Stepping motor adaptor actuator for a commercial uhv linear motion feedthrough
Iarocci, M.; Oversluizen, T.
1989-01-01
An adaptor coupling has been developed that will allow the attachment of a standard stepping motor to a precision commercial (Varian) uhv linear motion feedthrough. The assembly, consisting of the motor, motor adaptor, limit switches, etc. is clamped to the feedthrough body which can be done under vacuum conditions if necessary. With a 500 step/rev. stepping motor the resolution is 1.27 μm per step. We presently use this assembly in a remote location for the precise positioning of a beam sensing monitor. 2 refs., 3 figs
Electrohydraulic linear actuator with two stepping motors controlled by overshoot-free algorithm
Milecki, Andrzej; Ortmann, Jarosław
2017-11-01
The paper describes electrohydraulic spool valves with stepping motors used as electromechanical transducers. A new concept of a proportional valve in which two stepping motors are working differentially is introduced. Such valve changes the fluid flow proportionally to the sum or difference of the motors' steps numbers. The valve design and principle of its operation is described. Theoretical equations and simulation models are proposed for all elements of the drive, i.e., the stepping motor units, hydraulic valve and cylinder. The main features of the valve and drive operation are described; some specific problem areas covering the nature of stepping motors and their differential work in the valve are also considered. The whole servo drive non-linear model is proposed and used further for simulation investigations. The initial simulation investigations of the drive with a new valve have shown that there is a significant overshoot in the drive step response, which is not allowed in positioning process. Therefore additional effort is spent to reduce the overshoot and in consequence reduce the settling time. A special predictive algorithm is proposed to this end. Then the proposed control method is tested and further improved in simulations. Further on, the model is implemented in reality and the whole servo drive system is tested. The investigation results presented in this paper, are showing an overshoot-free positioning process which enables high positioning accuracy.
1980-10-01
This book is divided into three parts, which is about practical using of stepping motor. The first part has six chapters. The contents of the first part are about stepping motor, classification of stepping motor, basic theory og stepping motor, characteristic and basic words, types and characteristic of stepping motor in hybrid type and basic control of stepping motor. The second part deals with application of stepping motor with hardware of stepping motor control, stepping motor control by microcomputer and software of stepping motor control. The last part mentions choice of stepping motor system, examples of stepping motor, measurement of stepping motor and practical cases of application of stepping motor.
Haniger, L.; Elger, R.; Kocandrle, L.; Zdebor, J.
1986-01-01
A linear step drive is described developed in Czechoslovak-Soviet cooperation and intended for driving WWER-1000 control rods. The functional principle is explained of the motor and the mechanical and electrical parts of the drive, power control, and the indicator of position are described. The motor has latches situated in the reactor at a distance of 3 m from magnetic armatures, it has a low structural height above the reactor cover, which suggests its suitability for seismic localities. Its magnetic circuits use counterpoles; the mechanical shocks at the completion of each step are damped using special design features. The position indicator is of a special design and evaluates motor position within ±1% of total travel. A drive diagram and the flow chart of both the control electronics and the position indicator are presented. (author) 4 figs
Khan, S.H.; Ivanov, A.A.
1995-01-01
An analytical method for calculating static characteristics of linear dc step motors (LSM) is described. These multiphase passive-armature motors are now being developed for control rod drives (CRD) in large nuclear reactors. The static characteristics of such LSM is defined by the variation of electromagnetic force with armature displacement and it determines motor performance in its standing and dynamic modes of operation. The proposed analytical technique for calculating this characteristic is based on the permeance analysis method applied to phase magnetic circuits of LSM. Reluctances of various parts of phase magnetic circuit is calculated analytically by assuming probable flux paths and by taking into account complex nature of magnetic field distribution in it. For given armature positions stator and armature iron saturations are taken into account by an efficient iterative algorithm which gives fast convergence. The method is validated by comparing theoretical results with experimental ones which shows satisfactory agreement for small stator currents and weak iron saturation
Motor Behavior: From Telegraph Keys and Twins to Linear Slides and Stepping
Thomas, Jerry R.
2006-01-01
Motor behavior is a significant area of scholarship with 64 Fellows from the American Academy of Kinesiology and Physical Education engaged in that work since 1930. This paper provides a brief overview of the history of research in motor development and motor control/learning, particularly noting the contributions to scholarship of Academy…
Khan, S.H.; Ivanov, A.A.
1993-01-01
This paper describes an approximate method for calculating the static characteristics of linear step motors (LSM), being developed for control rod drives (CRD) in large nuclear reactors. The static characteristic of such an LSM which is given by the variation of electromagnetic force with armature displacement determines the motor performance in its standing and dynamic modes. The approximate method of calculation of these characteristics is based on the permeance analysis method applied to the phase magnetic circuit of LSM. This is a simple, fast and efficient analytical approach which gives satisfactory results for small stator currents and weak iron saturation, typical to the standing mode of operation of LSM. The method is validated by comparing theoretical results with experimental ones. (Author)
Handbook on linear motor application
1988-10-01
This book guides the application for Linear motor. It lists classification and speciality of Linear Motor, terms of linear-induction motor, principle of the Motor, types on one-side linear-induction motor, bilateral linear-induction motor, linear-DC Motor on basic of the motor, linear-DC Motor for moving-coil type, linear-DC motor for permanent-magnet moving type, linear-DC motor for electricity non-utility type, linear-pulse motor for variable motor, linear-pulse motor for permanent magneto type, linear-vibration actuator, linear-vibration actuator for moving-coil type, linear synchronous motor, linear electromagnetic motor, linear electromagnetic solenoid, technical organization and magnetic levitation and linear motor and sensor.
Linear motor coil assembly and linear motor
2009-01-01
An ironless linear motor (5) comprising a magnet track (53) and a coil assembly (50) operating in cooperation with said magnet track (53) and having a plurality of concentrated multi-turn coils (31 a-f, 41 a-d, 51 a-k), wherein the end windings (31E) of the coils (31 a-f, 41 a-e) are substantially
Stepping Motor - Hydraulic Motor Servo Drives for an NC Milling ...
In this paper the retrofit design of the control system of an NC milling machine with a stepping motor and stepping motor - actuated hydraulic motor servo mechanism on the machines X-axis is described. The servo designed in the course of this study was tested practically and shown to be linear - the velocity following errors ...
Multiple stage miniature stepping motor
Niven, W.A.; Shikany, S.D.; Shira, M.L.
1981-01-01
A stepping motor comprising a plurality of stages which may be selectively activated to effect stepping movement of the motor, and which are mounted along a common rotor shaft to achieve considerable reduction in motor size and minimum diameter, whereby sequential activation of the stages results in successive rotor steps with direction being determined by the particular activating sequence followed
Barkman, W.E.; Adams, W.Q.; Berrier, B.R.
1978-01-01
A linear induction motor has been operated on a test bed with a feedback pulse resolution of 5 nm (0.2 μin). Slewing tests with this slide drive have shown positioning errors less than or equal to 33 nm (1.3 μin) at feedrates between 0 and 25.4 mm/min (0-1 ipm). A 0.86-m (34-in)-stroke linear motor is being investigated, using the SPACO machine as a test bed. Initial results were encouraging, and work is continuing to optimize the servosystem compensation
Munehiro, H
1980-05-29
When driving the carriage of a printer through a rotating motor, there are problems regarding the limited accuracy of the carriage position due to rotation or contraction and ageing of the cable. In order to solve the problem, a direct drive system was proposed, in which the printer carriage is driven by a linear motor. If one wants to keep the motor circuit of such a motor compact, then the magnetic flux density in the air gap must be reduced or the motor travel must be reduced. It is the purpose of this invention to create an electrodynamic linear motor, which on the one hand is compact and light and on the other hand has a relatively high constant force over a large travel. The invention is characterised by the fact that magnetic fields of alternating polarity are generated at equal intervals in the magnetic field, and that the coil arrangement has 2 adjacent coils, whose size corresponds to half the length of each magnetic pole. A logic circuit is provided to select one of the two coils and to determine the direction of the current depending on the signals of a magnetic field sensor on the coil arrangement.
Microprocessor controller for stepping motors
Strait, B.G.; Thuot, M.E.
1977-01-01
A new concept for digital computer control of multiple stepping motors which operate in a severe electromagnetic pulse environment is presented. The motors position mirrors in the beam-alignment system of a 100-kJ CO 2 laser. An asynchronous communications channel of a computer is used to send coded messages, containing the motor address and stepping-command information, to the stepping-motor controller in a bit serial format over a fiber-optics communications link. The addressed controller responds by transmitting to the computer its address and other motor information, thus confirming the received message. Each controller is capable of controlling three stepping motors. The controller contains the fiber-optics interface, a microprocessor, and the stepping-motor driven circuits. The microprocessor program, which resides in an EPROM, decodes the received messages, transmits responses, performs the stepping-motor sequence logic, maintains motor-position information, and monitors the motor's reference switch. For multiple stepping-motor application, the controllers are connected in a daisy chain providing control of many motors from one asynchronous communications channel of the computer
Goldowsky, Michael P. (Inventor)
1987-01-01
A reciprocating linear motor is formed with a pair of ring-shaped permanent magnets having opposite radial polarizations, held axially apart by a nonmagnetic yoke, which serves as an axially displaceable armature assembly. A pair of annularly wound coils having axial lengths which differ from the axial lengths of the permanent magnets are serially coupled together in mutual opposition and positioned with an outer cylindrical core in axial symmetry about the armature assembly. One embodiment includes a second pair of annularly wound coils serially coupled together in mutual opposition and an inner cylindrical core positioned in axial symmetry inside the armature radially opposite to the first pair of coils. Application of a potential difference across a serial connection of the two pairs of coils creates a current flow perpendicular to the magnetic field created by the armature magnets, thereby causing limited linear displacement of the magnets relative to the coils.
Xiangdong Liu
2016-05-01
Full Text Available A novel modular arc-linear flux-switching permanent-magnet motor (MAL-FSPM used for scanning system instead of reduction gearboxes and kinematic mechanisms is proposed and researched in this paper by the finite element method (FEM. The MAL-FSPM combines characteristics of flux-switching permanent-magnet motor and linear motor and can realize the direct driving and limited angular movement. Structure and operation principle of the MAL-FSPM are analyzed. Cogging torque model of the MAL-FSPM is established. The characteristics of cogging torque and torque ripple are investigated for: (1 distance (dend between left end of rotor and left end of stator is more than two rotor tooth pitch (τp; and (2 dend is less than two rotor tooth pitch. Cogging torque is an important component of torque ripple and the period ratio of the cogging torque to the back electromotive force (EMF equals one for the MAL-FSPM before optimization. In order to reduce the torque ripple as much as possible and affect the back EMF as little as possible, influence of period ratio of cogging torque to back EMF on rotor step skewing is investigated. Rotor tooth width and stator slot open width are optimized to increase the period ratio of cogging torque to back EMF. After the optimization, torque ripple is decreased by 79.8% for dend > τp and torque ripple is decreased by 49.7% for dend < τp. Finally, 3D FEM model is established to verify the 2D results.
Reciprocating Linear Electric Motor
Goldowsky, M. P.
1984-01-01
Features include structural simplicity and good force/displacement characteristics. Reciprocating motor has simple, rugged construction, relatively low reciprocating weight, improved power delivery, and improved force control. Wear reduced by use of magnetic bearings. Intended to provide drivers for long-lived Stirling-cycle cryogenic refrigerators, concept has less exotic applications, such as fuel pumps.
Johnson, Bruce G.; Gerver, Michael J.; Hawkey, Timothy J.; Fenn, Ralph C.
1993-01-01
Improved linear actuator comprises air slide and linear electric motor. Unit exhibits low friction, low backlash, and more nearly even acceleration. Used in machinery in which positions, velocities, and accelerations must be carefully controlled and/or vibrations must be suppressed.
Segmented rail linear induction motor
Cowan, Jr., Maynard; Marder, Barry M.
1996-01-01
A segmented rail linear induction motor has a segmented rail consisting of a plurality of nonferrous electrically conductive segments aligned along a guideway. The motor further includes a carriage including at least one pair of opposed coils fastened to the carriage for moving the carriage. A power source applies an electric current to the coils to induce currents in the conductive surfaces to repel the coils from adjacent edges of the conductive surfaces.
Linear Synchronous Motor Repeatability Tests
Ward, C.R.
2002-01-01
A cart system using linear synchronous motors was being considered for the Plutonium Immobilization Plant (PIP). One of the applications in the PIP was the movement of a stack of furnace trays, filled with the waste form (pucks) from a stacking/unstacking station to several bottom loaded furnaces. A system was ordered to perform this function in the PIP Ceramic Prototype Test Facility (CPTF). This system was installed and started up in SRTC prior to being installed in the CPTF. The PIP was suspended and then canceled after the linear synchronous motor system was started up. This system was used to determine repeatability of a linear synchronous motor cart system for the Modern Pit Facility
The micro-step motor controller
Hong, Kwang Pyo; Lee, Chang Hee; Moon, Myung Kook; Choi, Bung Hun; Choi, Young Hyun; Cheon, Jong Gu
2004-11-01
The developed micro-step motor controller can handle 4 axes stepping motor drivers simultaneously and provide high power bipolar driving mechanism with constant current mode. It can be easily controlled by manual key functions and the motor driving status is displayed by the front panel VFD. Due to the development of several kinds of communication and driving protocol, PC can operate even several micro-step motor controllers at once by multi-drop connection
Microcomputer-based stepping-motor controller
Johnson, K.
1983-04-01
A microcomputer-controlled stepping motor is described. A Motorola MC68701 microcomputer unit is interfaced to a Cybernetic CY500 stored-program controller that outputs through Motorola input/output isolation modules to the stepping motor. A complex multifunction controller with enhanced capabilities is thus available with a minimum number of parts
Ultrasonic Linear Motor with Two Independent Vibrations
Muneishi, Takeshi; Tomikawa, Yoshiro
2004-09-01
We propose a new structure of an ultrasonic linear motor in order to solve the problems of high-power ultrasonic linear motors that drive the XY-stage for electron beam equipment and to expand the application fields of the motor. We pay special attention to the following three points: (1) the vibration in two directions of the ultrasonic linear motor should not influence mutually each other, (2) the vibration in two directions should be divided into the stage traveling direction and the pressing direction of the ultrasonic linear motor, and (3) the rigidity of the stage traveling direction of the ultrasonic linear motor should be increased. As a result, the supporting method of ultrasonic linear motors is simplified. The efficiency of the motor is improved and temperature rise is reduced. The stage position drift is also improved.
Microprocessor-based stepping motor driver
Halbig, J.K.; Klosterbuer, S.F.
1979-09-01
The Pion Generation for Medical Irradiations (PIGMI) program at the Los Alamos Scientific Laboratory requires a versatile stepping motor driver to do beam diagnostic measurements. A driver controlled by a microprocessor that can move eight stepping motors simultaneously was designed. The driver can monitor and respond to clockwise- and counterclockwise-limit switches, and it can monitor a 0- to 10-V dc position signal. The software controls start and stop ramping and maximum stepping rates. 2 figures, 1 table
Quad-copter UAV BLDC Motor Control: Linear v/s non-linear control maps
Deep Parikh
2015-08-01
Full Text Available This paper presents some investigations and comparison of using linear versus non-linear static motor-control maps for the speed control of a BLDC (Brush Less Direct Current motors used in quad-copter UAV (Unmanned Aerial Vehicles. The motor-control map considered here is the inverse of the static map relating motor-speed output to motor-voltage input for a typical out-runner type Brushless DC Motors (BLDCM. Traditionally, quad-copter BLDC motor speed control uses simple linear motor-control map defined by the motor-constant specification. However, practical BLDC motors show non-linear characteristic, particularly when operated across wide operating speed-range as is commonly required in quad-copter UAV flight operations. In this paper, our investigations to compare performance of linear versus non-linear motor-control maps are presented. The investigations cover simulation-based and experimental study of BLDC motor speed control systems for quad-copter vehicle available. First the non-linear map relating rotor RPM to motor voltage for quad-copter BLDC motor is obtained experimentally using an optical speed encoder. The performance of the linear versus non-linear motor-control-maps for the speed control are studied. The investigations also cover study of time-responses for various standard test input-signals e.g. step, ramp and pulse inputs, applied as the reference speed-commands. Also, simple 2-degree of freedom test-bed is developed in our laboratory to help test the open-loop and closed-loop experimental investigations. The non-linear motor-control map is found to perform better in BLDC motor speed tracking control performance and thereby helping achieve better quad-copter roll-angle attitude control.
Simulation of linear Switched Reluctance Motor drives
Garcia Amoros, Jordi; Blanqué Molina, Balduino; Andrada Gascón, Pedro
2011-01-01
This paper presents a simulation model of linear switched reluctance motor drives. A Matlab-Simulink environment coupled with finite element analysis is used to perform the simulations. Experimental and simulation results for a double sided linear switched motor drive prototype are reported and compared to verify the simulation model.
A linear motor as seismic horizontal vibrator
Drijkoningen, G.; Veltman, A.; Hendrix, W.H.A.; Brouwer, J.; Hemstede, A.
2006-01-01
In this paper we propose to use the concept of linear synchronous motors to act as a seismic shear-wave vibratory source. We show that a linear motor, even with a design that is not focussed on application of seismic surveying, gives seismic records that are convincing and comparable with an
Linear Motor for Drive of Belt Conveyor
Milan Krasl
2006-01-01
Full Text Available This paper introduces a novel approach on the design of a linear motor for drive of belt conveyor (LMBC. The motor is a simple combination of asynchronous motor in plane. The electromagnetic forces is one of the most important parameters of electrical machines. This parameter is necessary for the checking of the design. This paper describes several variants: linear motor with slots in platens, slots in one half of platens and optimization of slots. The electromagnetic force can be found with the help of a Finite Elements Method – based program. For solution was used QuickField program.
Comparison of linear synchronous and induction motors
2004-06-01
A propulsion prade study was conducted as part of the Colorado Maglev Project of FTA's Urban Maglev Technology Development Program to identify and evaluate prospective linear motor designs that could potentially meet the system performance requiremen...
Linear motor with contactless energy transfer
2014-01-01
An integrated electromagnetic energy conversions device is provided that includes a synchronous or brushless linear (SoBL) motor, and a transformer, where the transformer is integrated electromagnetically and topologically with the SoBL motor, where an electromagnetic field orientation of the
Linear, Step by Step Managerial Performance, versus Exponential Performance
George MOLDOVEANU
2011-04-01
Full Text Available The paper proposes the transition from the potential management concept, which its authors approached by determining its dimension (Roşca, Moldoveanu, 2009b, to the linear, step by step performance concept, as an objective result of management process. In this way, we “answer” the theorists and practitioners, who support exponential management performance. The authors, as detractors of the exponential performance, are influenced by the current crisis (Roşca, Moldoveanu, 2009a, by the lack of organizational excellence in many companies, particularly in Romanian ones and also reaching “the finality” in the evolved companies, developed into an uncontrollable speed.
Bidirectional electrostatic linear shuffle motor with two degrees of freedom
Sarajlic, Edin; Berenschot, Johan W.; Fujita, H.; Krijnen, Gijsbertus J.M.; Elwenspoek, Michael Curt
2005-01-01
We report on an electrostatic linear inchworm micromotor with two translational degrees-of-freedom. The motor employs built-in mechanical leverage to convert normal deflection of a flexible cross-plate into a small in-plane step and four electrostatic clamps to enable bidirectional inchworm motion
A linear magnetic motor and generator
Studer, P. A.
1980-01-01
In linear magnetic motor and generator suitable for remote and hostile environments, magnetic forces drive reciprocating shaft along its axis. Actuator shaft is located in center of cylindrical body and may be supported by either contacting or noncontacting bearings. When device operates as bidirectional motor, drive coil selectively adds and subtracts magnetic flux to and from flux paths, producing forces that drive actuator along axis. When actuator is driven by external reciprocating engine, device becomes ac generator.
Linear ultrasonic motor for absolute gravimeter.
Jian, Yue; Yao, Zhiyuan; Silberschmidt, Vadim V
2017-05-01
Thanks to their compactness and suitability for vacuum applications, linear ultrasonic motors are considered as substitutes for classical electromagnetic motors as driving elements in absolute gravimeters. Still, their application is prevented by relatively low power output. To overcome this limitation and provide better stability, a V-type linear ultrasonic motor with a new clamping method is proposed for a gravimeter. In this paper, a mechanical model of stators with flexible clamping components is suggested, according to a design criterion for clamps of linear ultrasonic motors. After that, an effect of tangential and normal rigidity of the clamping components on mechanical output is studied. It is followed by discussion of a new clamping method with sufficient tangential rigidity and a capability to facilitate pre-load. Additionally, a prototype of the motor with the proposed clamping method was fabricated and the performance tests in vertical direction were implemented. Experimental results show that the suggested motor has structural stability and high dynamic performance, such as no-load speed of 1.4m/s and maximal thrust of 43N, meeting the requirements for absolute gravimeters. Copyright © 2017 Elsevier B.V. All rights reserved.
Linear Parameter Varying Control of Induction Motors
Trangbæk, Klaus
The subject of this thesis is the development of linear parameter varying (LPV) controllers and observers for control of induction motors. The induction motor is one of the most common machines in industrial applications. Being a highly nonlinear system, it poses challenging control problems...... for high performance applications. This thesis demonstrates how LPV control theory provides a systematic way to achieve good performance for these problems. The main contributions of this thesis are the application of the LPV control theory to induction motor control as well as various contributions...
Scanning tunneling microscope with a rotary piezoelectric stepping motor
Yakimov, V. N.
1996-02-01
A compact scanning tunneling microscope (STM) with a novel rotary piezoelectric stepping motor for coarse positioning has been developed. An inertial method for rotating of the rotor by the pair of piezoplates has been used in the piezomotor. Minimal angular step size was about several arcsec with the spindle working torque up to 1 N×cm. Design of the STM was noticeably simplified by utilization of the piezomotor with such small step size. A shaft eccentrically attached to the piezomotor spindle made it possible to push and pull back the cylindrical bush with the tubular piezoscanner. A linear step of coarse positioning was about 50 nm. STM resolution in vertical direction was better than 0.1 nm without an external vibration isolation.
A beam scraper using a linear motor
Beadle, E.R.; Rodger, E.S.; Thern, R.E.
1989-01-01
A beam scraper using a linear motor drive has been developed for use in the AGS at Brookhaven National Laboratory. The device is used to measure beam size by moving a target to a predetermined location and measuring the intercepted beam with nearby loss monitors or by noting the decrease in the circulating beam current. This device has excellent vacuum characteristics, as the motor and sensor coils are outside the vacuum, coupled magnetically to the moving parts which, are inside. There are no bellows or dynamic seals required. The position-time profile is controlled by a closed-loop servo system which uses position feedback. 2 refs., 4 figs
Comparison of Linear Induction Motor Theories for the LIMRV and TLRV Motors
1978-01-01
The Oberretl, Yamamura, and Mosebach theories of the linear induction motor are described and also applied to predict performance characteristics of the TLRV & LIMRV linear induction motors. The effect of finite motor width and length on performance ...
A versatile stepping motor controller for systems with many motors
Feng, S.K.; Siddons, D.P.
1989-01-01
A versatile system for controlling beamlines or complex experimental setups is described. The system as currently configured can control up to 32 motors, with all motors capable of full speed operation concurrently. There are 2 limit switch inputs for each motor, and a further input to accept a reference position marker. The motors can be controlled via a front panel keyboard with display, or by a host computer over an IEEE-488 interface. Both methods can be used together if required. There is an ''emergency stop'' key on the front panel keyboard to stop the motion of all motors without losing track of the motors' position. 3 refs., 4 figs., 1 tab
Linear pneumatic motors – a comparative study
Deaconescu Tudor
2017-01-01
Full Text Available The paper presents a comparative study of the performance of single-acting cylinders, diaphragm cylinders and pneumatic muscles, and offers users information that allows the selection of an optimum technical solution. Such a study was necessary, in view of the numerous papers on pneumatic muscle applications found in literature, that assert the superiority of pneumatic muscles over other pneumatic linear motors in relation to quantities like dimensions, mass, developed force or energy-to-mass ratios, however without offering concrete data.
Stepping motors a guide to theory and practice
Acarnely, Paul
2002-01-01
This book provides an introductory text which will enable the reader to both appreciate the essential characteristics of stepping motor systems and understand how these characteristics are being exploited in the continuing development of new motors, drives and controllers. A basic theoretical approach relating to the more significant aspects of performance is presented, although it is assumed throughout that the reader has no previous experience of electrical machines and is primarily interested in the applications of stepping motors.
A seismic vertical vibrator driven by linear synchronous motors
Noorlandt, R.P.; Drijkoningen, G.G.; Dams, J.; Jenneskens, R.
2015-01-01
A linear synchronous motor (LSM) is an electric motor that can produce large controllable forces and is therefore suitable as a driving engine for a seismic vibrator. This motor consists of two independent elements, a magnet track and a coil track, allowing practically unlimited motor displacements.
International program on linear electric motors
Dawson, G.E.; Eastham, A.R.; Parker, J.H.
1992-05-01
The International Program on Linear Electric Motors (LEM) was initiated for the purposes of commumication and coordination between various centers of expertise in LEM technology in Germany, Japan and Canada. Furthermore, it was intended to provide assessment and support of the planning of technological developments and for dissemination of information to researchers, service operators and policy makers, and to ensure that full advantage can be taken if opportunities for technology transfer occur. In the process, the program was able to provide closer contacts between researchers, to enhance and encourage collaborative research and development, and to facilitate joint ventures in advanced transportation technologies. Work done under the program is documented, and seminar materials presented by Canadian researchers in Italy, and by Italian researchers at Queen's University in Canada are presented. Five separate abstracts have been prepared for the main body of the report and the seminar materials.
Study of linear induction motor characteristics : the Mosebach model
1976-05-31
This report covers the Mosebach theory of the double-sided linear induction motor, starting with the ideallized model and accompanying assumptions, and ending with relations for thrust, airgap power, and motor efficiency. Solutions of the magnetic in...
Study of linear induction motor characteristics : the Oberretl model
1975-05-30
The Oberretl theory of the double-sided linear induction motor (LIM) is examined, starting with the idealized model and accompanying assumptions, and ending with relations for predicted thrust, airgap power, and motor efficiency. The effect of varyin...
Stepping-Motion Motor-Control Subsystem For Testing Bearings
Powers, Charles E.
1992-01-01
Control subsystem closed-loop angular-position-control system causing motor and bearing under test to undergo any of variety of continuous or stepping motions. Also used to test bearing-and-motor assemblies, motors, angular-position sensors including rotating shafts, and like. Monitoring subsystem gathers data used to evaluate performance of bearing or other article under test. Monitoring subsystem described in article, "Monitoring Subsystem For Testing Bearings" (GSC-13432).
Calculation of Cogging Torque in Hybrid Stepping Motors | Agber ...
When the windings of a hybrid stepping motor are unexcited the permanent magnet's flux produces cogging torque. This torque has both desirable and undesirable features depending on the application that the motor is put into. This paper formulates an analytical method for predicting cogging torque using measured ...
DC Motor Parameter Identification Using Speed Step Responses
Wei Wu
2012-01-01
Full Text Available Based on the DC motor speed response measurement under a step voltage input, important motor parameters such as the electrical time constant, the mechanical time constant, and the friction can be estimated. A power series expansion of the motor speed response is presented, whose coefficients are related to the motor parameters. These coefficients can be easily computed using existing curve fitting methods. Experimental results are presented to demonstrate the application of this approach. In these experiments, the approach was readily implemented and gave more accurate estimates than conventional methods.
Lithographic linear motor, lithographic apparatus, and device manufacturing method
2006-01-01
A linear motor having a high driving force, high efficiency and low normal force comprises two opposed magnet tracks and an armature comprising three open coil sets. The linear motor may be used to drive a stage, such as, for example, a mask or wafer stage, in a lithographic apparatus.
Shuffle motor: a high force, high precision linear electrostatic stepper motor
Tas, Niels Roelof; Wissink, Jeroen; Sander, A.F.M.; Sander, Louis; Lammerink, Theodorus S.J.; Elwenspoek, Michael Curt
1997-01-01
The shuffle motor is a electrostatic stepper motor that employs a mechanical transformation to obtain high forces and small steps. A model has been made to calculate the driving voltage, step size and maximum load to pull as well as the optimal geometry. Tests results are an effective step size of
Thrust Reduction of Magnetic Levitation Vehicle Driven by Long Stator Linear Synchronous Motor
Wan-Tsun Tseng
2013-01-01
Full Text Available The propulsion technology of long stator linear synchronous motors is used to drive high-speed maglev trains. The linear synchronous motor stator is divided into sections placed on guideway. The electric power supplies to stator sections in which the train just passes in change-step mode for long-distance operation. However, a thrust drop will be caused by change-step machinery for driving magnetic vehicle. According to the train speed and vehicle data, the change-step mode has three types of operation, namely premature commutation, simultaneous commutation, and late commutation. Each type of operation has a different thrust drop which can be affected by several parameters such as jerk, running speed, motor section length, and vehicle data. This paper focuses on determining the thrust drop of the change-step mode. The study results of this paper can be used to improve the operation system of high-speed maglev trains.
Adachi, Daiki; Nishiguchi, Shu; Fukutani, Naoto; Hotta, Takayuki; Tashiro, Yuto; Morino, Saori; Shirooka, Hidehiko; Nozaki, Yuma; Hirata, Hinako; Yamaguchi, Moe; Yorozu, Ayanori; Takahashi, Masaki; Aoyama, Tomoki
2017-05-01
The purpose of this study was to investigate which spatial and temporal parameters of the Timed Up and Go (TUG) test are associated with motor function in elderly individuals. This study included 99 community-dwelling women aged 72.9 ± 6.3 years. Step length, step width, single support time, variability of the aforementioned parameters, gait velocity, cadence, reaction time from starting signal to first step, and minimum distance between the foot and a marker placed to 3 in front of the chair were measured using our analysis system. The 10-m walk test, five times sit-to-stand (FTSTS) test, and one-leg standing (OLS) test were used to assess motor function. Stepwise multivariate linear regression analysis was used to determine which TUG test parameters were associated with each motor function test. Finally, we calculated a predictive model for each motor function test using each regression coefficient. In stepwise linear regression analysis, step length and cadence were significantly associated with the 10-m walk test, FTSTS and OLS test. Reaction time was associated with the FTSTS test, and step width was associated with the OLS test. Each predictive model showed a strong correlation with the 10-m walk test and OLS test (P motor function test. Moreover, the TUG test time regarded as the lower extremity function and mobility has strong predictive ability in each motor function test. Copyright © 2017 The Japanese Orthopaedic Association. Published by Elsevier B.V. All rights reserved.
Impact self-excited vibrations of linear motor
Zhuravlev, V. Ph.
2010-08-01
Impact self-exciting vibration modes in a linear motor of a monorail car are studied. Existence and stability conditions of self-exciting vibrations are found. Ways of avoiding the vibrations are discussed.
Experimental development of an ultrasonic linear motor
M'Boungui, G
2010-01-01
Full Text Available the stator structure. In contrast to traditional travelling wave ultrasonic motors, which require two modes to be driven 90° out of phase, only one amplifier is required to drive the proposed device. A prototype device was characterised experimentally...
Performance of claw-poled PM-stepping motor
Liu, C.P.; Jeng, G.R.; Chen, W.C.; Tsai, M.C.; Wu, K.T.; Yao, Y.D.
2007-01-01
Present work is to analyze the performance of a permanent-magnetic (PM) stepping motor with claw poles by using the magnetic-circuit simulation technique. In this paper, we calculate the torque characteristics of the motor, such as the detent and the holding torques, and the step-position error by changing the gap between the upper and the lower stators and the staggered angle between the two stators. Through comparison of numerical data with experiment measurements, we found that the detent torque could be effectively reduced by increasing the stator-to-stator gap and further by decreasing the step-position error. Furthermore, the holding torque could be unchanged as the stator assemblage changed; however, it would be degenerated under the condition of low magnetization
Linear stability analysis in a solid-propellant rocket motor
Kim, K.M.; Kang, K.T.; Yoon, J.K. [Agency for Defense Development, Taejon (Korea, Republic of)
1995-10-01
Combustion instability in solid-propellant rocket motors depends on the balance between acoustic energy gains and losses of the system. The objective of this paper is to demonstrate the capability of the program which predicts the standard longitudinal stability using acoustic modes based on linear stability analysis and T-burner test results of propellants. Commercial ANSYS 5.0A program can be used to calculate the acoustic characteristic of a rocket motor. The linear stability prediction was compared with the static firing test results of rocket motors. (author). 11 refs., 17 figs.
Modelling a linear PM motor including magnetic saturation
Polinder, H.; Slootweg, J.G.; Compter, J.C.; Hoeijmakers, M.J.
2002-01-01
The use of linear permanent-magnet (PM) actuators increases in a wide variety of applications because of the high force density, robustness and accuracy. The paper describes the modelling of a linear PM motor applied in, for example, wafer steppers, including magnetic saturation. This is important
Linear micromechanical stepping drive for pinhole array positioning
Endrödy, Csaba; Mehner, Hannes; Hoffmann, Martin; Grewe, Adrian
2015-01-01
A compact linear micromechanical stepping drive for positioning a 7 × 5.5 mm 2 optical pinhole array is presented. The system features a step size of 13.2 µm and a full displacement range of 200 µm. The electrostatic inch-worm stepping mechanism shows a compact design capable of positioning a payload 50% of its own weight. The stepping drive movement, step sizes and position accuracy are characterized. The actuated pinhole array is integrated in a confocal chromatic hyperspectral imaging system, where coverage of the object plane, and therefore the useful picture data, can be multiplied by 14 in contrast to a non-actuated array. (paper)
A large number of stepping motor network construction by PLC
Mei, Lin; Zhang, Kai; Hongqiang, Guo
2017-11-01
In the flexible automatic line, the equipment is complex, the control mode is flexible, how to realize the large number of step and servo motor information interaction, the orderly control become a difficult control. Based on the existing flexible production line, this paper makes a comparative study of its network strategy. After research, an Ethernet + PROFIBUSE communication configuration based on PROFINET IO and profibus was proposed, which can effectively improve the data interaction efficiency of the equipment and stable data interaction information.
Configurable multi-step linear feedback shift register
2010-01-01
The state transition of a linear feedback shift register (LFSR) controlled by a clock (310) with length N and step size W, W being at least two, is accomplished via a next-state function (320). The next-state function deploys a state transition matrix (350). The state vector (330), which represents
Otsuka, J; Tanaka, T; Masuda, I
2010-01-01
A new type of linear motor described in this note has some advantages compared with conventional motors. The attractive magnetic force between the stator (permanent magnets) and mover (armature) is diminished almost to zero. The efficiency is better because the magnetic flux leakage is very small, the size of motor is smaller and detent (force ripple) is smaller than for conventional motors. Therefore, we think that this motor is greatly suitable for ultra-precision positioning as an actuator. An ultra-precision positioning device using this motor and linear motion ball guide ways is newly developed by making the device very rigid and using a suitable control method. Moreover, the positioning performance is evaluated by a positioning resolution, and deviation and dispersion errors. As a result of repeated step response tests, the positioning resolution is 0.3 nm, with the deviation error and dispersion error (3σ) being sub-nanometer. Consequently, the positioning device achieves sub-nanometer positioning. (technical design note)
Magnetic levitation configuration incorporating levitation, guidance and linear synchronous motor
Coffey, Howard T.
1993-01-01
A propulsion and suspension system for an inductive repulsion type magnetically levitated vehicle which is propelled and suspended by a system which includes propulsion windings which form a linear synchronous motor and conductive guideways, adjacent to the propulsion windings, where both combine to partially encircling the vehicle-borne superconducting magnets. A three phase power source is used with the linear synchronous motor to produce a traveling magnetic wave which in conjunction with the magnets propel the vehicle. The conductive guideway combines with the superconducting magnets to provide for vehicle leviation.
Magnetic levitation configuration incorporating levitation, guidance and linear synchronous motor
Coffey, H.T.
1993-10-19
A propulsion and suspension system for an inductive repulsion type magnetically levitated vehicle which is propelled and suspended by a system which includes propulsion windings which form a linear synchronous motor and conductive guideways, adjacent to the propulsion windings, where both combine to partially encircling the vehicle-borne superconducting magnets. A three phase power source is used with the linear synchronous motor to produce a traveling magnetic wave which in conjunction with the magnets propel the vehicle. The conductive guideway combines with the superconducting magnets to provide for vehicle levitation. 3 figures.
A simple, compact, and rigid piezoelectric step motor with large step size
Wang, Qi; Lu, Qingyou
2009-08-01
We present a novel piezoelectric stepper motor featuring high compactness, rigidity, simplicity, and any direction operability. Although tested in room temperature, it is believed to work in low temperatures, owing to its loose operation conditions and large step size. The motor is implemented with a piezoelectric scanner tube that is axially cut into almost two halves and clamp holds a hollow shaft inside at both ends via the spring parts of the shaft. Two driving voltages that singly deform the two halves of the piezotube in one direction and recover simultaneously will move the shaft in the opposite direction, and vice versa.
Comparative analysis of linear motor geometries for Stirling coolers
R, Rajesh V.; Kuzhiveli, Biju T.
2017-12-01
Compared to rotary motor driven Stirling coolers, linear motor coolers are characterized by small volume and long life, making them more suitable for space and military applications. The motor design and operational characteristics have a direct effect on the operation of the cooler. In this perspective, ample scope exists in understanding the behavioural description of linear motor systems. In the present work, the authors compare and analyze different moving magnet linear motor geometries to finalize the most favourable one for Stirling coolers. The required axial force in the linear motors is generated by the interaction of magnetic fields of a current carrying coil and that of a permanent magnet. The compact size, commercial availability of permanent magnets and low weight requirement of the system are quite a few constraints for the design. The finite element analysis performed using Maxwell software serves as the basic tool to analyze the magnet movement, flux distribution in the air gap and the magnetic saturation levels on the core. A number of material combinations are investigated for core before finalizing the design. The effect of varying the core geometry on the flux produced in the air gap is also analyzed. The electromagnetic analysis of the motor indicates that the permanent magnet height ought to be taken in such a way that it is under the influence of electromagnetic field of current carrying coil as well as the outer core in the balanced position. This is necessary so that sufficient amount of thrust force is developed by efficient utilisation of the air gap flux density. Also, the outer core ends need to be designed to facilitate enough room for the magnet movement under the operating conditions.
stepping motor - hydraulic motor servo drives for an nc milling machine
Dr Obe
stepping motor Drive Assembly especially Designed for CNC systems". 13th Machine Tool Design and. Research. (MTDR) conference,. University of Birmingham, 1972. 2 Ertongur, N.A. "Investigation into the instability in an electro hydraulic control system for machine tools" Ph.D. Thesis, University of. Birmingham, UK. 1966 ...
One-step deterministic multipartite entanglement purification with linear optics
Sheng, Yu-Bo [Department of Physics, Tsinghua University, Beijing 100084 (China); Long, Gui Lu, E-mail: gllong@tsinghua.edu.cn [Department of Physics, Tsinghua University, Beijing 100084 (China); Center for Atomic and Molecular NanoSciences, Tsinghua University, Beijing 100084 (China); Key Laboratory for Quantum Information and Measurements, Beijing 100084 (China); Deng, Fu-Guo [Department of Physics, Applied Optics Beijing Area Major Laboratory, Beijing Normal University, Beijing 100875 (China)
2012-01-09
We present a one-step deterministic multipartite entanglement purification scheme for an N-photon system in a Greenberger–Horne–Zeilinger state with linear optical elements. The parties in quantum communication can in principle obtain a maximally entangled state from each N-photon system with a success probability of 100%. That is, it does not consume the less-entangled photon systems largely, which is far different from other multipartite entanglement purification schemes. This feature maybe make this scheme more feasible in practical applications. -- Highlights: ► We proposed a deterministic entanglement purification scheme for GHZ states. ► The scheme uses only linear optical elements and has a success probability of 100%. ► The scheme gives a purified GHZ state in just one-step.
Contact analysis and experimental investigation of a linear ultrasonic motor.
Lv, Qibao; Yao, Zhiyuan; Li, Xiang
2017-11-01
The effects of surface roughness are not considered in the traditional motor model which fails to reflect the actual contact mechanism between the stator and slider. An analytical model for calculating the tangential force of linear ultrasonic motor is proposed in this article. The presented model differs from the previous spring contact model, the asperities in contact between stator and slider are considered. The influences of preload and exciting voltage on tangential force in moving direction are analyzed. An experiment is performed to verify the feasibility of this proposed model by comparing the simulation results with the measured data. Moreover, the proposed model and spring model are compared. The results reveal that the proposed model is more accurate than spring model. The discussion is helpful for designing and modeling of linear ultrasonic motors. Copyright © 2017 Elsevier B.V. All rights reserved.
Force analysis of linear induction motor for magnetic levitation system
Kuijpers, A.A.; Nemlioglu, C.; Sahin, F.; Verdel, A.J.D.; Compter, J.C.; Lomonova, E.
2010-01-01
This paper presents the analyses of thrust and normal forces of linear induction motor (LIM) segments which are implemented in a rotating ring system. To obtain magnetic levitation in a cost effective and sustainable way, decoupled control of thrust and normal forces is required. This study includes
Thermally driven molecular linear motors - A molecular dynamics study
Zambrano, Harvey A; Walther, Jens Honore; Jaffe, Richard Lawrence
2009-01-01
We conduct molecular dynamics simulations of a molecular linear motor consisting of coaxial carbon nanotubes with a long outer carbon nanotube confining and guiding the motion of an inner short, capsule-like nanotube. The simulations indicate that the motion of the capsule can be controlled by th...
CONTRIBUTIONS TO THE FINITE ELEMENT MODELING OF LINEAR ULTRASONIC MOTORS
Oana CHIVU
2013-05-01
Full Text Available The present paper is concerned with the main modeling elements as produced by means of thefinite element method of linear ultrasonic motors. Hence, first the model is designed and then a modaland harmonic analysis are carried out in view of outlining the main outcomes
Resettable binary latch mechanism for use with paraffin linear motors
Maus, Daryl; Tibbitts, Scott
1991-01-01
A new resettable Binary Latch Mechanism was developed utilizing a paraffin actuator as the motor. This linear actuator alternately latches between extended and retracted positions, maintaining either position with zero power consumption. The design evolution and kinematics of the latch mechanism are presented, as well as the development problems and lessons that were learned.
Evaluation of linear induction motor characteristics : the Yamamura model
1975-04-30
The Yamamura theory of the double-sided linear induction motor (LIM) excited by a constant current source is discussed in some detail. The report begins with a derivation of thrust and airgap power using the method of vector potentials and theorem of...
Position sensor for linear synchronous motors employing halbach arrays
Post, Richard Freeman
2014-12-23
A position sensor suitable for use in linear synchronous motor (LSM) drive systems employing Halbach arrays to create their magnetic fields is described. The system has several advantages over previously employed ones, especially in its simplicity and its freedom from being affected by weather conditions, accumulated dirt, or electrical interference from the LSM system itself.
Force measurements on a shielded coreless linear permanent magnet motor
Pluk, K.J.W.; Jansen, J.W.; Lomonova, E.A.
2014-01-01
This paper compares force measurements on a shielded coreless linear permanent magnet motor with 2-D models. A 2-D semianalytical modeling method is applied, which is based on Fourier modeling and includes force calculations. The semianalytical modeling correctly predicts the behavior found in the
Magnetic shielding for coreless linear permanent magnet motors
Pluk, K.J.W.; Jansen, J.W.; Lomonova, E.
2013-01-01
This paper concerns the local reduction of the magnetic flux density by means of magnetic shielding. Using a spatial frequency description, a 2-D semi-analytical periodic model is obtained for a coreless single-sided linear permanent magnet motor. The magnetic shield is included in the modeling
Direct Torque Control With Feedback Linearization for Induction Motor Drives
Lascu, Cristian; Jafarzadeh, Saeed; Fadali, Sami M.
2017-01-01
This paper describes a direct-torque-controlled (DTC) induction motor (IM) drive that employs feedback linearization and sliding-mode control (SMC). A new feedback linearization approach is proposed, which yields a decoupled linear IM model with two state variables: torque and stator flux magnitude....... This intuitive linear model is used to implement a DTC-type controller that preserves all DTC advantages and eliminates its main drawback, the flux and torque ripple. Robust, fast, and ripple-free control is achieved by using SMC with proportional control in the vicinity of the sliding surface. SMC assures...... in simulations. The sliding controller is compared with a linear DTC scheme with and without feedback linearization. Extensive experimental results for a sensorless IM drive validate the proposed solution....
Motor properties from persistence: a linear molecular walker lacking spatial and temporal asymmetry
Zuckermann, Martin J; Forde, Nancy R; Angstmann, Christopher N; Schmitt, Regina; Linke, Heiner; Blab, Gerhard A; Bromley, Elizabeth HC; Curmi, Paul MG
2015-01-01
The stepping direction of linear molecular motors is usually defined by a spatial asymmetry of the motor, its track, or both. Here we present a model for a molecular walker that undergoes biased directional motion along a symmetric track in the presence of a temporally symmetric chemical cycle. Instead of using asymmetry, directionality is achieved by persistence. At small load force the walker can take on average thousands of steps in a given direction until it stochastically reverses direction. We discuss a specific experimental implementation of a synthetic motor based on this design and find, using Langevin and Monte Carlo simulations, that a realistic walker can work against load forces on the order of picoNewtons with an efficiency of ∼18%, comparable to that of kinesin. In principle, the walker can be turned into a permanent motor by externally monitoring the walker’s momentary direction of motion, and using feedback to adjust the direction of a load force. We calculate the thermodynamic cost of using feedback to enhance motor performance in terms of the Shannon entropy, and find that it reduces the efficiency of a realistic motor only marginally. We discuss the implications for natural protein motor performance in the context of the strong performance of this design based only on a thermal ratchet. (paper)
Advanced analysis technique for the evaluation of linear alternators and linear motors
Holliday, Jeffrey C.
1995-01-01
A method for the mathematical analysis of linear alternator and linear motor devices and designs is described, and an example of its use is included. The technique seeks to surpass other methods of analysis by including more rigorous treatment of phenomena normally omitted or coarsely approximated such as eddy braking, non-linear material properties, and power losses generated within structures surrounding the device. The technique is broadly applicable to linear alternators and linear motors involving iron yoke structures and moving permanent magnets. The technique involves the application of Amperian current equivalents to the modeling of the moving permanent magnet components within a finite element formulation. The resulting steady state and transient mode field solutions can simultaneously account for the moving and static field sources within and around the device.
Analysis of the linear induction motor in transient operation
Gentile, G; Rotondale, N; Scarano, M
1987-05-01
The paper deals with the analysis of a bilateral linear induction motor in transient operation. We have considered an impressed voltage one-dimensional model which takes into account end effects. The real winding distribution of the armature has been represented as a lumped parameters system. By using the space vectors methodology, the partial differential equation of the sheet is solved bythe variable separation method. Therefore it's possible to arrange a system of ordinary differential equations where the unknown quantities are the space vectors of the air-gap flux density and sheet currents. Finally, we have analyzed the characteristic quantities for a no-load starting of small power motors.
A novel linear switched reluctance motor for railway transportation systems
Daldaban, Ferhat; Ustkoyuncu, Nurettin
2010-01-01
This paper presents the design and realization of a new linear switched reluctance motor (LSRM) structure, especially suitable for high-speed railway systems. The new model has a double active stator configuration and provides high force for many applications with low cost. The characteristics of the LSRM are obtained by using finite element analysis (FEA) and analytical calculations. The results of the FEA and analytical calculations are presented, and compared with experimental results. In addition, a classical double-sided LSRM (DSLSRM) is modeled with the same specifications of the new motor structure and the results are compared.
An electrostatic 3-phase linear stepper motor fabricated by vertical trench isolation technology
Sarajlic, Edin; Yamahata, Christophe; Cordero, Mauricio; Fujita, Hiroyuki
2009-01-01
We present the design, microfabrication and characterization of an electrostatic 3-phase linear stepper micromotor constructed with vertical trench isolation technology. This suitable technology was used to create a monolithic stepper motor with high-aspect-ratio poles and an integrated 3-phase electrical network in the bulk of a standard single-crystal silicon wafer. The shuttle of the stepper motor is suspended by a flexure to avoid any mechanical contact during operation, enhancing the precision, repeatability and reliability of the stepping motion. The prototype is capable of a maximum travel of +/−26 µm (52 µm) at an actuation voltage of 30 V and a step size of 1.4 µm during a half-stepping sequence
An electrostatic 3-phase linear stepper motor fabricated by vertical trench isolation technology
Sarajlic, Edin; Yamahata, Christophe; Cordero, Mauricio; Fujita, Hiroyuki
2009-07-01
We present the design, microfabrication and characterization of an electrostatic 3-phase linear stepper micromotor constructed with vertical trench isolation technology. This suitable technology was used to create a monolithic stepper motor with high-aspect-ratio poles and an integrated 3-phase electrical network in the bulk of a standard single-crystal silicon wafer. The shuttle of the stepper motor is suspended by a flexure to avoid any mechanical contact during operation, enhancing the precision, repeatability and reliability of the stepping motion. The prototype is capable of a maximum travel of +/-26 µm (52 µm) at an actuation voltage of 30 V and a step size of 1.4 µm during a half-stepping sequence. This work was presented in part at the 19th MicroMechanics Europe Workshop (MME), 28-30 September 2008, Aachen, Germany.
Development of a linear induction motor based artificial muscle system.
Gruber, A; Arguello, E; Silva, R
2013-01-01
We present the design of a linear induction motor based on electromagnetic interactions. The engine is capable of producing a linear movement from electricity. The design consists of stators arranged in parallel, which produce a magnetic field sufficient to displace a plunger along its axial axis. Furthermore, the winding has a shell and cap of ferromagnetic material that amplifies the magnetic field. This produces a force along the length of the motor that is similar to that of skeletal muscle. In principle, the objective is to use the engine in the development of an artificial muscle system for prosthetic applications, but it could have multiple applications, not only in the medical field, but in other industries.
Linear motor driven Stirling coolers for military and commercial applications
Berry, R.
1992-01-01
This paper discusses the design and performance of a miniature, closed cycle, split stirling, cryogenic cooler that provides 1 watt of cooling at 80 K. The compressor uses two opposed linear motors to drive opposed pistons and the expander uses a pneumatically driven displacer. A single electronics module and compressor has been developed to drive three different expanders that have nominal cold cylinder diameters of 5, 8 and 13 mm
Generate stepper motor linear speed profile in real time
Stoychitch, M. Y.
2018-01-01
In this paper we consider the problem of realization of linear speed profile of stepper motors in real time. We considered the general case when changes of speed in the phases of acceleration and deceleration are different. The new and practical algorithm of the trajectory planning is given. The algorithms of the real time speed control which are suitable for realization to the microcontroller and FPGA circuits are proposed. The practical realization one of these algorithms, using Arduino platform, is given also.
Stepping motor control processor reference manual. Volume I
Holloway, F.W.; VanArsdall, P.J.; Suski, G.J.; Gant, R.G.; Rash, M.
1980-01-01
This manual is intended to serve several purposes. The first goal is to describe the capabilities and operation of the SMC processor package from an operator or user point of view. Secondly, the manual will describe in some detail the basic hardware elements and how they can be used effectively to implement a step motor control system. Practical information on the use, installation and checkout of the hardware set is presented in the following sections along with programming suggestions. Available related system software is described in this manual for reference and as an aid in understanding the system architecture. Section two presents an overview and operations manual of the SMC processor describing its composition and functional capabilities. Section three contains hardware descriptions in some detail for the LLL-designed hardware used in the SMC processor. Basic theory of operation and important features are explained
Electromagnetic Energy Converters - Rotating Motors and Linear Generators
Ekergaard, Boel
2011-07-01
This licentiate thesis presents a study of the electromagnetic properties of linear synchronous permanent magnet generators, utilized in wave energy converters, and a two pole permanent magnet motor for an electrical vehicle. Both machine topologies are presented, designed with a numerical simulation tool, based on a model derived from Maxwell's equations. Full scale prototypes of both the machines are under construction. A continued study about the impact on the magnetic circuit caused by the longitudinal ends of a linear generator is performed. The results present significant core losses in the translator and an increased cogging force caused by the longitudinal ends. Further, a new electric conversion circuit based on the electric resonance phenomena is presented. Experimental results indicate that a successful electric resonance between the generator and external circuit has been achieved. Finally, detailed analytical and numerical methods are utilized to investigate the losses in the two pole permanent magnet motor over a wide frequency interval. The results indicate that the efficiency of electrical motors in electrical vehicle system can be increased relative existing designs and argue for limiting of the gearbox. The system total efficiency and mechanical stability can thereby be increased. The work concerning the wave energy converter is a part of a larger project, the so called Lysekil Wave Power Project, whereas the work concerning the electric motor so far has been carried out as an individual project. However, a future goal is to integrate the research on the electric motor for electrical vehicle with closely related ongoing research regarding a flywheel based electric driveline for an All Electric Propulsion System
Design and optimization of a modal- independent linear ultrasonic motor.
Zhou, Shengli; Yao, Zhiyuan
2014-03-01
To simplify the design of the linear ultrasonic motor (LUSM) and improve its output performance, a method of modal decoupling for LUSMs is proposed in this paper. The specific embodiment of this method is decoupling of the traditional LUSM stator's complex vibration into two simple vibrations, with each vibration implemented by one vibrator. Because the two vibrators are designed independently, their frequencies can be tuned independently and frequency consistency is easy to achieve. Thus, the method can simplify the design of the LUSM. Based on this method, a prototype modal- independent LUSM is designed and fabricated. The motor reaches its maximum thrust force of 47 N, maximum unloaded speed of 0.43 m/s, and maximum power of 7.85 W at applied voltage of 200 Vpp. The motor's structure is then optimized by controlling the difference between the two vibrators' resonance frequencies to reach larger output speed, thrust, and power. The optimized results show that when the frequency difference is 73 Hz, the output force, speed, and power reach their maximum values. At the input voltage of 200 Vpp, the motor reaches its maximum thrust force of 64.2 N, maximum unloaded speed of 0.76 m/s, maximum power of 17.4 W, maximum thrust-weight ratio of 23.7, and maximum efficiency of 39.6%.
Improvement of the thermal behavior of linear motors through insulation layer
Eun, I. U.; Lee, C. M.; Chung, W. J.; Choi, Y. H.
2001-01-01
Linear motors can drive a linear motion without intermediate gears, screws or crank shafts. Linear motors can successfully replace ball lead screw in machine tools, because they have a high velocity, acceleration and good positioning accuracy. On the other hand, linear motors emit large amounts of heat and have low efficiency. In this paper, heat sources of a synchronous linear motor with high velocity and force are measured and analyzed. To improve the thermal stiffness of the linear motor, an insulation layer with low thermal conductivity is inserted between cooler and machine table. Some effects of the insulation layer are presented
Combining Step Gradients and Linear Gradients in Density.
Kumar, Ashok A; Walz, Jenna A; Gonidec, Mathieu; Mace, Charles R; Whitesides, George M
2015-06-16
Combining aqueous multiphase systems (AMPS) and magnetic levitation (MagLev) provides a method to produce hybrid gradients in apparent density. AMPS—solutions of different polymers, salts, or surfactants that spontaneously separate into immiscible but predominantly aqueous phases—offer thermodynamically stable steps in density that can be tuned by the concentration of solutes. MagLev—the levitation of diamagnetic objects in a paramagnetic fluid within a magnetic field gradient—can be arranged to provide a near-linear gradient in effective density where the height of a levitating object above the surface of the magnet corresponds to its density; the strength of the gradient in effective density can be tuned by the choice of paramagnetic salt and its concentrations and by the strength and gradient in the magnetic field. Including paramagnetic salts (e.g., MnSO4 or MnCl2) in AMPS, and placing them in a magnetic field gradient, enables their use as media for MagLev. The potential to create large steps in density with AMPS allows separations of objects across a range of densities. The gradients produced by MagLev provide resolution over a continuous range of densities. By combining these approaches, mixtures of objects with large differences in density can be separated and analyzed simultaneously. Using MagLev to add an effective gradient in density also enables tuning the range of densities captured at an interface of an AMPS by simply changing the position of the container in the magnetic field. Further, by creating AMPS in which phases have different concentrations of paramagnetic ions, the phases can provide different resolutions in density. These results suggest that combining steps in density with gradients in density can enable new classes of separations based on density.
Dynamic Response Analysis of Linear Pulse Motor with Closed Loop Control
山本, 行雄; 山田, 一
1989-01-01
A linear pulse motor can translate digital signals into linear positions without a gear system. It is important to predict a dynamic response in order to the motor that has the good performance. In this report the maximum pulse rate and the maximum speed on the linear pulse motor are obtained by using the sampling theory.
Magnetically Suspended Linear Pulse Motor for Semiconductor Wafer Transfer in Vacuum Chamber
Moriyama, Shin-Ichi; Hiraki, Naoji; Watanabe, Katsuhide; Kanemitsu, Yoichi
1996-01-01
This paper describes a magnetically suspended linear pulse motor for a semiconductor wafer transfer robot in a vacuum chamber. The motor can drive a wafer transfer arm horizontally without mechanical contact. In the construction of the magnetic suspension system, four pairs of linear magnetic bearings for the lift control are used for the guidance control as well. This approach allows us to make the whole motor compact in size and light in weight. The tested motor consists of a double-sided stator and a transfer arm with a width of 50 mm and a total length of 700 mm. The arm, like a ladder in shape, is designed as the floating element with a tooth width of 4 mm (a tooth pitch of 8 mm). The mover mass is limited to about 1.6 kg by adopting such an arm structure, and the ratio of thrust to mover mass reaches to 3.2 N/kg under a broad air gap (1 mm) between the stator teeth and the mover teeth. The performance testing was carried out with a transfer distance less than 450 mm and a transfer speed less than 560 mm/s. The attitude of the arm was well controlled by the linear magnetic bearings with a combined use, and consequently the repeatability on the positioning of the arm reached to about 2 micron. In addition, the positioning accuracy was improved up to about 30 micron through a compensation of the 128-step wave current which was used for the micro-step drive with a step increment of 62.5 micron.
NASTRAN buckling study of a linear induction motor reaction rail
Williams, J. G.
1973-01-01
NASTRAN was used to study problems associated with the installation of a linear induction motor reaction rail test track. Specific problems studied include determination of the critical axial compressive buckling stress and establishment of the lateral stiffness of the reaction rail under combined loads. NASTRAN results were compared with experimentally obtained values and satisfactory agreement was obtained. The reaction rail was found to buckle at an axial compressive stress of 11,400 pounds per square inch. The results of this investigation were used to select procedures for installation of the reaction rail.
König Ignasiak, Niklas; Habermacher, Lars; Taylor, William R; Singh, Navrag B
2017-01-01
Motor variability is an inherent feature of all human movements and reflects the quality of functional task performance. Depending on the requirements of the motor task, the human sensory-motor system is thought to be able to flexibly govern the appropriate level of variability. However, it remains unclear which neurophysiological structures are responsible for the control of motor variability. In this study, we tested the contribution of cortical cognitive resources on the control of motor variability (in this case postural sway) using a dual-task paradigm and furthermore observed potential changes in control strategy by evaluating Ia-afferent integration (H-reflex). Twenty healthy subjects were instructed to stand relaxed on a force plate with eyes open and closed, as well as while trying to minimize sway magnitude and performing a "subtracting-sevens" cognitive task. In total 25 linear and non-linear parameters were used to evaluate postural sway, which were combined using a Principal Components procedure. Neurophysiological response of Ia-afferent reflex loop was quantified using the Hoffman reflex. In order to assess the contribution of the H-reflex on the sway outcome in the different standing conditions multiple mixed-model ANCOVAs were performed. The results suggest that subjects were unable to further minimize their sway, despite actively focusing to do so. The dual-task had a destabilizing effect on PS, which could partly (by 4%) be counter-balanced by increasing reliance on Ia-afferent information. The effect of the dual-task was larger than the protective mechanism of increasing Ia-afferent information. We, therefore, conclude that cortical structures, as compared to peripheral reflex loops, play a dominant role in the control of motor variability.
Analysis of Nonlinear Dynamics in Linear Compressors Driven by Linear Motors
Chen, Liangyuan
2018-03-01
The analysis of dynamic characteristics of the mechatronics system is of great significance for the linear motor design and control. Steady-state nonlinear response characteristics of a linear compressor are investigated theoretically based on the linearized and nonlinear models. First, the influence factors considering the nonlinear gas force load were analyzed. Then, a simple linearized model was set up to analyze the influence on the stroke and resonance frequency. Finally, the nonlinear model was set up to analyze the effects of piston mass, spring stiffness, driving force as an example of design parameter variation. The simulating results show that the stroke can be obtained by adjusting the excitation amplitude, frequency and other adjustments, the equilibrium position can be adjusted by adjusting the DC input, and to make the more efficient operation, the operating frequency must always equal to the resonance frequency.
Commercializing a U.S. piezoceramic linear motor
Diehl, Rick W.
2000-06-01
A small low-cost piezoceramic linear motor has been developed in the US and is being commercialized by EDO Corporation, working with a leading motion control OEM and with a prominent US corporate research laboratory. First generation motor design has emphasized high displacement at up to 200mm per second velocity with 3.5 Newtons force with high resolution, short time constant and a 15 volt power supply at a cost of less than 100 dollars. Motor dimensions of 30 by 50 by 4 mm allow broad configuration choices, al hidden within the motion control slide. The EDO approach was to build on its core competence in high reliability electroceramic material engineering and production, and to use a strategy of back-integrating, or outsourcing of recent advances outside Edo in piezoceramics, while forward- integrating into specific emerging applications known intimately by the OEM in the market. The strategy provided design focus that has led to a cost-effective advance in 'solid-state actuation and control'. This is considered a classic case of successful industrial integration of an enabling technology across organizations in order to access the needed mix of technology for development of an innovative and competitive solution.
Linear magnetic spring and spring/motor combination
Patt, Paul J. (Inventor); Stolfi, Fred R. (Inventor)
1991-01-01
A magnetic spring, or a spring and motor combination, providing a linear spring force characteristic in each direction from a neutral position, in which the spring action may occur for any desired coordinate of a typical orthogonal coordinate system. A set of magnets are disposed, preferably symmetrically about a coordinate axis, poled orthogonally to the desired force direction. A second set of magnets, respectively poled opposite the first set, are arranged on the sprung article. The magnets of one of the sets are spaced a greater distance apart than those of the other, such that an end magnet from each set forms a pair having preferably planar faces parallel to the direction of spring force, the faces being offset so that in a neutral position the outer edge of the closer spaced magnet set is aligned with the inner edge of the greater spaced magnet set. For use as a motor, a coil can be arranged with conductors orthogonal to both the magnet pole directions and the direction of desired spring force, located across from the magnets of one set and fixed with respect to the magnets of the other set. In a cylindrical coordinate system having axial spring force, the magnets are radially poled and motor coils are concentric with the cylinder axis.
3-D finite element analysis of claw-poled stepping motor
Kawase, Yoshihiro; Yamaguchi, Tadashi; Mizuno; Koike, Yoshikazu
2002-01-01
Stepping motors are widely used for various electric instruments. It is necessary for the optimum design to analyze the magnetic field accurately. The 3-D finite element method with edge elements taking into account the rotation of the rotor has been applied to analyze the magnetic field of a claw-poled stepping motor. (Author)
The linear electric motor: Instability at 1,000 g's
Hunter, S.
1997-01-01
When fluid of high density is supported against gravity by a less dense liquid, the system is unstable, and microscopic perturbations grow at the interface between the fluids. This phenomenon, called the Rayleigh-Taylor instability, also occurs when a bottle of oil-and-vinegar salad dressing is turned upside down. The instability causes spikes of the dense fluid to penetrate the light fluid, while bubbles of the lighter fluid rise into the dense fluid. The same phenomenon occurs when a light fluid is used to accelerate a dense fluid, causing the two fluids to mix at a very high rate. For example, during the implosion of an ICF capsule, this instability can cause enough mixing to contaminate, cool, and degrade the yield of the thermonuclear fuel. The LEM is an excellent tool for studying this instability, but what is it? Think of a miniature high-speed electric train (the container) hurtling down a track (the electrodes) while diagnostic equipment (optical and laser) photographs it. The LEM, consists of four linear electrodes, or rails, that carry an electrical current to a pair of sliding armatures on the container. A magnetic field is produced that works in concert with the rail-armature current to accelerate the container--just as in an electric motor, but in a linear fashion rather than in rotation. The magnetic field is augmented with elongated coils just as in a conventional electric motor. This configuration also helps hold the armatures against the electrodes to prevent arcing. The electrical energy (0.6 megajoules) is provided by 16 capacitor banks that can be triggered independently to produce different acceleration profiles (i.e., how the acceleration varies with time)
Lindegger, M.
2008-07-01
When an oscillating piston interacts with an electrical generator or motor, it is obvious that the electrical machine should also have linear motion, eliminating the disadvantage of a crankshaft. This work has two parts: construction of an efficient linear generator for a Stirling engine with a free piston and a theoretical study of the efficiency of linear motors for driving compressors. The Stirling engine and the linear generator have a continuous power of 1.3 kW{sub el}. With thermal peak power the planned 1.5 kW{sub el} are attained. The Project 'Stirling Free Piston Generator' for cogeneration will continue. Smaller linear motors with permanent magnets function without electronic control from single-phase AC net. The theoretical study shows how linear motors can be led out by linking the electric vector diagram with the pressure-volume diagram of the compressor. At a power level exceeding a few kW, a three-phase system with power electronics is more suitable. The frequency of oscillation is variable and lower than 50 Hz. The efficiency of the simulated linear motors lies in the range of efficiency class EFF1 of standard motors. The very high efficiencies of rotating motors with permanent magnets are not attained. The combination of the linear motor with an optimised thermal process leads to advantages regarding the efficiency. If a heat pump with linear drive system can operate with hot lubricating oil the losses in the heat exchangers are reduced. The Competence Center for Thermal Machines at Lucerne University of Applied Sciences and Arts shows great interest to pursue the project of a linear heat pump for small temperature differences. (author)
The micro-step motor controller protocol and driver
Hong, Kwang Pyo; Lee, Chang Hee; Moon, Myung Kook; Choi, Bung Hun; Choi, Young Hyun; Cheon, Jong Gu
2004-11-01
We developed the communication protocol which is a main kernel of motor control firmware program that is used at HANARO neutron spectrometer now. This protocol driver divide into as a 4 group(Serial protocol, DLL, Active-X, Labview driver), so end-user can control the motor control as easily by PC RS232/422 port and have a merits as follows: Support a Low Level/High level driver, Support a Network Connectivity function by using High level Driver, One Server can services many client request. By using this protocol, The End-user can be easily makes a application motor control program and developed another application system program by using several kinds of programming tools under Widows and Linux based operation systems
Strong Stability Preserving Explicit Linear Multistep Methods with Variable Step Size
Hadjimichael, Yiannis; Ketcheson, David I.; Loczi, Lajos; Né meth, Adriá n
2016-01-01
Strong stability preserving (SSP) methods are designed primarily for time integration of nonlinear hyperbolic PDEs, for which the permissible SSP step size varies from one step to the next. We develop the first SSP linear multistep methods (of order
Air-gap field, induced voltage and thrust in the short-stator linear induction motor
Deleroi, W
1980-07-15
The description of the magnetic field in the air-gap of a short-primary linear induction motor, and the subsequent calculation of the thrust developed and the voltages induced in the stator bars can be made by using balancing waves. These balancing waves are generated at any point where the field wave that would exist in a machine of infinite length is disturbed. In the linear motor these disturbances occur at the ends of the stator iron and at discontinuities in the distribution of the stator winding, which exist in machines having stepped windings. From the points where they are generated, free balancing waves travel in two directions and determine the performance of these machines to a large extent. The voltage they induce in a stator bar can be determined from the core flux and mapped on a phasor diagram. The resulting voltage phasor follows a logarithmic spiral. The resulting voltages induced in the three phase windings form a strongly asymmetrical system which can be split-up into positive-, negative- and zerosequence components depending on the slip. The tangential forces may be calculated as the product of the magnetic flux density in the air-gap and the linear current density in either the stator or the reaction rail. As the 'magnetic tail' outside the machine also gives rise to forces in the direction of motion, both methods yield quite different force distributions, though for the resulting force the same value is found.
Low-Rank Linear Dynamical Systems for Motor Imagery EEG.
Zhang, Wenchang; Sun, Fuchun; Tan, Chuanqi; Liu, Shaobo
2016-01-01
The common spatial pattern (CSP) and other spatiospectral feature extraction methods have become the most effective and successful approaches to solve the problem of motor imagery electroencephalography (MI-EEG) pattern recognition from multichannel neural activity in recent years. However, these methods need a lot of preprocessing and postprocessing such as filtering, demean, and spatiospectral feature fusion, which influence the classification accuracy easily. In this paper, we utilize linear dynamical systems (LDSs) for EEG signals feature extraction and classification. LDSs model has lots of advantages such as simultaneous spatial and temporal feature matrix generation, free of preprocessing or postprocessing, and low cost. Furthermore, a low-rank matrix decomposition approach is introduced to get rid of noise and resting state component in order to improve the robustness of the system. Then, we propose a low-rank LDSs algorithm to decompose feature subspace of LDSs on finite Grassmannian and obtain a better performance. Extensive experiments are carried out on public dataset from "BCI Competition III Dataset IVa" and "BCI Competition IV Database 2a." The results show that our proposed three methods yield higher accuracies compared with prevailing approaches such as CSP and CSSP.
Optimization of a piezoelectric linear motor in terms of the contact parameters
Ko, Hyun-Phill; Kim, Sangsig; Kang, Chong-Yun; Kim, Hyun-Jai; Yoon, Seok-Jin
2005-01-01
The contact kinetics of piezoelectric linear motors determines the operational characteristics like speed and torque or transmitted mechanical power and efficiency. Piezoelectric linear motors are driven by tangential stress in the interface between tip of shaking beam and slider. A good contact between the tip and slider is necessary for a reliable analysis of the motor, which is needed for the optimization of its performance. The piezoelectric linear motor was fabricated and the characteristics of the motor were investigated by external conditions such as tip shape with different curvatures and contact force between the tip and the slider. It was found in this investigation that the optimal curvature of the tip and the contact force are curvature of 1 and 10, respectively, for the high actuating speed, and curvature of 1 and 40 N, respectively, for the high actuating force. Finally, tip shape has an influence on the characteristics of linear motor
Hu, Tengjiang; Zhao, Yulong; Li, Xiuyuan; Zhao, You; Bai, Yingwei
2016-03-01
The design, fabrication, and testing of a novel electro-thermal linear motor for micro manipulators is presented in this paper. The V-shape electro-thermal actuator arrays, micro lever, micro spring, and slider are introduced. In moving operation, the linear motor can move nearly 1 mm displacement with 100 μm each step while keeping the applied voltage as low as 17 V. In holding operation, the motor can stay in one particular position without consuming energy and no creep deformation is found. Actuation force of 12.7 mN indicates the high force generation capability of the device. Experiments of lifetime show that the device can wear over two million cycles of operation. A silicon-on-insulator wafer is introduced to fabricate a high aspect ratio structure and the chip size is 8.5 mm × 8.5 mm × 0.5 mm.
Analysis and Design of Double-sided Air core Linear Servo Motor with Trapezoidal Permanent Magnets
Zhang, Yuqiu; Yang, Zilong; Yu, Minghu
2011-01-01
In order to reduce the thrust ripple of linear servo system, a double-sided air core permanent magnet linear servo motor with trapezoidal shape permanent magnets (TDAPMLSM) is proposed in this paper. An analytical model of the motor for predicting the magnetic field in the air-gap at no...
Control of Position for a Telescope with Stepping Motors
Quintero Salazar, Edwin Andrés; Gallego Becerra, Hugo Armando; Gallego Orozco, Hoover
2008-01-01
En este documento se muestran los resultados obtenidos al construir un control electrónico de posición para un telescopio reflector de 15 cm de objetivo, con motores paso a paso manejados desde un microcontrolador. También se ilustra el diseño circuital realizado, la simulación obtenida en la herramienta informática Proteus, el software desarrollado en lenguaje ensamblador para el microcontrolador, y el circuito final resultante montado sobre protoboard. In this paper the obtained resul...
Genetic demixing and evolution in linear stepping stone models
Korolev, K. S.; Avlund, Mikkel; Hallatschek, Oskar; Nelson, David R.
2010-04-01
Results for mutation, selection, genetic drift, and migration in a one-dimensional continuous population are reviewed and extended. The population is described by a continuous limit of the stepping stone model, which leads to the stochastic Fisher-Kolmogorov-Petrovsky-Piscounov equation with additional terms describing mutations. Although the stepping stone model was first proposed for population genetics, it is closely related to “voter models” of interest in nonequilibrium statistical mechanics. The stepping stone model can also be regarded as an approximation to the dynamics of a thin layer of actively growing pioneers at the frontier of a colony of micro-organisms undergoing a range expansion on a Petri dish. The population tends to segregate into monoallelic domains. This segregation slows down genetic drift and selection because these two evolutionary forces can only act at the boundaries between the domains; the effects of mutation, however, are not significantly affected by the segregation. Although fixation in the neutral well-mixed (or “zero-dimensional”) model occurs exponentially in time, it occurs only algebraically fast in the one-dimensional model. An unusual sublinear increase is also found in the variance of the spatially averaged allele frequency with time. If selection is weak, selective sweeps occur exponentially fast in both well-mixed and one-dimensional populations, but the time constants are different. The relatively unexplored problem of evolutionary dynamics at the edge of an expanding circular colony is studied as well. Also reviewed are how the observed patterns of genetic diversity can be used for statistical inference and the differences are highlighted between the well-mixed and one-dimensional models. Although the focus is on two alleles or variants, q -allele Potts-like models of gene segregation are considered as well. Most of the analytical results are checked with simulations and could be tested against recent spatial
Design of linear pulse motor for control element drive mechanism of SMART
Kim, J. H.; Huh, H.; Kim, J. I.; Jang, M. H.; Kang, D. H.
1999-01-01
49 Control Rod Drive Mechanisms(CEDMs) are densely installed on the reactor central head of SMART. The structural design should ensure the space for maintenance/repair, cable routing, and heat release from the motor. In this paper, an improved design is presented to enlarge the space between CEDMs by decreasing the diameter of linear pulse motor. The reduction of motor thrust force due to the decrease of the motor diameter is compensated by resizing the other structural components
Direct torque control via feedback linearization for permanent magnet synchronous motor drives
Lascu, Cristian; Boldea, Ion; Blaabjerg, Frede
2012-01-01
The paper describes a direct torque controlled (DTC) permanent magnet synchronous motor (PMSM) drive that employs feedback linearization and uses sliding-mode and linear controllers. We introduce a new feedback linearization approach that yields a decoupled linear PMSM model with two state...
A Study on the Design of PM Exited Transverse Flux Linear Motor for Ropeless Elevator
Kang, Do Hyun; Bang, Deok Je; Kim, Jong Moo; Jeong, Yeon Ho [Korea Electrotechnology Research Institute (Korea); Kim, Moon Hwan [Silla University (Korea)
2000-03-01
The topological investigations regarding magnetic circuit geometry and winding form of the transverse flux machine have brought up a variety of constructable arrangements with different features for several types of application[1, 2]. Here with, a novel PM-exited linear motor with inner mover, based on the transverse flux configuration leads to a considerable increase in power density for moving part. In this study we designed PM-exited transverse flux linear motor for ropeless elevator, whose output power density is higher and weight is lighter than conventional linear synchronous motors, When the designed motor in this study is applied to ropeless elevator, it is possible to increase power density more than 400% comparing with PM exited linear synchronous motor. The result of this study can be utilized for ropeless elevator or gearless direct linear moving system with high output[3]. (author). 8 refs., 9 figs., 4 tabs.
A square-plate ultrasonic linear motor operating in two orthogonal first bending modes.
Chen, Zhijiang; Li, Xiaotian; Chen, Jianguo; Dong, Shuxiang
2013-01-01
A novel square-plate piezoelectric ultrasonic linear motor operated in two orthogonal first bending vibration modes (B₁) is proposed. The piezoelectric vibrator of the linear motor is simply made of a single PZT ceramic plate (sizes: 15 x 15 x 2 mm) and poled in its thickness direction. The top surface electrode of the square ceramic plate was divided into four active areas along its two diagonal lines for exciting two orthogonal B₁ modes. The achieved driving force and speed from the linear motor are 1.8 N and 230 mm/s, respectively, under one pair orthogonal voltage drive of 150 V(p-p) at the resonance frequency of 92 kHz. The proposed linear motor has advantages over conventional ultrasonic linear motors, such as relatively larger driving force, very simple working mode and structure, and low fabrication cost.
Yoneda, Makoto; Dohmeki, Hideo
The position control system with the advantage large torque, low vibration, and high resolution can be obtained by the constant current micro step drive applied to hybrid stepping motor. However loss is large, in order not to be concerned with load torque but to control current uniformly. As the one technique of a position control system in which high efficiency is realizable, the same sensorless control as a permanent magnet motor is effective. But, it was the purpose that the control method proposed until now controls speed. Then, this paper proposed changing the drive method of micro step drive and sensorless drive. The change of the drive method was verified from the simulation and the experiment. On no load, it was checked not producing change of a large speed at the time of a change by making electrical angle and carrying out zero reset of the integrator. On load, it was checked that a large speed change arose. The proposed system could change drive method by setting up the initial value of an integrator using the estimated result, without producing speed change. With this technique, the low loss position control system, which employed the advantage of the hybrid stepping motor, has been built.
Zhao, J.; Zheng, T.Q.; Zhang, W.; Fang, J.; Liu, Y.M.
2011-01-01
A new type high temperature superconductor linear induction motor is designed and analyzed as a prototype to ensure applicability aimed at industrial motors. Made of Bi-2223/Ag, primary windings are distributed with the double-layer concentrated structure. The motor is analyzed by 2D electromagnetic Finite Element Method to get magnetic field distribution, thrust force, vertical force and so on. The critical current of motor and the electromagnetic force are mostly decided by the leakage flux density of primary slot and by the main magnetic flux and eddy current respectively. The structural parameters of motor have a great influence on the distribution of magnetic field. Under constant currents, the properties of motor are analyzed with different slot widths, slot heights and winding turns. The properties of motor, such as the maximum slot leakage flux density, motor thrust and motor vertical force, are analyzed with different structural parameters.
CEDM Controller for a Linear Pulse Motor by using Pulse Width Modulation Method in Integral Reactor
Lee, Joon-Koo; Keum, Jong-Yong; Park, Heui-Youn
2007-01-01
Integral Reactor SMART is under development at KAERI. The design characteristics of SMART are radically different from those employed in currently operating loop type PWR in Korea. The reliability and accuracy of Control Rod Drive Mechanism are very important to the reactor safety and the design of the Plant Protection System. The SMART CEDM designed for fine-step movement consists of a linear pulse motor, reed switch type sensor with top and bottom limit switches which also act as Control Element Assembly(CEA) Position indicator, The linear pulse motor is a four phase synchronous DC electric machine with inner stator and output stator in coolant medium inside a strong housing. The objective of this paper is to introduce and to explain the CEDM controller CEDM Controller is being developed with a new design concept and digital technology to reduce the Operating Error and improve the systems' reliability and availability. And Switched Mode Power Supply is also being developed with digital hardware technology. This paper involves the test details and result
Design and performance testing of an ultrasonic linear motor with dual piezoelectric actuators.
Smithmaitrie, Pruittikorn; Suybangdum, Panumas; Laoratanakul, Pitak; Muensit, Nantakan
2012-05-01
In this work, design and performance testing of an ultrasonic linear motor with dual piezoelectric actuator patches are studied. The motor system consists of a linear stator, a pre-load weight, and two piezoelectric actuator patches. The piezoelectric actuators are bonded with the linear elastic stator at specific locations. The stator generates propagating waves when the piezoelectric actuators are subjected to harmonic excitations. Vibration characteristics of the linear stator are analyzed and compared with finite element and experimental results. The analytical, finite element, and experimental results show agreement. In the experiments, performance of the ultrasonic linear motor is tested. Relationships between velocity and pre-load weight, velocity and applied voltage, driving force and applied voltage, and velocity and driving force are reported. The design of the dual piezoelectric actuators yields a simpler structure with a smaller number of actuators and lower stator stiffness compared with a conventional design of an ultrasonic linear motor with fully laminated piezoelectric actuators.
Traveling-wave piezoelectric linear motor part II: experiment and performance evaluation.
Ting, Yung; Li, Chun-Chung; Chen, Liang-Chiang; Yang, Chieh-Min
2007-04-01
This article continues the discussion of a traveling-wave piezoelectric linear motor. Part I of this article dealt with the design and analysis of the stator of a traveling-wave piezoelectric linear motor. In this part, the discussion focuses on the structure and modeling of the contact layer and the carriage. In addition, the performance analysis and evaluation of the linear motor also are dealt with in this study. The traveling wave is created by stator, which is constructed by a series of bimorph actuators arranged in a line and connected to form a meander-line structure. Analytical and experimental results of the performance are presented and shown to be almost in agreement. Power losses due to friction and transmission are studied and found to be significant. Compared with other types of linear motors, the motor in this study is capable of supporting heavier loads and provides a larger thrust force.
Strong Stability Preserving Explicit Linear Multistep Methods with Variable Step Size
Hadjimichael, Yiannis
2016-09-08
Strong stability preserving (SSP) methods are designed primarily for time integration of nonlinear hyperbolic PDEs, for which the permissible SSP step size varies from one step to the next. We develop the first SSP linear multistep methods (of order two and three) with variable step size, and prove their optimality, stability, and convergence. The choice of step size for multistep SSP methods is an interesting problem because the allowable step size depends on the SSP coefficient, which in turn depends on the chosen step sizes. The description of the methods includes an optimal step-size strategy. We prove sharp upper bounds on the allowable step size for explicit SSP linear multistep methods and show the existence of methods with arbitrarily high order of accuracy. The effectiveness of the methods is demonstrated through numerical examples.
Linear summation of outputs in a balanced network model of motor cortex.
Capaday, Charles; van Vreeswijk, Carl
2015-01-01
Given the non-linearities of the neural circuitry's elements, we would expect cortical circuits to respond non-linearly when activated. Surprisingly, when two points in the motor cortex are activated simultaneously, the EMG responses are the linear sum of the responses evoked by each of the points activated separately. Additionally, the corticospinal transfer function is close to linear, implying that the synaptic interactions in motor cortex must be effectively linear. To account for this, here we develop a model of motor cortex composed of multiple interconnected points, each comprised of reciprocally connected excitatory and inhibitory neurons. We show how non-linearities in neuronal transfer functions are eschewed by strong synaptic interactions within each point. Consequently, the simultaneous activation of multiple points results in a linear summation of their respective outputs. We also consider the effects of reduction of inhibition at a cortical point when one or more surrounding points are active. The network response in this condition is linear over an approximately two- to three-fold decrease of inhibitory feedback strength. This result supports the idea that focal disinhibition allows linear coupling of motor cortical points to generate movement related muscle activation patterns; albeit with a limitation on gain control. The model also explains why neural activity does not spread as far out as the axonal connectivity allows, whilst also explaining why distant cortical points can be, nonetheless, functionally coupled by focal disinhibition. Finally, we discuss the advantages that linear interactions at the cortical level afford to motor command synthesis.
Design of angular position detector for rotary stepping motor of CEDM
Park, Seok Ha; Kim, Jong In; Kim, Ji Ho; Huh, Hyung; Yu, Je Yong
2000-11-01
The position of control rod must be detected continuously to control CEDM control rod used in SMART. The up-and-down movement of control rod can be detected approximately by using a position indicator, but an additionary sensor should be required because the accuracy of it is low. And because the rotary stepping motor for SMART CEDM is to work at harsh conditions of high temperature, pressure and radiation, it is difficult to select an adequate sensor from commercially available products. Therefore, a sensor to monitor the position of control rod by detecting the position of rotary angle for stepping motor should studied. This paper analyzes and compares the techniques of Synchro, Resolver, and Magnesyn being used as a rotary angle detector for stepping motor. The rotary angle detector by using our unique concept is designed on the basis of upper work. The prototype of rotary angle detector is produced and the results of test and valuation is presented
Mathematical models of flat linear induction motors used in mining drives
Tall, M
1984-01-01
Design parameters are calculated for electric flat linear induction motors, widely employed in the coal and ore mining industries in Poland. A mathematical model of this motor with a single-layer ferromagnetic secondary part is presented. A three-dimensional electromagnetic field analysis is carried out, taking relative magnetic permeability variation, discrete winding distribution, influence of armature grooving and pulsating field influence into account. A computer calculation algorithm is proposed for determining motor characteristics. 17 refs.
Effect of Frequency and Spatial-Harmonics on Rotary and Linear Induction Motor Characteristics
1972-03-01
A computer analysis is made of the effect of current and MMF airgap harmonics on the output characteristics of rotary and linear induction motors. The current harmonics accompanying thyristor-control operation are evaluated by Fourier analyzing the p...
A standing wave linear ultrasonic motor operating in in-plane expanding and bending modes.
Chen, Zhijiang; Li, Xiaotian; Ci, Penghong; Liu, Guoxi; Dong, Shuxiang
2015-03-01
A novel standing wave linear ultrasonic motor operating in in-plane expanding and bending modes was proposed in this study. The stator (or actuator) of the linear motor was made of a simple single Lead Zirconate Titanate (PZT) ceramic square plate (15 × 15 × 2 mm(3)) with a circular hole (D = 6.7 mm) in the center. The geometric parameters of the stator were computed with the finite element analysis to produce in-plane bi-mode standing wave vibration. The calculated results predicted that a driving tip attached at midpoint of one edge of the stator can produce two orthogonal, approximate straight-line trajectories, which can be used to move a slider in linear motion via frictional forces in forward or reverse direction. The investigations showed that the proposed linear motor can produce a six times higher power density than that of a previously reported square plate motor.
Coreless Linear Induction Motor (LIM) for Space-borne Electro-magnetic Mass Driver Applications
National Aeronautics and Space Administration — Large scale linear induction motors use ferromagnetic cores, but at high speed these cores choke the system’s ability to transform electrical energy into mechanical...
Knosche, Thomas; Knosche, T.R.; Praamstra, Peter; Peters, M.J.; Stegeman, Dick; Stegeman, D.
1996-01-01
Spatiotemporal dipole modelling of the generators of the readiness potential (RP) prior to voluntary movements has yielded diverging results concerning the contributions of supplementary motor area (SMA) and primary motor cortex. We applied an alternative approach (i.e. linear estimation theory) to
MAGNETIC INDUCTION DISTRIBUTION IN A LINEAR SYNCHRONUS MOTOR WITH MAGNETIC SUSPENSION
D.I. Parkhomenko
2013-02-01
Full Text Available Results of computer simulation and experimental investigations of magnetic induction distribution in a coaxial linear synchronous motor with magnetic suspension are presented. The magnetic induction distribution has been studied both in the motor air gap and on the runner surface.
Study on a high thrust force bi-double-sided permanent magnet linear synchronous motor
Liang Tong
2016-03-01
Full Text Available A high thrust force bi-double-sided permanent magnet linear synchronous motor used in gantry-type five-axis machining center is designed and its performance was tested in this article. This motor is the subproject of Chinese National Science and Technology Major Project named as “development of domestic large thrust linear motor used in high-speed gantry-type five-axis machining center project” jointly participated by enterprises and universities. According to the requirement of the application environment and motor performance parameters, the linear motor’s basic dimensions, form of windings, and magnet arrangement are preliminarily specified through theoretical analysis and calculation. To verify the correctness of the result of the calculation, the finite element model of the motor is established. The static and dynamic characteristics of the motor are studied and analyzed through the finite element method, and the initial scheme is revised. The prototype of the motor is manufactured based on the final revised structure parameters, and the performance of the motor is fully tested using the evaluation platform for direct-drive motor component. Experimental test results meet the design requirements and show the effectiveness of design method and process.
Fluid powered linear piston motor with harmonic coupling
Raymond, David W.
2016-09-20
A motor is disclosed that includes a module assembly including a piston that is axially cycled. The piston axial motion is coupled to torque couplers that convert the axial motion into rotary motion. The torque couplers are coupled to a rotor to rotate the rotor.
A T-shape linear piezoelectric motor with single foot.
Liu, Yingxiang; Chen, Weishan; Yang, Xiaohui; Liu, Junkao
2015-02-01
A new T-shape piezoelectric motor using the hybrid of two orthogonal longitudinal vibrations is proposed in this work. Six pieces of PZT ceramic plates are bonded on the upside and downside surfaces of a T-shape duralumin alloy base respectively to form the proposed motor. Elliptical movement can be generated on the driving tip by applying sine and cosine voltages to the PZT elements. The horizontal displacement of the driving tip will push the runner while the vertical displacement can overcome the preload. Finite element method is used to accomplish the design and analysis process. The resonance frequencies of the two vibration modes are tuned to be close by modal analysis, while the motion trajectory of the driving tip is observed by transient analysis. After the fabrication of a prototype, the vibration characteristics and mechanical output ability are measured. The no-load speed and the maximum output thrust force of the proposed motor are tested to be 718 mm/s and 3.5 N under an exciting frequency of 53.1 kHz. The proposed T-shape piezoelectric motor exhibits merits of simple structure, easy to realize miniaturization, easy to be fabricated, and high power-to-weight ratio. Copyright © 2014 Elsevier B.V. All rights reserved.
Principle and analysis of a linear motor driving system for HTS levitation applications
Jin, Jian X.; Guo, You G.; Zhu, Jian G.
2007-01-01
High temperature superconductor (HTS) high levitation force density with passive and self-stabilizing features allows a number of special applications to be developed. Linear motor driving systems are commonly required for those applications such as levitated transport systems. In this paper a prototype linear motor driving system with HTS is analyzed with calculation details including its magnetic fields and driving forces presented in the paper
Direct torque control with feedback linearization for induction motor drives
Lascu, Cristian; Jafarzadeh, Saeed; Fadali, Sami M.
2015-01-01
This paper describes a Direct Torque Controlled (DTC) Induction Machine (IM) drive that employs feedback linearization and sliding-mode control. A feedback linearization approach is investigated, which yields a decoupled linear IM model with two state variables: torque and stator flux magnitude....... This intuitive linear model is used to implement a DTC type controller that preserves all DTC advantages and eliminates its main drawback, the flux and torque ripple. Robust, fast, and ripple-free control is achieved by using Variable Structure Control (VSC) with proportional control in the vicinity...... robust stability analysis are presented. The sliding controller is compared with a linear DTC scheme, and experimental results for a sensorless IM drive validate the proposed solution....
A. Codina García
2002-05-01
Full Text Available El presente trabajo aborda el empleo del motor de paso en las aplicaciones industriales actuales, los recientesavances y tendencias en la construcción de los mismos así como sus principales características y variantes másconocidas.Palabras claves: Motores de paso, control de movimiento.______________________________________________________________________Abstract.This paper focuses on the position of stepping motors in current industrial applications, recent advances andgeneral trends in design and manufacturing such motors. Their most outstanding features and different typesare also shown.Key words: Stepping motors, motion control.
A double B1-mode 4-layer laminated piezoelectric linear motor.
Li, Xiaotian; Chen, Zhijiang; Dong, Shuxiang
2012-12-01
We report a miniature piezoelectric ultrasonic linear motor that is made of four Pb(Zr,Ti)O(3) (PZT) piezoelectric ceramic layers for low-voltage work. The 4-layer piezoelectric laminate works in two orthogonal first-bending modes for producing elliptical oscillations, which are then used to drive a contacting slider into continuous linear motion. Experimental results show that the miniature linear motor (size: 4 × 4 × 12 mm, weight: 1.7 g) can generate a large driving force of 0.48 N and a linear motion speed of up to 160 mm/s, using a 40 V(pp)/mm voltage drive at its resonance frequency of 64.5 kHz. The maximum efficiency of the linear motor is 30%.
Evaluation of synthetic linear motor-molecule actuation energetics
Brough, Branden; Northrop, Brian H.; Schmidt, Jacob J.; Tseng, Hsian-Rong; Houk, Kendall N.; Stoddart, J. Fraser; Ho, Chih-Ming
2006-01-01
By applying atomic force microscope (AFM)-based force spectroscopy together with computational modeling in the form of molecular force-field simulations, we have determined quantitatively the actuation energetics of a synthetic motor-molecule. This multidisciplinary approach was performed on specifically designed, bistable, redox-controllable [2]rotaxanes to probe the steric and electrostatic interactions that dictate their mechanical switching at the single-molecule level. The fusion of expe...
Electric-stepping-motor tests for a control-drum actuator of a nuclear reactor
Kieffer, A. W.
1972-01-01
Experimental tests were conducted on two stepping motors for application as reactor control-drum actuators. Various control-drum loads with frictional resistances ranging from approximately zero to 40 N-m and inertias ranging from zero to 0.424 kg-sq m were tested.
A Test Device Module of the Step Motor Driver for HANARO CAR Operation
Im, Yun-Taek; Doo, Seung-Gyu; Shin, Jin-Won; Kim, Ki-Hyun; Choi, Young-San; Lee, Jung-Hee; Kim, Hyung-Kyoo; Lee, Choong-Sung [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)
2016-10-15
The brand-new control system is reliable and has advantages compared with the old control system, and the installed system covers all functional operations of old system. Nevertheless, packaged RTP systems do not include a step motor or driver, and it is necessary to develop a proper test device to check the step motor and driver without using the RTP system. In particular, the operation of a CAR (Control Absorber Rod) requires many complicated procedures. Occasionally, it takes significant time to prepare for a field test. In this work, a test device module for a step motor diver is shown to emulate a HANARO CAR operation, and the test device system architecture, operational principle, and experiment results are presented. A commercial 8-bit μ-processor is applied to implement the device. A portable test device for HANARO CAR operation is presented. An 8-bit μ-controller is used to emulate a HANARO CAR operation. The digital interface, as well as the functional operation, of the test device module matches that of the currently used driver. This device can be used to check the functional validity of the step motor and driver.
Development of linear pulse motor type control element drive mechanism for smart
Je-Yong, Yu; Jong-in, Kim; Ji-ho, Kim; Hyung, Huh; Moon-Hee, Chang
2001-01-01
The system-integrated modular advanced reactor (SMART) currently under development at the Korea Atomic Energy Research Institute is being designed with soluble boron free operation and the use of nuclear heating for reactor start-up. These design features require a Control Element Drive Mechanism(CEDM) for SMART to have fine-step movement capability as well as high reliability for fine reactivity control. In this paper, the design characteristics of a new concept CEDM driven by a Linear Pulse Motor (LPM) which meets the design requirements of the integral reactor SMART are introduced. The primary dimensions of the linear pulse motor are determined by electro-magnetic analysis and the results are also presented. In parallel with the electro-magnetic analysis, the conceptual design of the CEDM is visualized and checked for interferences among parts by assembling three dimensional (3D) models on computer. A prototype of the LPM with double air-gaps for the CEDM sub-assemblies to lift 100 kg is designed, analysed, manufactured and tested to confirm the validity of the CEDM design concept. A converter and test facility are manufactured to verify the dynamic performance of the LPM. The mover of the LPM is welded with ferromagnetic material and non-ferromagnetic material to get the magnetic flux path between the inner stator and outer stator. The thrust forces of LPM predicted by the analytic model have shown good agreement with experimental results from the prototype LPM. It is found that the LPM type CEDM has high force density and a simple drive mechanism to reduce volume and satisfy reactor operating circumstances with high pressure and temperature. (authors)
Linear pulse motor type control element drive mechanism for the integral reactor
Yu, J. Y.; Choi, S.; Kim, J. H.; Huh, H.; Park, K. B.
2007-01-01
The integral reactor SMART currently under development at Korea Atomic Energy Research Institute is designed with soluble boron free operation and use of nuclear heating for reactor startup. These design features require the Control Element Drive Mechanism (CEDM) for SMART to have fine-step movement capability as well as high reliability for the fine reactivity control. In this paper, design characteristics of a new concept CEDM driven by the Linear Pulse Motor (LPM) which meets the design requirements of the integral reactor SMART are introduced. The primary dimensions of the linear pulse motor are determined by the electro-magnetic analysis and the results are also presented. In parallel with the electro-magnetic analysis, the conceptual design of the CEDM is visualized and checked for interferences among parts by assembling three dimensional (3D) models on the computer. Prototype of LPM with double air-gaps for the CEDM sub-assemblies to lift 100 kg is designed, analysed, manufactured and tested to confirm the validity of the CEDM design concept. A converter and a test facility are manufactured to verify the dynamic performance of the LPM. The mover of the LPM is welded with ferromagnetic material and non-ferromagnetic material to get the magnetic flux path between inner stator and outer stator. The thrust forces of LPM predicted by analytic model have shown good agreement with experimental results from the prototype LPM. It is found that the LPM type CEDM has high force density and simple drive mechanism to reduce volume and satisfy the reactor operating circumstances with high pressure and temperature
Design optimization of a linear permanent magnet synchronous motor for extra low force pulsations
Isfahani, Aarsh Hassanpour; Vaez-Zadeh, Sadegh
2007-01-01
Air cored linear permanent magnet synchronous motors have essentially low force pulsations due to the lack of the primary iron core and teeth. However, a motor design with much lower force pulsations is required for many precise positioning systems, as in fabrication of microelectronic chips. This paper presents the design optimization of an air cored linear permanent magnet synchronous motor with extra low force pulsations for such applications. In order to achieve the goal, an analytical layer model of the machine is developed. A very effective objective function regarding force pulsations is then proposed; while the selected motor dimensions are regarded as the design variables. A genetic algorithm is used to find the optimal motor dimensions. This results in a substantial ninety percent reduction in the force pulsations. The design optimization is verified by a finite element method
Kagischke, W; Steffen, U
1977-12-08
The purpose of the invention is to avoid the disadvantages of asynchronous linear motors, for example for need for reactive current for excitation, where driving on a normal section and driving on a branch line should be possible without losing the saving in weight on the inductor. According to the invention, the common inductor on a synchronous linear motor consists of 2 parallel packets of laminations surrounded by DC excitation windings and the secondary systems consists of unwound and spaced magnetic sections covering the two packets of laminations on the normal section. In the direction of thrust, their length extends nearly over the pole pitch of the multi-phase AC winding. According to the invetnion, this drive therefore consists of a synchronous linear motor combined into a double motor, with an external, rail shaped fixed secondary system, which has a multi-phase AC winding opposite it.
Operation of general purpose stepping motor controllers at the National Synchrotron Light Source
Stubblefield, F.W.
1986-10-01
A prototype and four copies of a general purpose subsystem for mechanical positioning of detectors, samples, and beam line optical elements which constitute experiments at the National Synchrotron Light Source facility of Brookhaven National Laboratory have been constructed and placed into operation. Construction of a sixth subsystem is nearing completion. The subsystems effect mechanical positioning by controlling a set of stepping motors and their associated position encoders. The units are general purpose in the sense that they receive commands over a standard 9600 baud asynchronous serial line compatible with the RS-232-C electrical signal standard, generate TTL-compatible streams of stepping pulses which can be used with a wide variety of stepping motors, and read back position values from a number of different types and models of position encoder. The basic structure of the motor controller subsystem will be briefly reviewed. Short descriptions of the positioning apparatus actuated at each of the test and experiment stations employing a motor control unit are given. Additions and enhancements to the subsystem made in response to problems indicated by actual operation of the four installed units are described in more detail
Operation of general purpose stepping motor controllers at the National Synchrotron Light Source
Stubblefield, F.W.
1987-01-01
A prototype and four copies of a general purpose subsystem for mechanical positioning of detectors, samples, and beam line optical elements which constitute experiments at the National Synchrotron Light Source facility of Brookhaven National Laboratory have been constructed and placed into operation. Construction of a sixth subsystem is nearing completion. The subsystems effect mechanical positioning by controlling a set of stepping motors and their associated position encoders. The units are general purpose in the sense that they receive commands over a standard 9600 baud asynchronous serial line compatible with the RS-232-C electrical signal standard, generate TTL-compatible streams of stepping pulses which can be used with a wide variety of stepping motors, and read back position values from a number of different types and models of position encoder. The basic structure of the motor controller subsystem is briefly reviewed. Short descriptions of the positioning apparatus actuated at each of the test and experiment stations employing a motor control unit are given. Additions and enhancements to the sub-system made in response to problems indicated by actual operation of the four installed units are described in more detail
Brown, A M
2001-06-01
The objective of this present study was to introduce a simple, easily understood method for carrying out non-linear regression analysis based on user input functions. While it is relatively straightforward to fit data with simple functions such as linear or logarithmic functions, fitting data with more complicated non-linear functions is more difficult. Commercial specialist programmes are available that will carry out this analysis, but these programmes are expensive and are not intuitive to learn. An alternative method described here is to use the SOLVER function of the ubiquitous spreadsheet programme Microsoft Excel, which employs an iterative least squares fitting routine to produce the optimal goodness of fit between data and function. The intent of this paper is to lead the reader through an easily understood step-by-step guide to implementing this method, which can be applied to any function in the form y=f(x), and is well suited to fast, reliable analysis of data in all fields of biology.
Comparing light sensitivity, linearity and step response of electronic cameras for ophthalmology.
Kopp, O; Markert, S; Tornow, R P
2002-01-01
To develop and test a procedure to measure and compare light sensitivity, linearity and step response of electronic cameras. The pixel value (PV) of digitized images as a function of light intensity (I) was measured. The sensitivity was calculated from the slope of the P(I) function, the linearity was estimated from the correlation coefficient of this function. To measure the step response, a short sequence of images was acquired. During acquisition, a light source was switched on and off using a fast shutter. The resulting PV was calculated for each video field of the sequence. A CCD camera optimized for the near-infrared (IR) spectrum showed the highest sensitivity for both, visible and IR light. There are little differences in linearity. The step response depends on the procedure of integration and read out.
Computation of magnetic field in DC brushless linear motors built with NdFeB magnets
Basak, A.; Shirkoohi, G.H.
1990-01-01
A software package based on finite element technique has been used to compute three-dimensional magnetic fields and static forces developed in brushless d.c. linear motors. As the field flux-source two different types of permanent magnets, one of them being the high energy neodymium- iron-boron type, has been used in computer models. Motors with the same specifications as the computer models were built and experimental results obtained from them are compared with the computed results
Dynamic diagnostics of moving ferromagnetic material with the linear induction motor
Szewczyk Krzysztof; Walasek Tomasz
2017-01-01
The paper presents the application of a three-phase induction motor as a sensor measuring the force of the electromagnetic field connection between the engine and produced sheet steel. The force interaction between the engine and the manufactured sheet metal treated as a treadmill for a linear motor may be an indicator of damage to the material. Detection of places where the sheet does not meet the quality requirements may be very useful in the production process. FEM calculations were perfor...
Efficiency Improvement of a High Dynamic BLDC Linear Motor by Multiphase Control
Lemmens, Joris; Vanvlasselaer, Kris; Mulier, Kristof; Goossens, Stijn; Symens, Wim; Driesen, Johan
2013-01-01
This paper proposes a multiphase control strategy for a high dynamic brushless DC linear motor as an alternative for conventional three-phase field-oriented control. Analysis of the magnetic field waveforms shows that three-phase control is not optimal for the 6-slot 7-pole motor topology. Therefore, a multiphase control strategy is elaborated which injects currents proportional to the electromotive force into each of the nine stator coil groups. This results in a maximal alignment force ...
Linear switched reluctance motor control with PIC18F452 microcontroller
DURSUN, Mahir; KOÇ, Fatmagül
2014-01-01
This paper presents the simulation, control, and experimental results of the velocity of a double-sided, 6/4-poled, 3-phased, 8 A, 24 V, 250 W, and 250 N pull force linear switched reluctance motor (LSRM). In the simulation and experimental study, the reference velocity is constant depending on the position and time. The velocity versus the position of the translator was controlled with fuzzy logic control (FLC) and proportional-integral (PI) control techniques. The motor was control...
A novel tubular linear motor equipped with radially anisotropic NdFeB ring magnets
Hor, P.J.
1998-01-01
The paper describes the design synthesis and optimisation of a novel tubular linear motor employing radially magnetised anisotropic ring magnets. Design issues, related to optimising the dimensions for maximum acceleration capability, minimum cogging force and low harmonic distortion in the emf waveform, are discussed. The influence of inhomogeneities in the magnets on the performance of a prototype motor is discussed, and its dynamic performance is validated experimentally against a typical target specification for automated high-speed manufacturing applications. (orig.)
The dynamic response of a linear brushless D.C. motor
Moghani, J.S.; Eastham, J.F. [Univ. of Bath (United Kingdom). School of Electrical and Electronic Engineering
1995-12-31
The paper describes the use of the Matlab Analogue Simulation Toolbox SIMULINK for the closed loop dynamic modeling of a linear brushless dc motor which is supplied from a delta-modulated inverter. The work is validated by experimental results taken from a large test rig. Linear version of all rotating machines are possible; a rotating machine can be notionally cut along a radial plane and unrolled to yield a linear version. The most popular form of linear machine, as judged by the quantities that have been produced is the linear induction motor. This has the advantage of first an inexpensive secondary that is often a simple iron backed conducting plate, and secondly the possibility of simple voltage control. The linear brushless synchronous motor is potentially more expensive to produce than its induction counterpart because of the permanent magnets which provide the excitation mmf and the necessity of an inverter supply. However the machine has a power factor efficiency product which can be double that of an induction motor together with about twice the tractive force per pole area.
A U-shaped linear ultrasonic motor using longitudinal vibration transducers with double feet.
Liu, Yingxiang; Liu, Junkao; Chen, Weishan; Shi, Shengjun
2012-05-01
A U-shaped linear ultrasonic motor using longitudinal vibration transducers with double feet was proposed in this paper. The proposed motor contains a horizontal transducer and two vertical transducers. The horizontal transducer includes two exponential shape horns located at the leading ends, and each vertical transducer contains one exponential shape horn. The horns of the horizontal transducer and the vertical transducer intersect at the tip ends where the driving feet are located. Longitudinal vibrations are superimposed in the motor and generate elliptical motions at the driving feet. The two vibration modes of the motor are discussed, and the motion trajectories of driving feet are deduced. By adjusting the structural parameters, the resonance frequencies of two vibration modes were degenerated. A prototype motor was fabricated and measured. Typical output of the prototype is no-load speed of 854 mm/s and maximum thrust force of 40 N at a voltage of 200 V(rms).
M. S. MANNA
2011-12-01
Full Text Available The development of electromagnetic devices as machines, transformers, heating devices confronts the engineers with several problems. For the design of an optimized geometry and the prediction of the operational behaviour an accurate knowledge of the dependencies of the field quantities inside the magnetic circuits is necessary. This paper provides the eddy current and core flux density distribution analysis in linear induction motor. Magnetic flux in the air gap of the Linear Induction Motor (LIM is reduced to various losses such as end effects, fringes, effect, skin effects etc. The finite element based software package COMSOL Multiphysics Inc. USA is used to get the reliable and accurate computational results for optimization the performance of Linear Induction Motor (LIM. The geometrical characteristics of LIM are varied to find the optimal point of thrust and minimum flux leakage during static and dynamic conditions.
Tang, Junjie; Li, Jing; Li, Xiang; Han, Le
2018-03-01
High temperature superconductor (HTS) bulks have significant potential use in linear motor application act as quasi-permanent magnet to replace traditional magnets. Force characteristic between HTS bulk magnet and traveling magnetic field was investigated with numerical simulation and experimental measurement in this paper. Influences of bulk height and number on the force characteristic were studied by the finite element model considering the nonlinear E-J relationship. Study was also made on addition of a back iron plate to the bulk magnet. Besides, force characteristic of bulk was compared with the permanent magnet results. The small initial decrease of the thrust could be explained by inside superconducting current redistribution. It was found that efficiency of linear motor did not increase by adding more bulk magnets. The bulk magnet will be remagnetized instead of erasing trapped field with the increase of the traveling magnetic field strength. The conclusions are helpful in prediction and design the linear motor with HTS bulk magnet.
Stubblefield, F.W.; Alberi, J.L.
1982-01-01
A general-purpose mechanical positioning subsystem for open-loop control of experiment devices which have their positions established and read out by stepping motor-encoder combinations has been developed. The subsystem is to be used mainly for experiments to be conducted at the National Synchrotron Light Source at Brookhaven National Laboratory. The subsystem unit has been designed to be compatible with a wide variety of stepping motor and encoder types. The unit may be operated by any device capable of driving a standard RS-232-C asynchronous serial communication line. An informal survey has shown that several experiments at the Light Source will use one particular type of computer, operating system, and programming language. Accordingly, a library of subroutines compatible with this combination of computer system elements has been written to facilitate driving the positioning subsystem unit
Force Profiles of a Linear Switched Reluctance Motor Having Special Pole Face Shapes
CHADRESEKAR, V.
2010-11-01
Full Text Available In this paper, the results of a finite element analysis are carried out on an new stator geometry of a three phase longitudinal flux Linear Switched Reluctance Motor (LSRM. In the new geometry, pole shoes are affixed to the stator poles. Static and dynamic characteristics for the proposed structure have been highlighted. Motor performance for variable load conditions is discussed. Frequency spectrum analyses of force profile using the fast Fourier transform (FFT are described to predict the vibration frequencies. The 2-Dimensional (2-D finite element analysis (FEA and the experimental results of this paper prove that LSRMs are one of the strong candidates for linear propulsion drives.
Apparatus and method to pulverize rock using a superconducting electromagnetic linear motor
Ignatiev, Alex (Inventor)
2009-01-01
A rock pulverizer device based on a superconducting linear motor. The superconducting electromagnetic rock pulverizer accelerates a projectile via a superconducting linear motor and directs the projectile at high speed toward a rock structure that is to be pulverized by collision of the speeding projectile with the rock structure. The rock pulverizer is comprised of a trapped field superconducting secondary magnet mounted on a movable car following a track, a wire wound series of primary magnets mounted on the track, and the complete magnet/track system mounted on a vehicle used for movement of the pulverizer through a mine as well as for momentum transfer during launch of the rock breaking projectile.
Investigation and Calculation of Magnetic Field in Tubular Linear Reluctance Motor Using FEM
MOSALLANEJAD, A.
2010-11-01
Full Text Available In this paper the magnetic flux density of tubular linear reluctance motor (TLRM in open type magnetic circuit is studied. Also, all magnetic flux density calculation methods in winding of tubular linear reluctance motor are described. The effect of structure parameters on magnetic flux density is also discussed. Electromagnetic finite-element analysis is used for simulation of magnetic field, and simulation results of the magnetic field analysis with DC voltage excitation are compared with results obtained from calculation methods. The comparison yields a good agreement.
International program on linear electric motors. CIGGT report No. 92-1
Dawson, G.E.; Eastham, A.R.; Parker, J.H.
1992-12-31
The International Program for Linear Electric Motors (LEM) was begun in April 1989 to communicate and coordinate activities with centers of expertise in Germany, Canada, and Japan; to provide for the assessment and support of the planning of technological developments and for dissemination of information to researchers, service operators, and policy makers; and to ensure that full advantage can be taken if opportunities for technology transfer occur. This report documents the work done under the program, including standardizing linear induction motor (LIM) design characteristics; test procedures and measurement methods; rating; database for design data; criteria for evaluation of designs; computer programs for modelling performance; and a design study for an agreed application.
Improved Full-Newton Step O(nL) Infeasible Interior-Point Method for Linear Optimization
Gu, G.; Mansouri, H.; Zangiabadi, M.; Bai, Y.Q.; Roos, C.
2009-01-01
We present several improvements of the full-Newton step infeasible interior-point method for linear optimization introduced by Roos (SIAM J. Optim. 16(4):1110–1136, 2006). Each main step of the method consists of a feasibility step and several centering steps. We use a more natural feasibility step,
Modeling and analysis of mover gaps in tubular moving-magnet linear oscillating motors
Xuesong LUO
2018-05-01
Full Text Available A tubular moving-magnet linear oscillating motor (TMMLOM has merits of high efficiency and excellent dynamic capability. To enhance the thrust performance, quasi-Halbach permanent magnet (PM arrays are arranged on its mover in the application of a linear electro-hydrostatic actuator in more electric aircraft. The arrays are assembled by several individual segments, which lead to gaps between them inevitably. To investigate the effects of the gaps on the radial magnetic flux density and the machine thrust in this paper, an analytical model is built considering both axial and radial gaps. The model is validated by finite element simulations and experimental results. Distributions of the magnetic flux are described in condition of different sizes of radial and axial gaps. Besides, the output force is also discussed in normal and end windings. Finally, the model has demonstrated that both kinds of gaps have a negative effect on the thrust, and the linear motor is more sensitive to radial ones. Keywords: Air-gap flux density, Linear motor, Mover gaps, Quasi-Halbach array, Thrust output, Tubular moving-magnet linear oscillating motor (TMMLOM
A. Codina García
2002-01-01
El presente trabajo aborda el empleo del motor de paso en las aplicaciones industriales actuales, los recientesavances y tendencias en la construcción de los mismos así como sus principales características y variantes másconocidas.Palabras claves: Motores de paso, control de movimiento.______________________________________________________________________Abstract.This paper focuses on the position of stepping motors in current industrial applications, recent advances andgeneral trends in desi...
Force prediction in permanent magnet flat linear motors (abstract)
Eastham, J.F.; Akmese, R.
1991-01-01
The advent of neodymium iron boron rare-earth permanent magnet material has afforded the opportunity to construct linear machines of high force to weight ratio. The paper describes the design and construction of an axial flux machine and rotating drum test rig. The machine occupies an arc of 45 degree on a drum 1.22 m in diameter. The excitation is provided by blocks of NdFeB material which are skewed in order to minimize the force variations due to slotting. The stator carries a three-phase short-chorded double-layer winding of four poles. The machine is supplied by a PWM inverter the fundamental component of which is phase locked to the rotor position so that a ''dc brushless'' drive system is produced. Electromagnetic forces including ripple forces are measured at supply frequencies up to 100 Hz. They are compared with finite-element analysis which calculates the force variation over the time period. The paper then considers some of the causes of ripple torque. In particular, the force production due solely to the permanent magnet excitation is considered. This has two important components each acting along the line of motion of the machine, one is due to slotting and the other is due to the finite length of the primary. In the practical machine the excitation poles are skewed to minimize the slotting force and the effectiveness of this is confirmed by both results from the experiments and the finite-element analysis. The end effect force is shown to have a space period of twice that of the excitation. The amplitude of this force and its period are again confirmed by practical results
Digital controller for stepping motor-driven X-ray diffractometer
Naval, P.C. Jr.; Saligan, P.P.; Calix, V.B.S.
1985-01-01
Presented is a stepping motor controller for the Philips PW 1050 Vertical Goniometer featuring crystal-controlled scan rates of 4, 2, 1, 1/2, 1/4, 1/8, 1/16 degree per minute in the continuous scan mode, and step sizes of 0.005, 0.01, 0.02, 0.025, 0.05, 0.1, 0.2, 0.5 degree when operated in the step scan mode. A slow rate of 96 degrees per minute is provided for positioning purposes. The TTL-implemented design accomodates upgrading to higher levels of automation by a simple substitution of the control logic card. (Auth.)
A composite step conjugate gradients squared algorithm for solving nonsymmetric linear systems
Chan, Tony; Szeto, Tedd
1994-03-01
We propose a new and more stable variant of the CGS method [27] for solving nonsymmetric linear systems. The method is based on squaring the Composite Step BCG method, introduced recently by Bank and Chan [1,2], which itself is a stabilized variant of BCG in that it skips over steps for which the BCG iterate is not defined and causes one kind of breakdown in BCG. By doing this, we obtain a method (Composite Step CGS or CSCGS) which not only handles the breakdowns described above, but does so with the advantages of CGS, namely, no multiplications by the transpose matrix and a faster convergence rate than BCG. Our strategy for deciding whether to skip a step does not involve any machine dependent parameters and is designed to skip near breakdowns as well as produce smoother iterates. Numerical experiments show that the new method does produce improved performance over CGS on practical problems.
Linear Motor Motion Control Experiment System Design Based on LabVIEW
Cuixian He
2018-01-01
Full Text Available In order to meet the needs of experimental training of electrical information industry, a linear motor motion experiment system based on LabVIEW was developed. This system is based on the STM32F103ZET6 system processor controller, a state signal when the motor moves through the grating encoder feedback controller to form a closed loop, through the RS232 serial port communication with the host computer, the host computer is designed in the LabVIEW interactive environment monitoring software. Combined with the modular design concept proposed overall program, given the detailed hardware circuit, targeted for the software function design, to achieve man-machine interface. The system control of high accuracy, good stability, meet the training requirements for laboratory equipment, but also as a reference embodiment of the linear motor monitoring system.
A speed estimation unit for induction motors based on adaptive linear combiner
Marei, Mostafa I.; Shaaban, Mostafa F.; El-Sattar, Ahmed A.
2009-01-01
This paper presents a new induction motor speed estimation technique, which can estimate the rotor resistance as well, from the measured voltage and current signals. Moreover, the paper utilizes a novel adaptive linear combiner (ADALINE) structure for speed and rotor resistance estimations. This structure can deal with the multi-output systems and it is called MO-ADALINE. The model of the induction motor is arranged in a linear form, in the stationary reference frame, to cope with the proposed speed estimator. There are many advantages of the proposed unit such as wide speed range capability, immunity against harmonics of measured waveforms, and precise estimation of the speed and the rotor resistance at different dynamic changes. Different types of induction motor drive systems are used to evaluate the dynamic performance and to examine the accuracy of the proposed unit for speed and rotor resistance estimation.
Soltani, J.; Fath Abadi, A.M.
2003-01-01
This paper describes the application of static var compensators, on an electrical distribution network containing two large synchronous motors, one of which is excited via a three-phase thyristor bridge rectifier. The second machine is excited via a diode bridge rectifier. Based on linear optimization control, the measurable feedback signals are applied to the control system loops of static var compensators and the excitation control loop of the first synchronous motor. The phase equations method was used to develop a computer program to model the distribution network. Computer results were obtained to demonstrate the system performance for some abnormal modes of operation. These results show that employing static var compensators based on the linear optimization control design for electrical distribution networks containing large synchronous motors is beneficial and may be considered a first stage of the system design
Thermal analysis of linear pulse motor for SMART control element drive mechanism
Hur, H.; Kim, J. H.; Kim, J. I.; Jang, K. C.; Kang, D. H.
1999-01-01
It is important that the temperature of the motor windings be maintained within the allowable limit of the insulation, since the linear pulse motor of CEDM is always supplied with current during the reactor operation. In this study three motor windings were fabricated with three different diameters of coil wires, and the temperatures inside the windings were measured with different current values. As the insulation of the windings is composed of teflon, glass fiber, and air, it is not an easy task to determine experimentally the thermal properties of the complex insulation. In this study, the thermal properties of the insulation were obtained by comparing the results of finite element thermal analyses and those of experiment. The thermal properties obtained here will be used as input for the optimization analysis of the motor
Speed Sensorless mixed sensitivity linear parameter variant H_inf control of the induction motor
Toth, R.; Fodor, D.
2004-01-01
The paper shows the design of a robust control structure for the speed sensorless vector control of the IM, based on the mixed sensitivity (MS) linear parameter variant (LPV) H8 control theory. The controller makes possible the direct control of the flux and speed of the motor with torque adaptation
Spectral element model for 2-D electrostatic fields in a linear synchronous motor
van Beek, T.A.; Curti, M.; Jansen, J.W.; Gysen, B.L.J.; Paulides, J.J.H.; Lomonova, E.A.
2017-01-01
This paper presents a fast and accurate 2-D spectral element model for analyzing electric field distributions in linear synchronous motors. The electric field distribution is derived using the electric scalar potential for static cases. The spatial potential and electric field distributions obtained
Torque decomposition and control in an iron core linear permanent magnet motor.
Overboom, T.T.; Smeets, J.P.C.; Stassen, J.M.; Jansen, J.W.; Lomonova, E.
2012-01-01
Abstract—This paper concerns the decomposition and control of the torque produced by an iron core linear permanent magnet motor. The proposed method is based on the dq0-decomposition of the three-phase currents using Park’s transformation. The torque is decomposed into a reluctance component and two
Power-optimal force decoupling in a hybrid linear reluctance motor
Overboom, T.T.; Smeets, J.P.C.; Jansen, J.W.; Lomonova, E.A.; Mavrudieva, D.
2015-01-01
This paper concerns the power-optimal decoupling of the propulsion and normal force created by a hybrid linear reluctance motor. The intrinsic limitations to the decoupling is addressed by the visualizing each force component with a quadric surface in the Euclidean space which is spanned by the
Nakaiwa, K; Yamada, A; Tashiro, K; Wakiwaka, H
2009-01-01
From a strong demand on the miniaturization of a chip mounter or a semiconductor device, the thrust improvement considering the magnets arrangement is studied. We accept a core stator with a Halbach type magnet array for a current linear motor. The thrust characteristics are compared with two kinds of mover, a NS magnet array and a Halbach magnet array.
Overview of analytical models for the design of linear and planar motors
Jansen, J.W.; Smeets, J.P.C.; Overboom, T.T.; Rovers, J.M.M.; Lomonova, E.A.
2014-01-01
In this paper, an overview of analytical techniques for the modeling of linear and planar permanent-magnet motors is given. These models can be used complementary to finite element analyses for fast evaluations of topologies, but they are indispensable for the design of magnetically levitated planar
An FPGA-Based Multiple-Axis Velocity Controller and Stepping Motors Drives Design
Lai Chiu-Keng
2016-01-01
Full Text Available A Field Programmable Gate Array based system is a great hardware platform to support the implementation of hardware controllers such as PID controller and fuzzy controller. It is also programmed as hardware accelerator to speed up the mathematic calculation and greatly enhance the performance as applied to motor drive and motion control. Furthermore, the open structure of FPGA-based system is suitable for those designs with the ability of parallel processing or soft code processor embedded. In this paper, we apply the FPGA to a multi-axis velocity controller design. The developed system integrated three functions inside the FPGA chip, which are respectively the stepping motor drive, the multi-axis motion controller and the motion planning. Furthermore, an embedded controller with a soft code processor compatible to 8051 micro-control unit (MCU is built to handle the data transfer between the FPGA board and host PC. The MCU is also used to initialize the motion control and run the interpolator. The designed system is practically applied to a XYZ motion platform which is driven by stepping motors to verify its performance.
Dynamic modeling and characteristics analysis of a modal-independent linear ultrasonic motor.
Li, Xiang; Yao, Zhiyuan; Zhou, Shengli; Lv, Qibao; Liu, Zhen
2016-12-01
In this paper, an integrated model is developed to analyze the fundamental characteristics of a modal-independent linear ultrasonic motor with double piezoelectric vibrators. The energy method is used to model the dynamics of the two piezoelectric vibrators. The interface forces are coupled into the dynamic equations of the two vibrators and the moving platform, forming a whole machine model of the motor. The behavior of the force transmission of the motor is analyzed via the resulting model to understand the drive mechanism. In particular, the relative contact length is proposed to describe the intermittent contact characteristic between the stator and the mover, and its role in evaluating motor performance is discussed. The relations between the output speed and various inputs to the motor and the start-stop transients of the motor are analyzed by numerical simulations, which are validated by experiments. Furthermore, the dead-zone behavior is predicted and clarified analytically using the proposed model, which is also observed in experiments. These results are useful for designing servo control scheme for the motor. Copyright © 2016 Elsevier B.V. All rights reserved.
Unconstrained steps of myosin VI appear longest among known molecular motors.
Ali, M Yusuf; Homma, Kazuaki; Iwane, Atsuko Hikikoshi; Adachi, Kengo; Itoh, Hiroyasu; Kinosita, Kazuhiko; Yanagida, Toshio; Ikebe, Mitsuo
2004-06-01
Myosin VI is a two-headed molecular motor that moves along an actin filament in the direction opposite to most other myosins. Previously, a single myosin VI molecule has been shown to proceed with steps that are large compared to its neck size: either it walks by somehow extending its neck or one head slides along actin for a long distance before the other head lands. To inquire into these and other possible mechanism of motility, we suspended an actin filament between two plastic beads, and let a single myosin VI molecule carrying a bead duplex move along the actin. This configuration, unlike previous studies, allows unconstrained rotation of myosin VI around the right-handed double helix of actin. Myosin VI moved almost straight or as a right-handed spiral with a pitch of several micrometers, indicating that the molecule walks with strides slightly longer than the actin helical repeat of 36 nm. The large steps without much rotation suggest kinesin-type walking with extended and flexible necks, but how to move forward with flexible necks, even under a backward load, is not clear. As an answer, we propose that a conformational change in the lifted head would facilitate landing on a forward, rather than backward, site. This mechanism may underlie stepping of all two-headed molecular motors including kinesin and myosin V.
Oza, Chintan S.; Giszter, Simon F.
2015-01-01
Trunk motor control is crucial for postural stability and propulsion after low thoracic spinal cord injury (SCI) in animals and humans. Robotic rehabilitation aimed at trunk shows promise in SCI animal models and patients. However, little is known about the effect of SCI and robot rehabilitation of trunk on cortical motor representations. We previously showed reorganization of trunk motor cortex after adult SCI. Non-stepping training also exacerbated some SCI-driven plastic changes. Here we e...
Acceleration of step and linear discontinuous schemes for the method of characteristics in DRAGON5
Alain Hébert
2017-09-01
Full Text Available The applicability of the algebraic collapsing acceleration (ACA technique to the method of characteristics (MOC in cases with scattering anisotropy and/or linear sources was investigated. Previously, the ACA was proven successful in cases with isotropic scattering and uniform (step sources. A presentation is first made of the MOC implementation, available in the DRAGON5 code. Two categories of schemes are available for integrating the propagation equations: (1 the first category is based on exact integration and leads to the classical step characteristics (SC and linear discontinuous characteristics (LDC schemes and (2 the second category leads to diamond differencing schemes of various orders in space. The acceleration of these MOC schemes using a combination of the generalized minimal residual [GMRES(m] method preconditioned with the ACA technique was focused on. Numerical results are provided for a two-dimensional (2D eight-symmetry pressurized water reactor (PWR assembly mockup in the context of the DRAGON5 code.
Hong Junjie, E-mail: hongjjie@mail.sysu.edu.cn [School of Engineering, Sun Yat-Sen University, Guangzhou 510006 (China); Li Liyi, E-mail: liliyi@hit.edu.cn [Dept. Electrical Engineering, Harbin Institute of Technology, Harbin 150000 (China); Zong Zhijian; Liu Zhongtu [School of Engineering, Sun Yat-Sen University, Guangzhou 510006 (China)
2011-10-15
Highlights: {yields} The structure of the permanent magnet linear synchronous motor (SW-PMLSM) is new. {yields} A new current control method CEVPC is employed in this motor. {yields} The sectional power supply method is different to the others and effective. {yields} The performance gets worse with voltage and current limitations. - Abstract: To include features such as greater thrust density, higher efficiency without reducing the thrust stability, this paper proposes a section winding permanent magnet linear synchronous motor (SW-PMLSM), whose iron core is continuous, whereas winding is divided. The discrete system model of the motor is derived. With the definition of the current error vector and selection of the value function, the theory of the current error vector based prediction control (CEVPC) for the motor currents is explained clearly. According to the winding section feature, the motion region of the mover is divided into five zones, in which the implementation of the current predictive control method is proposed. Finally, the experimental platform is constructed and experiments are carried out. The results show: the current control effect has good dynamic response, and the thrust on the mover remains constant basically.
Unmasking the linear behaviour of slow motor adaptation to prolonged convergence.
Erkelens, Ian M; Thompson, Benjamin; Bobier, William R
2016-06-01
Adaptation to changing environmental demands is central to maintaining optimal motor system function. Current theories suggest that adaptation in both the skeletal-motor and oculomotor systems involves a combination of fast (reflexive) and slow (recalibration) mechanisms. Here we used the oculomotor vergence system as a model to investigate the mechanisms underlying slow motor adaptation. Unlike reaching with the upper limbs, vergence is less susceptible to changes in cognitive strategy that can affect the behaviour of motor adaptation. We tested the hypothesis that mechanisms of slow motor adaptation reflect early neural processing by assessing the linearity of adaptive responses over a large range of stimuli. Using varied disparity stimuli in conflict with accommodation, the slow adaptation of tonic vergence was found to exhibit a linear response whereby the rate (R(2) = 0.85, P < 0.0001) and amplitude (R(2) = 0.65, P < 0.0001) of the adaptive effects increased proportionally with stimulus amplitude. These results suggest that this slow adaptive mechanism is an early neural process, implying a fundamental physiological nature that is potentially dominated by subcortical and cerebellar substrates. © 2016 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.
Patt, P. J.
1985-01-01
The design of a coaxial linear magnetic spring which incorporates a linear motor to control axial motion and overcome system damping is presented, and the results of static and dynamic tests are reported. The system has nominal stiffness 25,000 N/m and is designed to oscillate a 900-g component over a 4.6-mm stroke in a Stirling-cycle cryogenic refrigerator being developed for long-service (5-10-yr) space applications (Stolfi et al., 1983). Mosaics of 10 radially magnetized high-coercivity SmCO5 segments enclosed in Ti cans are employed, and the device is found to have quality factor 70-100, corresponding to energy-storage efficiency 91-94 percent. Drawings, diagrams, and graphs are provided.
Green, M.A.
1994-10-01
Forced two-phase cooling of indirectly cooled magnets requires circulation of liquid helium through the magnet cooling channel. A bellows helium pump is one possible way of providing helium flow to a magnet cooling system. Since the bellows type of helium pump is immersed in liquid helium, a superconducting linear motor drive appears to be an attractive option. This report describes a linear motor drive that employs oriented permanent magnet materials such as samarium-cobalt as the stator magnet system and a superconducting loud speaker voice coil type of drive as the armature of the linear motor. This report examines drive motor requirements for a helium pump
Universal Linear Motor Driven Leg Press Dynamometer and Concept of Serial Stretch Loading.
Hamar, Dušan
2015-08-24
Paper deals with backgrounds and principles of universal linear motor driven leg press dynamometer and concept of serial stretch loading. The device is based on two computer controlled linear motors mounted to the horizontal rails. As the motors can keep either constant resistance force in selected position or velocity in both directions, the system allows simulation of any mode of muscle contraction. In addition, it also can generate defined serial stretch stimuli in a form of repeated force peaks. This is achieved by short segments of reversed velocity (in concentric phase) or acceleration (in eccentric phase). Such stimuli, generated at the rate of 10 Hz, have proven to be a more efficient means for the improvement of rate of the force development. This capability not only affects performance in many sports, but also plays a substantial role in prevention of falls and their consequences. Universal linear motor driven and computer controlled dynamometer with its unique feature to generate serial stretch stimuli seems to be an efficient and useful tool for enhancing strength training effects on neuromuscular function not only in athletes, but as well as in senior population and rehabilitation patients.
Krop, D.C.J.; Lomonova, E.A.; Jansen, J.W.; Paulides, J.J.H.
2009-01-01
Linear motors find their utilization in an increasing number of industrial applications. Permanent magnet linear synchronous motors (PMLSMs) are favorable in many applications due to their servo characteristics, robustness, and high force density. The major disadvantage of moving coil type PMLSMs is
Application of an imperialist competitive algorithm to the design of a linear induction motor
Lucas, Caro; Nasiri-Gheidari, Zahra; Tootoonchian, Farid
2010-01-01
In this paper a novel optimization algorithm based on imperialist competitive algorithm (ICA) is used for the design of a low speed single sided linear induction motor (LIM). This type of motors is used increasingly in industrial process specially in transportation systems. In these applications having high efficiency with high power factor is very important. So in this paper the objective function of design is presented considering both efficiency and power factor. Finally the results of ICA are compared with the ones of genetic algorithm and conventional design. Comparison shows the success of ICA for design of LIMs.
Kono, K; Yoshimura, H; Yufu, H [Yuasa Corp., Osaka (Japan)
1993-10-29
Development was made of a linear motor car use battery which is strong in repetition of quick charging/discharging and characterized as follows: Its volumetric energy density is 42Wh/kg which is 1.3 times as high as the conventional one. It excels in high efficiency charging/discharging characteristics. High tension steel sheet is used for it, which is incombustible. To lighten the weight, paste type electrodes and high yield point materials were used for the positive and negative electrodes, and jar materials, respectively. To heighten the charging/discharging characteristics, used were electrodes heightened in current collecting effect. To lengthening the life, unwoven nylon cloth was used as a separator. Also to heighten the thermal discharge characteristics, the electrodes were made metallic with a fitting of cooling fins. The battery characteristics as tested gave the following result: At a capacity ratio of 100%, the discharging factor cleared its target value of development also with a high discharging voltage. The charging/discharging characteristics hardly fall in the high temperature region. The charging characteristics include quick charging made possible. As a result of cyclic simulation presuming the linear motor car, the fall in capacity per cycle was as good as 1.5%. 11 figs., 2 tabs.
He, Liangguo; Chu, Yuheng; Hao, Sai; Zhao, Xiaoyong; Dong, Yuge; Wang, Yong
2018-05-01
A novel, single-phase, harmonic-driven, inertial piezoelectric linear motor using an automatic clamping mechanism was designed, fabricated, and tested to reduce the sliding friction and simplify the drive mechanism and power supply control of the inertial motor. A piezoelectric bimorph and a flexible hinge were connected in series to form the automatic clamping mechanism. The automatic clamping mechanism was used as the driving and clamping elements. A dynamic simulation by Simulink was performed to prove the feasibility of the motor. The finite element method software COMSOL was used to design the structure of the motor. An experimental setup was built to validate the working principle and evaluate the performance of the motor. The prototype motor outputted a no-load velocity of 3.178 mm/s at a voltage of 220 Vp-p and a maximum traction force of 4.25 N under a preload force of 8 N. The minimum resolution of 1.14 μm was achieved at a driving frequency of 74 Hz, a driving voltage of 50 Vp-p, and a preload force of 0 N.
Liu, Yingxiang; Chen, Weishan; Liu, Junkao; Shi, Shengjun
2013-04-01
To make full use of the vibrational energy of a longitudinal transducer, a rectangle-type linear ultrasonic motor with four driving feet is proposed in this paper. This new motor consists of four longitudinal vibration transducers which are arranged in a rectangle and form an enclosed construction. Lead zirconate titanate ceramics are embedded into the middle of the transducer and fastened by a wedge-caulking mechanism. Each transducer includes an exponentially shaped horn located on each end. The horns of the vertical transducers intersect at the base of the horizontal transducers' horns; the tip ends of the horizontal transducers' horns are used as the driving feet. Longitudinal vibrations are superimposed in the motor and generate elliptical movements at the tip ends of the horns. The working principle of the proposed motor is analyzed. The resonance frequencies of two working modes are tuned to be close to each other by adjusting the structural parameters. Transient analysis is developed to gain the vibration characteristics of the motor. A prototype motor is fabricated and measured. The vibration test results verify the feasibility of the proposed design. Typical output of the prototype is a no-load speed of 928 mm/s and maximum thrust force of 60 N at a voltage of 200 Vrms.
Development of an ultrasonic linear motor with ultra-positioning capability and four driving feet.
Zhu, Cong; Chu, Xiangcheng; Yuan, Songmei; Zhong, Zuojin; Zhao, Yanqiang; Gao, Shuning
2016-12-01
This paper presents a novel linear piezoelectric motor which is suitable for rapid ultra-precision positioning. The finite element analysis (FEA) was applied for optimal design and further analysis, then experiments were conducted to investigate its performance. By changing the input signal, the proposed motor was found capable of working in the fast driving mode as well as in the precision positioning mode. When working in the fast driving mode, the motor acts as an ultrasonic motor with maximum no-load speed up to 181.2mm/s and maximum thrust of 1.7N at 200Vp-p. Also, when working in precision positioning mode, the motor can be regarded as a flexible hinge piezoelectric actuator with arbitrary motion in the range of 8μm. The measurable minimum output displacement was found to be 0.08μm, but theoretically, can be even smaller. More importantly, the motor can be quickly and accurately positioned in a large stroke. Copyright © 2016 Elsevier B.V. All rights reserved.
Control Of Motor Unit Firing During Step-Like Increases In Voluntary Force
Xiaogang eHu
2014-09-01
Full Text Available In most skeletal muscles, force is generated by a combination of motor unit (MU recruitment and increases in the firing rate of previously active MUs. Two contrasting patterns of firing rate organization have been reported. In the first pattern, the earliest recruited MUs reach the highest firing rates as force is increased, and later recruited MUs fire at lower rates. When firing rate of multiple MUs are superimposed, these rate trajectories form a concentric layered profile termed ‘onion skin’. In the second pattern, called ‘reverse onion skin’, later recruited MUs reach higher firing rates, and crossing of firing rate trajectories for recorded MUs is common (although such trajectories are assembled routinely from different trials. Our present study examined the firing rate organization of concurrently active MUs of the first dorsal interosseous muscle during serial, step-like increases in isometric abduction forces. We used a surface sensor array coupled with MU discrimination algorithms to characterize MU firing patterns. Our objective was to determine whether ‘onion skin’ profiles are contingent upon the force trajectory of the motor task, examined here using step-like increases of force output, and also whether they are manifested at different force levels.Our results revealed that the overall ‘onion skin’ firing rate profile was retained as the force level increased with each force step up to 15% MVC. However, the distribution of firing rates across MUs was compressed with increasing force, and overlapping firing rate of units were observed. This rate compression was largely due to rate saturation of the relatively high frequency discharging MUs.Our results reflect flexible firing patterns across MUs at different levels of excitation drive. It is also evident that many units did not follow all the step increases consistently. This failure to track firing rate increases at higher forces could be due to an intrinsically
Driving performance of a two-dimensional homopolar linear DC motor
Wang, Y.; Yamaguchi, M.; Kano, Y. [Tokyo University of Agriculture and Technology, Tokyo (Japan)
1998-05-01
This paper presents a novel two-dimensional homopolar linear de motor (LDM) which can realize two-dimensional (2-D) motion. For position control purposes, two kinds of position detecting methods are proposed. The position in one position is detected by means of a capacitive sensor which makes the output of the sensor partially immune to the variation of the gap between electrodes. The position in the other direction is achieved by exploiting the position dependent property of the driving coil inductance, instead of using an independent sensor. The position control is implemented on the motor and 2-D tracking performance is analyzed. Experiments show that the motor demonstrates satisfactory driving performance, 2-D tracking error being within 5.5% when the angular frequency of reference signal is 3.14 rad./s. 7 refs., 17 figs., 2 tabs.
Innervation zones of fasciculating motor units: observations by a linear electrode array.
Jahanmiri-Nezhad, Faezeh; Barkhaus, Paul E; Rymer, William Z; Zhou, Ping
2015-01-01
This study examines the innervation zone (IZ) in the biceps brachii muscle in healthy subjects and those with amyotrophic lateral sclerosis (ALS) using a 20-channel linear electromyogram (EMG) electrode array. Raster plots of individual waveform potentials were studied to estimate the motor unit IZ. While this work mainly focused on fasciculation potentials (FPs), a limited number of motor unit potentials (MUPs) from voluntary activity of 12 healthy and seven ALS subjects were also examined. Abnormal propagation of MUPs and scattered IZs were observed in fasciculating units, compared with voluntarily activated MUPs in healthy and ALS subjects. These findings can be related to muscle fiber reinnervation following motor neuron degeneration in ALS and the different origin sites of FPs compared with voluntary MUPs.
Torque ripple reduction of brushless DC motor based on adaptive input-output feedback linearization.
Shirvani Boroujeni, M; Markadeh, G R Arab; Soltani, J
2017-09-01
Torque ripple reduction of Brushless DC Motors (BLDCs) is an interesting subject in variable speed AC drives. In this paper at first, a mathematical expression for torque ripple harmonics is obtained. Then for a non-ideal BLDC motor with known harmonic contents of back-EMF, calculation of desired reference current amplitudes, which are required to eliminate some selected harmonics of torque ripple, are reviewed. In order to inject the reference harmonic currents to the motor windings, an Adaptive Input-Output Feedback Linearization (AIOFBL) control is proposed, which generates the reference voltages for three phases voltage source inverter in stationary reference frame. Experimental results are presented to show the capability and validity of the proposed control method and are compared with the vector control in Multi-Reference Frame (MRF) and Pseudo-Vector Control (P-VC) method results. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.
High Precision Piezoelectric Linear Motors for Operations at Cryogenic Temperatures and Vacuum
Wong, D.; Carman, G.; Stam, M.; Bar-Cohen, Y.; Sen, A.; Henry, P.; Bearman, G.; Moacanin, J.
1995-01-01
The Jet Propulsion Laboratory evaluated the use of an electromechanical device for optically positioning a mirror system during the pre-project phase of the Pluto-Fast-Flyby (PFF) mission. The device under consideration was a piezoelectric driven linear motor functionally dependent upon a time varying electric field which induces displacements ranging from submicrons to millimeters with positioning accuracy within nanometers. Using a control package, the mirror system provides image motion compensation and mosaicking capabilities. While this device offers unique advantages, there were concerns pertaining to its operational capabilities for the PFF mission. The issues include irradiation effects and thermal concerns. A literature study indicated that irradiation effects will not significantly impact the linear motor's operational characteristics. On the other hand, thermal concerns necessitated an in depth study.
Studer, P. A. (Inventor)
1982-01-01
A linear magnetic motor/generator is disclosed which uses magnetic flux to provide mechanical motion or electrical energy. The linear magnetic motor/generator includes an axially movable actuator mechanism. A permament magnet mechanism defines a first magnetic flux path which passes through a first end portion of the actuator mechanism. Another permament magnet mechanism defines a second magnetic flux path which passes through a second end portion of the actuator mechanism. A drive coil defines a third magnetic flux path passing through a third central portion of the actuator mechanism. A drive coil selectively adds magnetic flux to and subtracts magnetic flux from magnetic flux flowing in the first and second magnetic flux path.
Design and experiments of a linear piezoelectric motor driven by a single mode.
Liu, Zhen; Yao, Zhiyuan; Li, Xiang; Fu, Qianwei
2016-11-01
In this contribution, we propose a novel linear piezoelectric motor with a compact stator that is driven by a single mode. The linear piezoelectric motor can realize bidirectional motion by changing the vibration modes of the stator. Finite element analysis is performed to determine the required vibration mode of the stator and obtain the optimal stator structure and dimensions. Furthermore, the trajectories of the driving foot are analyzed with and without consideration of the mechanical contact with the slider. It is shown that the trajectory of the driving foot is an oblique line when disregarding the contact, and the trajectory becomes an oblique ellipse while taking into account the contact. Finally, a prototype of the motor is fabricated based on the results of finite element analysis. The optimization results show that the motor reaches its maximum thrust force of 4.0 kg, maximum thrust-weight ratio of 33.3, maximum unloaded velocity of 385 mm/s under the excitation of Mode-B, and maximum unloaded velocity of 315 mm/s under the excitation of Mode-L.
Two-step synthesis of silver selenide semiconductor with a linear magnetoresistance effect
Yang, Fengxia; Xiong, Shuangtao; Liu, Fengxian; Han, Chong; Zhang, Duanming; Xia, Zhengcai
2012-01-01
A two-step synthesis method for polycrystalline β-silver selenide (β-Ag 2 Se) was developed. In the first step, nanopowder was prepared using a chemical conversion method at room temperature. In the second step, the nanopowder was compressed and then the bulk Ag 2 Se was fabricated by the solid-state sintering process. The crystalline phase and morphology were examined. The results showed that β-Ag 2 Se was fast fabricated at room temperature. The dense polycrystalline Ag-rich Ag 2 Se was synthesized successfully at 450 °C for 0.5 h under Argon flow. For the polycrystalline, the electronic properties and transverse magnetoresistance (TMR) in a pulsed magnetic field were investigated. The samples displayed n-type semiconducting behaviors and a critical temperature with a broaden temperature range of 140–150 K. Also, it presented a positive and nearly linear dependence on magnetic field H at H ≥ H c (crossover field) ranging from 2 to 20 T. Moreover, the linear dependence of TMR at strong field was non-saturating up to 35 T. Combining with the observation of morphology, it is thought that this unusual TMR effect was caused by slightly excess Ag. This new synthesis method provided a potential route to synthesize nonstoichiometric silver selenide. (paper)
Evaluation of linear DC motor actuators for control of large space structures
Ide, Eric Nelson
1988-01-01
This thesis examines the use of a linear DC motor as a proof mass actuator for the control of large space structures. A model for the actuator, including the current and force compensation used, is derived. Because of the force compensation, the actuator is unstable when placed on a structure. Relative position feedback is used for actuator stabilization. This method of compensation couples the actuator to the mast in a feedback configuration. Three compensator designs are prop...
Computer-aided design studies of the homopolar linear synchronous motor
Dawson, G. E.; Eastham, A. R.; Ong, R.
1984-09-01
The linear induction motor (LIM), as an urban transit drive, can provide good grade-climbing capabilities and propulsion/braking performance that is independent of steel wheel-rail adhesion. In view of its 10-12 mm airgap, the LIM is characterized by a low power factor-efficiency product of order 0.4. A synchronous machine offers high efficiency and controllable power factor. An assessment of the linear homopolar configuration of this machine is presented as an alternative to the LIM. Computer-aided design studies using the finite element technique have been conducted to identify a suitable machine design for urban transit propulsion.
Jan Vittek
2004-01-01
Full Text Available Closed-loop position control of mechanisms directly driven by linear synchronous motors with permanent magnets is presented. The control strategy is based on forced dynamic control, which is a form of feedback linearisation, yielding a non-liner multivariable control law to obtain a prescribed linear speed dynamics together with the vector control condition of mutal orthogonality between the stator current and magnetic flux vectors (assuming perfect estimates of the plant parameters. Outer position control loop is closed via simple feedback with proportional gain. Simulations of the design control sysstem, including the drive with power electronic switching, predict the intended drive performance.
Driver electronics design and control for a total artificial heart linear motor.
Unthan, Kristin; Cuenca-Navalon, Elena; Pelletier, Benedikt; Finocchiaro, Thomas; Steinseifer, Ulrich
2018-01-27
For any implantable device size and efficiency are critical properties. Thus, a linear motor for a Total Artificial Heart was optimized with focus on driver electronics and control strategies. Hardware requirements were defined from power supply and motor setup. Four full bridges were chosen for the power electronics. Shunt resistors were set up for current measurement. Unipolar and bipolar switching for power electronics control were compared regarding current ripple and power losses. Here, unipolar switching showed smaller current ripple and required less power to create the necessary motor forces. Based on calculations for minimal power losses Lorentz force was distributed to the actor's four coils. The distribution was determined as ratio of effective magnetic flux through each coil, which was captured by a force test rig. Static and dynamic measurements under physiological conditions analyzed interaction of control and hardware and all efficiencies were over 89%. In conclusion, the designed electronics, optimized control strategy and applied current distribution create the required motor force and perform optimal under physiological conditions. The developed driver electronics and control offer optimized size and efficiency for any implantable or portable device with multiple independent motor coils. Graphical Abstract ᅟ.
Influence of a high vacuum on the precise positioning using an ultrasonic linear motor.
Kim, Wan-Soo; Lee, Dong-Jin; Lee, Sun-Kyu
2011-01-01
This paper presents an investigation of the ultrasonic linear motor stage for use in a high vacuum environment. The slider table is driven by the hybrid bolt-clamped Langevin-type ultrasonic linear motor, which is excited with its different modes of natural frequencies in both lateral and longitudinal directions. In general, the friction behavior in a vacuum environment becomes different from that in an environment of atmospheric pressure and this difference significantly affects the performance of the ultrasonic linear motor. In this paper, to consistently provide stable and high power of output in a high vacuum, frequency matching was conducted. Moreover, to achieve the fine control performance in the vacuum environment, a modified nominal characteristic trajectory following control method was adopted. Finally, the stage was operated under high vacuum condition, and the operating performances were investigated compared with that of a conventional PI compensator. As a result, robustness of positioning was accomplished in a high vacuum condition with nanometer-level accuracy.
Influence of a high vacuum on the precise positioning using an ultrasonic linear motor
Kim, Wan-Soo; Lee, Dong-Jin; Lee, Sun-Kyu
2011-01-01
This paper presents an investigation of the ultrasonic linear motor stage for use in a high vacuum environment. The slider table is driven by the hybrid bolt-clamped Langevin-type ultrasonic linear motor, which is excited with its different modes of natural frequencies in both lateral and longitudinal directions. In general, the friction behavior in a vacuum environment becomes different from that in an environment of atmospheric pressure and this difference significantly affects the performance of the ultrasonic linear motor. In this paper, to consistently provide stable and high power of output in a high vacuum, frequency matching was conducted. Moreover, to achieve the fine control performance in the vacuum environment, a modified nominal characteristic trajectory following control method was adopted. Finally, the stage was operated under high vacuum condition, and the operating performances were investigated compared with that of a conventional PI compensator. As a result, robustness of positioning was accomplished in a high vacuum condition with nanometer-level accuracy.
Invited Review Article: Measurement uncertainty of linear phase-stepping algorithms
Hack, Erwin [EMPA, Laboratory Electronics/Metrology/Reliability, Ueberlandstrasse 129, CH-8600 Duebendorf (Switzerland); Burke, Jan [Australian Centre for Precision Optics, CSIRO (Commonwealth Scientific and Industrial Research Organisation) Materials Science and Engineering, P.O. Box 218, Lindfield, NSW 2070 (Australia)
2011-06-15
Phase retrieval techniques are widely used in optics, imaging and electronics. Originating in signal theory, they were introduced to interferometry around 1970. Over the years, many robust phase-stepping techniques have been developed that minimize specific experimental influence quantities such as phase step errors or higher harmonic components of the signal. However, optimizing a technique for a specific influence quantity can compromise its performance with regard to others. We present a consistent quantitative analysis of phase measurement uncertainty for the generalized linear phase stepping algorithm with nominally equal phase stepping angles thereby reviewing and generalizing several results that have been reported in literature. All influence quantities are treated on equal footing, and correlations between them are described in a consistent way. For the special case of classical N-bucket algorithms, we present analytical formulae that describe the combined variance as a function of the phase angle values. For the general Arctan algorithms, we derive expressions for the measurement uncertainty averaged over the full 2{pi}-range of phase angles. We also give an upper bound for the measurement uncertainty which can be expressed as being proportional to an algorithm specific factor. Tabular compilations help the reader to quickly assess the uncertainties that are involved with his or her technique.
CONFIRMATION OF THE MATHEMATICAL MODEL ADEQUACY OF A LINEAR SYNCHRONOUS MOTOR
V. F. Novikov
2015-06-01
Full Text Available Purpose.To reduce labor costs and the amount of computer time in the design of linear synchronous motors with excitation from a source of a constant magnetic field of high-speed ground transportation it is necessary to use engineering methods. The purpose of this study is to confirm the adequacy of the previously proposed mathematical model of this engine and assumptions. It is also intended to confirm the possibility of applying the method of calculation of traction that occurs in the engine in the interaction of the permanent magnetic field of the excitation system of a vehicle with a coil track structure.Methodology. As for empirical theories the positive result of the experiment is not absolute proof of the truth, for an unambiguous conclusion about the adequacy of the developed model and the effectiveness of the developed methods need to be tested for falsification. In accordance with this criterion, it is necessary to conduct an experiment, the results of which will coincide with the calculation but you also need to avoid errors caused by random coincidences. For this purpose the experiments with varying parameters are conducted. Findings. In a critical experiment configuration changes of the excitation system were held so that the shape dependence of traction from displacement is differed significantly. The comparison of the results of the calculated and experimental values of traction for different configurations showed that the differences are minor and easily explained by measurement error and uneven gaps between the poles and excitation coils of the track structure. Originality. The adequacy of the mathematical model of a linear synchronous motor without a ferromagnetic magnetic circuit and the assumptions and applicability of the calculation method of traction forces involved in it, at the interaction of a permanent magnetic field of the excitation system of a vehicle with a coil track structure were proved. This proof is built on
Bouzat, Sebastián
2016-01-01
One-dimensional models coupling a Langevin equation for the cargo position to stochastic stepping dynamics for the motors constitute a relevant framework for analyzing multiple-motor microtubule transport. In this work we explore the consistence of these models focusing on the effects of the thermal noise. We study how to define consistent stepping and detachment rates for the motors as functions of the local forces acting on them in such a way that the cargo velocity and run-time match previously specified functions of the external load, which are set on the base of experimental results. We show that due to the influence of the thermal fluctuations this is not a trivial problem, even for the single-motor case. As a solution, we propose a motor stepping dynamics which considers memory on the motor force. This model leads to better results for single-motor transport than the approaches previously considered in the literature. Moreover, it gives a much better prediction for the stall force of the two-motor case, highly compatible with the experimental findings. We also analyze the fast fluctuations of the cargo position and the influence of the viscosity, comparing the proposed model to the standard one, and we show how the differences on the single-motor dynamics propagate to the multiple motor situations. Finally, we find that the one-dimensional character of the models impede an appropriate description of the fast fluctuations of the cargo position at small loads. We show how this problem can be solved by considering two-dimensional models.
The design, characteristic experiment of rotary step motor for ball screw type CEDM
Hu, H.; Yoo, J. Y.; Kim, J. H.; Kim, J. I.; Yeo, J. W.
2003-01-01
This paper describes the 3-dimensional finite element analysis(FEA) for the design of rotary step motor(RSM) for ball screw-type Control Element Drive Mechanism(CEDM) and compares with the holding torque characteristics of prototype RSM. A thermal analysis was performed for the RSM. A model for the thermal analysis of the electromagnet was developed and theoretical bases for the model were established. It is important that the temperature of the RSM windings be maintained within the allowable limit of the insulation, since the electromagnet of CEDM is always supplied with current during the reactor operation. So the thermal analysis of the winding insulation which is composed of polyimide and air were performed by finite element method. But the test results show that the holding; torque is less than those by analysis
Oza, Chintan S.
2015-01-01
Trunk motor control is crucial for postural stability and propulsion after low thoracic spinal cord injury (SCI) in animals and humans. Robotic rehabilitation aimed at trunk shows promise in SCI animal models and patients. However, little is known about the effect of SCI and robot rehabilitation of trunk on cortical motor representations. We previously showed reorganization of trunk motor cortex after adult SCI. Non-stepping training also exacerbated some SCI-driven plastic changes. Here we examine effects of robot rehabilitation that promotes recovery of hindlimb weight support functions on trunk motor cortex representations. Adult rats spinal transected as neonates (NTX rats) at the T9/10 level significantly improve function with our robot rehabilitation paradigm, whereas treadmill-only trained do not. We used intracortical microstimulation to map motor cortex in two NTX groups: (1) treadmill trained (control group); and (2) robot-assisted treadmill trained (improved function group). We found significant robot rehabilitation-driven changes in motor cortex: (1) caudal trunk motor areas expanded; (2) trunk coactivation at cortex sites increased; (3) richness of trunk cortex motor representations, as examined by cumulative entropy and mutual information for different trunk representations, increased; (4) trunk motor representations in the cortex moved toward more normal topography; and (5) trunk and forelimb motor representations that SCI-driven plasticity and compensations had caused to overlap were segregated. We conclude that effective robot rehabilitation training induces significant reorganization of trunk motor cortex and partially reverses some plastic changes that may be adaptive in non-stepping paraplegia after SCI. PMID:25948267
Oza, Chintan S; Giszter, Simon F
2015-05-06
Trunk motor control is crucial for postural stability and propulsion after low thoracic spinal cord injury (SCI) in animals and humans. Robotic rehabilitation aimed at trunk shows promise in SCI animal models and patients. However, little is known about the effect of SCI and robot rehabilitation of trunk on cortical motor representations. We previously showed reorganization of trunk motor cortex after adult SCI. Non-stepping training also exacerbated some SCI-driven plastic changes. Here we examine effects of robot rehabilitation that promotes recovery of hindlimb weight support functions on trunk motor cortex representations. Adult rats spinal transected as neonates (NTX rats) at the T9/10 level significantly improve function with our robot rehabilitation paradigm, whereas treadmill-only trained do not. We used intracortical microstimulation to map motor cortex in two NTX groups: (1) treadmill trained (control group); and (2) robot-assisted treadmill trained (improved function group). We found significant robot rehabilitation-driven changes in motor cortex: (1) caudal trunk motor areas expanded; (2) trunk coactivation at cortex sites increased; (3) richness of trunk cortex motor representations, as examined by cumulative entropy and mutual information for different trunk representations, increased; (4) trunk motor representations in the cortex moved toward more normal topography; and (5) trunk and forelimb motor representations that SCI-driven plasticity and compensations had caused to overlap were segregated. We conclude that effective robot rehabilitation training induces significant reorganization of trunk motor cortex and partially reverses some plastic changes that may be adaptive in non-stepping paraplegia after SCI. Copyright © 2015 the authors 0270-6474/15/357174-16$15.00/0.
One step linear reconstruction method for continuous wave diffuse optical tomography
Ukhrowiyah, N.; Yasin, M.
2017-09-01
The method one step linear reconstruction method for continuous wave diffuse optical tomography is proposed and demonstrated for polyvinyl chloride based material and breast phantom. Approximation which used in this method is selecting regulation coefficient and evaluating the difference between two states that corresponding to the data acquired without and with a change in optical properties. This method is used to recovery of optical parameters from measured boundary data of light propagation in the object. The research is demonstrated by simulation and experimental data. Numerical object is used to produce simulation data. Chloride based material and breast phantom sample is used to produce experimental data. Comparisons of results between experiment and simulation data are conducted to validate the proposed method. The results of the reconstruction image which is produced by the one step linear reconstruction method show that the image reconstruction almost same as the original object. This approach provides a means of imaging that is sensitive to changes in optical properties, which may be particularly useful for functional imaging used continuous wave diffuse optical tomography of early diagnosis of breast cancer.
Presentation and Performance Evaluation of a Novel Stator-Permanent-Magnet Hybrid Stepping Motor
Binglin Lu
2017-05-01
Full Text Available In this paper, a new type of hybrid stepping motor (HSM with permanent magnets (PMs embedded in the stator, namely the stator-permanent-magnet hybrid stepping motor (SHSM, is presented. It has the same operation principles as the traditional HSM, with a 2-D distributed magnetic field nature and superiorities such as simpler rotor structure, easier PM cooling, higher torque and power density, and higher power grade. Its structural topology and operation principles are initially presented. Then an investigation on the performance comparison between the HSM and the SHSM, in terms of PM flux density, PM torque, detent torque, positional holding accuracy, stator core saturation issue, PM flux leakage, and PM utilization rate is carried out theoretically to make an assessment of the performance superiorities of the SHSM. A prototype of a 2-phase 8-pole 50-rotor-tooth SHSM is fabricated and experimentally compared with the HSM by using finite element analysis (FEA to verify the motor’s operational feasibility and the theoretical analysis. The FEA and experimental results show that the proposed SHSM has performance advantages such as higher torque density, higher power grade, and higher pull-out torque, holding torque, and torque-speed property, although it has performance defects such as higher torque ripple and relatively lower positional holding accuracy in the open-loop operation than the conventional HSM. Consequently, this novel SHSM is more suitable for electromechanical energy conversion applications rather than positioning mechanisms, especially taking into account the open-loop control advantage.
Yan, Liang; Peng, Juanjuan; Jiao, Zongxia; Chen, Chin-Yin; Chen, I-Ming
2014-10-01
This paper proposes a novel permanent magnet linear motor possessing two movers and one stator. The two movers are isolated and can interact with the stator poles to generate independent forces and motions. Compared with conventional multiple motor driving system, it helps to increase the system compactness, and thus improve the power density and working efficiency. The magnetic field distribution is obtained by using equivalent magnetic circuit method. Following that, the formulation of force output considering armature reaction is carried out. Then inductances are analyzed with finite element method to investigate the relationships of the two movers. It is found that the mutual-inductances are nearly equal to zero, and thus the interaction between the two movers is negligible. A research prototype of the linear motor and a measurement apparatus on thrust force have been developed. Both numerical computation and experiment measurement are conducted to validate the analytical model of thrust force. Comparison shows that the analytical model matches the numerical and experimental results well.
Bond Graph Modelling for Fault Detection and Isolation of an Ultrasonic Linear Motor
Mabrouk KHEMLICHE
2010-12-01
Full Text Available In this paper Bond Graph modeling, simulation and monitoring of ultrasonic linear motors are presented. Only the vibration of piezoelectric ceramics and stator will be taken into account. Contact problems between stator and rotor are not treated here. So, standing and travelling waves will be briefly presented since the majority of the motors use another wave type to generate the stator vibration and thus obtain the elliptic trajectory of the points on the surface of the stator in the first time. Then, electric equivalent circuit will be presented with the aim for giving a general idea of another way of graphical modelling of the vibrator introduced and developed. The simulations of an ultrasonic linear motor are then performed and experimental results on a prototype built at the laboratory are presented. Finally, validation of the Bond Graph method for modelling is carried out, comparing both simulation and experiment results. This paper describes the application of the FDI approach to an electrical system. We demonstrate the FDI effectiveness with real data collected from our automotive test. We introduce the analysis of the problem involved in the faults localization in this process. We propose a method of fault detection applied to the diagnosis and to determine the gravity of a detected fault. We show the possibilities of application of the new approaches to the complex system control.
Yu, Hongpeng; Quan, Qiquan; Tian, Xinqi; Li, He
2018-03-07
A novel U-shaped piezoelectric ultrasonic motor that mainly focused on miniaturization and high power density was proposed, fabricated, and tested in this work. The longitudinal vibrations of the transducers were excited to form the elliptical movements on the driving feet. Finite element method (FEM) was used for design and analysis. The resonance frequencies of the selected vibration modes were tuned to be very close to each other with modal analysis and the movement trajectories of the driving feet were gained with transient simulation. The vibration modes and the mechanical output abilities were tested to evaluate the proposed motor further by a prototype. The maximum output speed was tested to be 416 mm/s, the maximum thrust force was 21 N, and the maximum output power was 5.453 W under frequency of 29.52 kHz and voltage of 100 V rms . The maximum output power density of the prototype reached 7.59 W/kg, which was even greater than a previous similar motor under the exciting voltage of 200 V rms . The proposed motor showed great potential for linear driving of large thrust force and high power density.
Population decoding of motor cortical activity using a generalized linear model with hidden states.
Lawhern, Vernon; Wu, Wei; Hatsopoulos, Nicholas; Paninski, Liam
2010-06-15
Generalized linear models (GLMs) have been developed for modeling and decoding population neuronal spiking activity in the motor cortex. These models provide reasonable characterizations between neural activity and motor behavior. However, they lack a description of movement-related terms which are not observed directly in these experiments, such as muscular activation, the subject's level of attention, and other internal or external states. Here we propose to include a multi-dimensional hidden state to address these states in a GLM framework where the spike count at each time is described as a function of the hand state (position, velocity, and acceleration), truncated spike history, and the hidden state. The model can be identified by an Expectation-Maximization algorithm. We tested this new method in two datasets where spikes were simultaneously recorded using a multi-electrode array in the primary motor cortex of two monkeys. It was found that this method significantly improves the model-fitting over the classical GLM, for hidden dimensions varying from 1 to 4. This method also provides more accurate decoding of hand state (reducing the mean square error by up to 29% in some cases), while retaining real-time computational efficiency. These improvements on representation and decoding over the classical GLM model suggest that this new approach could contribute as a useful tool to motor cortical decoding and prosthetic applications. Copyright (c) 2010 Elsevier B.V. All rights reserved.
Population Decoding of Motor Cortical Activity using a Generalized Linear Model with Hidden States
Lawhern, Vernon; Wu, Wei; Hatsopoulos, Nicholas G.; Paninski, Liam
2010-01-01
Generalized linear models (GLMs) have been developed for modeling and decoding population neuronal spiking activity in the motor cortex. These models provide reasonable characterizations between neural activity and motor behavior. However, they lack a description of movement-related terms which are not observed directly in these experiments, such as muscular activation, the subject's level of attention, and other internal or external states. Here we propose to include a multi-dimensional hidden state to address these states in a GLM framework where the spike count at each time is described as a function of the hand state (position, velocity, and acceleration), truncated spike history, and the hidden state. The model can be identified by an Expectation-Maximization algorithm. We tested this new method in two datasets where spikes were simultaneously recorded using a multi-electrode array in the primary motor cortex of two monkeys. It was found that this method significantly improves the model-fitting over the classical GLM, for hidden dimensions varying from 1 to 4. This method also provides more accurate decoding of hand state (lowering the Mean Square Error by up to 29% in some cases), while retaining real-time computational efficiency. These improvements on representation and decoding over the classical GLM model suggest that this new approach could contribute as a useful tool to motor cortical decoding and prosthetic applications. PMID:20359500
Heverly, Matthew; Dougherty, Sean; Toon, Geoffrey; Soto, Alejandro; Blavier, Jean-Francois
2004-01-01
One of the key components of a Fourier Transform Infrared Spectrometer (FTIR) is the linear translation stage used to vary the optical path length between the two arms of the interferometer. This translation mechanism must produce extremely constant velocity motion across its entire range of travel to allow the instrument to attain high signal-to-noise ratio and spectral resolving power. A new spectrometer is being developed at the Jet Propulsion Laboratory under NASA s Planetary Instrument Definition and Development Program (PIDDP). The goal of this project is to build upon existing spaceborne FTIR spectrometer technology to produce a new instrument prototype that has drastically superior spectral resolution and substantially lower mass, making it feasible for planetary exploration. In order to achieve these goals, Alliance Spacesystems, Inc. (ASI) has developed a linear translation mechanism using a novel ultrasonic piezo linear motor in conjunction with a fully kinematic, fault tolerant linear rail system. The piezo motor provides extremely smooth motion, is inherently redundant, and is capable of producing unlimited travel. The kinematic rail uses spherical Vespel(R). rollers and bushings, which eliminates the need for wet lubrication, while providing a fault tolerant platform for smooth linear motion that will not bind under misalignment or structural deformation. This system can produce velocities from 10 - 100 mm/s with less than 1% velocity error over the entire 100-mm length of travel for a total mechanism mass of less than 850 grams. This system has performed over half a million strokes under vacuum without excessive wear or degradation in performance. This paper covers the design, development, and testing of this linear translation mechanism as part of the Planetary Atmosphere Occultation Spectrometer (PAOS) instrument prototype development program.
Improved Full-Newton Step O(nL) Infeasible Interior-Point Method for Linear Optimization
Gu, G.; Mansouri, H.; Zangiabadi, M.; Bai, Y.Q.; Roos, C.
2009-01-01
We present several improvements of the full-Newton step infeasible interior-point method for linear optimization introduced by Roos (SIAM J. Optim. 16(4):1110–1136, 2006). Each main step of the method consists of a feasibility step and several centering steps. We use a more natural feasibility step, which targets the ?+-center of the next pair of perturbed problems. As for the centering steps, we apply a sharper quadratic convergence result, which leads to a slightly wider neighborhood for th...
Abootorabi Zarchi, H.; Arab Markadeh, Gh.R.; Soltani, J.
2010-01-01
In this paper, a nonlinear speed tracking controller is introduced for three-phase synchronous reluctance motor (SynRM) on the basis of input-output feedback linearization (IOFL), considering the different control strategies (maximum torque per Ampere, high efficiency and minimum KVA rating for the inverter) related to this motor. The proposed control approach is capable of decoupling control of stator flux and motor generated torque. The validity and effectiveness of the method is verified by simulation and experimental results.
Oza, Chintan S; Giszter, Simon F
2014-06-01
Spinal cord injury (SCI) induces significant reorganization in the sensorimotor cortex. Trunk motor control is crucial for postural stability and propulsion after low thoracic SCI and several rehabilitative strategies are aimed at trunk stability and control. However little is known about the effect of SCI and rehabilitation training on trunk motor representations and their plasticity in the cortex. Here, we used intracortical microstimulation to examine the motor cortex representations of the trunk in relation to other representations in three groups of chronic adult complete low thoracic SCI rats: chronic untrained, treadmill trained (but 'non-stepping') and robot assisted treadmill trained (but 'non-stepping') and compared with a group of normal rats. Our results demonstrate extensive and significant reorganization of the trunk motor cortex after chronic adult SCI which includes (1) expansion and rostral displacement of trunk motor representations in the cortex, with the greatest significant increase observed for rostral (to injury) trunk, and slight but significant increase of motor representation for caudal (to injury) trunk at low thoracic levels in all spinalized rats; (2) significant changes in coactivation and the synergy representation (or map overlap) between different trunk muscles and between trunk and forelimb. No significant differences were observed between the groups of transected rats for the majority of the comparisons. However, (3) the treadmill and robot-treadmill trained groups of rats showed a further small but significant rostral migration of the trunk representations, beyond the shift caused by transection alone. We conclude that SCI induces a significant reorganization of the trunk motor cortex, which is not qualitatively altered by non-stepping treadmill training or non-stepping robot assisted treadmill training, but is shifted further from normal topography by the training. This shift may potentially make subsequent rehabilitation with
Stubblefield, F.W.
1985-11-01
Four copies of a general purpose subsystem for mechanical positioning of detectors, samples, and beam line optical elements which constitute experiments at the National Synchrotron Light Source facility of Brookhaven National Laboratory have been constructed and placed into operation. Construction of a fifth subsystem unit is nearing completion. The subsystems affect mechanical positioning by controlling a set of stepping motor-encoder pairs. The units are general purpose in the sense that they receive commands over a 9600 baud asynchronous serial line compatible with the RS-232-C electrical signal standard, generate TTL-compatible streams of stepping pulses which can be used with a wide variety of stepping motors, and read back position values from a number of different types and models of position encoder. The basic structure of the motor controller subsystem is briefly reviewed. Additions to the subsystem made in response to problems indicated by actual operation of the four installed units are described in more detail
Pole-shape optimization of permanent-magnet linear synchronous motor for reduction of thrust ripple
Tavana, Nariman Roshandel, E-mail: nroshandel@ee.iust.ac.i [Department of Electrical Engineering, Iran University of Science and Technology, Narmak, Tehran 16846-13114 (Iran, Islamic Republic of); Shoulaie, Abbas, E-mail: shoulaie@iust.ac.i [Department of Electrical Engineering, Iran University of Science and Technology, Narmak, Tehran 16846-13114 (Iran, Islamic Republic of)
2011-01-15
In this paper, we have used magnet arc shaping technique in order to improve the performance of permanent-magnet linear synchronous motor (PMLSM). At first, a detailed analytical modeling based on Maxwell equations is presented for the analysis and design of PMLSM with the arc-shaped magnetic poles (ASMPs). Then the accuracy of presented method is verified by finite-element method. Very close agreement between the analytical and finite-element results shows the effectiveness of the proposed method. Finally, a magnet shape design is carried out based on the analytical method to enhance the motor developed thrust. Pertinent evaluations on the optimal design performance demonstrate that shape optimization leads to a design with extra low thrust ripple.
Dynamic diagnostics of moving ferromagnetic material with the linear induction motor
Szewczyk Krzysztof
2017-01-01
Full Text Available The paper presents the application of a three-phase induction motor as a sensor measuring the force of the electromagnetic field connection between the engine and produced sheet steel. The force interaction between the engine and the manufactured sheet metal treated as a treadmill for a linear motor may be an indicator of damage to the material. Detection of places where the sheet does not meet the quality requirements may be very useful in the production process. FEM calculations were performed in the ANSYS MAXWELL environment. The results suggest the possibility of using this type of construction to test the quality of produced materials. The computational results and their analysis are presented in this article.
Adaptive H∞ nonlinear velocity tracking using RBFNN for linear DC brushless motor
Tsai, Ching-Chih; Chan, Cheng-Kain; Li, Yi Yu
2012-01-01
This article presents an adaptive H ∞ nonlinear velocity control for a linear DC brushless motor. A simplified model of this motor with friction is briefly recalled. The friction dynamics is described by the Lu Gre model and the online tuning radial basis function neural network (RBFNN) is used to parameterise the nonlinear friction function and un-modelled errors. An adaptive nonlinear H ∞ control method is then proposed to achieve velocity tracking, by assuming that the upper bounds of the ripple force, the changeable load and the nonlinear friction can be learned by the RBFNN. The closed-loop system is proven to be uniformly bounded using the Lyapunov stability theory. The feasibility and the efficacy of the proposed control are exemplified by conducting two velocity tracking experiments.
A linear motor and compact cylinder-piston driver for left ventricular bypass.
Qian, K X
1990-01-01
A simple, portable, reliable and noise-free pneumatic driver has been developed. It consists of a linear motor attached to a cylinder piston, in one unit. The motor coil is directly wound on the cylinder, and the permanent magnet is fixed to the piston. As a continuous voltage square wave is applied to the coil, the cylinder reciprocates on the piston periodically, producing air pressure and vacuum alternately. In conjunction with a locally made diaphragm pump, the driver was tested in vitro and in vivo. Results demonstrated that the device could drive the diaphragm pump and so support the circulation of an experimental animal. The driver weighs 12 kg. For 200 mmHg air pressure and -80 mmHg vacuum the power consumed is 30 W. Its noise is about 30 dB, less than that of an artificial valve and pump.
Pole-shape optimization of permanent-magnet linear synchronous motor for reduction of thrust ripple
Tavana, Nariman Roshandel; Shoulaie, Abbas
2011-01-01
In this paper, we have used magnet arc shaping technique in order to improve the performance of permanent-magnet linear synchronous motor (PMLSM). At first, a detailed analytical modeling based on Maxwell equations is presented for the analysis and design of PMLSM with the arc-shaped magnetic poles (ASMPs). Then the accuracy of presented method is verified by finite-element method. Very close agreement between the analytical and finite-element results shows the effectiveness of the proposed method. Finally, a magnet shape design is carried out based on the analytical method to enhance the motor developed thrust. Pertinent evaluations on the optimal design performance demonstrate that shape optimization leads to a design with extra low thrust ripple.
Friedrich, R
1977-04-07
The invention concerns a magnetically levitated railway with common reaction rail for the linear motor drive and the electrical side guidance arrangement. While the electro-dynamic hovering process requires a high electrical conductivity of the reaction rails in order to reduce eddy current losses, these should show a relatively high resistance for the asynchronous linear motor to reduce losses of propelling force. These contradictory requirements can be fulfilled for a common reaction rail made of homogeneous material of high electrical conductivity according to the invention, by providing slits at right angles to the driving axis in the part of the reaction rail allocated to the linear motor. Thus the guidance system retains a low ohmic resistance, while the part of the reaction rail allocated to the windings of the linear motor has a relatively low ohmic secondary resistance, by which the border and end effects which reduce the propelling force can be appreciably reduced.
G.M. Golenkov
2014-03-01
Full Text Available The paper presents results of computer simulation and experimental study of magnetic induction distribution in a coaxial linear motor air gap throughout the length of the runner active part at different heights of the air gap between the runner and the inductor magnetic core for motors with axial and radial direction of the permanent magnets magnetization.
Heinrich, Hartmut; Hoegl, Thomas; Moll, Gunther H; Kratz, Oliver
2014-04-01
Knowledge about the core neural mechanisms of attention-deficit hyperactivity disorder, a pathophysiologically heterogeneous psychiatric disorder starting in childhood, is still limited. Progress may be achieved by combining different methods and levels of investigation. In the present study, we investigated neural mechanisms of motor control in 19 children with attention-deficit hyperactivity disorder (aged 9-14 years) and 21 age-matched typically developing children by relating neural markers of attention and response control (using event-related potentials) and measures of motor excitability/inhibition (evoked by transcranial magnetic stimulation). Thus, an interplay of processes at a subsecond scale could be studied. Using a monetary incentives-based cued Go/No-Go task, parameters that are well-known to be reduced in attention-deficit hyperactivity disorder were analysed: event-related potential components P3 (following cue stimuli; in Go and No-Go trials) and contingent negative variation as well as the transcranial magnetic stimulation-based short-interval intracortical inhibition measured at different latencies in Go and No-Go trials. For patient and control groups, different associations were obtained between performance, event-related potential and transcranial magnetic stimulation measures. In children with attention-deficit hyperactivity disorder, the P3 amplitude in Go trials was not correlated with reaction time measures but with short-interval intracortical inhibition at rest (r=0.56, P=0.01). In No-Go trials, P3 and short-interval intracortical inhibition after inhibiting the response (at 500 ms post-stimulus) were correlated in these children only (r=0.62; P=0.008). A classification rate of 90% was achieved when using short-interval intracortical inhibition (measured shortly before the occurrence of a Go or No-Go stimulus) and the amplitude of the P3 in cue trials as input features in a linear discriminant analysis. Findings indicate deviant neural
Hiwaki, H [Dept. of Electrical and Electronic Engineering, Musashi Inst. of Technology, Tokyo (Japan); Watada, M [Dept. of Electrical and Electronic Engineering, Musashi Inst. of Technology, Tokyo (Japan); Torii, S [Dept. of Electrical and Electronic Engineering, Musashi Inst. of Technology, Tokyo (Japan); Ebihara, D [Dept. of Electrical and Electronic Engineering, Musashi Inst. of Technology, Tokyo (Japan)
1996-12-31
In the permanent magnet levitation system, it is impossible to stabilize the motion of the vehicle in both levitation and guidance directions only by permanent magnet. Therefore, the authors proposed the combined system of permanent magnet for levitation and coreless linear synchronous motor (coreless LSM). To design the coreless coils for LSM, the method to calculate the spring coefficient between coreless coil and permanent magnet for LSM is shown. By using this method, the spring coefficients of the three coil arrangements are compared and coreless coil is designed. Furthermore, the authors showed the possibility of stabilizing the motion of the levitation system with coreless LSM. (orig.)
A new double sided linear switched reluctance motor with low cost
Daldaban, Ferhat; Ustkoyuncu, Nurettin
2006-01-01
This paper presents the realization and design of a new linear switched reluctance motor (LSRM) structure. The new model has double sided configuration and provides high force for many applications with low cost. The characteristics of the LSRM are obtained by using finite element analysis (FEA) and analytical calculations. The results of the FEA and analytical calculations are presented, and compared with experimental results. A high correlation between experimental and analytical results is obtained, which has been demonstrated in the form of inductance versus position versus current
Prasenjit D. Wakode
2016-07-01
Full Text Available This paper presents the complete analysis of Linear Induction Motor (LIM under VVVF. The complete variation of LIM air gap flux under ‘blocked Linor’ condition and starting force is analyzed and presented when LIM is given VVVF supply. The analysis of this data is important in further understanding of the equivalent circuit parameters of LIM and to study the magnetic circuit of LIM. The variation of these parameters is important to know the LIM response at different frequencies. The simulation and application of different control strategies such as vector control thus becomes quite easy to apply and understand motor’s response under such strategy of control.
Decentralized control of the COFS-I Mast using linear dc motors
Lindner, Douglas K.; Celano, Tom; Ide, Eric
1989-01-01
Consideration is given to a decentralized control design for vibration suppression in the COFS-I Mast using linear dc motors for actuators. The decentralized control design is based results from power systems using root locus techniques that are not well known. The approach is effective because the loop gain is low due to low actuator authority. The frequency-dependent nonlinearities of the actuator are taken into account. Because of the tendency of the transients to saturate the the stroke length of the actuator, its effectiveness is limited.
Lei, Meizhen; Wang, Liqiang
2018-01-01
The halbach-type linear oscillatory motor (HT-LOM) is multi-variable, highly coupled, nonlinear and uncertain, and difficult to get a satisfied result by conventional PID control. An incremental adaptive fuzzy controller (IAFC) for stroke tracking was presented, which combined the merits of PID control, the fuzzy inference mechanism and the adaptive algorithm. The integral-operation is added to the conventional fuzzy control algorithm. The fuzzy scale factor can be online tuned according to the load force and stroke command. The simulation results indicate that the proposed control scheme can achieve satisfied stroke tracking performance and is robust with respect to parameter variations and external disturbance.
Kikuma, T.; Tomita, M.; Ishiyama, A. [Waseda Univ., Tokyo (Japan)
1999-11-10
For the purpose of we examining the effect of characteristics and ac loss under real machine operating environment of the alternating current superconductivity winding for a realization of the superconductive AC machine vessel, cylindrical shortness first linear guiding motor which used NbTi/CuNi superconducting cable for the primary winding was produced experimentally. The coil number was increased from 6 in 14 this time, and the optimization of the primary current was done, and the improvement on characteristics was attempted. Here, starting torque characteristics, quenching detection protection control circuit are reported. (NEDO)
Particle Swarm Based Approach of a Real-Time Discrete Neural Identifier for Linear Induction Motors
Alma Y. Alanis
2013-01-01
Full Text Available This paper focusses on a discrete-time neural identifier applied to a linear induction motor (LIM model, whose model is assumed to be unknown. This neural identifier is robust in presence of external and internal uncertainties. The proposed scheme is based on a discrete-time recurrent high-order neural network (RHONN trained with a novel algorithm based on extended Kalman filter (EKF and particle swarm optimization (PSO, using an online series-parallel con figuration. Real-time results are included in order to illustrate the applicability of the proposed scheme.
Piezoelectric Motors, an Overview
Karl Spanner; Burhanettin Koc
2016-01-01
Piezoelectric motors are used in many industrial and commercial applications. Various piezoelectric motors are available in the market. All of the piezoelectric motors use the inverse piezoelectric effect, where microscopically small oscillatory motions are converted into continuous or stepping rotary or linear motions. Methods of obtaining long moving distance have various drive and functional principles that make these motors categorized into three groups: resonance-drive (piezoelectric ult...
de Souza Baptista, Roberto; Bo, Antonio P L; Hayashibe, Mitsuhiro
2017-06-01
Performance assessment of human movement is critical in diagnosis and motor-control rehabilitation. Recent developments in portable sensor technology enable clinicians to measure spatiotemporal aspects to aid in the neurological assessment. However, the extraction of quantitative information from such measurements is usually done manually through visual inspection. This paper presents a novel framework for automatic human movement assessment that executes segmentation and motor performance parameter extraction in time-series of measurements from a sequence of human movements. We use the elements of a Switching Linear Dynamic System model as building blocks to translate formal definitions and procedures from human movement analysis. Our approach provides a method for users with no expertise in signal processing to create models for movements using labeled dataset and later use it for automatic assessment. We validated our framework on preliminary tests involving six healthy adult subjects that executed common movements in functional tests and rehabilitation exercise sessions, such as sit-to-stand and lateral elevation of the arms and five elderly subjects, two of which with limited mobility, that executed the sit-to-stand movement. The proposed method worked on random motion sequences for the dual purpose of movement segmentation (accuracy of 72%-100%) and motor performance assessment (mean error of 0%-12%).
The Experimental Study of Rayleigh-Taylor Instability using a Linear Induction Motor Accelerator
Yamashita, Nicholas; Jacobs, Jeffrey
2009-11-01
The experiments to be presented utilize an incompressible system of two stratified miscible liquids of different densities that are accelerated in order to produce the Rayleigh-Taylor instability. Three liquid combinations are used: isopropyl alcohol with water, a calcium nitrate solution or a lithium polytungstate solution, giving Atwood numbers of 0.11, 0.22 and 0.57, respectively. The acceleration required to drive the instability is produced by two high-speed linear induction motors mounted to an 8 m tall drop tower. The motors are mounted in parallel and have an effective acceleration length of 1.7 m and are each capable of producing 15 kN of thrust. The liquid system is contained within a square acrylic tank with inside dimensions 76 x76x184 mm. The tank is mounted to an aluminum plate, which is driven by the motors to create constant accelerations in the range of 1-20 g's, though the potential exists for higher accelerations. Also attached to the plate are a high-speed camera and an LED backlight to provide continuous video of the instability. In addition, an accelerometer is used to provide acceleration measurements during each experiment. Experimental image sequences will be presented which show the development of a random three-dimensional instability from an unforced initial perturbation. Measurements of the mixing zone width will be compared with traditional growth models.
Gomi, Hiroaki; Sakurada, Takeshi; Fukui, Takao
2014-01-01
When stepping onto a stopped escalator, we often perceive an “odd sensation” that is never felt when stepping onto stairs. The sight of an escalator provides a strong contextual cue that, in expectation of the backward acceleration when stepping on, triggers an anticipatory forward postural adjustment driven by a habitual and implicit motor process. Here we contrast two theories about why this postural change leads to an odd sensation. The first theory links the odd sensation to a lack of sensorimotor prediction from all low-level implicit motor processes. The second theory links the odd sensation to the high-level conflict between the conscious awareness that the escalator is stopped and the implicit perception that evokes an endogenous motor program specific to a moving escalator. We show very similar postural changes can also arise from reflexive responses to visual stimuli, such as contracting/expanding optic flow fields, and that these reflexive responses produce similar odd sensations to the stopped escalator. We conclude that the high-level conflict is not necessary for such sensations. In contrast, the implicitly driven behavioral change itself essentially leads to the odd sensation in motor perception since the unintentional change may be less attributable to self-generated action because of a lack of motor predictions. PMID:24688460
Dosage-dependent non-linear effect of L-dopa on human motor cortex plasticity.
Monte-Silva, Katia; Liebetanz, David; Grundey, Jessica; Paulus, Walter; Nitsche, Michael A
2010-09-15
The neuromodulator dopamine affects learning and memory formation and their likely physiological correlates, long-term depression and potentiation, in animals and humans. It is known from animal experiments that dopamine exerts a dosage-dependent, inverted U-shaped effect on these functions. However, this has not been explored in humans so far. In order to reveal a non-linear dose-dependent effect of dopamine on cortical plasticity in humans, we explored the impact of 25, 100 and 200 mg of L-dopa on transcranial direct current (tDCS)-induced plasticity in twelve healthy human subjects. The primary motor cortex served as a model system, and plasticity was monitored by motor evoked potential amplitudes elicited by transcranial magnetic stimulation. As compared to placebo medication, low and high dosages of L-dopa abolished facilitatory as well as inhibitory plasticity, whereas the medium dosage prolonged inhibitory plasticity, and turned facilitatory plasticity into inhibition. Thus the results show clear non-linear, dosage-dependent effects of dopamine on both facilitatory and inhibitory plasticity, and support the assumption of the importance of a specific dosage of dopamine optimally suited to improve plasticity. This might be important for the therapeutic application of dopaminergic agents, especially for rehabilitative purposes, and explain some opposing results in former studies.
A linear stepping endovascular intervention robot with variable stiffness and force sensing.
He, Chengbin; Wang, Shuxin; Zuo, Siyang
2018-03-08
Robotic-assisted endovascular intervention surgery has attracted significant attention and interest in recent years. However, limited designs have focused on the variable stiffness mechanism of the catheter shaft. Flexible catheter needs to be partially switched to a rigid state that can hold its shape against external force to achieve a stable and effective insertion procedure. Furthermore, driving catheter in a similar way with manual procedures has the potential to make full use of the extensive experience from conventional catheter navigation. Besides driving method, force sensing is another significant factor for endovascular intervention. This paper presents a variable stiffness catheterization system that can provide stable and accurate endovascular intervention procedure with a linear stepping mechanism that has a similar operation mode to the conventional catheter navigation. A specially designed shape-memory polymer tube with water cooling structure is used to achieve variable stiffness of the catheter. Hence, four FBG sensors are attached to the catheter tip in order to monitor the tip contact force situation with temperature compensation. Experimental results show that the actuation unit is able to deliver linear and rotational motions. We have shown the feasibility of FBG force sensing to reduce the effect of temperature and detect the tip contact force. The designed catheter can change its stiffness partially, and the stiffness of the catheter can be remarkably increased in rigid state. Hence, in the rigid state, the catheter can hold its shape against a [Formula: see text] load. The prototype has also been validated with a vascular phantom, demonstrating the potential clinical value of the system. The proposed system provides important insights into the design of compact robotic-assisted catheter incorporating effective variable stiffness mechanism and real-time force sensing for intraoperative endovascular intervention.
Joiner, Wilsaan M; Ajayi, Obafunso; Sing, Gary C; Smith, Maurice A
2011-01-01
The ability to generalize learned motor actions to new contexts is a key feature of the motor system. For example, the ability to ride a bicycle or swing a racket is often first developed at lower speeds and later applied to faster velocities. A number of previous studies have examined the generalization of motor adaptation across movement directions and found that the learned adaptation decays in a pattern consistent with the existence of motor primitives that display narrow Gaussian tuning. However, few studies have examined the generalization of motor adaptation across movement speeds. Following adaptation to linear velocity-dependent dynamics during point-to-point reaching arm movements at one speed, we tested the ability of subjects to transfer this adaptation to short-duration higher-speed movements aimed at the same target. We found near-perfect linear extrapolation of the trained adaptation with respect to both the magnitude and the time course of the velocity profiles associated with the high-speed movements: a 69% increase in movement speed corresponded to a 74% extrapolation of the trained adaptation. The close match between the increase in movement speed and the corresponding increase in adaptation beyond what was trained indicates linear hypergeneralization. Computational modeling shows that this pattern of linear hypergeneralization across movement speeds is not compatible with previous models of adaptation in which motor primitives display isotropic Gaussian tuning of motor output around their preferred velocities. Instead, we show that this generalization pattern indicates that the primitives involved in the adaptation to viscous dynamics display anisotropic tuning in velocity space and encode the gain between motor output and motion state rather than motor output itself.
Schneeberger, B.; Breuleux, R.
1977-01-01
Assuming that earthquake ground motion is a stationary time function, the seismic analysis of a linear structure can be done by probailistic methods using the 'power spectral density function' (PSD), instead of applying the more traditional time-step-integration using earthquake time histories (TH). A given structure was analysed both by PSD and TH methods computing and comparing 'floor response spectra'. The analysis using TH was performed for two different TH and different frequency intervals for the 'floor-response-spectra'. The analysis using PSD first produced PSD functions of the responses of the floors and these were then converted into 'foor-response-spectra'. Plots of the resulting 'floor-response-spectra' show: (1) The agreement of TH and PSD results is quite close. (2) The curves produced by PSD are much smoother than those produced by TH and mostly form an enelope of the latter. (3) The curves produced by TH are quite jagged with the location and magnitude of the peaks depending on the choice of frequencies at which the 'floor-response-spectra' were evaluated and on the choice of TH. (Auth.)
Munteanu, A.; Agarlita, S. C.; Blaabjerg, Frede
2012-01-01
The present paper introduces a novel six-step commutation strategy for sensorless control applied for a surface permanent magnet synchronous motor that implies only dc link measurement (battery current and battery voltage). The control strategy makes use of a modified I-f starting procedure and t......-crossing of the back-emf are obtained from an observer that uses both current and battery voltage. The case study is represented by a surface permanent magnet synchronous motor prototype (6 /8 configuration), designed for the automotive air conditioning compressor drive....
An investigation of motor learning during side-step cutting, design of a randomised controlled trial
Lemmink Koen APM
2010-10-01
Full Text Available Abstract Background Of all athletic knee injuries an anterior cruciate ligament (ACL rupture results in the longest time loss from sport. Regardless of the therapy chosen, conservative or reconstructive, athletes are often forced to reduce their level of physical activity and their involvement in sport. Moreover, a recent review reported prevalences of osteoarthritis ranging from 0% to 13% for patients with isolated ACL-deficient (ACL-D knees and respectively 21% to 48% in patients with combined injuries. The need for ACL injury prevention is clear. The identification of risk factors and the development of prevention strategies may therefore have widespread health and economic implications. The focus of this investigation is to assess the role of implicit and explicit motor learning in optimising the performance of a side-step-cutting task. Methods/design A randomized controlled laboratory study will be conducted. Healthy basketball players, females and males, 18 years and older, with no previous lower extremity injuries, playing at the highest recreational level will be included. Subjects will receive a dynamic feedback intervention. Kinematic and kinetic data of the hip, knee and ankle and EMG activity of the quadriceps, hamstrings and gastrocnemius will be recorded. Discussion Female athletes have a significantly higher risk of sustaining an ACL injury than male athletes. Poor biomechanical and neuromuscular control of the lower limb is suggested to be a primary risk factor of an ACL injury mechanism in females. This randomized controlled trial has been designed to investigate whether individual feedback on task performance appears to be an effective intervention method. Results and principles found in this study will be applied to future ACL injury prevention programs, which should maybe more focus on individual injury predisposition. Trial registration Trial registration number NTR2250.
Electromagnetic Performance Calculation of HTS Linear Induction Motor for Rail Systems
Liu, Bin; Fang, Jin; Cao, Junci; Chen, Jie; Shu, Hang; Sheng, Long
2017-01-01
According to a high temperature superconducting (HTS) linear induction motor (LIM) designed for rail systems, the influence of electromagnetic parameters and mechanical structure parameters on the electromagnetic horizontal thrust, vertical force of HTS LIM and the maximum vertical magnetic field of HTS windings are analyzed. Through the research on the vertical field of HTS windings, the development regularity of the HTS LIM maximum input current with different stator frequency and different thickness value of the secondary conductive plate is obtained. The theoretical results are of great significance to analyze the stability of HTS LIM. Finally, based on theory analysis, HTS LIM test platform was built and the experiment was carried out with load. The experimental results show that the theoretical analysis is correct and reasonable. (paper)
Electromagnetic Performance Calculation of HTS Linear Induction Motor for Rail Systems
Liu, Bin; Fang, Jin; Cao, Junci; Chen, Jie; Shu, Hang; Sheng, Long
2017-07-01
According to a high temperature superconducting (HTS) linear induction motor (LIM) designed for rail systems, the influence of electromagnetic parameters and mechanical structure parameters on the electromagnetic horizontal thrust, vertical force of HTS LIM and the maximum vertical magnetic field of HTS windings are analyzed. Through the research on the vertical field of HTS windings, the development regularity of the HTS LIM maximum input current with different stator frequency and different thickness value of the secondary conductive plate is obtained. The theoretical results are of great significance to analyze the stability of HTS LIM. Finally, based on theory analysis, HTS LIM test platform was built and the experiment was carried out with load. The experimental results show that the theoretical analysis is correct and reasonable.
Rail Brake System Using a Linear Induction Motor for Dynamic Braking
Sakamoto, Yasuaki; Kashiwagi, Takayuki; Tanaka, Minoru; Hasegawa, Hitoshi; Sasakawa, Takashi; Fujii, Nobuo
One type of braking system for railway vehicles is the eddy current brake. Because this type of brake has the problem of rail heating, it has not been used for practical applications in Japan. Therefore, we proposed the use of a linear induction motor (LIM) for dynamic braking in eddy current brake systems. The LIM reduces rail heating and uses an inverter for self excitation. In this paper, we estimated the performance of an LIM from experimental results of a fundamental test machine and confirmed that the LIM generates an approximately constant braking force under constant current excitation. At relatively low frequencies, this braking force remains unaffected by frequency changes. The reduction ratio of rail heating is also approximately proportional to the frequency. We also confirmed that dynamic braking resulting in no electrical output can be used for drive control of the LIM. These characteristics are convenient for the realization of the LIM rail brake system.
Analysis and measure of novel stereo-garage driven by linear induction motor
Lu Qinfen
2015-12-01
Full Text Available The car access time is a key parameter, especially in a huge stereo-garage, where this one should be decreased as much as possible. This paper proposes a novel stereo-garage. Adopting the linear induction motors (LIMs, the system has a simple structure and rapid response capability. In the stereo-garage, several LIMs are installed below the crossbeam on a lifting platform, and several LIMs are fixed on the top of a moving frame. During the operation of LIMs, the moving frame moves forward and backward to reach the required parking place, whereas the crossbeam moves horizontally in order to take or store the vehicle rapidly. All these LIMs are the same and should be designed at a low frequency. The influences of key structure parameters and dynamic performances are investigated, based on FEM. The predicted results are validated by a prototype. Finally, the designed LIMs are successfully applied in two 8-layer stereo-garages.
Recession in a linear stepper motor based on piezoelectric actuator and electrorheological clampers
Li, Cuihong; Meng, Yonggang; Tian, Yu
2012-01-01
A linear inchworm-type stepper motor based on piezoelectric actuator and comb shape electrorheological (ER) clampers was developed and tested. A recession phenomenon in the movement of the motor was found and was significantly affected by the driving voltage of the piezoelectric actuator and ER fluids. A dynamic model to analyze the mechanism of the recession was established. The force ratio of the viscoelastic clamping force (applied high electric field) to the viscous damping force (zero field) of ER fluids is the critical factor which determines the recession. The ratio is also affected by the extension or contraction rate of the actuator during movement, which is affected by the charging and discharging processes. With a relatively large distance between the clamper electrodes and a small displacement activated by the extension of the piezoelectric actuator, the instantaneous shear rate might not be sufficiently high, preventing ER fluids from attaining a shear-thickened and high-strength state. The ratio of yield strength to the viscous strength of ER fluids during movement should be as large as possible to reduce the recession displacement. (paper)
A novel L-shaped linear ultrasonic motor operating in a single resonance mode
Zhang, Bailiang; Yao, Zhiyuan; Liu, Zhen; Li, Xiaoniu
2018-01-01
In this study, a large thrust linear ultrasonic motor using an L-shaped stator is described. The stator is constructed by two mutually perpendicular rectangular plate vibrators, one of which is mounted in parallel with the slider to make the motor structure to be more compact. The symmetric and antisymmetric modes of the stator based on the first order bending vibration of two vibrators are adopted, in which each resonance mode is assigned to drive the slider in one direction. The placement of piezoelectric ceramics in a stator could be determined by finite element analysis, and the influence of slots in the head block on the vibration amplitudes of driving foot was studied as well. Three types of prototypes (non-slotted, dual-slot, and single-slot) were fabricated and experimentally investigated. Experimental results demonstrated that the prototype with one slot exhibited the best mechanical output performance. The maximum loads under the excitation of symmetric mode and antisymmetric mode were 65 and 90 N, respectively.
Sun, Dongming; Wang, Sheng; Sakurai, Junpei; Hata, Seiichi; Choi, Kee-Bong; Shimokohbe, Akira
2010-01-01
A piezoelectric linear ultrasonic motor is proposed, with a cylindrical stator and slider structure. The length and diameter of the motor are about 10 and 1.5 mm, respectively. The stator consists of two piezoelectric ceramic (PZT) tubes connected by a thin film metallic glass (TFMG) pipe. The stator is designed based on theoretical analyses and finite element method (FEM) simulation. The traveling wave propagation is obtained in the FEM simulation under the proper geometrical sizes, suitable boundary conditions and driving voltage signals. The trajectories of particles on the TFMG pipe are elliptical motion. In the experiment, a 25 µm thick TFMG pipe is fabricated using the rotating magnetron sputtering technique and the vibration characteristics of the stator are measured by a laser Doppler vibrometer (LDV) system. Bidirectional motion of the slider is observed around 600 kHz, the maximum velocity is near to 40 mm s −1 at 50 Vp–p for the loose slider and the maximum output force is 6 mN at 70 Vp–p for the tight slider
Andreas WALDSCHIK
2008-12-01
Full Text Available In this work, we report on the development of several synchronous motors with rotatory or linear movements. The synchronous micro motors are brushless DC motors or stepper motors with electrically controlled commutation consisting of a stator and a rotor. The rotor is mounted onto the stator and is adjusted by an integrated guidance. Inside the stator different coil systems are realized, like double layer sector coils or special nested coils. The coil systems can be controlled by three or six phases depending on the operational mode. Furthermore, inorganic insulation layers were used in order to reduce the thickness of the system. By this means four layers of electrical conductors can be realized especially for the 2D devices. The smallest diameter of the rotatory motor is 1 mm and could be successfully driven.
Kim, Ki-Hyun; Choi, Young-Man; Gweon, Dae-Gab; Hong, Dong-Pyo; Kim, Koung-Suk; Lee, Suk-Won; Lee, Moon-Gu
2005-12-01
A decoupled dual servo (DDS) stage for ultra-precision scanning system is introduced in this paper. The proposed DDS consists of a 3 axis fine stage for handling and carrying workpieces and a XY coarse stage. Especially, the DDS uses three voice coil motors (VCM) as a planar actuation system of the fine stage to reduce the disturbances due to any mechanical connections with its coarse stage. VCMs are governed by Lorentz law. According to the law and its structure, there are no mechanical connections between coils and magnetic circuits. Moreover, the VCM doesn't have force ripples due to imperfections of commutation components of linear motor systems - currents and flux densities. However, due to the VCM's mechanical constraints the working range of the fine is about 5mm2. To break that hurdle, the coarse stage with linear motors is used for the fine stage to move about 200mm2. Because of the above reasons, the proposed DDS can achieve higher precision scanning than other stages with only one servo. Using MATLAB's Sequential Quadratic Programming (SQP), the VCMs are optimally designed for the highest force under conditions and constraints such as thermal dissipations due to its coil, its size, and so on. For linear motors, Halbach magnet linear motor is proposed and optimally designed in this paper. In addition, for their smooth movements without any frictions, guide systems of the DDS are composed of air bearings. And then, precisely to get their positions, linear scales with 0.1um resolution are used for the coarse's XY motions and plane mirror laser interferometers with 20nm for the fine's XYθz. On scanning, the two stages have same trajectories and are controlled. The control algorithm is Parallel method. The embodied ultra-precision scanning system has about 100nm tracking error and in-positioning stability.
Freezing of gait in Parkinson's disease is related to impaired motor switching during stepping
Smulders, K.; Esselink, R.A.J.; Bloem, B.R.; Cools, R.
2015-01-01
BACKGROUND: Parkinson's disease (PD) has been associated with set switching difficulty in both the motor and the cognitive domain. However, the contribution of these set switching deficits to the primary motor symptoms of the disease is unclear. We investigated whether set switching deficits
Andrzej Rusek
2008-01-01
Full Text Available The mathematical model of cylindrical linear induction motor (C-LIM fed via frequency converter is presented in the paper. The model was developed in order to analyze numerically the transient states. Problems concerning dynamics of ac-machines especially linear induction motor are presented in [1 – 7]. Development of C-LIM mathematical model is based on circuit method and analogy to rotary induction motor. The analogy between both: (a stator and rotor windings of rotary induction motor and (b winding of primary part of C-LIM (inductor and closed current circuits in external secondary part of C-LIM (race is taken into consideration. The equations of C-LIM mathematical model are presented as matrix together with equations expressing each vector separately. A computational analysis of selected transient states of C-LIM fed via frequency converter is presented in the paper. Two typical examples of C-LIM operation are considered for the analysis: (a starting the motor at various static loads and various synchronous velocities and (b reverse of the motor at the same operation conditions. Results of simulation are presented as transient responses including transient electromagnetic force, transient linear velocity and transient phase current.
Liu, C.-T.; Lin, S.-Y.; Yang, Y.-Y.
2005-01-01
A detailed mathematical approach for analyzing static/dynamic characteristics of a linear induction motor for steel mill non-contacting conveyance system application will be provided. The dependent reluctances among the motor secondary steel plate and primary poles have been systematically formulated; hence, the operational performance of the system can be derived conveniently. Results showed that not only the motor structure is suitable for the design objective, but also the proposed magnetic equivalent circuit can provide appropriate and convenient modeling for relative analytical investigations
Souza, J.H.; Cernicchiaro, G.R.C.; Cavalcante, J.T.P.D.
1989-01-01
An interface plate for Apple II type microcomputer developed aiming to automatize measuring systems in which a TTL pulse counter, output of analogic voltage (with resolution of 12 bits), out put of step-motor control, relay drive, and timer for real time control, are necessary to carry-out the parallel tasks, is described. An application of this plate to a thermoluminescence reader is also presented. (M.C.K.) [pt
Application of the Hyper-Poisson Generalized Linear Model for Analyzing Motor Vehicle Crashes.
Khazraee, S Hadi; Sáez-Castillo, Antonio Jose; Geedipally, Srinivas Reddy; Lord, Dominique
2015-05-01
The hyper-Poisson distribution can handle both over- and underdispersion, and its generalized linear model formulation allows the dispersion of the distribution to be observation-specific and dependent on model covariates. This study's objective is to examine the potential applicability of a newly proposed generalized linear model framework for the hyper-Poisson distribution in analyzing motor vehicle crash count data. The hyper-Poisson generalized linear model was first fitted to intersection crash data from Toronto, characterized by overdispersion, and then to crash data from railway-highway crossings in Korea, characterized by underdispersion. The results of this study are promising. When fitted to the Toronto data set, the goodness-of-fit measures indicated that the hyper-Poisson model with a variable dispersion parameter provided a statistical fit as good as the traditional negative binomial model. The hyper-Poisson model was also successful in handling the underdispersed data from Korea; the model performed as well as the gamma probability model and the Conway-Maxwell-Poisson model previously developed for the same data set. The advantages of the hyper-Poisson model studied in this article are noteworthy. Unlike the negative binomial model, which has difficulties in handling underdispersed data, the hyper-Poisson model can handle both over- and underdispersed crash data. Although not a major issue for the Conway-Maxwell-Poisson model, the effect of each variable on the expected mean of crashes is easily interpretable in the case of this new model. © 2014 Society for Risk Analysis.
Genetic evaluation using single-step genomic best linear unbiased predictor in American Angus.
Lourenco, D A L; Tsuruta, S; Fragomeni, B O; Masuda, Y; Aguilar, I; Legarra, A; Bertrand, J K; Amen, T S; Wang, L; Moser, D W; Misztal, I
2015-06-01
Predictive ability of genomic EBV when using single-step genomic BLUP (ssGBLUP) in Angus cattle was investigated. Over 6 million records were available on birth weight (BiW) and weaning weight (WW), almost 3.4 million on postweaning gain (PWG), and over 1.3 million on calving ease (CE). Genomic information was available on, at most, 51,883 animals, which included high and low EBV accuracy animals. Traditional EBV was computed by BLUP and genomic EBV by ssGBLUP and indirect prediction based on SNP effects was derived from ssGBLUP; SNP effects were calculated based on the following reference populations: ref_2k (contains top bulls and top cows that had an EBV accuracy for BiW ≥0.85), ref_8k (contains all parents that were genotyped), and ref_33k (contains all genotyped animals born up to 2012). Indirect prediction was obtained as direct genomic value (DGV) or as an index of DGV and parent average (PA). Additionally, runs with ssGBLUP used the inverse of the genomic relationship matrix calculated by an algorithm for proven and young animals (APY) that uses recursions on a small subset of reference animals. An extra reference subset included 3,872 genotyped parents of genotyped animals (ref_4k). Cross-validation was used to assess predictive ability on a validation population of 18,721 animals born in 2013. Computations for growth traits used multiple-trait linear model and, for CE, a bivariate CE-BiW threshold-linear model. With BLUP, predictivities were 0.29, 0.34, 0.23, and 0.12 for BiW, WW, PWG, and CE, respectively. With ssGBLUP and ref_2k, predictivities were 0.34, 0.35, 0.27, and 0.13 for BiW, WW, PWG, and CE, respectively, and with ssGBLUP and ref_33k, predictivities were 0.39, 0.38, 0.29, and 0.13 for BiW, WW, PWG, and CE, respectively. Low predictivity for CE was due to low incidence rate of difficult calving. Indirect predictions with ref_33k were as accurate as with full ssGBLUP. Using the APY and recursions on ref_4k gave 88% gains of full ssGBLUP and
Linear methods for reducing EMG contamination in peripheral nerve motor decodes.
Kagan, Zachary B; Wendelken, Suzanne; Page, David M; Davis, Tyler; Hutchinson, Douglas T; Clark, Gregory A; Warren, David J
2016-08-01
Signals recorded from the peripheral nervous system (PNS) with high channel count penetrating microelectrode arrays, such as the Utah Slanted Electrode Array (USEA), often have electromyographic (EMG) signals contaminating the neural signal. This common-mode signal source may prevent single neural units from successfully being detected, thus hindering motor decode algorithms. Reducing this EMG contamination may lead to more accurate motor decode performance. A virtual reference (VR), created by a weighted linear combination of signals from a subset of all available channels, can be used to reduce this EMG contamination. Four methods of determining individual channel weights and six different methods of selecting subsets of channels were investigated (24 different VR types in total). The methods of determining individual channel weights were equal weighting, regression-based weighting, and two different proximity-based weightings. The subsets of channels were selected by a radius-based criteria, such that a channel was included if it was within a particular radius of inclusion from the target channel. These six radii of inclusion were 1.5, 2.9, 3.2, 5, 8.4, and 12.8 electrode-distances; the 12.8 electrode radius includes all USEA electrodes. We found that application of a VR improves the detectability of neural events via increasing the SNR, but we found no statistically meaningful difference amongst the VR types we examined. The computational complexity of implementation varies with respect to the method of determining channel weights and the number of channels in a subset, but does not correlate with VR performance. Hence, we examined the computational costs of calculating and applying the VR and based on these criteria, we recommend an equal weighting method of assigning weights with a 3.2 electrode-distance radius of inclusion. Further, we found empirically that application of the recommended VR will require less than 1 ms for 33.3 ms of data from one USEA.
Zia, Haider
2017-06-01
This paper describes an updated exponential Fourier based split-step method that can be applied to a greater class of partial differential equations than previous methods would allow. These equations arise in physics and engineering, a notable example being the generalized derivative non-linear Schrödinger equation that arises in non-linear optics with self-steepening terms. These differential equations feature terms that were previously inaccessible to model accurately with low computational resources. The new method maintains a 3rd order error even with these additional terms and models the equation in all three spatial dimensions and time. The class of non-linear differential equations that this method applies to is shown. The method is fully derived and implementation of the method in the split-step architecture is shown. This paper lays the mathematical ground work for an upcoming paper employing this method in white-light generation simulations in bulk material.
Wan, Zhijian; Hu, Hong
2014-03-01
A novel linear ultrasonic motor based on in-plane longitudinal and bending mode vibration is presented in this paper. The stator of the motor is composed of a metal plate and eight piezoelectric ceramic patches. There are four long holes in the plate, designed for consideration of the longitudinal and bending mode coupling. The corresponding model is developed to optimize the mechanical and electrical coupling of the stator, which causes an ellipse motion at the contact tip of the stator when the composite vibrations with longitudinal and bending are excited. Its harmonic and transient responses are simulated and inspected. A prototype based on the model is fabricated and used to conduct experiments. Results show that the amplitude of the stator's contact tips is significantly increased, which helps to amplify the driving force and speed of the motor. It is therefore feasible to implement effective linear movement using the developed prototype. Copyright © 2013 Elsevier B.V. All rights reserved.
Ci, Penghong; Chen, Zhijiang; Liu, Guoxi; Dong, Shuxiang
2014-01-01
We report a piezoelectric linear motor made of a single Pb(Zr,Ti)O3 square-plate, which operates in two orthogonal and isomorphic face-diagonal-bending modes to produce precision linear motion. A 15 × 15 × 2 mm prototype was fabricated, and the motor generated a driving force of up to 1.8 N and a speed of 170 mm/s under an applied voltage of 100 Vpp at the resonance frequency of 136.5 kHz. The motor shows such advantages as large driving force under relatively low driving voltage, simple structure, and stable motion because of its isomorphic face-diagonal-bending mode.
Analysis and testing of a double armature brushless dc linear motor with NdFeB permanent magnets
Filho, A.F.F.
1998-01-01
The use of high-energy product NdFeB permanent magnets benefits the design and features of a double armature brushless dc linear motor. As the linear motor is also slotless, its 5 mm airgap requires a source of high flux to overcome the reluctance and produce an adequate amount of force. The linear motor employs a topology that makes use of five permanent magnets to provide excitation flux. The permanent magnets are arranged in such a way that maximises the force the linear motor can deliver. The actuator produces a force up to 86.2 N at an armature current of 4.5 A. However, the topology makes the actuator prone to saturation. It affects the operation point of the permanent magnets, reduces the airgap flux density and the force, and increases flux leakage. To avoid saturation, a flux compensation scheme was conceived. The results are presented and assessed by means of finite element simulation and by experimental results that presented a good agreement. (orig.)
On some properties of the block linear multi-step methods | Chollom ...
The convergence, stability and order of Block linear Multistep methods have been determined in the past based on individual members of the block. In this paper, methods are proposed to examine the properties of the entire block. Some Block Linear Multistep methods have been considered, their convergence, stability and ...
Optimized linear motor and digital PID controller setup used in Mössbauer spectrometer
Kohout, Pavel; Kouřil, Lukáš; Navařík, Jakub; Novák, Petr; Pechoušek, Jiří
2014-10-01
Optimization of a linear motor and digital PID controller setup used in a Mössbauer spectrometer is presented. Velocity driving system with a digital PID feedback subsystem was developed in the LabVIEW graphical environment and deployed on the sbRIO real-time hardware device (National Instruments). The most important data acquisition processes are performed as real-time deterministic tasks on an FPGA chip. Velocity transducer of a double loudspeaker type with a power amplifier circuit is driven by the system. Series of calibration measurements were proceeded to find the optimal setup of the P, I, D parameters together with velocity error signal analysis. The shape and given signal characteristics of the velocity error signal are analyzed in details. Remote applications for controlling and monitoring the PID system from computer or smart phone, respectively, were also developed. The best setup and P, I, D parameters were set and calibration spectrum of α-Fe sample with an average nonlinearity of the velocity scale below 0.08% was collected. Furthermore, the width of the spectral line below 0.30 mm/s was observed. Powerful and complex velocity driving system was designed.
How to switch the motor on: RNA polymerase initiation steps at the single-molecule level
Marchetti, M.; Malinowska, A.; Heller, I.; Wuite, G. J. L.
RNA polymerase (RNAP) is the central motor of gene expression since it governs the process of transcription. In prokaryotes, this holoenzyme is formed by the RNAP core and a sigma factor. After approaching and binding the specific promoter site on the DNA, the holoenzyme-promoter complex undergoes
A Modified High-Efficient Step-Up Sepic for DC Motor Drives
P. Dhanasekaran
2013-12-01
Full Text Available In this paper, Single-Ended Primary Inductor Converter (SEPIC fed DC motor is proposed. Soft-switching technique such as Zero-Voltage-Switching (ZVS and Zero-Current-Switching (ZCS operation plays a vital role in high voltage applications. Zero-Current-Switching (ZCS operation achieved due to resonance between the resonant inductor and the capacitor by using output diode and its reverse-recovery loss is subsequently reduced. Zero-Voltage-Switching (ZVS operation is achieved by using coupled inductor and auxiliary inductor. The model has been simulated through MATLAB/SIMULINK using Diode Bridge, SEPIC topology and closed loop DC motor load and it is modeled analytically. The proposed system is modeled with input side Diode Bridge Rectifier and SEPIC Topology with Proportional Integral (PI controller. The soft switching scheme for the proposed topology is developed with closed loop motor load. The motor voltage is achieved twice the rated voltage. The results are generated in MATLAB/SIMULINK and are shown.
Bhangle, Janhavi R.; Sathiya Narayanan, V.K.; Deshpande, Shrikant A.
2007-01-01
For step-and-shoot type delivery of intensity-modulated radiation therapy (IMRT), beam stability characteristics during the first few monitor units need to be investigated to ensure the planned dose delivery. This paper presents the study done for Siemens ONCOR impression plus linear accelerator before commissioning it for IMRT treatment. The beam stability for 6 and 15 MV in terms of dose monitor linearity, monitor unit stability and beam uniformity is investigated in this work. Monitor unit linearity is studied using FC65G chamber for the range 1-100 MU. The dose per MU is found to be linear for small monitor units down to 1 MU for both 6 and 15 MV beams. The monitor unit linearity is also studied with portal imaging device for the range 1-20 MU for 6 MV beam. The pixel values are within ±1σ confidence level up to 2 MU; for 1 MU, the values are within ±2σ confidence level. The flatness and symmetry analysis is done for both energies in the range of 1-10 MU with Kodak diagnostic films. The flatness and symmetry are found to be within ±3% up to 2 MU for 6 MV and up to 3 MU for 15 MV. (author)
Bhangle Janhavi
2007-01-01
Full Text Available For step-and-shoot type delivery of intensity-modulated radiation therapy (IMRT, beam stability characteristics during the first few monitor units need to be investigated to ensure the planned dose delivery. This paper presents the study done for Siemens ONCOR impression plus linear accelerator before commissioning it for IMRT treatment. The beam stability for 6 and 15 MV in terms of dose monitor linearity, monitor unit stability and beam uniformity is investigated in this work. Monitor unit linearity is studied using FC65G chamber for the range 1-100 MU. The dose per MU is found to be linear for small monitor units down to 1 MU for both 6 and 15 MV beams. The monitor unit linearity is also studied with portal imaging device for the range 1-20 MU for 6 MV beam. The pixel values are within ±1σ confidence level up to 2 MU; for 1 MU, the values are within ±2σ confidence level. The flatness and symmetry analysis is done for both energies in the range of 1-10 MU with Kodak diagnostic films. The flatness and symmetry are found to be within ±3% up to 2 MU for 6 MV and up to 3 MU for 15 MV.
A study of thermal deformation in the carriage of a permanent magnet direct drive linear motor stage
Chow, J.H.; Zhong, Z.W.; Lin, W.; Khoo, L.P.
2012-01-01
Carriage deformation due to temperature gradients within the materials of the carriage affects the accuracy of precision machines. This is largely due to the indeterminist temperature distribution in the carriage's material caused by the non-linearity of heat transfer. The joule heat from the motor coil forms the main heat source. When coupled with the heat loss through convection and radiation, the temperature variation in the motor's carriage also increases. In this study, the Finite Element Analysis was used together with a set of boundary conditions, which was obtained empirically, to analyze the distortion of the motor's carriage. The simulated results were compared with those obtained through experiments. The study shows that it is important to know, rather than to assume, the thermal boundary conditions of the motor's carriage of a precision machine in order to accurately estimate the thermal deformation of the carriage in precision machining. - Highlights: ► Deformation occurs in carriages which are mounted with linear motor. ► The convective coefficient, which is assumed to be 10 W mm −2 , is shown to be invalid. ► The perfect contact conductance is shown to be invalid too. ► To have an accurate thermal model, boundary conditions have to be realistic. ► Boundary conditions are the heat source, convective and conductance values.
Linear grammar as a possible stepping-stone in the evolution of language.
Jackendoff, Ray; Wittenberg, Eva
2017-02-01
We suggest that one way to approach the evolution of language is through reverse engineering: asking what components of the language faculty could have been useful in the absence of the full complement of components. We explore the possibilities offered by linear grammar, a form of language that lacks syntax and morphology altogether, and that structures its utterances through a direct mapping between semantics and phonology. A language with a linear grammar would have no syntactic categories or syntactic phrases, and therefore no syntactic recursion. It would also have no functional categories such as tense, agreement, and case inflection, and no derivational morphology. Such a language would still be capable of conveying certain semantic relations through word order-for instance by stipulating that agents should precede patients. However, many other semantic relations would have to be based on pragmatics and discourse context. We find evidence of linear grammar in a wide range of linguistic phenomena: pidgins, stages of late second language acquisition, home signs, village sign languages, language comprehension (even in fully syntactic languages), aphasia, and specific language impairment. We also find a full-blown language, Riau Indonesian, whose grammar is arguably close to a pure linear grammar. In addition, when subjects are asked to convey information through nonlinguistic gesture, their gestures make use of semantically based principles of linear ordering. Finally, some pockets of English grammar, notably compounds, can be characterized in terms of linear grammar. We conclude that linear grammar is a plausible evolutionary precursor of modern fully syntactic grammar, one that is still active in the human mind.
Feng Xing
2018-03-01
Full Text Available The maglev linear motor has three degrees of motion freedom, which are respectively realized by the thrust force in the x-axis, the levitation force in the z-axis and the torque around the y-axis. Both the thrust force and levitation force can be seen as the sum of the forces on the three windings. The resultant thrust force and resultant levitation force are independently controlled by d-axis current and q-axis current respectively. Thus, the commonly used dq transformation control strategy is suitable for realizing the control of the resultant force, either thrust force and levitation force. However, the forces on the three windings also generate additional torque because they do not pass the mover mass center. To realize the maglev system high-precision control, a maglev linear motor with a new structure is proposed in this paper to decrease this torque. First, the electromagnetic model of the motor can be deduced through the Lorenz force formula. Second, the analytic method and finite element method are used to explore the reason of this additional torque and what factors affect its change trend. Furthermore, a maglev linear motor with a new structure is proposed, with two sets of 90 degrees shifted winding designed on the mover. Under such a structure, the mover position dependent periodic part of the additional torque can be offset. Finally, the theoretical analysis is validated by the simulation result that the additionally generated rotating torque can be offset with little fluctuation in the proposed new-structure maglev linear motor. Moreover, the control system is built in MATLAB/Simulink, which shows that it has small thrust ripple and high-precision performance.
Tiunov, V. V.
2018-02-01
The report provides results of the research related to the tubular linear induction motors’ application. The motors’ design features, a calculation model, a description of test specimens for mining and electric power industry are introduced. The most attention is given to the single-phase motors for high voltage switches drives with the usage of inexpensive standard single-phase transformers for motors’ power supply. The method of the motor’s parameters determination, when the motor is being fed from the transformer, working in the overload mode, was described, and the results of it practical usage were good enough for the engineering practice.
Amano, Ken-Ichi; Yoshidome, Takashi; Iwaki, Mitsuhiro; Suzuki, Makoto; Kinoshita, Masahiro
2010-07-28
We report a new progress in elucidating the mechanism of the unidirectional movement of a linear-motor protein (e.g., myosin) along a filament (e.g., F-actin). The basic concept emphasized here is that a potential field is entropically formed for the protein on the filament immersed in solvent due to the effect of the translational displacement of solvent molecules. The entropic potential field is strongly dependent on geometric features of the protein and the filament, their overall shapes as well as details of the polyatomic structures. The features and the corresponding field are judiciously adjusted by the binding of adenosine triphosphate (ATP) to the protein, hydrolysis of ATP into adenosine diphosphate (ADP)+Pi, and release of Pi and ADP. As the first step, we propose the following physical picture: The potential field formed along the filament for the protein without the binding of ATP or ADP+Pi to it is largely different from that for the protein with the binding, and the directed movement is realized by repeated switches from one of the fields to the other. To illustrate the picture, we analyze the spatial distribution of the entropic potential between a large solute and a large body using the three-dimensional integral equation theory. The solute is modeled as a large hard sphere. Two model filaments are considered as the body: model 1 is a set of one-dimensionally connected large hard spheres and model 2 is a double helical structure formed by two sets of connected large hard spheres. The solute and the filament are immersed in small hard spheres forming the solvent. The major findings are as follows. The solute is strongly confined within a narrow space in contact with the filament. Within the space there are locations with sharply deep local potential minima along the filament, and the distance between two adjacent locations is equal to the diameter of the large spheres constituting the filament. The potential minima form a ringlike domain in model 1
Przygoda, K; Kielar, E
2011-01-01
FLASH accelerator is using superconducting RF cavities to accelerate electron beam. These cavities must be precisely tuned to RF frequency due to very high Q factor (~109 unloaded Q and ~106 loaded Q). They are tuned by slight dimension change (particularly length) induced by tuners driven by step motors. For high gradients (~20MV/m and more) the cavities are dynamically detuned during RF pulse due to Lorentz Force Detuning (LFD). To keep them in resonance the fast tuners with piezos are used. Both slow and fast tuners need the control integrated with the LLRF system.
Stefano Filho, Carlos A; Attux, Romis; Castellano, Gabriela
2017-01-01
Hands motor imagery (MI) has been reported to alter synchronization patterns amongst neurons, yielding variations in the mu and beta bands' power spectral density (PSD) of the electroencephalography (EEG) signal. These alterations have been used in the field of brain-computer interfaces (BCI), in an attempt to assign distinct MI tasks to commands of such a system. Recent studies have highlighted that information may be missing if knowledge about brain functional connectivity is not considered. In this work, we modeled the brain as a graph in which each EEG electrode represents a node. Our goal was to understand if there exists any linear correlation between variations in the synchronization patterns-that is, variations in the PSD of mu and beta bands-induced by MI and alterations in the corresponding functional networks. Moreover, we (1) explored the feasibility of using functional connectivity parameters as features for a classifier in the context of an MI-BCI; (2) investigated three different types of feature selection (FS) techniques; and (3) compared our approach to a more traditional method using the signal PSD as classifier inputs. Ten healthy subjects participated in this study. We observed significant correlations ( p < 0.05) with values ranging from 0.4 to 0.9 between PSD variations and functional network alterations for some electrodes, prominently in the beta band. The PSD method performed better for data classification, with mean accuracies of (90 ± 8)% and (87 ± 7)% for the mu and beta band, respectively, versus (83 ± 8)% and (83 ± 7)% for the same bands for the graph method. Moreover, the number of features for the graph method was considerably larger. However, results for both methods were relatively close, and even overlapped when the uncertainties of the accuracy rates were considered. Further investigation regarding a careful exploration of other graph metrics may provide better alternatives.
Elliott, D. G.
1977-01-01
Measurements of reaction rail currents, reaction rail voltages, and airgap magnetic fields in tests of the Linear Induction Motor Research Vehicle (LIMRV) were compared with theoretical calculations from the mesh/matrix theory. It was found that the rail currents and magnetic fields predicted by the theory are within 20 percent of the measured currents and fields at most motor locations in most of the runs, but differ by as much as a factor of two in some cases. The most consistent difference is a higher experimental than theoretical magnetic field near the entrance of the motor and a lower experimental than theoretical magnetic field near the exit. The observed differences between the theoretical and experimental magnetic fields and currents do not account for the differences of as much as 26 percent between the theoretical and experimental thrusts.
Schneidereit, Dominik; Kraus, Larissa; Meier, Jochen C; Friedrich, Oliver; Gilbert, Daniel F
2017-06-15
High-content screening microscopy relies on automation infrastructure that is typically proprietary, non-customizable, costly and requires a high level of skill to use and maintain. The increasing availability of rapid prototyping technology makes it possible to quickly engineer alternatives to conventional automation infrastructure that are low-cost and user-friendly. Here, we describe a 3D printed inexpensive open source and scalable motorized positioning stage for automated high-content screening microscopy and provide detailed step-by-step instructions to re-building the device, including a comprehensive parts list, 3D design files in STEP (Standard for the Exchange of Product model data) and STL (Standard Tessellation Language) format, electronic circuits and wiring diagrams as well as software code. System assembly including 3D printing requires approx. 30h. The fully assembled device is light-weight (1.1kg), small (33×20×8cm) and extremely low-cost (approx. EUR 250). We describe positioning characteristics of the stage, including spatial resolution, accuracy and repeatability, compare imaging data generated with our device to data obtained using a commercially available microplate reader, demonstrate its suitability to high-content microscopy in 96-well high-throughput screening format and validate its applicability to automated functional Cl - - and Ca 2+ -imaging with recombinant HEK293 cells as a model system. A time-lapse video of the stage during operation and as part of a custom assembled screening robot can be found at https://vimeo.com/158813199. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.
Jeong-Min Jo
2017-02-01
Full Text Available In the case of a long-stator linear drive, unlike rotative drives for which speed or position sensors are a single unit attached to the shaft, these sensors extend along the guideway. The position signals transmitted from a maglev vehicle cannot meet the need of the real-time propulsion control in the on-ground inverter power substations. In this paper the design of the propulsion inverter control system with a position estimator for driving a long-stator synchronous motor in a high-speed maglev train is proposed. The experiments have been carried out at the 150 m long guideway at the O-song test track. To investigate the performance of the position estimator, the propulsion control system with, and without, the position estimator are compared. The result confirms that the proposed strategy can meet the dynamic property needs of the propulsion inverter control system for driving long-stator linear synchronous motors.
Jeong, Sang Sub; Jang Seok Myeong [Chungnam National University(Korea)
2000-06-01
The 4-pole linear homopolar synchronous motor (LHSM), so called linear inductor motor, is composed of the figure-of-eight shaped 3-phase armature windings, DC field windings, and the segmented secondary with the transverse bar track. To reduce the calculation time, the simplified 3D finite element model with equivalent reluctance and/or permanent magnet is presented. To obtain a clear understanding, propriety and usefulness of the developed mode., we compare with the results of simplified 3D FEA and test. Consequently, the results of simplified and 3D FEM analysis are nearly identical, but much larger than that of static test at d-axis armature excitation. Therefore the improved FEA model, such as full model with half slot, is needed for the precise analysis. (author). refs., figs., tabs.
Lee, Dong-Jin; Lee, Sun-Kyu
2015-01-01
This paper presents a design and control system for an XY stage driven by an ultrasonic linear motor. In this study, a hybrid bolt-clamped Langevin-type ultrasonic linear motor was manufactured and then operated at the resonance frequency of the third longitudinal and the sixth lateral modes. These two modes were matched through the preload adjustment and precisely tuned by the frequency matching method based on the impedance matching method with consideration of the different moving weights. The XY stage was evaluated in terms of position and circular motion. To achieve both fine and stable motion, the controller consisted of a nominal characteristics trajectory following (NCTF) control for continuous motion, dead zone compensation, and a switching controller based on the different NCTFs for the macro- and micro-dynamics regimes. The experimental results showed that the developed stage enables positioning and continuous motion with nanometer-level accuracy.
Caiyan Qin
2017-12-01
Full Text Available Due to its simple mechanical structure and high motion stability, the H-shaped platform has been increasingly widely used in precision measuring, numerical control machining and semiconductor packaging equipment, etc. The H-shaped platform is normally driven by multiple (three permanent magnet synchronous linear motors. The main challenges for H-shaped platform-control include synchronous control between the two linear motors in the Y direction as well as total positioning error of the platform mover, a combination of position deviation in X and Y directions. To deal with the above challenges, this paper proposes a control strategy based on the inverse system method through state feedback and dynamic decoupling of the thrust force. First, mechanical dynamics equations have been deduced through the analysis of system coupling based on the platform structure. Second, the mathematical model of the linear motors and the relevant coordinate transformation between dq-axis currents and ABC-phase currents are analyzed. Third, after the main concept of inverse system method being explained, the inverse system model of the platform control system has been designed after defining relevant system variables. Inverse system model compensates the original nonlinear coupled system into pseudo-linear decoupled linear system, for which typical linear control methods, like PID, can be adopted to control the system. The simulation model of the control system is built in MATLAB/Simulink and the simulation result shows that the designed control system has both small synchronous deviation and small total trajectory tracking error. Furthermore, the control program has been run on NI controller for both fixed-loop-time and free-loop-time modes, and the test result shows that the average loop computation time needed is rather small, which makes it suitable for real industrial applications. Overall, it proves that the proposed new control strategy can be used in
de Lima-Pardini, Andrea Cristina; Zimeo Morais, Guilherme A; Balardin, Joana Bisol; Coelho, Daniel Boari; Azzi, Nametala Maia; Teixeira, Luis Augusto; Sato, João Ricardo
2017-07-01
Walkers are commonly prescribed worldwide to individuals unable to walk independently. Walker usage leads to improved postural control and voluntary movement during step. In the present study, we aimed to provide a concept-proof on the feasibility of an event-related protocol integrating the analyses of biomechanical variables of step initiation and functional near-infrared spectroscopy (fNIRS) to measure activation of the supplementary motor area (SMA) while using a walker. Healthy young participants were tested while stepping with versus without the use of the walker. Behavioral analysis showed that anticipatory postural adjustments (APA) decreased when supporting the body weight on the walker. Delta (without-with) of activation magnitude of the muscle tibialis anterior was positively correlated to the delta of deoxyhemoglobin concentration changes in the SMA. The novelty of this study is the development of a protocol to assess brain function together with biomechanical analysis during the use of a walker. The method sheds light to the potential utility of combining fNIRS and biomechanical assessment during assistive step initiation, which can represent a new opportunity to study populations with mobility deficits. Copyright © 2017 Elsevier B.V. All rights reserved.
Ye-qing Huang
2016-01-01
Full Text Available Aiming at the existing problems of traditional water piston pump used in the naval ship, such as low efficiency, high noise, large vibration, and nonintelligent control, a new type of linear-motor-driven water piston pump is developed and its vibration characteristics are analyzed in this research. Based on the 3D model of the structure, the simulation analyses including static stress analysis, modal analysis, and harmonic response analysis are conducted. The simulation results reveal that the mode shape under low frequency stage is mainly associated with the eccentricity swing of the piston rod. The vibration experiment results show that the resonance frequency of linear-motor-driven water piston pump is concentrated upon 500 Hz and 800 Hz in the low frequency range. The dampers can change the resonance frequency of the system to a certain extent. The vibration under triangular motion curve is much better than that of S curve, which is consistent with the simulation conclusion. This research provides an effective method to detect the vibration characteristics and a reference for design and optimization of the linear-motor-driven water piston pump.
Liu, Yang; Song, Fazhi; Yang, Xiaofeng; Dong, Yue; Tan, Jiubin
2018-06-01
Due to their structural simplicity, linear motors are increasingly receiving attention for use in high velocity and high precision applications. The force ripple, as a space-periodic disturbance, however, would deteriorate the achievable dynamic performance. Conventional force ripple measurement approaches are time-consuming and have high requirements on the experimental conditions. In this paper, a novel learning identification algorithm is proposed for force ripple intelligent measurement and compensation. Existing identification schemes always use all the error signals to update the parameters in the force ripple. However, the error induced by noise is non-effective for force ripple identification, and even deteriorates the identification process. In this paper only the most pertinent information in the error signal is utilized for force ripple identification. Firstly, the effective error signals caused by the reference trajectory and the force ripple are extracted by projecting the overall error signals onto a subspace spanned by the physical model of the linear motor as well as the sinusoidal model of the force ripple. The time delay in the linear motor is compensated in the basis functions. Then, a data-driven approach is proposed to design the learning gain. It balances the trade-off between convergence speed and robustness against noise. Simulation and experimental results validate the proposed method and confirm its effectiveness and superiority.
Revill, Ann L; Fuglevand, Andrew J
2017-01-01
Motor neurons are the output neurons of the central nervous system and are responsible for controlling muscle contraction. When initially activated during voluntary contraction, firing rates of motor neurons increase steeply but then level out at modest rates. Activation of an intrinsic source of excitatory current at recruitment onset may underlie the initial steep increase in firing rate in motor neurons. We attempted to disable this intrinsic excitatory current by artificially activating an inhibitory reflex. When motor neuron activity was recorded while the inhibitory reflex was engaged, firing rates no longer increased steeply, suggesting that the intrinsic excitatory current was probably responsible for the initial sharp rise in motor neuron firing rate. During graded isometric contractions, motor unit (MU) firing rates increase steeply upon recruitment but then level off at modest rates even though muscle force continues to increase. The mechanisms underlying such firing behaviour are not known although activation of persistent inward currents (PICs) might be involved. PICs are intrinsic, voltage-dependent currents that activate strongly when motor neurons (MNs) are first recruited. Such activation might cause a sharp escalation in depolarizing current and underlie the steep initial rise in MU firing rate. Because PICs can be disabled with synaptic inhibition, we hypothesized that artificial activation of an inhibitory pathway might curb this initial steep rise in firing rate. To test this, human subjects performed slow triangular ramp contractions of the ankle dorsiflexors in the absence and presence of tonic synaptic inhibition delivered to tibialis anterior (TA) MNs by sural nerve stimulation. Firing rate profiles (expressed as a function of contraction force) of TA MUs recorded during these tasks were compared for control and stimulation conditions. Under control conditions, during the ascending phase of the triangular contractions, 93% of the firing
Sensor-Motor Maps for Describing Linear Reflex Composition in Hopping.
Schumacher, Christian; Seyfarth, André
2017-01-01
In human and animal motor control several sensory organs contribute to a network of sensory pathways modulating the motion depending on the task and the phase of execution to generate daily motor tasks such as locomotion. To better understand the individual and joint contribution of reflex pathways in locomotor tasks, we developed a neuromuscular model that describes hopping movements. In this model, we consider the influence of proprioceptive length (LFB), velocity (VFB) and force feedback (FFB) pathways of a leg extensor muscle on hopping stability, performance and efficiency (metabolic effort). Therefore, we explore the space describing the blending of the monosynaptic reflex pathway gains. We call this reflex parameter space a sensor-motor map . The sensor-motor maps are used to visualize the functional contribution of sensory pathways in multisensory integration. We further evaluate the robustness of these sensor-motor maps to changes in tendon elasticity, body mass, segment length and ground compliance. The model predicted that different reflex pathway compositions selectively optimize specific hopping characteristics (e.g., performance and efficiency). Both FFB and LFB were pathways that enable hopping. FFB resulted in the largest hopping heights, LFB enhanced hopping efficiency and VFB had the ability to disable hopping. For the tested case, the topology of the sensor-motor maps as well as the location of functionally optimal compositions were invariant to changes in system designs (tendon elasticity, body mass, segment length) or environmental parameters (ground compliance). Our results indicate that different feedback pathway compositions may serve different functional roles. The topology of the sensor-motor map was predicted to be robust against changes in the mechanical system design indicating that the reflex system can use different morphological designs, which does not apply for most robotic systems (for which the control often follows a specific
Linear coupling dependence on intensity and a next step towards a feedback (MD1850)
Persson, Tobias Hakan Bjorn; Coello De Portugal - Martinez Vazquez, Jaime Maria; Gasior, Marek; Giovannozzi, Massimo; Olexa, Jakub; Tomas Garcia, Rogelio; Garcia-Tabares Valdivieso, Ana; Valuch, Daniel
2017-01-01
Transverse coupling has proven to be an important variable to control beam dynamics and performance in the LHC. In this report, we present the first measurement of transverse coupling vs beam intensity. The analysis shows no dependency within the experimental uncertainties. This study was made possible with the new implementation of an AC-dipole-like excitation using the ADT. It provides the functionality to excite a single bunch in a train. The demonstration of this functionality is also an important step towards creating an automatic coupling correction tool for the LHC. Transverse coupling has been observed to vary with time at injection. In this report, a quantitative measurement of the coupling as a function of time after ramp-down is presented. Turn-by-turn data was also acquired to compare the performance of the new DOROS system to the standard BPMs.
Stepping responses to treadmill perturbations vary with severity of motor deficits in human SCI.
Chu, Virginia Way Tong; Hornby, T George; Schmit, Brian D
2018-04-18
In this study, we investigated the responses to tread perturbations during human stepping on a treadmill. Our approach was to test the effects of perturbations to a single leg using a split-belt treadmill in healthy participants and in participants with varying severity of spinal cord injury (SCI). We recruited 11 people with incomplete SCI and 5 noninjured participants. As participants walked on an instrumented treadmill, the belt on one side was stopped or accelerated briefly during mid to late stance. A majority of participants initiated an unnecessary swing when the treadmill was stopped in mid stance, although the likelihood of initiating a step was decreased in participants with more severe SCI. Accelerating or decelerating one belt of the treadmill during stance altered the characteristics of swing. We observed delayed swing initiation when the belt was decelerated (i.e. the hip was in a more flexed position at time of swing) and advanced swing initiation with acceleration (i.e. hip extended at swing initiation). Further, the timing and leg posture of heel strike appeared to remain constant, reflected by a sagittal plane hip angle at heel strike that remained the same regardless of the perturbation. In summary, our results supported the current understanding of the role of sensory feedback and central drive in the control of stepping in participants with incomplete SCI and noninjured participants. In particular, the observation of unnecessary swing during a stop perturbation highlights the interdependence of central and sensory drive in walking control.
A novel large thrust-weight ratio V-shaped linear ultrasonic motor with a flexible joint.
Li, Xiaoniu; Yao, Zhiyuan; Yang, Mojian
2017-06-01
A novel large thrust-weight ratio V-shaped linear ultrasonic motor with a flexible joint is proposed in this paper. The motor is comprised of a V-shaped transducer, a slider, a clamp, and a base. The V-shaped transducer consists of two piezoelectric beams connected through a flexible joint to form an appropriate coupling angle. The V-shaped motor is operated in the coupled longitudinal-bending mode. Longitudinal and bending movements are transferred by the flexible joint between the two beams. Compared with the coupled longitudinal-bending mode of the single piezoelectric beam or the symmetrical and asymmetrical modes of the previous V-shaped transducer, the coupled longitudinal-bending mode of the V-shaped transducer with a flexible joint provides higher vibration efficiency and more convenient mode conformance adjustment. A finite element model of the V-shaped transducer is created to numerically study the influence of geometrical parameters and to determine the final geometrical parameters. In this paper, three prototypes were then fabricated and experimentally investigated. The modal test results match well with the finite element analysis. The motor mechanical output characteristics of three different coupling angles θ indicate that V-90 (θ = 90°) is the optimal angle. The mechanical output experiments conducted using the V-90 prototype (Size: 59.4 mm × 30.7 mm × 4 mm) demonstrate that the maximum unloaded speed is 1.2 m/s under a voltage of 350 Vpp, and the maximum output force is 15 N under a voltage of 300 Vpp. The proposed novel V-shaped linear ultrasonic motor has a compact size and a simple structure with a large thrust-weight ratio (0.75 N/g) and high speed.
Cobb, J.W.
1995-02-01
There is an increasing need for more accurate numerical methods for large-scale nonlinear magneto-fluid turbulence calculations. These methods should not only increase the current state of the art in terms of accuracy, but should also continue to optimize other desired properties such as simplicity, minimized computation, minimized memory requirements, and robust stability. This includes the ability to stably solve stiff problems with long time-steps. This work discusses a general methodology for deriving higher-order numerical methods. It also discusses how the selection of various choices can affect the desired properties. The explicit discussion focuses on third-order Runge-Kutta methods, including general solutions and five examples. The study investigates the linear numerical analysis of these methods, including their accuracy, general stability, and stiff stability. Additional appendices discuss linear multistep methods, discuss directions for further work, and exhibit numerical analysis results for some other commonly used lower-order methods.
Czarski, Tomasz; Romaniuk, Ryszard S.; Pozniak, Krzysztof T.; Simrock, Stefan
2004-07-01
The cavity control system for the TESLA -- TeV-Energy Superconducting Linear Accelerator project is initially introduced in this paper. The FPGA -- Field Programmable Gate Array technology has been implemented for digital controller stabilizing cavity field gradient. The cavity SIMULINK model has been applied to test the hardware controller. The step operation method has been developed for testing the FPGA device coupled to the SIMULINK model of the analog real plant. The FPGA signal processing has been verified according to the required algorithm of the reference MATLAB controller. Some experimental results have been presented for different cavity operational conditions.
Kaoutar, M.
1986-09-01
After a survey of main algorithms for piecewise linear approximation, a new method is suggested. It consists of two stages: a sequential detection stage and an optimization stage, which derives from general dynamic clustering principle. It is applied to control rod step counting in a nuclear reactor core and images contours characterization. Another version of our method is presented. Its originality cames from the variability of the line segments number during iterations. A comparative study is made by comparing the results of the proposed method with of another methods already existing thereby it attests the efficiency and reliability of our method [fr
Ernst, Floris; Schweikard, Achim
2008-01-01
Forecasting of respiration motion in image-guided radiotherapy requires algorithms that can accurately and efficiently predict target location. Improved methods for respiratory motion forecasting were developed and tested. MULIN, a new family of prediction algorithms based on linear expansions of the prediction error, was developed and tested. Computer-generated data with a prediction horizon of 150 ms was used for testing in simulation experiments. MULIN was compared to Least Mean Squares-based predictors (LMS; normalized LMS, nLMS; wavelet-based multiscale autoregression, wLMS) and a multi-frequency Extended Kalman Filter (EKF) approach. The in vivo performance of the algorithms was tested on data sets of patients who underwent radiotherapy. The new MULIN methods are highly competitive, outperforming the LMS and the EKF prediction algorithms in real-world settings and performing similarly to optimized nLMS and wLMS prediction algorithms. On simulated, periodic data the MULIN algorithms are outperformed only by the EKF approach due to its inherent advantage in predicting periodic signals. In the presence of noise, the MULIN methods significantly outperform all other algorithms. The MULIN family of algorithms is a feasible tool for the prediction of respiratory motion, performing as well as or better than conventional algorithms while requiring significantly lower computational complexity. The MULIN algorithms are of special importance wherever high-speed prediction is required. (orig.)
Ernst, Floris; Schweikard, Achim [University of Luebeck, Institute for Robotics and Cognitive Systems, Luebeck (Germany)
2008-06-15
Forecasting of respiration motion in image-guided radiotherapy requires algorithms that can accurately and efficiently predict target location. Improved methods for respiratory motion forecasting were developed and tested. MULIN, a new family of prediction algorithms based on linear expansions of the prediction error, was developed and tested. Computer-generated data with a prediction horizon of 150 ms was used for testing in simulation experiments. MULIN was compared to Least Mean Squares-based predictors (LMS; normalized LMS, nLMS; wavelet-based multiscale autoregression, wLMS) and a multi-frequency Extended Kalman Filter (EKF) approach. The in vivo performance of the algorithms was tested on data sets of patients who underwent radiotherapy. The new MULIN methods are highly competitive, outperforming the LMS and the EKF prediction algorithms in real-world settings and performing similarly to optimized nLMS and wLMS prediction algorithms. On simulated, periodic data the MULIN algorithms are outperformed only by the EKF approach due to its inherent advantage in predicting periodic signals. In the presence of noise, the MULIN methods significantly outperform all other algorithms. The MULIN family of algorithms is a feasible tool for the prediction of respiratory motion, performing as well as or better than conventional algorithms while requiring significantly lower computational complexity. The MULIN algorithms are of special importance wherever high-speed prediction is required. (orig.)
Piezoelectric Motors, an Overview
Karl Spanner
2016-02-01
Full Text Available Piezoelectric motors are used in many industrial and commercial applications. Various piezoelectric motors are available in the market. All of the piezoelectric motors use the inverse piezoelectric effect, where microscopically small oscillatory motions are converted into continuous or stepping rotary or linear motions. Methods of obtaining long moving distance have various drive and functional principles that make these motors categorized into three groups: resonance-drive (piezoelectric ultrasonic motors, inertia-drive, and piezo-walk-drive. In this review, a comprehensive summary of piezoelectric motors, with their classification from initial idea to recent progress, is presented. This review also includes some of the industrial and commercial applications of piezoelectric motors that are presently available in the market as actuators.
Design of a Control System for a Maglev Planar Motor Based on Two-Dimension Linear Interpolation
Feng Xing
2017-08-01
Full Text Available In order to realize the high speed and high-precision control of a maglev planar motor, a high-precision electromagnetic model is needed in the first place, which can also contribute to meeting the real-time running requirements. Traditionally, the electromagnetic model is based on analytical calculations. However, this neglects the model simplification and the manufacturing errors, which may bring certain errors to the model. Aiming to handle this inaccuracy, this paper proposes a novel design method for a maglev planar motor control system based on two-dimensional linear interpolation. First, the magnetic field is divided into several regions according to the symmetry of the Halbach magnetic array, and the uniform grid method is adopted to partition one of these regions. Second, targeting this region, it is possible to sample the electromagnetic forces and torques on each node of the grid and obtain the complete electromagnetic model in this region through the two-dimensional linear interpolation method. Third, the whole electromagnetic model of the maglev planar motor can be derived according to the symmetry of the magnetic field. Finally, the decoupling method and controller are designed according to this electromagnetic model, and thereafter, the control model can be established. The designed control system is demonstrated through simulations and experiments to feature better accuracy and meet the requirements of real-time control.
Linear single-step image reconstruction in the presence of nonscattering regions
Dehghani, H.; Delpy, D. T.
2002-06-01
There is growing interest in the use of near-infrared spectroscopy for the noninvasive determination of the oxygenation level within biological tissue. Stemming from this application, there has been further research in using this technique for obtaining tomographic images of the neonatal head, with the view of determining the level of oxygenated and deoxygenated blood within the brain. Because of computational complexity, methods used for numerical modeling of photon transfer within tissue have usually been limited to the diffusion approximation of the Boltzmann transport equation. The diffusion approximation, however, is not valid in regions of low scatter, such as the cerebrospinal fluid. Methods have been proposed for dealing with nonscattering regions within diffusing materials through the use of a radiosity-diffusion model. Currently, this new model assumes prior knowledge of the void region; therefore it is instructive to examine the errors introduced in applying a simple diffusion-based reconstruction scheme in cases where a nonscattering region exists. We present reconstructed images, using linear algorithms, of models that contain a nonscattering region within a diffusing material. The forward data are calculated by using the radiosity-diffusion model, and the inverse problem is solved by using either the radiosity-diffusion model or the diffusion-only model. When using data from a model containing a clear layer and reconstructing with the correct model, one can reconstruct the anomaly, but the qualitative accuracy and the position of the reconstructed anomaly depend on the size and the position of the clear regions. If the inverse model has no information about the clear regions (i.e., it is a purely diffusing model), an anomaly can be reconstructed, but the resulting image has very poor qualitative accuracy and poor localization of the anomaly. The errors in quantitative and localization accuracies depend on the size and location of the clear regions.
Sensor-Motor Maps for Describing Linear Reflex Composition in Hopping
Christian Schumacher
2017-11-01
Full Text Available In human and animal motor control several sensory organs contribute to a network of sensory pathways modulating the motion depending on the task and the phase of execution to generate daily motor tasks such as locomotion. To better understand the individual and joint contribution of reflex pathways in locomotor tasks, we developed a neuromuscular model that describes hopping movements. In this model, we consider the influence of proprioceptive length (LFB, velocity (VFB and force feedback (FFB pathways of a leg extensor muscle on hopping stability, performance and efficiency (metabolic effort. Therefore, we explore the space describing the blending of the monosynaptic reflex pathway gains. We call this reflex parameter space a sensor-motor map. The sensor-motor maps are used to visualize the functional contribution of sensory pathways in multisensory integration. We further evaluate the robustness of these sensor-motor maps to changes in tendon elasticity, body mass, segment length and ground compliance. The model predicted that different reflex pathway compositions selectively optimize specific hopping characteristics (e.g., performance and efficiency. Both FFB and LFB were pathways that enable hopping. FFB resulted in the largest hopping heights, LFB enhanced hopping efficiency and VFB had the ability to disable hopping. For the tested case, the topology of the sensor-motor maps as well as the location of functionally optimal compositions were invariant to changes in system designs (tendon elasticity, body mass, segment length or environmental parameters (ground compliance. Our results indicate that different feedback pathway compositions may serve different functional roles. The topology of the sensor-motor map was predicted to be robust against changes in the mechanical system design indicating that the reflex system can use different morphological designs, which does not apply for most robotic systems (for which the control often follows a
Christman, Stephen D; Weaver, Ryan
2008-05-01
The nature of temporal variability during speeded finger tapping was examined using linear (standard deviation) and non-linear (Lyapunov exponent) measures. Experiment 1 found that right hand tapping was characterised by lower amounts of both linear and non-linear measures of variability than left hand tapping, and that linear and non-linear measures of variability were often negatively correlated with one another. Experiment 2 found that increased non-linear variability was associated with relatively enhanced performance on a closed-loop motor task (mirror tracing) and relatively impaired performance on an open-loop motor task (pointing in a dark room), especially for left hand performance. The potential uses and significance of measures of non-linear variability are discussed.
Reducing Torque Ripples of the Axial Flux PM Motors by Magnet Stepping and Shifting
E. Cetin
2018-02-01
Full Text Available Higher efficiency on electric machines is the research goal of many studies. An example is the axial flux permanent magnet machines. These machines have some advantages like their watt/kg efficiency and torque density. This study aims to develop the performance characteristics of the axial flux permanent magnet machines. A new rotor magnet poles design in axial flux machines is suggested to mitigate the torque ripples. The method of stepping and shifting of the magnets is used. Two different designs are compared to verify the proposed approach. 3D finite element analysis is used for simulations. Torque ripple and back electromotive force waveforms are obtained from computer analysis. As a conclusion, the suggested method is found to be useable and mitigates the torque ripples. In addition to that, back EMF waveforms are turned to sinusoidal by the suggested design.
Zhiyuan Gao
2015-11-01
Full Text Available This paper presents a dynamic range (DR enhanced readout technique with a two-step time-to-digital converter (TDC for high speed linear CMOS image sensors. A multi-capacitor and self-regulated capacitive trans-impedance amplifier (CTIA structure is employed to extend the dynamic range. The gain of the CTIA is auto adjusted by switching different capacitors to the integration node asynchronously according to the output voltage. A column-parallel ADC based on a two-step TDC is utilized to improve the conversion rate. The conversion is divided into coarse phase and fine phase. An error calibration scheme is also proposed to correct quantization errors caused by propagation delay skew within −Tclk~+Tclk. A linear CMOS image sensor pixel array is designed in the 0.13 μm CMOS process to verify this DR-enhanced high speed readout technique. The post simulation results indicate that the dynamic range of readout circuit is 99.02 dB and the ADC achieves 60.22 dB SNDR and 9.71 bit ENOB at a conversion rate of 2 MS/s after calibration, with 14.04 dB and 2.4 bit improvement, compared with SNDR and ENOB of that without calibration.
G.M. Golenkov
2014-12-01
Full Text Available Theoretical and experimental investigations of the amplitude, phase and inertia-power frequency characteristics of two types of coaxial-linear electric motors of back-and-forth motion with permanent magnets, which magnetization vector is directed axially and radially relative to the axis of the runner are carried out. The comparative analysis of characteristics of these motors is presented.
Non Linear, Time Variant Speed Control of a Single Phase Hybrid Switched Reluctance Motor
Jakobsen, Uffe; Ahn, Jin Woo
2009-01-01
A high torque ripple in a given motor always presents a challenge for the speed control, since this ripple may lead to excessive actuation and ultimately may even lead to instability. The conventional solution is to low pass filter the measured speed, but this lowers dynamic control performance...
Pollock, Courtney L; Boyd, Lara A; Hunt, Michael A; Garland, S Jayne
2014-04-01
Stepping reactions are important for walking balance and community-level mobility. Stepping reactions of people with stroke are characterized by slow reaction times, poor coordination of motor responses, and low amplitude of movements, which may contribute to their decreased ability to recover their balance when challenged. An important aspect of rehabilitation of mobility after stroke is optimizing the motor learning associated with retraining effective stepping reactions. The Challenge Point Framework (CPF) is a model that can be used to promote motor learning through manipulation of conditions of practice to modify task difficulty, that is, the interaction of the skill of the learner and the difficulty of the task to be learned. This case series illustrates how the retraining of multidirectional stepping reactions may be informed by the CPF to improve balance function in people with stroke. Four people (53-68 years of age) with chronic stroke (>1 year) and mild to moderate motor recovery received 4 weeks of multidirectional stepping reaction retraining. Important tenets of motor learning were optimized for each person during retraining in accordance with the CPF. Participants demonstrated improved community-level walking balance, as determined with the Community Balance and Mobility Scale. These improvements were evident 1 year later. Aspects of balance-related self-efficacy and movement kinematics also showed improvements during the course of the intervention. The application of CPF motor learning principles in the retraining of stepping reactions to improve community-level walking balance in people with chronic stroke appears to be promising. The CPF provides a plausible theoretical framework for the progression of functional task training in neurorehabilitation.
Hammann, Eva; Zappe, Andrea; Keis, Stefanie; Ernst, Stefan; Matthies, Doreen; Meier, Thomas; Cook, Gregory M.; Börsch, Michael
2012-02-01
Thermophilic enzymes operate at high temperatures but show reduced activities at room temperature. They are in general more stable during preparation and, accordingly, are considered to be more rigid in structure. Crystallization is often easier compared to proteins from bacteria growing at ambient temperatures, especially for membrane proteins. The ATP-producing enzyme FoF1-ATP synthase from thermoalkaliphilic Caldalkalibacillus thermarum strain TA2.A1 is driven by a Fo motor consisting of a ring of 13 c-subunits. We applied a single-molecule Förster resonance energy transfer (FRET) approach using duty cycle-optimized alternating laser excitation (DCO-ALEX) to monitor the expected 13-stepped rotary Fo motor at work. New FRET transition histograms were developed to identify the smaller step sizes compared to the 10-stepped Fo motor of the Escherichia coli enzyme. Dwell time analysis revealed the temperature and the LDAO dependence of the Fo motor activity on the single molecule level. Back-and-forth stepping of the Fo motor occurs fast indicating a high flexibility in the membrane part of this thermophilic enzyme.
Daniel Schoene
Full Text Available Interactive cognitive-motor training (ICMT requires individuals to perform both gross motor movements and complex information processing. This study investigated the effectiveness of ICMT on cognitive functions associated with falls in older adults.A single-blinded randomized controlled trial was conducted in community-dwelling older adults (N = 90, mean age 81.5±7 without major cognitive impairment. Participants in the intervention group (IG played four stepping games that required them to divide attention, inhibit irrelevant stimuli, switch between tasks, rotate objects and make rapid decisions. The recommended minimum dose was three 20-minute sessions per week over a period of 16 weeks unsupervised at home. Participants in the control group (CG received an evidence-based brochure on fall prevention. Measures of processing speed, attention/executive function (EF, visuo-spatial ability, concerns about falling and depression were assessed before and after the intervention.Eighty-one participants (90% attended re-assessment. There were no improvements with respect to the Stroop Stepping Test (primary outcome in the intervention group. Compared to the CG, the IG improved significantly in measures of processing speed, visuo-spatial ability and concern about falling. Significant interactions were observed for measures of EF and divided attention, indicating group differences varied for different levels of the covariate with larger improvements in IG participants with poorer baseline performance. The interaction for depression showed no change for the IG but an increase in the CG for those with low depressive symptoms at baseline. Additionally, low and high-adherer groups differed in their baseline performance and responded differently to the intervention. Compared to high adherers, low adherers improved more in processing speed and visual scanning while high-adherers improved more in tasks related to EF.This study shows that unsupervised stepping
Hasanien, Hany M., E-mail: Hanyhasanien@ieee.or [Dept. of Elec. Power and Machines, Faculty of Eng., Ain-shams Univ. Cairo (Egypt); Muyeen, S.M. [Department of Electrical Engineering, Petroleum Institute, Abu Dhabi (United Arab Emirates); Tamura, Junji [Department of EEE, Kitami Institute of Technology, 165 Koen Cho, Kitami 090-8507, Hokkaido (Japan)
2010-12-15
This paper presents a novel adaptive neuro-fuzzy controller applies on transverse flux linear motor for controlling its speed. The proposed controller presents fuzzy logic controller with self tuning scaling factors based on artificial neural network structure. It has two input variables and one control output variable. Firstly the fuzzy logic control rules are described then NN architecture is represented to self tune the output scaling factors of the controller. The application of this control technique represents the novelty of work, where this algorithm has so far not been stated before for this type of drives. This methodology solves the problem of nonlinearities and load changes of TFLM drives. The dynamic response of the motor is studied under the rated load condition as well as load disturbances. The proposed controller ensures fast and accurate dynamic response with an excellent steady state performance. The dynamic response of the motor with the proposed controller is compared with PI and adaptive NN controllers. It is found that the proposed controller gives better and faster response from the viewpoint of overshoot and settling time. Matlab/Simulink tool is used for this dynamic simulation study.
Mnich, P; Huebner, K D
1980-07-15
In this paper the influence of the motor current on the magnetic force is investigated by an analytical method. With the integrated synchronous linear motor the reactions of the current sheet on the excitation field are depending on the pole angle and the amplitude of the current sheet. For an undisturbed operation - current sheet and induction wave in phase - the influence of the motor current on the magnetic force can be neglected. In case of a disturbed performance, i.e. when the pole angle is changing periodically, fluctuations of the magnetic force will be found. This effect has to be compensated by a reserve magnetic force in the levitation control. With the technical data for the new magnetic levitation pilots plants (International Traffic Fair 1979 at Hamburg and Transrapid - Pilot Plant Emsland) the stated relations are evaluated. Approximated relations for the levitation force are derived. For comparison, a finite-difference computer programme from the 'Institut fuer elektrische Maschinen, Antriebe und Bahnen, Technische Universitaet Braunschweig' is applied. The approximated relations developed in this paper are verified - with a sufficient precision - by the numerical calculations.
Pan, Qiaosheng; Miao, Enming; Wu, Bingxuan; Chen, Weikang; Lei, Xiujun; He, Liangguo
2017-07-01
A novel, bio-inspired, single-phase driven piezoelectric linear motor (PLM) using an asymmetric stator was designed, fabricated, and tested to avoid mode degeneracy and to simplify the drive mechanism of a piezoelectric motor. A piezoelectric transducer composed of two piezoelectric stacks and a displacement amplifier was used as the driving element of the PLM. Two simple and specially designed claws performed elliptical motion. A numerical simulation was performed to design the stator and determine the feasibility of the design mechanism of the PLM. Moreover, an experimental setup was built to validate the working principles, as well as to evaluate the performance, of the PLM. The prototype motor outputs a no-load speed of 233.7 mm/s at a voltage of 180 V p-p and a maximum thrust force of 2.3 N under a preload of 10 N. This study verified the feasibility of the proposed design and provided a method to simplify the driving harmonic signal and structure of PLMs.
Lee, Moon G.; Gweon, Dae-Gab
2004-01-01
A comparative analysis is performed for linear motors adopting conventional and multi-segmented trapezoidal (MST) magnet arrays, respectively, for a high-precision positioning system. The proposed MST magnet array is a modified version of a Halbach magnet array. The MST array has trapezoidal magnets with variable shape and dimensions while the Halbach magnet array generally has a rectangular magnet with identical dimensions. We propose a new model that can describe the magnetic field resulting from the complex-shaped magnets. The model can be applied to both MST and conventional magnet arrays. Using the model, a design optimization of the two types of linear motors is performed and compared. The magnet array with trapezoidal magnets can produce more force than one with rectangular magnets when they are arrayed in a linear motor where there is a yoke with high permeability. After the optimization and comparison, we conclude that the linear motor with the MST magnet array can generate more actuating force per volume than the motor with the conventional array. In order to satisfy the requirements of next generation systems such as high resolution, high speed, and long stroke, the use of a linear motor with a MST array as an actuator in a high precision positioning system is recommended from the results obtained here
G.M. Golenkov
2015-12-01
Full Text Available Purpose. The research of the influence of value and direction of current on the equivalent spring magnetic force based on coaxial-linear motor (CLM – MS. Methodology. We carried out investigation of the equivalent harshness of magnetic spring with determination of electromechanical propulsion performance characteristics by the methods of computer modeling and experimental research of physical model of CLM – MS. The modeling of magnetic spring of CLM – MS is carried out by the finite-element method. The challenge is met as an axisymmetric challenge in cylindrical co-ordinates in magnetostatic approach. The experimental investigattion of the propulsion performance characteristics of magnetic spring is carried out on the test bench. Results. After the computer modeling and the experimental investigation of the electromechanical propulsion performance characteristics of magnetic spring the expressions of equivalent stiffness coefficient depending on the current in winding are obtained. The results of computer modeling are confirmed experimentally. Originality. The determination of equivalent stiffness coefficient of magnetic spring of vibration exciter based on coaxial-linear motor. Practical value. The obtained determination of equivalent stiffness coefficient of magnetic spring may be used in process of designing of vibration machines with devices for change of natural oscillation frequency.
Two-Step Multi-Physics Analysis of an Annular Linear Induction Pump for Fission Power Systems
Geng, Steven M.; Reid, Terry V.
2016-01-01
One of the key technologies associated with fission power systems (FPS) is the annular linear induction pump (ALIP). ALIPs are used to circulate liquid-metal fluid for transporting thermal energy from the nuclear reactor to the power conversion device. ALIPs designed and built to date for FPS project applications have not performed up to expectations. A unique, two-step approach was taken toward the multi-physics examination of an ALIP using ANSYS Maxwell 3D and Fluent. This multi-physics approach was developed so that engineers could investigate design variations that might improve pump performance. Of interest was to determine if simple geometric modifications could be made to the ALIP components with the goal of increasing the Lorentz forces acting on the liquid-metal fluid, which in turn would increase pumping capacity. The multi-physics model first calculates the Lorentz forces acting on the liquid metal fluid in the ALIP annulus. These forces are then used in a computational fluid dynamics simulation as (a) internal boundary conditions and (b) source functions in the momentum equations within the Navier-Stokes equations. The end result of the two-step analysis is a predicted pump pressure rise that can be compared with experimental data.
Pichierri G
2012-07-01
Full Text Available Giuseppe Pichierri,1 Amos Coppe,1 Silvio Lorenzetti,2 Kurt Murer,1 Eling D de Bruin11Institute of Human Movement Sciences and Sport, Department of Health Sciences and Technology, ETH Zurich, Switzerland; 2Institute for Biomechanics, Department of Health Sciences and Technology, ETH Zurich, SwitzerlandBackground: This randomized controlled pilot study aimed to explore whether a cognitive-motor exercise program that combines traditional physical exercise with dance video gaming can improve the voluntary stepping responses of older adults under attention demanding dual task conditions.Methods: Elderly subjects received twice weekly cognitive-motor exercise that included progressive strength and balance training supplemented by dance video gaming for 12 weeks (intervention group. The control group received no specific intervention. Voluntary step execution under single and dual task conditions was recorded at baseline and post intervention (Week 12.Results: After intervention between-group comparison revealed significant differences for initiation time of forward steps under dual task conditions (U = 9, P = 0.034, r = 0.55 and backward steps under dual task conditions (U = 10, P = 0.045, r = 0.52 in favor of the intervention group, showing altered stepping levels in the intervention group compared to the control group.Conclusion: A cognitive-motor intervention based on strength and balance exercises with additional dance video gaming is able to improve voluntary step execution under both single and dual task conditions in older adults.Keywords: fall prevention, exercise, dance, video game
Nondahl, T. A.; Richter, E.
1980-09-01
A design study of two types of single sided (with a passive rail) linear electric machine designs, namely homopolar linear synchronous machines (LSM's) and linear induction machines (LIM's), is described. It is assumed the machines provide tractive effort for several types of light rail vehicles and locomotives. These vehicles are wheel supported and require tractive powers ranging from 200 kW to 3735 kW and top speeds ranging from 112 km/hr to 400 km/hr. All designs are made according to specified magnetic and thermal criteria. The LSM advantages are a higher power factor, much greater restoring forces for track misalignments, and less track heating. The LIM advantages are no need to synchronize the excitation frequency precisely to vehicle speed, simpler machine construction, and a more easily anchored track structure. The relative weights of the two machine types vary with excitation frequency and speed; low frequencies and low speeds favor the LSM.
Ko, Mansoo; Hilgenberg, Sean; Hasson, Scott M; Braden, Heather J
2014-11-01
Gait training to facilitate the use of the paretic limb for persons with hemiparesis continues to be of interest to those in the clinical research domain. The purpose of this case report was to assess the outcomes of a repeated step-up and -down treatment, initiating with the paretic limb, on functional mobility, endurance and gait kinematic parameters in a person with hemiparesis. The participant was an 85-year-old female 3 years status post left hemiparesis, who reported overall good health. The participant was asked to step up on a 1-inch height wood box with her paretic limb. Once both feet were on top of the box, the participant initiated descent also with her paretic limb. The height of the box gradually progressed to 5 inches based on the participant's performance and tolerance. A metronome was used to facilitate rhythmic lower extremity movement patterns. The training duration for each treatment session was 7-15 min/day. The participant completed nine sessions spanning over 3 weeks. The outcome measure used to identify motor recovery was the Fugl-Myer (lower extremity). In addition, the timed up and go (TUG), the 6-min walk test (6 MWT) and gait kinematics were assessed to examine mobility and gait. The Fugl-Myer score and 6 MWT did not reflect a meaningful change (0% and +2.6%, respectively). However, TUG scores did show a meaningful change (+31.9%). With respect to gait kinematics, hip flexion on the paretic limb was improved from 11° to 18°, which indicates the normal range of hip motion during the initial swing phase in post-test.
Alahmadi, Adnan A S; Samson, Rebecca S; Gasston, David; Pardini, Matteo; Friston, Karl J; D'Angelo, Egidio; Toosy, Ahmed T; Wheeler-Kingshott, Claudia A M
2016-06-01
Previous studies have used fMRI to address the relationship between grip force (GF) applied to an object and BOLD response. However, whilst the majority of these studies showed a linear relationship between GF and neural activity in the contralateral M1 and ipsilateral cerebellum, animal studies have suggested the presence of non-linear components in the GF-neural activity relationship. Here, we present a methodology for assessing non-linearities in the BOLD response to different GF levels, within primary motor as well as sensory and cognitive areas and the cerebellum. To be sensitive to complex forms, we designed a feasible grip task with five GF targets using an event-related visually guided paradigm and studied a cohort of 13 healthy volunteers. Polynomial functions of increasing order were fitted to the data. (1) activated motor areas irrespective of GF; (2) positive higher-order responses in and outside M1, involving premotor, sensory and visual areas and cerebellum; (3) negative correlations with GF, predominantly involving the visual domain. Overall, our results suggest that there are physiologically consistent behaviour patterns in cerebral and cerebellar cortices; for example, we observed the presence of a second-order effect in sensorimotor areas, consistent with an optimum metabolic response at intermediate GF levels, while higher-order behaviour was found in associative and cognitive areas. At higher GF levels, sensory-related cortical areas showed reduced activation, interpretable as a redistribution of the neural activity for more demanding tasks. These results have the potential of opening new avenues for investigating pathological mechanisms of neurological diseases.
Azusawa, T [Toshiba Corp., Tokyo (Japan)
1994-05-20
The simple analysis method of persistent current induced in on-board superconducting coils was proposed for the vehicle of a superconducting magnetically-suspended train which is running in the magnetic field generated by armature coil current of a linear synchronous motor installed along a guideway, and the performance of the method is discussed through calculation based on typical models. As fluctuation of persistent current due to running was calculated with various parameter values under a normal running condition, fluctuation of persistent current induced was less then 1% of an initial magnetomotive force, having no adverse effect on the stability and reliability of superconducting magnets. Electromagnetic forces under a normal running condition could be predicted accurately enough by relatively easy-to-calculate constant current mode analysis. Double-layered armature coils were preferred to single-layered ones to enhance the stability of superconducting magnets by reducing fluctuation of persistent current. 10 refs., 8 figs., 1 tab.
Body mass index and motor coordination: Non-linear relationships in children 6-10 years.
Lopes, V P; Malina, R M; Maia, J A R; Rodrigues, L P
2018-05-01
Given the concern for health-related consequences of an elevated body mass index (BMI; obesity), the potential consequences of a low BMI in children are often overlooked. The purpose was to evaluate the relationship between the BMI across its entire spectrum and motor coordination (MC) in children 6-10 years. Height, weight, and MC (Körperkoordinationstest für Kinder, KTK test battery) were measured in 1,912 boys and 1,826 girls of 6-10 years of age. BMI (kg/m 2 ) was calculated. KTK scores for each of the four tests were also converted to a motor quotient (MQ). One-way ANOVA was used to test differences in the BMI, individual test items, and MQ among boys and girls within age groups. Sex-specific quadratic regressions of individual KTK items and the MQ on the BMI were calculated. Girls and boys were also classified into four weight status groups using International Obesity Task Force criteria: thin, normal, overweight, and obese. Differences in specific test items and MQ between weight status groups were evaluated by age group in each sex. Thirty-one percent of the sample was overweight or obese, whereas 5% was thin. On average, normal weight children had the highest MQ in both sexes across the age range with few exceptions. Overweight/obese children had a lower MQ than normal weight and thin children. The quadratic regression lines generally presented an inverted parabolic relationship between the BMI and MC and suggested a decrease in MC with an increase in the BMI. In general, BMI shows a curvilinear, inverted parabolic relationship with MC in children 6-10 years. © 2018 John Wiley & Sons Ltd.
Eastham, A. R.; Katz, R. M.
1980-09-01
Two test programs have been conducted to evaluate the performance of a single-sided linear induction motor with a squirrel-cage reaction rail and with a solid steel reaction rail. A 1.73-m-long six-pole stator interacted with the rails mounted on the rim of a 7.6-m-diam wheel. A 64-channel data acquisition system allowed tests to be performed over a wide range of operating conditions at speeds up to 20 m/sec. Typical test results which compare and contrast the mechanical, electrical and magnetic behavior of the SLIMs are presented. The test data are being used to assess the SLIM as an integrated suspension/propulsion system and for other transportation applications.
Three dimensional force prediction in a model linear brushless dc motor
Moghani, J.S.; Eastham, J.F.; Akmese, R.; Hill-Cottingham, R.J. (Univ. of Bath (United Kingdom). School of Electronic and Electric Engineering)
1994-11-01
Practical results are presented for the three axes forces produced on the primary of a linear brushless dc machine which is supplied from a three-phase delta-modulated inverter. Conditions of both lateral alignment and lateral displacement are considered. Finite element analysis using both two and three dimensional modeling is compared with the practical results. It is shown that a modified two dimensional model is adequate, where it can be used, in the aligned position and that the full three dimensional method gives good results when the machine is axially misaligned.
Raksin, Jonathan N; Glaze, Christopher M; Smith, Sarah; Schmidt, Marc F
2012-04-01
Motor-related forebrain areas in higher vertebrates also show responses to passively presented sensory stimuli. However, sensory tuning properties in these areas, especially during wakefulness, and their relation to perception, are poorly understood. In the avian song system, HVC (proper name) is a vocal-motor structure with auditory responses well defined under anesthesia but poorly characterized during wakefulness. We used a large set of stimuli including the bird's own song (BOS) and many conspecific songs (CON) to characterize auditory tuning properties in putative interneurons (HVC(IN)) during wakefulness. Our findings suggest that HVC contains a diversity of responses that vary in overall excitability to auditory stimuli, as well as bias in spike rate increases to BOS over CON. We used statistical tests to classify cells in order to further probe auditory responses, yielding one-third of neurons that were either unresponsive or suppressed and two-thirds with excitatory responses to one or more stimuli. A subset of excitatory neurons were tuned exclusively to BOS and showed very low linearity as measured by spectrotemporal receptive field analysis (STRF). The remaining excitatory neurons responded well to CON stimuli, although many cells still expressed a bias toward BOS. These findings suggest the concurrent presence of a nonlinear and a linear component to responses in HVC, even within the same neuron. These characteristics are consistent with perceptual deficits in distinguishing BOS from CON stimuli following lesions of HVC and other song nuclei and suggest mirror neuronlike qualities in which "self" (here BOS) is used as a referent to judge "other" (here CON).
SLD-MOSCNT: A new MOSCNT with step-linear doping profile in the source and drain regions
Tahne, Behrooz Abdi; Naderi, Ali
2017-01-01
In this paper, a new structure, step-linear doping MOSCNT (SLD-MOSCNT), is proposed to improve the performance of basic MOSCNTs. The basic structure suffers from band to band tunneling (BTBT). We show that using SLD profile for source and drain regions increases the horizontal distance between valence and conduction bands at gate to source/drain junction which reduces BTBT probability. SLD performance is compared with other similar structures which have recently been proposed to reduce BTBT such as MOSCNT with lightly-doped drain and source (LDDS), and with double-light doping in source and drain regions (DLD). The obtained results using a nonequilibrium Green’s function (NEGF) method show that the SLD-MOSCNT has the lowest leakage current, power consumption and delay time, and the highest current ratio and voltage gain. The ambipolar conduction in the proposed structure is very low and can be neglected. In addition, these structures can improve short-channel effects. Also, the investigation of cutoff frequency of the different structures shows that the SLD has the highest cutoff frequency. Device performance has been investigated for gate length from 8 to 20 nm which demonstrates all discussions regarding the superiority of the proposed structure are also valid for different channel lengths. This improvement is more significant especially for channel length less than 12 nm. Therefore, the SLD can be considered as a candidate to be used in the applications with high speed and low power consumption.
Caçola, Priscila M; Pant, Mohan D
2014-10-01
The purpose was to use a multi-level statistical technique to analyze how children's age, motor proficiency, and cognitive styles interact to affect accuracy on reach estimation tasks via Motor Imagery and Visual Imagery. Results from the Generalized Linear Mixed Model analysis (GLMM) indicated that only the 7-year-old age group had significant random intercepts for both tasks. Motor proficiency predicted accuracy in reach tasks, and cognitive styles (object scale) predicted accuracy in the motor imagery task. GLMM analysis is suitable to explore age and other parameters of development. In this case, it allowed an assessment of motor proficiency interacting with age to shape how children represent, plan, and act on the environment.
Bayesian integration and non-linear feedback control in a full-body motor task.
Stevenson, Ian H; Fernandes, Hugo L; Vilares, Iris; Wei, Kunlin; Körding, Konrad P
2009-12-01
A large number of experiments have asked to what degree human reaching movements can be understood as being close to optimal in a statistical sense. However, little is known about whether these principles are relevant for other classes of movements. Here we analyzed movement in a task that is similar to surfing or snowboarding. Human subjects stand on a force plate that measures their center of pressure. This center of pressure affects the acceleration of a cursor that is displayed in a noisy fashion (as a cloud of dots) on a projection screen while the subject is incentivized to keep the cursor close to a fixed position. We find that salient aspects of observed behavior are well-described by optimal control models where a Bayesian estimation model (Kalman filter) is combined with an optimal controller (either a Linear-Quadratic-Regulator or Bang-bang controller). We find evidence that subjects integrate information over time taking into account uncertainty. However, behavior in this continuous steering task appears to be a highly non-linear function of the visual feedback. While the nervous system appears to implement Bayes-like mechanisms for a full-body, dynamic task, it may additionally take into account the specific costs and constraints of the task.
Bayesian integration and non-linear feedback control in a full-body motor task.
Ian H Stevenson
2009-12-01
Full Text Available A large number of experiments have asked to what degree human reaching movements can be understood as being close to optimal in a statistical sense. However, little is known about whether these principles are relevant for other classes of movements. Here we analyzed movement in a task that is similar to surfing or snowboarding. Human subjects stand on a force plate that measures their center of pressure. This center of pressure affects the acceleration of a cursor that is displayed in a noisy fashion (as a cloud of dots on a projection screen while the subject is incentivized to keep the cursor close to a fixed position. We find that salient aspects of observed behavior are well-described by optimal control models where a Bayesian estimation model (Kalman filter is combined with an optimal controller (either a Linear-Quadratic-Regulator or Bang-bang controller. We find evidence that subjects integrate information over time taking into account uncertainty. However, behavior in this continuous steering task appears to be a highly non-linear function of the visual feedback. While the nervous system appears to implement Bayes-like mechanisms for a full-body, dynamic task, it may additionally take into account the specific costs and constraints of the task.
Woo, John H; Wang, Sumei; Melhem, Elias R; Gee, James C; Cucchiara, Andrew; McCluskey, Leo; Elman, Lauren
2014-01-01
To assess the relationship between clinically assessed Upper Motor Neuron (UMN) disease in Amyotrophic Lateral Sclerosis (ALS) and local diffusion alterations measured in the brain corticospinal tract (CST) by a tractography-driven template-space region-of-interest (ROI) analysis of Diffusion Tensor Imaging (DTI). This cross-sectional study included 34 patients with ALS, on whom DTI was performed. Clinical measures were separately obtained including the Penn UMN Score, a summary metric based upon standard clinical methods. After normalizing all DTI data to a population-specific template, tractography was performed to determine a region-of-interest (ROI) outlining the CST, in which average Mean Diffusivity (MD) and Fractional Anisotropy (FA) were estimated. Linear regression analyses were used to investigate associations of DTI metrics (MD, FA) with clinical measures (Penn UMN Score, ALSFRS-R, duration-of-disease), along with age, sex, handedness, and El Escorial category as covariates. For MD, the regression model was significant (p = 0.02), and the only significant predictors were the Penn UMN Score (p = 0.005) and age (p = 0.03). The FA regression model was also significant (p = 0.02); the only significant predictor was the Penn UMN Score (p = 0.003). Measured by the template-space ROI method, both MD and FA were linearly associated with the Penn UMN Score, supporting the hypothesis that DTI alterations reflect UMN pathology as assessed by the clinical examination.
Abbasian Mohsen
2013-02-01
Full Text Available Results of theoretical and experimental research on magnetic induction distribution in the air gap of a coaxially-linear synchronous motor with reciprocal motion within the pole pitch and axial and radial direction of the permanent magnets magnetization are presented.
Cohen-Krausz, Sara; Cabahug, Pamela C; Trachtenberg, Shlomo
2011-07-08
Spiroplasmas belong to the class Mollicutes, representing the minimal, free-living, and self-replicating forms of life. Spiroplasmas are helical wall-less bacteria and the only ones known to swim by means of a linear motor (rather than the near-universal rotary bacterial motor). The linear motor follows the shortest path along the cell's helical membranal tube. The motor is composed of a flat monolayered ribbon of seven parallel fibrils and is believed to function in controlling cell helicity and motility through dynamic, coordinated, differential length changes in the fibrils. The latter cause local perturbations of helical symmetry, which are essential for net directional displacement in environments with a low Reynolds number. The underlying fibrils' core building block is a circular tetramer of the 59-kDa protein Fib. The fibrils' differential length changes are believed to be driven by molecular switching of Fib, leading consequently to axial ratio and length changes in tetrameric rings. Using cryo electron microscopy, diffractometry, single-particle analysis of isolated ribbons, and sequence analyses of Fib, we determined the overall molecular organization of the Fib monomer, tetramer, fibril, and linear motor of Spiroplasma melliferum BC3 that underlies cell geometry and motility. Fib appears to be a bidomained molecule, of which the N-terminal half is apparently a globular phosphorylase. By a combination of reversible rotation and diagonal shift of Fib monomers, the tetramer adopts either a cross-like nonhanded conformation or a ring-like handed conformation. The sense of Fib rotation may determine the handedness of the linear motor and, eventually, of the cell. A further change in the axial ratio of the ring-like tetramers controls fibril lengths and the consequent helical geometry. Analysis of tetramer quadrants from adjacent fibrils clearly demonstrates local differential fibril lengths. Copyright © 2011 Elsevier Ltd. All rights reserved.
Avila, Jorge A.; Martinez, Eduardo
2008-01-01
Based on a ductile frames 25 level building, a non-linear analysis with increased monotonically lateral loads (Push-Over) was made in order to determine its collapse and its principal responses were compared against the time-history seismic responses determined with the SCT-EW-85 record. The seismic-resistance design and faced to gravitational loads was made according to the Complementary Technical Norms of Concrete Structures Design (NTC-Concrete) and the NTC-Seismic of the Mexico City Code (RDF-04), satisfying the limit service states (relative lateral displacement between story height maximum relations, story drifts ≤0.012) and failure (seismic behavior factor, Q = 3). The compressible (soft) seismic zone III b and the office use type (group B) were considered. The non-lineal responses were determined with nominal and over-resistance effects. The comparison were made with base shear force-roof lateral displacement relations, global distribution of plastic hinges, failure mechanics tendency, lateral displacements and story drift and its distribution along the height of the building, local and global ductility demands, etc. For the non-linear static analysis with increased monotonically lateral loads, was important to select the type of lateral forces distribution
Geevers, Sjoerd; van der Vegt, J.J.W.
2017-01-01
We present sharp and sucient bounds for the interior penalty term and time step size to ensure stability of the symmetric interior penalty discontinuous Galerkin (SIPDG) method combined with an explicit time-stepping scheme. These conditions hold for generic meshes, including unstructured
Mass distribution and spatial organization of the linear bacterial motor of Spiroplasma citri R8A2.
Trachtenberg, Shlomo; Andrews, S Brian; Leapman, Richard D
2003-03-01
In the simple, helical, wall-less bacterial genus Spiroplasma, chemotaxis and motility are effected by a linear, contractile motor arranged as a flat cytoskeletal ribbon attached to the inner side of the membrane along the shortest helical line. With scanning transmission electron microscopy and diffraction analysis, we determined the hierarchical and spatial organization of the cytoskeleton of Spiroplasma citri R8A2. The structural unit appears to be a fibril, approximately 5 nm wide, composed of dimers of a 59-kDa protein; each ribbon is assembled from seven fibril pairs. The functional unit of the intact ribbon is a pair of aligned fibrils, along which pairs of dimers form tetrameric ring-like repeats. On average, isolated and purified ribbons contain 14 fibrils or seven well-aligned fibril pairs, which are the same structures observed in the intact cell. Scanning transmission electron microscopy mass analysis and sodium dodecyl sulfate-polyacrylamide gel electrophoresis of purified cytoskeletons indicate that the 59-kDa protein is the only constituent of the ribbons.
Kikuma, T.; Ishiyama, A. [Waseda Univ., Tokyo (Japan)
2000-05-29
For the purpose of examining the characteristics (effect of stability and ac loss by the higher harmonic wave etc.) of an alternating current superconductivity winding under a real machine operating environment of the super-conductive AC machine vessel, authors produced a cylindrical shortness first linear guiding motor (SCLIM) which used the NbTi/CuNi super-conducting cable for the first excitation winding experimentally. In this study, the evaluation of the start up thrust and operation confirmation of the quenching detection protection circuit were carried out using the produced SCLIM. In the quenching detection protection control circuit, the first excitation winding was divided into an internal layer and an outer layer, and both layers were excited in the 2 layer division and a quenching detection protection circuit was installed on the 2 layers respectively. The circuit of a part of fact by this of the phase in which the quench was generated and observed was cut off, and the operation would be able to be continued in part of the remainder of the phase and other two phases. Here, it is to cut off the quenched phase from the circuit, when the phase current becomes zero, and the other effect on the phase is held as small as possible. (NEDO)
Oliveri, Alberto; Masi, Alessandro; Storace, Marco
2015-01-01
In this paper a piecewise affine virtual sensor is used for the estimation of the motor-side current of hybrid stepper motors, which actuate the LHC (Large Hadron Collider) collimators at CERN. The estimation is performed starting from measurements of the current in the driver, which is connected to the motor by a long cable (up to 720 m). The measured current is therefore affected by noise and ringing phenomena. The proposed method does not require a model of the cable, since it is only based on measured data and can be used with cables of different length. A circuit architecture suitable for FPGA implementation has been designed and the effects of fixed point representation of data are analyzed.
Doff, Adriano; Szmoski, Romeu M.
2016-01-01
Neste trabalho exploramos o potencial didático de um motor homopolar linear com o objetivo de ilustrar o princípio de funcionamento de um acelerador de partículas. A fim de estabelecer o mecanismo de funcionamento de um motor homopolar linear, consideramos uma analogia com a descrição de um motor homopolar rotatório, e partir deste apresentamos os princípios de funcionamento deste dispositivo e estabelecemos um limite teórico para a velocidade do motor linear. De posse dos dados gerados exper...
Jalalifar Mehran
2007-01-01
Full Text Available In this paper using adaptive backstepping approach an adaptive rotor flux observer which provides stator and rotor resistances estimation simultaneously for induction motor used in series hybrid electric vehicle is proposed. The controller of induction motor (IM is designed based on input-output feedback linearization technique. Combining this controller with adaptive backstepping observer the system is robust against rotor and stator resistances uncertainties. In additional, mechanical components of a hybrid electric vehicle are called from the Advanced Vehicle Simulator Software Library and then linked with the electric motor. Finally, a typical series hybrid electric vehicle is modeled and investigated. Various tests, such as acceleration traversing ramp, and fuel consumption and emission are performed on the proposed model of a series hybrid vehicle. Computer simulation results obtained, confirm the validity and performance of the proposed IM control approach using for series hybrid electric vehicle.
Jing, Yan-Fei; Huang, Ting-Zhu; Carpentieri, Bruno; Duan, Yong
An interesting stabilizing variant of the biconjugate A-orthogonal residual (BiCOR) method is investigated for solving dense complex non-Hermitian systems of linear equations arising from the Galerlcin discretization of surface integral equations in electromagnetics. The novel variant is naturally
Rodriguez-Sabate, Clara; Morales, Ingrid; Sanchez, Alberto; Rodriguez, Manuel
2017-01-01
The complexity of basal ganglia (BG) interactions is often condensed into simple models mainly based on animal data and that present BG in closed-loop cortico-subcortical circuits of excitatory/inhibitory pathways which analyze the incoming cortical data and return the processed information to the cortex. This study was aimed at identifying functional relationships in the BG motor-loop of 24 healthy-subjects who provided written, informed consent and whose BOLD-activity was recorded by MRI methods. The analysis of the functional interaction between these centers by correlation techniques and multiple linear regression showed non-linear relationships which cannot be suitably addressed with these methods. The multiple correspondence analysis (MCA), an unsupervised multivariable procedure which can identify non-linear interactions, was used to study the functional connectivity of BG when subjects were at rest. Linear methods showed different functional interactions expected according to current BG models. MCA showed additional functional interactions which were not evident when using lineal methods. Seven functional configurations of BG were identified with MCA, two involving the primary motor and somatosensory cortex, one involving the deepest BG (external-internal globus pallidum, subthalamic nucleus and substantia nigral), one with the input-output BG centers (putamen and motor thalamus), two linking the input-output centers with other BG (external pallidum and subthalamic nucleus), and one linking the external pallidum and the substantia nigral. The results provide evidence that the non-linear MCA and linear methods are complementary and should be best used in conjunction to more fully understand the nature of functional connectivity of brain centers.
Fuerst, R [Industrieanlagen-Betriebsgesellschaft mbH, Magnetbahn-Versuchsanlage, Lathen/Ems (Germany)
1996-12-31
In German high-speed magnetic train technology, iron-clad synchronous long-stator linear motors of levitation stator design are used to propel and brake the vehicles. This paper uses the propulsion design of the Transrapid test facility in Emsland (TVE) to illustrate in practical terms the dimensioning parameters for thrust calculations and their interdependencies. The paper is based on description conventions common for rotating electrical machines and rail technology. (orig.)
Baklanov, A.V.; Gavrish, Yu.N.; Klinov, A.P.; Krest'yaninov, A.S.; Nikolaev, V.M.; Fomin, L.P.; Linkenbach, H.A.; Geus, G.; Knospel, W.
2001-01-01
A new development of a small-sized linear accelerator of 2.5 MeV electrons with a local radiation protection is described. The accelerator is intended for movable facilities of radiation custom of the freight transported by motor transport. Main constructive solutions, mass and dimension characteristics and results of preliminary tests of the accelerator parameters and characteristics of radiation protection are presented [ru
Negro, Francesco; Holobar, Ales; Farina, Dario
2009-12-15
The aim of the study was to investigate the relation between linear transformations of motor unit discharge rates and muscle force. Intramuscular (wire electrodes) and high-density surface EMG (13 x 5 electrode grid) were recorded from the abductor digiti minimi muscle of eight healthy men during 60 s contractions at 5%, 7.5% and 10% of the maximal force. Spike trains of a total of 222 motor units were identified from the EMG recordings with decomposition algorithms. Principal component analysis of the smoothed motor unit discharge rates indicated that one component (first common component, FCC) described 44.2 +/- 7.5% of the total variability of the smoothed discharge rates when computed over the entire contraction interval and 64.3 +/- 10.2% of the variability when computed over 5 s intervals. When the FCC was computed from four or more motor units per contraction, it correlated with the force produced by the muscle (62.7 +/- 10.1%) by a greater degree (P FCC and the force signal increased up to 71.8 +/- 13.1% when the duration and the shape of the smoothing window for discharge rates were similar to the average motor unit twitch force. Moreover, the coefficients of variation (CoV) for the force and for the FCC signal were correlated in all subjects (R(2) range = 0.14-0.56; P measures on the tibialis anterior muscle of an additional eight subjects during contractions at forces up to 20% of the maximal force (e.g. FCC explained 59.8 +/- 11.0% of variability of the smoothed discharge rates). In conclusion, one signal captures most of the underlying variability of the low-frequency components of motor unit discharge rates and explains large part of the fluctuations in the motor output during isometric contractions.
Gad, Parag; Gerasimenko, Yury; Zdunowski, Sharon; Turner, Amanda; Sayenko, Dimitry; Lu, Daniel C; Edgerton, V Reggie
2017-01-01
We asked whether coordinated voluntary movement of the lower limbs could be regained in an individual having been completely paralyzed (>4 year) and completely absent of vision (>15 year) using two novel strategies-transcutaneous electrical spinal cord stimulation at selected sites over the spine as well as pharmacological neuromodulation by buspirone. We also asked whether these neuromodulatory strategies could facilitate stepping assisted by an exoskeleton (EKSO, EKSO Bionics, CA) that is designed so that the subject can voluntarily complement the work being performed by the exoskeleton. We found that spinal cord stimulation and drug enhanced the level of effort that the subject could generate while stepping in the exoskeleton. In addition, stimulation improved the coordination patterns of the lower limb muscles resulting in a more continuous, smooth stepping motion in the exoskeleton along with changes in autonomic functions including cardiovascular and thermoregulation. Based on these data from this case study it appears that there is considerable potential for positive synergistic effects after complete paralysis by combining the over-ground step training in an exoskeleton, combined with transcutaneous electrical spinal cord stimulation either without or with pharmacological modulation.
Eduardo Giraldo Suárez
2009-01-01
Full Text Available Este documento presenta la aplicación de la técnica de control no lineal clásica llamada linealización por realimentación de variables de estado. Se hace una aplicación en el motor de inducción, la variable a controlar es la velocidad del eje del motor, el sistema emplea el esquema de control vectorial para máquinas de corriente alterna desarrollado en las últimas décadas; este método es análogo a la técnica de control del motor de corriente directa. El modelo del motor de inducción se describe en el sistema de coordenadas de campo orientado del flujo de rotor y se muestra una introducción al producto y la derivada de Lie, empleados en el diseño del controlador no lineal.This articles shows the application of a classic non-linear control technique called "linearization by feedback of status variables." An application on the induction engine is made. Variable to be controlled is speed of the engine shaft. The system employs a vectorial control scheme for AC engines developed during the last decades. This is a method analogous to the DC engine control technique. Induction engine model is described in the guided field coordinate system of rotor flow. Introduction to the product and Lie derivative used for designing the non-linear controller are shown.
Shimizu, Yoshiaki
1991-01-01
In recent complicated nuclear systems, there are increasing demands for developing highly advanced procedures for various problems-solvings. Among them keen interests have been paid on man-machine communications to improve both safety and economy factors. Many optimization methods have been good enough to elaborate on these points. In this preliminary note, we will concern with application of linear programming (LP) for this purpose. First we will present a new superior version of the generalized PAPA method (GEPAPA) to solve LP problems. We will then examine its effectiveness when applied to derive dynamic matrix control (DMC) as the LP solution. The approach is to aim at the above goal through a quality control of process that will appear in the system. (author)
Razali Hanipah, M.; Razul Razali, Akhtar
2017-10-01
Free-piston engine generator (FPEG) provides a novel method for electrical power generation in hybrid electric vehicle applications with scarcely reported prototype development and testing. This paper is looking into the motion control strategy for motoring the FPEG during starting. There are two motion profiles investigated namely, trapezoidal velocity and Scurve velocity. Both motion profiles were investigated numerically and the results have shown that the S-curve motion can only achieve 80% of the stroke when operated at the proposed motoring speed of 10Hz.
Holliday, Ezekiel S. (Inventor)
2014-01-01
Vibrations at harmonic frequencies are reduced by injecting harmonic balancing signals into the armature of a linear motor/alternator coupled to a Stirling machine. The vibrations are sensed to provide a signal representing the mechanical vibrations. A harmonic balancing signal is generated for selected harmonics of the operating frequency by processing the sensed vibration signal with adaptive filter algorithms of adaptive filters for each harmonic. Reference inputs for each harmonic are applied to the adaptive filter algorithms at the frequency of the selected harmonic. The harmonic balancing signals for all of the harmonics are summed with a principal control signal. The harmonic balancing signals modify the principal electrical drive voltage and drive the motor/alternator with a drive voltage component in opposition to the vibration at each harmonic.
West, Timothy; Farmer, Simon; Berthouze, Luc; Jha, Ashwani; Beudel, Martijn; Foltynie, Thomas; Limousin, Patricia; Zrinzo, Ludvic; Brown, Peter; Litvak, Vladimir
2016-01-01
In this paper we investigated the dopaminergic modulation of neuronal interactions occurring in the subthalamic nucleus (STN) during Parkinson's disease (PD). We utilized linear measures of local and long range synchrony such as power and coherence, as well as Detrended Fluctuation Analysis for Phase Synchrony (DFA-PS)- a recently developed non-linear method that computes the extent of long tailed autocorrelations present in the phase interactions between two coupled signals. Through analysis of local field potentials (LFPs) taken from the STN we seek to determine changes in the neurodynamics that may underpin the pathophysiology of PD in a group of 12 patients who had undergone surgery for deep brain stimulation. We demonstrate up modulation of alpha-theta (5-12 Hz) band power in response to L-DOPA treatment, whilst low beta band power (15-20 Hz) band-power is suppressed. We also find evidence for significant local connectivity within the region surrounding STN although there was evidence for its modulation via administration of L-DOPA. Further to this we present evidence for a positive correlation between the phase ordering of bilateral STN interactions and the severity of bradykinetic and rigidity symptoms in PD. Although, the ability of non-linear measures to predict clinical state did not exceed standard measures such as beta power, these measures may help identify the connections which play a role in pathological dynamics.
Gompf, Florian; Pflug, Anja; Laufs, Helmut; Kell, Christian A.
2017-01-01
Functional imaging studies using BOLD contrasts have consistently reported activation of the supplementary motor area (SMA) both during motor and internal timing tasks. Opposing findings, however, have been shown for the modulation of beta oscillations in the SMA. While movement suppresses beta oscillations in the SMA, motor and non-motor tasks that rely on internal timing increase the amplitude of beta oscillations in the SMA. These independent observations suggest that the relationship between beta oscillations and BOLD activation is more complex than previously thought. Here we set out to investigate this rapport by examining beta oscillations in the SMA during movement with varying degrees of internal timing demands. In a simultaneous EEG-fMRI experiment, 20 healthy right-handed subjects performed an auditory-paced finger-tapping task. Internal timing was operationalized by including conditions with taps on every fourth auditory beat, which necessitates generation of a slow internal rhythm, while tapping to every auditory beat reflected simple auditory-motor synchronization. In the SMA, BOLD activity increased and power in both the low and the high beta band decreased expectedly during each condition compared to baseline. Internal timing was associated with a reduced desynchronization of low beta oscillations compared to conditions without internal timing demands. In parallel with this relative beta power increase, internal timing activated the SMA more strongly in terms of BOLD. This documents a task-dependent non-linear relationship between BOLD and beta-oscillations in the SMA. We discuss different roles of beta synchronization and desynchronization in active processing within the same cortical region. PMID:29249950
Gompf, Florian; Pflug, Anja; Laufs, Helmut; Kell, Christian A
2017-01-01
Functional imaging studies using BOLD contrasts have consistently reported activation of the supplementary motor area (SMA) both during motor and internal timing tasks. Opposing findings, however, have been shown for the modulation of beta oscillations in the SMA. While movement suppresses beta oscillations in the SMA, motor and non-motor tasks that rely on internal timing increase the amplitude of beta oscillations in the SMA. These independent observations suggest that the relationship between beta oscillations and BOLD activation is more complex than previously thought. Here we set out to investigate this rapport by examining beta oscillations in the SMA during movement with varying degrees of internal timing demands. In a simultaneous EEG-fMRI experiment, 20 healthy right-handed subjects performed an auditory-paced finger-tapping task. Internal timing was operationalized by including conditions with taps on every fourth auditory beat, which necessitates generation of a slow internal rhythm, while tapping to every auditory beat reflected simple auditory-motor synchronization. In the SMA, BOLD activity increased and power in both the low and the high beta band decreased expectedly during each condition compared to baseline. Internal timing was associated with a reduced desynchronization of low beta oscillations compared to conditions without internal timing demands. In parallel with this relative beta power increase, internal timing activated the SMA more strongly in terms of BOLD. This documents a task-dependent non-linear relationship between BOLD and beta-oscillations in the SMA. We discuss different roles of beta synchronization and desynchronization in active processing within the same cortical region.
NONE
2001-03-01
In relation to the drive system of machine tools widely used as production facilities for automobiles, home electric appliances, etc., the R and D were made of a high efficiency linear motor system of which attention was paid to energy rationalization and environmental loads, and the FY 2000 results were summed up. In the study of the development of the system, studies were made not only on the lowering of heating, cost reduction and heightening of speed, but on the mechanism and control by which machine natural vibration can relatively be cut off, technology of damping for cutting vibration, technology to meet the deformation, etc. by cutting loads, sliding loads, and acceleration of accelerating/decelerating, technology to reduce the machine weight, etc. In the study of the basic technology of linear motor, the finite element method analysis was conducted on the typical linear motor. Concerning the control system, specs were studied which can deal with natural vibration and cutting vibration of the machine system. As to the development of the steel scale type linear encoder, scale sample for evaluation of basic characteristics was designed/trially manufactured. In the study of the detection optical system, the design/trial manufacture of photodiode array were made. (NEDO)
Batsikadze, G; Moliadze, V; Paulus, W; Kuo, M-F; Nitsche, M A
2013-04-01
Transcranial direct current stimulation (tDCS) of the human motor cortex at an intensity of 1 mA with an electrode size of 35 cm(2) has been shown to induce shifts of cortical excitability during and after stimulation. These shifts are polarity-specific with cathodal tDCS resulting in a decrease and anodal stimulation in an increase of cortical excitability. In clinical and cognitive studies, stronger stimulation intensities are used frequently, but their physiological effects on cortical excitability have not yet been explored. Therefore, here we aimed to explore the effects of 2 mA tDCS on cortical excitability. We applied 2 mA anodal or cathodal tDCS for 20 min on the left primary motor cortex of 14 healthy subjects. Cathodal tDCS at 1 mA and sham tDCS for 20 min was administered as control session in nine and eight healthy subjects, respectively. Motor cortical excitability was monitored by transcranial magnetic stimulation (TMS)-elicited motor-evoked potentials (MEPs) from the right first dorsal interosseous muscle. Global corticospinal excitability was explored via single TMS pulse-elicited MEP amplitudes, and motor thresholds. Intracortical effects of stimulation were obtained by cortical silent period (CSP), short latency intracortical inhibition (SICI) and facilitation (ICF), and I wave facilitation. The above-mentioned protocols were recorded both before and immediately after tDCS in randomized order. Additionally, single-pulse MEPs, motor thresholds, SICI and ICF were recorded every 30 min up to 2 h after stimulation end, evening of the same day, next morning, next noon and next evening. Anodal as well as cathodal tDCS at 2 mA resulted in a significant increase of MEP amplitudes, whereas 1 mA cathodal tDCS decreased corticospinal excitability. A significant shift of SICI and ICF towards excitability enhancement after both 2 mA cathodal and anodal tDCS was observed. At 1 mA, cathodal tDCS reduced single-pulse TMS-elicited MEP amplitudes and shifted SICI
Bo Zhang
2016-01-01
Full Text Available This paper presents a model for analyzing a five-phase fractional-slot permanent magnet tubular linear motor (FSPMTLM with the modified winding function approach (MWFA. MWFA is a fast modeling method and it gives deep insight into the calculations of the following parameters: air-gap magnetic field, inductances, flux linkages, and detent force, which are essential in modeling the motor. First, using a magnetic circuit model, the air-gap magnetic density is computed from stator magnetomotive force (MMF, flux barrier, and mover geometry. Second, the inductances, flux linkages, and detent force are analytically calculated using modified winding function and the air-gap magnetic density. Finally, a model has been established with the five-phase Park transformation and simulated. The calculations of detent force reveal that the end-effect force is the main component of the detent force. This is also proven by finite element analysis on the motor. The accuracy of the model is validated by comparing with the results obtained using semianalytical method (SAM and measurements to analyze the motor’s transient characteristics. In addition, the proposed method requires less computation time.
Reena, P.; Pai, Rajeshri; Gupta, Tejpal; Rajeev, S.; Dayananda, S.; Jamema, S.V.; Deepak, D.
2006-01-01
Implementation of step-and-shoot intensity-modulated radiotherapy (IMRT) needs careful understanding of the accelerator start-up characteristic to ensure accurate and precise delivery of radiation dose to patient. The dosimetric characteristic of a Siemens Primus linear accelerator (LA) which delivers 6 and 18 MV x-rays at the dose rate of 300 and 500 monitor unit (MU) per minutes (min) respectively was studied under the condition of small MU ranging from 1 to 100. Dose monitor linearity was studied at different dose calibration parameter (D1 C O) by measuring ionization at 10 cm depth in a solid water phantom using a 0.6 cc ionization chamber. Monitor unit stability was studied from different intensity modulated (IM) groups comprising various combinations of MU per field and number of fields. Stability of beam flatness and symmetry was investigated under normal and IMRT mode for 20x20 cm 2 field under small MU using a 2D Profiler kept isocentrically at 5 cm depth. Inter segment response was investigated form 1 to 10 MU by measuring the dose per MU from various IM groups, each consisting of four segments with inter-segment separation of 2 cm. In the range 1-4 MU, the dose linearity error was more than 5% (max -32% at 1 MU) for 6 MV x-rays at factory calibrated D1 C O value of 6000. The dose linearity error was reduced to -10.95% at 1 MU, within -3% for 2 and 3 MU and ± 1% for MU ≥4 when the D1 C O was subsequently tuned at 4500. For 18 MV x-rays, the dose linearity error at factory calibrated D1 C O value of 4400 was within ± 1% for MU ≥3 with maximum of -13.5 observed at 1 MU. For both the beam energies and MU/field ≥4, the stability of monitor unit tested for different IM groups was within ± 1% of the dose from the normal treatment field. This variation increases to -2.6% for 6 MV and -2.7% for 18 MV x-rays for 2 MU/field. No significant variation was observed in the stability of beam profile measured from normal and IMRT mode. The beam flatness was
Reena P
2006-01-01
Full Text Available Implementation of step-and-shoot intensity-modulated radiotherapy (IMRT needs careful understanding of the accelerator start-up characteristic to ensure accurate and precise delivery of radiation dose to patient. The dosimetric characteristic of a Siemens Primus linear accelerator (LA which delivers 6 and 18 MV x-rays at the dose rate of 300 and 500 monitor unit (MU per minutes (min respectively was studied under the condition of small MU ranging from 1 to 100. Dose monitor linearity was studied at different dose calibration parameter (D1_C0 by measuring ionization at 10 cm depth in a solid water phantom using a 0.6 cc ionization chamber. Monitor unit stability was studied from different intensity modulated (IM groups comprising various combinations of MU per field and number of fields. Stability of beam flatness and symmetry was investigated under normal and IMRT mode for 20x20 cm2 field under small MU using a 2D Profiler kept isocentrically at 5 cm depth. Inter segment response was investigated form 1 to 10 MU by measuring the dose per MU from various IM groups, each consisting of four segments with inter-segment separation of 2 cm. In the range 1-4 MU, the dose linearity error was more than 5% (max -32% at 1 MU for 6 MV x-rays at factory calibrated D1_C0 value of 6000. The dose linearity error was reduced to -10.95% at 1 MU, within -3% for 2 and 3 MU and ±1% for MU ≥4 when the D1_C0 was subsequently tuned at 4500. For 18 MV x-rays, the dose linearity error at factory calibrated D1_C0 value of 4400 was within ±1% for MU ≥ 3 with maximum of -13.5 observed at 1 MU. For both the beam energies and MU/field ≥ 4, the stability of monitor unit tested for different IM groups was within ±1% of the dose from the normal treatment field. This variation increases to -2.6% for 6 MV and -2.7% for 18 MV x-rays for 2 MU/field. No significant variation was observed in the stability of beam profile measured from normal and IMRT mode. The beam flatness
Baba, Toshimi; Gotoh, Yusaku; Yamaguchi, Satoshi; Nakagawa, Satoshi; Abe, Hayato; Masuda, Yutaka; Kawahara, Takayoshi
2017-08-01
This study aimed to evaluate a validation reliability of single-step genomic best linear unbiased prediction (ssGBLUP) with a multiple-lactation random regression test-day model and investigate an effect of adding genotyped cows on the reliability. Two data sets for test-day records from the first three lactations were used: full data from February 1975 to December 2015 (60 850 534 records from 2 853 810 cows) and reduced data cut off in 2011 (53 091 066 records from 2 502 307 cows). We used marker genotypes of 4480 bulls and 608 cows. Genomic enhanced breeding values (GEBV) of 305-day milk yield in all the lactations were estimated for at least 535 young bulls using two marker data sets: bull genotypes only and both bulls and cows genotypes. The realized reliability (R 2 ) from linear regression analysis was used as an indicator of validation reliability. Using only genotyped bulls, R 2 was ranged from 0.41 to 0.46 and it was always higher than parent averages. The very similar R 2 were observed when genotyped cows were added. An application of ssGBLUP to a multiple-lactation random regression model is feasible and adding a limited number of genotyped cows has no significant effect on reliability of GEBV for genotyped bulls. © 2016 Japanese Society of Animal Science.
Kang, Bongmun; Yoon, Ho-Sung
2015-02-01
Recently, microalgae was considered as a renewable energy for fuel production because its production is nonseasonal and may take place on nonarable land. Despite all of these advantages, microalgal oil production is significantly affected by environmental factors. Furthermore, the large variability remains an important problem in measurement of algae productivity and compositional analysis, especially, the total lipid content. Thus, there is considerable interest in accurate determination of total lipid content during the biotechnological process. For these reason, various high-throughput technologies were suggested for accurate measurement of total lipids contained in the microorganisms, especially oleaginous microalgae. In addition, more advanced technologies were employed to quantify the total lipids of the microalgae without a pretreatment. However, these methods are difficult to measure total lipid content in wet form microalgae obtained from large-scale production. In present study, the thermal analysis performed with two-step linear temeperature program was applied to measure heat evolved in temperature range from 310 to 351 °C of Nostoc sp. KNUA003 obtained from large-scale cultivation. And then, we examined the relationship between the heat evolved in 310-351 °C (HE) and total lipid content of the wet Nostoc cell cultivated in raceway. As a result, the linear relationship was determined between HE value and total lipid content of Nostoc sp. KNUA003. Particularly, there was a linear relationship of 98% between the HE value and the total lipid content of the tested microorganism. Based on this relationship, the total lipid content converted from the heat evolved of wet Nostoc sp. KNUA003 could be used for monitoring its lipid induction in large-scale cultivation. Copyright © 2014 Elsevier Inc. All rights reserved.
Sharma, Ajeet K; Chowdhury, Debashish
2013-01-01
A DNA polymerase (DNAP) replicates a template DNA strand. It also exploits the template as the track for its own motor-like mechanical movement. In the polymerase mode it elongates the nascent DNA by one nucleotide in each step. However, whenever it commits an error by misincorporating an incorrect nucleotide, it can switch to an exonuclease mode. In the latter mode it excises the wrong nucleotide before switching back to its polymerase mode. We develop a stochastic kinetic model of DNA replication that mimics an in vitro experiment where single-stranded DNA, subjected to a mechanical tension F, is converted to double-stranded DNA by a single DNAP. The F-dependence of the average rate of replication, which depends on the rates of both polymerase and exonuclease activities of the DNAP, is in good qualitative agreement with the corresponding experimental results. We introduce nine novel distinct conditional dwell times of a DNAP. Using the method of first-passage times, we also derive the exact analytical expressions for the probability distributions of these conditional dwell times. The predicted F-dependences of these distributions are, in principle, accessible to single-molecule experiments. (paper)
Ernesto Duany Renté
2011-02-01
Full Text Available Este trabajo complementa al presentado anteriormente: "Aplicación de RT-Linux en el control de motoresde pasos. Primera parte", de manera que se puedan relacionar a las tareas de adquisición y control para laobtención de un sistema lo más exacto posible. Las técnicas empleadas son las de tiempo real aprovechandolas posibilidades del microkernel RT-Linux y los software libres contenidos en sistemas Unix/Linux. Lasseñales se obtienen mediante un conversor AD y mostradas en pantalla empleando el Gnuplot. The work presented in this paper is a complement to the control and acquisition tasks which were explainedin "Application of RT-Linux in the Control of Steps Motors. First Part", so that those both real time taskscan be fully related in order to make the whole control system more accurate. The employed techniquesare those of Real Time Taking advantage of the possibilities of the micro kernel RT-Linux and the freesoftware distributed in the Unix/Linux operating systems. The signals are obtained by means of an ADconverter and are shown in screen using Gnuplot.
Paul, Sarbajit; Chang, Junghwan
2017-07-01
This paper presents a design approach for a magnetic sensor module to detect mover position using the proper orthogonal decomposition-dynamic mode decomposition (POD-DMD)-based nonlinear parametric model order reduction (PMOR). The parameterization of the sensor module is achieved by using the multipolar moment matching method. Several geometric variables of the sensor module are considered while developing the parametric study. The operation of the sensor module is based on the principle of the airgap flux density distribution detection by the Hall Effect IC. Therefore, the design objective is to achieve a peak flux density (PFD) greater than 0.1 T and total harmonic distortion (THD) less than 3%. To fulfill the constraint conditions, the specifications for the sensor module is achieved by using POD-DMD based reduced model. The POD-DMD based reduced model provides a platform to analyze the high number of design models very fast, with less computational burden. Finally, with the final specifications, the experimental prototype is designed and tested. Two different modes, 90° and 120° modes respectively are used to obtain the position information of the linear motor mover. The position information thus obtained are compared with that of the linear scale data, used as a reference signal. The position information obtained using the 120° mode has a standard deviation of 0.10 mm from the reference linear scale signal, whereas the 90° mode position signal shows a deviation of 0.23 mm from the reference. The deviation in the output arises due to the mechanical tolerances introduced into the specification during the manufacturing process. This provides a scope for coupling the reliability based design optimization in the design process as a future extension.
K., Nakaiwa; A., Yamada; K., Tashiro; H., Wakiwaka; Tamagawa-Seiki Co., Ltd; Shinshu University; Shinshu University; Shinshu University
2009-01-01
From a strong demand on the miniaturization of a chip mounter or a semiconductor device, the thrust improvement considering the magnets arrangement is studied. We accept a core stator with a Halbach type magnet array for a current linear motor. The thrust characteristics are compared with two kinds of mover, a NS magnet array and a Halbach magnet array.
Lei, Meizhen; Wang, Liqiang
2018-01-01
To reduce the difficulty of manufacturing and increase the magnetic thrust density, a moving-magnet linear oscillatory motor (MMLOM) without inner-stators was Proposed. To get the optimal design of maximum electromagnetic thrust with minimal permanent magnetic material, firstly, the 3D finite element analysis (FEA) model of the MMLOM was built and verified by comparison with prototype experiment result. Then the influence of design parameters of permanent magnet (PM) on the electromagnetic thrust was systematically analyzed by the 3D FEA to get the design parameters. Secondly, response surface methodology (RSM) was employed to build the response surface model of the new MMLOM, which can obtain an analytical model of the PM volume and thrust. Then a multi-objective optimization methods for design parameters of PM, using response surface methodology (RSM) with a quantum-behaved PSO (QPSO) operator, was proposed. Then the way to choose the best design parameters of PM among the multi-objective optimization solution sets was proposed. Then the 3D FEA of the optimal design candidates was compared. The comparison results showed that the proposed method can obtain the best combination of the geometric parameters of reducing the PM volume and increasing the thrust.
Chouaib Labiod
2017-01-01
Full Text Available This paper presents torque ripple reduction with speed control of 8/6 Switched Reluctance Motor (SRM by the determination of the optimal parameters of the turn on, turn off angles Theta_(on, Theta_(off, and the supply voltage using Particle Swarm Optimization (PSO algorithm and steady state Genetic Algorithm (ssGA. With SRM model, there is difficulty in the control relapsed into highly non-linear static characteristics. For this, the Finite Elements Method (FEM has been used because it is a powerful tool to get a model closer to reality. The mechanism used in this kind of machine control consists of a speed controller in order to determine current reference which must be produced to get the desired speed, hence, hysteresis controller is used to compare current reference with current measured up to achieve switching signals needed in the inverter. Depending on this control, the intelligent routing algorithms get the fitness equation from torque ripple and speed response so as to give the optimal parameters for better results. Obtained results from the proposed strategy based on metaheuristic methods are compared with the basic case without considering the adjustment of specific parameters. Optimized results found clearly confirmed the ability and the efficiency of the proposed strategy based on metaheuristic methods in improving the performances of the SRM control considering different torque loads.
Bravin, E; Sosa, A
2014-01-01
This report summarizes the results of a series of tests performed on the prototype HIE-ISOLDE diagnostic box (HIE-DB) regarding the vibrations and drifts in the transverse position of the scanning blade while moving in and out of beam path in the HIE-ISOLDE short box prototype. To monitor the transverse position of the blade, a series of 0.1 mm diameter holes were drilled on it and their positions were tracked with an optical system. The linear motion actuator was acquired from UHV design (model LSM38-150-SS), and it was adapted to be driven by a brushless EC motor from MAXON. The speed of the scanning blade during the tests was 10 mm/s. The transverse movement of the slit in the direction perpendicular to the movement was lower than 40 m, and is dominated by the displacement of the contact point of the applied force on the lead-screw. An offset on the slit position was observed while changing the direction of movement of the blade, its amplitude being of the order of 30 m. The amplitudes of the displacements...
Does my step look big in this? A visual illusion leads to safer stepping behaviour.
David B Elliott
Full Text Available BACKGROUND: Tripping is a common factor in falls and a typical safety strategy to avoid tripping on steps or stairs is to increase foot clearance over the step edge. In the present study we asked whether the perceived height of a step could be increased using a visual illusion and whether this would lead to the adoption of a safer stepping strategy, in terms of greater foot clearance over the step edge. The study also addressed the controversial question of whether motor actions are dissociated from visual perception. METHODOLOGY/PRINCIPAL FINDINGS: 21 young, healthy subjects perceived the step to be higher in a configuration of the horizontal-vertical illusion compared to a reverse configuration (p = 0.01. During a simple stepping task, maximum toe elevation changed by an amount corresponding to the size of the visual illusion (p<0.001. Linear regression analyses showed highly significant associations between perceived step height and maximum toe elevation for all conditions. CONCLUSIONS/SIGNIFICANCE: The perceived height of a step can be manipulated using a simple visual illusion, leading to the adoption of a safer stepping strategy in terms of greater foot clearance over a step edge. In addition, the strong link found between perception of a visual illusion and visuomotor action provides additional support to the view that the original, controversial proposal by Goodale and Milner (1992 of two separate and distinct visual streams for perception and visuomotor action should be re-evaluated.
Deconinck, E; Zhang, M H; Petitet, F; Dubus, E; Ijjaali, I; Coomans, D; Vander Heyden, Y
2008-02-18
The use of some unconventional non-linear modeling techniques, i.e. classification and regression trees and multivariate adaptive regression splines-based methods, was explored to model the blood-brain barrier (BBB) passage of drugs and drug-like molecules. The data set contains BBB passage values for 299 structural and pharmacological diverse drugs, originating from a structured knowledge-based database. Models were built using boosted regression trees (BRT) and multivariate adaptive regression splines (MARS), as well as their respective combinations with stepwise multiple linear regression (MLR) and partial least squares (PLS) regression in two-step approaches. The best models were obtained using combinations of MARS with either stepwise MLR or PLS. It could be concluded that the use of combinations of a linear with a non-linear modeling technique results in some improved properties compared to the individual linear and non-linear models and that, when the use of such a combination is appropriate, combinations using MARS as non-linear technique should be preferred over those with BRT, due to some serious drawbacks of the BRT approaches.
Georgescu Daniel Ștefan
2014-09-01
Full Text Available This paper presents the appreciations and contributions regarding the use of psychological techniques to stimulate technical creativity with special reference to consonant association technique and inversion technique. The study is performed in the field of TISR transformers and electric motors with limited movement, starting from the analogy between a transformer and an electric motor with shorted coil. It approached a particular aspect of inversion technique in relation with the transformation of negative effects and results of laws, phenomena and processes into useful applications. The matter reffered to is related to the question: ,,why disadvantages and no advantages ?". At the end of the paper are presented and discussed some experimental models produced and studied by the authors in the Research Laboratory of Machines, Equipment and Drives at the University of Suceava and are exposed conclusions drawn from the experimental study and directions for future research.
Eduardo Giraldo Suárez; Santiago Sánchez Acevedo
2009-01-01
Este documento presenta la aplicación de la técnica de control no lineal clásica llamada linealización por realimentación de variables de estado. Se hace una aplicación en el motor de inducción, la variable a controlar es la velocidad del eje del motor, el sistema emplea el esquema de control vectorial para máquinas de corriente alterna desarrollado en las últimas décadas; este método es análogo a la técnica de control del motor de corriente directa. El modelo del motor de inducción se descri...
Fuzzy control of small servo motors
Maor, Ron; Jani, Yashvant
1993-01-01
To explore the benefits of fuzzy logic and understand the differences between the classical control methods and fuzzy control methods, the Togai InfraLogic applications engineering staff developed and implemented a motor control system for small servo motors. The motor assembly for testing the fuzzy and conventional controllers consist of servo motor RA13M and an encoder with a range of 4096 counts. An interface card was designed and fabricated to interface the motor assembly and encoder to an IBM PC. The fuzzy logic based motor controller was developed using the TILShell and Fuzzy C Development System on an IBM PC. A Proportional-Derivative (PD) type conventional controller was also developed and implemented in the IBM PC to compare the performance with the fuzzy controller. Test cases were defined to include step inputs of 90 and 180 degrees rotation, sine and square wave profiles in 5 to 20 hertz frequency range, as well as ramp inputs. In this paper we describe our approach to develop a fuzzy as well as PH controller, provide details of hardware set-up and test cases, and discuss the performance results. In comparison, the fuzzy logic based controller handles the non-linearities of the motor assembly very well and provides excellent control over a broad range of parameters. Fuzzy technology, as indicated by our results, possesses inherent adaptive features.
Design, Modeling and Performance Optimization of a Novel Rotary Piezoelectric Motor
Duong, Khanh A.; Garcia, Ephrahim
1997-01-01
This work has demonstrated a proof of concept for a torsional inchworm type motor. The prototype motor has shown that piezoelectric stack actuators can be used for rotary inchworm motor. The discrete linear motion of piezoelectric stacks can be converted into rotary stepping motion. The stacks with its high force and displacement output are suitable actuators for use in piezoelectric motor. The designed motor is capable of delivering high torque and speed. Critical issues involving the design and operation of piezoelectric motors were studied. The tolerance between the contact shoes and the rotor has proved to be very critical to the performance of the motor. Based on the prototype motor, a waveform optimization scheme was proposed and implemented to improve the performance of the motor. The motor was successfully modeled in MATLAB. The model closely represents the behavior of the prototype motor. Using the motor model, the input waveforms were successfully optimized to improve the performance of the motor in term of speed, torque, power and precision. These optimized waveforms drastically improve the speed of the motor at different frequencies and loading conditions experimentally. The optimized waveforms also increase the level of precision of the motor. The use of the optimized waveform is a break-away from the traditional use of sinusoidal and square waves as the driving signals. This waveform optimization scheme can be applied to any inchworm motors to improve their performance. The prototype motor in this dissertation as a proof of concept was designed to be robust and large. Future motor can be designed much smaller and more efficient with lessons learned from the prototype motor.
Masuda, Y; Misztal, I; Tsuruta, S; Legarra, A; Aguilar, I; Lourenco, D A L; Fragomeni, B O; Lawlor, T J
2016-03-01
The objectives of this study were to develop and evaluate an efficient implementation in the computation of the inverse of genomic relationship matrix with the recursion algorithm, called the algorithm for proven and young (APY), in single-step genomic BLUP. We validated genomic predictions for young bulls with more than 500,000 genotyped animals in final score for US Holsteins. Phenotypic data included 11,626,576 final scores on 7,093,380 US Holstein cows, and genotypes were available for 569,404 animals. Daughter deviations for young bulls with no classified daughters in 2009, but at least 30 classified daughters in 2014 were computed using all the phenotypic data. Genomic predictions for the same bulls were calculated with single-step genomic BLUP using phenotypes up to 2009. We calculated the inverse of the genomic relationship matrix GAPY(-1) based on a direct inversion of genomic relationship matrix on a small subset of genotyped animals (core animals) and extended that information to noncore animals by recursion. We tested several sets of core animals including 9,406 bulls with at least 1 classified daughter, 9,406 bulls and 1,052 classified dams of bulls, 9,406 bulls and 7,422 classified cows, and random samples of 5,000 to 30,000 animals. Validation reliability was assessed by the coefficient of determination from regression of daughter deviation on genomic predictions for the predicted young bulls. The reliabilities were 0.39 with 5,000 randomly chosen core animals, 0.45 with the 9,406 bulls, and 7,422 cows as core animals, and 0.44 with the remaining sets. With phenotypes truncated in 2009 and the preconditioned conjugate gradient to solve mixed model equations, the number of rounds to convergence for core animals defined by bulls was 1,343; defined by bulls and cows, 2,066; and defined by 10,000 random animals, at most 1,629. With complete phenotype data, the number of rounds decreased to 858, 1,299, and at most 1,092, respectively. Setting up GAPY(-1
Ernesto Duany Renté
2011-02-01
Full Text Available La idea fundamental de este artículo es mostrar cómo controlar un motor de paso empleando el puertoparalelo de una computadora, y demostrar la eficiencia temporal de las aplicaciones que se desarrollan ensistemas preparados para ejecutar tareas de precisión; aprovechar al máximo la capacidad de tiempo realestricto que brinda RT-Linux para el control de accionamientos eléctricos. Se desarrolla un pequeño softwareen lenguaje C que envía las señales al puerto paralelo en el tiempo necesario. Este software no estádiseñado con fines comerciales, solo permite realizar pruebas sobre el circuito de control diseñado paraeste propósito. The fundamental idea of this article is to control a steps motor using the parallel port of a computer anddemonstrate the temporary efficiency of the applications that are executed in prepared systems to executetasks of real time. To take advantage of to the maximum capacity of strict real time that RT-Linux offers usfor the control of electric workings. A small software is developed in language C that sent the signs to theparallel port in the necessary time. This software is not designed with commercial, only allows to carry outtests on the control circuit designed for this purpose.
Pogson, EM [Institute of Medical Physics, The University of Sydney, Sydney, New South Wales (Australia); Liverpool and Macarthur Cancer Therapy Centres, Liverpool, NSW (United Kingdom); Ingham Institute for Applied Medical Research, Sydney, NSW (Australia); Hansen, C [Laboratory of Radiation Physics, Odense University Hospital, Odense (Denmark); Institute of Clinical Research, University of Southern Denmark, Odense (Denmark); Blake, S; Thwaites, D [Institute of Medical Physics, The University of Sydney, Sydney, New South Wales (Australia); Arumugam, S [Liverpool and Macarthur Cancer Therapy Centres, Liverpool, NSW (United Kingdom); Holloway, L [Institute of Medical Physics, The University of Sydney, Sydney, New South Wales (Australia); Liverpool and Macarthur Cancer Therapy Centres, Liverpool, NSW (United Kingdom); Laboratory of Radiation Physics, Odense University Hospital, Odense (Denmark); South Western Sydney Clinical School, University of New South Wales, Sydney, NSW (Australia); University of Wollongong, Wollongong, NSW (Australia)
2016-06-15
Purpose: To identify the robustness of different treatment techniques in respect to simulated linac errors on the dose distribution to the target volume and organs at risk for step and shoot IMRT (ssIMRT), VMAT and Autoplan generated VMAT nasopharynx plans. Methods: A nasopharynx patient dataset was retrospectively replanned with three different techniques: 7 beam ssIMRT, one arc manual generated VMAT and one arc automatically generated VMAT. Treatment simulated uncertainties: gantry, collimator, MLC field size and MLC shifts, were introduced into these plans at increments of 5,2,1,−1,−2 and −5 (degrees or mm) and recalculated in Pinnacle. The mean and maximum doses were calculated for the high dose PTV, parotids, brainstem, and spinal cord and then compared to the original baseline plan. Results: Simulated gantry angle errors have <1% effect on the PTV, ssIMRT is most sensitive. The small collimator errors (±1 and ±2 degrees) impacted the mean PTV dose by <2% for all techniques, however for the ±5 degree errors mean target varied by up to 7% for the Autoplan VMAT and 10% for the max dose to the spinal cord and brain stem, seen in all techniques. The simulated MLC shifts introduced the largest errors for the Autoplan VMAT, with the larger MLC modulation presumably being the cause. The most critical error observed, was the MLC field size error, where even small errors of 1 mm, caused significant changes to both the PTV and the OAR. The ssIMRT is the least sensitive and the Autoplan the most sensitive, with target errors of up to 20% over and under dosages observed. Conclusion: For a nasopharynx patient the plan robustness observed is highest for the ssIMRT plan and lowest for the Autoplan generated VMAT plan. This could be caused by the more complex MLC modulation seen for the VMAT plans. This project is supported by a grant from NSW Cancer Council.
Pogson, EM; Hansen, C; Blake, S; Thwaites, D; Arumugam, S; Holloway, L
2016-01-01
Purpose: To identify the robustness of different treatment techniques in respect to simulated linac errors on the dose distribution to the target volume and organs at risk for step and shoot IMRT (ssIMRT), VMAT and Autoplan generated VMAT nasopharynx plans. Methods: A nasopharynx patient dataset was retrospectively replanned with three different techniques: 7 beam ssIMRT, one arc manual generated VMAT and one arc automatically generated VMAT. Treatment simulated uncertainties: gantry, collimator, MLC field size and MLC shifts, were introduced into these plans at increments of 5,2,1,−1,−2 and −5 (degrees or mm) and recalculated in Pinnacle. The mean and maximum doses were calculated for the high dose PTV, parotids, brainstem, and spinal cord and then compared to the original baseline plan. Results: Simulated gantry angle errors have <1% effect on the PTV, ssIMRT is most sensitive. The small collimator errors (±1 and ±2 degrees) impacted the mean PTV dose by <2% for all techniques, however for the ±5 degree errors mean target varied by up to 7% for the Autoplan VMAT and 10% for the max dose to the spinal cord and brain stem, seen in all techniques. The simulated MLC shifts introduced the largest errors for the Autoplan VMAT, with the larger MLC modulation presumably being the cause. The most critical error observed, was the MLC field size error, where even small errors of 1 mm, caused significant changes to both the PTV and the OAR. The ssIMRT is the least sensitive and the Autoplan the most sensitive, with target errors of up to 20% over and under dosages observed. Conclusion: For a nasopharynx patient the plan robustness observed is highest for the ssIMRT plan and lowest for the Autoplan generated VMAT plan. This could be caused by the more complex MLC modulation seen for the VMAT plans. This project is supported by a grant from NSW Cancer Council.
Fragomeni, B O; Lourenco, D A L; Tsuruta, S; Bradford, H L; Gray, K A; Huang, Y; Misztal, I
2016-12-01
The purposes of this study were to analyze the impact of seasonal losses due to heat stress in pigs from different breeds raised in different environments and to evaluate the accuracy improvement from adding genomic information to genetic evaluations. Data were available for 2 different swine populations: purebred Duroc animals raised in Texas and North Carolina and commercial crosses of Duroc and F females (Landrace × Large White) raised in Missouri and North Carolina; pedigrees provided links for animals from different states. Pedigree information was available for 553,442 animals, of which 8,232 pure breeds were genotyped. Traits were BW at 170 d for purebred animals and HCW for crossbred animals. Analyses were done with an animal model as either single- or 2-trait models using phenotypes measured in different states as separate traits. Additionally, reaction norm models were fitted for 1 or 2 traits using heat load index as a covariable. Heat load was calculated as temperature-humidity index greater than 70 and was averaged over 30 d prior to data collection. Variance components were estimated with average information REML, and EBV and genomic EBV (GEBV) with BLUP or single-step genomic BLUP (ssGBLUP). Validation was assessed for 146 genotyped sires with progeny in the last generation. Accuracy was calculated as a correlation between EBV and GEBV using reduced data (all animals, except the last generation) and using complete data. Heritability estimates for purebred animals were similar across states (varying from 0.23 to 0.26), and reaction norm models did not show evidence of a heat stress effect. Genetic correlations between states for heat loads were always strong (>0.91). For crossbred animals, no differences in heritability were found in single- or 2-trait analysis (from 0.17 to 0.18), and genetic correlations between states were moderate (0.43). In the reaction norm for crossbreeds, heritabilities ranged from 0.15 to 0.30 and genetic correlations
Alcaraz, J.
2001-01-01
After several years of study e''+ e''- linear colliders in the TeV range have emerged as the major and optimal high-energy physics projects for the post-LHC era. These notes summarize the present status form the main accelerator and detector features to their physics potential. The LHC era. These notes summarize the present status, from the main accelerator and detector features to their physics potential. The LHC is expected to provide first discoveries in the new energy domain, whereas an e''+ e''- linear collider in the 500 GeV-1 TeV will be able to complement it to an unprecedented level of precision in any possible areas: Higgs, signals beyond the SM and electroweak measurements. It is evident that the Linear Collider program will constitute a major step in the understanding of the nature of the new physics beyond the Standard Model. (Author) 22 refs
A simple theory of motor protein kinetics and energetics. II.
Qian, H
2000-01-10
A three-state stochastic model of motor protein [Qian, Biophys. Chem. 67 (1997) pp. 263-267] is further developed to illustrate the relationship between the external load on an individual motor protein in aqueous solution with various ATP concentrations and its steady-state velocity. A wide variety of dynamic motor behavior are obtained from this simple model. For the particular case of free-load translocation being the most unfavorable step within the hydrolysis cycle, the load-velocity curve is quasi-linear, V/Vmax = (cF/Fmax-c)/(1-c), in contrast to the hyperbolic relationship proposed by A.V. Hill for macroscopic muscle. Significant deviation from the linearity is expected when the velocity is less than 10% of its maximal (free-load) value--a situation under which the processivity of motor diminishes and experimental observations are less certain. We then investigate the dependence of load-velocity curve on ATP (ADP) concentration. It is shown that the free load Vmax exhibits a Michaelis-Menten like behavior, and the isometric Fmax increases linearly with ln([ATP]/[ADP]). However, the quasi-linear region is independent of the ATP concentration, yielding an apparently ATP-independent maximal force below the true isometric force. Finally, the heat production as a function of ATP concentration and external load are calculated. In simple terms and solved with elementary algebra, the present model provides an integrated picture of biochemical kinetics and mechanical energetics of motor proteins.
Sarajlic, Edin; Berenschot, Johan W.; Tas, Niels Roelof; Fujita, H.; Krijnen, Gijsbertus J.M.; Elwenspoek, Michael Curt
We report on an electrostatic linear micromotor, which employs built-in mechanical leverage to convert normal deflection of a flexible plate into a small in-plane step and two clamps to enable bidirectional inchworm motion. The motor, measuring 412 /spl mu/m /spl times/ 286 /spl mu/m, is fabricated
Nonlinear Speed Control of Permanent Magnet Synchronous Motor with Salient Poles
K. Kyslan
2015-12-01
Full Text Available This paper presents the speed control of permanent magnet synchronous motor with salient poles based on two-step linearization method. In the first step, the direct compensation of the nonlinearities in the equations of current is used. In the second step, the input-output linearization in the state space is used for the decoupling of flux and torque axis. Simulated results are compared to the field oriented vector control structure with PI controllers in order to show differences in the performance of both approaches.
Conceptual design of stepper motor replacing servo motor for control rod controller
Mohd Dzul Aiman Aslan; Mohd Idris Taib; Izhar Abu Hussin; Mohd Khairulezwan Abdul Manan; Mohd Sabri Minhat
2010-01-01
In PUSPATI TRIGA Reactor, current control rod controller are using servo motor to control the movement. Control rod is a very important safety element and measure in every nuclear reactor. So, precision is very important in measurement of security in the nuclear reactor. In this case, there are a few disadvantages when using the servo motor is measurement of the motor is not precise. One solution to overcome this is by shifting servo motor with stepper motor. A stepper motor (or step motor) is a brush less, synchronous electric motor that can divide a full rotation into a large number of steps. (author)
Avram Mihai
2017-01-01
Full Text Available The paper presents a linear pneumatic actuator with short working stroke. It consists of a pneumatic motor (a simple stroke cylinder or a membrane chamber, two 2/2 pneumatic distributors “all or nothing” electrically commanded for controlling the intake/outtake flow to/from the active chamber of the motor, a position transducer and a microcontroller. There is also presented the theoretical analysis (mathematical modelling and numerical simulation accomplished.
Avram Mihai; Niţu Constantin; Bucşan Constantin; Grămescu Bogdan
2017-01-01
The paper presents a linear pneumatic actuator with short working stroke. It consists of a pneumatic motor (a simple stroke cylinder or a membrane chamber), two 2/2 pneumatic distributors “all or nothing” electrically commanded for controlling the intake/outtake flow to/from the active chamber of the motor, a position transducer and a microcontroller. There is also presented the theoretical analysis (mathematical modelling and numerical simulation) accomplished.
Holakooie, Mohammad Hosein; Ojaghi, Mansour; Taheri, Asghar
2016-01-01
This paper investigates sensorless indirect field oriented control (IFOC) of SLIM with full-order Luenberger observer. The dynamic equations of SLIM are first elaborated to draw full-order Luenberger observer with some simplifying assumption. The observer gain matrix is derived from conventional procedure so that observer poles are proportional to SLIM poles to ensure the stability of system for wide range of linear speed. The operation of observer is significantly impressed by adaptive scheme. A fuzzy logic control (FLC) is proposed as adaptive scheme to estimate linear speed using speed tuning signal. The parameters of FLC are tuned using an off-line method through chaotic optimization algorithm (COA). The performance of the proposed observer is verified by both numerical simulation and real-time hardware-in-the-loop (HIL) implementation. Moreover, a detailed comparative study among proposed and other speed observers is obtained under different operation conditions. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.
Rahaman, Obaidur; Estrada, Trilce P; Doren, Douglas J; Taufer, Michela; Brooks, Charles L; Armen, Roger S
2011-09-26
The performances of several two-step scoring approaches for molecular docking were assessed for their ability to predict binding geometries and free energies. Two new scoring functions designed for "step 2 discrimination" were proposed and compared to our CHARMM implementation of the linear interaction energy (LIE) approach using the Generalized-Born with Molecular Volume (GBMV) implicit solvation model. A scoring function S1 was proposed by considering only "interacting" ligand atoms as the "effective size" of the ligand and extended to an empirical regression-based pair potential S2. The S1 and S2 scoring schemes were trained and 5-fold cross-validated on a diverse set of 259 protein-ligand complexes from the Ligand Protein Database (LPDB). The regression-based parameters for S1 and S2 also demonstrated reasonable transferability in the CSARdock 2010 benchmark using a new data set (NRC HiQ) of diverse protein-ligand complexes. The ability of the scoring functions to accurately predict ligand geometry was evaluated by calculating the discriminative power (DP) of the scoring functions to identify native poses. The parameters for the LIE scoring function with the optimal discriminative power (DP) for geometry (step 1 discrimination) were found to be very similar to the best-fit parameters for binding free energy over a large number of protein-ligand complexes (step 2 discrimination). Reasonable performance of the scoring functions in enrichment of active compounds in four different protein target classes established that the parameters for S1 and S2 provided reasonable accuracy and transferability. Additional analysis was performed to definitively separate scoring function performance from molecular weight effects. This analysis included the prediction of ligand binding efficiencies for a subset of the CSARdock NRC HiQ data set where the number of ligand heavy atoms ranged from 17 to 35. This range of ligand heavy atoms is where improved accuracy of predicted ligand
Hounsgaard, Jorn
2017-01-01
Motor neurons translate synaptic input from widely distributed premotor networks into patterns of action potentials that orchestrate motor unit force and motor behavior. Intercalated between the CNS and muscles, motor neurons add to and adjust the final motor command. The identity and functional...... in in vitro preparations is far from complete. Nevertheless, a foundation has been provided for pursuing functional significance of intrinsic response properties in motoneurons in vivo during motor behavior at levels from molecules to systems....
de Pontes B. R.
2012-07-01
Full Text Available In this paper, we deal with the research of a vibrating model of an energy harvester device, including the nonlinearities in the model of the piezoelectric coupling and the non-ideal excitation. We show, using numerical simulations, in the analysis of the dynamic responses, that the harvested power is influenced by non-linear vibrations of the structure. Chaotic behavior was also observed, causing of the loss of energy throughout the simulation time. Using a perturbation technique, we find an approximate analytical solution for the non-ideal system. Then, we apply both two control techniques, to keep the considered system, into a stable condition. Both the State Dependent Ricatti Equation (SDRE control as the feedback control by changing the energy of the oscillator, were efficient in controlling of the considered non-ideal system.
Yamamoto, T [JR Railway Technical Research Inst., Tokyo (Japan); Nakamura, S [Ebara Corp., Tokyo (Japan)
1994-06-10
A power generator is developed to be used as the auxiliary power source for the first carriage at the levitation type railway Yamanashi linear experimental line. The gas turbine generator is installed to supply power to the electric equipment on the carriage, and the power generating conditions are transmitted to the ground commanding room via on-board central control system for centralized controlling. An aircraft diversion type ST6 gas turbine and a high frequency light weight generator are combined for the gas turbine generator developed this time. Single reduction planetary gear is employed for the reduction gear which connects the two units directly, the gas turbine being connected to one side and the generator to the other side with no coupling. The output of the generator is 350kW, AC 455V, and 400Hz, and power is supplied to the electric devices on the carriage after having been converted to DC 600V. Aluminium is used to reduce the weights of the soundproof enclosure and exhaust dust shell plate. 1 fig., 1 tab.
Hekmatmanesh, Amin; Jamaloo, Fatemeh; Wu, Huapeng; Handroos, Heikki; Kilpeläinen, Asko
2018-04-01
Brain Computer Interface (BCI) can be a challenge for developing of robotic, prosthesis and human-controlled systems. This work focuses on the implementation of a common spatial pattern (CSP) base algorithm to detect event related desynchronization patterns. Utilizing famous previous work in this area, features are extracted by filter bank with common spatial pattern (FBCSP) method, and then weighted by a sensitive learning vector quantization (SLVQ) algorithm. In the current work, application of the radial basis function (RBF) as a mapping kernel of linear discriminant analysis (KLDA) method on the weighted features, allows the transfer of data into a higher dimension for more discriminated data scattering by RBF kernel. Afterwards, support vector machine (SVM) with generalized radial basis function (GRBF) kernel is employed to improve the efficiency and robustness of the classification. Averagely, 89.60% accuracy and 74.19% robustness are achieved. BCI Competition III, Iva data set is used to evaluate the algorithm for detecting right hand and foot imagery movement patterns. Results show that combination of KLDA with SVM-GRBF classifier makes 8.9% and 14.19% improvements in accuracy and robustness, respectively. For all the subjects, it is concluded that mapping the CSP features into a higher dimension by RBF and utilization GRBF as a kernel of SVM, improve the accuracy and reliability of the proposed method.
Antonova, A A; Absatova, K A; Korneev, A A; Kurgansky, A V
2015-01-01
The production of drawing movements was studied in 29 right-handed children of 9-to-11 years old. The movements were the sequences of horizontal and vertical linear stokes conjoined at right angle (open polygonal chains) referred to throughout the paper as trajectories. The length of a trajectory varied from 4 to 6. The trajectories were presented visually to a subject in static (linedrawing) and dynamic (moving cursor that leaves no trace) modes. The subjects were asked to draw (copy) a trajectory in response to delayed go-signal (short click) as fast as possible without lifting the pen. The production latency time, the average movement duration along a trajectory segment, and overall number of errors committed by a subject during trajectory production were analyzed. A comparison of children's data with similar data in adults (16 subjects) shows the following. First, a substantial reduction in error rate is observed in the age range between 9 and 11 years old for both static and dynamic modes of trajectory presentation, with children of 11 still committing more error than adults. Second, the averaged movement duration shortens with age while the latency time tends to increase. Third, unlike the adults, the children of 9-11 do not show any difference in latency time between static and dynamic modes of visual presentation of trajectories. The difference in trajectory production between adult and children is attributed to the predominant involvement of on-line programming in children and pre-programming in adults.
Coupling with concentric contact around motor shaft for line start synchronous motor
Melfi, Michael J.; Burdeshaw, Galen E.
2017-10-03
A method comprises providing a line-start synchronous motor. The motor has a stator, a rotor core disposed within the stator, and a motor shaft. In accordance with a step of the method, a coupling for coupling a load to the motor is provided. The coupling has a motor shaft attachment portion configured to provide substantially concentric contact around the shaft at the end of the motor shaft. The coupling has a load attachment portion configured to operatively connect to a load. In accordance with a step of the method, a load is coupled to the motor with the coupling, and driven from start to at least near synchronous speed during steady state operation of the motor with a load coupled thereto. The motor shaft attachment portion may comprise a bushing assembly with matching and opposed tapered surfaces that cooperate to secure the motor shaft attachment portion around the motor shaft.
Nguyen, Phuong H; Gonzalez-Casanova, Ines; Young, Melissa F; Truong, Truong Viet; Hoang, Hue; Nguyen, Huong; Nguyen, Son; DiGirolamo, Ann M; Martorell, Reynaldo; Ramakrishnan, Usha
2017-08-01
Background: Maternal health and nutrition play a crucial role in early child growth and development. However, little is known about the benefits of preconception micronutrient interventions beyond the role of folic acid (FA) and neural tube defects. Objective: We evaluated the impact of weekly preconception multiple micronutrient (MM) or iron and folic acid (IFA) supplementation on child growth and development through the age of 2 y compared with FA alone. Methods: We followed 1599 offspring born to women who participated in a randomized controlled trial of preconception supplementation in Vietnam. Women received weekly supplements that contained either 2800 μg FA, 60 mg Fe and 2800 μg FA, or 15 MMs including IFA, from baseline until conception followed by daily prenatal IFA supplements until delivery. Child anthropometry was measured at birth and at 3, 6, 12, 18, and 24 mo. Child development was measured with the use of the Bayley Scales for Infant Development III at 24 mo. Results: The groups were similar for baseline maternal and offspring birth characteristics. At 24 mo of age, the offspring in the IFA group had significantly higher length-for-age z scores (LAZs) (0.14; 95% CI: 0.03, 0.26), reduced risk of being stunted (0.87; 95% CI: 0.76, 0.99), and smaller yearly decline in LAZs (0.10; 95% CI: 0.04, 0.15) than the offspring in the FA group. Similar trends were found for the offspring in the MM group compared with the FA group for LAZs (0.10; 95% CI: -0.02, 0.22) and the risk of being stunted (0.88; 95% CI: 0.77, 1.01). Offspring in the IFA group had improved motor development ( P = 0.03), especially fine motor development (0.41; 95% CI: 0.05, 0.77), at the age of 24 mo, but there were no differences for measures of cognition or language. Conclusions: Preconception supplementation with IFA improved linear growth and fine motor development at 2 y of age compared with FA. Future studies should examine whether these effects persist and improve child health and
Control Software for Piezo Stepping Actuators
Shields, Joel F.
2013-01-01
A control system has been developed for the Space Interferometer Mission (SIM) piezo stepping actuator. Piezo stepping actuators are novel because they offer extreme dynamic range (centimeter stroke with nanometer resolution) with power, thermal, mass, and volume advantages over existing motorized actuation technology. These advantages come with the added benefit of greatly reduced complexity in the support electronics. The piezo stepping actuator consists of three fully redundant sets of piezoelectric transducers (PZTs), two sets of brake PZTs, and one set of extension PZTs. These PZTs are used to grasp and move a runner attached to the optic to be moved. By proper cycling of the two brake and extension PZTs, both forward and backward moves of the runner can be achieved. Each brake can be configured for either a power-on or power-off state. For SIM, the brakes and gate of the mechanism are configured in such a manner that, at the end of the step, the actuator is in a parked or power-off state. The control software uses asynchronous sampling of an optical encoder to monitor the position of the runner. These samples are timed to coincide with the end of the previous move, which may consist of a variable number of steps. This sampling technique linearizes the device by avoiding input saturation of the actuator and makes latencies of the plant vanish. The software also estimates, in real time, the scale factor of the device and a disturbance caused by cycling of the brakes. These estimates are used to actively cancel the brake disturbance. The control system also includes feedback and feedforward elements that regulate the position of the runner to a given reference position. Convergence time for smalland medium-sized reference positions (less than 200 microns) to within 10 nanometers can be achieved in under 10 seconds. Convergence times for large moves (greater than 1 millimeter) are limited by the step rate.
Sensory-motor problems in Autism
Whyatt, Caroline; Craig, Cathy
2013-01-01
Despite being largely characterized as a social and cognitive disorder, strong evidence indicates the presence of significant sensory-motor problems in Autism Spectrum Disorder (ASD). This paper outlines our progression from initial, broad assessment using the Movement Assessment Battery for Children (M-ABC2) to subsequent targeted kinematic assessment. In particular, pronounced ASD impairment seen in the broad categories of manual dexterity and ball skills was found to be routed in specific difficulties on isolated tasks, which were translated into focused experimental assessment. Kinematic results from both subsequent studies highlight impaired use of perception-action coupling to guide, adapt and tailor movement to task demands, resulting in inflexible and rigid motor profiles. In particular difficulties with the use of temporal adaption are shown, with “hyperdexterity” witnessed in ballistic movement profiles, often at the cost of spatial accuracy and task performance. By linearly progressing from the use of a standardized assessment tool to targeted kinematic assessment, clear and defined links are drawn between measureable difficulties and underlying sensory-motor assessment. Results are specifically viewed in-light of perception-action coupling and its role in early infant development suggesting that rather than being “secondary” level impairment, sensory-motor problems may be fundamental in the progression of ASD. This logical and systematic process thus allows a further understanding into the potential root of observable motor problems in ASD; a vital step if underlying motor problems are to be considered a fundamental aspect of autism and allow a route of non-invasive preliminary diagnosis. PMID:23882194
Sensory-motor problems in Autism
Caroline eWhyatt
2013-07-01
Full Text Available Despite being largely characterised as a social and cognitive disorder, strong evidence indicates the presence of significant sensory-motor problems in Autism Spectrum Disorder (ASD. This paper outlines our progression from initial, broad assessment using the Movement Assessment Battery for Children (M-ABC2 to subsequent targeted kinematic assessment. In particular, pronounced ASD impairment seen in the broad categories of manual dexterity and ball skills was found to be routed in specific difficulties on isolated tasks, which were translated into focused experimental assessment. Kinematic results from both subsequent studies highlight impaired use of perception-action coupling to guide, adapt and tailor movement to task demands, resulting in inflexible and rigid motor profiles. In particular difficulties with the use of temporal adaption are shown, with hyperdexterity witnessed in ballistic movement profiles, often at the cost of spatial accuracy and task performance. By linearly progressing from the use of a standardised assessment tool to targeted kinematic assessment, clear and defined links are drawn between measureable difficulties and underlying sensory-motor assessment. Results are specifically viewed in-light of perception-action coupling and its role in early infant development suggesting that rather than being secondary level impairment, sensory-motor problems may be fundamental in the progression of ASD. This logical and systematic process thus allows a further understanding into the potential route of observable motor problems in ASD; a vital step if underlying motor problems are to be considered a fundamental aspect of autism and allow a route of non-invasive preliminary diagnosis.
Ultrafast Excited State Dynamics in Molecular Motors : Coupling of Motor Length to Medium Viscosity
Conyard, Jamie; Stacko, Peter; Chen, Jiawen; McDonagh, Sophie; Hall, Christopher R.; Laptenok, Sergey P.; Browne, Wesley R.; Feringa, Ben L.; Meech, Stephen R.
2017-01-01
Photochemically driven molecular motors convert the energy of incident radiation to intramolecular rotational motion. The motor molecules considered here execute four step unidirectional rotational motion. This comprises a pair of successive light induced isomerizations to a metastable state
Control of non-conventional synchronous motors
Louis, Jean-Paul
2013-01-01
Classical synchronous motors are the most effective device to drive industrial production systems and robots with precision and rapidity. However, numerous applications require efficient controls in non-conventional situations. Firstly, this is the case with synchronous motors supplied by thyristor line-commutated inverters, or with synchronous motors with faults on one or several phases. Secondly, many drive systems use non-conventional motors such as polyphase (more than three phases) synchronous motors, synchronous motors with double excitation, permanent magnet linear synchronous motors,
Das, Animesh; Gieb, Klaus; Krupskaya, Yulia; Demeshko, Serhiy; Dechert, Sebastian; Klingeler, Rüdiger; Kataev, Vladislav; Büchner, Bernd; Müller, Paul; Meyer, Franc
2011-03-16
First members of a new family of heterometallic Mn/Ni complexes [Mn(2)Ni(3)X(2)L(4)(LH)(2)(H(2)O)(2)] (X = Cl: 1; X = Br: 2) with the new ligand 2-{3-(2-hydroxyphenyl)-1H-pyrazol-1-yl}ethanol (H(2)L) have been synthesized, and single crystals obtained from CH(2)Cl(2) solutions have been characterized crystallographically. The molecular structures feature a quasi-linear Mn(III)-Ni(II)-Ni(II)-Ni(II)-Mn(III) core with six-coordinate metal ions, where elongated axes of all the distorted octahedral coordination polyhedra are aligned parallel and are fixed with respect to each other by intramolecular hydrogen bonds. 1 and 2 exhibit quite strong ferromagnetic exchange interactions throughout (J(Mn-Ni) ≈ 40 K (1) or 42 K (2); J(Ni-Ni) ≈ 22 K (1) or 18 K (2)) that lead to an S(tot) = 7 ground state, and a sizable uniaxial magnetoanisotropy with D(mol) values -0.55 K (1) and -0.45 K (2). These values are directly derived also from frequency- and temperature-dependent high-field EPR spectra. Slow relaxation of the magnetization at low temperatures and single-molecule magnet (SMM) behavior are evident from frequency-dependent peaks in the out-of-phase ac susceptibilities and magnetization versus dc field measurements, with significant energy barriers to spin reversal U(eff) = 27 K (1) and 22 K (2). Pronounced quantum tunnelling steps are observed in the hysteresis loops of the temperature- and scan rate-dependent magnetization data, but with the first relaxation step shifted above (1) or below (2) the zero crossing of the magnetic field, despite the very similar molecular structures. The different behavior of 1 and 2 is interpreted in terms of antiferromagnetic (1) or ferromagnetic (2) intermolecular interactions, which are discussed in view of the subtle differences of intermolecular contacts within the crystal lattice.
A Linear Electromagnetic Piston Pump
Hogan, Paul H.
Advancements in mobile hydraulics for human-scale applications have increased demand for a compact hydraulic power supply. Conventional designs couple a rotating electric motor to a hydraulic pump, which increases the package volume and requires several energy conversions. This thesis investigates the use of a free piston as the moving element in a linear motor to eliminate multiple energy conversions and decrease the overall package volume. A coupled model used a quasi-static magnetic equivalent circuit to calculate the motor inductance and the electromagnetic force acting on the piston. The force was an input to a time domain model to evaluate the mechanical and pressure dynamics. The magnetic circuit model was validated with finite element analysis and an experimental prototype linear motor. The coupled model was optimized using a multi-objective genetic algorithm to explore the parameter space and maximize power density and efficiency. An experimental prototype linear pump coupled pistons to an off-the-shelf linear motor to validate the mechanical and pressure dynamics models. The magnetic circuit force calculation agreed within 3% of finite element analysis, and within 8% of experimental data from the unoptimized prototype linear motor. The optimized motor geometry also had good agreement with FEA; at zero piston displacement, the magnetic circuit calculates optimized motor force within 10% of FEA in less than 1/1000 the computational time. This makes it well suited to genetic optimization algorithms. The mechanical model agrees very well with the experimental piston pump position data when tuned for additional unmodeled mechanical friction. Optimized results suggest that an improvement of 400% of the state of the art power density is attainable with as high as 85% net efficiency. This demonstrates that a linear electromagnetic piston pump has potential to serve as a more compact and efficient supply of fluid power for the human scale.
Solar receiver heliostat reflector having a linear drive and position information system
Horton, Richard H.
1980-01-01
A heliostat for a solar receiver system comprises an improved drive and control system for the heliostat reflector assembly. The heliostat reflector assembly is controllably driven in a predetermined way by a light-weight drive system so as to be angularly adjustable in both elevation and azimuth to track the sun and efficiently continuously reflect the sun's rays to a focal zone, i.e., heat receiver, which forms part of a solar energy utilization system, such as a solar energy fueled electrical power generation system. The improved drive system includes linear stepping motors which comprise low weight, low cost, electronic pulse driven components. One embodiment comprises linear stepping motors controlled by a programmed, electronic microprocessor. Another embodiment comprises a tape driven system controlled by a position control magnetic tape.
Shilov, Georgi E
1977-01-01
Covers determinants, linear spaces, systems of linear equations, linear functions of a vector argument, coordinate transformations, the canonical form of the matrix of a linear operator, bilinear and quadratic forms, Euclidean spaces, unitary spaces, quadratic forms in Euclidean and unitary spaces, finite-dimensional space. Problems with hints and answers.
Design and construction of a novel rotary magnetostrictive motor
Zhou, Nanjia; Blatchley, Charles C.; Ibeh, Christopher C.
2009-04-01
Magnetostriction can be used to induce linear incremental motion, which is effective in giant magnetostrictive inchworm motors. Such motors possess the advantage of combining small step incremental motion with large force. However, continuous rotation may be preferred in practical applications. This paper describes a novel magnetostrictive rotary motor using terfenol-D (Tb0.3Dy0.7Fe1.9) material as the driving element. The motor is constructed of two giant magnetostrictive actuators with shell structured flexure-hinge and leaf springs. These two actuators are placed in a perpendicular position to minimize the coupling displacement of the two actuators. The principal design parameters of the actuators and strain amplifiers are optimally determined, and its static analysis is undertaken through finite element analysis software. The small movements of the magnetostrictive actuators are magnified by about three times using oval shell structured amplifiers. When two sinusoidal wave currents with 90° phase shift are applied to the magnetostrictive actuators, purely rotational movement can be produced as in the orbit of a Lissajous diagram in an oscillograph, and this movement is used to drive the rotor of the motor. A prototype has been constructed and tested.
Rodriguez Rodriguez, C.; Lopez Fernandez, A.; Saez Beltran, M.; Martin Martin, G.; Alonso Iracheta, L.
2012-07-01
Absorbed dose linearity and beam stability, both for low monitor units, are important factors for ensuring planned dose delivery in step-and-shoot IMRT. For Siemens Artiste linear accelerators, under IMRT stable irradiation conditions and for a single segment of 20 cm x 20 cm field size, the linearity of the absorbed dose with the monitor units, field flatness and symmetry have been measured for the range between 1 and 10 monitor units. We have found that absorbed dose linearity with monitor units is within 2% down to 2 monitor units and it is about 9% for 1 monitor unit. Flatness and symmetry values show variations within 1% down to 2 monitor units and increase by 9% for lower values. Using our monitor unit distribution per segment in IMRT we estimate that the uncertainty in absorbed dose for a whole treatment due to these factors is less than 1% (k= 3). (Author) 13 refs.
Hurst, R.W.; Feltham, P. (eds.)
2004-05-01
This handbook outlines the important role that electric motors play in modern society. It covers the field of motor applications from various motor types to their use and repair. It also presents practical applications of electric motors and methods on motor efficiency. More than half of all electricity generated, and 75 per cent of all industrial electricity consumption is consumed by electric motors. Electrical personnel must be aware of all factors involved in electric motors in order to choose and apply the appropriate size of electric motor. These factors include efficiency, sizing and proper application. The efficient use and maximum life expectancy of electric motors depends on proper motor protection, control and maintenance. This handbook includes articles from leading experts on electric motors in modern electrical systems. The content includes: design considerations; proper electric motor sizing techniques; optimal electric motor application; electric motor protection technology; electric motor control principles; electric motor maintenance and troubleshooting; induction electric motors; electric motor bearing currents; electric motor bearing lubrication; electromagnetism; electric motor enclosures; electric motor testing; electric motor repair; DC electric motor; electric motor starters; electric motor brushes; industrial electric motors; electric motor diagrams; AC electric motors; electric motor wiring; electric motor service; electric motor rewinding; electric motor winding; diagram of electric motor wiring; electric motor kit; and, troubleshooting electric motors. A directory of motor manufacturers and suppliers was also included. refs., tabs., figs.
Kazmierkowski, M.P. [Institute of Control and Industrial Electronics, Warsaw University of Technology, Warszawa (Poland)
1997-12-31
In this paper a review of control methods for high performance PWM inverter-fed induction motor drives is presented. Starting from the description of an induction motor by the help of the space vectors, three basic control strategic are discussed. As first, the most popular Field Oriented Control (FOC) is described. Secondly, the Direct Torque and Flux vector Control (DTFC) method, which - in contrast to FOC - depart from idea of coordinate transformation and analogy with DC motor, is briefly characterized. The last group is based on Feedback Linearization Control (FLC) and can be easy combined with sliding mode control. The simulation and experimental oscillograms that illustrate the performance of the discussed control strategies are shown. (orig.) 35 refs.
A review of linear compressors for refrigeration
Liang, Kun
2017-01-01
Linear compressor has no crank mechanism compared with conventional reciprocating compressor. This allows higher efficiency, oil-free operation, lower cost and smaller size when linear compressors are used for vapour compression refrigeration (VCR) system. Typically, a linear compressor consists of a linear motor (connected to a piston) and suspension springs, operated at resonant frequency. This paper presents a review of linear compressors for refrigeration system. Different designs and mod...
Sieloff, Susan F.; Kinnunen, Raymond; Chevarley, Joseph
2011-01-01
Kei Yun Wong has big dreams. She has been entrusted with the United States launch of Libert-E Motor, a new line of Chinese-manufactured electric scooters. With only $750,000 of her original budget of $3 million left, she needs to make sure that the launch succeeds, as it represents the initial step in her desire to create the first Chinese global…
The influence of viscosity on the functioning of molecular motors
Klok, Martin; Janssen, Leon P.B.M.; Browne, Wesley R.; Feringa, Ben L.
2009-01-01
Light driven molecular motors based on sterically overcrowded alkenes achieve repetitive unidirectional rotation through a sequential series of photochemical and thermal steps. The influence of highly viscous environments on the functioning of unidirectional light driven molecular motors is
Effects of walking speed on the step-by-step control of step width.
Stimpson, Katy H; Heitkamp, Lauren N; Horne, Joscelyn S; Dean, Jesse C
2018-02-08
Young, healthy adults walking at typical preferred speeds use step-by-step adjustments of step width to appropriately redirect their center of mass motion and ensure mediolateral stability. However, it is presently unclear whether this control strategy is retained when walking at the slower speeds preferred by many clinical populations. We investigated whether the typical stabilization strategy is influenced by walking speed. Twelve young, neurologically intact participants walked on a treadmill at a range of prescribed speeds (0.2-1.2 m/s). The mediolateral stabilization strategy was quantified as the proportion of step width variance predicted by the mechanical state of the pelvis throughout a step (calculated as R 2 magnitude from a multiple linear regression). Our ability to accurately predict the upcoming step width increased over the course of a step. The strength of the relationship between step width and pelvis mechanics at the start of a step was reduced at slower speeds. However, these speed-dependent differences largely disappeared by the end of a step, other than at the slowest walking speed (0.2 m/s). These results suggest that mechanics-dependent adjustments in step width are a consistent component of healthy gait across speeds and contexts. However, slower walking speeds may ease this control by allowing mediolateral repositioning of the swing leg to occur later in a step, thus encouraging slower walking among clinical populations with limited sensorimotor control. Published by Elsevier Ltd.
Martín Muñoz, Agustín
2007-01-01
Mostramos la construcción de un modelo de motor homopolar, uno de los más antiguos tipos de motores eléctricos. Se caracterizan porque el campo magnético del imán mantiene siempre la misma polaridad (de ahí su nombre, del griego homos, igual), de modo que, cuando una corriente eléctrica atraviesa el campo magnético, aparece una fuerza que hace girar los elementos no fijados mecánicamente. En el sencillísimo motor homopolar colgado (Schlichting y Ucke 2004), el imán puede girar ...
Elementary linear programming with applications
Kolman, Bernard
1995-01-01
Linear programming finds the least expensive way to meet given needs with available resources. Its results are used in every area of engineering and commerce: agriculture, oil refining, banking, and air transport. Authors Kolman and Beck present the basic notions of linear programming and illustrate how they are used to solve important common problems. The software on the included disk leads students step-by-step through the calculations. The Second Edition is completely revised and provides additional review material on linear algebra as well as complete coverage of elementary linear program
Suwono.
1978-01-01
A linear gate providing a variable gate duration from 0,40μsec to 4μsec was developed. The electronic circuity consists of a linear circuit and an enable circuit. The input signal can be either unipolar or bipolar. If the input signal is bipolar, the negative portion will be filtered. The operation of the linear gate is controlled by the application of a positive enable pulse. (author)
Vretenar, M
2014-01-01
The main features of radio-frequency linear accelerators are introduced, reviewing the different types of accelerating structures and presenting the main characteristics aspects of linac beam dynamics
Linearization Method and Linear Complexity
Tanaka, Hidema
We focus on the relationship between the linearization method and linear complexity and show that the linearization method is another effective technique for calculating linear complexity. We analyze its effectiveness by comparing with the logic circuit method. We compare the relevant conditions and necessary computational cost with those of the Berlekamp-Massey algorithm and the Games-Chan algorithm. The significant property of a linearization method is that it needs no output sequence from a pseudo-random number generator (PRNG) because it calculates linear complexity using the algebraic expression of its algorithm. When a PRNG has n [bit] stages (registers or internal states), the necessary computational cost is smaller than O(2n). On the other hand, the Berlekamp-Massey algorithm needs O(N2) where N(≅2n) denotes period. Since existing methods calculate using the output sequence, an initial value of PRNG influences a resultant value of linear complexity. Therefore, a linear complexity is generally given as an estimate value. On the other hand, a linearization method calculates from an algorithm of PRNG, it can determine the lower bound of linear complexity.
Khodaverdi, Zeinab; Bahram, Abbas; Khalaji, Hassan; Kazemnejad, Anoshirvan
2013-10-01
The main purpose of this study was to determine which correlate, perceived motor competence or motor skill competence, best predicts girls' physical activity behavior. A sample of 352 girls (mean age=8.7, SD=0.3 yr) participated in this study. To assess motor skill competence and perceived motor competence, each child completed the Test of Gross Motor Development-2 and Physical Ability sub-scale of Marsh's Self-Description Questionnaire. Children's physical activity was assessed by the Physical Activity Questionnaire for Older Children. Multiple linear regression model was used to determine whether perceived motor competence or motor skill competence best predicts moderate-to-vigorous self-report physical activity. Multiple regression analysis indicated that motor skill competence and perceived motor competence predicted 21% variance in physical activity (R(2)=0.21, F=48.9, P=0.001), and motor skill competence (R(2)=0.15, ᵝ=0.33, P= 0.001) resulted in more variance than perceived motor competence (R(2)=0.06, ᵝ=0.25, P=0.001) in physical activity. Results revealed motor skill competence had more influence in comparison with perceived motor competence on physical activity level. We suggest interventional programs based on motor skill competence and perceived motor competence should be administered or implemented to promote physical activity in young girls.
Aging effect on step adjustments and stability control in visually perturbed gait initiation.
Sun, Ruopeng; Cui, Chuyi; Shea, John B
2017-10-01
Gait adaptability is essential for fall avoidance during locomotion. It requires the ability to rapidly inhibit original motor planning, select and execute alternative motor commands, while also maintaining the stability of locomotion. This study investigated the aging effect on gait adaptability and dynamic stability control during a visually perturbed gait initiation task. A novel approach was used such that the anticipatory postural adjustment (APA) during gait initiation were used to trigger the unpredictable relocation of a foot-size stepping target. Participants (10 young adults and 10 older adults) completed visually perturbed gait initiation in three adjustment timing conditions (early, intermediate, late; all extracted from the stereotypical APA pattern) and two adjustment direction conditions (medial, lateral). Stepping accuracy, foot rotation at landing, and Margin of Dynamic Stability (MDS) were analyzed and compared across test conditions and groups using a linear mixed model. Stepping accuracy decreased as a function of adjustment timing as well as stepping direction, with older subjects exhibited a significantly greater undershoot in foot placement to late lateral stepping. Late adjustment also elicited a reaching-like movement (i.e. foot rotation prior to landing in order to step on the target), regardless of stepping direction. MDS measures in the medial-lateral and anterior-posterior direction revealed both young and older adults exhibited reduced stability in the adjustment step and subsequent steps. However, young adults returned to stable gait faster than older adults. These findings could be useful for future study of screening deficits in gait adaptability and preventing falls. Copyright © 2017 Elsevier B.V. All rights reserved.
Said-Houari, Belkacem
2017-01-01
This self-contained, clearly written textbook on linear algebra is easily accessible for students. It begins with the simple linear equation and generalizes several notions from this equation for the system of linear equations and introduces the main ideas using matrices. It then offers a detailed chapter on determinants and introduces the main ideas with detailed proofs. The third chapter introduces the Euclidean spaces using very simple geometric ideas and discusses various major inequalities and identities. These ideas offer a solid basis for understanding general Hilbert spaces in functional analysis. The following two chapters address general vector spaces, including some rigorous proofs to all the main results, and linear transformation: areas that are ignored or are poorly explained in many textbooks. Chapter 6 introduces the idea of matrices using linear transformation, which is easier to understand than the usual theory of matrices approach. The final two chapters are more advanced, introducing t...
FIVE PHASE PENTAGON HYBRID STEPPER MOTOR INTELLIGENT HALF/FULL DRIVER
Alexandru Morar
2017-06-01
Full Text Available Stepper motors are very well suited for positioning applications since they can achieve very good positional accuracy without complicated feedback loops associated with servo systems. In this paper, an intelligent five-phase stepper motor driver of business card size proposed. Constant current chopping technique was applied for the purposes of high torque, high velocity and high efficiency. The driver was designed to drive a middle-sized hybrid stepper motor with wire current rating from 0.4 to 1.5A. An up-to-dated translator of five-phase stepping motor was used to drive the gates of N- channel MOSFET array. The resolution in full/half mode is 0.72/0.36 degrees/step. Moreover, an automatic power down circuit was used to limit the power consuming as the motor stops. Additionally, a self-testing program embedded in a 80C31-CPU (PCL838 can self-test whether the driver is normal or not. This embedded program including linear acceleration and deceleration routines also can serve as a positioning controller. The dimension of this driver is approximate 70x65x35 millimeters, which is smaller than a business card. Experimental results demonstrate that the responses of the driver can reach 60 kilo pulses per second
Biomechanical influences on balance recovery by stepping.
Hsiao, E T; Robinovitch, S N
1999-10-01
Stepping represents a common means for balance recovery after a perturbation to upright posture. Yet little is known regarding the biomechanical factors which determine whether a step succeeds in preventing a fall. In the present study, we developed a simple pendulum-spring model of balance recovery by stepping, and used this to assess how step length and step contact time influence the effort (leg contact force) and feasibility of balance recovery by stepping. We then compared model predictions of step characteristics which minimize leg contact force to experimentally observed values over a range of perturbation strengths. At all perturbation levels, experimentally observed step execution times were higher than optimal, and step lengths were smaller than optimal. However, the predicted increase in leg contact force associated with these deviations was substantial only for large perturbations. Furthermore, increases in the strength of the perturbation caused subjects to take larger, quicker steps, which reduced their predicted leg contact force. We interpret these data to reflect young subjects' desire to minimize recovery effort, subject to neuromuscular constraints on step execution time and step length. Finally, our model predicts that successful balance recovery by stepping is governed by a coupling between step length, step execution time, and leg strength, so that the feasibility of balance recovery decreases unless declines in one capacity are offset by enhancements in the others. This suggests that one's risk for falls may be affected more by small but diffuse neuromuscular impairments than by larger impairment in a single motor capacity.
Design, analysis and fabrication of a linear permanent magnet ...
MONOJIT SEAL
Linear permanent magnet synchronous machine; LPMSM—fabrication; design optimisation; finite-element ... induction motor (LIM) prototype was patented in 1890 [1]. Since then, linear ..... Also, for manual winding, more slot area is allotted to ...
Stoll, R R
1968-01-01
Linear Algebra is intended to be used as a text for a one-semester course in linear algebra at the undergraduate level. The treatment of the subject will be both useful to students of mathematics and those interested primarily in applications of the theory. The major prerequisite for mastering the material is the readiness of the student to reason abstractly. Specifically, this calls for an understanding of the fact that axioms are assumptions and that theorems are logical consequences of one or more axioms. Familiarity with calculus and linear differential equations is required for understand
Campagnoli, Patrizia; Petris, Giovanni
2009-01-01
State space models have gained tremendous popularity in as disparate fields as engineering, economics, genetics and ecology. Introducing general state space models, this book focuses on dynamic linear models, emphasizing their Bayesian analysis. It illustrates the fundamental steps needed to use dynamic linear models in practice, using R package.
Solow, Daniel
2014-01-01
This text covers the basic theory and computation for a first course in linear programming, including substantial material on mathematical proof techniques and sophisticated computation methods. Includes Appendix on using Excel. 1984 edition.
Liesen, Jörg
2015-01-01
This self-contained textbook takes a matrix-oriented approach to linear algebra and presents a complete theory, including all details and proofs, culminating in the Jordan canonical form and its proof. Throughout the development, the applicability of the results is highlighted. Additionally, the book presents special topics from applied linear algebra including matrix functions, the singular value decomposition, the Kronecker product and linear matrix equations. The matrix-oriented approach to linear algebra leads to a better intuition and a deeper understanding of the abstract concepts, and therefore simplifies their use in real world applications. Some of these applications are presented in detailed examples. In several ‘MATLAB-Minutes’ students can comprehend the concepts and results using computational experiments. Necessary basics for the use of MATLAB are presented in a short introduction. Students can also actively work with the material and practice their mathematical skills in more than 300 exerc...
Berberian, Sterling K
2014-01-01
Introductory treatment covers basic theory of vector spaces and linear maps - dimension, determinants, eigenvalues, and eigenvectors - plus more advanced topics such as the study of canonical forms for matrices. 1992 edition.
Searle, Shayle R
2012-01-01
This 1971 classic on linear models is once again available--as a Wiley Classics Library Edition. It features material that can be understood by any statistician who understands matrix algebra and basic statistical methods.
Christofilos, N.C.; Polk, I.J.
1959-02-17
Improvements in linear particle accelerators are described. A drift tube system for a linear ion accelerator reduces gap capacity between adjacent drift tube ends. This is accomplished by reducing the ratio of the diameter of the drift tube to the diameter of the resonant cavity. Concentration of magnetic field intensity at the longitudinal midpoint of the external sunface of each drift tube is reduced by increasing the external drift tube diameter at the longitudinal center region.
Step out - Step in Sequencing Games
Musegaas, M.; Borm, P.E.M.; Quant, M.
2014-01-01
In this paper a new class of relaxed sequencing games is introduced: the class of Step out - Step in sequencing games. In this relaxation any player within a coalition is allowed to step out from his position in the processing order and to step in at any position later in the processing order.
Step out-step in sequencing games
Musegaas, Marieke; Borm, Peter; Quant, Marieke
2015-01-01
In this paper a new class of relaxed sequencing games is introduced: the class of Step out–Step in sequencing games. In this relaxation any player within a coalition is allowed to step out from his position in the processing order and to step in at any position later in the processing order. First,
Optimal control linear quadratic methods
Anderson, Brian D O
2007-01-01
This augmented edition of a respected text teaches the reader how to use linear quadratic Gaussian methods effectively for the design of control systems. It explores linear optimal control theory from an engineering viewpoint, with step-by-step explanations that show clearly how to make practical use of the material.The three-part treatment begins with the basic theory of the linear regulator/tracker for time-invariant and time-varying systems. The Hamilton-Jacobi equation is introduced using the Principle of Optimality, and the infinite-time problem is considered. The second part outlines the
Shape memory alloy based motor
1989a,b) that SMA spring or strip generates force as a non-linear function of its deformed length. ... magnetic property, smooth, jerk free operation and insensitivity to space radiations namely, electrons, protons ..... will be 1 Amp DC. The motor ...
Mohamed Redha Rezoug
2018-02-01
Full Text Available Photovoltaic pumping is considered to be the most used application amongst other photovoltaic energy applications in isolated sites. This technology is developing with a slow progression to allow the photovoltaic system to operate at its maximum power. This work introduces the modified algorithm which is a perturb and observe (P&O type to overcome the limitations of the conventional P&O algorithm and increase its global performance in abrupt weather condition changes. The most significant conventional P&O algorithm restriction is the difficulty faced when choosing the variable step of the reference voltage value, a good compromise between the swift dynamic response and the stability in the steady state. To adjust the step reference voltage according to the location of the operating point of the maximum power point (MPP, a fuzzy logic controller (FLC block adapted to the P&O algorithm is used. This allows the improvement of the tracking pace and the steady state oscillation elimination. The suggested method was evaluated by simulation using MATLAB/SimPowerSystems blocks and compared to the classical P&O under different irradiation levels. The results obtained show the effectiveness of the technique proposed and its capacity for the practical and efficient tracking of maximum power.
Design of motors for inverter operation
Haring, T. [ABB Motors OY, Vaasa (Finland)
2000-07-01
This paper describes very practical principles of how an induction motor should be designed for converter application. The main focus targets the efficiency of the motor and drive. The results presented are based on actual test motors and FEM-calculation simulations. FEM-calculation together with a time-stepping function is a powerful tool for estimating magnetic flux densities, iron losses, current densities and corresponding losses in windings, in other words a tool for optimisation of the motor design. Time-stepping is rather time consuming because all the circuit equations must be solved for each time-step, but it provides a way to estimate the iron losses; hysteresis and eddy current losses as well as current distribution and current losses. The calculation tool also provides the possibility to check if an existing motor is feasible for a converter drive. Alternatively if a motor is only to be supplied by a converter there are many more degrees of freedom in the electrical design and the motor may be optimised for that converter drive by incorporationg rather simple design changes. Additionally a design compromise, ''a general purpose motor'' useable for DOL and feasible for converter drive can be produced following the principles presented herewith. The converter types which are considered are indirect types and mainly voltage source converters since they are the most common on the market and are ''general purpose converters'' and providing a certain freedom to select the motor for the drive. Current source converters require ''matching'' with the motor and therefore need a precise knowledge of the motor equivalent circuit, making the selection of the motor more complicated. (orig.)
Olive, David J
2017-01-01
This text covers both multiple linear regression and some experimental design models. The text uses the response plot to visualize the model and to detect outliers, does not assume that the error distribution has a known parametric distribution, develops prediction intervals that work when the error distribution is unknown, suggests bootstrap hypothesis tests that may be useful for inference after variable selection, and develops prediction regions and large sample theory for the multivariate linear regression model that has m response variables. A relationship between multivariate prediction regions and confidence regions provides a simple way to bootstrap confidence regions. These confidence regions often provide a practical method for testing hypotheses. There is also a chapter on generalized linear models and generalized additive models. There are many R functions to produce response and residual plots, to simulate prediction intervals and hypothesis tests, to detect outliers, and to choose response trans...
Edwards, Harold M
1995-01-01
In his new undergraduate textbook, Harold M Edwards proposes a radically new and thoroughly algorithmic approach to linear algebra Originally inspired by the constructive philosophy of mathematics championed in the 19th century by Leopold Kronecker, the approach is well suited to students in the computer-dominated late 20th century Each proof is an algorithm described in English that can be translated into the computer language the class is using and put to work solving problems and generating new examples, making the study of linear algebra a truly interactive experience Designed for a one-semester course, this text adopts an algorithmic approach to linear algebra giving the student many examples to work through and copious exercises to test their skills and extend their knowledge of the subject Students at all levels will find much interactive instruction in this text while teachers will find stimulating examples and methods of approach to the subject
Parkinson's Disease Subtypes Identified from Cluster Analysis of Motor and Non-motor Symptoms.
Mu, Jesse; Chaudhuri, Kallol R; Bielza, Concha; de Pedro-Cuesta, Jesus; Larrañaga, Pedro; Martinez-Martin, Pablo
2017-01-01
Parkinson's disease is now considered a complex, multi-peptide, central, and peripheral nervous system disorder with considerable clinical heterogeneity. Non-motor symptoms play a key role in the trajectory of Parkinson's disease, from prodromal premotor to end stages. To understand the clinical heterogeneity of Parkinson's disease, this study used cluster analysis to search for subtypes from a large, multi-center, international, and well-characterized cohort of Parkinson's disease patients across all motor stages, using a combination of cardinal motor features (bradykinesia, rigidity, tremor, axial signs) and, for the first time, specific validated rater-based non-motor symptom scales. Two independent international cohort studies were used: (a) the validation study of the Non-Motor Symptoms Scale ( n = 411) and (b) baseline data from the global Non-Motor International Longitudinal Study ( n = 540). k -means cluster analyses were performed on the non-motor and motor domains (domains clustering) and the 30 individual non-motor symptoms alone (symptoms clustering), and hierarchical agglomerative clustering was performed to group symptoms together. Four clusters are identified from the domains clustering supporting previous studies: mild, non-motor dominant, motor-dominant, and severe. In addition, six new smaller clusters are identified from the symptoms clustering, each characterized by clinically-relevant non-motor symptoms. The clusters identified in this study present statistical confirmation of the increasingly important role of non-motor symptoms (NMS) in Parkinson's disease heterogeneity and take steps toward subtype-specific treatment packages.
Masuda, Y; Misztal, I; Legarra, A; Tsuruta, S; Lourenco, D A L; Fragomeni, B O; Aguilar, I
2017-01-01
This paper evaluates an efficient implementation to multiply the inverse of a numerator relationship matrix for genotyped animals () by a vector (). The computation is required for solving mixed model equations in single-step genomic BLUP (ssGBLUP) with the preconditioned conjugate gradient (PCG). The inverse can be decomposed into sparse matrices that are blocks of the sparse inverse of a numerator relationship matrix () including genotyped animals and their ancestors. The elements of were rapidly calculated with the Henderson's rule and stored as sparse matrices in memory. Implementation of was by a series of sparse matrix-vector multiplications. Diagonal elements of , which were required as preconditioners in PCG, were approximated with a Monte Carlo method using 1,000 samples. The efficient implementation of was compared with explicit inversion of with 3 data sets including about 15,000, 81,000, and 570,000 genotyped animals selected from populations with 213,000, 8.2 million, and 10.7 million pedigree animals, respectively. The explicit inversion required 1.8 GB, 49 GB, and 2,415 GB (estimated) of memory, respectively, and 42 s, 56 min, and 13.5 d (estimated), respectively, for the computations. The efficient implementation required <1 MB, 2.9 GB, and 2.3 GB of memory, respectively, and <1 sec, 3 min, and 5 min, respectively, for setting up. Only <1 sec was required for the multiplication in each PCG iteration for any data sets. When the equations in ssGBLUP are solved with the PCG algorithm, is no longer a limiting factor in the computations.
Shirakawa Okuma, Rosely; Calderón Orejuela, Javier
2016-01-01
La tesis narra la situación de una empresa concesionaria de vehículos nuevos, Jidosha's Motors, perteneciente a una corporación japonesa que cuenta con una cultura muy arraigada de ética y de cumplimiento. Se plantean respuestas, se identifican problemas y sus alternativas de solución para una toma adecuada de decisiones por parte de los directivos, siguiendo una estructura de análisis de situaciones de negocios (ASN). Tesis
Performance test of 100 W linear compressor
Ko, J; Ko, D. Y.; Park, S. J.; Kim, H. B.; Hong, Y. J.; Yeom, H. K. [Korea Institute of Machinery and Materials, Daejeon(Korea, Republic of)
2013-09-15
In this paper, we present test results of developed 100 W class linear compressor for Stirling-type pulse tube refrigerator. The fabricated linear compressor has dual-opposed configuration, free piston and moving magnet type linear motor. Power transfer, efficiency and required pressure waveform are predicted with designed and measured specifications. In experiments, room temperature test with flow impedance is conducted to evaluate performance of developed linear compressor. Flow impedance is loaded to compressor with metering valve for flow resistance, inertance tube for flow inertance and buffer volumes for flow compliance. Several operating parameters such as input voltage, current, piston displacement and pressure wave are measured for various operating frequency and fixed input current level. Behaviors of dynamics and performance of linear compressor as varying flow impedance are discussed with measured experimental results. The developed linear compressor shows 124 W of input power, 86 % of motor efficiency and 60 % of compressor efficiency at its resonant operating condition.
Development of motors and drives for main coolant pump and CEDM
Kang, Do Hyun; Ha, Hoi Doo; Park, Jung Woo; Koo, Dae Hyun; Chang, Ki Chan; Kim, Jong Moo; Kim, Won Ho; Rim, Geun Hie; Baek, Ju Won; Park, Doh Young; Hwang, Don Ha; Jeon, Jeong Woo [Korea Electrotechnology Research Institute, Changwon (Korea)
1999-03-01
A canned type 170kW induction motor for the main coolant pump (MCP) of the integral reactor SMART was designed to minimize the eddy current loss in the can and the volume of motor. In order to verify the design and analysis methodology, a canned type 30kW induction motor and an inverter were developed and tested. The motor was designed to have two poles with squirrel cage solid rotor and open slot stator. The motor driver was designed as VVVF inverter to operate both at 900(r.p.m) and at 3600(r.p.m). The calculated design values showed a good agreement with the experimental results. The measured efficiencies of the canned motor and the inverter were 70(%) and 96(%), respectively. A variable reluctance type linear pulse motor (LPM) with double air-gaps for the Control Element Drive Mechanism (CEDM) to lift 100kg was designed, analyzed, manufactured and tested. A converter and a test facility were manufactured to verity the dynamic performance of the LPM. The mover of the LPM was welded with magnetic material(SUS430) and non-magnetic material(SUS304) to get flux path between inner stator and outer stator. The measured thrust force was about 20(%) less than the designed thrust force. As for the rotary stepping motors for CEDM-II, which have transverse flux pattern, three design options were proposed with thrust force density of 8kN/m{sup 2}, 14kN/m{sup 2} and 52kN/m{sup 2} respectively. (author). 31 refs., 219 figs., 60 tabs.
Karloff, Howard
1991-01-01
To this reviewer’s knowledge, this is the first book accessible to the upper division undergraduate or beginning graduate student that surveys linear programming from the Simplex Method…via the Ellipsoid algorithm to Karmarkar’s algorithm. Moreover, its point of view is algorithmic and thus it provides both a history and a case history of work in complexity theory. The presentation is admirable; Karloff's style is informal (even humorous at times) without sacrificing anything necessary for understanding. Diagrams (including horizontal brackets that group terms) aid in providing clarity. The end-of-chapter notes are helpful...Recommended highly for acquisition, since it is not only a textbook, but can also be used for independent reading and study. —Choice Reviews The reader will be well served by reading the monograph from cover to cover. The author succeeds in providing a concise, readable, understandable introduction to modern linear programming. —Mathematics of Computing This is a textbook intend...
Ren, Jie
2017-12-01
The process by which a kinesin motor couples its ATPase activity with concerted mechanical hand-over-hand steps is a foremost topic of molecular motor physics. Two major routes toward elucidating kinesin mechanisms are the motility performance characterization of velocity and run length, and single-molecular state detection experiments. However, these two sets of experimental approaches are largely uncoupled to date. Here, we introduce an integrative motility state analysis based on a theorized kinetic graph theory for kinesin, which, on one hand, is validated by a wealth of accumulated motility data, and, on the other hand, allows for rigorous quantification of state occurrences and chemomechanical cycling probabilities. An interesting linear scaling for kinesin motility performance across species is discussed as well. An integrative kinetic graph theory analysis provides a powerful tool to bridge motility and state characterization experiments, so as to forge a unified effort for the elucidation of the working mechanisms of molecular motors.
Recycling of electrical motors by automatic disassembly
Karlsson, Björn; Järrhed, Jan-Ove
2000-04-01
This paper presents a robotized workstation for end-of-life treatment of electrical motors with an electrical effect of about 1 kW. These motors can, for example, be found in washing machines and in industry. There are two main steps in the work. The first step is an inspection whereby the functionality of the motor is checked and classification either for re-use or for disassembly is done. In the second step the motors classified for disassembly are disassembled in a robotized automatic station. In the initial step measurements are performed during a start-up sequence of about 1 s. By measuring the rotation speed and the current and voltage of the three phases of the motor classification for either reuse or disassembly can be done. During the disassembly work, vision data are fused in order to classify the motors according to their type. The vision system also feeds the control system of the robot with various object co-ordinates, to facilitate correct operation of the robot. Finally, tests with a vision system and eddy-current equipment are performed to decide whether all copper has been removed from the stator.
Stanford Linear Collider magnet positioning
Wand, B.T.
1991-08-01
For the installation of the Stanford Linear Collider (SLC) the positioning and alignment of the beam line components was performed in several individual steps. In the following the general procedures for each step are outlined. The calculation of ideal coordinates for the magnets in the entire SLC will be discussed in detail. Special emphasis was given to the mathematical algorithms and geometry used in the programs to calculate these ideal positions. 35 refs., 21 figs
Reduction of Linear Programming to Linear Approximation
Vaserstein, Leonid N.
2006-01-01
It is well known that every Chebyshev linear approximation problem can be reduced to a linear program. In this paper we show that conversely every linear program can be reduced to a Chebyshev linear approximation problem.
Internship guide : Work placements step by step
Haag, Esther
2013-01-01
Internship Guide: Work Placements Step by Step has been written from the practical perspective of a placement coordinator. This book addresses the following questions : what problems do students encounter when they start thinking about the jobs their degree programme prepares them for? How do you
The way to collisions, step by step
2009-01-01
While the LHC sectors cool down and reach the cryogenic operating temperature, spirits are warming up as we all eagerly await the first collisions. No reason to hurry, though. Making particles collide involves the complex manoeuvring of thousands of delicate components. The experts will make it happen using a step-by-step approach.
Motor Cortex Activity During Functional Motor Skills: An fNIRS Study.
Nishiyori, Ryota; Bisconti, Silvia; Ulrich, Beverly
2016-01-01
Assessments of brain activity during motor task performance have been limited to fine motor movements due to technological constraints presented by traditional neuroimaging techniques, such as functional magnetic resonance imaging. Functional near-infrared spectroscopy (fNIRS) offers a promising method by which to overcome these constraints and investigate motor performance of functional motor tasks. The current study used fNIRS to quantify hemodynamic responses within the primary motor cortex in twelve healthy adults as they performed unimanual right, unimanual left, and bimanual reaching, and stepping in place. Results revealed that during both unimanual reaching tasks, the contralateral hemisphere showed significant activation in channels located approximately 3 cm medial to the C3 (for right-hand reach) and C4 (for left-hand reach) landmarks. Bimanual reaching and stepping showed activation in similar channels, which were located bilaterally across the primary motor cortex. The medial channels, surrounding Cz, showed significantly higher activations during stepping when compared to bimanual reaching. Our results extend the viability of fNIRS to study motor function and build a foundation for future investigation of motor development in infants during nascent functional behaviors and monitor how they may change with age or practice.
Square Root Unscented Kalman Filters for State Estimation of Induction Motor Drives
Lascu, Cristian; Jafarzadeh, Saeed; Fadali, M.Sami
2013-01-01
This paper investigates the application, design, and implementation of the square root unscented Kalman filter (UKF) (SRUKF) for induction motor (IM) sensorless drives. The UKF uses nonlinear unscented transforms (UTs) in the prediction step in order to preserve the stochastic characteristics...... of a nonlinear system. The advantage of using the UT is its ability to capture the nonlinear behavior of the system, unlike the extended Kalman filter (EKF) that uses linearized models. The SRUKF implements the UKF using square root filtering to reduce computational errors. We discuss the theoretical aspects...
State Estimation of Induction Motor Drives Using the Unscented Kalman Filter
Lascu, Cristian; Jafarzadeh, Saeed; Fadali, M.Sami
2012-01-01
This paper investigates the application, design, and implementation of unscented Kalman filters (KFs) (UKFs) for induction motor (IM) sensorless drives. UKFs use nonlinear unscented transforms (UTs) in the prediction step in order to preserve the stochastic characteristics of a nonlinear system....... The advantage of using UTs is their ability to capture the nonlinear behavior of the system, unlike extended KFs (EKFs) that use linearized models. Four original variants of the UKF for IM state estimation, based on different UTs, are described, analyzed, and compared. The four transforms are basic, general...
Two-step processing of oil shale to linear hydrocarbons
Eliseev, O.L.; Ryzhov, A.N.; Latypova, D.Zh.; Lapidus, A.L. [Russian Academy of Sciences, Moscow (Russian Federation). N.D. Zelinsky Institute of Organic Chemistry; Avakyan, T.A. [Gubkin Russian State University of Oil and Gas, Moscow (Russian Federation)
2013-11-01
Thermal and catalytic steam reforming of oil shale mined from Leningrad and Kashpir deposits was studied. Experiments were performed in fixed bed reactor by varying temperature and steam flow rate. Data obtained were approximated by empirical formulas containing some parameters calculated by least-squares method. Thus predicting amount of hydrogen, carbon monoxide and methane in producer gas is possible for given particular kind of oil shale, temperature and steam flow rate. Adding Ni catalyst enriches hydrogen and depletes CO content in effluent gas at low gasification temperatures. Modeling gas simulating steam reforming gases (H{sub 2}, CO, CO{sub 2}, and N{sub 2} mixture) was tested in hydrocarbon synthesis over Co-containing supported catalyst. Selectivity of CO conversion into C{sub 5+} hydrocarbons reaches 84% while selectivity to methane is 7%. Molecular weight distribution of synthesized alkanes obeys Anderson-Schulz-Flory equation and chain growth probability 0.84. (orig.)
... gross (large, general) motor control. An example of gross motor control is waving an arm in greeting. Problems ... out the child's developmental age. Children develop fine motor skills over time, by practicing and being taught. To ...
Sparsity Prevention Pivoting Method for Linear Programming
Li, Peiqiang; Li, Qiyuan; Li, Canbing
2018-01-01
When the simplex algorithm is used to calculate a linear programming problem, if the matrix is a sparse matrix, it will be possible to lead to many zero-length calculation steps, and even iterative cycle will appear. To deal with the problem, a new pivoting method is proposed in this paper....... The principle of this method is avoided choosing the row which the value of the element in the b vector is zero as the row of the pivot element to make the matrix in linear programming density and ensure that most subsequent steps will improve the value of the objective function. One step following...... this principle is inserted to reselect the pivot element in the existing linear programming algorithm. Both the conditions for inserting this step and the maximum number of allowed insertion steps are determined. In the case study, taking several numbers of linear programming problems as examples, the results...
Sparsity Prevention Pivoting Method for Linear Programming
Li, Peiqiang; Li, Qiyuan; Li, Canbing
2018-01-01
. The principle of this method is avoided choosing the row which the value of the element in the b vector is zero as the row of the pivot element to make the matrix in linear programming density and ensure that most subsequent steps will improve the value of the objective function. One step following......When the simplex algorithm is used to calculate a linear programming problem, if the matrix is a sparse matrix, it will be possible to lead to many zero-length calculation steps, and even iterative cycle will appear. To deal with the problem, a new pivoting method is proposed in this paper...... this principle is inserted to reselect the pivot element in the existing linear programming algorithm. Both the conditions for inserting this step and the maximum number of allowed insertion steps are determined. In the case study, taking several numbers of linear programming problems as examples, the results...
Direct linear driving systems; Les entrainements lineaires directs
Favre, E.; Brunner, C.; Piaget, D. [ETEL SA (France)
1999-11-01
The linear motor is one of the most important developments in electrical drive technology. However, it only, began to be adopted on a large scale at the beginning of the 1990's and will not be considered a mature technology until well into the next millennium. Actuators based on linear motor technology have a number of technical advantages including high speed, high positional accuracy and fine resolution. They also require fewer component parts. Some precautions are necessary when using linear motors. Care must be taken to avoid overheating and excessive vibration, and the magnetic components must be protected.
Microsoft Office professional 2010 step by step
Cox, Joyce; Frye, Curtis
2011-01-01
Teach yourself exactly what you need to know about using Office Professional 2010-one step at a time! With STEP BY STEP, you build and practice new skills hands-on, at your own pace. Covering Microsoft Word, PowerPoint, Outlook, Excel, Access, Publisher, and OneNote, this book will help you learn the core features and capabilities needed to: Create attractive documents, publications, and spreadsheetsManage your e-mail, calendar, meetings, and communicationsPut your business data to workDevelop and deliver great presentationsOrganize your ideas and notes in one placeConnect, share, and accom
Tanwiwat Jaikuna
2017-02-01
Full Text Available Purpose: To develop an in-house software program that is able to calculate and generate the biological dose distribution and biological dose volume histogram by physical dose conversion using the linear-quadratic-linear (LQL model. Material and methods : The Isobio software was developed using MATLAB version 2014b to calculate and generate the biological dose distribution and biological dose volume histograms. The physical dose from each voxel in treatment planning was extracted through Computational Environment for Radiotherapy Research (CERR, and the accuracy was verified by the differentiation between the dose volume histogram from CERR and the treatment planning system. An equivalent dose in 2 Gy fraction (EQD2 was calculated using biological effective dose (BED based on the LQL model. The software calculation and the manual calculation were compared for EQD2 verification with pair t-test statistical analysis using IBM SPSS Statistics version 22 (64-bit. Results: Two and three-dimensional biological dose distribution and biological dose volume histogram were displayed correctly by the Isobio software. Different physical doses were found between CERR and treatment planning system (TPS in Oncentra, with 3.33% in high-risk clinical target volume (HR-CTV determined by D90%, 0.56% in the bladder, 1.74% in the rectum when determined by D2cc, and less than 1% in Pinnacle. The difference in the EQD2 between the software calculation and the manual calculation was not significantly different with 0.00% at p-values 0.820, 0.095, and 0.593 for external beam radiation therapy (EBRT and 0.240, 0.320, and 0.849 for brachytherapy (BT in HR-CTV, bladder, and rectum, respectively. Conclusions : The Isobio software is a feasible tool to generate the biological dose distribution and biological dose volume histogram for treatment plan evaluation in both EBRT and BT.
Motor control for a brushless DC motor
Peterson, William J. (Inventor); Faulkner, Dennis T. (Inventor)
1985-01-01
This invention relates to a motor control system for a brushless DC motor having an inverter responsively coupled to the motor control system and in power transmitting relationship to the motor. The motor control system includes a motor rotor speed detecting unit that provides a pulsed waveform signal proportional to rotor speed. This pulsed waveform signal is delivered to the inverter to thereby cause an inverter fundamental current waveform output to the motor to be switched at a rate proportional to said rotor speed. In addition, the fundamental current waveform is also pulse width modulated at a rate proportional to the rotor speed. A fundamental current waveform phase advance circuit is controllingly coupled to the inverter. The phase advance circuit is coupled to receive the pulsed waveform signal from the motor rotor speed detecting unit and phase advance the pulsed waveform signal as a predetermined function of motor speed to thereby cause the fundamental current waveform to be advanced and thereby compensate for fundamental current waveform lag due to motor winding reactance which allows the motor to operate at higher speeds than the motor is rated while providing optimal torque and therefore increased efficiency.
175 Years of Linear Programming
polynomial-time solvability of linear programming, that is, testing if a polyhedron Q E ~ ... Q is rational, i.e. all extreme points and rays of Q are ra- tional vectors or ..... rithrll terminates with an interior solution, a post-processing step is usually ...
A dynamical systems approach to motor development.
Kamm, K; Thelen, E; Jensen, J L
1990-12-01
The study of motor development has long influenced the clinical practice of physical therapy. We first review the contributions and deficiencies of two traditional maturational and reflex-based models of motor development. Second, we describe basic principles of kinematic and kinetic analyses of movement and show how we have applied these techniques to understand infant stepping and kicking. Third, we propose a theory of motor development based on a dynamical systems perspective that is consistent with our infant studies. Finally, we explore the implications of the model for physical therapists.
Non-linear dynamics in Parkinsonism
Olivier eDarbin
2013-12-01
Full Text Available Over the last 30 years, the functions (and dysfunctions of the sensory-motor circuitry have been mostly conceptualized using linear modelizations which have resulted in two main models: the "rate hypothesis" and the "oscillatory hypothesis". In these two models, the basal ganglia data stream is envisaged as a random temporal combination of independent simple patterns issued from its probability distribution of interval interspikes or its spectrum of frequencies respectively.More recently, non-linear analyses have been introduced in the modelization of motor circuitry activities, and they have provided evidences that complex temporal organizations exist in basal ganglia neuronal activities. Regarding movement disorders, these complex temporal organizations in the basal ganglia data stream differ between conditions (i.e. parkinsonism, dyskinesia, healthy control and are responsive to treatments (i.e. L-DOPA,DBS. A body of evidence has reported that basal ganglia neuronal entropy (a marker for complexity/irregularity in time series is higher in hypokinetic state. In line with these findings, an entropy-based model has been recently formulated to introduce basal ganglia entropy as a marker for the alteration of motor processing and a factor of motor inhibition. Importantly, non-linear features have also been identified as a marker of condition and/or treatment effects in brain global signals (EEG, muscular activities (EMG or kinetic of motor symptoms (tremor, gait of patients with movement disorders. It is therefore warranted that the non-linear dynamics of motor circuitry will contribute to a better understanding of the neuronal dysfunctions underlying the spectrum of parkinsonian motor symptoms including tremor, rigidity and hypokinesia.
Controlling Precision Stepper Motors in Flight Using (Almost) No Parts
Randall, David
2010-01-01
This concept allows control of high-performance stepper motors with minimal parts count and minimal flight software complexity. Although it uses a small number of common flight-qualified parts and simple control algorithms, it is capable enough to meet demanding system requirements. Its programmable nature makes it trivial to implement changes to control algorithms both during integration & test and in flight. Enhancements such as microstepping, half stepping, back-emf compensation, and jitter reduction can be tailored to the requirements of a large variety of stepper motor based applications including filter wheels, focus mechanisms, antenna tracking subsystems, pointing and mobility. The hardware design (using an H-bridge motor controller IC) was adapted from JPL's MER mission, still operating on Mars. This concept has been fully developed and incorporated into the MCS instrument on MRO, currently operating in Mars orbit. It has been incorporated into the filter wheel mechanism and linear stage (focus) mechanism for the AMT instrument. On MCS/MRO, two of these circuits control the elevation and azimuth of the MCS telescope/radiometer assembly, allowing the instrument to continuously monitor the limb of the Martian atmosphere. Implementation on MCS/MRO resulted in a 4:1 reduction in the volume and mass required for the motor driver electronics (100:25 square inches of PCB space), producing a very compact instrument. In fact, all of the electronics for the MCS instrument are packaged within the movable instrument structure. It also saved approximately 3 Watts of power. Most importantly, the design enabled MCS to meet very its stringent maximum allowable torque disturbance requirements.
Application of intelligent soft start in asynchronous motor
Du, Xue; Ye, Ying; Wang, Yuelong; Peng, Lei; Zhang, Suying
2018-05-01
The starting way of three phase asynchronous motor has full voltage start and step-down start. Direct starting brings large current impact, causing excessive local temperature to the power grid and larger starting torque will also impact the motor equipment and affect the service life of the motor. Aim at the problem of large current and torque caused by start-up, an intelligent soft starter is proposed. Through the application of intelligent soft start on asynchronous motor, highlights its application advantage in motor control.
Experimental device for measuring the dynamic properties of diaphragm motors
Fojtášek, Kamil; Dvořák, Lukáš; Mejzlík, Jan
The subject of this paper is to design and description of the experimental device for the determination dynamic properties of diaphragm pneumatic motors. These motors are structurally quite different from conventional pneumatic linear cylinders. The working fluid is typically compressed air, the piston of motor is replaced by an elastic part and during the working cycle there is a contact of two elastic environments. In the manufacturers catalogs of these motors are not given any working characteristics. Description of the dynamic behavior of diaphragm motor will be used for verification of mathematical models.
Features of Synchronous Electronically Commutated Motors in Servomotor Operation Modes
Dirba J.
2017-04-01
Full Text Available The authors consider the features and operation specifics of the synchronous permanent magnet motors and the synchronous reluctance motors with electronic commutation in servomotor operation modes. Calculation results show that mechanical and control characteristics of studied motors are close to a linear shape. The studied motor control is proposed to implement similar to phase control of induction servomotor; it means that angle θ (angle between vectors of the supply voltage and non-load electromotive force or angle ε (angle between rotor direct axis and armature magnetomotive force axis is changed. The analysis results show that synchronous electronically commutated motors could be used as servomotors.
Features of Synchronous Electronically Commutated Motors in Servomotor Operation Modes
Dirba, J.; Lavrinovicha, L.; Dobriyan, R.
2017-04-01
The authors consider the features and operation specifics of the synchronous permanent magnet motors and the synchronous reluctance motors with electronic commutation in servomotor operation modes. Calculation results show that mechanical and control characteristics of studied motors are close to a linear shape. The studied motor control is proposed to implement similar to phase control of induction servomotor; it means that angle θ (angle between vectors of the supply voltage and non-load electromotive force) or angle ɛ (angle between rotor direct axis and armature magnetomotive force axis) is changed. The analysis results show that synchronous electronically commutated motors could be used as servomotors.
High efficiency motors; Motores de alta eficiencia
Uranga Favela, Ivan Jaime [Energia Controlada de Mexico, S. A. de C. V., Mexico, D. F. (Mexico)
1993-12-31
This paper is a technical-financial study of the high efficiency and super-premium motors. As it is widely known, more than 60% of the electrical energy generated in the country is used for the operation of motors, in industry as well as in commerce. Therefore the importance that the motors have in the efficient energy use. [Espanol] El presente trabajo es un estudio tecnico-financiero de los motores de alta eficiencia y los motores super premium. Como es ampliamente conocido, mas del 60% de la energia electrica generada en el pais, es utilizada para accionar motores, dentro de la industria y el comercio. De alli la importancia que los motores tienen en el uso eficiente de la energia.
High efficiency motors; Motores de alta eficiencia
Uranga Favela, Ivan Jaime [Energia Controlada de Mexico, S. A. de C. V., Mexico, D. F. (Mexico)
1992-12-31
This paper is a technical-financial study of the high efficiency and super-premium motors. As it is widely known, more than 60% of the electrical energy generated in the country is used for the operation of motors, in industry as well as in commerce. Therefore the importance that the motors have in the efficient energy use. [Espanol] El presente trabajo es un estudio tecnico-financiero de los motores de alta eficiencia y los motores super premium. Como es ampliamente conocido, mas del 60% de la energia electrica generada en el pais, es utilizada para accionar motores, dentro de la industria y el comercio. De alli la importancia que los motores tienen en el uso eficiente de la energia.
Kyung-Hun Shin
2017-05-01
Full Text Available The shape of the magnet is essential to the performance of a slotless permanent magnet linear synchronous machine (PMLSM because it is directly related to desirable machine performance. This paper presents a reduction in the thrust ripple of a PMLSM through the use of arc-shaped magnets based on electromagnetic field theory. The magnetic field solutions were obtained by considering end effect using a magnetic vector potential and two-dimensional Cartesian coordinate system. The analytical solution of each subdomain (PM, air-gap, coil, and end region is derived, and the field solution is obtained by applying the boundary and interface conditions between the subdomains. In particular, an analytical method was derived for the instantaneous thrust and thrust ripple reduction of a PMLSM with arc-shaped magnets. In order to demonstrate the validity of the analytical results, the back electromotive force results of a finite element analysis and experiment on the manufactured prototype model were compared. The optimal point for thrust ripple minimization is suggested.
Arai, Noriyoshi; Yasuoka, Kenji; Koishi, Takahiro; Ebisuzaki, Toshikazu; Zeng, Xiao Cheng
2013-06-12
The "asymmetric Brownian ratchet model", a variation of Feynman's ratchet and pawl system, is invoked to understand the kinesin walking behavior along a microtubule. The model system, consisting of a motor and a rail, can exhibit two distinct binding states, namely, the random Brownian state and the asymmetric potential state. When the system is transformed back and forth between the two states, the motor can be driven to "walk" in one direction. Previously, we suggested a fundamental mechanism, that is, bubble formation in a nanosized channel surrounded by hydrophobic atoms, to explain the transition between the two states. In this study, we propose a more realistic and viable switching method in our computer simulation of molecular motor walking. Specifically, we propose a thermosensitive polymer model with which the transition between the two states can be controlled by temperature pulses. Based on this new motor system, the stepping size and stepping time of the motor can be recorded. Remarkably, the "walking" behavior observed in the newly proposed model resembles that of the realistic motor protein. The bubble formation based motor not only can be highly efficient but also offers new insights into the physical mechanism of realistic biomolecule motors.
Thermodynamics and kinetics of a molecular motor ensemble.
Baker, J E; Thomas, D D
2000-10-01
If, contrary to conventional models of muscle, it is assumed that molecular forces equilibrate among rather than within molecular motors, an equation of state and an expression for energy output can be obtained for a near-equilibrium, coworking ensemble of molecular motors. These equations predict clear, testable relationships between motor structure, motor biochemistry, and ensemble motor function, and we discuss these relationships in the context of various experimental studies. In this model, net work by molecular motors is performed with the relaxation of a near-equilibrium intermediate step in a motor-catalyzed reaction. The free energy available for work is localized to this step, and the rate at which this free energy is transferred to work is accelerated by the free energy of a motor-catalyzed reaction. This thermodynamic model implicitly deals with a motile cell system as a dynamic network (not a rigid lattice) of molecular motors within which the mechanochemistry of one motor influences and is influenced by the mechanochemistry of other motors in the ensemble.
Step by Step Microsoft Office Visio 2003
Lemke, Judy
2004-01-01
Experience learning made easy-and quickly teach yourself how to use Visio 2003, the Microsoft Office business and technical diagramming program. With STEP BY STEP, you can take just the lessons you need, or work from cover to cover. Either way, you drive the instruction-building and practicing the skills you need, just when you need them! Produce computer network diagrams, organization charts, floor plans, and moreUse templates to create new diagrams and drawings quicklyAdd text, color, and 1-D and 2-D shapesInsert graphics and pictures, such as company logosConnect shapes to create a basic f
Speed controller for an alternating - current motor
Bolie, V.W.
1984-01-01
A controller for a multi-phase ac motor that is subject to a large inertial load, e.g. an induction motor driving a heavy spinning rotor of a neutron chopper that must be rotated in phase-locked synchronism with a reference pulse train that is representative of an ac power supply signal Esub(L) having a meandering line frequency, includes a sensor which provides a feedback pulse train representative of the actual speed of the motor which is compared (by counting clock pulses between feedback pulses) with a reference clock signal in a computing unit to provide a motor control signal Esub(c). The motor control signal is a weighted linear sum of a speed error signal, a phase error signal, and a drift error signal, the magnitudes of which are recalculated and updated with each revolution of the motor shaft. The speed error signal is constant for large speed errors but highly sensitive to small speed errors. The stator windings of the motor are driven by variable-frequency power amplifiers which are controlled by the motor control signal Esub(c) via PROMs which store digital representations of sine and cosine waveforms in quadrature. (author)
Free Modal Algebras Revisited: The Step-by-Step Method
Bezhanishvili, N.; Ghilardi, Silvio; Jibladze, Mamuka
2012-01-01
We review the step-by-step method of constructing finitely generated free modal algebras. First we discuss the global step-by-step method, which works well for rank one modal logics. Next we refine the global step-by-step method to obtain the local step-by-step method, which is applicable beyond
Diabetes PSA (:30) Step By Step
2009-10-24
First steps to preventing diabetes. For Hispanic and Latino American audiences. Created: 10/24/2009 by National Diabetes Education Program (NDEP), a joint program of the Centers for Disease Control and Prevention and the National Institutes of Health. Date Released: 10/24/2009.
Diabetes PSA (:60) Step By Step
2009-10-24
First steps to preventing diabetes. For Hispanic and Latino American audiences. Created: 10/24/2009 by National Diabetes Education Program (NDEP), a joint program of the Centers for Disease Control and Prevention and the National Institutes of Health. Date Released: 10/24/2009.
AC Application of HTS Conductors in Highly Dynamic Electric Motors
Oswald, B; Best, K-J; Setzer, M; Duffner, E; Soell, M; Gawalek, W; Kovalev, L K
2006-01-01
Based on recent investigations we design highly dynamic electric motors up to 400 kW and linear motors up to 120 kN linear force using HTS bulk material and HTS tapes. The introduction of HTS tapes into AC applications in electric motors needs fundamental studies on double pancake coils under transversal magnetic fields. First theoretical and experimental results on AC field distributions in double-pancake-coils and corresponding AC losses will be presented. Based on these results the simulation of the motor performance confirms extremely high power density and efficiency of both types of electric motors. Improved characteristics of rare earth permanent magnets used in our motors at low temperatures give an additional technological benefit
Linear or Rotary Actuator Using Electromagnetic Driven Hammer as Prime Mover
Paine, Jeffrey S. N. (Inventor); Smith, Byron F. (Inventor); Sesler, Joshua J. (Inventor); Paine, Matthew T. (Inventor); McMahan, Bert K. (Inventor); McMahan, Mark C. (Inventor)
2018-01-01
We claim a hammer driven actuator that uses the fast-motion, low-force characteristics of an electro-magnetic or similar prime mover to develop kinetic energy that can be transformed via a friction interface to produce a higher-force, lower-speed linear or rotary actuator by using a hammering process to produce a series of individual steps. Such a system can be implemented using a voice-coil, electro-mechanical solenoid or similar prime mover. Where a typical actuator provides limited range of motion or low force, the range of motion of a linear or rotary impact driven motor can be configured to provide large displacements which are not limited by the characteristic dimensions of the prime mover.
Linear Algebra and Smarandache Linear Algebra
Vasantha, Kandasamy
2003-01-01
The present book, on Smarandache linear algebra, not only studies the Smarandache analogues of linear algebra and its applications, it also aims to bridge the need for new research topics pertaining to linear algebra, purely in the algebraic sense. We have introduced Smarandache semilinear algebra, Smarandache bilinear algebra and Smarandache anti-linear algebra and their fuzzy equivalents. Moreover, in this book, we have brought out the study of linear algebra and vector spaces over finite p...
Nonlinear Deadbeat Current Control of a Switched Reluctance Motor
Rudolph, Benjamin
2009-01-01
High performance current control is critical to the success of the switched reluctance motor (SRM). Yet high motor phase nonlinearities in the SRM place extra burden on the current controller, rendering it the weakest link in SRM control. In contrast to linear motor control techniques that respond to current error, the deadbeat controller calculates the control voltage by the current command, phase current, rotor position and applied phase voltage. The deadbeat controller has demonstrated sup...
Energetics and efficiency of a molecular motor model
C. Fogedby, Hans; Svane, Axel
2013-01-01
The energetics and efficiency of a linear molecular motor model proposed by Mogilner et al. (Phys. Lett. 237, 297 (1998)) is analyzed from an analytical point of view. The model which is based on protein friction with a track is described by coupled Langevin equations for the motion in combination...... when incorporating the full motor dynamics, owing to the strong dissipation associated with the motor action....
Van Atta, C.M.; Beringer, R.; Smith, L.
1959-01-01
A linear accelerator of heavy ions is described. The basic contributions of the invention consist of a method and apparatus for obtaining high energy particles of an element with an increased charge-to-mass ratio. The method comprises the steps of ionizing the atoms of an element, accelerating the resultant ions to an energy substantially equal to one Mev per nucleon, stripping orbital electrons from the accelerated ions by passing the ions through a curtain of elemental vapor disposed transversely of the path of the ions to provide a second charge-to-mass ratio, and finally accelerating the resultant stripped ions to a final energy of at least ten Mev per nucleon.
Dafsari, Haidar Salimi; Weiß, Luisa; Silverdale, Monty; Rizos, Alexandra; Reddy, Prashanth; Ashkan, Keyoumars; Evans, Julian; Reker, Paul; Petry-Schmelzer, Jan Niklas; Samuel, Michael; Visser-Vandewalle, Veerle; Antonini, Angelo; Martinez-Martin, Pablo; Ray-Chaudhuri, K; Timmermann, Lars
2018-02-24
Subthalamic nucleus (STN) deep brain stimulation (DBS) improves quality of life (QoL), motor, and non-motor symptoms (NMS) in advanced Parkinson's disease (PD). However, considerable inter-individual variability has been observed for QoL outcome. We hypothesized that demographic and preoperative NMS characteristics can predict postoperative QoL outcome. In this ongoing, prospective, multicenter study (Cologne, Manchester, London) including 88 patients, we collected the following scales preoperatively and on follow-up 6 months postoperatively: PDQuestionnaire-8 (PDQ-8), NMSScale (NMSS), NMSQuestionnaire (NMSQ), Scales for Outcomes in PD (SCOPA)-motor examination, -complications, and -activities of daily living, levodopa equivalent daily dose. We dichotomized patients into "QoL responders"/"non-responders" and screened for factors associated with QoL improvement with (1) Spearman-correlations between baseline test scores and QoL improvement, (2) step-wise linear regressions with baseline test scores as independent and QoL improvement as dependent variables, (3) logistic regressions using aforementioned "responders/non-responders" as dependent variable. All outcomes improved significantly on follow-up. However, approximately 44% of patients were categorized as "QoL non-responders". Spearman-correlations, linear and logistic regression analyses were significant for NMSS and NMSQ but not for SCOPA-motor examination. Post-hoc, we identified specific NMS (flat moods, difficulties experiencing pleasure, pain, bladder voiding) as significant contributors to QoL outcome. Our results provide evidence that QoL improvement after STN-DBS depends on preoperative NMS characteristics. These findings are important in the advising and selection of individuals for DBS therapy. Future studies investigating motor and non-motor PD clusters may enable stratifying QoL outcomes and help predict patients' individual prospects of benefiting from DBS. Copyright © 2018. Published by Elsevier
Very Slow Speed Axial Motion Reluctance Motor | Agu | Nigerian ...
Abstract. This paper presents the scheme for a very slow speed linear machine which uses conventional laminations and with which speeds of the same low order as that of the screw-thread motor can be obtained.
Microsoft Office Word 2007 step by step
Cox, Joyce
2007-01-01
Experience learning made easy-and quickly teach yourself how to create impressive documents with Word 2007. With Step By Step, you set the pace-building and practicing the skills you need, just when you need them!Apply styles and themes to your document for a polished lookAdd graphics and text effects-and see a live previewOrganize information with new SmartArt diagrams and chartsInsert references, footnotes, indexes, a table of contentsSend documents for review and manage revisionsTurn your ideas into blogs, Web pages, and moreYour all-in-one learning experience includes:Files for building sk
Chalmers, B J
2013-01-01
Electric Motor Handbook aims to give practical knowledge in a wide range of capacities such as plant design, equipment specification, commissioning, operation and maintenance. The book covers topics such as the modeling of steady-state motor performance; polyphase induction, synchronous, and a.c. commutator motors; ambient conditions, enclosures, cooling and loss dissipation; and electrical supply systems and motor drives. Also covered are topics such as variable-speed drives and motor control; materials and motor components; insulation types, systems, and techniques; and the installation, sit
Kassandra Nunes Amaro
2010-09-01
Full Text Available The objective of this study was to investigate the motor performance of school chil-dren aged 6 to 10 years without learning difficulties (n=101, and to analyze the reliability of the Motor Development Scale (MDS (Rosa Neto, 2002. Descriptive statistics with calculation of the mean, standard deviation, and range was used for data analysis. The internal consistency of the MDS was assessed using Cronbach’s alpha coefficient, and the correlation between variables was determined by Pearson’s linear correlation, with p<0.05. The results showed (1 that motor development was within normal limits in 96% of the children, and (2 a high correlation betwe-en chronological age and general motor age, indicating good internal consistency. These data demonstrate the logic and structured design of the MDS, confirming its reliability.
Phonon scattering in graphene over substrate steps
Sevinçli, H.; Brandbyge, M.
2014-01-01
We calculate the effect on phonon transport of substrate-induced bends in graphene. We consider bending induced by an abrupt kink in the substrate, and provide results for different step-heights and substrate interaction strengths. We find that individual substrate steps reduce thermal conductance in the range between 5% and 47%. We also consider the transmission across linear kinks formed by adsorption of atomic hydrogen at the bends and find that individual kinks suppress thermal conduction substantially, especially at high temperatures. Our analysis show that substrate irregularities can be detrimental for thermal conduction even for small step heights.
Katsuyuki Shiroguchi
2011-04-01
Full Text Available Myosins are ATP-driven linear molecular motors that work as cellular force generators, transporters, and force sensors. These functions are driven by large-scale nucleotide-dependent conformational changes, termed "strokes"; the "power stroke" is the force-generating swinging of the myosin light chain-binding "neck" domain relative to the motor domain "head" while bound to actin; the "recovery stroke" is the necessary initial motion that primes, or "cocks," myosin while detached from actin. Myosin Va is a processive dimer that steps unidirectionally along actin following a "hand over hand" mechanism in which the trailing head detaches and steps forward ∼72 nm. Despite large rotational Brownian motion of the detached head about a free joint adjoining the two necks, unidirectional stepping is achieved, in part by the power stroke of the attached head that moves the joint forward. However, the power stroke alone cannot fully account for preferential forward site binding since the orientation and angle stability of the detached head, which is determined by the properties of the recovery stroke, dictate actin binding site accessibility. Here, we directly observe the recovery stroke dynamics and fluctuations of myosin Va using a novel, transient caged ATP-controlling system that maintains constant ATP levels through stepwise UV-pulse sequences of varying intensity. We immobilized the neck of monomeric myosin Va on a surface and observed real time motions of bead(s attached site-specifically to the head. ATP induces a transient swing of the neck to the post-recovery stroke conformation, where it remains for ∼40 s, until ATP hydrolysis products are released. Angle distributions indicate that the post-recovery stroke conformation is stabilized by ≥ 5 k(BT of energy. The high kinetic and energetic stability of the post-recovery stroke conformation favors preferential binding of the detached head to a forward site 72 nm away. Thus, the recovery
Imparting Motion to a Test Object Such as a Motor Vehicle in a Controlled Fashion
Southward, Stephen C. (Inventor); Reubush, Chandler (Inventor); Pittman, Bryan (Inventor); Roehrig, Kurt (Inventor); Gerard, Doug (Inventor)
2014-01-01
An apparatus imparts motion to a test object such as a motor vehicle in a controlled fashion. A base has mounted on it a linear electromagnetic motor having a first end and a second end, the first end being connected to the base. A pneumatic cylinder and piston combination have a first end and a second end, the first end connected to the base so that the pneumatic cylinder and piston combination is generally parallel with the linear electromagnetic motor. The second ends of the linear electromagnetic motor and pneumatic cylinder and piston combination being commonly linked to a mount for the test object. A control system for the linear electromagnetic motor and pneumatic cylinder and piston combination drives the pneumatic cylinder and piston combination to support a substantial static load of the test object and the linear electromagnetic motor to impart controlled motion to the test object.
Interacting adiabatic quantum motor
Bruch, Anton; Kusminskiy, Silvia Viola; Refael, Gil; von Oppen, Felix
2018-05-01
We present a field-theoretic treatment of an adiabatic quantum motor. We explicitly discuss a motor called the Thouless motor which is based on a Thouless pump operating in reverse. When a sliding periodic potential is considered to be the motor degree of freedom, a bias voltage applied to the electron channel sets the motor in motion. We investigate a Thouless motor whose electron channel is modeled as a Luttinger liquid. Interactions increase the gap opened by the periodic potential. For an infinite Luttinger liquid the coupling-induced friction is enhanced by electron-electron interactions. When the Luttinger liquid is ultimately coupled to Fermi liquid reservoirs, the dissipation reduces to its value for a noninteracting electron system for a constant motor velocity. Our results can also be applied to a motor based on a nanomagnet coupled to a quantum spin Hall edge.
Chronic vocal tic disorder; Tic - chronic motor tic disorder ... Chronic motor tic disorder is more common than Tourette syndrome . Chronic tics may be forms of Tourette syndrome. Tics usually start ...
Bar-Haim, Simona; Harries, Netta; Hutzler, Yeshayahu; Belokopytov, Mark; Dobrov, Igor
2013-09-01
To describe Re-Step™, a novel mechatronic shoe system that measures center of pressure (COP) gait parameters and complexity of COP dispersion while walking, and to demonstrate these measurements in healthy controls and individuals with hemiparesis and cerebral palsy (CP) before and after perturbation training. The Re-Step™ was used to induce programmed chaotic perturbations to the feet while walking for 30 min for 36 sessions over 12-weeks of training in two subjects with hemiparesis and two with CP. Baseline measurements of complexity indices (fractal dimension and approximate entropy) tended to be higher in controls than in those with disabilities, while COP variability, mean and variability of step time and COP dispersion were lower. After training the disabled subjects these measurement values tended toward those of the controls, along with a decrease in step time, 10 m walk time, average step time, percentage of double support and increased Berg balance score. This pilot trial reveals the feasibility and applicability of this unique measurement and perturbation system for evaluating functional disabilities and changes with interventions to improve walking. Implication for Rehabilitation Walking, of individuals with cerebral palsy and hemiparesis following stroke, can be viewed in terms of a rigid motor behavior that prevents adaptation to changing environmental conditions. Re-Step system (a) measures and records linear and non-linear gait parameters during free walking to provide a detailed evaluation of walking disabilities, (b) is an intervention training modality that applies unexpected perturbations during walking. This perturbation intervention may improve gait and motor functions of individuals with hemiparesis and cerebral plasy.
Kitsukawa, Takashi; Nagata, Masatoshi; Yanagihara, Dai; Tomioka, Ryohei; Utsumi, Hideko; Kubota, Yasuo; Yagi, Takeshi; Graybiel, Ann M; Yamamori, Tetsuo
2011-07-01
Motor control is critical in daily life as well as in artistic and athletic performance and thus is the subject of intense interest in neuroscience. Mouse models of movement disorders have proven valuable for many aspects of investigation, but adequate methods for analyzing complex motor control in mouse models have not been fully established. Here, we report the development of a novel running-wheel system that can be used to evoke simple and complex stepping patterns in mice. The stepping patterns are controlled by spatially organized pegs, which serve as footholds that can be arranged in adjustable, ladder-like configurations. The mice run as they drink water from a spout, providing reward, while the wheel turns at a constant speed. The stepping patterns of the mice can thus be controlled not only spatially, but also temporally. A voltage sensor to detect paw touches is attached to each peg, allowing precise registration of footfalls. We show that this device can be used to analyze patterns of complex motor coordination in mice. We further demonstrate that it is possible to measure patterns of neural activity with chronically implanted tetrodes as the mice engage in vigorous running bouts. We suggest that this instrumented multipeg running wheel (which we name the Step-Wheel System) can serve as an important tool in analyzing motor control and motor learning in mice.
Electric Motor Thermal Management
Bennion, Kevin S [National Renewable Energy Laboratory (NREL), Golden, CO (United States)
2017-09-01
Thermal management enables more efficient and cost-effective motors. This Annual Merit Review presentation describes the technical accomplishments and progress in electric motor thermal management R&D over the last year. This project supports a broad industry demand for data, analysis methods, and experimental techniques to improve and better understand motor thermal management.
Programmable dc motor controller
Hopwood, J. E.
1982-11-01
A portable programmable dc motor controller, with features not available on commercial instruments was developed for controlling fixtures during welding processes. The controller can be used to drive any dc motor having tachometer feedback and motor requirements not exceeding 30 volts, 3 amperes. Among the controller's features are delayed start time, upslope time, speed, and downslope time.