completeness. The proposed approaches can therefore contribute to the discovery of drug targets. Our developed software is available at " http://hkumath.hku.hk/~wkc/APBC2018-metabolic-network.zip ".

  20. The theory of a general quantum system interacting with a linear dissipative system

    Feynman, R.P.; Vernon, F.L.

    2000-01-01

    A formalism has been developed, using Feynman's space-time formulation of nonrelativistic quantum mechanics whereby the behavior of a system of interest, which is coupled to other external quantum systems, may be calculated in terms of its own variables only. It is shown that the effect of the external systems in such a formalism can always be included in a general class of functionals (influence functionals) of the coordinates of the system only. The properties of influence functionals for general systems are examined. Then, specific forms of influence functionals representing the effect of definite and random classical forces, linear dissipative systems at finite temperatures, and combinations of these are analyzed in detail. The linear system analysis is first done for perfectly linear systems composed of combinations of harmonic oscillators, loss being introduced by continuous distributions of oscillators. Then approximately linear systems and restrictions necessary for the linear behavior are considered. Influence functionals for all linear systems are shown to have the same form in terms of their classical response functions. In addition, a fluctuation-dissipation theorem is derived relating temperature and dissipation of the linear system to a fluctuating classical potential acting on the system of interest which reduces to the Nyquist-Johnson relation for noise in the case of electric circuits. Sample calculations of transition probabilities for the spontaneous emission of an atom in free space and in a cavity are made. Finally, a theorem is proved showing that within the requirements of linearity all sources of noise or quantum fluctuation introduced by maser-type amplification devices are accounted for by a classical calculation of the characteristics of the maser

  1. Radii of Solvability and Unsolvability of Linear Systems

    Hladík, M.; Rohn, Jiří

    2016-01-01

    Roč. 503, 15 August (2016), s. 120-134 ISSN 0024-3795 Institutional support: RVO:67985807 Keywords : interval matrix * linear equations * linear inequalities * matrix norm Subject RIV: BA - General Mathematics Impact factor: 0.973, year: 2016

  2. Periodic inventory system in cafeteria using linear programming

    Usop, Mohd Fais; Ishak, Ruzana; Hamdan, Ahmad Ridhuan

    2017-11-01

    Inventory management is an important factor in running a business. It plays a big role of managing the stock in cafeteria. If the inventories are failed to be managed wisely, it will affect the profit of the cafeteria. Therefore, the purpose of this study is to find the solution of the inventory management in cafeteria. Most of the cafeteria in Malaysia did not manage their stock well. Therefore, this study is to propose a database system of inventory management and to develop the inventory model in cafeteria management. In this study, new database system to improve the management of the stock in a weekly basis will be provided using Linear Programming Model to get the optimal range of the inventory needed for selected categories. Data that were collected by using the Periodic Inventory System at the end of the week within three months period being analyzed by using the Food Stock-take Database. The inventory model was developed from the collected data according to the category of the inventory in the cafeteria. Results showed the effectiveness of using the Periodic Inventory System and will be very helpful to the cafeteria management in organizing the inventory. Moreover, the findings in this study can reduce the cost of operation and increased the profit.

  3. Safe Exploration for Identifying Linear Systems via Robust Optimization

    Lu, Tyler; Zinkevich, Martin; Boutilier, Craig; Roy, Binz; Schuurmans, Dale

    2017-01-01

    Safely exploring an unknown dynamical system is critical to the deployment of reinforcement learning (RL) in physical systems where failures may have catastrophic consequences. In scenarios where one knows little about the dynamics, diverse transition data covering relevant regions of state-action space is needed to apply either model-based or model-free RL. Motivated by the cooling of Google's data centers, we study how one can safely identify the parameters of a system model with a desired ...

  4. Designing and Testing Composite Energy Storage Systems for Regulating the Outputs of Linear Wave Energy Converters

    Zanxiang Nie

    2017-01-01

    Full Text Available Linear wave energy converters generate intrinsically intermittent power with variable frequency and amplitude. A composite energy storage system consisting of batteries and super capacitors has been developed and controlled by buck-boost converters. The purpose of the composite energy storage system is to handle the fluctuations and intermittent characteristics of the renewable source, and hence provide a steady output power. Linear wave energy converters working in conjunction with a system composed of various energy storage devices, is considered as a microsystem, which can function in a stand-alone or a grid connected mode. Simulation results have shown that by applying a boost H-bridge and a composite energy storage system more power could be extracted from linear wave energy converters. Simulation results have shown that the super capacitors charge and discharge often to handle the frequent power fluctuations, and the batteries charge and discharge slowly for handling the intermittent power of wave energy converters. Hardware systems have been constructed to control the linear wave energy converter and the composite energy storage system. The performance of the composite energy storage system has been verified in experiments by using electronics-based wave energy emulators.

  5. Incomplete factorization technique for positive definite linear systems

    Manteuffel, T.A.

    1980-01-01

    This paper describes a technique for solving the large sparse symmetric linear systems that arise from the application of finite element methods. The technique combines an incomplete factorization method called the shifted incomplete Cholesky factorization with the method of generalized conjugate gradients. The shifted incomplete Cholesky factorization produces a splitting of the matrix A that is dependent upon a parameter α. It is shown that if A is positive definite, then there is some α for which this splitting is possible and that this splitting is at least as good as the Jacobi splitting. The method is shown to be more efficient on a set of test problems than either direct methods or explicit iteration schemes

  6. Stability and complexity of small random linear systems

    Hastings, Harold

    2010-03-01

    We explore the stability of the small random linear systems, typically involving 10-20 variables, motivated by dynamics of the world trade network and the US and Canadian power grid. This report was prepared as an account of work sponsored by an agency of the US Government. Neither the US Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the US Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the US Government or any agency thereof.

  7. IMPROVING THE PERFORMANCE OF THE LINEAR SYSTEMS SOLVERS USING CUDA

    BOGDAN OANCEA

    2012-05-01

    Full Text Available Parallel computing can offer an enormous advantage regarding the performance for very large applications in almost any field: scientific computing, computer vision, databases, data mining, and economics. GPUs are high performance many-core processors that can obtain very high FLOP rates. Since the first idea of using GPU for general purpose computing, things have evolved and now there are several approaches to GPU programming: CUDA from NVIDIA and Stream from AMD. CUDA is now a popular programming model for general purpose computations on GPU for C/C++ programmers. A great number of applications were ported to CUDA programming model and they obtain speedups of orders of magnitude comparing to optimized CPU implementations. In this paper we present an implementation of a library for solving linear systems using the CCUDA framework. We present the results of performance tests and show that using GPU one can obtain speedups of about of approximately 80 times comparing with a CPU implementation.

  8. Application of static var compensator on large synchronous motors based on linear optimization control design

    Soltani, J.; Fath Abadi, A.M.

    2003-01-01

    This paper describes the application of static var compensators, on an electrical distribution network containing two large synchronous motors, one of which is excited via a three-phase thyristor bridge rectifier. The second machine is excited via a diode bridge rectifier. Based on linear optimization control, the measurable feedback signals are applied to the control system loops of static var compensators and the excitation control loop of the first synchronous motor. The phase equations method was used to develop a computer program to model the distribution network. Computer results were obtained to demonstrate the system performance for some abnormal modes of operation. These results show that employing static var compensators based on the linear optimization control design for electrical distribution networks containing large synchronous motors is beneficial and may be considered a first stage of the system design

  9. TOEPLITZ, Solution of Linear Equation System with Toeplitz or Circulant Matrix

    Garbow, B.

    1984-01-01

    Description of program or function: TOEPLITZ is a collection of FORTRAN subroutines for solving linear systems Ax=b, where A is a Toeplitz matrix, a Circulant matrix, or has one or several block structures based on Toeplitz or Circulant matrices. Such systems arise in problems of electrodynamics, acoustics, mathematical statistics, algebra, in the numerical solution of integral equations with a difference kernel, and in the theory of stationary time series and signals

  10. Optimal Control Strategies in a Two Dimensional Differential Game Using Linear Equation under a Perturbed System

    Musa Danjuma SHEHU

    2008-06-01

    Full Text Available This paper lays emphasis on formulation of two dimensional differential games via optimal control theory and consideration of control systems whose dynamics is described by a system of Ordinary Differential equation in the form of linear equation under the influence of two controls U(. and V(.. Base on this, strategies were constructed. Hence we determine the optimal strategy for a control say U(. under a perturbation generated by the second control V(. within a given manifold M.

  11. Robust Fault Diagnosis Design for Linear Multiagent Systems with Incipient Faults

    Jingping Xia

    2015-01-01

    Full Text Available The design of a robust fault estimation observer is studied for linear multiagent systems subject to incipient faults. By considering the fact that incipient faults are in low-frequency domain, the fault estimation of such faults is proposed for discrete-time multiagent systems based on finite-frequency technique. Moreover, using the decomposition design, an equivalent conclusion is given. Simulation results of a numerical example are presented to demonstrate the effectiveness of the proposed techniques.

  12. Sampled-data models for linear and nonlinear systems

    Yuz, Juan I

    2014-01-01

    Sampled-data Models for Linear and Nonlinear Systems provides a fresh new look at a subject with which many researchers may think themselves familiar. Rather than emphasising the differences between sampled-data and continuous-time systems, the authors proceed from the premise that, with modern sampling rates being as high as they are, it is becoming more appropriate to emphasise connections and similarities. The text is driven by three motives: ·      the ubiquity of computers in modern control and signal-processing equipment means that sampling of systems that really evolve continuously is unavoidable; ·      although superficially straightforward, sampling can easily produce erroneous results when not treated properly; and ·      the need for a thorough understanding of many aspects of sampling among researchers and engineers dealing with applications to which they are central. The authors tackle many misconceptions which, although appearing reasonable at first sight, are in fact either p...

  13. An Offline Formulation of MPC for LPV Systems Using Linear Matrix Inequalities

    P. Bumroongsri

    2014-01-01

    Full Text Available An offline model predictive control (MPC algorithm for linear parameter varying (LPV systems is presented. The main contribution is to develop an offline MPC algorithm for LPV systems that can deal with both time-varying scheduling parameter and persistent disturbance. The norm-bounding technique is used to derive an offline MPC algorithm based on the parameter-dependent state feedback control law and the parameter-dependent Lyapunov functions. The online computational time is reduced by solving offline the linear matrix inequality (LMI optimization problems to find the sequences of explicit state feedback control laws. At each sampling instant, a parameter-dependent state feedback control law is computed by linear interpolation between the precomputed state feedback control laws. The algorithm is illustrated with two examples. The results show that robust stability can be ensured in the presence of both time-varying scheduling parameter and persistent disturbance.

  14. Algebraic coarsening methods for linear and nonlinear PDE and systems

    McWilliams, J C

    2000-01-01

    -grid variables. Once a coarse grid is chosen for which compatible relaxation converges fast, it follows that the dependence of the coarse-grid variables on each other decays exponentially or faster with the distance between them, measured in mesh-sizes. This implies that highly accurate coarse-grid equations can be constructed locally. A method for doing this by solving local constrained minimization problems is described in [1]. It is also shown how this approach can be applied to devise prolongation operators, which can be used for Galerkin coarsening in the usual way. In the present research we studied and developed methods based, in part, on these ideas. We developed and implemented an AMG approach which employs compatible relaxation to define the prolongation operator (hut is otherwise similar in its structure to classical AMG); we introduced a novel method for direct (i.e., non-Galerkin) algebraic coarsening, which is in the spirit of the approach originally proposed by Brandt in [1], hut is more efficient and well-defined; we investigated an approach for treating systems of equations and other problems where there is no unambiguous correspondence between equations and unknowns

  15. Inclusion of Linearized Moist Physics in Nasa's Goddard Earth Observing System Data Assimilation Tools

    Holdaway, Daniel; Errico, Ronald; Gelaro, Ronaldo; Kim, Jong G.

    2013-01-01

    Inclusion of moist physics in the linearized version of a weather forecast model is beneficial in terms of variational data assimilation. Further, it improves the capability of important tools, such as adjoint-based observation impacts and sensitivity studies. A linearized version of the relaxed Arakawa-Schubert (RAS) convection scheme has been developed and tested in NASA's Goddard Earth Observing System data assimilation tools. A previous study of the RAS scheme showed it to exhibit reasonable linearity and stability. This motivates the development of a linearization of a near-exact version of the RAS scheme. Linearized large-scale condensation is included through simple conversion of supersaturation into precipitation. The linearization of moist physics is validated against the full nonlinear model for 6- and 24-h intervals, relevant to variational data assimilation and observation impacts, respectively. For a small number of profiles, sudden large growth in the perturbation trajectory is encountered. Efficient filtering of these profiles is achieved by diagnosis of steep gradients in a reduced version of the operator of the tangent linear model. With filtering turned on, the inclusion of linearized moist physics increases the correlation between the nonlinear perturbation trajectory and the linear approximation of the perturbation trajectory. A month-long observation impact experiment is performed and the effect of including moist physics on the impacts is discussed. Impacts from moist-sensitive instruments and channels are increased. The effect of including moist physics is examined for adjoint sensitivity studies. A case study examining an intensifying Northern Hemisphere Atlantic storm is presented. The results show a significant sensitivity with respect to moisture.

  16. Time-dependent switched discrete-time linear systems control and filtering

    Zhang, Lixian; Shi, Peng; Lu, Qiugang

    2016-01-01

    This book focuses on the basic control and filtering synthesis problems for discrete-time switched linear systems under time-dependent switching signals. Chapter 1, as an introduction of the book, gives the backgrounds and motivations of switched systems, the definitions of the typical time-dependent switching signals, the differences and links to other types of systems with hybrid characteristics and a literature review mainly on the control and filtering for the underlying systems. By summarizing the multiple Lyapunov-like functions (MLFs) approach in which different requirements on comparisons of Lyapunov function values at switching instants, a series of methodologies are developed for the issues on stability and stabilization, and l2-gain performance or tube-based robustness for l∞ disturbance, respectively, in Chapters 2 and 3. Chapters 4 and 5 are devoted to the control and filtering problems for the time-dependent switched linear systems with either polytopic uncertainties or measurable time-varying...

  17. Comparison of linear, mixed integer and non-linear programming methods in energy system dispatch modelling

    Ommen, Torben Schmidt; Markussen, Wiebke Brix; Elmegaard, Brian

    2014-01-01

    In the paper, three frequently used operation optimisation methods are examined with respect to their impact on operation management of the combined utility technologies for electric power and DH (district heating) of eastern Denmark. The investigation focusses on individual plant operation...... differences and differences between the solution found by each optimisation method. One of the investigated approaches utilises LP (linear programming) for optimisation, one uses LP with binary operation constraints, while the third approach uses NLP (non-linear programming). The LP model is used...... as a benchmark, as this type is frequently used, and has the lowest amount of constraints of the three. A comparison of the optimised operation of a number of units shows significant differences between the three methods. Compared to the reference, the use of binary integer variables, increases operation...

  18. Chaos-based partial image encryption scheme based on linear fractional and lifting wavelet transforms

    Belazi, Akram; Abd El-Latif, Ahmed A.; Diaconu, Adrian-Viorel; Rhouma, Rhouma; Belghith, Safya

    2017-01-01

    In this paper, a new chaos-based partial image encryption scheme based on Substitution-boxes (S-box) constructed by chaotic system and Linear Fractional Transform (LFT) is proposed. It encrypts only the requisite parts of the sensitive information in Lifting-Wavelet Transform (LWT) frequency domain based on hybrid of chaotic maps and a new S-box. In the proposed encryption scheme, the characteristics of confusion and diffusion are accomplished in three phases: block permutation, substitution, and diffusion. Then, we used dynamic keys instead of fixed keys used in other approaches, to control the encryption process and make any attack impossible. The new S-box was constructed by mixing of chaotic map and LFT to insure the high confidentiality in the inner encryption of the proposed approach. In addition, the hybrid compound of S-box and chaotic systems strengthened the whole encryption performance and enlarged the key space required to resist the brute force attacks. Extensive experiments were conducted to evaluate the security and efficiency of the proposed approach. In comparison with previous schemes, the proposed cryptosystem scheme showed high performances and great potential for prominent prevalence in cryptographic applications.

  19. 2-D linear motion system. Innovative technology summary report

    1998-11-01

    The US Department of Energy's (DOE's) nuclear facility decontamination and decommissioning (D and D) program requires buildings to be decontaminated, decommissioned, and surveyed for radiological contamination in an expeditious and cost-effective manner. Simultaneously, the health and safety of personnel involved in the D and D activities is of primary concern. D and D workers must perform duties high off the ground, requiring the use of manlifts or scaffolding, often, in radiologically or chemically contaminated areas or in areas with limited access. Survey and decontamination instruments that are used are sometimes heavy or awkward to use, particularly when the worker is operating from a manlift or scaffolding. Finding alternative methods of performing such work on manlifts or scaffolding is important. The 2-D Linear Motion System (2-D LMS), also known as the Wall Walker trademark, is designed to remotely position tools and instruments on walls for use in such activities as radiation surveys, decontamination, and painting. Traditional (baseline) methods for operating equipment for these tasks require workers to perform duties on elevated platforms, sometimes several meters above the ground surface and near potential sources of contamination. The Wall Walker 2-D LMS significantly improves health and safety conditions by facilitating remote operation of equipment. The Wall Walker 2-D LMS performed well in a demonstration of its precision, accuracy, maneuverability, payload capacity, and ease of use. Thus, this innovative technology is demonstrated to be a viable alternative to standard methods of performing work on large, high walls, especially those that have potential contamination concerns. The Wall Walker was used to perform a final release radiological survey on over 167 m 2 of walls. In this application, surveying using a traditional (baseline) method that employs an aerial lift for manual access was 64% of the total cost of the improved technology. However

  20. Base Isolation for Seismic Retrofitting of a Multiple Building Structure: Evaluation of Equivalent Linearization Method

    Massimiliano Ferraioli

    2016-01-01

    Full Text Available Although the most commonly used isolation systems exhibit nonlinear inelastic behaviour, the equivalent linear elastic analysis is commonly used in the design and assessment of seismic-isolated structures. The paper investigates if the linear elastic model is suitable for the analysis of a seismically isolated multiple building structure. To this aim, its computed responses were compared with those calculated by nonlinear dynamic analysis. A common base isolation plane connects the isolation bearings supporting the adjacent structures. In this situation, the conventional equivalent linear elastic analysis may have some problems of accuracy because this method is calibrated on single base-isolated structures. Moreover, the torsional characteristics of the combined system are significantly different from those of separate isolated buildings. A number of numerical simulations and parametric studies under earthquake excitations were performed. The accuracy of the dynamic response obtained by the equivalent linear elastic model was calculated by the magnitude of the error with respect to the corresponding response considering the nonlinear behaviour of the isolation system. The maximum displacements at the isolation level, the maximum interstorey drifts, and the peak absolute acceleration were selected as the most important response measures. The influence of mass eccentricity, torsion, and high-modes effects was finally investigated.

  1. Linear relations in microbial reaction systems: a general overview of their origin, form, and use.

    Noorman, H J; Heijnen, J J; Ch A M Luyben, K

    1991-09-01

    In microbial reaction systems, there are a number of linear relations among net conversion rates. These can be very useful in the analysis of experimental data. This article provides a general approach for the formation and application of the linear relations. Two type of system descriptions, one considering the biomass as a black box and the other based on metabolic pathways, are encountered. These are defined in a linear vector and matrix algebra framework. A correct a priori description can be obtained by three useful tests: the independency, consistency, and observability tests. The independency are different. The black box approach provides only conservations relations. They are derived from element, electrical charge, energy, and Gibbs energy balances. The metabolic approach provides, in addition to the conservation relations, metabolic and reaction relations. These result from component, energy, and Gibbs energy balances. Thus it is more attractive to use the metabolic description than the black box approach. A number of different types of linear relations given in the literature are reviewed. They are classified according to the different categories that result from the black box or the metabolic system description. Validation of hypotheses related to metabolic pathways can be supported by experimental validation of the linear metabolic relations. However, definite proof from biochemical evidence remains indispensable.

  2. Development and adjustment of programs for solving systems of linear equations

    Fujimura, Toichiro

    1978-03-01

    Programs for solving the systems of linear equations have been adjusted and developed in expanding the scientific subroutine library SSL. The principal programs adjusted are based on the congruent method, method of product form of the inverse, orthogonal method, Crout's method for sparse system, and acceleration of iterative methods. The programs developed are based on the escalator method, direct parallel residue method and block tridiagonal method for band system. Described are usage of the programs developed and their future improvement. FORTRAN lists with simple examples in tests of the programs are also given. (auth.)

  3. Physical-dosimetric enabling a dual linear accelerator 3D planning systems for radiotherapy

    Alfonso, Rodolfo; Martinez, William; Arelis, Lores; Morales, Jorge

    2009-01-01

    The process of commissioning clinical linear accelerator requires a dual comprehensive study of the therapeutic beam parameters, both photons Electron. All information gained by measuring physical and dosimetric these beams must be analyzed, processed and refined for further modeling in computer-based treatment planning (RTPS). Of professionalism of this process will depend on the accuracy and precision of the calculations the prescribed doses. This paper aims to demonstrate availability clinical linear accelerator system-RTPS with late radiotherapy treatments shaped beam of photons and electrons. (author)

  4. An efficient parallel algorithm for the solution of a tridiagonal linear system of equations

    Stone, H. S.

    1971-01-01

    Tridiagonal linear systems of equations are solved on conventional serial machines in a time proportional to N, where N is the number of equations. The conventional algorithms do not lend themselves directly to parallel computations on computers of the ILLIAC IV class, in the sense that they appear to be inherently serial. An efficient parallel algorithm is presented in which computation time grows as log sub 2 N. The algorithm is based on recursive doubling solutions of linear recurrence relations, and can be used to solve recurrence relations of all orders.

  5. Multivariate statistical modelling based on generalized linear models

    Fahrmeir, Ludwig

    1994-01-01

    This book is concerned with the use of generalized linear models for univariate and multivariate regression analysis. Its emphasis is to provide a detailed introductory survey of the subject based on the analysis of real data drawn from a variety of subjects including the biological sciences, economics, and the social sciences. Where possible, technical details and proofs are deferred to an appendix in order to provide an accessible account for non-experts. Topics covered include: models for multi-categorical responses, model checking, time series and longitudinal data, random effects models, and state-space models. Throughout, the authors have taken great pains to discuss the underlying theoretical ideas in ways that relate well to the data at hand. As a result, numerous researchers whose work relies on the use of these models will find this an invaluable account to have on their desks. "The basic aim of the authors is to bring together and review a large part of recent advances in statistical modelling of m...

  6. Approximate labeling via graph cuts based on linear programming.

    Komodakis, Nikos; Tziritas, Georgios

    2007-08-01

    A new framework is presented for both understanding and developing graph-cut-based combinatorial algorithms suitable for the approximate optimization of a very wide class of Markov Random Fields (MRFs) that are frequently encountered in computer vision. The proposed framework utilizes tools from the duality theory of linear programming in order to provide an alternative and more general view of state-of-the-art techniques like the \\alpha-expansion algorithm, which is included merely as a special case. Moreover, contrary to \\alpha-expansion, the derived algorithms generate solutions with guaranteed optimality properties for a much wider class of problems, for example, even for MRFs with nonmetric potentials. In addition, they are capable of providing per-instance suboptimality bounds in all occasions, including discrete MRFs with an arbitrary potential function. These bounds prove to be very tight in practice (that is, very close to 1), which means that the resulting solutions are almost optimal. Our algorithms' effectiveness is demonstrated by presenting experimental results on a variety of low-level vision tasks, such as stereo matching, image restoration, image completion, and optical flow estimation, as well as on synthetic problems.

  7. Bearing Fault Diagnosis Based on Statistical Locally Linear Embedding.

    Wang, Xiang; Zheng, Yuan; Zhao, Zhenzhou; Wang, Jinping

    2015-07-06

    Fault diagnosis is essentially a kind of pattern recognition. The measured signal samples usually distribute on nonlinear low-dimensional manifolds embedded in the high-dimensional signal space, so how to implement feature extraction, dimensionality reduction and improve recognition performance is a crucial task. In this paper a novel machinery fault diagnosis approach based on a statistical locally linear embedding (S-LLE) algorithm which is an extension of LLE by exploiting the fault class label information is proposed. The fault diagnosis approach first extracts the intrinsic manifold features from the high-dimensional feature vectors which are obtained from vibration signals that feature extraction by time-domain, frequency-domain and empirical mode decomposition (EMD), and then translates the complex mode space into a salient low-dimensional feature space by the manifold learning algorithm S-LLE, which outperforms other feature reduction methods such as PCA, LDA and LLE. Finally in the feature reduction space pattern classification and fault diagnosis by classifier are carried out easily and rapidly. Rolling bearing fault signals are used to validate the proposed fault diagnosis approach. The results indicate that the proposed approach obviously improves the classification performance of fault pattern recognition and outperforms the other traditional approaches.

  8. Low-Rank Linear Dynamical Systems for Motor Imagery EEG.

    Zhang, Wenchang; Sun, Fuchun; Tan, Chuanqi; Liu, Shaobo

    2016-01-01

    The common spatial pattern (CSP) and other spatiospectral feature extraction methods have become the most effective and successful approaches to solve the problem of motor imagery electroencephalography (MI-EEG) pattern recognition from multichannel neural activity in recent years. However, these methods need a lot of preprocessing and postprocessing such as filtering, demean, and spatiospectral feature fusion, which influence the classification accuracy easily. In this paper, we utilize linear dynamical systems (LDSs) for EEG signals feature extraction and classification. LDSs model has lots of advantages such as simultaneous spatial and temporal feature matrix generation, free of preprocessing or postprocessing, and low cost. Furthermore, a low-rank matrix decomposition approach is introduced to get rid of noise and resting state component in order to improve the robustness of the system. Then, we propose a low-rank LDSs algorithm to decompose feature subspace of LDSs on finite Grassmannian and obtain a better performance. Extensive experiments are carried out on public dataset from "BCI Competition III Dataset IVa" and "BCI Competition IV Database 2a." The results show that our proposed three methods yield higher accuracies compared with prevailing approaches such as CSP and CSSP.

  9. Popov–Belevitch–Hautus type tests for the controllability of linear complementarity systems

    Camlibel, M. Kanat

    2007-01-01

    It is well-known that checking certain controllability properties of very simple piecewise linear systems are undecidable problems. This paper deals with the controllability problem of a class of piecewise linear systems, known as linear complementarity systems. By exploiting the underlying

  10. Machine learning-based methods for prediction of linear B-cell epitopes.

    Wang, Hsin-Wei; Pai, Tun-Wen

    2014-01-01

    B-cell epitope prediction facilitates immunologists in designing peptide-based vaccine, diagnostic test, disease prevention, treatment, and antibody production. In comparison with T-cell epitope prediction, the performance of variable length B-cell epitope prediction is still yet to be satisfied. Fortunately, due to increasingly available verified epitope databases, bioinformaticians could adopt machine learning-based algorithms on all curated data to design an improved prediction tool for biomedical researchers. Here, we have reviewed related epitope prediction papers, especially those for linear B-cell epitope prediction. It should be noticed that a combination of selected propensity scales and statistics of epitope residues with machine learning-based tools formulated a general way for constructing linear B-cell epitope prediction systems. It is also observed from most of the comparison results that the kernel method of support vector machine (SVM) classifier outperformed other machine learning-based approaches. Hence, in this chapter, except reviewing recently published papers, we have introduced the fundamentals of B-cell epitope and SVM techniques. In addition, an example of linear B-cell prediction system based on physicochemical features and amino acid combinations is illustrated in details.

  11. Identification of Multiple-Mode Linear Models Based on Particle Swarm Optimizer with Cyclic Network Mechanism

    Tae-Hyoung Kim

    2017-01-01

    Full Text Available This paper studies the metaheuristic optimizer-based direct identification of a multiple-mode system consisting of a finite set of linear regression representations of subsystems. To this end, the concept of a multiple-mode linear regression model is first introduced, and its identification issues are established. A method for reducing the identification problem for multiple-mode models to an optimization problem is also described in detail. Then, to overcome the difficulties that arise because the formulated optimization problem is inherently ill-conditioned and nonconvex, the cyclic-network-topology-based constrained particle swarm optimizer (CNT-CPSO is introduced, and a concrete procedure for the CNT-CPSO-based identification methodology is developed. This scheme requires no prior knowledge of the mode transitions between subsystems and, unlike some conventional methods, can handle a large amount of data without difficulty during the identification process. This is one of the distinguishing features of the proposed method. The paper also considers an extension of the CNT-CPSO-based identification scheme that makes it possible to simultaneously obtain both the optimal parameters of the multiple submodels and a certain decision parameter involved in the mode transition criteria. Finally, an experimental setup using a DC motor system is established to demonstrate the practical usability of the proposed metaheuristic optimizer-based identification scheme for developing a multiple-mode linear regression model.

  12. Event-Triggered Output-Feedback Control for Disturbed Linear Systems

    Hao Jiang

    2018-01-01

    Full Text Available In the last few decades, event-triggered control received considerable attention, because of advantages in reducing the resource utilization, such as communication load and processor. In this paper, we propose an event-triggered output-feedback controller for disturbed linear systems, in order to achieve both better resource utilization and disturbance attenuation properties at the same time. Based on our prior work on state-feedback H∞ control for disturbed systems, we propose an approach to design an output-feedback H∞ controller for the system whose states are not completely observable, and a sufficient condition guaranteeing the asymptotic stability and robustness of the system is given in the form of LMIs (Linear Matrix Inequalities.

  13. Stability and Linear Quadratic Differential Games of Discrete-Time Markovian Jump Linear Systems with State-Dependent Noise

    Huiying Sun

    2014-01-01

    Full Text Available We mainly consider the stability of discrete-time Markovian jump linear systems with state-dependent noise as well as its linear quadratic (LQ differential games. A necessary and sufficient condition involved with the connection between stochastic Tn-stability of Markovian jump linear systems with state-dependent noise and Lyapunov equation is proposed. And using the theory of stochastic Tn-stability, we give the optimal strategies and the optimal cost values for infinite horizon LQ stochastic differential games. It is demonstrated that the solutions of infinite horizon LQ stochastic differential games are concerned with four coupled generalized algebraic Riccati equations (GAREs. Finally, an iterative algorithm is presented to solve the four coupled GAREs and a simulation example is given to illustrate the effectiveness of it.

  14. On differential operators generating iterative systems of linear ODEs of maximal symmetry algebra

    Ndogmo, J. C.

    2017-06-01

    Although every iterative scalar linear ordinary differential equation is of maximal symmetry algebra, the situation is different and far more complex for systems of linear ordinary differential equations, and an iterative system of linear equations need not be of maximal symmetry algebra. We illustrate these facts by examples and derive families of vector differential operators whose iterations are all linear systems of equations of maximal symmetry algebra. Some consequences of these results are also discussed.

  15. Linear active disturbance rejection-based load frequency control concerning high penetration of wind energy

    Tang, Yanmei; Bai, Yan; Huang, Congzhi; Du, Bin

    2015-01-01

    Highlights: • A disturbance rejection solution to the load frequency control issue is proposed. • Several power systems with wind energy conversation system have been tested. • A tuning algorithm of the controller parameters was proposed. • The performance of the proposed approach is better than traditional controllers. - Abstract: A new grid load frequency control approach is proposed for the doubly fed induction generator based wind power plants. The load frequency control issue in a power system is undergoing fundamental changes due to the rapidly growing amount of wind energy conversation system, and concentrating on maintaining generation-load balance and disturbance rejection. The prominent feature of the linear active disturbance rejection control approach is that the total disturbance can be estimated and then eliminated in real time. And thus, it is a feasible solution to deal with the load frequency control issue. In this paper, the application of the linear active disturbance rejection control approach in the load frequency control issue for a complex power system with wind energy conversation system based on doubly fed induction generator is investigated. The load frequency control issue is formulated as a decentralized multi-objective optimization control problem, the solution to which is solved by the hybrid particle swarm optimization technique. To show the effectiveness of the proposed control scheme, the robust performance testing based on Monte-Carlo approach is carried out. The performance superiority of the system with the proposed linear active disturbance rejection control approach over that with the traditional proportional integral and fuzzy-proportional integral-based controllers is validated by the simulation results

  16. A spectral analysis of the domain decomposed Monte Carlo method for linear systems

    Slattery, S. R.; Wilson, P. P. H. [Engineering Physics Department, University of Wisconsin - Madison, 1500 Engineering Dr., Madison, WI 53706 (United States); Evans, T. M. [Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge, TN 37830 (United States)

    2013-07-01

    The domain decomposed behavior of the adjoint Neumann-Ulam Monte Carlo method for solving linear systems is analyzed using the spectral properties of the linear operator. Relationships for the average length of the adjoint random walks, a measure of convergence speed and serial performance, are made with respect to the eigenvalues of the linear operator. In addition, relationships for the effective optical thickness of a domain in the decomposition are presented based on the spectral analysis and diffusion theory. Using the effective optical thickness, the Wigner rational approximation and the mean chord approximation are applied to estimate the leakage fraction of stochastic histories from a domain in the decomposition as a measure of parallel performance and potential communication costs. The one-speed, two-dimensional neutron diffusion equation is used as a model problem to test the models for symmetric operators. In general, the derived approximations show good agreement with measured computational results. (authors)

  17. A spectral analysis of the domain decomposed Monte Carlo method for linear systems

    Slattery, S. R.; Wilson, P. P. H.; Evans, T. M.

    2013-01-01

    The domain decomposed behavior of the adjoint Neumann-Ulam Monte Carlo method for solving linear systems is analyzed using the spectral properties of the linear operator. Relationships for the average length of the adjoint random walks, a measure of convergence speed and serial performance, are made with respect to the eigenvalues of the linear operator. In addition, relationships for the effective optical thickness of a domain in the decomposition are presented based on the spectral analysis and diffusion theory. Using the effective optical thickness, the Wigner rational approximation and the mean chord approximation are applied to estimate the leakage fraction of stochastic histories from a domain in the decomposition as a measure of parallel performance and potential communication costs. The one-speed, two-dimensional neutron diffusion equation is used as a model problem to test the models for symmetric operators. In general, the derived approximations show good agreement with measured computational results. (authors)

  18. Active disturbance rejection based trajectory linearization control for hypersonic reentry vehicle with bounded uncertainties.

    Shao, Xingling; Wang, Honglun

    2015-01-01

    This paper investigates a novel compound control scheme combined with the advantages of trajectory linearization control (TLC) and alternative active disturbance rejection control (ADRC) for hypersonic reentry vehicle (HRV) attitude tracking system with bounded uncertainties. Firstly, in order to overcome actuator saturation problem, nonlinear tracking differentiator (TD) is applied in the attitude loop to achieve fewer control consumption. Then, linear extended state observers (LESO) are constructed to estimate the uncertainties acting on the LTV system in the attitude and angular rate loop. In addition, feedback linearization (FL) based controllers are designed using estimates of uncertainties generated by LESO in each loop, which enable the tracking error for closed-loop system in the presence of large uncertainties to converge to the residual set of the origin asymptotically. Finally, the compound controllers are derived by integrating with the nominal controller for open-loop nonlinear system and FL based controller. Also, comparisons and simulation results are presented to illustrate the effectiveness of the control strategy. Copyright © 2014 ISA. Published by Elsevier Ltd. All rights reserved.

  19. Electron linear accelerator system for natural rubber vulcanization

    Rimjaem, S.; Kongmon, E.; Rhodes, M. W.; Saisut, J.; Thongbai, C.

    2017-09-01

    Development of an electron accelerator system, beam diagnostic instruments, an irradiation apparatus and electron beam processing methodology for natural rubber vulcanization is underway at the Plasma and Beam Physics Research Facility, Chiang Mai University, Thailand. The project is carried out with the aims to improve the qualities of natural rubber products. The system consists of a DC thermionic electron gun, 5-cell standing-wave radio-frequency (RF) linear accelerator (linac) with side-coupling cavities and an electron beam irradiation apparatus. This system is used to produce electron beams with an adjustable energy between 0.5 and 4 MeV and a pulse current of 10-100 mA at a pulse repetition rate of 20-400 Hz. An average absorbed dose between 160 and 640 Gy is expected to be archived for 4 MeV electron beam when the accelerator is operated at 400 Hz. The research activities focus firstly on assembling of the accelerator system, study on accelerator properties and electron beam dynamic simulations. The resonant frequency of the RF linac in π/2 operating mode is 2996.82 MHz for the operating temperature of 35 °C. The beam dynamic simulations were conducted by using the code ASTRA. Simulation results suggest that electron beams with an average energy of 4.002 MeV can be obtained when the linac accelerating gradient is 41.7 MV/m. The rms transverse beam size and normalized rms transverse emittance at the linac exit are 0.91 mm and 10.48 π mm·mrad, respectively. This information can then be used as the input data for Monte Carlo simulations to estimate the electron beam penetration depth and dose distribution in the natural rubber latex. The study results from this research will be used to define optimal conditions for natural rubber vulcanization with different electron beam energies and doses. This is very useful for development of future practical industrial accelerator units.

  20. Predictive IP controller for robust position control of linear servo system.

    Lu, Shaowu; Zhou, Fengxing; Ma, Yajie; Tang, Xiaoqi

    2016-07-01

    Position control is a typical application of linear servo system. In this paper, to reduce the system overshoot, an integral plus proportional (IP) controller is used in the position control implementation. To further improve the control performance, a gain-tuning IP controller based on a generalized predictive control (GPC) law is proposed. Firstly, to represent the dynamics of the position loop, a second-order linear model is used and its model parameters are estimated on-line by using a recursive least squares method. Secondly, based on the GPC law, an optimal control sequence is obtained by using receding horizon, then directly supplies the IP controller with the corresponding control parameters in the real operations. Finally, simulation and experimental results are presented to show the efficiency of proposed scheme. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.

  1. A behavioral framework for compositionality: linear systems, discrete event systems and hybrid systems

    Anak Agung Julius, A.A.J.; van der Schaft, Arjan

    2004-01-01

    In this paper we formulate a general framework based on the behavioral approach to dynamical systems, in which various issues regarding interconnection of systems can be addressed. The main part of the framework is that interconnections or compositions of systems can be modelled with interconnection

  2. Non-linear feedback control of the p53 protein-mdm2 inhibitor system using the derivative-free non-linear Kalman filter.

    Rigatos, Gerasimos G

    2016-06-01

    It is proven that the model of the p53-mdm2 protein synthesis loop is a differentially flat one and using a diffeomorphism (change of state variables) that is proposed by differential flatness theory it is shown that the protein synthesis model can be transformed into the canonical (Brunovsky) form. This enables the design of a feedback control law that maintains the concentration of the p53 protein at the desirable levels. To estimate the non-measurable elements of the state vector describing the p53-mdm2 system dynamics, the derivative-free non-linear Kalman filter is used. Moreover, to compensate for modelling uncertainties and external disturbances that affect the p53-mdm2 system, the derivative-free non-linear Kalman filter is re-designed as a disturbance observer. The derivative-free non-linear Kalman filter consists of the Kalman filter recursion applied on the linearised equivalent of the protein synthesis model together with an inverse transformation based on differential flatness theory that enables to retrieve estimates for the state variables of the initial non-linear model. The proposed non-linear feedback control and perturbations compensation method for the p53-mdm2 system can result in more efficient chemotherapy schemes where the infusion of medication will be better administered.

  3. First-order systems of linear partial differential equations: normal forms, canonical systems, transform methods

    Heinz Toparkus

    2014-04-01

    Full Text Available In this paper we consider first-order systems with constant coefficients for two real-valued functions of two real variables. This is both a problem in itself, as well as an alternative view of the classical linear partial differential equations of second order with constant coefficients. The classification of the systems is done using elementary methods of linear algebra. Each type presents its special canonical form in the associated characteristic coordinate system. Then you can formulate initial value problems in appropriate basic areas, and you can try to achieve a solution of these problems by means of transform methods.

  4. Linear Quantum Systems: Non-Classical States and Robust Stability

    2016-06-29

    has a history going back some 50 years, to the birth of modern control theory with Kalman’s foundational work on filtering and LQG optimal control...realizability conditions. DISTRIBUTION A. Approved for public release: distribution unlimited. 8 Shi Wang, Matthew R James H- Infinity control of...physical model for a quantum measurement-based feedback control system with time delay is presented for the H- infinity control. Luis Augusto

  5. Badly approximable systems of linear forms in absolute value

    Hussain, M.; Kristensen, Simon

    In this paper we show that the set of mixed type badly approximable simultaneously small linear forms is of maximal dimension. As a consequence of this theorem we settle the conjecture stated in [9]....

  6. The graphics software of the Saclay Linear Accelerator control system

    Gournay, J.F.

    1988-01-01

    The graphics software used for the control of the Saclay Linear Accelerator is described. The specific requirements that such a software must have in this environment are outlined and some typical applications are presented. (orig.)

  7. Stability Analysis for Fractional-Order Linear Singular Delay Differential Systems

    Hai Zhang

    2014-01-01

    Full Text Available We investigate the delay-independently asymptotic stability of fractional-order linear singular delay differential systems. Based on the algebraic approach, the sufficient conditions are presented to ensure the asymptotic stability for any delay parameter. By applying the stability criteria, one can avoid solving the roots of transcendental equations. An example is also provided to illustrate the effectiveness and applicability of the theoretical results.

  8. Measurement system for pulse radiolysis at linear electron accelerator LAE 13/9

    Mirkowski, J.; Grodkowski, J.

    1999-01-01

    A new control and measurement system for a pulse radiolysis setup based on the linear electron accelerator LAE 13/9 is described. It consists of CAMAC apparatus, two oscilloscopes: Tektronix TDS620 and Iwatsu TS8123, and PC computer as a control unit for programming and controlling of the experiments and for results processing. The program is written using DELPHI 1.0 (Borland) programming platform and it can operate in WINDOWS 3.x or WINDOWS 95 environment. (author)

  9. Residual generation with unknown input observer for linear systems in the presence of unmatched uncertainties

    Bagherpour, Esmaeel A.; HairiTazdi, Mohammad Reza; Mahjoob, Mohammad

    2014-01-01

    In this paper, we deal with residual vector generation for fault detection problems in linear systems via unknown input observer (UIO) when the so-called observer matching condition is not satisfied. Based on the relative degree between unknown input and output, a vector of the auxiliary output is introduced so that the observer matching condition is satisfied with respect to the vector. Auxiliary outputs are related to the derivatives of measured signals. However, differentiation leads to excessive amplification of measurement noise. A dynamically equivalent configuration of linear systems is developed using successive integrations to avoid differentiation. As such, auxiliary outputs are constructed without differentiation. Then, the equivalent dynamic system and its corresponding auxiliary outputs are used to generate the residual vector via an exponentially converging UIO. Fault detection in the generated residual vector is also investigated. Finally, the effectiveness of the proposed method is shown via numerical simulation.

  10. Development Of Linear Quadratic Regulator Design For Small UAV System

    Cho Zin Myint

    2015-08-01

    Full Text Available The aim of this paper is to know the importance role of stability analysis for both unmanned aircraft system and for all control system. The objective of paper is to develop a method for dynamic stability analysis of the design process. These are categorized intoTo design model and stability analysis of UAV based on the forces and moment equations of aircraft dynamic model To choose the suitable controller for desired altitude of a particular UAV model To analyze the stability condition for aircraft using mathematical modeling and MATLAB. In this paper the analytical model of the longitudinal dynamic of flying wing UAV has been developed using aerodynamic data. The stability characteristics of UAV can be achieved from the system transfer function with LQR controller.

  11. Metrical theorems on systems of small inhomogeneous linear forms

    Hussain, Mumtaz; Kristensen, Simon

    In this paper we establish complete Khintchine-Groshev and Schmidt type theorems for inhomogeneous small linear forms in the so-called doubly metric case, in which the inhomogeneous parameter is not fixed.......In this paper we establish complete Khintchine-Groshev and Schmidt type theorems for inhomogeneous small linear forms in the so-called doubly metric case, in which the inhomogeneous parameter is not fixed....

  12. Metrical results on systems of small linear forms

    Hussain, M.; Kristensen, Simon

    In this paper the metric theory of Diophantine approximation associated with the small linear forms is investigated. Khintchine--Groshev theorems are established along with Hausdorff measure generalization without the monotonic assumption on the approximating function.......In this paper the metric theory of Diophantine approximation associated with the small linear forms is investigated. Khintchine--Groshev theorems are established along with Hausdorff measure generalization without the monotonic assumption on the approximating function....

  13. Robustness of Linear Systems towards Multi-Dissipative Pertubations

    Thygesen, Uffe Høgsbro; Poulsen, Niels Kjølstad

    1997-01-01

    We consider the question of robust stability of a linear time invariant plant subject to dynamic perturbations, which are dissipative in the sense of Willems with respect to several quadratic supply rates. For instance, parasitic dynamics are often both small gain and passive. We reduce several...... robustness analysis questions to linear matrix inequalities: robust stability, robust H2 performance and robust performance in presence of disturbances with finite signal-to-noise ratios...

  14. Design of an optimal preview controller for linear discrete-time descriptor systems with state delay

    Cao, Mengjuan; Liao, Fucheng

    2015-04-01

    In this paper, the linear discrete-time descriptor system with state delay is studied, and a design method for an optimal preview controller is proposed. First, by using the discrete lifting technique, the original system is transformed into a general descriptor system without state delay in form. Then, taking advantage of the first-order forward difference operator, we construct a descriptor augmented error system, including the state vectors of the lifted system, error vectors, and desired target signals. Rigorous mathematical proofs are given for the regularity, stabilisability, causal controllability, and causal observability of the descriptor augmented error system. Based on these, the optimal preview controller with preview feedforward compensation for the original system is obtained by using the standard optimal regulator theory of the descriptor system. The effectiveness of the proposed method is shown by numerical simulation.

  15. Linear Matrix Inequalities for Analysis and Control of Linear Vector Second-Order Systems

    Adegas, Fabiano Daher; Stoustrup, Jakob

    2015-01-01

    the Lyapunov matrix and the system matrices by introducing matrix multipliers, which potentially reduce conservativeness in hard control problems. Multipliers facilitate the usage of parameter-dependent Lyapunov functions as certificates of stability of uncertain and time-varying vector second-order systems......SUMMARY Many dynamical systems are modeled as vector second-order differential equations. This paper presents analysis and synthesis conditions in terms of LMI with explicit dependence in the coefficient matrices of vector second-order systems. These conditions benefit from the separation between....... The conditions introduced in this work have the potential to increase the practice of analyzing and controlling systems directly in vector second-order form. Copyright © 2014 John Wiley & Sons, Ltd....

  16. Damping characteristic identification of non-linear soil-structural system interaction by phase resonance

    Poterasu, V.F.

    1984-01-01

    It is presented a method and the phase resonance for damping characteristic identification of non-linear soil-structural interaction. The algorithm can be applied in case of any, not necessarily, damping characteristic of the system examined. For the identification, the system is harmonically excited and are considered the super-harmonic amplitudes for odd and even powers of the x. The response of shear beam system for different levels of base excitation and for different locations of the load is considered. (Author) [pt

  17. Digital low level rf control system with four different intermediate frequencies for the International Linear Collider

    Wibowo, Sigit Basuki; Matsumoto, Toshihiro; Michizono, Shinichiro; Miura, Takako; Qiu, Feng; Liu, Na

    2017-09-01

    A field programmable gate array-based digital low level rf (LLRF) control system will be used in the International Linear Collider (ILC) in order to satisfy the rf stability requirements. The digital LLRF control system with four different intermediate frequencies has been developed to decrease the required number of analog-to-digital converters in this system. The proof of concept of this technique was demonstrated at the Superconducting RF Test Facility in the High Energy Accelerator Research Organization, Japan. The amplitude and phase stability has fulfilled the ILC requirements.

  18. A note on the time decay of solutions for the linearized Wigner-Poisson system

    Gamba, Irene; Gualdani, Maria; Sparber, Christof

    2009-01-01

    We consider the one-dimensional Wigner-Poisson system of plasma physics, linearized around a (spatially homogeneous) Lorentzian distribution and prove that the solution of the corresponding linearized problem decays to zero in time. We also give

  19. New approach to solve fully fuzzy system of linear equations using ...

    Known example problems are solved to illustrate the efficacy and ... The concept of fuzzy set and fuzzy number were first introduced by Zadeh .... (iii) Fully fuzzy linear systems can be solved by linear programming approach, Gauss elim-.

  20. Accelerated solution of non-linear flow problems using Chebyshev iteration polynomial based RK recursions

    Lorber, A.A.; Carey, G.F.; Bova, S.W.; Harle, C.H. [Univ. of Texas, Austin, TX (United States)

    1996-12-31

    The connection between the solution of linear systems of equations by iterative methods and explicit time stepping techniques is used to accelerate to steady state the solution of ODE systems arising from discretized PDEs which may involve either physical or artificial transient terms. Specifically, a class of Runge-Kutta (RK) time integration schemes with extended stability domains has been used to develop recursion formulas which lead to accelerated iterative performance. The coefficients for the RK schemes are chosen based on the theory of Chebyshev iteration polynomials in conjunction with a local linear stability analysis. We refer to these schemes as Chebyshev Parameterized Runge Kutta (CPRK) methods. CPRK methods of one to four stages are derived as functions of the parameters which describe an ellipse {Epsilon} which the stability domain of the methods is known to contain. Of particular interest are two-stage, first-order CPRK and four-stage, first-order methods. It is found that the former method can be identified with any two-stage RK method through the correct choice of parameters. The latter method is found to have a wide range of stability domains, with a maximum extension of 32 along the real axis. Recursion performance results are presented below for a model linear convection-diffusion problem as well as non-linear fluid flow problems discretized by both finite-difference and finite-element methods.